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During the past forty years, since the first book with a title mentioning quantitative and remote
sensing was published [1], quantitative land remote sensing has advanced dramatically, and numerous
books have been published since then [2-6] although some of them did not use quantitative land remote
sensing in their titles. Quantitative land remote sensing has not been explicitly defined in the literature,
but we consider it as a sub-discipline of remote sensing including the following components (see
Figure 1): radiometric preprocessing, inversion, high-level product generation, and applications.
Many inversion algorithms rely on physical models of radiation regimes of landscapes, which
link with remotely-sensed data. Generating high-level satellite products of land surface biophysical
and biochemical variables create the key bridge between remote sensing science and applications.
Conducting in situ measurements for validation of inversion algorithms and satellite products is also
a critical component. Application of satellite products to address scientific and societal relevant issues
will ultimately decide the future of quantitative land remote sensing.

— Preprocessing Inversion Production Applications
Remotely Radiometric |y Radiative transfer ' Syste.m building — Agriculture
sensed calibration & mod(illng & inversion . Qu{,hty. control + Forestry
Data processing algorithms * Validation + Ecology
¢ Archive * Hydrology
e + Distribution

Figure 1. The scope of quantitative land remote sensing.

One of the major drivers of the rapid development of quantitative remote sensing in China is the
availability of a huge amount of satellite data not only from the international space agencies but also
from Chinese satellite sensors. Figure 2 shows the major Chinese satellite missions for land surface
monitoring, such as the China-Brazil Earth resource satellites (CBERS), environment (Huang-Jing, HJ),
resources (Zhi-Yuan, ZY), meteorological (Feng-Yun, FY), and high-resolution (Gao-Fen, GF) satellite
series. Most of them are polar-orbiting satellites, but GF-5 and FY-4 are geostationary satellites. With the
constellation of multiple satellites, both high spatial and temporal resolutions are being achieved.

Remote Sens. 2018, 10, 1490; d0i:10.3390/rs10091490 1 www.mdpi.com/journal /remotesensing
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1999 CBERS-1
2000 7v-201
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2011 Zy-12C
2012 ZY-3 HJ-1C
2013 GF-1 01 FY-3C
2014 GF-2 CBERS-04
2015 GF-4 GF-8 GF-9
2016 GF-3 GF-4 ZY-3 02, FY-4
2018 GF-1 02, GF-1 03 GF-1 04, GF-5
GF-6, GF-11

Figure 2. Major Chinese satellites relevant to land remote sensing.

Because of the increased data volume and sophistication of information extraction, one of the
trends in quantitative remote sensing is the production of high-level satellite products, mostly by
the data centers with centralized facilities and specialized experts. It started from the NASA Earth
Observing System (EOS) program in the 1990s. Since then, China has started to produce and distribute
satellite products worldwide. One of the major product suites is the Global Land Surface Satellite
(GLASS) products [7,8]. It has been expanded from the original 5 products into the present 12 products
(see Table 1) that are being distributed free of charge through the China National Data Sharing
Infrastructure of Earth System Science (http://www.geodata.cn/thematicView /GLASS.html) and the
Global Land Cover Facility at the University of Maryland (http://glcf.umd.edu/data).

The GLASS products have some unique features, for example, long-time times series (several
products span from 1981 to present), high-spatial resolution of the radiation products (5 km instead
of the typical resolutions of ~100 km), and high quality and accuracy [9-11]. Efforts are being made
in China [12] to develop more Climate Data Records (CDR) that are defined as the time series of
measurements of sufficient length, consistency, and continuity to determine climate variability and
change by the National Research Council [13].

Table 1. Overview of the Global Land Surface Satellite (GLASS) products and their characteristics.

Spatial Temporal Temporal
No. Product Resolution Resolution Range References
1 Leaf area index 1-5 km, 0.05° 8 days 1981-2017 [14,15]
2 Albedo 1-5 km, 0.05° 8 days 1981-2017 [16-18]
3 Emissivity 1-5 km, 0.05° 8 days 1981-2017 [19,20]
4 FAPAR 1-5 km, 0.05° 8 days 1981-2017 [21]
Downward o 1983, 1993,
5 shortwave radiation 0.05 1 day 2000-2017 (22]
o 1983, 1993
6 PAR 0.05 1 day 20002017 [22]
Longwave net o 1983, 1993,
7 radiation 0.05 Instantaneous 2003, 2013 [23,24]
All-wave net o 1983, 1993
8 radiation 005 1day 2000-2017 23]
Land Surface o 1983, 1993,
9 Temperature 1-5 km, 0.05 Instantaneous 2003, 2013 [26]
10 Frac“onc‘;fv ‘:r’geta“"“ 500 m, 0.05° 8 days 1981-2017 [27]
11 Latent heat (ET) 1-5 km, 0.05° 8 days 1981-2017 [28]
12 Gross Primary 1-5 km, 0.05° 8 days 1981-2017 [29]

Productivity

Many members of our community have made significant contributions to the development
of quantitative land remote sensing. Professor Xiaowen Li was one of leading figures. Trained as
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an electrical engineer, Professor Li started to work on physical modeling of the vegetation radiation
field in the early 1980s under the supervision of Professor Alan Strahler. He developed the well-known
Li-Strahler geometric-optical vegetation reflectance model [30,31], and later coupled it with radiative
transfer modeling [32,33]. He pioneered the simplified “kernels” to model land surface directional
reflectance for developing the MODIS surface albedo products [34], These “kernels” have been widely
used for analyzing various satellite observations. He also explored the angular behavior and scaling of
the thermal-infrared remote sensing signatures [35], and proposed to constrain the remote sensing
inversion using prior knowledge [36]. In the second half of his career, Professor Li devoted his time and
energy to facilitate and promote quantitative land remote sensing research in China by leading several
extensive research projects, directing the Research Institute on Remote Sensing under the Chinese
Academy of Sciences, and helping establish the State Key Laboratory of Remote Sensing Science
under the Chinese Ministry of Science and Technology. Those are just few examples of areas where
Professor Li has made outstanding contributions. A comprehensive summary of his achievements has
been provided by Liu et al. [37].

In memory of Professor Li, we organized the Third National Forum on Quantitative Remote
Sensing at Beijing Normal University during 14-15 July 2017. There were 296 meeting participants
from 65 research institutes and universities in China, and almost all aspects of quantitative land remote
sensing were discussed.

The papers of this Special Issue are mainly from this forum. Although 40 articles cannot
comprehensively characterize different aspects of quantitative land remote sensing in China,
they clearly represent the current level of research in this area by Chinese scientists. These papers
are related to various satellite data products, such as incident solar radiation [38—40], chlorophyll
fluorescence [41], surface directional reflectance [42-44], aerosol optical depth [45], albedo [46,47],
land surface temperature [48-50], upward longwave radiation [51], leaf area index [52-55],
fractional vegetation cover [56], forest biomass [57], precipitation [58], evapotranspiration [59-61],
freeze/thaw [62], snow cover [63], vegetation productivity [64-68], phenology [69,70], biodiversity
indicators [71], drought monitoring [72], forest disturbance [55], air-quality monitoring [73], sensor
design [74], and sampling strategy [75] for validation with in situ measurements. Most of these
papers are based on optical-thermal remotely-sensed observations, but a few papers are also based on
microwave [62,63] and Lidar [54,76] data.

Although these 40 papers do not represent a large sample, they demonstrate that few studies
have been undertaken on physical modeling for understanding remotely-sensed signals and use of
Chinese satellite data in their analysis. This latter shortcoming calls for the further improvement of
Chinese satellite data quality.
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Abstract: The SCOPE (soil canopy observation of photochemistry and energy fluxes) model has
been widely used to interpret solar-induced chlorophyll fluorescence (SIF) and investigate the
SIF-photosynthesis links at different temporal and spatial scales in recent years. In the SCOPE
model, the fluorescence quantum efficiency in dark-adapted conditions (FQE) for Photosystem II
(fqe2) and Photosystem I (fqel) were two key parameters of SIF emission, which have always been
parameterized as fixed values derived from laboratory measurements. To date, only a few studies
have focused on evaluating the SCOPE model for SIF interpretation, and the variation of FQE values in
the field remains controversial. In this study, the accuracy of the SCOPE model to simulate the canopy
SIF was investigated using diurnal experiments on winter wheat. First, ten diurnal experiments
were conducted on winter wheat, and the canopy SIF emissions and the SCOPE model’s input
parameters were directly measured or indirectly retrieved from the spectral radiances, gross primary
productivity (GPP) data, and meteorological records. Second, the SCOPE-simulated SIF emissions
with fixed FQE values were evaluated using the observed canopy SIF data. The results show that
the SCOPE model can reliably interpret the diurnal cycles of SIF variation and provide acceptable
results of SIF simulations at the O,-B (SIFp) and O,-A (SIF,) bands with RRMSEs of 24.35% and
23.67%, respectively. However, the SCOPE-simulated SIFp and SIF, still contained large systematical
deviations at some growth stages of wheat, and the seasonal cycles of the ratio between SIFg and
SIF (SIFA /SIFg) cannot be credibly reproduced. Finally, the SCOPE-simulated SIF emissions with
variable FQE values were evaluated using the observed canopy SIF data. The simulating accuracy
of SIFg and SIF, can be improved greatly using variable FQE values, and the SCOPE simulations
track well with the seasonal SIF, /SIFg values with an RRMSE of 20.63%. The results indicated a
clear seasonal pattern of FQE values for unbiased SIF simulation: from the erecting to the flowering
stage of wheat, the ratio of fqel to fqe2 (fqel/fqe2) gradually increased from 0.05-0.1 to 0.3-0.5, while
the fqe2 value decreased from 0.013 to 0.007. Our quantitative results of the model assessment and
the FQE adjustment support the use of the SCOPE model as a powerful tool for interpreting the SIF
emissions and can serve as a significant reference for future applications of the SCOPE model.

Keywords: solar-induced chlorophyll fluorescence; fluorescence quantum efficiency in dark-adapted
conditions (FQE); SCOPE; Fraunhofer Line Discrimination (FLD); gross primary productivity (GPP)

1. Introduction

Solar-induced chlorophyll fluorescence (SIF) refers to the emission of red and far-red light from
chlorophyll during the absorption of photosynthetically active radiation under natural sunlight.
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The SIF spectrum is a continuous broadband spectrum that covers the approximately spectral range
of 650-850 nm. Its spectral shape is characterized by one peak at around 685 nm and another at
around 740 nm [1,2]. The emitted SIF is the sum of the chlorophyll fluorescence of photosystem
I (PSI) and photosystem II (PSII). PSII contributes to the SIF emission in both the red and far-red
spectral regions, whereas PSI contributes to the SIF emission only in the far-red region [3]. As a result,
the intensity and shape of the SIF spectrum can reflect the amount of energy absorbed by PSII and
PSI [4,5]. In addition, several studies have determined the physics-physiology mechanism connecting
function of the photosynthetic apparatus with chlorophyll fluorescence from active florescence
induction measurement and demonstrated that the fluorescence signal can be a reliable and observable
indicator of the plant’s photosynthetic status [4-6]. To date, extensive SIF-photosynthesis research
has focused on investigating the empirical correlations between SIF and GPP, and demonstrated that
SIF measurements can offer a promising approach for detecting the terrestrial vegetation’s actual
photosynthetic activity [7-11]. Since Plascyk introduced the Fraunhofer Line Discrimination (FLD)
method [12] to extract SIF signals from the observed vegetation-reflected radiance, various studies
have demonstrated the possibility of measuring SIF at Fraunhofer lines or atmospheric absorption
bands (e.g., an O,-B band at approximately 687 nm and an O,-A band at approximately 760 nm) on the
ground, from airborne platforms, and from satellites (for review, see [13]). Recently, global SIF maps
derived from hyperspectral satellite data have become available [14-18]. Meanwhile, SIF’s application
for global monitoring of plant photosynthesis has become a hot research area [9,14,19].

The soil canopy observation, photochemistry, and energy fluxes (SCOPE) model [20] has become
a virtual laboratory for interpreting SIF and investigating SIF-photosynthesis links on diurnal or
seasonal scales. With a full physiological representation of photosynthesis and fluorescence, SCOPE
has been regarded as a robust deterministic model for interpreting SIF and photosynthesis in various
studies. For example, it has been used to provide training and test data sets for new SIF retrieval
methods [21,22]; to derive empirical relationships between the seasonal maximum carboxylation
rate (Vemax) and SIF, which are used to retrieve the global photosynthetic capacity of crops [19,23];
to evaluate the predictive power of SIF to estimate gross primary productivity (GPP); to investigate
the sensitivities of both GPP and SIF and their relationship to the biochemical parameters, as well as to
the environmental conditions at different spatial-temporal scales [24-27]; and to assess the influence of
confounding factors such as physiological and structural interferences or temporal scaling effects on
SIF-GPP relationships [8].

Despite the SCOPE model-integrated existing theories of radiative transfer, energy balance,
micrometeorology, and plant physiology, the model is analytical. Thus, it inevitably contains
assumptions due to model abstractions for SIF representations and uncertainties in driving
variables [28]. To date, only a few studies have involved the experimental validation of the SCOPE
model for SIF interpretation. Verrelst et al. provided insight into the key variables that drive the
reflectance and SIF emission simulations, based on a global sensitivity analysis (GSA) of the SCOPE
model [29]. The results showed that leaf composition, leaf area index, leaf inclination, irradiance,
and Vemax are the most important factors affecting the SIF simulation and need to be accurately
parameterized to produce unbiased SIF interpretations. By comparing the simulated SIF with
corresponding field observations, Van der Tol et al. assessed the impacts of leaf pigment concentrations
and canopy structures on simulated SIF, as well as the impacts of PQ and NPQ [28]. However, they
focused on revealing information about the biochemical regulation of the energy pathways contained
in the SIF signal, without offering the quantitative accuracy of SIF simulation, and only the simulations
of far-red SIF at O,-A band (SIF,) have been investigated. Several studies have reported that the red
SIF at the O,-B band (SIFp) is more closely connected to plant photosynthesis, possibly because SIFg
is located near the fluorescence peak emitted by PSII [3,30,31]. Additionally, the ratio of SIF to SIFg
can express SIF’s spectral shape, which can provide important information regarding physiological
and biochemical activities in vegetation [5,6,32]. Therefore, both the intensity and shape of the
SCOPE-simulated SIF spectra must be evaluated quantitatively.



Remote Sens. 2018, 10, 250

On the other hand, the fluorescence quantum efficiency in dark-adapted conditions (defined as
Fo-level fluorescence yield) for PSII (fqe2) and PSI (fqel) was always set as fixed values derived from
laboratory measurements, which may be unsuitable for the accurate simulation of SIF. According to
Van der Tol et al. [28], the suggested values of fqe2 and the ratio of fqel to fqe2 (fqel/fqe2) for SCOPE
were 0.01 and 0.2, respectively. While, for early versions of the SCOPE model (before version 1.53),
the fqe2 value was suggested to be 0.01 by the model developer. This priori value can be obtained from
the work by Genty et al., [33], but it is unknown whether the value is universal [20]. The measured
fluorescence yields values at Fy-level have been reported as around 0.02 [34-36]. In the study by
Trissl et al. [37], three different levels (0.01, 0.021, and 0.018) of the fluorescence yields at Fy-level
were considered, and the contribution from PSI to the total fluorescence signal is reported as around
20%. As reported by Bjorkman and Barbara [38], the FQE values have been observed to change
with different vegetation species, chlorophyll contents, and exposures of leave surfaces to the sun.
Besides, all the laboratory-measured fqe2 values derived from active fluorescence measurements may
have some uncertainties due to the contamination of PSI fluorescence and the PSII closure caused
by measuring flashes during the measurements of PSII fluorescence at Fj level under dark-adapted
conditions [35-37,39]. Therefore, there are still a lot of uncertainties in the estimation of FQE and its
variation remains controversial. In this context, two issues arise: (i) the accuracy of SCOPE-simulated
SIF emissions with fixed FQE values needs to be evaluated using the observed SIF data and (ii) suitable
FQE values should be determined using field experiment observations, if SIF simulated with fixed
FQE was not sufficiently accurate.

Therefore, in this paper, we focused on two objectives: (i) quantitatively evaluating
SCOPE’s performance for modeling both SIF intensities at O,-B and O,-A bands, and the ratio between
them (SIF4 /SIFp); and (ii) determining the FQE values using observations of ten field experiments on
winter wheat. After the input parameters of the SCOPE model were directly measured or indirectly
retrieved with high accuracy, the model was implemented to simulate diurnal SIF emissions compared
with the observations across wheat’s growing season in 2015 and 2016. This paper is outlined as
follows. Section 2 describes the experimental data sets, the parameter inversion methods, and the
SIF simulation process. Section 3 shows the results of parameter retrieving and model evaluation
with fixed and variable FQE values. Section 4 discusses the uncertainties and prospects of this study.
Finally, the most important conclusions are given in Section 5.

2. Materials and Methods
2.1. SCOPE (Soil Canopy Observation of Photochemistry and Energy Fluxes)

2.1.1. SCOPE Model Description

SCOPE is a vertical (1-D), integrated, radiative transfer and energy balance model [19]. This model
combines radiative transfer of solar radiation and radiation emitted by the vegetation (thermal and SIF)
with the energy balance in which a biochemical module handles the fluorescence emission efficiency
depending on the two de-excitation pathways: photochemical quenching of excitation energy via
electron transport (PQ) and non-photochemical quenching of excitation energy via thermal energy
dissipation (NPQ) [40]. It calculates directional top-of-canopy reflected radiation, emitted thermal
radiation, and SIF signals together with energy, water, and CO, flux. In this work, we employed
version 1.61 to interpret SIF and GPP. The model consists of several modules combined to simulate
SIF and photosynthesis. The model’s main features related to the SIF and GPP simulations are briefly
described here (for more details, see [20]).

At the leaf level, two modules are used to simulate the SIF emission. One is the leaf radiative
transfer module called Fluspect that handles the radiative transfer of incident light and SIF emission in
the leaf. The other is the biochemical module that handles the emission efficiencies of photosystems
depending on the PQ and NPQ at photosystem level. At the canopy level, the optical radiative
transfer module (RTMo) governs the incident light on the individual leaves and the propagation of

10



Remote Sens. 2018, 10, 250

SIF throughout the canopy based on the scattering of arbitrarily inclined leaves (SAIL) model [41].
It calculates radiation transfer in a multilayer canopy to obtain reflectance and fluorescence in the
observation direction as a function of solar zenith angel and leaf inclination distribution. The spectral
resolution of the modeled spectra is 1 nm in the range of 400-2500 nm for reflectance and 640-850 nm
for fluorescence.

Fluspect is an extension of the PROSPECT model [42] that adds SIF radiative transfer within the
leaf. Fluspect calculates the probability that excitation at a specific wavelength (400-750 nm) results
in fluorescence at a longer wavelength (640-850 nm) at the illuminated and the shaded sides of the
leaf. Furthermore, when implementing Fluspect, two photosystems (PSI and PSII) are responsible for
fluorescence. As a result, Fluspect’s output consists of leaf reflectance and transmittance, as well as
four fluorescence excitation-emission probability matrices: one for each photosystem at the illuminated
and shaded sides of the leaf [20,24,28]. Fluspect’s input parameters consist of all the leaf composition
parameters as described with the PROSPECT parameters and the fqel and fqe2.

