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During the past forty years, since the first book with a title mentioning quantitative and remote
sensing was published [1], quantitative land remote sensing has advanced dramatically, and numerous
books have been published since then [2–6] although some of them did not use quantitative land remote
sensing in their titles. Quantitative land remote sensing has not been explicitly defined in the literature,
but we consider it as a sub-discipline of remote sensing including the following components (see
Figure 1): radiometric preprocessing, inversion, high-level product generation, and applications.
Many inversion algorithms rely on physical models of radiation regimes of landscapes, which
link with remotely-sensed data. Generating high-level satellite products of land surface biophysical
and biochemical variables create the key bridge between remote sensing science and applications.
Conducting in situ measurements for validation of inversion algorithms and satellite products is also
a critical component. Application of satellite products to address scientific and societal relevant issues
will ultimately decide the future of quantitative land remote sensing.

Figure 1. The scope of quantitative land remote sensing.

One of the major drivers of the rapid development of quantitative remote sensing in China is the
availability of a huge amount of satellite data not only from the international space agencies but also
from Chinese satellite sensors. Figure 2 shows the major Chinese satellite missions for land surface
monitoring, such as the China-Brazil Earth resource satellites (CBERS), environment (Huang-Jing, HJ),
resources (Zhi-Yuan, ZY), meteorological (Feng-Yun, FY), and high-resolution (Gao-Fen, GF) satellite
series. Most of them are polar-orbiting satellites, but GF-5 and FY-4 are geostationary satellites. With the
constellation of multiple satellites, both high spatial and temporal resolutions are being achieved.

Remote Sens. 2018, 10, 1490; doi:10.3390/rs10091490 www.mdpi.com/journal/remotesensing1
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Figure 2. Major Chinese satellites relevant to land remote sensing.

Because of the increased data volume and sophistication of information extraction, one of the
trends in quantitative remote sensing is the production of high-level satellite products, mostly by
the data centers with centralized facilities and specialized experts. It started from the NASA Earth
Observing System (EOS) program in the 1990s. Since then, China has started to produce and distribute
satellite products worldwide. One of the major product suites is the Global Land Surface Satellite
(GLASS) products [7,8]. It has been expanded from the original 5 products into the present 12 products
(see Table 1) that are being distributed free of charge through the China National Data Sharing
Infrastructure of Earth System Science (http://www.geodata.cn/thematicView/GLASS.html) and the
Global Land Cover Facility at the University of Maryland (http://glcf.umd.edu/data).

The GLASS products have some unique features, for example, long-time times series (several
products span from 1981 to present), high-spatial resolution of the radiation products (5 km instead
of the typical resolutions of ~100 km), and high quality and accuracy [9–11]. Efforts are being made
in China [12] to develop more Climate Data Records (CDR) that are defined as the time series of
measurements of sufficient length, consistency, and continuity to determine climate variability and
change by the National Research Council [13].

Table 1. Overview of the Global Land Surface Satellite (GLASS) products and their characteristics.

No. Product
Spatial

Resolution
Temporal

Resolution
Temporal

Range
References

1 Leaf area index 1–5 km, 0.05◦ 8 days 1981–2017 [14,15]
2 Albedo 1–5 km, 0.05◦ 8 days 1981–2017 [16–18]
3 Emissivity 1–5 km, 0.05◦ 8 days 1981–2017 [19,20]
4 FAPAR 1–5 km, 0.05◦ 8 days 1981–2017 [21]

5 Downward
shortwave radiation 0.05◦ 1 day 1983, 1993,

2000–2017 [22]

6 PAR 0.05◦ 1 day 1983, 1993
2000–2017 [22]

7 Longwave net
radiation 0.05◦ Instantaneous 1983, 1993,

2003, 2013 [23,24]

8 All-wave net
radiation 0.05◦ 1 day 1983, 1993

2000–2017 [25]

9 Land Surface
Temperature 1–5 km, 0.05◦ Instantaneous 1983, 1993,

2003, 2013 [26]

10 Fraction of vegetation
cover 500 m, 0.05◦ 8 days 1981–2017 [27]

11 Latent heat (ET) 1–5 km, 0.05◦ 8 days 1981–2017 [28]

12 Gross Primary
Productivity 1–5 km, 0.05◦ 8 days 1981–2017 [29]

Many members of our community have made significant contributions to the development
of quantitative land remote sensing. Professor Xiaowen Li was one of leading figures. Trained as
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an electrical engineer, Professor Li started to work on physical modeling of the vegetation radiation
field in the early 1980s under the supervision of Professor Alan Strahler. He developed the well-known
Li–Strahler geometric-optical vegetation reflectance model [30,31], and later coupled it with radiative
transfer modeling [32,33]. He pioneered the simplified “kernels” to model land surface directional
reflectance for developing the MODIS surface albedo products [34], These “kernels” have been widely
used for analyzing various satellite observations. He also explored the angular behavior and scaling of
the thermal-infrared remote sensing signatures [35], and proposed to constrain the remote sensing
inversion using prior knowledge [36]. In the second half of his career, Professor Li devoted his time and
energy to facilitate and promote quantitative land remote sensing research in China by leading several
extensive research projects, directing the Research Institute on Remote Sensing under the Chinese
Academy of Sciences, and helping establish the State Key Laboratory of Remote Sensing Science
under the Chinese Ministry of Science and Technology. Those are just few examples of areas where
Professor Li has made outstanding contributions. A comprehensive summary of his achievements has
been provided by Liu et al. [37].

In memory of Professor Li, we organized the Third National Forum on Quantitative Remote
Sensing at Beijing Normal University during 14–15 July 2017. There were 296 meeting participants
from 65 research institutes and universities in China, and almost all aspects of quantitative land remote
sensing were discussed.

The papers of this Special Issue are mainly from this forum. Although 40 articles cannot
comprehensively characterize different aspects of quantitative land remote sensing in China,
they clearly represent the current level of research in this area by Chinese scientists. These papers
are related to various satellite data products, such as incident solar radiation [38–40], chlorophyll
fluorescence [41], surface directional reflectance [42–44], aerosol optical depth [45], albedo [46,47],
land surface temperature [48–50], upward longwave radiation [51], leaf area index [52–55],
fractional vegetation cover [56], forest biomass [57], precipitation [58], evapotranspiration [59–61],
freeze/thaw [62], snow cover [63], vegetation productivity [64–68], phenology [69,70], biodiversity
indicators [71], drought monitoring [72], forest disturbance [55], air-quality monitoring [73], sensor
design [74], and sampling strategy [75] for validation with in situ measurements. Most of these
papers are based on optical-thermal remotely-sensed observations, but a few papers are also based on
microwave [62,63] and Lidar [54,76] data.

Although these 40 papers do not represent a large sample, they demonstrate that few studies
have been undertaken on physical modeling for understanding remotely-sensed signals and use of
Chinese satellite data in their analysis. This latter shortcoming calls for the further improvement of
Chinese satellite data quality.

Acknowledgments: This work was supported in part by the National Key Research and Development Program
of China (No. 2016YFA0600101) and the National Natural Science Foundation of China (No. 41331173). We would
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Abstract: The SCOPE (soil canopy observation of photochemistry and energy fluxes) model has
been widely used to interpret solar-induced chlorophyll fluorescence (SIF) and investigate the
SIF-photosynthesis links at different temporal and spatial scales in recent years. In the SCOPE
model, the fluorescence quantum efficiency in dark-adapted conditions (FQE) for Photosystem II
(fqe2) and Photosystem I (fqe1) were two key parameters of SIF emission, which have always been
parameterized as fixed values derived from laboratory measurements. To date, only a few studies
have focused on evaluating the SCOPE model for SIF interpretation, and the variation of FQE values in
the field remains controversial. In this study, the accuracy of the SCOPE model to simulate the canopy
SIF was investigated using diurnal experiments on winter wheat. First, ten diurnal experiments
were conducted on winter wheat, and the canopy SIF emissions and the SCOPE model’s input
parameters were directly measured or indirectly retrieved from the spectral radiances, gross primary
productivity (GPP) data, and meteorological records. Second, the SCOPE-simulated SIF emissions
with fixed FQE values were evaluated using the observed canopy SIF data. The results show that
the SCOPE model can reliably interpret the diurnal cycles of SIF variation and provide acceptable
results of SIF simulations at the O2-B (SIFB) and O2-A (SIFA) bands with RRMSEs of 24.35% and
23.67%, respectively. However, the SCOPE-simulated SIFB and SIFA still contained large systematical
deviations at some growth stages of wheat, and the seasonal cycles of the ratio between SIFB and
SIFA (SIFA/SIFB) cannot be credibly reproduced. Finally, the SCOPE-simulated SIF emissions with
variable FQE values were evaluated using the observed canopy SIF data. The simulating accuracy
of SIFB and SIFA can be improved greatly using variable FQE values, and the SCOPE simulations
track well with the seasonal SIFA/SIFB values with an RRMSE of 20.63%. The results indicated a
clear seasonal pattern of FQE values for unbiased SIF simulation: from the erecting to the flowering
stage of wheat, the ratio of fqe1 to fqe2 (fqe1/fqe2) gradually increased from 0.05–0.1 to 0.3–0.5, while
the fqe2 value decreased from 0.013 to 0.007. Our quantitative results of the model assessment and
the FQE adjustment support the use of the SCOPE model as a powerful tool for interpreting the SIF
emissions and can serve as a significant reference for future applications of the SCOPE model.

Keywords: solar-induced chlorophyll fluorescence; fluorescence quantum efficiency in dark-adapted
conditions (FQE); SCOPE; Fraunhofer Line Discrimination (FLD); gross primary productivity (GPP)

1. Introduction

Solar-induced chlorophyll fluorescence (SIF) refers to the emission of red and far-red light from
chlorophyll during the absorption of photosynthetically active radiation under natural sunlight.

Remote Sens. 2018, 10, 250; doi:10.3390/rs10020250 www.mdpi.com/journal/remotesensing8
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The SIF spectrum is a continuous broadband spectrum that covers the approximately spectral range
of 650–850 nm. Its spectral shape is characterized by one peak at around 685 nm and another at
around 740 nm [1,2]. The emitted SIF is the sum of the chlorophyll fluorescence of photosystem
I (PSI) and photosystem II (PSII). PSII contributes to the SIF emission in both the red and far-red
spectral regions, whereas PSI contributes to the SIF emission only in the far-red region [3]. As a result,
the intensity and shape of the SIF spectrum can reflect the amount of energy absorbed by PSII and
PSI [4,5]. In addition, several studies have determined the physics-physiology mechanism connecting
function of the photosynthetic apparatus with chlorophyll fluorescence from active florescence
induction measurement and demonstrated that the fluorescence signal can be a reliable and observable
indicator of the plant’s photosynthetic status [4–6]. To date, extensive SIF-photosynthesis research
has focused on investigating the empirical correlations between SIF and GPP, and demonstrated that
SIF measurements can offer a promising approach for detecting the terrestrial vegetation’s actual
photosynthetic activity [7–11]. Since Plascyk introduced the Fraunhofer Line Discrimination (FLD)
method [12] to extract SIF signals from the observed vegetation-reflected radiance, various studies
have demonstrated the possibility of measuring SIF at Fraunhofer lines or atmospheric absorption
bands (e.g., an O2-B band at approximately 687 nm and an O2-A band at approximately 760 nm) on the
ground, from airborne platforms, and from satellites (for review, see [13]). Recently, global SIF maps
derived from hyperspectral satellite data have become available [14–18]. Meanwhile, SIF’s application
for global monitoring of plant photosynthesis has become a hot research area [9,14,19].

The soil canopy observation, photochemistry, and energy fluxes (SCOPE) model [20] has become
a virtual laboratory for interpreting SIF and investigating SIF-photosynthesis links on diurnal or
seasonal scales. With a full physiological representation of photosynthesis and fluorescence, SCOPE
has been regarded as a robust deterministic model for interpreting SIF and photosynthesis in various
studies. For example, it has been used to provide training and test data sets for new SIF retrieval
methods [21,22]; to derive empirical relationships between the seasonal maximum carboxylation
rate (Vcmax) and SIF, which are used to retrieve the global photosynthetic capacity of crops [19,23];
to evaluate the predictive power of SIF to estimate gross primary productivity (GPP); to investigate
the sensitivities of both GPP and SIF and their relationship to the biochemical parameters, as well as to
the environmental conditions at different spatial-temporal scales [24–27]; and to assess the influence of
confounding factors such as physiological and structural interferences or temporal scaling effects on
SIF-GPP relationships [8].

Despite the SCOPE model-integrated existing theories of radiative transfer, energy balance,
micrometeorology, and plant physiology, the model is analytical. Thus, it inevitably contains
assumptions due to model abstractions for SIF representations and uncertainties in driving
variables [28]. To date, only a few studies have involved the experimental validation of the SCOPE
model for SIF interpretation. Verrelst et al. provided insight into the key variables that drive the
reflectance and SIF emission simulations, based on a global sensitivity analysis (GSA) of the SCOPE
model [29]. The results showed that leaf composition, leaf area index, leaf inclination, irradiance,
and Vcmax are the most important factors affecting the SIF simulation and need to be accurately
parameterized to produce unbiased SIF interpretations. By comparing the simulated SIF with
corresponding field observations, Van der Tol et al. assessed the impacts of leaf pigment concentrations
and canopy structures on simulated SIF, as well as the impacts of PQ and NPQ [28]. However, they
focused on revealing information about the biochemical regulation of the energy pathways contained
in the SIF signal, without offering the quantitative accuracy of SIF simulation, and only the simulations
of far-red SIF at O2-A band (SIFA) have been investigated. Several studies have reported that the red
SIF at the O2-B band (SIFB) is more closely connected to plant photosynthesis, possibly because SIFB

is located near the fluorescence peak emitted by PSII [3,30,31]. Additionally, the ratio of SIFA to SIFB

can express SIF’s spectral shape, which can provide important information regarding physiological
and biochemical activities in vegetation [5,6,32]. Therefore, both the intensity and shape of the
SCOPE-simulated SIF spectra must be evaluated quantitatively.
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On the other hand, the fluorescence quantum efficiency in dark-adapted conditions (defined as
F0-level fluorescence yield) for PSII (fqe2) and PSI (fqe1) was always set as fixed values derived from
laboratory measurements, which may be unsuitable for the accurate simulation of SIF. According to
Van der Tol et al. [28], the suggested values of fqe2 and the ratio of fqe1 to fqe2 (fqe1/fqe2) for SCOPE
were 0.01 and 0.2, respectively. While, for early versions of the SCOPE model (before version 1.53),
the fqe2 value was suggested to be 0.01 by the model developer. This priori value can be obtained from
the work by Genty et al., [33], but it is unknown whether the value is universal [20]. The measured
fluorescence yields values at F0-level have been reported as around 0.02 [34–36]. In the study by
Trissl et al. [37], three different levels (0.01, 0.021, and 0.018) of the fluorescence yields at F0-level
were considered, and the contribution from PSI to the total fluorescence signal is reported as around
20%. As reported by Björkman and Barbara [38], the FQE values have been observed to change
with different vegetation species, chlorophyll contents, and exposures of leave surfaces to the sun.
Besides, all the laboratory-measured fqe2 values derived from active fluorescence measurements may
have some uncertainties due to the contamination of PSI fluorescence and the PSII closure caused
by measuring flashes during the measurements of PSII fluorescence at F0 level under dark-adapted
conditions [35–37,39]. Therefore, there are still a lot of uncertainties in the estimation of FQE and its
variation remains controversial. In this context, two issues arise: (i) the accuracy of SCOPE-simulated
SIF emissions with fixed FQE values needs to be evaluated using the observed SIF data and (ii) suitable
FQE values should be determined using field experiment observations, if SIF simulated with fixed
FQE was not sufficiently accurate.

Therefore, in this paper, we focused on two objectives: (i) quantitatively evaluating
SCOPE’s performance for modeling both SIF intensities at O2-B and O2-A bands, and the ratio between
them (SIFA/SIFB); and (ii) determining the FQE values using observations of ten field experiments on
winter wheat. After the input parameters of the SCOPE model were directly measured or indirectly
retrieved with high accuracy, the model was implemented to simulate diurnal SIF emissions compared
with the observations across wheat’s growing season in 2015 and 2016. This paper is outlined as
follows. Section 2 describes the experimental data sets, the parameter inversion methods, and the
SIF simulation process. Section 3 shows the results of parameter retrieving and model evaluation
with fixed and variable FQE values. Section 4 discusses the uncertainties and prospects of this study.
Finally, the most important conclusions are given in Section 5.

2. Materials and Methods

2.1. SCOPE (Soil Canopy Observation of Photochemistry and Energy Fluxes)

2.1.1. SCOPE Model Description

SCOPE is a vertical (1-D), integrated, radiative transfer and energy balance model [19]. This model
combines radiative transfer of solar radiation and radiation emitted by the vegetation (thermal and SIF)
with the energy balance in which a biochemical module handles the fluorescence emission efficiency
depending on the two de-excitation pathways: photochemical quenching of excitation energy via
electron transport (PQ) and non-photochemical quenching of excitation energy via thermal energy
dissipation (NPQ) [40]. It calculates directional top-of-canopy reflected radiation, emitted thermal
radiation, and SIF signals together with energy, water, and CO2 flux. In this work, we employed
version 1.61 to interpret SIF and GPP. The model consists of several modules combined to simulate
SIF and photosynthesis. The model’s main features related to the SIF and GPP simulations are briefly
described here (for more details, see [20]).

At the leaf level, two modules are used to simulate the SIF emission. One is the leaf radiative
transfer module called Fluspect that handles the radiative transfer of incident light and SIF emission in
the leaf. The other is the biochemical module that handles the emission efficiencies of photosystems
depending on the PQ and NPQ at photosystem level. At the canopy level, the optical radiative
transfer module (RTMo) governs the incident light on the individual leaves and the propagation of
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SIF throughout the canopy based on the scattering of arbitrarily inclined leaves (SAIL) model [41].
It calculates radiation transfer in a multilayer canopy to obtain reflectance and fluorescence in the
observation direction as a function of solar zenith angel and leaf inclination distribution. The spectral
resolution of the modeled spectra is 1 nm in the range of 400–2500 nm for reflectance and 640–850 nm
for fluorescence.

Fluspect is an extension of the PROSPECT model [42] that adds SIF radiative transfer within the
leaf. Fluspect calculates the probability that excitation at a specific wavelength (400–750 nm) results
in fluorescence at a longer wavelength (640–850 nm) at the illuminated and the shaded sides of the
leaf. Furthermore, when implementing Fluspect, two photosystems (PSI and PSII) are responsible for
fluorescence. As a result, Fluspect’s output consists of leaf reflectance and transmittance, as well as
four fluorescence excitation-emission probability matrices: one for each photosystem at the illuminated
and shaded sides of the leaf [20,24,28]. Fluspect’s input parameters consist of all the leaf composition
parameters as described with the PROSPECT parameters and the fqe1 and fqe2.

The biochemical module is employed to scale the SIF emission efficiencies of PSII (i.e., PQ
and NPQ) as a function of micrometeorological conditions (e.g., irradiance, temperature, relative
humidity, and wind speed) and photosynthesis parameters (e.g., the Vcmax and the Ball-Berry stomatal
conductance parameter m) relative to the efficiency in dark or pre-dawn conditions. For representation
of photosynthesis (i.e., PQ), either the models proposed by Farquhar et al. (for C3 species) [43]
and Von Caemmerer (for C4 species) [44] or the model presented by Collatz et al. [45,46] are/is
adopted. In these photosynthesis models, Vcmax is an important biochemical variable for carbon
assimilation, which describes the maximum carboxylation rate of RuBisCO. It is assumed to decrease
exponentially with the depth in the canopy and is calibrated by the temperature correction parameters.
When implementing the biochemical module adopted in [25], the response of SIF emission efficiency
is empirically calibrated to a number of datasets collected in field and laboratory experiments of
unstressed and drought-stressed vegetation, referred to hereafter as TB12 and TB12-D, respectively.
The MD12 module [47] has a more explicit parameterization of fluorescence quenching mechanisms.
Instead of the empirical calibration in the TB12 and TB12-D, this module can reproduce intermediate
conditions using two additional variables: the rate constant of sustained thermal dissipation (kNPQs)
and the fraction of functional reaction centers (qLs) [48].

The SCOPE model also simulates a diversity of fluxes, one of which is net photosynthesis of
canopy (NPC). NPC represents the total gross photosynthesis less the flux of CO2 associated with
foliage respiration. Since photosynthesis is the exchange CO2 flux between leaf and atmosphere, it is
calculated by simply gathering the photosynthesis over the leaf region of the canopy in the SCOPE
model [24]. Therefore, NPC from the SCOPE model can be used to compute GPP for approximate
comparisons with the GPP observations over canopies by setting the respiration parameter to zero.

2.1.2. SCOPE Model Inputs

To simulate photosynthesis and fluorescence, the SCOPE model requires inputs related to
meteorology, leaf optical properties and canopy structure, leaf biochemistry, and illumination/observation
geometry (see Table 1 for details). These input parameters were derived from three sources: the field
measurements, the related literatures, and the model inversion.

Table 1. Values or sources of the main input parameters of the SCOPE model used in our simulation

Parameters Definition Unit Value/Source

Leaf biochemistry
Vcmo Maximum carboxylation capacity at 25 ◦C μmol m−2 s−1 Inversion

m Ball-berry stomatal conductance parameter — 9
Rdparam Parameter for dark respiration (Rd = Rdparam × Vcmo) — 0

Leaf optical
Cab Chlorophyll content density μg/cm2 Measurement
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Table 1. Cont.

Parameters Definition Unit Value/Source

Cw Leaf equivalent water thickness cm Measurement
Cdm Dry matter content g/cm2 Measurement

N Leaf thickness parameters — 1.4

Canopy
LAI Leaf area index m2/m2 Measurement

LIDFa LIDF parameter a, which controls the average leaf scope — Inversion

LIDFb LIDF parameter b, which controls the
distribution’s bimodality — −0.15

Fluorescence
fqe2 Fluorescence efficiency for PSII in dark-adapted condition — 0.01 or adjusted

fqe1/fqe2 Ratio of fqe1 to fqe2 — 0.2 or adjusted

Meteorology
Rin Broadband incoming shortwave radiation (0.4–2.5 μm) W/m2 Measurement
Ta Air temperature T Measurement
p Air pressure hPa Measurement
ea Atmospheric vapor pressure hPa Measurement
u Wind speed at measurement height m/s Measurement

Ca Atmospheric CO2 concentration ppm Measurement

Geometry
LAT Latitude degree Measurement
LON Longitude degree Measurement
VZA Observation zenith angle degree 0

Most of the main input parameters needed in the SCOPE model were considered either known
as their literature values or directly measured from the field experiments with sufficient confidence.
A majority of leaf optical and canopy structural parameters—including Cab, Cw, Cdm, and LAI—were
accurately measured from our field experiments. In addition, the meteorological variables were
derived from our high-accuracy meteorological observations using the automatic weather station
(AWS). These diurnal meteorological variables were imported into the model input files and loaded for
the time series simulations with SCOPE. Meanwhile, the diurnal solar zenith angles were automatically
calculated during the simulation using the inputs Julian day, time, and field site longitude and latitude.
Thus, the SCOPE’s parameterization can keep pace with the observed canopy’s vegetation growth
and environmental variation at both diurnal and seasonal time scales. On the other hand, some
parameters’ values were determined based on the related literatures. Following [49], the Ball-berry
stomatal conductance parameter (m) should be set around 9 for well-watered C3 species, and the
dark respiration parameter (Rdparam) value was set to zero regarding the output NPC as GPP.
The LIDFa and LIDFb were two canopy structural parameters that determine the leaf inclination
distribution function defined in [50]. LIDFa controls the average leaf scope, and LIDFb controls the
distribution’s bimodality. According to [29], LIDFa can largely affect both the simulated reflectance
and fluorescence, and LIDFb has only a marginal impact on the simulated reflectance and fluorescence.
Therefore, we consider only the variations in LIDFa in this study, and LIDFb was set to its default
value of −0.15.

The Vcmax at 25 ◦C (denoted as ‘Vcmo’ in the SCOPE model) and LIDFa were two key variables
driving the SIF simulation and were accurately retrieved from the in situ observations. According to
the global sensitivity analysis of the SCOPE model in [29], for the TB12 module used in this work,
the canopy-leaving SIF variability was determined mainly by four driving vegetation variables: Cab,
LIDFa, LAI, and Vcmo. These key inputs need to be reliably confirmed to accurately interpret canopy
SIF and photosynthesis. Cab and LAI were easily measured, while field measurements of leaf angle
distribution and Vcmo consume lots of time and effort. Therefore, LIDFa and Vcmo were estimated
using the model inversion method with measured reflectance spectra and GPP data.

The fqe2 and fqe1 were two key parameters that determined the simulated SIF intensity. They were
two multiplicative factors added to the probability matrices of PSII and PSI fluorescence. Thus, in the
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SCOPE model, the fqe2 and fqe1 values proportionally impacted the intensity of the PSII and PSI
fluorescence spectra. The literature suggested fqe2 and fqe1/fqe2 values are approximately 0.01
and 0.2, respectively, which were determined from the active fluorescence measurements with PAM
in the laboratory [25]. However, whether the fixed FQE values are suitable for vegetation in the
field at different growth stages has not yet been sufficiently validated. In this study, we inspected
the accuracy of SCOPE-simulated SIF with both literature-fixed FQE values and with variable FQE
values. The variable FQE values were obtained by fitting the SIF simulations to the observed SIF data
(as described in Section 2.4). Other parameters required by the SCOPE model were set to their default
values (Table 1).

2.2. In Situ Measurements

To evaluate the SCOPE model performance at both diurnal and seasonal time scales, ten diurnal
in situ experiments were conducted on winter wheat (Triticum aestivum L.) during the 2015~2016
vegetation growing season to measure the vegetation parameters, the diurnal flux and meteorological
variables, and the canopy spectra (details listed in Table 2). Our selected field site was located
in an open and flat area at the National Precision Agriculture Demonstration Base in the town of
Xiaotangshan, Beijing, China (40.17◦N, 116.39◦E). Conventional fertilizer and irrigation management
were used on the winter wheat in the sample plot, which had a uniform growth status.

2.2.1. Measurements of Vegetation Parameters

A destructive sampling method was used to measure the leaf optical and canopy structural
parameters, including Cab, Cw, Cdm, and LAI. Near the spot of spectral and flux measurements,
twenty tillers above the ground within a 1 m × 1 m sample area were cut and immediately sent to
the laboratory. Meanwhile, the density of tillers in the sample area was investigated. The leaves
of ten tillers were weighted and scanned with a Li-Cor 3100 area meter to calculate the LAI [51].
Several leaves of the other ten tillers were cut into pieces and uniformly mixed, and approximately
0.2 g of them was randomly picked to measure Cab using spectrophotometry [52]. All of these two-part
leaves were over-dried at 60 ◦C until a constant weight was reached. The Cw and Cdm were then
calculated using the measured fresh weight, dry weight, and leaf area.

The measured results for ten fieldwork days are listed in Table 2, along with the corresponding
growth stages. The vegetation samples cover different growth stages, with various optical and
structural parameters, which are suitable data sets for model validation. The measured LAI values
aligned with their realistic patterns across the growing season, which to some degree verifies the
measuring accuracy. With the growing of wheat, the LAI continually increased from the erecting to the
booting stage. Meanwhile, there was an obvious decrease with the arrival of flowering.

Table 2. The growth stages and vegetation parameters of winter wheat at the time of ten diurnal
experiments in 2015 and 2016.

2015 2016

April 3 April 13 & 14 April 24 & 25 April 8 & 9 April 18 May 3 & 4

Growth stage Erecting Jointing Booting Erecting Jointing Flowering
LAI 1.5 2.1 2.4 2.5 2.9 1.9

Cab (μg/cm2) 59.2 62.2 61.3 55.3 53.7 57.3
Cw (cm) 0.0138 0.0126 0.0158 0.0163 0.0199 0.0177

Cdm (g/cm2) 0.0042 0.0040 0.0045 0.0048 0.0049 0.0043

2.2.2. Diurnal Flux and Meteorological Observations

The flux and meteorological variables were observed using an eddy covariance (EC) system
and the AWS. The AWS was fixed on a stand at the center of our selected field site to collect the
meteorological variables, including photosynthetically active radiation (PAR, μmol m−2 s−1), air
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humidity (rH, %), vapor pressure deficit (VPD, hpa), soil temperature (Tsoil, ◦C), and other input
parameters of SCOPE (including Rin, Ta, p, ea, and u, as listed in Table 2) every 10 s. The AWS output
was recorded at 10 min intervals using a CR1000 unit (Campbell Scientific Inc., Logan, UT, USA).
Near the AWS, an EC system was installed on a stand to measure the exchange of energy, water vapor,
and CO2 across the canopy-atmosphere interface. The EC system included a 3D sonic anemometer
(CSAT3, Campbell Scientific Inc., Logan, UT, USA) for measuring three-dimensional velocity and
temperature and an open-path infrared gas analyzer (Li-7500, Li-Cor, Lincoln, NE, USA) that measured
CO2 and H2O density. The sensors were installed at a height of 2.5 m above the ground. The main
output parameters include the net ecosystem exchange of CO2 flux (NEE, mg/m2/s), latent heat
flux (LE, W/m2), sensible heat flux (H, W/m2), friction velocity (u*, m/s), and the atmospheric CO2

concentration for model input (i.e., Ca in Table 2). The data were stored in a CR3000 data logger
(Campbell Scientific Inc., Logan, UT, USA) and processed with an average time of 30 min at a sampling
frequency of 10 Hz.

With the obtained half-hour NEE data and the corresponding meteorological variables (including
Rin, Ta, rH, LE, H, u*, and Tsoil) as inputs, half-hour GPP data could be calculated using the online
tool available at the Max Planck Institute for Biogeochemistry (MPI-BGC) website (http://www.bgc-
jena.mpg.de/~MDIwork/eddyproc/). First, u* filtering was conducted to calculate the u* threshold
for identifying conditions with insufficient turbulence and marking those conditions as data gaps
to avoid biases in fluxes measured using eddy covariance. Subsequently, gap filling was carried
out to fill the gaps in half-hourly eddy covariance data. The gap filling of the eddy covariance
and meteorological data were performed with methods similar to [53] while also considering flux
co-variation with meteorological variables and flux temporal auto-correlation [54]. Finally, flux
partitioning was implemented for partitioning NEE into ecosystem respiration and GPP. Based on the
night-time partitioning algorithm [54], respiration is estimated from the night-time and extrapolated
to the daytime.

Figure 1 exhibits the measured date sets about half-hour Ta, VPD, and PAR observations from
ten experiments in 2015 and 2016. It indicates that the weather was sunny and stable during
ten of the experiments, except for observations at approximately 11:30 and 14:30 on 25 April 2015,
at approximately 13:00 and 14:00 on April 18, and at approximately 15:00 on 4 May 2016, when it was
cloudy. These GPP observations and corresponding spectral measurements were reserved for later
statistical analysis, since they can validate the model’s performance in different weather conditions.

Figure 1. Diurnal observations of meteorological parameters between 7:00 to 19:00 made during ten
experiments in 2015 and 2016: (a) half-hour air temperature and VPD observations and (b) half-hour
PAR observations.

2.2.3. Diurnal Spectral Measurements

The diurnal measurements of the top-of-canopy spectra were taken using a customized Ocean
Optics QE Pro spectrometer (Ocean Optics, Dunedin, FL, USA). This instrument recorded the solar
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irradiance and the canopy-reflected radiance spectra in the 645–805 nm spectral range with a spectral
resolution of 0.31 nm, a sampling interval of 0.155 nm, and a signal-to-noise ratio (SNR) higher
than 1000.

In this study, an automatic observation system was employed for continual spectral measurements.
All spectral observations were acquired at nadir using the spectrometer’s fiber optic (FOV: 25◦),
which was fixed on an erect turntable at a height of 2.8 m. A calibrated BaSO4 panel (of size
0.4 m × 0.4 m) was used as a reference to measure the solar irradiance spectrum. The measured
canopy target was located in the south, and the reference panel was placed in the north. With the
horizontal rotation of the observation stand, the solar irradiance spectrum could be automatically
measured before and after each canopy spectrum measurement with a time lag of less than 30 s.
Moreover, each measurement’s field of view could remain the same. During each measurement,
5 single spectra were recorded, and each spectrum was produced by averaging 10 scans made at an
optimized integration time with the application of dark current correction.

Measurements of all the canopy and panel radiance spectra were designed to be made every 0.5 h
from 8:00 to 17:30, but several measurements failed due to instrumental problems. Thus, a total of 4, 7,
20, 3, 17, 8, 10, 14, 11, and 16 spectral measurements were made on 3, 13 & 14, and 24 & 25 April 2015,
and on 8 & 9, 18 April and 3 & 4 May 2016, respectively. Besides, at 12:00 on 14 April 2015 and at 12:30
on 9 April and 3 & 4 May 2016, the shadow of a fiber optic probe on the reference panel disturbed the
spectral measurements. Therefore, these spectral measurements were excluded in the later statistical
analysis. As a result, a total of 4, 7, 20, 3, 17, 8, 9, 14, 10, and 15 (totally 106) valid spectral measurements
were collected for our model validation on 3, 13 & 14, 24 & 25 April 2015 and on 8 & 9, 18 April and
3 & 4 May 2016, respectively.

2.2.4. SIF Retrievals from the Spectral Measurements

The Fraunhofer Line Discrimination (FLD) principle makes it possible to extract the weak SIF
signal from the vegetation-reflected radiance at the Fraunhofer lines or the atmospheric absorption
bands [12,55]. According to the accuracy assessment of the FLD-based SIF retrieval methods in [56,57],
the 3FLD method [58] is most robust and can retrieve SIF with sufficient accuracy using spectral
measurements by the QE pro spectrometer. Therefore, the 3FLD method was used for canopy SIF
retrieval in this study. In the 3FLD method, the irradiance and radiance of a single reference channel
used in the standard FLD method are replaced with the weighted averages for two channels at the
left (for the shorter wavelength) and right (for the longer wavelength) shoulders of the absorption
feature [58]. The weights of the two reference channels are defined as

wle f t =
λright − λin

λright − λle f t
, wright =

λin − λle f t

λright − λle f t
(1)

in which λ is the wavelengths of the channels; and the subscripts ‘in’, ‘left’, and ‘right’ refer to the
channels inside, at the left, and at the right shoulders of the absorption band, respectively. The SIF
inside the absorption band can be calculated as Equation (2), in which I is the downwelling irradiance
arriving at the top-of-canopy, and L is the total upwelling radiance at the TOC.

SIFin =
(Ile f twle f t + Irightwright)Lin − Iin(Lle f twle f t + Lrightwright)

(Ile f twle f t + Irightwright)− Iin
(2)

To sum up, from ten field experiments, we can synchronously derive the vegetation parameters,
meteorological variables, and GPP at half-hour intervals, as well as diurnal reflectance and SIF datasets.
These high-accuracy experimental datasets are sufficiently reliable as the SCOPE model inputs or for
the validation of SIF simulations.
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2.3. Inversion of LIDFa and Vcmo from In Situ Measurements

2.3.1. LIDFa Inversion from the Diurnal Canopy Reflectance Spectra

LIDFa is a leaf inclination distribution factor that will vary with the growth of wheat. In this study,
the LIDFa values across the growing season were retrieved from the measured reflectance spectra by
inverting the RTMo module with the look-up table (LUT) method. According to the GSA of the SCOPE
model for reflectance simulation in [29], the LIDFa has a significant influence on the reflectance spectra
in the region at around 500–1300 nm. Moreover, other key driving variables that govern the simulated
reflectance spectra from 650 nm to 750 nm (including LAI, Cab, and Cdm) are all accurately measured
from in situ experiments. Therefore, the LIDFa can be retrieved from our measured reflectance spectra
from 645 nm to 805 nm. However, at different measurement times during the day, different LIDFa
values will be retrieved due to the bi-directional reflectance characteristics of canopy and random
measurement errors. So, the only and optimal LIDFa value must be determined for one day (hereafter
denoted as the daily LIDFa). In addition, the adjacent two days were regarded as one day for LIDFa
retrieval. The schematic overview of the LIDFa inversion is shown in Figure 2.

Measured Rin, Ta, 
Cab, LAI...

RTMo

Set a LUT of LIDFa

Simulated diurnal 
reflectance spectra

Measured diurnal 
reflectance spectra

Min RMSE

 LIDFa at each 
measured time

Majority 
Voting

Daily LIDFa

Figure 2. Schematic overview of the LIDFa inversion procedure.

First, the LIDFa at each measuring time was retrieved using the least root mean squared error
(RMSE) method. Using the measured diurnal meteorological variables and other required inputs,
the RTMo module was run with an LUT of different LIDFa values at half-hour time intervals for each
fieldwork day. According to the six common kinds of leaf inclination distribution defined in [50],
the LIDFa range was set to −1~1 with an interval of 0.05. Thus, for every half-hour, 41 canopy
reflectance spectra under different LIDFa conditions could be collected from the SCOPE model outputs.
Next, for the i-th LIDFa value of the n-th spectra measurement, we calculated the RMSE of simulated
reflectance spectra Rsim to the measured reflectance spectra Rmea, as shown in Equation (3)

RMSER(i, n) =

805
∑

λ = 645
|Rsim(λ, i, n)− Rmea(λ, n)|

Nλ
(3)

in which λ represents the spectral wavelength and Nλ is the number of the spectral bands of the
QE pro; n ranges from 1 to N, and N is the total number of the spectra measurements during one
fieldwork day; and i ranges from 1 to 41. To avoid the influence of SIF emission, the apparent
reflectance spectra around the absorption bands were smoothed by spline interpolation. The LIDFa,
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which produces the least RMSE, was selected as the retrieved LIDFa at the n-th spectra measurement
(LIDFan). Thus, a vector [LIDFa1 . . . LIDFan . . . LIDFaN ] can be calculated to represent the various
LIDFa estimations at all the measuring times during one fieldwork day.

Secondly, the daily LIDFa was final determined by a majority voting method, as follows:

daily LIDFa = mod

⎡⎢⎣ LIDFa−1
LIDFa1

LIDFa+1

. . .

. . .

. . .

LIDFa−n
LIDFan

LIDFa+n

. . .

. . .

. . .

LIDFa−N
LIDFaN
LIDFa+N

⎤⎥⎦ (4)

in which LIDFa−n and LIDFa+n were calculated as LIDFan minus and plus the LIDFa step in the LUT
(0.05), respectively, and the mod is an operator that calculates a matrix’s mode. Some strategies
were applied to decrease the uncertainties. First, we adopted the mode instead of the mean value to
represent the daily LIDFa to avoid the influence of the abnormal LIDFa values retrieved from incorrect
measurements. Second, two vectors calculated as the originally retrieved vector minus and plus the
LIDFa step in the LUT (0.05), respectively, were added into the matrix to avoid the ‘pseudo mode’
problem, which is likely to occur if we use only the mode on the originally retrieved vector. Take the
vector [−0.5, −0.55, −0.55, −0.6, −1, −1] as an example. This vector has two modes, −0.55 and −1,
and −1 is a ‘pseudo mode’, because it is far away from the majority elements. If the elements of this
vector plus and minus 0.05 are added into the matrix, the mode will be −0.55. Therefore, the majority
voting approach can find the optimal daily LIDFa that is closest to the true LIDFa value.

2.3.2. Vcmo Inversion from Diurnal GPP Observations

The Vcmo values across the growing season were retrieved from the diurnal observations by
inverting the SCOPE model with the LUT method. Vcmo is a crucial leaf biochemical parameter
for calculating photosynthesis and fluorescence emission in the SCOPE model. It changes with
different vegetation types [59,60], plant functional types [61], and different days of the year [62].
According to [25], Vcmo influences carbon assimilation of photosynthesis (i.e., PQ) and thus fluorescence
emission efficiency. Therefore, Vcmo may be estimated from varying net CO2 fluxes. Wolf et al. have
successfully estimated the Vcmo by fitting a commonly used model to measured net CO2 fluxes [63].
In our study, the simulated GPP can represent the net CO2 fluxes, because the respiration rate is
set to zero. Thus, the Vcmo values were retrieved by comparing simulated against observed GPP.
The inversion of Vcmo intends to find the optimal Vcmo value for each fieldwork day (hereafter denoted
as the daily Vcmo). The schematic overview of Vcmo inversion is shown in Figure 3.

Measured Rin, 
Ta, Cab, LAI...

SCOPE

Set a LUT of Vcmo 

Simulated 
diurnal GPP Min RMSE

Daily Vcmo

Inverted 
daily LIDFa

Measured 
diurnal GPP

Figure 3. Schematic overview of the Vcmo inversion procedure.
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The daily Vcmo was retrieved using the least RMSE method, which intends to find the diurnal
GPP values that are most consistent with the measured ones. With the inverted daily LIDFa as inputs,
SCOPE was run with an LUT with different Vcmo values at half-hour time intervals for each fieldwork
day in the 2015~2016 period. Based on the literature [59,61], the range of Vcmo should be set to
10–200 μmol m−2 s−1 for C3 crops like wheat with a step 10 μmol m−2 s−1. Thus, for every fieldwork
day, 20 sets of half-hour GPP data under 20 Vcmo conditions could be collected from the SCOPE model
outputs. Next, for the j-th Vcmo value, we calculated the RMSEs between the simulated half-hour GPP
values GPPsim with the measured ones GPPmea, as shown in Equation (5)

RMSEG(j) =

M
∑

m=1
|GPPsim(j, m)− GPPmea(m)|

M
(5)

in which m indicates the m-th measurement of GPP during one fieldwork day, and M is the total
measurement times. Similar to the LIDFa inversion, the Vcmo that produces the least RMSE was
selected as the inverted daily Vcmo for model input.

2.4. Settings of FQE Values

Two different FQE settings were adopted for the SIF simulations, as follows:

(1) Fixed FQE, simulations with fixed FQE values as the literature suggested values: 0.01 for fqe2
and 0.2 for fqe1/fqe2.

(2) Variable FQE, simulations with variable FQE values, which were estimated by fitting the SIF
simulations to the observed SIF data and minimizing the systematic deviations in SIFA and SIFB

simulations with the LUT of changing values of FQE.

As mentioned previously, the fqe2 and fqe1 are directly proportional to PSII and PSI fluorescence,
respectively, and the PSII fluorescence spectra cover both the red and far-red bands, while the PSI
fluorescence spectra cover only the far-red band. Thus, the fqe2 and fqe1/fqe2 are directly proportional
to the simulated SIFB and SIFA/SIFB, respectively. In other words, if the simulated SIFB and SIFA/SIFB

values have systematic deviation, it is likely to be caused by the unsuitable FQE values. Adjusting FQE
should find the optimal (fqe2, fqe1/fqe2) setting that makes the systematic deviation of diurnal SIFA

and SIFB simulations minimum for each fieldwork day (hereafter denoted as the daily FQE values).
According to the literature [28], the measured SIF normalized by PAR has a weak diurnal cycle for
unstressed crops in a steady state. Therefore, the FQE values during one day are regarded as invariable
in this study.

First, the SCOPE model was run with an LUT of different fqe2 and fqe1/fqe2 values at half-hour
time steps corresponding to each diurnal experiment. The fqe2 was set from 0.005 to 0.02 with a step of
0.001, and the fqe1/fqe2 was set to 0.05~0.5 with a step of 0.05. Then, for every fieldwork day, 120 sets
of half-hour SIFA and SIFB data under 120 different (fqe2, fqe1/fqe2) conditions were collected from
the SCOPE model outputs. For each (fqe2, fqe1/fqe2) condition, the bias in daily averages of diurnal
SIFA and SIFB simulations was adopted to describe the systematic deviation of diurnal SIFA and SIFB

simulations, as defined in Equation (6)

biasSIFB =
SIFB,sim − SIFB,mea

SIFB,mea
, biasSIFA =

SIFA ,sim − SIFA,mea

SIFA,mea
(6)

in which SIF represents the daily average of diurnal SIF during one fieldwork day, the subscripts
‘B’ and ‘A’, respectively, represent the O2-B and O2-A bands, and the subscripts ‘sim’ and ‘mea’,
respectively, represent the simulated and measured data. The computation of the daily average of
diurnal SIF is necessary, because the diurnal variations in SIF are dominated by the diurnal cycles of
irradiance, making it more difficult to reflect FQE effects. The absolute value of biasSIFB and biasSIFA
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can simultaneously reach their minimum value by adjusting the two FQE values, because fqe2 and
fqe1/fqe2 separately governs the simulated SIFB and SIFA/SIFB. Finally, the two FQE values that
provide a minimum sum of the absolute value of biasSIFB and biasSIFA (

∣∣biasSIFB

∣∣+∣∣biasSIFA

∣∣) were
selected as the daily FQE values for each fieldwork day.

2.5. Experimental Process

Figure 4 displays schematically the process of SIF simulations and model evaluation. Using the
inverted daily LIDFa and Vcmo (described in Section 2.3), the accurately measured vegetation
parameters (described in Section 2.2.1), and meteorological variables (described in Section 2.2.2)
as inputs, the SCOPE model first run with fixed FQE values at half-hour intervals for each fieldwork
day. Other parameters required by the SCOPE model were set to their default or literature values
described in Section 2.1.1. The SCOPE version 1.61 and biochemical module TB12 were adopted.
Meanwhile, the daily FQE values were adjusted according to the systematic deviations of the SIFA and
SIFB simulations. Overall, for each FQE setting (fixed and variable FQE), ten time series simulations
were run along with ten diurnal experiments, and, eventually, from the SCOPE model outputs,
ten simulated half-hour SIF spectra were collected and compared with the observed diurnal SIF data
(described in Section 2.2.4). Finally, the accuracy of SIFA, SIFB, and SIFB/SIFA simulations with the
two FQE settings was quantitatively evaluated.

SCOPE Time-series run for 
each fieldwork day

Simulated 
half-hour SIF

Measured  
diurnal SIF

Evaluation 
results

Inverted daily LIDFa 
and Vcmo

Measured vegetation 
parameters

Half-hour 
meteorological variables

1. fixed FQE
2. variable FQE

Figure 4. Schematic overview of SIF simulations and model evaluation.

3. Results

3.1. LIDFa and Vcmo Retrieved from In Situ Measurements

Using the inversion procedure as shown in Figures 2 and 3, daily LIDFa and Vcmo were retrieved
on ten fieldwork days, as listed in Table 3. The seasonal changing patterns of our LIDFa retrievals were
in accord with those realistic patterns across the growing season. As wheat grew from the erecting to
the booting stage, the retrieved LIDFa continued to increase, which indicated that the leaves become
flatter over time. In 2016, there was an obvious decrease following the increase due to the arrival
of the flowering period. Note that the seasonal change pattern of LIDFa for two years is completely
consistent with the seasonal variation of LAI listed in Table 1. This result verifies the reliability of
the LIDFa inversion, because LAI and LIDFa are both canopy structural parameters and they should
have similar change patterns across the growth season of wheat. The retrieved Vcmo varied from
45 to 110 μmol m−2 s−1, which was in good accord with its well-known values for C3 crops like wheat
or soybean. The ranges and seasonal change patterns of retrieved Vcmo values in 2015 and 2016
were consistent: the Vcmo values increased constantly from wheat’s erecting to its flowering stage.
In addition, the Vcmo values between two adjacent fieldwork days are almost unchanged. All of this
evidence indicates that our retrieved Vcmo values are reliable.
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Table 3. The retrieved daily LIDFa and Vcmo values (unit: μmol m−2 s−1) on ten fieldwork days in
2015 and 2016.

2015 2016

April 3 April 13 April 14 April 24 April 25 April 8 April 9 April 18 May 3 May 4

LIDFa −0.975 −0.875 −0.875 −0.625 −0.625 −0.875 −0.875 −0.75 −0.85 −0.85
Vcmo 50 80 80 110 110 45 55 65 95 100

3.2. Results of Reflectance and GPP Simulations

The simulated canopy reflectance and GPP separately contain information on two aspects: one is
the leaf and canopy characteristic represented by RTMo module, and the other one is the plant
physiological and photosynthesis state represented by the biochemical module. Both aspects impact
the simulating accuracy of SIF. Therefore, the results of reflectance and GPP simulations should be
inspected before the evaluation of SIF simulations.

Figure 5 displays the results of the simulated and measured reflectance spectra and their residuals
at 10:00 for every fieldwork day. In general, the simulated reflectance spectra fit the measured ones
well: the residual absolute values are less than 0.03 in the full region of 650 nm to 800 nm for all
ten fieldwork days. Specifically, the simulated and measured reflectance spectra are approximately
the same in the NIR from 750 nm to 800 nm (the residual absolute values in this region are less than
0.012), except for 25 April 2015. However, in the red and red edge region from 650 nm to 750 nm,
the residuals between the two reflectance spectra are slightly higher. Figure 6 shows the RMSE statistics
between the simulated and measured reflectance spectra for 106 spectral measurements in 2015 and
2016. As illustrated, the model reproduces the reflectance well: the RMSE values for 106 spectral
measurements are between 0.0041 and 0.0437, and most of (67%) the RMSE values are lower than 0.02.
According to [29], the leaf and canopy parameters—including LIDFa, LAI, Cab, and Cdm—together
govern the variation in the reflectance spectra from 650 nm to 800 nm. So, reflectance simulation
accuracy depends on the joint accuracy of these parameters. All these results indicate that using the
measured and retrieved vegetation parameters as inputs, the SCOPE model can accurately model the
leaf and canopy characteristic and reproduce the reflectance spectra.

 

Figure 5. The simulated and measured reflectance spectra and their residuals at 10:00 for every
fieldwork day in 2015 and 2016.
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Figure 6. Root mean squared error (RMSE) values between the simulated and measured reflectance
spectra for 106 spectral measurements in 2015 and 2016.

Figure 7 shows the diurnal cycles of the simulated and measured GPP on ten fieldwork days
in 2015 and 2016. On one hand, the absolute intensities of the two GPP data sets (simulated and
measured diurnal GPP) agree well: the RMSEs of two GPP data sets range from 1.514 μmol m−2 s−1

to 5.627 μmol m−2 s−1, and the corresponding relative root mean square error (RRMSE) values range
from 10.31% to 29.65% on the ten fieldwork days. On the other hand, the diurnal patterns of simulated
GPP agree well with measured GPP on most fieldwork days, except for 18 April 2016, when the GPP
observations were likely inaccurate and inconsistent with the PAR changes (see Figure 1b). This result
indicates that the simulated diurnal GPP matches the PAR changes better than the measured GPP.
This is because SCOPE’s biochemical module can track the weather fluctuations via the meteorological
inputs and thus accurately simulate the GPP, while the NEE observations are likely to be disturbed
by changing air parameters like wind speed and direction. For further illustration, Figure 8 displays
the correlation and RRMSE values between simulated and measured GPP for all half-hour flux
observations in 2015 and 2016. The simulated GPP values are highly consistent with the measured
ones: the scatters are close to the 1:1 line with a determination coefficient (R2) of approximately 0.83 and
an RRMSE of 20.69%. All these results of GPP simulations indicate that by using the directly measured
or indirectly retrieved inputs from in situ observation, the SCOPE model can accurately represent the
plant physiological state and interpret the vegetation photosynthesis.

Figure 7. The diurnal cycles of simulated and measured GPP at half-hour intervals between 7:00 and
19:00 on ten fieldwork days in 2015 and 2016.
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Figure 8. The correlation and relative root mean square error (RRMSE) value between simulated and
measured GPP for all half-hour flux observations during ten experiments in 2015 and 2016.

3.3. Evaluation of SIF Simulations

3.3.1. Evaluation of SIF Simulations with Fixed FQE

First, we evaluated the simulating accuracy of SIFB and SIFA related to both their diurnal cycles
and intensities. Figure 9 displays the diurnal cycles of the half-hourly simulated SIF with fixed FQE,
compared to the measured SIF on ten fieldwork days in 2015 and 2016. As illustrated, the SCOPE model
can well reproduce the diurnal cycles of the SIF variation for each fieldwork day. Many studies have
proven that SIF is positively correlated with PAR and GPP at the canopy scale [7,8,57,64]. Similarly, here,
the simulated SIF values increase until noon and then decrease over time (with the changing of SZA),
which obviously agrees with the diurnal patterns of PAR and GPP observation. Like the diurnal
PAR and GPP observations shown in Figures 1 and 7, the diurnal curves of SIF exhibit the same
fluctuations due to unstable weather on 25 April 2015, and on 18 April and 4 May 2016. All these
phenomena indicate that in the SCOPE model, the TB12 biochemical module can credibly regulate
the diurnal variation of SIF emission efficiencies as a function of the dynamic micrometeorological
variables. Nevertheless, on several fieldwork days—like for SIFA on 24 April 2015 or for SIFB on
3 May 2016—the systematic deviation in the diurnal SIF simulations is obvious: the simulated SIFB or
SIFA values during the entire day collectively deviated from their measured points.

Figure 9. The diurnal cycles of simulated SIF with fixed FQE, compared to the measured SIF at O2-B
and O2-A bands on ten fieldwork days in 2015 and 2016.
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Table 4 concludes the quantitative assessment of the errors and deviations in SIFB and SIFA

simulations with fixed FQE. This table lists the RRMSE of diurnal simulations for each fieldwork day
(hereafter denoted as the daily RRMSE) and the RRMSE for all ten days of SIFA and SIFB simulations,
as well as the biasSIFB and biasSIFA (as described in Section 2.4). The results show that the SCOPE
model can provide acceptable accuracy for the SIFB and SIFA simulations with fixed FQE: the RRMSE
values of SIFB and SIFA simulations for all 106 spectral measurements were 24.35% and 23.67%,
respectively; and the daily RRMSEs were lower than 30% for each fieldwork day, except for the SIFB

on 3 & 4 May 2016. Nevertheless, the systematic deviations of diurnal SIFA and SIFB simulations
were noteworthy on many fieldwork days, in particular for SIFB in 3 April 2015 and 3 & 4 May 2016,
and for SIFA on 24 April 2015 the absolute bias values were greater than 20%. On these days, the error
in diurnal SIF simulation was mainly caused by the systematic deviation, not the inconsistency of
SIF change cycles. Note that the bias variation in SIFB simulations shows a clear seasonal pattern
that is coincident between 2015 and 2016. Specifically, at the erecting period (i.e., 3 April 2015 and
8 & 9 April 2016), the SIFB was underestimated with the negative bias value; but at the booting or
flowering period (i.e., 24 & 25 April 2015 and 3 & 4 May 2016), the SIFB was largely overestimated
with a positive bias value. These results indicated that the fixed FQE was not suitable for unbiased
SIFB and SIFA simulations at all growth stages, and the unsuitable FQE values may be the major factor
that caused the systematic deviations in simulated SIF. In addition, the bias values for SIFB and SIFA

were mostly at different levels or even opposite in sign. For example, on 24 & 25 April 2015, the SIFA

was largely underestimated, while the SIFB was overestimated; on 3 May 2016, the SIFB was greatly
overestimated while the simulated SIFA values were just right. It implied that the SCOPE-simulated
SIFA/SIFB with fixed FQE was probably unreliable, which should be investigated further.

Second, we evaluated the simulating accuracy of SIFA/SIFB to investigate whether the SCOPE
model can reproduce the SIF spectral shape with fixed FQE. Figure 10 displays the correlation and
RRMSE values between the diurnally simulated and measured SIFA/SIFB with fixed FQE for all
106 spectral measurements (Figure 10a) and the corresponding daily RRMSE for each single fieldwork
day (Figure 10b). As illustrated, the SCOPE-simulated SIFA/SIFB values were not satisfying: for all
106 spectral measurements, most scatters were located far away from the 1:1 line with an R2 of only
0.0286 and an RRMSE of nearly 30%, and most daily RRMSEs were larger than 25% (with a range from
23.57% to 33.29%) on ten fieldwork days. In addition, the measured SIFA/SIFB values changed with a
range from 0.593 to 3.460, while the simulated SIFA/SIFB values were relatively stable with a range
from 1.552 to 2.021 across wheat’s growing season in 2015 and 2016.

Table 4. The relative root mean square error (RRMSE) and bias of diurnal SIF simulations with fixed
FQE at O2-B and O2-A bands on ten fieldwork days.

Year Date
O2-B O2-A

RRMSE bias RRMSE bias

2015

April 3 25.97% −20.35% 11.14% −1.74%
April 13 12.47% −10.78% 22.64% −1.96%
April 14 12.13% 0.71% 28.30% 18.29%
April 24 13.43% 12.62% 22.30% −22.24%
April 25 24.54% 13.47% 26.43% −13.85%

2016

April 8 20.23% −13.70% 12.07% 6.93%
April 9 19.53% −5.83% 18.77% 12.43%
April 18 29.54% 12.99% 21.69% 5.58%
May 3 40.13% 38.16% 8.94% 6.43%
May 4 38.67% 27.79% 23.51% 10.84%

all ten days 24.35% — 23.67% —

23



Remote Sens. 2018, 10, 250

Figure 10. The correlation and relative root mean square error (RRMSE) values between simulated and
measured SIFA/SIFB with fixed FQE: (a) the correlation and RRMSE for 106 spectral measurements
and (b) the RRMSE values for each fieldwork day in 2015 and 2016.

Table 5 concludes the quantitative assessment of systematic deviation in the SIFA/SIFB simulations
at all growth stages. The ratio of daily SIFA and SIFB averages (SIFA/SIFB) was calculated to express
the systematic deviation, because the diurnal variations of SIFA/SIFB are dominated by the geometry
of incidence and observation, making it more difficult to reflect seasonal variations of systematic
deviation. As reported in Table 5, the simulated SIFA/SIFB values were different from the measured
ones at wheat’s erecting and booting or flowering period, with RE’s absolute value larger than 20%.
Note that the RE variation in SIFA/SIFB simulations shows a consistent seasonal pattern between 2015
and 2016 that opposes the bias variation in SIFB simulations (as mentioned previously). Specifically, at
the erecting period, the SIFA/SIFB values were largely overestimated with positive RE values, but at
the booting or flowering period, the SIFA/SIFB values were largely underestimated with negative RE
values. In addition, with fixed FQE, the SCOPE model cannot credibly reproduce the seasonal cycles of
SIFA/SIFB. As the wheat grows, the measured SIFA/SIFB increased from the erecting to the flowering
period with a wide range from 1.370 to 2.470, while the simulated SIFA/SIFB remained in the range
from 1.690 to 1.916, without clear seasonal changes. These results indicated that the fixed FQE was not
suitable for unbiased SIFA/SIFB simulations at all growth stages. Considering that the fqe1/fqe2 value
was directly proportional to the simulated SIFA/SIFB, the unregulated fqe1/fqe2 may be the major
factor limiting the seasonal variation of simulated SIFA/SIFB.

Table 5. The simulated and measured ratio of daily SIFA and SIFB averages, as well as the relative
error (RE) between them with fixed FQE for ten fieldwork days in 2015 and 2016.

2015 2016

April
3

April
13

April
14

April
24

April
25

April
8

April
9

April
18

May
3

May
4

simulated
SIFA/SIFB

1.690 1.853 1.857 1.705 1.698 1.885 1.916 1.859 1.705 1.732

measured
SIFA/SIFB

1.370 1.686 1.590 2.470 2.237 1.522 1.605 1.990 2.213 1.997

RE 23.37% 9.88% 16.80% −30.95% −24.08% 23.90% 19.39% −6.56% −22.97% −13.26%

3.3.2. Variable FQE Estimated from SIF Observations

Table 6 lists the variable FQE values estimated by minimizing the systematic deviations in
SIFA and SIFB simulations for each fieldwork day. For further illustration, Figure 11 displays the
seasonal cycle of fqe2 and fqe1/fqe2 from the erecting to wheat’s flowering period in 2015 and 2016.
As illustrated, from wheat’s erecting to its flowering stage, the fqe2 value gradually decreased from
0.013 to 0.007, while the fqe1/fqe2 value exhibited an opposite trend and increased from 0.05 to 0.5.
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The seasonal cycles of fqe2 and fqe1/fqe2 were consistent with variations of the systematic deviation
in the SIFB and SIFA/SIFB simulations (as mentioned previously), respectively. Specifically, the fqe2
value was close to its literature-fixed value of 0.01 only at the jointing period, while at the erecting
period the value was larger (0.011–0.013), and at the booting or flowering period the value was lower
(0.007–0.009). Also, the fqe1/fqe2 value was close to its literature-fixed value of 0.2 only at the jointing
period, while at the erecting period the value was lower (0.05–0.1), and at the booting or flowering
period the value was larger (0.3–0.5). These results confirm the seasonal FQE values, showing that the
seasonal cycles of FQE values between 2015 and 2016 were greatly consistent.

Table 6. The variable fqe2 and fqe1/fqe2 values on ten fieldwork days in 2015 and 2016.

2015 2016

April 3 April 13 April 14 April 24 April 25 April 8 April 9 April 18 May 3 May 4

fqe2 0.013 0.011 0.01 0.008 0.009 0.012 0.011 0.009 0.007 0.008
fqe1/fqe2 0.05 0.15 0.1 0.5 0.4 0.05 0.1 0.25 0.4 0.3

Figure 11. The seasonal cycles of fqe2 and fqe1/fqe2 on ten fieldwork days in 2015 and 2016.

3.3.3. Evaluation of SIF Simulations with Variable FQE

With the above variable FQE as inputs, the systematic deviations in SIFB, SIFA, and SIFA/SIFB

simulations can be corrected; meanwhile, the limited range from SIFA/SIFB simulations can be
extended due to the seasonal variations of fqe1/fqe2. Thus, the SCOPE model can provide more
accurate SIF simulations related to both the individual bands (SIFA and SIFB) and the seasonal
SIFA/SIFB values.

On the one hand, if simulated with variable FQE values, the simulation accuracy of SIFB and SIFA

can be improved greatly. Like the quantitative assessments listed in Table 4, Figure 12 displays the
correlation and RRMSE values between the simulated and measured SIF with variable FQE for all
106 spectral measurements (Figure 12a) and the corresponding daily RRMSEs for each single fieldwork
day (Figure 12b). As illustrated, both the simulated SIFB and SIFA were consistent with the measured
ones for all 106 spectral measurements: the scatters were located close to the 1:1 line, with the R2 larger
than 0.78 and an RRMSE of less than 20%. Additionally, the daily RRMSE values of SIFB and SIFA were
lower than 30% (with a range from 5.97% to 29.80%) and 23% (with a range from 6.99% to 22.55%),
respectively, during ten experiments in 2015 and 2016.
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Figure 12. The correlation and relative root mean square error (RRMSE) values between simulated
and measured SIFA and SIFB with variable FQE: (a) the correlation and RRMSE for 106 spectral
measurements and (b) the RRMSE values for each fieldwork day in 2015 and 2016.

On the other hand, if simulated with variable FQE values, the SCOPE model can credibly
reproduce the seasonal SIFA/SIFB values. Similar to Figure 12, Figure 13 shows the correlation
and RRMSE values between the diurnally simulated and measured SIFA/SIFB with variable FQE.
Unlike the unsatisfactory results shown in Figure 10, with variable FQE, both the range and values
of simulated SIFA/SIFB were consistent with the measured ones: for all 106 spectral measurements,
most scatters are close to the 1:1 line with an R2 of 0.48 and an RRMSE of only 20.63%, and most daily
RRMSE were lower than 20% (with a range from 4.98% to 24.20%) on the ten fieldwork days. All these
results indicated that the variable FQE settings were more suitable than the fixed ones for acquiring
unbiased SIF simulations.

Figure 13. The correlation and relative root mean square error (RRMSE) values between simulated and
measured SIFA/SIFB with variable FQE: (a) the correlation and RRMSE for 106 spectral measurements
and (b) the RRMSE values for each fieldwork day in 2015 and 2016.

4. Discussion

In this study, SCOPE’s driving input parameters were derived from ten field measurements in
two ways: (i) direct measurements of vegetation and meteorological parameters and (ii) a model
inversion approach to retrieve LIDFa and Vcmo from in situ reflectance and GPP observations.
These accurate input parameters are vital for persuasive evaluation results of the SCOPE model.
The determination of these parameters is one way to calibrate the main modules related to SIF
simulation. In the SCOPE model, canopy SIF emissions are propagated using three modules: the
Fluspect and biochemical modules at the leaf level and the RTMo module for canopy radiative transfer
of SIF signal. Vegetation parameters (e.g., LIDFa, Cab, and LAI) determine the leaf and canopy
characteristics represented with the RTMo module, and the meteorological and leaf biochemical
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parameters (e.g., Vcmo, Rin, and Ta) determine the plant physiological and photosynthesis state
represented with the biochemical module. The simulated canopy reflectance and GPP outputs
separately contain information on these two aspects. So, the accuracy of reflectance and GPP
simulations can reflect the joint accuracy of input parameters, which has been verified in this study.

The Vcmo values across the growing season were inverted by fitting the SCOPE model to measured
GPP data. The Vcmo is one of the key parameters in the biochemical module of SCOPE for GPP
modeling [20,43]. However, Poolman et al. [65,66] pointed out that the Rubisco may not be the
rate limiting factor of the rate of CO2 assimilation, which means there may be some uncertainties
of our method for the Vcmo estimation and new models reflecting this fact should be considered.
Nevertheless, the retrieved Vcmo values match well with the literature values and show credible
seasonal patterns. First, the retrieved Vcmo varied from 45 to 110 μmol m−2 s−1, which was in good
accord with those displayed in the literatures for C3 crops: Vcmo ranges from 35 to 83 μmol m−2 s−1

for wheat in [61], Vcmo ranges from 76 to 136 μmol m−2 s−1 for soybean in [67], and the common
Vcmo value is 93 μmol m−2 s−1 for wheat in [68,69]. Second, the retrieved Vcmo values showed
plausible seasonal change patterns, which agrees well with the seasonal changes of Vcmo retrieved
from space-based SIF data in [23]. To date, the possibility of prescribing Vcmo from another information
source is limited. Vcmo could be estimated using leaf nitrogen content [49,70], but this estimation relied
only on few experimental results, and the validation is still needed. Zhang et al. [23] retrieved the
Vcmo from changes in SIF, as observed by the GOME-2 satellite, but the satellite data were aggregated
over space and time with the entire growth seasons containing drought and senescence, which is
different from our focus on several diurnal cycles at the canopy scale. Therefore, our model-based
inversion approach for Vcmo may provide an alternative way for the estimation of Vcmo on ground or
global scales. As we focus on the evaluation the SCOPE model for SIF simulation in this study, further
attempts on the more accurate estimation of Vcmo was not included.

However, there are some uncertainties within the process to derive FQE. Firstly, the SIF retrieved
from the spectral data was regarded as the true value for accessing the accuracy of SIF simulation.
Based on this assumption, SIF simulations could be validated. However, the SIF retrieval based on
3FLD method has some uncertainties: the accuracy is dependent on the spectral characteristics of
the reflectance and irradiance spectra at the absorption band, and on the spectral resolution and
SNR of the sensor used. Thus, the RRMSE of simulated SIF to measured SIF is not the real error of
the SCOPE model’s SIF simulation. Fortunately, the SIF observations derived from our experiments
were sufficiently reliable thanks to the robust retrieval method with high spectral resolution and
the SNR of the QE Pro spectrometer. According to the accuracy assessment using simulated data
with the same SNR and SR of QE Pro spectrometer in [56,57], the RRMSE for the SIF retrieved
using 3FLD methods is 13.2% at the O2-B band and 9.5% at the O2-A bands. Thus, the 3FLD
method can retrieve SIF with sufficient accuracy and provide the reference value for evaluating
SIF simulations. Therefore, the quantitative accuracy assessments made in this study can reflect the
SCOPE model’s reliability.

Secondly, the vegetation parameters and meteorological or flux variables derived from in situ
observations were considered accurate in this study. They also suffer from some uncertainties due
to instrumental or artificial errors in field measurements. These uncertainties affect the LIDFa and
Vcmo retrieval accuracy and cause an additional error in SIF simulations. According to the error
propagation presented in [28], the effects of Cdm and LIDFa or Cab and LIDFa on reflectance are
opposite, implying that an overestimate (underestimate) in measured Cdm or Cab will lead to an
overestimate (underestimate) in the LIDFa retrievals. Moreover, the effects of Cdm and LIDFa or
Cab and LIDFa on fluorescence are also opposite. Thus, the effects of a simultaneous overestimate
or underestimate can to some degree cancel out in the SIF simulation. Similarly, the effect of an
overestimation or underestimate of the measured LAI can also be weakened in simulated SIF, because
the effects of LAI and LIDFa on reflectance and fluorescence are both accordant. Therefore, the model
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calibration approach of reproducing the measured reflectance spectra can to some degree weaken the
impacts of vegetation parametric uncertainties on SIF simulations.

These two sources of uncertainties will propagate to our FQE estimations and then affect their
variation patterns. Nevertheless, the ranges and variation patterns of our FQE values were quite
consistent between two growth seasons in 2015 and 2016. Moreover, the estimated fqe2 values
were close to their literature values derived from some laboratory measurements. As reported in
Van der Tol et al. [25,28], the fqe2 values was around 0.01 based on the laboratory measurements in
Genty et al. [33]. Trissl et al. [37] considered three different levels of fqe2 values (0.01, 0.018, and 0.021)
for the modeling of PSII photochemistry. Our estimated fqe2 values seem a little lower than the
fqe2 values reported in literatures (around 0.02) [35,36]. This discrepancy may be caused by the
uncertainties of parameter determinations in this study, or be caused by the errors of laboratory
measurements in following two aspects. First, the measured PSII fluorescence signal inevitably
included the contamination of PSI fluorescence, which would cause overestimation in fqe2 [35,37,39],
while our estimated fqe2 values can avoid this error, as the simulated SIF for PSII and PSI was evaluated
separately. Second, the measuring flashes used for the determination of the F0-level fluorescence would
cause some PSII closure, and thus the real F0-level fluorescence would be overestimated to different
degrees [36]. Besides, it has been reported in several literatures that the F0-level fluorescence quantum
efficiency obviously changes with different vegetation species, chlorophyll contents, and exposure
of leave surfaces to the sun. Björkman and Barbara [38] measured the chlorophyll fluorescence
characteristic at 77 K in 44 species of vascular plant, and found that the F0-level fluorescence signal
between two different C3 species can be 2-fold variation. The variation of F0-level fluorescence
signal between the lower and upper leaf surfaces or the shaded and sun leaves were also remarkable.
Björkman and Barbara [38] and Morales et al. [71] also observed declines in F0-level fluorescence signal
with increased chlorophyll content, probably due to an increase in the proportion of fluorescence that is
reabsorbed. Moreover, as shown in Hussain et al. [72], the cinnamic acid stress will significantly reduce
the efficiency of “open” PSII reaction centers in the dark-adapted state, and a tendency of increase in
F0-level fluorescence was observed during 2th and 4th days. These laboratory measurements can to
some degree support and account for the variation of our FQE estimations with the growth of wheat.
However, the influence of different factors on FQE variations is complicated and remains unsettled.
Our results can provide a reference for the parameterization of FQE values with the winter wheat in
the field. More control experiments with models and in the field need to be conducted for a better
understanding of the variation of FQE values.

Further opportunities are available to investigate the simulated results of MD12 and SCOPE
version 1.7 compared with this study’s results. In this work, the TB12 biochemical module is generated
in the SCOPE model to implement the simulations. For this module, SIF emission efficiency depends
on the empirical calibration of a number of datasets collected in field and laboratory experiments.
The MD12 module has a more explicit parameterization of fluorescence quenching mechanisms, while
it needs two additional inputs (KNPQs and qLs) to express the intermediate conditions, which cannot
be derived from our in situ measurements. Given the uncertainty in PSII-PSI fluorescence emission
curves and corresponding fqe1 and fqe2 values, the PSI-PSII separation is explicitly avoided in the
last version 1.7 of the SCOPE model. In the future, the SIF simulated results of this version can be
evaluated and compared with this study’s results.

More field observations and theoretical simulations are required to verify the results presented
in this paper. At present, we conducted the experiments only on winter wheat, and the data sets are
limited. Whether the seasonal patterns of FQE variation can be applied to other species has not been
ascertained. In the future, the spectral measurements should be conducted across various species and
plant functional types (PFT), with more frequent time series, at different locations, in multi-angle mode,
along with the observations of vegetation parameters and flux exchanges. This research could become
a reality with the achievement of our automatic fluorescence observation network. Moreover, active
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fqe1 and fqe2 measurements with PAM should be conducted in the field and on vegetation at different
growth stages, which can further verify the seasonal cycles of our variable FQE values.

5. Conclusions

In this paper, we evaluated the SCOPE model’s performance for SIFA, SIFB, and SIFA/SIFB

simulations using high-accuracy spectral and flux observations in ten diurnal experiments on winter
wheat. The SIF simulation accuracy with both fixed and variable FQE values was quantitatively
assessed by comparison with the SIF retrieved from measurements using the 3FLD method with a QE
pro spectrometer.

If simulated with fixed FQE values, the SCOPE model can reliably interpret SIF diurnal cycles
and provide acceptable results for SIFB and SIFA simulations. The RRMSEs of SIFA and SIFB for
all 106 spectral measurements in the ten diurnal experiments were 24.35% and 23.67%, respectively.
Nevertheless, the fixed FQE values were not suitable for wheat at all growth stages. At wheat’s erecting
period and at its booting or flowering period, the systematical deviations in SIFB and SIFA/SIFB

simulations were noteworthy, and the seasonal cycles of SIFA/SIFB cannot be credibly reproduced,
with a low determination coefficient (R2) of 0.0286.

When the SIF simulation was conducted with variable FQE values, which vary with the growth
of wheat, its accuracy was improved greatly. Specifically, the SCOPE model can accurately simulate
the SIFB and SIFA with RRMSEs of 18.27% and 19.25%, respectively, and the SCOPE simulations track
well with the seasonal SIFA/SIFB values with an RRMSE of 20.63% and a determination coefficient
(R2) of 0.48. The results indicated a clear seasonal pattern of suitable FQE values. When the growth
stage changed from the erecting to the flowering stage, the fqe1/fqe2 increased from approximately
0.05–0.1 to approximately 0.3–0.5, while the fqe2 decreased from 0.013 to 0.07.

Therefore, although the SCOPE model can credibly simulate canopy SIF, the input FQE values
should be carefully determined. Seasonal changes of the FQE values or the FQE values’ dependence on
plant physiological status cannot be ignored for accurate simulations of canopy SIF. Our quantitative
results of the model assessment and FQE adjustment can serve as a significant reference for future
application of the SCOPE model. However, the study is preliminary; more experiments are needed to
determine FQE values in the SCOPE model.
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Abstract: Significant gaps exist in our knowledge of the impact of leaf aging on canopy signal
variability, which limits our understanding of vegetation status based on remotely sensed data.
To understand the effects of leaf aging at the leaf and canopy scales, a combination of field,
remote-sensing and physical modeling techniques was adopted to assess the canopy spectral signals
of evergreen Cunninghamia forests. We observed an approximately 10% increase in Near-Infrared
(NIR) reflectance for new leaves and a 35% increase in NIR transmittance for mature leaves from
May to October. When variations in leaf optical properties (LOPs) of only mature leaves, or both
new and mature leaves were considered, the Geometric Optical and Radiative Transfer (GORT)
model-simulated canopy reflectance trajectory was more consistent with Landsat observations (R2

increased from 0.37 to 0.82~0.89 for NIR reflectance, and from 0.35 to 0.67~0.88 for EVI2, with a small
RMSE (0.01 to 0.02)). This study highlights the importance of leaf age on leaf spectral signatures,
and provides evidence of age-dependent LOPs that have important impacts on canopy reflectance
in the NIR band and EVI2, which are used to monitor canopy dynamics and productivity, with
important implications for RS and forest ecosystem ecology.

Keywords: leaf age; leaf spectral properties; leaf area index; Cunninghamia; Chinese fir; canopy reflectance;
NIR; EVI2; geometric optical radiative transfer (GORT) model

1. Introduction

Forests cover approximately 30% of the Earth’s land area (4.2 × 109 hectares). Globally, forests
play critical roles in providing goods and services for terrestrial ecosystems, including filtering
water, controlling water runoff, protecting soil, regulating the climate, and cycling and storing
nutrients [1,2]. Many important biophysical processes in forests are conducted through leaves,
including photosynthesis, transpiration, respiration, and light interception. Forests and other land
vegetation currently remove approximately 30% of anthropogenic CO2 emissions from the atmosphere
through photosynthesis [3–5]. While high value has been placed on remote sensing (RS) for ecological
research, management and modeling of forest canopy status at an ecosystem scale, a concomitant
increase in understanding the factors that affect canopy reflectance has been only partially realized.

The interpretation of RS signals for forest canopies requires profound knowledge of the factors
affecting their optical properties, which may be internal or external to the forest stand [6]. To extract
useful information related to canopy growth using time-series data, anomalies in time-series data
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that are unrelated to real changes in canopies should be eliminated, such as clouds and aerosol
contamination [7,8] as well as bidirectional reflectance distribution function (BRDF) effects caused
by topography and sun-sensor geometry variation [9–14]. Abundant studies have confirmed the
existence of significant seasonal patterns in the optical RS signal trajectory that remain after removing
the impacts of these factors external to the forest stand [11,13,15,16]. Thus, variations in reflectance
trajectories contain useful information related to factors internal to the stand. Based on previously
reported experimental and modeling data, vegetation reflectance is primarily a function of tissue
optical properties (reflectance and transmittance), canopy biophysical attributes (e.g., leaf area, foliage
clumping) and background reflectance [17–21]. Leaf optical properties (LOPs) and leaf area index
(LAI) are two of the main recognized internal factors involved in controlling canopy reflectance.

Seasonality in canopy spectral signals has been attributed to a varying LAI along with new
leaf development and defoliation [22]. In deciduous forests, LAI shows high seasonality and
might be the most significant factor affecting canopy reflectance, as all leaves are shed in winter.
However, the situation is very different for mature evergreen forests, which show a relatively stable
total leaf area every year. Thus, changes in canopy reflectance do not necessarily imply changes
in LAI [23]. In evergreen forests, leaves have more than a one-year lifespan, and current-year new
leaves remain throughout the winter. Although old leaves are shed every year, new leaves are also
produced every year. The total leaf area in evergreen forests remains relatively stable throughout
a year compared with deciduous forests. However, we still find significant seasonal variation in
canopy reflectance in evergreen forests, which may not be caused by variations in LAI but rather by
other internal factors. Further studies are needed to develop a more profound interpretation of the
seasonality of optical RS signals for evergreen forests.

In addition to leaf area, LOPs are another significant factor that can change with time, which may
strongly affect canopy reflectance [19,23,24], and leaf-age effects on canopy signals require more
attention. Leaves affects the radiation field through its LOPs, including leaf reflectance and
transmittance characteristics, which are wavelength-dependent [25,26]. A few supporting studies have
confirmed the combined effects of LAI and LOPs on the seasonality of gross ecosystem CO2 exchange
(GEE), photosynthesis and NIR reflectance for Amazonian forests [23,27,28]. Many efforts aimed at
accounting for effect of stand age on canopy reflectance with forest succession have improved the
interpretation of canopy signals [29–33]. However, only a few studies have indicated that in addition
to stand age, leaf age might also have a significant impact. Our ability to both interpret RS signals and
develop new RS technologies for vegetation depends directly on our ability to resolve the multitude of
factors controlling canopy and landscape reflectance signatures. This situation inspired us to further
evaluate robust biophysical interpretations of the seasonality of optical RS signals, with a focus on
evergreen forests, by examining the effects of age-dependent leaf properties on canopy reflectance.

Different age cohorts of leaves coexist in the canopy of evergreen forests, which can be classified
to two main age groups: current-year new leaves (≤1 a) and mature leaves (>1 a), which might exhibit
different LOPs and, thus, different impacts on canopy reflectance. Mature leaves represent the majority
and new leaves are the minority of leaves flushed every year. On the other hand, new leaves are mainly
distributed at the top and in the outermost parts in tree crowns, while mature leaves are distributed
in the lower and inner parts of the canopy. Thus, the seasonal variation of canopy reflectance might
be strongly affected by changes in LOPs of both new leaves and mature leaves. This brings us to the
crux of our study: the quantitative analysis and interpretation of the different leaf-aging effects of
new leaves and mature leaves on seasonal variations in canopy reflectance. Hence, we addressed the
following research questions in this study: (1) how do the LOPs of new leaves and mature leaves vary
during the leaf maturation process? (2) How should the contributions of new leaves and mature leaves
to canopy optical properties be quantified? (3) How does leaf aging affect the seasonal variation of the
remotely sensed response spectral signals of evergreen forest canopies?
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2. Materials

2.1. Study Sites

This study focused on two National Research Stations of Forest Ecosystems in Huitong county,
Hunan province, China, as shown in Figure 1. The first station (Station 1, S1) is located at 26◦40′N,
109◦26′E, and the second station (Station 2, S2) is located at 26◦50′N, 109◦45′E. S1 was established
in 1983, and S2 was established in 1996. Two main permanent sampling plots, ZH1 and WS3, were
selected from S1 and S2, respectively, to measure and evaluate the effects of leaf aging on canopy
optical properties. Two additional auxiliary plots, i.e., FZ1 and WS2, were also selected for comparison
with the main plots. FZ1 exhibits the same plot conditions as ZH1 but is smaller, with a size of
30 × 40 m. WS3 is located next to WS2 and is eight years older than WS2.

Cunninghamia (Chinese fir) is a fast growing species, with its height increasing as much as 1 m per
year [34], and usually matures approximately 20 a. The same Cunninghamia seedlings were planted in
ZH1 and FZ1 after clear cutting. The stem density is the same in ZH1/FZ1, which exhibits half the
density in WS2 (1920 trees ha−1) and WS3 (1967 trees ha−1). ZH1/FZ1 were planted with an initial
stem density of 2500 trees ha−1 and thinned twice, once in 1997 and again in 2003, to a stable density
of 1035 trees ha−1.

Figure 1. These four study plots are covered by Cunninghamia lanceolata (also known as Chinese fir)
plantations, which were replanted after clear-cutting.

2.2. Field Data

2.2.1. Canopy Structural Parameter Measurements

Crown shape measurements were taken from a total of forty trees in S2. The size of the selected trees
was evenly distributed in terms of height (H) (from 5.4 m to 20 m) and diameter at breast height (DBH)
(from 7.7 cm to 37.8 cm). Among the 40 trees, seven trees were located in plots close to the study site,
and 33 trees were located within sites ZH1 and FZ1. The parameters measured for the characterization of
crown shape included the following: crown width in the north-south direction (R1) and the east-west
direction (R2), tree height (H1) and height under the crown (H2), from which we can obtain the height

36



Remote Sens. 2018, 10, 262

of the crown center (h). A detailed description of the crown shape measurements can be found in
Appendix A.

Only DBH and H1 were measured annually for each tree in the study plots, and other canopy
structure parameters were only measured once for the 40 trees. Hence, to characterize the dominant
stand canopy structure changes with time, we needed to build allometric relationships between other
unknown canopy structural parameters with DBH or H1. The derived canopy structure parameters
included the following:

• Crown radius (R): R = (1.296 + 0.146 * DBH)/2, R2 = 0.76, RMSE = 0.72;
• Full tree height (H1): H1 = 3.928 + 14.866 * (1 − exp(−0.1865 * DBH8.285), R2 = 0.94, RMSE = 1.30;
• Crown center height (h): h = −0.32 + 0.85 * H1, R2 = 0.93, RMSE = 0.98;
• Crown ellipticity (b/R), which was fixed at the mean value of the 40 field measurements:

mean = 1.17, standard deviation (s.d.) = 0.46, since no significant relationship was found between
b/R and DBH or H1.

Finally, the variations in canopy structure with stand development can be characterized by the means
and standard deviations of the DBH and tree height (H1) for every individual tree.

2.2.2. LAI Measurements and Data Processing

Digital hemispherical photography (DHP) was the primary method for conducting regular monthly
LAI measurements from 2005 until the present. From 2005 to 2006, photographs were taken by a worker
every month using a CI-110 Plant Canopy Analyzer (Camas, WA, USA) to estimate the LAI. From 2007
onward; photographs were taken using a Canon EOS 40D digital camera equipped with a Nikon AF-DX
10.5 mm f/2.8 G ED fisheye lens. The camera was horizontally mounted at a fixed height of 0.2 m
above the ground. The photographs were taken with automatic exposure under diffuse light conditions,
typically soon before sunrise or after sunset.

In the ZH1 and FZ1 plots, measurements were taken on the 15th day of each month at five fixed
locations per plot, facing in four cardinal directions. The images were processed using Gap Light Analyzer
2.0 software to calculate LAIDHP. LAIDHP measurements obtained with automatic exposure resulted
in considerable underestimation because of underestimation of the ratio of green leaves to sky [35–39].
We used the effective LAI (LAIe) measured by two LAI-2000 Plant Canopy Analyzers (LAI-2000, LI-COR)
to correct the system bias in LAIDHP data. One LAI-2000 unit was set at an open and flat area to measure
diffuse sky light, and the other LAI-2000 unit was operated under the canopy at fixed locations as well as
over the whole plots.

LAIe = LAIDHP + ε (1)

where ε can be considered as a systematic bias in the DHP method due to automatic exposure problems,
and ε was set to 1.83 for the DHP method using the average value.

The clumping index (Ω) was measured with the Tracing Radiation and Architecture of
Canopies (TRAC, Natural Resources Canada) system to convert LAIe to true LAI (LAIt) using the
following equation:

LAIt = (1 − α) ∗ LAIe ∗ γe/Ω (2)

where the needle-to-shoot area ratio (γe) was set to 1.1 according to the results of the destructive sampling
method described below, conducted in August 2015. The clumping index (Ω) was set to 0.8 and the value
of the woody-to-total area ratio (α) was derived from the destructive samples for biomass estimation (0.2).
A detailed description of the data preprocessing methods of LAI can be found in Appendix B.

2.2.3. Spectral Measurements: Leaf and Soil

Soil and leaf samples were collected from WS2 and WS3 at site 2. Current-year leaves were too
short to be measured in April. Therefore, we collected current-year shoots every month during the leaf
expansion period from May to August 2017 to measure the seasonal variations in LOPs. Trees were
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selected from WS2 and WS3 separately to obtain branches from different age cohorts. Twenty branches
were randomly selected and destructively harvested for each age group to conduct spectral measurements.
Young leaves and mature leaves of 0–3 a were collected from the same branches; the leaves were carefully
stored in sealed plastic bags and measured within 48 h.

Spectral measurements over the full spectral range (350–2500 nm) were carried out in the
laboratory using a portable spectroradiometer (SVC HR-1024) attached to an integrating sphere
(Model 1800-12S, Licor). All spectra were standardized using a barium sulfate standard and the
calibrated light source supplied by Licor with the integrating sphere. We arranged 8–10 flat needles
closely together for each measurement, avoiding overlaps or gaps, to obtain leaf samples that were
sufficiently wide to cover the gap on integrating sphere. Wide transparent tape was used to assemble
the leaf leaves on the vacuum side of the blade, which was removed from the central region to avoid
any impacts on LOPs. LOPs were measured on the upper surface of the Cunninghamia lanceolata leaf
samples. A group of leaf sample is shown in Figure A4 in Appendix A.

2.3. Remote Sensing Observations

Landsat Observations

Landsat sensors have a long history and provide data with a fine spatial resolution (30 × 30 m)
that can effectively capture forest stands in the landscape. In addition to their ideal spatial resolution,
Landsat data provide certain other advantages, such as reducing the inconsistencies in observations by
always viewing from almost the same direction (nadir view) and at the same time of day. However, one
of the drawbacks of Landsat data (with a 16-day revisit period) is their relatively low temporal
frequency, which is exacerbated by cloud-cover [40]. We collected all available L1T Landsat TM/ETM+
images for our study site (path/row: 125/41) from 1987 to 2016, and abstracted pixel reflectance values
with no cloud contamination. Given the high frequency of cloud cover in forested areas, Landsat
observations over one year are insufficient to describe seasonal patterns. Therefore, all available pixel
reflectance values from all years were sorted by the day of year (DOY), based on which seasonal
trajectories of canopy reflectance were constructed. Landsat red and NIR band surface reflectance
data were used to calculate EVI2, which takes advantage of the auto-correlative properties of surface
reflectance spectra between the red and blue bands:

EVI2 = 2.5
RNIR − RRED

1 + RNIR + 2.4RRED
(3)

where RNIR is reflectance in the near infrared band and RRED is reflectance in the red band.

3. Methods

3.1. Theoretical Foundation

Geometrical Optical Radiative Transfer (GORT) Model

The interaction between electromagnetic radiation and terrestrial plant canopies is a complex
phenomenon and a key element in many RS applications. Among numerous methods for estimating
the reflectance of forest canopies, the GORT model is based on the physical structure of the underlying
scene. The GORT model is a hybrid of geometric optical (GO) and radiative transfer (RT) approaches
for modeling canopy reflectance [41,42]. The GO model [43–45] quantifies single scattering in the canopy
well and captures the fundamental properties of the canopy bidirectional reflectance distribution function
(BRDF). The assumptions of the GO model are that the scene is composed of three-dimensional solid objects
on a contrasting background and that the overall canopy reflectance can be modeled as a weighted sum of
the spectral signatures of its individual scene components, based on their corresponding areal proportions
within a pixel. The RT model is used to describe the multiple scattering within canopy elements in the GORT
model, and the GO model and RT model are linked using canopy gap probabilities [46,47]. Due to the explicit
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consideration of crown gaps and mutual shadowing effects, the GORT model is suitable for simulating
forest canopy reflectance with varying degrees of discontinuity. The GORT model has been successfully
applied to predict the fundamental features of black spruce forest canopies [42], radiation penetrating the
forest canopy to the forest floor [48] and spectral temporal manifestations of forest succession [49].

In the GO model [43–45], the reflectance of a pixel is modeled as the weighted sum of the spectral
signatures of four scene components: sunlit ground, sunlit crown, shaded ground and shaded crown,
as illustrated below:

S = Kg ∗ G + Kc ∗ C + Kz ∗ Z + Kt ∗ T (4)

where S is the average reflectance of the forest canopy inside a pixel; and Kg, Kc, Kz and Kt represent
the areal proportions of the four components in the pixel; thus, Kg, Kc, Kz and Kt sum to unity. G,
C, Z and T are the corresponding spectral signatures (reflectance in a given wavelength range) of the
four components, as shown in Figure 2, which are functions of the proportions of incoming directional
beams and diffuse solar radiation.

 

Figure 2. The four scene components used in the geometric optical (GO) model. C is the sunlit tree
crown; T is the shaded tree crown; G is the sunlit background; and Z is the shaded background.

The canopy structure parameters listed in Table 1 for the stands are derived based on the field
measurements of the DBH and tree height of every individual tree in the stands, and the allometric
relationships between DBH or tree height. Parameter h1 and h2 must represent the structure of the
dominant canopy layer. Therefore, we used the mean height minus s.d. to derive h1 and the mean height
plus s.d. to derive h2. FAVD is calculated by dividing LAI by the crown volume, by treating the tree
crown as an ellipsoid.

Table 1. Canopy structure parameters required for the GORT model to simulate canopy reflectance.

Symbols Parameters Source

Canopy Structure Parameters

h1 lower boundary of canopy center height O 1 and CERN 2

h2 upper boundary of canopy center height O and CERN
R horizon mean crown radius O and CERN

b/R crown spheroid ellipticity 1.17 (O)
λ tree stem density (trees/ha) CERN

FAVD foliage area volume density (m2/m3) O and CERN
k leaf angle distribution factor 0.5 (random)

Component Spectral Parameters
rL leaf reflectance O
tL leaf transmittance O
rG soil/background reflectance O

Sun-Sensor Geometry

SZN sun zenith angle (◦) Time, Lon, Lat 3

VZN view zenith angle (◦) 0
VAZ view azimuth angle (◦) 0

1 O stands for observations from field experiments from 2015 to 2017. 2 CERN: National Ecosystem Research
Network at Huitong National Research Station of Forest Ecosystem (HTF), China (http://htf.cern.ac.cn/meta/
metaData). 3 Lon: Longitude; Lat: latitude.
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3.2. Contribution of Component LOPs to Canopy LOPs

Different leaf-age cohorts coexist in an individual tree canopy in evergreen forests and can be
classified into two major groups: new leaves and mature leaves. The LOPs of new leaves are quite
different from those of mature leaves, thus, neither of them is representative of the LOPs of the whole
canopy. Therefore, we need to consider the contributions of new leaves and mature leaves together to
obtain the overall canopy LOPs.

3.2.1. Leaf Area Proportion of New and Mature Leaves

The first factor affecting the average canopy spectral properties is the proportion of the leaf area
at different ages: the higher the proportion of the leaf area for a given age, the greater its impact on
canopy optical properties. Thus, we need to consider the proportions of new leaves and mature leaves
viewed by the sensor. Ltotal is the total LAI of all leaves, which consists of two parts:

Ltotal = Lnew + Lmature (5)

including the LAI of new leaves (Lnew) and mature leaves (Lmature). The proportions of new and mature
leaves were estimated based on destructive field measurements conducted by Zhongkun et al. [50],
who studied the LAI of leaves at different leaf ages in Chinese fir, and we constructed the seasonally
dynamic leaf area proportions by interpolating the data recorded using the phenology rule, assuming
stable proportions to be reached at summer.

3.2.2. Spatial Organization of New and Mature Leaves

In addition to differences in the quantities of new and mature leaves, the spatial organization of new
and mature leaves also has significant impacts on canopy component spectral signatures. Top crowns
are mostly occupied by new leaves, and approximately 80% of the upper crown leaf area is occupied by
new leaves in Chinese fir canopies [50]. Leaves distributed in upper crowns have significant impacts on
canopy reflectance when viewed from the top of the crown. In contrast, old leaves (1 a, 2 a, 3 a) are mainly
located in the inner and lower parts of tree crowns, which are less likely to be observed directly from the
nadir view. Thus, contribution of new leaves located at the top of canopies cannot be ignored.

When we simulate canopy reflectance based on Landsat viewing geometry, new leaves occupy the
majority of the field of view of the sensor, and solar radiation interacts with the leaves in the top layer
first before reaching the lower canopy. Thus, new leaves in the upper canopy have a larger influence on
canopy reflectance than mature leaves in the lower canopy. The influences of new and mature leaves on
canopy LOPs are modeled as the areal-weighted averages of new and mature leaves observed by the
sensors, as follows:

Rave = w1 ∗ Rnew + w2 ∗ Rmature (6)

and
Tave = w1 ∗ Tnew + w2 ∗ Tmature (7)

where Rave and Tave are the average leaf reflectance and transmittance at the canopy scale, respectively.
Rnew and Rmature are the reflectance of new and mature leaves, respectively. Tnew and Tmature are the
transmittance of new and mature leaves, respectively. Finally, the parameters of w1 and w2 are the areal
weights for new and mature leaves, respectively.

Here, we model the areal weights, w1 and w2, considering both leaf-area and leaf-age impacts,
as follows:

w1 =
(1 − e−Lnew)

(1 − e−Ltotal )
(8)

and

w2 =
(1 − e−Ltotal )− (1 − e−Lnew)

(1 − e−Ltotal )
=

(e−Lnew − e−Ltotal )

(1 − e−Ltotal )
(9)
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where w1 highlights the importance of new leaves in the crown in the top canopy, and the weight of
mature leaves (w2) is estimated from the total contribution of all leaves after subtracting the occlusion
effect of the new leaves.

3.3. LOPs at the Canopy Scale

LOPs at the canopy scale are a combination LOPs of both new leaves and mature leaves. At the leaf
scale, LOPs are age-dependent and the LOPs of new leaves and mature leaves vary differentially. At the
canopy scale, age-dependent LOPs provide a mechanism for producing seasonally varying forest albedo
and changing NIR to red ratios, independent of changes in other canopy attributes. Our hypothesis is
that component LOPs vary with leaf maturation, and contribute to the seasonality in canopy reflectance
trajectories. In the following part, we describe methods for retrieving seasonal LOPs and examining the
relationship between LOPs and canopy signals.

3.3.1. Model Sensitivity Analysis

To retrieve LOPs from Landsat observations using the GORT model, we need to obtain a
comprehensive understanding of the sensitivity of model driven parameters. First, wide ranges are
allowed for all parameters, and we used canopy structural measurements of young stands (stand age = 1 a)
as the lower limit and canopy structural parameters of mature stands (stand age = 33 a) as the upper
limit. Stem density and background reflectance were set to their true values. Since sensitivity analysis
covered parameter ranges on a long temporal scale (1 a to 33 a), insensitive parameters are eliminated.
Then, the remaining sensitive parameters are involved in the new sensitivity analysis with a smaller range,
taking the field measurements of each parameter as prior knowledge.

The global sensitivity of the model parameters is analyzed using the extension of the Fourier
amplitude sensitivity testing (EFAST) method [51]. EFAST is a variance decomposition method
determining what fraction of the variance in the model output can be explained by the variation in each
input parameter (i.e., partial variance). The basis of the EFAST method is a parametric transformation
that can reduce multidimensional integrals over the input parametric space to one-dimensional
quadratures using a search curve that scans the whole input space [52]. Scanning is conducted so that
each axis of the parametric space is explored at a different frequency. Then, Fourier decomposition is
used to calculate both the first-order sensitivity (the contribution to the variance of the model output
by each input, Si) and total-order sensitivity (the first-order effect plus interactions with other inputs,
STi) of each input parameter, given as (Saltelli et al., 2008):

Si =
Vi

V(Y)
=

V[E(Y|Xi)]

V(Y)
(10)

and

STi = Si + ∑j �=i Sij + . . . =
E[V(Y|X∼i)]

V(Y)
(11)

where X∼i denotes the variation in all input parameters except for Xi, and Sij is the contribution to the
total variance from the interactions between parameters.

Following Saltelli et al. [53], to compute Si and STi, we created a quasi-random sequence parameter
sampling matrix, P, with dimensions of (m, n) for each SA test, where m is the sample size, and n is the
number of input parameters. We set m = 2n, which was sufficient to test the convergence of the sensitivity
index and the stability of the rankings. Each row in matrix P represents a possible value set of X, and the
quasi-random sequence helps to distribute the sampling points as uniformly as possible in the parameter
space and avoid clustering, in addition to increasing the convergence rate. The global sensitivity analysis
method is complex, and more details can be found in the work by Saltelli [53–55]. Fortunately, SimLab
software [40] can help implement the EFAST method.
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3.3.2. Model Inversion Strategy

In this section, we describe the GORT model inversion strategy used to retrieve LOPs from
satellite observations. Landsat reflectance in the red and NIR bands and the derived EVI2 were used
to retrieve sensitive parameters. The multi-stage inversion strategy proposed by Li et al. [56] was
adopted for parameter retrieval. The main objective of the iterative inversion process is to adjust
the model parameters so that the model output reflectance is as close as possible to the observed
reflectance. The most sensitive parameter is retrieved first, and used as prior knowledge in the next
inversion stage.

One of the most popular methods for solving the inversion problem is to minimize the cost
function of control variables. In this study, the cost function [57] used to retrieve sensitive parameters
from Landsat surface reflectance data is as follows:

J(x) =
1
2

⎛⎜⎝ N

∑
n=1

[
fn(X)− yn

obs
]2

δn2 +
L

∑
l=0

[
Xl − Xl

prior]2

δl
2

⎞⎟⎠ (12)

where yn
obs and fn(X) are the observed reflectance/EVI2 value and the corresponding modeled

reflectance/EVI2 value, respectively. The variables δn
2 and δl

2 are the variances of the observational
data and the prior distribution of parameters, respectively. The variables Xl and Xl

prior are the
parameter values and the initial values in the model, respectively. N is the number of observations,
and L is the number of parameters. Sequential quadratic programming [58], an optimization algorithm
for solving nonlinear programming problems, was adopted to search for the cost function minimum.

3.3.3. Validation: Direct and Indirect Methods

During the retrieval process, the LOPs of mature leaves in the red and NIR bands were set to fixed
values, except for leaf transmittance in the NIR band, which was interpolated using field measurements;
the LOPs of new leaves in the red band were also interpolated using SVC measurements for leaves.
The retrieval results for new leaf LOPs in the NIR band were tested in direct and indirect ways,
as shown in Figure 3.
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Figure 3. Flow chart of LOPs retrieval and application method.
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We decomposed retrieved LOPs into new leaf (time variant) and mature leaf (known) components
according to the calculated the contribution weights (w1 and w2) described in Section 3.2, and evaluated
the decomposed LOPs transmittance using SVC field measurements directly. Additionally, we tested
the applicability of the retrieved LOPs as a second-step validation. LOPs retrieved at one site (ZH1
plot) were applied to another site (FZ1 plot) to simulate canopy reflectance using the GORT forward
simulating mode, and evaluated pixel reflectance using Landsat observations. FZ1 plot and ZH1 plot
have similar growing conditions, but are located at different stands at Station 1. These sites exhibit
different canopy structure properties but with the same tree species, stem density and stand age and
close LAI values. In the simulation of canopy reflectance for FZ1 plot, the same LOPs, sun-sensor
geometry and soil reflectance for the ZH1 plot were used, but a used different canopy structure
was employed.

During the forward simulation process for canopy reflectance, three situations were considered
and compared: (1) without taking leaf-age effects into consideration: setting LOPs parameters as fixed
values using monthly average rL-nir and tL-nir of mature leaves; (2) considering the leaf-age effects for
mature leaves: setting LOPs parameters using monthly varying rL-nir and tL-nir datasets of mature
leaves; and (3) considering the leaf-age effects of both mature leaves and new leaves: setting LOPs
parameters using monthly varying canopy-scale rL-nir and tL-nir datasets, which are up-scaled from
the seasonal LOPs of new leaves and mature leaves. Finally, simulated canopy reflectance signatures
were compared with pixel reflectance derived from Landsat time-series observations at FZ1 as an
indirect validation.

4. Results

4.1. Sensitivity Analysis and Retrieval Results: GORT

4.1.1. Total-Order and Single-Order Sensitivity Analysis Results

Sensitivity analyses run two times for the GORT model for the red band and the NIR band. In the
first sensitivity analysis, parameters with wide ranging variations were involved in the sensitivity
analysis. In the second sensitivity analysis, we eliminated stem density (λ) and crown radius (r) in the
analysis and focused on the remaining parameters, since stem density was known during our study
time, and the average tree crown radius can be estimated based on the allometric relationship with
DBH. In the second sensitivity analysis, the remaining parameters (LAI, h1, h2, λ, rL, tL, rG) varied
within the same range as in the first sensitivity analysis.

The sensitivity of the model input parameters was characterized using the total-order sensitivity
index (Figure 4). For canopy reflectance in the red band, canopy reflectance is most sensitive to the
crown radius and stem density in the first step of sensitivity analysis (Figure 4A). Given r and λ are
known, LAI, h2, rL and tL become the most influential parameters in order (Figure 4B). For canopy
reflectance in the NIR band, rL, h2 and r are the main influential parameters over the long-term
(Figure 4A). After removing the uncertainty of the crown radius and stem density, tL becomes the third
most influential parameter following rL and h2.

To reveal the potential for retrieving uncertain parameters from canopy reflectance, we further
analyzed the single-order sensitivity of each sensitive parameter in the GORT model outputs by fixing
other parameters at stand average values. Taking the year of 2005 as an example, the single-order
sensitivity results are shown in Figure 5. We found that during our study period, LAI and h2 were
not influential regarding canopy spectral signatures in the red (Figure 5A) band, since LAI remains
within a limited range (LAI > 3 m2/m2) for mature evergreen forests, and the crown radius remained
the most influential parameter, especially in the red band (Figure 5A). For canopy reflectance in the
NIR band, h2 was not influential within the range (18–23 m) for mature evergreen forests (Figure 5B).
LOPs were sensitive parameters for both the red and NIR bands.
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Figure 4. Results for the first (A) and second (B) global sensitivity analyses of the GORT model
in the third (red) and fourth (NIR) Landsat bands for the following parameters: LAI (leaf area
index), h1 (lower boundary of canopy center height), h2 (upper boundary of canopy center height),
λ (tree stem density (trees/ha)), r (crown radius), rL (leaf reflectance), tL (leaf transmittance), and rG

(background reflectance).

0 5 10 15 20 25
0.00

0.02

0.04

0.06

0.08

0.10
LT Observation:

 mean=0.044, SD=0.005

Sensitive Parameters:
 r: 1.4 - 2.6 m
  LAI: 0.5 - 3 m2/m2

Unsensitive Parameters:
 r: 2.9 - 3.5 m
 LAI: 3.5 - 6 m2/m2 
h2: 18 - 23 m

R
es

ul
t: 

C
an

op
y 

R
ef

le
ct

an
ce

 

 Parameter: r, h2, LAI

0.05 0.10 0.15 0.20

 rL-red  tL-red

Parameter: rL, tL

(A) Red Band

18 19 20 21
0.10

0.15

0.20

0.25

0.30

0.35

0.40
LT Observation:

 mean=0.24, SD=0.05

Sensitive Parameters: Unsensitive Parameters: 
h2: 18 - 23 m

R
es

ul
t: 

C
an

op
y 

R
ef

le
ct

an
ce

 

 Parameter:  h2

(B) NIR Band

0.2 0.3 0.4 0.5 0.6

 rL-nir  tL-nir

Parameter: rL, tL

 
Figure 5. Single order sensitivity analysis of the impacts of sensitive parameters on GORT model
outputs for the red band (A) and the NIR band (B). Only one of the model sensitive parameters was
adjusted each time to study variations in the model output spectral signatures.

4.1.2. Prior Knowledge of Model Parameters

All prior knowledge of parameter values was obtained from field measurements and used for
analyzing the sensitivity indexes of model parameters, as summarized in Table 2. According to
total-order and first-order sensitivity analysis results, the influential parameters include: the crown
radius (r), rL and tL, which were assumed to be adjustable during retrieval process. Non-influential
parameters were set to values estimated using field measurements as described in Section 2.2.
Multi-process model inversion was conducted in the following sequences: (1) Landsat red band
reflectance −> crown radius (r); (2) Landsat NIR band reflectance/EVI2 −> leaf reflectance (rL) for
the NIR band; (3) Landsat NIR band reflectance/EVI2 −> leaf transmittance (tL) for the NIR band;
(4) Landsat red band reflectance/EVI2 −> leaf reflectance (rL) for the red band; (5) Landsat red band
reflectance/EVI2 −> leaf transmittance (tL) for the red band. The results for the retrieved parameters
are summarized in Table 2.
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Table 2. Prior knowledge of input parameters and corresponding value ranges used in sensitivity analysis.

Parameter Results Prior Knowledge * (s.d.) Lower Limit Upper Limit

LAI - - 0.07 5.27
h1 - - 1.49 13.5
h2 - - 2.48 22.5

stem density (λ) - - 0.1035 0.252
crown radius (r) 1 1.7 1.5 0.92 2.57

rL-red 0.07(0.02) 0.05 0.12
tL-red 0.04(0.03) 0.02 0.1
rG-red - - 0.3 0.4
rL-nir 0.52(0.02) 0.35 0.6

tL-nir 1 0.36(0.05) 0.25 0.4
rG-nir 1 - - 0.35 0.45

1 Adjustable parameters. * The prior knowledge is the initial value of parameters; the lower and upper limit values
are the thresholds of the parameters.

4.2. Optical Properties of Individual New and Mature Leaves

4.2.1. Leaves at Different Ages

We first studied the leaf-age effect on leaf optical properties, and found that leaves in the canopy
can be classified into two age groups: new leaves (0 a) and mature leaves (1–3 a). Field SVC
measurements of the full spectra for all leaf samples were converted to Landsat-view using the
Landsat relative spectral response (RSR) functions in the following three bands: green, red and NIR.
Leaf samples were grouped into four age classes: 0 a, 1 a, 2 a and 3 a. Significant differences in LOPs
were observed between 0 and 1 a leaves, while the differences between mature leaves at different ages
(1–3 a) were not distinct (Figure 6). Thus, LOPs mainly varied within 0–1 a, i.e., during the maturation
process of newly flushed leaves.
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Figure 6. Leaf reflectance (rL, A1–C1) and transmittance (tL, A2–C2) for Chinese fir leaves at different
ages (0–3 a) at three (green, red and NIR) short-wave bands. Leaves were collected on 5 May 2017.

Differences in leaf reflectance at different ages are observed in two visible bands and the NIR
band (Figure 6A1–C1). New Leaves (0 a) exhibited a higher reflectance in the green and red bands
compared with mature leaves (Figure 6A1–B1). In the NIR band, 1 a and 2 a leaves exhibited a slight
increase in reflectance, but the reflectance of 3 a leaves was similar to that of 0 a leaves (Figure 6C1).

As can be observed in the Landsat-view transmittance signatures shown in Figure 6A2–C2,
the trends in the changes in transmittance characteristics as a function of age were similar for these
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three bands. Significant differences were observed between 0 a and 1 a leaves, with the 0 a leaves
showing a consistently higher level of transmittance compared with mature leaves. The decrease in
transmittance as a function of increasing leaf age is due to the increase in absorption characteristics
after a new leaf matures, which is also supported by the increasing area between the upper and lower
set of curves shown in Figure 7A1–E1.
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Figure 7. Field spectral curve data (mean ± 1 s.d.) in shortwave bands for new (A1–E1) and mature
(A2–E2) needle samples (n) from Chinese fir collected on 5 May, 24 June, 28 July, 14 September and
13 October 2017. From May to October, n = 22, 15, 26, 30 and 39 respectively, and each sample includes
5 to 8 leaves. Reflectance data (rL) for each month are presented as the lower set of curves within each
plot, while transmittance data (tL) are presented as the upper set of curves. Absorption characteristics
are depicted based on the area between the upper and lower set of curves. SD values for new leaf tL

are depicted in the upper and lower dash lines, to avoid overlap with rL, while SD values for all other
rL and tL measurements are depicted in gray buffed areas.

4.2.2. Leaves in Different Seasons

The results of monthly LOPs measurements during the leaf expansion period (May to October) of
0 a leaves sampled from the Chinese fir trees are presented in Figure 7. As shown in the SVC spectral
curve data for Chinese fir, significant differences were observed in the following spectral regions:
the green peak (≈530–600 nm), the chlorophyll absorption well (≈660–690 nm) and along the NIR
plateau (750–900 nm).

Differences in leaf reflectance are most pronounced in the green band. New leaves (0 a) exhibited
a consistently lower green peak reflectance from May to October, while reflectance in the chlorophyll
absorption region was shown to increase with age, especially during the first two months of the leaf
expansion period, which is consistent with the increasing trend in NIR reflectance from 0 a to 1 a leaves
as presented in Figure 6C1. Although this variation in NIR band reflectance is not as pronounced
as in the green bands, it could have a greater impact at the canopy scale from the view of satellites,
as illustrated in the following section.

With regard to leaf-level transmittance (Figure 7A1–E1), 0 a leaves showed a remarkable decrease
in transmittance in the visible region from May to October, which was similar to that observed in the
variations in leaf transmittance from 0 a to 1 a (Figure 7A2–B2). NIR transmittance characteristics first
showed a slight increasing trend (from 1 May to 28 July) and presented a decreasing trend thereafter
(from 28 July to 13 October), which coincided with the changing trend in new leaf NIR transmittance
trajectory retrieved from Landsat observations (Figure 8A1). However, the observations from May to
October could not fully explain the gap in the NIR transmittance of 0 a and 1 a leaves (Figure 8C2).
One possible reason is that leaf transmittance decreases during winter (November to April), which may
be supported by the new leaf transmittance retrieved from Landsat observations in winter time. As can
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be observed in Figure 8C1, NIR transmittance decreased significantly in November and December, but
there is still a gap between the retrieved new leaf transmittance (0.2) and measured leaf transmittance
(0.25) at the point of reaching 1 a in May of the following year after leaf production.
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Figure 8. Retrieved results for leaf reflectance (rL) and transmittance (tL) at the canopy scale in the NIR
band (A1,A2) and RED band (B1,B2).

4.3. Leaf-Age Effects on Variability in Landsat-Viewed Canopy Reflectance

Landsat records canopy LOPs from the sensor view and time-series data can be used to estimate
seasonal variations in LOPs. First, we attempted to retrieve LOPs at the canopy scale from Landsat
observations using the GORT model. Then, we estimated the new leaf component from the retrieved
results by setting mature leaf component parameters as known parameters using field measurements.
The results were evaluated via direct and indirect methods.

4.3.1. Leaf Optical Properties at the Canopy Scale

After considering the uncertainties and sensitivities of other parameters in the GORT model,
seasonal LOPs were retrieved from Landsat observations using the proposed multi-stage inversion
method by minimizing the cost function. Retrieved LOPs at the canopy scale are shown in Figure 8 and
compared with field measurements of the spectral signatures of leaves. Changes in Landsat reflectance
were associated with variations in leaf optical properties. As shown in Figure 8A1–B1, the most
dramatic changes occurred in the NIR band, resulting in increased reflectance and transmittance during
spring (April to September) and decreased reflectance and transmittance during winter (October to
December). However, variations in NIR reflectance (0.5 to 0.55) were less notable than that of NIR
transmittance (0.25 to 0.4). In the red band (Figure 8A2–B2), differences in LOPs mainly occurred in the
first three months (May to July) and then became stable in the rest of the year. Both red reflectance and
transmittance presented low values, and transmittance was slightly lower than reflectance. No LOPs
changes in red band could be observed from Landsat alone, but including EVI2 data helped to
some extent.

4.3.2. Seasonal Leaf Optical Properties

When viewed from the top of the crown, LOPs retrieved from Landsat observations are a
combination of leaves of all ages. As analyzed in Section 3.3, we account for both the effects of
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leaf area and its spatial organization in the canopy to estimate the contribution of different leaves.
Figure 9 shows the average seasonal variations in total leaf area (A) and leaf proportions (B) of
new leaves and mature leaves in the canopy, and their contributions to canopy spectral properties
(C). The time period starts at leaf expansion at age 0 (April) and ends with leaf maturity (March in
the following year) at age 1, following the same twelve-month cycle with new leaf expansion each
year. We can see that LAI does not change very dramatically for evergreen forests between seasons
in our study period (Figure 9A). Thus, the satellite-observed seasonality of canopy reflectance is
not determined by LAI, but rather is the result of variations in the LOPs of new leaves during the
maturation process. Although new leaves only account for approximately 30% of the total leaf area
(Figure 9B), new leaves made high contribution (approximately 80% at the peak time in summer) to
canopy spectral properties from the crown top view (Figure 9C).
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Figure 9. Seasonal variations in the leaf properties of the canopy, including (A) total leaf area: average
LAI from stand age 22 to 33 (2005 to 2015); (B) leaf proportion: the percentage of new leaves and mature
leaves in the canopy measured by Zhongkun et al. [50]; (C) weights for new leaves (w1) and mature
leaves (w2) from stand age 22 to 33 (2005 to 2015).

The seasonal trajectories of mature leaf LOPs (Figure 10 B1,B2) were interpolated from field
measurements, which were quite stable during growing season, with only one exception: NIR
transmittance. Mature leaf transmittance in the NIR increased by 30% over the three months following
the beginning of a new growing cycle in May (Figure 10B1), while mature leaves showed no significant
difference in NIR reflectance during the whole growing season (May to November).

New leaf reflectance or transmittance can be estimated by deducting the contribution of mature
leaves from the retrieved LOPs results, which are shown in Figure 10. It can be seen that the retrieved
new leaf LOPs were in good agreement with the field observations (Figure 10A1,A2) from May to
October. We can also see that new leaf LOPs in the red band decreased in the first three months
(from April to June) and became stable thereafter (Figure 10A2). More importantly, new leaf NIR
REF continued to increase from May to September after production (approximately 11%), while new
leaf NIR TRA follow a nonlinear trajectory, increasing from May to August (approximately 16%) and
decreasing thereafter (approximately 14%). A small increase in new leaf NIR REF and a small decrease
in new leaf NIR TRA could both translate into a larger impact at the canopy scale, when the canopy is
coated with new leaves, and the impact of the leaf-age effect at the canopy scale will be further studied
in the following section.

A gap exists between the estimated new leaf NIR transmittance and SVC measurements in May,
and the s.d. values of new leaf field measurements in May are greater than the measurements in
other months (Figure 10A1,A2). This might be explained by the overestimation of measured leaf
transmittance samples when leaves were small, which was caused by unavoidable small gaps because
of minor misalignment in the arrangement of leaves. Large s.d. values for new leaf field measurements
in May could also occur due to the differences in leaf expansion rate and maturity times in the early
leaf flush period.
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Figure 10. Validation of estimated new leaf LOPs in the NIR band (A1) and red band (A2) and the
constructed mature leaf LOPs trajectories (B1,B2).

4.3.3. Leaf-Age Effects at Pixel Scale Based on Satellite Observations

LAI and sun-sensor geometry are widely recognized as the main factors contributing to seasonality in
RS signals [12,19]. Thus, we need to distinguish leaf-age effects from the contributions of these two factors.
To identify the contribution of leaf-age effects to the seasonality in Landsat signals, we compared the
differences in the results with/without considering leaf-age effects. The forward-mode GORT model
was used to simulate canopy reflectance at the pixel scale with Landsat-viewing geometry, and the
model-driven parameters are listed in Table 1. We simulate canopy reflectance at NIR band and red band
in the following three circumstances:

1. In the first circumstance, we ignore the leaf-age effects caused by aging mature leaves and growing
new leaves, and only consider variations in LAI and sun geometry using field data. LOPs in
the GORT model were fixed using the mean LOPs for mature leaves measured from May to
September in 2017 (NIR band: REFmature = 0.51, TRAmature = 0.26 or 0.34; Red band: REFmature = 0.06,
TRAmature = 0.01).

2. Based on circumstance 1, we include variations in LOPs caused by aging mature leaves.
For comparative purposes, we first added variations in mature leaves using data shown in Figure 10B1
to drive the GORT model.

3. Based on circumstance 2, we further include variations in LOPs caused by production and expansion
of new leaves. LOPs for the GORT model are shown in Figure 8B1. LOPs at the canopy scale retrieved
at the ZH1 site are applied to the FZ1 site with different canopy structure parameters.

The overall GORT-simulated results obtained for the three circumstances are compared in Figure 11.
After considering the mature leaf-age effects on canopy reflectance, the R2 between the simulated canopy
reflectance/EVI2 and the Landsat observations increased significantly (from 0.38 to 0.83 for canopy NIR
reflectance and from 0.26 to 0.43 for canopy EVI2), as shown in Figure 11. However, the R2 of both groups
in the GORT simulation results was poor in the red band and RMSE remained low.

In circumstance 1, we can see that LAI is stable (Figure 9A) in these sub-tropical forests and is not the
main factor contributing to the seasonality of canopy NIR REF. Seasonal variation in sun-sensor geometry
from January to June to December (SZN varies from 56◦ to 25◦ to 56◦) causes a small amount of seasonality
of forest albedo, as shown based on the blue line in Figure 11A1. However, SZN alone does not sufficiently
explain the seasonality of the Landsat canopy signals in our study sites. Assuming that the LOPs of mature
leaves do not change, if we apply mature leaf LOPs measured at the peak time in summer (NIR TRA = 0.34)
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to other times, we might overestimate canopy NIR REF in winter; and if we apply mature leaf LOPs
measured in early spring (NIR TRA = 0.26), we might underestimate canopy NIR REF in summer.

In circumstance 2, we consider the leaf-aging effects of the mature leaves, which constitute the majority
(>60%) of the canopy LAI (Figure 9B). The LOPs of mature leaves are relatively stable in the red and NIR
bands, therefore, mature leaves have no impact on canopy red REF. However, there is one notable exception:
mature leaf NIR TRA is lower in winter and greater in summer and continued to increase from May to
October (Figure 7A2–E2). The winter-summer differences in leaf NIR TRA contribute to a steeper NIR
REF/EVI2 trajectory from April to July at the canopy scale, as shown based on the area between the blue
and gray curves in Figure 11A1,C1.

In circumstance 3, we can observe how variations in the LOPs of new leaves contributed to the
seasonal variation in canopy NIR reflectance and derived EVI2 (Figure 11A1,C1). As shown based on
the area between the green and gray curves in Figure 11A1,C1, EVI2 trajectories follow the same pattern
(Figure 11C1) as NIR reflectance. In general, new leaf production and expansion increases canopy NIR
reflectance from May to October (Figure 11A1). An increased new leaf TRA (18%) also contributes to the
increase in NIR REF at the canopy scale, but only before August. After September, an increase in NIR
REF is caused by an increase in leaf REF. However, the changing trend of canopy NIR REF is nonlinear,
which increases from May to August and decreases from August to October. As illustrated in Figure 10A1,
canopy NIR REF increases from May to August partially due to increasing new leaf NIR REF during this
period; conversely, canopy NIR REF decreases from August to October due to decreasing new leaf TRA at
this interval.

The upper-layer-located new leaves provide a mechanism for producing greater seasonality of forest
albedo in addition to mature leaves. A small increase in new leaf NIR REF (0.05 unit) has significant
impacts at the canopy scale, since new leaves are generally located at the top of the canopy. New leaf
expansion also contributes to negligible increase in canopy Red REF from March to July (Figure 11B1). EVI2
trajectories follow the same patterns (Figure 11C1) as NIR reflectance trajectories, arising from the linear
dependence of EVI2 on NIR reflectance, as proved by a previous study [23]. We can conclude that both new
and mature leaves contribute to the seasonality of forest albedo, which is independent of changes in other
canopy attributes.
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Figure 11. Aging effects of new leaves and mature leaves on seasonality of canopy signal trajectory
in NIR band (A1), red band (B1) and EVI2 (C1). With the exception of the differences in leaf optical
parameters, all other input parameters for the GORT model are the same in three circumstances.
We evaluated the simulated canopy signature with Landsat observations (A2–C2). Both the simulated
results and Landsat observations are at a monthly step with the mean value and s.d. (from 2005
to 2015).
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5. Discussion

5.1. Spectral Changes and Leaf Aging

For Chinese fir, the leaf spectra mainly vary during the first year of leaf production (0–1 a),
and then remain relatively stable from 1–3 a. During the new leaf expansion process, leaf water content
(LWC) and the specific leaf area (SLA) decrease rapidly, resulting in variations in LOPs: including
decreased transmittance and increased absorbance in the visible and NIR bands and decreased visible,
but increased NIR reflectance. Leaf optical properties show strong age dependence and great seasonal
difference for young and mature leaves. Spectral changes in the visible portion of the spectrum
characterized the new leaves while increased NIR transmittance and decreased NIR absorbance
characterized mature leaves. Changes observed in the visible spectrum matched similar observations
for Carica [59] and Aldina [60]. In general, absorbance at the green peak (550 nm) increases, while
reflectance and transmittance decrease at this band, which could be attributed to an increase in
chlorophyll [59] and changes in leaf internal anatomy [61]. However, the changes of LOPs in the NIR
band are complicated.

In agreement with previous findings [60], mature leaves were found to show a lower leaf albedo
(leaf reflectance plus transmittance) at the NIR band than new leaves due to leaf aging. Early changes in
the NIR band were noted during new leaf expansion, with a slight increase (11%) in leaf NIR REF being
observed from May to October and a continuous increase (14%) in leaf TRA being recorded from May to
August, followed by a slight decrease in NIR TRA during autumn and winter. Some studies [62] have
found a dramatic increase in leaf NIR reflectance between July and August, which might be caused by
differences in the leaf characteristics. Low-wax leaves display a continuous increase in NIR reflectance
until maturity, while high-wax leaves show little increase in NIR reflectance [63]. Epicuticular waxes
and thick cuticles could mask the effect of NIR increases caused by inter-cellular development in young
high-wax leaves. These characteristics might explain why only a slight increase in NIR reflectance was
found during leaf maturation in the present study, since Chinese fir is a high-wax species.

In contrast to previous studies, we observed a continuous increase in NIR transmittance for
mature leaves (1–3 a). However, a significant gap in NIR transmittance existed between new leaves
(measured from May to October) and mature leave (measured in May), and we only observed a
small decrease in NIR transmittance for new leaves from September to October. However, a dramatic
decrease in NIR transmittance might happen in winter time (November to December to January)
according to the results retrieved from Landsat observations, which will be further studied in the
future. Similar observations have been made by others [60], who found a consistent decrease in NIR
transmittance during the last nine months of the leaf cycle.

5.2. Leaf-Aging Effects on Canopy Reflectance

At the canopy scale, canopy reflectance is a product of competing mechanisms of light
absorption [60]. The interaction of photons with dense forests is characterized by strong scattering in
the NIR and equally strong absorption in the shorter red and blue bands. The NIR reflectance of these
forests is an order of magnitude greater than the reflectance at red (blue) band. On the other hand,
aerosol scattering has greater impacts on reflectance in visible bands than the NIR band. In the NIR
band, any mechanism that increases leaf absorption (such as decreased transmittance or reflectance)
will have an enhanced effect on canopy reflectance [60]. Thus, we could expect leaf aging to have its
largest impact in the NIR band.

Age-related LOPs are factors that require special attention but have been overlooked in previous
studies focused on estimating vegetation status using optical signal trajectories. Previous studies
also found changes in canopy NIR reflectance caused by the exchange of older leaves for newer
leaves [23,24,27]. These studies considered the differences in LOPs between senesced old leaves and new
leaves, but they ignored the simultaneous aging process of new leaves and mature leaves with a life
span of more than three years. In this study, the observed seasonality of the canopy NIR reflectance of
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evergreen forests was due to age-dependent leaf optical properties at the NIR band, including both new
leaf maturation and mature leaf aging, with little changes in total leaf area. New leaf maturation mainly
increases NIR reflectance at the peak time in summer (May to October), and mature leaf aging mainly
reduces NIR reflectance during early spring (January to June). We have already excluded differences
caused by changes in the solar zenith angle [10], and our seasonally moist sub-tropical forests are free
of drought impact [24,64–66] or the impact of epiphylls on mature leaves in tropical forests [23,60,67],
which are highly debated factors causing changes in NIR reflectance in numerous studies, and the same
seasonality pattern is observed in EVI because of its strong dependence on NIR reflectance.

It is important to note that the forest canopy is composed of mixed-age leaves. Mature leaves
account for a major population, while a higher proportion of young leaves are observed by the Landsat
satellite because of their distribution at the top of the canopy. Both new and mature leaves influence
canopy NIR reflectance, and their impacts change with new leaf expansion. New leaf expansion
changes the proportions of young and mature leaves within a forest canopy over the season, thus,
further changes the canopy spectral signatures.

5.3. Potential Implications for Photosynthesis

Young leaves exhibit a higher photosynthetic capacity than older leaves, and it is therefore
essential to track changes in the age-structure of leaves in the canopy, which could substantially
improve the modeling of the seasonal dynamics of photosynthesis. Xiaoquan and Deying [68] studied
the leaf-age effects on the photosynthetic characteristics of 18-year-old Cunninghamia lanceolata stands
and found similar trends in leaf photosynthetic rate at different ages: the photosynthesis rate of newly
flushed leaves increases during the maturation process and then decreases at the end of the growing
season, while the photosynthesis rate of mature leaves (1 and 2 a) decreases as time progresses.
This study suggested that considering the temporal variation in the LOPs of new leaves matters
significantly in understanding the seasonal trend of canopy spectral signatures. Ignoring variations
in leaf-scale properties may mislead our interpretations of seasonality of RS signals from evergreen
forests where different-age leaf cohorts coexist in the canopy. This study provides new evidence of
the importance of considering the phenology of LOPs at different ages and which could contribute to
more accurately modeling of photosynthesis [69].

5.4. Implications of LOPs and Canopy Structure

At the canopy scale, seasonal variations in new leaf optical properties were shown to be the dominant
factor producing seasonal variations in canopy reflectance and altering NIR to red ratios, independent of
changes in other canopy attributes. However, our study explicitly focused on dense evergreen forests with
stable LAI (LAI > 3). The parameters that drive the GORT model may vary on different temporal scales.
For example, crown size and tree height vary annually, while LAI, leaf spectra, and sun geometry vary
seasonally. We can explore the signal differences caused by LAI and canopy structure by comparing the
annual differences in the GORT model outputs. We only applied the annual structural parameters from
2005 to 2015 (there were no data in 2009 and from 2012 to 2014) to drive the the GORT model. In addition
to annual stable structural parameters, the SZN, LAI and canopy average LOPs were updated monthly.
Although the LAI seasonality and structure parameters varied from year to year, NIR reflectance showed
similar seasonal trajectories with little annual difference, as illustrated by the vertical error bar in Figure 11.
There may be two explanations for this limited variation. First, there is a lack of LAI seasonality or the
canopy is too dense with a high LAI; thus, small changes in leaf area are not as sensitive compared with
the variations in LOPs. The results might be different for young stands, especially before canopy closure.
Second, canopy structural parameters do not change significantly during the new leaf maturation process;
thus, canopy structures have limited impacts on canopy reflectance during this period. As illustrated in
other studies [23], LAI is also an important factor contributing to the seasonality of NIR reflectance.

This study quantified the effects of leaf age on canopy reflectance in mature evergreen forests to
first explore the possible impacts on leaf quality when total leaf area does not exhibit significant seasonal
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changes. Given the findings of this case study, future studies in deciduous forests, where seasonal
variations in LAI are more significant and leaf-age groups are less complicated, would allow further
validating of our findings and apply our findings to better quantify the canopy spectral signatures to
understand the role of forests in terrestrial ecosystems.

6. Conclusions

This study evaluated the effect of LOPs for leaves at different ages on the canopy spectral signature
variation during the growing season for Chinese fir stands. For closed canopy evergreen stands with
relatively stable LAI, new leaves exerted disproportional influence on the canopy season spectral
signature due to the spatial distribution of the new leaves in the top and outer canopy. The most direct
implications of our results are related to ecological or physiological studies that utilize remote sensing,
and our findings provide a promising potential to improve the interpretation of RS signals. The most
significant finding of this study at the leaf scale is the increase in the NIR transmittance of mature leaves
and the increase in the NIR reflectance of new leaves. To date, most of the identified contributions of
leaf age to the variation in leaf optical properties have involved changes in the differences between
old leaves and new leaves. Simultaneous monitoring of new and mature LOPs with season, however,
has not been previously documented. In this study, we observed an approximately 11% increase in
NIR reflectance (0.05 unit) for new leaves and a 35% increase in NIR transmittance for mature leaves
during the growing season.

Variations of LOPs at the leaf scale have significant impacts at the canopy scale, and contribute to
seasonality of canopy NIR reflectance and EVI2. Due to the complexity of forest ecosystems, analyses
based on field data alone cannot provide guidance in the interpretation of RS signals. Conversely, studies
based on modeling alone, without proper ground measurements of the key factors driving canopy signal
variation, can be misleading. This study combined field observations with the GORT model to elucidate
the effects of leaf age on canopy-scale reflectance signals. We demonstrated that, in addition to sun-sensor
geometry, the effects of leaf aging on LOPs were the major factor contributing to the seasonality of canopy
reflectance for the Chinese fir stands:

• New leaf maturation is the main factor contributing to seasonality of canopy signals (NIR REF
and EVI2), because of the distribution of these leaves in the top and outer canopy, as well as their
increasing proportions with leaf growth. A small increase (0.05 unit) in new leaf NIR reflectance
results in a significant increase in canopy NIR reflectance from spring to summer, while a decrease
in new leaf NIR transmittance from August to October causes a decreasing trend in canopy NIR
reflectance in autumn and winter.

• Mature leaf aging is another factor contributing to the seasonality of the canopy signals (NIR REF
and EVI2) because of the significant proportion of mature leaves in the canopy. Mature leaf NIR
transmittance is greater during the growing season than off the growing season. This difference in
leaf TRA causes an increased difference in canopy reflectance between winter and summer.

Thus, the effects of leaf age cannot be ignored when conducting time series analyses using RS data
for the evergreen needle leaf forests.
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Appendix A

Appendix A.1 Data Description

Section 2.2.1 is supported with field data collected for Chinese fir forest stands located in
the vicinity of the permanent ecosystem research stations in National Research Stations of Forest
Ecosystems in Huitong county, Hunan province, southern China. This appendix provides details on
data acquisition of canopy structure parameters.

Appendix A.2 Canopy Structural Parameter Measurements

Crown shape measurements were taken for a total of forty trees in study Site 2. Measured crown
shape parameters are shown in Figure A1, among which, DBH was measured using diameter tapes,
and crown radius and tree heights were measured using telemeter rods. The size of the selected trees
was evenly distributed uniformly in terms of height (H) (from 5.4 m to 20 m) and diameter at breast
height (DBH) (from 7.7 cm to 37.8 cm). Among the 40 trees, 7 are located at plots close to the study site,
and 33 are located within the ZH1 and FZ1 sites. The parameters measured for characterizing crown
shape are presented in Figure A1, including crown width in the north-south direction (R1) and the
east-west direction (R2), tree height (H1) and height under crown (H2), from which we can obtain the
height of crown center (h). We used the measurements of these 40 trees to build regression relationships
for crown width, DBH, h and tree height. Figures A2 and A3 illustrated the field measurements of
canopy structure parameters as well as their growth trajectories with DBH, which usually correlates
well with tree ages.

 

Figure A1. Measured parameters for sample trees selected to build regression relationships for the
structural parameters of the tree crown and other measures, including tree height and DBH.
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Figure A2. (A) Measured crown width (2R) for 40 sample trees with DBH in the north-south direction
(CWNS) and east-west direction (CWEW); (B) Regression relationships between DBH and crown
width (2R).
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Appendix A.3 Leaf Area Proportion and Distribution in Crown

Table A1. Leaf area and proportion of leaves at different ages located at different crown positions for
Cunninghamia trees in Hunan.

Leaf Age/Location Bottom Crown Central Crown Upper Crown Leaf Area ∑∑∑ (%)

0 a 1.16 1.41 3.24 5.8 (34.63%)
1 a 1.93 2.93 0.81 5.67 (33.85%)
2 a 1.80 1.59 0 3.39 (20.24%)
3 a 1.11 0.76 0 1.87 (11.64%)

Leaf Area ∑ (%) 6.00 (35.8%) 6.69 (40%) 4.05 (24.2%) 16.75 (100%)

Table origin: [50].

Appendix A.4 Leaf Sample for SVC Measurements

 

Figure A4. The vacuum side of one group of leaf leaves prepared for spectral measurement. Leaf samples
were collected on 15 July 2016.

Appendix B

Appendix B.1 Data Description

Section 2.2.2 is supported with LAI field data collected for Chinese fir forest stands located close
to the permanent ecosystem research stations in National Research Stations of Forest Ecosystems in
Huitong county, Hunan province, southern China. Long-term LAI were measured monthly to drive
the GORT model from year 2005 to 2015. In this time period, two different DHP methods were applied
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before and after year 2006. This appendix provides details on LAI data acquisition and processing to
produce consistent LAI time-series.

Appendix B.2 Long-Term LAIe Observations: DHP Methods

(1) 2005 and 2006: CI-110 Plant Canopy Analyzer

Plant canopy imaging was the primary method for conducting regular monthly LAI measurements
from 2005 until present. From 2005 to 2006, pictures were taken every month by one worker using
a CI-110 Plant Canopy Analyzer to estimate the LAI. From 2007 onward, photographs were taken
by another fixed worker using a Canon EOS 40D digital camera equipped with a Nikon AF-DX
10.5 mm f/2.8 G ED fisheye convertor. The data measured before 2007 needed to be further
preprocessed prior to further calculations to make them consistent with data measured after 2007.
We have 30 pairs of data measured at the same positions and in the same directions in ZH1 and
FZ1 to unify the original LAI time series data using data measured in December 2006 and January
2007. We employed two methods to unify these datasets: (1) Regression Method: The first method
involves deriving two average seasonal LAI trajectories, one before 2007 and the other after 2007,
and calculating their regression equations. (2) Lifting Method: The second method involves acquiring
the mean absolute deviation (ΔLAI = 1.01) of the data before 2007 and those after 2007 using the mean
difference between these 30 pairs of LAI data. The results of these two methods are different, and both
are illustrated at the end of this section.

(2) 2007 to 2015: Fisheye Digital Camera

From 2007 afterwards, photographs were taken using a Canon EOS 40D digital camera equipped
with a Nikon AF-DX 10.5 mm f/2.8G ED fisheye convertor. The camera was horizontally mounted
at a fixed height of 0.2 m above the ground. The photographs were taken with automatic exposure
under diffuse light conditions, typically soon after sunrise or immediately before sunset. In the ZH1
and FZ1 plots, measurements were taken for three layers: the herb layer, shrub layer and tree layer on
the 15th day of each month at five fixed locations per plot and facing toward four cardinal directions.
All measurements were made under diffuse light conditions to avoid introducing errors due to the
presence of sunlit foliage. The images were processed by the Gap Light Analyzer 2.0 software to
calculate LAIDHP.

Incorrect exposure has been shown to cause significant underestimations in LAIDHP
measurements [35–39]. All DHP measurements were taken with automatic exposures, which resulted
in considerable underestimation. The LAI measurements made using the DHP and LAI-2000 methods
were shown to be significantly correlated in any zenith angle range. Therefore, we calibrated LAIDHP
by the LAIe measured using an LAI-2000 plant analyzer, to quantify the systematic bias ε in DHP
methods due to automatic exposure problems.

Appendix B.3 Converting LAIe to LAIt: LAI-2000 and TRAC Methods

LAI-2000 and TRAC measurements were used to convert LAIDHP to true LAI. Tracing Radiation
and Architecture of Canopies (TRAC, Natural Resources Canada, Canada Center for Remote Sensing,
Saint-Hubert, QC, Canada) and an LAI-2000 Plant Canopy Analyzer (LAI-2000, LI-COR Inc, Lincoln,
NE, USA) [41] were used to measure the LAI of each sample plot [42]. The LAI-2000 was used to
measure the effective LAI (LAIe), and TRAC was used to measure both the effective LAI (LAIe) and the
foliage clumping index (Ω).

The LAI-2000 method is based on the measurement of diffuse radiation attenuation in the blue
band caused by the canopy, which is related to gap fraction. Further details on the theories and
measurements behind LAI are given in Frazer et al. [70]. We employed two LAI-2000 units to measure
the sky radiation and under-canopy radiation simultaneously. Additionally, we cross-calibrated
these two LAI-2000 units before the field survey. One LAI-2000 unit is horizontally mounted on a
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rooftop facing toward our study sites and automatically records the above-canopy radiation every
5 min. Ninety-degree view caps were used on both units to avoid the influence of other objects on the
sensors and made these measurements comparable with those from the DHP methods in four cardinal
directions. The LAI-2000 measurements were taken under diffuse sky conditions in the early morning
or after sunset. The TRAC method requires direct solar radiation, so we took TRAC measurements
during midday at a constant walking pace along several parallel transects, which were perpendicular
to the direction of tree stem shadows. Distance markers were registered every 5 m. The TRAC data
were processed by TracWin software, which calculates LAIe and the clumping index (Ω).

During August 2015, we used LAI-2000 instruments to measure the LAI in the WS2 and WS3
plots. We revisited these plots in June 2016, taking measurements with both the TRAC and LAI-2000
instruments. In June 2016, we surveyed the ZH1 and FZ1 sample plots and used the LAI-2000
instruments to measure the LAI at the same locations as measured by the long-term DHP methods.
In comparison to the LAI-2000 instrument, the accuracy of DHP is affected by photograph exposure
settings because these settings impact the ratio of green leaves to sky. An LAI-2000 unit was operated
subsequently at the same locations for comparison with DHP, and then we convert LAIe to true
LAI values.

Additional correction parameters were required to convert LAIe to LAIt. The needle-to-shoot
area ratio (γe) was measured using destructive sampling conducted in August 2015. The clumping
index Ω was measured by the TRAC instrument. Additionally, the woody-to-total area ratio (α) for
Cunninghamia lanceolata was derived from destructive sampling used to calculate biomass.

Appendix B.4 Unifying LAI Measurements Using Different Methods

LAIDHP was corrected using LAIe measurements from the LAI-2000 units to decrease the
underestimation caused by the automatic exposure problem present in the DHP method. We made
comparisons between the LAI as measured using DHP and LAI-2000 in the same locations in ZH1 and
FZ1 to estimate the system bias (ε) of DHP. We applied a fixed bias instead of a regression relationship
between DHP and LAI-2000 because our study site is pure Cunninghamia lanceolata plantations and the
LAI values fall within a small range. Thus, it is not possible to build a robust regression relationship
with limited LAI variations using the field measurements made on our study sites. Although previous
studies have built and applied regression relationships between DHP and LAI-2000 LAI methods [71],
we chose to estimate the system error of DHP with a fixed value in our study site. The reasons for this
choice are listed as follows: first, regression relationships are usually site specific, lack universality and
cannot be applied to other places. We used the existing regression relationship to our study sites, but
the result was of poor quality. The regression relationship built by [71] resulted in a mean absolute error
of 1.0 LAI when compared with field LAI-2000 measurements. Second, the accuracy of the regression
relationship may vary in different ranges of values. For example, if the regression relationship fits
well in the low-value range but fits poorly at high values, then when we apply it to other places with
mainly high values, the relationship will fail. At this study site, the LAI is quite stable; as shown in
Table A2, the standard deviation is quite small (approximately 0.25 as measured by LAI-2000), and the
maximum and minimum LAI-2000 measurements within our study sites are quite close (3.19–3.36 for
ZH1, and 3.18–3.3 for FZ1). Thus, correcting for the systematic error is a sufficient and reliable method
for converting LAI values measured by the DHP method to LAI measured with LAI-2000.
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Table A2. Comparison of effective LAI derived from digital hemispherical photography (DHP) and
LAI-2000 methods.

Plot

ZH1 FZ1

DHP (5 pts *
4 Dirs)

LAI-2000 (5
pts * 4 Dirs)

LAI-2000 (26 pts *
2 Repeat)

DHP (5 pts *
4 Dirs)

LAI-2000 (5
pts * 4 dirs)

LAI-2000 (61 pts *
3 Repeat)

Maximum 1.68 3.52 3.36 1.56 3.85 3.3
Minimum 1.37 2.9 3.19 1.05 2.87 3.18

Mean 1.533 3.186 3.275 1.282 3.248 3.243
SD 0.12 0.23 0.12 0.2 0.39 0.06

System bias (ε) * _ 1.653 1.724 _ 1.966 1.962

* The LAI were measured at 5 points, in four directions, and repeated two to three times for every plot. The system
bias (ε) was calculated by (LAI-2000 LAIe- DHP LAIDHP).

According to Table A2, the system bias was set to 1.83 for the DHP method. The correction
parameters required to convert LAIe to LAIt were set as follows: the needle-to-shoot area ratio (γe) was
set to 1.1 according to the results of the destructive sampling conducted in August 2015. The clumping
index Ω was produced by the TRAC instrument and set to 0.8. The value of the woody-to-total area
ratio (α) for Cunninghamia lanceolata was derived from the destructive samples used to calculate biomass
and was set to 0.2. An illustration of the data processing workflow may be useful for understanding
how we unified the LAI field data measured by different instruments, as shown in Figure A5.

DHP LAI-2000 LAIt

LAIe=LAIDHP+  LAIt=(1-  )LAIe* e/  

=1.83 =0.2, e=1.1, =0.8 

CI-110

DHP=0.14*e(1.775*CI2000)

(R2=0.79,RMSE=0.41)  
Figure A5. Flowchart of LAI field data processing procedures. Before January 2007, monthly LAI was
measured using a CI-110 instrument, and a DHP instrument was used afterwards.
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Abstract: Rugged terrain, including mountains, hills, and some high lands are typical land surfaces
around the world. As a physical parameter for characterizing the anisotropic reflectance of the
land surface, the importance of the bidirectional reflectance distribution function (BRDF) has been
gradually recognized in the remote sensing community, and great efforts have been dedicated to build
BRDF models over various terrain types. However, on rugged terrain, the topography intensely affects
the shape and magnitude of the BRDF and creates challenges in modeling the BRDF. In this paper,
after a brief introduction of the theoretical background of the BRDF over rugged terrain, the status
of estimating land surface BRDF properties over rugged terrain is comprehensively reviewed from
a historical perspective and summarized in two categories: BRDFs describing solo slopes and
those describing composite slopes. The discussion focuses on land surface reflectance retrieval over
mountainous areas, the difference in solo slope and composite slope BRDF models, and suggested
future research to improve the accuracy of BRDFs derived with remote sensing satellites.

Keywords: anisotropic reflectance; BRDF; rugged terrain; solo slope; composite slope

1. Introduction

Rugged terrain covers approximately 24% of the Earth’s land surface, plays an important role
in the complex earth system, and forms a unique mountainous climate and ecosystem. Accurately
estimating land surface variables over mountainous areas is of great importance for global hydrological
and meteorological forecasts, as well as global ecological and environmental monitoring. Taking the
benefits of advanced satellite instrumentation and accurate remote sensing modeling, topographic
effects can be considered and neutralized in applications of surface parameter retrievals, such as
improved land cover and land type mapping [1,2], key parameters of mountain radiation, and energy
budget (albedo, land surface temperature (LST), and solar radiation) [3–5] and vegetation structure
parameters (normalized difference vegetation index(NDVI), leaf area index (LAI), and fractional
photosynthetically active radiation (FPAR)) [6,7]. Therefore, remote sensing satellite technique
development over rugged terrain is crucial for extending remote sensing applications from flat surfaces
to mountainous areas.

Remote sensing of anisotropic reflectance relates the land surface scattering behavior to its optics
and structure, which is described with the bidirectional reflectance distribution function (BRDF) [8]
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and can be observed in optical remote sensing. To retrieve BRDF properties of the land surface is the
basis for land surface’s physical parameter inversions [9–12], due to its structural information observed
from different angles. In contrast, angular effects on surface reflectance should be removed by BRDF
correction to normalize the reflectance [13–15] to implement classification and dynamic monitoring [16].
Thus, modeling the land surface BRDF and developing a corresponding remote sensing product is
important for scientific research and remote sensing applications. However, rugged terrain complicates
BRDF modeling by changing the amount of radiation detected by the sensor [17–20]. Generally,
topography alters the illumination and viewing geometry and generates a relief shadow, observation
masking, and multiple scattering, this results in the intense topographic dependence on total incident
and reflectance radiance, which distorts BRDF characteristics [4,21]. The BRDF characteristics varies
with wavelength and shows a BRDF wavelength dependence in surfaces of greater roughness [22,23].
Without considering the topographic effects on the land surface BRDF, the anisotropic reflectance
estimation relative errors could be larger than 58% [24]. Therefore, the current remote sensing BRDF
concept and modeling over rugged terrain should consider the topographic effects.

Previous studies have focused on the influence of geometric characteristics on the radiative
transfer process over rugged terrain. Thus, the topographic correction models have first attempted
to reduce topographic effects on reflectance [18,19,25,26]. Recently, there have been concerns about
BRDF modeling over rugged terrain [17,20,21,27]. However, the operational BRDF product algorithm
over rugged terrain is still being researched because it involves a complex process, which includes
multi-angular reflectance dataset processing, an operational BRDF algorithm and its inversion method
coupled with topography. From this perspective, high quality atmospheric correction that is used to
obtain land surface reflectance is also the basic task to derive the rugged surface BRDF. Investigations
have proven that the atmospheric correction of different resolution remote sensing data needs to
consider the influence of topography [28,29]. However, with the decrease in spatial resolution,
the influence of topography on pixel scale reflectance will gradually decrease. This causes a lot
of the low resolution land surface reflectance to ignore the effects of topography during atmospheric
correction (e.g., moderate resolution imaging spectroradiometer (MODIS) reflectance).The reflectance
that does consider the topographic influence focuses on only the relatively high resolution remote
sensing data (e.g., Landsat Thematic Mapper (Landsat/TM). Consequently, dominant BRDF modeling
over rugged terrain occurs on an infinite slope surface [17,20,21,27]. However, the focus of low
resolution remote sensing data is not the topography influence at the pixel level, but the topography
influence at the sub-pixel level [29–31]. There should be a robust relationship between these two
different anisotropic reflectance resolution. Thus, the characterization of land surface anisotropic
reflectance over rugged terrain should be implemented from a systematic perspective by analyzing the
critical scientific problems and reviewing current algorithms, which will benefit algorithm developers
and broaden the interests of surface BRDF users.

In this paper, remote sensing BRDF modeling over rugged terrain according to the presented
research chain is comprehensively reviewed, and the aim is to find an operational BRDF product
potential solution for rugged terrain. This is important for quantitative remote sensing applications in
mountainous areas. The paper is organized as follows: first, we analyzed the topographic effects on the
BRDF and its scientific problems in Section 2. Second, the methods to solve the atmospheric correction
and obtain the multi-angular reflectance are briefed in Section 3. The two kinds of BRDF modeling are
described based on evolution histories in Sections 4 and 5, according to the spatial resolution between
the digital elevation model (DEM) and remote sensing pixel. Then, we analyzed the challenges and
opportunities for BRDF product generation over rugged terrain in Section 6. Finally, we summarize
this paper.
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2. BRDF in Rugged Terrain

2.1. Literatures Review

A review of the current literature is one of the best ways to clearly understand the timeline and
milestones in BRDF research over rugged terrain. In this paper, we searched for articles titles matching
the relevant key words about BRDF and rugged terrain on the Web of Science website, Thomson Reuter.
BRDF has seven relevant query words: “reflect*”, ”reflectance*”, “non*Lambertian”, “BRDF”, “BRF”,
“bi-directional reflect*”, and “bidirectional reflect”, “multiangle”, “multi-angle”, “multiangular” and
“multi-angular”. Rugged terrain has ten relevant query words: “mountain*”, “hill*”, “rugged terrain*”,
“complex terrain*”, “topograph*”, “slope*”, “sloping terrain*”, “rough* surface*”, “random surface*”,
and “roughness”. To exclude the irrelevant articles, we further screened the search results by subject
and keywords. Finally, the articles about BRDF modeling over rugged terrain were collected from
the Web of Science platform for citation statistics and analysis. Figure 1 shows the articles that were
contributed by different research fields in recent decades. The results show that BRDF modeling over
rugged terrain is of great importance in many scientific and engineering fields, including physics,
engineering, optics, materials science, geology, remote sensing, geophysics, instrumentation, image
science, chemistry, and spectroscopy. Judging by the number of articles, BRDF modeling over rugged
terrain ranks sixth in remote sensing field.

Figure 1. Literature statistics for bidirectional reflectance distribution function (BRDF) modeling over
rugged terrain contributed by different research field in recent decades.

Figure 2a,b shows the annual publications and citations from 1983 to 2017 in the field of remote
sensing. Since 1993, there have been several articles published every year. The variation in the number
of published papers on this subject have followed a periodical pattern. In some characteristic years,
the number of published paper is as many as six. In comparison, the citations of these published
papers grow smoothly by year, especially since 2006, which is when the numbers of citations showed
a rapid increase. This demonstrates that the subject of BRDF modeling over rugged terrain has received
increasing attention and has gradually become a hotspot in studies of quantitative remote sensing.

Figure 2. Literature statistics for BRDF modeling over rugged terrain from 1983 to 2017. (a) The numbers of
published articles, and (b) total citations.
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2.2. BRDF Definition and Its Topographic Effects

BRDF is defined mathematically as the ratio of the radiance Lr which is reflected by the target
surface into a specific direction, to the collimated solar incident irradiance Es on the same surface [32].
Two basic assumptions are implied in the current remote sensing BRDF quantity, which is shown
in Equation (1) [33,34], and the assumptions are as follows: (1) the target surface is assumed to be
a horizontal plane, and (2) the target surface is homogeneous with a uniform incident irradiance and
outgoing irradiance. Namely, the radiative flux interaction and exchange is equivalent at every point
over the target surface.

BRDF(Ωs, Ωv) =
dLr(Ωs, Ωv)

dEs(Ωs)
(1)

where Ωs and Ωv indicate the illumination and viewing geometry, respectively.
However, steep rugged terrain changes local illumination and viewing geometry because the

normal of the slope surface is not consistent with the vertical direction (shown in Figure 3), which is
results in heterogeneous incident irradiances due to the three-dimensional (3-D) structure configuration
of vegetation and topography [34]. Specifically, the slopes facing toward the sun will receive more
illuminated irradiance than the slopes that are away from the sun [18]. The diffuse irradiance
reflected from adjacent slopes will increase the global incident irradiance of the slope surface, and the
distribution of shadowing and observation masking have a notable effect on the pixel reflectance [29,35].
Therefore, the question of how to describe these topographic effects and the radiation redistribution is
a core concern in the BRDF model over rugged terrain. It is concluded that to accurately model BRDF
over rugged terrain, it should be coupled with the terrain information supplied by a DEM.

 

Figure 3. Configuration of solar illumination and sensor over a slope surface.

A spatial scale match between the DEM and remote sensing image pixel should be emphasized
prior to coupling. According to the relationship between the spatial resolution of the available DEM
and remote sensing pixel, the modeled topographies on the remote sensing pixel are classified into
solo slope and composite slope (Figure 4). Under the assumption of the current DEM having a 30 m
spatial resolution, the solo slope means that those remote sensing pixels have a spatial resolution
comparable to the DEM dataset, and there is only a single slope surface, such as the Landsat/TM
images, which have a 30 m spatial resolution. The composite slope refers to the situation when the
remote sensing instrument with a large instantaneous field of view (IFOV) covers an area of few
kilometers, which is result in a spatial resolution lower than the DEM dataset. There are numerous
solo slopes contained within a remote sensing pixel. For example, the MODIS and advanced very
high-resolution radiometer (AVHRR) sensors have a km-scale spatial resolution. However, if the
remote sensing pixels have higher spatial resolution than the DEM, resampling the DEM to the same
spatial resolution of the remote sensing image pixel is necessary. Otherwise, a higher resolution DEM
should be provided.
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The largest difference between topographic effects for these two types lies in the complex
heterogeneous incident irradiance and topographic shadowing [4,29]. The pixel level topographic
effect dominates the solo slope, including local geometry alteration, shadow cast, and diffuse irradiance
reflected from adjacent slopes. In addition, with the lower spatial resolution, the topographic effects on
BRDF become weaker due to a smooth overall slope [36]. However, in these cases, the sub-pixel level
topographic effects are significant. Specifically, the sub-pixel level topographies affect the distributions
of incident and reflected radiance by the distribution of sub-slope, sub-aspect, amount of shadow,
and masking, which is leads to distorted BRDF characteristics.

 

(a) (b)

 

(c) (d)

Figure 4. Graphics of topography relief: (a) nature surface of solo slope, (b) the topographic model of
solo slope, (c) nature of composite slope, and (d) topographic model of composite slope.

Because the BRDF quantity is defined as the ratio of two infinitesimal surfaces, it is a theoretical
concept and cannot be directly measured [13]. In remote sensing, the bidirectional reflectance factor
(BRF) is adopted as a substitute for BRDF to describe the surface anisotropic scattering property [8,37].
BRF is defined as the ratio of reflected radiance from a target surface to that from an ideal and
diffuse reference plane under identical illumination and viewing conditions. Thus, a key issue is
how to define the reference plane when modeling the surface BRF. The horizontal reference plane
at the highest point is widely favored in BRF models over a composite slope, which is shown in
Figure 5 [29,30,35]. However, different opinions exist about a reference plane for the solo slope BRF
model. Some physical-based analytical models adopt the reflectance of a slope-parallel white plane to
calibrate surface BRF [17,21,27]. The derived reflectance is known as the slope BRF. The other analytical
and most of 3-D computation BRF models are based on the horizontal reference plane, regardless of
the underlying topography [20,38,39].

 

Figure 5. Reference plane configuration over solo slope ((a) slope-parallel white plane and (b) horizontal
reference plane) and composite slope ((c) horizontal reference plane at the highest point).
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2.3. Model Building Procedures and Scientific Problems

Many efforts have been devoted to investigating the topographic effects on surface BRDF.
The comprehensive and systematic investigation of sloped surface BRDF estimation is crucial to
understanding the basic theory and the scientific problems that are involved with the BRDF over
rugged terrain. According to the relationship between the DEM scale and remote sensing pixel spatial
resolution, two cases of BRDF modeling over rugged terrain are presented in Figure 6: solo slope BRDF
modeling and composite slope BRDF modeling. A self-consistent solution and a validation technique
for these two BRDFs should be emphasized in this procedure.

 

Figure 6. Key procedures of BRDF modeling over rugged terrain.

Thus, to derive a desired BRDF product, which describes the BRDF properties of the slope surface,
a suitable and robust BRDF model is the basis for retrieval of the anisotropic reflectance distribution
with multi angle satellite reflectance data. The following three key issues are needed to be addressed
when modeling surface BRDF over rugged terrain.

(1) How should the solo slope and composite slope anisotropic reflectance properties be described?

Solo slope and composite slope surfaces have different topographic effect mechanisms in
the BRDF, which leads to different core sensitivity factors considered in remote sensing BRDF
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modeling. Accurately building a BRDF model depends on how the topographic characteristics
are parameterized. The pixel-level topographic effect dominates the reflectance of the solo slope
through the alteration of local incidence and viewing geometry, as well as the distribution of the
illuminated irradiance [20,29]. However, this effect is relatively small for the composite slope BRDF,
and the sub-pixel level topographic effects become the primary factors, which include the shadow,
distribution of sub-topographic slope and aspect statistic, and the redistribution of radiation within
a remote sensing pixel [4,31].

(2) How can we implement the solo slope or composite slope atmospheric correction to correctly
derive reflectance?

Currently, the surface anisotropy reflectance, coupled with atmospheric parameters, is derived
from the airborne and satellite remote sensing observations. The second simulation of the satellite
signal in the solar spectrum radiative transfer process (6S) [40] model and the MODerate resolution
atmospheric TRANs mission (MODTRAN) [41] model are the two methods to describe the atmospheric
effects and can be used to retrieve the land surface reflectance from the top of the atmosphere radiance.
The topographic effect is always neglected in these algorithms. Some efforts have been made to
extend the 6S atmospheric correction algorithm, coupled with a topography consideration for a solo
slope [18,19]. For a composite slope, the topographic effects on the atmospheric correction process are
not included, because the slope of the pixel level is considered as flat. Otherwise, if the orientation of
sub-topography is statistically dependent on the overall slope and aspect, the atmospheric correction
should be coupled with topography.

(3) How can we develop the BRDF (BRF) validation technique and conduct experiments over
rugged terrain?

When compared with flat surfaces, the spatial and temporal heterogeneity of surface BRDF
appears more obvious over mountainous areas. The validation of the mountainous surface BRDF
is an important issue, which includes sampling strategy and respective experiment conduction.
With current observations covering several scales from ground measurements with ground-based
instruments, meter-scale with unmanned aerial vehicles and km-scale with satellites, the multi-scale
validation technique may potentially address this issue.

3. Remote Sensing Atmospheric Correction over Rugged Terrain

The BRDF properties of land surfaces are commonly retrieved against multiple directional
reflectance to sufficiently sample anisotropy. Thus, it is necessary that the atmospheric correction is
completed prior to the BRDF retrieval. However, the topography intensely affects the atmospheric
correction, and consequently, also affects the land surface reflectance. Without DEM consideration in
the atmospheric correction, the reflectance is varied in its response to similar topographic features,
where the solar and sensor geometries correspond to a flat surface. According to Figure 5, the corrected
reflectance without a DEM is not the reflectance referenced to the slope BRF defined a slope-parallel
reference plane or the remote sensing BRF defined a horizontal reference plane, where the sensor
view angle is the local angle corresponding to the slope surface. Although topographic correction
can normalize the reflectance to that of flat surface, such as C correction [42], sun-canopy-sensor
(SCS) correction [43], and their integrated method [44], the reflectance is still not applicable to the
slope surface BRDF model retrieval due to its contradiction with the geometry defined slope of the
BRDF model. To obtain an accurate reflectance over rugged terrain, the atmospheric correction should
be coupled with topography, which is based on the mountain radiation transfer prototype model
and DEM.
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3.1. Lambertian-Based Atmospheric Correction

The mountain radiation transfer algorithms describe the radiance received by the sensor over
a mountainous area. On rugged terrain, the irradiance at the target surface is composed of solar direct
irradiance Es, sky diffuse irradiance Ed, and adjacent terrain reflected irradiance Ea, which are shown
in Figure 7.

 

Figure 7. Irradiance at the land surface.

Direct solar radiation over rugged terrain is the most important component of the total surface
radiation that reaches to the surface. When compared with flat surfaces, this depends on the relative
local incident angle between the sun and the normal to slope surface. Therefore, the direct solar
radiation changes with different slope surfaces. The sky diffuse irradiance will be reduced when
the sky dome overlying a surface is not an integrated hemisphere of a horizontal surface. However,
the adjacent terrain reflected irradiance increases the total radiation reaching the slope surface. Thus,
the total radiation is the function of the DEM and atmospheric parameters.

If the slope surface reflectance is ρ and the solar and sensor geometry are (θs, φs) and (θv, φv),
respectively, the sensor received radiance L can be expressed as follows [35]:

L = Lp + (Es + Ed + Ea)ρe−τ/ cos θv /π(1 − sρ) (2)

where Lp is the path radiance, τ is the atmospheric aerosol optical depth, and s is the atmospheric
diffuse albedo. Es can be expressed as follows [45]:

Es = ΘE0 cos(is)e−τ/ cos(θs) (3)

where E0 is the exo-atmospheric solar irradiance and Θ is a binary coefficient, which is set to zero to
show whether a pixel is shadowed and set to one otherwise.

The sky diffuse irradiance Ed is as follows [43]:

Ed = Eh × (k
cos(is)
cos(θs)

+ (1 − k)Vd) (4)

Vd =
1

2π

∫ 2π

0

[
cos α sin2 Hϕ + sin α cos(ϕ − β)

(
Hϕ − sin Hϕ cos Hϕ

)]
dϕ (5)

where Eh is the sky diffuse radiance on a horizontal surface, k is an anisotropy index related to the
atmospheric transmittance for direct irradiance and values between 0 and 1, and Vd [45] is sky view
factor defined as the unobstructed portion of the sky at any given point. Hϕ is the horizontal angle
from the zenith downward to the local horizon for direction ϕ. α and β are the slope and aspect
angles, respectively.
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The adjacent terrain reflected irradiance Ea can be expressed as follows [20]:

Ea = ∑
N

LN cos TM cos TNdSN

r2
MN

(6)

where LN is the radiance reflected from the land surface at point N and can be received by point M,
dSN is the area of N, TM and TN are the angles between the normal to the surface and the line of M
and N, respectively, and rMN is the distance between M and N.

The solution to Equation (2) is the reflectance ρ when the sensor radiance and the atmospheric
variables affected by topography are accurately estimated, which plays an important role in early
remote sensing topographic correction and land surface reflectance estimation over mountainous
areas [25,46,47]. However, the literatures show that the mountain radiation transfer prototype
model, which is based on Lambertian land surface assumptions, often leads to an overcorrected
reflectance [18,19,26]. Therefore, the radiation between the earth’s surface and atmosphere and the
anisotropic land surface reflectance are the two core issues, where scientists are greatly concerned
about improving the reflectance quality over mountainous areas.

3.2. Non-Lambertian-Based Atmospheric Correction

Recent literature shows that without considering the surface BRDF effects in atmospheric
correction, the result will be errors of up to 10–20% in the worst cases [48]. Surface BRDF retrieval and
atmospheric correction can be coupled in a converging iteration, which is operationally employed
to achieve MODIS land surface reflectance retrievals [49]. It is distinct from atmospheric correction
and BRDF correction, where the BRDF normalizes the reflectance to a certain geometry [13–15,50].
However, if the BRDF cannot be deduced from the remote sensing data themselves through inversion
and iterative coupling, an alternative solution is to apply the BRDF prior knowledge from different
remote sensing data [50], where the BRDF shape, rather than its magnitude, is required to resolve
the effects. Previous research reported that land surface BRDF prior knowledge can improve the
atmospheric and topographic correction quality and reduce the uncertainties in reflectance over
rugged terrain [18,19,26].

According to the 6S atmospheric model, the target radiance to the sensor is described as the sum
of four terms: (1) the photons directly transmitted from the sun to the target and directly reflected back
to the sensor, (2) the photons scattered by the atmosphere, reflected by the surrounding target and
directly transmitted to the sensor, (3) the photons directly transmitted to the target but scattered by the
atmosphere on their way to the sensor, and, finally, (4) the photons that have at least two interactions
with the atmosphere and one with the target. Thus, Equation (2) can be rewritten as follows [15,16]:

L = Lp +
1
π (Esρdd(is, ϕs, iv, ϕv)e−τ/ cos(θv) + (Ed + Ea)ρhd(iv, ϕv)e−τ/ cos(θv)

+Esρdh(is, ϕs)td(θv) + (Ed + Ea)ρhhtd(θv) + (Es + Ea + Ed)
(e−τ/ cos(θv)+td(θv)sρ2

hh
1−sρhh

)
(7)

where ρdd(is, ϕs, iv, ϕv), ρhd(iv, ϕv), ρdh(is, ϕs), and ρhh are the slope surface directional-directional
reflectance, hemispheric-directional reflectance, directional-hemispheric reflectance, and bi-hemispheric
reflectance, respectively. Similar to the MODIS atmospheric correction method [48], ρdd(is, ϕs, iv, ϕv) is
resolved by introducing BRDF prior knowledge [16]. One of the assumptions for the BRDF coupled
mountain radiation transfer model is that the BRDF shape depends on the land cover, and the BRDF effect
for the slope is the BRDF for the rotated angles. An image dependent BRDF shape was first developed from
a regression method or a regionally averaged BRDF shape using an image scene [51]. Another method is
that a statistics-based MODIS BRDF prior knowledge look-up table (LUT) was proposed as the BRDF shape
and used in the BRDF-based atmospheric correction (BRATC) [19].
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4. Solo Slope BRDF Model

4.1. Physical Basis

The topographic effects on the solo slope BRDF depend on the slope and aspect angle, and the
structural and optical properties of the vegetation. The surface’s slope and aspect change the local
solar incidence and the sensor observation directions. Although vegetation shows crown geotropism,
regardless of the terrain slope, its projection on the slope surface varies with the slope and aspect,
and the direct and diffuse irradiance are redistributed. This changes the incident radiation received by
the slope surface and the sensor observed radiation. Thus, the slope surface BRDF characteristics are
distorted by the topography.

The solo slope BRDF model focuses on development of the slope changed radiation and accurate
estimation of the 3D structure of vegetation and soil over the slope surface. Many physical BRDF
models, such as the scattering by arbitrarily inclined leaves (SAIL) model [52], geometric-optical
and radiative transfer (GORT) model [53], and forest reflectance and transmittance (FRT) model [54],
as well as the computer simulation model of discrete anisotropic radiative transfer (DART) [38]
and radiosity-graphics combined model (RGM) [55], have addressed the problems associated
with solar radiation and complex 3-D canopy structure and background. The simulated BRF
varied widely between these models under the activity provided by the radiative transfer model
intercomparison (RAMI) [56], where a complex 3-D vegetation scenario is used as the benchmarking.
However, the topography will introduce difficulty in the vegetation canopy anisotropic reflectance
characterization. The reflectance anisotropy of the solo slope is the following function:

BRF = f (Ωs, Ωv, DEM, para, re f , E) (8)

where Ωs, Ωv, and DEM are the geometric parameters used to describe the anisotropic reflectance;
para indicates the canopy structure and land biophysical parameters, including crown height, crown
density, crown shape, LAI, etc.; re f represents the optical reflectance properties, such as leaf and
background reflectance; and E is the incident direct and diffuse irradiance.

Specifically, the topography alters the local solar incidence angle and the sensor observation
geometry, as Figure 8 shows, which induces area changes in the canopy shadows cast on the
background, as well as the mutual shadowing relationship between discrete heterogeneous tree
crowns [21,57], photon path length within the homogeneous vegetation layer [20,27], and effective
local illuminated slope irradiance [58]. Therefore, differences in terrain configuration significantly vary
in reflected signals of surfaces with similar land cover, structural, and optical properties. A rotational
transition matrix between horizontal coordinates and local slope coordinates is adopted to correct the
geometric relationship.⎡⎢⎣ sin θis(v) cos φis(v)

sin θis(v) sin φis(v)
cos θis(v)

⎤⎥⎦ =

⎡⎢⎣ cos α 0 − sin α

0 1 0
sin α 0 cos α

⎤⎥⎦
⎡⎢⎣ sin θs(v) cos(φs(v) − β)

sin θs(v) sin(φs(v) − β)

cos θs(v)

⎤⎥⎦ (9)

where θ and ϕ are the zenith and azimuth angles, respectively, the subscripts is and iv represent
the local incident and observation geometries, and the subscripts s and v represent the incident and
observation geometries.

However, the rotational geometric correction leads to crown inclination. This contradicts with the
geotropic nature of tree crowns where the trees grow vertically and orient with the gravitational field,
regardless of the slope. The crown structural and optical properties over the solo slope remain
the same as those on the flat surface. For example, the leaf angle distribution (LAD) and leaf
reflectance and transmittance reflectance are not affected by the terrain [27]. However, for the discrete
forest stands, the crown shadowing projections on the background are influenced by the geotropic
nature of tree crowns (as shown in Figure 9). The geometry correction using Equation (9) without
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negative geotropism consideration will lead to an incorrect crown shadowing (Figure 9b), as well
as an inappropriate canopy reflectance. However, the tree crowns are virtually inclined after the
geometric correction (Figure 9c). The importance of the geotropic nature of tree crowns has been
stressed in the topographic correction of forested terrain [43,59].

 

Figure 8. Canopy shadow cast on flat and sloped forest. (a) Flat forest. (b,c) Sloped forest. The dotted
lines represent the incident solar beam.

Figure 9. Topographic effects on crown sun-canopy-sensor geometry. (a) Forest stand on solo slope surface,
(b) geometry correction without negative geotropism consideration, and (c) geometry correction with
negative geotropism consideration.

Another topographic effect on the canopy reflectance is through the redistribution of surface
global incident solar radiation, which modifies the upper boundary condition during the radiative
transfer process. When compared to the flat terrain, the topography redistributes the direct solar
irradiance by changing the surface’s local illumination and viewing geometry. The terrain restricts the
diffuse skylight and enhances the diffuse irradiance that is reflected from adjacent slopes [25,59–61].
The last two diffuse components can account for 40% of the global radiation of a sunlit slope when the
solar zenith angle is high, and this can even approach 100% when the slope is obstructed by adjacent
terrains [46,62]. Moreover, varied elevation will induce rapid changes in concentrations of aerosol,
water vapor, and cloud properties, which give rise to significant variations in the amount of direct and
diffuse incident irradiance [63].

In the past decades, physical solo slope BRDF models have been proposed to account for the
topographic effects on pixel reflectance. These are the BRDF models based on radiative transfer,
geometric-optical, and hybrid methods (Table 1). Three key scientific issues include the geometry
correction, negative geotropism of trees, and the irradiance redistribution, which affect the topographic
BRDF. Since vegetation cover, such as forest and grassland, dominates the complex mountainous land
ecosystem, current physical solo slope BRDF models mainly focus on the vegetation.
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Table 1. List of physical solo slope surface BRDF models.

Model
Category

Model
Name

Geometry
Correction

Tree’s Negative
Geotropism

Diffuse
Irradiance

Typical Reference

Radiative
transfer

ROSST
√ √ × Combal et al. [27]

PLC
√ √ √

Yin et al. [20]

Geometric
optical

GOMST
√ × × Schaaf et al. [21]

GOST1
√ √ × Fan et al. [17]

Hybrid
SLCT

√ × √
Mousivand et al. [64]

GOST2
√ √ × Fan et al. [24]

GOSAILT
√ √ √

Wu et al. [65]

The symbols
√

and × indicate that with and without consideration in the BRDF model, respectively. ROSST is the
improved ROSS model for solo slope terrain; PLC is A Physical Solo Slope Canopy Reflectance Model Based On The
Path Length Correction; GOMST is the geometric-optical mutual shadowing model for solo slope terrain; GOST is
the 4-scale geometric-optical model for solo slope terrain; SLCT is the soil–leaf-canopy model for solo slope terrain;
GOSAILT is the hybrid model of GOMS and scattering by arbitrarily inclined leaves (SAIL) coupled topography.

4.2. Model Development

4.2.1. Radiative Transfer Model

The radiative transfer process captures the vegetation canopy reflectance and further retrieves the
vegetation physical and biophysical parameters, which treats the forest canopy as an homogeneous,
turbid medium with discrete leaf elements [66]. The descriptions of leaf structural and optical
characteristics, such as leaf size and shape, LAI, LAD, scattering phase function, and single scattering
albedo, are key to this approach [53].

The importance of the topographic effect in the radiative transfer was first proposed by
Combal et al. [27] who successfully extended the Ross radiative transfer theory [67] for flat plant
canopies to solo slope with a vertical plant stand. The topographic effect on local geometry relationship
has been considered in the ROSST model [27] through the transformation between horizontal and slope
coordinate systems. The geotropic nature of tree crowns was accounted for by using the leaf structural
and the optical characteristics defined in the horizontal coordinate to solving the one-dimensional
(1-D) analytical radiative transfer equation. However, only the direct solar radiation was considered,
the effect of diffuse skylight, path radiance, and diffuse irradiance from adjacent slopes are neglected.
Recently, the topographic effect on the bidirectional gap probability has been regarded as the primarily
factor affecting canopy reflectance [20,53,68]. A physical solo slope canopy reflectance model based on
the path length correction (PLC) [20] was proposed to account for the topographic effect on the canopy
photon path length and its BRDF. The geometry correction, geotropic nature of the tree crown, and the
diffuse skylight are coupled in this model. However, the diffuse irradiance from neighboring terrains
is still neglected.

4.2.2. Geometric-Optical Model

The geometric-optical model has an advantage in understanding the 3-D complex crown
structure’s effects on the canopy reflectance [69,70], in which the pattern of sunlit and shaded crowns
and backgrounds seen in a particular direction were considered to be the key factor. According
to the geometric-optical theory, the canopy reflectance is assumed to be composed of four scene
components: sunlit crown, sunlit background, shaded crown, and shaded background with their
respective areal proportions.

The topographic effect on the canopy reflectance in the geometric-optical model was firstly
evaluated by Schaaf et al. [21], who extended the Li-Strahler geometric-optical mutual shadowing
model for a solo slope surface (GOMST) through a simple geometry correction, while retaining other
structural and optical properties the same as those in the horizontal forest. The accurate estimation of
the topographic effect on the crown cast shadow for the background is critical for canopy reflectance.
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When a slope faces toward the sun, less crown shadows are projected on the background, and more
shadows are cast on the background when it is away from the sun [18,57]. The trees are assumed to be
perpendicular to the solo slope without negative geotropism in the GOMST model, which will lead to
an underestimation in the red reflectance. This is because the areal proportion of the background will
be underestimated, while the areal proportion of the crown will be overestimated in this case. However,
the canopy reflectance and albedo also appear to be significantly affected by terrain even without
consideration of the trees’ negative geotropism [21]. Fan et al. [17] incorporated the topographic effect
into the 4-scale geometric-optical model for solo slope terrain (GOST1), which acknowledged the
geotropic nature of tree crowns. However, the diffuse irradiance components are neglected in the
current geometric-optical models, which will cause an underestimation of global incident irradiance
and surface reflected signals.

4.2.3. Hybrid Model

The radiative transfer model is accurate in estimating the canopy reflectance with micro-scale
leaf reflectance, especially for high orders of scattering and diffuse irradiance effects, and the
geometric-optical model is accurate in describing the single scattering results from 3-D forest crown
structure. Thus, hybrid models that combine the two approaches can capture discontinuous canopy
reflectance at the landscape scale [52,53,71].

In mountainous regions, the GOST1 model was coupled with the recollision probability theory
to parameterize the component reflectivity, which is called the GOST2 model [24]. The multiple
scattering within canopy-background system is considered in the GOST2 model. However, GOST2
reflectance seems to be overestimated. The main reason might be that a fixed relationship between
the canopy structural parameters, LAI and photon recollision probability was implemented in the
GOST2 model. Like the GOST1 model, the diffuse irradiance components are neglected in the GOST2
model. The soil–leaf-canopy (SLC) model has successfully captured discontinuous canopy reflectance
through incorporating the crown clumping effects, vertical leaf color gradient, and non-Lambertian
soil background into the scattering by arbitrarily inclined leaves (SAIL) model [52]. It has been
extended to the solo slope surface (SLCT) by simply applying the geometric correction without
consideration of the geotropic nature of the tree crowns [64]. Therefore, the red and NIR reflectance
of the SLCT model were underestimated and overestimated, respectively. Similar to SLCT, GOMST
was recently extended by the SAIL model and coupled topography (GOSAILT), for sloping forest,
where the effects of slope, aspect, geotropism of the tree crown, multiple scattering scheme, and diffuse
skylight are considered [65]. This avoids the issues of reflectance simulation being underestimated
and overestimated over rugged terrain.

The computation simulation model can be treated the same as the hybrid model since it can
accurately simulate canopy reflectance for both continuous and discontinuous forest stands [38].
Currently, the Monte Carlo ray-tracing (MCRT) computational models have been modified for the solo
slope through a coupling of the surface’s complex topography by importing the digital elevation model
(DEM) datasets or a bilinear surface interpolation based on some simple terrain parameters [38,72].
When compared with the flat terrain, the simulations for rugged mountainous regions face a greater
burden of huge memory requirement and computational loading, especially for complex terrain with
large maximum elevation differences or large scenes [73].

4.3. Topographic Effect on Solo Slope BRDF

According to the solo slope BRDF simulated results from previous studies, we can conclude
that the hotspot still occurs in the solar direction, regardless of slope when the canopy is located on
a solo slope terrain. However, the magnitude and shape of BRDF shows an almost random difference
caused by shadowing patterns, and the local illumination angle varies with the slope elevation and
aspect almost randomly [20,21,57]. For example, as shown in Figure 10, when compared to a flat
canopy illuminated by the north solar angle, the slope increases the canopy red reflectance in the
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backward direction and decreases the red reflectance in the forward direction relative to the solar
incidence, respectively. However, The canopy NIR BRDF shape over a steep slope (60◦) is distorted,
especially in the forward direction, which is where the reflectance is higher than that in backward
direction (Figure 10f) [21]. However, the slope seems to have no effect on the canopy reflectance in the
direction perpendicular to the aspect of the solo slope terrain because the path length remains constant
in the nadir direction due to the geotropic nature [20]. The skewed BRDF in the hemisphere leads to
a distinct variation in the albedo values. When compared to the slope angle, the surface albedo is more
sensitive to the aspect over the steep slopes. In particular, a larger albedo occurs for the slope facing
away from the sun than the sunward facing slope due to the increasing local solar zenith angle and
mutual shadowing.

 
   

Figure 10. Solo slope reflectance simulated by the GOMST extended by the SAIL model and coupled
topography (GOSAILT) model, where (a–c) are the red reflectance and the (d–f) are the NIR reflectance.
The solar zenith is 30◦ and azimuth is 0◦. The slopes aspect are also 0◦; (a,d) are the flat terrain;
(b, e) are the 30◦ slope; and (c,f) are the 60◦ slope; Red lines indicate the BRFs along the PP. The radial
distance and polar angle of polar coordinate system are view zenith angle and the view azimuth
angle, respectively.

5. Composite Slope BRDF Model

5.1. Physical Basis

The composite slope terrain, which is composed of many micro-sloping terrains within one pixel,
is shown in Figure 11. For the composite sloping terrain, the topographic effects on reflectance are
generally focused on the integrated effects of the micro-slopes within one remote sensing pixel, and they
ignore the effects at the pixel level [29,74]. The micro-slope terrain variabilities lead to the shadows
coming from both self-shadowing and shadows from the surrounding topography, and this alters the
distribution of the composite slope incident radiation. Different spatial distribution characteristics
of the micro-topography lead to different spatial geometric configurations of sun-sub-terrain-sensor,
multi-scattering, and obstructing effects within the pixel. Characterizing and parameterizing the
spatial distributions of the micro-slope topographic features are the key to modeling the BRDF over
the composite slope terrain.

The anisotropy reflectance BRFcoarse of the composite slope terrain has the following
functional form:

BRFcoarse = f (Ωs, Ωv, DEMf ine, BRFf ine) (10)
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where BRFf ine is the bidirectional reflectance of the micro-slope, which can be calculated with the
BRDF models of the solo slope. DEMf ine represents the fine scale digital elevation models compared
with the composite terrain.

 

Figure 11. Radiative transfer process over the composite slope terrain.

Specifically, according to the principle of geometric optics and radiosity [75], under the assumption
of a horizontal composite slope surface, its directional reflectance is as follows:

BRFcoarse =

∫
A(s,v)

cos isjBRFf ine(isj, ivj, ϕsj, ϕvj) cos ivjdAtj

cos θs
∫

A(v)
cos ivjdAtj

(11)

where the subscript tj is the jth micro-slope; Atj denotes the incremental surface area of the micro-slope;
isj, ivj, ϕsj, and ϕvj are the relative solar zenith angle, relative sensor zenith angle, relative solar
azimuth angle, and relative sensor azimuth angle, respectively, which correspond to the micro-slope;
θs and θv are the solar zenith angle and sensor zenith angle, which correspond to the horizontal
plane; A(s, v) denotes the micro-slopes that are both illuminated and visible; and, A(v) denotes the
visible micro-slopes.

From Equation (11), it can be concluded that BRDF modeling over the composite slope terrain is
an inherently upscaling procedure. In addition to the effects of the micro-surface slope and aspect,
the shadowing distribution within the composite slope is also identified as an essential factor to account
for the topographic effects on BRDF. The amount and distribution characteristics of the shadow have
great effects on the surface BRDF [76]. The shadowing function (also called the geometric attenuation
factor) is built to describe the shadowing and masking effect [30,77–80]. Models are used to describe
the complex upscaling process by combining the shadowing function S and an equivalent reflectance
BRFeq, which neglect the shadowing effect. In this case, the BRDF over the composite slope terrain can
be written as follows:

BRFcoarse = BRFeq × S(Ωs, Ωv, DEMf ine) (12)

Essentially, the composite slope BRDF depends on the distribution characteristics of the interior
topography of the remote sensing pixels. From the description of the topographic characteristics,
BRDF models over the composite slope terrain can be divided into the special-shape based model,
random field based model, and real DEM based model (Table 2).
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Table 2. Overview of composite slope BRDF models.

Type
Terrain

Description
Interior Topography Characteristics Typical Reference

Special-shape

V-cavity The surface consists of small symmetrical
or non-symmetrical V-cavities

Torrance et al. [79];
Liu et al. [81];

Blinn et al. [82]

Sphere-cavity The surface consists of periodical positive
sphere-cavities or negative sphere-cavities.

Buhlet al. [83];
Poulin et al. [84];

Koenderink et al. [85]

Random field

Random
distribution

The height or the slope conforms to the
Gaussian normal distribution, the exponential

distribution, or other random distributions

Despan et al. [77];
Hapke [80];

Brockelman et al. [86];
Smith [87]

Fractal Describes the dependence of surface
roughness on scale by a power law

Barsky et al. [78];
Shepard et al. [88]

DEM DEM The terrain is described by high spatial
resolution digital elevation models

Wen et al. [29];
Roupioz et al. [31]

5.2. Model Development

5.2.1. Special-Shape Based Model

A simple and effective method used to characterize the topographic effects on BRDF is to
take the terrain surface as a special-shape to model the surface anisotropic reflectance. Specifically,
the composite slope surface is assumed to be composed of several elements with a repeated primitive
shape, such as the V-cavities and spherical-cavities, which are shown in Figure 12. For the V-cavities,
the distribution of the slope angle with respect to the horizontal plane is used to describe the surface
roughness [78]. Positive sphere-cavities and negative sphere-cavities are the two types of terrain
configurations, as shown in Figure 12b,c. The depth-to-diameter ratio of each spherical-cavity [79]
and the distance between the centers of the two adjacent spherical-cavities [81] are the two main
parameters used to describe the surface roughness. Although the actual terrain shape is probably
much more complex, because it consists of various oriented micro-slopes, to describe the topographic
relief and its shadow, a spherical or V geometry represents a reasonable physical approximation and
mathematical treatment.

.

(a) V-cavity 

(b) spherical-cavity 

(c) negative spherical-cavity  
Figure 12. Modeled surfaces with different spherical shape hypotheses.

For V-cavities, when considering the effects of shadowing and masking of facets by adjacent
facets, the T-S model [79] first took this terrain configuration and further introduced a simplified,
piecewise trigonometric function [82] to improve the qualification of shadowing effects. Although
V-cavities have a simple configuration, the model assumes that adjacent micro-slopes have the same
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slope angle with opposite orientations, which will result in sharp, abnormal turning points in BRDF
curves [81]. Therefore, by assuming that adjacent micro-slopes are oriented in opposing directions,
but not symmetrical and the slope angle of each micro-slope follows a semi-Gaussian distribution,
an improved anisotropic reflection model was developed, which is closer to the natural configuration
of the topography. The results showed that this model reached better physical rationality and improved
the accuracy of the BRDF model [81]. However, it would be difficult to elaborate an analytical model
coupled with the multi-scattering component over the composite slope terrain. Although a simple and
physically plausible construction is proposed for the multi-scattering effect and is coupled with the
single reflection in the research by Kelemen et al. [89], the multi-scattering effect is usually neglected
or handled as a constant diffuse factor, which is against practical observations [90].

The positive spherical cavities allow for large grooves with relatively sharp edges that are
better than the V-cavities [83]. The negative spherical cavities can approximately depict a rough
surface, like the small craters on the moon [84]. Buhl et al. (1968) [83] first assumed the rough
surface to be a collection of positive spherical cavities, but did not present a complete mechanism
that accounts for masking and shadowing effects for arbitrary incidence and exit. Following this,
analytical anisotropic reflection models for positive sphere-cavities and negative sphere-cavities were
derived [84], which take into account hiding and shadowing between spherical cavities and can be
easily implemented. An algebraic solution for multi-scattering in the spherical cavity was further
provided and confirmed that the exact (numerical) calculations for a spherical geometrical surface,
coupled with the multi-scattering effect are physically realizable [85].

5.2.2. Random Field Based Model

While the hypothesis of V-cavities or sphere-cavities is appropriate mathematically, it is not
physically plausible. The terrain surface is far from the V-cavities or spherical cavities. More complex
and realistic configurations for the topography description are the random field, which include
the fractal characteristics [91,92], exponential distributions [45,93,94], Laplace distribution [94],
and Gaussian normal distribution [3,95]. These are widely applied in early quantitative mathematic
reflectance models over the random rough surface [96] in optical engineering, radiophysics, metrology,
computer graphics, and machine vision fields. Remote sensing scientists have developed a series of
anisotropic reflectance models based on the random field, especially when it was assumed that the
micro-slope distribution follows a random Gaussian distribution and self-affine fractals. For the surface
with a Gaussian random distribution, the root mean square (RMS) slope [87], correlation length [87],
and mean slope angle [30] are adopted to parameterize the characteristics of the random surface.
For the surface with self-affine fractal characteristics, the Hurst exponent is the key to determining the
roughness features. Figure 13 shows the rough surface with a typical, random normal distribution.

 

Figure 13. Random surface with normal distribution.

Initially, a series of shadowing functions have been developed over one-dimensional surfaces with
a Gaussian random distribution to describe the interior topographic effects on the surface anisotropic
reflectance. The first attempt of analytical derivation of the shadowing function can be traced back to
the work of Beckmann [97] who derived the Beckmann shadowing function, which uses a Gaussian
correlation function to characterize the random surface. However, it does not agree well with the
numerical simulation [86] because of a mathematical error in the model derivation [98]. A rigorous
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shadowing function expression based on the surface with a Gaussian height field was presented
by Wagner [99]. The Wagner shadowing function adopted integral approximations and ignored the
correlation between the height of the rough surface and its slope, which leads to large analytical
complexity. The Smith shadowing function further improved the Wagner shadowing function by
introducing a normalization function and simplified the calculation complexity [87].

Heitz et al. (2016) [100] extended the Smith model to include micro-surface multiple scattering at
rough material interfaces, which agree well with the computer simulation. However, these shadowing
functions assume that the joint probability density of the random surface heights and slopes is
uncorrelated. The effects on the Wagner and Smith shadowing functions were quantified and showed
that they have large errors when the incidence angle is large because the real-world continuous surfaces
have wider autocorrelation functions [101].

Extending the one-dimensional model to a two-dimension model is another important way to
derive a shadow function [102], such as the Hapke shadowing function [80] and the Despan shadowing
function [77]. The Hapke shadowing function is derived from the radiative transfer process and the
raw equivalent slope principle. This function accounts for any general configuration of incidence,
emission, and azimuth angles on the two-dimensional (2-D) surface [80], which involves only one
arbitrary parameter of the mean slope angle. The Despan shadowing function was derived by
using rigorous probabilistic techniques, including a conditional probabilistic distribution and total
expectation formula [77], where the random rough surface is described as an isotropic 2-D Gaussian
stochastic process with a Gaussian autocorrelation function.

Self-affine fractals are another way to describe natural surfaces [88]. They describe the dependence
of surface roughness on scale by a power law. Shepard and Campbell (1999) first proposed an empirical
formula for the fractal shadowing function, but no rigorous analytical models of self-shadowing on
a fractal surface currently exist [88]. Further, an analytical integral form of the shadowing function for
fractal surfaces with different fractal and roughness parameters [78] was offered and opens possibilities
for further exploration of fractal surfaces behavior. An agreement was demonstrated between the
fractal model and experimentally calculated shadowing functions using the Monte Carlo method.

5.2.3. DEM-Based Model

Random field models are usually constructed based on rigorous probabilistic techniques. Thus,
in general, the random field of Gaussian normal distribution or other statistical distribution regarding
the terrain is acknowledged at a large scale (more than 10 km). However, the real terrain surfaces often
exhibit non-random spatial distribution characteristics at a relatively small scale (such as a 1 km remote
sensing pixel). Investigations have shown the sub-terrain slope distributions within each kilometric
pixel of more than 50% over the Tibetan Plateau is not normal [31]. It is questionable to directly apply
the random field hypothesis to remote sensing BRDF modeling at a kilometer scale. Recently, accurate
digital elevation models (DEM), such as GDEM2 [103] have become available at a global scale with
a 30-m spatial resolution. These DEMs offer an efficient way to describe the surface topography. Rapid
and accurate methods for calculating slope and azimuth, solar illumination angle, shadow factor,
and sky view factors have been proposed [104]. These methods prompt us to model the BRDF by
considering the micro-topographic effects based on the DEM.

According to the radiosity theory [75], a physical BRDF upscaling model based on Equation (11)
and the multi-scattering consideration for sub-topographic effects [31] was developed. However,
this procedure requires the micro-slope surface BRDF and topographic factors, which leads to
complexity and low computational efficiency. Similarly to mean slope derived from the random
field, the equivalent slope model (ESM)was proposed to derive the equivalent slope and aspect [29] to
simplify this process. This model assumes that there is a virtual smooth slope where the incoming
and outgoing radiation are the same as that of the composite sloping terrain and this is related to the
position of the sun, sensor and micro-surface slope and aspect of the DEM, which is shown in Figure 14.
Thus, ESM can account for the effects of the sub-topography and shadow distribution. Similar to
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the shadow function, a sub-topographic impact factor T can be derived from the equivalent slope.
Therefore, BRFcoarse can be expressed as a function of anisotropic reflectance BRFeq of the equivalent
slope and the sub-topographic impact factor T:

BRFcoarse = BRFeq × T(Ωs, Ωv, DEMf ine) (13)

where BRFeq can be obtained by the solo slope BRDF models, and T is written as follows:

T(Ωs, Ωv, DEMf ine) =

cos ie
vcsoie

s
∫

A(s,v)
dAtj

cos(θs)
∫

A(v)
cos ivjdAtj

(14)

where ie
s, ie

v, ϕe
s, and ϕe

v are the relative solar zenith angle, relative sensor zenith angle, relative
solar azimuth angle, and relative sensor azimuth angle, respectively, which correspond to the
equivalent slope.

When compared with the Hapke shadowing function S, which represents the amount of shadow
on the composite slope, the sub-topographic impact factor T represents the effects of the tilted
micro-slope distribution and mutual shadowing. For example, when the solar zenith angle is 0◦,
S is one regardless of the sensor zenith angles and mean slopes. This is because there is no shadow
when the sun is at nadir. However, T is smaller than 1 when the mean slope is large and changes
slightly with the view zenith angle when the solar zenith angle is 0◦. When the solar zenith angle is
45◦, both of these values are less than one [29].

 

 
 

Figure 14. Equivalent slope: a virtual smooth surface.

5.3. Topographic Effect on Composite Slope BRDF

The magnitude and shape of BRDF over composite sloping terrain shows significant changes
in response to the altered topography, which is because of the nonlinear dependence of BRDF
on the micro-slope spatial configuration [29,76,105]. An asymmetric distributions of BRDF can be
observed because of the shadow effects and the adaption of the sun-terrain-sensor geometry [29,72,105].
However, the BRDF peak location over the composite slope terrain is identical to that over flat
terrain [72]. With the same sun and sensor directions, the deviation between the reflectance over
composite slope terrain and that over flat terrain is sensitive to the mean slope. The deviation cannot be
neglected even when the mean slope is small [36]. The deviation increases gradually with an increased
mean slope, and it reaches 80% at about 37◦ of the mean slope when the SZA and VZA are around
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60◦ [29]. The lowest deviations are found for the sun at zenith, and they increase considerably with
an increase in SZA. Generally, there is a larger reflectance value when the VZA is larger. It also
depends on the VAA and decreases when the viewing direction changes from the principal plane to
the perpendicular principal plane [36].

6. Future Development and Perspective on BRDF Products Generation

Accurately generating a BRDF product over rugged terrain at the global scale is crucial for
vegetation monitoring, as well as the energy budget for global climate change research. Various
BRDF forward models have been developed to fit and explore the topographic effects of BRDF over
rugged terrain. Because of a lack of operational algorithms for the BRDF product over rugged terrain,
the current BRDF products do not account for the topographic effects, and thus, they show large
uncertainties. According to the key steps of BRDF modeling, users should choose a high quality DEM
and fast parameterization methods to obtain topographic factors. To extend the forward BRDF model
to the operational one, it is necessary to adopt new and innovative ideas to overcome the limitations of
BRDF applicability over rugged terrain, and to develop an effective method for validating the BRDF
algorithm and satellite product performance.

6.1. High Quality DEM

The availability of high quality DEMs promotes the development of BRDF modeling over
rugged terrain. In recent years, stereo photogrammetry and interferometric synthetic aperture radar
techniques have been widely used to generate DEMs, as well as providing fast, reliable, and accurate
solutions. Accurate DEM products are available at a global scale with resolutions of up to 30 m,
which include GTOPO30 DEM, SRTM3DEM, SRTM CGIAR-CSI DEM, TanDEM-X DEM, ASTER
GDEM1, and ASTERGDEM2.

The BRDF models of solo slope, composite slope, and the sloping reflectance retrieval show that
their accuracies depends on the quality of the calculated topographic terms from the DEM. The issues
of elevation accuracy, spatial resolution, and the co-registration accuracy between the DEM and
satellite image are easy to identify but difficult to assess. Geo-location errors, elevation aberrations,
and even blunders in the DEM base data can result in significant local errors in BRDF modeling. A high
quality DEM is the basic necessity prior to successful BRDF modeling over rugged terrain. An external
validation showed that the elevation accuracy of ASTERGDEM2 is 8.5 m and that of SRTM3 USGS is
6 m [103]. The precision of the DEM enables us to apply the observed correlation between shading
and images [106] to improve the co-registration accuracy. DEM spatial resolution is another factor
that should be considered in modeling the BRDF over rugged terrain. A low resolution DEM when
compared to the remote sensing pixel will not provide detailed topographic information because the
DEM resolution changes [107–109], mean slopes and curvatures decrease, and terrain details disappear.
Thus, a scale appropriate for the satellite data is of great importance in BRDF modeling. We suggest
that a high quality and high spatial resolution DEM is necessary for BRDF modeling based on both
high resolution and low resolution remote sensing images, which correspond to the solo slope BRDF
modeling and composite slope modeling, respectively.

6.2. Topographic Factor Parameterization

Because the DEM describes 3-D surface, several parameters to characterize landforms and
surface-received solar radiation can be extracted from DEM datasets, and consequently, these can be
used in the BRDF models. These include the slope and aspect describing the topography gradient
and orientation, the topographic shadow mask indicating whether the target surfaces are sunlit,
the sky view factor representing the proportion of the sky visible to the target surface, and the
topographic configuration factor, illustrating the proportion of target slopes that are visible to the
surrounding slopes [104]. All of these parameters are regional properties because their calculations
depend on a suitable neighboring area. Although a formidable computational problem occurs during
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the calculation of these parameters, they require calculation only once, and thus, they can be stored as
look up tables (LUT) before the actual model execution due to their stationary property, especially for
deriving global products.

Specifically, the calculation of the slope and aspect of the target slope depends on the gradients
in the east-west and north-south directions [110]. A moving 3 × 3 window is commonly used to
derive the gradients. According to the pixels in the window adopted to calculate the gradients and
their respective weights, six slope and aspect algorithms are frequently used. These algorithms
include second-order finite difference [111,112], third-order finite difference [113,114], third-order
finite difference weighted by reciprocal of squared distance [113], third-order finite difference weighted
by reciprocal of distance [115], frame finite difference [116], and simple difference [117]. The algorithm
for the topographic shadow mask indicates whether the slope is shadowed by the neighboring slope
from the solar direction. The global decision tree [31], minimum radius search [118], and indirect
horizontal angle [104] algorithms are the three frequently used methods. The sky view factor is defined
as the ratio of the diffuse skylight that is received by the target slope to an unobstructed horizontal
surface [104]. This value is restricted between 0 and 1. Values close to 1 indicate that the point is located
at the top of the topography, and values that reach 0 indicate the point lies in the low part of a deep
valley. This factor accounts for the slope and aspect, the obstruction from neighboring slopes, and the
anisotropy of diffuse skylight. However, the anisotropic diffuse skylight is always neglected in the
current sky view factor algorithm. Several algorithms have been proposed depending on whether the
neighboring topographic obstruction effect is considered or the horizontal or inclined slope are taken as
a reference [104,119–121]. Similar to the sky view factor, the topographic configuration factor is defined
as the ratio of the nearby slope reflected irradiance received by the target slope on an unobstructed
horizontal surface [104]. Directly calculating the topographic configuration factor is difficult, since the
reflected irradiance of every slope facet visible to the target slope needs to be known. The alternative
solution for the topographic configuration factor is that it can be expressed as the difference between
the sky proportion for an infinite slope and the actual slope sky view factor [104,120].

6.3. Potential Method to Derive the BRDF Product over Rugged Terrain

Since the solo slope and composite slope BRDF models in this study are forward BRDF models, it is
not possible to use these models as the BRDF operational algorithm to generate the BRDFs. The current
linear kernel-driven model has been successfully adopted to derive the satellite BRDF/albedo products
because of its simplicity, feasibility, and physical basis [122,123]. There has been no significant further
progress in the kernel-driven model to fit the BRDF with multi-spectral and multi-angular reflectance.
However, the effects of topography are rarely coupled in the kernel-driven models, which leads to
uncertainties in the BRDF/albedo retrieval over mountainous areas [9,19]. Thus, a suitable forward
BRDF model to derive the kernel function coupled with topographic effects is necessary to generate
the BRDF product at the global scale.

As for the solo slope surface, most of the forward BRDF models cannot be directly derived with the
kernel functions due to its complicated physical processes. Therefore, the current kernel driven models
that are applied in mountainous areas are modified by a geometric relationships transformation between
the horizontal surface and sloping plane. Specifically, this transform changes the solar and sensor view
angles corresponding to the slope surface in the kernel function to reflect the sloping surface effects.
Because of the shadow that is caused by the topography obstruction, the diffuse skylight serves as the
dominant illumination energy source. Then, the kernel function derived from the BRDF model may be
a constant according to a geometric-optical model, where the component spectral contrasts are neglected
when the pure diffuse surface scatters. However, the spectral signatures of the scene components still
show distinct difference even under the pure diffuse skylight illumination [71]. This may also be described
by the hemispherical directional reflectance factor (HDRF, [8]) and the pixel HDRF displays an angular
heterogeneity [8,124,125]. For the composite slope surface, the coarse-scale pixel directional reflectance is
affected by the micro-slope internal to the pixel, in addition to the 3-D object structure itself, which includes
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the proportion of shadow, and micro-surface slope and aspect distribution. However, the current kernel
driven model is applied directly to mountainous areas under the assumption that the topographic relief is
a special 3-D object. The accuracy and uncertainties of this model are not yet credible and should be further
evaluated. One of the deficiencies in the current kernel driven function is that it neglects topographic effects,
which results in no topographic factors being included in the kernel function.

Therefore, a possible solution is to derive a united kernel driven function suitable for both solo-slope and
composite-slope surfaces. According to the current BRDF model developed over rugged terrain, GOSAILT
can be further derived as the solo slope kernel function, which is then is coupled with a sub-topography
impact factor of the equivalent slope model (ESM) to form the composite slope kernel function. The ESM can
extend the solo slope BRDF to the composite slope BRDF. The most important feature of these two models
is that they are forwarded based on a real DEM, which will enable us to further promote the possibility of
a united kernel function. Specifically, GOSAILT can be implemented to derive the linear semi-empirical
kernel-driven model that is suitable for sloping terrains under both clear and overcast skies; this model
has a similar framework to the RossThick-LiSparse Reciprocal (RTLSR) BRDF model [9], which includes
sloped geometric-optical and volume scattering kernels. The ESM, an anisotropic reflectance model over the
composite sloping terrain, was developed based on the equivalent slope principle. It extends the directional
reflectance model for the solo sloping terrain to the reflectance model for the composite sloping terrain by
a sub-topography impact factor, which describes the topographic influence. Similar to BRDF extension,
by coupling with the sub-topography impact factor, the GOSAILT kernel function can be easily applied to
the BRDF retrieval over rugged terrain.

Progress is also expected in the retrieval method development, which uses data from combined
multi-sensors in mountainous areas. Low quality and cloud occlusion causes remote sensing data
unavailability in mountainous areas to be more severe. Thus, the significant merit of combining multi-sensor
reflectance is that it can provide additional multiple angular information, and then, this can improve the
inversion accuracy of the BRDF on mountainous surfaces. For example, the multi-angular and multi-spectral
kernel function (ASK) model [126,127] and multi-sensors combined BRDF inversion (MCBI) model [128]
are proposed from the improvement of the BRDF kernel function, as well as the need to retrieve the BRDF
synthetically by combined multiple sensor reflectance, which has a continuous spatial distribution and
shorter-time scale of BRDFs.

Lastly, the remaining difficulties include the fast extraction of the DEM topographic factor and
the support of the kernel function to fit the BRDF over rugged terrain. The look up table (LUT) might
be a practical method to store all of the topographic factors, including slope, aspect, and shadow,
as well as the sub-terrain impact factor with the different solar SZA, SAA, and DEM longitude and
latitude. When the sloped kernel driven model is implemented, the global shadow, observing mast,
sky view factor, topographic configuration factor, and ESM LUT provide the essential parameters
that are needed to produce global BRDFs. For example, the SZA is from 0◦ to 65◦ with an interval 5◦,
and the SAA is from 0◦ to 330◦ with an interval 30◦ in the global topographic shadow mask (TSM)
LUT. Figure 15 is the global topographic shadow mask, where the SZA is 40◦ and SAA is 0◦.

Figure 15. Global topographic shadow mask (TSM).
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6.4. Validation Methods for the BRDF over Rugged Terrain

In situ multi-angular reflectance data, which is measured at sites with typical, homogeneous
surfaces, is the ground reference truth for the land surface BRDF validation. However, the BRDF
validation dataset is still far from sufficient to support the global BRDF validation, which is mainly
due to the limitations of multi angle observation instruments and technique developments.

In mountainous areas, the BRDF measurement can be more difficult than those on flat surfaces
due to the slope effects. First, there is still some controversy regarding the measurement method of
the sloped BRDF. For example, whether the observation instrument should be parallel to the slope
surface or the horizontal surface is a question that needs to be answered according the definition of
the modeled BRDF. Second, mountainous area generally belongs to the forest land type, where the
tree height might be too high for users to reach. It is difficult to carry out multi-angular forest canopy
reflectance measurements with ground based instruments. One of the alternative methods is to use
a tower to implement the multi-angular measurements, where the height of the tower should be
higher than that of the forest canopy. Another alternative is the use of unmanned aerial vehicle (UAV)
technology. A UAV can carry the optical CCD and provide multi-angular reflectance measurements
for a small-scale area. The tower-based or UAV-based measurements only represent the scale of the
solo slope. To validate the BRDF over the composite slope surface, a multi-scale validation strategy is
important to solve the spatial scale mismatch between the ground-based and the satellite-based BRDF.
However, the technique for BRDF upscaling over rugged terrain is still an ongoing subject of research,
which has limited the applicability of the multi-scale validation strategy.