The biochemical module is employed to scale the SIF emission efficiencies of PSII (i.e., PQ
and NPQ) as a function of micrometeorological conditions (e.g., irradiance, temperature, relative
humidity, and wind speed) and photosynthesis parameters (e.g., the Vemax and the Ball-Berry stomatal
conductance parameter m) relative to the efficiency in dark or pre-dawn conditions. For representation
of photosynthesis (i.e., PQ), either the models proposed by Farquhar et al. (for C3 species) [43]
and Von Caemmerer (for C4 species) [44] or the model presented by Collatz et al. [45,46] are/is
adopted. In these photosynthesis models, Vemax is an important biochemical variable for carbon
assimilation, which describes the maximum carboxylation rate of RuBisCO. It is assumed to decrease
exponentially with the depth in the canopy and is calibrated by the temperature correction parameters.
When implementing the biochemical module adopted in [25], the response of SIF emission efficiency
is empirically calibrated to a number of datasets collected in field and laboratory experiments of
unstressed and drought-stressed vegetation, referred to hereafter as TB12 and TB12-D, respectively.
The MD12 module [47] has a more explicit parameterization of fluorescence quenching mechanisms.
Instead of the empirical calibration in the TB12 and TB12-D, this module can reproduce intermediate
conditions using two additional variables: the rate constant of sustained thermal dissipation (kNPQs)
and the fraction of functional reaction centers (qLs) [48].

The SCOPE model also simulates a diversity of fluxes, one of which is net photosynthesis of
canopy (NPC). NPC represents the total gross photosynthesis less the flux of CO, associated with
foliage respiration. Since photosynthesis is the exchange CO, flux between leaf and atmosphere, it is
calculated by simply gathering the photosynthesis over the leaf region of the canopy in the SCOPE
model [24]. Therefore, NPC from the SCOPE model can be used to compute GPP for approximate
comparisons with the GPP observations over canopies by setting the respiration parameter to zero.

2.1.2. SCOPE Model Inputs

To simulate photosynthesis and fluorescence, the SCOPE model requires inputs related to
meteorology, leaf optical properties and canopy structure, leaf biochemistry, and illumination/observation
geometry (see Table 1 for details). These input parameters were derived from three sources: the field
measurements, the related literatures, and the model inversion.

Table 1. Values or sources of the main input parameters of the SCOPE model used in our simulation

Parameters Definition Unit Value/Source
Leaf biochemistry
Vemo Maximum carboxylation capacity at 25 °C pmol m—2 ™1 Inversion
m Ball-berry stomatal conductance parameter — 9
Rdparam Parameter for dark respiration (Rd = Rdparam X Veme) — 0
Leaf optical
Cab Chlorophyll content density pg/cm? Measurement
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Table 1. Cont.

Parameters Definition Unit Value/Source
Cw Leaf equivalent water thickness cm Measurement
Cdm Dry matter content g/ cm? Measurement
N Leaf thickness parameters — 14
Canopy
LAI Leaf area index m?/m? Measurement
LIDFa LIDF parameter a, which controls the average leaf scope — Inversion
LIDFb LIDF parameter b, which controls the o 015

distribution’s bimodality

Fluorescence

fqe2 Fluorescence efficiency for PSII in dark-adapted condition — 0.01 or adjusted
fqel/fqe2 Ratio of fqel to fqe2 — 0.2 or adjusted
Meteorology
Rin Broadband incoming shortwave radiation (0.4-2.5 um) W/m? Measurement
Ta Air temperature T Measurement
P Air pressure hPa Measurement
ea Atmospheric vapor pressure hPa Measurement
u Wind speed at measurement height m/s Measurement
Ca Atmospheric CO; concentration ppm Measurement
Geometry
LAT Latitude degree Measurement
LON Longitude degree Measurement
VZA Observation zenith angle degree 0

Most of the main input parameters needed in the SCOPE model were considered either known
as their literature values or directly measured from the field experiments with sufficient confidence.
A majority of leaf optical and canopy structural parameters—including Cab, Cw, Cdm, and LAI—were
accurately measured from our field experiments. In addition, the meteorological variables were
derived from our high-accuracy meteorological observations using the automatic weather station
(AWS). These diurnal meteorological variables were imported into the model input files and loaded for
the time series simulations with SCOPE. Meanwhile, the diurnal solar zenith angles were automatically
calculated during the simulation using the inputs Julian day, time, and field site longitude and latitude.
Thus, the SCOPE'’s parameterization can keep pace with the observed canopy’s vegetation growth
and environmental variation at both diurnal and seasonal time scales. On the other hand, some
parameters’ values were determined based on the related literatures. Following [49], the Ball-berry
stomatal conductance parameter (m) should be set around 9 for well-watered C3 species, and the
dark respiration parameter (Rdparam) value was set to zero regarding the output NPC as GPP.
The LIDFa and LIDFb were two canopy structural parameters that determine the leaf inclination
distribution function defined in [50]. LIDFa controls the average leaf scope, and LIDFb controls the
distribution’s bimodality. According to [29], LIDFa can largely affect both the simulated reflectance
and fluorescence, and LIDFb has only a marginal impact on the simulated reflectance and fluorescence.
Therefore, we consider only the variations in LIDFa in this study, and LIDFb was set to its default
value of —0.15.

The Vemax at 25 °C (denoted as “Vemo” in the SCOPE model) and LIDFa were two key variables
driving the SIF simulation and were accurately retrieved from the in situ observations. According to
the global sensitivity analysis of the SCOPE model in [29], for the TB12 module used in this work,
the canopy-leaving SIF variability was determined mainly by four driving vegetation variables: Cab,
LIDFa, LAL and Vmo. These key inputs need to be reliably confirmed to accurately interpret canopy
SIF and photosynthesis. Cab and LAI were easily measured, while field measurements of leaf angle
distribution and V¢mo consume lots of time and effort. Therefore, LIDFa and V¢, were estimated
using the model inversion method with measured reflectance spectra and GPP data.

The fqe2 and fqel were two key parameters that determined the simulated SIF intensity. They were
two multiplicative factors added to the probability matrices of PSII and PSI fluorescence. Thus, in the
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SCOPE model, the fqe2 and fqel values proportionally impacted the intensity of the PSII and PSI
fluorescence spectra. The literature suggested fqe2 and fqel/fqe2 values are approximately 0.01
and 0.2, respectively, which were determined from the active fluorescence measurements with PAM
in the laboratory [25]. However, whether the fixed FQE values are suitable for vegetation in the
field at different growth stages has not yet been sufficiently validated. In this study, we inspected
the accuracy of SCOPE-simulated SIF with both literature-fixed FQE values and with variable FQE
values. The variable FQE values were obtained by fitting the SIF simulations to the observed SIF data
(as described in Section 2.4). Other parameters required by the SCOPE model were set to their default
values (Table 1).

2.2. In Situ Measurements

To evaluate the SCOPE model performance at both diurnal and seasonal time scales, ten diurnal
in situ experiments were conducted on winter wheat (Triticum aestivum L.) during the 2015~2016
vegetation growing season to measure the vegetation parameters, the diurnal flux and meteorological
variables, and the canopy spectra (details listed in Table 2). Our selected field site was located
in an open and flat area at the National Precision Agriculture Demonstration Base in the town of
Xiaotangshan, Beijing, China (40.17°N, 116.39°E). Conventional fertilizer and irrigation management
were used on the winter wheat in the sample plot, which had a uniform growth status.

2.2.1. Measurements of Vegetation Parameters

A destructive sampling method was used to measure the leaf optical and canopy structural
parameters, including Cab, Cw, Cdm, and LAI Near the spot of spectral and flux measurements,
twenty tillers above the ground within a 1 m x 1 m sample area were cut and immediately sent to
the laboratory. Meanwhile, the density of tillers in the sample area was investigated. The leaves
of ten tillers were weighted and scanned with a Li-Cor 3100 area meter to calculate the LAI [51].
Several leaves of the other ten tillers were cut into pieces and uniformly mixed, and approximately
0.2 g of them was randomly picked to measure Cab using spectrophotometry [52]. All of these two-part
leaves were over-dried at 60 °C until a constant weight was reached. The Cw and Cdm were then
calculated using the measured fresh weight, dry weight, and leaf area.

The measured results for ten fieldwork days are listed in Table 2, along with the corresponding
growth stages. The vegetation samples cover different growth stages, with various optical and
structural parameters, which are suitable data sets for model validation. The measured LAI values
aligned with their realistic patterns across the growing season, which to some degree verifies the
measuring accuracy. With the growing of wheat, the LAI continually increased from the erecting to the
booting stage. Meanwhile, there was an obvious decrease with the arrival of flowering.

Table 2. The growth stages and vegetation parameters of winter wheat at the time of ten diurnal
experiments in 2015 and 2016.

2015 2016
April 3 April 13 & 14 April 24 & 25 April 8 &9 April 18 May 3 & 4
Growth stage Erecting Jointing Booting Erecting Jointing Flowering
LAI 1.5 2.1 24 2.5 29 1.9
Cab (ug/cm?) 59.2 62.2 61.3 55.3 53.7 57.3
Cw (cm) 0.0138 0.0126 0.0158 0.0163 0.0199 0.0177
Cdm (g/cm?) 0.0042 0.0040 0.0045 0.0048 0.0049 0.0043

2.2.2. Diurnal Flux and Meteorological Observations

The flux and meteorological variables were observed using an eddy covariance (EC) system
and the AWS. The AWS was fixed on a stand at the center of our selected field site to collect the
meteorological variables, including photosynthetically active radiation (PAR, pmol m~2 s~1), air
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humidity (rH, %), vapor pressure deficit (VPD, hpa), soil temperature (T4, °C), and other input
parameters of SCOPE (including Rj,, Ta, p, ea, and u, as listed in Table 2) every 10 s. The AWS output
was recorded at 10 min intervals using a CR1000 unit (Campbell Scientific Inc., Logan, UT, USA).
Near the AWS, an EC system was installed on a stand to measure the exchange of energy, water vapor,
and CO, across the canopy-atmosphere interface. The EC system included a 3D sonic anemometer
(CSAT3, Campbell Scientific Inc., Logan, UT, USA) for measuring three-dimensional velocity and
temperature and an open-path infrared gas analyzer (Li-7500, Li-Cor, Lincoln, NE, USA) that measured
CO; and H,O density. The sensors were installed at a height of 2.5 m above the ground. The main
output parameters include the net ecosystem exchange of CO, flux (NEE, mg/m?/s), latent heat
flux (LE, W/m?), sensible heat flux (H, W/m?), friction velocity (u*, m/s), and the atmospheric CO,
concentration for model input (i.e., Ca in Table 2). The data were stored in a CR3000 data logger
(Campbell Scientific Inc., Logan, UT, USA) and processed with an average time of 30 min at a sampling
frequency of 10 Hz.

With the obtained half-hour NEE data and the corresponding meteorological variables (including
Rin, Ta, rH, LE, H, u*, and Tj,;) as inputs, half-hour GPP data could be calculated using the online
tool available at the Max Planck Institute for Biogeochemistry (MPI-BGC) website (http://www.bgc-
jena.mpg.de/~MDIwork/eddyproc/). First, u* filtering was conducted to calculate the u* threshold
for identifying conditions with insufficient turbulence and marking those conditions as data gaps
to avoid biases in fluxes measured using eddy covariance. Subsequently, gap filling was carried
out to fill the gaps in half-hourly eddy covariance data. The gap filling of the eddy covariance
and meteorological data were performed with methods similar to [53] while also considering flux
co-variation with meteorological variables and flux temporal auto-correlation [54]. Finally, flux
partitioning was implemented for partitioning NEE into ecosystem respiration and GPP. Based on the
night-time partitioning algorithm [54], respiration is estimated from the night-time and extrapolated
to the daytime.

Figure 1 exhibits the measured date sets about half-hour Ta, VPD, and PAR observations from
ten experiments in 2015 and 2016. It indicates that the weather was sunny and stable during
ten of the experiments, except for observations at approximately 11:30 and 14:30 on 25 April 2015,
at approximately 13:00 and 14:00 on April 18, and at approximately 15:00 on 4 May 2016, when it was
cloudy. These GPP observations and corresponding spectral measurements were reserved for later
statistical analysis, since they can validate the model’s performance in different weather conditions.
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Figure 1. Diurnal observations of meteorological parameters between 7:00 to 19:00 made during ten
experiments in 2015 and 2016: (a) half-hour air temperature and VPD observations and (b) half-hour
PAR observations.

2.2.3. Diurnal Spectral Measurements

The diurnal measurements of the top-of-canopy spectra were taken using a customized Ocean
Optics QE Pro spectrometer (Ocean Optics, Dunedin, FL, USA). This instrument recorded the solar
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irradiance and the canopy-reflected radiance spectra in the 645-805 nm spectral range with a spectral
resolution of 0.31 nm, a sampling interval of 0.155 nm, and a signal-to-noise ratio (SNR) higher
than 1000.

In this study, an automatic observation system was employed for continual spectral measurements.
All spectral observations were acquired at nadir using the spectrometer’s fiber optic (FOV: 25°),
which was fixed on an erect turntable at a height of 2.8 m. A calibrated BaSO4 panel (of size
0.4 m x 0.4 m) was used as a reference to measure the solar irradiance spectrum. The measured
canopy target was located in the south, and the reference panel was placed in the north. With the
horizontal rotation of the observation stand, the solar irradiance spectrum could be automatically
measured before and after each canopy spectrum measurement with a time lag of less than 30 s.
Moreover, each measurement’s field of view could remain the same. During each measurement,
5 single spectra were recorded, and each spectrum was produced by averaging 10 scans made at an
optimized integration time with the application of dark current correction.

Measurements of all the canopy and panel radiance spectra were designed to be made every 0.5 h
from 8:00 to 17:30, but several measurements failed due to instrumental problems. Thus, a total of 4, 7,
20,3,17,8, 10, 14, 11, and 16 spectral measurements were made on 3, 13 & 14, and 24 & 25 April 2015,
and on 8 & 9, 18 April and 3 & 4 May 2016, respectively. Besides, at 12:00 on 14 April 2015 and at 12:30
on 9 April and 3 & 4 May 2016, the shadow of a fiber optic probe on the reference panel disturbed the
spectral measurements. Therefore, these spectral measurements were excluded in the later statistical
analysis. As a result, a total of 4,7, 20, 3,17, 8,9, 14, 10, and 15 (totally 106) valid spectral measurements
were collected for our model validation on 3, 13 & 14, 24 & 25 April 2015 and on 8 & 9, 18 April and
3 & 4 May 2016, respectively.

2.2.4. SIF Retrievals from the Spectral Measurements

The Fraunhofer Line Discrimination (FLD) principle makes it possible to extract the weak SIF
signal from the vegetation-reflected radiance at the Fraunhofer lines or the atmospheric absorption
bands [12,55]. According to the accuracy assessment of the FLD-based SIF retrieval methods in [56,57],
the 3FLD method [58] is most robust and can retrieve SIF with sufficient accuracy using spectral
measurements by the QE pro spectrometer. Therefore, the 3FLD method was used for canopy SIF
retrieval in this study. In the 3FLD method, the irradiance and radiance of a single reference channel
used in the standard FLD method are replaced with the weighted averages for two channels at the
left (for the shorter wavelength) and right (for the longer wavelength) shoulders of the absorption
feature [58]. The weights of the two reference channels are defined as

w /\right — Ain w Ain — )‘left
left = 5 . s Wright = 5y
of /\right - /\left st A

@
right — Ale ft
in which A is the wavelengths of the channels; and the subscripts ‘in’, “left’, and ‘right’ refer to the
channels inside, at the left, and at the right shoulders of the absorption band, respectively. The SIF
inside the absorption band can be calculated as Equation (2), in which I is the downwelling irradiance
arriving at the top-of-canopy, and L is the total upwelling radiance at the TOC.
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To sum up, from ten field experiments, we can synchronously derive the vegetation parameters,
meteorological variables, and GPP at half-hour intervals, as well as diurnal reflectance and SIF datasets.
These high-accuracy experimental datasets are sufficiently reliable as the SCOPE model inputs or for
the validation of SIF simulations.
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2.3. Inversion of LIDFa and Vo from In Situ Measurements

2.3.1. LIDFa Inversion from the Diurnal Canopy Reflectance Spectra

LIDFa is a leaf inclination distribution factor that will vary with the growth of wheat. In this study,
the LIDFa values across the growing season were retrieved from the measured reflectance spectra by
inverting the RTMo module with the look-up table (LUT) method. According to the GSA of the SCOPE
model for reflectance simulation in [29], the LIDFa has a significant influence on the reflectance spectra
in the region at around 500-1300 nm. Moreover, other key driving variables that govern the simulated
reflectance spectra from 650 nm to 750 nm (including LAI, Cab, and Cdm) are all accurately measured
from in situ experiments. Therefore, the LIDFa can be retrieved from our measured reflectance spectra
from 645 nm to 805 nm. However, at different measurement times during the day, different LIDFa
values will be retrieved due to the bi-directional reflectance characteristics of canopy and random
measurement errors. So, the only and optimal LIDFa value must be determined for one day (hereafter
denoted as the daily LIDFa). In addition, the adjacent two days were regarded as one day for LIDFa
retrieval. The schematic overview of the LIDFa inversion is shown in Figure 2.

Measured Rin, Ta, Measured diurnal
Cab, LAL.. reflectance spectra
Set a LUT of LIDFa

Simulated diurnal /
reflectance spectra

Daily LIDFa

Figure 2. Schematic overview of the LIDFa inversion procedure.

First, the LIDFa at each measuring time was retrieved using the least root mean squared error
(RMSE) method. Using the measured diurnal meteorological variables and other required inputs,
the RTMo module was run with an LUT of different LIDFa values at half-hour time intervals for each
fieldwork day. According to the six common kinds of leaf inclination distribution defined in [50],
the LIDFa range was set to —1~1 with an interval of 0.05. Thus, for every half-hour, 41 canopy
reflectance spectra under different LIDFa conditions could be collected from the SCOPE model outputs.
Next, for the i-th LIDFa value of the n-th spectra measurement, we calculated the RMSE of simulated
reflectance spectra Rgim to the measured reflectance spectra Riea, as shown in Equation (3)

805 ,
b |Rsim(/\r 1, I’l) - Rmea(/\r n)l

RMSEg(i,n) = 2=645 N 3)

in which A represents the spectral wavelength and N, is the number of the spectral bands of the
QE pro; n ranges from 1 to N, and N is the total number of the spectra measurements during one
fieldwork day; and i ranges from 1 to 41. To avoid the influence of SIF emission, the apparent
reflectance spectra around the absorption bands were smoothed by spline interpolation. The LIDFa,
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which produces the least RMSE, was selected as the retrieved LIDFa at the n-th spectra measurement
(LIDFa,). Thus, a vector [LIDFa; ...LIDFa, ...LIDFay] can be calculated to represent the various
LIDFa estimations at all the measuring times during one fieldwork day.

Secondly, the daily LIDFa was final determined by a majority voting method, as follows:

LIDFa; ... LIDFa, ... LIDFay
daily LIDFa = mod | LIDFa; ... LIDFa, ... LIDFay 4)
LIDFaj ... LIDFa; ... LIDFay

in which LIDFa;, and LIDFa;’ were calculated as LIDFa, minus and plus the LIDFa step in the LUT
(0.05), respectively, and the mod is an operator that calculates a matrix’s mode. Some strategies
were applied to decrease the uncertainties. First, we adopted the mode instead of the mean value to
represent the daily LIDFa to avoid the influence of the abnormal LIDFa values retrieved from incorrect
measurements. Second, two vectors calculated as the originally retrieved vector minus and plus the
LIDFa step in the LUT (0.05), respectively, were added into the matrix to avoid the “pseudo mode’
problem, which is likely to occur if we use only the mode on the originally retrieved vector. Take the
vector [-0.5, —0.55, —0.55, —0.6, —1, —1] as an example. This vector has two modes, —0.55 and —1,
and —1 is a ‘pseudo mode’, because it is far away from the majority elements. If the elements of this
vector plus and minus 0.05 are added into the matrix, the mode will be —0.55. Therefore, the majority
voting approach can find the optimal daily LIDFa that is closest to the true LIDFa value.