A current alternative validation method, especially for the BRDF validation of the composite-slope,
is generally based on computer simulation technology [38,73,129], or the use of a miniature terrain
sandbox to simulate the BRDF under the influence of topography as the reference truth. Computer
simulation technology, such as discrete anisotropic radiative transfer (DART) [38], can set up different
DEMs and different types of trees to build a real scene of solo slope or composite slope forest over
rugged terrain. With the flux tracing technique, the multi-angular reflectance reference dataset is
simulated. The terrain sandbox can simulate different typical composite terrains, as well as the
different vegetation above the terrain. With the help of existing imaging spectroscopy technology,
the multi-angular observation can be implemented to obtain the reference reflectance dataset.

7. Conclusions

In this paper, the model of bidirectional reflectance distribution function (BRDF) over rugged
terrain has been comprehensively reviewed. The results of the literature analysis demonstrate that
the subject of BRDF modeling over rugged terrain has been intensively addressed by remote sensing
scientists over the past ten years. Referencing the BRDF definition, we proposed two kinds of BRDF
over rugged terrain, according to the relationship between the spatial resolution of the DEM and
remote sensing image pixel. These are the solo slope BRDF and the composite slope BRDF. Their scale
difference and their self-consistencies should be emphasized.

The dominant factors of the BRDF over the solo slope and composite slope are different.
The surface slope and aspect of the pixel level, which change the sun-terrain-sensor geometry, as well as
the radiation distribution, are the factors controlling the solo slope BRDF. However, with the composite
slope BRDF, besides the influence of the micro-slope within the pixel, the influencing factors are also
the shadow distribution of the terrain occlusion, overall distribution of the micro-terrain, and the
multiple scattering between micro-slopes. These sensitive factors should be concentrated on when
modeling the BRDF over these two kinds of slopes.

Specifically, an accurate description of the interaction between the 3-D vegetation structure,
soil, and atmosphere is of great importance for solo slope BRDF modeling. Radiative transfer,
geometric-optical, and the hybrid theory are the three basic theories that are used to mathematically
solve the interaction process. The geotropic nature of tree crowns and accurate parameterization of
the components radiation signal of vegetation and soil in the solo slope BRDF modeling is important.
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However, the description of the sub-topographic effects is the critical step for composite slope BRDF
modeling, which is where the virtual random distributed topography and real DEM are the two
solutions for the description of sub-topography inside the coarse scale pixels. The shadow function
and the sub-topography impact factor are the two parameterizations. The sub-topography impact
factor can be linked to the solo slope BRDF and the composite slope BRDF, where they both are based on
the real DEM. When compared with the solo slope BRDF model, the development of a composite slope
BRDF model should be further researched based on the simulated data and to achieve better accuracy.

According to the current BRDF model over rugged terrain, it is concluded that the topography
can intensely affect both the shape and magnitude of the land surface BRDF. Generally, when a slope
increases of the solo slope surface, the canopy reflectance opposite to the solar direction also increased,
but the reflectance in the forward to solar direction decreased, which resulted in a skewed BRDF in the
hemisphere. Thus, this consequently led to a distinct variation in the albedo values, as well as other
parameters that are derived from the land surface BRDF. However, the hotspot direction and the solar
orthogonal plane to the aspect of the solo slope terrain seem to have less topographic effects on the
canopy reflectance. The composite slope surface, shadow, and sub-terrain slope result in asymmetric
distributions of BRDF. The BRDF shape and magnitude depends on the mean slope, the dominated
aspect of sub-terrain, the SZA, and SAA. With the mean slope increased, the topographic effects of
BRDF are more intense under the same sun and sensor location. Even in the case of a relatively smaller
mean slope, the deviation between the reflectance over composite sloping terrain and that over flat
terrain is still significant.

Although relatively high quality DEMs are available, and the topographic factors can be
parameterized quickly, it seems that the operational BRDF model used to fit the remote sensing
satellite multi-angular reflectance does not show significant progress. Similar to the kernel driven
model used in the MODISBRDF/albedo product, the kernel functions derived from the current forward
BRDF model over rugged terrain are still a subject for ongoing research. Although GOSAILT seems to
be able to derive the kernel function of the solo slope and composite slope, more efforts should be put
toward operational BRDF model development and its validation over rugged terrain.
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Abstract: This paper proposes a modified model based on the PROSPECT-5 model to simulate the
spectral reflectance of copper-stressed leaves. Compared with PROSPECT-5, the modified model adds
the copper content of leaves as one of input variables, and the specific absorption coefficient related
to copper (Kcu) was estimated and fixed in the modified model. The specific absorption coefficients of
other biochemical components (chlorophyll, carotenoid, water, dry matter) were the same as those
in PROSPECT-5. Firstly, based on PROSPECT-5, we estimated the leaf structure parameters (N),
using biochemical contents (chlorophyll, carotenoid, water, and dry matter) and the spectra of all the
copper-stressed leaves (samples). Secondly, the specific absorption coefficient related to copper (Kcu)
was estimated by fitting the simulated spectra to the measured spectra using 22 samples. Thirdly,
other samples were used to verify the effectiveness of the modified model. The spectra with the new
model are closer to the measured spectra when compared to that with PROSPECT-5. Moreover, for
all the datasets used for validation and calibration, the root mean square errors (RMSEs) from the
new model are less than that from PROSPECT-5. The differences between simulated reflectance and
measured reflectance at key wavelengths with the new model are nearer to zero than those with the
PROSPECT-5 model. This study demonstrated that the modified model could get more accurate
spectral reflectance from copper-stressed leaves when compared with PROSPECT-5, and would
provide theoretical support for monitoring the vegetation stressed by copper using remote sensing.

Keywords: vegetation remote sensing; reflectance model; spectra; leaf; copper; PROSPECT

1. Introduction

Remote sensing provides a rapid and large-scale tool for geobotanical prospecting [1–3] and
environmental monitoring [4]. For the vegetation on copper deposits or the area polluted by industrial
activities related to copper, excessive copper elements would be absorbed by root systems, and then
stress the growth of plants and change the spectral reflectance of leaves. In addition, spectral reflectance
is the vital foundation of vegetation remote sensing. Hence, the reflectance of leaves on copper-stressed
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vegetation is crucial for prospecting copper deposit and monitoring copper-pollution. Currently, most
studies on remote sensing of vegetation stressed by heavy metal or other stress factors focus on the
change of reflectance and vegetation indices using empirical statistical methods; many statistical
models have been proposed, but little research has focused on the physical model [4–10]. However, for
many users, statistical models cannot meet the requirement for understanding the action mechanism
of copper (Cu) stress on leaf reflectance. Moreover, many parameters in statistical models are sensitive
to the case study and have no physical meaning. Hence, a model that can accurately simulate the
spectral reflectance of copper-stressed leaves should be developed, which would compensate for some
of the deficiencies of statistical models.

The PROSPECT leaf optical properties model has been an important and most popular
physical model to simulate leaf directional hemispherical reflectance and transmittance from 400
to 2500 nm [11,12]. Here we review the evolution over time of PROSPECT in order to illustrate the
novelty of our study. To explain the interaction of isotropic light with a compact leaf, a theoretical
model called “Plate Model” was proposed, which regards a compact leaf as an absorbing plate [13].
Plate Model was later generalized to the non-compact leaf [14]. Based on the generalized Plate Model,
the PROSPECT model was proposed to simulate the spectral reflectance and transmittance of a leaf [11].
In this initial version, the reflectance and transmittance were calculated by the refractive index (n),
a parameter describing the leaf structure (N), pigment concentration (Cab), equivalent water thickness
(Cw), and the corresponding specific absorption coefficients (Kab and Kw), where n, Kab and Kw, have
been fitted by data with varying plant types and status. After this version, the content (Cm) and
corresponding specific absorption coefficient (Km) of the dry matter that influences the absorption
features in shortwave infrared (SWIR), including cellulose, lignin, protein, hemicellulose, starch, and
sugar, were introduced into the PROSPECT model [15–19]. The spectral resolution was improved
from 5 nm to 1 nm in an unreleased version [20,21], and the model was modified to account for
surface directional reflectance of a leaf [21,22]. In 2008, the PROSPECT model was further calibrated
and two new versions (PROSPECT-4 and PROSPECT-5) were proposed [21]. The difference between
PROSPECT-4 and PROSPECT-5 is that PROSPECT-5 separates total carotenoids from total pigments.
In recent years, PROSPECT-5 has been popularly used in the remote sensing of vegetation instead of
other versions.

However, the PROSPECT versions above were developed for healthy leaves. For copper-stressed
leaves, excessive copper would change the spectral reflectance of leaves. Hence, to simulate the
reflectance of copper-stressed leaves, the copper content and the specific absorption coefficient related
to copper was added into the PROSPECT model [23]. Zhu et al. [23] initiated research on the physical
reflectance model of copper-stressed leaves. However, in [23], there are still some problems needing
to be addressed, whereas subsequent studies were not found in public literatures. These problems
are shown as follows. (1) The structure parameter N of copper-treated leaf is determined using the
reflectance at 800–1200 nm, and the absorption of copper ion was ignored in this wavelength range in
the [23]. However, according to the theory of electron transition and experimental observation [24],
there is a significant absorption of copper ion at 700–900 nm. (2) Carotenoid content has been treated
as an input variable in the popular PROSPECT-5 model and has important influence on the reflectance
of leaves. However, the carotenoid content and its specific absorption coefficient were ignored in
the model developed in [23]. (3) The absorption characteristics of biochemical components (water,
chlorophyll, dry matter, pigment) are inherent and should be remained unchanged in the advanced
model for copper-stressed leaves.

Hence, based on above problems, the study on the reflectance model of copper-stressed leaves
should be continued. In other words, the specific absorption coefficient related to copper needs to be
improved, and a more accurate model for simulating the reflectance of copper-stressed leaf should
be developed. Based on this motivation, we estimated the specific absorption coefficient related to
copper and added it into the popular PROSPECT-5 model, and then developed a modified model to
simulate the reflectance of copper-stressed leaf. The proposed model considers the carotenoid content,
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copper content and corresponding specific absorption coefficients. In addition, it avoids the coupling
influence on the reflectance from structure parameter N and the absorption of copper ions.

2. Datasets

In this study, wheat (Triticum aestivum L., cultivar: “Xinchun-17”) and pak choi (Brassica chinensis L.,
cultivar: “Shanghaiqing”) were treated by copper with different levels using control experiments.
Soil was collected from a vegetable garden without any contamination. Seeds were planted in the
soil mixed with copper sulfate (CuSO4) solutions in impermeable plastic pots (Figure 1). The copper
contents in soil were controlled as 0, 25, 50, 100, 200, 400, 800, 1600, 3200, and 4800 mg/kg, respectively.
The pot distribution of wheat and experimental scene of some samples are shown in Figure 1, and the
pot distribution of pak choi is same as that of wheat. Therefore, the total number of pots is 60. For the
group with 0 mg/kg copper content, the plants were regarded as healthy vegetation. Thus, the data
from this group was not used for the calibration of the reflectance model for copper-stressed vegetation.
This group was only used as a reference for observing the growth of copper-stressed vegetation.
There are same characteristics (except copper content) of the experimental soil with different Cu levels,
including nitrogen (N) content, phosphorus (P) content, potassium (K) content, water content, particle
size, pH, and so forth. There are three pots for each copper-stress level experiment (three parallel
experiments) to reduce accidental errors (Figure 1).

 
(a) 

 
(b) 

 
(c)

Figure 1. The experimental scene of some samples: (a) The distribution of plastic pots of wheat.
(The pots distribution of pak choi is same with that of wheat. Circle: a pot); (b) Some samples of wheat
(stress level: 400 mg/kg; 800 mg/kg); (c) Some samples of pak choi (stress level: 0 mg/kg; 25 mg/kg).

The spectral reflectance of leaves was measured by ASD (Analytical Spectral Devices) FieldSpec
FR spectroradiometer (Boulder, CO, USA) with an Li-1800 integrating sphere (Li-Cor, Lincoln, NE,
USA). The inside of the sphere is covered with BaSO4. The diameter of sample port of the integrating
sphere is about 14 mm, which could be covered by the measured leaves. The standard white reference
was measured (the fiber faced the sample port) before each measurement of a sample (the fiber faced
the reference). The light source is a halogen lamp. Due to the data quality from 1650 to 2500 nm from
the integrating sphere, auxiliary spectra were also measured with a leaf clip, and these spectra from
1650 to 2500 nm were linearly scaled to replace the corresponding data from the integrating sphere.
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In future studies, other integrating spheres with better data (e.g., RT-060-SF, Labsphere, NH, USA) are
recommended to readers. The wavelength range of final measured spectra was from 350 to 2500 nm,
and the spectral resolution was 1 nm, which is the same as that of the PROSPECT-5 model.

After the reflectance measurement in the laboratory, the leaves were immediately processed to
measure biochemical components. Thus, the changing of biochemical components with different
hours in a day almost has no impact in this study. The content (per surface area unit) of every
biochemical component (i.e., chlorophyll, carotenoid, water, dry matter, and copper) in the leaves
was measured using corresponding chemical methods. In detail, for each measurement, the leaf was
sampled using a puncher with a hole of a known area. For the chlorophyll and carotenoid of a sample,
the sample was triturated and then 80% acetone was used for extracting the chlorophyll and carotenoid.
The absorbance of the solution was measured by a spectrophotometer at 470 nm, 646 nm, and
663 nm [23,25]. The concentration (mg/L) of chlorophyll and carotenoid was calculated based on the
quantitative relationship between absorbance and pigment concentration (Lambert-Beer Law) [23,25].
According to the volume of the solution and the surface area of sample, the content (per surface area
unit) of chlorophyll and carotenoid in a sample can be determined. For the measurement of copper
content, the leaf sample was digested in concentrated nitric acid and perchloric acid. The solution was
filtered, and the copper concentration was determined by atomic absorption spectrophotometry [23,26].
For the measurement of water content and dry matter content, the leaves were continuously heated
at 105 ◦C for 30 min to kill the leaves to cease the metabolism and avoid some matter decomposition
in the next step. The leaves were dried at 70 ◦C to get a constant weight, and then the leaves were
weighed to determine the content of water and dry matter. Hence, for each sample, data on the content
(per surface area unit) of copper, chlorophyll, carotenoid, water, and dry matter were collected as well
as the corresponding spectral reflectance.

In addition, the images of internal structure of leaves with different stress levels were acquired by
scanning electron microscopy (SEM). The samples were processed by freeze fracture technique and
immediately put into the 2% glutaraldehyde solution (solvent: 0.1 mol/L potassium phosphate buffer,
pH = 7.2). All the samples were preserved at constant 4 ◦C and observed with SEM [23]. The SEM
used in this study was KYKY-EM 3200 with a resolution better than 6 nm.

In this study, the leaves were collected at different growth stages of the two vegetation
(wheat: elongation stage, heading stage; pak choi: six leaves period, eight leaves period). The leaves
sampled were the visually representative leaves in the plant. With the exception of the normal leaves
(stress level = 0 mg/kg) and outliers, 33 groups of datasets of copper-stressed leaves were finally used
for this study. The 33 groups of datasets of copper-stressed leaves were randomly divided into two
parts (22 groups and 11 groups). Twenty-two groups of datasets were used to develop the new model,
and the remaining 11 groups were used to perform validation of the new model.

In addition, this study also used a public dataset named LOPEX93 [27] for the comparison with
the data of copper-stressed leaves on the leaf structure parameters. The LOPEX93 dataset includes the
biochemical components and spectra of a variety of plants and has been widely used in the remote
sensing of vegetation. In this study, the LOPEX93 dataset was downloaded from the website in [28].

3. Methods

In the PROSPECT model, a leaf is assumed to be composed of N homogeneous compact layers of
biochemical components separated by (N − 1) layers of air. N described the overall characteristics
of the leaf structure and varies with different leaves. In the PROSPECT-5 version, the following
parameters have been estimated and fixed in the model, and these parameters do not vary with
different leaves: the angle of incidence of incoming radiation (α), refractive index (n(λ)), specific
absorption coefficient of each biochemical components (Kab(λ), Kcar(λ), Kw(λ), and Km(λ) represent the
specific absorption coefficient of chlorophyll, carotenoid, water, and dry matter, respectively); n(λ),
Kab(λ), Kcar(λ), Kw(λ), and Km(λ) are the functions of wavelength λ. Since above parameters were fixed,
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the simulations for the spectral reflectance of different leaves depend on the absorption coefficient of a
compact layer (K(λ)).

The calculation method of K(λ) is given by Equation (1) in PROSPECT-5 [21].

K(λ) =
Kab(λ) · Cab + Kcar(λ) · Ccar + Kw(λ) · Cw + Km(λ) · Cm

N
, (1)

where Cab, Ccar, Cw, Cm are the contents of chlorophyll, carotenoid, water (equivalent water thickness),
and dry matter in leaf, respectively. Hence, to simulate the spectral reflectance of different leaves,
following parameters which varies with different leaves are the five input variables of PROSPECT-5:
N, Cab, Ccar, Cw, Cm. In other words, the PROSPECT-5 considers the absorption of four biochemical
components: chlorophyll; carotenoid; water, and; dry matter.

However, several studies have indicated that heavy metal stress would damage the leaf structure,
leading to a disorderly cell arrangement (e.g., [23,29]). Moreover, the copper content in copper-stressed
leaf could be approximately 100 times more than that in normal leaf, so the absorption related to copper
should not be ignored in the new model. Hence, we further analyzed the leaf structure parameter
(N) and the specific absorption coefficient related to copper. Thus, α, n(λ), Kab(λ), Kcar(λ), Kw(λ), and
Km(λ), which were analyzed and determined in PROSPECT-5 [21], were used in the new model with
no change, because there are no existing studies or theories that link these parameters to copper stress.

The flowchart of the method used in this study is shown in Figure 2. (1) The leaf structure
parameters of all the 33 samples were estimated by fitting the simulated spectra to the measured
spectra in 400–510 nm using PROSPECT-5. The detailed method for calculating N could be found
in Section 3.1; (2) 22 samples were used to estimate the specific absorption coefficient related to
copper. The leaf structure parameter N and the specific absorption coefficient related to copper were
determined independently in this study; (3) Other samples were used for the validation of the modified
model. This procedure is explained in detail in Sections 3.1–3.3.

The modified model considers the absorption related to copper and adds the content of copper
(Ccu) as an input variable when compared with PROSPECT-5. The input variables of both the modified
model and the PROSPECT-5 model could be read from Table 1. In fact, only the content of copper (Ccu)
was added to the modified model when it is compared with PROSPECT-5 (Table 1).

Copper-stressed leaves 
Reflectance; Contents of 
biochemical components

Estimating N 
PROSPECT-5

400-510 nm
Divide the datasets into 

two parts

Estimating the specific 
absorption coefficient 

related to copper

One part

Modified PROSPECT 
model

Validation

Another 
part

Figure 2. The steps of the method used in this study.

Table 1. The input variables of the modified model and the PROSPECT-5 model (for comparison).

Model PROSPECT-5 Modified Model

Leaf structure parameter N N
Content of chlorophyll Cab Cab
Content of carotenoid Ccar Ccar

Equivalent water thickness Cw Cw
Content of dry matter Cm Cm

Content of copper / Ccu
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3.1. Determination of N under Copper Stress

As previously mentioned, excessive copper in a plant would damage the leaf structure, which
would result in a disorderly cell arrangement ([23,29]). To further illustrate the change of internal
structure of copper-stressed leaves, some SEM images of leaves with different levels of copper stress
are shown in Figure 3. It is clearly observed that more disordered internal structure was present
in higher-stressed leaves, including atrophic mesophyll cells, disintegrating vascular bundle, and
disorderly cell arrangement.

The PROSPECT model regards the leaf as N homogeneous compact layers of plates separated
by (N−1) layers of air. The leaf structure parameter (N) describes the leaf mesophyll structure and
increases with a more disorderly cell arrangement. The value of N should be estimated accurately
when the PROSPECT model is used for simulating the spectral reflectance of leaf.

The influence from the absorption by regular biochemical components at 800–1300 nm is
the minimum in the whole wavelength. Moreover, the specific absorption coefficients of regular
biochemical components is unknown and also needed to be estimated in the previous calibration
on PROSPECT for healthy leaves ([21,23]). Hence, in previous studies on PROSPECT, the range of
800–1300 nm was selected for estimating N to avoid the influence from the absorption by regular
biochemical components ([21,23]).

However, in this study, the specific absorption coefficients of above biochemical components in
PROSPECT-5 remained unchanged in the modified model and did not need to be recalculated. So the
influence from the absorption by regular biochemical components did not need to be considered.
For estimating N in this study, the real influence may come from the absorption related to copper and
the specific absorption coefficient related to copper was not yet determined. Hence, a wavelength range
where the absorption of copper is at minimum should be selected to determine N of copper-stressed
leaves to avoid the coupling influence. The absorption spectra of aqueous copper sulfate solutions
were measured in [24], and the results demonstrated that the absorption of copper sulfate solutions
almost equals zero in the range from 400 to 510 nm. As the wavelength λ ranges from 400 to 2500 nm
in Equation (1), the reflectance in the whole wavelength would vary with different N. To verify this
point and observe the detailed influence from N on the reflectance at 400–510 nm, the contents of
biochemical components were fixed, and a series of reflectance spectra were generated with varying
N. Figure 4 shows that changing N would cause the changes of reflectance in the whole wavelength
range (400 to 2500 nm), including 400–510 nm. Therefore, we selected 400–510 nm, not 800–1300 nm,
to estimate N.

In this study, we estimated the N of j-th leaf (Nj) by minimizing the merit function given by
Equation (2) from 400 to 510 nm. In detail, for a leaf, the method is to find the minimum J (Nj) and the
corresponding N when N ranges from 1 to 7 with step = 0.01.

J(Nj) = (Rmes,j(λ1)− Rsim,j(Nj, λ1))
2 + (Rmes,j(λ2)− Rsim,j(N, λ2))

2, (2)

where Rmes,j and Rsim,j are the j-th measured reflectance and corresponding modeled reflectance at the
wavelength λ1 and λ2, respectively. The wavelengths λ1 and λ2 were where the measured reflectance
reached maximum and minimum, respectively.

The leaf structure parameter N varies with different leaves and is a necessary input variable for
both PROSPECT-5 and the modified model (Table 1). In this study, the leaf structure parameters N
of 22 samples need to be estimated and then need to be used in the PROSPECT-5 model to calculate
the specific absorption coefficient related to copper. The leaf structure parameters N of 11 samples
for validation also need to be estimated to simulate the spectral reflectance of copper-stressed leaves
using the modified model. Hence, the leaf structure parameters of all the samples need to be estimated.
According to Equation (2), the calculation for N in a sample is independent and has nothing to do
with other samples. Therefore, in this study, the leaf structure parameters N were estimated sample by
sample, and the N of all the 33 copper-stressed samples were estimated.
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Figure 3. Scanning electron microscopy (SEM). images of leaves with different copper contents in soil:
(a) Normal wheat; (b) Wheat with 200 mg/kg copper content in soil; (c) Wheat with 400 mg/kg copper
content in soil; (d) Wheat with 1600 mg/kg copper content in soil; (e) Normal pak choi; (f) Pak choi
with 200 mg/kg copper content in soil; (g) Pak choi with 400 mg/kg copper content in soil; (h) Pak
choi with 800 mg/kg copper content in soil.
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Figure 4. The modeled reflectance generated by PROSPECT-5 with different N. (Cab, Ccar, Cw, and Cm

are fixed as 33 μg/cm2, 8.6 μg/cm2, 0.012 cm, 0.005 g/cm2, respectively).

3.2. Determination of Specific Absorption Coefficient Related to Copper

Copper content in a healthy leaf is normally 5 to 30 mg/kg [4]. However, as previously mentioned,
the copper content in a copper-stressed leaf would be approximately 100 times more than that in a
normal leaf, which has been verified by the measured results from several previous studies (e.g., [4,6]).
Hence, the absorption related to copper should be considered, and thus the calculation method of K(λ)
was modified as Equation (3).

Knew(λ) =
Kab(λ) · Cab + Kcar(λ) · Ccar + Kw(λ) · Cw + Km(λ) · Cm + Kcu(λ) · Ccu

N
, (3)

where Kcu and Ccu are the specific absorption coefficient related to copper and the copper content in
leaf, respectively. Knew(λ) is the absorption coefficient in the new model.

The estimating method of Kcu in this study was similar with the methods for estimating specific
absorption coefficients of other biochemical components in [21,23]. At each wavelength, we minimized
the merit function given by Equation (4).

J(Kcu(λ)) =
Num

∑
j=1

(Rmes,j(λ)− Rsim,j(Knew(λ), λ))2, (4)

where Rmes,j(λ) and Rsim,j(Kcu(λ), λ) are the j-th measured reflectance and corresponding modeled
reflectance at the wavelength λ. Num is the number of samples for estimating Kcu. In this study,
Num = 22.

An illustration on the modification strategy in this study should be presented here. The reflectance
from 400 to 510 nm is controlled mainly by chlorophyll and carotenoids. Copper almost has no direct
contribution to the reflectance from 400 to 510 nm. Although the copper-induced physiological
implications (change of pigments) could affect the reflectance from 400 to 510 nm, this effectiveness
should not be considered when the two pigments were measured correctly. Hence, the leaf structure
parameter N was determined in the wavelengths from 400 to 510 nm since parameters of chlorophyll
and carotenoids are known. In addition, the leaf structure parameter N and Kcu can be determined
independently since N can be estimated by using reflectance spectra over the spectral range with no
copper-related absorption.
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3.3. Validation of the Modified Model

In this study, 11 groups of datasets on copper-stressed leaves were used for the validation of the
new model. The simulated reflectance spectra were generated using PROSPECT-5 and the new model
with the estimated N, respectively. The mean (±standard deviation, SD) of the simulated spectra
and measured spectra of the 11 samples were calculated for comparison. The simulated spectra and
measured spectra of two selected representative samples (No. 5 and No. 7) from 11 samples were also
used for comparison. By observing the spectra, the modified model will be better than PROSPECT-5
if the spectra with the modified model is closer to the measured spectra. The differences between
simulated reflectance and measured reflectance at seven key wavelengths, including 550 nm, 660 nm,
700 nm, 850 nm, 1400 nm, 1900 nm, and 2200 nm, were calculated. The modified model will be better
than PROSPECT-5 if the differences with the modified model are nearer to zero than those with the
PROSPECT-5 model. The root mean square error (RMSE) between the simulated spectra and measured
spectra were calculated for both calibration and validation samples. The modified model will be better
than PROSPECT-5 if the RMSEs with the modified model are less.

4. Results

The mean, standard deviation (SD), and coefficient of variation (CV) of datasets for calibration
and validation were calculated (Table 2). Coefficient of variation characterizes the inter-difference
degree in a dataset. In this study, all the coefficient of variations are significant high and the CVs with
copper are the highest. Table 2 demonstrates that there are significant differences in leaf Cu and in
other biochemical components for both calibration and validation datasets.

Table 2. Mean, standard deviation (SD), and coefficient of variation (CV) of datasets for calibration and
validation (water: cm; dry matter: g/cm2; chlorophyll, carotenoids, and copper: μg/cm2).

Calibration Datasets Validation Datasets

Mean SD CV Mean SD CV

water 0.0175 0.00771 44.04% 0.0213 0.00964 45.26%
dry matter 0.0041 0.00084 20.34% 0.0042 0.00094 22.08%
chlorophyll 32.64 7.853 24.06% 33.79 8.062 23.86%
carotenoids 13.36 5.942 44.48% 15.67 7.388 47.15%

copper 0.1220 0.09784 80.22% 0.1507 0.1571 104.22%

In this study, the leaf structure parameters N were estimated sample by sample, and the results
of estimating N of all the 33 copper-stressed samples are presented here (Figure 5a). In addition,
we randomly selected 33 groups of leaf structure parameters of normal leaves from the LOPEX93
dataset [27], which is also shown in Figure 5a. The box-and-whisker plots of the N of copper-stressed
leaves and normal leaves are shown in Figure 5b. Figure 5a,b show that the leaf structure parameters
of copper-stressed leaves are obviously more than those of normal leaves. Moreover, the distributed
range of N with copper-stressed leaves is larger. The leaf structure parameters vs. leaf copper content
with different symbols for each species were plotted in Figure 5c. The stress datasets were divided
into three parts based on stress levels (low, medium, high). The averages of leaf structure parameters
were plotted in Figure 5d for different classes and species. Figure 5c,d show that the leaf structure
parameters tend to increase with stress levels.

The estimated specific absorption coefficient related to copper (Kcu) is shown in Figure 6.
Following characteristics could be read from Figure 6: Kcu is near zero from 400 to 510 nm. High values
of Kcu are presented at 590–710 nm with a valley near 680 nm, respectively. In addition, there are three
major peaks near 1400 nm, 1900 nm, and 2400 nm, respectively.
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(a) (b) 

(c) (d)

Figure 5. Leaf structure parameters N of copper-stressed leaves and normal leaves: (a) The value of
leaf structure parameters; (b) The box-and-whisker plots of leaf structure parameters; (c) Leaf structure
parameters vs. leaf copper content with different symbols for each species; (d) Bar graphs for the
average of different stress levels (low, medium, high) and species.

Figure 6. The specific absorption coefficient related to copper (Kcu).
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The mean (±standard deviation, SD) of simulated spectra and measured spectra of the 11 samples
is shown in Figure 7a. The simulated spectra and measured spectra of two selected representative
samples (No. 5 and No. 7) from 11 samples are shown in Figure 7b,c. Samples of No. 5 and No. 7
are from wheat and pak choi, respectively. Figure 7 shows that, in the whole range of wavelength,
the values of spectral reflectance with PROSPECT-5 are larger than the measured values, while the
spectral reflectance with the new model is closer to the measured spectra. The 11 groups of RMSEs
between the simulated spectra (PROSPECT-5 and the new model) and measured spectra are shown
in Table 3. We also calculated the RMSE of each model for the calibration datasets (Table 4). For all
the datasets used for validation and calibration, the RMSEs from the new model are less than that
from PROSPECT-5.

 
(a) 

(b) (c)

Figure 7. The simulated spectra (PROSPECT-5 and the new model) and measured spectra: (a) The mean
(±standard deviation, SD) of simulated spectra and measured spectra of the 11 samples; (b) The
selected representative sample: No. 5 sample (wheat: Cab = 49.63 μg/cm2; Ccar = 8.94 μg/cm2;
Cw = 0.0096 cm; Cm = 0.0061 g/cm2; Ccu = 0.0557 μg/cm2); (c) The selected representative
sample: No. 7 sample (pak choi: Cab = 27.61 μg/cm2; Ccar = 19.32 μg/cm2; Cw = 0.0320 cm;
Cm = 0.0031 g/cm2; Ccu = 0.1520 μg/cm2).

To further illustrate the effectiveness of the new model, the reflectance values at several key
wavelengths were selected for comparison where the reflectance curve of vegetation shows peaks,
valleys, or obvious high values, including 550 nm, 660 nm, 700 nm, 850 nm, 1400 nm, 1900 nm, and
2200 nm. We calculated the differences between simulated reflectance and measured reflectance at
these seven key wavelengths, and plotted these differences vs. wavelength and 11 samples, including
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wheat and pak choi (samples 1–6: wheat; samples 7–11: pak choi) (Figure 8). Figure 8 shows that the
differences with the modified model are nearer to zero than those with the PROSPECT-5 model.

 

Figure 8. Differences between simulated reflectance and measured reflectance at key wavelengths.

Table 3. Root mean square errors (RMSEs) between the simulated spectra (PROSPECT-5 and the new
model) and measured spectra of 11 groups samples used for validation.

Samples No. 1 No. 2 No. 3 No. 4 No. 5 No. 6

PROSPECT-5 0.1567 0.1685 0.0810 0.0613 0.0988 0.0708
New model 0.0776 0.0576 0.0261 0.0225 0.0265 0.0486

Samples No. 7 No. 8 No. 9 No. 10 No. 11

PROSPECT-5 0.1489 0.1492 0.0781 0.1874 0.1924
New model 0.0395 0.0942 0.0135 0.1038 0.0190

Table 4. RMSEs between the simulated spectra (PROSPECT-5 and the new model) and measured
spectra of 22 groups of samples used for calibration.

Samples No. 1 No. 2 No. 3 No. 4 No. 5 No. 6

PROSPECT-5 0.1619 0.1943 0.1741 0.1444 0.1437 0.1489
New model 0.0943 0.1261 0.0496 0.0563 0.0491 0.0488

Samples No. 7 No. 8 No. 9 No. 10 No. 11 No. 12

PROSPECT-5 0.1010 0.0433 0.0188 0.0791 0.0702 0.0377
New model 0.0312 0.0316 0.0173 0.0302 0.0210 0.0165

Samples No. 13 No. 14 No. 15 No. 16 No. 17 No. 18

PROSPECT-5 0.0483 0.0543 0.1504 0.0254 0.1935 0.1214
New model 0.0175 0.0274 0.1043 0.0182 0.0949 0.0481

Samples No. 19 No. 20 No. 21 No. 22

PROSPECT-5 0.1328 01321 0.1347 0.1352
New model 0.0438 0.0253 0.0112 0.0782

5. Discussion

This paper advances the PROSPECT-5 model to simulate the reflectance of copper-stressed
leaves and get accepted results of validation. There are some results needing further explanation
and discussion.
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The leaf structure parameters of copper-stressed leaves were estimated in the range from 400 to
510 nm, not from 800 to 1300 nm. Due to the low absorption of copper ion in this range, the estimation
of the leaf structure parameters in this study avoided the influence from copper. The results of leaf
structure parameters of copper-stressed leaves show three characteristics (Figure 5): they are generally
larger than those of normal leaves; the distributed range is also larger; the leaf structure parameters
tend to increase with stress levels. The most probable reason is that the structures of copper-stressed
leaves were damaged due to excessive copper, and the cells were more disorderly with a higher level
copper stress. This reason was also partially demonstrated by the SEM images (Figure 3). In addition,
for estimating N in this study, we assumed the influence may come from the absorption related to
copper, so we used a wavelength range where the absorption of copper ion is near zero, yet it might
be that copper has other influences that we do not know about. Due to the indirect influence on
reflectance from copper stress by changing the leaf structure, it is a good idea to establish a statistical
relationship between N and copper content of a particular vegetation in the future. As there is a little
information on the leaf structure parameter N considering monocotyledon and dicotyledon plants
discrimination [11,15–21], this point may also deserve to be investigated in detail for copper-stressed
vegetation in the future.

The simulated spectra from PROSPECT-5 are obviously higher than the measured spectra for
copper-stressed leaves, while the simulated results from the new model are much nearer to the
measured results (Figures 7 and 8). As previously mentioned, the copper content in normal leaf is
relatively low (5 mg/kg to 30 mg/kg), but it is able to exceed 1300 mg/kg in a copper-stressed leaf.
For normal leaves, the absorption by copper could be ignored and satisfying results could be acquired
by PROSPECT-5. For copper-stressed leaves, excessive copper should be considered, and thus better
results were acquired by the new model (Figures 7 and 8; Tables 3 and 4). Specifically, PROSPECT-5
was designed for healthy leaves, so it ignores the energy absorbed by copper-related matter, which
leads to higher simulated reflectance for copper-stressed leaves. This is the reason why the simulated
spectra from the modified model are much nearer to the measurements and the RMSEs with the
modified model are less.

For the specific absorption coefficient related to copper (Kcu), Figure 6 suggests that it almost equals
zero in the wavelength range of 400–510 nm, which is different from the results in [23]. However, the
absorption spectra of aqueous copper sulfate solutions measured strictly in the laboratory [24],
is consistent with the results in our study at 400–510 nm, which indicates that our results are more
reasonable than that in [23].

The high values of Kcu at 590–710 nm, near 1400 nm, 1900 nm and 2400 nm, agree with the
results in [23,30] well. For the explanation on the apparent characteristics near 1400 nm and 1900 nm,
Zhu et al. [23] simply pointed that the coordinate bonds with hydroxide contribute to the observed
features near 1400 nm and 1900 nm. Here, we try to give a more detailed explanation on all the
observed features at 590–710 nm, 1400 nm, 1900 nm and 2400 nm. For copper-stressed vegetation,
excessive copper in the soil was easily absorbed by plants via Cu2+ and Cu(OH)+. In leaves, the Cu2+

and Cu(OH)+ were transferred into chelate and fixed in organelle to hinder copper from diffusing and
to protect other tissues in the plant [30,31]. According to the spectral theory, reflectance at 400–1300 nm
is controlled by the electron transition of metal ions, while reflectance at 1300–2500 nm is determined
by anionic group (e.g., hydroxyl, carbonate, sulfate) [32,33]. In this study, the high values of Kcu at
590–710 nm are similar with the absorption of copper sulfate and copper chloride [23,30], and the
high values near 1400 nm and 1900 nm are similar with the absorption of water [22]. Hence, it can
be inferred that Cu2+ contributes to the absorption at 590–710 nm, and hydroxyl contributes to the
absorption near 1400 nm and 1900 nm. Sulfate ion shows absorption at 2400 nm [34]. The vegetation
in this study was treated by copper sulfate (CuSO4), so it was inferred that sulfate ions contributed to
the high values of Kcu near 2400 nm. In addition, it appeared that the valley near 680 nm of Kcu could
be observed. Vegetation stress always induces the enhancement of chlorophyll fluorescence [35–37].
According to the shape of chlorophyll fluorescence [35,38], it can be inferred that a high chlorophyll
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fluorescence (red fluorescence, RF) is also present near 680 nm. Thus, idealized Kcu needed to be
reduced to enlarge the simulated reflectance to meet the enhancement from chlorophyll fluorescence.
Therefore, RF is a very possible factor that makes contributions to this valley. Chlorophyll fluorescence
also possesses high values called blue green fluorescence (BGF), ranging from approximately 350 nm
to 520 nm [35,38], so some measured spectra are higher than simulated spectra generated by both
PROSPECT-5 and the modified model in the visible range (Figure 7). In other words, this problem was
also present in PROSPECT-5. Kcu is near zero in this wavelength range (Figure 6), so the enhancement
on measured reflectance from BGF cannot be meted by reducing Kcu. Hence, chlorophyll fluorescence
should be removed from the measured reflectance in the future to improve the ability to predict the
spectra in the visible range. In total, Kcu reflects the overall influence from copper ion and its chelate,
and other factors induced by copper, so we tentatively termed Kcu “specific absorption coefficient
related to copper”, not “specific absorption coefficient of copper ion”. Moreover, copper stress impacts
the leaf structure parameter N and we also changed the wavelength range for estimating N due to the
copper presence. Hence, the modified model considers the physiological reaction of the leaf to copper
presence, not just adding copper to the leaf spectra. In the future, what biochemical components that
make contribution to the specific absorption coefficient related to copper (Kcu) and the mechanism
of these absorptions should be further investigated and clarified. In addition, based the work in this
paper, estimating the copper content in leaves and classifying the vegetation with different copper
contamination using remote sensing could also be the basis of a good future study.

In terms of other advantages, this study would help the research on remote sensing of stressed
vegetation. For example, similar changes in reflectance and vegetation indices may be resulted from
copper stress as well as other stress [39–41], but this study provided some physical foundations to
distinguish copper stress from other stress.

In this study, the soil before treatments was collected from vegetable garden without any
contamination. In general, the copper content in this kind of soil is <2 mg/kg [42,43]. The increments of
copper content in the soil after treatments are 25, 50, 100, . . . , 4800 mg/kg. Hence, the copper content
in the soil at a minimum stress level exceeds that in the normal soil by 10 times. The initial copper
content in soil almost has no impact. In fact, the use of the numbers, including 25, 50, 100, . . . , 4800,
are simply labels to distinguish the different stress levels. In general, the vegetation can be regarded as
copper-stressed vegetation if the growth and biochemical components are obviously influenced when
excessive copper is present in the soil, water and the atmosphere [4,44,45]. Kabata-Pendias et al. [44]
indicated that vegetation activities would be stressed when the copper content in soil amounted to
two to 10 times that in normal soil. Hence, the vegetation could be called copper-stressed vegetation in
this paper.

Compared with normal leaves, copper-stressed leaves have been verified that the leaf structure
is disrupted and copper content significantly increases [4,45]. The data in this study also illustrates
these facts to some degree. Moreover, the simulated reflectance generated by the measured contents of
biochemical components (the measurements are regarded as correct) and the standard PROSPECT-5
model was away from the measured reflectance. Based on above facts, we set two hypothesis: (1) the
disruption of leaf structure resulted in the increase of N; (2) the increase of copper content resulted in
more absorption of energy. Thus, the modification strategy is estimating N in the wavelength range
where copper absorption is near to zero, and estimating the specific absorption coefficient related
to copper using correct N. This modification strategy is regarded as reasonable. In this sense, this
approach also has some physical basis. In the future, others may propose more reasonable approaches
to get similar output reflectance. However, the mentioned two hypothesis have not been absolutely
verified since Figure 5c is not a good proof and it shows that the approach is not statistically robust.
Kcu reflects the overall effects from copper stress, not only the absorption of copper ions. Moreover,
the tolerance to copper stress varies with different vegetation. From this point of view, the approach
in this study is empirical, and not a true physical modification approach. As previously mentioned,
other modification approaches may provide the same total output reflectance with that in this study.
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For example, if the contents of biochemical components were measured incorrectly, the obtained
results in this study, in terms of the accuracy, may be obtained using standard PROSPECT-5 model by
changing the N value and the effective content of water in the leaf, and maybe of pigments as well.

There is a difference between this study and the studies on remote sensing of normal vegetation.
The samples with copper-stressed vegetation are much more difficult to acquire due to experimental
complexity. Therefore, the number of samples in many studies related to copper-stressed vegetation is
similar to this study (e.g., [46,47]). Even so, we have also realized that more datasets should be used to
improve the specific absorption coefficient related to copper (Kcu) to further advance the new model.
Both the modified model and PROSPECT-5 are based on the leaf scale. LAI (Leaf Area Index) and view
and illumination geometry are usually in canopy models, which were not considered in this study.
The application of the modified model on remote sensing image needs the coupling with reflectance
models at the canopy scale, for example, the SAIL model. The coupling with canopy reflectance model
could provide an effective and rapid way for monitoring copper-stressed vegetation on a large scale
using remote sensing image, which is also the basis for good future work.

6. Conclusions

This study developed a new model for copper-stress leaves based on PROSPECT-5, and
validations were conducted. In this study, the reflectance at 400–510 nm was used to estimate leaf
structure parameters (N) of copper-stress leaves. The absorption related to copper was considered,
and the specific absorption coefficient related to copper (Kcu) was estimated. The new model
includes six inputs: leaf structure parameters (N); chlorophyll content; carotenoid content; equivalent
water thickness; dry matter content, and; copper content. Factors that influence the reflectance of
copper-stressed leaves are considered as much as possible. The new model shows better performance
than PROSPECT-5 on copper-stressed leaves. Hence, this study solved some problems left by
previous studies and developed a better model for simulating the copper-stressed leaves, and provides
theoretical support for the research on copper-stressed vegetation using remote sensing. Moreover,
it has potential significance for prospecting copper deposit and monitoring environmental pollution
caused by copper. However, due to the difficulties on the acquirement of datasets of copper-stressed
vegetation, more samples should be acquired and used to improve the specific absorption coefficient
related to copper (Kcu) and the accuracy of new model in the future.
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Abstract: Satellite remote sensing has been widely used to retrieve aerosol optical depth (AOD),
which is an indicator of air quality as well as radiative forcing. The dark target (DT) algorithm
is applied to low reflectance areas, such as dense vegetation, and the deep blue (DB) algorithm is
adopted for bright-reflecting regions. However, both DT and DB algorithms ignore the effect of
surface bidirectional reflectance. This paper provides a method for AOD retrieval in arid or semiarid
areas, in which the key points are the accurate estimation of surface reflectance and reasonable
assumptions of the aerosol model. To reduce the uncertainty in surface reflectance, a minimum
land surface reflectance database at the spatial resolution of 500 m for each month was constructed
based on the moderate-resolution imaging spectroradiometer (MODIS) surface reflectance product.
Furthermore, a bidirectional reflectance distribution function (BRDF) correction model was adopted
to compensate for the effect of surface reflectance anisotropy. The aerosol parameters, including AOD,
single scattering albedo, asymmetric factor, Ångström exponent and complex refractive index, are
determined based on the observation of two sunphotometers installed in northern Xinjiang from
July to August 2014. The AOD retrieved from the MODIS images was validated with ground-based
measurements and the Terra-MODIS aerosol product (MOD04). The 500 m AOD retrieved from
the MODIS showed high consistency with ground-based AOD measurements, with an average
correlation coefficient of ~0.928, root mean square error (RMSE) of ~0.042, mean absolute error (MAE)
of ~0.032, and the percentage falling within the expected error (EE) of the collocations is higher
than that for the MOD04 DB product. The results demonstrate that the new AOD algorithm is more
suitable to represent aerosol conditions over Xinjiang than the DB standard product.

Keywords: BRDF; aerosol; MODIS; sunphotometer; arid/semiarid

1. Introduction

Xinjiang province in northwest China is part of the Central Asian dust storm area, which is
one of the main sources of dust aerosols [1]. In recent years, many Xinjiang cities, especially the
capital, Urumqi, have suffered a severe deterioration in air quality with significant contributions
from atmospheric particulates [2]. Aerosols can significantly influence the ecosystem, climate and
hydrological cycle by affecting radiative forcing [3] and its relation with the air quality indicators
proportionated for sustainable development [4]. High aerosol pollution events have a wide-ranging
impact on visibility [5] and human health [6]. Scientific data about the spatial and temporal dynamic
of dust aerosol in Xinjiang are needed by the local government to facilitate development of policies to
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protect the ecosystem and diminish dust storms. Due to the lack of ground stations in this vast area,
satellite retrieval is the practical way to provide the spatial and temporal distribution of aerosol optical
depth (AOD) [7–9].

Many satellite sensors have released AOD products, including the total ozone mapping
spectrometer (TOMS) [10], geostationary operational environmental satellite (GOES) [11], ozone
monitoring instrument (OMI) [12], medium resolution imaging spectroradiometer (MERIS) [13],
advanced very high resolution radiometer (AVHRR) [14], multi-angle imaging spectroradiometer
(MISR) [15], sea-viewing wide field-of-view sensor (SeaWiFS) [16], moderate-resolution imaging
spectroradiometer (MODIS) [17], and visible infrared imaging radiometer suite (VIIRS) [18]. Yet, the
quality of AOD products over arid/semiarid areas, such as Xinjiang, is relatively low due to a large
bias in the surface reflectance estimation as well as the aerosol model used in the retrieval algorithms.
The operational MODIS AOD product over land is based on two algorithms: the dark target (DT) and
deep blue (DB) algorithms [19]. In the Xinjiang area, the MODIS AOD product is mostly retrieved with
the DB algorithm which is applied over bright areas, where the surface reflectance is relatively high,
and distinguishing atmospheric aerosol contributions from the satellite sensor energy is difficult.

In the DB algorithm, for arid and semiarid regions, the surface reflectance was determined
based on a pre-calculated surface reflectance database, which was compiled based on the minimum
reflectivity method at the resolution of 0.1◦ × 0.1◦ for each season using MODIS images [20].
The derived surface reflectance database therefore depends on the scattering angle, normalized
difference vegetation index (NDVI), and season. Most of the validation studies concluded that,
in general, MODIS DB retrieved aerosol products were comparable to aerosol robotic network
(AERONET) data, and an expected error (EE) envelope could be defined that contained approximately
50–70% of the matchups [21]. Bilal and Nichol reported up to 75–80% of the DB retrievals within the
EE [22]. One of the major error sources for the DB algorithm is the difference between the surface
reflectance corresponding to the images and that from the pre-calculated database, as a result of the
anisotropic surface reflectance. Another crucial aspect in AOD retrieval is the aerosol model. In the DB
algorithm, the microphysical and optical properties of aerosols are based on a cluster analysis of the
global AERONET database through 2010 [17]. However, the aerosol characteristics vary locally, and
they cannot be accurately described using a global aerosol model, which increases the uncertainty in
AOD retrieval [23].

In this paper, a monthly minimum land surface reflectance (MLSR) database for Xinjiang area
(band: blue; resolution: 500 m; time span: 2010–2014) was established using MODIS surface reflectance
product (MOD09A1), based on the minimum synthesis technique (MST) method to reduce the impact
of cloud contamination [20,24,25]. A bidirectional reflectance distribution function (BRDF) correction
model for angle normalization was adopted to compensate the effect of surface reflectance anisotropy.
In addition, the CE-318 sunphotometer data are used to determine the aerosol characteristics of the
study area.

2. Field Measurements and Data Used

The CE-318 sunphotometer is an automatic ground-based radiometer measuring both direct solar
irradiance and diffuse sky radiance for almucantar and principal solar planes with a 1.2◦ field of view.
Although the channel wavelength configuration depends on the instrument version, filters at 440, 500,
675, 870, 940 and 1020 nm wavelengths are always present [26], with an uncertainty of 0.01–0.02 [27].
The Microtops II sunphotometer is a portable, manually-operated instrument which measures AOD
through direct solar irradiance measurements in five wavebands (380, 500, 675, 870, and 1020 nm) with
an uncertainty of ~0.015–0.02 [28,29].

In order to obtain the characteristic parameters of atmospheric aerosol in the study area, the
CE-318 and Microtops II sunphotometers were used at two ground-observed sites (Dahuangshan
and Wucaiwan site). The Dahuangshan site is located in a coal mining area with sparse vegetation
coverage and the Microtops II sunphotometer observation was carried out from 10 July to 24 August
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2014. The Wucaiwan site is located in a remote rural area near the Gurbantunggut Desert and the
CE-318 sunphotometer observation was carried out from 15 July to 21 August 2014. A map of the
study area is shown in Figure 1, and the detailed information of sites and instruments is presented in
Table 1.

Figure 1. Map of the study area and the two ground-observed sites.

Table 1. The detailed information of sites and instruments.

Site Instrument Lon. (◦E) Lat. (◦N) Elevation (m) Start Date End Date

Dahuangshan Microtops II 88.645 44.041 1018 2014/7/10 2014/8/24
Wucaiwan CE-318 88.099 44.776 450 2014/7/15 2014/8/21

The MODIS (Terra) data products, namely calibrated radiance product (MOD02HKM), geolocation
product (MOD03), surface reflectance product (MOD09A1), BRDF/albedo product (MCD43A1), and
the Collection 6 (C6) aerosol product (MOD04), were obtained from the Level-1 and Atmosphere
Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC) at the Goddard
Space Flight Center (GSFC) (http://ladsweb.nascom.nasa.gov). The information of these satellite
products and their applications is listed in Table 2.

Table 2. Moderate-resolution imaging spectroradiometer (MODIS) images used for aerosol optical
depth (AOD) retrieval in this study.

Data Name Date Tile N Application

MOD09A1 2010–2014 H23-H25, V04-V05 240 Build surface reflectance and angle
information database

MCD43A1 2014/07/10–2014/08/24 H23-H25, V04-V05 276 Build BRDF correction model
MOD02HKM 2014/07/10–2014/08/24 55 Calculate the top of the atmosphere reflectance

MOD03 2014/07/10–2014/08/24 55 Obtain geolocation data
MOD04 2014/07/10–2014/08/24 55 Validation

Note: N is the number of images.
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3. Methodology

The top-of-atmosphere (TOA) reflectance (ρT), measured by a satellite sensor, is a function of
surface and atmosphere optical parameters as well as solar/view zenith and azimuth angles; it can be
estimated using Equation (1):

ρT(τa, θs, θv, ϕ) = ρA(τa, θs, θv, ϕ) + ρR(θs, θv, ϕ) +
ρS

1 − ρS × S(τa)
T(τa, θs)T(τa, θv) (1)

where θs is the solar zenith angle, θv is the view zenith angle, ϕ is the relative azimuth angle, τa is the
aerosol optical depth, ρA is the aerosol reflectance resulting from multiple scattering in the absence of
molecules; ρR is the Rayleigh reflectance resulting from multiple scattering in the absence of aerosols;
ρS is the surface reflectance; T(τa, θs) and T(τa, θv) are the transmissions of the atmosphere on the
sun-surface path and the surface-sensor path, respectively; and S(τa) is the atmospheric backscattering
ratio to account for multiple reflections between the surface and atmosphere.

Equation (1) indicates that the TOA reflectance comes from two parts: the pure atmospheric
contribution (the first two terms in Equation (1)) and the combination of the atmosphere and land
(the last term in Equation (1)). A key step of the satellite-retrieved AOD is to remove the surface
contributions from the satellite image. An overview of our retrieval algorithm is represented as a
dataflow diagram in Figure 2. This algorithm cannot retrieve cloud-contaminated pixels; therefore,
before beginning the retrieval processing, we screened areas for the presence of clouds, and used the
universal dynamic threshold cloud detection algorithm for cloud detection [30]. The surface reflectance
for a given pixel was then determined from the pre-calculated MLSR and angle information database,
which was built using MOD09A1 products. The aerosol model is an important parameter that affects
the precision of AOD retrieval and must be considered carefully. In this study, it was established by
the ground-based measurements data.

 

Figure 2. Flowchart of the aerosol retrieval algorithm in the study.

3.1. Construction of Surface Database

In order to remove the surface contributions from the satellite signal, a database of surface
reflectance was built for the AOD retrieval. The MOD09A1 dataset provides surface reflectance at
500 m resolution in sinusoidal projection. Each MOD09A1 pixel has the best possible observation
during an 8-day period as selected by high observation coverage, small view angle, absence of clouds or
cloud shadow, and low aerosol loading. Validation has been carried out for the MOD09 which indicated
that 50.52% of the observations in the blue band were within the MODIS theoretical uncertainty of
±(0.005 + 5% × ρS), where ρS is the surface reflectance [31]. In this study, MOD09A1 datasets for
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5 years (2010–2014) and six tiles (H23-H25 and V04-V05) were used to build the surface reflectance
database to support AOD retrieval.

Ideally, the MOD09A1 product should be the surface reflectance corrected for aerosol effect and
cloud masked in the quality flag. However, detection of thin cloud or subpixel cloud are difficult, and
there is also uncertainly in the aerosol effect correction [31]. Following the approach in the paper by
Sun et al. [32], we adopted the criterion of minimum land surface reflectance (MLSR) for database
synthesis because it is the most efficient way to avoid cloud contamination. In each 500 m pixel, the
lowest surface reflectance value in the twenty images time series, i.e., four images per month for 5
successive years, was identified as the clearest observation. In order to correct the effect of surface
bidirectional reflectance in AOD retrieval, the angle information in MOD09A1 was stored in the MLSR
database along with the minimum reflectance. Figure 3 shows the distribution of surface reflectance in
July, as well as the solar/view zenith and relative azimuth angles.

(a) (b) 

 
(c) 

 
(d) 

Figure 3. Example of a pre-calculated minimum land surface reflectance (MLSR) database using 5
years of MOD09A1 at 500 m resolution for July. (a): the surface reflectance at blue band; (b): the solar
zenith angle; (c): the viewing zenith angle; (d): the relative azimuth angle.

3.2. BRDF Correction Surface Reflectance

In the aerosol retrieval algorithm, the accurate determination of the surface reflectance is one
of the most crucial concerns. For the DB algorithm, the surface reflectance is prescribed by one of
several methods, dependent on location, season, and land cover type, from a global surface reflectance
database in visible bands. However, all methods do not consider the influence of imaging geometry.
As the surface has anisotropic reflection characteristics and the geometric angles of the satellite sensors
vary, the surface reflectance of the MLSR is different from that of images used to retrieve AOD. Thus,
the pre-calculated MLSR database cannot be directly used for AOD retrieval. In this study, we adopted
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the kernel-driven BRDF model for the correction of the effects of anisotropic reflection of the surface.
The correction model was proposed based on the kernel-driven BRDF model. The kernel-driven
BRDF model is a semi-empirical models which is derived as a simplification of physically based BRDF
models, with the merit of its linear form and small number of model parameters. It can be generally
described by Equation (2) [33]:

R(θs, θv, ϕ, λ) = fiso(λ) + fvol(λ) · Kvol(θs, θv, ϕ) + fgeo(λ) · Kgeo(θs, θv, ϕ) (2)

where Kvol and Kgeo are the volumetric and geometric kernels, respectively, which are functions of
illumination and viewing geometry, describing volume and geometric scattering from surface elements
fvol , fgeo are the weights for the volumetric and geometric kernels, respectively, and fiso is to the weight
of the isotropic reflectance.

By simply normalizing the kernel weights with the isotropic weight, we define the anisotropy
shape factors as A1 = fvol/ fiso and A2 = fgeo/ fiso. Then, the directional surface reflectance under
geometric angle θs1, θv1, ϕ1 can be predicted from the direction surface reflectance in the MLSR
database under geometric angle θs2, θv2, ϕ2, with Equation (3):

R1(θs1, θv1, ϕ1, λ) =
1 + A1 · Kvol(θs1, θv1, ϕ1) + A2 · Kgeo(θs1, θv1, ϕ1)

1 + A1 · Kvol(θs2, θv2, ϕ2) + A2 · Kgeo(θs2, θv2, ϕ2)
R2(θs2, θv2, ϕ2, λ) (3)

Studies show that the combination of Ross–Thick and Li-SparseR (RTLSR) kernels works well
with the observed data [34], and the fiso, fvol , and fgeo parameters of this combination are provided
in the MCD43A1 products. However, as inversion of the BRDF is difficult, the BRDF parameters
in MCD43A1 are noisy and cannot be directly used. Vermote et al. showed that the anisotropy of
the surface is related to vegetation status [35]. So, in this study, we classify the study area into three
categories, i.e., sparse vegetation, median vegetation and dense vegetation, according to the threshold
of the Enhanced Vegetation Index (EVI). Statistical mean values of A1 and A2 were calculated for each
category from pixels marked as best quality (QC = 0) in the MCD43A1 product. The mean values of
A1 and A2 were then applied for all pixels in the category. The statistical mean values of A1 and A2 are
shown in Table 3.

Table 3. The statistical mean values of A1 and A2 for three vegetation statuses.

Category EVI A1 A2

Sparse vegetation EVI < 0.15 0.203 0.037
Median vegetation 0.15 < EVI < 0.60 0.438 0.173
Dense vegetation EVI > 0.60 0.762 0.143

3.3. Aerosol Parameter Determination

To reduce the computation requirement, a look-up table (LUT) was constructed using the latest
version (Version 2.1 Vector Code) of the 6S (second simulation of the satellite signal in the solar
spectrum) (6SV) radiative transfer model (RTM) [36]. The 6SV code is a widely-used radiative transfer
code that simulates the satellite signal accounting for elevated targets. One of the practical advantages
of 6SV is that it provides standard atmosphere and aerosol models. The 6SV model was used to
construct a LUT of atmosphere optical parameters according to the parameters values listed in Table 4.
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Table 4. The parameters used in the look-up table construction.

Parameter Number Values

Band 1 Band 3 (Blue band)
AOD at 550 nm 15 0.0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5

Surface reflectance 18 0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15,
0.18, 0.20

Solar zeniths (◦) 14 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78
Satellite zeniths (◦) 14 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78
Relative azimuths (◦) 19 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180

In this work, the CE-318 ground-based data were used to determine the aerosol microphysical
and optical parameters, such as the Ångström exponent (AE), complex refractive index (RI), single
scattering albedo (SSA), and asymmetric factor (g). The AE can be used to determine aerosol models;
for example, the AE of desert aerosols is −1.0 to 0.5 [37]. For the desert model, the value of the real
part of RI is 1.5–1.6 and the value of the imaginary part is approximately 0.01. Table 5 shows the
values of the AE and RI in the study. The aerosol optical parameters, including the SSA and g at four
wavelengths (i.e., 440, 675, 870, and 1020 nm; Figure 4), were retrieved from sky radiance almucantar
measurements and direct sun measurements by a CE-318 sunphotometer. In this study, the first step
is to calculate the average values of SSA and g at 440 and 675 nm, and then the inverse distance
weighting interpolation [38] is adopted to obtain the values of SSA and g at 550 nm, which is 0.827 and
0.910, respectively.

Table 5. Calculation results of aerosol parameters of the Ångström exponent and complex
refractive index.

Aerosol Optical Properties
Date/Value

15 July 3 August 4 August 21 August

Ångström exponent (440–870 nm) 0.467 0.409 0.441 0.443
Real part of RI 1.597 1.541 1.548 1.592

Imaginary part of RI 0.009 0.008 0.011 0.010

Figure 4. Time series of aerosol parameters of single scattering albedo (SSA) and g retrieved from
sky radiance almucantar measurements and direct sun measurements. 15 July, 3 August, 4 August,
and 21 August are the start date, the stable weather data, the maximum AOD date, and the end
date, respectively.
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3.4. Rayleigh Correction for Elevation Effect

Within the MODIS blue wavelength range, where Rayleigh scattering is relatively important
compared to longer wavelengths, neglect of polarization in the radiative transfer code leads to
significant errors in the calculated reflectances [39]. At sea level, the Rayleigh optical thickness
(ROT) at visible channels can be estimated with an empirical function of wavelength λ [40]:

τR(λ, Z = 0) = −0.00877 × λ−4.05 (4)

At a height above sea level, the ROT should be modulated by atmospheric pressure or
elevation [41]:

τR(λ, Z = z) = τR(λ, Z = 0) exp
(−z

8.5

)
(5)

where z is the ground height above sea level in kilometers, and 8.5 is the exponential scale height of
the atmosphere. In this study, the MOD03 product was used for providing the altitude z for each pixel.

3.5. Error Indicators

The error statistics of the algorithm were verified by comparing the satellite-retrieved AOD
with ground-based measurements from sunphotometers. We used the following four indicators
to evaluate the error: the correlation coefficient (R), mean absolute error (MAE), root mean square
error (RMSE), and EE. R is an indicator of relative agreement between satellite-retrieved AOD and
ground-observed AOD; the MAE is the most natural measure of mean error magnitude; the RMSE
is used to measure the systematic and random differences between these two AOD observations;
and the EE, representing the confidence envelopes of the retrieval algorithm, is used to evaluate the
quality of a new algorithm relative to MODIS C6 AOD. Good matches of satellite-retrieved AOD are
reported when the satellite-retrieved AOD falls within the envelope. The statistical indicators are
defined as follows:

R =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2
(6)

RMB = xi/yi (7)

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (8)

MAE =
1
n

n

∑
i=1

|xi − yi| (9)

EE = ±(0.05 + 0.15xi) (10)

where xi is the ground-based sunphotometer measurement of AOD, yi is the satellite-retrieved AOD;
x and y are average values of xi and yi.

4. Results and Discussion

4.1. Spatial Distribution of AOD

In this study, 55 MOD02HKM images from July and August 2014 were selected to retrieve AOD.
Figure 5 shows the MODIS standard false-color images (R, G, B: 2, 1, 4) in the northern Xinjiang
area for 11 July, 15 July, 12 August and 21 August 2014. The landscapes of this area includes the
Altai Mountains, Tianshan Mountains, and Gurbantunggut Desert, which are located in the Zhungeer
basin and exhibit high surface reflectance in the blue band (Figure 3a). Figure 6 shows the spatial
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distribution of AOD retrieved from MODIS at a 500-m resolution, corresponding to the images in
Figure 5. The MODIS C6 DB AOD products (10 km) are shown in Figure 7. The satellite-retrieved
AOD from OLI data is more suitable than C6 DB AOD to represent the spatial pattern of aerosols over
bright-reflecting source regions of northern Xinjiang. The revealed details in the aerosol distribution
and variability are valuable in the study of transient aerosols. These results demonstrate that the new
algorithm can achieve a continuous AOD distribution even in the bare land or desert areas, which
have a high reflectance.

 
(a) 

 
(b) 

 
(c) (d) 

Figure 5. MODIS false-color images for the northern Xinjiang area (R, G, B = 2, 1, 4). (a): 11 July 2014;
(b): 15 July 2014; (c): 12 August 2014; (d): 21 August 2014.

Figure 6. Retrieved AOD for the northern Xinjiang area. (a): 11 July 2014; (b): 15 July 2014;
(c): 12 August 2014; (d): 21 August 2014.
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Figure 7. Distribution of MODIS 10-km deep blue (DB) AOD products for the northern Xinjiang area.
(a): 11 July 2014; (b): 15 July 2014; (c): 12 August 2014; (d): 21 August 2014.

4.2. Validation

The satellite-retrieved AOD were validated at the two ground sites. As satellite-retrieved AOD
retrievals are at 550 nm, the ground observations are not available at this wavelength, data are
interpolated to 550 nm using the Ångström function [42], defined as

τa(λ) = β × λ−α (11)

where τa(λ) is the AOD at wavelength λ, β is the turbidity factor, and α is the band index. β and α

can be estimated from sunphotometer observations of AOD at two wavelengths λ1 and λ2, with the
following expression:

α = − ln(τa(λ1)/τa(λ2))

ln(λ1/λ2)
, β =

τa(λ1)

λ−α
1

(12)

Referring to the results of previous studies [43,44], the nearest available pair of wavelengths from
CE-318 and Microtops II sunphotometer (normally 675 nm and either 440 or 500 nm) are used.

In this study, to match the instantaneous AOD value provided by satellites with the
repeated measurements observed by sunphotometers, we followed the matchup methodology of
Ichoku et al. [45]. The ground-observed data averaged within 30 min of the MODIS overpass are
extracted and compared with MODIS AOD data averaged within 1.5 km (3 × 3 pixels) surrounding
of the ground site. A total of 32 and 26 of the satellite-retrieved AOD observations coincided with
Dahuangshan and Wucaiwan AOD measurements, as shown in Table 6. The AOD from the new
algorithm achieved high correlation (~0.918–0.928) with low absolute error (~0.025–0.037), relative
error (~13.9–16.7%) and the percentage falling within the EE of the collocations is ~96.9%, 96.2% at
the Dahuangshan and Wucaiwan site, respectively. The total average absolute error and relative error
were ~0.036 and ~16.6%, respectively, and with ~96.6% collocations falling within the EE envelope.
These results indicate that the new algorithm could retrieve AOD with high accuracy and stability.
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Table 6. Comparisons of retrieval accuracy between the new algorithm (New) and Terra-MODIS C6
DB product (DB).

Site
Count R Absolute Error Relative Error (%) r (%)

New DB New DB New DB New DB New DB

Dahuangshan 32 29 0.928 0.774 0.037 0.047 13.9 17.4 96.9 90.6
Wucaiwan 26 24 0.918 0.931 0.025 0.023 16.7 15.7 96.2 96.2

Total 58 53 0.928 0.871 0.032 0.036 15.1 16.6 96.6 92.5

r is the percentage falling within the expected error (EE) of the collocations.

Figure 8 shows the scatter plots of the satellite-retrieved AOD against those obtained from the
ground-based sunphotometer during the study period. Figure 8a is the results of the proposed
algorithm. Figure 8b is the scatter plots of MODIS DB AOD at 10 km resolution against ground-based
measurements. Figure 8c is the result of retrieved AOD without angle normalization, which used the
same pre-calculated MLSR database as Figure 8a. It is evident that the new algorithm retrievals have
the highest percentage within EE (~96.6%), highest correlations with AERONET AOD measurements
(R = ~0.928) and smallest RMSE (~0.042) and MAE (~0.032). The AOD from MODIS DB was also highly
correlated (R = 0.871), and the RMSE was 0.050 and MAE was 0.036. Nearly 92.5% of the collections fell
within the EE envelope. Notably, the retrieved AOD values from new algorithm were close to the 1:1
line (slope = ~0.795, intercept = ~0.037), whereas the DB AODs were far from the line (slope = ~0.747,
intercept = ~0.041). The retrieved AOD form without angle normalization has relatively low accuracy,
with R = ~0.906, RMSE = ~0.055, and MAE = ~0.041. Only nearly 89.6% of the collocations fell within
the EE envelope. This implies that angle normalization can improve the retrieval accuracy and is
necessary for the AOD retrieval.

(a) (b) (c) 

Figure 8. Validation of retrieved AOD from the (a) new algorithm (500 m), (b) MOD04 C6 DB algorithm
(10 km), and (c) the new algorithm without angle normalization (500 m) against the ground-based
sunphotometer AOD measurements. The black dashed lines are the EE lines, the black solid lines are
the 1:1 line and red solid lines are the regression lines.

4.3. Uncertainty Analysis

Errors in AOD retrieval are attributed to several factors, including surface reflectance estimation
and the aerosol model [46]. In this study, we assumed the change in surface reflectance within a few
days to be negligible and thus determined the surface reflectance from the MLSR database and BRDF
correction model. Changes in land cover doubtlessly lead to some errors in determining the true
reflectance. Studies by Kaufman et al. show that errors of about 0.01 in assumed surface reflectance
lead to errors on the order of 0.1 in AOD retrieval [47]. The land cover in Xinjiang has a strong seasonal
cycle; most of the area is covered by sparse and dry vegetation between March and October, and
snow is frequent in winter [48]. Figure 9a,b shows the variations in surface reflectance in the blue
band around the two sites from MODIS data during the same month in different years. As shown in
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Figure 9, the yearly variation in the same month was small and mainly in a range of 0.01, except for
winter. The surface reflectance exhibited a stable variation during April to October, with an absolute
difference value of ±0.01. However, the surface reflectance decreased by almost 0.35 from February
to March; and increased by 0.40 from October to November. Such a variation is related to the snow
melting and accumulation in March and November, respectively. In addition, due to the differences in
snowfall in different years, the change in surface reflectance in winter is more obvious than in other
seasons. Thus, it is not appropriate to determine surface reflectance through the MLSR database from
November to February.

 
(a) (b) 

Figure 9. The variation of surface reflectance during the same month in different years near the ground
sites. (a) Dahuangshan; (b) Wucaiwan. The error bars represent the maximum absolute error compared
with the average value for 5 years.

5. Conclusions

In this study, a modified aerosol retrieval algorithm was proposed for retrieving AOD over
the arid/semiarid region of northern Xinjiang from MODIS data at 500 m spatial resolution.
The assumptions in this algorithm are as follows: the variation in surface reflectance is small over a
month, and single scattering albedo (SSA) and asymmetry factors (g) are regionally constant for a few
days. The MODIS surface reflectance products (MOD09A1) were used to determine the surface
reflectance, and a LUT was constructed based on the 6SV RTM, which uses SSA and g values
from ground-based measurements. The retrieved AOD values were validated by ground-based
sunphotometer observations in two sites and compared with the MODIS DB AOD products. The results
show that the new algorithm accurately retrieved aerosol AOD over the arid/semiarid region of
northern Xinjiang, and the retrieved aerosol distribution contained more spatial details and variability
than that of the DB AOD products. In this study, a BRDF correction model was applied to reduce the
effect of surface reflectance anisotropy in AOD retrieval; thus, the retrieval ability is improved especially
over the area with obvious surface bidirectional reflectance characteristics. However, according to
the uncertainty analysis, the proposed algorithm has some limitations that should be improved:
(1) Errors may occur by using constant values of SSA and g for the day of retrieval; (2) the MLSR
database approach was sometimes found to be unsuccessful over snow surfaces, particularly when
seasonal changes are significant, such as the snow melting in March and accumulation in November,
respectively; (3) the BRDF correction only considered the mean values of anisotropy shape factors;
thus, it ignored the variation of BRDF shape within the categories of land surface. These limitations
will be explored in our future studies.
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Abstract: Downward shortwave radiation (DSR) is an essential parameter in the terrestrial radiation
budget and a necessary input for models of land-surface processes. Although several radiation
products using satellite observations have been released, coarse spatial resolution and low accuracy
limited their application. It is important to develop robust and accurate retrieval methods with
higher spatial resolution. Machine learning methods may be powerful candidates for estimating
the DSR from remotely sensed data because of their ability to perform adaptive, nonlinear data
fitting. In this study, the gradient boosting regression tree (GBRT) was employed to retrieve DSR
measurements with the ground observation data in China collected from the China Meteorological
Administration (CMA) Meteorological Information Center and the satellite observations from the
Advanced Very High Resolution Radiometer (AVHRR) at a spatial resolution of 5 km. The validation
results of the DSR estimates based on the GBRT method in China at a daily time scale for clear sky
conditions show an R2 value of 0.82 and a root mean square error (RMSE) value of 27.71 W·m−2

(38.38%). These values are 0.64 and 42.97 W·m−2 (34.57%), respectively, for cloudy sky conditions.
The monthly DSR estimates were also evaluated using ground measurements. The monthly DSR
estimates have an overall R2 value of 0.92 and an RMSE of 15.40 W·m−2 (12.93%). Comparison of
the DSR estimates with the reanalyzed and retrieved DSR measurements from satellite observations
showed that the estimated DSR is reasonably accurate but has a higher spatial resolution. Moreover,
the proposed GBRT method has good scalability and is easy to apply to other parameter inversion
problems by changing the parameters and training data.

Keywords: downward shortwave radiation; machine learning; gradient boosting regression tree;
AVHRR; CMA

1. Introduction

Downward shortwave radiation (DSR) is a key parameter in the land-atmosphere interaction,
which largely controls human life and ecosystems due to its important role in energy cycles [1,2],
the hydrological cycle [3,4], the carbon cycles [5,6], and solar energy utilizations [7–13]. Therefore,
knowledge of DSR is essential for improving our understanding of the Earth’s climate and potential
climatic changes [14]. A number of gridded global DSR products exist from remote sensing, reanalysis,
and general circulation models (GCMs). Satellite remote sensing is one of the most practical ways to
derive DSR measurements with relatively higher spatial resolution and accuracy.

Currently, DSR data can be obtained in three ways. The first is through collection from ground
measurements. This method is characterized by high precision and uneven geographic distribution.
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The second is estimation from reanalysis data and simulations from GCMs, which have relatively low
spatial resolution and accuracy [15–17]. Examples include the ERA-Interim provided by European
Center for Medium-Range Weather Forecast (ECMWF), the Japanese 55-year Reanalysis (JRA-55)
provided by Japan Meteorological Agency, and the Modern-Era Retrospective analysis for Research and
Applications (MERRA) reanalysis dataset provided by NASA. The third way is retrieval from remote
sensing data [18–20], which can provide spatio-temporal continuous DSR estimates with relatively
higher precision. Commonly used remote sensing datasets of surface solar radiance include the
Global Energy and Water Cycle Experiment-Surface Radiation Budget (GEWEX-SRB), the International
Satellite Cloud Climatology Project-Flux Data (ISCCP-FD), the University of Maryland-Shortwave
Radiation Budget (UMD-SRB), and the Earth’s Radiant Energy System (CERES). Each type of DSR data
from a different source has advantages and limitations: the ground measurements provide accurate but
sparse spatial coverage, whereas products from the two other methods may have larger uncertainties.
The ground measurements are always used to evaluate the other two types of DSR estimates. GCMs are
widely believed to have an advantage in simulating global scale climate changes [21]. A reanalysis
product is a combination of a model and measurements. It uses observations to constrain the dynamic
model to optimize complete coverage and accuracy [22]. DSR retrievals from remote sensing data
always have a relatively higher accuracy than those from reanalysis data and simulations from GCMs.
These DSR products have been widely evaluated using ground measurements [23–26]. For example,
Zhang et al. [26] evaluated four current representative existing remote sensing products using 1151
sites from the Global Energy Balance Archive and the China Meteorological Administration (CMA).
The results implied that DSR estimates from remotely sensed data were more accurate than those
acquired from reanalysis and simulations from GCMs. The maximum spatial resolution of these
four products is 0.5◦, and the temporal resolution is thrice-hourly. Although the current global
radiation products have finer temporal resolution, they have lower spatial resolutions, which limit
their application [27]. Therefore, it is still necessary to generate higher spatial resolution DSR estimates
using satellite observation.

Several algorithms have been developed for retrieving DSR measurements. The first way is to
estimate DSR based on statistical models [28–33]. Perez et al. [31] developed a simple solar radiation
forecast model using sky cover predictions. Yang et al. [32] used a hybrid model with CMA routine
data to estimate DSR, and the validation results of this proposed model against ground measurements
collected in Tibetan Plateau were better than satellite estimations from existing satellite products.
Wang et al. [33] used a statistical model to establish the relationship between top of atmosphere
(TOA) reflectance and net surface shortwave radiation using multiple regression and revised methods,
and they then compared the precision of these methods using various parameters. Empirical statistical
models usually construct a regression model directly using observed data and measured DSR values.
These models are easy to apply but are disadvantaged by their lack of universality; the relationship
established in a particular atmospheric condition or region may not be applicable in another area.
The second method to retrieve DSR measurements is to estimate them based on parametric physical
modeling methods [34–39]. Li et al. [37] proposed a parameterized model in which the normalized
net surface shortwave radiation flux of the top incident irradiance of the atmosphere was used to
establish a parametric relationship with the planetary albedo. Qin et al. [38] used satellite atmospheric
and land products—including ozone thickness, precipitable water, aerosol loading, cloud water path,
clouds effective particle radius, cloud fraction, and ground surface albedo—to establish a physically
based parameterization model. They then used the model to estimate surface solar irradiance with
a mean RMSE of approximately 100 W/m2 and 35 W/m2 on an instantaneous and daily mean
basis, respectively. López et al. [39] proposed a new, simple parametric physical model to estimate
global solar radiance under cloudy sky conditions. These methods often construct a physical model
by simulating direct interaction between solar radiation and the atmosphere. This requires many
parameters (e.g., aerosol optical depth, surface albedo, and moisture). It is obvious that model accuracy
depends on these parameters.
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Machine learning methods, which learn the relationship between inputs and outputs by fitting
a flexible model directly from the data, are some of the most widely used methods to estimate
DSR [40–45]. Wang [43] proposed a method try to derive DSR measurements using Moderate
Resolution Imaging Spectroradiometer (MODIS) data (e.g., atmospheric profile product and surface
reflectance) based on an artificial neural network (ANN) model. The validation results against ground
measurements showed that the maximum root mean square error (RMSE) was less than 45 W·m−2.
Qin et al. [44] used an ANN-based method to establish the relationship between the measured monthly
mean of daily global solar radiation levels and available remote sensing products with the aim of
estimating global solar radiation. Zhou et al. [45] suggested that the Random Forest (RF) model
was another feasible way to estimate DSR using satellite observations. These machine learning
methods have their own advantages and disadvantages. For example, the attractiveness of an ANN
is nonlinearity and high parallelism [46], and the RF cannot extrapolate beyond the training data
and may not interpret well for conditions with few samples [47]. Although machine learning may
provide powerful methods for estimating DSR from remote sensing data due to their ability to perform
adaptive and nonlinear data fitting [48–50], the accuracy of the results is limited and many machine
learning methods are prone to the phenomenon of overfitting. This can be avoid by using the gradient
boosting regression tree (GBRT) method [51]. In addition, the GBRT can efficiently provide high
accuracy. However, it has not been widely used for estimating DSR.

The objective of this study is to use a machine learning method, the GBRT, to obtain high accuracy
DSR estimates from remote sensing and surface observed data under both clear and cloudy sky
conditions in China. Moreover, this study aims to compare the DSR estimates from the GBRT with
estimated values from classical ANN and existing remote sensing and reanalysis data.

The paper is organized as follows: Section 2 provides a brief introduction to the ground
measurement and remote sensing data used. Section 2 also describes the methods used. Section 3
presents the results and an analysis. The conclusions are presented in Section 4.

2. Materials and Methods

2.1. Materials

2.1.1. Ground Measurements

The measurements of daily DSR used in this study were supplied by the CMA Meteorological
Information Center. DSR was first measured in 1957, and its measurement was gradually collected
at a total of 122 stations. However, the measurement at some stations have stopped sometime in
the past. In 1994, there were 96 stations remaining to measure DSR. Quality control of the CMA
DSR data was performed before the release; this included a spatial and temporal consistency check
and manual inspection and correction [52]. Previous studies showed that the systematic errors in
radiation measurements due to technical failure and operation-related problems are not rare [53,54].
Hence, a critical quality control procedure was performed to the ground measurements from the CMA
before they were used in this study. The procedure is as described by Zhang [26]. Figure 1 shows
the geographical distributions of the sites from the CMA. For more detailed information about the
radiation data, it is possible to refer to the data description at the website http://data.cma.cn/.

This study used the daily DSR data collected from 96 radiation stations in China from 2001 to
2003. The daily DSR data from 2001 and 2002 were used to train the models, and the daily DSR data
from 2003 was used to validate the model.
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Figure 1. Spatial distribution of the radiation sites provided by the China Meteorological
Administration (CMA) Meteorological Information Center.

2.1.2. Satellite Data

The National Oceanic and Atmospheric Administration (NOAA) Climate Data Records (CDR) of
Visible and Near Infrared Reflectance from the Advanced Very High Resolution Radiometer (AVHRR)
and the NASA Langley Research Center (LaRC) Cloud and Clear Sky Radiation Properties dataset
were used in the paper. The two satellite datasets are from the Advanced Very High Resolution
Radiometer (AVHRR) Global Area Coverage (GAC) Level 1B data, which has been quality controlled.
These were taken from the NOAA-16 sun-synchronous orbit satellite observations provided by the
NOAA CDR program. The NASA LaRC Cloud and Clear Sky Radiation Properties dataset is generated
using the CERES Cloud Mask and Cloud Property Retrieval System (CCPRS) [55]. The NOAA CDR of
Visible and Near Infrared Reflectance from AVHRR was calibrated by a multiple invariant Earth target
calibration approach [56,57]. The NASA LaRC Cloud and Clear Sky Radiation Properties dataset was
generated using algorithms initially designed for application to the Tropical Rainfall Measurement
Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery within the
NASA Clouds and the Earth’s Radiant Energy System (CERES) program [58]. The spatial and temporal
resolution of the dataset is about 4 km at the nadir and one day, respectively. Variables of the radiation
properties dataset include cloud and clear sky pixel detection, cloud optical depth, cloud particle
effective radius, land and sea surface temperature retrieval, shortwave broadband albedo, etc. [58].
Two variables including the calibrated 0.63 micron channel reflectance (channel 1) and the calibrated
0.86 micron channel reflectance (channel 2) were utilized for DSR estimation in this study [59]. Table 1
lists the corresponding information extracted from the AVHRR dataset used in this study.
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Table 1. Input settings of the GBRT-based downward shortwave radiation (DSR) clear and cloudy
sky models.

Inputs Data Model Unit Range

Solar zenith angle Clear and cloudy sky Degrees 0–180
Viewing zenith angle Clear and cloudy sky Degrees 0–90

Relative azimuth angle Clear and cloudy sky Degrees 0–180
Top of atmosphere shortwave broadband albedo Clear and cloudy sky N/A 0–1.5

Reflectance of channel 1 and 2 of AVHRR Clear and cloudy sky Percent 0–12.5
Brightness temperature of channel 4 and 5 of AVHRR Clear and cloudy sky Degrees/Kelvins 160–340

Cloud optical depth Cloudy sky N/A 0–150
Cloud mask Clear and cloudy sky N/A 0–1

2.1.3. DSR Products

The two DSR products, the MERRA and the GEWEX-SRB DSR, were used in the paper.
The MERRA product is a second reanalysis project from NASA for the satellite era (i.e., from
1979 to the present) using an updated new version of the Goddard Earth Observing System Data
Assimilation System Version 5 (GEOS-5) [60]. The spatial resolution of the daily MERRA DSR estimate
is 0.5◦ × 0.667◦. The GEWEX-SRB radiation product from remotely sensed data used here was from
the NASA/GEWEX-SRB shortwave version 3.0. The primary inputs to produce the data include
shortwave and longwave radiances derived from International Satellite Cloud Climatology Project
(ISCCP) pixel-level (DX) data, cloud and surface properties derived from the same source, temperature
and moisture profiles, etc. [61]. The GEWEX-SRB DSR product was provided with a temporal resolution
of 1 day and a spatial resolution of 1◦ from July 1983 to December 2008.

2.2. Methods

2.2.1. Gradient Boosting Regression Tree

The GBRT is a powerful, advanced statistical method widely used in classification and prediction.
Because it does not require making assumptions on the data, it is extensively used in certain fields,
such as in the optimization of recommendation systems [62,63], visual tracking algorithms [64],
and traffic systems [65–68]. The attractiveness of GBRT comes from its ability to deal with the uneven
distribution of data attributes, its lack of limitation for any hypothesis of input data, its better predictive
capacity than a single decision tree, its power to deal with larger data size, and its transparency in
terms of model development.

The GBRT produces competitive, highly robust, and interpretable procedures for both regression
and classification. This was a method first proposed by Friedeman [51]. The core idea of this model
is to generate a strong classifier by constructing an M amount of different weak classifiers through
multiple iterations in order to reach the final combination. Each iteration is designed to improve the
previous result by reducing the residuals of the previous model and establishing a new combination
model in the gradient direction of the residual reduction. To describe the accuracy of the model, a loss
function defined as L(y, F) is introduced. The frequently employed loss functions include squared-error
and absolute error [51]. Suppose that {xi, yi}N

i=1 is the training sample. The x represents explanatory
variables. The y represents the response variable. N is the number of the training sample. Let the
M different individual decisions trees be represented by {h(x; αi)}M

i=1, which is the parameterized
function of the explanatory variables x and is characterized by α = {αm}M

m=1. β is the weight of each
classifier, and α is the classifier parameter. Each tree divides the input space into the number of
independent areas numbered J, as in R1m, . . . , Rjm. Each Rjm has a corresponding predicted value γjm.
If the x-value is in the area Rjm, it means x∈ Rjm and the constant I equals 1. However, the constant
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I = 0. Hence, the function (F(x)), which is an approximation function of the response variable. It can be
written as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

F(x) =
M
∑

m=1
βmh (x; αm)

h(x; αm) =
J

∑
j=1

γjm I (x ∈ Rjm), where I = 1 i f x ∈ Rjm; I = 0, otherwise (1)

The general process of GBRT shown in Figure 2 and more detail of GBRT can be find in
Hastie et al. [69] and Ridgeway [70].

Figure 2. The main procedures of the gradient boosting regression tree (GBRT) method.

The GBRT model can be constructed in three steps: (1) the preparation of the training database,
(2) the architecture design and training phase, and (3) the application of the GBRT method. The next
step is then to divide the data into clear sky and cloudy sky conditions according to the NOAA CDR
of cloud mask data. If the pixel was marked as “cloud” by AVHRR data, it means it is under cloudy
conditions. Otherwise, there is clear sky conditions. The GBRT-based DSR clear and cloudy sky model
were trained using cloud mask data provided by the AVHRR data.

The performance of the DSR estimates was tested using the holdout method, which is a simple
type of cross-validation. The dataset was randomly stratified into two groups, with 80% made part of
the training dataset and 20% made part of the testing dataset. The main procedures are as follows.
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(1) Extracting the TOA radiance from the NOAA CDR of Visible and Near Infrared Reflectance
from AVHRR;

(2) Extracting the cloud properties from the NASA LaRC Cloud and Clear Sky Radiation
Properties dataset;

(3) Training the clear and cloudy sky models. The inputs of the clear sky model include the solar
zenith angle, viewing zenith angle, relative Azimuth angle, TOA shortwave broadband albedo,
reflectance (from channel 1 and 2) of AVHRR, and the brightness temperature (from channel 4
and 5) of AVHRR. The input of the cloudy sky model used the same input variables as the clear
sky model and cloud optical depth;

(4) Configuring the model coefficients. The optimal parameterization scheme was determined by
looping in each parameter threshold. Table 2 shows the parameter setting details to determine the
optimal parameterization for both the clear sky and cloudy sky conditions through the evaluation
results (highest R2 value and lowest bias and RMSE values) of the testing dataset for each loop;

(5) Evaluating against the ground measurements.

Figure 3 shows the flowchart of the proposed GBRT model used in this study.

Table 2. Parameters setting to determine the optimal parameters for the GBRT model.

Parameters Threshold Intervals

The number of iterations 50–300 50
Shrinkage 0.1–1 0.3

The depth of the tree 6–9 1
Sampling rate 0.2–1 0.2

Ground 
measurements

Solar/View 
geometries

TOA 
reflectance

Cloud 
propterises

Generating 
dataset

Validation dataset

Testing model

Cloud 
detection

GBRT-based DSR 
clear sky model

GBRT-based DSR 
cloudy sky model

Training  dataset

 

Figure 3. Flowchart of the GBRT method.

2.2.2. Artificial Neural Networks

ANNs are used as an empirical statistical method in a variety of applications such as classification,
pattern recognition, forecasting, optimization, etc. [71–73]. An ANN model can be any model in which
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the output variables are computed from the input variables using compositions or connections of
basic functions. In this research, a feedforward backpropagation neural network consisting of several
layers of neurons was used. A neuron is a simplified mathematical model of a biological neuron, and a
connection is a unique information transport link from a sending to a receiving neuron. Figure 4 shows
a structural diagram of the ANN used in this study. The ANN model used here consists of three layers
of neurons: input layers, hidden layers, and an output layer. Input {xj}m

j=1 is transmitted through a

connection that multiplies its strength by a weight represented by {wij}k
i=1. This gives the value xiwij,

which is an argument to a transfer function f that yields an output yi.

yi = f (
m

∑
j=1

wijxj) (2)

where i is the index of neuron in the hidden layer and j is the index of inputs to the neural network.
A typical feedforward network trained with a resilient backpropagation algorithm [74,75] is employed
to estimate DSR in this paper.

Figure 4. Artificial neural network (ANN) structure used in this study.

2.3. Constructing the Model

According to the characteristic variables in Table 1, corresponding data was extracted to establish
the training dataset. Daily observed data from the CMA Meteorological Information Center from 2001
and 2002 were used as the response values (true values) of the training dataset. Information from the
AVHRR cloudy and clear sky pixel detection was used to divide the training dataset into a cloudy sky
training dataset and a clear sky training dataset. In addition, the missing values were removed both
from the training and validation dataset.

2.3.1. Constructing the GBRT-Based DSR Model

The key step in building an efficient GBRT model is finding the optimal architecture. Building
the GBRT model in a stage-wise fashion and regenerating the model minimizes the expected value of
a certain loss function. After adding many trees to the model, the fitted model should have a small
training error. However, it is important to remember that the generalization ability does not improve in
direct proportion with the size of the fitted model; if the model is overfitted and possesses an extremely
small error with the training dataset, its generalization ability will be poor. The performance of the
GBRT model is influence by these four parameters as follows: the number of iterations, shrinkage,
the depth of the tree, and the sampling rate [63]. As the number of iterations increases, model
complexity will also increase, leading to poor prediction performance on the test dataset. Determining
the appropriate number of iterations is essential to minimize future risks in prediction. Overfitting
can be avoided by limiting the number of iterations and reducing the contribution of each tree. This
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is also known as shrinkage (or learning rate). There is a tradeoff between the number of iterations
and the learning rate. A lower learning rate value means that the model is more robust but has a
slower computing speed. The size of each tree is called the depth of the tree. The depth of the tree
refers to the number of nodes in a tree. This parameter depends on the number of data points and the
characteristic variables of the data. In theory, if the value of this parameter is too large, the model will
run at a slower rate. The sampling rate is the ratio of the subsample to the total number of training
instances. When set to 0.5, it means that the model randomly collected half the data instances to grow
trees. This will prevent overfitting. This procedure should be used with adjusting the learning rate
and the number of iterations.

In the present case, successive performance testing showed that an architecture of 250 trees with a
tree depth of 6, a sampling rate of 0.6, and a learning rate of 0.1 was optimal to estimate the DSR under
clear sky conditions. These values are 250, 6, 0.8, and 0.1, respectively, under cloudy sky conditions.

Considering that cloud optical depth is related to DSR under cloudy sky conditions, the cloud
optical depth was chosen as the input data for the cloudy sky model. This was different from the input
data used for the clear sky model. Table 1 shows the input data of the GBRT-based DSR model under
clear sky and cloudy sky conditions. The debugging procedure for key parameters such as the number
of trees, the size of each tree, the learning rate, and the subsample ratio was described earlier.

2.3.2. Constructing the ANN-Based DSR Model

The ANN training databases in this study were the same as those used in the GBRT model.
The architecture is mainly defined by the number of layers, the number of neurons in each layer, and the
transition function associated with each neuron. As for other parameters (e.g., initial weighting), details
of these will not be shown in this paper. In the present case, successive performance testing has shown
that an architecture with one hidden layer is sufficient to estimate DSR. The number of nodes in
the input layer was set to nine nodes, and the number of nodes in the output layer was set to one.
After testing, the number of the nodes in the hidden layer was 12 under clear sky conditions and 14
under cloudy sky conditions. The transfer function of the hidden layer was a tan-sigmoid transfer
function, and those of the other two layers were linear functions under both clear sky and cloudy sky
conditions. Theoretically, various sets of functions such as step, linear, and no linear functions could
be used as the transfer function of different layers. However, the tan-sigmoid (for the hidden layer)
and linear (for the input and output layers) types were most commonly used in the literature [71].

3. Results and Analysis

The estimated daily and monthly mean DSR based on the GBRT method were not only evaluated
against ground measurements but also compared with the evaluation results from those estimated
from the ANN-based DSR model. Additionally, the estimated DSR values were also compared with
current existing DSR products from the GEWEX-SRB and the MERRA. The validation results were
shown in terms of bias, RMSE, and correlation coefficient (R2).

3.1. Validation with Ground Measurements

3.1.1. Validation at a Daily Time Scale

The ground measurements at the selected 96 stations collected from CMA in 2003 were compared
to the grid points of the estimated DSR based on the GBRT method. The performance of the GBRT-based
DSR clear sky model using the training dataset and the validation dataset is shown in Figure 5.
As shown in Figure 5, the daily estimated DSR correlates well with ground measurements under
clear sky conditions. The daily DSR estimates under the clear sky conditions for the training dataset
have an overall RMSE value of 19.05 W·m−2 (19.06%), a bias value of 0.00 W·m−2 (2.41%), and an R2

value of 0.92. These values were 27.71 W·m−2 (38.38%), −2.53 W·m−2 (1.37%), and 0.82, respectively,
for the validation dataset. The validation results at a daily time scale demonstrate that the GBRT is
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a practically applicable and effective method for estimating DSR under clear sky conditions using
satellite observations from AVHRR data.

Figure 5. (a) Evaluation results of the training set’s daily estimated DSR based on the GBRT-based clear
sky model against ground measurements in 2001 and 2002. (b) Evaluation results of the validation
set’s daily estimated DSR based on the GBRT-based clear sky model against ground measurements in
2003. The number in the parentheses is the percent bias or root mean square error (RMSE) value.

Figure 6 presents the evaluation results of the GBRT-based DSR cloudy sky model using the
training dataset and the validation dataset. The daily DSR estimates for the training dataset under the
cloudy sky conditions have an overall RMSE value of 33.37 W·m−2 (30.21%), an R2 value of 0.79, and a
bias value of 0.01 W·m−2 (4.74%). These values for the validation dataset were 42.97 W·m−2 (34.57%),
0.64, and −2.83 W·m−2 (1.45%), respectively. The accuracy was slightly lower than that of the clear
sky model, which may be related to the influence of clouds [76].

Figure 6. (a) Evaluation results of the training set’s daily estimated DSR based on the GBRT-based
cloudy sky model against ground measurements in 2001 and 2002. (b) Evaluation results of the
validation set’s daily estimated DSR based on the GBRT-based cloudy sky model against ground
measurements in 2003. The number in the parentheses is the percent bias or RMSE value.

When building the models for DSR estimation, we found that channel 4 and 5 influence the
model accuracy. Figures 7 and 8 show a comparison of the evaluation results without considering
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AVHRR channels 4 and 5 under clear and cloudy sky conditions, respectively. As shown in Figure 7,
the daily DSR estimates without considering these two channels under clear sky conditions of the
training dataset have an overall RMSE value of 26.52 W·m−2 (23.93%), a bias value of −0.26 W·m−2

(3.25%), and an R2 value of 0.85. It can be concluded that the clear sky model yields higher accuracy if
AVHRR channels 4 and 5 are considered. Similar results were also found under cloudy sky conditions.
The daily DSR estimates without considering these two channels under cloudy sky conditions of the
training dataset have an overall RMSE value of 37.52 W·m−2 (31.86%), a bias value of 0.16 W·m−2

(4.66%), and an R2 value of 0.73. A potential reason for this may be the total atmospheric water vapor
effect on DSR estimation, which may be to cause large uncertainties. Previous studies showed that
AVHRR channels 4 and 5 have been widely used to retrieve the total atmospheric water vapor [77,78].

Figure 7. Validation results of the estimated daily DSR based on the GBRT model under clear sky
conditions without considering Advanced Very High Resolution Radiometer (AVHRR) channels 4 and
5 as the input variables. The number in the parentheses is the percent bias or RMSE value.

Figure 8. Validation results of the estimated daily DSR based on the GBRT model without considering
AVHRR channels 4 and 5 as the input variables under cloudy sky conditions. The number in the
parentheses is the percent bias or RMSE value.
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3.1.2. Validation at a Monthly Time Scale

To further show the relative accuracy of the GBRT method, we also validated the estimated
DSR at a monthly time scale. To perform the comparison, monthly DSR estimates were obtained by
averaging the daily DSR data of each month. Figure 9 shows the evaluation results of the training
dataset and validation dataset based on the GBRT model of 2003 at a monthly time scale. The monthly
estimated DSR of the training dataset has an overall RMSE value of 14.22 W·m−2 (12.50%), a bias
value of −0.30 W·m−2 (2.04%), and an R2 value of 0.94. These values were 15.40 W·m−2 (12.93%),
−2.25 W·m−2 (1.01%), and 0.92, respectively, for the validation dataset. Like the validation results
at a daily time scale, the validation results at a monthly time scale showed that the GBRT model is
reasonably accurate.

Figure 9. (a) Evaluation results of the training set’s estimated monthly mean DSR based on the
GBRT-based DSR model against ground measurements in 2001 and 2002. (b) Evaluation results of the
validation set’s estimated monthly mean DSR based on the GBRT-based DSR model against ground
measurements in 2003. The number in the parentheses is the percent bias or RMSE value.

3.2. Comparison with the ANN-Based Method

3.2.1. Validation at a Daily Time Scale

Figure 10a,b shows the evaluation results of the estimated daily DSR of the training and the
validation dataset based on the ANN-based DSR model under clear sky and cloudy sky conditions.
The daily DSR estimates based on the ANN-based clear sky model of the training dataset have an
overall RMSE value of 26.53 W·m−2 (41.84%) and a bias value of −0.09 W·m−2 (0%). These values were
27.15 W·m−2 (46.07%) and −3.67 W·m−2 (1.60%), respectively, for the validation dataset. Although the
RMSE of the estimated daily DSR of the validation dataset was slightly lower than that of the GBRT
model, the mean absolute bias of the ANN-based model was 3.67 W·m−2 (1.60%), which is larger than
that of the GBRT model (2.53 W·m−2 (1.37%)) (Table 3). The evaluation results of the ANN-based
cloudy sky model are shown in Figure 11. The daily DSR estimates based on the training dataset’s
ANN cloudy sky DSR model have an overall RMSE value of 42.07 W·m−2 (33.99%) and a bias value of
0.17 W·m−2 (3.13%). These values were 42.39 W·m−2 (34.50%) and −4.35 W·m−2 (0.17%), respectively,
for the validation dataset. According to the comparison results shown in Figures 10 and 11 and Table 3,
it was clear that the predictive abilities of the GBRT model are better than the ANN model at a daily
time scale.
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Figure 10. (a) Evaluation results of the training dataset’s daily estimated DSR based on the ANN-based
clear sky model against ground measurements in 2001 and 2002. (b) Evaluation results of the validation
dataset’s daily estimated DSR based on the ANN-based clear sky model against ground measurements
in 2003. The number in the parentheses is the RMSE value.

Figure 11. (a) Evaluation results of the training dataset’s daily estimated DSR based on the ANN-based
cloudy sky model against ground measurements in 2001 and 2002. (b) Evaluation results of the
validation dataset’s daily estimated DSR based on the ANN-based cloudy sky model against ground
measurements in 2003. The number in the parentheses is the percent bias or RMSE value.

Table 3. Comparison of the results of the ANN and GBRT models at a daily time scale (using
measurements from 2001 and 2002 as the training dataset and measurements from 2003 as the validation
dataset). The number in the parentheses is the percent bias or RMSE value.

Sky Condition Dataset Method R2 RMSE (W·m−2) Bias (W·m−2)

Clear sky
Training set GBRT 0.92 19.05 (19.06%) 0 (2.41%)

ANN 0.85 26.53 (41.84%) −0.09 (0%)

Validation set
GBRT 0.82 27.71 (38.38%) −2.53 (1.37%)
ANN 0.83 27.15 (46.07%) −3.67 (1.60%)

Cloudy sky
Training set GBRT 0.79 33.37 (30.21%) 0.01 (4.74%)

ANN 0.66 42.07 (33.99%) 0.17 (3.13%)

Validation set
GBRT 0.64 42.97 (34.57%) −2.83 (1.45%)
ANN 0.65 42.39 (34.50%) −4.35 (0.17%)
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3.2.2. Validation at a Monthly Time Scale

Similar to what we did with the GBRT model, we also validated the estimated DSR at a monthly
time scale to further show the accuracy of the ANN method. To perform the comparison, monthly DSR
estimates were calculated by averaging the daily DSR of each month. Figure 12a shows the evaluation
results of the training dataset based on the ANN-based DSR model in 2003 at a monthly time scale.
The R2 was 0.88, which was lower than that of GBRT model. The RMSE was 18.95 W·m−2 (15.81%)
larger than that of GBRT model. The evaluation results of the validation dataset’s monthly estimated
DSR based on the ANN-based DSR model is shown in Figure 12b. The R2 was 0.87, and the RMSE was
20.05 W·m−2 (16.20%). As in the evaluation results at a daily time scale, it is obvious that the GBRT
model performs better than the ANN model at a monthly time scale.

Figure 12. (a) Evaluation results of the training set’s estimated monthly mean DSR based on the
ANN-based DSR model against ground measurements in 2001 and 2002. (b) Evaluation results of the
validation set’s estimated monthly mean DSR based on the ANN-based DSR model against ground
measurements in 2003. The number in the parentheses is the percent bias or RMSE value.

Although the DSR estimates based on the GBRT model at both daily and monthly time scales were
relatively higher accuracy than those from the ANN-based model, the machine learning methods including
GBRT and ANN are sensitive to the choice of parameters. Therefore, the parameters chosen for these two
machine learning methods may influence the accuracy of the DSR estimates. In this study, the optimal
parameterization scheme was determined by looping in each parameter threshold. Advanced methods for
deriving the optimal parameters for both GBRT and ANN should be tested in the future.

3.3. Comparison with Existing DSR Products

3.3.1. Mapping DSR over China

To demonstrate the applicability of the GBRT-based DSR model for regional mapping, the surface
monthly mean DSR was estimated based on the GBRT method in the mainland of China in March
2003. Figure 13a shows the estimated results for monthly DSR in March 2003. The GEWEX-SRB and
MERRA monthly DSR for the same month are also shown in Figure 13b,c for comparison. According
to these three figures, it can be concluded that the spatial distribution of estimated DSR based on
the GBRT method is similar to that from the GEWEX-SRB. However, large discrepancies occurred in
the comparison with the MERRA. Moreover, the DSR estimates from the GBRT model provide more
details compared to the other two existing DSR products.

Figure 13d,e shows the differences between the monthly mean DSR estimates from the GBRT
model and those from the GEWEX-SRB and the MERRA, respectively. Before comparison, the DSR
estimates from the GBRT model and the MERRA were projected onto a 1◦ spatial resolution using
bilinear interpolation to match the resolution of the GEWEX-SRB data. As shown in the Figure 13, the
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differences between the GBRT-based DSR estimates and the GEWEX-SRB DSR product were smaller
than that between the GBRT-based DSR estimates and the MERRA DSR product. The maximum
differences between the GBRT-based DSR estimates and the GEWEX-SRB DSR product were found
in the Tibetan Plateau. The maximum differences between the GBRT-based DSR estimates and the
MERRA DSR product were found in southeast China, which were greater than 100 W·m−2 at some
areas. The large discrepancies in the Tibetan Plateau may be related to the high elevation of the area.
Yang et al. [32] pointed out that the discrepancies among the satellite products were always larger in
highly variable terrain and smaller for non-variable terrain. The large differences in southeast China
were probably due to inappropriate representation of aerosols and clouds, as well as their interactions
with the algorithms used for this region [79,80]. In this area, heavy pollution is occurring due to rapid
economic development and high population density. However, the DSR comparison of the GBRT
model and current existing products were only performed for one month. This may also cause large
uncertainties. Therefore, further investigations should be conducted for DSR estimation in the future if
long-term DSR estimates are generated based on the GBRT method.

Figure 13. The spatial distribution of the DSR estimates from (a) the GBRT model, (b) the GEWEX-SRB,
and (c) the MERRA in March 2003. (d) The differences between monthly mean DSR estimates of the
GEWEX-SRB and the GBRT model (i.e., the GEWEX-SRB estimates minus the GBRT-based estimates)
in March 2003. (e) The differences between monthly mean DSR estimates of the MERRA and the GBRT
model (i.e., the MERRA estimates minus the GBRT-based estimates) in March 2003.
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3.3.2. Validation with Ground Measurements

To further show the accuracy of the DSR estimates based on the GBRT method, we also compared
the evaluation results of the GBRT-based daily estimated DSR against ground measurements from
CMA in 2003 with those of current existing DSR products from the GEWEX-SRB and the MERRA.
As shown in Figure 14, the daily estimated DSR based on the GBRT method correlates very well
with the ground measurements, with an RMSE value of 31.65 W·m−2 (21.34%) and a bias value of
0.86 W·m−2 (1.50%). These values were 40.82 W·m−2 (30.93%) and 27.39 W·m−2 (17.86%), respectively,
for the GEWEX-SRB-based estimates, and 74.2 W·m−2 (39.40%) and 57.27 W·m−2 (30.06%), respectively,
for the MERRA-based estimates. It was obvious that the evaluation results of the GBRT-based DSR
model were better than those of the other two products. However, the spatial representativeness of
ground measurements is a potential error source for DSR evaluation.

Figure 14. Scatter plots comparing the results from (a) the GBRT-based DSR model, as well as the DSR
products (b) the Global Energy and Water Cycle Experiment-Surface Radiation Budget (GEWEX-SRB)
and (c) Modern-Era Retrospective analysis for Research and Applications (MERRA) against ground
measurements in 2003. The number in the parentheses is the percent bias or RMSE value.

As pointed out by Hakuba et al. [81], the monthly and annual mean representation error at the
surface sites with respect to their 1◦ surroundings are, on average, 3.7% (4 W·m−2) and 2% (3 W·m−2),
respectively. The DSR estimates from the GBRT model and current existing radiation products have
different spatial resolutions. Therefore, the regional dependence of errors of coarse-resolution satellite
products for complex terrain may cause large discrepancies.

4. Conclusions

DSR is an essential parameter in the terrestrial radiation budget and a necessary input for
land-surface process models. Although several radiation products using satellite observations have
been released, their coarse spatial resolution and low accuracy limit their application. Therefore, high
spatio-temporal resolution and high accuracy DSR is still required for many applications. To achieve
this goal, a fast, accurate, and robust GBRT method that has the ability to handle different types of input
variables and model complex relations was developed to estimate DSR using satellite observations
from AVHRR.

The estimated DSR was evaluated using the ground measurements from CMA and was compared
with one remote sensing DSR product (the GEWEX-SRB) and one reanalysis DSR product (the MERRA).
The daily estimated DSR had an overall R2 value of 0.82, an RMSE of 27.71 W·m−2 (38.38%), and a
bias of −2.53 W·m−2 (1.37%) under clear sky conditions, and an R2 of 0.64, an RMSE of 42.97 W·m−2

(34.57%), and a bias of −2.83 W·m−2 (1.45%) under cloudy sky conditions. Comparison of the DSR
estimates with the reanalyzed and the retrieved DSR values from satellite observation showed that the
estimated DSR values are reasonably accurate but with higher spatial resolution. However, the DSR
comparison of the GBRT model and current existing products was only performed for one month,
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which may cause large uncertainties. Beside this, measurement errors (e.g., instrument sensitivity,
drift, and urbanization effects) and spatial representativeness of surface measurements are potential
sources of error in DSR estimation [81]. Therefore, further investigations should be conducted for DSR
estimation in the future if long-term DSR estimates are generated based on the GBRT method.

The strengths of GBRT are accuracy, speed, and robustness [51]. To show the advantages of GBRT,
an ANN model was built. The results were compared between the GBRT-based DSR model and the
ANN-based DSR model under clear and cloudy sky conditions, as shown in Section 3.2. The daily
validation analysis showed that the maximum RMSE for GBRT-based and ANN-based clear sky model
was less than 28 W·m−2, but the bias of the GBRT-based clear sky model (−2.53 W·m−2) was less
than that of the ANN-based clear sky model (−3.67 W·m−2). Similar results were also found for the
cloudy sky model. The ANN has two known disadvantages: it needs a relatively long processing
time to train a model with many input variables, and it behaves unpredictably when overestimation
occurs during the training stage [82]. In contrast, the GBRT was evaluated as a promising machine
learning approach in terms of processing speed and accuracy. All experiments were conducted on
a Windows 7 Intel(R) Core(TM) i7-6700 CPU, 3.4 GHz, 20.00 GB RAM processor. The means for the
elapsed time of completion of the GBRT clear sky model and the GBRT cloudy sky model were within
10 seconds. Therefore, we conclude that the GBRT method performs better than the ANN method for
DSR estimation in this study. As it is well known, the mechanisms of machine learning methods are
often considered to be black boxes, and the training procedure is sensitive to the choice of parameters.
These limitations may influence the accuracy of the DSR estimates.

The contributions of this study demonstrate that the GBRT is efficient and practical for estimating
DSR using remote sensing and ground observation data. Simultaneously, this method has a very good
development procedure for defining training data and generating parameters. The method also has
more extensive applicability than other current methods. The proposed GBRT-based method can also
be used for the retrieval of other land surface variables.
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Abstract: Incoming surface solar irradiance (SSI) is essential for calculating Earth’s surface radiation
budget and is a key parameter for terrestrial ecological modeling and climate change research.
Remote sensing images from geostationary and polar-orbiting satellites provide an opportunity for
SSI estimation through directly retrieving atmospheric and land-surface parameters. This paper
presents a new scheme for estimating SSI from the visible and infrared channels of geostationary
meteorological and polar-orbiting satellite data. Aerosol optical thickness and cloud microphysical
parameters were retrieved from Geostationary Operational Environmental Satellite (GOES) system
images by interpolating lookup tables of clear and cloudy skies, respectively. SSI was estimated
using pre-calculated offline lookup tables with different atmospheric input data of clear and cloudy
skies. The lookup tables were created via the comprehensive radiative transfer model, Santa Barbara
Discrete Ordinate Radiative Transfer (SBDART), to balance computational efficiency and accuracy.
The atmospheric attenuation effects considered in our approach were water vapor absorption and
aerosol extinction for clear skies, while cloud parameters were the only atmospheric input for
cloudy-sky SSI estimation. The approach was validated using one-year pyranometer measurements
from seven stations in the SURFRAD (SURFace RADiation budget network). The results of the
comparison for 2012 showed that the estimated SSI agreed with ground measurements with
correlation coefficients of 0.94, 0.69, and 0.89 with a bias of 26.4 W/m2, −5.9 W/m2, and 14.9 W/m2

for clear-sky, cloudy-sky, and all-sky conditions, respectively. The overall root mean square error
(RMSE) of instantaneous SSI was 80.0 W/m2 (16.8%), 127.6 W/m2 (55.1%), and 99.5 W/m2 (25.5%)
for clear-sky, cloudy-sky (overcast sky and partly cloudy sky), and all-sky (clear-sky and cloudy-sky)
conditions, respectively. A comparison with other state-of-the-art studies suggests that our proposed
method can successfully estimate SSI with a maximum improvement of an RMSE of 24 W/m2.
The clear-sky SSI retrieval was sensitive to aerosol optical thickness, which was largely dependent
on the diurnal surface reflectance accuracy. Uncertainty in the pre-defined horizontal visibility for
‘clearest sky’ will eventually lead to considerable SSI retrieval error. Compared to cloud effective
radius, the retrieval error of cloud optical thickness was a primary factor that determined the SSI
estimation accuracy for cloudy skies. Our proposed method can be used to estimate SSI for clear and
one-layer cloud sky, but is not suitable for multi-layer clouds overlap conditions as a lower-level cloud
cannot be detected by the optical sensor when a higher-level cloud has a higher optical thickness.
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1. Introduction

Surface Solar Irradiance (SSI) is commonly referred to as the amount of downward solar energy
incident to a horizontal surface, and is a major component of the surface energy balance that governs
the exchange processes of energy between Earth’s land surface and atmosphere [1,2]. SSI is required
by land-surface models, hydrological models, and ecological models to simulate land–atmosphere
interactions [3,4]. Accurate observation and estimation of global energy spatial-temporal distribution
is essential for climate change monitoring and forecasting [5].

A non-uniform spatial and temporal distribution of SSI has large effects on regional and global
climates. However, sparse networks of ground SSI measurements are insufficient for modeling
land-surface processes and Earth radiation budget research. Furthermore, fewer surface stations
are located in mountainous areas, yet SSI is highly dependent on topography and features larger
temporal and spatial variations than horizontal surfaces [6]. Numerous attempts have been made
at estimating SSI from satellite data on local or regional scales with multi-scale temporal resolutions
in order to overcome the limitations of in situ records [7–15]. Perez et al. (1997) demonstrated that
satellite-derived irradiation is more accurate compared to interpolation techniques obtained from
station measurements if the distance from the station exceeds 34 km for hourly irradiation and 50 km
for daily irradiances [16].

Global SSI datasets have been available since the 1990s at different spatiotemporal resolutions
based on multi-source remotely sensed data. These include the International Satellite Cloud
Climatology Project (ISCCP) [17], the Earth Radiation Budget Experiment (ERBE) [18], the National
Centers for Environmental Prediction and National Center for Atmospheric Research Reanalysis
Project [19], the Global Energy and Water Cycle Experiment Surface Radiation Budget (GEWEX-SRB),
the Clouds and the Earth’s Radiant Energy System (CERES) [20], Satellite Application Facility on
Climate Monitoring Solar Surface Radiation Heliosat (CM SAF SARAH) [21], and Global Land
Surface Satellite (GLASS) products [22]. The above satellites and their parameter-based meteorological
products provide long-term, multiple time-scale global SSI data, but are generally associated with
coarser spatial resolutions (e.g., >1◦), excluding GLASS and CM SAF SARAH, which have a 5-km
resolution and bias estimation. The majority of these products cannot meet the requirements for
studying land-surface processes and fail to describe the spatial changes with sufficient accuracy due to
their coarse spatial resolutions [14]. Zhang et al. (2015) evaluated four products using 1151 ground
sites and found that SSI was generally overestimated by approximately 10 W/m2, while the averaged
global annual mean SSI from the ground-measured-calibrated value was 180.6 W/m2 [23]. Differences
range from 10 to 30 W/m2, with maximum discrepancies in areas of high cloud cover in the tropics
between the ISCCP and ERBE datasets [24]. These differences may be partly due to spatial resolution;
in fact, Pinker and Laszlo found an average difference of about 8–9% in daily surface irradiance when
adjusting the resolution from 8 to 50 km [25]. Another possible explanation for the bias found in these
products can be attributed to the cloud fractional cover and aerosol optical depth [6].

Satellite-based SSI products are useful for historical global SSI analysis, while the general
circulation model (GCM) and the numerical weather prediction (NWP) model can be used to estimate
SSI at timespans ranging from days to decades using projection scenarios of emissions and land use.
The errors obtained from NWP models are generally less than 50 W/m2 or exceed 200 W/m2 for
clear-sky and cloudy-sky conditions, respectively [26]. Lara-Fanego et al. (2012) found the forecast
errors produced by Weather Research and Forecasting (WRF) to be 2% under clear-sky conditions and
18% for cloudy skies [27]. Due to the coarse resolution of most WRF models and the GCM, detailed
cloud properties and Earth’s energy budget have not been clearly demonstrated. Accurately estimated
“kilometer-level” SSI datasets are necessary to overcome the limitations of cloud representations in the
climate model.

Besides “single point” ground observations and “kilometer-level” SSI datasets, SSI can be
directly retrieved using the relationship between SSI and the top-of-atmosphere (TOA) radiance
measured by satellite sensors [4,11,28] or indirectly retrieved through rigorous radiative transfer
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models (RTMs). However, RTMs are disadvantageous since they are generally time-consuming
and require a substantial amount of unavailable detailed atmospheric profile data, and are thus not
convenient for applications to large areas with a fine-resolution grid. Semi-empirical models have been
developed that contain meteorological variable inputs and feature a parameterized hybrid model with
simplified atmospheric transmittance. Some of these models include the pre-computed lookup tables
(LUT) method based on RTMs, which has a reduced computational time at the expense of accuracy.
These studies considered the extinction and absorption of solar radiation caused by aerosols, water
vapor (PW), ozone, and clouds [4,7,14,29].

SSI estimation under cloudy skies is much more complex compared to clear-sky models.
The performance of physical SSI models under cloudy skies is largely dominated by cloud
macrophysical and microphysical properties, such as cloud fractional cover (CFC), cloud optical
thickness (COT), and cloud effective particle radius (ER) with high variability in space and time [30,31].
The Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites
provides detailed and consistent atmospheric, terrestrial, and oceanic products, and studies have
been developed for SSI mapping from pairs of MODIS products [2,32]. Barzin et al. (2017) proposed
a combination of principal components analysis (PCA) and regression models for estimating daily
average downward solar radiation using MODIS data for ten synoptic stations in Fars Province, Iran,
with a root mean square error (RMSE) of 0.9–2.04 MJ/(m2·d) [33]. The largest uncertainties resulting
from SSI retrieval arise from inadequate information on cloud properties. Many studies have taken
advantage of the fine spatial resolution and higher temporal resolution (5–30 min) of geostationary
satellites to derive inhomogeneous and rapidly changing atmospheric parameters. The HELIOSAT
algorithm uses a simplified parameterization for cloud transmission, also denoted the cloud index,
derived from geostationary satellite measurements and a clear-sky model to calculate sky SSI [34].
Newly improved HELIOSAT-based models have been proposed [35]. An Artificial Neural Network
(ANN) can be used to predict SSI simulation from meteorological parameters and satellite images
using training data [12,36]. Few studies have focused on SSI estimation for different cloud phases
despite the thermodynamic effects of cloud processes being significantly different [14].

The bispectral solar reflectance method has been widely used for retrieving COT and ER from
passive satellite multispectral imagers [37]. It has been employed in cloud property retrieval for
MODIS [38], the Advanced Very High Resolution Radiometer (AVHRR) [39], and the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) [40]. However, the passive optical remote-sensing-based pixel-level
COT retrieval uncertainty will be larger than 10% for clouds having COT >70 (MODIS cloud optical
properties product Algorithm Theoretical Basis Document for collection 6, MOD06/MYD06-ATBD. See
details from https://modis-atmos.gsfc.nasa.gov/sites/default/files/ModAtmo/C6MOD06OPUser-
Guide.pdf). The millimeter-wavelength cloud-profiling radar (CPR) on CloudSat and the cloud-aerosol
lidar with orthogonal polarization (CALIOP) on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation (CALIPSO) provides an opportunity for detailing the structures of clouds, but the temporal
resolution of them is too low to monitor the rapid changes of clouds.

This paper presents a lookup-table-based method for all-sky SSI retrieval from combined
polar-orbiting and geostationary satellites with rapid retrieval of changing cloud micro-physical
properties. The cloud properties retrieval was based on an assumption of a homogeneous one-layer
cloud model, and the method is valid for pixels with a solar zenith angle less than 81.4 to better
match the “daylight” region as referenced by MOD06/MYD06-ATBD. The SSI estimation approach we
proposed should be applicable to clear sky and cloudy sky having COT <70 with less COT retrieval
uncertainty as indicated by MOD06/MYD06-ATBD. This paper is organized as follows: Section 2
describes our method and the datasets used in our study to estimate SSI. Validation and a comparison
of the results are provided in Sections 3 and 4. Conclusions are provided in Section 5.

The variations in cloud vertical structures and morphology affect the atmospheric circulation,
radiation budget, and satellite-retrieved cloud properties. Most of the sensor-received radiance came
from the top of cloud for conditions in which upper optical thick cloud overlaps the lower optical
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thin cloud. The maximum difference of sensor-received radiance and surface-received radiance is
about 4 W/m2 (7%) and 75 W/m2 (60%) for upper cloud having COT of 70 when lower cloud COT
changes from 1 to 100 (Figures 1 and 2. Sensor and surface-received radiance were estimated using
the following parameters: solar zenith angle is 30◦, surface albedo is 0.2, cloud phase is water cloud,
upper cloud top height is 8 km, upper cloud base height is 6 km, lower cloud top height is 3 km, lower
cloud base height is 1 km, cloud particle effective radius is 6 μm). For upper cloud having higher COT,
lower-level cloud has a minor impact on satellite-retrieved cloud properties but a larger impact on SSI.
Our proposed method for SSI estimation is suitable for one-layer cloud sky, and larger errors may be
introduced for multi-layer clouds overlap conditions.

 

Figure 1. Estimated sensor-received radiance for multi-layer clouds overlap conditions.

 

Figure 2. Estimated surface-received radiance for multi-layer clouds overlap conditions.

2. Materials and Methods

2.1. Materials

2.1.1. Geostationary Images

The data used in this study was acquired from the third-generation GOES-13 (Geostationary
Operational Environmental Satellite System) satellite operated by the national environmental satellite,
data, and information service of the National Oceanic and Atmospheric Administration (NOAA).
GOES-13 was used for weather forecasting, severe storm tracking, and meteorology research. GOES-13
was launched on 24 May 2006, and is positioned at 75◦W, 35,786 km over the Equator. The imager
on-board GOES-13 scans Earth’s surface every 30 min and provides five spectral channels. The nadir
spatial resolution is 1 km for the visible channel (0.65 μm), 4 km for three thermal infrared channels

148



Remote Sens. 2018, 10, 411

(3.9 μm, 6.48 μm, and 10.7 μm), and 8 km for channel 6 (13.3 μm). Details can be seen from
http://www.ssec.wisc.edu/datacenter/standard_GOES8-15.html, and data can be downloaded freely
from http://www.class.ncdc.noaa.gov/saa/products/welcome.

2.1.2. Ancillary Input Data

The MCD43D (V006) surface albedo product derived from the combined Terra and Aqua satellites
was used in this study. The bidirectional reflectance distribution function (BRDF) was estimated from
all cloud-free observations during a 16-day period. The MCD43D product incorporates the Climate
Modeling Grid (CMG) structure and the pixel resolution is 1000 m. The broadband (0.2–4.0 μm) surface
albedo for clear skies was calculated as the interpolation between the white-sky and black-sky albedo
values dependent on the aerosol optical depth and solar zenith. Only the white-sky albedo product
was used for cloudy skies due to minor differences discovered when introducing black-sky albedo for
direct beam reflection [41].

The NCEP Climate Forecast System Reanalysis (CFSR) data created using the National Centers
for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) (https://rda.ucar.
edu/datasets/ds094.1/#!description) was used in our study. The files in this dataset were grouped by
month. The grid spacing was 0.205~0.204◦ from 0◦E to 359.795◦E, and 89.843◦N to 89.843◦S (1760 × 880
Longitude/Gaussian Latitude) [42]. Ground surface temperature was selected to be an ancillary input
for the cloud effective radius retrieval method for the GEOS-13 infrared channel. The precipitable water
of the entire atmosphere was selected to drive the SSI retrieval algorithm, since the 12.0-μm channel
was replaced by a 13.3-μm channel. Furthermore, the GOES-13 satellite and the retrieval of precipitable
water from the “split window” method (using channels 11.0 μm and 12.0 μm) was inapplicable.

The global 1-km Shuttle Radar Topography Mission with 30 arc-second resolution data (SRTM30)
was used to represent the surface elevation (http://vterrain.org/Elevation/SRTM/) required for the
retrieval of SSI.

2.1.3. Pyranometer Data for Validation

The Surface Radiation Budget Network (SURFRAD) was established in 1993 with the support
of NOAA’s Office of Global Programs. Its primary mission was to support climate research
using accurate, continuous, and long-term measurements of the surface radiation budget over
the United States. Seven SURFRAD stations are currently operating in climatologically diverse
regions in the United States, including Fort Peck, Montana (FPK), Table Mountain, Colorado (TBL),
Bondville, Illinois (BON), Goodwin Creek, Mississippi (GWN), Penn State, Pennsylvania (PSU),
Desert Rock, Nevada (DRA), and Sioux Falls, South Dakota (SXF). The downwelling global solar
irradiance (0.28–3 μm) is measured by a pyranometer (model SpectroSun SR-75) with reported
uncertainties of ±2% to ±5% [43]. SURFRAD data are provided daily with a sample rate of 1 min
(https://www.esrl.noaa.gov/gmd/grad/surfrad/). The maintenance and quality control of these
measurements follow World Meteorological Organization (WMO) standards.

2.2. Methods

SSI is retrievable by assuming a homogeneous and plane-parallel atmospheric layer without
considering the three-dimensional effects. The discrimination of clear and cloudy conditions was
implemented by a cloud detection procedure, and the cloud thermodynamic phase was retrieved
using IR channels. The cloud parameters (cloud optical thickness and effective particle radius) were
inversed from the visible channel and IR channels based on the previous work of Nakajima [37,39].
SSI was estimated using a LUT-based method with the atmospheric and land-surface parameters
derived above. The proposed SSI retrieval scheme is given in Figure 3. Clear and cloudy skies were
first labeled using the cloud detection procedure. Aerosol optical depth (AOD) and precipitable water
were retrieved for clear skies and cloud microphysical parameters were derived for cloudy skies using
the pre-calculated LUT. SSI was calculated using the LUT for both clear and cloudy skies. Cloud
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detection is briefly described in Section 2.2.1. The details for retrieving AOD and cloud microphysical
parameters are described in Sections 2.2.2 and 2.2.3.

 

Figure 3. Flow chart of surface solar irradiance (SSI) retrieval from geostationary and polar-orbiting
satellite data. MODIS: Moderate Resolution Imaging Spectroradiometer; GOES: Geostationary
Operational Environmental Satellite; NCEP CFSR: National Centers for Environmental Prediction
Climate Forecast System Reanalysis; LUT: lookup table; AOD: aerosol optical density; DEM: digital
elevation model.

2.2.1. Pre-Processing the Images

Surface reflectance can be estimated from the visible band’s at-sensor spectral radiance under
clear-sky conditions through atmospheric radiative transfer models, such as the Santa Barbara DISORT
Atmospheric Radiative Transfer (SBDART) [44]. The top-of-atmosphere reflectance is converted
into surface reflectance given the solar-sensor geostationary viewing geometry, Rayleigh scattering,
well-mixed gaseous absorption, ozone and water vapor absorption, and aerosol extinction through
atmospheric correction. An aerosol visibility of 100 km and a rural model is used to represent clear
atmospheric conditions. The water vapor and other trace gases are initialized with the default values
of the SBDART model. Surface reflectance is determined by the minimum reflectance retrieved from
the visible band taken at the same local time per daylight hour over a temporal period of one month
for cloud-free detection due to the difficulty of discriminating the “clearest” atmospheric conditions.
Details of the proposal have been discussed by Liang et al. (2006) [28] and Zhang et al. (2014) [4]. A 30◦

threshold on the glint cone angle was applied to avoid sun-glint affecting water surfaces, and a lower
reflectance threshold of 0.005 was applied for the land surface to exclude cloud shadow pixels [45].

Cloud detection was performed pixel-by-pixel using the coupled Cloud Depiction and Forecast
System model using the reflectance of visible bands and the brightness temperature of infrared
bands [46]. This procedure incorporated temporal differencing, dynamic thresholding, and spectral
discrimination to detect clouds with the appropriate optical thickness.
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2.2.2. Aerosol Optical Depth Estimation

Aerosol plays a key role in Earth’s radiation budget by scattering and absorbing solar and
terrestrial radiation. The single broadband visible channel of most geostationary satellites is not
sufficient to retrieve the aerosol size and single scattering albedo, although they are important for
radiation extinction. The AOD was retrieved using the visible band of GOES with a pre-calculated LUT.
The dimensions of the LUT are summarized in Table 1. The rural type was defined as incorporated
in the SBDART radiative transfer code with a single scattering albedo at 0.55 μm of 0.9558 and
an asymmetry factor of 0.6891. The standard atmospheric profile of the midlatitude summer model
was used as the default.

Table 1. LUT dimensions for AOD retrieval.

Input Variable Value Range Increment

Solar zenith angle 0–89◦ 5◦
Viewing zenith angle 0–89◦ 5◦

Relative azimuth angle 0–180◦ 30◦
Aerosol horizontal visibility 5, 10, 20, 30, 40, 50, 70, 100 km -

Aerosol type Rural -
Water vapor 0.01–5.0 g/cm2 0.5

Surface altitude 0–6 km 1 km
Surface reflectance 0–1.0 0.1

The LUT was pre-generated using the SBDART model for a range of discrete atmospheric
and land-surface values to improve the calculation efficiency without reducing accuracy. SBDART
was numerically integrated with Discrete Ordinate Radiative Transfer (DISORT), which assumes
a plane-parallel radiative transfer in a vertically inhomogeneous atmosphere. The number of streams
for radiance computations was 20 for the zenith angle and azimuth angle. The surface reflectance
and cloud mask was determined for each pixel as described in Section 2.2.1. Aerosol horizontal
visibility (VIS) was computed for every cloud-free pixel using the rural aerosol model and the
given solar position, satellite position, amount of water vapor, and surface altitude. A linear
interpolation of the lookup table entries to the actual aerosol visibility was used in this study.
Once the VIS was known, the AOD (at 550 nm) was estimated using the following equation [44]
(http://www.ncgia.ucsb.edu/projects/metadata/standard/uses/sbdart.htm):

AOD(0.55μm) = 3.912 × 1.05 × W + 1.51 × (1 − W)

VIS
(1)

where W is a weighting factor, which is a piecewise function depending on the value of VIS and is
given by the following equation:⎧⎪⎨⎪⎩

W =
(

1/VIS−1/23
1/5−1/23

)
, 5 < VIS < 23

W = 1, VIS < 5
W = 0, VIS > 23

(2)

2.2.3. Retrieving Cloud Microphysical Properties

The cloud thermodynamic phase, cloud optical thickness (COT), and effective particle radius were
used to describe the radiative properties of clouds in the solar spectral region. The thermodynamic
phases of the cloud were classified as: water clouds, ice clouds, mixed clouds, and undetected clouds
following the cloud phase determination proposed by Choi et al. (2007) [47]. The retrieval method
was based on the theory that cloud reflectance at non-absorbing wavelengths of the visible band is
strongly related to COT, while the reflection at the absorbing wavelengths of the near infrared bands is
primarily a function of ER [37]. In this study, the visible channel was used to derive COT and the IR3.9
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channel was chosen to obtain ER. The radiance received by the sensor at 3.9 μm (Lobs
3.9 ) was composed

of solar reflection, cloud thermal radiance, and ground thermal radiance for thin clouds. The radiance
for 0.65 μm and 3.9 μm is given simply as follows:

Lobs
0.65 = Lcloud

0.65 + Lsr
0.65 (3)

Lobs
3.9 = Lcloud

3.9 + Lsr
3.9 + Lth(cloud)

3.9 + Lth(sr)
3.9 (4)

where Lcloud
0.65 and Lcloud

3.9 are the cloud-reflected radiance at the VIS and IR3.9 channels, respectively,

Lsr
0.65 and Lsr

3.9 are the ground-reflected radiance at the VIS and IR3.9 channels, respectively. Lth(cloud)
3.9

and Lth(sr)
3.9 are the cloud and ground thermal radiance, respectively. Lsr

3.9 and Lth(sr)
3.9 were assumed to

be 0 for thick clouds (COT >16). Lsr
3.9 and Lth(sr)

3.9 were simulated based on the Planck function of ground
temperature (Tg) and cloud-top temperature (Tc) to remove the thermal effects of ER retrieval for thin
clouds (COT <16). Tg data were derived from the NCEP-CFSv2 dataset, and Tc was approximated by
the cloud-top brightness temperature given by the IR channel at 10.7 μm.

COT and ER were retrieved using LUTs generated from the SBDART one-dimensional radiative
transfer code. The LUTs were calculated for different values of COT, ER, solar zenith angle,
satellite viewing angle, relative azimuth angle, surface albedo, surface temperature, and cloud-top
temperature using the different spectral response functions of the visible and infrared bands (Table 2).
These calculations were carried out under the following assumptions: (1) there is only one single layer
of clouds for every pixel, (2) the clouds are homogeneous, plane-parallel, and cover the whole pixel,
and (3) ice clouds are composed of spherical particles. COT and ER were assigned to be the average
value of water and ice clouds for mixed-phase clouds.

Table 2. Characteristics of LUT for the retrieval of cloud microphysical parameters.

Input Variable Value Range Increment

Solar zenith angle 0–89◦ 5◦
Viewing zenith angle 0–89◦ 5◦

Relative azimuth angle 0–180◦ 30◦
COT 0.5, 1, 2, 5, 8, 11, 15, 20, 30, 50, 70, 100 -

ER (μm) Water cloud: 2, 4, 8, 16, 32
Ice cloud: 2, 4, 8, 16, 32, 64 -

Surface albedo 0–1.0 0.1
Surface temperature (K) 280–320 2
Cloud-top temperature 195–300 5

Cloud phase Water, ice -

2.2.4. All-Sky SSI Estimation

SSI was estimated separately for clear and cloudy skies with different input data using AOD
data and cloud physical parameters efficiently derived from geostationary images (as discussed in
Sections 2.2.2 and 2.2.3). CO2 and ozone were set to default values in SSI estimation since they had
a negligible impact. PW and aerosol had a considerable influence on SSI in cloud-free conditions.
Clouds played a dominant role in SSI during cloudy-sky conditions, and PW was set at 2.9 g/cm2 as
defined in the standard atmospheric profile of the midlatitude summer model. Aerosol horizontal
visibility was set to 100 km for the SSI estimation of cloudy skies since AOD was insignificant compared
to clouds and difficult to derive under cloudy conditions.

The all-sky SSI estimation was derived using LUTs generated for clear and cloudy skies.
The common variables used for the LUTs were the solar zenith angle, surface altitude, and surface
albedo. The LUT atmospheric variables for clear skies were PW and aerosol visibility, while the LUT
for cloudy skies contained cloud phase, COT, and ER. The SSI for “mixed-phase clouds” was assigned
to be the averaged SSI estimation for water and ice clouds. The SSI for “undetected cloud phase”
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pixels was calculated using the LUT of water clouds. The range of values and the increments of the
above variables were the same as in Tables 1 and 2. The instantaneous SSI was estimated by linear
interpolation from the lookup table once the above input data were known.

3. Results

In this section, the algorithm discussed above is evaluated using the data from seven SURFRAD
stations during the entire year of 2012 and a comparison is performed with other SSI estimates.
The performance of the SSI estimate is evaluated using three metrics: the mean bias error (MBE,
in W/m2), RMSE (in W/m2), and correlation coefficient (R2).

Huang et al. (2016) [48] demonstrated that the observed SSI averaged over 30 min was optimal
for a comparison with kilometer-level satellite-based SSI estimation. Therefore, we adopted half-hour
averaged SSI observations centered at the acquired time of the satellite images to evaluate the
satellite-derived instantaneous SSI estimation. The validation results gathered from seven SURFRAD
stations in 2012 under clear- and cloudy-sky conditions are displayed in Figure 4 and the statistics
are compared in Table 3. The overall root mean square error (RMSE) values were 99.5 W/m2

(25.5%), 80.0 W/m2 (16.8%), and 127.6 W/m2 (55.1%) for all-sky, clear-sky, and cloudy-sky conditions,
respectively. The validation revealed a positive bias of 26.4 W/m2 (5.5%) and a negative bias of
−5.9 W/m2 (−2.6%) for clear and cloudy skies. The RMSE values for all-sky ranged from 83.3 W/m2

(21.7%) to 132.1 W/m2 (32.5%), the RMSE values for clear skies ranged from 61.4 W/m2 (11.8%)
to 118.6 W/m2 (24.7%), and the RMSE values for cloudy skies ranged from 98.5 W/m2 (45.2%) to
141.5 W/m2 (65.2%).
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Figure 4. Validation results for the instantaneous surface solar irradiance estimated at seven Surface
Radiation Budget Network (SURFRAD) stations by the scheme proposed in this study. BON: Bondville,
Illinois; DRA: Desert Rock, Nevada; FPK: Fort Peck, Montana; GWN: Goodwin Creek, Mississippi;
PSU: Penn State, Pennsylvania; SXF: Sioux Falls, South Dakota; TBL: Table Mountain, Colorado.
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These statistics indicate that the quality of the retrieval was better for clear skies, which had
a correlation coefficient (R2) ranging from 0.9 to 0.96, in comparison to cloudy skies for all stations,
which featured a correlation coefficient ranging from 0.60 to 0.80; this was true for both systematic bias
and scatter (Figure 4). The largest RMSE values for clear- and all-sky conditions both occurred at Table
Mountain, while the smallest RMSE values for clear- and all-sky conditions occurred at Desert Rock.
All stations exhibited a positive bias for clear- and all-sky conditions.

Further investigation was carried out in our study due to a larger positive bias being discovered
in Table Mountain (TBL) compared to other stations with clear skies. The surface of the TBL station in
Colorado was mixed by rocks, sparse grasses, desert shrubs, and small cactus, and the surface altitude
was 1689 m. The positive bias was partially due to the errors of cloud detection for a mixed surface
with a higher altitude. Some pixels covered by thin clouds or haze were classified as “clear sky”, and
thus resulted in an overestimation of SSI. Nevertheless, as is well-known, the aerosol “dark target”
approach is only valid for a dense dark vegetation (DDV) surface, and it is inappropriate for the TBL
station with a lower vegetation fractional cover, and thus will generally lead to substantial errors in
the retrieved AOD.

On the “station observation” scale, clouds generally deviate much more under the horizontal/
vertical homogeneity assumption of the SSI estimation approach than other atmospheric variables, such
as aerosol and total water vapor. The inhomogeneous properties of clouds may cause substantial errors
in retrieving cloud optical thickness from visible channels with a 1-km resolution and an effective
particle radius from an infrared channel with approximately 4 km from satellite data. The larger
discrepancies for cloudy-sky SSI estimation may be attributed to the horizontal/vertical inhomogeneity
of clouds and the spatial observing scale mismatches in sensor footprints between ground-observed
and satellite-retrieved data. The negative effects of the mismatches will be enlarged for a lower solar
zenith and viewing zenith, resulting in poorer SSI estimation and evaluation accuracy, especially for
partially covered clouds or broken clouds.

4. Discussion

4.1. Comparison with Other SSI Estimates

SSI estimation with in situ observations at SURFRAD sites were collected in order to compare the
accuracy of our proposed algorithm with previous studies that estimate SSI from geostationary and
polar-orbiting satellite data. The results are listed in Tables 4 and 5.

Zhang et al. (2014) used a LUT-based method from geostationary satellite images to estimate
incident shortwave radiation at 5-km resolution, which was validated with observation data at seven
SURFRAD sites of 2008 (Table 4) [4]. The results revealed that the RMSE values produced by our
proposed method were less than the values provided by Zhang’s estimation, apart from the validation
at GWN, which had RMSE values of 90.7 W/m2 and 86 W/m2, respectively. Our proposed model
exhibited an overall positive bias at all seven sites, while Zhang’s model provided a negative bias
at DRA and TBL. The largest bias in our model was 33.8 W/m2 at TBL, compared with −55 W/m2

produced by Zhang’s method at DRA.

Table 4. Overview of error statistics for all-sky SSI for the year of 2008 (Zhang et al., 2014). RMSE: root
mean square error.

Site R2 BIAS (W/m2) RMSE (W/m2)

BON 0.86 20 100
DRA 0.88 −55 119
FPK 0.82 5.5 111

GWN 0.92 1.7 86
PSU 0.87 12 100
SXF 0.86 14 102
TBL 0.77 −8.7 140

155



Remote Sens. 2018, 10, 411

Qin et al. (2015) developed a physical parameterization to estimate SSI from MODIS atmospheric
and land products and the retrievals were validated against in situ measurements at SURFRAD for
three years (2006–2008) (Table 5) [29]. Different validation results can be examined between our model
and Qin’s method. Qin’s method yielded a better performance for clear sky at all sites. The unfavorable
comparison results may attribute to the inaccurate input data of our model with total precipitable
water at approximately 20-km resolution and the uncertainty of retrieved AOD which will be discussed
later. Our model provided an improved performance with a lesser RMSE of 1–12 W/m2 compared
to Qin’s method for all-sky conditions at BON, FPK, PSU, SXF, and GWN, which used input data
from Aqua, while Qin’s method yielded values in agreement at DRA, TBL, and GWN with input
data from Terra. All three methods yielded a poorer validation at TBL; this might have been caused
by pyranometer calibration accuracy, climatic conditions, and mixed ground cover. Furthermore,
our proposed model indicated a lesser RMSE of about 2–4 W/m2 compared to the method provided by
Tang et al. (2016) [14], which combined an artificial neural network and parameterization model for SSI
estimation from multifunctional transport satellite (MTSAT) geostationary satellite images and MODIS
atmospheric and land products. The overall accuracy of our model with an RMSE of 99.5 W/m2 (25.5%)
is comparable to the MODIS-products-driven Breathing Earth System Simulator (BESS) shortwave
products with an RMSE of 111.1 W/m2 (22.6%) and 137.1 W/m2 (31.7%) for temperate and continental
climate zones, respectively [49].

As indicated by Yeom, a reduced RMSE of about 10 W/m2 can be found with the spatial resolution
changed from 1 km to 5 km [13]. Considering the estimated SSI of our model with 1-km resolution
and the referenced studies with 5-km resolution, we can draw a conclusion that the performance of
our proposed scheme was comparable with or even more accurate than state-of-the-art satellite-based
SSI retrieval models.

Table 5. Overview of error statistics for all-sky SSI derived from MODIS products for the years
2006–2008 (Qin et al., 2015).

Site

Clear Sky (W/m2) All Sky (W/m2)

Terra Aqua Terra Aqua

BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

BON 11.5 41.1 15.3 54.4 4.0 86.3 7.6 95.0
DRA −11.3 41.9 8.4 34.4 −11.0 55.0 8.1 69.7
FPK 20.2 43.8 29.9 49.0 −4.3 105.6 7.8 95.1

GWN 21.7 47.2 24.7 56.7 17.1 72.4 22.0 92.8
PSU 27.0 57.8 25.1 59.7 21.8 101.7 15.1 99.0
SXF 17.7 43.3 19.1 47.0 −5.3 101.0 −2.2 98.8
TBL 2.1 37.6 7.1 42.9 −17.7 113.6 −1.9 123.0

4.2. Error Analysis in SSI Retrieval

Aerosol and clouds are the primary atmospheric parameters (besides the solar zenith and surface
altitude) that affect SSI for clear and cloudy skies. The retrieval uncertainty of these two parameters
will be discussed in this section.

The diurnal change of the underlying surface reflectance is a key parameter for AOD retrieval,
and it is gathered by searching for the minimum value of surface reflectance within a 30-day period.
The surface reflectance was inversed using a lookup-table-based method and a horizontal visibility set
to 100 km (which was approximated to be 0.06 of the AOD value using the relationship between the VIS
and AOD as indicated by Equations (1) and (2)). However, the assumption will inevitably introduce
some uncertainty since a great spatial and temporal variation of aerosol has been discovered. The AOD
data from SURFRAD sites generated from visible Multi-Filter Rotating Shadow band Radiometers
(MFRSR) were collected in our study to further investigate the changes in AOD. The statistical results
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of observed AOD gathered from six SURFRAD sites are displayed in Figure 5 (except for PSU since
there was no observed AOD data in 2012).

   

   

Figure 5. Statistical results of observed AOD at six SURFRAD stations. The dashed lines on
the vertical axis are AOD values of 0.06 for pre-defined clearest-sky conditions of diurnal surface
reflectance retrieval.

A high yearly temporal variation can be found at all six sites. A maximum AOD value was
found in summer and a minimum value in winter, and a maximum variability of AOD occurred
during the summer months. The pre-defined AOD of 0.06 for clearest-sky conditions had: an overall
underestimation at BON, SXF, and GWN for the entire year of 2012; an overall underestimation
in summer and overestimation in winter at TBL and DRA; and an overall underestimation in
summer at FPK. A lower assumed AOD may have been responsible for the SSI overestimation
in our proposed method. The surface reflectance was overestimated due to the lower predefined
AOD value for clearest-sky conditions, which in turn resulted in underestimations of the retrieved
AOD and the overall overestimation of SSI for clear skies. The surface reflectance was invariable
for every month, and larger uncertainty had arisen for snow seasons with higher reflectance and
vegetation-growing seasons with a lower reflectance. Furthermore, an overestimation of surface
reflectance caused an underestimation of cloud optical thickness and an underestimation of cloud
transmittance for transparency or semi-transparency. Besides the uncertainty of surface reflectance,
the aerosol attenuation effects were influenced by a large solar zenith angle and bright surface.

Cloud microphysical parameters, such as cloud optical thickness, thermal phase, and effective
particle radius, are important variables in estimating SSI. Large negative effects on the performance of
the SSI retrievals were possibly caused by cloud parameter retrieval errors due to the inhomogeneity
and spatiotemporal variation of clouds. The sensitivity of SSI to cloud optical thickness and the
effective radius of water clouds is presented in Figure 6. SSI was estimated using the rigorous radiative
transfer model (SBDART) with the input variables set as: a midlatitude summer atmospheric profile
with total precipitable water of 2.92 g/cm2, a total ozone column of 320 DU, a solar zenith angle of 30◦,
a surface elevation of 0 km, a surface albedo of 0.2, and a horizontal visibility of 100 km. A positive
relationship between the effective particle radius and SSI can be seen, while a negative relationship
between the SSI and cloud optical thickness can be observed. SSI will change about 88 W/m2 and
90 W/m2 with the effective particle radius range of 2 μm to 30 μm for water and ice clouds, respectively.
SSI is not dependent on the effective radius when the cloud particle radius is greater than 20 μm since
the variation of SSI does not exceed 5 W/m2. The SSI will change by about 548 and 600 W/m2 for
a cloud optical thickness range of 2 to 30 for water and ice clouds, respectively. It can be concluded that
the error in SSI estimation for cloudy skies is primarily affected by the uncertainty of the cloud optical
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thickness retrieval. There may be more than one solution for optical thickness and effective radius
retrieval for optically thin clouds. The retrieved cloud optical thickness only represents 20–40% of the
total optical thickness of the total cloud layer for clouds having COT ≥8, as indicated by Nakajima [37].
This situation can partially explain the positive bias of SSI estimation for cloudy skies.

 

Figure 6. The sensitivity of SSI to cloud optical thickness (given an effective particle radius of 20 μm)
and effective particle radius (given a cloud optical thickness of 20) for water clouds (left) and ice
clouds (right).

An overall underestimation of SSI with a maximum bias of 62.5 W/m2 and a minimum of 1 W/m2

for water clouds is indicated in Figure 7 and Table 6. All scatterplots for water and ice clouds are
uniformly distributed between the line of 1:1. The RMSE has a maximum value of 177.6 W/m2 at DRA,
thereby exceeding the values for clear skies (61.4 W/m2) by a factor of three. The minimum RMSE value
is 80.2 W/m2 at SXF, which is nearly the same as clear skies. Compared with water clouds, ice clouds
tend to have a larger RMSE and a lower correlation coefficient (Figure 8, Table 6). The validation
results for ice cloud cases reveal a negative bias at DRA and TBL, which have an elevation greater than
1000 m. The largest RMSE for ice clouds was 211.3 W/m2, which is about 75.3% of the systematic error.
The relative accuracy of the modeled SSI for ice cloud cases is lower than 40%. This might be caused
by the ice crystal density, particle size, shape, or direction, which are difficult to derive and describe
for accurate scattering computation.

Besides the uncertainty of the input variables derived from satellite data, large uncertainty may
arise from the assumption of plane-parallel, homogeneous atmospheric conditions. Furthermore,
a one-dimensional atmospheric transfer model cannot deal with the geometrical effects of scattering
from a higher solar zenith. The model is less reliable when the sub-pixel is partially cloudy, or when
a rapid change in the atmospheric profile occurs during satellite observations.

Table 6. Validation results at seven SURFRAD stations for water and ice clouds.

Site

Water Clouds Ice Clouds
Mixed
Clouds

Undetected
Clouds

R2 Bias
W/m2 (%)

RMSE
W/m2 (%)

NO. R2 Bias
W/m2 (%)

RMSE
W/m2 (%)

NO. NO. NO.

BON 0.74 −8 (−3.5) 106 (49.5) 280 0.66 27 (19.8) 93 (68.7) 121 222 31
DRA 0.70 −63 (−21.0) 178 (59.6) 149 0.38 −44 (−15.7) 211 (75.3) 78 74 20
FPK 0.62 −25 (−10.0) 157 (63.7) 187 0.54 15 (6.6%) 150 (67.2) 133 220 34

GWN 0.78 −31 (−10.6) 136 (46.3) 326 0.75 45 (32.0) 101 (71.2) 130 181 44
PSU 0.81 −1 (−0.42) 105 (43.7) 576 0.81 44 (35.8) 83 (67.7) 83 217 20
SXF 0.80 −5 (−2.6) 80 (43.0) 233 0.49 29 (16.5) 135 (78.1) 109 243 47
TBL 0.64 −38 (−12.9) 169 (57.5) 197 0.61 −0.2 (−0.1) 118 (61.1) 186 173 20
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Figure 7. Validation of SSI for water cloud cases at SURFRAD sites (mixed and undetected clouds were
not included in the comparison).
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Figure 8. Validation of SSI for ice cloud cases at SURFRAD sites (mixed and undetected clouds were
not included in the comparison).
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5. Conclusions

The paper describes a novel approach to estimating surface solar irradiance (SSI) from a combined
geostationary satellite image, MODIS land-surface albedo, and NCEP CFSR data. Aerosol optical
thickness and cloud parameters (cloud phase, effective particle radius, and cloud optical thickness)
were directly retrieved from the visible channel of geostationary satellite images for clear and cloudy
skies. Total precipitable water was derived from the NCEP data, and other atmospheric variables,
such as ozone, carbon dioxide, and trace gases, were not considered in our SSI estimation. The SSI
was obtained by searching for and linearly interpolating a pre-calculated lookup table, which was
created using the one-dimensional radiative transfer model for computational efficiency at the cost of
calculation accuracy.

The validation was performed via station observations at SURFRAD and other developed
algorithms were used with input from satellite data on an instantaneous basis to evaluate the
performance of the estimates. The results demonstrated that our method could effectively retrieve
instantaneous SSI with correlation coefficients of 0.94, 0.69, and 0.89, and an overall RMSE of
80.0 W/m2 (16.8%), 127.6 W/m2 (55.1%), and 99.5 W/m2 (25.5%) for clear-sky, cloudy-sky, and all-sky
conditions, respectively. Our algorithm generally overestimated the SSI for clear- and all-sky conditions.
Uncertainty analysis revealed that the accuracy of AOD retrieval was largely dependent upon diurnal
surface reflectance. An overestimation of surface reflectance resulted in an underestimation of AOD
and led to an overestimation of SSI. Large uncertainty may arise for optically thin clouds due to the
ambiguous solutions for cloud optical thickness and effective radius. The RMSE for ice clouds is
generally larger than water clouds since the radiative transfer process for ice clouds is mainly affected
by ice crystal shape and particle size, which are difficult to directly retrieve with acceptable accuracy.
In summary, our proposed method holds great promise for accurately estimating regional or global
SSI and conducting research on Earth’s energy budget using products from geostationary satellites,
such as FY2, Himawari-8, MTG, and MODIS.
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Abstract: Surface shortwave (SW) irradiation is the primary driving force of energy exchange in the
atmosphere and land interface. The global climate is profoundly influenced by irradiation changes
due to the special climatic condition in Antarctica. Remote-sensing retrieval can offer only the
instantaneous values in an area, whilst daily cycle and average values are necessary for further studies
and applications, including climate change, ecology, and land surface process. When considering the
large values of and small diurnal changes of solar zenith angle and cloud coverage, we develop two
methods for the temporal extension of remotely sensed downward SW irradiance over Antarctica.
The first one is an improved sinusoidal method, and the second one is an interpolation method
based on cloud fraction change. The instantaneous irradiance data and cloud products are used
in both methods to extend the diurnal cycle, and obtain the daily average value. Data from South
Pole and Georg von Neumayer stations are used to validate the estimated value. The coefficient of
determination (R2) between the estimated daily averages and the measured values based on the first
method is 0.93, and the root mean square error (RMSE) is 32.21 W/m2 (8.52%). As for the traditional
sinusoidal method, the R2 and RMSE are 0.68 and 70.32 W/m2 (18.59%), respectively The R2 and
RMSE of the second method are 0.96 and 25.27 W/m2 (6.98%), respectively. These values are better
than those of the traditional linear interpolation (0.79 and 57.40 W/m2 (15.87%)).

Keywords: downward shortwave radiation; daily average value; Antarctica; sinusoidal method;
cloud fraction; interpolation

1. Introduction

Solar shortwave (SW) radiation reaching the surface of the Earth is the primary energy source,
which plays a significant role in surface energy balance, temperature variations, hydrological cycle,
and terrestrial net primary productivity [1–3]. Although the annual change is small, the impact on the
global climate is difficult to ignore for an ’amplification effect’ [4–6].

Antarctica is the coldest, highest, driest, and windiest continent in the Earth [7]. The surface
changes that are caused by irradiation in the Antarctic area affect the entire planet by the ice albedo
feedback mechanism [4,8,9]. Therefore, studying the changes in the SW irradiation in Antarctica is
significant [10,11].
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Irradiation flux data are required in many regional climate system models and applications as
input parameters [12–14]. However, the irradiation that was measured by ground observation stations
has been proven to be spatially inadequate [15]. Satellite remote sensing technique is a suitable way
to obtain solar irradiance data at continent scale [16]. The estimated values based on remote-sensing
images are instantaneous. Climate, ecology, and land surface process models require daily average or
diurnal cycle data. Directly integrating daily solar irradiation values on the basis of few instantaneous
irradiance values is inaccurate. Therefore, numbers of methods, including empirical method [17],
sinusoidal method [18–20], meteorological parameter interpolation method [21,22], lookup table (LUT)
method [23], quadratic polynomial regression method [24], and polar orbit and static satellite data
fusion method, have been developed to obtain daily values [25].

The empirical method uses a large number of ground entity sample data to establish the
empirical relationship between instantaneous irradiance and daily average irradiation to calculate daily
values [17]. On the one hand, this method has high accuracy. On the other hand, this method relies on
a large amount of surface data, which means that it is limited when ground stations are inadequate.

The sinusoidal model method assumes that surface irradiation follows the sinusoidal curve on the
time scale, which means that daily average irradiation can be calculated on the basis of instantaneous
irradiance and satellite overpass time [19]. This method also assumes that the change in solar zenith
angle (SZA) is the main factor for the daily variation in irradiance. However, in polar regions, this
assumption is not true due to the large SZA and perpetual day. Furthermore, this method ignores the
cloud influence, and it is only applicable under clear sky conditions.

The direct meteorological parameter interpolation method extends meteorological parameters
by linear interpolation to estimate irradiance, using temporal scaling-up meteorological data [21].
This method is easy to operate, although the number of instantaneous meteorological values is
necessary to increase to achieve good results. However, in polar regions, long-term meteorological
data are difficult to obtain.

The LUT method uses surface reflectivity (clear sky condition) to establish a LUT of various
atmospheric conditions. This method utilises the table to find the atmospheric visibility of other
observation time points, produces the linear interpolation every 30 min and obtains the instantaneous
value of irradiance at that moment [23]. This method requires long-term data accumulation to obtain
the surface reflectivity of the entire area, which means that it is inapplicable in Antarctica.

The quadratic polynomial regression method has a similar curve shape to the sine function
method; it assumes that solar irradiance is zero at sunrise and sunset [24]. However, this assumption
is unreliable because of the perpetual day in Antarctica.

The polar-orbit satellite and geostationary satellite data fusion method considers cloud coverage
and uses the geostationary satellite to map the cloud [25]. However, no geostationary satellite data are
available over Antarctica.

As mentioned above, no suitable temporal extension method exists for the study of surface SW
radiation over Antarctica. This study intends to improve two of the methods above. One is called
improved sinusoidal method, which considers the small diurnal change in SZA. The other is called
cloud fraction (CF) parameter interpolation, which can handle the rapid cloud coverage change in a
day. The data and two improved methods are described in Section 2. The interpolation results and
validation are introduced in Section 3. The discussion is presented in Section 4, and the conclusion is
in Section 5.
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2. Materials and Methods

2.1. Data

2.1.1. Cloud Data and Instantaneous Irradiance Data

The cloud data in this study are mainly based on Suomi National Polar-Orbiting Partnership
(S-NPP) satellite cloud product, which uses inversion of Visible Infrared Imaging Radiometer Suite
(VIIRS) data. The S-NPP satellite has the same orbital plane as the Terra and Aqua satellites. Its orbital
height is approximately 824 km, and its corresponding orbital period is approximately 101 min.
The VIIRS sensor has a field of view of 112.56◦ and a scan width of approximately 3040 km [26,27].
This wide scan area can offer considerable data at high latitudes and allow numerous cloud products
in a single day. The satellite passes the study area more than five times a day (Figure 1). Consequently,
much data are collected to show the change in cloud coverage and reduce the uncertainty when
integrating. In this study, we select geographic positioning products, cloud optical thickness (COT)
and cloud base height (CBH) of VIIRS, and calculate hemispherical effective CF (HECF) and regional
CF (RCF) (shown in Appendix A). We use the data from December 2013 to February 2014, from
December 2014 to February 2015, from December 2015 to February 2016, and from December 2016 to
January 2017. The total number of cloud data is 13,986. The number of cloud data near the Georg von
Neumayer (GVN) station is 2665 and that near the South Pole (SPO) station is 3331.

We select high spatial resolution (1 km) instantaneous estimated flux data, which are mainly
calculated by Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART)-CF model, on the
basis of our previous research [28]. SBDART-CF is based on the traditional one-dimensional radiative
transfer model SBDART and classifies the actual sun/cloud-viewing geometric conditions into nine
subtypes. The main input parameters to the model are listed in Appendix A. The data cover the whole
Antarctica area and can consider clear and cloudy sky conditions. The time scale and total number of
instantaneous irradiance data are the same as cloud data.

Figure 1. Overpass times of the Suomi National Polar-Orbiting Partnership satellite in one day and
distribution of Baseline Surface Radiation Network stations in Antarctica.
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2.1.2. Ground Station Data

We use ground measured data of solar radiation from the Baseline Surface Radiation Network
(BSRN) observing stations to validate our estimated results. Four stations (shown in Figure 1) of
BSRN exist in Antarctica [29]. The BSRN offers the link to download the data (ftp://ftp.bsrn.awi.de).
We select the GVN and SPO stations to validate our estimated value (shown in Table 1). The GVN
station was established by Germany in 1981, and it has provided radiation observation data from
1992 [30]. SPO station founded by the United States (US) in November 1956, is near the South Pole, and
it has offered radiation data from 1992 [31]. We use the Shortwave downward (GLOBAL) radiation
included in the ‘LR 0100 + LR 0300’ data set, which means basic radiation and other radiation
measurements. The time resolution of the global radiation is 1 min. 333 days in the two stations are
used to validate our result.

Table 1. Information of surface stations in the Antarctic Continent.

Station Name Abbreviation Latitude Longitude Elevation (m) Surface Condition

Georg von Neumayer GVN 70.65◦S 8.25◦W 42 Ice sheet
South Pole SPO 89.98◦S 24.80◦W 2800 Glaciers and deposits

2.2. Temporal Scaling-Up Method

2.2.1. Calculation of the Diurnal Variation Range of SZA

In most areas, the diurnal variation in SZA is larger than 90◦; it is the most important factor that
affects downward shortwave irradiance [28]. The range of SZA diurnal variation is determined by
latitude and date. We demonstrate the changes in DSR and SAZ on 17 October 2013 and 22 December
2013 at the GVN and SPO stations, respectively, to explain the diurnal variation in shortwave irradiance
on the Antarctic surface in summer at different latitudes (shown in Figure 2).

 
(a) (b) 

(c) (d)

Figure 2. (a) Diurnal variation range of solar zenith angle (SZA) and downward surface shortwave
irradiance (DSSR) at the Georg von Neumayer (GVN) station on 17 October 2013; (b) Diurnal variation
range of SZA and DSSR at the GVN station on 22 December 2013; (c) Diurnal variation range of SZA
and DSSR at the South Pole (SPO) station on 17 October 2013; and, (d) Diurnal variation range of SZA
and DSSR at SPO station on 22 December 2013.
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The first step in our method is to calculate the range of diurnal SZA variation, sunrise time point
and sunset time point [32]. Our sensitivity analysis indicates that if the range is larger than 10◦, then
SZA remains an important parameter when calculating radiation value. Consequently, we improve
the sinusoidal method. If the change range is less than 10◦, then cloud coverage becomes the most
important influencing factor, which makes cloud coverage fraction interpolation a better choice.

2.2.2. Improved Sinusoidal Method

Traditional sinusoidal method firstly obtains satellite passing time point and the instantaneous
irradiance value at this time point. Sunrise and sunset time points are then captured. The instantaneous
values are determined with Formula (1) to calculate the maximum radiation in one day.

Rn_max =
Roverpass

sin
(

toverpass−trise
tset−trise

π
) (1)

The time point of satellite passing is marked as toverpass, and the instantaneous value is marked as
Roverpass. This formula leads to overestimated data of radiation because the SZA has small range of
change in Antarctica. We improve this formula as Formula (2).

Rn_max =
Roverpass

a ∗ sin
[
b ∗

(
toverpass−trise

tset−trise

)
π + c

]
+ d

(2)

A larger SZA in a high latitude area is considered, and parameter ‘a’ is inserted to compress the
sine function. Downward irradiance is always positive during polar days; therefore, parameter ‘d’
is introduced to match the case. Parameters ‘b’ and ‘c’ are inserted to balance the different periods
of time when SZA changes when compared with low-latitude areas. The curve can be fitted by least
square method, after which the values of parameters ‘a,’ ‘b,’ ‘c’ and ‘d’ of each pixel in the area can
be determined. The values of ‘a,’ ‘b,’ ‘c’, and ‘d’ are input into Formula (3), and we can obtain the
irradiance value at any time in one day.

Rt = Roverpass ∗
a ∗ sin

[
b ∗

(
t−trise

tset−trise

)
π + c

]
+ d

a ∗ sin
[
b ∗

(
toverpass−trise

tset−trise

)
π + c

]
+ d

(3)

2.2.3. Cloud Coverage Fraction Interpolated Method

The improved sine curve model can match the case in most Antarctic areas, except near the South
Pole. In this area, the daily change in SZA is insignificant. Instead, the main element that impacts
downward shortwave irradiance is the cloud change. In our previous study, the most sensitive cloud
parameters for irradiance estimation are HECF, COT, and RCF [28,33]. Consequently, we use satellite
data to calculate instantaneous parameters to generate accurate data in this area. Other values at
different times can be calculated with Formula (4).

P(t) =
ti+1 − t
ti+1 − ti

∗ P(ti) +
t − ti

ti+1 − ti
∗ P(ti+1) (4)

‘t’ is the time point between two overpass times, when the latest polar-orbiting satellite overpass
time is ’ti’ and the next overpass time is ‘ti+1’, ‘P(t)’ is the cloud parameter value at time ‘t’, and ‘P(ti)’,
‘P(ti+1)’ are the values at overpass time. We can let ’t’ to represent 24 h in one day.

We can then calculate the hourly downward shortwave irradiance flux by SBDART-CF model.
In this way, the daily change in downward irradiance in this area can be revealed accurately.
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2.2.4. Modelling Daily Solar Radiation

The process of calculating daily average downward shortwave irradiation values is described
in Figure 3. The interpolation based on the improved sinusoidal method can integrate the values of
irradiance from sunrise to sunset (00:00 to 24:00 during polar day) with Formula (5).

Rdaily =
∫ tset

trise

Rt(t)dt (5)

Figure 3. Process of calculating daily average downward shortwave irradiation values.

The cloud coverage fraction interpolated method can calculate the total radiation using
Formula (6).

Rdaily =
∫ t1

trise
Rt1(t)dt

+
n−1
∑

i=1

{∫ ti+1
ti

[
ti+1−t
ti+1−ti

∗ Rti (t) +
t−ti

ti+1−ti
∗ Rti (t)

]
dt
}

+
∫ tset

tn
Rtn(t)dt

(6)

We obtain hourly instantaneous values, and the other values between two instantaneous values are
calculated with weighted average method. The daily average value can be estimated with Formula (7).

Rdaily_avg = Rdaily/(tset − trise) (7)
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3. Results

3.1. Diurnal Variation in SZA

We can calculate the diurnal variation in SZA at different dates and latitudes. During one year,
the polar days and nights alternately show up in the southern hemisphere high-latitude area. We can
calculate the range of SZA in one day on the basis of dates and latitudes. We can then decide which
method should be used in specific area and date. Figure 4 shows the SZA change through the year at
latitudes of 60◦S, 70◦S, 80◦S, and 90◦S.

Figure 4. Change range of solar zenith angle at latitudes of 60◦S, 70◦S, 80◦S, and 90◦S in all year.

3.2. Diurnal Cycle of Interpolated Irradiance at Different Stations

The areas around the GVN and SPO stations are taken as examples. The diurnal variation
in instantaneous downward shortwave irradiance estimated by two interpolation methods is
shown below.

The interpolation results of the area around the GVN station are shown in Figure 5. Midnight sun
occurs at the GVN station on that day; thus, the shortwave downward irradiance has a positive value
over the entire 24-h period. Eight times of S-NPP transiting and corresponding products in the day at
0:47, 02:33, 14:32, 16:09, 17:15, 19:28, 21:10, and 22:47 are available. Although only 24 values are shown,
the sinusoidal method can generate the irradiance value at any time in a day.

The shortwave irradiance around the GVN station shows a significant sinusoidal variation in one
day. The maximum value appears near 14:00, and the values in the morning and evening are obviously
lower. The lowest value is approximately 30 W/m2, which matches the value that was measured by
the GVN ground station.

Figure 6 shows the diurnal cycle results of surface shortwave irradiance where the SPO station is
located. The cloud coverage parameter interpolation on 2 January 2015, indicates that the SPO station
has 10 cloud parameter products on this day, and the satellite transit times are 0:03, 01:45, 03:22, 05:04,
06:47, 08:29, 11:54, 13:31, 18:38, and 22:03. The shortwave irradiance is stable around the SPO station,
which is between 400 and 480 W/m2. In fact, the more times the satellite can transit, the closer to
actual situations the simulation cloud movement condition can be. On the contrary, when the satellite
transits less, the insufficient consideration of temporal and spatial changes in clouds will lead to error.
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Figure 5. Results of hourly interpolation in the Georg von Neumayer station area on 9 December 2014.

Figure 6. Results of hourly interpolation in the South Pole station area on 2 January 2015.

3.3. Average Daily Irradiation at Different Stations

We can calculate the total irradiation value of a day around the ground station with Formula (5)
or (6) (shown in Figure 7). In polar days, we consider the length of day as 24 h; in other days, we can
obtain the time points of sunrise and sunset [32]. Theoretically, the higher the temporal resolution of
the instantaneous irradiance is, the more accurate the daily total and daily average values can be.

171



Remote Sens. 2018, 10, 422

 
(a) 

 
(b) 

Figure 7. (a) Daily average value of solar global irradiation over horizontal surface in the Georg von
Neumayer station area on 9 December 2014; and, (b) Daily average value of solar global irradiation
over horizontal surface in the South Pole station area on 2 January 2015.

We use the data from December 2013 to February 2014, from December 2014 to February 2015,
from December 2015 to February 2016, and from December 2016 to January 2017 to validate our
estimated daily average values. The data quality control process is performed before validation to
ensure that invalid data are deleted. We filter the data for SZA less than 90◦ and delete values that are
less than zero. The measured value for some time periods is 0, which may be due to the snow cover
being caused on the instrument surface. The irradiance values for these periods are also removed.
We calculated the interpolation values in the neighbouring pixel (10 km × 10 km) and the daily average
values measured by the ground station in summer are compared and analyzed. After data control,
the number of daily average value in the SPO station is 326, and that in the GVN station is 332. In the
formulas below, the ground-observed daily average irradiation data will be noted as RO, and the
estimated daily average irradiation data will be noted as Re. The mean values of the two distributions
are noted as ROm and Rem. The total number of data is noted as N. Three statistical metrics are used to
evaluate the estimates: the coefficient of determination (R2) calculated by Formula (8); the root mean
square error (RMSE), as calculated by Formulas (9) and (10) and Mean bias error (MBE) calculated by
Formulas (11) and (12) [34–37]. The RMSE and MBE are expressed here both in percent and absolute
unit, as shown in Figure 8. The red line demonstrates the equation which includes Re and Rg, while
the blue line is the demonstration when ‘Re = Rg’ for comparison.
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)
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)2

]2
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Figure 8. (a) Comparison of the estimated downward shortwave irradiation from the improved
sinusoidal method and the ground-measured downward shortwave irradiation in the Georg von
Neumayer station; and, (b) Comparison of the estimated downward shortwave irradiation from
the cloud coverage fraction interpolated method and the ground-measured downward shortwave
irradiation in the South Pole station area.

4. Discussion

4.1. Comparison of the Algorithm of the National Aeronautics and Space Administration (NASA)’s Surface
Solar Radiation Budget Data Set

The U.S. NASA’s Surface Solar Radiation budget data set (https://gewex-srb.larc.nasa.gov/)
produced for the Global Energy and Water Exchanges Programme provides daily average shortwave
(SW) downward solar irradiation flux starting no later than July 1983 and extending to December 2007.
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SW surface radiation budget data sets are derived on a 1◦ × 1◦ global grid with two sets of algorithms,
known as primary SW algorithm and Langley parameterized SW algorithms (LPSA) [38,39].

The primary SW algorithm gains irradiances from logarithmically averaged three-hourly
International Satellite Cloud Climatology Project data. The satellite configuration consists of five
geostationary satellites and at least one polar-orbiting satellite. The measurements taken at 00:00, 03:00,
06:00, 09:00, 12:00, 15:00, 18:00, and 21:00 UTC are included. The daily average irradiation is averaged
by them. The LPSA using the values of daily average irradiation is computed by averaging measured
daytime instantaneous (3 h) reflectance, weighted by the instantaneous value of cos SZA.

4.2. Comparison with Traditional Interpolation Methods

We intend to use two different interpolation methods to obtain the daily average values with high
accuracy of DSSR in the study area. In 1979, Tarpley indicated that the sinusoidal formula of the SZA
can be used to approximate the daily variation IN solar radiation [19]. The diurnal variation in surface
shortwave irradiance is not a simple sinusoidal model due to geographical location, atmospheric
conditions, and other factors, which means that the model needs to be corrected.

Lagouarde and Brunet advanced a sinusoidal model that can describe the diurnal variation in
surface temperature and considers the time span and amplitude of curve [20]. Bisht proposed a diurnal
sinusoidal model of surface net radiation, which is suitable for interpolation with MODIS data under
clear sky conditions [18]. Wang proposed a modified sinusoidal method, supposing the values of
irradiance at sunrise and sunset are zero [23]. However, the curve amplitude is smaller due to the
smaller diurnal variation in SZA in Antarctica. In addition, no sunrise or sunset exists due to the polar
day in summer, which makes the curve time span longer, even one cycle longer than the traditional
curve. We set parameters ‘a’ and ‘d’ to adjust the curve amplitude in Formula (2), and parameters ‘b’
and ‘c’ to control time span and cycle.

The transit time is more than four in one day; therefore, we can set four parameters to adjust the
sinusoidal curve. Table 2 shows the estimated daily average downward shortwave irradiation based
on the traditional sinusoidal curve (the R2 is near 0.68, and the RMSE is 70.32 W/m2). The parameters
of the linear fits Re = C1+ C2 × Rg for the two methods in the GVN station are also shown in Table 2.

Table 2. Comparison between the daily average values estimated by four different interpolation
methods and ground measurements from two stations.

Station Method R2 C1

(W/m2)
C2

RMSE
(W/m2)

RMSE
(%)

MBE
(W/m2)

MBE
(%)

GVN
station

Improved sinusoidal curve 0.93 35.49 0.95 32.21 8.52 17.77 4.70
Traditional sinusoidal curve 0.68 55.50 1.09 70.32 18.59 36.39 9.62

SPO
station

Cloud coverage fraction Interpolation 0.96 13.97 0.96 25.27 6.98 0.32 0.08
Linear interpolation 0.79 28.51 1.04 57.40 15.87 30.18 8.34

In Antarctica, the sensitivity analysis method is used to prove that the cloud coverage fraction is
the main parameter when diurnal changes in SZA are small. Unlike in the linear interpolation method,
whether interpolation or calculation should be performed firstly does not matter in the cloud coverage
fraction interpolation. In our calculations, the relationship between cloud coverage and downward
shortwave irradiance values in the SBDART-CF model is nonlinear, which leads to different results.
Table 2 shows the results from the linear interpolation method. If cloud coverage does not change over
time, the results of two methods should be similar. Therefore, the cloud coverage interpolation method
is more suitable when the cloud cover changes. The parameters of the linear fits Re = C1+ C2 × Rg for
the two methods in SPO station are shown in Table 2.
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4.3. Limitation and Further Study

In Figure 5, the DSR is not continuous in space, because when we fit the four parameters, the
influence of the cloud is ignored in some areas and enlarged in other areas. An apparent disadvantage
of the sinusoidal method is that the cloud coverage in every transmit time will affect the four parameters
in Formula (2).

In Figure 8a, the results of daily average irradiation values are slightly overestimated. In the
experiments, the changes of irradiance near the station are not only caused by the change of SZA,
but also by cloud conditions. Consequently, this method is more suitable under clear sky conditions.
We need more cloud data from polar satellite to capture the change of cloud. S-NPP is the only satellite
on which this paper relies. Obtaining data from more satellites can reduce the error between the
interpolation results and the real-time measured values.

The cloud coverage interpolation method is computationally intensive and inefficient. With the
accumulation of future cloud data, a look-up table between cloud coverage changes and the DSR in
this area can be established to speed up the operation.

The methods of this study are not suitable for low and middle latitude areas because of inadequate
satellite transits. However, the fusion of multi-source orbit satellite cloud data can cover the shortage
of inadequate transits to some extent. Thus, the high spatial resolution geostationary satellite will be
helpful in making our methods suitable for lower latitude areas [40,41].

More profound problems must be solved in the future. Firstly, the terrain effect in the research
area is not considered in this paper. The influence of different topography on downward shortwave
irradiance in Antarctica should be considered in further studies when combined with our previous
studies [42]. Secondly, the influence of surface weather conditions is ignored owing to the lack of the
surface weather data. Thirdly, the data for interpolation are available only after 2013 because of the
limitation of the satellite launch time. In further studies, AVHRR and MODIS satellite sensors can be
used [43], and the surface shortwave radiation estimate data set with long-term data series based on
the method that is provided in this paper can be established.

5. Conclusions

In this paper, two interpolation methods to estimate daily average values of downward shortwave
irradiation are mainly discussed. On the basis of the sinusoidal method provided by previous
research, this research has improved the traditional sinusoidal interpolation method. Meanwhile, we
present new cloud fraction parameter interpolation method to consider the cloud condition change in
Antarctica. Four parameters are introduced (‘a’, ‘b’, ‘c’ and ‘d’) and are fitted in the improved sinusoidal
method, with the data support of the S-NPP satellite that passes through polar areas several times a
day. In this manner, the traditional sine curve model is improved to prevent overestimation. For cloud
coverage fraction parameter interpolation method, the S-NPP satellite cloud product provides cloud
fraction data of the hemisphere space, which are the input parameters to obtain the interpolation results.

According to the validation by the data from two BSRN surface stations, the R2 of the first
method is 0.93; the RMSE is 32.21 W/m2 (8.52%) and the MBE is 17.77 W/m2 (4.70%) in GVN station
area. The R2, RMSE and MBE of the second method are 0.96, 25.27 W/m2 (6.98%) and 0.32 W/m2

(0.08%), respectively, in the SPO station area. When compared with existing methods, our methods are
more accurate than the traditional sinusoidal method (R2 = 0.68; RMSE = 70.32 W/m2 (18.59%) and
MBE = 36.39 W/m2 (9.62%)) in GVN station area and the direct linear interpolation method (R2 = 0.79;
RMSE = 57.40 W/m2 (15.87%); MBE = 38.18 W/m2 (8.34%)) in SPO station area.

Acknowledgments: The work is funded partially by the Key Program of Natural Science Foundation of China
(Grant No. 41331171and No. 41301357) and Natural Science Foundation of China (Grant No. 61227806).

Author Contributions: Yingji Zhou, Guangjian Yan, Jing Zhao, designed the experiments; Yingji Zhou, Yanan Liu,
Qing Chu, performed the experiments and analyzed the data; Kai Yan and Yiyi Tong contributed to Sections 3.2
and 4.2. All authors contributed in writing the paper.

175



Remote Sens. 2018, 10, 422

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study, in the collection, analyses, or interpretation of data; in the writing of the manuscript, and decision to
publish the results.

Appendix A

The SBDART-CF model was improved by Santa Barbara DISORT Atmospheric Radiative Transfer
(SBDART), which has been established to simulate radiative transfer. To consider the effect of cloud
radiative forcing, we should analyze whether the directions of the sun and sensor are obscured by
clouds. We can calculate HECF and RCF by Formulas (A1) and (A2) [33].

HECF =
n

∑
i=0

s ∗ cos3 θi

2π(1 − cosα)h2
i

(A1)

RCF =
n ∗ s

A
(A2)

In the above two formulas, s is the area of target pixel, and A is the area of a 40 km× 40 km
slide window; n is the number of Nadir-view cloud pixels; θi is the angle between cloud pixel and
target pixel; the 2π(1 − cosα) and hi is the attitude between cloud pixel and target pixel (shown in
Figure A1) [33].

 

Figure A1. Cloud pixel and target pixel in the slide window.

We can calculate the instantaneous irradiance values by using SBDART-CF model, with the main
input parameters listed in Table A1. If the surface is Lambert, the surface irradiance flux can be
calculated as Formulas (A3)–(A7).

F(μi) = F0(μi) + Fm(μi) (A3)

Fm(μi) =
rsρ

1 − rsρ
μiE0γ(μi) (A4)

In Formulas (A3) and (A4), μi is the cosine of the SZA; rs is the surface reflectance; F0(μi) represents
the downward surface irradiance flux when rs is 0. Fm(μi) is the irradiance that is scattered multiple
times between ground and atmosphere; ρ is the spherical albedo of the atmosphere; E0 is the solar
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irradiance at the top of the atmosphere and γ(μi) is the total atmospheric transmittance of the solar
direction (including both direct and diffuse transmittance).

F0_clr = Dirclr + Di fcld ∗ HECF + Di fclr ∗ (1 − HECF) (A5)

F0_cld = Dircld + Di fcld ∗ HECF + Di fclr ∗ (1 − HECF) (A6)

In Formulas (A5) and (A6), F0_clr and F0_cld represent the downward surface irradiance flux
without ground contribution in clear sky and cloudy sky, respectively. The Dirclr and Dircld are direct
irradiance in clear sky and cloudy sky conditions, respectively. The Di fcld includes scattering from
clouds, and the Di fclr is scattering from other atmospheric molecules in hemispherical space.

Fm =
[
F0clr ∗ (1 − RCF) + F0cld ∗ RCF

] ∗ rs ∗ [(1 − HECF) ∗ ρa + HECF ∗ ρc]

1 − rs ∗ [(1 − RCF) ∗ ρa + RCF ∗ ρc]
(A7)

In Formula (A7), we assume that the surface is Lambert with stable reflectance rs to calculate the
multiple scattering value Fm between the surface and the atmosphere. Meanwhile, the SBDART-CF
model considers the hemispheric partly cloudy condition. We classify the actual sun/cloud-viewing
geometric conditions into nine subtypes (shown in Figure A2).

Figure A2. The Classification for sun-sensor-hemisphere cloud cover conditions.

We list the main input parameters of the SBDART-CF model. In our method the cloud cover
parameters (CBH, COT, HECF and RCF) are included. The output data are instantaneous downward
shortwave irradiance values.
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Table A1. Main Input Parameters of the SBDART-CF Model.

Main Input Parameter Description Unit

SZA solar zenith angle ◦
Albedo surface albedo -

VIS visibility km
COT cloud optical thickness -
CBH cloud base height km
Alt altitude km

HECF hemispheric cloud fraction -
RCF regional cloud fraction -
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Abstract: The issue for the validation of land surface remote sensing albedo products over
rugged terrain is the scale effects between the reference albedo measurements and coarse
scale albedo products, which is caused by the complex topography. This paper illustrates
a multi-scale validation strategy specified for coarse scale albedo validation over rugged terrain.
A Mountain-Radiation-Transfer-based (MRT-based) albedo upscaling model was proposed in
the process of multi-scale validation strategy for aggregating fine scale albedo to coarse scale.
The simulated data of both the reference coarse scale albedo and fine scale albedo were used to
assess the performance and uncertainties of the MRT-based albedo upscaling model. The results
showed that the MRT-based model could reflect the albedo scale effects over rugged terrain and
provided a robust solution for albedo upscaling from fine scale to coarse scale with different mean
slopes and different solar zenith angles. The upscaled coarse scale albedos had the great agreements
with the simulated coarse scale albedo with a Root-Mean-Square-Error (RMSE) of 0.0029 and 0.0017
for black sky albedo (BSA) and white sky albedo (WSA), respectively. Then the MRT-based model was
preliminarily applied for the assessment of daily MODerate Resolution Imaging Spectroradiometer
(MODIS) Albedo Collection V006 products (MCD43A3 C6) over rugged terrain. Results showed that
the MRT-based model was effective and suitable for conducting the validation of MODIS albedo
products over rugged terrain. In this research area, it was shown that the MCD43A3 C6 products
with full inversion algorithm, were generally in agreement with the aggregated coarse scale reference
albedos over rugged terrain in the Heihe River Basin, with the BSA RMSE of 0.0305 and WSA RMSE
of 0.0321, respectively, which were slightly higher than those over flat terrain.

Keywords: land surface albedo; multi-scale validation; rugged terrain; MRT-based model; MCD43A3 C6

1. Introduction

Land surface shortwave albedo is defined as the fraction of incident solar irradiance reflected
by Earth’s surface over the shortwave band (0.3–3 μm) in the whole solar spectrum [1]. It is a key
climate-regulating parameter that determines the amount of solar radiation absorbed by the land
surface at regional and global scales [2,3]. Remote sensing satellites provide a practical method
to estimate land surface albedos because of their large spatial scale coverage and a high revisit
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frequency [4]. However, the retrieved albedos suffer from large uncertainties due to the inherent
complexity of the physical processes and their parameterization of retrieval algorithms [5]. Thus, it is
critical to evaluate the performance of the retrieved albedos prior to their wide application.

Many scientists have focused on assessing the accuracy of albedo products in recent decades over
flat and homogeneous land surfaces. Taking the MODIS albedo products validation as an example,
the validation results showed that the MODIS albedo products displayed high accuracy with
an uncertainty (Root-Mean-Square-Error, RMSE) below 0.03 at the snow-free land covers and 0.07 at the
snow-covered land surface, respectively, when the validation activities occurred in the homogeneous
land surface or in sites with high spatial representativeness [6–19]. Generally, the albedo product
can be assessed by direct comparison with in situ albedos at the sites where the land surface is
sufficiently homogeneous [6,9,10,20]. However, in the heterogeneous land surface, the in situ albedo
cannot be directly compared with albedo products because of the scale mismatching between the in
situ albedo and the albedo products, unless that in situ albedo can be considered with high spatial
representativeness over the sampled area [10,16,20,21]. The scale mismatching will result in about
15% disagreement between the MODIS albedo and in situ albedo [6,9,22]. As the sample sites with
limited spatial representativeness, multi-points albedo observing is generally adapted to capture the
spatial distribution characteristics of the albedo over the sampled area. The simplest and most efficient
method is to average these albedos within the area and as the reference truth to compare with the
albedo products [23]. Alternatively, the multi-scale validation strategy provides a solution to deal with
the scale mismatching over a heterogeneous land surface by introducing fine scale albedo products
(e.g., the Enhanced Thematic Mapper plus (ETM+) or China HJCCD (HJ) albedo) as an upscaling
bridge between in situ albedo and coarse scale satellite albedo products (e.g., MODIS and Global
LAnd Surface Satellite (GLASS) albedo) [8,17,24,25]. In situ albedos are used to calibrate the fine
scale albedo. Then, the calibrated fine scale albedos are aggregated to the coarse scale and for albedo
validation. Previous studies have indicated that the upscaling of albedo from fine scale to coarse
scale is highly linear over flat terrains [8,16,17,24–26]. Therefore, in the case of flat terrain, the linear
weighted average model was considered as a good performance model for upscaling the fine scale
albedo to a coarse scale.

As a special heterogeneous land surface, the topography has vast effects on the land surface
albedo [24,26]. Topographic slope, aspect, shadow, and solar location influence albedo values and
their spatial distribution when compared with that over flat terrain [13,27–30]. The coarse scale albedo
decreased with the increase of the slope facing away from the sun and increased when facing toward
the sun [30,31], and generally showed larger values over the slope facing toward the sun than that
facing away from the sun, especially, in the shadowing case [27,30,32]. The complex topography leads
to the intensive scale effects on albedo products among different spatial resolutions over the rugged
terrain [17,33]. However, neglecting the scale effect caused by the complex topography in albedo
products results in unreliable validation results [33–35]. Peng et al., (2014) assessed the MODIS products
by using the multi-scale validation strategy with the HJ albedo as the bridge to aggregate the in situ
albedo linearly to the MODIS pixel scale. The uncertainty distribution analysis showed that the largest
scaling uncertainty was at the pixels over rugged terrain and its uncertainty of MODIS was as high as
0.07, when neglecting the scale effects at the upscaling progress over rugged terrain [17]. Therefore,
neither the direct comparison nor the linear upscaling model in the multi-scale validation strategy
were suitable for the coarse scale albedo products validation over rugged terrain [33]. The albedo
spatial scale issue caused by topography should be emphasized in the multi-scale validation strategy
over rugged terrain.

The objective of this paper was to develop an upscaling method in the procedure of the multi-scale
validation strategy for albedo products validation over rugged terrain. Simulated data with different
mean slopes and solar zenith angle over nine Digital Elevation Models (DEM) were used to validate
the albedo upscaling method. Based on the proposed upscaling method, the aggregated HJ albedo,
which had been validated by the in situ albedo over the Heihe River Basin, was used as the reference
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truth for the MODIS albedo products preliminary validation. The paper is organized as follows:
Section 2 describes the multi-scale validation strategy, including the upscaling method and the fine
scale albedo products retrieval algorithm; Section 3 describes the experimental area and validation
dataset; Section 4 shows the performance of the albedo upscaling model and the preliminary validation
results for MODIS albedo products. The discussions are summarized in Section 5. Finally, a brief
conclusion is drawn in Section 6.

2. Multi-Scale Validation Methodology

2.1. Multi-Scale Validation Procedure over Rugged Terrain

The general multi-scale validation strategy includes three key procedures over rugged terrain.
The first one is the retrieval and accurate evaluation of fine scale albedo. The second is the calibration
of fine scale albedo products. Finally, the third process is to scale up the fine scale albedo products to
the coarse scale [17,24]. The multi-scale validation strategy over rugged terrain has similar procedures
than those over flat terrain, which is shown in Figure 1. The DEM was used here to calculate the
topographic factors (e.g., slope, aspect), and to couple with fine scale reflectance to retrieve fine scale
albedo. The fine scale albedo was assessed by direct comparison with in situ albedos and was calibrated
for reducing its uncertainties. An albedo upscaling model, which was based on the mountain radiation
transfer theory (MRT-based albedo upscaling model), was proposed to aggregate the fine scale albedo
to a coarse spatial scale. Consequently, the aggregated albedos could be directly compared with the
coarse scale albedo products. To implement a successful multi-scale validation strategy over rugged
terrain, two key issues should be solved including the albedo upscaling method and the fine scale
albedo-generated algorithm on sloping surfaces.

Fine scale albedo retrieval and calibration
Fine scale 
reflectance DEM

In situ albedo

Fine scale albedo 
retrieval algorithm

MCD43A3 
WSA

MCD43A3 
BSA

Aggregated 
WSA

Aggregated 
BSA

Calibrated fine scale 
 blue sky albedo

Calibrated fine scale 
blue sky albedo

Fine scale albedo
 over sloping surface

MRT-Based 
upscaling model 

Aggregated fine scale 
Albedo

Coarse scale albedo validation
 (MCD43A3 product validation)

BSA validation WSA validation

Fine scale albedo upscale

Coarse scale albedo validation

Validation 
&&Calibration

DEM

 

Figure 1. The coarse albedo validation procedure over rugged terrain.

2.2. MRT-Based Albedo Upscaling Model over Rugged Terrain

Coarse scale albedo can be defined as the ratio of the reflected solar radiant flux and incident solar
radiant flux. Assuming that the coarse scale pixel is horizontal overall and the topographic effects
between the coarse scale pixels can be ignored, the incident solar radiant flux of a coarse scale pixel
can be expressed as the sum of direct and diffuse radiant flux at the micro-slope. Therefore, the coarse
scale reflected radiant flux was calculated by summing up the micro-slope reflected radiant flux. If the
micro-slope albedo is known, the coarse scale albedo can be expressed as:
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Ac =
φ↑

c

φ↓
c
=

N
∑

k=1
∂kdφT↓

k

φ↓
sc + φ↓

dc

(1)

where Ac is the coarse scale albedo; φ↑
c , φ↓

c are the coarse scale pixel’s reflected and incident solar
radiant flux, respective; N is the amount of micro-slope within the corresponding area of coarse
scale pixel; ∂k and dφT↓

k are the albedo and incident radiant flux of the kth micro-slope, respectively.
φ↓

sc, φ↓
dc are the coarse scale direct solar radiant flux and diffuse radiant flux, respectively. They can be

expressed as:
φ↓

sc = Es AreaC (2)

φ↓
dc = Ed AreaC (3)

AreaC = NdAth (4)

where Es, Ed are the incident direct solar irradiance and diffuse irradiance on the horizontal plane;
AreaC is the area of the coarse scale pixel, which can be expressed as the sum of the projected area
(dAth) of the micro-slope on horizontal plane.

For each micro-slope, dφT↓
k can be expressed as the sum of direct radiant flux, diffuse radiant flux,

and terrain radiant flux reflected by adjacent terrain (Figure 2) [32,36]. The incident direct and diffuse
solar radiant flux of a coarse scale pixel can be expressed as the sum of the micro-slope’s solar direct
and diffuse radiant flux on the projected horizontal plane, respectively. Hence, Equation (1) can be
displayed as:

AC =

N
∑

k=1
[dφT↑

sk + dφT↑
dk + dφT↑

ak ]

N(Es + Ed)dAth
(5)

Sun

dAth

dAtk

Outgoing radiant flux

 d ak 

Figure 2. The contributions of incident and outgoing radiant flux over a coarse scale pixel; direct,
diffuse and terrain irradiances.

The superscript ‘T’ means that the pixel is on a sloping surface; the subscript ‘k’ means that it is
the kth fine scale micro-slope; dφT↑

sk , dφT↑
dk , dφT↑

ak are the reflected direct solar radiant flux, diffuse sky
flux, and terrain radiant flux of the kth micro-slope, respectively. They can be written as:
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dφT↑
sk = Eh

sk(
cos isk
cos θsk

)ΘkdAtkαT
bk (6)

dφT↑
dk = Eh

dkdAthVdαT
wk (7)

dφT↑
ak = [Eh

sk(
cos isk
cos θsk

)ΘkdAtk + Eh
dkdAthVd]Vtα

T
wk (8)

dAth = dAtk cos αk (9)

where cos isk, cos θsk are the cosine of the relative incident angle on sloping surface and the incident
zenith angle on horizontal surface; Θk is the binary coefficient in the direction of the sun which is used
to show whether the pixel is shadowed by the terrain; Eh

sk, Eh
dk are the incident solar direct and diffuse

irradiance on horizontal surface; dAtk is the area of the kth micro-slope surface; Vd is the sky-view
factor, which is the sky portion seen from a specific surface [37]; and Vt is the portion of adjacent terrain
seen from a surface (the methods for calculating these parameters are listed in Appendix A). αk is the
slope of kth micro-slope surface; aT

bk, αT
wk are the micro-slope’s directional-hemisphere reflectance

(also as black-sky albedo, BSA) and bi-hemispherical reflectance (white-sky albedo, WSA) on a sloping
surface, respectively. Inserting Equations (6)–(9) into (5), the coarse scale albedo can be rewritten as:

AC =

N
∑

k=1
(Eh

sk
cos isk

cos θsk cos αk
ΘkaT

bk + Eh
dkVdaT

wk + [Eh
sk

cos isk
cos θsk cos αk

Θk + Eh
dkVd]VtkaT

wk)

N(Eh
sk + Eh

dk)
(10)

We define a parameter S as the sky diffuse ratio factor, which is the proportion of diffuse solar
irradiance to the total radiation. It can be calculated by the ratio of the diffuse radiance on a horizontal
surface and the downward global solar radiance and exposes values between 0 and 1.

S =
Eh

dk

Eh
sk + Eh

dk
(11)

Inserting Equation (11) into (10), the coarse spatial scale albedo can be simplified as:

AC = 1
N

N
∑

k=1
[(1 − S) cos isk

cos θsk cos αk
ΘkaT

bk]+

N
∑

k=1
[(1 − S) cos isk

cos θsk cos αk
ΘkVtkaT

wk+VdkaT
wkS + VdkVtkaT

wkS]
(12)

Similar to the descriptions of the blue sky albedo of MODIS [38,39], the aggregated coarse scale
albedo can also be approximated through a linear combination of BSA and WSA, weighted by the sky
diffuse ratio factor. Thus, when S equals zero, it means that it has no diffuse skylight and the value of
AC can be considered as the coarse scale BSA (BSAC). However, when S is 1, the AC is the coarse scale
WSA (WSAC):

BSAC =
1
N

N

∑
k=1

[
cos isk

cos θsk cos αk
Θk(aT

bk + VtkaT
wk)] (13)

WSAC =
1
N

N

∑
k=1

[
cos isk

cos θsk cos αk
ΘkVtkaT

wk+VdkaT
wk + VdkVtkaT

wk] (14)

It is obvious that the BSA and WSA have intense topographic effects as they depend on
topographic factors and the solar incident angle [33]. Thus, they have scale effects in the validation
of albedo over rugged terrain. Furthermore, Equations (13) and (14) provide the albedo upscaling
method and function as the reference truth in albedo validation over rugged terrain.
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2.3. Fine Scale Albedo Retrieval Algorithm over Rugged Terrain

Currently, the Bidirectional Reflectance Distribution Function-based (BRDF-based) albedo
retrieval algorithms cannot be applied directly to fine scale albedo retrieval because of the lacking of
enough fine scale multi-angle observations [40,41]. A feasible method is the direct retrieval algorithm
such as the Angular Bin (AB) algorithm, which estimates the surface broadband albedo based on
a single-date/angular observation [40–43]. In the AB algorithm, the incident and observing hemisphere
were divided into several angular bins. The POLarization and Directionality of Earth Reflectance-BRDF
(POLDER-BRDF) data were used as prior knowledge in this algorithm for extracting anisotropy
reflectance information to build a Look-Up Table (LUT) of the land surface albedo at each angular
bin [41]. Then, the multi-variant linear regression models were established at each angular bin,
which linked the narrowband surface directional reflectance with broadband albedo, specifically,
the shortwave WSA and BSA corresponding to the solar angle at local noon [40,41]. The multi-variant
linear regression relationship can be expressed as:

αAB = C0(θs, ϕs, θv, ϕv) +
n

∑
i=1

Ci(θs, ϕs, θv, ϕv)ρi(θs, ϕs, θv, ϕv) (15)

where αAB represents the land surface fine scale albedo including BSA and WSA; Ci(θs, ϕs, θv, ϕv) is the
regression coefficient; and ρi(θs, ϕs, θv, ϕv) is the surface directional reflectance at band i, which are the
functions of solar/view angles (θs, ϕs, θv, ϕv) are the solar zenith angle, solar azimuth angle, view zenith
angle, and view azimuth angle). The AB algorithm has the advantages of simple computation,
fewer input parameters, and consideration of surface bidirectional and spectral characteristics [41].
Preliminary validation of the AB algorithm showed good applicability for albedo retrieval with
an absolute error of 0.009 for vegetation, 0.012 for soil, and 0.030 for snow/ice [41–43].

However, the current AB algorithm had to be improved before being applied over rugged terrain
as the regression models and the LUT were built on horizontal land surface. Therefore, the coefficient
and the LUT were not suitable for the albedo retrieval over rugged terrain. One accessible approach
to improve the AB algorithm over rugged terrain was to rebuild the regression models and LUT on
the sloping surface. Under the assumptions that the BRDF shape was the same over the land cover,
the BRDF shape for the slope was the BRDF for the rotated angles. Sloping surface incident/observation
hemispheres were re-divided and rotated to the sloping surface at the sloping coordinate system.
Thus, it can be re-written on a sloping surface as:

αABT = C0(is, φs, iv, φv) +
n

∑
i=1

Ci(is, φs, iv, φv)ρi(is, φs, iv, φv) (16)

where αABT is the fine scale sloping surface albedo, is, φs, iv, φv are the relative solar zenith angle, solar
azimuth angle, view zenith angle and azimuth angle on the sloping coordinate system, respectively.
ρi(is, φs, iv, φv) is the land surface reflectance on the sloping surface. Ci(is, φs, iv, φv) is the regression
coefficient on a sloping coordinate system. The sloping surface reflectance can be retrieved by the
Coupled-BRDF mountain radiation transfer model, which was developed by Wen in 2015 [44].

3. The Experimental Area and Dataset

3.1. Simulated Coarse Scale and Fine Scale Albedos

The simulated coarse scale albedos were used as reference data for comparison with the
aggregated coarse scale albedos, which were upscaled from a simulated fine scale albedo by using the
MRT-based upscaling model. The BSA can be simulated by integrating directional reflectance over the
exitance hemisphere, and the WSA can be obtained by integrating the directional reflectance over all
viewing and irradiance reflectance directions. The coarse scale directional reflectance can be simulated
according to the radiosity theory [33,34,45], which coupled with the DEM and micro-slope reflectance.
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In the coarse scale reflectance simulation, the micro-slope or the fine scale directional reflectance
can be directly simulated by the PROSAIL model [46], which couples the PROSPECT leaf optical
properties model [47] with the SAIL canopy reflectance model [48] and has been widely validated
and applied to reflectance modeling studies [49]. For directional reflectance simulation over rugged
terrain, the leaf inclination distribution function (LIDF) was assumed as a spherical type, and the
incident/observation geometrics were corrected to the sloping coordinate system to assess the photon
path length alteration. Table 1 illustrates the parameters of the inputted PROSAIL model for land
surface reflectance simulation over the sloping surface.

Table 1. The parameters and the values of the PROSAIL model.

Parameter Value

Solar Zenith Angle, SZA (degree) 0–60 (Interval 10)
Solar Azimuth Angle, SAA (degree) 0–360 (Interval 30)
View Zenith Angle, VZA (degree) 0–90 (Interval 10)

View Azimuth Angle, VAA (degree) 0–360 (Interval 30)
Leaf Chlorophyll a + b Concentration, Cab(μg/cm2) 40

carotenoid content, Car (μg/cm2) 8
equivalent water thickness, Cw (g/cm2) 0.01

dry matter content, Cm (g/cm2) 0.009
scene leaf area index, LAI (m2/m2) 3
average leaf angle, ALA (degree) 30

structure coefficient (N) 1.5
hot-spot size parameter(m/m) 0.01

Soil brightness parameter 1

Nine DEMs (Table 2) were generated with different Gaussian height distributions to provide
the various slope and aspect of micro-slope (shown in Figure 3). Specifically, the nine DEMs had
the same reference template, which was simulated by a Gaussian random distribution model with
one unit mean elevation and 0.25 unit standard error within the area of 100 units × 100 units.
By linking with the real distance of 30 m, the simulated micro-slope could be considered with
the 30 m resolution [33]. Additionally, the vertical elevation was exaggerated in 1, 10, and 20,
respectively. Through appropriate exaggeration in the elevation and different Gaussian smoothing
filtering parameters, the micro-slopes were generated with different slope and aspect. However, only the
central part 510 m × 510 m (17 × 17 grid cells) of the above DEM was considered as a coarse scale pixel
coverage to avoid the ambiguous calculation errors at the edge of the DEM. The mean slopes listed
in Table 2 were defined as the average slope of the grids within the 17 × 17 grid cells. Since the BSA
depends on the solar geometry (including SZA and SAA), the SZA varied from 0◦ to 60◦ with a 10◦

interval, and SAA varied from 0◦ to 360◦ with a 30◦ interval. Therefore, 819 BSAs and nine WSAs from
nine DEM files were simulated.

Table 2. Mean slopes of the DEMs.

Filter
Exaggeration = 1 Exaggeration = 10 Exaggeration = 20

Mean Slope Mean Slope Mean Slope

1 × 1 3.38 29.69 47.18
3 × 1 2.7 24.68 41.25
5 × 1 1.98 18.76 33.23
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Figure 3. Simulated DEM with Gaussian height distributions.

3.2. In Situ Albedo Measurements

The upper stream of the Heihe River Basin (HRB) was selected as the study area for coarse scale
albedo validation over rugged terrain. HRB is a typical inland river in the arid region of northwest
China (97.1◦E–102.0◦E, 37.7◦N–42.7◦N). This region was selected as the core experimental watershed
of Hi-WATER, because of the abundant accumulations of long temporal scale records since 1995 [50,51].
There are mountains in this region where the altitude ranges from 1025 m to 5076 m. The dominated
land covers are cropland, Gobi Desert, grassland, forest, and high-latitude meadows.

A prototype watershed observation system has been established since 2009 [52]. Fifteen Automatic
Weather Stations (AWS) were mounted in this observation system (Figure 4), which recorded
the essential parameters every ten minutes including upwelling solar shortwave radiance (USR),
and downwelling solar shortwave radiance (DSR). In situ albedo can be calculated as the ratio of USR
and DSR at the local solar noon (11:30–12:30). Figure 4 illustrates the study area and the location of the
selected AWSs.

The 15 AWSs in HRB are temporary sites where the measurements were only recorded at the
periods of the Hi-WATER experiments. Two CNR pyranometers were mounted back to back between
2 m and 2.5 m above the top of the canopy at every AWS. The measurement footprints were circular
and 80% of the signal came from a region with a diameter between 34.8 m and 43.5 m, which could be
easily calculated as per Sailor’s work [53]. The measurements recorded at 15 AWSs were considered
with the high representativeness of mean albedo within the 30 m HJ pixel. Table 3 summarizes the
details of the albedo measured sites used for validation.
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Figure 4. Study area: (A) the overview of the study area; (B) the location of the Automatic Weather
Stations (AWSs) in the DEM imageries; and (C) one example of the AWSs.

Table 3. The description of the selected AWSs.

Site Name
Lat/Lon/Ele

Land Covers
Slope Mean Slope

Time Periods
(Deg/Deg/M) (Deg) (Deg)

A’rou Super 38.047/100.464/3017 Grassland 1.148 2.5 2013, 2014
A’rou Sunny 38.09/100.520/3579 Grassland 5.746 11.64 2013, 2014
A’rou Shady 37.984/100.411/3585 Grassland 9.871 15.703 2013, 2014

E’bu 37.949/100.915/3355 Grassland 2.316 3.376 2013, 2014
Huang ZangSi 38.225/100.192/2651 Cropland 4.764 6.503 2013, 2014

Huang CaoGou 38.003/100.731/3196 Grassland 6.968 3.917 2013, 2014
Jing YangLing 37.838/101.116/3793 Grassland 5.206 10.85 2013, 2014

Zhang Ye 38.975/100.446/1456 Cropland 4.847 2.882 2009, 2013, 2014
Hua ZhaiZi 38.765/100.319/1740 Desert 5.206 3.775 2009, 2013, 2014
Guan Tan 38.534/100.250/2839 Forest 14.943 11.418 2009

A’rou 38.051/100.457/2993 Grassland 3.554 3.671 2009
Bing Gou 38.067/100.222/3438 Grassland 4.274 10.573 2009

Ya Kou 38.014/100.242/4137 Grassland 8.432 9.504 2009
Ying Ke 38.858/100.41/1517 Cropland 1.148 2.296 2009

Ma LianTan 38.548/100.296/2827 Grassland 15.42 18.561 2009

Ten AWSs were mounted in the grassland, three AWSs were located in the cropland, one site
in the desert, and one site in the forest. The slope of the AWSs and the mean slope of coarse scale
pixels (500 m in this paper) were obtained from the DEM were listed in Table 3. According to the mean
slope, if the mean slope was less than 5◦, the coarse scale pixel was thought of as being of a gentle
slope. If the mean slope was greater than 5◦ and less than 10◦, the coarse scale pixel was a relatively
rugged terrain. When the mean slope was greater than 10◦, the coarse scale pixel was considered as
steep terrain. The DEM were collected from the Shuttle Radar Topography Mission (SRTM) DEM
data [54,55], and had a 30 m spatial resolution and UTM projection [56]. Slope, aspect, shaded factor,
and other terrain parameters were derived from the DEM referenced to the algorithm in Dozier’s
work [37].