2.3.2. Vemo Inversion from Diurnal GPP Observations

The Vemo values across the growing season were retrieved from the diurnal observations by
inverting the SCOPE model with the LUT method. Vcmo is a crucial leaf biochemical parameter
for calculating photosynthesis and fluorescence emission in the SCOPE model. It changes with
different vegetation types [59,60], plant functional types [61], and different days of the year [62].
According to [25], Vemo influences carbon assimilation of photosynthesis (i.e., PQ) and thus fluorescence
emission efficiency. Therefore, Vemo may be estimated from varying net CO, fluxes. Wolf et al. have
successfully estimated the V¢, by fitting a commonly used model to measured net CO, fluxes [63].
In our study, the simulated GPP can represent the net CO, fluxes, because the respiration rate is
set to zero. Thus, the V.y, values were retrieved by comparing simulated against observed GPP.
The inversion of V¢, intends to find the optimal Ve, value for each fieldwork day (hereafter denoted
as the daily Vemo). The schematic overview of Ve, inversion is shown in Figure 3.

Inverted Measured Rin, Measured
daily LIDFa Ta, Cab, LAL.. diurnal GPP

Set a LUT of Vemo

A 4

SCOPE

Figure 3. Schematic overview of the V¢mo inversion procedure.
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The daily Vemo was retrieved using the least RMSE method, which intends to find the diurnal
GPP values that are most consistent with the measured ones. With the inverted daily LIDFa as inputs,
SCOPE was run with an LUT with different V., values at half-hour time intervals for each fieldwork
day in the 2015~2016 period. Based on the literature [59,61], the range of Vcme should be set to
10-200 pmol m~2 s~! for C3 crops like wheat with a step 10 pmol m—2 s~1. Thus, for every fieldwork
day, 20 sets of half-hour GPP data under 20 Vmo conditions could be collected from the SCOPE model
outputs. Next, for the j-th Vomo value, we calculated the RMSEs between the simulated half-hour GPP
values GPPg, with the measured ones GPPpea, as shown in Equation (5)

M
Y. |GPPgim(j, m) — GPPmea(m)|
RMSEg(j) = "=

= ©)
in which m indicates the m-th measurement of GPP during one fieldwork day, and M is the total
measurement times. Similar to the LIDFa inversion, the Vino that produces the least RMSE was
selected as the inverted daily Vemo for model input.

2.4. Settings of FQE Values

Two different FQE settings were adopted for the SIF simulations, as follows:

(1) Fixed FQE, simulations with fixed FQE values as the literature suggested values: 0.01 for fqe2
and 0.2 for fqel/fqe2.

(2) Variable FQE, simulations with variable FQE values, which were estimated by fitting the SIF
simulations to the observed SIF data and minimizing the systematic deviations in SIF5 and SIFg
simulations with the LUT of changing values of FQE.

As mentioned previously, the fqe2 and fqel are directly proportional to PSII and PSI fluorescence,
respectively, and the PSII fluorescence spectra cover both the red and far-red bands, while the PSI
fluorescence spectra cover only the far-red band. Thus, the fqe2 and fqel/fqe2 are directly proportional
to the simulated SIFg and SIF, /SIFg, respectively. In other words, if the simulated SIFg and SIF /SIFg
values have systematic deviation, it is likely to be caused by the unsuitable FQE values. Adjusting FQE
should find the optimal (fqe2, fqel/fqe2) setting that makes the systematic deviation of diurnal SIF
and SIFp simulations minimum for each fieldwork day (hereafter denoted as the daily FQE values).
According to the literature [28], the measured SIF normalized by PAR has a weak diurnal cycle for
unstressed crops in a steady state. Therefore, the FQE values during one day are regarded as invariable
in this study.

First, the SCOPE model was run with an LUT of different fqe2 and fqel/fqe2 values at half-hour
time steps corresponding to each diurnal experiment. The fqe2 was set from 0.005 to 0.02 with a step of
0.001, and the fqel/fqe2 was set to 0.05~0.5 with a step of 0.05. Then, for every fieldwork day, 120 sets
of half-hour SIF, and SIFp data under 120 different (fqe2, fqel/fqe2) conditions were collected from
the SCOPE model outputs. For each (fqe2, fqel/fqe2) condition, the bias in daily averages of diurnal
SIF4 and SIFg simulations was adopted to describe the systematic deviation of diurnal SIF and SIFg
simulations, as defined in Equation (6)

. SIFg sim — SIFg
bmsSH:B = ,:s;rn?mea,bmssm/\ =
,mea

SIFA,sim - SIFA,mea

6
SIFA,mea )

in which SIF represents the daily average of diurnal SIF during one fieldwork day, the subscripts
‘B’ and “A’, respectively, represent the O,-B and O,-A bands, and the subscripts ‘sim” and ‘mea’,
respectively, represent the simulated and measured data. The computation of the daily average of
diurnal SIF is necessary, because the diurnal variations in SIF are dominated by the diurnal cycles of
irradiance, making it more difficult to reflect FQE effects. The absolute value of biassrg, and biasgr,
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can simultaneously reach their minimum value by adjusting the two FQE values, because fqe2 and
fqel/fqe2 separately governs the simulated SIFg and SIF, /SIFg. Finally, the two FQE values that
provide a minimum sum of the absolute value of biasgip, and biasgi, (|biassis,|+|biasgie, |) were
selected as the daily FQE values for each fieldwork day.

2.5. Experimental Process

Figure 4 displays schematically the process of SIF simulations and model evaluation. Using the
inverted daily LIDFa and Veme (described in Section 2.3), the accurately measured vegetation
parameters (described in Section 2.2.1), and meteorological variables (described in Section 2.2.2)
as inputs, the SCOPE model first run with fixed FQE values at half-hour intervals for each fieldwork
day. Other parameters required by the SCOPE model were set to their default or literature values
described in Section 2.1.1. The SCOPE version 1.61 and biochemical module TB12 were adopted.
Meanwhile, the daily FQE values were adjusted according to the systematic deviations of the SIF5 and
SIFg simulations. Overall, for each FQE setting (fixed and variable FQE), ten time series simulations
were run along with ten diurnal experiments, and, eventually, from the SCOPE model outputs,
ten simulated half-hour SIF spectra were collected and compared with the observed diurnal SIF data
(described in Section 2.2.4). Finally, the accuracy of SIF,, SIFg, and SIFg/SIF, simulations with the

two FQE settings was quantitatively evaluated.
Measured
diurnal SIF

Inverted daily LIDFa
and Vemo

|
1. fixed FQE

i 2. variable FQE
Measured vegetation | Q Evaluation
parameters + results
Half-hour Time-series run for Simulated
eteorological variable: SCOPE = each fieldwork day half-hour SIF

Figure 4. Schematic overview of SIF simulations and model evaluation.

3. Results

3.1. LIDFa and V ¢ Retrieved from In Situ Measurements

Using the inversion procedure as shown in Figures 2 and 3, daily LIDFa and Vm were retrieved
on ten fieldwork days, as listed in Table 3. The seasonal changing patterns of our LIDFa retrievals were
in accord with those realistic patterns across the growing season. As wheat grew from the erecting to
the booting stage, the retrieved LIDFa continued to increase, which indicated that the leaves become
flatter over time. In 2016, there was an obvious decrease following the increase due to the arrival
of the flowering period. Note that the seasonal change pattern of LIDFa for two years is completely
consistent with the seasonal variation of LAI listed in Table 1. This result verifies the reliability of
the LIDFa inversion, because LAI and LIDFa are both canopy structural parameters and they should
have similar change patterns across the growth season of wheat. The retrieved Vcmo varied from
45 to 110 umol m~2 s~1, which was in good accord with its well-known values for C3 crops like wheat
or soybean. The ranges and seasonal change patterns of retrieved Vemo values in 2015 and 2016
were consistent: the Vemo values increased constantly from wheat’s erecting to its flowering stage.
In addition, the Vmo values between two adjacent fieldwork days are almost unchanged. All of this
evidence indicates that our retrieved V m, values are reliable.
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Table 3. The retrieved daily LIDFa and Vemo values (unit: umol m~2 s~1) on ten fieldwork days in

2015 and 2016.
2015 2016
April3  April13  April14  April24  April25  April 8 April9  April18 May 3 May 4
LIDFa —0.975 —0.875 —0.875 —0.625 —0.625 —0.875 —0.875 -0.75 —0.85 —0.85
Vemo 50 80 80 110 110 45 55 65 95 100

3.2. Results of Reflectance and GPP Simulations

The simulated canopy reflectance and GPP separately contain information on two aspects: one is
the leaf and canopy characteristic represented by RTMo module, and the other one is the plant
physiological and photosynthesis state represented by the biochemical module. Both aspects impact
the simulating accuracy of SIF. Therefore, the results of reflectance and GPP simulations should be
inspected before the evaluation of SIF simulations.

Figure 5 displays the results of the simulated and measured reflectance spectra and their residuals
at 10:00 for every fieldwork day. In general, the simulated reflectance spectra fit the measured ones
well: the residual absolute values are less than 0.03 in the full region of 650 nm to 800 nm for all
ten fieldwork days. Specifically, the simulated and measured reflectance spectra are approximately
the same in the NIR from 750 nm to 800 nm (the residual absolute values in this region are less than
0.012), except for 25 April 2015. However, in the red and red edge region from 650 nm to 750 nm,
the residuals between the two reflectance spectra are slightly higher. Figure 6 shows the RMSE statistics
between the simulated and measured reflectance spectra for 106 spectral measurements in 2015 and
2016. As illustrated, the model reproduces the reflectance well: the RMSE values for 106 spectral
measurements are between 0.0041 and 0.0437, and most of (67%) the RMSE values are lower than 0.02.
According to [29], the leaf and canopy parameters—including LIDFa, LAI, Cab, and Cdm—together
govern the variation in the reflectance spectra from 650 nm to 800 nm. So, reflectance simulation
accuracy depends on the joint accuracy of these parameters. All these results indicate that using the
measured and retrieved vegetation parameters as inputs, the SCOPE model can accurately model the
leaf and canopy characteristic and reproduce the reflectance spectra.
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Figure 5. The simulated and measured reflectance spectra and their residuals at 10:00 for every
fieldwork day in 2015 and 2016.
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Figure 6. Root mean squared error (RMSE) values between the simulated and measured reflectance
spectra for 106 spectral measurements in 2015 and 2016.

Figure 7 shows the diurnal cycles of the simulated and measured GPP on ten fieldwork days
in 2015 and 2016. On one hand, the absolute intensities of the two GPP data sets (simulated and
measured diurnal GPP) agree well: the RMSEs of two GPP data sets range from 1.514 pmol m—2 s~!
to 5.627 pumol m~2 s1, and the corresponding relative root mean square error (RRMSE) values range
from 10.31% to 29.65% on the ten fieldwork days. On the other hand, the diurnal patterns of simulated
GPP agree well with measured GPP on most fieldwork days, except for 18 April 2016, when the GPP
observations were likely inaccurate and inconsistent with the PAR changes (see Figure 1b). This result
indicates that the simulated diurnal GPP matches the PAR changes better than the measured GPP.
This is because SCOPE’s biochemical module can track the weather fluctuations via the meteorological
inputs and thus accurately simulate the GPP, while the NEE observations are likely to be disturbed
by changing air parameters like wind speed and direction. For further illustration, Figure 8 displays
the correlation and RRMSE values between simulated and measured GPP for all half-hour flux
observations in 2015 and 2016. The simulated GPP values are highly consistent with the measured
ones: the scatters are close to the 1:1 line with a determination coefficient (R?) of approximately 0.83 and
an RRMSE of 20.69%. All these results of GPP simulations indicate that by using the directly measured
or indirectly retrieved inputs from in situ observation, the SCOPE model can accurately represent the
plant physiological state and interpret the vegetation photosynthesis.
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Figure 7. The diurnal cycles of simulated and measured GPP at half-hour intervals between 7:00 and
19:00 on ten fieldwork days in 2015 and 2016.
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Figure 8. The correlation and relative root mean square error (RRMSE) value between simulated and
measured GPP for all half-hour flux observations during ten experiments in 2015 and 2016.

3.3. Evaluation of SIF Simulations

3.3.1. Evaluation of SIF Simulations with Fixed FQE

First, we evaluated the simulating accuracy of SIFg and SIF related to both their diurnal cycles
and intensities. Figure 9 displays the diurnal cycles of the half-hourly simulated SIF with fixed FQE,
compared to the measured SIF on ten fieldwork days in 2015 and 2016. As illustrated, the SCOPE model
can well reproduce the diurnal cycles of the SIF variation for each fieldwork day. Many studies have
proven that SIF is positively correlated with PAR and GPP at the canopy scale [7,8,57,64]. Similarly, here,
the simulated SIF values increase until noon and then decrease over time (with the changing of SZA),
which obviously agrees with the diurnal patterns of PAR and GPP observation. Like the diurnal
PAR and GPP observations shown in Figures 1 and 7, the diurnal curves of SIF exhibit the same
fluctuations due to unstable weather on 25 April 2015, and on 18 April and 4 May 2016. All these
phenomena indicate that in the SCOPE model, the TB12 biochemical module can credibly regulate
the diurnal variation of SIF emission efficiencies as a function of the dynamic micrometeorological
variables. Nevertheless, on several fieldwork days—like for SIF4 on 24 April 2015 or for SIFg on
3 May 2016—the systematic deviation in the diurnal SIF simulations is obvious: the simulated SIFg or
SIF4 values during the entire day collectively deviated from their measured points.

4 measured SIF; @ measured SIF simulated SIF; =~ e simulated SIF ,
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Figure 9. The diurnal cycles of simulated SIF with fixed FQE, compared to the measured SIF at O,-B
and O,-A bands on ten fieldwork days in 2015 and 2016.
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Table 4 concludes the quantitative assessment of the errors and deviations in SIFg and SIF4
simulations with fixed FQE. This table lists the RRMSE of diurnal simulations for each fieldwork day
(hereafter denoted as the daily RRMSE) and the RRMSE for all ten days of SIF4 and SIFg simulations,
as well as the biassip, and biassig, (as described in Section 2.4). The results show that the SCOPE
model can provide acceptable accuracy for the SIFg and SIF, simulations with fixed FQE: the RRMSE
values of SIFg and SIF, simulations for all 106 spectral measurements were 24.35% and 23.67%,
respectively; and the daily RRMSEs were lower than 30% for each fieldwork day, except for the SIFg
on 3 & 4 May 2016. Nevertheless, the systematic deviations of diurnal SIF, and SIFg simulations
were noteworthy on many fieldwork days, in particular for SIFg in 3 April 2015 and 3 & 4 May 2016,
and for SIF on 24 April 2015 the absolute bias values were greater than 20%. On these days, the error
in diurnal SIF simulation was mainly caused by the systematic deviation, not the inconsistency of
SIF change cycles. Note that the bias variation in SIFg simulations shows a clear seasonal pattern
that is coincident between 2015 and 2016. Specifically, at the erecting period (i.e., 3 April 2015 and
8 & 9 April 2016), the SIFg was underestimated with the negative bias value; but at the booting or
flowering period (i.e., 24 & 25 April 2015 and 3 & 4 May 2016), the SIFg was largely overestimated
with a positive bias value. These results indicated that the fixed FQE was not suitable for unbiased
SIFp and SIF, simulations at all growth stages, and the unsuitable FQE values may be the major factor
that caused the systematic deviations in simulated SIF. In addition, the bias values for SIFg and SIFa
were mostly at different levels or even opposite in sign. For example, on 24 & 25 April 2015, the SIF5
was largely underestimated, while the SIFg was overestimated; on 3 May 2016, the SIFg was greatly
overestimated while the simulated SIF5 values were just right. It implied that the SCOPE-simulated
SIF 5 /SIFg with fixed FQE was probably unreliable, which should be investigated further.

Second, we evaluated the simulating accuracy of SIF, /SIFp to investigate whether the SCOPE
model can reproduce the SIF spectral shape with fixed FQE. Figure 10 displays the correlation and
RRMSE values between the diurnally simulated and measured SIF, /SIFg with fixed FQE for all
106 spectral measurements (Figure 10a) and the corresponding daily RRMSE for each single fieldwork
day (Figure 10b). As illustrated, the SCOPE-simulated SIF, /SIFp values were not satisfying: for all
106 spectral measurements, most scatters were located far away from the 1:1 line with an R? of only
0.0286 and an RRMSE of nearly 30%, and most daily RRMSEs were larger than 25% (with a range from
23.57% to 33.29%) on ten fieldwork days. In addition, the measured SIF, /SIFg values changed with a
range from 0.593 to 3.460, while the simulated SIF, /SIFg values were relatively stable with a range
from 1.552 to 2.021 across wheat’s growing season in 2015 and 2016.

Table 4. The relative root mean square error (RRMSE) and bias of diurnal SIF simulations with fixed
FQE at O,-B and O,-A bands on ten fieldwork days.

0,-B 02-A
Y Dat
ear ate RRMSE bias RRMSE bias
April3  2597%  —2035%  11.14%  —174%
Aprl13  1247%  —1078%  22.64%  —1.96%
2015 April14  1213% 0.71% 2830%  18.29%
April24  1343%  12.62%  2230%  —22.24%
April25  2454%  1347%  2643%  —13.85%
April8  2023%  —13.70%  12.07% 6.93%
April9  1953%  —583%  1877%  12.43%
2016 April18  2954%  12.99%  21.69% 5.58%
May 3 40.13%  38.16% 8.94% 6.43%
May 4 38.67%  27.79%  2351%  10.84%
all ten days 24.35% — 23.67% —
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Figure 10. The correlation and relative root mean square error (RRMSE) values between simulated and
measured SIF, /SIFg with fixed FQE: (a) the correlation and RRMSE for 106 spectral measurements
and (b) the RRMSE values for each fieldwork day in 2015 and 2016.

Table 5 concludes the quantitative assessment of systematic deviation in the SIF o /SIFp simulations
at all growth stages. The ratio of daily SIF5 and SIFg averages (SIF /SIFg) was calculated to express
the systematic deviation, because the diurnal variations of SIF /SIFg are dominated by the geometry
of incidence and observation, making it more difficult to reflect seasonal variations of systematic
deviation. As reported in Table 5, the simulated SIF, /SIFg values were different from the measured
ones at wheat’s erecting and booting or flowering period, with RE’s absolute value larger than 20%.
Note that the RE variation in SIF /SIFg simulations shows a consistent seasonal pattern between 2015
and 2016 that opposes the bias variation in SIFg simulations (as mentioned previously). Specifically, at
the erecting period, the SIF, /SIFp values were largely overestimated with positive RE values, but at
the booting or flowering period, the SIF /SIFp values were largely underestimated with negative RE
values. In addition, with fixed FQE, the SCOPE model cannot credibly reproduce the seasonal cycles of
SIF, /SIFg. As the wheat grows, the measured SIF /SIFp increased from the erecting to the flowering
period with a wide range from 1.370 to 2.470, while the simulated SIF /SIFg remained in the range
from 1.690 to 1.916, without clear seasonal changes. These results indicated that the fixed FQE was not
suitable for unbiased SIF 5 /SIFp simulations at all growth stages. Considering that the fqel/fqe2 value
was directly proportional to the simulated SIF, /SIFg, the unregulated fqel/fqe2 may be the major
factor limiting the seasonal variation of simulated SIF 5 /SIFg.

Table 5. The simulated and measured ratio of daily SIFA and SIFB averages, as well as the relative
error (RE) between them with fixed FQE for ten fieldwork days in 2015 and 2016.