3.3. Satellite Imagery

The 500 m Collection V006 MODIS albedo product (MCD43A3 C6) was selected as the coarse
scale albedo products for validation. The semi-empirical, kernel-driven BRDF model was the primary
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algorithm to retrieve surface BRDF and albedo at 16-day time periods [57]. A back-up algorithm was
employed for deriving the albedo in a situation of insufficient angular sampling because of cloud cover
or orbital constraints [28]. The MCD43A3 products provided shortwave broadband black-sky albedo
(BSA) and white-sky albedo (WSA) at a 500 m resolution [38].

The fine scale remote sensing data were collected from the China HJ-1/CCD sensor which
provides an opportunity to record earth land surface reflectance with high spatial resolution and
a broad coverage in China [44]. The HJ-1/CCD can record 4-band images with a 30 m spatial scale and
a revisiting circle of less than two days [17]. The HJ images were geo-rectified for matching with the
DEM file.

4. Results

4.1. Assessment of the MRT-Based Upscaling Model

A high-quality albedo upscaling model is of great importance for the application of multi-scale
validation strategy. The accuracy of the MRT-based albedo upscaling model was assessed through
a comparison of the aggregated fine scale albedo with the reference coarse scale albedo. Moreover,
to show the performance of the MRT-based upscaling method, the line weighted average model was
also used to scale up the fine scale albedo to a coarse spatial scale, which is the most commonly-used
model in the multi-scale validation method over flat terrain [8,9,24,58]. The bias, root-mean-square
error (RMSE), mean absolute percent error (MAPE), and coefficient of determination (R2) were used to
show the accuracy of the aggregated coarse scale albedos, which are expressed as follows:

Bias =
n

∑
i=1

(pi − oi)/n (17)

RMSE =

√
n

∑
i=1

(pi − oi)
2/n (18)

MAPE =
100%

n

n

∑
i=1

|(pi − oi)|/oi (19)

R2 =
n

∑
i=1

(pi − pi)(oi − oi)/

[
n

∑
i=1

(pi − pi)
2

n

∑
i=1

(oi − oi)
2

]
(20)

where pi, pi are the albedo observation and average albedo observation; oi, oi are the reference albedo
measurement and average of reference albedo measurement; and n represents the amount of simulated
albedo measurements.

4.1.1. Accuracy of Using MRT-based Albedo Upscaling Model

Figure 5 shows the scatter plots between the reference coarse scale albedo and aggregated coarse
scale albedo as well as the histogram of bias distributions. The aggregated coarse scale BSAs showed
significant agreements with the reference simulated coarse scale albedo with an RMSE of 0.0029, Bias of
−0.0001, MAPE of 0.94%, and R2 of 0.9962 (Figure 5A). The histogram showed that the bias reflected
a normal distribution with the maximum bias less than 0.015 (Figure 5B). Figure 5C shows that the
aggregated coarse scale WSAs had a similar accuracy with the BSAs. The bias was 0.0007, the MAPE
was 0.79%, the RMSE was less than 0.0017, and the R2 is as high as 0.9984. The bias in Figure 5D
showed that the maximum bias among the nine simulated WSAs was less than 0.003 following the
change of the mean slope. Overall, these results showed that the aggregated coarse scale albedos had
fewer discrepancies with the reference coarse scale albedos.
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Figure 5. Scatter plots and the histogram evaluate the aggregated coarse scale albedo (using a Mountain-
Radiation-Transfer (MRT)-based model) against the reference simulated coarse scale albedo for (A) the
aggregated coarse scale BSA vs. the simulated coarse scale BSA; (B) the bias histogram of the aggregated
coarse scale BSA minus the reference coarse scale BSA; (C) the aggregated coarse scale WSA vs.
the simulated coarse scale WSA; and (D) the bias between the nine aggregated coarse scale WSAs and
the reference simulated WSAs following the increase of the mean slope.

The BSA depends on the incident solar geometry and is intensely affected by complex terrain,
therefore, the accuracy of aggregated coarse scale albedo varied with different SZAs and terrain slopes.
Figure 6 shows the comparison between the aggregated coarse scale albedo and simulated coarse
scale albedo at the solar zenith angles from 0◦ to 60◦ with an interval of 20◦. It was obvious that the
aggregated coarse scale BSAs had the significant agreement with the reference coarse scale BSAs at the
four selected SZAs. With the increase of SZA, the RMSE values showed a slight increase from 0.0024 at
SZA of 0◦ to 0.0025 at SZA of 40◦. The Bias, MAPE, and R2 had a little change when the solar zenith
angle varied from 0◦ to 40◦. Even though the SZA increased to 60◦, the aggregated coarse scale BSAs
still had significant agreement with the reference simulated coarse scale albedo with a bias of 0.0021,
MAPE of 1.51%, RMSE of 0.0049, and R2 of 0.9971. The bias distribution histogram also demonstrated
that the maximum bias of the two types of BSAs was less than 0.015 at the four selected SZAs.

Figure 7 shows the comparison between the simulated coarse scale BSAs and reference coarse
scale BSAs over four selected DEM types with different mean slopes. The mean slope of the DEM in
Figure 7A was lower than 10◦, which was considered as the flat terrain. The results showed that the
aggregated coarse scale BSAs had great agreement with the reference simulated coarse scale albedo
with an RMSE of 0.0001. When the slope is varied from greater than 10◦ and less than 20◦, where the
terrain can be considered as a the gentle slope, the RMSE was increased to 0.0019 (Figure 7B). When the
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mean slope was greater than 20◦ and less than 30◦ (where the land surface can be considered some
rugged), the RMSE increased to 0.0034 (Figure 7C). However, when the slope was larger than 30◦,
the RMSE still reminded as 0.0041 (Figure 7D). Though, the regression coefficient and R2 were much
closer to 1 at these four situations, the MAPE had an obvious increase from 0.05% to 2.04%. From the
histograms of the mean slopes less than 30◦ (Figure 7A–C), we could see that more than 70% of the
biases were distributed at the intervals less than 0.01. The maximum bias was smaller than 0.02 at the
four mean slopes of the DEM. These four figures showed that the aggregated coarse scale BSAs had
the great agreement with the simulated coarse scale BSAs at the four selected mean slopes.
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Figure 6. Validation results at different solar zenith angle: (A) the solar zenith angle is 0◦; (B) the Solar
Zenith Angle (SZA) is 20◦; (C) the SZA is 40◦; and (D) the SZA is 60◦.

Slope <10

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
0

5

10

15

20

25

30

35

F
re

qu
en

cy
(%

)

Bias

10<Slope<20

Aggregated Coarse Scale BSA(MRT-Based Model) Aggregated Coarse Scale BSA(MRT-Based Model) 

Si
m

ul
at

ed
 C

oa
rs

e 
Sc

al
e 

BS
A

Si
m

ul
at

ed
 C

oa
rs

e 
Sc

al
e 

BS
A

-1 -0.5 0 0.5 1

x 10
-3

0

5

10

15

20

25

30

35

40

F
re

qu
en

cy
(%

)

Bias

A B

Figure 7. Cont.

192



Remote Sens. 2018, 10, 156

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
0

5

10

15

20

25

30

35

40

F
re

qu
en

cy
(%

)

Bias

20<Slope<30

-0.02 -0.01 0 0.01 0.02
0

2

4

6

8

10

12

14

16

F
re

qu
en

cy
(%

)

Bias

Slope>30

Si
m

ul
at

ed
 C

oa
rs

e 
Sc

al
e 

BS
A

Si
m

ul
at

ed
 C

oa
rs

e 
Sc

al
e 

B
SA

Aggregated Coarse Scale BSA(MRT-Based Model) Aggregated Coarse Scale BSA(MRT-Based Model) 

C D

Figure 7. Validation of the MRT-based upscaling model at different slopes (A) the slope is smaller than
10 degree; (B) the slope is greater than 10 degree and less than 20 degree; (C) the slope is between 20
and 30 degrees; and (D) the slope is larger than 30 degrees.

4.1.2. Accuracy Analysis by using the Linear Weighted Average Upscaling Model

Figure 8 shows the comparison between the reference coarse scale albedos and the aggregated
coarse scale albedos, which averaged the fine scale albedo within a coarse scale pixel. The linear
averaged albedos showed a big discrepancy with the simulated reference coarse scale albedo with
an RMSE of 0.0744, and a bias of −0.0481 overall, for the different slopes and incident solar geometries.
The R2 was reduced as low as 0.0223. Though 80% of the bias was distributed symmetrically in the
interval of −0.10 to 0.15, the maximum bias increased to nearly 0.25. Additionally, the comparison
with WSA showed similar results as the BSA with a bias of −0.0383, and RMSE of 0.0532, respectively.
Figure 8D shows the changes of biases between the aggregated coarse scale WSAs and the reference
simulated coarse scale WSAs following the increase of mean slope. Furthermore, it shows the obviously
increase of the bias following the change of the mean slope with the maximum absolute bias greater
than 0.12 at the place that the mean slope is increased to 47.18. The results showed that the linear
weighted average model was not very suitable to deal with the scaling mismatching for coarse scale
albedo validation over rugged terrain.

The statistics metrics, which are summarized in Table 4, record the comparison results between
the reference coarse scale albedo and the aggregated coarse scale albedo which was aggregated by the
MRT-based upscaling model and linear weighted average model, respectively. Overall, the MRT-based
upscaled coarse scale BSAs had a great agreement with the simulated reference coarse scale BSAs.
Following the increase of the solar zenith angle, the uncertainty of the MRT-based upscaled coarse
scale BSAs had a slight increase as the RMSE increased from 0.0022 to 0.0049, and the MAPE increased
from 0.71% to 1.50%. Meanwhile, the RMSE and MAPE also showed an obviously increase trend
following the increase of mean slope of the DEM where the RMSE varied from 0.0001 to 0.0041,
and the MAPE varied from 0.05% to 2.04%. However, the aggregated coarse scale BSAs upscaled by
the linear average model had large uncertainty when compared with the reference simulated coarse
scale BSAs. Following the increasing of SZA and mean slope of DEM, the bias, MAPE, and RMSE
had a similar increasing trend as that of the aggregated coarse scale BSA upscaled by the MRT-based
model. When the mean slope was smaller than 10◦, the coarse scale BSAs aggregated by the linear
average model had great consistency with the reference simulated coarse scale BSAs with an RMSE of
0.0043, bias of 0.0002, MAPE of 1.26%, and R2 of 0.9028. When the slope is increased to larger than
30◦, the absolute of the bias, RMSE, MAPE, and R2 also increased as larger as 0.0860, 0.0809, 37.37%,
and 0.1288, respectively.
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Figure 8. Scatter plots and the histogram evaluate the fine scale albedo against simulated coarse scale
albedo for: (A) the aggregated fine scale BSA vs. the simulated coarse scale BSA; (B) the histogram of
the aggregated fine scale BSA minus the coarse scale BSA; (C) the aggregated fine scale WSA vs. the
simulated coarse scale WSA; and (D) the bias distribution of the aggregated fine scale WSA and the
coarse scale WSA following the increase of the mean slopes.

Table 4. Statistical metrics from the validation between coarse scale BSA and aggregated fine scale BSA
aggregated by different upscaling methods (α* means the slope of the DEM).

Parameters

Aggregated Fine Scale BSA (MRT-Based
Upscaling Model) vs. Simulated Coarse

Scale BSA

Aggregated Fine Scale BSA (Linear Weighted
Average Upscaling Model) vs. Simulated

Coarse Scale Albedo BSA

N Bias MAPE RMSE R2 N Bias MAPE RMSE R2

SZA = 0◦ 117 −0.0013 0.96% 0.0024 0.9941 117 −0.0389 16.79% 0.0557 0.9634
SZA = 10◦ 117 0.0013 0.93% 0.0024 0.9942 117 −0.0393 16.93% 0.0573 0.9532
SZA = 20◦ 117 −0.0009 0.84% 0.0023 0.9950 117 −0.0416 17.68% 0.0634 0.9340
SZA = 30◦ 117 0.0004 0.71% 0.0022 0.9965 117 −0.0448 18.95% 0.0743 0.6190
SZA = 40◦ 117 −0.0002 0.74% 0.0025 0.9968 117 −0.0493 21.19% 0.0863 0.4593
SZA = 50◦ 117 −0.0010 0.89% 0.0030 0.9980 117 −0.0411 20.82% 0.0825 0.1448
SZA = 60◦ 117 −0.0021 1.50% 0.0049 0.9971 117 −0.0374 23.23% 0.0923 0.2497
α* < 10◦ 273 −0.0001 0.05% 0.0001 1 273 0.0002 1.26% 0.0043 0.9028

10◦ < α* < 20◦ 91 0.0002 0.68% 0.0019 0.9971 91 −0.0250 14.19% 0.0607 0.272
20◦ < α* < 30◦ 182 −0.0004 1.32% 0.0034 0.9899 182 −0.0462 20.14% 0.0677 0.0302

α* > 30◦ 273 −0.0000 2.04% 0.0041 0.9943 273 −0.0860 37.37% 0.0809 0.1288
Overall 819 −0.0001 0.94% 0.0029 0.9962 819 −0.0481 19.43% 0.0744 0.0233

The discrepancies between the MRT-based upscaled albedo and the reference albedo raised
slightly following the increasing of the incident solar zenith angle and the mean slope, especially when
the SZA was larger to 60◦ and the mean slope was larger than 30◦. However, even though the SZA
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is increased to 60◦ and the mean slope increased to larger than 30◦, the MRT-based albedo upscaling
model showed the great performance over rugged terrain with a maximum bias and RMSE smaller
than 0.0032 and 0.0049, respectively.

4.2. Application of MRT-Based Upscaling Model for MODIS Albedo Validation

4.2.1. Accuracy Assessment of HJ Albedo

The accuracy and uncertainty of fine scale HJ blue-sky albedos have an essential influence on
coarse scale albedo validation in the multi-scale validation strategy [24]. Therefore, the HJ blue-sky
albedos were assessed firstly with in situ albedos. The HJ blue sky albedo can be approximated through
a linear combination of BSA and WSA, weighted by the fraction of actual direct to diffuse skylight.
Figure 9A shows the comparison between the in situ albedo and HJ blue-sky albedo. It was obvious
that the two albedos had a less discrepancy with a bias of 0.0028, RMSE of 0.0272, MAPE of 10.0%,
and R2 of 0.7470. Figure 9B shows the error histogram of bias. It was easily found that the biases were
normally distributed significantly. Though 80% of the bias was distributed within the interval of −0.05
to 0.05 and the maximum bias was less than 0.07. The validation results indicated that within the 95%
confidence interval (shown by the p-value, which is less than 0.005), the regression model could be
used to describe the relationship between the fine scale HJ albedos and in situ albedos. Additionally,
it can be used as the calibration model to calibrate the HJ albedos.
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Figure 9. Scatter plots and bias histogram between fine scale albedos and the in situ albedos: (A) in situ
albedo vs. the fine scale albedo; (B) Bias histogram of fine scale blue-sky albedo minus the in situ
albedo The colors refer to the density of points (from highest (red) to lowest (blue).

4.2.2. Comparison of the Aggregated Coarse Scale Albedo with MODIS Albedo Products

The MRT-based albedo upscaling model was used for aggregating the calibrated HJ albedo to
a coarse spatial scale. Figure 10 displays the validation results by comparing the coarse scale MCD43A3
C6 albedos with the coarse scale aggregated HJ albedos. The results showed that MCD43A3 C6 BSAs
with full inversion had agreement with the aggregated HJ BSAs, with an RMSE of 0.0305, bias of 0.008,
MAPE of 13.50%, and R2 of 0.6517. While, the MCD43A3 C6 BSAs with magnitude inversion showed
slight differences with the aggregated HJ BSAs with an RMSE of 0.0511 and bias of 0.0097, MAPE
of 19.17%, and R2 of 0.3817. The MCD43A3 WSAs showed the similar accuracy and uncertainty as
the BSAs, with an RMSE of 0.0321 for full inversion and an RMSE of 0.0531 for magnitude inversion.
The results showed that the uncertainty of MCD43A3 C6 over rugged terrain was slightly larger than
0.02, which has been shown in many studies [15,16,18,20,22,59–61]. The two bias histograms showed
that the biases were distributed symmetrically at the interval zero and the maximum bias were smaller
than 0.1.
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Figure 10. Coarse scale MCD43A3 C6 albedos validation by comparison with the aggregated coarse
scale albedos: (A) the aggregated coarse scale BSAs vs. the MCD43A3 C6 BSAs; (B) the aggregated
coarse scale WSAs vs. the MCD43A3 C6 WSAs. The colors refer to the density of points (from highest
(red) to lowest (blue).

Figure 11 illustrates the MCD43A3 C6 products validation results at different mean slopes around
the AWSs. This showed that the MCD43A3 C6 products had good agreements with the aggregated
HJ albedos at the surface where the slope was lower than 5◦. The bias, MAPE, RMSE and R2 for the
MCD43A3 full inversion BSAs were 0.0108, 10.88%, 0.0244, and 0.6136, respectively (Figure 11A).
When the slope increased to greater than 5◦ and less than 10◦, the RMSE increased to 0.0315 for BSA
and 0.0308 for the WSAs of full inversion (Figure 11C,D). However, when the slope was larger than 10◦,
there were large discrepancies between the MCD43A3 C6 full inversion BSAs and the aggregated HJ
BSAs with an RMSE of 0.0365 and MAPE of 19.71% (Figure 11E). The WSAs of full inversion showed
a similar increase trend, with a bias of 0.0126, MAPE of 11.39% and RMSE of 0.0293 (Figure 11B),
when the mean slope was lower than 5◦. When the mean slope was raised to larger than 10◦, the bias,
MAPE, and RMSE increased to −0.0133, 15.45% and 0.0313, respectively (Figure 11F).

Generally, the MCD43A3 C6 albedos of magnitude inversion had lower quality than the albedos
of full inversion. Following the increase of mean slope, the RMSE and MAPE displayed an outstanding
rise for the two inversions MCD43A3 C6 BSAs, as well as the magnitude inversion WSAs, especially
where the mean slope was greater than 10◦. Over rugged terrain, the land surface albedos were
seriously influenced by the complex interactions among the topography and the incident radiation
from the sun location, the shadow, the atmosphere, and surface scattering irradiance from the adjacent
terrain. The topographic effects led to more uncertainty in albedo remote sensing retrieval. Neglecting
these effects, the albedo algorithm may lead to lower quality albedos.
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Figure 11. Coarse scale MCD43A3 C6 products validation by comparing with the aggregated fine
scale albedo at different mean slopes. The colors refer to the density of points (from highest (red) to
lowest (blue).

5. Discussion

The topography affects the land surface albedo. Compared with the validation over flat terrain,
the albedo validation over rugged terrain should consider the scale effects. This paper proposed
an MRT-based albedo upscaling model for dealing with the scale effects in the multi-scale validation
strategy over rugged terrain. The simulated coarse scale albedos were used as the reference truth to
assess the MRT-based albedo upscaling model.

The assessments showed that the coarse scale albedo upscaled by the MRT-based model had
the great agreement with the reference coarse scale albedo in different solar zenith angle or terrain
with different mean slopes (Table 4). The uncertainty of the aggregated coarse scale albedos had
the slight variation following the change of SZA and mean slope. In particular, the coarse scale
albedos aggregated by the MRT-based model still showed the great consistency with the reference
coarse scale albedo when the mean slope was larger than 30◦ or the solar zenith angle was up to 60◦

(Figures 6 and 7). Adversely, the coarse scale albedo aggregated by the linear average model showed
a larger discrepancy with the reference coarse scale albedo (Figure 8). Following the increase of solar
zenith angle and the mean slope of the terrain, the discrepancy had an obviously increasing trend
(Table 4). The MAPE and RMSE were raised to 37.37% and 0.0809, following the increase of the mean
slope, respectively. Comparisons between the validation results of the two upscaled coarse scale
albedos showed that the MAPEs increased obviously following the increase of mean slope (Table 4).
When the mean slope was larger than 30◦, the difference of MAPE increased larger than 35%. However,
when the mean slope was lower than 10◦, the MAPE did not show an obvious difference. Similarly,
the difference between the two upscaled models also increased following the increase of the solar
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zenith angle. When the solar zenith angle was 60◦, the difference between the two MAPEs was larger
than 20%. Notably, the two MAPEs also showed a large difference when the solar zenith angle was 0◦.

The simulated results showed that the SZA and mean slope had a significant influence on the
scale effects of albedo over rugged terrain. When the land surface was flat or the mean slope was lower
than 10◦, the scale effects could be thought as very gentle, and either the MRT-based albedo upscaling
model or the linear average upscaling model could be used to upscale fine scale albedo to a coarse
scale. When the land surface was steep or the mean slope larger than 10◦, the difference caused by
scale effects was larger than 15% of MAPE. The solar zenith angle coupled with complex terrain can
cause the mutual shadowing and re-distribution of download solar radiation. These characteristics
resulted in the land surface being more heterogeneous and larger albedo scale effects.

The MRT-based upscaling model was applied to MCD43A3 C6 albedo products validation in
HRB. Fine scale albedos were retrieved from the HJCCD sensor by the improved AB algorithm on
a sloping surface and used as a bridge to deal with the scale mismatching between the in situ albedos
and the MCD43A3 C6 albedos. The HJ albedos were evaluated and calibrated by in situ albedos for
reducing the systemic errors and the accidental errors. Furthermore, they were upscaled to the coarse
scale and were functioned as the reference truth over albedo validation. The validation results showed
the MCD43A3 C6 products of full inversion had high agreements at the sites where the mean slope
was lower than 5◦. Following the increase of mean slope, the MCD43A3 C6 BSAs of full or magnitude
inversion showed the outstanding increase of RMSE, with an RMSE varied from 0.0244 to 0.0365 for
the full inversion BSA and 0.040 to 0.0601 for the magnitude inversion, respectively. The MCD43A3
of the full WSAs products also showed a similar result with the RMSE varying from 0.0293 to 0.0313
following the mean slope increasing from 0◦ to greater than 10◦.

However, the multi-scale validation strategy used for albedo validation over rugged terrain
also still faces challenges. The geometric misalignment between DEM and fine scale albedo had an
intense influence on the application of the MRT-based albedo upscaling method. In this paper, the
HJ reflectance data were geometrically rectified by the geo-referenced Landsat images and rechecked
manually. Second, the MRT-based albedo upscaling model was built under the assumption that the
coarse scale pixel was overall horizontal. To use the MRT-based method where the coarse scale pixel
was not overall horizontal, the simple way was to change the angular effects in model development.
Therefore, the MRT-based upscaling model can also be suitable for using in coarse scale albedo
validation. The quality of fine scale albedo and the multiple land covers were also affected the
validation results. Thus, in the future, we plan to improve the method’s applicability and assess the
accuracy of MCD43A3 C6 products comprehensively under multiple land covers and long temporal
periods over rugged terrain at the global scale.

6. Conclusions

This paper proposed a multi-scale validation strategy for coarse scale albedo products validation
over rugged terrain, where the fine scale albedos on sloping land surfaces were used as a bridge
to upscale in situ albedo to coarse scale. In this paper, the MRT-based albedo upscaling method
was developed and preliminarily applied for aggregating the fine scale albedos to coarse scale.
The applicability and performance of the MRT-based upscaling model were assessed by comparing
the upscaled coarse scale albedo with the simulated reference coarse scale albedo. The multi-scale
validation strategy with an MRT-based albedo upscaling model was applied to assess the accuracy
of MCD43A3 products over rugged terrain in the Heihe River Basin, China. The HJ satellite albedo
was selected as the fine scale albedo and was upscaled to the coarse scale by the MRT-based albedo
upscaling model.

The validation results showed that the coarse scale albedo validation are suffered the scale effects
over rugged terrain. The scale effects increased following the increase of mean slope and the solar
zenith angle over rugged terrain. Furthermore, it cannot be overlooked when the mean slope was
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larger than 10◦. The MRT-based albedo upscaling model had the great performance in dealing with
the issue of scale mismatching for albedo validation over rugged terrain.

The linear average model showed a similar performance with the albedo validation over flat
terrain. However, over rugged terrain, the coarse scale albedos upscaled by the linear average model
showed a bigger discrepancy than the simulated coarse scale albedos, which indicated that the linear
average model had worse applicability for albedo validation over rugged terrain, especially, when the
slope was larger than 10◦.

The MRT-based albedo upscaling model was used to assess the MCD43A3 products. It showed
great performance in aggregating the fine scale HJ albedo to coarse scale. The validation results
showed that in the Heihe River Basin, the MCD43A3 BSA products with full inversion algorithm
had an increased uncertainty following the increase of the mean slope, with an RMSE varying from
0.0244 to 0.0365, and a MAPE that varied from 10.88% to 19.71. Meanwhile, the MCD43A3 WSA
products with the full inversion algorithm had an RMSE varying from 0.0293 to 0.0313 and MAPE
from 11.39% to 15.49%.
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Appendix A

The total incident solar irradiance (ET) on a micro-slope surface consists of three components:
direct (ET

s ), diffuse solar irradiance, and the component from adjacent topography (ET
d ). It can be

expressed as:
ET = ET

s + ET
d + ET

a (A1)

In flat terrain, the direct solar irradiance can be described as the function of the exo-atmospheric
solar irradiance and the solar zenith angle. Unlike the received solar beam at flat terrain, the direct
solar irradiance varies with the angle formed by the solar beam and the normal to the surface [62].
In addition, the adjacent terrain may cast a shadow on the pixels, which results in receiving no direct
radiance at all [63]. Considering these effects, the direct solar irradiance ET

s can be described as the
function of the relative solar illumination angle (is), the direct solar irradiance on flat terrain, and the
shadow factors, which can be expressed as follows [32]:

ET
s = Eh

s
cos is
cos θs

Θ (A2)

where Eh
s is the incident solar irradiance on a horizontal plane; is is defined as the relative solar

illumination angle over the incline surface, which can be calculated from the DEM slope and aspect
angle (α, β) and the solar incident geometry (θs, ϕs) on a horizontal surface and can be shown as [64]

cos is = cos θs cos α + sin θs sin α cos(β − ϕs) (A3)

where Θ is a binary coefficient, and is set to zero whenever a surface is shadowed by surrounding
ridges (cast shadow) and set to one otherwise [65]. Compared with the incident diffuse solar irradiance
on the horizontal surface, it may be reduced by the topographic effect due to the hemispherical
sky dome being partially obstructed by the surrounding terrain and the tilt of the surface itself [66].
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Generally, the diffuse irradiance was estimated from the incident solar diffuse irradiance obtained
with a horizontal surface by a simple relation as

ET
d = Eh

dVd (A4)

by Dozier’s work [37]. The Vd was defined as the sky-view factor, which was the ratio of the diffuse sky
irradiance at a point to that on an unobstructed horizontal surface. Several researches were targeted
on the accuracy calculation of sky-view factors [67]. In this paper, this term can be expressed as

Vd = ( 1
2π

∫ 2π
0 [cos α sin2 Hϕ + sin α cos(ϕ − β)(Hϕ − sin Hϕ cos Hϕ)]dϕ)

(1 + cos3 θs cos2 is)[1 + sin3( α
2 )]

(A5)

by Wen’s work [26]. Where Hϕ is the horizontal angle from the zenith downward to the local horizon
for direction ϕ. Adjacent terrain irradiance can be computed by a simple model by Hansen [68].
The model had been applied widely and taken into account of the average land surface reflectance of
nearby pixels, the slope of the surface.

ET
a = [ET

s + ET
d ]Vtρmean (A6)

where ρmean is the average reflectance of nearby terrain; parameter Vt is the terrain view factor
(range 0–1) calculated from the local slope or a horizon analysis. A simple relation between Vd and Vt

can be simple calculated as the Equation (A7).

Vt = 1 − Vd (A7)
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Abstract: Topography complicates the modeling and retrieval of land surface albedo due to shadow
effects and the redistribution of incident radiation. Neglecting topographic effects may lead to a
significant bias when estimating land surface albedo over a single slope. However, for rugged
terrain, a comprehensive and systematic investigation of topographic effects on land surface albedo
is currently ongoing. Accurately estimating topographic effects on land surface albedo over a
rugged terrain presents a challenge in remote sensing modeling and applications. In this paper,
we focused on the development of a simplified estimation method for snow-free albedo over a
rugged terrain at a 1-km scale based on a 30-m fine-scale digital elevation model (DEM). The
proposed method was compared with the radiosity approach based on simulated and real DEMs.
The results of the comparison showed that the proposed method provided adequate computational
efficiency and satisfactory accuracy simultaneously. Then, the topographic effects on snow-free
albedo were quantitatively investigated and interpreted by considering the mean slope, subpixel
aspect distribution, solar zenith angle, and solar azimuth angle. The results showed that the more
rugged the terrain and the larger the solar illumination angle, the more intense the topographic
effects were on black-sky albedo (BSA). The maximum absolute deviation (MAD) and the maximum
relative deviation (MRD) of the BSA over a rugged terrain reached 0.28 and 85%, respectively, when
the SZA was 60◦ for different terrains. Topographic effects varied with the mean slope, subpixel
aspect distribution, SZA and SAA, which should not be neglected when modeling albedo.

Keywords: land surface albedo; snow-free albedo; rugged terrain; topographic effects; black-sky
albedo (BSA)

1. Introduction

Land surface albedo, defined as the fraction of incident solar radiation (0.3–3 μm) reflected by
land surfaces [1,2], is one of the most significant geophysical variables affecting the Earth’s climate
and controlling the surface radiation budget. It plays a crucial role in a variety of models, including
general circulation models, land surface climate models, energy balance models, hydrology models,
and biosphere models. Land surface albedo under ambient light conditions, also known as blue-sky
albedo, is a combination of directional hemispheric reflectance, known as black-sky albedo (BSA), and
bihemispherical reflectance, known as white-sky albedo (WSA); blue sky albedo takes into account
the proportion of diffused skylight illumination and the solar zenith angle [3–6]. Over recent decades,
land surface albedo remote sensing estimation algorithms have been developed, demonstrating
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that a bihemispherical integration method using the bidirectional reflectance distribution function
(BRDF) [7–9] has a robust performance and is widely used in albedo estimation. This method for
estimating albedo generally assumes that the land surface terrain is flat and homogeneous [10,11],
and albedo products have been created with this method using different satellite datasets, such as the
Moderate Resolution Imaging Spectroradiometer (MODIS) [12], the polarization and directionality of
Earth reflectances (POLDER) [13], the multi-angle imaging spectroradiometer (MISR) [14], and the
Clouds and the Earth’s Radiant Energy System (CERES) [15].

Spatial heterogeneities, which are comprised of complex topography and heterogeneous land
cover, complicate the estimation of land surface albedo [16]. Directly applying albedo estimation
methods that are suitable for flat terrain to a rugged terrain leads to large errors [17,18]. Actually,
topography plays different roles in albedo estimation at different spatial scales [19]. For a single
slope, physical-based BRDF models, such as the improved four-scale geometric-optical model for
sloping terrain (GOST) [20], the improved soil-leaf-canopy radiative transfer model for sloping terrain
(SLCT) [21], the improved Li-Strahler geometric-optical canopy model for sloping terrain (GOMST) [8],
the vertical vegetation model (VVM) [7], the path length correction (PLC) model [22], have been
developed based on the radiative transfer principle and the geometric optical theory, which depend on
the orientation of the plant stand and the particular configuration of the sun direction and the terrain
slope [7,8]. By integrating the BRDF over the exitance hemisphere for a single irradiance direction,
the BSA for a single slope can be obtained; by integrating the BRDF over all viewing and irradiance
directions, the WSA for a single slope can be calculated. Investigations have shown that the albedo
for a single slope is related to the slope and aspect of the single slope [7,8,23,24]. With an increase
in slope, the albedo becomes sensitive to the aspect of the slope, and the slopes facing away from
the sun may display larger albedos than those of the sunward facing slopes due to increased mutual
shadowing [8]. In addition, the terrain shadowing and diffused radiation from the adjacent slopes
significantly influences the single slope albedo [8]. For a rugged terrain, the topographic effects on
albedo generally focus on the integrated effects caused by subpixel slopes within one remote sensing
pixel [18,19]. Neglecting the subpixel topography variability in albedo estimation over a rugged terrain
leads to significant deviations [17,19,25], which can reach a relative error of 33% for a mean slope
of 40◦ [19]. It has been shown that MODIS albedo retrievals are also highly sensitive to subpixel
topography, and the MODIS albedo over a rugged terrain can change up to 100% for spruce vegetation
in winter [26].

Albedo depends on both land surface characteristics and the atmosphere. Topography alters land
surface characteristics and solar illumination geometry. Thus, the topographic effects on albedo over a
rugged terrain are related to the spatial distribution characteristics of the subpixel topography, the
solar zenith angle (SZA), and the solar azimuth angle (SAA) [17,19,25]. Compared to a single slope,
it is difficult to investigate the variation in albedo over a rugged terrain by integrating the effects of
subpixel slopes. The lack of a rigorous and effective physical BRDF/albedo model for rugged terrains
has contributed to this challenge. Wen et al. [19] developed a land surface albedo estimation and scale
correction method over a rugged terrain by the hemispheric integration of surface reflectance over a
rugged terrain, where the rugged terrain reflectance was estimated based on the subpixel reflectance.
Considering that the analysis of topographic effects on land surface albedo required huge amounts
of typical albedo data over the rugged terrain to ensure the reliability of the analysis results, this
method was inconvenient for the large-scale simulation of surface albedo because the rugged terrain
reflectances under the entire hemispheric view space were required during each albedo calculation
under different SZAs and SAAs. Therefore, we dedicated ourselves to developing a simplified method
to estimate the albedo over a rugged terrain directly by the subpixel albedo in this paper based on the
same idea in Wen et al. [19].

In this paper, we focused on quantitatively investigating topographic effects on snow-free albedo
over a rugged terrain based on the developed method. The BSA was related to both the topography
and the solar illumination geometry. The shadows induced by adjacent topographies immensely
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affected the BSA. However, the WSA was independent of solar illumination geometry and shadow
effects. Therefore, to emphasize the topographic effects on albedo, BSA was selected instead of WSA
in this paper. This paper was organized as follows. First, a BSA estimation method for rugged terrain
was proposed in Section 2. Section 3 described the DEM datasets and the generation method of the
reference BSA dataset. The proposed BSA estimation method was validated in Section 4.1; Section 4.2
quantitatively investigated topographic effects on snow-free BSA given variations in mean slope,
subpixel aspect distribution, SZA, and SAA. Finally, a conclusion was provided in Section 5.

2. Methods

2.1. BSA over a Rugged Terrain

The rugged terrain, which is comprised of a number of subpixel slopes with different slopes and
aspects, is shown in Figure 1a, where it is assumed that the entire terrain is horizontal. The SZA and
SAA are denoted by θs and φs, respectively, with respect to the horizontal plane.

Figure 1. (a) Rugged terrain with a large number of subpixel slopes; (b) Virtually-smoothed single slope.

According to the definition of albedo [1], the BSA ρBSA_low(θs, φs) over a rugged terrain under a
clear sky is calculated by:

ρBSA_low(θs, φs) =
Φb

e

Φb
i

(1)

where Φb
e and Φb

i represent the reflected and incident radiation flux over the whole pixel under a clear
sky, respectively. The incident radiation flux over a rugged terrain is equal to the incident radiation
flux received by the corresponding projected horizontal pixel. Therefore, Φb

i is equal to

Φb
i = Es cos θs

∫
cos ajdAtj (2)

where Es represents the direct solar irradiance independent of topography,
∫

cos ajdAtj represents
the area of the projected horizontal pixel, aj denotes the slope of the subpixel slope, dAtj denotes the
incremental surface area of the subpixel slope and the subscript tj is the jth subpixel slope.

2.2. BSA Estimation Method Derivation

The subpixel slope BSA upscaling approach, based on the radiosity theory [27], is a feasible
scheme to estimate the BSA over a rugged terrain. However, with the upscaling approach, many
parameters are required, including reflectance characteristics, vegetation structural parameters,
illumination conditions, and the radiation of each subpixel slope, which results in more uncertainties
and computational complexities. The parameterized idea adopted by Wen [19] is an alternative method
to estimate BSA due to its simplicity and efficiency.
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This idea assumes that a virtual slope with slope α and aspect β exists, where incoming and
outgoing radiation are the same as the sum of those over a rugged terrain, as shown in Figure 1. Thus,
Φb

e can be expressed as:
Φb

e = Es cos ie
sρBSA_eq(ie

s, ϕe
s)Ae(θs, φs) (3)

where ρBSA_eq(ie
s, ϕe

s) represents the BSA of the virtual slope; ie
s and ϕe

s represent the relative
SZA and SAA corresponding to the virtual slope, respectively; and Ae denotes the area of the
virtual slope surface, which depends on both the subpixel topography distribution and the solar
illumination geometry.

According to the principle from the mountain radiative transfer theory [28], under a specific solar
illumination geometry and by neglecting the multi-scattering effects from an adjacent terrain, the
incremental reflected radiation flux of the jth subpixel slope, dΦb

ej, is given by

dΦb
ej = ΘsjEs cos isjρBSA_high(isj, ϕsj)dAtj (4)

where Θ represents the shadow factor, which is set to 1 for an illuminated slope and 0 otherwise [29–31]
and can be calculated using the ray-tracing method. Thus, Θsj indicates whether or not the subpixel
slope is sunlit. Variables isj and ϕsj represent the relative SZA and SAA, respectively, corresponding to
the subpixel slope, and ρBSA_high(isj, ϕsj) represents the BSA of the subpixel slope.

ρBSA_high(isj, ϕsj) is affected by topographic obstructions because several parts of the reflected
radiation from the outgoing hemisphere are obstructed. Variable dΦb

ej can be approximately calculated
as follows:

dΦb
ej = dΦ̃

b
ejVj (5)

where dΦ̃
b
ej denotes the reflected radiation flux neglecting obstructions from the adjacent terrain, and

Vj represents the sky view factor, which can be calculated using the DEM [32]. Sky view factor Vj
represents the unobstructed portion of the sky at a given location and ranges between 0 and 1. A value
of V close to 1 indicates that almost the entire hemisphere is unobstructed and visible, which is the
case for exposed features, such as planes and peaks; values close to 0 are present in deep sinks and
lower regions of deep valleys, where almost no sky is visible [33].

Therefore, ρBSA_high(isj, ϕsj) is equal to:

ρBSA_high(isj, ϕsj) =
dΦ̃

b
ejVj

dΦb
ij

= ρ̃BSA_high(isj, ϕsj)Vj (6)

where ρ̃BSA_high(isj, ϕsj) denotes the BSA neglecting obstructions from an adjacent terrain. Thus, the
sum of the subpixel slope radiation fluxes over a rugged terrain, Φb

e is as follows:

Φb
e = Es

∫
A(s)

cos isjρ̃BSA_high(isj, ϕsj)VjdAtj (7)

where A(s) denotes the subpixel slopes that are illuminated by the sun. Combining Equations (3)
and (7), we obtain ∫

A(s)

cos isjρ̃BSA_high(isj, ϕsj)VjdAtj = cos ie
sρBSA_eq(ie

s, ϕe
s)Ae(θs, φs) (8)

To focus on the topographic effects on BSA, land cover type within the rugged terrain is assumed
to be homogeneous, and the differences among ρ̃BSA_high(isj, ϕsj) for different subpixel slopes are
only caused by different solar illumination geometries and DEM characteristics. ρ̃BSA_high(isj, ϕsj) has
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an identical function form with that of ρBSA_eq(ie
s, ϕe

s), except that the latter input angle parameters
are different.

To unify the symbols and simplify the deduction, Equation (8) is substituted with∫
A(s)

Y(uj, vj)VjdAtj = Y(ue, ve)Ae(u, v) (9)

where Y(uj, vj) = cos isjρ̃BSA_high(isj, ϕsj), Y(ue, ve) = cos ie
sρBSA_eq(ie

s, ϕe
s), uj = cos isj, vj = cos ϕsj,

ue = cos ie
s, ve = cos ϕe

s, u = cos θs, and v = cos φs. To construct the virtual slope, we obtain the specific
formulas for ue, ve and Ae, which determine if the virtual slope exists. An alternative method based on
the Taylor expansion, which is similar to the derivation strategy of the Hapke shadow function [34,35],
was used to solve Equation (9). Specifically, Y is assumed to be mathematically well behaved, and Y is
expanded on both sides of Equation (9) in a Taylor series about u and v:

Ae(u, v)[Y(u, v) + ∂Y
∂u (u, v)(ue − u) + ∂Y

∂v (u, v)(ve − v) + . . .]
= Y(u, v)

∫
A(s)

VjdAtj +
∂Y
∂u (u, v)

∫
A(s)

(uj − u)VjdAtj +
∂Y
∂v (u, v)

∫
A(s)

(vj − v)VjdAtj + . . . (10)

Since u and v are independent variables, and Y is an arbitrary function of u and v, Equation (10) is
satisfied only if the coefficients of Y and its partial derivatives are separately equal on both sides of the
equation. Neglecting the higher order terms of the Taylor expansion for Y, we obtain Equation (11):

Ae(u, v) =
∫

A(s)
VjdAtj

Ae(u, v) =
∫

A(s)
(uj − u)VjdAtj/(ue − u)

Ae(u, v) =
∫

A(s)
(vj − v)VjdAtj/(ve − v)

(11)

Solving Equation (11), ue, ve, and Ae can be specifically and respectively be formulated as:

Ae(u, v) =
∫

A(s)
VjdAtj

ue =

∫
A(s)

ujVjdAtj∫
A(s)

VjdAtj

ve =

∫
A(s)

vjVjdAtj∫
A(s)

VjdAtj

(12)

By combining Equations (1), (2), and (12), we obtain:

ρBSA_low(θs, φs) =
cos ie

sρBSA_eq(ie
s, ϕe

s)Ae(θs, φs)

cos θs
∫

cos ajdAtj
(13)

By introducing Equation (12) into Equation (13), we obtain

ρBSA_low(θs, φs) = ρBSA_eq(ie
s, ϕe

s)

∫
A(s)

cos isjVjdAtj

cos θs
∫

cos ajdAtj
(14)

Equation (14) shows that the BSA over a rugged terrain can be obtained by the product between
the BSA of the virtual slope and a specified factor. Its discrete formula is written as
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ρBSA_low(θs, φs) = ρBSA_eq(ie
s, ϕe

s)

N
∑

k=1
Θsk cos iskVk/ cos ak

N cos θs
(15)

where N represents the number of the subpixel slopes within the pixel, and k denotes the kth
subpixel slope.

Equations (13) and (14) indicate that this method combines well with any single slope BSA
estimation method to estimate the BSA over a rugged terrain. In this paper, the combined PROSPECT
leaf optical property model and the SAIL canopy bidirectional reflectance model, also referred to as
PROSAIL, is selected as a the single slope surface reflectance and the BSA estimation method. The
PROSAIL model has been widely used to study plant canopy spectral reflectance [36] and is relatively
mature and efficient. For an infinitely inclined homogeneous vegetation canopy, the topographic
influences on the anisotropic reflectance simulated by the PROSAIL model can be categorized into two
aspects: photon path length alteration inside the vegetation layer and the adjustment of the extinction
coefficient. The first effect is handled by a simple geometric correction of the solar-terrain sensor
and the consideration of vertical tree growth [18,24]. Second, a spherical leaf inclination distribution
function (LIDF) is assumed, which allows the effective extinction coefficient for a unit path length to
be fixed in all directions, where the topographic effects on the extinction coefficient can be neglected.
Given the specific vegetation parameter and the terrain configuration, we can use Equations (13)
and (14) and the PROSOIL model under topographic considerations to estimate the BSA over a
rugged terrain.

2.3. Topographic Effect Analysis Methods

The topographic effects on BSA are influenced by the spatial distributions of the subpixel slopes,
SZA and SAA. A local sensitivity analysis method is used in this paper to analyze the effects of these
different factors. This method estimates the effect of a single factor on the outputs while maintaining
the other factors at their nominal values [37]. The maximum absolute deviation (MAD) and the
maximum relative deviation (MRD) are used to quantitatively analyze these sensitivities:

MAD =
N

Max
i=1

{
ai

model

}
−

N
Min
i=1

{
ai

model

}
(16)

MRD =

[
N

Max
i=1

{
ai

model

}
−

N
Min
i=1

{
ai

model

}]
/

N
Max
i=1

{
ai

model

}
(17)

where N represents the amount of estimated BSAs, and i represents the BSA index. Variable ai
model

denotes the ith estimated BSA calculated by the proposed method in this paper.

3. Datasets

3.1. Simulated DEM Dataset

To simulate and evaluate the BSA over a rugged terrain, nine simulated DEMs with 30 m spatial
resolution were generated to provide various magnitudes of roughness [19]. The statistical mean
values of the elevation, slope and sky view factor are listed in Table 1. For this research, only the central
1 × 1 km area (i.e., 33 × 33 grid cells) of the aforementioned DEMs was used to avoid calculation
errors at the edge of the DEM.
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Table 1. Basic parameters for nine simulated DEMs.

Filter Exaggeration Mean Elevation (m) Mean Slope (◦) Mean Sky View Factor

5 × 1 1 29.49 1.33 1.00
3 × 1 1 29.49 1.88 1.00
1 × 1 1 29.49 2.51 1.00
5 × 1 10 294.89 12.84 0.95
3 × 1 10 294.89 17.59 0.90
1 × 1 10 294.89 22.62 0.85
5 × 1 20 589.78 23.70 0.83
3 × 1 20 589.78 30.90 0.74
1 × 1 20 589.78 37.72 0.64

3.2. Global Digital Elevation Model (GDEM)

With an average elevation exceeding 4500 m, the Tibetan Plateau (Figure 2) is the largest and
highest plateau in the world. This plateau is characterized by high spatial heterogeneity due to the
presence of mountainous areas [38]. Therefore, it is an ideal region to compare and validate the
developed method in this paper. A 100 km × 100 km test area, with elevations ranging from 2492 m
to approximately 6769 m, is identified from the plateau. The DEM shown in the upper-right part of
Figure 2, with a 30-m spatial resolution of the study area, was collected by the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) of the global digital elevation model, version 2
(ASTER GDEM2). The terrain over the southern parts of the study area was relatively complex and
rugged, whereas the northern terrain was relatively gentle. This study area, with a high spatial
heterogeneity, was suitable for the study of topographic effects on BSA.

 
Figure 2. The Tibetan Plateau and the study area.

To effectively investigate the topographic effects on BSA, three typical categories for 1-km real
DEMs, with typical surface fluctuations, were selected from the study area: gentle slope terrain (10◦),
moderate slope terrain (20◦), and steep slope terrain (30◦). Each DEM category was comprised of six
representative DEMs with different subpixel aspect distributions. Their slopes and aspect distributions
are shown in Figure 3, where the code names of the DEMs (e.g., dem-10-1) are marked in the legend.
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The subpixel aspect distributions of the six DEMs from 1-km DEM category with a mean slope of 10◦

had the following characteristics, subsequently: dominant southwest-oriented distribution, relatively
uniform distribution, dominant southwest-oriented distribution, relatively uniform distribution,
dominant eastward-oriented distribution, and dominant northward-oriented distribution. The
DEMs with a mean slope of 20◦ had the following characteristics, subsequently: dominant
northward-oriented distribution, dominant eastward-oriented distribution, relatively uniform
distribution, dominant southwest-oriented distribution, dominant northward-oriented distribution
and dominant southward-oriented distribution. The DEMs with a mean slope of 30◦ had the following
characteristics, subsequently: dominant northwest-oriented distribution, dominant southwest-oriented
distribution, dominant southwest-oriented distribution, dominant southeast-oriented distribution,
relatively uniform distribution and dominant eastward-oriented distribution.

Figure 3. Distributions of slope (a,c,e) and aspect (b,d,f) within a 1-km pixel under real DEMs with
different mean slopes: (a,b) 10◦; (c,d) 20◦; and (e,f) 30◦. In the legends of (b,d,f), N, NE, E, SE, S, SW, W
and NW stand for north, northwest, east, southeast, south, southwest, west and northwest, respectively.
In the north, the SAA is 0◦. The SAA gradually increases in a clockwise rotation of the determined
direction, until the SAA is 360◦ (i.e., when the SAA rotated back to its original north position).
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3.3. Reference BSA Dataset Simulation Based on the Radiative Approach

Considering that it is difficult to obtain the albedo reference over a rugged terrain, and current
land albedo products have poor accuracies over a rugged terrain, the radiosity approach [39–41], which
is a widely used computer simulation model, was used to generate the reference BSA to evaluate the
performance of the proposed method. In this paper, the terrain was described by the DEM, and the
land cover was assumed to be homogeneous in the simulation scenario.

Specifically, the procedure included three steps: the anisotropic reference reflectance simulation
based on the radiosity approach, the spectral BSA calculation by integrating the reflectance over the
hemispheric exitance given an illumination direction, and the broad-band shortwave BSA calculation
by integrating the spectral BSA weighted by the incident radiation. In the first step, the reflectance
characteristics of each subpixel slope were acquired based on the PROSAIL model under topographic
consideration and upscaled to reflectance values over a rugged terrain based on the radiosity approach.
In this paper, considering that the BSA of soil has a similar variation with topography as that of
vegetation, only the vegetation BSA variation was analyzed; the input parameter specifications in the
PROSAIL model are shown in Table 2 and Figure 4.

Table 2. Specification of input parameters in the PROSAIL model.

Model Parameters Unit Range

Leaf parameters

Leaf structure index unitless 1.5
Leaf chlorophyll content [μg/cm2] 40
Leaf dry matter content [g/cm2] 0.009

Leaf water content [cm] 0.01
Leaf brown pigment [g/cm2] 0.0

Soil parameters Reflectance —— Shown in Figure 4a

Canopy structure parameters
LAI [m2/m2] 3

Leaf inclination distribution function —— Spherical
Hot spot size parameter [m/m] 0.01

Atmospheric condition Incoming radiation —— Shown in Figure 4b

Illumination view geometry

Solar zenith angle [◦] 0–90 at a 5◦ interval
Solar azimuth angle [◦] 0–360 at a 5◦ interval
View zenith angle [◦] 0–90 at a 5◦ interval

View azimuth angle [◦] 0–360 at a 5◦ interval

Terrain DEM —— Nine simulated DEMs
and real DEMs

Figure 4. (a) Leaf reflectance, leaf transmittance and soil reflectance; (b) Normalized spectral
irradiance curve.
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4. Results and Discussion

4.1. Modeled BSA Accuracy Assessment

To analyze the accuracy of the modeled BSA with the proposed method, a simulation scenario
was constructed based on both the nine simulated DEMs and three real DEM categories. For the
simulation scenarios, the realistic tree shape parameters, component signatures, and other parameters
are listed in Table 2. Then, the modeled BSAs are estimated by the proposed method in Section 2.2,
and the reference BSAs are generated by the method in Section 3.3. The determination coefficient (R2),
root mean square errors (RMSE), mean absolute percentage error (MAPE) and mean bias (Bias) are
adopted to evaluate the accuracy of the proposed method.

Figure 5a shows the comparison results of the modeled and reference BSAs over nine simulated
DEMs. It is found that these two types of BSAs are close in magnitude, indicating that a majority
of data points are distributed around the 1:1 line with a small RMSE (0.0060), MAPE (0.0038) and
Bias (0.0038). This demonstrates that the modeled BSA is consistent with the reference BSA. Table 3
presents the error statistics of the BSA for different simulated terrains. The RMSE varies from 0.0002
to 0.0074, and the MAPE increases from 0.0001 to 0.0066 as the mean slope increases from 1.33◦ to
37.72◦, which indicates that with an increase in mean slope, the accuracy of the proposed method
gradually decreases but is still acceptable. This can be explained by the increase in mean slope, which
causes the multi-scattering effects and the terrain obstruction effects for the reflected radiation to
become increasingly obvious; however, the proposed method neglects multi-scattering effects and
approximately considers the terrain obstruction effects. These results confirm the capability of the
proposed method for estimating BSA with simulated DEMs.

The real DEMs provide a great number of terrains with different subpixel slope distributions,
which are closer to the natural characteristics of the terrain than those of the simulated DEMs with
normal distributions. Figure 5b indicates that the modeled BSA shows an adequate performance, with
a high R2 close to 1, a low RMSE of 0.0038, a MAPE of 0.0023 and a Bias of 0.0023. Table 4 presents the
error statistics under different real terrain conditions. Overall, the results obtained from the comparison
with the real DEMs are similar to those of the simulated DEMs. Therefore, the proposed method
provides a high-quality BSA dataset and can be applied to investigate the topographic effects on BSA.

Figure 5. Scatterplots between the reference and the modeled BSAs over (a) simulated DEMs and
(b) real DEMs.
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Table 3. Accuracy statistics of the modeled BSA over different simulated DEMs.

Mean Slope (◦) R2 RMSE MAPE Bias

1.33 1.0000 0.0002 0.0001 0.0001
1.88 1.0000 0.0003 0.0002 0.0002
2.51 1.0000 0.0006 0.0003 0.0003
12.84 0.9985 0.0059 0.0037 0.0037
17.59 0.9961 0.0071 0.0050 0.0050
22.62 0.9873 0.0078 0.0059 0.0059
23.70 0.9893 0.0078 0.0059 0.0059
30.90 0.9782 0.0078 0.0065 0.0065
37.72 0.9734 0.0074 0.0066 0.0066

Table 4. Accuracy statistics of the modeled BSA over different real DEMs.

Mean Slope (◦) R2 RMSE MAPE Bias

10 0.9998 0.0020 0.0011 0.0011
20 0.9994 0.0030 0.0023 0.0023
30 0.9963 0.0056 0.0036 0.0036

4.2. Topographic Effects on BSA

4.2.1. Factors Influencing the BSA over a Rugged Terrain

Real DEMs were used to investigate the topographic effects over a rugged terrain because they
provide a sufficient range of topographies that cover a wide variety of natural terrain characteristics.
Figure 6 shows the hemispheric BSAs modeled with different solar illuminations over a flat terrain
and the three typical real 1-km DEMs (i.e., dem-10-1, dem-20-1, and dem-30-1), which indicate that
BSA distributions with solar illumination geometries are intensively affected by topography. Figure 6a
shows that the BSA over a flat terrain monotonously increases with SZA regardless of the SAA value.
When the terrain is relatively flat in dem-10-1, several minor changes occur in the shape of the BSA
distribution, as shown in Figure 6b. The BSA increases with SZA when the SZA is substantially less
than 90◦ and has a weak relationship with the SAA, but the BSA decreases when the SZA is close to
90◦ due to the terrain block of incident radiation. With an increase in mean slope for dem-20-1, the
shape of the BSA distribution evidently changes and becomes asymmetric, as shown in Figure 6c.
The north-facing slope terrains are dominant in dem-20-1, which indicates that the BSA is dependent
on the SAA. The BSA increases monotonously with the SZA and is relatively large when the SAA is
oriented north. In comparison, the BSA first increases then decreases with the SZA and becomes small
when the SAA is oriented south due to the existence of shadows. As the terrain becomes more rugged
in dem-30-1, the BSA generally decreases, and the shape of the BSA distribution clearly changes. This
phenomenon can be explained by the fact that shadow effects are more obvious in dem-30-1 and
substantially influence the BSA. Thus, we conclude that the subpixel slope distribution and the solar
illumination geometry are two important factors influencing BSA, and BSA variations with varying
illumination angles present different trends under different terrain conditions. Specifically, the mean
slope, subpixel aspect distribution, SZA, and SAA are four main controlling factors for quantitatively
analyzing the topographic effects on BSA.
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Figure 6. Hemispheric distribution of BSA under different SZAs and real 1-km DEMs: (a) flat terrain;
(b) dem-10-1; (c) dem-20-1; and (d) dem-30-1. The radial coordinate is the SZA, and the angular
coordinate is the SAA. The red line represents the north-south line; the backward side represents the
northern aspect (i.e., where SAA is equal to 0◦), and the forward side represents the southern aspect
(i.e., where SAA is equal to 180◦).

4.2.2. BSA Variation with Mean Slope

The 1-km DEMs over the study area were used to investigate the subpixel effects of the mean
slope on the BSA (shown in Figure 7). When the SZA is 0◦, a shadow does not exist, but the spatial
variations in the subpixel slope and aspect within the rugged terrain affect the BSA. The MAD and
MRD of the BSA reach 0.08 and 36%, respectively. However, when the SZA is 30◦, shadows occur, and
the topographic effects on the BSA are further enhanced. The MAD and MRD of the BSA increase
to 0.12 and 50%, respectively. When the SZA is 60◦, the MAD and MRD of the BSA reach 0.28 and
approximately 85%, respectively, due to more obvious shadow effects and terrain obstruction effects.

   

Figure 7. BSA variation with a mean slope under different SZAs: (a) 0◦; (b) 30◦; and (c) 60◦. The colors
refer to the density of points (from highest (red) to lowest (blue)).
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Generally, BSA presents a decreasing trend with an increase in mean slope. When the SZA is 0◦,
the BSA clearly decreases with an increase in mean slope because several parts of the outgoing reflected
radiation in the hemisphere are obstructed even though there is not a shadow present. However, when
the SZA is 30◦, and the SZA is 60◦, the BSA variation with an increase in mean slope is maintained,
but it is not as obvious. This is because BSA is affected by various factors, such as SZA, SAA, shadows,
terrain obstruction, and the slope and aspect distribution of the subpixel slopes. When the terrain is
gently rugged (20◦), the shadow and occlusion effects of the terrain may be weak, but the alteration
in regional illumination angle caused by the topography may result in an increase in BSA, as shown
in Figure 7b,c. The regional SZA of the subpixel slope facing the sun is small, whereas that of the
subpixel slope facing away from the sun can be relatively large, which indicates that the BSA is low
when sunward subpixel slopes account for the majority of the data. When the terrain is steep (30◦),
the effects of shadows and terrain obstruction play a dominant role, which means that many subpixel
slopes cannot be illuminated by the sun, and many parts of the outgoing reflected radiation in the
hemisphere are obstructed. Therefore, the BSA decreases significantly regardless of the SZA, as shown
in Figure 7.

4.2.3. BSA Variations with Sub-Pixel Aspect Distributions

Three typical 1-km DEM categories were used to investigate the effects of subpixel aspect
distribution on BSA. Without loss of generality, the SAA is set to 150◦ in this analysis. For each
category, the subpixel aspect distributions of the six DEMs differ significantly. Figure 8 shows the
BSA variation with the subpixel aspect distribution. When the SZA is close to 0◦, the influence of the
subpixel aspect distribution on BSA under different terrains is minimal because shadowing does not
occur in this scenario. The influence of the subpixel aspect distribution increases with SZA regardless
of the mean slope of the terrain. When the mean slope is 30◦, the MAD of the BSA increases from
0.01 to approximately 0.15 with an increase in SZA from 0◦ to 60◦. This is because shadows gradually
occur as the SZA increases, and the subpixel aspect distribution is related to the shadow ratio and
distribution. When the terrain is relatively flat, the influence of the subpixel aspect distribution on the
BSA is minimal, as shown in Figure 8a. With an increase in mean slope, the influence of the subpixel
aspect distribution on the BSA gradually increases. The MADs of the BSAs over the terrain with mean
slopes of 10◦, 20◦, and 30◦ are 0.06, 0.08, and 0.15, respectively. Overall, with an increase in SZA and
mean slope, the influences of the subpixel aspect distribution gradually increase. In addition, the
influence of the subpixel aspect distribution has a strong relationship with the SAA, which will be
discussed in Section 4.2.5.

Based on specific solar illumination geometries and mean slopes, the topographic effects on
the BSA are dependent on the spatial distribution characteristics of the subpixel aspect. When the
proportion of the subpixel slope facing the sun is high, the BSA is relatively large, whereas the BSA
becomes small when the proportion of the subpixel slope facing away from the sun is high. For instance,
when the SZA is 60◦, and the SAA is 150◦ (i.e., the sun is to the southeast), the BSA of the dominant
eastward-oriented dem-10-5 is at a maximum in Figure 8a, the BSA of the dominant southward-oriented
dem-20-6 is at maximum in Figure 8b, and the BSA of the dominant eastward-oriented dem-30-6 is at a
maximum (and that of the dominant northwest-oriented dem-30-1) is at a minimum in Figure 8c.
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Figure 8. BSA variations with subpixel aspect distributions for terrains with different mean slopes:
(a) 10◦; (b) 20◦; and (c) 30◦. The SAA is 150◦.

4.2.4. BSA Variation with SZA

Both in situ measurements and remote sensing data from satellite and aircraft platforms have
shown that BSA is strongly dependent on SZA [42–45]. Figure 9b,d show the BSA simulations with
different SZAs, which exhibits obvious spatial variation characteristics corresponding to the mean
slope distribution (shown in Figure 9a). As the SZA increases, the dynamic range of BSA becomes
gradually large due to the modulation in the regional illumination angle and shadow effects. When the
SZA is 0◦, BSA varies from 0.14 to 0.22. In this case, shadows do not exist because the sun is at nadir,
and the variation in BSA is mainly caused by the alteration in the regional illumination angle due to
the inclined terrain. When the SZA is 30◦, BSA varies from 0.12 to 0.24. The range increases slightly
due to the existence of shadows and the increase in SZA. When the SZA is 60◦, the BSA range, which
becomes even larger, varies from 0.05 to 0.33. The low value of BSA (close to 0) can be explained by the
fact that shadow effects are serious in some circumstances when a majority of the subpixel slopes face
away from the sun. The high BSA value can be attributed to the high proportion of subpixel slopes
facing toward the sun, where few shadows exist, even though the SZA is large.

Furthermore, three typical 1-km DEM categories are used to analyze the variations in topographic
effects based on SZA. The variations in BSA based on SZA for different terrains are shown in Figure 10.
When the terrain is flat (Figure 10a), BSA increases monotonously as the SZA increases. When the
terrain is rugged (Figure 10b,d), BSA first increases then decreases with an increase in SZA. When the
mean slope is 30◦, the MAD and MRD of the BSA over rugged terrains caused by different SZAs exceed
0.22 and approximately 88%, respectively. This is because when the SZA is close to 90◦, the shadow
effect is obvious. The SZA at the inflection points gradually decreases from 70◦ to approximately 50◦ as
the mean slope increases from 10◦ to 30◦, respectively. These inflection points can be attributed to the
increase in mean slope, which causes shadows to more easily appear when the SZA is relatively small.
It is concluded that the increasing trend in BSA with SZA gradually slows as the mean slope increases.
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(a) (b)

 
(c) (d)

Figure 9. Maps of mean slope (a) within each 1-km pixel and the spatial distributions of BSA with
different SZAs: (b) 0◦; (c) 30◦; and (d) 60◦.

Figure 10. BSA variation with SZA for terrains with different mean slopes: (a) 0◦; (b) 10◦; (c) 20◦; and
(d) 30◦. The SAA is 150◦.
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4.2.5. BSA Variation with SAA

Figure 11 shows the variation in BSA based on DEMs with different mean slopes with a specified
SAA for different SZAs. These DEMs are dem-10-3, dem-20-3, and dem-30-3, whose subpixel aspect
distributions exhibit a dominant southwest-orientation, a relatively uniform distribution, and a
dominant southwest-orientation, respectively. The influence of the SAA on BSA increases with
SZA. For a mean slope of 30◦, the MAD of the BSA with a 30◦ SZA is approximately 0.03, while the
MAD of the BSA with a 60◦ SZA exceeds 0.07. The SAA has little impact on BSA when the terrain
is relatively flat, whereas the SAA considerably affects the BSA when the terrain is rugged. The
influence of the SAA on BSA gradually increases with an increase in mean slope. Figure 11d shows
that as the mean slope increases from 0◦ to 30◦, the MAD of BSA varies from 0 to approximately
0.07, which can be explained because the shadow effects are obvious as the SZA and the mean slope
increase simultaneously.

Figure 11. BSA variations with the SAA under different SZAs: (a) 0◦; (b) 30◦; (c) 45◦; and (d) 60◦.

Furthermore, the variations in BSA with SAA under different subpixel aspect distributions are
also analyzed. Figure 12 shows the variation in BSA with SAA over the different terrains with different
aspect distributions when the SZA is 30◦. It is concluded that there is a parabolic distribution between
BSA and the SAA. When the SAA is close to the predominant aspect of the subpixel slopes, the
BSA is relatively large, as shown in the variation curves with SAA in Figures 11 and 12. This is
because the shadow area is relatively small in this situation. When the SAA is opposite that of the
predominant aspect at the end of the parabolic distribution, the BSA reaches a minimum due to the
large shadow ratio. For terrains in dem-10-2, dem-10-4, dem-20-3 and dem-30-5, which have relatively
uniform aspect distributions, the SAA has little effect on BSA. When the aspect is unevenly distributed,
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the parabolic distribution characteristics between the SAA and BSA are distinct. For dem-30-1, the
northwest-facing slopes comprise the majority; therefore, the maximum and minimum BSAs appear in
the northwestern and southeastern directions, respectively, which is where the sun is located. The BSA
variations in dem-30-2 and dem-30-3 with SAA coincide due to the analogous aspect distributions
between these two DEMs. These results demonstrate that BSA over a rugged terrain is sensitive to
SAA, and the subpixel aspect distribution has considerable influence on the relationship between the
SAA and the BSA.

 

Figure 12. BSA variations with SAA for terrains with different mean slopes: (a) 10◦; (b) 20◦ and (c) 30◦.
The SZA is 30◦.

4.3. Method Limitations

The accuracy assessment shows that with an increase in mean slope, BSA estimation
errors gradually increase due to model simplification and approximations in problems such as
multi-scattering and terrain obstruction. However, in general, the multi-scattering effect from adjacent
terrains has a weaker contribution to BSAs, unless the slope lies in deep valleys or the adjacent
terrains have high reflectance [28,46]. Therefore, considering that multi-scattering effect is negligible
for snow-free land surface and the developed method has high precision in the validation experiments,
the proposed method can have an adequate performance in vegetation and soil albedo estimations;
these problems may have little effect on the analysis of topographic effects on BSA. Unfortunately, the
developed method is not applicable to snow covered land surfaces with high reflectance. In addition,
due to the model assumption of homogeneous land cover, the developed method faces a challenge in
the mixed-pixel region. Subsequent research will focus on solving these problems.
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This paper mainly uses modeled BSA data with the proposed method to analyze the topographic
effects on BSA. The developed BSA estimation method was validated against the radiosity approach.
Therefore, developing an efficient collection method for in situ albedo data over rugged terrains and
validating the developed method against in situ data are urgent. In addition, in practical applications,
DEM quality and the mismatching between the DEM and the remote sensing imagery also affect the
accuracy of albedo estimation with the developed method. These basic data processing issues need to
be further discussed and addressed, although they are beyond the scope of this paper.

5. Conclusions

Neglecting topographic effects may lead to significant bias when estimating land surface albedo.
In this paper, we presented an efficient snow-free BSA estimation method over a rugged terrain. The
proposed method was validated using simulated DEMs and real DEMs. The validation results showed
that the modeled BSAs were consistent with the reference BSA, with an RMSE smaller than 0.01, which
confirmed the ability of the proposed method to estimate BSA (with acceptable errors). By comparing
the modeled BSA using the proposed method over the real DEM scenario, the topographic effects on
BSA were investigated in detail.

The BSA over a rugged terrain is influenced by the subpixel slope distribution (mean slope and
subpixel aspect distribution) and the solar illumination angle (SZA and SAA). These factors are related
to the modulation in the regional illumination angle and shadow effects, which play key roles in the
topographic effects on BSA. The more rugged the terrain and the larger the solar illumination angle,
the more obvious topographic effects are on BSA. Specifically, for the subpixel slope distribution, the
mean slope has a higher influence on BSA than that on the subpixel aspect distribution. For the mean
slope, BSA generally presents a decreasing trend with an increase in mean slope. The larger the SZA,
the more obvious the decreasing trend in BSA is with an increase in mean slope. When analyzing
the subpixel aspect distribution, for an increase in mean slope, the influence of the subpixel aspect
distribution on BSA gradually increases. Under specific solar illumination geometries and mean slopes,
the influences of the subpixel aspect distribution on BSA are dependent on the proportion of subpixel
slopes facing the sun. For the solar illumination angle, the SZA has a greater impact on BSA than that
from the SAA. When the terrain is relatively flat, BSA increases monotonously with an increasing
SZA. As the terrain becomes rugged, BSA first increases then decreases with an increase in SZA due
to the incident radiation terrain block. For the SAA, BSA over a rugged terrain is sensitive to the
SAA, and the influence of SAA on BSA increases with an increasing SZA and mean slope. A parabolic
distribution is found between BSA and the SAA. When the SAA is close to the predominant aspect of
the subpixel slopes, BSA is relatively large.

The motivation and findings in this study can benefit land surface albedo modeling and retrieval
in the field of remote sensing. Subsequent research will focus on practical remote sensing applications
and method improvements by considering multi-scattering effects.
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Abstract: Forests affect local climate through biophysical processes in terrestrial ecosystems. Due to
the spatial and temporal heterogeneity of ecosystems in Europe, climate responses to forests vary
considerably with diverse geographic and seasonal patterns. Few studies have used an empirical
analysis to examine the effect of forests on temperature and the role of the background climate in
Europe. In this study, we aimed to quantitatively determine the effects of forest on temperature
in different seasons with MODIS (MODerate-resolution Imaging Spectroradiometer) land surface
temperature (LST) data and in situ air temperature measurements. First, we compared the differences
in LSTs between forests and nearby open land. Then, we paired 48 flux sites with nearby weather
stations to quantify the effects of forests on surface air temperature. Finally, we explored the role
of background temperatures on the above forests effects. The results showed that (1) forest in
Europe generally increased LST and air temperature in northeastern Europe and decreased LST
and air temperature in other areas; (2) the daytime cooling effect was dominate and produced
a net cooling effect from forests in the warm season. In the cold season, daytime and nighttime
warming effects drove the net effect of forests; (3) the effects of forests on temperatures were mainly
negatively correlated with the background temperatures in Europe. Under extreme climate conditions,
the cooling effect of forests will be stronger during heatwaves or weaker during cold spring seasons;
(4) the background temperature affects the spatiotemporal distribution of differences in albedo and
evapotranspiration (forest minus open land), which determines the spatial, seasonal and interannual
effects of forests on temperature. The extrapolation of the results could contribute not only to model
validation and development but also to appropriate land use policies for future decades under the
background of global warming.

Keywords: land surface temperature; satellite observations; flux measurements; latitudinal pattern;
land cover change

1. Introduction

Forests cover more than ~42 million km2 in the Northern Hemisphere (~30% of the land surface),
and affects local climate mainly through biophysical processes [1–4]. The biophysical processes
(e.g., albedo, evapotranspiration rate (ET) and surface roughness) all have effects on surface energy
fluxes, which causes the effects of forests on local climates to be complicated [5]. Forests usually have
a lower albedo than that for grasslands and croplands, especially in winter, when grass or crops are
covered by snow. When open land, (i.e. grass or crops), are converted into forests, or even when
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a deciduous forest transforms into an evergreen forest, the albedo changes, resulting in a change
in regional radiative forcing and surface temperature [6]. The surface roughness and ET of forests
tend to be higher than those of open land, especially in summer, when forests have a high leaf area
index (LAI). In the daytime, forests tend to cool the local temperature with a high latent heat flux.
At nighttime, forests may be store heat and increase the local temperature by strengthening the
nocturnal temperature inversion [7–9]. Therefore, the balance of these different processes determines
the net effect of forest on local climate. A comparison of these biophysical processes between forests
and open lands can help us determine the effects of forests on local temperatures, a topic which has
been analyzed in previous studies [9–14].

Depending on the location, biophysical processes in forests may cause the cooling or warming
of local temperatures [15]. In tropical regions, the cooling effect of ET, surface roughness and the
larger land sink of CO2 from forests dominates the warming effect induced by albedo; therefore, forest
surface temperatures tend to be cooler than open land surface temperatures. In contrast, an opposite
effect occurs in the boreal zone, where the warming effect is inferior to the cooling effect and is induced
by a higher albedo and a land albedo–sea ice feedback mechanism [16]. Many studies have shown that
the effects of forests on temperature show a gradient distribution that gradually changes from cooling
to warming from the equator to the poles [17–19]. Deforestation significantly reduces air temperatures
above 45◦N in Asia and North America and leads to warming below 35◦N [7,19]. Afforestation can
obviously increase the land surface temperature (LST) north of 45◦N and reduce the LST south of 35◦N
in the Northern Hemisphere (NH) [14,18,20].

In fact, biophysical processes vary not only with diverse geographic patterns but also with seasonal
patterns, which results in different effects of forests on temperature during different seasons [21,22].
Albedo is affected by soil wetness, soil color and snow cover [23,24]. In winter, the difference in
albedo between forests and open land is largest because open land tends to be covered with snow.
There are also some differences among different forest types at different latitudes. At the high latitudes,
the type of forest is mainly needleleaf, which has a ground and forest canopy that are both easily
covered with snow. At lower latitudes in Europe, most forests are either mixed or broadleaf forests,
where only the canopy is easily covered with snow. This characteristic causes the albedo difference
of forest minus open land to vary in space and with the season [21]. The difference in ET is nearly
zero because of the small leaf index and radiation limitation [25]. This result implies that the cooling
effect, which result from ET and surface roughness, is weaker than the warming effect of albedo in
winter. In contrast, in summer, the difference in albedo is smallest, and the difference in ET is largest in
summer, which causes the cooling effect resulting that results from ET and surface roughness to be
stronger than the warming effect for albedo. The net effects of periodically changed albedo, surface
roughness and ET play roles in the seasonal changes of the net effects of forests on the climate at mid-
and high- latitudes [20]. This phenomenon is supported by a recent study that found that the effects
of deforestation have a south-north gradient from warming to cooling in winter due to snow-cover,
which always warms the local temperature in summer in the eastern United States [10].

Moreover, biophysical processes may also change with a variable background climate in different
years, enabling the effects of forests change with years [26]. From a cold year to a warm year,
the difference in albedo between forests and open land may decrease because of the lower snow depth.
The difference in ET may also change, which is related to the local soil moisture. The change in albedo
and ET difference between forests and open land may affect the effects of forests, cooling or warming
local temperature. Several model studies found that the cooling effect of deforestation decreased with
a warmer background [26–28]. However, there are also some disagreements within these model results.
Winckler et al. [27] and Armstrong et.al [28] found that this decrease would occur globally, while
Pitman et al. [26] found that the cooling of deforestation increased in a lower latitude and decreased
in a higher latitude. The effect of the background climate on forest effects must be comprehensively
evaluated, particularly for the current decade, which is experiencing intense climate warming.

225



Remote Sens. 2018, 10, 529

Europe has a temperate marine ecosystem, a Mediterranean ecosystem and a temperate
continental climate. There are also many famous mountains in Europe, such as the Alps, the Apennines
and the Pyrenees. Considerable heterogeneity of climate and topography has created complex spatial
patterns regarding the effect of forest on temperature. In addition, a growing number of extreme
climate events, such as heat waves and extreme precipitation, have been observed throughout Europe
due to on-going climate change. These various background climates have also created complex spatial
and temporal patterns regarding the effects of forests on temperature.

Over the past few decades, most of the known effects of forests on the climate in Europe have
been derived from models, while global climate models were not suitable for the local impacts of
forest on climate due to their coarse spatial resolutions and uncertainties in the physical processes,
parameterization and input data [5,15]. Regional climate models in Europe are often based on
comparisons among climate model outputs for different land cover conditions, with the major
difference being that forests in one scenario are replaced by open land conditions in another
scenario [29]. However, considerable heterogeneity in the climate and topography of Europe has
created complex spatial patterns regarding the effects of forests on temperature. A growing number
of extreme climate events, such as heat waves and extreme precipitation, have also created complex
temporal patterns regarding the effects of forests on temperature [30]. It is not easy for regional climate
models to simulate the complex spatial and temporal patterns of forest effects, and some model studies
often show contradictory results [31,32].

There are two kinds of observations, that are widely used to explore the effects of forests on
temperature: satellite and in-situ data [7,14,17–20]. Some studies used satellite observations found that
afforestation in China cooled daytime temperatures and warmed the nocturnal temperatures [18,20].
Mi Zhang [19] and Lee et al [7] used forest flux site observations to study the effects of deforestation in
North America and eastern Asia and found that deforestation warmed temperature at low latitudes
and cooled temperatures at high latitudes. However, few studies have used observations to examine
the effects of forests on climate in Europe, which has experienced a large increase in forests over the last
two decades. Although Li et al. [14,17] used satellite observation to explore the effect of forest globally
and found that forests decrease local temperatures in Europe, they focused on spatial patterns and did
not consider the effects of background climate on forests during different yeas. Additionally, using
two time observations to represent daily averages may also lead to some uncertainties [33]. Further
studies should emphasize the effects of forests on the climate in Europe using both kinds of observations
to explore the spatiotemporal patterns of forest effects and the effect of the background climate.

In this paper, we used the MODIS (MODerate resolution Imaging Spectroradiometer) land
surface temperature (LST), ET, albedo and land cover classification, and FLUXNET site observations
from European Fluxes Database Cluster to analyze the effect of forest on temperature in Europe
(11◦W - 40◦E, 35◦N - 70◦N) and the effect of the background climate. The specific objectives of this
study are as follows: (1) to identify the spatiotemporal pattern of forest effects on LST and air
temperature and (2) to explore the impact of the background climate, such as extreme climate, on the
forest effects to understand how it impacts temperature.

2. Data and Methods

2.1. Data

The MODIS/Aqua (MYD11A2, version 6) products, with temporal and spatial resolutions of
8 days and 1 km, respectively, from 2003 to 2016, were used in our study because the Aqua satellite
passes over the region approximately 13:30 and 01:30, which is close to when the daily maximum and
minimum temperatures occur. The MODIS LST data are retrieved from clear-sky conditions over each
8-day period with best quality [34]. Based on the quality control documentation, only temperatures
with an emissivity error and an LST error less than or equal to 0.02 and 2 K, respectively, were selected
for further study.
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The MODIS 16-day/1 km albedo product (MCD43B3 version 5) from 2003 to 2016 was used to
calculate the difference in surface albedo between forests and open land (Table 1). The product contains
black-sky and white-sky albedo, which can be used to calculate the actual (blue-sky) albedo based on
the ratio of direct to diffusive shortwave radiation [35]. In our study, we simply used the averages
of black-sky and white sky albedo to represent the blue-sky albedo due to the small difference and
high correlation between white-sky and black-sky albedo [14]. The albedo quality in our study was
controlled by the MCD43B2 data set, and only pixels that were identified as ‘best quality’, ‘good quality’
and ‘mixed quality’ were chosen for further study. The main reason why we did not choose the version
6 data set was because the albedo product in version 6 had only daily data which was nearly 2 terabytes
for our study area and was not convenient to process.

Table 1. List of data products used

Produce Name Product Type Resolution Period Considered

MYD11A2 (V6) LST 1 km 2003–2016
MCD43B3 (V5) Albedo 1 km 2003–2016
MOD16A2 (V5) ET 1 km 2003–2014
MCD12Q1 (V5) Land cover type 500 m 2012
Forest flux sites Air temperature Valid year from 1996–2016

The MODIS ET product (MOD16A2 version 5) was used to quantify the changes in ET (Table 1).
The ET product is the first regular 1 km land surface ET data set for the 109.03 million km2 of
global vegetation land areas at an 8-day interval [36]. The mean absolute bias of this ET product
is approximately 0.33–0.39 mm/day compared with the ET in situ observations. The pixels were
only identified as ‘good quality’ or ‘other quality’, but further examination identified the ‘clouds
NOT present ‘classification, which was selected for further study. The MODIS ET version 5 product
produced data until 2014. Here, we used MODIS ET data from 2003 to 2014. Our study area was
located from mid- to high-latitudes. In the version 6 data set, there were many interpolated values at
high latitudes in spring, autumn and winter, which were not suitable for our research.

Annual 500 m MODIS land cover data (MCD12Q1 version 5) in 2012 with the International
Geosphere–Biosphere Programme (IGBP) classification, was used to classify forests and open land.
Evergreen needleleaf forests, evergreen broadleaf forests, deciduous needleleaf forests, deciduous
broadleaf forests and mixed forests in the IGBP land cover classification were merged into one forest
type. Croplands and grasslands were combined into an open land classification.

Forest flux sites from the European Fluxes Database Cluster and meteorological stations from
Global Summary of the Day (GSOD) database in Europe were used in this study. The GSOD database
was based on data exchanged under the World Meteorological Organization (WMO) World Weather
Watch Program according to WMO Resolution 40 (Cg-XII). In accordance with the requirements of the
WMO, the surface meteorological stations need to be in open grasslands and far away from cities and
water bodies. The effects of forests on surface air temperature could be analyzed by comparing the air
temperature differences between forest flux sites and meteorological stations.

2.2. Data Processing

2.2.1. Data Aggregation Strategy

All MODIS data used in this study were re-projected into a 0.01◦ resolution. Each year, there were
46 LST, 46 ET, and 46 albedo images. The 46 albedo images were derived from the phased production
strategy. First, we aggregated the 8-day or 16-day MODIS data into monthly means using 8-day or
16-day composites every month. Second, we aggregated the monthly averages into annual averages
only if a pixel had 12 monthly averages. Third, we aggregated the annual averages into multiple-year
averages if a pixel had at least one valid annual average. Fourth, the monthly averages for a single year
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were all aggregated into multiple-year monthly averages. Finally, we acquired multiple-year monthly
and annual averages for LST, albedo and ET; in total, there were 14 years of annual averages for LST
and albedo for the period 2003–2016, and 11 years of annual averages for ET for the period 2003–2014.

The temperature data from the forest flux sites were on a half-hour time scale. First, we aggregated
the half-hour data set onto a daily time scale. Only if valid values for one day comprised more than
90% of all measurements (48) were the maximum (Tmax), minimum (Tmin) and mean temperatures
(Tmean) of that day calculated. Second, we aggregated the daily Tmax, Tmin and Tmean into monthly
and annual averages when the valid daily values comprised more than 90% of days in the whole year.
Third, we aggregated the monthly and annual averages into multiple-year averages of Tmax, Tmin and
Tmean for forests. We chose the 90% threshold as a compromise between accuracy and a sufficient
number of valid years.

2.2.2. Window Searching Strategy

In our study, we applied a window searching strategy similar to that of Li et al. [14] to determine
all of the available sample windows and compare forests and open land over Europe. Here, the sample
windows as squares contained 40 × 40 pixels, which were approximately equal to 40 km × 40 km.
Any two adjacent windows were overlapped by 15 pixels. If a window individually had more than
10% of the pixels for forests and open land, and the absolute average elevation difference between the
forest and open land pixels was less than 100 m, it was a valid window that was used to calculate
the mean differences in LST, albedo and ET between forests and open land. Additionally, to explore
the effects of background temperature on forests, we calculated the mean LST for all pixels within
a window and regarded it as the background temperature of that window. As a result, there were
3363 windows selected (Figure 1).

Figure 1. The spatial distributions of land cover types, paired sites and selected windows. The green
and orange backgrounds refer to areas with forests and open lands, respectively. The paired sites are
marked with red triangles. The blue points refer to the selected windows (0.4 × 0.4◦), which have areas
with more than 10% of forests and open land. The small panels in the below and right show the sample
window numbers at each 1◦ (longitude and latitude) band.

2.2.3. Paired Sites Strategy

Here, we developed paired sites between the forest flux sites and the meteorological stations
based on the following criteria. For a given forest flux site, we found all meteorological stations near

228



Remote Sens. 2018, 10, 529

the forest site within 1◦. Then, we chose the meteorological station that had the smallest latitudinal
distance between the paired site and the forest flux sites. Temperatures from the GSOD data were
set at the daily time scale. We applied the same strategy as that for the forest flux sites to obtain the
multiple-year monthly and annual averages of Tmax, Tmin and Tmean for open land. Only if the number
of valid years in the forest and open land data sets were greater than one was the paired sites deemed
valid to calculate the mean differences in Tmax, Tmin and Tmean. Finally, a total of 48 paired sites were
obtained (Figure 1, Table S1). The average difference in elevation at the paired sites was 15.7 m, and the
largest difference was 776 m, which was in Lavarone, Italy (the IT-Lav site). The average linear distance
from the paired sites was approximately 34.3 km, and the longest distance was nearly 99.3 km, which
was in Leinefelde, Germany (the DE-Lnf site).

2.2.4. Temperature Differences and Elevation Adjustment Strategy

The effects of forests on local land surface temperature or air temperature was expressed as the
LST difference (ΔLST) and the T difference (ΔT) between forest and open land within a window and
a paired site.

ΔLST = LSTf − LSTo (1)

ΔT = Tf − To (2)

where LSTf and LSTo represent the average LST of forests and open land pixels in a window,
respectively, and Tf and To represent the air temperature at a paired site. Positive (negative) values
of ΔLST or ΔT represent forests that are warmer (cooler) than open land. The ET difference and the
albedo difference between forests and open land were defined similarly.

Even within a window or a paired site, the elevation difference between forest and open land
might be large, which results in a systematic bias in ΔLST and ΔT due to the lapse rate. In our study,
we applied the elevation adjustment method from Li et al. [14] to eliminate an elevation-induced bias
from the original value. Here, we produced the correct term based the elevation difference (ΔELV) and
the regression slope (k), which were calculated from the linear regression of ΔLST or ΔT versus ΔELV.

ΔLSTa = ΔLST − k*ΔELV (3)

ΔTa = ΔT − k*ΔELV (4)

where ΔLSTa and ΔTa represent the adjusted LST and air temperature differences, respectively.
Here, k for daytime, nighttime, and daily ΔLST were 8.6 ◦C/km, 2.3 ◦C/km and 5.4 ◦C/km,
respectively. The k values for the differences in Tmax, Tmin and Tmean were 7.2 ◦C/km, 4.6 ◦C/km,
and 5.8 ◦C/km, respectively.

3. Results

3.1. Geographic Patterns in Temperature Difference

During the daytime, forests have a cooling effect on LST relative to the effect of open land in
Europe, except for some areas in England and northern Norway (Figure 2a). The mean annual daytime
cooling effect of forests is −1.06 ± 0.03 ◦C (at the 95% confidence interval and estimated by the
t-test; the results hereafter was calculated in the same manner). The cooling effect shows a clear
decreasing pattern moving towards higher latitudes and increases slowly with an increase in longitude.
Forests cool daytime temperatures within 35◦–63◦N and warm daytime temperatures north of 66◦N.
At night, forests tend to have a higher LST than that of open land in Europe, except for a small area in
southwest France (Figure 2b). The mean annual nighttime warming effect of forests is 0.58 ± 0.01 ◦C.
The warming effect increases significantly from west to east and decreases slightly towards higher
latitudes south of 63◦N. Daytime cooling dominates nighttime warming, which results in a daily
net cooling in most areas of Europe (Figure 2c). The mean annual daily cooling effect of forests is
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−0.24 ± 0.01 ◦C. The cooling effect decreases with an increase in latitudes and longitudes from west to
east and transitions into a warming effect over northeastern Europe. In northeastern Europe (north
of 55◦N and east of 25◦E), the mean annual daily warming effect is 0.16 ± 0.03 ◦C. Similar results
are obtained from sampling windows with different sizes or different threshold values of vegetation
(figures not shown), suggesting that differences in vegetation type are a major cause of LST differences,
which are independent of the vegetation threshold values and sample sizes.

Forests have a similar but slightly different effect on local air temperature. Forests tend to
decrease the Tmax and increase the Tmin (Figure 3a,b). However, an adverse phenomenon is found
near the Mediterranean area, where forests increase the Tmax and decrease the Tmin. The mean annual
Tmax cooling effect and the Tmin warming effect of forests are −0.47 ± 0.28 ◦C and 0.52 ± 0.44 ◦C,
respectively. The Tmax cooling effect decreases slightly with an increase in longitude, and the Tmin

warming effect increases significantly towards higher latitudes, which results in a cooling effect from
forests on Tmean in southwestern Europe and a warming effect from forests on Tmean in northwestern
Europe (Figure 3c). In southwestern Europe (south of 55◦N and west of 15◦E), the mean annual cooling
effect from forests on Tmean is −0.25 ± 0.23 ◦C. In northeastern Europe (north of 55◦N and east of
15◦E), the warming effect from forests on Tmean is 0.36 ± 0.28 ◦C. Additionally, several paired sites
with high elevations have warming effects on Tmean, which is consistent with the results of previous
studies [23]. However, some paired sites show an inconsistent phenomenon. For example, one paired
site near London and several sites in Italy show a large warming effect on Tmean, while neighboring
paired sites have a cooling effect on Tmean, which may result from the background climate and will be
discussed in Section 3.3.

3.2. Seasonal Patterns in Temperature Differences

A clear, seasonal variation in the effect of forests on LST can be seen in Europe (Figure 4).
Forests cool daytime LSTs during the warm season, and this cooling effect decreases with latitude and
increases with longitude (Figure 4a,d). In the cold season, the daytime warming effect dominates all
forests, and the effect increases towards high latitudes and with longitude from west to east. The forest
nighttime warming effect occurs year-round and increases with longitude (Figure 4b,e). In the warm
season, the daytime cooling effect dominates the nighttime warming effect, which results in a net daily
cooling effect. The daily cooling effect on LST decreases from low to high latitudes and increases from
west to east, which is mainly due to the latitudinal and longitudinal patterns of the daytime cooling
effect (Figure 4c,f). In the cold season, forests have a warming effect on LST because of daytime and
nighttime warmings. The warming effect increases towards eastern longitudes.

Figure 5 shows the seasonal variations in Tmax and Tmin between forests and open land and
their Tmean differences in three different latitudinal and longitudinal zones. Forests tend to have
a cooling effect on air temperature during the warm season and a warming effect during the cold
season (Figure 5). The mean annual effects of forests on Tmean are −0.37 ± 0.30 ◦C (number of site
pairs: n = 17) below 45◦N, −0.07 ± 0.36 ◦C (n = 21) within 45–55◦N and 0.25 ± 0.30 ◦C (n = 10)
north of 55◦N. From low latitudes to high latitudes, the cooling effect of forests on Tmax and the
warming effect of forests on Tmin both increase. The magnitude of the increase in the cooling effect
is weaker than that of the warming effect, which results in a cooling effect from forests on Tmean that
decreases with latitude (Figure 5a,c,e). The mean annual effects of forests on Tmean are −0.25 ± 0.65 ◦C
(n = 12) west of 5◦E, −0.25 ± 0.20 ◦C (n = 26) within 5–15◦E, and 0.43 ± 0.26 ◦C (n = 10) east of 15◦E.
From west to east, the cooling effect of forests on Tmax decreases, and the warming effect of forests on
Tmax increases, which results in a cooling effect of forests on Tmean that decreases with an increase in
longitude (Figure 5b,d,f).
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Figure 2. The spatial distributions of the annual mean (a) daytime, (b) nighttime and (c) daily average
ΔLST (forest minus open land) in Europe during the period 2003–2016. The small panels in the below
and right of each ΔLST show the longitudinal and latitudinal zonal average of each ΔLST for every
1◦ bin. The blue lines represent the 95% confidence interval (CI) estimated by the t-test.
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Figure 3. The spatial distributions of the annual mean (a) maximum, (b) minimum and (c) daily
average ΔT (forest minus open land) in Europe. The small panels in the below and right show the
longitudinal and latitudinal zonal average of each ΔT for every 1◦ bin. The background color refers to
the elevation, which gradually increases from black to white.
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Figure 4. Spatiotemporal patterns of latitudinal variations in (a) daytime, (b) nighttime, (c) daily LST
differences (forest minus open land) and longitudinal variations in (d) daytime, (e) nighttime and
(f) daily LST differences (forest minus open land) during the period 2003–2016. Grids with cross
symbols indicate that the LST differences are significant at the 95% CI by the t-test.

Figure 5. Comparison of seasonal variations in daily maximum, daily minimum and daily mean
temperature differences in three latitudinal (a) south of 45◦N, (c) between 45◦N and 55◦N, (e) north of
55◦N, and longitudinal (b) west of 5◦E, (d) between 5◦E and 15◦E, (f) east of 15◦E ranges. The red solid
and red dashed lines indicate Tmax for forests and open lands, respectively. The blue solid and blue
dashed lines indicate Tmin for forests and open lands, respectively. The black solid line indicates the
Tmean difference from forests minus open lands.
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3.3. Effects of Background Temperatures on the Effects of Forests

The effects of forests on LST and air temperature show both spatial patterns and changes with
latitude and longitude, which may be related to background temperatures. In this study, we calculated
the average daily LST of all pixels within a window and referred to it as the background LST of
a window. For paired sites, we simply regarded the air temperature of a forest site as the background
air temperature. Figure 6 shows the relationship between the effects of forests and the background
temperature. Forests tend to cool temperatures in warmer locations, such as tropical areas, and warm
temperatures in cooler locations, such as arctic and high elevation areas. The same transitional
temperature (near 6.5 ◦C) is found for both LST and air temperature. Forests have a cooling effect
when the background temperature is higher than the transitional temperature. In contrast, forests have
a warming effect if the background temperature is lower than the transitional temperature.

Figure 7 presents the relationship between forest effects and background temperatures for various
years. Here, only when the valid years with a window were greater than five years was the relationship
between background LST and daily LST differences (forest minus open land) calculated for various
years. Since the number of valid years for the paired sites were usually limited, we focused on only
the influence of background LSTs on the effects of forests on LST. The daily ΔLST was negatively
related to the background LST in most areas of Europe, except for some areas in England and Germany
(Figure 7a). This pattern indicated that the cooling effects of forests on LST increased as the background
LST increased. Areas with significant changes were mainly located in eastern and southern Europe
(Figure 7b).

The effect of background temperature on forest effects is also examined during different seasons
(Figure 8). Although the effects of forests are mainly negatively related with background LSTs during
the four seasons, there are several differences within the cold seasons (winter and spring) and the warm
seasons (summer and autumn). The relationship between background LSTs and the effects of forests is
more uniform in cold seasons than that in warm seasons. In spring, the cooling effect of forests tends to
increase in eastern Europe and decrease in western Europe as the background LST increases (Figure 8a).
In winter, the warming effect of forests decreases in eastern Europe and increases in western Europe
as the background LST increases, especially in France (Figure 8d). In summer, the cooling effect of
forests decreases in eastern Europe and increases in western Europe as the background LST increases.
These relationships are much more complex in autumn, when the cooling effect either increases or
decreases as the background LST changes (Figure 8b,c).

Figure 6. The relationships between (a) background LST and daily LST differences (forest minus
open land) and (b) background air temperature and daily mean air temperature differences (forest
minus open land). The daily LST differences are binned and averaged on 1◦ background LST intervals
(i.e., the LST for all pixels within a window). The daily mean air temperature differences are binned
and averaged on 1◦ grids for background air temperature (i.e., air temperatures of forest sites). The thin
black bars represent the 95% confidence interval (CI) by the t-test.
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Figure 7. The relationship between background LST and daily LST differences (forest minus open land)
during various years. (a) The rate of change for daily LST differences under different background LSTs.
The number 0.1 indicates that the daily LST difference increases by 0.1 ◦C when the background
LST increases by 1 ◦C. (b) Significance of the relationship between background LST and daily
LST differences.

Figure 8. The relationship between background LST and daily LST differences (forest minus open land)
in (a) spring, (b) summer, (c) autumn, and (d) winter during various years. Spring, summer, autumn
and winter are defined by March and May, June and August, September and November, and December
and February, respectively. The significance map of the four seasons is similar to Figure 7b and is not
shown here.
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3.4. Drivers of Temperature Difference

Albedo and ET are identified as key drivers in terms of forest effects. The spatial and seasonal
distributions of ΔAlbedo and ΔET are shown in Figures 9 and 10, respectively, which are used to
determine if the albedo in forests is lower than that on open lands in all seasons. The difference in
albedo increases towards high latitudes and from west to east. Additionally, the difference in albedo
is greater in the cold season than that in the warm season. Albedo is affected by soil color and soil
wetness. ΔAlbedo is magnified by the presence of snow, as open land can be covered by snow. Snow is
more likely to consistently and persistently occur in northern and eastern Europe [37]. Therefore,
the ΔAlbedo in northern and eastern Europe is larger than that in western Europe, especially in
the winter (Figure 10a,c). Forests have a higher ET than that of open land, especially in the warm
season. The difference in ET (forest minus open land) decreases with latitude. For southern Europe,
ET is strongly controlled by soil moisture availability, while it is constrained by radiation in northern
Europe [25]. Forests can maintain a larger uptake of water because of deeper roots, while open land is
more likely to be subjected to water limitations. However, incoming solar radiation over forests is like
that of the nearby open land in northern Europe. Thus, the ΔET in southern Europe is greater than
that in northern Europe (Figures 9b and 10b).

Figure 9. The spatial distributions of annual mean (a) albedo (%) and (b) ET differences (forest minus
open land) in Europe. The periods used to analyze albedo and ET differences are 2003–2016 and
2003–2014, respectively. The below and right small panels for each difference show the longitudinal
and latitudinal zonal averages for every 1◦ bin. The blue lines represent the 95% confidence interval
(CI) estimated by the t-test.
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Figure 10. Spatiotemporal patterns of (a) latitudinal and (c) longitudinal variations in albedo
(%) differences (forest minus open land) during the period 2003–2016 and (b) latitudinal and
(d) longitudinal variations in ET differences (forest minus open land) during the period 2003–2014.
Grids with cross symbols indicate differences that are significant at the 95% CI by the t-test.

The spatial and seasonal patterns of differences in albedo and ET (forest minus open land)
determine the spatiotemporal differences in LST and T. From south to north, the cooling effect
caused by ET differences decreases, while the warming effect caused by albedo differences increases.
This results in a cooling effect from forests that decreases with latitude and gradually changes into
a warming effect (Figures 2c and 3c). From west to east, the warming effects from albedo increase
with longitude; therefore, the cooling effect of forests decreases with longitude in Europe (Figures 2c
and 3c). In northeastern Europe, the annual incoming shortwave radiation energy per square meter
that is received in the daytime ranges between 1246 and 1835 MJ. The annual mean of ΔAlbedo is
−10.39 ± 0.25%. Therefore, forests absorb an extra 129–191 MJ of energy compared with adjacent
open lands each year. Moreover, the annual mean ΔET is 0.05 ± 0.01 mm/day in northeastern Europe,
which is roughly equivalent to the additional 45 ± 10 MJ of energy that is dissipated from forests
compared to that dissipated by open lands each year. The additional energy absorbed by forests via
albedo differences is greater than the energy dissipated by forests via ET differences in contrast to
open lands, which results in a warming effect from forests in northeastern Europe (Figures 2c and 3c).
From the warm season to the cold season, the cooling effect from ET differences decreases, and the
warming effect from albedo increases, which results in a net cooling effect from forests in summer and
net warming effect from forests in winter (Figures 4 and 5).

The background temperatures during various years may result in different forest effects on local
temperature by changing the differences in albedo and ET. Figure 11 shows the relationship between
the differences in albedo and ET and background LSTs in Europe. Although some windows have less
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than five years of valid data, we find that the differences in albedo increase with increasing background
LSTs, indicating that the absolute value of the difference in albedo decreases (Figure 11a). The warming
effect induced by the difference in albedo decreases when the background temperature increases,
especially in eastern Europe, which is significantly affected by snow. The ET difference (forest minus
open land) increases with the background LST in most areas of Europe. The cooling effect induced by
the difference in ET increases when the background temperature increases. Therefore, the increase
in the cooling effect caused by ET and the decrease in the warming effect caused by albedo result in
an increase in the net cooling effect of forests on LST (Figure 7a). However, it is noticeable that the
difference in ET decreases with an increase in LST in some areas. The change in the cooling effect
caused by ET may be complicated under background temperature changes, which results in noise
regarding the change in the net effect during warm seasons (Figure 8b,c). In Figure 3c, we observe
a paired site that has a strong warming effect from forests near London. This was induced by a heat
wave in 2006. In 2006, the annual temperature difference (forest minus open land) was nearly 6 ◦C,
while in normal years, the temperature difference was 1.2 ◦C. The paired sites in Italy were also
strongly affected by the local background temperature. This effect will require further examination in
the future.

Figure 11. Cont.
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Figure 11. The relationship between the annual mean background LST and the annual mean (a) albedo
(%) differences (forest minus open land) and (b) ET differences (forest minus open land) during various
years. The number 0.1 in (a,b) indicates that the albedo and ET differences increase by 0.1% and
0.1 mm/day, respectively, when the background LST increases by 1 ◦C. Only when the valid year of
a window was greater than five years was the relationship calculated.

4. Discussion

In this study, we use satellite observations and in situ measurements to examine the effects of
forests on local surface temperatures. Overall, our results show that forests cool surface temperatures
in Europe. Our findings agree with those of previous studies to a certain extent. Arora et al. proved
that the bio-geophysical component of net temperature responses to 100% afforestation simulations
was greater than zero in northeastern Europe and less than zero in other European regions [38].
Montenegro et al. studied the effect of afforestation on biochemical and biophysical processes using
satellite data to investigate the effects of afforestation on temperature and proved that afforestation
lowered the temperature in areas between 40◦S and 60◦N [39]. In this paper, an analysis based on
measurements demonstrated that forests increase surface temperatures only in northeastern Europe
and decrease temperatures in other European areas.

The diurnal asymmetry in temperature results from different energy balance processes, such as
solar heating and radiative and dynamic cooling [40]. Daytime temperatures can be modified by
incoming solar radiation, land surface properties (e.g., albedo and emissivity), latent and sensible heat
fluxes, air mass advection and near-surface atmospheric boundary layer conditions [41]. Given the
small size of a single grid cell, incoming solar radiation is likely to be similar in each grid cell. Thus,
the amount of absorbed radiation is determined by surface albedo. The consumption of this energy by
either latent and sensible heat fluxes or heat storage in soil and biomasses is controlled by vegetation
activity and the soil moisture status [36]. In the daytime, due to deeper roots and larger leaf areas,
forests have higher efficiencies in dissipating heat into the atmospheric boundary layer through
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turbulent diffusion than do open lands, which are aerodynamically smoother [42]. Forests absorb more
solar energy and dissipate more energy than open land; these two processes determine the daytime
ΔLST. Nighttime ET from vegetation is negligible; therefore, nighttime LST is mainly influenced
by energy stored during the day and the near-surface atmospheric boundary layer. Lee et al (2011)
hypothesized that forests tend to be warmer than open lands at night because forests are usually
taller than open land, which enhances turbulence and draws heat from aloft towards the surface [7].
Several similar mechanisms have been proposed for wind farms and orchards, where machines are
used to promote turbulence at night to warm the surface temperature [41,43]. Other factors (e.g., soil
moisture, air humidity and boundary layer clouds) also help warm surface temperatures at night.
The increase in soil moisture for forests tends to increase the surface heat capacity, which results in
increases in daytime heat storage and nighttime heating. In addition, due to the higher ET from
forests relative to open land, the increases in air humidity and boundary layer clouds increase the
downward longwave radiation from the atmosphere and decrease the upward longwave radiation
from the surface, which increases surface temperatures at night [9,15,17].

In our study, we found that background temperature was an important factor when determining
the effects of forests not only in space but also at the interannual timescale. Forests tend to decrease the
local temperature in warmer areas and increase the local temperature in colder areas, which generates
a transitional latitude (56◦N) and a transitional background temperature (near 6.5 ◦C) in Europe and
causes the cooling effect to switch to a warming effect. Several previous studies that focused on North
America and Asia also found a transitional temperature change latitudinally, which was different than
that for Europe [7,14,18–20]. Latitudinal profiles of the zonal means were derived for air temperatures
north of 10◦N in North America, Asia, Europe and the Northern Hemisphere. These patterns were
calculated via a monthly temperature data set with a spatial resolution of 0.5◦, which was obtained
from the Climate Research Unit (CRU), version TS3.22 [44–46]. We found that the annual mean air
temperature (6.5 ◦C) occurs at 45◦N in North America, 45◦N in Asia, 56◦N in Europe and 46◦N in
the Northern Hemisphere (Figure 12). Even though a different transitional latitude was observed in
Europe than in those studies that observed different continents, the background temperatures were
very close at these transitional latitudes.

There were record-breaking heatwaves in Europe in 2003 [30,47]. When calculating the average
summer ΔLST in central Europe (45◦–52◦N, 5◦–10◦E) during the period 2003–2014, we found that
the cooling effect of forests in the summer of 2003 was relatively larger than those in other years
(Figure 13a), which was consistent with previous findings. For open lands, there was a significantly
greater decrease in LAI, which is an important factor influencing ET that amplified the decrease in ET
and resulted in a larger ΔET. This phenomenon was most remarkable in central Europe, where the
largest number of severe heat waves have occurred. A long, continuous period with temperatures
below 0 ◦C affected large parts of central Europe in 2005/2006, which resulted in a delayed snow
melt in the spring of 2006 [37]. We also found that the average spring ΔLST in 2006 was higher
than those in other years, which indicated that the cooling effect from forests decreased with colder
background temperatures. The main reason for this phenomenon was that the difference in albedo
(forest minus open land) became larger when there was a longer snow cover duration in spring, which
led to a smaller cooling effect from forests (Figure 13b).

Background temperatures may be a major factor that can influence the effects of forests on
temperature by altering biophysical processes, such as the differences in albedo and ET (forest minus
open land). Under a warmer climate background, the warming effect caused by albedo is smaller due
to reduced snow cover [15,27]. The difference in ET between forests and open lands may decrease
in regions with a sufficient amount of soil moisture, but it increases when a region experiences
soil moisture depletion [48]. Thus, the change in the cooling effect caused by ET has a greater
uncertainty under a warmer background, and it may vary in space as the degree of the background
temperature increases. In most areas of Europe, a decrease in the warming effect and an increase in
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the cooling effect from forest results in an increase in the total forest cooling effect under warmer
background temperatures.

Figure 12. Annual mean air temperatures at different latitudes in the Northern Hemisphere (north
of 10◦N) during the period 2003–2016, where NA represents North America, EU represents Europe,
AS represents Asia and NH represents the Northern Hemisphere. The dotted line represents 6.5 ◦C.

In our study, we combined evergreen forests and deciduous forests, which may result in several
uncertainties. During the growing season, these two forests are not very different. During the
non-growing season, transpiration from evergreen forests may be higher than that from deciduous
forests [11]. This means that the cooling effect caused by ET in evergreen forests is greater than that
in deciduous forests. However, compared with evergreen forests, deciduous forests are more easily
covered with snow, which means that the difference in albedo between evergreen forests and open
lands tends to be larger than that between deciduous forests and open lands [30]. The warming effect
caused by albedo from evergreen forests is greater than that from deciduous forests. Although there
may be different effects between evergreen forests and deciduous forests, the total difference in the
effect on local temperature may be small due to the divergent effect (i.e., larger cooling from ET and
larger warming from albedo in evergreen forests).

There are several other uncertainties and influential factors in our study. Although MODIS LST
has relatively low uncertainties compared with most LST satellite data, there are still some unavoidable
uncertainties (i.e., clouds) in the data set [49]. When we study the differences in LST between forests
and open lands, uncertainties still exist. In our study, we ignore the measurement height differences
between the forest flux sites and the meteorological stations, which may also cause some uncertainties.
The height of the temperature measurement in the FLUXNET network varies from 2 to 15 m above
the canopy, while the height of measurement at the meteorological stations is 2 m, which may change
the annual mean temperature difference by a maximum of 0.008 ◦C [7]. In addition, we use temporal
land cover data instead of long-term unchanged land cover data, which may cause some uncertainties
in our results. In addition, numerous factors can affect biophysical processes, which determine the
effects of forests on local temperature. Other factors, such as the leaf area index (LAI), root depth,
soil moisture, and extreme climate and background temperatures can influence the effects of forests
through biophysical processes.
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Figure 13. Interannual variability of (a) the seasonal mean LST in summer, the difference in ET
(forest minus open land) in summer, and background LST in summer and (b) the seasonal mean LST in
spring, the difference in albedo (forest minus open land) in spring, and the background LST in spring.

5. Conclusions

Throughout this work, we analyzed the effects of forests on LST and air temperature in Europe
using remote sensing data and in situ measurements to reveal the geographic and seasonal patterns of
this effect. Additionally, we explored the influence of background temperatures on the spatial and
temporal patterns of forest effects on temperature in Europe.

Our results show that (1) forests generally cool the LST and air temperature in Europe, and the
cooling effect varies in space and decreases with increases in latitude and longitude, which causes
a switch to a warming effect in northeastern Europe; (2) daytime cooling dominates the effect of
forests in the warm seasons. In the cold seasons, the daytime and nighttime warming effects drive the
effects of forests; (3) background temperature plays a role in the effects of forests on local temperature,
and there is a transitional temperature (6.5 ◦C) in Europe; and (4) the effects of forests are negatively
correlated with the background temperature. For example, the cooling effect from forests are larger
in heatwaves and smaller in cold springs. Furthermore, (5) background temperatures affect the
spatiotemporal patterns of the differences in albedo and ET (forest minus open land), which determines
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the spatial, seasonal and interannual effects of forests on temperature. This study reveals that other
factors (e.g., LAI, root depth, soil moisture and background temperature) may also have an influence
on the effects of forests. Further studies should take more biophysical processes into account and
combine satellite data, in situ measurements and model results to examine the effects of forests on
surface temperature.

Overall, this study provides an empirical analysis to reveal the geographic and seasonal patterns
caused by the effects of forests on surface temperatures and the role of background temperature in
forest effects in Europe. Understanding the main drivers of climate responses to forests could provide
essential information for adaptation strategies, especially under future climate conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/4/529/s1;
Table S1: The information on the forest sites.
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Abstract: Continuous land-surface temperature (LST) observations from ground-based stations are
an important reference dataset for validating remote-sensing LST products. However, a lack of
evaluations of the representativeness of station observations limits the reliability of validation results.
In this study, a new practical validation scheme is presented for validating remote-sensing LST
products that includes a key step: assessing the spatial representativeness of ground-based LST
measurements. Three indicators, namely, the dominant land-cover type (DLCT), relative bias (RB),
and average structure scale (ASS), are established to quantify the representative levels of station
observations based on the land-cover type (LCT) and LST reference maps with high spatial resolution.
We validated MODIS LSTs using station observations from the Heihe River Basin (HRB) in China.
The spatial representative evaluation steps show that the representativeness of observations greatly
differs among stations and varies with different vegetation growth and other factors. Large differences
in the validation results occur when using different representative level observations, which indicates
a large potential for large error during the traditional T-based validation scheme. Comparisons show
that the new validation scheme greatly improves the reliability of LST product validation through
high-level representative observations.

Keywords: spatial representativeness; heterogeneity; validation; land-surface temperature products
(LSTs); observations; HiWATER; remote sensing

1. Introduction

Land-surface temperature (LST) is an important parameter related to the surface energy and water
balance at local and global scales and has principal significance for applications such as monitoring the
climate, hydrological cycle, and vegetation [1]. Satellite remote sensing provides a repetitive synoptic
view in short intervals of the global land surface and is a vital tool for monitoring the LST of the
Earth. With the development of remote-sensing technology, many LST products have been provided
by different groups based on retrieval from different satellite data [2–5]. The first long-term global
sensing LST dataset, the NOAA/NASA Pathfinder AVHRR Land dataset (PAL) [2], was released in
1994. The second generation AVHRR Land Pathfinder Π (PALΠ) was a refinement product from the
PAL released in 2000 [3]. Sun and Pinker estimated LST products from a Geostationary Operational
Environmental Satellite (GEOS) in 2003 [4]. The LSTs from Spinning Enhanced Visible and Infrared
Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) was retrieved in 2008 [6]. As a
part of NASA Earth Observing System (EOS) project, MODIS LSTs have played an important role in
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recent studies, especially in regional studies, because of the suitable temporal and spatial resolution,
acceptable accuracy, and accessibility of these LSTs. Therefore, MODIS daily LST/LSE products with
1-km spatial resolution are validated in this study.

Remotely sensed LSTs must be appropriately and precisely evaluated to ensure effective
application [7]. Mainly two types of methods exist for validating LST products retrieved from
thermal-infrared satellite data: temperature-based methods (T-based) and radiance-based methods
(R-based) [8–14]. The main advantage of R-based methods is that they work during both the daytime
and nighttime because in situ LST observations are not required, and finding validation sites with
small spatial variations in land-surface emissivity is relatively easy [14]. However, the atmospheric
and water vapor profiles at validation sites from radiosonde balloons that are synchronously launched
with the satellite are a necessary dataset, which limits the implementation of this method for
long-term and large-region validation. Therefore, T-based methods remain common, and ground-based
measurements are still the primary source of datasets to directly validate remotely sensed LSTs.
However, we cannot perform a direct comparison with a pixel grid, especially for a coarse-resolution
product over heterogeneous areas, because of the spatial heterogeneity and different scales between
ground-based observations and remotely sensed LST pixels.

A generally accepted method is a systematic site-to-network method, which deeply develops
an in situ sampling strategy and upscaling approaches to acquire the truth at the pixel scale over
a heterogeneous surface based on multiscale, multi-platform and multi-source observations [15].
This approach employs both field measurements from nodes of a wireless sensor network (WSN) and
high-resolution remote-sensing data from synchronous high-resolution satellites or airborne sensors
to establish a site-specific relationship and generate high-resolution LST reference maps over the
validation area [15]. These LST reference maps are then treated as benchmarks to obtain multiscale
validation datasets by upscaling methods [16–18]. However, only a few high-resolution LST reference
maps can be synchronously obtained for a given region because of cost limitations and the revisiting
cycles of satellites with high resolution, which is the greatest challenge towards the global validation
of LST products, especially in terms of temporal consistency in product validation.

In contrast to more complicated R-based, site-to-network methods with limited LST reference
maps, simple T-based methods are directly based on existing global, long-term ground LST
measurements and are an important supplement for validation. Simple T-based methods have been
widely used to validate remotely sensed LST products at homogeneous stations [8,13,19]. When directly
validating LST products with spatial resolutions above hundreds or even thousands of meters by
ground-based measurements, the error from the scale mismatch changes with the land-cover type (LCT)
and the proportions of mixtures in pixel grids reduce the reliability of the validation and hinder the
application of ground-based LST measurements during the validation of remotely sensed LST products.
Coll et al. have pointed out that during the day, LST can vary by 10 K or more over a few meters
in a heterogeneous surface [9]. Ground-based LST measurements from two types LST observation
instruments with different field of view (FOV) were selected to discuss the scale mismatch implications
for validation of remote sensing LST products in the study by Yu et al., and the validation results show
that there is an extra 26.9% in the error >3 K range caused by the 41.5 FOV difference [20].Therefore,
we must assess the spatial representativeness of station observations at a given spatial resolution to
reliably validate remotely sensed LSTs. Recently, several methods have been used to assess the spatial
representativeness of different land-surface parameters, such as the leaf area index [21], surface solar
radiation [22], bidirectional reflectance distribution function (BRDF)/albedo [23], air temperature [24]
and air quality [25], which are observed by ground stations. These methods are based on two
factors: the point-to-area consistency and the spatial heterogeneity [21]. The point-to-area consistency
indicator can be calculated through two methods. The first involves directly comparing the footprint
of the ground-station observations to the corresponding product pixels [26] or the average value
of the corresponding area [27]. In the second approach, the observational representativeness is
determined by the average difference between a given station and its neighboring stations based on

247



Remote Sens. 2017, 9, 1210

multi-temporal observations from multiple stations [9,28]. The semi-variance is usually selected to
describe the spatial representativeness by analyzing the spatial heterogeneity around the stations [29].
A first-order statistical algorithm is an important spatial heterogeneity indicator, for example, using
window-size analysis to assess the spatial variation of the landscape around a given station [30].
Spatial representativeness assessments have been widely implemented to validate satellite-albedo,
evapotranspiration, and LAI products [21,23,26,31,32]. However, few representativeness assessments
exist for station LST observations, which increases the uncertainty of the validation of LST products,
particularly for simple T-based implementations, and hinders the application of station observations.

This paper presents a new methodology for validating LST products that focuses on quantifying
the spatial representativeness of station observations to improve the accuracy and reliability of
LST product validation. The term “spatial representativeness” refers to measurements of the
degree to which ground-based observations can resolve the surrounding LST by extending to the
satellite footprint. This validation technique assesses the spatial characteristics of the LST, and
the seasonal representativeness changes within a statistical framework. A scheme that is based
on spatial representativeness indicators is presented in this paper, and then the grading criteria
are outlined in detail. All the stations from the Heihe Watershed Allied Telemetry Experimental
Research (HiWATER) [33] are selected for applying the validation strategy. The study area and
data-processing procedure are introduced in Section 3. In Section 4, the representativeness of the
given station observations is assessed to validate MODIS V5 daily LST products (MOD/MYD11A1).
The representativeness assessment and LST product validation are also analyzed and discussed in this
Section. Finally, the conclusions are summarized.

2. Methodology

2.1. New Validation Scheme

The LST is a land-surface parameter with great spatial and temporal heterogeneity, which creates
many challenges for “point-to-pixel” comparisons. Local changes in the surface temperature within
and between different ecosystems introduce scale mismatch errors. Moreover, these patterns change
seasonally and are particularly difficult to identify during periods of rapidly changing surface conditions.
Therefore, “point” measurements alone are not sufficient to validate satellite-derived LST retrievals,
especially remote-sensing LST products with moderate and low resolution (illustrated in Figure 1).
This temporal mismatch can be solved by increasing the observation-acquisition frequency of stations.
The scheme that is developed here to validate remote-sensing LST products (see Figure 1) attempts
to solve spatial mismatch effects during validation. The key in this scheme is to assess the spatial
representativeness, which is based on remote-sensing data with high spatial resolution that are closely
related to the LST. Indicators are proposed to quantify the spatial representativeness, and then the
grading criteria are designed before selecting appropriate ground-based measurements for validation.

Figure 1. New scheme for land surface temperature (LST) validation based on the assessment of local
spatial representativeness (site level). In the scheme, LCT is the abbreviation of land-cover type, and
NDVI is the abbreviation of normalized difference vegetation index.
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2.2. Indicators for Assessing Spatial Representativeness

Three indicators are proposed to describe the spatial characteristics for a specific parameter,
mainly including the consistency from points to pixels and the spatial heterogeneity within pixels.
These indicators are calculated on high-resolution images, which are much easier to access, thus
simplifying the process. The LST is a direct parameter for assessing the representativeness of a given
station’s LST observations. However, obtaining temporal high-spatial-resolution LST matches for LST
products with lower resolution is difficult. Therefore, high-resolution land-cover type (LCT) and the
normalized difference vegetation index (NDVI), which can indicate the surface conditions and their
changes, are chosen as additional supporting parameters to evaluate ground-based LST observations
in addition to LST data with a high spatial resolution.

If the LCTs observed by stations do not match the dominant LCTs in the pixels, these station LST
observations cannot represent the LST of the LCTs in the pixels. Thus, the dominant LCT (DLCT),
which is given by the percentage of the observed LCT throughout the pixel’s area, is defined as

DLCT =
M(s)
N(s)

× 100 (1)

where s is the product pixel, M(s) is the area with the LCT that is observed by the given station,
and N(s) is the total area of the LCTs in the LST product’s pixel grid. When using a high-resolution
LCT map, the DLCT can also be described as the percentage of fine pixel numbers covered by
station-observed LTC to total LCT pixel numbers in the LST product’s pixel range. A high DLCT
indicates that the LCT observed by a station is consistent with that in the LST product’s pixel and low
heterogeneity within the product pixel because the mixing rate of LCTs in the pixel is not large.

We developed a relative bias (RB) indicator to assess how close a ground-based LST measurement
is to the value of the corresponding pixel area. According to the high-spatial-resolution LST reference
images, the relative bias is used to describe the difference between the LST value T(s) at a station
and the average LST value T(s) in the product pixel’s area. If we consider the comparability between
different ranges of LST values, the RB is defined as

RB =
|T(s)− T(s)|

T(s)
× 100 (2)

where s is the product pixel and RB depends on both its resolution and the resolution of the reference
LST image. This indicator can quantify the certainty of the ground-based measurements to the product
pixel area LST values. A smaller RB indicates more spatially representative observations for the
corresponding pixel at the specific spatial resolution of s.

The two above indicators mainly measure the point-to-area value consistency, so the heterogeneity
of the spatial distribution of the LST within a pixel, which is correlated with the vegetation growth, must
be seasonally quantified. In terms of the spatial autocorrelation of LST parameters, semivariogram is
one of the most commonly used and efficient geostatistical analysis tools for quantitatively evaluating
spatial variations. Semi-variance and related geostatistical kriging were developed from mining
research during the late 1950s and have been widely used after a publication by Journel and Huijbregts
in 1978 [34,35]. These geostatistical techniques have been used in many scientific projects, such as in
describing the distribution and density of plants and animals [36,37] and in determining the spatial
scales of variation and sampling strategies in remote sensing [38–40]. In regionalized variable theory,
the semi-variance measures the dissimilarity of a spatial variable observed at different locations. The
semi-variance is calculated by the average squared difference between observations Z(xi) and Z(xj),
which are separated by distance h, as described below:

r(h) =
1

2N(h) ∑
||xi−xj ||=h

(Z(xi)− Z(xj))
2 (3)
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where 2N(h) is the number of observation pairs, which are separated by a distance h, or lag, as intervals
to calculate the semi-variance. In this study, the variogram estimator r(h) is computed on discretized
point values from high-spatial resolution LST pixels, and then a variogram model is established
as a parametric functional approximation based on these semi-variance values. Several theoretical
variogram model types exist, including linear models, spherical models, exponential models, and
Gaussian models. Among these models, spherical models are the most widely used variogram models
for their strong fitting and generalization capabilities and are recommended for assessing the spatial
representativeness of observations [23,32]. The isotropic spherical variogram that is used to estimate
the variogram is as follows:

rsph(h) =

⎧⎨⎩ c0 + c ×
(

1.5 × h
a − 0.5 ×

(
h
a

)3
)

f or 0 ≤ h ≤ a

c0 + c f or h > a
(4)

In Equation (4), it is obvious that the rsph(h) generally increases from a nonzero value to a
relatively stable constant value with h. When h = 0, the rsph(h) value is a nonzero value c0, namely,
rsph(0) = c0, and c0 is the nugget of the variogram. The stable constant value is the sill (c0 + c) of
the variogram. When rsph(h) reaches the sill, the value of the variable h is a, namely, the range of the
variogram. The key parameters range (a), nugget (c0), and sill (c0 + c) can be obtained from fitting
Equation (4). a is the maximal distance between the two correlated points and indicates the average
structural scale (ASS) of the given area. The nugget c0 indicates the level of Z(xi)’s randomness,
which may be caused by internal variations in Z(xi) over a smaller distance h than the sampling
distance or may be derived from the sampling error. The sill (c0 + c) represents the largest extent of
the regionalized variation. Li and Reynolds [41] introduced the proportion of structural variation,
which is based on subtracting the variogram nugget (c0) from the sill (c) and then dividing by the sill,
to discuss the definition and quantification of ecological heterogeneity. However, the heterogeneity
of LST parameters considerably varies over time when compared to that of ecological parameters,
and reference high-resolution LST maps may not be completely synchronous with the validated LST
products. Therefore, the ASS is introduced based on the range of the variogram model, which reflects
the average structural scale of the given area and the size of the homogeneous area. A large ASS value
indicates that the station observations represent a large homogeneous area.

3. Data Instruction and Preparation

3.1. Ground-Based LST Measurements

In this study, we selected the Heihe River Basin (HRB), which is the second largest inland valley
in China’s arid regions, to evaluate MODIS LSTs with 1-km resolution. The HRB is located in the
northern arid region within 97.1◦E–102.0◦E and 37.7◦N–42.7◦N. Glaciers, frozen soils, alpine meadows,
forests, irrigated crops, riparian ecosystems, deserts, and gobi are distributed from upstream to
downstream regions (see Figure 2). The HRB was selected as an experimental watershed to reveal the
processes and mechanisms of the ecohydrological system in an inland river basin. Allied telemetry
experiments such as the Heihe Basin Field Experiment (HEIFE) [42] and Watershed Allied Telemetry
Experimental Research (WATER) [43] have been conducted in the HRB, and the HiWATER [33] project
has been ongoing since 2012. The stations that collect watershed hydrological observations cover
a wider range than those in previous studies and provide a large amount of ecohydrological data
for evaluation. Eighteen atmospheric stations from HiWATER are scattered around the HRB region.
Longwave-radiation data for eighteen stations from 2013 to 2014 were selected to obtain ground-based
LSTs to evaluate the MODIS LSTs. The locations of the stations are shown in Figure 2. The information
for the stations is listed in Table 1, and environmental photos of these sites are shown in Figure 3.
The ARC, ARS, ARY, DSL, JYL, HZS, HCG, and EBZ stations are located in the upstream area; the
DMZ, GBZ, HZZ, SDZ, and SSW stations are located in the midstream area; and the downstream area
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contains the SDQ, HJL, HYZ, NTZ, and LTZ stations. The LCTs of these stations are all typical types in
the three significantly different areas.

 
Figure 2. Study area and locations of the validation stations.

Table 1. Information for the stations in this study.

Station Name Longitude/◦E Latitude/◦N Altitude/m Height/m Footprint 1/m Landscapes

A’rou superstation (ARC) 100.46 38.05 3033 5 37.32 Alpine meadow

A’rou sunny slope
station (ARS) 100.52 38.09 3559 6 44.78 Alpine grassland

A’rou shade station (ARY) 100.42 37.99 3538 6 44.78 Alpine grassland

Dashalong station (DSL) 98.95 38.83 3775 6 44.78 Swamp meadow

Jinyangling station (JYL) 101.11 37.85 3700 6 44.78 Alpine meadow

Huangzangsi station (HZS) 100.19 38.23 2660 6 44.78 Cropland (wheat)

Huangcaogou station (HCG) 100.73 38.00 3186 6 44.78 Alpine grassland

E’bo station (EBZ) 100.94 37.96 3407 6 44.78 Alpine grassland

Daman superstation (DMZ) 100.37 38.86 1519 12 89.57 Cropland (maize)

Gobi station (GBZ) 100.30 38.89 1571 6 44.78 Gobi Desert

Huazhaizi desert station (HZZ) 100.32 38.77 1726 2.5 18.66 Desert steppe

Wetland station (SDZ) 100.45 38.97 1460 6 44.78 Wetland

Shenshawo desert
station (SSW) 100.49 38.79 1582 6 44.78 Desert

Populus forest station (HYZ) 101.12 41.99 927 24 179.14 Populus forest

Cropland station (NTZ) 101.13 42.01 919 6 44.78 Cropland

Barren-land station (LTZ) 101.13 41.99 931 6 44.78 Bare soil

Sidaoqiao station (SDQ) 101.12 41.99 935 10 74.64
Euphrates poplar
olive and Tamarix
mixed forest

Mixed forest station (HJL) 101.13 41.99 929 24 179.14
Euphrates poplar
olive and Tamarix
mixed forest

1 “Footprint” refers to the diameter of the footprint; “Height” indicates the installation height.

Eighteen meteorological towers are located in the HRB region, consisting of three superstations
and fifteen ordinary stations. Pyrgeometers are deployed at these 10-m to 35-m high meteorological
station towers to measure longwave radiation (see Figure 3 and Table 1). At least two pyrgeometers
are positioned on a single tower: one facing upward and the other facing downward. The field-of-view
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(FOV) of the upward-facing pyrgeometer is nearly 180◦, while that of the downward-facing
pyrgeometer is 150◦. Therefore, the effective diameter of the FOV of the pyrgeometers on a 10-m to
35-m tower is approximately 2.5–24 m with a 6-m average mounting height, and the diameters of the
ground-observation footprints are shown in Table 1. The pyrgeometers are sensitive to the spectral
range from 4.5 to 42 μm in the longwave band. All the instruments at each station were calibrated
before and after field deployment. Field-routing exams were implemented once per month. Assurance
and quality control provided the best possible data for the level-2 daily data. All these data and related
information can be found at the HiWATER website [44]. All the ground-based measured data from the
eighteen HiWATER sites were 10-min averaged values. The longwave radiation data were selected
according to the field viewing time for the MODIS LST. The LST is related to land-surface longwave
radiation according to the Stefan-Boltzmann law [1,45]:

L↑ = εbδT4 + (1 − εb)× L↓ (5)

where L↑ is the surface upwelling longwave radiation, εb is the surface broadband emissivity, δ

is Stefan-Boltzmann’s constant (5.67 × 10−8 W·m−2·K−4), and L↓ is the atmospheric downwelling
longwave radiation at the surface. Therefore, the ground-measured LST can be estimated from station
longwave-radiation observations by the following equation:

Ts =

[
L↑ − (1 − εb)× L↓

εbδ

] 1
4

(6)

In Equation (6), L↑ and L↓ are obtained from the ground-based measurements. Seven narrowband
emissivities exist in MOD/MYD11B1 LST/LSE products. εb can be estimated from these MODIS
narrowband emissivities [45]:

εb = 0.2122 × ε29 + 0.3859 × ε31 + 0.4029 × ε32 (7)

where εb is the broadband emissivity, and ε29, ε31, and ε32 are the narrow emissivity products of MODIS
bands 29, 31, and 32 that are retrieved from the MODIS day/night LST algorithm (MOD/MYD11B1
LST/LSE).

 

Figure 3. Cont.
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Figure 3. Photos of the 18 Heihe Watershed Allied Telemetry Experimental Research (HiWATER)
stations. The two pyrgeometers that were used to record the longwave radiation were deployed at an
average height of 6 m, with one facing upwards and the other facing downwards.

3.2. Remote-Sensing Data

3.2.1. MODIS Data

As a component of NASA’s Earth Observing System (EOS) project, two MODIS instruments were
placed onboard the Terra and Aqua satellite platforms to provide information for global atmosphere-,
land- and oceanic-process studies [46]. MOD/MYD22_L2, MOD/MYD11A1, MOD/MYD11B1
and MOD/MYD07_L2 are all daily LST products based on thermal-infrared data from MODIS.
MOD/MYD11_L2 was retrieved by a generalized split-window algorithm with 1-km spatial
resolution [47]. MOD/MYD11A1 is tile-based and gridded in the sinusoidal projection from
MOD/MYD11_L2. MOD/MYD11B1 was obtained using the day/night LST algorithm at 5-km spatial
resolution [48]. MOD/MYD07_L2 was retrieved by the atmospheric team using statistical regression
methods [49]. In this study, we focus on the collection of 5 MOD/MYD11A1 products, which are
more widespread. Uncertainties from the satellite measurements and improvements in the original
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MODIS LSTs for cloudy days are beyond the scope of this paper. To eliminate effects from the inversion
algorithm and clouds, only pixels with high-quality MODIS LSTs were selected for the evaluation
based on a quality control flag value of 0. The narrow emissivity products from MOD/MYD11B1
LST/LSE were selected to estimate the land-surface broadband emissivity εb and obtain ground-based
LSTs [45]. The narrow emissivities from MOD/MYD11B1 LST/LSE at 5-km resolution were resampled
to 1-km spatial resolution to match the evaluated MODIS LSTs.

3.2.2. High-Spatial-Resolution Images

Land-cover images with a spatial resolution of 30 m (data doi:10.3972/hiwater.155.2014.db,
downloaded from the HiWATER land cover datasets [50], which were produced by Zhong et al. [51,52],
were selected to obtain the DLCT in a 1-km LST product pixel. This dataset was mainly based on
charge-coupled device (CCD) data from the Huan Jing 1 (HJ-1) satellite, which was launched on
6 September 2008, by the China Center for Resources Satellite Data and Application (CRESDA).
HJ-1/CCD has three visible bands and one near-infrared band [53]. This dataset provides monthly
land-cover maps of the HRB from 2011 to 2015 with 30-m spatial resolution. LCTs change with the
seasons, and these changes are similar across consecutive years, so the DLCT products in 2013 were
collected to calculate the DLCT indicator.

Landsat 8, which is called the Landsat Data Continuity Mission, is extending the distinguished
40-year records of Landsat-series satellites and has enhanced capabilities, such as adding new spectral
bands in the visible and thermal-infrared wavelengths and improving the signal-to-noise ratio and
radiometric resolution of the sensor [54]. The Landsat 8 satellite includes two instruments: an
Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS). High-resolution LST maps
were retrieved from the Landsat 8 TIRS data and OLI data. Before retrieving the LST maps, the Landsat
OLI and TIRS images were preprocessed, including radiometric calibration and atmospheric correction
based on the correction model in the ENVI software. Monthly NDVI maps were obtained to assess the
relationships between the monthly changes in the indicators and vegetation growth. The NDVI maps
were based on the visible red band (R, band 4) and the near-infrared band (NIR, band 5) according to
the following equation:

NDVI =
NIR − R
NIR + R

(8)

In this study, the LST data were estimated from the TIRS aboard Landsat 8 based on a practical
split-window (SW) algorithm developed by Du et al. [55]. The SW algorithm can be expressed
as follows:

T = b0 +

(
b1 + b2

1 − ε

ε
+ b3

Δε

ε2

)Ti + Tj

2
+

(
b4 + b5

1 − ε

ε
+ b6

Δε

ε2

)Ti − Tj

2
+ b7

(
Ti − Tj

)2 (9)

where T is LST, Ti and Tj are the TOA brightness temperatures in the thermal-infrared channels i and
j, respectively; ε is the average emissivity of the two channels (i.e., ε = 0.5(+ε j)); Δε is the channel
emissivity difference (i.e., ε = 0.5(εi − ε j)); and bk(k = 0, 1, . . . 7) are the algorithm coefficients from
the simulated dataset. In this algorithm, the coefficients were determined based on atmospheric
water-vapor subranges, which were obtained through a modified split-window covariance-variance
ratio method. The channel emissivities were acquired from newly released global land-cover products
at 30 m and a fraction of the calculated vegetation cover from visible and near-infrared images that
were obtained by Landsat 8.

The effect of heterogeneity changes depending on the season, so we selected Landsat 8 data from
September 2013 to August 2014 with a 16-day temporal resolution to calculate the RB, and ASS. A total
of 92 Landsat 8 images for all the stations in the HRB were downloaded from the following USGS
website [56]. The statistical results were based on per-month averages to eliminate invalid data from
cloud cover.
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4. Results and Discussion

4.1. Spatial Representativeness Classification

Since the DLCT and RB can measure point-to-pixel value consistency, and ASS can assess the
spatial patterns for a given station, respectively. Therefore, all three indicators were combined
to describe the representativeness including point-to-pixel consistency and spatial heterogeneity.
The spatial representativeness was also classified based on these three indicators. The DLCT indicator
determines the representativeness of the station’s LCT in the product pixel. When the LCT in the
view footprint of a station is not dominant within the product pixel, the station observations cannot
be representative of the pixel, and the LST value of all other vegetation-cover types may be ignored,
even if the point-to-area LST consistency is high at the station sometime. When a pixel has a large
DLCT value, the RB and ASS subsequently would determine the spatial representativeness together.
Presumably, the station-observed LSTs represent ideal data for LST product validation if the RB value is
small and the ASS value is large. If the RB and are ASS value are both small, the station may have some
spatial representation. In some extreme cases, the station observing area is an average heterogeneity
sub-areas in the products pixel, which means the station observations are representative for pixels,
although the surface is heterogeneous in these products pixels. Finally, if the RB is large but the ASS is
small, the observations probably differ from the values of the pixel.

Reasonable thresholds for the DLCT, RB and ASS are required to determine the representativeness
level of a given station’s observations. The emissivity products of the version 5 collection of MODIS
LST/LSE products are retrieved based on the LCT of a pixel, and the LCT is classified as the land cover
of this pixel based on the classification rule for MODIS land-cover products (MCD12Q1) if the area
percent of one LCT in a pixel is higher than 60% [57]. Thus, 60% was defined as the threshold of the
DLCT in this study. The RB was used to evaluate the difference between the land-based measurements
within the view footprint at each station (in Table 1, the view footprints are shown in the sixth column)
and the mean pixel value at the station locations. The ideal RB value is close to zero. However, the
threshold of the RB is not unique and depends on the spatial resolution of the LST products, the view
footprint of the station measurements, and the retrieval accuracy of the high-spatial-resolution LST
maps that are used to evaluate the representativeness. Thus, a reasonable threshold for the RB was
0.5% in this study for MODIS LST products with 1-km spatial resolution, a station view footprint above
30 m and a 1-K retrieval error from the high-resolution LST map itself [55]. The ASS is calculated from
variogram models based on the semi-variance in a 3-km × 3-km area that is centered at a given station
and can indicate the greatest distance over which the value at a point on the surface is related to the
value at another point. The ASS defines the maximum neighborhood over which control points should
be selected to estimate a grid node to take advantage of the statistical correlation among observations
and can describe the spatial distribution of LSTs and quantify the average LST spatial structures in
the given area. In this study, the measurements from stations were used to evaluate the MODIS LSTs
with a 1-km spatial resolution. Therefore, a reasonable ASS indicator should be larger than the spatial
resolution of the LST products, that is, 1 km in this study.

The spatial representativeness of the station’s LST observations was classified into five different
levels based on the difference-constraining degrees of the three indicators and their thresholds.
The levels and their descriptions are presented in Table 2.
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Table 2. Grading of the spatial representativeness.

Level DLCT > 60% RB < 0.5% ASS > 1 km Description

1
√ √ √ Best representativeness level with strict

point-to-pixel LST and LCT value consistency, and a
homogeneous LST distribution

2
√ √ ×

High representativeness level with high
point-to-pixel LST and LCT value consistency but an
incomplete homogeneous LST distribution

3
√ × √ Moderate representativeness level with high LCT

consistency and a relatively homogeneous LST
distribution but low point-to-area LST consistency

4
√ × ×

Low representativeness level with low point-to-area
LST consistency and a heterogeneous
LST distribution

5 × - - Minimal representativeness level with various LCTs
in pixels and mismatch land-cover observations

4.2. Representativeness Grading of the HiWATER Station Observations

The representativeness of the LST observations for the eighteen HiWATER stations was graded
based on the three indicators and level in Table 2. Figure 4 shows the DLCT indicator results for
the stations, and the red dashed line shows the threshold value of the DLCT in the figure. In the
upstream area, all the stations were covered by grass or meadows, except for HZS, which was covered
by wheat. The DLCT values within a 1-km pixel indicated that five stations were covered by a single
LCT and one station (DSL) was covered by a dominant grass type, with a DLCT value above 80%.
In the upstream area of the HRB, only one station (HZS) had a DLCT value below 60%. Among the
five stations in the midstream area of the HRB, SSW, HZZ, and GBZ were covered by a single LCT and
SDZ was dominated by one type within a 1-km pixel. The LCTs within a 1-km pixel were diverse and
broken at DMZ, and the DLCT value of the station observations was less than 60%. The LCTs of the
five downstream stations were more complex within a 1-km pixel, and their DLCT values were all
less than 60%. According to the DLCT threshold, the observations of seven stations, including HZS,
DMZ, SDQ, HJL, HYL, NTZ, and LTZ, were graded at Level 5 (Table 2). Eleven remaining stations
exhibited vegetation-type cover, matching the types in the corresponding MODIS LST pixels, but their
representative levels varied depending on the RB and ASS values.
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Figure 4. The dominant land cover type (DLCT) for the HiWATER stations.

The annual vegetation growth at stations can severely affect changes in their spatial
representativeness. When stations have homogeneous vegetation types and density, the
representativeness of stations may not vary with vegetation growth. Instead, the representativeness
changes with the level of the point-to-area LST match, vegetation-density homogeneity and spatial

256



Remote Sens. 2017, 9, 1210

contexture of the pixel during different seasons. The spatial representativeness of station observations
can vary with vegetation growth in a year. When the vegetation type is uniform and the density
is homogeneous, the representativeness at different growth stages may not significantly change.
Otherwise, the representativeness may change because of changes in the point-to-area consistency and
spatial heterogeneity. Seasonal changes in the spatial representativeness are similar in consecutive
years when not interfered with by outside influences. Therefore, the RB and ASS values of the station
observations were calculated monthly and are shown in Figures 5 and 6.
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Figure 5. Monthly relative bias (RB) of the observations from the 18 stations within 1-km MODIS LST
pixels. (a), (b) and (c) respectively show the monthly RB of the stations in the upstream, midstream
and downstream of the Heihe River Basin (HRB).
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Figure 6. Monthly normalized difference vegetation index (NDVI) at the eighteen sites from 2013
to 2014.

The RB values of the stations in the upstream area, midstream area, and downstream area and
their monthly changes are shown in Figure 5a–c, respectively. The eight upstream stations did not
show a consistent trend with vegetation growth. As shown in Table 1, the LCTs of these stations were
mostly grass or meadows. The DLCT values of these stations were all greater than 80%, with the
exception of HZS, and the area of the heat-shadow effect in the thermal-infrared image was wider
than the actual area. The RB depended on the homogeneity of the vegetation density for the stations
that were covered by only one vegetation type and its changes with the seasons. Many factors can
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influence the density’s homogeneity and its changes with vegetation growth, such as non-uniform
rain or snow, random grazing in the grass, and uneven growth. Thus, complex factors are likely the
main reasons for the inconsistency and volatility of the stations’ changing RB trends. The chance of an
RB value below 0.5% was greatest for stations with a DLCT above 60%.

The monthly changes in the RB at the stations in the midstream and downstream areas of the
HRB could be divided into two types (Figure 5b,c). The first type included GBZ, SSW and HZZ, with
DLCT values of 100%. Their RB values showed similar trends to those of the upstream stations, with
inconsistency and volatility. The RB values of these stations were mostly smaller than 0.5%. The RB
values of the other midstream and downstream stations, which had smaller DLCT values, increased
with the NDVI (shown in Figure 6), although the RB’s maximum peak point appeared within, before or
after the month of the maximum NDVI peak. The RB values of these stations were all larger than 0.5%
during the growing season. The land within a 1-km pixel area at these stations was covered by more
than two LCTs, and the LST difference increased with vegetation growth and increasing solar radiation,
especially at the maximum peak during summer. For instance, the midstream SDZ station was mainly
covered by water and seeds. During winter, the station was predominantly covered by water, resulting
in a small RB value below 0.5%. As the seeds began to grow, the seed area became larger, and the LST
difference between seed and water increased as the solar radiance became stronger, creating a larger RB
value. After reaching its maximum, the RB value decreased as vegetation growth and the solar radiance
simultaneously decreased. The above analysis shows that the RB is relatively consistent with the DLCT
and that an RB threshold is reasonable to effectively distinguish each level for a 1-km pixel.

The monthly ASS values of all the stations in the HRB are shown in Figure 7, with the ASS plots of
stations in the upstream area in Figure 7a, the ASS plots of stations in the midstream area in Figure 7b,
and the ASS plots of stations in the downstream area in Figure 7c. The black dashed lines in Figure 7
are the threshold of the ASS. The ASS plots of each station in Figure 7 did not show consistent trends
as the seasons changed. However, when the DLCT values of the stations were less than 60%, the
corresponding ASS values were less than 1000 m. Even for stations with DLCT values of 100%, the
ASS value could be smaller than 1000 m, such as JYL in January and February (see Figures 4a and 6a).
The ASS results for the stations were determined by the heterogeneity in the 1-km LST pixel. The
heterogeneity of stations with a DLCT below 60% was mainly caused by the LST differences among
different LCTs in the pixel. By contrast, the heterogeneity of stations with greater DLCT values,
including values of 100%, was determined by the density heterogeneity of the dominant vegetation in
the pixel, which is influenced by many factors, including uneven vegetation growth, human activity,
such as random grazing, and localized weather, such as non-uniform rainfall. Moreover, the results
were affected by the combination of these factors, leading to fluctuating ASS plot trends for stations
with DLCT values of 100%.
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Figure 7. Monthly average structure scale (ASS) of the stations. (a), (b) and (c) respectively show the
monthly ASS of the stations in the upstream, midstream and downstream of the HRB.
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The monthly representativeness levels of the multi-temporal LST observations of all the stations
in the HRB are shown in Figure 8 based on the DLCT values and the monthly RB and ASS values,
which were calculated using the high-resolution LST images from the Landsat 8 images. Eight stations
were present in the upstream area, so the upstream stations were divided into two figures, namely,
Figure 8a,b, to clearly show the monthly representativeness. The monthly representativeness levels
of the midstream and downstream stations are shown in Figure 8c,d. All the downstream stations
had DLCT values below 60%, so all the stations are listed as Level 5 in Figure 8d. The spatial
representativeness varied by month for the different stations. Among the 216 months of observations
(18 stations in 12 months from September 2013 to September 2014), only 73 months of observations
were graded as Level 1, so the number of station observations that perfectly represented the pixel
were limited.
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Figure 8. Grading results of the stations. (a,b) show the monthly representativeness level
of the upstream stations; (c,d) show the monthly representativeness level of midstream and
downstream stations

4.3. Traditional Validation Results without Spatial Representative Assessment

Traditional initial validation results, which neglect the evaluation of the spatial representativeness
of the station observations, are presented first to demonstrate the effectiveness of our proposed scheme.
The scatter plots in Figures 9 and 10 show the daytime and nighttime comparison results between the
MODIS LST and ground-based LST measurements. As shown in Figure 8, the scatters in half of the
sub-plots were close to the 1:1 line (the black line in the scatter plot). By contrast, the scatters for ARY,
JYL, SDZ, SSW, SDQ, HJL, HYZ, NTZ, and LTZ were more decentralized. In Figure 10, the scatters of
these sites were closer to the 1:1 line than those in Figure 9. Table 3 presents a statistical comparison
of the daytime and nighttime results between the ground-based measurements and MODIS LST
products that were retrieved from the MODIS data onboard Terra and Aqua, respectively. The bias
(ground-based LST measurements—MODIS LST) at eighteen sites during the daytime ranged between
−4.72 K and 6.46 K for the MOD11A1 LST/LSE products and between −3.44 K and 6.24 K for the
MYD11A1 LST/LSE products; the root mean square error (RMSE) during the daytime ranged from
1.74 K to 5.50 K for the Terra MODIS LSTs (MOD11A1 LST/LSE products) and from 1.75 K to 5.94 K
for the Aqua MODIS LSTs (MYD11A1 LST/LSE products). By contrast, the bias and RMSE between
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the Terra MODIS LST and ground-based measurements at nighttime ranged from −0.51 K to 3.86 K
and from 1.19 K to 2.64 K, respectively; for the Aqua MODIS LST, the bias ranged from −0.39 K to
3.48 K and the RMSE ranged from 1.94 K to 3.82 K.

 

Figure 9. Scatterplots of the daytime comparison results of the LSTs from MODIS and the LST
measurements at the eighteen HiWATER sites.
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Figure 10. Scatterplots of the nighttime comparison results of the LSTs from MODIS and the LST
measurements at the eighteen HiWATER sites.

The initial results revealed that the MODIS LSTs fit better with MODIS at nighttime than during
the daytime, and the comparison results greatly differed between the daytime and nighttime for some
stations, especially HZS, HYZ, NTZ, and LTZ, which are all Level-5 stations. The LST had stronger
heterogeneity during the daytime than at nighttime. During the day, LSTs can vary by 10 K or more
over a few meters depending on the nature of the surface and the local meteorological conditions,
with the variability being lower at night [9]. When comparing the unrepresentative observations of
these stations to the MODIS LSTs, the stronger heterogeneity resulted in greater differences in the bias
and RMSEs of these stations between the daytime and nighttime because of the constant accuracy of
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the MODIS LST products within the same pixel. If these results were considered the final results for
the accuracy of the MODIS LST, an obvious error would be introduced into the validation because of
the unrepresentativeness of the station observations when compared to the corresponding scale of
the remote-sensing observations. The stronger heterogeneity during the daytime affected the Aqua
MODIS LST and Terra MODIS LST validation process in a similar manner, so no significant differences
in accuracy existed between the LST products from Terra MODIS and the LST products from Aqua
MODIS when compared to the ground-measured LSTs at these sites, as shown in Table 3.

Table 3. Summary of the statistical comparison results between the MODIS LSTs and the LST
measurements from the HiWATER sites.

Station

MOD a MYD b

Day Night Day Night

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ARC −0.55 2.16 0.98 2.15 −0.52 1.92 0.67 1.94
ARY −0.79 5.50 −0.51 2.25 −0.96 4.48 −0.28 2.56
ARS 0.31 2.56 0.01 2.64 0.56 2.54 −0.39 2.57
DSL 1.07 1.74 1.25 1.22 0.89 1.87 1.27 2.16
JYL −2.79 3.14 0.96 1.41 −2.94 3.09 0.47 2.26
HZS 0.10 3.49 1.65 1.19 −0.13 3.73 0.96 1.94
HCG −1.31 2.36 0.62 1.96 −1.68 2.92 −0.25 2.33
EBZ −0.78 2.07 0.77 1.61 −0.97 2.39 0.23 2.56
DMZ −0.88 2.81 1.23 1.45 −0.96 2.77 0.21 2.21
GBZ 0.17 2.25 −0.01 1.52 1.08 1.75 0.66 2.99
HZZ 0.74 1.86 0.93 1.28 0.25 2.46 0.69 2.08
SDZ −4.12 2.93 1.90 2.74 −3.44 2.71 1.26 3.78
SSW 1.34 4.18 2.49 1.60 1.57 2.95 1.55 2.51
SDQ −1.84 3.18 1.95 1.21 −1.65 2.35 1.50 3.80
HJL −4.23 2.70 3.56 1.90 −4.55 2.81 3.48 3.82
HYZ −0.72 5.18 3.86 2.03 −0.71 5.94 2.75 3.14
NTZ −4.72 4.08 1.43 1.47 −0.17 5.44 1.15 2.91
LTZ 6.46 4.21 2.45 1.15 6.24 3.68 1.77 3.02
a The MOD columns show the results of a comparison between the LSTs from the MODIS onboard Terra and the
ground-based measurements at the eighteen sites; b The MYD columns show the results of a comparison between
the LSTs from the MODIS onboard Aqua and the ground-based measurements at the eighteen sites.

4.4. MODIS LST Product Validation Considering the Influence of Spatial Representativeness Evaluation

All the station observation validation results and representative station observation validation
results were calculated and compared to discuss the effect of representativeness on the validation of
satellite-retrieved LSTs. In total, 7527 station observations from eighteen stations were evaluated based
on the Landsat 8 LST reference maps according to the satellite-overpass times and quality control
flags of the MODIS LSTs. The RMSE and bias of the MOD/MYD11A1 LST products based on all the
observations and the different levels of observations are listed in Table 4. For all the observations, the
bias of the MODIS LST ranged from −0.27 K to 2.39 K, and the RMSE ranged from 3.32 K to 4.93 K.
The RMSEs were the smallest for Level 1, which contained 2472 station observations. During both
the daytime and nighttime, the bias between the station observations and MODIS LSTs was better
than 1 K and the RMSE was less than 2 K. No significant differences existed between the daytime and
nighttime comparison results for the Level 1 observations. These results using Level 1 observations are
inconsistent with those from the traditional validation scheme in Section 4.3 and are more reasonable
based on the retrieval accuracy of the MODIS LSTs during the daytime and nighttime for the same
pixel. The comparison results between the MODIS LSTs and LST observations for Levels 2 and 3 had
a similar bias and RMSE, which were not larger than those for all the observations. The results for
the Level-4 observations had a larger bias and RMSE than those for Levels 3 and 2. The largest RMSE
values were obtained when using Level 5 observations. The RMSE value increased from Level 1 to
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Level 5. Large differences existed in the bias and RMSE between the daytime and nighttime at all
levels, except for Level 1, because of the greater spatial heterogeneity during the daytime. Table 4
indicates that the highly representative validated observations usually had good results. Thus, highly
representative observations can more accurately describe satellite-retrieved LST values and limit spatial
mismatch errors from point-station observations. Therefore, validating all the stations without grading
their representativeness usually underestimated the accuracy of the satellite-retrieved LSTs; these
underestimated accuracy values were larger for the daytime validation than the nighttime validation.

Table 4. Validation results for MOD/MYD11A1 based on the spatial representativeness levels of the
station observations.

Level

MOD a MYD b

Day Night Day Night

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Level 1 −0.19 1.75 0.8 1.58 0.30 1.79 0.43 1.84
Level 2 −1.13 4.58 1.24 2.53 −1.48 3.24 0.32 2.60
Level 3 1.45 4.93 1.44 2.23 0.47 3.67 0.77 2.67
Level 4 −2.94 5.93 2.51 3.89 −2.25 4.56 1.33 4.15
Level 5 2.03 6.27 3.60 4.52 −0.36 5.88 2.28 4.29

All 0.59 4.93 2.39 3.55 −0.27 4.58 1.28 3.32
a The MOD columns show the results of a comparison between the LSTs from the MODIS onboard Terra and the
ground-based measurements at the eighteen sites; b The MYD columns show the results of a comparison between
the LSTs from the MODIS onboard Aqua and the ground-based measurements at the eighteen sites.

4.5. Other Potential Factors during the LST Validation Process

Other factors may potentially influence the accuracy of the validation results. In this study, we
only focused on the sensor view zenith angle (VZA) and broadband sensitivity issues, which are the
main factors that affect T-based validation for MODIS LSTs in addition to the representativeness of the
station observations. The effects of these two factors are discussed in detail below.

4.5.1. Dependence of the LST Error on the Sensor VZA

The relationship between the error (the absolute difference between MODIS and ground-based
LSTs) and the sensor VZA was first investigated at all HiWATER sites to analyze the potential factors
that create large errors at certain sites. The VZAs differed between ground-based instruments and
the MODIS sensor: the ground-measured LSTs were obtained at a VZA of 0◦, whereas the MODIS
observations were acquired over a large range of VZAs (0–65◦). Sufficient ground-based measurements
were available to statistically analyze multiple VZAs using data from the eighteen sites. Scatterplots of
the errors and sensor VZAs are presented in Figure 11. The average errors did not significantly depend
on the VZAs during the daytime (see Figure 11a). By contrast, the probability of a larger error increased
with the VZA for the nighttime scatterplot (Figure 11b). The average absolute bias for observations that
were acquired with a smaller VZA (≤30◦) was 0.2 K lower than that for those at greater VZAs (>30◦).
Greater errors for LSTs observed under larger sensor VZAs were also observed in a prior validation
study [8,13], and the remote sensor may see different percentages of shadows at different VZAs during
the daytime, when larger heterogeneities occur [58]. The larger LST heterogeneity at certain sites was
the most likely cause of the daytime scatterplot (Figure 11a), rather than the obvious dependence of
the error of the LST on the sensor VZA.
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(a) (b)

Figure 11. Relationships between the bias and zenith angle of MODIS when viewing the pixels:
(a) relationship during the daytime; and (b) relationship at nighttime.

4.5.2. Broadband Sensitivity Issue

The accuracy of LSTs from ground-based longwave-radiation measurements is another important
factor that influences the evaluation of MODIS LSTs. The accuracy of longwave-radiation
measurements and the accuracy of the broadband emissivity, which is used to calculate LSTs from
ground-based longwave-radiation measurements, are the two major factors for ground-based LST
estimation. The accuracy of longwave-radiation measurements depends on the sensor calibration.
Calibration is typically performed before and after field deployment and during monthly field-routing
exams [59], so the estimation accuracy of the broadband emissivity is a key parameter that influences
the estimation accuracy of ground-based LST observations. Our previous study indicated that
the maximum mean absolute error (MAE) of the LST was less than 0.3 K when the estimation
emissivity MAE was ≤0.01, which was estimated by adding a series bias of ±0.001, ±0.002, ±0.003,
±0.004, ±0.005, and ±0.01 based on the εb values at the stations in the northern arid region of
China, including ARC, HZZ, and DMZ (also called YK) [60]. In this study, the satellite-estimated
broadband-emissivity method was used based on the MODIS narrowband emissivities. A suitable set
of coefficients for all the data was used to calculate the broadband emissivity, as outlined in Equation
(7), according to the diversity of the land cover at the sites. In a study by Wang et al., the broadband
emissivity that was estimated by this method was compared to three years of ground-based emissivity
measurements at Gaize (32.30◦N and 84.06◦E, with an elevation of 4420 m) in the western Tibetan
Plateau. The results showed that the broadband-emissivity calculation from the MODIS narrowband
emissivities reasonably matched the ground measurements, with a standard deviation of 0.0085 and a
bias of 0.0015 [45]. Therefore, the average estimation error of the broadband emissivity based on this
method was less than 0.037 K, which is the maximum average absolute error value of all the stations in
northern arid China for an emissivity bias of 0.02.

5. Conclusions

In traditional validation schemes, as discussed in Section 4.3, station observations are usually
considered as the true LST values of the corresponding pixels. Therefore, a source of uncertainty
for the validation results is introduced when the representativeness of station observations is not
evaluated. The spatial representativeness assessment of station observations is a key step to reliably
validate satellite-retrieved LST products, which has barely been discussed by previous researchers.
In this study, a new validation scheme was proposed that adds a key step to evaluate the spatial
representativeness of station LST observations. Three indicators, namely, the DLCT, RB, and ASS, were
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constructed in this new scheme to assess and grade the representativeness of station observations.
The representativeness of the station observations was divided into five levels for a 1-km spatial
resolution pixel according to the values of these three indicators. Then, the proposed method was used
to evaluate the spatial representativeness of HiWATER LST observations for 1-km-pixel daily MODIS
LST products. The analysis showed that the new validation scheme can effectively limit the error that
is introduced by spatial mismatches between the station observations and remote-sensing products.
This spatial representative assessment synthesized the three indicators, providing quantitative and
accurate descriptions and reliably evaluating the observations’ representativeness, although reasonable
thresholds for the three indicators should consider the LST products’ spatial resolution, the theoretical
accuracy of the retrieval algorithm, and instrument error. Therefore, several conclusions can be drawn.

First, the traditional validation results when using all the station observations showed obvious
errors and RMSE values between the daytime and nighttime validations, especially when using
observations from the downstream stations. The retrieval method for the MODIS LST products could
obtain LST products with similar accuracy during the daytime and nighttime. Therefore, the error was
likely introduced by unrepresentative station observations. According to the HRB traditional validation
sample, this effect caused a maximum bias of 8.03 K and a maximum RMSE of 3.25 K according to the
difference between the daytime and nighttime validation results from the same stations.

Second, the monthly representativeness analysis illustrated that the spatial contexture
heterogeneity and point-to-pixel consistency of the LST changed with variations in plant growth
and other factors, such as human activity, the solar-radiation intensity, and the local climate, which
created irregular changes in the monthly spatial representativeness of the stations. The monthly
changes in all the factors that influenced the representativeness were not always similar between
consecutive years, so the spatial representativeness in the same month of different years may have
greatly changed for a given station. Therefore, the spatial representativeness for consecutive years
could be reassessed through a rigorous LST product-validation process.

Third, the RMSE of the MOD/MYD11A1 products increased from 1.58 K to 6.27 K from Level
1 to Level 5, and the RMSE values from Level 1 to Level 3 were smaller than those across all the
observations. For all levels except Level 1, the RMSE values were larger during the daytime than those
at nighttime because of the stronger LST heterogeneity during the daytime. The obvious differences
in the bias and RMSE values among the levels indicated that the representativeness method could
sufficiently differentiate the spatial representativeness level within 1-km pixels. Moreover, the Level-1
LST observations were acceptable validation data for the MODIS 1-km LST products. While the RMSE
difference between all observations (using in the traditional validations) and Level 1 observations
validations are 3.0 K in daytime and 1.7 K in nighttime, which indicates the error introduced by
the traditional validation without the representativeness assessment. Therefore, the error of the
MOD/MYD11A1 products was better than 1 K and the RMSE was less than 2 K. Moreover, no obvious
differences existed in the accuracy of the MODIS LST products among the four daily times that Terra
and Aqua passed.

Finally, the bias increased from −0.19 K at Level 1 to 3.6 K at Level 5, and the RMSE increased
from 1.58 to 6.27. Thus, a bias difference of 3.79 K and a RMSE difference of 4.69 K existed between
Level 1, which was the most representative level, and Level 5, which was the least representative level.
The dependence of the absolute biases on the sensor VZA during the daytime was strongly influenced
by the land-surface heterogeneity at heterogeneous sites. During the nighttime, the LSTs of these sites
were more homogeneous and any surface-heterogeneity effects were smaller, so the average absolute
bias for observations that were acquired under lower VZA (≤30◦) was 0.2 K lower than those that were
acquired at greater VZAs (>30◦). The estimated broadband emissivities from the narrowband MODIS
LST/LSE products retrieved by the day/night algorithm varied with the land-surface conditions, such
as vegetation growth and land cover, with a bias of 0.0015. Therefore, the estimation error of the
broadband emissivities was less than 0.004 K. Compared to the effects of the representativeness, the
errors from these last two factors were very small. Thus, the evaluation of spatial representativeness
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is a key step to reliably validate LST products with special spatial resolution, which is the greatest
advantage of our proposed validation scheme.

A more reasonable and accurate scheme to validate remotely sensed LST products was proposed
in this study. However, areas with more heterogeneous LSTs are not suitable for validation
with single-point ground-based measurements and require conditional upscaling by multi-point
ground-based measurements. Therefore, this scheme can be further improved for different conditions,
and can be actually used to study potential new sites for LST validation. Furthermore, the thresholds
of the three indicators were suitable for grading the levels of station observations in a 1-km pixel.
This scheme can also be used to evaluate other LST products by renewing the thresholds and evaluating
the spatial representativeness in other pixel grids.
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Abstract: Land surface temperature (LST) is a key parameter for a wide number of applications,
including hydrology, meteorology and surface energy balance. In this study, we first proposed
a new land surface emissivity (LSE) scheme, including a lookup table-based method to determine
the vegetated surface emissivity and an empirical method to derive the bare soil emissivity from
the Global LAnd Surface Satellite (GLASS) broadband emissivity (BBE) product. Then, the Modern
Era Retrospective-Analysis for Research and Applications (MERRA) reanalysis data and the Feng
Yun-3C/Medium Resolution Spectral Imager (FY-3C/MERSI) precipitable water vapor product were
used to correct the atmospheric effects. After resolving the land surface emissivity and atmospheric
effects, the LST was derived in a straightforward manner from the FY-3C/MERSI data by the
radiative transfer equation algorithm and the generalized single-channel algorithm. The mean
difference between the derived LSE and field-measured LSE over seven stations is approximately
0.002. Validation of the LST retrieved with the LSE determined by the new scheme can achieve
an acceptable accuracy. The absolute biases are less than 1 K and the STDs (RMSEs) are less than
1.95 K (2.2 K) for both the 1000 m and 250 m spatial resolutions. The LST accuracy is superior to that
retrieved with the LSE determined by the commonly used Normalized Difference Vegetation Index
(NDVI) threshold method. Thus, the new emissivity scheme can be used to improve the accuracy of
the LSE and further the LST for sensors with broad spectral ranges such as FY-3C/MERSI.

Keywords: FY-3C/MERSI; GLASS; Land surface temperature; Land surface emissivity

1. Introduction

Land surface temperature (LST) is one of the key parameters in the land surface physical processes
at regional and global scales, integrating the interactions between the surface and atmosphere and all
energy exchanges between the atmosphere and the land [1,2]. LST plays a significant role in many
research fields, such as weather forecasting, global ocean circulation and climate change research [3].
Remote sensing is a unique way of obtaining the LST at regional and global scales. Three kinds of
algorithms have been proposed in the past decades to derive the LST from satellite data [4,5], i.e.,
the single-channel algorithm [6–8], the split-window (SW) algorithm [1,9–11] and the multi-channel
algorithm [12,13]. With these versatile algorithms, many LST products have been produced from
different satellite data, such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) [14,15], Moderate Resolution Imaging Spectroradiometer (MODIS) [1,16], Visible Infrared
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Imaging Radiometer Suite (VIIRS) [10,17], Geostationary Operational Environmental Satellites
(GOES) [18,19] and Spinning Enhanced Visible and Infrared Imager (SEVIRI) [20]. Those LST products
have been widely used for monitoring urban heat islands [21,22] and volcanoes [23–25], detecting
forest fires [26,27], and so on.

FengYun-3C (FY-3C) satellites are China’s second-generation polar-orbiting meteorological
satellites. The Medium Resolution Spectral Imager (MERSI) is the instrument onboard the FY-3C,
with 4 of 19 visible/shortwave channels and 1 thermal infrared (TIR) channel are set for 250 m spatial
resolution, with other channels for 1 km spatial resolution. FY-3C/MERSI also provides 1000 m
radiance data interpolated from the original 250 m data. Thus, we can obtain 250 m and 1000 m
spatial resolution thermal infrared data from FY-3C/MERSI. FY-3C/MERSI provides a new data source
for the retrieval of LST and meteorology monitoring. However, to our knowledge, an operational
FY-3C/MERSI LST product is unavailable.

For the sensor with only one TIR channel, a set of LST retrieval algorithms, such as the radiative
transfer equation algorithm [8,28], the mono-window algorithm [6] and the generalized single-channel
algorithm [7], have been developed for estimating the LST. According to the validation results
obtained from four Surface Radiation Budget Network (SURFRAD) sites by Yu et al. [29], the radiative
transfer equation algorithm has the highest accuracy, and the root mean square error is less than
1 k. Additionally, the study by Windahl and Beurs [30] verified the precision of the radiative transfer
equation method, mono-window algorithm and generalized single-channel algorithm. The accuracy
of the three algorithms decreased with the increase of water vapor content, and the radiative
transfer equation method has a higher precision under a high water vapor content. The research of
Jiménez-Muñoz et al. [31] indicated that the accuracy of the generalized single-channel algorithm is
below 1 K when the water vapor content was lower than 2 g/cm2. The effective mean atmospheric
temperatures in the mono-window algorithm are often estimated from the empirical formula with
the near-surface air temperature, and this may be not suitable for some special study areas [32]. Thus,
both the radiative transfer equation algorithm and the generalized single-channel algorithm are the
potential LST retrieval algorithms for FY-3C/MERSI.

The accuracy of the single channel algorithm depends on the accuracy of the atmospheric
correction and land surface emissivity (LSE). At present, the Normalized Difference Vegetation Index
(NDVI) threshold method [33], the Vegetation Cover Method (VCM) [3] and the classification-based
method [34] are widely used in the single channel algorithms. However, these techniques present
several limitations. LSE based on the classification-based method cannot reflect the land cover
changes [35]. For example, the MODIS LST products (collection 5) underestimate the LST in an arid
area of northwest China, due to an overestimation of the LSE by the classification-based method [36].
Therefore, an accurate LSE scheme is the prerequisite of accurate LST retrieval. In addition to the
determination accuracy of the land surface emissivity, the precision of the atmospheric correction
also affects the results of the LST. Most of the single channel algorithms were developed without
considering the effect of the view zenith angle; this will introduce a large error into the results of the
sensor with a large view zenith angle [32]. Given that the view zenith angle of FY-3C/MERSI can reach
up to 55 degrees, we will conduct an angular dependent atmospheric correction.

This study aims to accurately estimate the LST from the FY-3C/MERSI data using a more realistic
LSE scheme. The structure of this paper is arranged as follows: Section 2 introduces the data used
in this study and the estimation of the ground LST. Section 3 describes the methodology used in
this study, including a new LSE scheme, atmospheric correction and the determination of the LST.
The results and analysis are presented in Section 4. A discussion is provided in Section 5, and the main
conclusions are summarized in Section 6.
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2. Data

2.1. Satellite Products

The FY-3C/MERSI images, Global LAnd Surface Satellite (GLASS) broadband emissivity (BBE)
product, GLASS leaf area index (LAI) product, MODIS Surface Reflectance data (MOD09GQ)
and MODIS Land Cover data (MCD12Q1) were used to estimate the land surface temperature.
Nine FY-3C/MERSI images ranging from 17 July 2014 to 6 October 2014 were obtained in this study.
For the convenience of registration, the calibrated MERSI 1000 m resolution earth viewing data was
used after calibration. The land surface reflectance, land cover or LAI products from FY-3C/MERSI are
unavailable; therefore, the MOD09GQ, MCD12Q1 and GLASS LAI were used for the LST retrieval
from FY-3C/MERSI. The FY-3C/MERSI images were re-projected to the projection of MOD09GQ.
All the satellite products used were resampled to 1 km resolution to match the spatial resolution of
the FY-3C/MERSI data.

The MOD09GQ Version 6 product provides an estimate of the surface spectral reflectance of
the Terra MODIS 250 m data corrected for the atmospheric conditions such as gases, aerosols,
and Rayleigh scattering. The MOD09GQ were used to calculate the NDVI and then identify the
vegetated surfaces. The MODIS Land Cover product (MCD12Q1) is an annual land cover dataset with
a 500 m spatial resolution, which contains five classification schemes. The International Geosphere
Biosphere Program (IGBP) global vegetation classification scheme was selected in this paper to
determine the leaf emissivity of vegetated surfaces.

The GLASS BBE product [37] was derived from the Advanced Very High Resolution Radiometer
(AVHRR) and MODIS data using the newly developed algorithms [38,39]. The GLASS LAI product
was generated using a general regression neural network (GRNN) from the MODIS surface reflectance
data [40]. Both GLASS BBE and LAI products have spatial and temporal resolutions of 1 km and
eight days, respectively. Detailed information for the GLASS product can be found in Liang et al. [37].
The GLASS BBE and the GLASS LAI products were used for estimating the LSE for FY-3C/MERSI.

2.2. Ground Measurements

The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) [41,42] was performed
in the Heihe River Basin, which is a typical inland river basin in northwest China. In this study,
three datasets were selected from this experiment: the dataset of the thermal infrared spectrum
observed by BOMEM MR304 in the middle reaches of the Heihe River Basin [43], the dataset of the
hydrometeorological observation network (automatic weather station, 2014) [44] and the dataset of
infrared temperature in the Zhanye Airport desert [45].

The surface-leaving radiance of the different components of land surfaces (soil, sand, corn leaf,
soybean leaf, apple leaf, etc.) and atmospheric downward radiance were measured by ABB BOMEM
MR304 spectroradiometers and a diffuse gold plate [36]. The emissivity spectra in the range of 8~14 μm
with a spectral resolution of 1 cm−1 were retrieved using the Iterative Spectrally Smooth Temperature
and Emissivity Separation (ISSTES) algorithm [46]. The emissivity spectra in the ASTER and the
MODIS spectral library were also used to determine the leaf emissivity in Section 3.3 and to derive the
LSE for the FY-3C/MERSI from the GLASS BBE for bare soils.

There are five automatic weather stations in this study: Bajitan Gobi Desert station (GB),
Shenshawo sandy desert station (SSW), Huazhaizi desert steppe station (HZZ), Zhangye wetland
station (SD) and Daman Superstation (CJZ) and the automatic weather stations were installed with
Kipp and Zonen CNR1 net radiometers at a 6-m-height or with the SI-111 radiometer at a 2.65-m-height.
The datasets of the five automatic weather stations and infrared temperatures in the Zhanye Airport
desert (JCHM) were used to validate the LST estimated from the FY-3C/MERSI. The spatial distribution
of the six field sites is shown in Figure 1.
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Figure 1. Spatial distribution of the six in situ sites. (The base map is from HJ-1 CCD false color
composite image and the RGB components are channels 4, 3 and 2, respectively).

For the CJZ, GB and SSW sites, the ground LSTs were estimated from the upward and downward
longwave radiation, which were observed at nadir by Kipp and Zonen CNR1 net radiometers,
using the following equation:

Ts = [
F↑ − (1 − εb) · F↓

εb · σ
]1/4 (1)

where Ts is the LST, F↑ is the surface upward longwave radiation, εb is the BBE, σ is the
Stefan-Boltzmann constant (5.67 × 10−8 Wm−2 K−4), and F↓ is the atmospheric downward longwave
radiation at the surface. The BBE is estimated from the ASTER narrowband emissivity using the
following linear equation derived by Cheng et al. [47]:

εbb = 0.197 + 0.025ε10 + 0.057ε11 + 0.237ε12 + 0.333ε13 + 0.146ε14 (2)

where εbb is the surface broadband emissivity at a spectral range of 8 ~13.5 μm, and ε10 ~ε14 are
the ASTER narrowband emissivity of five channels. The average εbb values of 0.944 ± 0.009 and
0.914 ± 0.009 were obtained from all 20 scenes of the AST_05 product (May of 2012 to August of 2015)
for the GB and SSW sites, respectively. The average εbb values of the CJZ sites were calculated from the
GLASS BBE of each eight-day period, as the ASTER LSE was inaccurate over vegetated surface [14,48]
and the GLASS BBE achieves an acceptable accuracy over vegetated surfaces [49].

For the SD, HZZ and JCHM sites, the ground LSTs were calculated from radiometric temperatures
measured at nadir by the SI-111 radiometer, using the following equation:

B(Ts) = [B(Tr)− (1 − ε)Lsky]/ε (3)

where B is the Planck function weighted for the spectral response function of the SI-111 radiometer,
ε is the surface emissivity of the SI-111 channel with a spectral range of 8–14 μm and Lsky is the
downward longwave radiation measured by the SI-111 radiometers installed at the JCHM site,
which is aimed at the sky at approximately 55◦ from the zenith. The average ε was estimated from
the five ASTER narrowband emissivity using the following linear equation derived from the spectral
library: the average ε values of 0.964 ± 0.006 and 0.955 ± 0.007 were adopted for the HZZ and JCHM
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sites, respectively. The average εbb values of the SD sites were also calculated from the GLASS BBE of
each eight-day period for the same reason as the CJZ sites.

εSI−111 = 0.1309 + 0.0918ε10 + 0.0701ε11 + 0.1069ε12 + 0.5456ε13 + 0.0515ε14 (4)

3. Methods

3.1. Algorithms Used for Estimating the LSTs

3.1.1. The Radiative Transfer Equation (RTE) Algorithm

According to the radiative transfer equation, the blackbody radiance under clear sky conditions
can be expressed by the following formula:

Bi(Ts) =
Lsen

i − L↑
i (θ)

τi(θ)εi
− 1 − εi

εi
L↓

i (5)

where Lsen
i is the at-sensor radiance of channel i, Ts is the land surface temperature, θ is the view zenith

angle (VZA), Bi(Ts) is the blackbody radiance of channel i, εi is the land surface emissivity of channel
i, τi(θ) and L↑

i (θ) are the atmospheric transmittance and atmospheric upward radiance of channel i at
VZA θ, and L↓

i is the downward atmospheric irradiance of channel i. Provided with LSE and three
atmospheric parameters, the LST calculation is straightforward.

3.1.2. The Generalized Single-Channel (GSC) Algorithm

Jiménez-Muñoz and Sobrino [7] developed a generalized single-channel method to retrieve the
land surface temperature from a single thermal sensor. The land surface temperature is expressed by
the following formula:

Ts = γ

[
1
εi
(ψ1Li + ψ2) + ψ3

]
+ δ (6)

where εi is the land surface emissivity of channel i, γ and δ given by the following:

γ =

{
c2Li

T2
i
[
λ4

i
c1

Li + λ−1
i ]

}−1

;δ = −γLi + Ti (7)

where Ti refers to the at-sensor brightness temperature; Li is the radiance received by channel i of the
sensor; c1 is 1.19104 × 108 W × μm4 × m−2 × sr−1 and c2 is 14387.7 μm × K; λi is the effective band
wavelength for band i; and ψ1, ψ2 and ψ3 are the atmospheric functions, given by the following:

ψ1 =
1

τi(θ)
; ψ2 = −L↓

i −
L↑

i (θ)

τi(θ)
; ψ3 = L↓

i (8)

where τi(θ) and L↑
i (θ) are the atmospheric transmittance and atmospheric upward radiance of channel

i at VZA θ, and L↓
i is the downward atmospheric irradiance of channel i. If the atmospheric parameters

τi(θ), L↓
i and L↑

i (θ) are known, the atmospheric functions can be calculated from (8).

3.2. Angular Dependent Atmospheric Correction

It is well known that τi(θ) and L↑
i (θ) vary with VZA [32], so the effect of VZA should be considered

in the atmospheric correction, because the VZA of the FY-3C/MERSI can reach up to a maximum value of
55 degrees. In the RTE algorithm, many studies have indicated that various atmospheric reanalysis
products, such as NCEP/FNL, MERRA and ERA-Interim can obtain good atmospheric correction
results [8,50–53]. Benefitting from its high vertical resolution (42 pressure levels from 1000 hpa to 0.1 hpa)
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and high spatial resolution (2/3◦ longitude × 1/2◦ latitude) [52], the MERRA reanalysis data in
conjunction with the fast radiative transfer model RTTOV 11.3 [54] are utilized for atmospheric
correction in the RTE algorithm. The precipitable water vapor product of FY-3C/MERSI, which is
longitude/latitude projected with a 0.05◦ resolution, were used to calculate the atmospheric functions
in the GSC algorithm.

For a particular FY-3C/MERSI scene, the atmospheric transmittance and upward radiance at
nadir view (τi(0) and L↑

i (0)) were calculated using RTTOV and MERRA in the RTE algorithm and
calculated from the water vapor content in the GSC algorithm. To minimize the computational
time, the downward radiance was modeled as a non-linear function of the upward radiance at nadir
view [55]. For a given VZA, τi(θ) and L↑

i (θ) can be fitted as the non-linear function of τi(0) and L↑
i (0).

MODTRAN 5.2 and SeeBor V5.0 training database of global profiles [56,57] (SeeBor V5.0 profiles for
simplicity as follows) were used for establishing the non-linear relationship.

According to the study of Galve et al. [58], 2762 SeeBor V5.0 profiles acquired on land under clear
sky conditions were chosen for the simulation. Given that the VZA of the FY-3C/MERSI can reach up
to 55 degrees, the VZA are designed with a range from 0 to 65 degrees in a 5-degree step. The result of
atmospheric transmittance and upward radiance under various VZAs are depicted in Figure 2. Clearly,
the atmospheric transmittance or upward radiance differences increase with VZA, due to the rise of
the atmospheric path with the angle. For a given VZA, τi(θ) and L↑

i (θ) can be expressed by τi(0) and
L↑

i (0) through the following quadratic equation and L↓
i can also be expressed by L↑

i (0) through the
following expression. The coefficients will be given in Section 4.1.

Y = aX2 + bX + c (9)

where X is τi(0) or L↑
i (0), Y is τi(θ) or L↑

i (θ).

  
(a) (b)

Figure 2. Plot of the atmospheric transmittance (a) or upward radiance (b) at a given VZA against the
atmospheric transmittance or upward radiance at nadir view.

3.3. A New Scheme for Determining Land Surface Emissivity

The land surface was divided into vegetated surfaces and bare soils to calculate their LSEs,
respectively. Figure 3 shows the spectral response for band 5 of the FY-3C/MERSI. We can see that
the MERSI has a broadband spectral range of 9.5–13 μm, which is inside the spectral range of GLASS
BBE (8–13.5 μm). The study of Ren and Cheng [59] indicated that a linear relationship between
MERSI emissivity and GLASS BBE existed for bare soils using the soil emissivity spectra in the ASTER
spectral library. As the accuracy of GLASS BBE is better than 0.02 [60], the performance of this linear
relationship is certainly better than the constant assumption or a linear function fitting of red reflectance
adopted by the NDVI threshold and the VCM methods in predetermining LSE for LST estimation.
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Thus, the GLASS BBE was used to determine the LSE for LST estimation from the FY-3C/MERSI.
The emissivity of the bare soils was estimated with the following equations:

εsoil = 0.8731 ∗ εBB + 0.1269 (10)

where εsoil is the soil emissivity and εBB is the GLASS BBE. The regression coefficients are determined
by a total of 45 emissivity spectra from the ASTER spectral library, MODIS spectral library and the
measured soil emissivity from Wang et al. [43].

Figure 3. Spectral response for band 5 of FY-3C/MERSI.

Regarding the vegetated surfaces, we followed the method proposed by Cheng et al. [49],
which can reflect the abundance of the vegetation and also has an accuracy of better than 0.005 over
the fully covered vegetated surface. We used the 4Scattering by Arbitrary Inclined Leaves (4SAIL)
model to construct a lookup table (LUT) of the LSE for vegetated surfaces. The variation ranges for
three principal model inputs were set as follows: the leaf emissivity ranges from 0.935 to 0.995 and has
an interval of 0.01; the soil emissivity varies from 0.71 to 0.99 and has an interval of 0.01; and the LAI
ranges from 0 to 6.0 and has an interval of 0.5. After that, we can derive the emissivity of vegetated
surfaces by interpolating the LUT using three inputs: leaf emissivity, soil emissivity, and LAI. Vegetated
surfaces were identified using the NDVI calculated from MOD09GQ. LAI was extracted from the
GLASS LAI product. Leaf emissivity was calculated from the measurements by Pandya et al. [61],
Wang et al. [43], and the ASTER and MODIS spectral library for five composited vegetation land cover
types based on MCD12Q1; these are shown in Table 1. The soil background emissivity underneath the
vegetation canopy was derived from the mean GLASS BBE from month 10 of this year to month 4 of
the following year. The land surface in this period is covered by soil rather than vegetation, and the
emissivity in this period is the emissivity of the soil background for vegetated surfaces.

Table 1. Leaf emissivity values for five composited vegetation land cover types.

IGBP Class Composite Type Leaf Emissivity Sources

1~7 Forest and
Shrubland 0.967

Mean of conifer and deciduous emissivity from ASTER
spectral library and 24 leaf emissivities from MODIS
spectral library and 10 measured leaf emissivities from
Wang et al. [43]

8, 9 Savanna 0.966 50% forest + 50% grassland

10 Grassland 0.965 Mean of green grass emissivity from ASTER spectral library
and elephant grass emissivity from Pandya et al. [61]

12, 14 Cropland 0.966
Mean of 9 leaf emissivities from Pandya et al. [61], 4 wheat
emissivities of Li et al. [36] and 39 measured leaf
emissivities from Wang et al. [43]

16, 254 Other types 0.966 Mean value of above four types
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4. Results and Analysis

4.1. Coefficients for Atmospheric Correction

Values for τi(0) and L↑
i (0) in Equation (9) can be derived after running the RTTOV, or they can be

calculated from the precipitable water vapor through the following expression:

τi(0) = 0.9703 − 0.0563w − 0.02059w2 + 0.00208w3, R2 = 0.977
L↑

i (0) = 0.07306 + 0.41283w + 0.20374w2 − 0.01948w3, R2 = 0.965
(11)

Different coefficients are obtained for each VZA when regressions of τi(θ) and L↑
i (θ) are completed

against τi(0) and L↑
i (0). To obtain a uniform angular dependent atmospheric correction expression,

a linear function of sec(θ)− 1 is used [62], and the quadratic equation can be written as follows:

Y = (a1 ∗ S2 + a2 ∗ S + a3)X2 + (b1 ∗ S2 + b2 ∗ S + b3)X + (c1 ∗ S2 + c2 ∗ S + c3) (12)

where S = sec(θ)− 1, a1, a2, a3, b1, b2, b3, c1, c2 and c3 are the coefficients of the formula. The angular
dependent atmospheric correction coefficients for FY-3C/MERSI are given in Table 2 and the coefficient
of determination of 0.99 was obtained by fitting all data to Equation (12).

Table 2. Angular Dependent Atmospheric correction coefficients of Equation (12) for FY3C/MERSI.

Parameters a1 a2 a3 b1 b2 b3 c1 c2 c3

L↑
i (θ) −0.0111 −0.0846 0.0007 −0.0955 0.9205 0.9997 0.0189 −0.0198 0.0003

τi(θ) 0.1077 0.721 −0.0055 −0.2987 −0.4775 1.0104 0.1885 −0.2376 −0.005

4.2. Evaluation with the In Situ LSE

In this paper, the measured emissivities on 4 September 2014 or 5 September 2014 were selected to
validate the estimated LSE on 4 September 2014. The emissivities were measured near the in situ sites
by the 102F Portable Fourier Transform Infrared (FTIR) Spectrometer [63]. There are six measurements
for the vegetation surfaces, namely, corn leaf, Chinese cabbage leaf, Alhagi sparsifolia, sparse vegetation,
large cluster sparse vegetation, and one measurement for bare soil. The leaf emissivity of corn and
Chinese cabbage were measured on 5 September 2014, the emissivities of other types were measured
on 4 September 2014.

Table 3 summarizes the values of measured emissivity, estimated LSE and the bias between them
for the different sites. Figure 4 shows the photos of measurement sites. Compared to the measured
emissivity values, the LSE at the CJZ01, SSW02, SSW03 and GB02 sites were overestimated by 0.012,
0.025, 0.003 and 0.003, respectively; and LSE at CJZ02, GB01 and SSW01 sites were underestimated
by 0.002, 0.016 and 0.015, respectively. What the spectrometer actually measured at the CJZ01 site is
the emissivity of corn leaf, and so it is lower than the estimated LSE because the multi-scattering is
not considered. The bias is very small at a relatively homogeneous site such as GB02. Regarding the
sparsely vegetated surfaces, the spatial scaling effect is very strong because it is difficult to determine
exactly what the spectrometer has seen in its narrow field of view. We should be very cautious when
using the measured data in sparse vegetation. For example, the field of view of the spectrometer
may be totally soil or vegetation canopy if the vegetation coverage is quite low. Figure 4c can also
illustrate this phenomenon. The measured object is Alhagi sparsifolia, whose area ratio is quite low in
the whole pixel, and so the estimated LSE of the whole pixel is close to the measured soil emissivity
(Figure 4f). The larger bias that appears over GB01 and SSW02 is not difficult to understand. Assuming
that the measured emissivity is accurate enough, the large bias between the measured emissivity and
estimated LSE may come from the uncertainty of a new emissivity determination method or the spatial
variability of field stations, both of which will be discussed in the following sections.
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Table 3. List of measured emissivities, estimated LSEs and the bias between them for different types.

Station Name Type Name
Measured
Emissivity

Estimated LSE Using the
Method in Section 3.3

Bias

CJZ01 Corn leaf 0.973 0.985 0.012
CJZ02 Chinese cabbage leaf 0.987 0.985 −0.002
GB01 Alhagi sparsifolia 0.976 0.960 −0.016

SSW01 Sparse vegetation 0.986 0.971 −0.015
SSW02 Large cluster sparse vegetation 0.960 0.985 0.025
SSW03 Large cluster sparse vegetation 0.959 0.962 0.003
GB02 Bare soil 0.957 0.960 0.003

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 4. Photos of measurement sites. (a) CJZ01; (b) CJZ02; (c) GB01; (d) SSW01; (e) SSW02,03;
(f) GB02.

4.3. Sensitivity Analysis of Emissivity

To analyze the effects of leaf emissivity, soil emissivity and LAI on the estimated LSE over
vegetated surfaces, we adhered to the following rules to conduct the simulation: (1) the leaf emissivity
ranges from 0.92 to 0.98 with an interval of 0.02, the LAI ranges from 0.1 to 6.0 with an interval of
0.5 from 0.5 to 6.0, and the soil emissivity was set to 0.96; (2) the soil emissivity ranges from 0.90 to
0.98 with an interval of 0.02, the LAI ranges from 0.1 to 6.0 with an interval of 0.5 from 0.5 to 6.0,
and the leaf emissivity was set to 0.96. Figure 5 shows the emissivity calculated from the 4SAIL model.
When the LAI values change from 0.1 to 2.0, the variation of soil emissivity has more influence on
the estimated LSE than the variation of the leaf emissivity. In this range, when the leaf emissivity
changes from 0.92 to 0.98, the difference between the maximum and minimum estimated LSE changed
from 0.033 to 0.046, but when the soil emissivity changed from 0.90 to 0.98, the difference between
the maximum and minimum estimated LSE changed from 0.075 to 0.007. This indicated that the soil
emissivity might cause great errors to the estimated LSE of the vegetated surface when the LAI is less
than 2.0. The emissivity shows little change when the LAI is greater than 3.0, when the leaf emissivity
changes from 0.92 to 0.98, the emissivity remains from 0.978 to 0.994, no matter how the soil emissivity
and LAI change. The emissivity shows little change when the LAI is greater than 3.0, when the soil
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emissivity changes from 0.90 to 0.98 and the leaf emissivity is equal to 0.96, the emissivity remains
0.989, no matter how much the LAI changes.

Figure 5. LSE simulated by 4SAIL model varying LAI at a fixed soil emissivity of 0.96 (left) or a fixed
leaf emissivity of 0.96 (right).

We also analyzed the stability of the soil background emissivity underneath the vegetation
canopy and the applicability of the regression formula over bare soils. First, we plot the BBE of
each eight-day period from 2001 to 2014 for different stations, as shown in Figure 6. As described in
Section 3.3, the emissivity from month 10 of this year to month 4 of next year is the emissivity of the
soil background for vegetated surfaces. We can infer from this that the soil background emissivity
underneath the vegetation canopy is stable, based on Figure 6. According to the validation using four
field trials by Cheng et al. [39], the accuracy of the GLASS BBE of bare soil is 0.016, and so the mean
soil emissivity can be used to represent the soil background emissivity underneath the vegetation
canopy. Second, using only one formula to regress the relationship between the GLASS BBE and
estimated LSE may introduce some errors. The BBE variation is various for the different soil types,
different seasons and different areas [49]. This trend is also obvious in Figure 6, as the BBE are slightly
different at the various stations. Because of this, we chose soil and sand samples from the spectral
library to calculate the regression coefficient between the GLASS BBE and estimated LSE, respectively.
The regression results from soil and sand samples are obviously different, so it is noteworthy when
using the regression formula. If we used the regression formula for soil samples to calculate the LSE of
the sand surface, it may be inaccurate.

Figure 6. The BBE of each eight-day period from 2001 to 2014 for six stations.
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4.4. Validation of Retrieved LST from FY-3C/MERSI with In Situ LST

Both the radiative transfer equation algorithm and the generalized single-channel algorithm were
used for estimating the LST from the FY-3C/MERSI images acquired in 2014. Figure 7 shows the
statistical results between the estimated LST from the RTE algorithm or the GSC algorithm and the in
situ LST. The results derived from the RTE algorithm, using the LSE calculated by the new emissivity
scheme, was denoted as RTE1. The NDVI threshold method developed by Sobrino et al. [33] was also
used to retrieve the LST by the RTE algorithm. The results were called RTE2 accordingly. The results
derived from the GSC algorithm, which the LSE calculated by new scheme, was denoted as GSC1,
whereas the result derived from the GSC algorithm using the LSE calculated by the NDVI threshold
method was denoted as GSC2. Note that the LST of the GSC algorithm on 17 July 2014 was empty
due to a lack of atmospheric water vapor data.

Figure 7. Scatterplots between estimated LST from RTE algorithm (left) or GSC algorithm (right) and
in situ LST.

From Figure 7, we can see that there is a high correlation between the estimated LST and the
in situ LSTs for both the RTE algorithm and the GSC algorithm. The bias and STD (RMSE) of the
RTE algorithm with the LSE derived from the new scheme are −0.92 K and 1.53 K (1.77 K). The bias
and STD (RMSE) of the RTE algorithm using the LSE calculated by the NDVI threshold method are
−0.82 K and 1.77 K (1.94 K). The bias and STD (RMSE) of the GSC algorithm with the LSE derived from
the new LSE scheme are 0.45 K and 1.85 K (1.89 K). The bias and STD (RMSE) of the GSC algorithm
using the LSE calculated by the NDVI threshold method are 0.98 K and 1.94 K (2.16 K). The validation
results showed that the estimated LSTs are obviously underestimated at most stations for the two
RTE algorithms, while most of the LSTs derived from the GSC algorithm was overestimated. Overall,
we can conclude that the new LSE scheme can achieve a higher precision of LST determination.

Comparing the LSE derived by the NDVI threshold method with the LSE derived by the new
scheme, the two methods have nearly similar LSTs, because the soil emissivity used here is the same
as the new scheme, rather than the constant assumption adopted by the original NDVI threshold.
According to the MODIS precipitable water product (MOD05), most of the total water vapor content
of the validation stations in 2014 was less than 2.0 g/cm2, and so the RTE and GSC algorithms all have
obtained a high level of accuracy. The results are consistent with the study by Jiménez-Muñoz et al. [31],
who claimed that the GSC algorithm has a high accuracy in a low water vapor content area. Although
a high precision of the LST can be achieved with the LSE determined by the new scheme, we should be
very cautious when using the atmospheric profiles for atmospheric correction. When the surroundings
of study area were covered by clouds, the LST of the RTE algorithm is underestimated, e.g., JCHM
station on 24 August 2014.

280



Remote Sens. 2017, 9, 1247

5. Discussion

5.1. Comparison with LST Derived from ASTER Emissivity Product

In this section, we used the LSE calculated from the ASTER Surface Emissivity product (AST_05)
to evaluate the accuracy of the LSE estimated by the new scheme, as well as the estimated LSTs.
The AST_05 is an on-demand product generated using the Temperature/Emissivity Separation (TES)
algorithm [12] and combined with the Water Vapor Scaling (WVS) atmospheric correction method [55]
for the five thermal infrared (TIR) 90 m resolution bands. The study by Hully et al. [64] indicated that
the accuracies in retrieving the spectral emissivity for ASTER were below 0.016. The AST_05 product
on 23 July 2014 was used to evaluate the emissivity determined by the new scheme.

First, the FY-3C/MERSI LSE can be calculated from the linear transformation formula, as shown
in Equation (13). We adopted the least-squares fitting method to establish the transformation formula,
using the 251-emissivity spectra in the ASTER spectral library and the spectral response function of
the ASTER band 13, 14 and FY-3C/MERSI.

LSEaster = 0.7045ε13 + 0.2381ε14 + 0.055 (13)

where LSEaster, ε13 and ε14 are the land surface emissivity of the FY-3C/MERSI and ASTER channels
13 and 14, respectively. Then, we compared the estimated LSE on 17 and 26 July 2014 to the LSE
calculated from AST_05 on 23 July 2014, assuming that the land surface emissivity of the study area is
stable during a short time. Figure 8 shows the images of the LSE difference on 17 and 26 July 2014
and the corresponding images of the LST difference. The LSE difference was calculated using the LSE
estimated from the scheme presented in this paper (LSEmersi) minus the LSE estimated from the AST_05
product (LSEaster). The LSTs were derived from the RTE algorithm. The histogram of the LSE difference
on 17 and 26 July 2014 and the corresponding histogram of the LST difference (LSTmersi − LSTaster) are
also provided.

The average bias of the LSE difference over vegetated surfaces on 17 July 2014 is 0.009 and
the RMSE is 0.013. The average bias and RMSE of the LSE difference over the vegetated surface
on 26 July 2014 are the same as the values on 17 July 2014. The new scheme provides accurate
values over bare soil surface on 17 July 2014 and 26 July 2014, with an average bias of less than
0.002 and a RMSE of less than 0.011, respectively. The LSE estimated from the new scheme over the
vegetated surface on 17 July 2014 and on 26 July 2014 have been overestimated by 0.01, when compared
with the LSE estimated from the AST_05 product. This result is consistent with the experiments of
Gillespie et al. [65] and the research of Jiménez-Muñoz et al. [66]. They found that the TES algorithm
has larger uncertainties over low spectral contrast surfaces, such as vegetation, and it provides accurate
values for soil and rocks [49].

The average bias of the LST difference over vegetated surfaces on 17 July 2014 is −0.581 K and
the RMSE is 0.808 K. The average bias and RMSE of the LST difference over vegetated surfaces on
26 July 2014 are −0.577 K and 0.784 K, respectively. The new scheme provides accurate values over
the bare soil surfaces on 17 July 2014 and 26 July 2014, with an average bias of less than 0.06 K and
RMSE less than 0.7 K, respectively. The statistical results show that the LST bias over the vegetated
and bare soil surfaces have small statistical errors, most of the absolute bias values are within 2 K.
Table 4 shows the results of the LSE estimated from AST_05 and that determined by the new scheme
on 17 and 26 July 2014, as well as the corresponding LST at the validation stations. The LSEs of the
GB and HZZ sites provided accurate values on 17 and 26 July 2014, with biases of less than 0.003
and the biases of the corresponding LSTs are within 0.3 K. Compared with the LSEs estimated from
AST_05, the LSEs of the SSW site are overestimated by 0.01 and 0.013, respectively, and the LSTs are
underestimated by 0.71 K and 0.87 K, respectively. The LSTs of the SD and CJZ sites are all within 2 K
with in situ measured LSTs. From the above analyses, we can conclude that the LSE determined by the
new scheme is acceptable over a bare soil surface compared with the LSE directly calculated from the
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AST_05 product. Therefore, a high precision of the LST can be achieved from the RTE algorithm with
the LSE determined by the new scheme.

(a) The image of LSE difference on 17 July 2014 (b) The image of LSE difference on 26 July 2014 

 
(c) The histogram of LSE difference on 17 July 2014 (d) The histogram of LSE difference on 26 July 2014 

(e) The image of LST difference on 17 July 2014 (f) The image of LST difference on 26 July 2014 

 
(g) The histogram of LST difference on 17 July 2014 (h) The histogram of LST difference on 26 July 2014 

Figure 8. The images and histograms of LSE difference between the AST_05 product and the
new method on 17 and 26 July 2014; the corresponding images and histograms of LST difference.
(a) The image of LSE difference on 17 July 2014; (b) The image of LSE difference on 26 July 2014;
(c) The histogram of LSE difference on 17 July 2014; (d) The histogram of LSE difference on 26 July 2014;
(e) The image of LST difference on 17 July 2014; (f) The image of LST difference on 26 July 2014;
(g) The histogram of LST difference on 17 July 2014; (h) The histogram of LST difference on 26 July 2014.
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Table 4. LSE estimated from AST_05 or the new method on 17 and 26 July 2014, as well as the
corresponding LST.

17 July 2014 26 July 2014

Sites LSEaster LSEmersi LSTaster (K) LSTmersi (K) LSEaster LSEmersi LSTaster (K) LSTmersi (K)

SD 0.955 0.984 300.566 298.887 0.955 0.984 302.115 300.447
CJZ 0.963 0.985 302.865 301.524 0.963 0.985 300.360 299.062
GB 0.954 0.955 312.475 312.401 0.954 0.957 315.341 315.154

SSW 0.954 0.964 317.890 317.179 0.954 0.967 318.487 317.616
HZZ 0.971 0.968 314.886 315.099 0.971 0.968 314.020 314.224

5.2. Effects of Spatial Scale on the LST and LSE Evaluation

The LST validation sites must be homogeneous from the point scale to several kilometers [67,68].
The spatial variability of the validation stations has large effects on the validation results. To analyze
the spatial variability of the six validation stations, we extracted the LSE or LST of the 3 × 3 (270 m),
5 × 5 (450 m), 7 × 7 (630 m), 9 × 9 (810 m), and 11 × 11 (990 m) pixels centered on each validation
station from the twenty scenes of the ASTER LSE or LST products, respectively. The standard deviation
of the different window sizes calculated from the twenty scenes of the ASTER LST or ASTER LSE
products reflects the spatial variability of the validation stations. The average standard deviations of
the different window sizes at the six stations are shown in Table 5. The average standard deviation of
the ASTER LSE at the six stations changes little or remains the same with the various window sizes,
with a range from 0.003 to 0.006. The average standard deviation of the ASTER LSE over the bare soil
surface, e.g., HZZ and JCHM station changes are smaller than the vegetation surface, e.g., CJZ and SD
stations. The average standard deviation of the ASTER LST at the six stations changes variously with
the different window sizes. The HZZ, JCHM and GB stations show the lower standard deviation at all
window sizes, with a range from 0.34 K to 0.89 K. The standard deviation of the SD and CJZ sites were
higher than 1.0 K, except the 3 × 3 window size, which had a range from 1.04 K to 1.98 K. It appears to
be that the two vegetation sites have higher heterogeneity than other sites.

Table 5. The average STD of the 3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11 pixels extracted from 20 scenes
of ASTER LST or ASTER LSE products at six stations.

LST STD (K) LSE STD

Sites 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11

SD 0.929 1.086 1.242 1.470 1.664 0.006 0.006 0.006 0.006 0.006
CJZ 0.804 1.041 1.387 1.801 1.977 0.005 0.005 0.005 0.005 0.005
GB 0.435 0.625 0.776 0.842 0.887 0.003 0.004 0.004 0.005 0.005

SSW 0.671 0.829 0.942 1.121 1.485 0.004 0.004 0.005 0.005 0.005
HZZ 0.396 0.468 0.530 0.601 0.684 0.003 0.004 0.004 0.004 0.005

JCHM 0.342 0.426 0.491 0.506 0.523 0.003 0.004 0.004 0.004 0.004

To illustrate the heterogeneous surface’s effects on the estimated LST, we estimated the land
surface temperature using the 250 m FY-3C/MERSI data. The GLASS BBE and GLASS LAI products
were resized to a 250 m resolution based on the nearest neighbor interpolation model. Figure 9 shows
the boxplots between the estimated LSTs from the RTE algorithm (left) or the GSC algorithm (right) at
a 250 m resolution and ground LSTs. The trend is similar to the results of the 1000 m spatial resolution.
The estimated LSTs are obviously underestimated in the RTE algorithm and most of the LSTs derived
from the GSC algorithm were larger than the in situ LSTs.

283



Remote Sens. 2017, 9, 1247

Figure 9. Boxplots between estimated LSTs from RTE algorithm (left) or GSC algorithm (right) at
250 m resolution and in situ LSTs.

Compared with the results of the two algorithms at 1000 m resolution, the deviation of the two
algorithms at 250 m resolution has improved to a certain extent. The bias of the RTE algorithm has
changed from −0.92 K to −0.73 K for RTE1 and from −0.82 K to −0.53 K for RTE2. The bias of the GSC
algorithm has changed from 0.45 K to 0.23 K for GSC1 and from 0.98 K to 0.87 K for GSC2. In addition,
the STD (RMSE) of the RTE and GSC algorithms are all less than 1.76 K (1.95 K). From the above
analyses, we can conclude that the two LST algorithms with the LSE derived from the new scheme are
all suitable for estimating land surface temperatures. The estimated LSTs with the new LSE scheme
have a higher precision than the estimated LST with the NDVI threshold method. Although the scaling
effect on the ASTER LST is significant, the heterogeneous surface has little effect on the estimated LST
for the coarser spatial resolution (250 m and 1000 m).

6. Conclusions

In this study, we proposed a new scheme to predetermine the LSE for estimating LST from the
FY-3C/MERSI with only one thermal infrared channel. The new scheme first divides the land surface
into bare soils and vegetated surfaces, then takes advantage of the 4SAIL model’s ability to derive
the land surface emissivity for vegetated surfaces and establishes the linear relationship between
the GLASS BBE and the land surface emissivity of the FY-3C/MERSI data for bare soil surfaces.
After determining the LSE, the LST was retrieved by using the RTE and GSC algorithms.

The LSE derived by the new scheme was validated by the field measurements collected at
seven stations during the HiWATER experiment. The mean difference between the derived LSE and
field-measured LSE is approximately 0.002. When the LSE determined by the new scheme was used
for the LST retrieval from the FY-3C/MERSI data using the RTE and GSC algorithms, an acceptable
accuracy was achieved, i.e., at 1000 m resolution, the absolute bias of the two algorithms were less than
1 K, and the STD (RMSE) values were all less than 1.95 K (2.2 K). At 250 m resolution, the absolute
bias, STD and RMSE of the two algorithms were all less than 0.87 K, 1.76 K and 1.95 K, respectively.
Compared to the LST derived by the same algorithm but with the commonly used NDVI threshold
method, the new land surface emissivity scheme can achieve better results. Additionally, the new
scheme was evaluated by the ASTER emissivity product. The new scheme can provide an accurate
LSE estimate, with an average bias of less than 0.009 and RMSE of less than 0.013. Both the ASTER LSE
and LSE determined by the new scheme were used to retrieve the LST from the FY-3C/MERSI data,
and good agreement was obtained. The average bias and RMSE of the corresponding LST differences
are −0.6 K and 0.8 K, respectively. Regarding the validation and evaluation results, we can conclude
that the new emissivity scheme can be used to improve the accuracy of the LSE and further the LST for
sensors with a broad spectral range such as the FY-3C/MERSI.
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Abstract: Surface-upwelling longwave radiation (LWUP) is an important component of the surface
radiation budget. Under the general framework of the hybrid method, the linear models and
the multivariate adaptive regression spline (MARS) models are developed to estimate the 750 m
instantaneous clear-sky LWUP from the top-of-atmosphere (TOA) radiance of the Visible Infrared
Imaging Radiometer Suite (VIIRS) channels M14, M15, and M16. Comprehensive radiative transfer
simulations are conducted to generate a huge amount of representative samples, from which the
linear model and the MARS model are derived. The two models developed are validated by the
field measurements collected from seven sites in the Surface Radiation Budget Network (SURFRAD).
The bias and root-mean-square error (RMSE) of the linear models are −4.59 W/m2 and 16.15 W/m2,
whereas those of the MARS models are −5.23 W/m2 and 16.38 W/m2, respectively. The linear models
are preferable for the production of the operational LWUP product due to its higher computational
efficiency and acceptable accuracy. The LWUP estimated by the linear models developed from VIIRS
is compared to that retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS).
They agree well with each other with bias and RMSE of −0.15 W/m2 and 25.24 W/m2 respectively.
This is the first time that the hybrid method has been applied to globally estimate clear-sky LWUP
from VIIRS data. The good performance of the developed hybrid method and consistency between
VIIRS LWUP and MODIS LWUP indicate that the hybrid method is promising for producing the
long-term high spatial resolution environmental data record (EDR) of LWUP.