2015 2016
April April April April April April April April May May
3 13 14 24 25 8 9 18 3 4
simulated
STF, /STFg 1.690 1.853 1.857 1.705 1.698 1.885 1.916 1.859 1.705 1.732
measured
SIF, /STF; 1.370 1.686 1.590 2470 2237 1.522 1.605 1.990 2.213 1.997
RE 23.37%  9.88%  16.80% —30.95% —24.08% 23.90% 19.39% —6.56% —22.97% —13.26%

3.3.2. Variable FQE Estimated from SIF Observations

Table 6 lists the variable FQE values estimated by minimizing the systematic deviations in
SIFA and SIFp simulations for each fieldwork day. For further illustration, Figure 11 displays the
seasonal cycle of fqe2 and fqel/fqe2 from the erecting to wheat’s flowering period in 2015 and 2016.
As illustrated, from wheat’s erecting to its flowering stage, the fqe2 value gradually decreased from
0.013 to 0.007, while the fqel/fqe2 value exhibited an opposite trend and increased from 0.05 to 0.5.
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The seasonal cycles of fqe2 and fqel/fqe2 were consistent with variations of the systematic deviation
in the SIFp and SIF, /SIFp simulations (as mentioned previously), respectively. Specifically, the fqe2
value was close to its literature-fixed value of 0.01 only at the jointing period, while at the erecting
period the value was larger (0.011-0.013), and at the booting or flowering period the value was lower
(0.007-0.009). Also, the fqel/fqe2 value was close to its literature-fixed value of 0.2 only at the jointing
period, while at the erecting period the value was lower (0.05-0.1), and at the booting or flowering
period the value was larger (0.3-0.5). These results confirm the seasonal FQE values, showing that the
seasonal cycles of FQE values between 2015 and 2016 were greatly consistent.

Table 6. The variable fqe2 and fqel/fqe2 values on ten fieldwork days in 2015 and 2016.

2015 2016
April3  April13  April14 April24  April25  April 8 April9  April 18 May 3 May 4
fqe2 0.013 0.011 0.01 0.008 0.009 0.012 0.011 0.009 0.007 0.008
fqel/fqe2 0.05 0.15 0.1 0.5 0.4 0.05 0.1 0.25 0.4 0.3
—eo— fqe2 —o— fqel/fqe2
0.015 15
0.01 - 1
P
P g
= =
01005 Erecting Jointing Booting Erecting Jointing Flowering | P E“
U ’/\ n
R ) & O & 0O >
F W F @ FE
PP PP S 3
e i T LA

Date

Figure 11. The seasonal cycles of fqe2 and fqel/fqe2 on ten fieldwork days in 2015 and 2016.

3.3.3. Evaluation of SIF Simulations with Variable FQE

With the above variable FQE as inputs, the systematic deviations in SIFg, SIF, and SIF 5 /SIFg
simulations can be corrected; meanwhile, the limited range from SIF, /SIFp simulations can be
extended due to the seasonal variations of fqel/fqe2. Thus, the SCOPE model can provide more
accurate SIF simulations related to both the individual bands (SIF, and SIFg) and the seasonal
SIF A /SIFp values.

On the one hand, if simulated with variable FQE values, the simulation accuracy of SIFg and SIF4
can be improved greatly. Like the quantitative assessments listed in Table 4, Figure 12 displays the
correlation and RRMSE values between the simulated and measured SIF with variable FQE for all
106 spectral measurements (Figure 12a) and the corresponding daily RRMSEs for each single fieldwork
day (Figure 12b). As illustrated, both the simulated SIFg and SIF5 were consistent with the measured
ones for all 106 spectral measurements: the scatters were located close to the 1:1 line, with the R? larger
than 0.78 and an RRMSE of less than 20%. Additionally, the daily RRMSE values of SIFg and SIF were
lower than 30% (with a range from 5.97% to 29.80%) and 23% (with a range from 6.99% to 22.55%),
respectively, during ten experiments in 2015 and 2016.
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Figure 12. The correlation and relative root mean square error (RRMSE) values between simulated
and measured SIF, and SIFg with variable FQE: (a) the correlation and RRMSE for 106 spectral
measurements and (b) the RRMSE values for each fieldwork day in 2015 and 2016.

On the other hand, if simulated with variable FQE values, the SCOPE model can credibly
reproduce the seasonal SIF, /SIFp values. Similar to Figure 12, Figure 13 shows the correlation
and RRMSE values between the diurnally simulated and measured SIF, /SIFg with variable FQE.
Unlike the unsatisfactory results shown in Figure 10, with variable FQE, both the range and values
of simulated SIF, /SIFp were consistent with the measured ones: for all 106 spectral measurements,
most scatters are close to the 1:1 line with an R? of 0.48 and an RRMSE of only 20.63%, and most daily
RRMSE were lower than 20% (with a range from 4.98% to 24.20%) on the ten fieldwork days. All these
results indicated that the variable FQE settings were more suitable than the fixed ones for acquiring
unbiased SIF simulations.
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Figure 13. The correlation and relative root mean square error (RRMSE) values between simulated and
measured SIF, /SIFg with variable FQE: (a) the correlation and RRMSE for 106 spectral measurements
and (b) the RRMSE values for each fieldwork day in 2015 and 2016.

4. Discussion

In this study, SCOPE’s driving input parameters were derived from ten field measurements in
two ways: (i) direct measurements of vegetation and meteorological parameters and (ii) a model
inversion approach to retrieve LIDFa and Veme from in situ reflectance and GPP observations.
These accurate input parameters are vital for persuasive evaluation results of the SCOPE model.
The determination of these parameters is one way to calibrate the main modules related to SIF
simulation. In the SCOPE model, canopy SIF emissions are propagated using three modules: the
Fluspect and biochemical modules at the leaf level and the RTMo module for canopy radiative transfer
of SIF signal. Vegetation parameters (e.g., LIDFa, Cab, and LAI) determine the leaf and canopy
characteristics represented with the RTMo module, and the meteorological and leaf biochemical

26



Remote Sens. 2018, 10, 250

parameters (e.g., Vemo, Rin, and Ta) determine the plant physiological and photosynthesis state
represented with the biochemical module. The simulated canopy reflectance and GPP outputs
separately contain information on these two aspects. So, the accuracy of reflectance and GPP
simulations can reflect the joint accuracy of input parameters, which has been verified in this study.

The Vemo values across the growing season were inverted by fitting the SCOPE model to measured
GPP data. The Vi, is one of the key parameters in the biochemical module of SCOPE for GPP
modeling [20,43]. However, Poolman et al. [65,66] pointed out that the Rubisco may not be the
rate limiting factor of the rate of CO, assimilation, which means there may be some uncertainties
of our method for the Vi, estimation and new models reflecting this fact should be considered.
Nevertheless, the retrieved V¢mo values match well with the literature values and show credible
seasonal patterns. First, the retrieved V., varied from 45 to 110 umol m~2 s~ 1, which was in good
accord with those displayed in the literatures for C3 crops: Vemo ranges from 35 to 83 pmol m =2 s~
for wheat in [61], Vemo ranges from 76 to 136 pmol m2s ! for soybean in [67], and the common
Vemo value is 93 pmol m~2 s~! for wheat in [68,69]. Second, the retrieved Vo values showed
plausible seasonal change patterns, which agrees well with the seasonal changes of Ve, retrieved
from space-based SIF data in [23]. To date, the possibility of prescribing Vem, from another information
source is limited. Vemo could be estimated using leaf nitrogen content [49,70], but this estimation relied
only on few experimental results, and the validation is still needed. Zhang et al. [23] retrieved the
Vemo from changes in SIF, as observed by the GOME-2 satellite, but the satellite data were aggregated
over space and time with the entire growth seasons containing drought and senescence, which is
different from our focus on several diurnal cycles at the canopy scale. Therefore, our model-based
inversion approach for V.y, may provide an alternative way for the estimation of Vemo on ground or
global scales. As we focus on the evaluation the SCOPE model for SIF simulation in this study, further
attempts on the more accurate estimation of V¢me was not included.

However, there are some uncertainties within the process to derive FQE. Firstly, the SIF retrieved
from the spectral data was regarded as the true value for accessing the accuracy of SIF simulation.
Based on this assumption, SIF simulations could be validated. However, the SIF retrieval based on
3FLD method has some uncertainties: the accuracy is dependent on the spectral characteristics of
the reflectance and irradiance spectra at the absorption band, and on the spectral resolution and
SNR of the sensor used. Thus, the RRMSE of simulated SIF to measured SIF is not the real error of
the SCOPE model’s SIF simulation. Fortunately, the SIF observations derived from our experiments
were sufficiently reliable thanks to the robust retrieval method with high spectral resolution and
the SNR of the QE Pro spectrometer. According to the accuracy assessment using simulated data
with the same SNR and SR of QE Pro spectrometer in [56,57], the RRMSE for the SIF retrieved
using 3FLD methods is 13.2% at the O,-B band and 9.5% at the O,-A bands. Thus, the 3FLD
method can retrieve SIF with sufficient accuracy and provide the reference value for evaluating
SIF simulations. Therefore, the quantitative accuracy assessments made in this study can reflect the
SCOPE model’s reliability.

Secondly, the vegetation parameters and meteorological or flux variables derived from in situ
observations were considered accurate in this study. They also suffer from some uncertainties due
to instrumental or artificial errors in field measurements. These uncertainties affect the LIDFa and
Vemo retrieval accuracy and cause an additional error in SIF simulations. According to the error
propagation presented in [28], the effects of Cdm and LIDFa or Cab and LIDFa on reflectance are
opposite, implying that an overestimate (underestimate) in measured Cdm or Cab will lead to an
overestimate (underestimate) in the LIDFa retrievals. Moreover, the effects of Cdm and LIDFa or
Cab and LIDFa on fluorescence are also opposite. Thus, the effects of a simultaneous overestimate
or underestimate can to some degree cancel out in the SIF simulation. Similarly, the effect of an
overestimation or underestimate of the measured LAI can also be weakened in simulated SIF, because
the effects of LAI and LIDFa on reflectance and fluorescence are both accordant. Therefore, the model
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calibration approach of reproducing the measured reflectance spectra can to some degree weaken the
impacts of vegetation parametric uncertainties on SIF simulations.

These two sources of uncertainties will propagate to our FQE estimations and then affect their
variation patterns. Nevertheless, the ranges and variation patterns of our FQE values were quite
consistent between two growth seasons in 2015 and 2016. Moreover, the estimated fqe2 values
were close to their literature values derived from some laboratory measurements. As reported in
Van der Tol et al. [25,28], the fqe2 values was around 0.01 based on the laboratory measurements in
Genty et al. [33]. Trissl et al. [37] considered three different levels of fqe2 values (0.01, 0.018, and 0.021)
for the modeling of PSII photochemistry. Our estimated fqe2 values seem a little lower than the
fqe2 values reported in literatures (around 0.02) [35,36]. This discrepancy may be caused by the
uncertainties of parameter determinations in this study, or be caused by the errors of laboratory
measurements in following two aspects. First, the measured PSII fluorescence signal inevitably
included the contamination of PSI fluorescence, which would cause overestimation in fqe2 [35,37,39],
while our estimated fqe2 values can avoid this error, as the simulated SIF for PSII and PSI was evaluated
separately. Second, the measuring flashes used for the determination of the Fy-level fluorescence would
cause some PSII closure, and thus the real Fy-level fluorescence would be overestimated to different
degrees [36]. Besides, it has been reported in several literatures that the Fy-level fluorescence quantum
efficiency obviously changes with different vegetation species, chlorophyll contents, and exposure
of leave surfaces to the sun. Bjérkman and Barbara [38] measured the chlorophyll fluorescence
characteristic at 77 K in 44 species of vascular plant, and found that the Fy-level fluorescence signal
between two different C3 species can be 2-fold variation. The variation of Fy-level fluorescence
signal between the lower and upper leaf surfaces or the shaded and sun leaves were also remarkable.
Bjoérkman and Barbara [38] and Morales et al. [71] also observed declines in Fy-level fluorescence signal
with increased chlorophyll content, probably due to an increase in the proportion of fluorescence that is
reabsorbed. Moreover, as shown in Hussain et al. [72], the cinnamic acid stress will significantly reduce
the efficiency of “open” PSII reaction centers in the dark-adapted state, and a tendency of increase in
Fo-level fluorescence was observed during 2th and 4th days. These laboratory measurements can to
some degree support and account for the variation of our FQE estimations with the growth of wheat.
However, the influence of different factors on FQE variations is complicated and remains unsettled.
Our results can provide a reference for the parameterization of FQE values with the winter wheat in
the field. More control experiments with models and in the field need to be conducted for a better
understanding of the variation of FQE values.

Further opportunities are available to investigate the simulated results of MD12 and SCOPE
version 1.7 compared with this study’s results. In this work, the TB12 biochemical module is generated
in the SCOPE model to implement the simulations. For this module, SIF emission efficiency depends
on the empirical calibration of a number of datasets collected in field and laboratory experiments.
The MD12 module has a more explicit parameterization of fluorescence quenching mechanisms, while
it needs two additional inputs (KNPQs and qLs) to express the intermediate conditions, which cannot
be derived from our in situ measurements. Given the uncertainty in PSII-PSI fluorescence emission
curves and corresponding fqel and fqe2 values, the PSI-PSII separation is explicitly avoided in the
last version 1.7 of the SCOPE model. In the future, the SIF simulated results of this version can be
evaluated and compared with this study’s results.

More field observations and theoretical simulations are required to verify the results presented
in this paper. At present, we conducted the experiments only on winter wheat, and the data sets are
limited. Whether the seasonal patterns of FQE variation can be applied to other species has not been
ascertained. In the future, the spectral measurements should be conducted across various species and
plant functional types (PFT), with more frequent time series, at different locations, in multi-angle mode,
along with the observations of vegetation parameters and flux exchanges. This research could become
a reality with the achievement of our automatic fluorescence observation network. Moreover, active
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fqel and fqe2 measurements with PAM should be conducted in the field and on vegetation at different
growth stages, which can further verify the seasonal cycles of our variable FQE values.

5. Conclusions

In this paper, we evaluated the SCOPE model’s performance for SIF,, SIFg, and SIF, /SIFg
simulations using high-accuracy spectral and flux observations in ten diurnal experiments on winter
wheat. The SIF simulation accuracy with both fixed and variable FQE values was quantitatively
assessed by comparison with the SIF retrieved from measurements using the 3FLD method with a QE
pro spectrometer.

If simulated with fixed FQE values, the SCOPE model can reliably interpret SIF diurnal cycles
and provide acceptable results for SIFg and SIFs simulations. The RRMSEs of SIFs and SIFg for
all 106 spectral measurements in the ten diurnal experiments were 24.35% and 23.67%, respectively.
Nevertheless, the fixed FQE values were not suitable for wheat at all growth stages. At wheat’s erecting
period and at its booting or flowering period, the systematical deviations in SIFg and SIF, /SIFp
simulations were noteworthy, and the seasonal cycles of SIF /SIFg cannot be credibly reproduced,
with a low determination coefficient (R?) of 0.0286.

When the SIF simulation was conducted with variable FQE values, which vary with the growth
of wheat, its accuracy was improved greatly. Specifically, the SCOPE model can accurately simulate
the SIFg and SIF5 with RRMSEs of 18.27% and 19.25%, respectively, and the SCOPE simulations track
well with the seasonal SIF, /SIFg values with an RRMSE of 20.63% and a determination coefficient
(R?) of 0.48. The results indicated a clear seasonal pattern of suitable FQE values. When the growth
stage changed from the erecting to the flowering stage, the fqel/fqe2 increased from approximately
0.05-0.1 to approximately 0.3-0.5, while the fqe2 decreased from 0.013 to 0.07.

Therefore, although the SCOPE model can credibly simulate canopy SIF, the input FQE values
should be carefully determined. Seasonal changes of the FQE values or the FQE values’ dependence on
plant physiological status cannot be ignored for accurate simulations of canopy SIF. Our quantitative
results of the model assessment and FQE adjustment can serve as a significant reference for future
application of the SCOPE model. However, the study is preliminary; more experiments are needed to
determine FQE values in the SCOPE model.
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Abstract: Significant gaps exist in our knowledge of the impact of leaf aging on canopy signal
variability, which limits our understanding of vegetation status based on remotely sensed data.
To understand the effects of leaf aging at the leaf and canopy scales, a combination of field,
remote-sensing and physical modeling techniques was adopted to assess the canopy spectral signals
of evergreen Cunninghamia forests. We observed an approximately 10% increase in Near-Infrared
(NIR) reflectance for new leaves and a 35% increase in NIR transmittance for mature leaves from
May to October. When variations in leaf optical properties (LOPs) of only mature leaves, or both
new and mature leaves were considered, the Geometric Optical and Radiative Transfer (GORT)
model-simulated canopy reflectance trajectory was more consistent with Landsat observations (R?
increased from 0.37 to 0.82~0.89 for NIR reflectance, and from 0.35 to 0.67~0.88 for EVI2, with a small
RMSE (0.01 to 0.02)). This study highlights the importance of leaf age on leaf spectral signatures,
and provides evidence of age-dependent LOPs that have important impacts on canopy reflectance
in the NIR band and EVI2, which are used to monitor canopy dynamics and productivity, with
important implications for RS and forest ecosystem ecology.

Keywords: leaf age; leaf spectral properties; leaf area index; Cunninghamia; Chinese fir; canopy reflectance;
NIR; EVI2; geometric optical radiative transfer (GORT) model

1. Introduction

Forests cover approximately 30% of the Earth’s land area (4.2 x 10° hectares). Globally, forests
play critical roles in providing goods and services for terrestrial ecosystems, including filtering
water, controlling water runoff, protecting soil, regulating the climate, and cycling and storing
nutrients [1,2]. Many important biophysical processes in forests are conducted through leaves,
including photosynthesis, transpiration, respiration, and light interception. Forests and other land
vegetation currently remove approximately 30% of anthropogenic CO, emissions from the atmosphere
through photosynthesis [3-5]. While high value has been placed on remote sensing (RS) for ecological
research, management and modeling of forest canopy status at an ecosystem scale, a concomitant
increase in understanding the factors that affect canopy reflectance has been only partially realized.

The interpretation of RS signals for forest canopies requires profound knowledge of the factors
affecting their optical properties, which may be internal or external to the forest stand [6]. To extract
useful information related to canopy growth using time-series data, anomalies in time-series data
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that are unrelated to real changes in canopies should be eliminated, such as clouds and aerosol
contamination [7,8] as well as bidirectional reflectance distribution function (BRDF) effects caused
by topography and sun-sensor geometry variation [9-14]. Abundant studies have confirmed the
existence of significant seasonal patterns in the optical RS signal trajectory that remain after removing
the impacts of these factors external to the forest stand [11,13,15,16]. Thus, variations in reflectance
trajectories contain useful information related to factors internal to the stand. Based on previously
reported experimental and modeling data, vegetation reflectance is primarily a function of tissue
optical properties (reflectance and transmittance), canopy biophysical attributes (e.g., leaf area, foliage
clumping) and background reflectance [17-21]. Leaf optical properties (LOPs) and leaf area index
(LAI) are two of the main recognized internal factors involved in controlling canopy reflectance.

Seasonality in canopy spectral signals has been attributed to a varying LAI along with new
leaf development and defoliation [22]. In deciduous forests, LAI shows high seasonality and
might be the most significant factor affecting canopy reflectance, as all leaves are shed in winter.
However, the situation is very different for mature evergreen forests, which show a relatively stable
total leaf area every year. Thus, changes in canopy reflectance do not necessarily imply changes
in LAI [23]. In evergreen forests, leaves have more than a one-year lifespan, and current-year new
leaves remain throughout the winter. Although old leaves are shed every year, new leaves are also
produced every year. The total leaf area in evergreen forests remains relatively stable throughout
a year compared with deciduous forests. However, we still find significant seasonal variation in
canopy reflectance in evergreen forests, which may not be caused by variations in LAI but rather by
other internal factors. Further studies are needed to develop a more profound interpretation of the
seasonality of optical RS signals for evergreen forests.

In addition to leaf area, LOPs are another significant factor that can change with time, which may
strongly affect canopy reflectance [19,23,24], and leaf-age effects on canopy signals require more
attention. Leaves affects the radiation field through its LOPs, including leaf reflectance and
transmittance characteristics, which are wavelength-dependent [25,26]. A few supporting studies have
confirmed the combined effects of LAI and LOPs on the seasonality of gross ecosystem CO, exchange
(GEE), photosynthesis and NIR reflectance for Amazonian forests [23,27,28]. Many efforts aimed at
accounting for effect of stand age on canopy reflectance with forest succession have improved the
interpretation of canopy signals [29-33]. However, only a few studies have indicated that in addition
to stand age, leaf age might also have a significant impact. Our ability to both interpret RS signals and
develop new RS technologies for vegetation depends directly on our ability to resolve the multitude of
factors controlling canopy and landscape reflectance signatures. This situation inspired us to further
evaluate robust biophysical interpretations of the seasonality of optical RS signals, with a focus on
evergreen forests, by examining the effects of age-dependent leaf properties on canopy reflectance.

Different age cohorts of leaves coexist in the canopy of evergreen forests, which can be classified
to two main age groups: current-year new leaves (<1 a) and mature leaves (>1 a), which might exhibit
different LOPs and, thus, different impacts on canopy reflectance. Mature leaves represent the majority
and new leaves are the minority of leaves flushed every year. On the other hand, new leaves are mainly
distributed at the top and in the outermost parts in tree crowns, while mature leaves are distributed
in the lower and inner parts of the canopy. Thus, the seasonal variation of canopy reflectance might
be strongly affected by changes in LOPs of both new leaves and mature leaves. This brings us to the
crux of our study: the quantitative analysis and interpretation of the different leaf-aging effects of
new leaves and mature leaves on seasonal variations in canopy reflectance. Hence, we addressed the
following research questions in this study: (1) how do the LOPs of new leaves and mature leaves vary
during the leaf maturation process? (2) How should the contributions of new leaves and mature leaves
to canopy optical properties be quantified? (3) How does leaf aging affect the seasonal variation of the
remotely sensed response spectral signals of evergreen forest canopies?
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2. Materials

2.1. Study Sites

This study focused on two National Research Stations of Forest Ecosystems in Huitong county,
Hunan province, China, as shown in Figure 1. The first station (Station 1, S1) is located at 26°40'N,
109°26'E, and the second station (Station 2, S2) is located at 26°50'N, 109°45E. S1 was established
in 1983, and S2 was established in 1996. Two main permanent sampling plots, ZH1 and WS3, were
selected from S1 and S2, respectively, to measure and evaluate the effects of leaf aging on canopy
optical properties. Two additional auxiliary plots, i.e., FZ1 and WS2, were also selected for comparison
with the main plots. FZ1 exhibits the same plot conditions as ZH1 but is smaller, with a size of
30 x 40 m. WS3 is located next to WS2 and is eight years older than WS2.

Cunninghamia (Chinese fir) is a fast growing species, with its height increasing as much as 1 m per
year [34], and usually matures approximately 20 a. The same Cunninghamia seedlings were planted in
ZH1 and FZ1 after clear cutting. The stem density is the same in ZH1/FZ1, which exhibits half the
density in WS2 (1920 trees ha~1) and WS3 (1967 trees ha~!). ZH1/FZ1 were planted with an initial
stem density of 2500 trees ha~! and thinned twice, once in 1997 and again in 2003, to a stable density
of 1035 trees ha™!.

Station 1: ZH1 and FZ1 Chinese fir Forests

109° 36'E 109° 3TE Google Map
2%° 62’}
FZ1FPlot
(0.12 ha, 1983)
o .
ZH1 Plot .
(0.2 ha, 1983) |1 ae Landsat 5 Jamge
R ) Station & 1995241
Date: 2014/2/2 Station 2 £ [ Red(Band 5)
I Green(Band 4)

Station 2: WS2 and WS3 Chinese fir Forests : T B Biue (Band 3)

‘WS3 Plot ‘WS2 Plot
(2 ha, 1988) (2 ha, 1996)

109° BE 109° 3%'E

Figure 1. These four study plots are covered by Cunninghamia lanceolata (also known as Chinese fir)
plantations, which were replanted after clear-cutting.

2.2. Field Data

2.2.1. Canopy Structural Parameter Measurements

Crown shape measurements were taken from a total of forty trees in S2. The size of the selected trees
was evenly distributed in terms of height (H) (from 5.4 m to 20 m) and diameter at breast height (DBH)
(from 7.7 cm to 37.8 cm). Among the 40 trees, seven trees were located in plots close to the study site,
and 33 trees were located within sites ZH1 and FZ1. The parameters measured for the characterization of
crown shape included the following: crown width in the north-south direction (R1) and the east-west
direction (R2), tree height (H1) and height under the crown (H2), from which we can obtain the height
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of the crown center (). A detailed description of the crown shape measurements can be found in
Appendix A.

Only DBH and H1 were measured annually for each tree in the study plots, and other canopy
structure parameters were only measured once for the 40 trees. Hence, to characterize the dominant
stand canopy structure changes with time, we needed to build allometric relationships between other
unknown canopy structural parameters with DBH or H1. The derived canopy structure parameters
included the following:

Crown radius (R): R = (1.296 + 0.146 * DBH) /2, R? = 0.76, RMSE = 0.72;
Full tree height (H1): H1 = 3.928 + 14.866 * (1 — exp(—0.1865 * DBH52%), R? = 0.94, RMSE = 1.30;
Crown center height (h): h = —0.32 + 0.85 * H1, R? = 0.93, RMSE = 0.98;
Crown ellipticity (b/R), which was fixed at the mean value of the 40 field measurements:

mean = 1.17, standard deviation (s.d.) = 0.46, since no significant relationship was found between
b/R and DBH or H1.

Finally, the variations in canopy structure with stand development can be characterized by the means
and standard deviations of the DBH and tree height (H1) for every individual tree.

2.2.2. LAl Measurements and Data Processing

Digital hemispherical photography (DHP) was the primary method for conducting regular monthly
LAI measurements from 2005 until the present. From 2005 to 2006, photographs were taken by a worker
every month using a CI-110 Plant Canopy Analyzer (Camas, WA, USA) to estimate the LAIL From 2007
onward; photographs were taken using a Canon EOS 40D digital camera equipped with a Nikon AF-DX
10.5 mm /2.8 G ED fisheye lens. The camera was horizontally mounted at a fixed height of 0.2 m
above the ground. The photographs were taken with automatic exposure under diffuse light conditions,
typically soon before sunrise or after sunset.

In the ZH1 and FZ1 plots, measurements were taken on the 15th day of each month at five fixed
locations per plot, facing in four cardinal directions. The images were processed using Gap Light Analyzer
2.0 software to calculate LAIpyp. LAIpyp measurements obtained with automatic exposure resulted
in considerable underestimation because of underestimation of the ratio of green leaves to sky [35-39].
We used the effective LAI (LAI;) measured by two LAI-2000 Plant Canopy Analyzers (LAI-2000, LI-COR)
to correct the system bias in LAIpyp data. One LAI-2000 unit was set at an open and flat area to measure
diffuse sky light, and the other LAI-2000 unit was operated under the canopy at fixed locations as well as
over the whole plots.

LAl = LAlpup +¢ (1)

where ¢ can be considered as a systematic bias in the DHP method due to automatic exposure problems,
and ¢ was set to 1.83 for the DHP method using the average value.

The clumping index () was measured with the Tracing Radiation and Architecture of
Canopies (TRAC, Natural Resources Canada) system to convert LAI, to true LAI (LAl;) using the
following equation:

LAL = (1 —a) * LAL *./Q )

where the needle-to-shoot area ratio (7y,) was set to 1.1 according to the results of the destructive sampling
method described below, conducted in August 2015. The clumping index ((2) was set to 0.8 and the value
of the woody-to-total area ratio (x) was derived from the destructive samples for biomass estimation (0.2).
A detailed description of the data preprocessing methods of LAI can be found in Appendix B.

2.2.3. Spectral Measurements: Leaf and Soil

Soil and leaf samples were collected from WS2 and WS3 at site 2. Current-year leaves were too
short to be measured in April. Therefore, we collected current-year shoots every month during the leaf
expansion period from May to August 2017 to measure the seasonal variations in LOPs. Trees were
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selected from WS2 and WS3 separately to obtain branches from different age cohorts. Twenty branches
were randomly selected and destructively harvested for each age group to conduct spectral measurements.
Young leaves and mature leaves of 0-3 a were collected from the same branches; the leaves were carefully
stored in sealed plastic bags and measured within 48 h.

Spectral measurements over the full spectral range (3502500 nm) were carried out in the
laboratory using a portable spectroradiometer (SVC HR-1024) attached to an integrating sphere
(Model 1800-12S, Licor). All spectra were standardized using a barium sulfate standard and the
calibrated light source supplied by Licor with the integrating sphere. We arranged 8-10 flat needles
closely together for each measurement, avoiding overlaps or gaps, to obtain leaf samples that were
sufficiently wide to cover the gap on integrating sphere. Wide transparent tape was used to assemble
the leaf leaves on the vacuum side of the blade, which was removed from the central region to avoid
any impacts on LOPs. LOPs were measured on the upper surface of the Cunninghamia lanceolata leaf
samples. A group of leaf sample is shown in Figure A4 in Appendix A.

2.3. Remote Sensing Observations

Landsat Observations

Landsat sensors have a long history and provide data with a fine spatial resolution (30 x 30 m)
that can effectively capture forest stands in the landscape. In addition to their ideal spatial resolution,
Landsat data provide certain other advantages, such as reducing the inconsistencies in observations by
always viewing from almost the same direction (nadir view) and at the same time of day. However, one
of the drawbacks of Landsat data (with a 16-day revisit period) is their relatively low temporal
frequency, which is exacerbated by cloud-cover [40]. We collected all available L1T Landsat TM/ETM+
images for our study site (path/row: 125/41) from 1987 to 2016, and abstracted pixel reflectance values
with no cloud contamination. Given the high frequency of cloud cover in forested areas, Landsat
observations over one year are insufficient to describe seasonal patterns. Therefore, all available pixel
reflectance values from all years were sorted by the day of year (DOY), based on which seasonal
trajectories of canopy reflectance were constructed. Landsat red and NIR band surface reflectance
data were used to calculate EVI2, which takes advantage of the auto-correlative properties of surface
reflectance spectra between the red and blue bands:

Rnir — RrED 3)

EVI2 =25
1+ Rnir +24RReD

where Ryr is reflectance in the near infrared band and Ryggp is reflectance in the red band.
3. Methods
3.1. Theoretical Foundation

Geometrical Optical Radiative Transfer (GORT) Model

The interaction between electromagnetic radiation and terrestrial plant canopies is a complex
phenomenon and a key element in many RS applications. Among numerous methods for estimating
the reflectance of forest canopies, the GORT model is based on the physical structure of the underlying
scene. The GORT model is a hybrid of geometric optical (GO) and radiative transfer (RT) approaches
for modeling canopy reflectance [41,42]. The GO model [43—45] quantifies single scattering in the canopy
well and captures the fundamental properties of the canopy bidirectional reflectance distribution function
(BRDF). The assumptions of the GO model are that the scene is composed of three-dimensional solid objects
on a contrasting background and that the overall canopy reflectance can be modeled as a weighted sum of
the spectral signatures of its individual scene components, based on their corresponding areal proportions
within a pixel. The RT model is used to describe the multiple scattering within canopy elements in the GORT
model, and the GO model and RT model are linked using canopy gap probabilities [46,47]. Due to the explicit
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consideration of crown gaps and mutual shadowing effects, the GORT model is suitable for simulating
forest canopy reflectance with varying degrees of discontinuity. The GORT model has been successfully
applied to predict the fundamental features of black spruce forest canopies [42], radiation penetrating the
forest canopy to the forest floor [48] and spectral temporal manifestations of forest succession [49].

In the GO model [43—45], the reflectance of a pixel is modeled as the weighted sum of the spectral
signatures of four scene components: sunlit ground, sunlit crown, shaded ground and shaded crown,
as illustrated below:

S=K¢*G+KexC+KexZ+KexT 4)

where S is the average reflectance of the forest canopy inside a pixel; and K¢, K, K; and K; represent
the areal proportions of the four components in the pixel; thus, K, K, K; and Kt sum to unity. G,
C, Z and T are the corresponding spectral signatures (reflectance in a given wavelength range) of the
four components, as shown in Figure 2, which are functions of the proportions of incoming directional

Q.
givny

Figure 2. The four scene components used in the geometric optical (GO) model. C is the sunlit tree

beams and diffuse solar radiation.

crown; T is the shaded tree crown; G is the sunlit background; and Z is the shaded background.

The canopy structure parameters listed in Table 1 for the stands are derived based on the field
measurements of the DBH and tree height of every individual tree in the stands, and the allometric
relationships between DBH or tree height. Parameter i1 and h2 must represent the structure of the
dominant canopy layer. Therefore, we used the mean height minus s.d. to derive /11 and the mean height
plus s.d. to derive h2. FAVD is calculated by dividing LAI by the crown volume, by treating the tree
crown as an ellipsoid.

Table 1. Canopy structure parameters required for the GORT model to simulate canopy reflectance.

Symbols Parameters Source
Canopy Structure Parameters
at lower boundary of canopy center height O and CERN ?
h2 upper boundary of canopy center height O and CERN
R horizon mean crown radius O and CERN
b/R crown spheroid ellipticity 1.17 (O)
A tree stem density (trees/ha) CERN
FAVD foliage area volume density (m?/m?) O and CERN
k leaf angle distribution factor 0.5 (random)
Component Spectral Parameters
rL leaf reflectance (@]
173 leaf transmittance O
G soil/background reflectance O
Sun-Sensor Geometry
SZN sun zenith angle (%) Time, Lon, Lat 3
VZN view zenith angle (°) 0
VAZ view azimuth angle (°) 0

1 O stands for observations from field experiments from 2015 to 2017. > CERN: National Ecosystem Research
Network at Huitong National Research Station of Forest Ecosystem (HTF), China (http:/ /htf.cern.ac.cn/meta/
metaData). ® Lon: Longitude; Lat: latitude.
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3.2. Contribution of Component LOPs to Canopy LOPs

Different leaf-age cohorts coexist in an individual tree canopy in evergreen forests and can be
classified into two major groups: new leaves and mature leaves. The LOPs of new leaves are quite
different from those of mature leaves, thus, neither of them is representative of the LOPs of the whole
canopy. Therefore, we need to consider the contributions of new leaves and mature leaves together to
obtain the overall canopy LOPs.

3.2.1. Leaf Area Proportion of New and Mature Leaves

The first factor affecting the average canopy spectral properties is the proportion of the leaf area
at different ages: the higher the proportion of the leaf area for a given age, the greater its impact on
canopy optical properties. Thus, we need to consider the proportions of new leaves and mature leaves
viewed by the sensor. Ly, is the total LAI of all leaves, which consists of two parts:

Liotat = Luew + Limature 5)

including the LAI of new leaves (L) and mature leaves (Lyature). The proportions of new and mature
leaves were estimated based on destructive field measurements conducted by Zhongkun et al. [50],
who studied the LAI of leaves at different leaf ages in Chinese fir, and we constructed the seasonally
dynamic leaf area proportions by interpolating the data recorded using the phenology rule, assuming
stable proportions to be reached at summer.

3.2.2. Spatial Organization of New and Mature Leaves

In addition to differences in the quantities of new and mature leaves, the spatial organization of new
and mature leaves also has significant impacts on canopy component spectral signatures. Top crowns
are mostly occupied by new leaves, and approximately 80% of the upper crown leaf area is occupied by
new leaves in Chinese fir canopies [50]. Leaves distributed in upper crowns have significant impacts on
canopy reflectance when viewed from the top of the crown. In contrast, old leaves (1 a, 2 a, 3 a) are mainly
located in the inner and lower parts of tree crowns, which are less likely to be observed directly from the
nadir view. Thus, contribution of new leaves located at the top of canopies cannot be ignored.

When we simulate canopy reflectance based on Landsat viewing geometry, new leaves occupy the
majority of the field of view of the sensor, and solar radiation interacts with the leaves in the top layer
first before reaching the lower canopy. Thus, new leaves in the upper canopy have a larger influence on
canopy reflectance than mature leaves in the lower canopy. The influences of new and mature leaves on
canopy LOPs are modeled as the areal-weighted averages of new and mature leaves observed by the
sensors, as follows:

Rave = w1 * Ryewy + w2 * Ryyature (6)

and
Tave = w1 * Tpew + W2 * Tinature (7)

where Ry and Ty are the average leaf reflectance and transmittance at the canopy scale, respectively.
Ryew and Ryyature are the reflectance of new and mature leaves, respectively. T and Tyature are the
transmittance of new and mature leaves, respectively. Finally, the parameters of w1 and w2 are the areal
weights for new and mature leaves, respectively.

Here, we model the areal weights, w1 and w2, considering both leaf-area and leaf-age impacts,

as follows:
(1 _ E*Lnew)

wl= (l — e*mel)

®

and
5 (] — g*meI) — (1 — e*Lnew) _ (e*Lnew — g*Ltntal) (9)
we= (1 — eimel) - (1 — eiLtoml)
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where w1 highlights the importance of new leaves in the crown in the top canopy, and the weight of
mature leaves (w2) is estimated from the total contribution of all leaves after subtracting the occlusion
effect of the new leaves.

3.3. LOPs at the Canopy Scale

LOPs at the canopy scale are a combination LOPs of both new leaves and mature leaves. At the leaf
scale, LOPs are age-dependent and the LOPs of new leaves and mature leaves vary differentially. At the
canopy scale, age-dependent LOPs provide a mechanism for producing seasonally varying forest albedo
and changing NIR to red ratios, independent of changes in other canopy attributes. Our hypothesis is
that component LOPs vary with leaf maturation, and contribute to the seasonality in canopy reflectance
trajectories. In the following part, we describe methods for retrieving seasonal LOPs and examining the
relationship between LOPs and canopy signals.

3.3.1. Model Sensitivity Analysis

To retrieve LOPs from Landsat observations using the GORT model, we need to obtain a
comprehensive understanding of the sensitivity of model driven parameters. First, wide ranges are
allowed for all parameters, and we used canopy structural measurements of young stands (stand age =1 a)
as the lower limit and canopy structural parameters of mature stands (stand age = 33 a) as the upper
limit. Stem density and background reflectance were set to their true values. Since sensitivity analysis
covered parameter ranges on a long temporal scale (1 a to 33 a), insensitive parameters are eliminated.
Then, the remaining sensitive parameters are involved in the new sensitivity analysis with a smaller range,
taking the field measurements of each parameter as prior knowledge.