Keywords: longwave upwelling radiation (LWUP); Visible Infrared Imaging Radiometer Suite
(VIIRS); surface radiation budget; hybrid method; remote sensing

1. Introduction

The surface radiation budget (SRB) is an important indicator in the study of climate formation
and change and environmental prediction, which plays a key role in the global matter, energy cycles
and interactions between the surface and the atmosphere system [1–3]. SRB is dominated by longwave
radiation in the night and during most of the year in the polar regions [4,5]. Surface-upwelling
longwave radiation (LWUP, 4.0–100 μm), the sum of thermal radiation emitted by the surface and
reflected atmospheric downward longwave radiation, is the main cause of surface cooling in the clear
night sky and is also an indirect indicator of surface temperature [5]. An accurate estimate of LWUP is
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one of the prerequisites for obtaining accurate weather forecasts, climate simulations, and land-surface
process simulations.

Generally, we can obtain the LWUP using three approaches: field measurement, satellite remote
sensing and model prediction. LWUP can be accurately measured with field instruments. However,
field networks are sparsely distributed globally. Furthermore, field measurement can only represent
a limited area. The spatial resolution of model prediction is relatively coarse [6]. Remote sensing
can provide various kinds of products with global coverage and horizontal spatial continuity, but
the temporal resolution is always limited. High spatial-resolution LWUP is an important diagnostic
parameter for mesoscale land surface and atmosphere models [7] and can also serve as a bridge for
validating coarse resolution data [8]. The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of
the key instruments onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite system
and was successfully launched in 2011. The spatial resolution of VIIRS thermal-infrared channels is
750 m. Ignoring the relatively low temporal resolution of VIIRS, it is the preferred data source for
estimating high spatial-resolution LWUP.

Over the past few decades, substantial efforts have been devoted to estimating LWUP at the
surface using remotely sensed observations from space-borne platforms. These methods can be
primarily divided into two categories: the temperature-emissivity method [7–10] and the hybrid
method [11–13]. Current operational satellite land-surface temperature and emissivity products
facilitate the estimation of LWUP [14–17], but the large uncertainties in the land-surface temperature
and emissivity products limit its accuracy [18,19]. For example, the study of Wang et al. indicated that
the accuracy of the temperature-emissivity method is much lower than that of the hybrid method [7].
As shown in Figure 1, the weighting function of thermal infrared channels located in narrow bands that
are semi-transparent to atmospheric gases and thus sensitive primarily to emission from the surface
(“atmospheric windows”) peaks at the surface and contains the surface-emission information, so LWUP
can be derived from top-of-atmosphere (TOA) radiance or brightness temperature directly [13,20].
The hybrid method links the thermal-infrared TOA radiances or brightness temperatures with LWUP
through comprehensive radiative transfer modeling and statistical regression. It is physically based
and at the same time has a high computational efficiency. Furthermore, it can bypass the problem of
temperature and emissivity separation and achieve an acceptable accuracy in practice. The hybrid
method has been successfully used to produce high spatial-resolution regional [7,11,21] and global [12]
LWUP recently.

Figure 1. Relative spectral responses of Visible Infrared Imaging Radiometer Suite (VIIRS) channels
M14, M15 and M16, and Moderate Resolution Imaging Spectroradiometer (MODIS) channels 29, 31
and 32. The gray line represents the transmittance of the 1976 U.S. Standard Atmosphere.
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VIIRS was developed based on the heritage of Moderate Resolution Imaging Spectroradiometer
(MODIS) instruments and has become a key bridge to ensure long-term continuity of the environmental
data records (EDRs). VIIRS provides a large number of EDRs, including aerosol optical thickness [22],
vegetation index [23], land-surface albedo [24], land-surface temperature [25], sea-surface temperature [26],
etc. To our knowledge, an operational LWUP product from VIIRS is not available at regional and global
scales. VIIRS do not provide operational products of surface broadband emissivity (BBE) and surface
downward longwave radiation. Thus, it is difficult to calculate the LWUP with the temperature-emissivity
method. In addition, no operational algorithm that can be used to retrieve LWUP from VIIRS has been
reported in the literature.

We have developed a hybrid method for retrieving clear-sky LWUP from MODIS data and
produced two years’ global LWUP product recently [12]. It is possible to produce long-term high
spatial-resolution EDR of LWUP by combining MODIS and VIIRS. The first step is to develop a hybrid
method to estimate the global 750-m instantaneous clear-sky LWUP from VIIRS data. The article is
arranged as follows. The data including satellite data, field measurements, and atmospheric profiles
are described in Section 2. The method and validation results are provided in Sections 3 and 4. A brief
discussion and conclusion are given in Sections 5 and 6.

2. Data

2.1. Visible Infrared Imaging Radiometer Suite (VIIRS) Data

VIIRS has been developed based on the heritage of legacy instruments, including AVHRR and
MODIS, and extends and improves on them [27]. The VIIRS has 22 spectral channels with wavelengths
ranging from 0.41 μm to 12.5 μm, which can be used for environmental monitoring and numerical
weather forecasting. The on-orbit verification and intensive calibration and validation using a ground
target show that VIIRS is working very well [28,29]. More than 20 environmental data records have been
produced operationally from VIIRS data, including clouds, land-surface temperature and sea-surface
temperature, vegetation index, aerosol optical thickness, active fire, snow/ice, surface albedo, etc.

The VIIRS data utilized in this study include the VIIRS sensor data records (SDR) and VIIRS
Cloud Mask intermediate product (VCM). The VIIRS SDR contains the day–night band, imagery band,
moderate resolution band and geolocation data. Three thermal-infrared channels, M14, M15 and M16,
which are located in the “atmospheric windows” and are sensitive to the LWUP, are finally selected.
These three channels have similar channel characteristics to MODIS channels 29, 31 and 32. The relative
spectral responses of VIIRS channels M14, M15 and M16 as well as MODIS channels 29, 31 and 32
are displayed in Figure 1. The VIIRS VCM product is used to identify whether a pixel is clear-sky
or cloudy [30]. The pixels with confident clear flag are identified as clear-sky pixels. In addition, the
longitude, latitude and the sensor view zenith angle data are also provided in the SDR.

2.2. Atmospheric Profiles

In this study, two years of the Atmospheric Infrared Sounder (AIRS) level 2 standard atmospheric
profiles are collected to construct the atmospheric profile database. Launched aboard the Earth Observing
System (EOS) second satellite Aqua, the AIRS instrument has 2378 infrared spectral channels covering
3.74–15.39 μm with a high spectral resolution (λ/Δλ) of 1200 [31]. The AIRS infrared band is very stable,
and the offset is less than 10 mK/yr [32]. The accuracy of temperature measurement of AIRS is better than
250 mK, and the absolute calibration accuracy of most bands can reach 100 mK. It is the most accurate
and stable hyperspectral infrared detector up until now (http://daac.gsfc.nasa.gov/AIRS/). AIRS can be
used to obtain the global atmospheric three-dimensional physical state (atmospheric temperature, water
vapor, clouds, etc.) and the distribution of trace gases (ozone, carbon dioxide and methane, etc.) daily [33].
The temperature profile of AIRS has 28 layers, and the corresponding atmospheric pressure varies from
1100 hPa to 0.1 hPa. Meanwhile, the AIRS water-vapor profile has 14 layers, and the corresponding
atmospheric pressure ranges from 1100 hPa to 50 hPa.
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2.3. Surface Radiation Budget Network (SURFRAD)

The Surface Radiation Budget Network (SURFRAD) network was established in 1993 to
supply accurate, longstanding and persistent measurements of the surface radiation budget for
climate change studies [34]. SURFRAD provides quality-controlled field measurements including
downward and upwelling solar irradiance and longwave infrared irradiation, along with other
meteorological observations, such as wind speed, atmospheric pressure and relative humidity,
etc. SURFRAD measurements are widely used for the validation of satellite-derived products and
the details about the SURFRAD site and related instruments can be found in [34]. Daily one or
three-minute SURFRAD data are organized into daily ASCII text and can be freely downloaded from
ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad. In addition, the basic data are routinely sent to
several archives including the World Radiation Data Center (WRDC), National Climatic Data Center
(NCDC), and Baseline Surface Radiation Network (BSRN). The location, elevation and land cover of
the seven SURFRAD sites are listed in Table 1.

Site upwelling and downward thermal infrared irradiance are measured using two precision
infrared radiometers (PIR). The PIRs are sensitive to the spectral range from 3 μm to 50 μm.
Three standard PIRs, which are annually calibrated by world-reputable organizations, are used to
calibrate these two PIRs adopted in SURFRAD network. The spectral range of the measurements can
be extended to 4–100 μm by calibration [35]. The overall accuracy of PIR ground measurement is
approximately ±9 W/m2 [34], and is reported to be about ±5 W/m2 recently [36]. The VIIRS moderate
resolution band (M-band) has a resolution of 750 m at nadir. The spatial matching issue and scale effect
need be considered when validating satellite-derived LWUP using SURFRAD ground measurements.
The footprint of SURFRAD PIRs is much smaller compared to that of the VIIRS. Fortunately, SURFRAD
sites were selected at the locations where the surrounding land cover of the site was homogeneous.
For example, Wang et al. [7] compared the brightness temperature of the ASTER pixel that contains
the SURFRAD site to other neighboring pixels within 1 km × 1 km and 2 km × 2 km windows.
They found that the discrepancies between the central pixel and surrounding pixels were less than
1 K in general, and the standard deviations of center pixel and surrounding pixels were less than 2 K
under most conditions. Therefore, the SURFRAD measurements were used to validate the derived
VIIRS LWUP directly.

Table 1. Information of sites in the Surface Radiation Budget Network (SURFRAD) network.

Name Location Elevation (m) Land Cover Time Period of Used Data

Bondville_IL 40.0519◦N, 88.3731◦W 230 Cropland 2014–2017
Boulder_CO 40.1249◦N, 105.2368◦W 1689 Grassland 2014–2017

Desert_Rock_NV 36.6237◦N, 116.0195◦W 1007 Desert 2014–2017
Fort_Peck_MT 48.3078◦N, 105.1017◦W 634 Grassland 2014–2017

Goodwin_Creek_MS 34.2547◦N, 89.873◦W 98 Grassland 2014–2017
Penn_State_PA 40.7201◦N, 77.9309◦W 376 Cropland 2014–2017
Sioux_Falls_SD 43.7340◦N, 96.6233◦W 473 Grassland 2014–2017

3. Method

As shown in Figure 1, the channel characteristics of VIIRS channels M14, M15 and M16 are similar
to those of MODIS channels 29, 31, and 32, which have been successfully used to derive LWUP using
hybrid method at regional and global scales [7,12]. In this section, we developed the hybrid method
for VIIRS using TOA radiance of channels M14, M15 and M16 under the general framework of the
hybrid method. First, a huge amount of representative samples are generated by extensive radiative
transfer modeling; then the linear model and MARS model are established to predict LWUP using
TOA radiance of channels M14, M15 and M16.
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3.1. Radiative Transfer Modeling

The surface upwelling longwave radiation consists of two components: longwave radiation
emitted by the surface and surface-reflected atmospheric downward longwave radiation, which can
be written as:

Fl
up = ε

λ2∫
λ1

πB(Ts)dλ + (1 − ε)Fl
down (1)

where the ε is the surface broadband emissivity. Ts is the surface temperature. Fl
down is the downward

longwave radiation. λ1 and λ2 are the spectral integration range (4–100 μm).
A representative simulation database is required to train the hybrid method, such as the linear

model and the MARS model. The moderate resolution atmospheric transmission (MODTRAN)
software [37], which is widely used by researchers all over the world, can be used to simulate the
radiation transmission and interaction between the atmosphere and the land surface under various
atmospheric and surface conditions. Allowing for the difference between land-surface temperature
and atmospheric temperature, the global land surface is divided into three regions: the low-latitude
region (30◦S–30◦N), middle-latitude region (30◦S–60◦S, 30◦N–60◦N), high-latitude region (60◦S–90◦S,
60◦N–90◦N) [12]. At the same time, the atmospheric profiles are also divided into these three categories
according to the latitude. For each sub-region, we extracted the atmospheric profiles from AIRS Level
2 standard atmosphere product and constructed the atmospheric profile database. To avoid excessive
computation and to alleviate the similarity of the profiles, a screening process was applied, and the
criteria proposed in [12] adopted to measure the similarity of atmospheric profiles. In total, 2842,
35,487 and 41,724 atmospheric profiles of high-latitude, mid-latitude and low-latitude region were
obtained. MODTRAN 5.2 was used to simulate the spectral downward longwave radiance, thermal
path radiance and spectral transmittance for each atmospheric profile and sensor view zenith angle.
During the simulation, the sensor view zenith angles were set from 0◦ to 60◦ with an interval of
15◦. We calculated the difference between surface temperature and the bottom layer temperature
of atmospheric profiles for each region using two-year AIRS standard L2 product. The surface
temperature was determined based on this difference. For example, the surface temperature of
mid-latitude is equal to the bottom layer temperature plus a range of [−10, 15] K with a step of
5 K. Eighty-four representative spectral emissivity spectra including vegetation, soil, snow/ice, water
selected from ASTER spectral library [38] and MODIS UCSB spectral library [39] and their combinations
were used to characterize the land-surface conditions. Since there was no spectral emissivity value for
wavelengths larger than 14 μm, the emissivity value was supposed to be the same as that at wavelength
14 μm in the following simulations. When the surface and atmospheric parameters were determined,
the VIIRS TOA channel radiances are calculated using the following simplified equation:

Li =

λ2∫
λ1

((ελB(Ts) + (1 − ελ)L↓λ)τλ + L↑λ) fi(λ)dλ

λ2∫
λ1

fi(λ)dλ

(2)

where Li is the TOA radiance for channel M14, M15 and M16 of VIIRS; L↑λ and L↓λ are path thermal
radiance and spectral downward longwave radiance, respectively; fi(λ) is the spectral response
function for channels M14, M15 and M16; λ1 and λ2 are the spectral range of VIIRS TIR channel.
The flowchart of the hybrid method is displayed in Figure 2.
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Figure 2. Flowchart for developing the hybrid method.

3.2. Linear Model

A linear model with the following expression was developed using the generated samples in
Section 3.1:

LWUP = a0 + a1M14 + a2M15 + a3M16 (3)

where a0, a1, a2 and a3 are coefficients; and M14, M15 and M16 are TOA radiance for moderate
resolution bands 14, 15 and 16 of the VIIRS. The linear model is fitted for each sub-region and view
zenith angle.

3.3. The Multivariate Adaptive Regression Spline (MARS) Model

To probe the non-linear relationship between TOA spectral radiance and LWUP, we also use the
multivariate adaptive regression spline (MARS) to model the non-linear relationship between TOA
spectral radiance and LWUP with the same samples as those used by the linear model. MARS was
proposed by Jerome H. Friedman in 1991 [40]. MARS is a highly generalized and highly specialized
regression method for high-dimensional data. The regression method takes the tensor product of
spline functions as the basis functions, while the determination of the basis functions and their number
are automatically completed by the data without manual selection. In the multi-dimensional case, how
to divide the space has become a critical problem, but the MARS model can solve this problem well.
The MARS model is defined as follows:

f̂ (x) = a0 +
M
∑

m=1
amBm(x)

= a0 +
M
∑

m=1
am

km
∏

k=1
[Skm(xv(k,m) − tkm)]+

(4)

where Bm(x) is the mth basis function; a0 is coefficient; am is the coefficient of the mth basis function;
M is the number of the basis function; Km is the number of knots in the mth basis function; Skm is 1 or
−1, and indicates the spline function on the right or left side;v(k, m) labels the independent variables;
and tkm is a knot location. The basis function of MARS is a single spline function, or is the result of the
interaction of multiple spline functions. The spline functions on the right and left sides are defined as
follows:

[+(xv(k,m) − t)]q
+
=

{
(x − tkm)

q, x ≥ tkm
0, others

[−(xv(k,m) − t)]q
+
=

{
(tkm − x)q, x ≤ tkm

0, others

(5)
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where t is the position of the node; x − tkm and tkm − x are used to describe spline functions on the
right and left regions when t is given; q is the power (>0) to which the splines are raised; and “+” takes
0 for negative values.

MARS is built in two phases: the forward-basis function selection and backward-pruning process.
In the first stage, MARS begins with just the intercept term and iterations are conducted to add pairs
of basis functions, which can minimize the training error to the utmost extent. In order to avoid
overfitting, a backward-pruning process is needed. In the backward-pruning phase, the basis function,
which contributes the least to the reduction of training error, is deleted at a time. The model with the
lowest GCV (generalized cross-validation) is finally selected. The GCV, as an estimator for effective
mean residual error, can achieve a balance between goodness of fit and model complexity. The GCV is
calculated as follows:

GCV =

1
N

N
∑

i=1
(yi − f̂ (xi))

2

(1 − enp
N )

2 (6)

where N is the number of samples in the training data; f̂ (xi) is the estimation of yi; and enp is the
effective number of parameters:

enp = k + c ∗ (k − 1)/2 (7)

where c is the penalty parameter; and k is the number of non-constant basis functions.
The training of MARS is based on the ARESLab package of the MATLAB platform, in which

the MARS is implemented according to Friedman’s original papers [40] and all parameters in the
ARESLab package are automatically determined. The source code of the ARESLab toolbox can be
downloaded from the following website: www.cs.rtu.lv/jekabsons/regression.html.

4. Results

4.1. Training Results of the Linear Model and MARS Model

The linear model can account for more than 97.7%, 98.5% and 99.1% of the variation of the LWUP
in the simulation database for the low-latitude, middle-latitude and high-latitude regions, respectively.
The bias is zero, and the RMSE ranges from 5.27 to 13.02 W/m2. The RMSE in the low-latitude region
is larger than that in the middle-latitude and high-latitude region. In addition, the RMSE for the larger
view zenith angle is greater than that with the smaller view zenith angle. Details about fitting the
results of the linear models can be found in Table 2.

The training results of the MARS model are also displayed in Table 2. The MARS model can
account for more than 98.2%, 98.7% and 99.2% of the variation in the simulation database for the
low-latitude, middle-latitude and high-latitude regions, respectively. The biases of all MARS models
are zero, and the RMSEs range from 8.53 to 10.13 W/m2, 6.64 to 8.24 W/m2, and 4.8 to 6.47 W/m2 for
the low-latitude, middle-latitude and high-latitude regions, respectively. The RMSEs of the MARS
models are slightly less than those of the linear models.
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Table 2. Fitting results for the linear models and the Multivariate Adaptive Regression Spline
(MARS) models.

Low-Latitude Region

Linear Model MARS

Angle a0 a1 a2 a3 R2 Bias RMSE R2 Bias RMSE
0◦ 124.404 2.687 119.530 −93.350 0.989 0.00 8.82 0.990 0.00 8.53
15◦ 126.927 2.833 121.603 −95.997 0.988 0.00 8.97 0.993 0.00 8.54
30◦ 135.126 3.434 128.092 −104.459 0.988 0.00 9.13 0.989 0.00 8.71
45◦ 151.431 5.290 139.829 −120.664 0.985 0.00 10.46 0.986 0.00 9.03
60◦ 182.429 12.293 157.379 −149.538 0.977 0.00 13.02 0.982 0.00 10.13

Middle-Latitude Region

Linear Model MARS

Angle a0 a1 a2 a3 R2 Bias RMSE R2 Bias RMSE
0◦ 99.959 1.747 104.644 −73.428 0.993 0.00 6.94 0.993 0.00 6.64
15◦ 101.853 1.769 106.772 −75.933 0.992 0.00 7.04 0.993 0.00 6.84
30◦ 108.090 1.922 113.550 −84.018 0.992 0.00 7.39 0.992 0.00 7.18
45◦ 120.822 2.647 126.401 −99.870 0.990 0.00 8.11 0.991 0.00 7.88
60◦ 146.517 6.157 148.690 −129.866 0.985 0.00 9.79 0.987 0.00 8.24

High-Latitude Region

Linear Model MARS

Angle a0 a1 a2 a3 R2 Bias RMSE R2 Bias RMSE
0◦ 77.525 0.915 87.049 −50.963 0.995 0.00 5.27 0.996 0.00 4.8
15◦ 79.219 1.588 88.103 −52.734 0.995 0.00 5.16 0.996 0.00 4.85
30◦ 82.928 1.339 94.582 −59.759 0.995 0.00 5.41 0.996 0.00 5.11
45◦ 90.741 1.020 107.407 −73.892 0.994 0.00 5.91 0.994 0.00 5.80
60◦ 107.699 1.298 132.253 −102.344 0.991 0.00 6.95 0.992 0.00 6.47

4.2. Validation with Field Measurements

4.2.1. The Linear Model

The field measurements collected from the SURFRAD network were used to validate the linear
models developed. When the view zenith angle was not equal to 0◦, 15◦, 30◦, 45◦, 60◦, LWUP was
linearly interpolated from LWUPs predicted by the linear model with an adjacent view zenith angle.
View zenith angle exceeding 60◦ was not considered. The cloud-mask information was extracted from
the VIIRS Cloud Mask intermediate product. Clear sky was identified when 3 × 3 neighboring pixels
of the site are clear to ensure that the field measurements at the site were not affected by clouds and
cloud shadows. In total, 2901 validation samples were finally obtained.

Figure 3 shows the comparison between the estimated LWUP and the ground measurements.
We can find that the average bias and RMSE are −4.59 and 16.15 W/m2, respectively, at seven
SURFRAD sites. For further analysis, the validation samples were divided into two groups: daytime
and night time according to the local solar time. The bias ranged from −16.94 to 7.84 W/m2, and RMSE
ranges from 13.84 to 30.43 W/m2 in the daytime. The average bias and RMSE were −1.40 W/m2 and
21.57 W/m2. If Desert_Rock_NVt is not considered, the average bias and RMSE were −1.12 W/m2

and 21.71 W/m2. During the night time, the bias ranged from −20.48 W/m2 to 2.97 W/m2, and
RMSE ranged from 8.76 W/m2 to 21.22 W/m2. The average bias and RMSE were −8.3 W/m2 and
13.46 W/m2. If Desert_Rock_NVt is not considered, the average bias and RMSE were −5.33 W/m2

and 10.73 W/m2. The LWUP estimated at night was less divergent than that in the daytime.
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Figure 3. Validation results of the linear model at SURFRAD sites. (a) Bondville_IL; (b) Boulder_CO;
(c) Desert_Rock_NV; (d) Fort_Peck_MT; (e) Goodwin_Creek_MS; (f) Penn_State_PA; (g) Sioux_Falls_SD.

4.2.2. MARS Models

The LWUP estimated by MARS models was validated with the same ground measurements.
As shown in Figure 4, we can find that the average bias and RMSE were −5.23 and 16.38 W/m2.
The bias ranged from −16.15 to 8.15 W/m2, and RMSE ranged from 12.12 to 29.96 W/m2 in the
daytime. The average bias and RMSE were −1.27 W/m2 and 19.79 W/m2. If Desert_Rock_NVt is not
considered, the average bias and RMSE were −1.13 W/m2 and 21.64 W/m2. During the nighttime, the
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bias ranged from −20.46 W/m2 to 2.25 W/m2, and RMSE ranged from 8.66 W/m2 to 15.26 W/m2.
The average bias and RMSE were −8.93 W/m2 and 13.8 W/m2. If Desert_Rock_NVt is not considered,
the average bias and RMSE were −5.93 W/m2 and 11.03 W/m2. The distribution of the points in
Figure 4 is similar to that in Figure 3.

Regarding the satellite-derived surface radiative fluxes, an accuracy of approximately ±20 W/m2

for instantaneous footprint values is required by the hydrological, meteorological, and agricultural
research communities [41]. According to the validation results in this study, both the linear and MARS
models can meet this requirement. Overall, the linear models are slightly better than the MARS models,
although MARS can model the non-linearity between LWUP and TOA spectral radiance well during
the training stage. Two reasons may account for this phenomenon. First, the zenith angles of the
validation samples are all less than 40◦, and the differences between the linear models and the MARS
models are slight when the zenith angle is less than 45◦, as shown in Table 2. Second, various kinds of
satellite measurement errors are likely to be magnified by the non-linear model such as MARS. Due to
the higher computational efficiency of the linear models, it is more adaptable to produce operational
LWUP product.

A few studies have been devoted to estimating high spatial-resolution LWUP from MODIS and
VIIRS. For example, Wang et al. [7] developed the linear models for estimating North American
LWUP using MODIS data. The average bias and RMSE over SURFRAD site were −10.97 W/m2 and
18.35 W/m2. Jiao et al. [11] developed the neural network models for estimating LWUP from MODIS
and VIIRS data over the Tibet Plateau. The average bias and RMSE of the validation results for MODIS
were 11.24 W/m2 and 26.78 W/m2. The accuracy of LWUP from VIIRS was not validated. Cheng and
Liang developed the linear models for estimating LWUP from MODIS data at global scale. The bias
and RMSE of the validation over SURFRAD site were −4.49 W/m2 and 13.47 W/m2. Compared to
these studies, the accuracies of the newly developed hybrid method are comparable or superior to
those of the related published references.

Figure 4. Cont.
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Figure 4. Validation results of the MARS model at SURFRAD sites. (a) Bondville_IL. (b) Boulder_CO.
(c) Desert_Rock_NV. (d) Fort_Peck_MT. (e) Goodwin_Creek_MS. (f) Penn_State_PA. (g) Sioux_Falls_SD.

4.3. Comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) and VIIRS
Surface-Upwelling Longwave Radiation (LWUP)

Remote-sensing instruments such as MODIS and VIIRS are critical for providing continual
and reliable measurements of the atmosphere, ocean and land-surface variables at the global scale.
Furthermore, VIIRS is developed based on the heritage of MODIS instruments and has become a key
bridge to ensure long-term continuity of the climate data records. LWUP estimated from VIIRS is
compared with that retrieved from MODIS using the linear models of Cheng et al. [12] to check the
consistency between the two instruments. The overpass time of the MODIS granule image is at 20:40
(UTC), 17 August 2014 and the VIIRS granule image is acquired from 20:46 to 20:51 (UTC) on the same
day. The time difference between the two images is less than 10 min. Therefore, it is supposed that
there are no significant differences in atmospheric conditions and land-surface properties within the
10-min period. In addition, the corresponding MOD35 and VIIRS Cloud Mask intermediate products
are used to eliminate the influence of clouds. The linear hybrid method proposed by Cheng et al. [12]
is used to calculate the LWUP from MODIS data, which has been validated by three measurement
networks with a bias and RMSE of −0.31 W/m2 and 19.92 W/m2 in total.

The VIIRS image was aggregated to 1 km with bi-linear resampling method to match the spatial
resolution of MODIS. The LWUP derived from both MODIS and VIIRS data were compared without
considering the pixels that covered by invalid data or were contaminated by cloud. The spatial
distributions of LWUP for MODIS and VIIRS are displayed in Figure 5, from which we can find that the
LWUP distribution pattern of VIIRS is similar to that of the MODIS. In addition, the density plot of the
LWUP is shown in Figure 6. Most of the LWUP values are concentrated between 400 and 800 W/m2

with R2 of 0.88. The bias and RMSE are −0.15 W/m2 and 25.24 W/m2, respectively. Thus, the LWUP
of VIIRS is consistent with that of MODIS. This result is consistent with the study of Jiao et al. [11].
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They compared the LWUP retrieved from MODIS and VIIRS at Tibet Plateau. The R2, bias and RMES
were 0.52 W/m2, 2.87 W/m2 and 26.02 W/m2, respectively.

Figure 5. Distribution of LWUPs derived from VIIRS and MODIS images.

Figure 6. The scatterplot of retrieved LWUP from VIIRS and that retrieved from MODIS.

300



Remote Sens. 2018, 10, 253

5. Discussion

5.1. Cloud Effect

In Section 4, the established hybrid methods were validated by the field measurements. Generally,
most of the estimated LWUPs were closer to the one-to-one line. The points were less divergent in the
night time than in the daytime. This may be because that the land surface is more homogeneous in the
night time than in the daytime [42]. Compared to other sites, obvious underestimation is found in the
desert site. Wang and Liang [7] thought air traffic out of Los Angeles produces many cirrus clouds
over this site, and cloud contamination may be a significant source of error at this site. Thus, one of the
reasons may be that the VIIRS Cloud Mask intermediate product cannot identify all kinds of cloud
types, especially the cirrus cloud.

In order to test this assumption, we downloaded three years (2014–2017) field measurements
from Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site C1
(https://www.arm.gov). The downloaded data include the LWUP, cloud-base height and other
auxiliary data. The cloud-base height information is derived from the Micropulse Lidar (MPL). MPL is
a ground-based remote-sensing instrument that can be used to measure the altitude of clouds by
transmitting pulses of light and using the receiver to detect the light scattered back by clouds and
precipitation. From the time delay between each outgoing pulse and the backscattered signal, the
distance to the scatterer is inferred [43]. The VIIRS pixels are, first, identified by the VIIRS Cloud
Mask intermediate product, and then the extracted clear-sky pixels are further screened by the field
measurements. The pixels with more than one detected cloud base are considered as cloudy, while
those with no significant backscatter detected are regarded as true clear-sky pixels. The developed
liner models are used to retrieve LWUP. The validation results of LWUP at site C1 are displayed in
Figure 7. The bias and RMSE of cloudy pixels are −6.65 W/m2 and 16.04 W/m2, while bias and RMSE
of clear-sky pixels are −2.94 W/m2 and 15.62 W/m2. The VIIRS Cloud Mask intermediate product
actually cannot identify all kinds of cloud types, and undetected cloud will cause the underestimation
of LWUP.

Figure 7. Validation results of the linear model at the Atmospheric Radiation Measurement (ARM)
program Southern Great Plains (SGP) C1 site. (a) Pixels that were identified as clear sky by the VIIRS
cloud mask whereas cloudy by ground-based Lidar; (b) pixels that were identified as clear sky by both
the VIIRS Cloud Mask and the Lidar.

5.2. Broadband Emissivity (BBE) Effect

The obvious underestimation of LWUP at Desert_Rock_NV may also be related to BBE of the
surface. Taking the developed linear model for the mid-latitude region at nadir view as an example,
we investigated the effects of surface BBE on the accuracy of LWUP estimation. The bias and RMSE of
the fitting liner model at nadir are zero and 6.94 W/m2. We calculated the average bias and RMSE for
each emissivity spectrum as well as the corresponding BBE. The relationship between BBE versus bias
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is shown in Figure 8; 78% samples have a negative bias when their BBE is less than 0.966 and 88% BBE
has a positive bias when BBE is equal to or larger than 0.966. It is very likely to produce negative bias
at Desert_Rock_NV from the point of the developed linear models, because its BBE is less than 0.966.
We have also investigated the relationship between the fitting residual and land-surface temperature
(LST) with the same data, and no significant overestimated or underestimated trend is found. Thus,
cloud and surface BBE are two primary factors that affect the accuracy of the LWUP estimate.

Figure 8. The relationships between Broadband Emissivity (BBE) versus bias of retrieved LWUP.

6. Conclusions

LWUP is an important component of the land-surface radiation budget. We developed two hybrid
methods, namely, the linear model and MARS model, to estimate the 750-m instantaneous clear-sky
LWUP from the VIIRS TOA channel radiances of M14, M15, and M16 at the global scale.

To consider the difference between the land-surface temperature and air temperature, the global
land surface was divided into 3 regions based on latitude. Extensive radiative transfer modeling was
conducted to produce a huge amount of representative samples for each sub region. The linear models
and the MARS models were established at 0◦, 15◦, 30◦, 45◦ and 60◦ viewing zenith angles for each sub
region. According to the statistical results, the linear models can account for more than 97.7% of the
variation in the simulation database, the bias is zero, and the RMSEs range from 5.27 to 13.02 W/m2;
the MARS models can account for more than 98.2% of the variation in the simulation database, the bias
is zero, and the RMSEs range from 4.8 to 10.13 W/m2. Then, the two models were validated using three
years (2014–2017) of ground measurements collected from seven SURFRAD sites. The average bias and
RMSE of the linear models were −4.59 W/m2 and 16.15 W/m2, whereas the average bias and RMSE of
the MARS models were −5.23 W/m2 and 16.38 W/m2. The difference between the linear models and
the MARS models was not significant. The linear models have higher computational efficiency and are
easy to implement, so it is a good choice for producing the operational LWUP product. The LWUP
retrieved from VIIRS by the developed linear models was compared to that retrieved from MODIS by
the previous linear models developed. Their spatial distribution pattern agreed well with each other;
the bias and RMSE were −0.15 W/m2 and 25.24 W/m2.

This is the first time that the hybrid method has been applied to global estimates of clear-sky
LWUP from VIIRS data. Limited validation results indicate that the accuracy of the hybrid method
can meet the accuracy requirement of the hydrological, meteorological, and agricultural research
communities. The good performance of the developed hybrid method and consistency between VIIRS
LWUP and MODIS LWUP indicate that the hybrid method shows promise for producing a long-term
high spatial-resolution environmental data record (EDR) of LWUP. The field measurements used for
validation are collected from the SURFRAD network, which is located in the middle-latitude region.
More validation data from low-latitude and high-latitude regions with other land-cover types need to
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be collected for further validation in the future. Also, more extensive comparison should be conducted
before the generation of LWUP EDR using MODIS and VIIRS data.
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Abstract: In recent years, China has developed and launched several satellites with high spatial
resolutions, such as the resources satellite No. 3 (ZY-3) with a multi-spectral camera (MUX) and 5.8 m
spatial resolution, the satellite GaoFen No. 1 (GF-1) with a wide field of view (WFV) camera and
16 m spatial resolution, and the environment satellite (HJ-1A/B) with a charge-coupled device (CCD)
sensor and 30 m spatial resolution. First, to analyze the potential application of ZY-3 MUX, GF-1
WFV, and HJ-1 CCD to extract the leaf area index (LAI) at the regional scale, this study estimated
LAI from the relationships between physical model-based spectral vegetation indices (SVIs) and
LAI values that were generated from look-up tables (LUTs), simulated from the combination of the
PROSPECT-5B leaf model and the scattering by arbitrarily inclined leaves with the hot-spot effect
(SAILH) canopy reflectance model. Second, to assess the surface reflectance quality of these sensors
after data preprocessing, the well-processed surface reflectance products of the Landsat-8 operational
land imager (OLI) sensor with a convincing data quality were used to compare the performances
of ZY-3 MUX, GF-1 WFV, and HJ-1 CCD sensors both in theory and reality. Apart from several
reflectance fluctuations, the reflectance trends were coincident, and the reflectance values of the
red and near-infrared (NIR) bands were comparable among these sensors. Finally, to analyze the
accuracy of the LAI estimated from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD, the LAI estimations from
these sensors were validated based on LAI field measurements in Huailai, Hebei Province, China.
The results showed that the performance of the LAI that was inversed from ZY-3 MUX was better
than that from GF-1 WFV, and HJ-1 CCD, both of which tended to be systematically underestimated.
In addition, the value ranges and accuracies of the LAI inversions both decreased with decreasing
spatial resolution.

Keywords: LAI; ZY-3 MUX; GF-1 WFV; HJ-1 CCD; maize; PROSPECT-5B+SAILH (PROSAIL) model

1. Introduction

Leaf area index (LAI) is defined as one-half the total foliage area per unit ground surface area [1],
and it is an important parameter for monitoring vegetation growth conditions [2,3]. LAI is a common
variable that is used for regional and global climate, ecological, and hydrological models [4,5].
LAI has been widely used in global primary productivity measurements [6], agricultural yield
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estimations [7,8], and ecological and environmental assessments [9]. High-spatial-resolution LAI
products play important roles in monitoring regional vegetation changes and evaluating the accuracy
of low- resolution LAI products [10–12].

From the Landsat-5 satellite launched in 1984 to the present, there are many moderate- to
high-resolution satellite sensors that are available in the world, such as the Landsat thematic
mapper (TM)/enhanced thematic mapper plus (ETM+)/operational land imager (OLI), Terra
advanced spaceborne thermal emission and reflection radiometer (ASTER), SPOT high resolution
geometrical (HRG), IKONOS multi-spectral (MS), Sentinel-2 multispectral imager (MSI), and the
Chinese environment satellite (HJ-1) charge coupled device (CCD), etc. Generally, LAI extracted
from this moderate- to high-resolution imagery largely depends on the empirical relationships.
Empirical expressions were established between LAI field measurements and the spectral vegetation
indices (SVIs) from isolated dates [13–19]. The most commonly used SVIs include the normalized
difference vegetation index (NDVI), the simple ratio index (SR), and the enhanced vegetation index
(EVI) [14,15,20–23]. In addition, the reduced simple ratio (RSR), the soil-adjusted vegetation index
(SAVI), and the perpendicular vegetation index (PVI) are widely used for LAI extraction [21,24–26].
When compared with LAI field measurements, the accuracies of satellite LAI estimates based on
linear and non-linear regressions of the SVI-LAI relationships have coefficient of determination (R2)
values from approximately 0.37 to 0.98 and root mean square error (RMSE) values from approximately
0.17 m2/m2 to 1.14 m2/m2 for both crops (e.g., winter wheat, maize, and soybean) and forests
(e.g., coniferous and deciduous) [16,21,23,27,28]. In addition, the SVI-LAI relationships are stronger for
crop canopies than for coniferous forests, and are weakest for deciduous forests [15,22,29]. Empirical
methods are computationally efficient when using remote sensing datasets at regional or large scales.
However, empirical relationships that typically depend on unique vegetation types and regions are
often constructed and used locally.

The physical model method, which is suitable for a variety of vegetation types, is also used
to extract LAI from moderate- to high-resolution imagery [30–37]. Canopy reflectance models
simulate the physical relationship between the canopy reflectance and the LAI in the forward
direction. The scattering by arbitrarily inclined leaves with the hot-spot effect (SAILH) model [30,32,38],
the Markov chain reflectance model (MCRM) [31], and the Li-Strahler geometric-optical model [34]
have been used to extract LAI from moderate- to high-resolution imagery. LAI has also been estimated
by indirect methods based on the inversion of canopy reflectance models, such as look-up tables (LUTs)
and hybrid methods. The hybrid methods include decision tree learning, artificial neural networks,
kernel methods, and Bayesian networks [39]. Additionally, the currently used indirect methods of
the radiative transfer model (RTM) for Landsat ETM+ and Sentinel-2 MSI data are the LUT and
neural networks [31,32,35,36]. The accuracy of satellite LAI inversions is better than SVI-LAI empirical
relationships, with R2 values from 0.54 to 0.82 and RMSE values from 0.17 m2/m2 to 0.71 m2/m2 for
crops (e.g., maize and soybean), shrubs, and planted forests [30,31,33,34].

LAI field measurements were acquired via direct and indirect methods [40]. Direct LAI
measurements, including leaf collection from deciduous forests and the destructive sampling of
crops or low shrubs, are time consuming and difficult to collect at larger areas [40]. Indirect
LAI measurement, including optical sensor-based method (such as those using the Licor LAI-2200
Plant Canopy Analyzer (LI-COR, Lincoln, NE, USA) [41], Tracing Radiation and Architecture of
Canopies (TRAC) (3rd Wave, Nepean, ON, Canada) [42], AccuPar (Decagon Devices, Inc., Pullman,
WA, USA) [43]), digital hemispherical photography (DHP), and new smartphone camera sensor
technology (such as LAISmart [44,45] and PocketLAI [46]). These indirect methods are generally
convenient, especially those that allow for LAI estimation using a smartphone, and generally efficient
over larger spatial scales.

In recent years, China has developed and launched several satellites, such as the HJ-1A/B with
a CCD sensor, the GaoFen No. 1 satellite (GF-1) with a wide field of view (WFV) camera and the
resources satellite No. 3 (ZY-3) with a multi-spectral camera (MUX). Currently, the satellite data of

307



Remote Sens. 2018, 10, 68

ZY-3 MUX, GF-1 WFV, and HJ-1 CCD have been applied for vegetation monitoring. HJ-1 CCD data
have been widely used for LAI extraction at the regional scale based on SVI-LAI relationships or
physical models [21,30,33,34,47]. In addition, GF-1 WFV data have been used to extract the fractional
vegetation cover (FVC) [48,49] and estimate LAI from the NDVI-LAI empirical relationship [21,50,51]
at the regional scale. However, there have not been any studies that have reported the extraction of
LAI from ZY-3 MUX data. One of the objectives of this study is to analyze the potential use of three
Chinese satellites, especially ZY-3 MUX, to extract LAI at the regional scale.

The study area was selected in the Huailai experiment station, Hebei Province, China. The satellite
data from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD for the study area were collected close to the date of
LAI field measurements. The LAI extraction method was a physical model-based SVI- LAI relationship
that was generated from the LUT based on the PROSPECT-5B + SAILH (PROSAIL) model with specific
input parameters for each sensor (Section 2). In order to assess the surface reflectance quality of ZY-3
MUX, GF-1 WFV, and HJ-1 CCD after data preprocessing, the well- processed surface reflectance
products of Landsat-8 OLI with a convincing data quality are used to compare the performances of
these sensors, both in theory and reality. Furthermore, the accuracy of the LAI estimation results
from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD was validated based on LAI field measurements from the
Huailai experiment station (Section 3). The up-scaled LAI inversions for ZY-3 MUX and GF-1 WFV
were also compared with the HJ-1 CCD data at the same spatial resolutions for pure and mixed pixels
(Section 3). The discussion and conclusions are presented in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Study Area and Field Measurements

The study area was at the Huailai experimental field (40◦20′55.093′ ′N, 115◦46′59.569′ ′E, altitude
488 m) in Hebei Province, China. This field is affiliated with the Chinese Academy of Sciences (CAS)
(Figure 1). The study area is in a temperate and semi-arid region with four distinct seasons, abundant
sunshine, simultaneous heat and moisture, and large temperature differences. The annual average
temperature and average precipitation are approximately 9.5 ◦C and 392 mm, respectively. The primary
vegetation type around the Huailai experimental field is farmland, and other land cover types are
water, wetland beach, and residential. Maize is the dominant crop type in this study area. The soil
type of the study area is brown soil.

Several vegetation structure parameters (e.g., leaf reflectance and transmittance, average leaf
angle, canopy spectral measurements, and LAI) and biophysical and biochemical parameters (e.g., leaf
chlorophyll-a and -b content (Cab), leaf water content (Cw), and leaf dry matter content (Cm)) were
acquired at the Huailai experimental field. The leaf reflectance and transmittance from 400 nm to
2500 nm were measured using a UV molecular spectroscopy (Lambda 900, PerkinElmer Inc., Waltham,
MA, USA). The leaf inclination angle was the angle between a leaf and its normal direction, and was
measured using a protractor. The average leaf angle is the mean leaf inclination angle for an entire
plant. The canopy and soil spectra were measured using a spectroradiometer (Analytical Spectral
Devices, ASD, Longmont, CO, USA) covering wavelengths from 400 nm to 1100 nm with a 5◦ field
of view at noon on sunny days. Cab was based on an average of six points on each leaf three times
using the SPAD 502DL plus Chlorophyll meter (Spectrum technologies, Inc., Bridgend, UK). The fresh
leaves were weighed and placed into an envelope bag. The envelope bag was then put in the oven at
105 ◦C for 30 min and then at 85 ◦C for 24 h. Cm is the weight of leaves after oven drying, and Cw is
the proportion of leaf water (fresh weight minus dry weight) to the dry weight.

In this study, LAI field measurements from maize sample plots were acquired on 31 July 2014
(yellow dots in Figure 1b). The sample plots were selected based on NDVI values from Landsat-8 OLI
according to Zeng et al. [52]. Then, the sample plots were selected in the field with a single plant type
and uniform growth base on the coordinates from global positioning system (GPS). Finally, 17 sample
plots were acquired in the study area. LAI field measurements were acquired using an LAI-2200 Plant
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Canopy Analyzer (LI-COR, Inc., Lincoln, NE, USA). The LAI of each sample plot was measured from
one above-canopy reading and nine below-canopy readings with a 45◦ view cup. The measurements
were obtained from 06:30 to 10:00 and from 16:30 to 19:30 to avoid measurement errors caused by the
direct sunlight, and the LAI value was measured twice at each site. To reduce the observer effects
and other sources of error during LAI field measurements, except for the records of the fifth view
angle (centered at 68◦) acquired from the LAI-2200 instrument, all of the LAI field measurements were
calculated based on a standard error LAI (SEL) of less than 0.5.

(a) (b) 

Figure 1. The geographic location of the study area of ZY-3 MUX based on the false color composite
(NIR-red-green) (a), and the subset study area with leaf area index (LAI) field measurements for maize
(yellow dots) (b).

2.2. Remote Sensing Data and Preprocessing

The HJ-1 satellite was launched on 6 September 2008, and the ZY-3 satellite was launched on
9 January 2012. Both the HJ-1 satellite and the ZY-3 satellite were launched from the Taiyuan Satellite
Launch Center, Shanxi Province, China. The GF-1 satellite was launched on 26 April 2013 from the
Jiuquan Satellite Launch Center, Gansu Province, China. The HJ-1, GF-1 and ZY-3 satellites are in sun
synchronous orbits at altitudes of 649 km, 645 km, and 505 km, respectively. The technical specifications
for the ZY-3 MUX, GF-1 WFV, and HJ-1 CCD sensors are shown in Table 1. Four spectral channels
that are distributed in the visible and near-infrared (NIR) spectral domain ranging from 450 nm to
900 nm are identical in these three sensors. The radiometric resolutions of the GF-1 WFV and ZY-3
MUX sensors are higher than that of HJ-1 CCD by 2 bits, which improves the detectability of changes
in the feature characteristics. The HJ-1 CCD data have a spatial resolution of 30 m, and the revisit time
is approximately four days over China due to the combination of two satellites (HJ-1A and HJ-1B)
with two cameras (CCD1 and CCD2) on each satellite. The GF-1 WFV data have a spatial resolution of
16 m and a revisit time of four days among the four combined cameras. The ZY-3 MUX data have the
highest spatial resolution of 5.8 m, but the 51 km swath width is much narrower than that of the other
two cameras.
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Table 1. Technical specification of the ZY-3 MUX, GF-1 WFV, and HJ-1 CCD cameras.

Sensor ZY-3 MUX GF-1 WFV HJ-1 CCD

Spectral characteristics

Bands Wavelength
(μm) Bands Wavelength

(μm) Bands Wavelength
(μm)

1 0.45–0.52 1 0.45–0.52 1 0.43–0.52
2 0.52–0.59 2 0.52–0.59 2 0.52–0.60
3 0.63–0.69 3 0.63–0.69 3 0.63–0.69
4 0.77–0.89 4 0.77–0.89 4 0.76–0.90

Spatial resolution (m) 5.8 16 30
Radiometric resolution (Bit) 10 10 8

Swath width (km) 51 200 (single); 800 (4 cameras) 360 (single); 700 (two)
Revisit time (days) 5 4 4

2.2.1. Remote Sensing Data Acquisition

The ZY-3 MUX data were acquired from the Satellite Surveying and Mapping Application Center
(SASMAC) of the National Administration of Surveying, Mapping and Geo-information of China
(NASG) [53]. The GF-1 WFV data were acquired from the Gaofen satellite data and information service
system (GFDIS) [54], and the HJ-1 CCD data were acquired from the China Centre for Resources
Satellite Data and Application (CRESDA) [55]. The surface reflectance data of Landsat-8 OLI for the
study area was acquired from the United States Geological Survey (USGS) [56]. The Landsat-8 OLI
data was used to evaluate the data stability of different sensors among ZY-3 MUX, GF-1 WFV and
HJ-1 CCD. The acquisition information for these satellite data sources is provided in Table 2. All of the
images over the study area were cloudless.

Table 2. Satellite data acquisition information for ZY-3 MUX, GF-1 WFV, HJ-1 CCD and Landsat-8 OLI.

Sensor Date
Local
Time

Solar Zenith
Angle

Solar Azimuth
Angle

View Zenith
Angle (Mean)

View Azimuth
Angle (Mean)

ZY-3 MUX 20140727 11:15:23 25.28◦ 216.38◦ 0◦ 216.38◦
GF-1 WFV 20140727 11:50:19 22.08◦ 201.62◦ 29.97◦ 74.57◦
HJ-1 CCD 20140728 10:00:09 34.97◦ 295.49◦ 25◦ 53.59◦

Landsat-8 OLI 20140725 10:59:34 27.67◦ 131.88◦ 0◦ 95.31◦

2.2.2. Remote Sensing Data Preprocessing

Preprocessing of the remote sensing data included radiometric calibration, geometric correction,
and atmospheric correction. First, radiometric calibration converted the digital number value of the
raw image to radiance based on Equation (1) [55].

Le(λe) = Gain · DN + O f f set (1)

where Le(λe) is the radiance, and Gain and Offset are the calibration coefficients. The unit is
W ×m−2 × sr−1 ×μm−1 The Gain and Offset values for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD were
obtained from the CRESDA and are shown in Table 3 [55].

However, due to the unstable radiation performance of HJ-1 CCD data, a cross-radiometric
calibration was conducted using a method that considers the characteristics of the surface bidirectional
reflectance distribution function (BRDF) [47,57]. The calibration accuracy of the four spectral bands
of the HJ-1 CCD sensor was 5%, which meets the requirements for absolute radiometric calibration
accuracy [58].

The radiance was then converted to top of atmosphere (TOA) reflectance based on Equation (2) [16].

ρ =
π · L · d2

ESUNλ · cos θs
(2)
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where ρ is TOA reflectance, π is 3.1415, L is the sensor spectral radiance, d is the earth-sun distance
in astronomical units, ESUNλ is the extraterrestrial solar irradiance, and θs is the solar zenith angle.
The ESUNλ values for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD are shown in Table 3 [55].

Because of the high quality of the raw ZY-3 MUX and GF-1 WFV data on clear days,
the atmospheric correction of these images was conducted using FLAASH in Environment and
Visualizing Images (ENVI) software. However, due to the unstable data quality of HJ-1 CCD,
the cross-radiometric calibration and atmospheric correction were accomplished simultaneous using
the method proposed by Zhong et al. [57,59]. The atmospheric correction for the HJ-1 CCD image was
conducted using a space-based aerosol optical depth (AOD) retrieval method [59]. The differences
between the AOD retrieved from the HJ-1 CCD data and that from the Aerosol Robotic Network
(AERONET) measurements ranged from –0.14 to 0.31. Approximately 50% of the derived AOD values
correlated with AERONET AOD values with low discrepancy (less than 0.15), and the RMSE values
for Xianghe and Beijing were 0.18 and 0.21, respectively.

Table 3. The calibration coefficients and extraterrestrial solar irradiance values for ZY-3 MUX, GF-1
WFV, and HJ-1 CCD.

Sensor
HJ-1 CCD GF-1 WFV ZY-3 MUX

Gain Offset ESUN˘ Gain Offset ESUN˘ Gain Offset ESUN˘

Band 1 1.1451 4.6344 1929.81 0.1713 0.0000 1968.12 0.2509 0.0000 1958.30
Band 2 1.1660 4.0982 1831.14 0.1600 0.0000 1841.69 0.2338 0.0000 1855.71
Band 3 0.7647 3.7360 1549.82 0.1497 0.0000 1540.30 0.1885 0.0000 1548.72
Band 4 0.7558 0.7385 1078.32 0.1435 0.0000 1069.53 0.2035 0.0000 1085.60

The ZY-3 MUX image was corrected by its own coordinate file (*.rpc) that was acquired from
NASG [53]. The geometric corrections of the HJ-1 CCD and GF-1 WFV images were conducted in
ENVI software using the geometric correction image of ZY-3 MUX as the reference, and a second-order
polynomial transformation with bilinear interpolation was used in the resampling. There were
approximately 20 control points that were manually selected from the images, and the geometric
registration error was less than one pixel of the images. The remote sensing data for the selected study
area were projected to the World Geodetic System of 84 (WGS-84).

2.3. Generating the Forward Simulations

The widely used turbid medium model, i.e., SAILH, which is corrected by the hot-spot parameter,
was selected due to its ease of use and consistent performance in validation practices [60,61]. The input
parameters in the SAILH model included LAI, average leaf inclination angle (ALA), hot-spot, soil
reflectance, leaf reflectance, leaf transmittance, diffuse fraction, solar zenith angle (SZA), view zenith
angle (VZA), and relative azimuth angle (RAA). The leaf reflectance and transmittance values
were simulated by the PROSPECT-5B model using several biochemical and biophysical parameters,
including leaf mesophyll structure (N), Cab, Cm, Cw, carotenoid content (Car), and brown pigment
content (Cbrown) [62]. The PROSPECT-5B+SAILH (PROSAIL) model has been used for more than
twenty years for the retrieval of vegetation biophysical properties [63,64]. Previous studies have
demonstrated that LAI, ALA, and Cab have significant influences on canopy reflectance in the visible
and NIR bands. However, other parameters, e.g., N, Cm, and Cw, are less sensitive to the canopy
reflectance corresponding to the satellite bands [63,65]. Therefore, the parameters, e.g., N, Cm, Cw Car,
and Cbrown, in the PROSAIL model were fixed during the simulation to reduce the complexity and
improve the efficiency of the LAI inversion. In this study, the soil reflectance for the PROSAIL model
was acquired from field measurements. The parameters for maize, e.g., N, Cm, Cw Car, and Cbrown,
were fixed according to LOPEX’93. ALA varied from 40◦ to 70◦ at intervals of 10◦; Cab varied from
40 to 60 at intervals of 10; SZA varied from 0◦ to 85◦ at intervals of 1◦; VZA varied from 0◦ to 35◦ at
intervals of 1◦; and, LAI varied from 0 to 8 at intervals of 0.1 (Table 4).
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Table 4. The input variables for the PROSAIL model used to generate the forward simulation.

Parameters Abbreviations Units Value Range Interval

Leaf mesophyll structure N - 1.518 -
Leaf chlorophyll-a and -b content Cab μg/cm 40–60 10

Leaf dry matter content Cm g/cm 0.003662 -
Leaf water content Cw cm 0.0131 -
Carotenoid content Car μg/cm 10 -

Brown pigment content Cbrown - 0.05 -
Average leaf inclination angle ALA ◦ 40–70 10

Hot-spot Hot-spot - 0.1 -
Leaf area index LAI m2/m2 0–8 0.1

Solar zenith angle SZA ◦ 0–85 1
View zenith angle VZA ◦ 0–35 1

The PROSAIL model was then run to simulate the actual satellite observations of canopy
reflectance based on the spectral response curves of ZY-3 MUX, GF-1 WFV, and HJ-1 CCD, which were
acquired from CRESDA [55], and of Landsat-8 OLI, which was acquired from USGS [56] (Figure 2).
The reflectance simulations of each band based on each satellite spectral response can be calculated
from Equation (3) [16].

ρs(λ) =

∫ λmax
λmin

ρs(λi)ϕ(λi)dλ∫ λmax
λmin

ϕ(λi)dλ
(3)

where ρs(λ) is the simulated band reflectance of the satellite sensor, λmin and λmax are the lower and
upper band wavelength limits, ρs(λi) is the simulated hyperspectral reflectance for the ith wavelength,
and ϕ(λi) is the spectral response coefficient of the different sensors for the ith wavelength.

 

Figure 2. Spectral response curves for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD from CRESDA, and for
Landsat-8 OLI from USGS.

2.4. LAI Inversion Procedures

Before implementing the LAI inversion, the NDVI was used to separate the vegetation and
non-vegetation pixels, and the non-vegetation pixels were removed. Generally, the NDVI values
were less than 0.05 for bare soil [66,67]. Therefore, the pixels with NDVI values of less than 0.05 were
identified as non-vegetation and were set to a filled value (marked as 0).

The LAI inversion method was chosen from the SVI-LAI empirical relationship based on the
PROSAIL physical model to reduce the influences from the differences between the various sensors
and spectral response curves and the residual errors from data preprocessing. The selected SVIs of
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this study include the NDVI and an NDVI combined with the NIR reflectance of vegetation (NIRv).
The NDVI is a key parameter that is used to improve the accuracy of yield prediction for sugar
beets, spring wheat, corn, and sunflower based on the NDVI relationships with optical signals under
different nitrogen (N) and sulfur (S) contents [68–76]. Notably, the NDVI has been widely used for LAI
extraction from high spatial resolution imagery [21,22,24,25,29,77]. NIRv is a new index that directly
reflects the proportion of photons intercepted by chlorophyll, and it has a stronger linear relationship
with LAI than does the NDVI [78].

Based on the simulation input parameters in Table 4, there are 2,972,160 records in the LUTs
for each sensor. During the process of LAI inversion, the specific relationship between SVI and LAI
was established according to the values of VZA and SZA for each sensor. Under the illumination
and observation conditions of each sensor in the study area, the specific NDVI-LAI and NIRv-LAI
exponential relationships for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD were established from the PROSAIL
LUT simulations for each sensor (details shown in Table 5). The NDVI and NIRv both had strong
relationships with the LAI, and the R2 values for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD were all higher
than 0.91. Moreover, all of the R2 values for the NIRv-LAI exponential relationship were higher than
those of the NDVI-LAI exponential relationship. LAI estimated from the specific NDVI-LAI and
NIRv-LAI exponential relationships based on the image NDVI and NIRv calculations for ZY-3 MUX,
GF-1 WFV, and HJ-1 CCD. The flowchart of the LAI inversion method based on ZY-3 MUX, GF-1 WFV,
and HJ-1 CCD imagery is shown in Figure 3.

Table 5. The SVI-LAI exponential relationships for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD.

SVIs
NDVI-LAI Relationship NIRv-LAI Relationship

Expression R2 Expression R2

ZY-3 MUX LAI = 0.0484 exp(5.2397 * NDVI) 0.91 LAI = 0.1725 exp(6.4087 * NIRv) 0.98
GF-1 WFV LAI = 0.0385 exp(5.4728 * NDVI) 0.92 LAI = 0.1578 exp(5.6711 * NIRv) 0.98
HJ-1 CCD LAI = 0.0380 exp(5.4241 * NDVI) 0.91 LAI = 0.1543 exp(5.6960 * NIRv) 0.98

 

Figure 3. Flowchart of the LAI inversion method based on ZY-3 MUX, GF-1 WFV, and HJ-1 CCD.

2.5. Assessment of LAI Inversions for a Heterogeneous Surface

The performances of the LAI inversions from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD data were
evaluated using the LAI field measurements. Three indices, R2, RMSE, and bias (BIAS), were used
to evaluate the absolute discrepancies between the LAI inversions and LAI field measurements.
R2 describes the entire correlation between the LAI inversions and LAI field measurements. RMSE
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represents the standard deviation between the LAI inversions and LAI field measurements. Bias is
a systematic variation that results from a random sampling or estimation process that does not give
accurate results on average.

The heterogeneity of the surface vegetation has a strong effect on the LAI inversions at different
spatial resolutions. Therefore, the spatial representativeness of the LAI field measurements was
assessed based on the LAI inversions from the NDVI-LAI relationships for ZY-3 MUX data within a
30 × 30 m subpixel region. The spatial representativeness was evaluated using the relative absolute
error (RAE) and the coefficient of sill (CS), according to Xu et al. [79]. In this study, the thresholds
of RAE and CS were 10% for the representativeness evaluation based on LAI. Values of RAE and
CS that were higher than 10% represented significant heterogeneity of the surface and lower spatial
representativeness of the LAI field measurements. Then, the LAI inversions for ZY-3 MUX, GF-1
WFV, and HJ-1 CCD were evaluated based on the high and low spatial representativeness of the LAI
field measurements.

Finally, a 3 × 3 km2 range of LAI inversions was extracted from the NDVI-LAI relationships to
further compare the LAI inversions from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD at a consistent spatial
resolution. After inversion of LAI from the remote sensing data, the LAI result from ZY-3 MUX was
resampled to 16 and 30 m spatial resolutions, and the LAI result from GF-1 WFV was resampled to
a 30 m spatial resolution using an upscaling method that considered the surface heterogeneity that
described the variance of NDVI. Then, we compared the LAI inversions at the corresponding spatial
resolutions. The LAI upscaling function is expressed in Equation (4) [80].

LAIupscaling = LAImean − 1
2

σNDVI × g′′ (mNDVI) (4)

where LAIupscaling is the LAI value after upscaling from the high spatial resolution to the low spatial
resolution, LAImean is the mean LAI value at the high spatial resolution within a pixel of low spatial
resolution, and σNDVI and g′′ (mNDVI) are the variance and the second order differential of the mean
NDVI value at the high spatial resolution within a pixel with low spatial resolution that was calculated
from the NDVI-LAI exponential function, respectively.

3. Results and Analysis

The LAI in the study area was inversed based on the proposed LAI method for ZY-3 MUX, GF-1
WFV, and HJ-1 CCD, and the accuracy of the LAI inversions was validated based on the LAI field
measurements of maize crops. The degree of the influence of the spatial resolution on the LAI inversion
was analyzed using an upscaling method to determine the LAI differences among different sensors
with varied spatial resolutions. The reflectance in the red and NIR bands was compared between ZY-3
MUX, GF-1 WFV, HJ-1 CCD, and Landsat-8 OLI to illustrate the feasibility of using LAI inversion with
three Chinese satellite sensors.

3.1. LAI Validation for ZY-3 MUX, GF-1 WFV and HJ-1 CCD

The LAI inversions for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD based on the proposed LAI method
are shown in Figure 4. The LAI inversions from (a) to (c) were inversed from the NDVI-LAI exponential
relationships in Table 5, and the LAI inversions from (d) to (f) were inversed from the NIRv-LAI
exponential relationships in Table 5. The high LAI values were in the forest and cropland regions
around the reservoir, whereas the low LAI values were in the wetland beach and grassland regions in
the right corner and bottom of the images. Overall, the spatial variations in these three LAI inversions
were similar. However, the values of the LAI inversions for the GF-1 WFV and HJ-1 CCD images were
much lower, as is especially apparent in Figure 4c,e,f.

The performances of the proposed LAI estimation method for the ZY-3 MUX, GF-1 WFV,
and HJ-1 CCD data were validated based on the LAI field measurements from 17 maize samples
(Figure 5). Although the R2 values of the field measurements, compared with the NDVI-LAI inversions
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from GF-1 WFV (R2 = 0.66) and HJ-1 CCD (R2 = 0.74), were higher than that of ZY-3 MUX (R2 = 0.53),
the NDVI-LAI inversions from GF-1 WFV and HJ-1 CCD tended to be systematically underestimated,
especially for the higher LAI values. The RMSE and BIAS of the NDVI-LAI inversions from ZY-3 MUX
(RMSE = 0.94 and BIAS = −0.73) were lower than those from GF-1 WFV (RMSE = 1.30 and BIAS = −1.19)
and HJ-1 CCD (RMSE = 1.35 and BIAS = −1.22). Overall, the performance of the LAI inversed from the
NDVI-LAI relationship for ZY-3 MUX was better than that from GF-1 WFV and HJ-1 CCD (Figure 5a–c).
In addition, the performance of the method for LAI inversed from the NIRv-LAI relationships for
GF-1 WFV and HJ-1 CCD was not sufficient, because the NIRv-LAI relationships largely depended on
the reflectance of the NIR band, which was significantly underestimated in the NDVI-LAI inversions
(Figure 5e,f). The performance of the method for LAI inversed from the NIRv-LAI relationships was
better for ZY-3 MUX (R2 = 0.62, RMSE = 0.54 and BIAS = −0.02) than for GF-1 WFV and HJ-1 CCD
(Figure 5d). Because the LAI field measurements were all observed on the same day (31 July 2014),
apart from one LAI value of 1.8, the other LAI values varied from 2.5 to 4.5. The concentrated LAI
measurements led to small R2 values between the LAI inversions and field measurements, as shown in
Figure 5. Moreover, the RMSE and BIAS reflected the systematical underestimation of LAI estimations
from GF-1 WFV and HJ-1 CCD.

(a) (b) (c) 

(d) (e) (f) 

Figure 4. LAI inversion results for ZY-3 MUX (a,d), GF-1 WFV (b,e), and HJ-1 CCD (c,f) in Huailai,
Hebei Province.
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(a) (b) (c) 

(d) (e) (f) 

Figure 5. Comparisons of the LAI inversions with the field measurements for ZY-3 MUX (a,d),
GF-1 WFV (b,e), and HJ-1 CCD (c,f).

3.2. Influence of Spatial Resolution on LAI Inversion

Spatial resolution influenced the LAI inversions from all the different sensors: the value ranges and
accuracies of the LAI inversions both decreased with decreasing spatial resolution (Figures 4 and 5).
The spatial representativeness of the LAI field measurements was first assessed by the RAE and CS,
according to the methods in Section 3.3 to determine the differences between the LAI inversions from
the NDVI-LAI relationships for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD with different spatial resolutions.
The LAI inversions from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD were compared with the different spatial
representativeness of LAI field measurements, and the results are shown in Figure 6. The performance
of the LAI inversions from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD using the LAI field measurements
with high spatial representativeness was higher than that obtained using measurements with low
spatial representativeness. The LAI inversions using measurements of low spatial resolution exhibited
various degrees of underestimation. However, although the performance of the LAI inversions using
the LAI field measurements with high spatial representativeness appears to be better in Figure 6a,
the LAI inversions for GF-1 WFV and HJ-1 CCD were systematically more underestimated than were
those for ZY-3 MUX. It is possible that the size of the pixels of the ZY-3 MUX data was closer to the
actual surface. However, the lower spatial resolution of the GF-1 WFV and HJ-1 CCD data recorded
more comprehensive information about the surface objects; thus, the vegetation signal was weakened.
Therefore, the accuracies of the LAI inversions from the lower-spatial-resolution data were generally
lower than those of the higher- spatial-resolution data.
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(a) (b)

Figure 6. Validation of the LAI inversions from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD using field data
with high spatial representativeness (a) and low spatial representativeness (b).

In addition, this study extracted a 3 × 3 km2 range of LAI inversions from the NDVI-LAI
relationships to compare the accuracy of LAI inversions among ZY-3 MUX, GF-1 WFV, and HJ-1
CCD at a consistent spatial resolution. The LAI result of ZY-3 MUX was up-scaled to 16 m and 30 m
spatial resolution, and the LAI result of GF-1 WFV was up-scaled to 30 m spatial resolution using the
upscaling method described in Section 3.3. The up-scaled LAI inversions with 30 m spatial resolution
from ZY-3 MUX and GF-1 WFV were compared with the LAI inversion from HJ-1 CCD (Figure 7).
The results indicated that the distribution patterns of the LAI inversions were consistent, and that there
were higher LAI values in the top left corner of the image near cropland and lower LAI values near
roads and in residential areas. However, the LAI inversions that were up-scaled from higher spatial
resolution (e.g., ZY-3 MUX and GF-1 WFV) reflected more detail than did the HJ-1 CCD inversion at
the same 30 m spatial resolution.

(a) (b) (c) 

Figure 7. LAI inversions up-scaled to 30 m spatial resolution from ZY-3 MUX (a), GF-1 WFV (b),
and HJ-1 CCD (c).

The pixels that were extracted from the LAI inversions in the 3 × 3 km2 area were used to further
analyze the differences among the three LAI inversions at the same spatial resolution. The pixels in the
subregion were separated into pure pixels with uniform surface types and mixed pixels with different
surface types, including different vegetation types, roads, or residential areas. The relationships
between the LAI inversions from ZY-3 MUX data that were up-scaled to 16 m spatial resolution and
those from GF-1 WFV data and the relationships between the LAI inversions from the ZY-3 MUX or
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GF-1 WFV data that were up-scaled to 30 m spatial resolution and the LAI inversions from HJ-1 CCD
data are shown in Figure 8, for both the pure (blue dots) and mixed (red dots) pixels. Generally, the
performances of the LAI inversions between the HJ-1 CCD data and the up-scaled results of the ZY-3
MUX or GF-1 WFV data were preferable for both pure and mixed pixels. The accuracies of the LAI
inversions for pure pixels are shown in Figure 8b,c, and these results presented a better agreement
between the up-scaled LAI inversions from ZY-3 MUX (R2 = 0.87, RMSE = 0.42 and BIAS = 0.12) or
GF-1 WFV (R2 = 0.89, RMSE = 0.66 and BIAS = −0.30) and HJ-1 CCD. In contrast, the up-scaled LAI
inversions from ZY-3 MUX and GF-1 WFV, as shown in Figure 8a, did not perform as well for the pure
(R2 = 0.58, RMSE = 0.67 and BIAS = −0.45) or the mixed (R2 = 0.69, RMSE = 0.66 and BIAS = −0.48)
pixels. The up-scaled LAI inversions for mixed pixels from ZY-3 MUX (R2 = 0.52, RMSE = 0.52 and
BIAS = 0.06) and GF-1 WFV (R2 = 0.63, RMSE = 0.58 and BIAS = −0.24) at 30 m spatial resolution were
both substantially different from the HJ-1 CCD inversion (Figure 8b,c). In particular, the ZY-3 MUX
sensor had much higher performance than the HJ-1 CCD, which demonstrated that the differences
between the LAI inversions increased with the increasing spatial resolution between the two sensors.

(a) (b) (c) 

Figure 8. LAI inversions up-scaled to 16 m spatial resolution from ZY-3 MUX plotted against GF-1
WFV LAI inversions (a) and LAI inversions up-scaled to 30 m spatial resolution from ZY-3 MUX
(b) or GF-1 WFV (c) plotted against HJ-1 CCD LAI inversions for pure (blue dots) and mixed (red
dots) pixels.

3.3. Comparison of Reflectance among Different Sensors

A correlation analysis was used to compare the accuracy of the reflectance among the three
different sensors at different LAI values. The reflectance values of ZY-3 MUX, GF-1 WFV, and HJ-1
CCD in the red and NIR bands were extracted, according to the coordinates of the LAI field
measurements. The relationships between the LAI field measurements and the corresponding
reflectance in the red and NIR bands are shown in Figure 9. The reflectance values of ZY-3
MUX, GF-1 WFV, and HJ-1 CCD decreased with increasing LAI, and the reflectance values were
much more scattered in the red band than in the NIR band (Figure 9a). The R2 values between
the reflectance and the LAI were 0.49, 0.50, and 0.59 for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD,
respectively. However, the reflectance of the red band for HJ-1 CCD easily reached saturation when
the LAI was greater than 3. The reflectance in the NIR band increased with LAI (Figure 9b) in all
sensors, and the R2 values between the reflectance and the LAI were higher than in the red band,
which were 0.66, 0.45, and 0.56 for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD, respectively. The degree
of variation of the NIR reflectance was higher than the variation in the red reflectance. This was
especially true for ZY-3 MUX, which had the highest reflectance values. However, the trends of the
NIR reflectance variations were more coincident among ZY-3 MUX, GF-1 WFV, and HJ-1 CCD.
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(a) (b)

Figure 9. Reflectance in the red band (a) and the NIR band (b) varied with LAI field measurements for
ZY-3 MUX, GF-1 WFV, and HJ-1 CCD.

To determine the influences of different sensor spectral response functions, the reflectance in the
red and NIR bands for Landsat-8 OLI and the three Chinese satellite sensors (i.e., ZY-3 MUX, GF-1
WFV, and HJ-1 CCD) were simulated from the PROSAIL model based on the same values of input
variables presented in Table 4, with SZA at 30◦, VZA at 0◦, and LAI varying from 0 to 8 at intervals
of 0.1. The theoretical differences in reflectance in the red or NIR band were compared between the
simulations of Landsat-8 OLI and those of ZY-3 MUX, GF-1 WFV, or HJ-1 CCD (Figure 10). The results
showed that the individual reflectances of ZY-3 MUX, GF-1 WFV, and HJ-1 CCD were higher than
those of Landsat-8 OLI in the red band (Figure 10b) and lower than those of Landsat-8 OLI in the NIR
band (Figure 10c). The reflectance in the red band for HJ-1 CCD and that in the NIR band for GF-1
WFV were each close to the corresponding bands of Landsat-8 OLI. The differences in reflectance in
the NIR band were larger than those in the red band. These differences occurred because the NIR
spectral response function of Landsat-8 OLI was much narrower than those of the Chinese satellite
sensors for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD, as shown in Figure 2. In addition, the difference in
reflectance between Landsat-8 OLI and each of the Chinese satellite sensors was greatly influenced by
the sensor’s spatial resolution. The reflectance that was theoretically closest to that of Landsat-8 OLI
was that of HJ-1 CCD with 30 m spatial resolution, followed by that of GF-1 WFV.

(a) (b) (c) 

Figure 10. Reflectance in the red and NIR bands with LAI from 0 to 8 at 0.1 intervals for ZY-3 MUX, GF-1
WFV, HJ-1 CCD, and Landsat-8 OLI (a), and difference in reflectance in the red (b) and NIR (c) bands
between Landsat-8 OLI and each of ZY-3 MUX, GF-1 WFV, and HJ-1 CCD for maize simulations.

To analyze the stability of the different sensors, the actual differences of reflectance in the red
and NIR bands were compared between Landsat-8 OLI and each of ZY-3 MUX, GF-1 WFV, and HJ-1
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CCD. The reflectance data of the four sensors were compared at the same spatial resolution of 30 m;
thus, the mean values of reflectance for ZY-3 MUX and GF-1 WFV were compared with Landsat-8 OLI
reflectance values. Approximately 7000 pixels of uniform cropland were extracted from Landsat-8 OLI,
ZY-3 MUX, GF-1 WFV, and HJ-1 CCD images. The percentage density plots of reflectance differences
between Landsat-8 OLI and each of ZY-3 MUX, GF-1 WFV and HJ-1 CCD in the red and NIR bands
are shown in Figure 11. The majority of reflectance values of ZY-3 MUX and HJ-1 CCD were higher
than those of Landsat-8 OLI in both the red and NIR bands (Figure 11a,c). Most of the reflectance
values of GF-1 WFV were lower than those of Landsat-8 OLI in the red band and higher than those
of Landsat-8 OLI in the NIR band (Figure 11b). However, due to the similar observation geometry
conditions between ZY-3 MUX and Landsat-8 OLI, with near nadir observations of Landsat-8 OLI
and an SZA of 27.67◦, the reflectance differences between ZY-3 MUX and Landsat-8 OLI were lower
than those between GF-1 WFV or HJ-1 CCD and Landsat-8 OLI (Figure 11a). In addition, the sensor
stability in the NIR band was higher than that in the red band for all three Chinese satellite sensors,
with lower reflectance differences from Landsat-8 OLI.

(a) (b) (c) 

Figure 11. Density scatter plots of the reflectance difference in the red and NIR bands between
Landsat-8 OLI and each of ZY-3 MUX (a), GF-1 WFV (b), and HJ-1 CCD (c) for croplands.

4. Discussion

The discrepancies for different instruments or platforms greatly influenced the accuracy of LAI
inversion. The factors that influenced LAI inversion included the sensor spectral response function,
sun-view geometry, and data preprocessing errors [16,51]. The maximal NDVI difference among ZY-3
MUX, GF-1 WFV, and HJ-1 CCD in theory reached 2.62% due to the different sensor spectral response
functions (Figure 10). Because of the similar satellite transit period in the study area, the SZA values
of these three sensors were approximately equal, but the VZA difference among these three sensors
was approximately 30◦. Based on the reflectance in the red and NIR bands in Figure 9, the maximum
NDVI difference between ZY-3 MUX, GF-1 WFV, and HJ-1 CCD was 9.74%. The error of geometric
correction was less than one pixel for each sensor image in this study. For different sensor resolutions,
the one pixel error of geometric correction was 5.8 m for ZY-3 MUX, 16 m for GF-1 WFV and 30 m for
HJ-1 CCD. In addition, because of the unstable data quality of HJ-1 CCD, cross-radiometric calibration
was performed. In this case, atmospheric correction was achieved based on the method proposed by
Zhong et al. [57,59]. After all of the data preprocessing steps, there is still a systematically discrepancies
of reflectance (with maximum value of 0.1), both in red and NIR bands when compared with those
of Landsat-8 OLI in Figure 11. Therefore, the accuracy of data preprocessing for multiple sensors
was the dominant factor that influence the LAI inversion difference among ZY-3 MUX, GF-1 WFV,
and HJ-1 CCD.

NIRv, which combined NIR reflectance with the NDVI, was proposed to accurately estimate the
global terrestrial gross primary production (GPP) [78]. NIRv is not easily saturated when compared
with the NDVI; therefore, it can be applied to improve the LAI estimation. In this study, NIRv was
used to estimate LAI from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD. The performance of LAI inversion
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based on the NIRv-LAI exponential relationship for ZY-3 MUX was best, as shown in Figure 5d.
Notably, NIRv depends largely on NIR reflectance. If the NIR reflectance contains noise, the NIRv
will deviate more than the NDVI from actual values. NDVI, as a normalized index that can eliminate
the fluctuations in the red and NIR bands, and the performance of LAI inversion from the NDVI-LAI
relationship was better than that from NIRv-LAI relationship (Figure 5b,c,e,f). In addition, because
of the low saturation of NIRv, the superiority of NIRv in LAI inversion will be more apparent when
applied for the inversion of high LAI values, such as those of the forests, but not for small values,
such as those of the crops as analyzed in this paper.

Currently, the LAI estimation methods at the regional scale are generally based on a single sensor.
The primary restriction for generating regional LAI products with moderate to high spatial resolution
is the limited number of sensor observations during a specific period. The multi-sensor data during
a specific period can greatly increase the number of observations and improve the accuracy of LAI
inversion. The sensors with similar spatial resolution, such as ZY-3 MUX, GF-1 WFV, HJ-1 CCD,
Landsat-8 OLI, and Sentinel-2, provide a combined multi-sensor dataset for generating LAI products
with moderate to high resolutions. The multi-sensor data have more VZA, and the multi-angular
observations from multiple sensors are helpful for improving the accuracy of LAI inversion. However,
due to the differences in sensor characteristics, geometric and radiometric normalization between
different sensors are necessary.

5. Conclusions

This study analyzed the application of LAI inversed from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD
data. The method of LAI extraction was based on the SVI-LAI relationship for ZY-3 MUX, GF-1
WFV, and HJ-1 CCD, which was simulated from the PROSAIL model. The LAI inversions were
validated using LAI field measurements of maize in Huailai, Hebei Province, China. Regarding
the sensor band settings of three Chinese satellite sensors (ZY-3 MUX, GF-1 WFV, and HJ-1 CCD),
the performances of these satellite sensors were comparable to that of Landsat-8 OLI. However,
the reflectance of the ZY-3 MUX, GF-1 WFV, and HJ-1 CCD images, which was influenced by SZA,
VZA, and data processing methods, differed to varying degrees from the reflectance of the Landsat-8
OLI image. The ZY-3 MUX with similar observation geometry conditions as those of Landsat-8 OLI,
showed better performance than did GF-1 WFV and HJ-1 CCD in the study area. When compared
with the LAI field measurements, the results showed that the performances of the LAI that was
inversed from the NIRv-LAI exponential relationships for ZY-3 MUX (R2 = 0.62, RMSE = 0.54 and
BIAS = −0.02) were better than the others. However, the performances of the LAI that was inversed
from the NIRv-LAI relationships for GF-1 WFV and HJ-1 CCD did not perform as well because
of the larger variations in the NIR reflectance. In contrast, the LAI inversions from the NDVI-LAI
relationships for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD were much more stable because the NDVI is
a normalized index that can eliminate the fluctuations in the reflectance in the red and NIR bands.
Overall, LAI inversions tended to be systematically underestimated, especially for the higher LAI
values. The scaling effects of the different spatial resolutions could not be ignored, which demonstrated
that the LAI inversion differences increased with larger variations in the spatial resolution between the
two sensors, especially between ZY-3 MUX and HJ-1 CCD, for mixed pixels. However, more vegetation
types and multi-temporal data at different spatial resolutions in LAI inversions need further study.
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Abstract: Leaf area index (LAI) is a critical vegetation structural parameter in biogeochemical and
biophysical ecosystems. High-resolution LAI products play an essential role in regional studies.
Empirical methods, which normally use field measurements as their training samples and have been
identified as the most commonly used approaches to retrieve structural parameters of vegetation from
high-resolution remote-sensing data, are limited by the quality of training samples. Few efforts have
been made to generate training samples from existing global LAI products. In this study, two methods
(a homogeneous and pure pixel filter method (method A) and a pixel unmixing method (method B))
were developed to extract training samples from moderate-resolution imaging spectroradiometer
(MODIS) surface reflectance and LAI products, and a support vector regression (SVR) algorithm
trained by the samples was used to retrieve the high-resolution LAI from Landsat data at Baoding,
situated in the Hebei Province in China, and Des Moines, situated in Iowa, United States. For the
homogeneous and pure pixel filter method, two different sets of training samples were designed.
One was composed of upscaled Landsat reflectance at the 500-m resolution and MODIS LAI products
(dataset A1); the other was composed of MODIS reflectance and LAI products (dataset A2). With them,
two inversion models were developed using SVR. For the pixel unmixing method, the training
samples (dataset B) were extracted from unmixed MODIS surface reflectance and LAI products
at 30-m resolution, and the third inversion model was obtained with them. LAI inversion results
showed that good agreement with field measurements was achieved using these three inversion
models. The R2 (coefficient of determination) value and the root mean square error (RMSE) value
were computed to assess the results. For all tests, the R2 values are higher than 0.74 and RMSE values
are less than 0.73. These tests showed that three models for the two methods combined with MODIS
products can retrieve 30-m resolution LAI from Landsat data. The results of the pixel unmixing
method was slightly better than that of the homogeneous and pure pixel filter method.

Keywords: leaf area index; MODIS products; Landsat; high resolution; homogeneous and pure pixel
filter; pixel unmixing

1. Introduction

Leaf area index (LAI) is defined as half of the total leaf area per ground area [1]. It is an
important input parameter in land biogeochemical and biophysical ecosystems [2,3]. A variety
of global LAI products have been produced from satellite data acquired by the advanced very
high resolution radiometer (AVHRR) [4,5], the moderate-resolution imaging spectroradiometer
(MODIS) [6,7], VEGETATION [8,9], and the multiangle imaging spectroradiometer (MISR) [10], and so
forth. However, the existing global LAI products’ spatial resolutions are medium or low and need to
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be improved. For example, the spatial resolution of the CYCLOPES LAI derived from VEGETATION
and the global land surface satellite LAI (GLASS LAI) derived from MODIS are 1/112◦ and 1000-m,
respectively. The spatial resolution of the MODIS LAI is 500-m (MCD15A2H, Version 6). Although
these LAI products are globally available, the spatial resolutions of the global LAI products are coarse.
This makes them mostly appropriate to global and regional studies [11–13]. High-resolution LAI
products are needed to monitor crop growth and study vegetation parameters and canopy structure at
small scales.

Quantitative inversion methods for high-resolution LAI can be classified as the empirical approach,
physical approach, and the mixed-model methods [14,15]. For these quantitative methods, the training
samples and the inversion algorithms are the most important parts. Chen et al. [16] established the
relationships between the vegetation indices from high-resolution satellite imagery and ground-based
LAI to improve the LAI inversion algorithms and validate Canada-wide LAI map products. Collecting
training samples from field measurements is difficult and the measurements are often not sufficient.
Duan et al. [17] retrieved the LAI of three typical row crops (maize, potato, and sunflower) using
a look-up table (LUT) based on the inversion of the PROSAIL model; the results indicated that the
LUT-based inversion of the PROSAIL model was suitable for LAI estimation of these three crops.
Some studies obtained training samples through radiative transfer model simulation, which needs
many input parameters and the inverse problem is ill-posed [18]. Currently, some global LAI products
can provide more information regarding land surface vegetation. Many researchers have carried out
studies based on these global LAI products [19,20]. At the same time, some research works show
that various global LAI products can be used to choose representative training samples. For example,
Xiao et al. [7] developed a method to estimate GLASS LAI based on the MODIS and CYCLOPES
LAI products using general regression neural networks (GRNNs). In this method, the MODIS and
CYCLOPES LAI products were selected as training samples to train the GRNNs. However, the GLASS
LAI products still have low spatial resolution, at 1000-m. In order to retrieve high-resolution LAI,
Gao et al. [21] used the MODIS LAI products as a reference to retrieve LAI from Landsat imagery.
Results showed that the approach could produce accurate estimates of Landsat LAI for major crops.
Nowadays, similar studies on generating training samples from existing global LAI products number
too few, but it is a meaningful and important research for high-resolution LAI retrieval.

On the other hand, the inversion algorithm is also an important focus. There are many inversion
algorithms for the inversion of LAI, such as the traditional regression model algorithms, which describe
the linear or nonlinear relationships of LAI with surface reflectance or the derived vegetation indices
(VIs). Vina et al. [22] and Wang et al. [23] both used mathematical statistical approaches to build the
LAI–VI relationships to estimate LAI. However, mathematical statistical approaches have poor fitting
ability and encounter difficulty in solving multidimensional problems. Chai et al. [24] constructed
recurrent neural networks by fusing the MODIS and VEGETATION products to estimate time series
LAI. Although the results showed that the method can be helpful to improve the quality of LAI products
of the typical vegetation types, the neural networks are too sensitive to the parameters in models [25]
and cannot overcome the phenomena of “over-learning” and “local minimum” [26], which would
affect the precision of the estimation. Support vector regression (SVR) is a machine-learning method
which has a strong nonlinear fitting capability, and the kernel function can solve high-dimensional
problems [27]. Durbha et al. [18] adopted a one-dimensional canopy reflectance model (PROSAIL) to
retrieve LAI from MISR data using an SVR algorithm, and proposed a kernel-based regularization
method to improve the SVR algorithm to solve the ill-posed problem.

The objective of this paper is to improve the high-resolution LAI retrieval approach using the
SVR algorithm, especially focusing on the methods whereby to obtain high-quality training samples
from the MODIS products. Three different sampling datasets for two methods were compared over
two experimental sites. One site is located in the Heibei Province, China. The other site is located in
central Iowa, U.S.
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The second section introduces the SVR inversion algorithm and different high-quality training
sample-acquiring methods. The third section introduces the research area and test data. The fourth
section describes the experimental process and the results, followed by analysis and discussion.

2. Methodology

The empirical approach built by the SVR algorithm was developed in this research. Two training
sample-selecting methods were developed to extract three different sampling datasets for the study.
Namely, the MODIS reflectance products with MODIS LAI, the upscaled Landsat reflectance at the
500-m resolution with MODIS LAI, and unmixed MODIS reflectance and LAI at 30-m resolution were
used as SVR training samples to retrieve Landsat LAI at the 30-m resolution from different periods.

Figure 1 shows the data processing framework. The high-quality training samples of SVR
were selected by two methods: the homogeneous and pure pixel filter method (method A) and
the pixel unmixing method (method B). For the homogeneous and pure pixel filter method, after the
homogeneous and pure MODIS LAI pixels were selected, the upscaled Landsat reflectance (aggregate
from 30-m to the 500-m resolution in the ENVI software, using a simple average method) of the
corresponding pixels (the same location with the above homogeneous and pure MODIS LAI pixels)
together with the LAI were selected as the training samples (dataset A1). Next, the corresponding
MODIS reflectance of the pixels together with the LAI were also selected as the training samples
(dataset A2). The pixel unmixing method took the unmixed LAI after quality control and reflectance of
agricultural land pixels at the 30-m resolution as training samples (dataset B), which were obtained
through the unmixing of MODIS LAI and reflectance products by linear models. The SVR models
trained by the above three sets of training samples for the two methods were then applied to the
Landsat surface reflectance to generate the 30-m resolution LAI. The retrieved LAI maps at the 30-m
resolution and the temporal trends curves were generated and analyzed. The retrieval LAI results
were then compared to the field measurements.
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Figure 1. Data processing flowchart of the support vector regression (SVR) inversion method with
two training sample-selecting methods: (A) the homogeneous and pure pixel filter method and (B) the
pixel unmixing method.

2.1. Methods of Training Sample Selection

2.1.1. The Homogeneous and Pure Pixel Filter Method

The homogeneous and pure pixel filter method chose the high-quality MODIS LAI pixels by three
steps: (1) masking the LAI product images of the research area using MODIS land-cover products
(MCD12Q1) to obtain the agricultural land area. According to the International Geosphere—Biosphere
Programme (IGBP) global vegetation type classification dataset (Land Cover Type 1), the pixels with
the successive agricultural land type in every year during the research period are considered as the
agricultural land area; (2) selecting the high-quality LAI pixels using quality control files (MODIS LAI
QC layer) to ensure that the pixels’ LAI are retrieved from the main algorithm, namely, the look-up
table (LUT) algorithm. Through the first two steps, we obtain high-quality LAI pixels of agricultural
land, and these pixels are used as the input pixels of the third step: (3) filtering the remaining LAI
pixels by the coefficients of variation (CV) to select homogeneous and pure pixels.

It is known that the relationship between the LAI and the spectral reflectance or vegetation index
is nonlinear. The relationships vary for pure and mixed pixels at low spatial resolution. To model the
relationship between the LAI and the spectral reflectance for different vegetation types, pure pixels
should be selected as training samples. The spectral reflectance of different objects in a mixed pixel
is different. We use the CV (ratio of standard deviation to the mean value) in a statistical model to
represent this difference, similarly to in [21].
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The CV formula is as follows:
CV =

σ

μ
(1)

where CV is the coefficient of variation and σ and μ are the standard deviation and mean of the surface
reflectance of the Landsat pixels within a MODIS pixel, respectively.

The CV of the reflectance of each band was calculated for all Landsat pixels at the MODIS pixel
scale, and a threshold was determined based on the pixels’ quality and quantity. It is assumed that the
MODIS pixels are pure pixels when the CV is small.

When the homogeneous and pure pixels of the MODIS LAI products were selected,
the corresponding MODIS surface reflectances were also chosen together to act as the training samples
(dataset A2). The MODIS reflectance products have a good correspondence with the MODIS LAI
products because of having the same temporal and spatial resolution, with no geometric deviation.
In addition, the upscaled Landsat reflectances at the 500-m resolution were aggregated to create
another training sample (dataset A1), which allows comparison of these retrieved high-resolution LAI
of the training samples for the different selection methods.

2.1.2. The Pixel Unmixing Method

At 500-m resolution, different land cover types may be mixed within a MODIS pixel. The surface
reflectance is determined by the spectral characteristics of the different types. Pixel unmixing methods
can decompose the pixels of coarse-resolution satellite imagery into different endmembers using
high-resolution satellite imagery classification data. These methods can thus obtain the ratio of each
type to the coarse-resolution pixel (as a proportion). Ichoku et al. summarized five mixture models.
These models are the linear model, the probabilistic model, the geometric-optical model, the stochastic
geometric model, and the fuzzy model [28]. In this study, the linear model was used to unmix the
MODIS surface reflectance and MODIS LAI. The linear model is a special case of a nonlinear model
that ignores multiple scattering [29]. In the linear model, it is assumed that the reflectance of a pixel is
a linear combination of the reflectance of each endmember [30]. The weight of the reflectance of the
feature type is determined by the ratio of each type to the area of the pixel:

R =
n

∑
j=1

(
fj × rj

)
+ ε (2)

where R is the reflectance of the mixed pixel; rj is the reflectance of the jth endmember; f j is the
proportion of the jth endmember in the mixed pixel, which can be calculated based on the 30-m
land cover map from the Landsat image; and ε is the error. In Equation (2), R and f j are known,
and the unknown variable is the rj. In the study, we assume that the neighboring pixels with the same
land cover type have similar surface reflectance or LAI [31]. When the number of endmembers is
determined, the number of equations must be greater than or equal to the number of endmembers (j)
in order to solve the equation. By using other pixels adjacent to the pixel being processed, one can
avoid the ill-conditioning problem caused by too many unknown values, and this can be achieved by
sliding the 3 × 3 window [32]. For each mixed pixel, a maximum of nine equations can be derived
from the 3 × 3 window, which traverses the entire study area. Each equation group was solved by the
constrained least squares method.

The unmixed pixels of MODIS LAI and surface reflectance products at the 30-m resolution using
the above method was obtained. Then, choose the pixels of agricultural land cover type and the
LAI retrieved from the main algorithm using quality control. Finally, the unmixed MODIS surface
reflectance and LAI of the above chosen corresponding pixels were taken as the training samples
for SVR.
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2.2. Support Vector Regression

Support vector regression (SVR) is a supervised machine-learning method based on the principles
of the Vapnik–Chervonenkis dimension theory and structural risk minimization [33]. SVR is more
suitable for small samples and nonlinear, high-dimensional problems. SVR aims to construct an optimal
super-pipe so that the pipeline can provide as much data as possible under a given accuracy ε, and so
that the distance from the sample point to the pipe edge is not larger than ε [34]. This can be expressed
by Equation (3):

f(x) = (ω, ϕ(x, xi)) + b (3)

where ω is the normal vector (or the “support vector”), xi stands for the dataset, and b is the bias.
The loss function in ε-SVR can be expressed as Equation (4):

Lε =

{
0 |y − f(x)| ≤ ε

|y − f(x)| − ε otherwise
(4)

Operating on the basis of the structural risk minimization theory, SVR finally evolves into a
convex optimization problem. Here, the slack variables ξ∗i and ξi are introduced to represent the
fitting error:

Min
1
2
‖ω‖2 + C

n

∑
i=1

(ξi + ξ∗i) (5)

subject to

⎧⎪⎨⎪⎩
yi − f (xi) ≤ ε + ξ∗i
f (xi)− yi ≤ ε + ξi

ξi, ξ∗i ≥ 0, i = 1 . . . . . . n

where C is the margin parameter.
SVR has the advantage of solving the nonlinear problem by introducing a kernel function, which is

a good solution to the problem in high-dimensional space and is the core of SVR. The radial basis
function (RBF) has been found to be superior to other kernel functions for reflecting the nonlinear
relationship between LAI and reflectance. Therefore, the RBF was used in this research. After that,
the choice of hyperparameters determines the quality of the model, which affects the quality of the
SVR algorithm. The range of hyperparameters and kernel parameters was [–10, 10], and the six-fold
cross-validation method was used to find the optimal parameters. As is well known, the higher
the proportion of training samples, the closer the inversion results will be to the measured values.
Next, the proportion of training samples was fixed at 80% for optimal parameter determination.

Three inversion models were built through training the SVR algorithm using the three training
samples datasets obtained by the homogeneous and pure pixel filter method (datasets A1 and A2,
method A) and the pixel unmixing method (dataset B, method B), both of which were described in
detail in Section 2.1. In the inversion process, Landsat surface reflectance was used as the input to the
three SVR inversion models to retrieve high-resolution LAI at 30-m resolution.

3. Study Area and Data Description

3.1. Study Area

Two study sites were selected in this study. The first study area was located at the boundary
between Baoding and Shijiazhuang in the Hebei Province, China (Figure 2a). This area is flat, with about
a 40-m altitude. Crops can be harvested twice a year and consist mainly of winter wheat and summer
maize. The winter wheat-growing season is from October to June of the following year. The second
study area was located near the capital of Iowa in Des Moines, Iowa, United States (Figure 2b), at a
300-m altitude, where the highest temperature occurs in July and the main crops are corn and soybean.
The two research areas include three different crops and have different crop cultivation (crops can be
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harvested once or twice a year). Moreover, the results of the two different study sites could be used to
test the robustness of the algorithm and different sampling strategies.

Figure 2. Cont.
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Figure 2. The two study areas: (a) Baoding, Hebei Province, China; (b) Des Moines, Iowa, United
States. The grid in (b) shows the MODIS pixel cells at the 500-m resolution.

3.2. Data and Preprocessing

The satellite image datasets consisted mainly of MODIS products and Landsat scenes. MODIS
products include a land-cover type product (MCD12Q1) (Collection 5 version), LAI products
(MCD15A2H), and reflectance products (MOD09A1) (Collection 6 version). Landsat8 operational
land imager (OLI) and Landsat5 thematic mapper (TM) and enhanced thematic mapper plus (ETM+)
surface reflectance products at the 30-m spatial resolution were also collected as input data. At the
Baoding study area, 29 Landsat8 scenes (paths 123–124 and row 33) from April 2013 to May 2017 were
selected. In Des Moines, 29 Landsat5 scenes (paths 26–27 and row 31) from May 2003 to August 2007
were chosen. All data were downloaded from https://earthexplorer.usgs.gov/. The blue band in
Landsat imagery is susceptible to atmospheric scattering, and the shortwave infrared (SWIR) band
differs greatly in the Landsat and MODIS bands (Table 1). To obtain more band information, this study
used the green, red, and near-infrared (NIR) bands.
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Table 1. The comparison of band wavelengths between Landsat and MODIS.

Band TM (μm) ETM+ (μm) OLI (μm) MODIS (μm)

Blue 0.45–0.53 0.45–0.53 0.45–0.51 0.459–0.479
Green 0.52–0.60 0.52–0.60 0.53–0.59 0.545–0.565
Red 0.63–0.69 0.63–0.69 0.64–0.67 0.62–0.67
NIR 0.76–0.90 0.76–0.90 0.85–0.88 0.841–0.876

SWIR 1.55–1.75 1.55–1.75 1.57–1.65 1.628–1.652

For classification products, the IGBP global vegetation type classification dataset (Land Cover Type
1) of the MODIS land-cover product (MCD12Q1) is obtained from Terra and Aqua observations over
one year, and has 17 main land-cover types [35]. The spatial overlay analysis of the multiyear data to
yield the continuous planted area of crops was done to separate the study region into crop and noncrop
areas. The spatial overlay analysis method means image binarization, in which a crop pixel is replaced
by 1 and a noncrop pixel is replaced by 0, based on MCD12Q1. Then, the binary value of each pixel for
every year is multiplied, so 1 stands for the continuous planted area of crops and 0 stands for noncrop
areas. The GlobeLand30 product is the global 30-m resolution land-surface cover product generated
by the National Geomatics Center of China with the support of ‘863’ key projects, and has 10 main
land-cover types. However, it only produced global land cover maps in 2000 and 2010. (The data set
is provided by the National Geomatics Center of China. (DOI: 10.11769/GlobeLand30.2000.db; DOI:
10.11769/GlobeLand30.2010.db) [36,37]).

The MODIS LAI was produced by two algorithms: the LUT main algorithm and the backup
algorithm, which is an empirical model relating the LAI and the vegetation index [38]. The quality of
MODIS LAI for each pixel is described by the quality control flags of the QC layer, which is generally
reflected by the SCF_QC bit. The latter three bits of that describe the LAI inversion algorithm [39].
When the SCF_QC is “000”, the main algorithm is used with no saturation, which represents the
best-quality LAI.

Field measurements from Des Moines, Iowa, United States were obtained from the 2002
soil moisture experiment (SMEX02) conducted by the U.S. Department of Agriculture (USDA).
The purpose of the experiment was to research land–gas interaction, verify ground parameters’
accuracy, and evaluate the new method of monitoring soil moisture by remote sensing. Samples of
LAI were obtained using LAI-2000 instruments in the inter-row region at least 1 m away from where
the biomass sample was taken [40]. The LAI measurements campaign went through four sampling
rounds, conducted over the periods: 15–19 June, 27–30 June, 2–3 July, and 5–9 July. Twelve large
areas went through the four rounds. Each observation area covered approximately one MODIS pixel,
and each region was spaced to small areas measured three or four times (Figure 2). To match the
time of the satellite imagery acquisition, the measured LAI were linearly interpolated to the Landsat
data-acquisition time. In situ LAI measurements that had been taken four times were interpolated
to the Landsat data-acquisition time. In this study, the LAI measurements on 30 June and 2 July
constrained or corresponded to the 1 July inversion results, and the LAI measurements on 7 and 9 July
constrained or corresponded to the 8 July inversion results.

Field measurements in Baoding, Hebei Province, China were collected from 27 April to 3 May
2016 using LAI-2000, containing ten sampling points. Measurements from each site were collected
at least twice. The corresponding Landsat data-acquisition times were 25 April and 4 May, and the
inversion LAI were linearly interpolated to each sampling-point time.
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4. Experiments and Analysis

4.1. SVR Training Samples

4.1.1. Homogeneous and Pure Pixel Filter

In this part of the experiment, different experimental areas and different input data (upscaled
Landsat reflectance or MODIS reflectance) made the size of the study area different. For example,
a 143 × 140 (68,640 m × 67,200 m) pixel region in Des Moines, Iowa, United States was initially selected,
and 971 noncrop land pixels were removed after masking using the MODIS land-cover product. Using
the SCF_QC layer, the MODIS LAI pixels with the highest quality (SCF_QC = 000, main algorithm and
no saturation) were extracted. This process removed 1858 pixels.

The reflectances of the Landsat bands were used in the CV calculation (Equation (1)). The CVs of
the Landsat bands were calculated at the MODIS pixel scale using Landsat pixels, followed by the QC
checking area, and a threshold of CV for pure pixels was determined based on the pixel quality and
quantity. In this paper, a threshold of CV of 0.15 for pure pixels was determined for SMEX02 in the
Des Moines area. In order to compare the inversion results of these two sites in the paper and conduct
validation of the threshold, the threshold for the Baoding area was the same as that in the Des Moines
area. The pure pixel filtering step removed 6090 pixels for one tile after using CV filtering from the
NIR of Landsat5. Figure 3 shows the results of each step using the MODIS LAI product on the day 201
of 2005 as an example.