The global sensitivity of the model parameters is analyzed using the extension of the Fourier
amplitude sensitivity testing (EFAST) method [51]. EFAST is a variance decomposition method
determining what fraction of the variance in the model output can be explained by the variation in each
input parameter (i.e., partial variance). The basis of the EFAST method is a parametric transformation
that can reduce multidimensional integrals over the input parametric space to one-dimensional
quadratures using a search curve that scans the whole input space [52]. Scanning is conducted so that
each axis of the parametric space is explored at a different frequency. Then, Fourier decomposition is
used to calculate both the first-order sensitivity (the contribution to the variance of the model output
by each input, S;) and total-order sensitivity (the first-order effect plus interactions with other inputs,
Sti) of each input parameter, given as (Saltelli et al., 2008):

Vi _ VIE(Y|X)]

TYW T V)

(10)

and
E[V(Y|X.i)]

V(Y)
where X._; denotes the variation in all input parameters except for X;, and S;; is the contribution to the
total variance from the interactions between parameters.

sTi:s,-+2j#is,j+...: (11)

Following Saltelli et al. [53], to compute S; and St;, we created a quasi-random sequence parameter
sampling matrix, P, with dimensions of (1, n) for each SA test, where m is the sample size, and 7 is the
number of input parameters. We set m = 2", which was sulfficient to test the convergence of the sensitivity
index and the stability of the rankings. Each row in matrix P represents a possible value set of X, and the
quasi-random sequence helps to distribute the sampling points as uniformly as possible in the parameter
space and avoid clustering, in addition to increasing the convergence rate. The global sensitivity analysis
method is complex, and more details can be found in the work by Saltelli [53-55]. Fortunately, SimLab
software [40] can help implement the EFAST method.
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3.3.2. Model Inversion Strategy

In this section, we describe the GORT model inversion strategy used to retrieve LOPs from
satellite observations. Landsat reflectance in the red and NIR bands and the derived EVI2 were used
to retrieve sensitive parameters. The multi-stage inversion strategy proposed by Li et al. [56] was
adopted for parameter retrieval. The main objective of the iterative inversion process is to adjust
the model parameters so that the model output reflectance is as close as possible to the observed
reflectance. The most sensitive parameter is retrieved first, and used as prior knowledge in the next
inversion stage.

One of the most popular methods for solving the inversion problem is to minimize the cost
function of control variables. In this study, the cost function [57] used to retrieve sensitive parameters
from Landsat surface reflectance data is as follows:

[Xl - X prior} 2
52

12)
=0

where y,°% and f,(X) are the observed reflectance/EVI2 value and the corresponding modeled
reflectance/EVI2 value, respectively. The variables §,> and ;> are the variances of the observational
data and the prior distribution of parameters, respectively. The variables X; and X;”"*" are the
parameter values and the initial values in the model, respectively. N is the number of observations,
and L is the number of parameters. Sequential quadratic programming [58], an optimization algorithm
for solving nonlinear programming problems, was adopted to search for the cost function minimum.

3.3.3. Validation: Direct and Indirect Methods

During the retrieval process, the LOPs of mature leaves in the red and NIR bands were set to fixed
values, except for leaf transmittance in the NIR band, which was interpolated using field measurements;
the LOPs of new leaves in the red band were also interpolated using SVC measurements for leaves.
The retrieval results for new leaf LOPs in the NIR band were tested in direct and indirect ways,
as shown in Figure 3.
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Figure 3. Flow chart of LOPs retrieval and application method.
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We decomposed retrieved LOPs into new leaf (time variant) and mature leaf (known) components
according to the calculated the contribution weights (w1 and w2) described in Section 3.2, and evaluated
the decomposed LOPs transmittance using SVC field measurements directly. Additionally, we tested
the applicability of the retrieved LOPs as a second-step validation. LOPs retrieved at one site (ZH1
plot) were applied to another site (FZ1 plot) to simulate canopy reflectance using the GORT forward
simulating mode, and evaluated pixel reflectance using Landsat observations. FZ1 plot and ZH1 plot
have similar growing conditions, but are located at different stands at Station 1. These sites exhibit
different canopy structure properties but with the same tree species, stem density and stand age and
close LAI values. In the simulation of canopy reflectance for FZ1 plot, the same LOPs, sun-sensor
geometry and soil reflectance for the ZH1 plot were used, but a used different canopy structure
was employed.

During the forward simulation process for canopy reflectance, three situations were considered
and compared: (1) without taking leaf-age effects into consideration: setting LOPs parameters as fixed
values using monthly average 7, -nir and t; -nir of mature leaves; (2) considering the leaf-age effects for
mature leaves: setting LOPs parameters using monthly varying r-nir and ¢ -nir datasets of mature
leaves; and (3) considering the leaf-age effects of both mature leaves and new leaves: setting LOPs
parameters using monthly varying canopy-scale 7, -nir and ¢ -nir datasets, which are up-scaled from
the seasonal LOPs of new leaves and mature leaves. Finally, simulated canopy reflectance signatures
were compared with pixel reflectance derived from Landsat time-series observations at FZ1 as an
indirect validation.

4. Results
4.1. Sensitivity Analysis and Retrieval Results: GORT

4.1.1. Total-Order and Single-Order Sensitivity Analysis Results

Sensitivity analyses run two times for the GORT model for the red band and the NIR band. In the
first sensitivity analysis, parameters with wide ranging variations were involved in the sensitivity
analysis. In the second sensitivity analysis, we eliminated stem density (A) and crown radius () in the
analysis and focused on the remaining parameters, since stem density was known during our study
time, and the average tree crown radius can be estimated based on the allometric relationship with
DBH. In the second sensitivity analysis, the remaining parameters (LAL K1, h2, A, rp, t1, rg) varied
within the same range as in the first sensitivity analysis.

The sensitivity of the model input parameters was characterized using the total-order sensitivity
index (Figure 4). For canopy reflectance in the red band, canopy reflectance is most sensitive to the
crown radius and stem density in the first step of sensitivity analysis (Figure 4A). Given r and A are
known, LAL h2, r; and t; become the most influential parameters in order (Figure 4B). For canopy
reflectance in the NIR band, r7, 42 and r are the main influential parameters over the long-term
(Figure 4A). After removing the uncertainty of the crown radius and stem density, t; becomes the third
most influential parameter following r; and h2.

To reveal the potential for retrieving uncertain parameters from canopy reflectance, we further
analyzed the single-order sensitivity of each sensitive parameter in the GORT model outputs by fixing
other parameters at stand average values. Taking the year of 2005 as an example, the single-order
sensitivity results are shown in Figure 5. We found that during our study period, LAI and h2 were
not influential regarding canopy spectral signatures in the red (Figure 5A) band, since LAI remains
within a limited range (LAI > 3 m?/m?) for mature evergreen forests, and the crown radius remained
the most influential parameter, especially in the red band (Figure 5A). For canopy reflectance in the
NIR band, h2 was not influential within the range (18-23 m) for mature evergreen forests (Figure 5B).
LOPs were sensitive parameters for both the red and NIR bands.
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Figure 4. Results for the first (A) and second (B) global sensitivity analyses of the GORT model
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A (tree stem density (trees/ha)), r (crown radius), 7y, (leaf reflectance), t; (leaf transmittance), and r¢
(background reflectance).
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Figure 5. Single order sensitivity analysis of the impacts of sensitive parameters on GORT model
outputs for the red band (A) and the NIR band (B). Only one of the model sensitive parameters was
adjusted each time to study variations in the model output spectral signatures.

4.1.2. Prior Knowledge of Model Parameters

All prior knowledge of parameter values was obtained from field measurements and used for
analyzing the sensitivity indexes of model parameters, as summarized in Table 2. According to
total-order and first-order sensitivity analysis results, the influential parameters include: the crown
radius (r), r, and t;, which were assumed to be adjustable during retrieval process. Non-influential
parameters were set to values estimated using field measurements as described in Section 2.2.
Multi-process model inversion was conducted in the following sequences: (1) Landsat red band
reflectance —> crown radius (r); (2) Landsat NIR band reflectance/EVI2 —> leaf reflectance (rp) for
the NIR band; (3) Landsat NIR band reflectance/EVI2 —> leaf transmittance (f;) for the NIR band;
(4) Landsat red band reflectance/EVI2 —> leaf reflectance () for the red band; (5) Landsat red band
reflectance /EVI2 —> leaf transmittance (1) for the red band. The results for the retrieved parameters
are summarized in Table 2.
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Table 2. Prior knowledge of input parameters and corresponding value ranges used in sensitivity analysis.

Parameter Results Prior Knowledge * (s.d.) Lower Limit ~ Upper Limit

LAI - - 0.07 527

hl - - 1.49 13.5

h2 - - 2.48 22.5

stem density (1) - - 0.1035 0.252
crown radius (r) 1 1.7 1.5 0.92 2.57
rp-red 0.07(0.02) 0.05 0.12
tr-red 0.04(0.03) 0.02 0.1
rg-red - - 0.3 0.4
rp-nir 0.52(0.02) 0.35 0.6
t7-nir ! 0.36(0.05) 0.25 0.4
rg-nir ! - - 0.35 045

! Adjustable parameters. * The prior knowledge is the initial value of parameters; the lower and upper limit values
are the thresholds of the parameters.

4.2. Optical Properties of Individual New and Mature Leaves

4.2.1. Leaves at Different Ages

We first studied the leaf-age effect on leaf optical properties, and found that leaves in the canopy
can be classified into two age groups: new leaves (0 a) and mature leaves (1-3 a). Field SVC
measurements of the full spectra for all leaf samples were converted to Landsat-view using the
Landsat relative spectral response (RSR) functions in the following three bands: green, red and NIR.
Leaf samples were grouped into four age classes: 0 a, 1 a, 2 a and 3 a. Significant differences in LOPs
were observed between 0 and 1 a leaves, while the differences between mature leaves at different ages
(1-3 a) were not distinct (Figure 6). Thus, LOPs mainly varied within 0-1 a, i.e., during the maturation
process of newly flushed leaves.
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Figure 6. Leaf reflectance (r;, A1-C1) and transmittance (t;, A2—-C2) for Chinese fir leaves at different
ages (0-3 a) at three (green, red and NIR) short-wave bands. Leaves were collected on 5 May 2017.

Differences in leaf reflectance at different ages are observed in two visible bands and the NIR
band (Figure 6A1-C1). New Leaves (0 a) exhibited a higher reflectance in the green and red bands
compared with mature leaves (Figure 6A1-B1). In the NIR band, 1 a and 2 a leaves exhibited a slight
increase in reflectance, but the reflectance of 3 a leaves was similar to that of 0 a leaves (Figure 6C1).

As can be observed in the Landsat-view transmittance signatures shown in Figure 6A2-C2,
the trends in the changes in transmittance characteristics as a function of age were similar for these
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three bands. Significant differences were observed between 0 a and 1 a leaves, with the 0 a leaves
showing a consistently higher level of transmittance compared with mature leaves. The decrease in
transmittance as a function of increasing leaf age is due to the increase in absorption characteristics
after a new leaf matures, which is also supported by the increasing area between the upper and lower
set of curves shown in Figure 7A1-E1.
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Figure 7. Field spectral curve data (mean + 1 s.d.) in shortwave bands for new (A1-E1) and mature
(A2-E2) needle samples (1) from Chinese fir collected on 5 May, 24 June, 28 July, 14 September and
13 October 2017. From May to October, n = 22, 15, 26, 30 and 39 respectively, and each sample includes
5 to 8 leaves. Reflectance data (1) for each month are presented as the lower set of curves within each
plot, while transmittance data (f1) are presented as the upper set of curves. Absorption characteristics
are depicted based on the area between the upper and lower set of curves. SD values for new leaf ¢,
are depicted in the upper and lower dash lines, to avoid overlap with ry, while SD values for all other
71, and 7, measurements are depicted in gray buffed areas.

4.2.2. Leaves in Different Seasons

The results of monthly LOPs measurements during the leaf expansion period (May to October) of
0 a leaves sampled from the Chinese fir trees are presented in Figure 7. As shown in the SVC spectral
curve data for Chinese fir, significant differences were observed in the following spectral regions:
the green peak (~530-600 nm), the chlorophyll absorption well (~660-690 nm) and along the NIR
plateau (750-900 nm).

Differences in leaf reflectance are most pronounced in the green band. New leaves (0 a) exhibited
a consistently lower green peak reflectance from May to October, while reflectance in the chlorophyll
absorption region was shown to increase with age, especially during the first two months of the leaf
expansion period, which is consistent with the increasing trend in NIR reflectance from 0 a to 1 a leaves
as presented in Figure 6C1. Although this variation in NIR band reflectance is not as pronounced
as in the green bands, it could have a greater impact at the canopy scale from the view of satellites,
as illustrated in the following section.

With regard to leaf-level transmittance (Figure 7A1-E1), 0 a leaves showed a remarkable decrease
in transmittance in the visible region from May to October, which was similar to that observed in the
variations in leaf transmittance from 0 a to 1 a (Figure 7A2-B2). NIR transmittance characteristics first
showed a slight increasing trend (from 1 May to 28 July) and presented a decreasing trend thereafter
(from 28 July to 13 October), which coincided with the changing trend in new leaf NIR transmittance
trajectory retrieved from Landsat observations (Figure 8A1). However, the observations from May to
October could not fully explain the gap in the NIR transmittance of 0 a and 1 a leaves (Figure 8C2).
One possible reason is that leaf transmittance decreases during winter (November to April), which may
be supported by the new leaf transmittance retrieved from Landsat observations in winter time. As can
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be observed in Figure 8C1, NIR transmittance decreased significantly in November and December, but
there is still a gap between the retrieved new leaf transmittance (0.2) and measured leaf transmittance
(0.25) at the point of reaching 1 a in May of the following year after leaf production.
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Figure 8. Retrieved results for leaf reflectance (r1) and transmittance (1) at the canopy scale in the NIR
band (A1,A2) and RED band (B1,B2).

4.3. Leaf-Age Effects on Variability in Landsat-Viewed Canopy Reflectance

Landsat records canopy LOPs from the sensor view and time-series data can be used to estimate
seasonal variations in LOPs. First, we attempted to retrieve LOPs at the canopy scale from Landsat
observations using the GORT model. Then, we estimated the new leaf component from the retrieved
results by setting mature leaf component parameters as known parameters using field measurements.
The results were evaluated via direct and indirect methods.

4.3.1. Leaf Optical Properties at the Canopy Scale

After considering the uncertainties and sensitivities of other parameters in the GORT model,
seasonal LOPs were retrieved from Landsat observations using the proposed multi-stage inversion
method by minimizing the cost function. Retrieved LOPs at the canopy scale are shown in Figure 8 and
compared with field measurements of the spectral signatures of leaves. Changes in Landsat reflectance
were associated with variations in leaf optical properties. As shown in Figure 8A1-B1, the most
dramatic changes occurred in the NIR band, resulting in increased reflectance and transmittance during
spring (April to September) and decreased reflectance and transmittance during winter (October to
December). However, variations in NIR reflectance (0.5 to 0.55) were less notable than that of NIR
transmittance (0.25 to 0.4). In the red band (Figure 8 A2-B2), differences in LOPs mainly occurred in the
first three months (May to July) and then became stable in the rest of the year. Both red reflectance and
transmittance presented low values, and transmittance was slightly lower than reflectance. No LOPs
changes in red band could be observed from Landsat alone, but including EVI2 data helped to
some extent.

4.3.2. Seasonal Leaf Optical Properties

When viewed from the top of the crown, LOPs retrieved from Landsat observations are a
combination of leaves of all ages. As analyzed in Section 3.3, we account for both the effects of
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leaf area and its spatial organization in the canopy to estimate the contribution of different leaves.
Figure 9 shows the average seasonal variations in total leaf area (A) and leaf proportions (B) of
new leaves and mature leaves in the canopy, and their contributions to canopy spectral properties
(C). The time period starts at leaf expansion at age 0 (April) and ends with leaf maturity (March in
the following year) at age 1, following the same twelve-month cycle with new leaf expansion each
year. We can see that LAI does not change very dramatically for evergreen forests between seasons
in our study period (Figure 9A). Thus, the satellite-observed seasonality of canopy reflectance is
not determined by LAI, but rather is the result of variations in the LOPs of new leaves during the
maturation process. Although new leaves only account for approximately 30% of the total leaf area
(Figure 9B), new leaves made high contribution (approximately 80% at the peak time in summer) to
canopy spectral properties from the crown top view (Figure 9C).
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Figure 9. Seasonal variations in the leaf properties of the canopy, including (A) total leaf area: average
LAI from stand age 22 to 33 (2005 to 2015); (B) leaf proportion: the percentage of new leaves and mature
leaves in the canopy measured by Zhongkun et al. [50]; (C) weights for new leaves (w1) and mature
leaves (w2) from stand age 22 to 33 (2005 to 2015).

The seasonal trajectories of mature leaf LOPs (Figure 10 B1,B2) were interpolated from field
measurements, which were quite stable during growing season, with only one exception: NIR
transmittance. Mature leaf transmittance in the NIR increased by 30% over the three months following
the beginning of a new growing cycle in May (Figure 10B1), while mature leaves showed no significant
difference in NIR reflectance during the whole growing season (May to November).

New leaf reflectance or transmittance can be estimated by deducting the contribution of mature
leaves from the retrieved LOPs results, which are shown in Figure 10. It can be seen that the retrieved
new leaf LOPs were in good agreement with the field observations (Figure 10A1,A2) from May to
October. We can also see that new leaf LOPs in the red band decreased in the first three months
(from April to June) and became stable thereafter (Figure 10A2). More importantly, new leaf NIR
REF continued to increase from May to September after production (approximately 11%), while new
leaf NIR TRA follow a nonlinear trajectory, increasing from May to August (approximately 16%) and
decreasing thereafter (approximately 14%). A small increase in new leaf NIR REF and a small decrease
in new leaf NIR TRA could both translate into a larger impact at the canopy scale, when the canopy is
coated with new leaves, and the impact of the leaf-age effect at the canopy scale will be further studied
in the following section.

A gap exists between the estimated new leaf NIR transmittance and SVC measurements in May,
and the s.d. values of new leaf field measurements in May are greater than the measurements in
other months (Figure 10A1,A2). This might be explained by the overestimation of measured leaf
transmittance samples when leaves were small, which was caused by unavoidable small gaps because
of minor misalignment in the arrangement of leaves. Large s.d. values for new leaf field measurements
in May could also occur due to the differences in leaf expansion rate and maturity times in the early
leaf flush period.
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Figure 10. Validation of estimated new leaf LOPs in the NIR band (A1) and red band (A2) and the

constructed mature leaf LOPs trajectories (B1,B2).

4.3.3. Leaf-Age Effects at Pixel Scale Based on Satellite Observations

LATI and sun-sensor geometry are widely recognized as the main factors contributing to seasonality in
RS signals [12,19]. Thus, we need to distinguish leaf-age effects from the contributions of these two factors.
To identify the contribution of leaf-age effects to the seasonality in Landsat signals, we compared the
differences in the results with/without considering leaf-age effects. The forward-mode GORT model
was used to simulate canopy reflectance at the pixel scale with Landsat-viewing geometry, and the
model-driven parameters are listed in Table 1. We simulate canopy reflectance at NIR band and red band
in the following three circumstances:

1. Inthe first circumstance, we ignore the leaf-age effects caused by aging mature leaves and growing
new leaves, and only consider variations in LAI and sun geometry using field data. LOPs in
the GORT model were fixed using the mean LOPs for mature leaves measured from May to
September in 2017 (NIR band: REFmature = 0.51, TRAmature = 0.26 or 0.34; Red band: REFmature = 0.06,
TRAmature = 0-01)-

Based on circumstance 1, we include variations in LOPs caused by aging mature leaves.
For comparative purposes, we first added variations in mature leaves using data shown in Figure 10B1
to drive the GORT model.

Based on circumstance 2, we further include variations in LOPs caused by production and expansion
of new leaves. LOPs for the GORT model are shown in Figure 8B1. LOPs at the canopy scale retrieved
at the ZH1 site are applied to the FZ1 site with different canopy structure parameters.

The overall GORT-simulated results obtained for the three circumstances are compared in Figure 11.
After considering the mature leaf-age effects on canopy reflectance, the R? between the simulated canopy
reflectance/EVI2 and the Landsat observations increased significantly (from 0.38 to 0.83 for canopy NIR
reflectance and from 0.26 to 0.43 for canopy EVI2), as shown in Figure 11. However, the R? of both groups
in the GORT simulation results was poor in the red band and RMSE remained low.

In circumstance 1, we can see that LAl is stable (Figure 9A) in these sub-tropical forests and is not the
main factor contributing to the seasonality of canopy NIR REF. Seasonal variation in sun-sensor geometry
from January to June to December (SZN varies from 56° to 25° to 56°) causes a small amount of seasonality
of forest albedo, as shown based on the blue line in Figure 11A1. However, SZN alone does not sufficiently
explain the seasonality of the Landsat canopy signals in our study sites. Assuming that the LOPs of mature
leaves do not change, if we apply mature leaf LOPs measured at the peak time in summer (NIR TRA = 0.34)
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to other times, we might overestimate canopy NIR REF in winter; and if we apply mature leaf LOPs
measured in early spring (NIR TRA = 0.26), we might underestimate canopy NIR REF in summer.

In circumstance 2, we consider the leaf-aging effects of the mature leaves, which constitute the majority
(>60%) of the canopy LAI (Figure 9B). The LOPs of mature leaves are relatively stable in the red and NIR
bands, therefore, mature leaves have no impact on canopy red REF. However, there is one notable exception:
mature leaf NIR TRA is lower in winter and greater in summer and continued to increase from May to
October (Figure 7A2-E2). The winter-summer differences in leaf NIR TRA contribute to a steeper NIR
REF/EVI2 trajectory from April to July at the canopy scale, as shown based on the area between the blue
and gray curves in Figure 11A1,C1.

In circumstance 3, we can observe how variations in the LOPs of new leaves contributed to the
seasonal variation in canopy NIR reflectance and derived EVI2 (Figure 11A1,C1). As shown based on
the area between the green and gray curves in Figure 11A1,C1, EVI2 trajectories follow the same pattern
(Figure 11C1) as NIR reflectance. In general, new leaf production and expansion increases canopy NIR
reflectance from May to October (Figure 11A1). An increased new leaf TRA (18%) also contributes to the
increase in NIR REF at the canopy scale, but only before August. After September, an increase in NIR
REF is caused by an increase in leaf REF. However, the changing trend of canopy NIR REF is nonlinear,
which increases from May to August and decreases from August to October. As illustrated in Figure 10A1,
canopy NIR REF increases from May to August partially due to increasing new leaf NIR REF during this
period; conversely, canopy NIR REF decreases from August to October due to decreasing new leaf TRA at
this interval.

The upper-layer-located new leaves provide a mechanism for producing greater seasonality of forest
albedo in addition to mature leaves. A small increase in new leaf NIR REF (0.05 unit) has significant
impacts at the canopy scale, since new leaves are generally located at the top of the canopy. New leaf
expansion also contributes to negligible increase in canopy Red REF from March to July (Figure 11B1). EVI2
trajectories follow the same patterns (Figure 11C1) as NIR reflectance trajectories, arising from the linear
dependence of EVI2 on NIR reflectance, as proved by a previous study [23]. We can conclude that both new
and mature leaves contribute to the seasonality of forest albedo, which is independent of changes in other
canopy attributes.
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Figure 11. Aging effects of new leaves and mature leaves on seasonality of canopy signal trajectory
in NIR band (A1), red band (B1) and EVI2 (C1). With the exception of the differences in leaf optical
parameters, all other input parameters for the GORT model are the same in three circumstances.
We evaluated the simulated canopy signature with Landsat observations (A2-C2). Both the simulated
results and Landsat observations are at a monthly step with the mean value and s.d. (from 2005
to 2015).
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5. Discussion

5.1. Spectral Changes and Leaf Aging

For Chinese fir, the leaf spectra mainly vary during the first year of leaf production (0-1 a),
and then remain relatively stable from 1-3 a. During the new leaf expansion process, leaf water content
(LWC) and the specific leaf area (SLA) decrease rapidly, resulting in variations in LOPs: including
decreased transmittance and increased absorbance in the visible and NIR bands and decreased visible,
but increased NIR reflectance. Leaf optical properties show strong age dependence and great seasonal
difference for young and mature leaves. Spectral changes in the visible portion of the spectrum
characterized the new leaves while increased NIR transmittance and decreased NIR absorbance
characterized mature leaves. Changes observed in the visible spectrum matched similar observations
for Carica [59] and Aldina [60]. In general, absorbance at the green peak (550 nm) increases, while
reflectance and transmittance decrease at this band, which could be attributed to an increase in
chlorophyll [59] and changes in leaf internal anatomy [61]. However, the changes of LOPs in the NIR
band are complicated.

In agreement with previous findings [60], mature leaves were found to show a lower leaf albedo
(leaf reflectance plus transmittance) at the NIR band than new leaves due to leaf aging. Early changes in
the NIR band were noted during new leaf expansion, with a slight increase (11%) in leaf NIR REF being
observed from May to October and a continuous increase (14%) in leaf TRA being recorded from May to
August, followed by a slight decrease in NIR TRA during autumn and winter. Some studies [62] have
found a dramatic increase in leaf NIR reflectance between July and August, which might be caused by
differences in the leaf characteristics. Low-wax leaves display a continuous increase in NIR reflectance
until maturity, while high-wax leaves show little increase in NIR reflectance [63]. Epicuticular waxes
and thick cuticles could mask the effect of NIR increases caused by inter-cellular development in young
high-wax leaves. These characteristics might explain why only a slight increase in NIR reflectance was
found during leaf maturation in the present study, since Chinese fir is a high-wax species.

In contrast to previous studies, we observed a continuous increase in NIR transmittance for
mature leaves (1-3 a). However, a significant gap in NIR transmittance existed between new leaves
(measured from May to October) and mature leave (measured in May), and we only observed a
small decrease in NIR transmittance for new leaves from September to October. However, a dramatic
decrease in NIR transmittance might happen in winter time (November to December to January)
according to the results retrieved from Landsat observations, which will be further studied in the
future. Similar observations have been made by others [60], who found a consistent decrease in NIR
transmittance during the last nine months of the leaf cycle.

5.2. Leaf-Aging Effects on Canopy Reflectance

At the canopy scale, canopy reflectance is a product of competing mechanisms of light
absorption [60]. The interaction of photons with dense forests is characterized by strong scattering in
the NIR and equally strong absorption in the shorter red and blue bands. The NIR reflectance of these
forests is an order of magnitude greater than the reflectance at red (blue) band. On the other hand,
aerosol scattering has greater impacts on reflectance in visible bands than the NIR band. In the NIR
band, any mechanism that increases leaf absorption (such as decreased transmittance or reflectance)
will have an enhanced effect on canopy reflectance [60]. Thus, we could expect leaf aging to have its
largest impact in the NIR band.

Age-related LOPs are factors that require special attention but have been overlooked in previous
studies focused on estimating vegetation status using optical signal trajectories. Previous studies
also found changes in canopy NIR reflectance caused by the exchange of older leaves for newer
leaves [23,24,27]. These studies considered the differences in LOPs between senesced old leaves and new
leaves, but they ignored the simultaneous aging process of new leaves and mature leaves with a life
span of more than three years. In this study, the observed seasonality of the canopy NIR reflectance of
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evergreen forests was due to age-dependent leaf optical properties at the NIR band, including both new
leaf maturation and mature leaf aging, with little changes in total leaf area. New leaf maturation mainly
increases NIR reflectance at the peak time in summer (May to October), and mature leaf aging mainly
reduces NIR reflectance during early spring (January to June). We have already excluded differences
caused by changes in the solar zenith angle [10], and our seasonally moist sub-tropical forests are free
of drought impact [24,64-66] or the impact of epiphylls on mature leaves in tropical forests [23,60,67],
which are highly debated factors causing changes in NIR reflectance in numerous studies, and the same
seasonality pattern is observed in EVI because of its strong dependence on NIR reflectance.

It is important to note that the forest canopy is composed of mixed-age leaves. Mature leaves
account for a major population, while a higher proportion of young leaves are observed by the Landsat
satellite because of their distribution at the top of the canopy. Both new and mature leaves influence
canopy NIR reflectance, and their impacts change with new leaf expansion. New leaf expansion
changes the proportions of young and mature leaves within a forest canopy over the season, thus,
further changes the canopy spectral signatures.

5.3. Potential Implications for Photosynthesis

Young leaves exhibit a higher photosynthetic capacity than older leaves, and it is therefore
essential to track changes in the age-structure of leaves in the canopy, which could substantially
improve the modeling of the seasonal dynamics of photosynthesis. Xiaoquan and Deying [68] studied
the leaf-age effects on the photosynthetic characteristics of 18-year-old Cunninghamia lanceolata stands
and found similar trends in leaf photosynthetic rate at different ages: the photosynthesis rate of newly
flushed leaves increases during the maturation process and then decreases at the end of the growing
season, while the photosynthesis rate of mature leaves (1 and 2 a) decreases as time progresses.
This study suggested that considering the temporal variation in the LOPs of new leaves matters
significantly in understanding the seasonal trend of canopy spectral signatures. Ignoring variations
in leaf-scale properties may mislead our interpretations of seasonality of RS signals from evergreen
forests where different-age leaf cohorts coexist in the canopy. This study provides new evidence of
the importance of considering the phenology of LOPs at different ages and which could contribute to
more accurately modeling of photosynthesis [69].

5.4. Implications of LOPs and Canopy Structure

At the canopy scale, seasonal variations in new leaf optical properties were shown to be the dominant
factor producing seasonal variations in canopy reflectance and altering NIR to red ratios, independent of
changes in other canopy attributes. However, our study explicitly focused on dense evergreen forests with
stable LAI (LAI > 3). The parameters that drive the GORT model may vary on different temporal scales.
For example, crown size and tree height vary annually, while LAI, leaf spectra, and sun geometry vary
seasonally. We can explore the signal differences caused by LAI and canopy structure by comparing the
annual differences in the GORT model outputs. We only applied the annual structural parameters from
2005 to 2015 (there were no data in 2009 and from 2012 to 2014) to drive the the GORT model. In addition
to annual stable structural parameters, the SZN, LAl and canopy average LOPs were updated monthly.
Although the LAI seasonality and structure parameters varied from year to year, NIR reflectance showed
similar seasonal trajectories with little annual difference, as illustrated by the vertical error bar in Figure 11.
There may be two explanations for this limited variation. First, there is a lack of LAI seasonality or the
canopy is too dense with a high LAI; thus, small changes in leaf area are not as sensitive compared with
the variations in LOPs. The results might be different for young stands, especially before canopy closure.
Second, canopy structural parameters do not change significantly during the new leaf maturation process;
thus, canopy structures have limited impacts on canopy reflectance during this period. As illustrated in
other studies [23], LAl is also an important factor contributing to the seasonality of NIR reflectance.

This study quantified the effects of leaf age on canopy reflectance in mature evergreen forests to
first explore the possible impacts on leaf quality when total leaf area does not exhibit significant seasonal
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changes. Given the findings of this case study, future studies in deciduous forests, where seasonal
variations in LAI are more significant and leaf-age groups are less complicated, would allow further
validating of our findings and apply our findings to better quantify the canopy spectral signatures to
understand the role of forests in terrestrial ecosystems.

6. Conclusions

This study evaluated the effect of LOPs for leaves at different ages on the canopy spectral signature
variation during the growing season for Chinese fir stands. For closed canopy evergreen stands with
relatively stable LAI, new leaves exerted disproportional influence on the canopy season spectral
signature due to the spatial distribution of the new leaves in the top and outer canopy. The most direct
implications of our results are related to ecological or physiological studies that utilize remote sensing,
and our findings provide a promising potential to improve the interpretation of RS signals. The most
significant finding of this study at the leaf scale is the increase in the NIR transmittance of mature leaves
and the increase in the NIR reflectance of new leaves. To date, most of the identified contributions of
leaf age to the variation in leaf optical properties have involved changes in the differences between
old leaves and new leaves. Simultaneous monitoring of new and mature LOPs with season, however,
has not been previously documented. In this study, we observed an approximately 11% increase in
NIR reflectance (0.05 unit) for new leaves and a 35% increase in NIR transmittance for mature leaves
during the growing season.

Variations of LOPs at the leaf scale have significant impacts at the canopy scale, and contribute to
seasonality of canopy NIR reflectance and EVI2. Due to the complexity of forest ecosystems, analyses
based on field data alone cannot provide guidance in the interpretation of RS signals. Conversely, studies
based on modeling alone, without proper ground measurements of the key factors driving canopy signal
variation, can be misleading. This study combined field observations with the GORT model to elucidate
the effects of leaf age on canopy-scale reflectance signals. We demonstrated that, in addition to sun-sensor
geometry, the effects of leaf aging on LOPs were the major factor contributing to the seasonality of canopy
reflectance for the Chinese fir stands:

e New leaf maturation is the main factor contributing to seasonality of canopy signals (NIR REF
and EVI2), because of the distribution of these leaves in the top and outer canopy, as well as their
increasing proportions with leaf growth. A small increase (0.05 unit) in new leaf NIR reflectance
results in a significant increase in canopy NIR reflectance from spring to summer, while a decrease
in new leaf NIR transmittance from August to October causes a decreasing trend in canopy NIR
reflectance in autumn and winter.

e Mature leaf aging is another factor contributing to the seasonality of the canopy signals (NIR REF
and EVI2) because of the significant proportion of mature leaves in the canopy. Mature leaf NIR
transmittance is greater during the growing season than off the growing season. This difference in
leaf TRA causes an increased difference in canopy reflectance between winter and summer.

Thus, the effects of leaf age cannot be ignored when conducting time series analyses using RS data
for the evergreen needle leaf forests.
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Appendix A

Appendix A.1 Data Description

Section 2.2.1 is supported with field data collected for Chinese fir forest stands located in
the vicinity of the permanent ecosystem research stations in National Research Stations of Forest
Ecosystems in Huitong county, Hunan province, southern China. This appendix provides details on
data acquisition of canopy structure parameters.

Appendix A.2 Canopy Structural Parameter Measurements

Crown shape measurements were taken for a total of forty trees in study Site 2. Measured crown
shape parameters are shown in Figure Al, among which, DBH was measured using diameter tapes,
and crown radius and tree heights were measured using telemeter rods. The size of the selected trees
was evenly distributed uniformly in terms of height (H) (from 5.4 m to 20 m) and diameter at breast
height (DBH) (from 7.7 cm to 37.8 cm). Among the 40 trees, 7 are located at plots close to the study site,
and 33 are located within the ZH1 and FZ1 sites. The parameters measured for characterizing crown
shape are presented in Figure Al, including crown width in the north-south direction (R1) and the
east-west direction (R2), tree height (H1) and height under crown (H2), from which we can obtain the
height of crown center (h). We used the measurements of these 40 trees to build regression relationships
for crown width, DBH, h and tree height. Figures A2 and A3 illustrated the field measurements of
canopy structure parameters as well as their growth trajectories with DBH, which usually correlates
well with tree ages.

H,

H,

Ground

Figure A1l. Measured parameters for sample trees selected to build regression relationships for the
structural parameters of the tree crown and other measures, including tree height and DBH.
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Figure A2. (A) Measured crown width (2R) for 40 sample trees with DBH in the north-south direction
(CWns) and east-west direction (CWgy); (B) Regression relationships between DBH and crown
width (2R).
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Figure A3. (A) Measured height values for 40 sample trees with increasing DBH. The measured data
include tree height (H1), height of crown center (/1) and height under crown (H2); Regression relationships
between DBH and tree height (B) and between tree height and crown center height (C).

Appendix A.3 Leaf Area Proportion and Distribution in Crown

Table Al. Leaf area and proportion of leaves at different ages located at different crown positions for

Cunninghamia trees in Hunan.

Leaf Age/Location ~ Bottom Crown Central Crown Upper Crown Leaf Area ¥ (%)
Oa 1.16 1.41 3.24 5.8 (34.63%)
la 1.93 293 0.81 5.67 (33.85%)
2a 1.80 1.59 0 3.39 (20.24%)
3a 111 0.76 0 1.87 (11.64%)
Leaf Area Y~ (%) 6.00 (35.8%) 6.69 (40%) 4.05 (24.2%) 16.75 (100%)

Table origin: [50].

Appendix A.4 Leaf Sample for SVC Measurements

Figure A4. The vacuum side of one group of leaf leaves prepared for spectral measurement. Leaf samples

were collected on 15 July 2016.

Appendix B

Appendix B.1 Data Description

Section 2.2.2 is supported with LAI field data collected for Chinese fir forest stands located close
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to the permanent ecosystem research stations in National Research Stations of Forest Ecosystems in
Huitong county, Hunan province, southern China. Long-term LAI were measured monthly to drive
the GORT model from year 2005 to 2015. In this time period, two different DHP methods were applied
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before and after year 2006. This appendix provides details on LAI data acquisition and processing to
produce consistent LAI time-series.

Appendix B.2 Long-Term LAI, Observations: DHP Methods
(1) 2005 and 2006: CI-110 Plant Canopy Analyzer

Plant canopy imaging was the primary method for conducting regular monthly LAl measurements
from 2005 until present. From 2005 to 2006, pictures were taken every month by one worker using
a CI-110 Plant Canopy Analyzer to estimate the LAIL From 2007 onward, photographs were taken
by another fixed worker using a Canon EOS 40D digital camera equipped with a Nikon AF-DX
10.5 mm £/2.8 G ED fisheye convertor. The data measured before 2007 needed to be further
preprocessed prior to further calculations to make them consistent with data measured after 2007.
We have 30 pairs of data measured at the same positions and in the same directions in ZH1 and
FZ1 to unify the original LAI time series data using data measured in December 2006 and January
2007. We employed two methods to unify these datasets: (1) Regression Method: The first method
involves deriving two average seasonal LAI trajectories, one before 2007 and the other after 2007,
and calculating their regression equations. (2) Lifting Method: The second method involves acquiring
the mean absolute deviation (ALAI = 1.01) of the data before 2007 and those after 2007 using the mean
difference between these 30 pairs of LAI data. The results of these two methods are different, and both
are illustrated at the end of this section.

(2) 2007 to 2015: Fisheye Digital Camera

From 2007 afterwards, photographs were taken using a Canon EOS 40D digital camera equipped
with a Nikon AF-DX 10.5 mm £/2.8G ED fisheye convertor. The camera was horizontally mounted
at a fixed height of 0.2 m above the ground. The photographs were taken with automatic exposure
under diffuse light conditions, typically soon after sunrise or immediately before sunset. In the ZH1
and FZ1 plots, measurements were taken for three layers: the herb layer, shrub layer and tree layer on
the 15th day of each month at five fixed locations per plot and facing toward four cardinal directions.
All measurements were made under diffuse light conditions to avoid introducing errors due to the
presence of sunlit foliage. The images were processed by the Gap Light Analyzer 2.0 software to
calculate LAIpgp.

Incorrect exposure has been shown to cause significant underestimations in LAIppp
measurements [35-39]. All DHP measurements were taken with automatic exposures, which resulted
in considerable underestimation. The LAI measurements made using the DHP and LAI-2000 methods
were shown to be significantly correlated in any zenith angle range. Therefore, we calibrated LAIppp
by the LAI, measured using an LAI-2000 plant analyzer, to quantify the systematic bias ¢ in DHP
methods due to automatic exposure problems.

Appendix B.3 Converting LAl to LAl: LAI-2000 and TRAC Methods

LAI-2000 and TRAC measurements were used to convert LAIpyp to true LAL Tracing Radiation
and Architecture of Canopies (TRAC, Natural Resources Canada, Canada Center for Remote Sensing,
Saint-Hubert, QC, Canada) and an LAI-2000 Plant Canopy Analyzer (LAI-2000, LI-COR Inc, Lincoln,
NE, USA) [41] were used to measure the LAI of each sample plot [42]. The LAI-2000 was used to
measure the effective LAI (LAI,), and TRAC was used to measure both the effective LAI (LAIL;) and the
foliage clumping index (Q).