Figure 3. The MODIS leaf area index (LAI) pixel filtering process. From left to right: (a) original MODIS
LAI; (b) MODIS LAI pixels for cropland with the highest retrieval quality (main algorithm and not
saturated); (c) CV map of NIR band4 from Landsat5; and (d) final selected homogeneous and pure
MODIS LAI pixels.
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4.1.2. Pixel Unmixing

Taking the SMEX02 site area as an example, the area was mainly composed of natural vegetation
and crops. Corn and soybean accounted for >80% of the total area. Figure 4 shows the MODIS
classification map (Figure 4a) and the 30-m resolution GlobeLand30 surface covering products
(Figure 4b,c). The study area included three categories from the MCD12Q1_IGBP classification system:
number 12: agricultural land; number 13: urban and construction area; and number 14: junction of
agricultural land and natural vegetation. The following classification of the GlobeLand30 product is
used: arable land (10), forest (20), grassland (30) (accounting for 5% of the total area), wetland (50)
(accounting for ~1% of the total area), water body (60), artificial surfaces (80), and bare land (90).

In this paper, the study area was divided into arable land, artificial surface, forest, grassland,
and water bodies. Based on the Landsat scenes from 14 May to 2 August in 2002, it was obvious that
the arable land had a regular shape and the spectral characteristics were different from other types.
In addition, roads (within the artificial surface category) showed a regular rectangle, especially the
roads between arable lands. This study used an object-oriented segmentation approach to classify the
Landsat imagery. The eCognition software was used for this. Finally, the classification results were
corrected by visual interpretation. Figure 4d shows the final results.

 
(a) 

 
(b) 

Figure 4. Cont.
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(c) 

(d) 

Figure 4. Classification products of the Soil Moisture Experiment 2002 (SMEX02) near Des Moines,
Iowa, United States: (a) MCD12Q1_IGBP; (b) GlobeLand30 in 2000; (c) GlobeLand30 in 2010; (d) 30-m
classification product. Notes: (a) 12: agricultural land; 13: urban and construction area; 14: junction of
agricultural land and natural vegetation. (b–d) 10: arable land; 20: forest; 30: grassland; 50: wetland;
60: water body; 80: artificial surfaces; 90: bare land.

In this paper, a linear model was used to solve the mixed pixels, using the algorithm presented in
Equation (3). A 3 × 3 sliding window was used to obtain the optimal solutions to the sets of equations.
The MODIS surface reflectance and LAI products were unmixed by this method, described in Section 2.
For example, in the SMEX02 study area, 5300 MODIS pixels were used to obtain the unmixing pixels
and 2902 MODIS pixels were removed after QC checking. Finally, fewer than 400 arable land pixels
were chosen in one tile (the day 137 of 2003).

4.2. Comparison of Regions

4.2.1. Retrieved LAI on SMEX02

In this part of the experiment, a comparison of the 30-m resolution LAI retrieved from
Landsat surface reflectance scenes for three periods by different SVR inversion models and the field
measurements was made. Figure 5 shows the results.
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Figure 5. The comparison between the retrieved LAI by three approaches and field measurements:
(a) the results of dataset A1 (upscaled Landsat reflectance at the 500-m resolution and MODIS LAI
products); (b) the results of dataset A2 (MODIS reflectance and LAI products); (c) the results of dataset
B (unmixed MODIS surface reflectance and LAI products at 30-m resolution).

Figure 5 shows that the retrieved LAI agrees well with the field measurements. At the field
scale, the R2 (coefficient of determination) between retrieved Landsat LAI and field measurements
is 0.79 for the homogeneous and pure pixel filter method with upscaled Landsat reflectance as the
training samples (dataset A1) (Figure 5a). The R2 value is 0.81 for the homogeneous and pure pixel
filter method with MODIS reflectance as the training samples (dataset A2) (Figure 5b), slightly better
than dataset A1. The correlation coefficients of dataset A2 and dataset B was similar (Figure 5b,c),
where the retrievals of unmixed MODIS reflectance and LAI using the pixel unmixing method (method
B) shown in Figure 5c was slightly higher, with the R2 value of 0.82 and a root mean square error
(RMSE) value of 0.65. Although we had obtained high-quality pixels through two methods, it was
inevitable that the MODIS LAI was small and underestimated due to mixing pixels at the small LAI
stage. When the Landsat reflectance at 30-m resolution (the cover area of vegetation categories of the
pixel usually is larger than that of MODIS at the small LAI stage) was used as the input for the SVR
models, the results were overestimated when LAI was 0–2. We found that the results of approach B
were improved when LAI was <2. However, when the LAI was greater than 3, the inversion results
were significantly underestimated, especially on 8 July (Figure 6) [21]. One reason for this could be
that, generally, the relationship between LAI and reflectance gradually becomes saturated. Another
reason for the underestimation may have been that when the LAI was >3, especially when the LAI was
much greater, the MODIS inversion algorithm was mainly using the backup algorithm on SMEX02,
and the training samples obtained using the LUT method contained fewer pixels of LAI > 3. The result
was that the training sample representativeness with LAI greater than 3 was poor. It is also clear that
the mixed-pixel decomposition method had higher accuracy on 1 and 8 July due to the removal of
other vegetation types (mainly forest and grassland, which grew better from June–July), and LAI also
showed an increasing trend.
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Figure 6. Comparison of inversion LAI in time series with field measurements. (a–c) The results of
dataset A1; (d–f) the results of dataset A2; (g–i) the results of dataset B.

4.2.2. Retrieved LAI at the Baoding Study Area

In the present study, the red, near-infrared, and green bands of the Landsat scene were extracted
to retrieve 30-m resolution LAI. Figure 7 shows the results of a comparison with measured values.
The results of approach A1 and A2 compared with the measured values is shown in Figure 7a: the R2

is 0.77 and the RMSE is 0.41 of A in general, and the inversion and measured values showed good
correlation. The retrievals of approach B shown in Figure 7b were slightly higher, with the R2 value
of 0.79 and an RMSE value of 0.49. However, as the LAI value becomes larger, the inversion value is
gradually more severely underestimated, and large deviations from the measured values occurred for
the same reason as with SMEX02.
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Figure 7. Comparison of inversion LAI with field measurements at the Baoding study area; (a) the
results of datasets A1 and A2; (b) the results of dataset B.

4.2.3. Temporal Trends of LAI at the 30-m Resolution

In this research, Landsat LAI maps at the 30-m resolution at the SMEX02 site were retrieved
for three periods, namely, 23 June, 1 July, and 8 July. The three SVR inversion models of datasets
A1, A2, and B were used and compared. In Figure 8, no matter which inversion method was used,
the LAI inversion values increased over time. Furthermore, they all had a good agreement with the
distribution of vegetation in space. The Landsat LAI maps showed that different inversion methods
had similar inversion results, and that it was also consistent with the comparison between retrievals
and field measurements in Section 4.2.1.

In the Baoding area, ten measurements were located in seven valid MODIS pixels. The Landsat
acquisition time extended from 2 April to 4 May, with a total of five measurement dates (2 April,
9 April, 18 April, 25 April, and 4 May). The temporal trend of LAI at the 30-m resolution was compared
with that of the MODIS LAI (Figure 9).

The results show that the LAI time series retrieved from the Landsat data was consistent with
the trend of the MODIS LAI time series (taking six pixels as an example). On the whole, the LAI
curve showed a tendency to rise first and then decline, and reached the maximum near day of year
(DOY) = 113. For Figure 9c, the CV of the pixel was >0.15, so this pixel is not pure and homogenous.
In most situations, the LAI values of Landsat were higher than the MODIS LAI values, possibly mainly
due to mixed pixels, among others. In the MODIS scale, the pixel contains nonvegetation categories
and affects the MODIS LAI, but in the Landsat scale, the cover area of vegetation categories of the
pixel usually is larger than that of MODIS. Of course, there are other errors, such as the scale effect,
and so forth.

340



Remote Sens. 2018, 10, 1187

23 June 1 July 8 July 
(a) 

23 June 1 July 8 July 
(b) 

23 June 1 July 8 July 
(c) 

 

Figure 8. The LAI inversion in time series at the SMEX02 site (23 June, 1 July, and 8 July): (a) the results
of dataset A1; (b) the results of dataset A2; (c) the results of dataset B.
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Figure 9. LAI inversion in time series at the Baoding area (MODIS DOY: 89–129), based on the
homogeneous and pure pixel filter method and the pixel unmixing method. (a) pixel one; (b) pixel two;
(c) pixel three; (d) pixel four; (e) pixel five and (f) pixel six.

5. Discussion

A comparative analysis of accuracy between the LAI retrievals and the field measurements
(or MODIS LAI) was performed for the homogeneous and pure pixel filter method (method A) and the
pixel unmixing method (method B). The results demonstrated that inversion of high-resolution LAI
combining MODIS products based on the SVR algorithm was feasible. Compared to physical modeling
methods, the empirical model using the SVR algorithm did not need to consider the physiological
characteristics of vegetation and was easy to implement. Compared to other methods of obtaining
training samples, our methods can obtain a greater number of high-quality samples based on global
LAI products.

Gao et al. [21] used the decision tree with the upscaled Landsat reflectance at the 500-m resolution
and MODIS LAI to retrieve LAI at the 30-m resolution. The comparison (R2 = 0.79, mean bias
error = −0.18, mean absolute difference = 0.58) between Landsat retrievals (30-m) of Gao’s and
field measurements at the field scale (10-m) showed that there was a good agreement with low to
moderate LAI (0–3), but retrievals were underestimated for high LAI (3–5). In this paper, the R2 was
0.79 and the RMSE was 0.73 for the homogeneous and pure pixel filter method when the MODIS LAI
and upscaled Landsat reflectance at the 500-m resolution were used as the training samples (dataset
A1). The R2 was 0.81 and RMSE was 0.69 for the homogeneous and pure pixel filter method when the
MODIS LAI and reflectance were used as the training samples (dataset A2). In addition, the retrievals
of the unmixing method with unmixed MODIS reflectance and LAI at the 30-m resolution as the
training samples (dataset B) were slightly higher, with an R2 value of 0.82 and an RMSE value of
0.65. Compared with Gao et al., we selected the multiyear MODIS products for obtaining training
samples to ensure the richness and representativeness of the samples. In addition, the MODIS LAI and
reflectance products were also used as training samples to build the SVR inversion model, and yielded
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a good result. Moreover, the pixel unmixing method was used to obtain the SVR inversion model,
and resulted in the highest accuracy.

In particular, the SVR algorithm had an advantage in solving the nonlinear problem because it
overcomes the phenomena of “over-learning” and “under-learning” [41]. After the kernel function and
the hyperparameters were chosen, the relationship between the MODIS LAI and surface reflectance
was fitted. It was shown that the SVR algorithm can represent the relationship between LAI and
reflectance and had good generalization ability.

Moreover, the quality of the training samples, including sample distribution, can seriously affect
the quality of all empirical approaches, including the SVR. In this study, the training samples spanned
multiple years and included the whole crop-growing season. Therefore, the data quality was good and
representative. The homogeneous and pure pixel filter method took the quality control file (QC layer)
of the MODIS LAI products into consideration and ensured the quality of the MODIS LAI. This was
the precondition for taking the MODIS LAI as training samples. The ratio of the standard deviation
to the mean value (CV) in a statistical model can represent the difference of spectral reflectance of
different objects in a mixed pixel. The MODIS pixels can be considered homogeneous and pure
pixels when the thresholds of the QC and CV settle within a certain range. The pixel unmixing
method decomposed the pixels of coarse-resolution satellite imagery into different endmembers and
obtained the high-resolution LAI (or reflectance). It can obtain higher-quality training samples than
other methods.

However, there were also a few limitations to be improved upon. First, when the LAI was greater
than 3, the inversion results were underestimated during July. A main reason for this was that the
relationship between the surface reflectance and LAI tended to become saturated when the LAI was
greater than 3. In this paper, when the MODIS LAI is high, the probability of using the main algorithm
is low. In other words, if the training samples were selected by the main algorithm, many samples
with LAI > 3 were eliminated, resulting in fewer training samples with high LAI values. Figure 10
shows the histogram of LAI from the LAI-SR samples of SMEX02. As we can see from the histogram,
there are fewer large LAI values (>3.0). In the SMEX02, there are 21,500 LAI-SR samples for dataset
A1; 2028 for dataset A2, using the homogeneous and pure pixel filter method; and 17,889 for the pixel
unmixing method. In Baoding, the LAI-SR samples are 6909, 8797, and 8838, respectively. In addition,
the scaling effect may cause the under-representation of high LAI values. The high values can be
smoothed out in the coarse-resolution image. For both training sample-acquiring methods, we used
the MODIS quality control flags to select the highest-quality retrievals derived from the MODIS LAI
main algorithm. We relied on the MODIS LAI data quality flags and have not considered the effect of
noise associated with the main algorithm. The noise from the main algorithm retrieval may need to be
considered for other regions, such as the tropical area, where clouds are always present.

Furthermore, when the upscaled Landsat reflectance and MODIS LAI were used to build the
relational model, geometrical registration between Landsat and MODIS was not performed in this
study. This led to a bias when calculating the CV of the Landsat surface reflectance in a MODIS pixel.
The CV threshold of the homogeneous MODIS pixel was determined based on LAI sample quality
and quantity from subjective experience at present. The threshold may vary with different study sites
or landscapes. In order to compare the inversion results from these two sites in the paper, the same
threshold of 0.15 was used. Additional study and analysis are needed to quantify the threshold. In this
paper, we used the eight-day MODIS LAI products. This means that the MODIS LAI product for
the period was made up from eight independent days. However, the Landsat imagery reflected
the instantaneous optical characteristics of vegetation for the Landsat acquisition date. Therefore,
differences between the Landsat and MODIS data products were observed in time and space.
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Figure 10. Histogram of LAI from the LAI-SR samples of SMEX02. (a) dataset A1 (upscaled Landsat
reflectance at the 500-m resolution and MODIS LAI products); (b) dataset A2 (MODIS reflectance and
LAI products); (c) dataset B (unmixed MODIS surface reflectance and LAI products at 30-m resolution).

Note that the spectral response function of the sensor is different, and the wavelengths of the
corresponding bands are also different. The spectral response function of the sensor is a function of the
wavelength. It is the ratio of the radiance received by the sensor at each wavelength to the radiance of
the incident. In this study, we compared the bands of Landsat and MODIS and chose the three bands
with small difference. Although the relational model was built using MODIS reflectance and MODIS
LAI, the Landsat reflectance was used as the input parameter to retrieve the LAI. There exists a large
gap in the wavelength range, particularly in the near-infrared band4 of Landsat5. Thus, the use of a
spectral response function to convert the Landsat reflectance and MODIS reflectance will be the next
key work.

Finally, an empirical model has advantages, but also limitations. In this study, the verification
experiments were conducted over two study areas: the Hebei Province, China and Des Moines,
Iowa, United States. Crops included corn, soybean, and winter wheat. Although the inversion model
proposed here achieved good results in the study area, applications in other areas need to be further
verified. To apply the model to large regions, not only must the method of screening high-quality
data be improved, but the biophysical mechanisms of vegetation must also be studied. In the present
study, the relationship between LAI and reflectance had a certain scope of application. Moreover,
inversion accuracy was high in the main growth period, but was reduced in other periods, especially
in the late stages of crop growth. Climate change may impact vegetation growth. The accuracy of LAI
retrieval may be decreased if LAI-SR samples cannot cover this variation. In our study sites, climate
change from the study period is not significant to enable testing of this hypothesis. Future research
may consider different inversion models at different times.

6. Conclusions

In this study, a support vector regression algorithm combined with MODIS LAI and reflectance
products which were used to obtain training samples was developed to retrieve high-resolution LAI
from Landsat data. The homogeneous and pure pixel filter method and the pixel unmixing method
were applied to select high-quality training samples to retrieve high-resolution LAI. Among them,
the principle of selecting training samples for the homogeneous and pure pixel filter was simple and
easy to operate. Additionally, the pixel unmixing method took into account the problem of mixed
pixels in the large scale. The results of the two main methods were in good agreement with the
field-measured values. Inversion accuracy of the pixel unmixing method was slightly higher than
the homogeneous and pure pixel filter method, but the pixel unmixing method was more complex
to implement. Using the homogeneous and pure pixel filter method, the retrievals using MODIS
reflectance as the training samples was better than upscaled Landsat reflectance as the training samples.
These tests showed that both methods combined with MODIS products can retrieve 30-m resolution
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LAI from Landsat imagery. In future research, additional validations need to be done to assess the
accuracy of the approach over other regions.
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Abstract: The leaf area density (LAD) within a tree canopy is very important for the understanding
and modeling of photosynthetic studies of the tree. Terrestrial light detection and ranging (LiDAR)
has been applied to obtain the three-dimensional structural properties of vegetation and estimate
the LAD. However, there is concern about the efficiency of available approaches. Thus, the objective
of this study was to develop an effective means for the LAD estimation of the canopy of individual
magnolia trees using high-resolution terrestrial LiDAR data. The normal difference method based
on the differences in the structures of the leaf and non-leaf components of trees was proposed and
used to segment leaf point clouds. The vertical LAD profiles were estimated using the voxel-based
canopy profiling (VCP) model. The influence of voxel size on the LAD estimation was analyzed.
The leaf point cloud’s extraction accuracy for two magnolia trees was 86.53% and 84.63%, respectively.
Compared with the ground measured leaf area index (LAI), the retrieved accuracy was 99.9% and
90.7%, respectively. The LAD (as well as LAI) was highly sensitive to the voxel size. The spatial
resolution of point clouds should be the appropriate estimator for the voxel size in the VCP model.

Keywords: leaf area density; terrestrial LiDAR; tree canopy; vertical structure; voxel

1. Introduction

Foliage plays an important role in the energy budget through photosynthesis, transpiration,
respiration, and the maintenance of the plant microclimate [1]. The spatial distribution of leaves is
critical for describing the transmission and interception of solar radiation for wood production, species
competition, ecosystem dynamics, and biodiversity [2]. The leaf area index (LAI) is generally used
for expressing the amount of leaves in a tree canopy, and has been successfully retrieved by using
remotely sensed data at different scales [3]. The determination of LAI is common. However, LAI can
be difficult to use for characterizing the structure of a heterogeneous canopy, and may be less effective
or more complicated to use in cases where leaves have irregular shapes and forms [2,4].

As one of the canopy vertical structure parameters, the leaf area density (LAD) in each horizontal
layer is generally used for the quantification of the leaves in the canopy [2]. LAD is defined as the total
one-sided leaf area per unit volume [5]. Integrating the LAD profile data vertically, one can calculate
the LAI [6]. LAD can be estimated in situ using direct, semi-direct, or indirect approaches [2]. The direct
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method involves the counting and measurement of leaves, but this application is limited, because it is
destructive and time consuming. One of the representative semi-direct methods is Wilson’s inclined
point quadrat method, which counts the number of contacts of a leaf with probes inserted into the
vegetation canopy [7]. Indirect techniques mainly involve the use of passive optical devices based on a
gap fraction method, such as hemispherical photography, which relies on the Beer–Lambert law of
light transmission through a turbid medium adapted to canopies [8]. However, these methods are
limited in the spatial explicitness of their estimates, as well as in their accuracy [2,5].

Light detection and ranging (LiDAR) sensors have recently been applied to obtain the
three-dimensional (3D) structural properties of plants [9–12]. A terrestrial LiDAR sensor emitting
small-footprint laser pulses at a high pulse repetitive frequency and with small angular steps between
consecutive pulses provides a fine spatial resolution, which allows the inner canopies of trees to
be assessed from the ground and makes the accurate estimation of LAD profiles possible [1,13].
One of the important prerequisites in the estimation of canopy LAD is the ability to describe the
spatial distribution of leaves separately from that of wood, because the point clouds include not
only leaves, but also non-leaf components (such as twigs, branches, and the stem/trunk) of the
plant, which will affect the estimation accuracy of LAD [13]. The LAD estimation is greatly affected
by whether the leaf and non-leaf components are well separated in the point clouds. Hosoi and
Omasa showed that the LAD of Zelkova serrata was overestimated by 19% if the LiDAR points of
the woody components were not eliminated [6]. To classify leaf and non-leaf components in a laser
point cloud, many studies have used manual techniques, where laser points associated with different
canopy components are visually identified [1,6]. However, these methods are labor intensive and
time consuming, which limits the use of LiDAR data at relatively broad spatial scales for estimating
LAD [14]. Distinguishing a leaf from a trunk or branch by using the intensity of the reflected pulse relies
on the differences in their optical properties at the wavelength of the LiDAR sensor [2,15]. However,
the laser return intensity is affected by the distance and incidence angle. The radiometric calibration of
the intensity is not easy [14]. The geometric method was also used to separate the photosynthetic and
non-photosynthetic components in the terrestrial LiDAR data of forest canopies [14,16]. Unfortunately,
the geometric information is not easy to obtain, either. The reflectance values associated with a
digital camera can be useful for automatically classifying the structural parameters of the canopy [17].
However, the dimensionless and uncalibrated reflectance values are highly variable [14]. In recent
years, a non-destructive and rapid object extraction method called point cloud segmentation has been
used for ground object extraction and classification from airborne LiDAR data [18–21]. However,
the segmentation method has been seldom used to extract leaf point clouds using high-resolution
terrestrial LiDAR data. The leaf is significantly different from the other parts of the tree, such as the
stem and trunk, both in shape and size. Consequently, the segmentation of high density unorganized
3D LiDAR point clouds should have the potential to distinguish leaves from the other parts of the tree.

Recently, many researchers have attempted to develop various models for the estimation of LAD
using LiDAR sensors [1,15,22–24]. Among the models, the voxel-based method has been commonly
used for describing the computation of a 3D matrix of voxels from terrestrial LiDAR point clouds.
The method has the characteristic that no assumption about the spatial distribution, size, or shape
of canopy components is made. This method is also easy to operate. The vegetation density of a
voxel can be computed using the number of echoes inside the voxel [25]. The voxel-based method
has been successfully used in individual trees and woody canopy LAD estimation [2,4,13,15,25–28].
Hosio and Omasa developed a voxel-based canopy profiling (VCP) method to express the laser trace
information as a voxel that serves as an attribute of a 3D array [1]. Based on each voxel, both LAD
profiles and the LAI of an individual tree can be accurately estimated by counting the frequency of
contact between laser beams and the foliage of the canopy in each horizontal layer. The same group of
researchers applied this method to a natural forest stand [6] and woody materials [11,26]. Wang et al.
estimated the LAD of a magnolia canopy using the VCP method based on terrestrial LiDAR and true
color images [17]. Therefore, the voxel-based method is a promising way to estimate LAD. However,
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the voxel size needs to be chosen carefully, because it can significantly influence the estimation accuracy
of the LAD [2]. The calculation accuracy and efficiency depend on the voxel size. An assessment of
the effect of the voxel size on the LAD estimation model is needed. The objectives of this study are:
(1) to develop an effective workflow to estimate LAD for individual magnolia trees on the basis of
high-resolution terrestrial LiDAR measurements; (2) to propose a point cloud segmentation method for
leaf extraction; and (3) to quantify the impact of voxel size on the LAD estimations for individual trees.

2. Study Site and Field Measurements

The study site was located on the campus of University of Electronic Science and Technology of
China, Chengdu, Sichuan, China. The ground area was almost flat. For this study, two individual
magnolia trees (Table 1 and Figure 1) were selected and scanned with Leica ScanStation C10, which has
a full 360◦ × 270◦ field of view, long range (300 m@90% reflectivity), and high scan frequency
(50,000 points/s). The laser wavelength is 532 nm.

Table 1. Description variables for the scanned magnolia trees (m).

Tree Height Canopy Depth Crown Size Average Leaf Length Average Leaf Width

Magnolia A 6.1 4.1 2.80 × 2.83 0.144 0.075
Magnolia B 6.4 4.5 2.81 × 3.29 0.156 0.078

Figure 1. Field measurements. (a) Magnolia A; (b) Magnolia B; (c) The location of scanning stations
and reference targets, with the dots representing reference targets that are used to establish the
correspondences between different scanning stations (the squares); light detection and ranging LiDAR
point clouds of Magnolia A (d); and Magnolia B (e); (f) LiDAR point clouds of leaves.
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The tree was scanned from three scan locations, and three reference targets were placed on the
ground to establish correspondences between different scanning stations (Figure 1c). For all of the
scans, ScanStation C10 was placed on a survey tripod approximately 1.5 m above the ground, and at
a distance of about 5–8 m from the tree to ensure that the entire crown was well within the view
window. The scans were all performed under very low wind conditions. The high scanning resolution
or point spacing for every site was approximately 0.05 m at a distance of 100 m, because this scanning
resolution was sufficient to identify a small leaf. More than 600 points exist on one leaf on average,
and the mean point spacing (spatial resolution) is approximately 2.5 mm (Figure 1f).

Point clouds from the three scan locations with their individual coordinate systems were registered
into one point cloud dataset under a common coordinate system using Leica Cyclone v9.1® and an
improved iterative closest point algorithm based on k-dimensional tree [29,30]. The registration error
was within 2 mm.

3. Materials and Methods

Figure 2 illustrates the developed LAD estimation workflow, which consists of leaf point cloud
extraction and LAD estimation. Details are presented next.

 

Terrestrial LiDAR point cloud data

Point clouds of an individual tree

 Registration

Point cloud Normals in neighbor 
with radius r

Leaf point cloud data

Zenith angle
Mean leaf 

inclination angle

Correction factorContact frequency 
counts of each layer

LAD distribution of canopy

Polar coordinate 
transformation

Plane fitting

Normal difference

Voxelization

Ground measured LAI

Appropriate voxel size of  VCP model

Voxel size analysis

Figure 2. Flowchart of leaf area density (LAD) estimation.
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3.1. Extraction of Leaf Point Cloud

In the segmentation of point clouds, a point is partitioned into subregions to extract important
features from the cloud data. The segmentation methods can be roughly classified into three
categories: edge-detection, region-growth, and hybrid methods. The edge-detection methods detect
discontinuities in the surfaces that form the closed boundaries of components in the point data.
The region-growth methods detect continuous surfaces that are homogeneous or similar in geometrical
properties. The hybrid approaches combine the edge-detection and region-based methods [31].

The normal of the point cloud is a very important characteristic parameter for unorganized 3D
point cloud segmentation. If the direction of the two normals is almost identical, the surface structure
does not change significantly. If the structure around a center point is significantly different from
the other points, the direction of the two estimated normals is likely to vary by a relatively large
margin [18]. Since most of the magnolia leaf surfaces are nearly flat, the normal vectors of these point
clouds have similar directions. The non-leaf parts are composed from cylindrical segments. The point
clouds of the non-leaf components located on the cylindrical surface and the normal vector of these
point clouds have different directions (Figure 3). The normal difference of the leaf point cloud is
generally smaller than that of the non-leaf component in the neighborhood. The normal difference
method was proposed to segment leaf point clouds, which counts the normal difference between each
point and the other points in the neighborhood.

Figure 3. Normals of a point cloud of the leaf and trunk or branch. The red dot is point p, the gray dots
are the other points in the neighborhood (yellow sphere). The arrows are the normals of these points.

There are many methods for estimating the normals of point clouds. However, only those using a
fixed support radius or a fixed number of neighbors are suitable for point clouds. The normals were
estimated by finding the tangent plane and using the principal components of a local neighborhood of
fixed support radius around each point [18]. For point pi in the point cloud P, the normal difference
operator in the neighbors are determined by

Δn̂(p, r) =
1
N

N

∑
i=1

(n̂(p)− n̂(pi)) (1)

where n̂(p) is the normal vector of point p in the neighbors, while radius r is the average spatial distance
between two leaves. n̂(pi) is the normal vector of point pi. Δn̂(p, r) is the normal difference operator.
The leaf point cloud is determined using the magnitude of ‖Δn̂(p, r)‖ as the threshold. The Otsu
algorithm was applied to estimate the threshold [32]. The normal difference results of the point cloud
data were viewed as the grey values of images. The appropriate threshold value was calculated
through iteration to ensure the maximum variance between the leaf point cloud (foreground) and the
non-leaf point cloud (background), as well as the minimal classification error.

Three cubes were chosen to manually evaluate the segmentation accuracy in the upper,
middle, and bottom of the canopy, respectively. The non-leaf components were manually deleted.
Then, the point number was counted. The leaves’ extraction accuracy was calculated from the ratio
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of the number of segmented leaf points to the number of manually classified leaf points. The overall
segmentation accuracy was the average accuracy values of three test cubes.

3.2. Voxel-Based LAD Estimation Method

The voxel-based LAD estimation method mainly includes the voxelization and computation of
the contact frequency of the laser beams in each horizontal layer [1].

3.2.1. Voxelization

A bounding box is first constructed to represent the domain of the registered leaf point clouds.
The boundaries of voxel coordinates are determined by the minimum and maximum values of X,
Y, and Z coordinates from the Cartesian coordinates of the point cloud region. During voxelization,
a voxel is defined as a volume element in a 3D array. The range and scan resolution of the LiDAR
determine the voxel size, which was set to 2.5 mm in this study. With the voxelization method,
the registered leaf point cloud datasets can be grouped into individual voxels [1]. Therefore,
voxelization reduces the number of points in a cloud, and improves the computational efficiency
of the point cloud contact frequency. Defining the width (w), length (l), and height (h) for each
voxel, we grouped the point clouds into Nl × Nw × Nh voxels, where Nl = (Xmax − Xmin)/l,
Nw = (Ymax − Ymin)/w, and Nh = (Zmax − Zmin)/h [3]. In addition, the voxel coordinates can be
calculated as ⎧⎪⎨⎪⎩

i = Xmin + (int(X − Xmin)/l)× l
j = Ymin + (int(Y − Ymin)/w)× w
k = Zmin + (int(Z − Zmin)/h)× h

(2)

where (i, j, k) denote the voxel coordinates in the voxel array. Int is an integer operator. (X, Y, Z)
represent the point coordinates of the registered LiDAR point data [1]. The voxel attribute determines
the presence of a laser point in the voxel. A voxel with attribute 1 implies that the laser beam is
intercepted inside the voxel. A voxel with attribute 0 indicates that there was no interception of the
laser beam inside the voxel [1]. The attribute assignment of voxels within a horizontal layer, and a
schematic map of the voxel-based model, are shown in Figure 4.

Figure 4. The schematic diagram of a Voxel-based model. (a) Illustration of the canopy voxelization;
(b) the interception (1) and non-interception (0) of the laser beam within a horizontal layer; and (c) the
vertical distribution of intercepted voxels.
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3.2.2. LAD Estimation Model Description

In the LAD computation, a plant region defined as the region above an area covered by a projection
of the canopy on the horizontal plane was set in a voxel array. The area covered by the projection of the
canopy was produced in the array by projecting all of the voxels with attribute 1 onto the horizontal
plane at k = 0. Voxels above the area were regarded as voxels within the plant region, and used
for the LAD computation. Thus, LAD was calculated in each horizontal layer of the canopy using
the voxel-based canopy profiling (VCP) method [1,6]. In particular, LAD(h, ΔH), which is the LAD
between heights h and h + ΔH above the ground, can be calculated as [1,6]

LAD(h, ΔH) = α(θ)
1

ΔH

mh+ΔH

∑
k=mh

nl(k)
nl(k) + np(k)

(3)

where θ denotes the zenith angle of a laser beam; ΔH represents the horizontal layer thickness (0.5 m
in this study); mh and mh + ΔH indicate the voxel coordinates on the vertical axis equivalent to height
h and h + ΔH in orthogonal coordinates (h = Δk × mh); and nl(k) and nP(k) denote the numbers of
voxels with the attribute values of 1 and 0 in the k-th horizontal layer of the voxel array, respectively.
Thus, (nl(k) + nP(k)) is the total number of incident laser beams that reach the k-th layer. nl(k) is
obtained by counting the number of voxels with attribute 1 in the k-th layer of the voxel-based tree
model. nP(k) is obtained by counting the number of voxels with attribute 0 in the k-th layer. α(θ) is
defined as

α(θ) =
cos θ

G(θ)
(4)

which represents a correction factor that affects the leaf inclination angle at the laser incident zenith
angle of θ. G(θ) stands for the mean projection of a unit leaf area on a plane perpendicular to
the direction of the laser beam. G(θ) determined with the assumption that leaves are azimuthally
symmetrical is

G(θ) =
1

2π

∫ 2π

0

∫ π/2

0
g(θL)|cos (

→
nB,

→
nL)|dθLdϕL =

∫ π/2

0
g(θL)S(θ, θL)dθL (5)

with

S(θ, θL) =

{
cos θ cos θL, for θ ≤ π

2 − θL

cos θ cos θL

[
1 + 2(tan x−x)

π

]
, for θ > π

2 − θL
(6)

x = cos−1(cot θ cot θL) (7)

where θL denotes the leaf inclination angle; ϕL is the azimuth angle of the normal to the leaf surface;
and

→
nB = (sin θ cos θ cos ϕ, sin θ sin ϕ, cos θ) and

→
nL = (sin θL cos θL, sin θL sin ϕL, cos θL) are two

unit vectors corresponding to the direction of the laser beam and the direction of the normal to the leaf
surface, respectively. To use the field-measured distribution of leaf-inclination angles, one can rewrite
Equation (5) as

G(θ) =
Tq

∑
q=1

g(q)S(θ, θL(q)) (8)

where q denotes the leaf inclination angle class, and Tq represents the total number of leaf inclination
angle classes. Of each class, the range of the inclination angles is typically the same. Thus, if Tq = 18
is the number of leaf inclination angle classes existing from 0◦ to 90◦, each class is 5◦ in range, or the
interval is 5◦. g(q) denotes the distribution of the leaf inclination angle for class q, which is the ratio of
the leaf area belonging to class q to the total leaf area. θL(q) stands for the midpoint angle of class q,
which is the leaf inclination angle used for representing class q. With the eigenvalue method, leaves at
different tree heights were randomly selected to fit the leaf planes and estimate the leaf inclination
angles [1,6].
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Contact frequency is calculated from the values of nl(k) and nP(k) in each horizontal thickness
layer. Void voxels outside of the canopy exist because of the irregularity of the canopy structure and
the 3D voxel model constructed using the maximum and the minimum coordinate values of the point
cloud data. The voids should not be regarded as nP(k), and are not used in the calculation for contact
frequency. Thus, the canopy boundary determination and exclusion of invalid elements are important
for the contact frequency calculation. Here, the simple and efficient two-dimensional convex hull
algorithm, or Graham scan [33], is used to identify the canopy contour range in each horizontal layer.
The algorithm can be described as follows. First, in one scan over the list of points, the point with the
minimum y-coordinate is found and called p0. Next, the other points are sorted by their polar angle
about the origin p0. If two points form the same angle with p0, then the one that is closer to p0 precedes
the other in the ordering. Finally, starting from p0, the sorted points are sequentially scanned. If these
points are on the convex hull polygon, each of the three successive points pi−1, pi, pi+1 should satisfy
the following properties: pi+1 is located the left side of the vector <pi−1, pi>. If the properties are not
met, pi must not be the apex on the convex hull, and should be deleted [34].

3.3. Validation

The validation method of LAD can be divided into a direct method and an indirect method.
A direct method collects leaves hierarchically, and then measures the single leaf area of each layer.
The workload of the method is heavy, and the method is destructive. It is almost important (to use the
method) if trees are tall and study areas are large. An indirect method measures the LAI of the canopy
by using LAI instrument. The sum of each layer’s LAD value of the total canopy height of h is called
the canopy LAI. The relationship between LAD and LAI can be expressed as follows [35]

LAI =
∫ h

0
LAD(z)dz (9)

In the assessment of the estimated LAI, the LAI-2200™ instrument was chosen as validation data
source provider. The LAI of a tree was measured using a 90◦ view cap, with the sensor placed near the
base of the trunk (Figure 5). The view cap can prevent the sensor from seeing the trunk of the tree.
LAI is computed by averaging the LAIs that are measured five times per tree.

 
Figure 5. Leaf area index (LAI) measurement of a tree using LAI 2200™ sensor [36]. The sensor is
placed near the base of a trunk with a 90◦ view cap.

3.4. Voxel Size Effects Analysis

Voxel size can influence the layer of detail of the structural information of the extracted canopy,
and the computational accuracy of the contact frequency in the VCP model. Thus, voxel size is the
key parameter for acquiring the structural information of the vegetation, and influences the LAD
estimation accuracy. To understand the effect of the voxel size on the contact frequency, we use seven
voxel sizes (2.5 mm, 5 mm, 10 mm, 25 mm, 50 mm, 62.5 mm, and 100 mm). The contact frequencies
of each horizontal thickness layer (height interval = 0.5 m) for different voxel sizes will be calculated.
The appropriate voxel size is analyzed based on measured LAI data.

355



Remote Sens. 2017, 9, 1202

4. Results and Discussion

4.1. Extraction of Leaf Point Cloud Data for Two Magnolia Trees

The average spacing of two leaves was 20 mm. Thus, the neighborhood radius was set up as
20 mm. The segmented leaf point clouds from Magnolia A, as shown in Figure 6d, were derived
using the normal difference method. The segmentation threshold of 0.5 was chosen from the normal
difference of the Otsu algorithm. Compared with the canopy’s original point clouds (Figure 6a),
the majority of the points were related to leaves. To describe the segmentation results clearly, we
showed the point clouds of cube 1 in Figure 6b. Segmented leaf point clouds based on the normal
difference method of cube 1 are shown in Figure 6e. All of the leaves were successfully segmented.
The obvious erroneous non-leaf parts that were segmented can be deleted manually, and the effect
should be minimal. The number of all of the leaf point clouds extracted in test cube 1 (Figure 6e) was
98,042. The extraction accuracy was 86.84% in test cube 1. Similarly, the extraction accuracy levels of
test cubes 2 and 3 were 87.22% and 85.54%, respectively. Therefore, the averaged accuracy level for
Magnolia A was 86.53%. Close-up views of four leaves are shown in Figure 6c. The detailed segmented
leaves’ point clouds are shown in Figure 6f. Noise points near the leaf were excluded. It indicated
that all of the points located on leaf 1 and leaf 3 were segmented, but a few of the points on leaf 2
and leaf 4 were removed. These points were located on the curved surface of the leaves, and it is
difficult to segment the points on a curly leaf since the normal directions of these points were different,
and the normal differences of the curly leaf points were similar to the non-leaf components. A visual
inspection of the leaves suggested that the shape and edges were kept well, although a few points
were incorrectly eliminated.

Figure 6. The leaf point clouds extraction of Magnolia A. (a) The point clouds of the whole canopy.
The yellow rectangle is the tested cube; (b) the point clouds of test cube 1; (c) the point clouds of leaves;
(d) the segmented leaves of Magnolia A; (e) the segmented leaves of test cube 1; (f) the segmented leaves.
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Similarly, the leaf point clouds of Magnolia B (Figure 7) were extracted using the same steps
and parameter settings (as Magnolia A). The leaves segmentation effects were similar with Magnolia
A (Figure 7e,f). The accuracy of three test cubes were 83.23%, 82.81%, and 87.86%, respectively.
The averaged accuracy value was 84.63%.

Figure 7. The leaf point clouds extraction of Magnolia B. (a) The point clouds of the whole canopy.
The yellow rectangle is the tested cube; (b) the point clouds of test cube 4; (c) the point clouds of leaves;
(d) the segmented leaves of the tree; (e) the segmented leaves of test cube 4; (f) the segmented leaves.

4.2. LAD Estimation

4.2.1. LAD Estimation in the Voxel Size of 2.5 mm

The canopy boundary contour in each horizontal layer was determined by the Graham scan
algorithm using the location of the intercepted voxels. Figure 8 showed the outline of one horizontal
layer that reflects the leaf coverage condition. The large red dots comprise the horizontal thickness of
the boundary layer of the tree canopy.

Sixty leaves were randomly selected from each horizontal layer. The distribution probability of the
leaf inclination angle was calculated using the probability of the leaf inclination angle at an interval of
10◦, with the range from 0◦ to 90◦. The inclination angle values of Magnolia A ranged between 15◦ and
75◦, with a mean value of 46◦ (Figure 9). The inclination angle values of Magnolia B ranged between
10◦ and 70◦, with a mean value of 37◦ (Figure 10). The mean zenith angle, correction coefficient,
and contact frequency in each horizontal layer were calculated. The correction coefficients were mainly
determined by mean zenith angle, and were near 1.10. The contact frequency distribution agreed with
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the leaves distribution. The maximum contact frequency of Magnolia A was 0.19, which occurred in
layer 2. For Magnolia B, the maximum contact frequency was 0.17, which occurred in layer 5.

 

Figure 8. Outline of the horizontal layer. Each small black point represents the interception of the laser
beam at a voxel location. A large red dot denotes the convex hull polygon vertex of the point sets,
that is, the boundary layer of the tree canopy vertices.

Figure 9. Probability distribution of the leaf inclination angle of Magnolia A.
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Figure 10. Probability distribution of the leaf inclination angle of Magnolia B.

The vertical distribution of the LAD (Figure 11) was consistent with the vertical leaf distribution
of the magnolia canopy (Figure 1). In each horizontal layer, the higher the leaf density, the larger
the LAD. The maximum LAD of Magnolia A happened at 1.0 m of the canopy. Then, the LAD was
positively related to height until 3.0 m. In the middle to higher layers of the canopy, the LAD of
Magnolia A was inversely related to height. The LAD of Magnolia B at 1.0 m is much higher than
1.5 m. The LAD of Magnolia B reached the peak at 2.5 m, and then decreased gradually as the height
continuously increased.

Figure 11. Leaf area density (LAD) profile of the individual broadleaf trees.

The cumulative LAD (LAI) was validated by the ground measured LAI (Table 2). The level of
accuracy was 90.7% or higher.

Table 2. The LAI accuracy.

Magnolia A Magnolia B

Estimated LAI 1.21 1.07
LAI2200 Measured LAI 1.20 1.18

Accuracy 99.9% 90.7%
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4.2.2. Voxel Size Effects

Variations in the contact frequency of different horizontal thickness layers for different voxel sizes
are shown in Figure 12 in alphabetical order. It was clear that the contact frequency increased with an
increase in the voxel size. They were highly correlated logarithmically. As contact frequency increased,
the coefficient of determination decreased. The maximum coefficient of determination (0.99) had
layer 9, where the LAD was at its lowest. In contrast, the minimum coefficient of determination (0.89)
had layer 2, where the LAD was at its highest. This implied that the estimated contact frequency of
a single horizontal thickness layer was very sensitive to the voxel size. A small voxel could express
the internal structure of a canopy more carefully, and intercept a laser canopy. Thus, the result could
be more accurate (than that derived from a large voxel). However, noise points in the point cloud
data could inevitably get involved in the calculation, resulting in unreasonable calculated contact
frequencies. In contrast, a large voxel size suppressed the internal structure of the canopy. Given the
same thickness of the horizontal layer, the estimated LAD varied at different voxel sizes. Therefore,
the expression of the canopy structure and the calculation of the contact frequency by using the
appropriate voxel size were very important to the retrieval of reasonable LAD.

Figure 12. Variation for the contact frequency with the voxel size in different horizontal thickness
layers of Magnolia A. (a–i) indicate layers 1 (the lowest) to 9 (the highest), respectively.

The estimated cumulative LAD (or LAI) of all of the horizontal layers was also positively related
to the voxel size (Figure 13). Meanwhile, the estimation efficiency of the VCP model was also positively
related to the voxel size. If the voxel size increased two times, the total voxel amount would decrease
eight times. The voxels quantity of Magnolia A produced by the VCP model is 2.1 billion when
the voxel size is 2.5 mm; thus, it will take too much time to process this model. When voxel size
increased to 50 mm, the voxels quantity of Magnolia A produced by the VCP model would decrease
to 0.26 million. So, in order to improve the efficiency of the VCP model calculation, increasing the
voxel size is necessary. The high correlation between the ratio contact frequency, LAI and voxel size,
give the potential of LAD estimation using big voxel size. Improvements to the estimation efficiency
of the VCP model through using a big voxel size, which has less voxels, can be further studied in
the future. The LAI increased continuously from 1.07 m2/m2 to 10.74 m2/m2 when the voxel size
increased from 2.5 mm to 100 mm (Figure 13). There is a high correlation between LAI and voxel size,
and the coefficient of determination reached 0.95 and 0.97. Thus, a large error in the LAI estimation
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based on the VCP model could occur if the appropriate voxel size was not determined properly.
In this analysis, the LAI varied in one order of magnitude. Compared with the ground-measured
LAI, the appropriate voxel size of 2.5 mm, which is the spatial resolution of the point clouds in this
study, should be chosen. Thus, the spatial resolution of the point cloud data should be the key factor
in determining the voxel size.

(a) (b)

Figure 13. LAI of magnolia trees for different voxel sizes. (a) Magnolia A; (b) Magnolia B.

5. Conclusions

To estimate the LAD of a tree canopy in a timely fashion, we developed an algorithm based on the
LiDAR point cloud segmentation algorithm coupled with the voxel-based model. The proposed normal
difference method was used to remove non-photosynthetic components from the photosynthetic
components in the data. The normal difference method was proposed to calculate leaf point cloud
segmentation, because the normal vector difference of the leaf point cloud is different to the non-leaf
components in the neighborhood. From the three chosen test cubes, the extraction accuracy was 86.53%
and 84.63% for Magnolia A and Magnolia B, respectively. This shows that the normal difference
method has big potential for leaf point cloud segmentation in magnolia canopies, because this method
mainly considers the leaf structure, and is non-destructive.

The results also suggested that the LAD/LAI estimated by the VCP model were highly sensitive
to the voxel size. The estimated LAD/LAI would increase with an increase in voxel size. When the
voxel size was larger than 10 times the mean points spacing, the LAD/LAI remained a constant value.
Thus, an appropriate voxel size should be identified for the VCP model with the consideration of the
density of LiDAR points.

The canopy LAD was estimated by computing the contact frequency for each thickness layer,
and the leaf inclination correction factor. The individual magnolia tree LAD and the vertical distribution
of the leaf point cloud exhibited an overall agreement when the voxel size was 2.5 mm and the
horizontal layer thickness was 0.5 m. The cumulated LAD (LAI) had little difference with the ground
measurement LAI when the voxel size was 2.5 mm. Thus, the LAD distribution of individual magnolia
trees could be retrieved accurately using terrestrial LiDAR data, which could overcome the limitations
of field measurements obtained using traditional methods.
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Abstract: Large-scale forest disturbance often leads to changes in forest cover and structure,
which imposes a great uncertainty in the estimation of the forest carbon cycle and biomass and
affects other applications. In northeastern China, the Daxinganling region has abundant forest
resources, where the forest coverage is about 30%. The Global LAnd Surface Satellite (GLASS) leaf
area index (LAI) time series data provide important information to monitor the possible change of
forests. In this study, we developed a new method to detect forest disturbances using GLASS LAI
data over the Daxinganling region of Northeast China. As a dynamic model, the season-trend model
has a higher sensitivity toward a seasonal change in LAI. Based on the accumulation of multi-year
GLASS LAI products from 1997 to 2002, the dynamic model of LAI time series for each pixel is
established first. The time-stepping modeling (TSM) process was designed by using the season-trend
method, and sequential tests for detecting disturbances from a time series of pixels. Significant
changes in the model parameters were captured as disturbance signals. Then, the near-infrared
and shortwave-infrared bands of Moderate Resolution Imaging Spectroradiometer (MODIS) surface
reflectance are used as auxiliary information to distinguish the types of forest disturbances. Here,
the algorithm led to the detection of two different types of disturbances: fire and other (e.g., insect,
drought, deforestation). In this study, we took the forest region as the study area, used the 8-day
composite GLASS LAI data at 1000-m spatial resolution to identify each pixel as a fire disturbance,
other disturbance, or non-disturbance. Validation was performed using reference burned area
data derived from Landsat 30 m imagery. Results were also compared with the MCD64 product.
The validation results were based on confusion matrices showing the overall accuracy (OA) exceeded
92% for our method and the MCD64 product. Statistical tests identified that TSM’s product accuracy
is higher than that of MCD64. This study demonstrated that the TSM algorithm using a season-trend
model provides a simple and automated approach to identify and map forest disturbance.

Keywords: GLASS LAI time series; forest disturbance; disturbance index
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1. Introduction

Forest disturbances are discrete events that cause tree mortality and destruction of plant biomass.
An effective method to detect the temporal and spatial distribution of forest disturbance in a large
area is to use remote sensing time series data. In many ecological models, accurate monitoring of
forest disturbances has a crucial role in Gross Primary Production (GPP) and Net Primary Production
(NPP) estimation accuracy and aerosol and biomass estimation [1–10]. The mapping of precise
forest disturbances in large areas provides basic data for wildlife protection and strong support for
large-scale vegetation biophysical and structural change monitoring [11]. Based on the needs of various
applications, the use of remote sensing data for detecting forest disturbances in a large area has been
carried out widely.

Many efficient methods have been proposed to detect changes from image time series.
The methods include detecting forest disturbance and recovery [3,12,13], detecting trend and seasonal
changes [14–16], and extracting seasonality metrics from satellite time series [17,18]. Current remote
sensing approaches in monitoring forest disturbance detection are mainly based on vegetation indices
(VI) and other vegetation parameters [19–24], such as the normalized difference vegetation index
(NDVI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) [11], to determine the
disturbance by analyzing the changes in a long time series. VI is a common indicator of vegetation
disturbance monitoring. Vegetation is relatively fragile in terrestrial ecosystems, and it is also sensitive
to the occurrence of disturbances. It is possible to detect the disturbance events effectively by
observing the change of vegetation using remote sensing data. NDVI is the most widely used VI;
it can show the growth curve of vegetation over time. It is suitable for medium and long-term
vegetation growth monitoring, phenophase monitoring, and crop yield estimation. The hotspot and
NDVI differencing synergy (HANDS) [19] algorithm was applied to Canadian forests during the
1995–2000 fire seasons using the annual hotspot masks and differencing of the anniversary date of
September NDVI composites. HANDS is designed to produce annual maps of burned forests by
combining the active fire detection product with NDVI differencing, a common change detection
technique. The HANDS method substantially reduces noise levels by requiring that burned areas
identified through NDVI differencing be co-located with hotspots. In 2009, Mildrexler used the
Moderate Resolution Imaging Spectroradiometer (MODIS) global disturbance index (MGDI) [25] with
satellite data to operationally detect large-scale ecosystem disturbances at 1-km resolution. The MGDI
algorithm was designed to contrast annual changes in vegetation density and land surface temperature
(LST) following disturbance by enhancing the signal to effectively detect the location and intensity
of disturbances.

Disturbances from agents such as fire, insect damage, or strong winds are common throughout
the world’s forests. Fire is the dominant driver of forest disturbance at the global scale, and fire is
one of the most dominant disturbance agents in Northeast China. Currently, the most widely used
burned area products are three MODIS data products and three products developed within the fire
disturbance project (fire_cci) [26–31]. There is a significant difference between the detection results
of different products; through a comparison of a variety of products, statistical tests identified that
MCD64 was the most accurate, followed by MCD45 [32]. Biomass density varies through time as a
result of disturbances; accurate estimates of biomass emissions focuses on identifying disturbances
(whether anthropogenic or natural), but it is difficult to meet the application requirements with most
of the forest disturbance products.

In this study, we used The Global LAnd Surface Satellite (GLASS) leaf area index (LAI) time
series data to detect forest disturbances in Northeast China. We developed a method for disturbance
detection in forest land. Based on the season-trend model [15,16], the GLASS LAI data from 1997
to 2002 was taken as the background dataset to model phenological changes of vegetation in forest
land, which represents the annual periodic variation curve of LAI without disturbance. The model
parameters were used as the reference parameters for identifying disturbance pixels. Every 8 days,
GLASS LAI data acquired after 2002 was iteratively added to the background dataset to model the
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phenological change step by step. The model parameters could be different in each modeling step and
were taken as a signal of whether there was a disturbance. These procedures were iterated until the end
of a time series or until a change was detected. We call this algorithm the time-stepping modeling (TSM)
process. During the monitoring period, the disturbance was detected by the difference between the
criteria parameters and the new parameters which were re-simulated by adding a new LAI. The forest
disturbance and the natural growth were distinguished by the disturbance index (DI), which is defined
in this paper, and the forest disturbance was automatically identified. Finally, the normalized burn
ratio (NBR) was used to reclassify the disturbance of vegetation to determine whether it was a burned
area. In order to verify the accuracy of the approach, the types and spatial ranges of forest disturbance
were detected in a forest region of Northeast China. The detected result was compared with the burned
area of MCD64 and the burned area of Landsat, which were calculated using the differenced NBR
(dNBR) method. The results demonstrated the validity of our method through experiments in the
Daxinganling Mountains, including the effective detection of disturbances based on the TSM process
using a dynamic model, and the discrimination of types of disturbances.

2. Materials

2.1. Study Area

We selected the northeast forest area of China as our study area. The region is characterized by
a continental monsoon climate. The forests in the region are horizontally divided into four regions
of vegetation: the cool temperate deciduous coniferous forest region, the temperate mixed evergreen
coniferous-deciduous broad-leaved forest region, the warm temperate deciduous broad-leaved forest
region, and the temperate steppe region. Forests of these types account for about 30% of forest in
China. Northeastern China has abundant tree species and a variety of forest types, including evergreen
needleleaf forest, deciduous needleleaf forest, deciduous broadleaf forest, and mixed forests. Figure 1
shows the location of the study area and the land classification results of 30 m resolution (Figure 1A)
and 1000 m resolution (Figure 1B). In subsequent steps, we use 1000 m land classification results.

Figure 1. Map showing the location of the study area. (A) Land cover map of study area in 2003
produced by Landsat images of 30 m resolution; (B) Land cover mapping with 1000 m resolution.
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2.2. Data Processing

The remote sensed data we used in this study include the GLASS LAI product from 1997 to 2003,
the “MOD09A1” 500-m MODIS atmospherically-corrected Level 3 8-day surface reflectance products,
and the Level 3 MODIS “MCD64A1” monthly burned area products. The MOD09A1 and MCD64A1
data were reprojected from the MODIS sinusoidal projection into the Albers equal area projection
at 1000 m resolution. In order to test the performance of the forest disturbance detection approach,
Landsat TM images of 2003 were used to create high resolution burned area maps. The maps were
taken as a reference to assess our disturbance detection results at 1 km spatial resolution.

The GLASS LAI product was retrieved from time series MODIS and Advanced
very-high-resolution radiometer (AVHRR) surface reflectance data using general regression neural
networks (GRNNs), and the inter-comparison of GLASS LAI products and other existing operational
global LAI products, including MODIS and CYCLOPES, indicate that the GLASS LAI product is the
most spatially complete and temporally continuous [33].

The mean phenological change of the LAI was computed for 5 years (1997–2001) on a
pixel-by-pixel basis. The mean LAI reflects the undisturbed plant growth phenology and provides a
background to assess a departure from the LAI variability. The vegetation in the northeast forest area
was dominated by deciduous forests; therefore, LAI at the beginning and end of the year were at a very
low level. In order to improve the simulation of the LAI model accuracy by excluding non-growth
period data, the input parameters were taken from the 96th day to the 306th day of each year.

The study focuses on forest land. We used land classification data to mask non-forest areas.
Land use classification is the result of supervised classification using Landsat data to derive seven
categories: forestland, artificial cover, water, shrubland, wetland, cropland, grassland, as shown in
Figure 1A. We resampled the spatial resolution of the classifications from 30 m to 1000 m using a mode
resampling method, and the land use was divided into two categories: forest land area and non-forest
land. The classifications data was reprojected from the UTM projection into the Albers equal area
projection. Land use classification results are shown in Figure 1B. The remote sensing data used in the
present paper are in Table 1.

Table 1. Remote sensing data parameter list. GLASS = Global LAnd Surface Satellite.

Data Resolution (m) Temporal Resolution (day) Date

GLASS 1000 8 1 January 1997–31 December 2003
MCD64 500 Monthly 1 January 2003–31 December 2003
MOD09 500 8 1 January 2001–31 December 2003

Classification 30 Year 2003

Landsat 30 16

10 April 2003
23 April 2003
26 May 2003
13 June 2003

3. Methods

LAI as an indicator of vegetation coverage and vegetation growth status can directly reflect the
growth status of vegetation. In the normal growth period of forests, LAI has a similar annual periodic
variation. The annual LAI curve also has good continuity, so there is no obvious fluctuations in the
curve. When a forest disturbance occurs, such as drought, pest, fire, deforestation, etc., these effects
directly affect the LAI, which will be reduced significantly. Through analysis of a long time series of
forest LAI data from remote sensing images using our developed dynamic model and the TSM process,
we can detect the location and range of the forest disturbances effectively. Figure 2 shows the flow
chart of the approach.
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Figure 2. Flow chart of the forest disturbance detection. LAI = leaf area index; DI = disturbance index;
NBR = normalized burn ratio.

3.1. Iterative Algorithm to Detect Forest Disturbance

The season-trend method is a linear regression model proposed by Verbesselt to account for
seasonal and trend changes typically occurring within climate-driven biophysical indicators derived
from satellite data [15,16]. The model is an additive decomposition model, which is based on the
characteristics of the periodic variation of remote sensing data from the vegetation-covered surface.
It is assumed that the time series is mainly composed of seasons and trends; thus, the modeling results
are obtained using the trends and seasons in the model sequence to be decomposed, as follows

Yt = a1 + a2t +
k

∑
j=1

rj sin
(

2π jt
f

+ σj

)
+ εt (1)

where Yt is the time series observation at time t, the intercept α1, slope α2, amplitudes γj, and phases
δj are the unknown simulation parameters, k is the number of harmonic terms that should be specified
manually, f is the frequency of the time series observations, and εt is the error term at time t.

We used three harmonic terms to robustly simulate phenological changes within GLASS LAI time
series [34,35]. The formula for LAI time series simulation can be expressed as follows

Y(t) = a + b ∗ t + c ∗ sin
(

2πt
f

+ σ1

)
+ e ∗ sin

(
4πt

f
+ σ2

)
+ g ∗ sin

(
6πt

f
+ σ3

)
(2)
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In a large area of forest disturbance detection, the idea for monitoring techniques is simple.
In this paper, the estimation of parameters was performed by iterating through the following steps
until reaching the last value of the monitoring period or until a disturbance is detected:

Step 1: Based on a given LAI time series (there are two parts of data: the mean phenological
change of 1997–2001 and the year 2002, thus we call it background data), the Equation (2) was used to
simulate the LAI time series, the initial simulation parameters (i.e., a and c in Equation (2)) were used
as the reference parameters for detection.

Step 2: The iterative procedure began with a simulation of Y (2003) of Equation (2) by using the
season-trend method. The modeling data was a combination of background data and monitoring
data. The first LAI data in 2003 was the starting point of the monitoring data for detection, and the
parameters of the fitting model were calculated.

Step 3: The size of the window was the same as the background data, the moving width of
the window for monitoring data was equal to 1. When we add monitor LAI data to the end of the
background data, the first of the background data is removed. The fitting model parameters obtained
after adding the monitoring data were compared with the reference parameters to determine whether
any change was detected.

The mean LAI can represent the normal phenological pattern of forests. The LAI of the prior year
shows whether forest growth has changed. Through the simulation of background data, the growth
structure of the forest can be determined. It can be considered, as the phenology of the previous
year occupied a higher weight in the simulation process. These time-stepping modeling processes
were iterated until reaching the last value of the monitoring period or until disturbances are detected.
Through analysis of the model parameters, the amplitude parameter was found to be the most sensitive
to structural changes in the time series, as shown in Figure 3. For the detection of forest disturbances,
we defined the DIc and DIa using the following formulas{

DIc =
cn−c0

c0
< −0.1(c0 �= 0)

DIa = an − a0 > 0.15
(3)

where c0 (a0) is the value of the parameter c in the initial simulation and cn (an) is the value of the
parameter c (a) on the n (1 < n < 27) time series used in the monitoring period.

Using a set of simulated LAI data of three years, Figure 3 shows an example of this analysis;
four subsets were established within varying degrees of growth. We computed the DI values at each
single step length during the disturbance in 2003. Figure 3A illustrates the change in DI in the case of
forest growth. With the increase of fitting data, the value of DIc gradually increases, and the value of
DIa decreases gradually. Figure 3B illustrates the change in DI value without disturbance. The time
series of DI basically did not fluctuate, hovering around zero. Figure 3C illustrates the change in DI
value with a certain degree of disturbance. As the disturbance continues, the value of DIa gradually
increases, and the value of DIc decreases gradually. Figure 3D illustrates that with the increase in
the degree of disturbance, the value of DIc appeared to have a greater degree of reduction, while the
value of DIa appeared to increase to a much greater degree. Based on the analysis of the disturbed
area, we selected DIc < −0.1 and DIa > 0.15 as our thresholds for detecting those disturbances. In the
iterative modeling, when the amplitude of the two parameter changes do not exceed the threshold,
forest disturbances will be identified as not occurring. Otherwise, forest disturbances will be detected.
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Figure 3. Using the season-trend model to simulate GLASS LAI time series compared to the previous
two years LAI values in 2003. (A) multiplied the coefficient 4/3, (B) is 1, (C) is 2/3, and (D) is 1/3.
Where the red line is the curve of the amplitude of the parameter c, the purple line is the amplitude
curve of b.

The LAI value of some of the pixels may have been at a low level; therefore, if there is a slight
change in LAI it will lead to a disturbance index that appears to have relatively large fluctuations,
resulting in the detection of an error. To avoid this problem, we applied annual maximum value
compositing to the LAI data. The LAI data were combined into one image representing the maximum
LAI detected at every pixel throughout an annual period, and then this was compared with the annual
maximum of the previous year’s LAI.

LAI_MAX2002 > LAI_MAX2003 + 1.5 (4)

If the LAI maximum of the same pixel had a decrease of 1.5 for two years, it was detected as a
disturbance in the previous step. It is possible to be confident that the pixel was disturbed, otherwise,
no disturbance had occurred. Any pixels above this threshold were flagged as a disturbance.

3.2. Distinguish the Types of Disturbances

The normalized burn ratio (NBR) [36,37] in form is a modification of the NDVI, except that
it uses near-infrared (NIR) and a shortwave-infrared (SWIR) bands. The NIR band is sensitive to
the chlorophyll content of the vegetation, while the SWIR band responds to the soil moisture and
vegetation water content. Healthy vegetation has very high NIR reflectance and low reflectance in the
SWIR portion of the spectrum. NBR is calculated as follows

NBR =
B5 − B7
B5 + B7

(5)

A high NBR value generally indicates healthy vegetation, while a low value indicates bare ground
and recently burned areas. This ratio spectral index shows a significant decrease following a burn and
provides good burned–unburned discrimination using MODIS data.
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On 5 May 2003 there was a large forest fire across the Jinhe forestry region, and the NBR was
calculated using the surface reflectance data of the fire pixels. The time series curve of the NBR
is shown in Figure 4A. It can be seen at the end of May 2003 that the NBR experienced a sharp
decline from around 0.4 to −0.3, and the NBR of the non-fire pixels were always above 0.2 (Figure 4B).
This characteristic abrupt decrease in NBR is the primary indicator used within the algorithm to
identify burned areas. Combined with the first four steps of the detection results, when the pixel
is labeled as disturbance and during this period of time NBR calculation results are less than 0,
the candidate pixel was identified and labeled as burned. This algorithm attempts to distinguish the
types of forest disturbances.

Figure 4. Difference between the NBR anomalies for burned (A) and unburned (B) areas in 2003.
The green curve is the value of NBR, and the red dotted line is the horizontal line when NBR is zero.

4. Results

We used the TSM processing to model the GLASS LAI time series (1997–2003) to detect the
Daxinganling forest fire that occurred in 2003. The disturbance detection result using the TSM
algorithm was compared with the reference burned area data created using high-resolution Landsat
imagery and the MCD64 products, respectively.

4.1. Comparing Results with MCD64 Products

Figure 5 presents the two burned area products over the study area in the 2003 period. There were
6082 burned pixels in the MCD64 data, 4022 pixels were burned in the GLASS data, and the difference
between the two results was more than 2000 pixels. The differences were mainly concentrated on the
left and right sides of the study area.
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Figure 5. Comparison of GLASS burned area data and the MCD64A1 product data.

In order to compare the detection accuracy, the differences between the two products were selected
in the study area. There were 978 pixels that MCD64 identified as unburned, but the TSM algorithm
detected them as burned pixels; the LAI and NBR time series are shown in Figure 6A,B. The LAI in
2003 compared to the previous two years had a large degree of reduction; at the same time, the value
of NBR in 2003 was generally at a low level compared with that of the previous two years. In addition,
there were 2904 unburned pixels in the TSM algorithm detection that were marked as burned pixels in
the MCD64, as shown in Figure 6C,D. In 2003, the LAI value did not decrease significantly, and the
value of NBR was also at a high level. There were a large number of missed and wrong detection
phenomenon in MCD64 product, and the TSM algorithm effectively avoided the phenomenon.

Figure 6. The LAI (green) and NBR (red) time series in the study area. (A,B) are detected as burned
pixels in the TSM algorithm, and (C,D) are detected as unburned.

4.2. Results of Other Disturbances

Fires, pests, hurricanes, deforestation, etc., can result in a disturbance of forest growth. Different
types of forest disturbances influence forest ecosystems in different ways; we need to distinguish

372



Remote Sens. 2017, 9, 1293

between them. In Figure 7, the left side is the pixels with other disturbance types, which are marked in
blue, with a total of 3457 pixels, accounting for 1.762% of the study area. For these non-fire disturbance
pixels, two regions (A and B) were selected at random. On the right side of Figure 7 are the mean
LAI and NBR time series curves for the two regions. There were 209 pixels presumed to have been
disturbed in region A and 1248 in region B. Compared with the previous two years, the LAI was
significantly reduced in 2003. The NBR time series curve is above 0.2 in 2001 to 2003; the reduction of
LAI can exclude the cause as a fire disturbance. Our algorithm can effectively detect the occurrence of
non-fire disturbances.

Figure 7. Other types of forest disturbances and mean LAI (subscript is 1) and NBR (subscript is 2)
time series of two verification regions. Region A: The maximum mean LAI in 2003 at a value of 2.1;
maximum mean LAI was 4.1 for 2000 and 2001. Region B: The maximum mean LAI in 2003 at a value
of 2.8; maximum mean LAI was 4.5 for 2000 and 2001.

5. Discussion

5.1. Comparing Results with TM dNBR Map

We assessed the accuracy of burned area maps produced with the TSM algorithm in two different
regions. On 5 May 2003, there was a large forest fire in the Jinhe forestry region in Inner Mongolia,
and on 17 May 2003, there was a large forest fire in the Shibazhan forestry region in Heilongjiang
Province. The results of the GLASS and the MCD64 product were compared with the results of the fire
using high spatial resolution Landsat images. Landsat TM data resolution is 30 m; its spatial detail
features were more obvious compared to those of the 1000 m spatial resolution of the MODIS data.
The green leaves of the fire area were reduced, and compared with the reflectance of normal growing
forest, there was an increase in the SWIR spectral region and a NIR reflectance drop. Bi-temporal
image differencing is frequently applied on pre-and post-fire NBR images, resulting in a differenced
NBR (dNBR). Through the dNBR calculation results, statistics of the area and location of the fire and
the fire condition in the subpixel of GLASS can be clearly determined. The results were sampled to
1000 m, and the detection accuracy of GLASS was evaluated on the basis of sampled results.
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dNBR =

(
B4 − B7
B4 + B7

)
pre − fire

−
(

B4 − B7
B4 + B7

)
post − fire

(6)

Landsat datasets for the study area were downloaded from the United States Geological Survey
(USGS) satellite data download site. Data related to the May 2003 Jinhe fires were downloaded for
8 April 2003 (pre-fire) and 26 May 2003 (post-fire). Data related to the May 2003 Shibazhan fires were
downloaded for 10 April 2003 (pre-fire) and 13 June 2003 (post-fire). The images were subjected to
geometric, radiometric, and atmospheric correction.

In Figure 8, the dNBR results are sampled to 1000 m spatial resolution using a mode resampling
method. The statistical analysis of the sizes of the burned area before and after resampling and the
burned area of the two study regions were reduced by different degrees after resampling. The burned
area of the Jinhe was reduced by about 4000 hectares and the burned area of the Shibazhan was reduced
by about 2000 hectares. Cloud and cloud shadow contamination will result in a dNBR calculation error.
We identified cloud and cloud shadows in the Landsat images using visual interpretation, and a mask
was applied to the GLASS and MCD64 to subset the image graphically to mask contaminated pixels.

Figure 8. Regional images of the 2003 GLASS and Landsat fire disturbance in Shibazhan and Jinhe.
The comparison results of two algorithms in Shibazhan are shown in the upper row: (a) TSM results;
(b) Landsat image; (c) Landsat dNBR results. The comparison results of two algorithms in Jinhe are
shown in the bottom row: (d) TSM results; (e) Landsat image; (f) Landsat dNBR results. The Landsat
image is displayed in band 4 (red), 3 (green), 2 (blue) color composite. The cyan boxes in the differenced
NBR (dNBR) represent 10 × 10 GLASS pixels.

A reference of the burned area data for each region was compiled using high-resolution Landsat
imagery. The results of the burned area of the two regions were compared using a confusion matrix to
evaluate the spatial fidelity of mapping on a per-pixel basis. Table 2 provides the producer accuracy
and user accuracies obtained when comparing GLASS and MCD64 versus reference maps of burned
areas derived from Landsat TM over Jinhe and Shibazhan in the 2003 period. The overall accuracy
is the percentage of all validation pixels correctly classified. The burned region map was validated
using Landsat data. The TSM algorithm mapped the spatial distribution of the burns in Jinhe with an
overall kappa coefficient of 0.776 and an accuracy of 96.5%; in Shibazhan, the overall accuracy was
98%, and the kappa coefficient was 0.838. The overall accuracy of the MCD64 product, when compared
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in Jinhe and Shibazhan, was 92.52% and 97.14%, respectively, and the kappa coefficient was 0.758 and
0.634, respectively. The results indicate that the GLASS-derived burned map of our study area has a
high accuracy.

Table 2. Regional confusion matrices and kappa coefficient (k) from geographic accuracy assessment.
MODIS = Moderate Resolution Imaging Spectroradiometer; TSM = time-stepping modeling.

Landsat
MODIS Producer’s

Accuracy

GLASS TSM Producer’s
AccuracyBurned Unburned Burned Unburned

Jinhe (k = 0.758) k = 0.776
Burned 473 107 81.5% 521 59 89.8%

Unburned 150 3955 96.3% 103 4002 97.5%
User’s accuracy 75.9% 97.4% 83.5% 98.5%

Shibazhan (k = 0.634) k = 0.838
Burned 1407 265 94.7% 1579 93 94.4%

Unburned 1115 17377 97.3% 321 18171 98.3%
User’s accuracy 80.8% 99.3% 83.1% 99.5%

5.2. Why Use GLASS LAI Data?

There are many remote sensing products that can be used as input parameters for the detection of
disturbances, such as NDVI, enhanced vegetation index (EVI), and LAI. GLASS LAI [33] was selected
as the input data for the following reasons: (1) the time series of GLASS LAI products have good
continuity; (2) GLASS LAI in the vegetation cycle is relatively smooth. If the time series data has large
fluctuations, it needs to be smoothed before use; In addition, (3) the LAI is more sensitive to detecting
disturbances in forested land, whereas NDVI is prone to moderate to high saturation.

After extracting the fire area coordinates in the Jinhe large forest fire, a time series curve from 2001
to 2005 was drawn from burn-related data using MODIS NDVI. In 2003, NDVI data showed a rapid rise
after a brief decline; compared to the previous data with no fire, the NDVI changes were not obvious.
One of the consequences of fire is that a burning forest will leave a wealth of organic matter. Fire is
necessary to cycle nutrients, especially on sites with deep organic soils. After a fire, adequate nutrients
play a significant role in weed and understory growth [38].

The satellite observes forest land from a high altitude; therefore, both the canopy and understorey
will be reflected in the results of NDVI. LAI can be regarded as a three-dimensional characteristic
parameter of forests, which is superior to NDVI as an input parameter. The time series of MODIS LAI
data of the same burned pixel were plotted. Compared with NDVI, the LAI appears to be significantly
reduced after May 2003, but MODIS LAI in the time series has a very large jump; the occurrence of
jump points will affect the modeling parameters so that the detection results will be in error. If we use
MODIS LAI data to model, we need to smooth the LAI in accordance with the growth pattern and
weaken the detection error caused by the jump point.

As can be seen from Figure 9, the curves using GLASS LAI data are smoother than those using
MODIS NDVI and MODIS LAI and are, therefore, more suitable for season-trend modeling and the
detection of disturbances.
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Figure 9. The time series curve of different products at the same location (3 × 3 km); GLASS LAI (red),
MODIS LAI (green) and MODIS normalized difference vegetation index (NDVI) (black).

As with any remote sensing method, our developed algorithm has a limit and cannot distinguish
some non-fire types of forest disturbances. In a future analysis we will use auxiliary data to achieve
a more detailed classification of the results in order to enhance the versatility of the algorithm and
distinguish the different types of forest disturbances. The LAI of forests will be at a lower level in
winter and spring, the variations of the model parameters that occurred during this period were not as
sensitive as that of the growing season. Although we can use subsequent data to detect the occurrence
of disturbances by changes in LAI time series, the time and range of the disturbance in the detection
results will be affected. We will improve the LAI’s simulation method to allow it to detect those
sedondary disturbance too.

As it can be seen in Figure 3, the season-trend model can detect forest recovery. We will extend
the application of the model and the TSM process method to estimate the restoration of the forest
after the disturbance according to its parameter variation characteristics and evaluate the ecological
restoration quantitatively.

6. Conclusions

In this study, we describe a new algorithm for detecting forest disturbances using 8-day composite
LAI data at 1000 m spatial resolution from the GLASS product, which uses the season-trend model
and the time-stepping modeling (TSM) process, monitors the variation in the amplitude parameter
of the dynamic model over a long period, and detects disturbance signals by capturing structural
changes in the time series data. The resultant forest burn map had an overall accuracy greater than
96% and kappa coefficient greater than 0.77 based on the validation data derived from Landsat images.
The results show that the TSM algorithm can improve the application of remote sensing data in forest
disturbance detection and provide effective support for long-term monitoring of forest ecosystems.
The results from this study also demonstrate that the TSM algorithm is automatic and robust and can
be used to map forest disturbances in forest land. In the present study, by using the SWIR band as
auxiliary data, the algorithm achieved good performance in Daxinganling and distinguished between
burned and unburned areas. To distinguish other types of forest disturbances, future studies need to
include more auxiliary information and more complicated scenarios.
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Abstract: Northern China is one of the most sensitive and vulnerable regions in the country. To combat
environmental degradation in northern China, a series of vegetation protection programs, such as the
Three-North Shelter Forest Program (TNFSP), have been implemented. Whether the implementation
of these programs in northern China has improved the vegetation conditions has merited global
attention. Therefore, quantifying vegetation changes in northern China is essential for meteorological,
hydrological, ecological, and societal implications. Fractional vegetation cover (FVC) is a crucial
biophysical parameter which describes land surface vegetation conditions. In this study, four FVC
data sets derived from remote sensing data over northern China are employed for a spatio-temporal
analysis to determine the uncertainty of fractional vegetation cover change from 2001 to 2012.
Trend analysis of these data sets (including an annually varying estimate of error) reveals that
FVC has increased at the rate of 0.26 ± 0.13%, 0.30 ± 0.25%, 0.12 ± 0.03%, 0.49 ± 0.21% per year in
northern China, Northeast China, Northwest China, and North China during the period 2001–2012,
respectively. In all of northern China, only 33.03% of pixels showed a significant increase in vegetation
cover whereas approximately 16.81% of pixels showed a significant decrease and 50.16% remained
relatively stable.

Keywords: fractional vegetation cover (FVC); multi-data set; northern China; spatio-temporal;
inter-annual variation; uncertainty; standard error of the mean

1. Introduction

Northern China has typical characteristics of fragile ecological situations and is one of the most
sensitive and vulnerable regions in China. For historical reasons, farming practices, grazing and
other reasons, northern China is suffering long-term land degeneration, a lack of fresh water, drought,
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and other extreme weather, etc. [1–4]. Therefore, northern China is a key area deserving of scholarly
attention. Faced with these problems, the Chinese government has realized the seriousness of the
situations and has implemented a series of policy measures to ease the environmental crisis.

Vegetation, which is bonded soil, climatic, hydrologic, and other elements in the whole ecosystem,
is a sensitive indicator of climate change and human activities and thus influences climate by affecting
the energy, water, and carbon cycle [5–7]. Vegetation is also a positive factor in the prevention of soil
and water loss as well as in the control of sandstorms; it also is an important factor for soil erosion
prediction. Vegetation absorbs CO2 through photosynthesis from the atmosphere to mitigate global
warming. Meanwhile, vegetation can increase precipitation, runoff regulation, reduce flood and
drought, reduce pollution, and improve the ecological environment. Vegetation change can also affect
the energy balance as well as biochemical and biophysical processes [8].

Therefore, many ecological engineering programs have been implemented in northern China
to improve the regional ecological environment [5,9] such as the Three-North Shelterbelt Forest
Program (TNSFP), the Green to Grain Program (GTGP), and the Natural Forest Conservation Program
(NFCP) [10–13]. In these ecological programs, TNFSP is the oldest, invested in the most, and
affected the widest range. The TNSFP was officially launched in 1979 and involves 13 provinces,
autonomous regions, and municipalities in the Three-North region with a total planned area of more
than 4 million km2, i.e., nearly 42% of the total area of China. To date, a total of 30.6 million ha of
afforestation has been carried out at a total cost of ¥4 billion [1,6]. Because of its huge geographic
extent and complexity, the project will extend to 2050 and will provide important information through
the monitoring of its long-term progress [14]. The main purpose of such projects is to prevent land
desertification, control sandstorms, and improve both local water resources and the natural environment.
Whether the implementation of these programs throughout northern China has improved the vegetation
conditions has merited global attention.

Therefore, quantifying vegetation changes in northern China is essential. Fractional Vegetation
Cover (FVC), which is an important variable describing land surface vegetation, is generally defined
as the fraction of green vegetation as seen from the nadir of the statistical area. FVC is also a crucial
biophysical parameter for studying the atmosphere, pedosphere, hydrosphere, and biosphere as
well as their interactions [15–18]. Reliable information on FVC change over northern China is
needed for environment and ecological monitoring, environmental assessment, and the evaluation
of vegetation change feedbacks in climate. For example, Su et al. [19] used MODIS data to detect
vegetation changes in the agricultural-pastoral areas of northern China from 2001 to 2013. Liu et al. [20]
used SPOT-VGT data from 1998 to 2007 to detect vegetation change throughout northern China.
Zhang et al. [21] analyzed the spatio-temporal vegetation changes of northern China from 2000 to
2012. Li et al. [22] analyzed the spatial-temporal pattern and change of FVC in northern China during
2001–2012. Li et al. [23] conducted a comparison of multiple forest cover data sets to monitor forest
cover changes across China.

However, most of the studies used a single data set in which may exist large uncertainties.
The accuracy of the FVC data set is unclear in northern China resulting from a lack of ground
measurements. As a result, its attributions and any response to climate change generated from a single
source may lead to large uncertainties. A multi-data set approach to analyze the vegetation change is a
logical response to the challenges mentioned above as it fuses the strengths of the various platforms
and methodologies as well as provides an estimate of the uncertainty. Therefore, the main object of this
study is to develop a multi-data set estimate of FVC change throughout northern China for the period
of 2001–2012. It is also expected to provide reliable and accurate information for regional sustainable
development, ecological restoration project planning, and ecological environmental protection.
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2. Data and Methods

2.1. Study Area

The study area (Figure 1), based on provincial boundaries, contains 13 provinces, cities,
autonomous regions, and municipalities in northern China. Reflecting on the diversity of the natural
environment, northern China has been further subdivided into northeastern China, northwestern
China, and northern China when conducting statistical analysis at a regional scale.

Northeast China contains Heilongjiang, Liaoning, Jilin province as well as the eastern part of the
Inner Mongolia Autonomous Region. Northeast China is characterized by temperate monsoon climate
with a low mean annual temperature (5.2 ◦C) and annual precipitation reaching 300~1000 mm. Northeast
China contains almost all major forest types in northern Eastern Asia which include cold-temperate
conifer mixed forests, temperate conifer forests, broadleaf mixed forests, and warm-temperate deciduous
broadleaf mixed forests and covers the largest area of natural forest in China [24].

North China contains Beijing, Tianjin, Hebei, Shandong, Shanxi, Shaanxi as well as the middle part
of the Inner Mongolia Autonomous Region. North China is defined by plains and a warm sub-humid
continental climate and has a large annual range of temperature; the annual precipitation reaches
400–800 mm, mainly in the summer.

Northwest China contains the western part of the Inner Mongolia Autonomous Region,
the Xinjiang Uygur autonomous region, the Ningxia Hui autonomous region, along with Gansu
province. The climate of Northwest China varies and includes a temperate continental monsoon
climate, arid and semi-arid climates, and a warm temperate continental arid climate. It is distinguished
by a low annual mean temperature, a large annual range of temperature, and low precipitation
(50–200 mm/year). It has the biggest desert in China, the Taklimakan desert, and the main vegetation
type is grassland, shrubland, etc.

Figure 1. Location of the research area (The green area represents northeast China, the pink area for
North China, the blue area for Northwest China, respectively).

2.2. Data Sets

Four FVC data sets were used to estimate vegetation change over northern China in this study,
including the Global LAnd Surface Satellite (GLASS) FVC product, GEOV1 FVC product, TRAGL FVC
product, and Li product, which are summarized in Table 1.
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Table 1. The summary of fractional vegetation cover (FVC) data sets used in the analysis.

Product Name Sensor Available Time
Temporal

Resolution
Spatial

Coverage
Spatial

Resolution
Reference

GLASS-MODIS MODIS 2001–now 8 days Global 500 m [16]
GEOV1 SPOT VGT 2001–now 10 days Global 1 km [25]
TRAGL MOIDS 2001–2012 8 days Global 1 km [26]

Li MODIS 2001–2012 8 days Northern China 0.011◦ [16]

2.2.1. GLASS MODIS-FVC Product

The GLASS FVC product [16] is one of the new products in the GLASS product suite, which is
supported by China’s National High Technology Research and Development Program to generate
long-term global land surface parameters. The GLASS MODIS-FVC product is generated using the
generalized regression neural networks (GRNNs) with training data derived from MODIS Version 5
surface reflectance data (MOD09A1) and FVC values obtained from Landsat data using the dimidiate
pixel model. The temporal and spatial resolution of GLASS MODIS-FVC are 8-day and 0.5 km with a
sinusoidal grid projection, respectively. Jia et al. compared the GLASS FVC with GEOV1 FVC which
was the best global FVC product and results indicated GLASS FVC presented a much better spatial
and temporal continuity and marginally better accuracy with over 44 validation of land European
remote sensing instruments (VALERI) validation sites.

2.2.2. GEOV1 FVC Product

The GEOV1 FVC product (http://land.copernicus.eu/global/products/FCover) that derived
from SPOT/VEGETATION data from 1999 to the present is an improvement of CYCLOPES FVC
product [25]. The product is provided in a Plate Carrée projection at 1/112◦ spatial resolution and
a 10-day frequency. The GEOV1 FCover product was derived from SPOT/VEGETATION sensor
data using back-propagation neural networks. The CYCLOPES FCover product was scaled to train
the back-propagation neural networks with the SPOT/VEGETATION top-of-canopy directionally
normalized reflectance values over the BELMANIP (Benchmark Land Multisite Analysis and
Intercomparison of Products) network of sites [25]. The GEOV1 FVC product corrects the underestimate
problem of CYCLOPES FVC product and is closer to the real value [27].

2.2.3. TRAGL FVC Product

The TRAGL FVC product was retrieved from GLASS LAI product using physical relations
between FVC and LAI [26]. The GLASS LAI product was retrieved using general regression neural
networks (GRNNs) from MODIS Version 5 surface reflectance data (MOD09A1)/AVHRR reflectance
data [28]. Unlike existing neural network methods that use remote sensing data acquired only at a
specific time to retrieve LAI, the GRNNs were trained using fused time series LAI values from MODIS
and CYCLOPES LAI products and reprocessed time series MODIS. The temporal and spatial resolution
is 8-day and 1 km with geographic projection. The TRAGL FVC product is spatially and temporally
complete. A comparison with GEOV1 FVC product showed that both FVC products were generally
consistent in their spatial patterns.

2.2.4. Li FVC Product

Li et al. [22] estimated the FVC of northern China from MODIS Version 5 surface reflectance data
(MOD09A1) using the dimidiate pixel model, which is one of the most widely used FVC estimation
methods [29,30]. It assumed that a pixel consisted of only vegetation and non-vegetation components
and its value was a linear combination of these two components. If normalized differential vegetation
index (NDVI) was used to represent the spectral response, the mathematical expression of the mixed
pixel model would be

NDVI = f ∗ NDVIv + (1 − f ) ∗ NDVIs (1)
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then,

f =
NDVI − NDVIs

NDVIv − NDVIs
(2)

where f was the proportion of vegetation area in the mixed pixel (FVC), NDVI was the NDVI of
the mixed pixel, and NDVIv and NDVIs were the NDVI of the fully vegetated and bare soil pixel,
respectively. The value of NDVIv and NDVIs was 0.848 and 0.0133, respectively. The result showed a
good performance in the change trend of both inter-annual and within the year. The temporal and
spatial resolution is 8-day and 0.011◦ with geographic projection. In the following sections, this data
source is called Li FVC.

Because of the inconsistent spatial resolution and projection between the four data sets, the data
sets were processed to be spatially matched with geographic projection and the spatial resolution was
converted to 0.01◦. Then, annual maximum FVC images of four data sets on a pixel-by-pixel basis
from 2001 to 2012 were calculated, respectively. In the following sectors, FVC data sets refer to the
maximum FVC images of four data sets.

2.3. Methodology

2.3.1. Inter-Annual Change Trend of FVC

(1) Mann–Kendall Methods

The Mann–Kendall test [31,32] is a nonparametric method for testing the significance of time
series data in hydrological processes and other related physical variables [33–35]. The advantage
of this method is that the data does not need to conform to any particular distribution and it has
a low sensitivity to abrupt breaks due to the inhomogeneous time series [36]. For a time series,
X = {x1, x2, · · · , x3}, the Mann–Kendall test statistic is given as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(xj − xi) (3)

where n is the number of data points, xi and xj are the data values in time series i and j (j > i),
respectively, and sgn(xj − xi) is the sign function as follows:

sgn(xj − xi) =

⎧⎪⎪⎨⎪⎪⎩
1 xj − xi > 0

0 xj − xi = 0

−1 xj − xi < 0

(4)

In cases where the sample size is more than 10, the standard normal test statistic, Z, is computed by:

Z =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S−1√
Var(S)

S > 0

0 S = 0
S+1√
Var(S)

S < 0

(5)

The variance is computed by:

Var(S) =
n(n + 1)(2n + 5)− m

∑
i=1

ti(ti − 1)(2ti + 5)

18
(6)

where m is the number of tied groups and ti denotes the number of ties of extent i. A tied group is a set
of sample data with the same value.
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Positive values of Z indicate increasing trends while negative Z values show decreasing trends [36].
The trend’s significance is assessed by comparing the Z value with the standard normal variance at
the pre-specified level of statistical significance [37]. The null hypothesis is rejected and a significant
time series trend exists when |Z| > Z1−α/2|. Z1−α/2 is obtained from the standard normal distribution
table. In this study, significance levels α = 0.05 was used which correspond to Z1−α/2 values of 1.960.

(2) Sen’s Slope Estimator

True slope can be estimated by using a non-parametric method developed by Sen [37] if a linear
trend is presented by the Mann–Kendall method. Sen’s slope estimator can be computed efficiently
and is insensitive to outliers. The slope estimator of N pairs of data are first computed by:

β = Median(
xj − xi

j − i
)i = 1, 2, · · · N (7)

where N = n(n − 1)/2 when there is only one datum in each time period, while N < n(n − 1)/2
when there are multiple observations in one or more time periods; where n is the total number of
observations [38]. If β is positive that indicates an increase in X; if negative, then the X decreases or
0 remains constant.

In this study, the temporal change trends of FVC based on the four FVC products during 2001–2012
were calculated using the Mann–Kendall Method and Sen’s slope estimator. The time series X was
FVCi which denotes the annual maximum FVC value of the ith year. n is the number of years (equal to
12 in this study) and i represents the year number (i = 1, 2, 3, . . . ,12).

2.3.2. Multi-Data FVC Retrieval and Uncertainty Analysis

A multi-data approach [39] was employed to develop an integrated FVC and reduce the
uncertainty from individual data sets. The consistency of each data set was evaluated by computing
the correlation and the root-mean-square error (RMSE) of the multi-data set mean, excluding the data
set being verified. This method was applied at pixel level to help remove the individual FVC data set
with poor data quality from the final averaged FVC. An estimate of the uncertainty in FVC in each
year is obtained from the standard error of the mean (SEM):

SEM = s/
√

n (8)

which depends on the standard deviation s of the n data sets. First, the uncertainty analysis was carried
out at the pixel scale. Then, the uncertainty analysis was calculated using the annual mean maximum
FVC of the four data sets.

3. Results

3.1. Results of Single FVC Data Sets

3.1.1. Spatial Patterns of Each Single FVC Data Set

Figure 2 shows the spatial patterns of mean annual maximum FVC over the period 2001–2012 in
northern China derived from each four data sets respectively. The individual source of FVC values
differed in mean amplitude and spatial distribution and the disparity was mainly distributed in
Northeast China and North China. Although all the four data sets had the biggest FVC values in
Northeast China, the FVC values derived from TRAGL FVC was lower than those of other three data
sets by about 0.15 and Li FVC sometimes existed in a saturation phenomenon. Meanwhile, GLASS
FVC and TRAGL FVC was almost zero in the southern part of the Xinjiang Uygur autonomous region,
the western part of the Inner Mongolia Autonomous Region, and the northwestern part of Ningxia Hui
autonomous region; however, FVC values of GEOV1 FVC and Li FVC in those regions were greater
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than zero. This was mainly because Li FVC utilized the dimidiate pixel model in which the choice of
NDVIv and NDVIs led to higher values. The GEOV1 FVC product demonstrated that the FVC values
were higher than those from SEVIRI in the Validation Report of Land Surface Analysis Vegetation
Products (2008). Mu et al. noted that GEOV1 FVC product was generally overestimated for crops by
up to 0.20 in the Heihe Basin. GLASS FVC and TRAGL FVC considered the terrestrial ecoregion and
land cover type when produced, which made the estimation results more accurate [16].

Figure 2. The spatial patterns of maximum FVC over the period 2001–2012 in northern China.
(a) GLASS FVC; (b) TRAGL FVC; (c) GEOV1 FVC; (d) Li FVC.

3.1.2. Variation Trends of Each FVC Data Set

To evaluate the spatial heterogeneity of FVC change trends, overall linear trends and the linear
trends that passed significance level (p < 0.05) were calculated at pixel scale shown in Figure 3,
respectively. The spatial distribution difference of linear trends was small between the data sets and
most of the area had increased in FVC but not significantly. One significant difference among the
four data sets was detected in North China, the south part of Xinjiang Uygur autonomous region,
the western part of Inner Mongolia Autonomous Region, as well as the northwestern part of Ningxia
Hui autonomous region. Of these regions, North China had a significant increase in the four data sets
whereas FVC values of the south part of Xinjiang Uygur autonomous region, the western part of Inner
Mongolia Autonomous Region, as well as the northwest part of Ningxia Hui autonomous region did
not change. Those of GEOV1 FVC showed a significant decrease and those of Li FVC presented a
significant increase in some areas of these regions.

Figure 4 shows the inter-annual variations of annual maximum FVC of four data sets in northern
China during the period 2001–2012. The mean amplitude, mean variations, and mean variation trend
of the four FVC data sets varied among the individual sources. In terms of mean amplitude, the annual
mean values of Li FVC were the highest, significantly higher than the other three data sets. This was
largely because Li FVC utilizes the dimidiate pixel model in which the choice of NDVIv and NDVIs

may lead to overestimates or even saturation. In contrast, those of TRAGL FVC were the lowest and
GLASS FVC and GEOV1 FVC were closer to the mean values generated from the four data sets in the
study area. As for mean variations and mean variation trends, GEOV1 was significantly higher than
the mean values and GLASS FVC was closer to the mean values. Summaries of mean variation trends
of FVC estimates over northern China, Northeast China, Northwest China, and North China from
the four data sets are shown in Table 2. FVC increased at the rate of 0.26%, 0.30%, 0.12%, and 0.49%
per year in northern China, North China, Northeast China and Northwest China during the period
2001–2012, respectively. By contrast, GLASS FVC and GEOV1 FVC was closer to the mean values of
the four data sets, while the performance of GEOV1 FVC was not better than that of GLASS FVC in
terms of mean variations and mean variation trends.
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Table 2. Mean variation trend values of annual average maximum FVC seen by four data sets
for 2001–2012.

Region GLASS FVC GEOV1 FVC TRAGL FVC Li FVC Average

Northern china 0.0020 0.0048 0.0016 0.0019 0.0026
Northeast china 0.0017 0.0072 0.0021 0.0010 0.0030
Northwest china 0.0012 0.0016 0.0008 0.0013 0.0012

North China 0.0040 0.0084 0.0029 0.0041 0.0049

Figure 3. The temporal trends of annual maximum FVC in northern China during the periods
2001–2012. Left column is the temporal trends of (a) GLASS FVC, (b) TRAGL FVC, (c) GEOV1 FVC,
(d) Li FVC. Right column is the temporal trends of annual maximum FVC that passed the significant
test in northern China during the periods 2001–2012. (e) GLASS FVC; (f) TRAGL FVC; (g) GEOV1 FVC;
(h) Li FVC.
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Figure 4. The averages of annual mean maximum FVC of four data sets over the period 2001–2012.
(a) northern China; (b) Northeast China; (c) Northwest China; (d) North China.

3.2. Analysis of Multi-Source FVC Data Set

3.2.1. Data Set Evaluation

The consistency of each data set was evaluated by computing the correlation of coefficient and
root mean square error (RMSE) between each data set and averaged FVC from the three other FVC data
sets. The evaluation was intended to remove the poorer performing data sets from the average FVC
series [39]. This approach was also applied at pixel scale to remove the poorer performing individual
FVC data set from the final average data set in each pixel. The correlation and RMSE of each FVC
data set and averaged FVC from the three other FVC data sets above the 95% confidence interval over
northern China from 2001 to 2012 are displayed in Figure 5.

The evaluation had been intended to remove the poorer performing data sets from the average
FVC series [39]. However, multiple regression analysis revealed that all of the data sets were statistically
significant (0.05 level) variables in explaining the variance in the multi-data set series. Accordingly,
there was no reason to eliminate any of the four data sets. The stratification of the evaluation results
revealed that the GLASS FVC had the highest correlation and lowest RMSE compared to the multi-data
set average. In contrast, the TRAGL FVC showed higher agreement with other data sets with correlation
of a greater coefficient.
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Figure 5. Correlation and root mean square error (RMSE) of each FVC data set with the averaged FVC
from the three other FVC data sets used in this study. Left column is the correlation of (a) GLASS FVC,
(b) TRAGL FVC, (c) GEOV1 FVC, (d) Li FVC with the average from the other FVC data sets. Right
column is the corresponding RMSE value of (e) GLASS FVC, (f) TRAGL FVC, (g) GEOV1 FVC, (h) Li
FVC with the average from the other FVC data sets.

3.2.2. Change Trends of Multi-Source FVC Data Sets

Figure 6a shows the slope values calculated from the regression analysis, Figure 6b shows the
linear trends that passed significance level (p < 0.05) by Mann–Kendall test, and Table 3 shows the
percentage of significant levels over three parts of northern China. The slope estimate results show that
the FVC increased over most areas. Increased regions were mainly distributed in Northeast China and
North China. In contrast, the northwestern part of the Xinjiang Uygur Autonomous Region (including
Toli, Tacheng, Ili, and Yining counties) and the southern part of the Xinjiang Uygur Autonomous
Region, Hulunbeir Plateau, as well as most part of Shandong Province showed various degrees of
vegetation decline.
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Figure 6. (a) The temporal trends of annual averaged FVC of four data sets in northern China during
the period 2001–2012. (b) The temporal trends of annual averaged FVC of four data sets that passed
the significant test in northern China during the period 2001–2012.

Table 3. Statistics for the percentage of significant level of FVC change during the period 2001–2012.

Regions Significantly Increased No Significant Change Significantly Decreased

Northern china 33.03% 50.16% 16.81%
Northeast china 44.88% 50.12% 5.00%
Northwest china 23.34% 51.86% 24.80%

North China 56.05% 35.59% 8.36%

In Northeast China, 44.88% of pixels showed significant increased fractional vegetation cover.
5.00% of Northeast China showed significant decrease and 50.12% remained stable. Significant increases
were concentrated in the Northeast Plain and the decreased regions were scattered amongst the Daxing’
anling Mountains, the Xiaoxing’ anling Mountains, and the Changbai Mountains.

In North China, 50.05% of pixels showed significant increased fractional vegetation cover. 8.36% of
the North China showed a significant decrease in FVC. The areas where vegetation cover declined were
mainly distributed in Shandong, Hebei, Tianjin, and Beijing. In 35.59% of the pixels, the vegetation
cover remained stable and had no significant change.

In Northwest China, 23.34% showed significant increased fractional vegetation cover.
Approximately 24.80% of pixels showed a significant decrease and 51.76% remained stable.
The increases were mainly distributed in the southern Tianshan Mountains and in northern and
southern oasis areas. The unchanged regions were mainly distributed in the northwestern part of
Xinjiang Uygur Autonomous Region, the extremely arid desert and Gobi Desert regions, as well as
areas that are difficult to use and develop. By contrast, an insignificant decrease occurred in the middle
parts of the Kunlun Mountains where the climate is very dry.

3.2.3. Results of Multi-Data FVC and Uncertainty Analysis

Figure 7a,b shows the spatial distribution of multi-data FVC and uncertainty results generated
from the four data sets over northern China during the period 2001–2012, respectively. From the
spatial distribution, the FVC values were high over Northeast China while those from Northwest
China were almost 0 and those of North China fell in between the two. The uncertainty results of
much of Northwest China were almost 0 which indicated low uncertainties. The uncertainty results of
North China were around 0.15 while that of Northeast China was about 0.25. In general, in contrast to
the low FVC area, the high FVC area of northern China had a high degree of uncertainty.
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Figure 7. Spatial pattern of mean maximum FVC (a) and standard error (b) of multi-data sets over the
northern China during the period 2001–2012.

Annual-averaged maximum FVC from 2001 to 2012 with error bars (standard error) generated
from multi-data sets over northern China, Northeast China, Northwest China, and North China during
the period 2001–2012, is shown in Figure 8, respectively. The multi-data set shows a significant increase
in FVC over northern China from 2001 to 2012 and the estimates show a more linear increase in FVC
than the previous single data set. Low FVC can be seen in 2001 and 2009, especially in Northeast China.
2001 was a year of extreme drought and the precipitation was lower than normal in most regions of
northern China [40]. Different degrees of drought occurred in all seasons. In 2009, low temperatures,
snowfall in winter, as well as drought in spring and autumn [41] inhibited vegetation growth in this
region, causing the annual mean FVC to decrease.

Figure 8. The averages of annual mean maximum FVC and trend in FVC with the error bars showing
the standard error of multi-data set average. (a) northern China; (b) Northeast China; (c) Northwest
China; (d) North China.
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From the regional scale, the FVC over Northeast China significantly increased at a rate of
0.3%/year from 2001 to 2012 (R2 = 0.3632, p-value = 0.0381). Similarly, Northwest China had a
significant increase at the rate of 0.12%/year in FVC from 2001 to 2012 (R2 = 0.4001, p-value = 0.0273).
In general, the growth trend was relatively flat. The FVC over North China significantly increased at a
rate of 0.49%/year during the period 2001–2012. Similarly, North China underwent an intense and
prolonged drought episode in 2009.

Comparing the three parts, North China had a more obvious increasing trend, while that of
Northeast and Northwest China was not so significant. In all of northern China, 33.03% of pixels
showed significant increase fractional vegetation cover, approximately 16.81% of pixels showed
significant decrease, and 50.16% remained stable. In general, vegetation in northern China has
increased during the period 2001–2012.

4. Discussions

The FVC dynamics from 2001–2012 in northern China has been analyzed from four satellite data
products in this study. We found a more linear increase in FVC than did previous studies using a
single data set. The four data sets show a consistent agreement. The spatial patterns of temporal trends
of annual mean are similar among the data sets; however, the GEOV1 FVC product shows relatively
bigger variations in trend. From the points of temporal trends and inter-annual variability of annual
mean FVC, the GLASS FVC is closer to the mean values of the four data sets.

To date, analysis of vegetation cover change over northern China has relied on single sources
of information that can be affected by both estimation methods and satellite sensors. The multi-data
set approach taken in this study can reduce the impact of inconsistencies and provide a more reliable
estimate of the uncertainty of FVC in each year. Trend analysis of the multi-data set (including
an annually varying estimate of error) reveals that FVC has increased at a rate of 0.26 ± 0.13%,
0.30 ± 0.25%, 0.12 ± 0.03%, 0.49 ± 0.21% per year in northern China, Northeast China, Northwest
China, and North China during the period 2001–2012, respectively. Most areas of northern China have
increased in vegetation, especially in the Northeast Plain, the central part of North China, and the
Hulunbuir prairie. In all of northern China, 33.03% of pixels showed significantly increased fractional
vegetation cover, approximately 16.81% of pixels showed significant decrease, and 50.16% remained
stable. Meanwhile, North China had a more obvious increasing trend while that of Northeast and
Northwest China was not so significant.

In this study, the multi-data FVC was retrieved from four FVC data set from 2000 to 2012. However,
the ecological programs were implemented in the 1980s. Therefore, the method which considered
different FVC data sets can be used to provide a long-term multi-data set analysis. For example,
the GEOV1 FVC can be obtained from 1982 to the present while the GLASS FVC, which provided the
FVC estimates from 1982 to 2016, is going to be released in the near future. In addition, other land
surface products, such as tree cover products and land use products, can also be used to provide
evidence about the condition of vegetation change in northern China.

5. Conclusions

This study conducted a spatio-temporal analysis of fractional vegetation cover change in northern
China during 2001–2012 based on multiple data sets. Results indicated that fractional vegetation
cover increased in northern China from 2000 to 2012 but not significantly. In addition, this study
also provides an estimate of uncertainty in FVC at pixel and regional scale. However, this study,
which covered the period from 2000 to 2012, is limited in its ability to provide direct evidence for the
effects of ecological programs on vegetation change of northern China since the ecological programs
were implemented in the 1980s. Although the methodology used in this study was not inherently
complex, it is very effective and has been used in many related studies and can be used for large areas
or even globally. Further work will focus on the evaluation of vegetation changes by using more land
surface products, such as land cover type data and/or tree cover data.
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