The LAI-2000 method is based on the measurement of diffuse radiation attenuation in the blue
band caused by the canopy, which is related to gap fraction. Further details on the theories and
measurements behind LAI are given in Frazer et al. [70]. We employed two LAI-2000 units to measure
the sky radiation and under-canopy radiation simultaneously. Additionally, we cross-calibrated
these two LAI-2000 units before the field survey. One LAI-2000 unit is horizontally mounted on a
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rooftop facing toward our study sites and automatically records the above-canopy radiation every
5 min. Ninety-degree view caps were used on both units to avoid the influence of other objects on the
sensors and made these measurements comparable with those from the DHP methods in four cardinal
directions. The LAI-2000 measurements were taken under diffuse sky conditions in the early morning
or after sunset. The TRAC method requires direct solar radiation, so we took TRAC measurements
during midday at a constant walking pace along several parallel transects, which were perpendicular
to the direction of tree stem shadows. Distance markers were registered every 5 m. The TRAC data
were processed by TracWin software, which calculates LAI, and the clumping index ().

During August 2015, we used LAI-2000 instruments to measure the LAI in the WS2 and WS3
plots. We revisited these plots in June 2016, taking measurements with both the TRAC and LAI-2000
instruments. In June 2016, we surveyed the ZH1 and FZ1 sample plots and used the LAI-2000
instruments to measure the LAI at the same locations as measured by the long-term DHP methods.
In comparison to the LAI-2000 instrument, the accuracy of DHP is affected by photograph exposure
settings because these settings impact the ratio of green leaves to sky. An LAI-2000 unit was operated
subsequently at the same locations for comparison with DHP, and then we convert LAI, to true
LAIvalues.

Additional correction parameters were required to convert LAI, to LAI;. The needle-to-shoot
area ratio (7.) was measured using destructive sampling conducted in August 2015. The clumping
index () was measured by the TRAC instrument. Additionally, the woody-to-total area ratio (a) for
Cunninghamia lanceolata was derived from destructive sampling used to calculate biomass.

Appendix B.4 Unifying LAI Measurements Using Different Methods

LAlIppp was corrected using LAI, measurements from the LAI-2000 units to decrease the
underestimation caused by the automatic exposure problem present in the DHP method. We made
comparisons between the LAI as measured using DHP and LAI-2000 in the same locations in ZH1 and
FZ1 to estimate the system bias (¢) of DHP. We applied a fixed bias instead of a regression relationship
between DHP and LAI-2000 because our study site is pure Cunninghamia lanceolata plantations and the
LAI values fall within a small range. Thus, it is not possible to build a robust regression relationship
with limited LAI variations using the field measurements made on our study sites. Although previous
studies have built and applied regression relationships between DHP and LAI-2000 LAI methods [71],
we chose to estimate the system error of DHP with a fixed value in our study site. The reasons for this
choice are listed as follows: first, regression relationships are usually site specific, lack universality and
cannot be applied to other places. We used the existing regression relationship to our study sites, but
the result was of poor quality. The regression relationship built by [71] resulted in a mean absolute error
of 1.0 LAI when compared with field LAI-2000 measurements. Second, the accuracy of the regression
relationship may vary in different ranges of values. For example, if the regression relationship fits
well in the low-value range but fits poorly at high values, then when we apply it to other places with
mainly high values, the relationship will fail. At this study site, the LAI is quite stable; as shown in
Table A2, the standard deviation is quite small (approximately 0.25 as measured by LAI-2000), and the
maximum and minimum LAI-2000 measurements within our study sites are quite close (3.19-3.36 for
ZH1, and 3.18-3.3 for FZ1). Thus, correcting for the systematic error is a sufficient and reliable method
for converting LAI values measured by the DHP method to LAI measured with LAI-2000.
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Table A2. Comparison of effective LAI derived from digital hemispherical photography (DHP) and
LAI-2000 methods.

ZH1 FZ1
Plot DHP (5 pts * LAI-2000 (5 LAI-2000 (26 pts* DHP (5pts*  LAI-2000(5  LAI-2000 (61 pts *
4 Dirs) pts * 4 Dirs) 2 Repeat) 4 Dirs) pts * 4 dirs) 3 Repeat)
Maximum 1.68 3.52 3.36 1.56 3.85 3.3
Minimum 1.37 29 3.19 1.05 2.87 3.18
Mean 1.533 3.186 3.275 1.282 3.248 3.243
SD 0.12 0.23 0.12 0.2 0.39 0.06
System bias (&) * _ 1.653 1.724 _ 1.966 1.962

* The LAI were measured at 5 points, in four directions, and repeated two to three times for every plot. The system
bias (¢) was calculated by (LAI-2000 LAI- DHP LAIppp).

According to Table A2, the system bias was set to 1.83 for the DHP method. The correction

parameters required to convert LAI, to LAI; were set as follows: the needle-to-shoot area ratio (y,) was
set to 1.1 according to the results of the destructive sampling conducted in August 2015. The clumping
index () was produced by the TRAC instrument and set to 0.8. The value of the woody-to-total area
ratio («) for Cunninghamia lanceolata was derived from the destructive samples used to calculate biomass
and was set to 0.2. An illustration of the data processing workflow may be useful for understanding
how we unified the LAI field data measured by different instruments, as shown in Figure A5.

DHP=0.14%e 750 | [ Al=lAlpyete | [ LAL=(1- )LAL*Ye/Q
C-110 - —-| DHP LAI-2000 LAIt
(R*=0.79,RMSE=0.41)  £=1.83 =02, ye=1.1, 0=0.8

Figure A5. Flowchart of LAI field data processing procedures. Before January 2007, monthly LAI was
measured using a CI-110 instrument, and a DHP instrument was used afterwards.
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Abstract: Rugged terrain, including mountains, hills, and some high lands are typical land surfaces
around the world. As a physical parameter for characterizing the anisotropic reflectance of the
land surface, the importance of the bidirectional reflectance distribution function (BRDF) has been
gradually recognized in the remote sensing community, and great efforts have been dedicated to build
BRDF models over various terrain types. However, on rugged terrain, the topography intensely affects
the shape and magnitude of the BRDF and creates challenges in modeling the BRDEF. In this paper,
after a brief introduction of the theoretical background of the BRDF over rugged terrain, the status
of estimating land surface BRDF properties over rugged terrain is comprehensively reviewed from
a historical perspective and summarized in two categories: BRDFs describing solo slopes and
those describing composite slopes. The discussion focuses on land surface reflectance retrieval over
mountainous areas, the difference in solo slope and composite slope BRDF models, and suggested
future research to improve the accuracy of BRDFs derived with remote sensing satellites.

Keywords: anisotropic reflectance; BRDF; rugged terrain; solo slope; composite slope

1. Introduction

Rugged terrain covers approximately 24% of the Earth’s land surface, plays an important role
in the complex earth system, and forms a unique mountainous climate and ecosystem. Accurately
estimating land surface variables over mountainous areas is of great importance for global hydrological
and meteorological forecasts, as well as global ecological and environmental monitoring. Taking the
benefits of advanced satellite instrumentation and accurate remote sensing modeling, topographic
effects can be considered and neutralized in applications of surface parameter retrievals, such as
improved land cover and land type mapping [1,2], key parameters of mountain radiation, and energy
budget (albedo, land surface temperature (LST), and solar radiation) [3-5] and vegetation structure
parameters (normalized difference vegetation index(NDVI), leaf area index (LAI), and fractional
photosynthetically active radiation (FPAR)) [6,7]. Therefore, remote sensing satellite technique
development over rugged terrain is crucial for extending remote sensing applications from flat surfaces
to mountainous areas.

Remote sensing of anisotropic reflectance relates the land surface scattering behavior to its optics
and structure, which is described with the bidirectional reflectance distribution function (BRDF) [8]
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and can be observed in optical remote sensing. To retrieve BRDF properties of the land surface is the
basis for land surface’s physical parameter inversions [9-12], due to its structural information observed
from different angles. In contrast, angular effects on surface reflectance should be removed by BRDF
correction to normalize the reflectance [13-15] to implement classification and dynamic monitoring [16].
Thus, modeling the land surface BRDF and developing a corresponding remote sensing product is
important for scientific research and remote sensing applications. However, rugged terrain complicates
BRDF modeling by changing the amount of radiation detected by the sensor [17-20]. Generally,
topography alters the illumination and viewing geometry and generates a relief shadow, observation
masking, and multiple scattering, this results in the intense topographic dependence on total incident
and reflectance radiance, which distorts BRDF characteristics [4,21]. The BRDF characteristics varies
with wavelength and shows a BRDF wavelength dependence in surfaces of greater roughness [22,23].
Without considering the topographic effects on the land surface BRDF, the anisotropic reflectance
estimation relative errors could be larger than 58% [24]. Therefore, the current remote sensing BRDF
concept and modeling over rugged terrain should consider the topographic effects.

Previous studies have focused on the influence of geometric characteristics on the radiative
transfer process over rugged terrain. Thus, the topographic correction models have first attempted
to reduce topographic effects on reflectance [18,19,25,26]. Recently, there have been concerns about
BRDF modeling over rugged terrain [17,20,21,27]. However, the operational BRDF product algorithm
over rugged terrain is still being researched because it involves a complex process, which includes
multi-angular reflectance dataset processing, an operational BRDF algorithm and its inversion method
coupled with topography. From this perspective, high quality atmospheric correction that is used to
obtain land surface reflectance is also the basic task to derive the rugged surface BRDEF. Investigations
have proven that the atmospheric correction of different resolution remote sensing data needs to
consider the influence of topography [28,29]. However, with the decrease in spatial resolution,
the influence of topography on pixel scale reflectance will gradually decrease. This causes a lot
of the low resolution land surface reflectance to ignore the effects of topography during atmospheric
correction (e.g., moderate resolution imaging spectroradiometer (MODIS) reflectance).The reflectance
that does consider the topographic influence focuses on only the relatively high resolution remote
sensing data (e.g., Landsat Thematic Mapper (Landsat/TM). Consequently, dominant BRDF modeling
over rugged terrain occurs on an infinite slope surface [17,20,21,27]. However, the focus of low
resolution remote sensing data is not the topography influence at the pixel level, but the topography
influence at the sub-pixel level [29-31]. There should be a robust relationship between these two
different anisotropic reflectance resolution. Thus, the characterization of land surface anisotropic
reflectance over rugged terrain should be implemented from a systematic perspective by analyzing the
critical scientific problems and reviewing current algorithms, which will benefit algorithm developers
and broaden the interests of surface BRDF users.

In this paper, remote sensing BRDF modeling over rugged terrain according to the presented
research chain is comprehensively reviewed, and the aim is to find an operational BRDF product
potential solution for rugged terrain. This is important for quantitative remote sensing applications in
mountainous areas. The paper is organized as follows: first, we analyzed the topographic effects on the
BRDF and its scientific problems in Section 2. Second, the methods to solve the atmospheric correction
and obtain the multi-angular reflectance are briefed in Section 3. The two kinds of BRDF modeling are
described based on evolution histories in Sections 4 and 5, according to the spatial resolution between
the digital elevation model (DEM) and remote sensing pixel. Then, we analyzed the challenges and
opportunities for BRDF product generation over rugged terrain in Section 6. Finally, we summarize
this paper.
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2. BRDF in Rugged Terrain

2.1. Literatures Review

A review of the current literature is one of the best ways to clearly understand the timeline and
milestones in BRDF research over rugged terrain. In this paper, we searched for articles titles matching
the relevant key words about BRDF and rugged terrain on the Web of Science website, Thomson Reuter.
BRDF has seven relevant query words: “reflect*”, “reflectance*”, “non*Lambertian”, “BRDF”, “BREF”,
multiangular” and

i i ”ou

“bi-directional reflect*”, and “bidirectional reflect”,

“multi-angular”. Rugged terrain has ten relevant query words: “mountain*”, “hill*”, “rugged terrain*”,
“complex terrain*”, “topograph*”, “slope*”, “sloping terrain*”, “rough* surface*”, “random surface*”,
and “roughness”. To exclude the irrelevant articles, we further screened the search results by subject
and keywords. Finally, the articles about BRDF modeling over rugged terrain were collected from
the Web of Science platform for citation statistics and analysis. Figure 1 shows the articles that were
contributed by different research fields in recent decades. The results show that BRDF modeling over
rugged terrain is of great importance in many scientific and engineering fields, including physics,
engineering, optics, materials science, geology, remote sensing, geophysics, instrumentation, image
science, chemistry, and spectroscopy. Judging by the number of articles, BRDF modeling over rugged
terrain ranks sixth in remote sensing field.

multiangle”, “multi-angle”,
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Figure 1. Literature statistics for bidirectional reflectance distribution function (BRDF) modeling over
rugged terrain contributed by different research field in recent decades.

Figure 2a,b shows the annual publications and citations from 1983 to 2017 in the field of remote
sensing. Since 1993, there have been several articles published every year. The variation in the number
of published papers on this subject have followed a periodical pattern. In some characteristic years,
the number of published paper is as many as six. In comparison, the citations of these published
papers grow smoothly by year, especially since 2006, which is when the numbers of citations showed
arapid increase. This demonstrates that the subject of BRDF modeling over rugged terrain has received
increasing attention and has gradually become a hotspot in studies of quantitative remote sensing.
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Figure 2. Literature statistics for BRDF modeling over rugged terrain from 1983 to 2017. (a) The numbers of
published articles, and (b) total citations.
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2.2. BRDF Definition and Its Topographic Effects

BRDF is defined mathematically as the ratio of the radiance L, which is reflected by the target
surface into a specific direction, to the collimated solar incident irradiance Es on the same surface [32].
Two basic assumptions are implied in the current remote sensing BRDF quantity, which is shown
in Equation (1) [33,34], and the assumptions are as follows: (1) the target surface is assumed to be
a horizontal plane, and (2) the target surface is homogeneous with a uniform incident irradiance and
outgoing irradiance. Namely, the radiative flux interaction and exchange is equivalent at every point

over the target surface.
dL,(Qs, Qo)
BRDF(Q,, Q) = TE(00) 1)
where ()5 and (), indicate the illumination and viewing geometry, respectively.

However, steep rugged terrain changes local illumination and viewing geometry because the
normal of the slope surface is not consistent with the vertical direction (shown in Figure 3), which is
results in heterogeneous incident irradiances due to the three-dimensional (3-D) structure configuration
of vegetation and topography [34]. Specifically, the slopes facing toward the sun will receive more
illuminated irradiance than the slopes that are away from the sun [18]. The diffuse irradiance
reflected from adjacent slopes will increase the global incident irradiance of the slope surface, and the
distribution of shadowing and observation masking have a notable effect on the pixel reflectance [29,35].
Therefore, the question of how to describe these topographic effects and the radiation redistribution is
a core concern in the BRDF model over rugged terrain. It is concluded that to accurately model BRDF
over rugged terrain, it should be coupled with the terrain information supplied by a DEM.

Figure 3. Configuration of solar illumination and sensor over a slope surface.

A spatial scale match between the DEM and remote sensing image pixel should be emphasized
prior to coupling. According to the relationship between the spatial resolution of the available DEM
and remote sensing pixel, the modeled topographies on the remote sensing pixel are classified into
solo slope and composite slope (Figure 4). Under the assumption of the current DEM having a 30 m
spatial resolution, the solo slope means that those remote sensing pixels have a spatial resolution
comparable to the DEM dataset, and there is only a single slope surface, such as the Landsat/TM
images, which have a 30 m spatial resolution. The composite slope refers to the situation when the
remote sensing instrument with a large instantaneous field of view (IFOV) covers an area of few
kilometers, which is result in a spatial resolution lower than the DEM dataset. There are numerous
solo slopes contained within a remote sensing pixel. For example, the MODIS and advanced very
high-resolution radiometer (AVHRR) sensors have a km-scale spatial resolution. However, if the
remote sensing pixels have higher spatial resolution than the DEM, resampling the DEM to the same
spatial resolution of the remote sensing image pixel is necessary. Otherwise, a higher resolution DEM
should be provided.
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The largest difference between topographic effects for these two types lies in the complex
heterogeneous incident irradiance and topographic shadowing [4,29]. The pixel level topographic
effect dominates the solo slope, including local geometry alteration, shadow cast, and diffuse irradiance
reflected from adjacent slopes. In addition, with the lower spatial resolution, the topographic effects on
BRDF become weaker due to a smooth overall slope [36]. However, in these cases, the sub-pixel level
topographic effects are significant. Specifically, the sub-pixel level topographies affect the distributions
of incident and reflected radiance by the distribution of sub-slope, sub-aspect, amount of shadow,
and masking, which is leads to distorted BRDF characteristics.

LSS ST

(b)

(d)

Figure 4. Graphics of topography relief: (a) nature surface of solo slope, (b) the topographic model of
solo slope, (c) nature of composite slope, and (d) topographic model of composite slope.

Because the BRDF quantity is defined as the ratio of two infinitesimal surfaces, it is a theoretical
concept and cannot be directly measured [13]. In remote sensing, the bidirectional reflectance factor
(BRF) is adopted as a substitute for BRDF to describe the surface anisotropic scattering property [8,37].
BRF is defined as the ratio of reflected radiance from a target surface to that from an ideal and
diffuse reference plane under identical illumination and viewing conditions. Thus, a key issue is
how to define the reference plane when modeling the surface BRE. The horizontal reference plane
at the highest point is widely favored in BRF models over a composite slope, which is shown in
Figure 5 [29,30,35]. However, different opinions exist about a reference plane for the solo slope BRF
model. Some physical-based analytical models adopt the reflectance of a slope-parallel white plane to
calibrate surface BRF [17,21,27]. The derived reflectance is known as the slope BRE. The other analytical
and most of 3-D computation BRF models are based on the horizontal reference plane, regardless of
the underlying topography [20,38,39].

" ) S D SN ™
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Figure 5. Reference plane configuration over solo slope ((a) slope-parallel white plane and (b) horizontal
reference plane) and composite slope ((c) horizontal reference plane at the highest point).
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2.3. Model Building Procedures and Scientific Problems

Many efforts have been devoted to investigating the topographic effects on surface BRDE.
The comprehensive and systematic investigation of sloped surface BRDF estimation is crucial to
understanding the basic theory and the scientific problems that are involved with the BRDF over
rugged terrain. According to the relationship between the DEM scale and remote sensing pixel spatial
resolution, two cases of BRDF modeling over rugged terrain are presented in Figure 6: solo slope BRDF
modeling and composite slope BRDF modeling. A self-consistent solution and a validation technique
for these two BRDFs should be emphasized in this procedure.

High spatial Remote
resolution DEM sensing
(30m) satellite data

Solo slope Composite slope
DEM Highl spgtial Lowlspaltial DEM
resolution image resolunqn image ‘
T T

! ! | '

Topographic Atmospheric Atmospheric Topographic
factors r—correction coupled correction coupled factors
parameterization with topography with topography parameterization
High spatial low spatial
resolution resolution
reflectance reflectance
Solo slope BRDF Composite slope Sub-topographic
characteristics
model BRDF model )
describe
High spatial Low spatial
resolution resolution

BRDF product BRDF product

Experiment and
validation

Figure 6. Key procedures of BRDF modeling over rugged terrain.

Thus, to derive a desired BRDF product, which describes the BRDF properties of the slope surface,
a suitable and robust BRDF model is the basis for retrieval of the anisotropic reflectance distribution
with multi angle satellite reflectance data. The following three key issues are needed to be addressed
when modeling surface BRDF over rugged terrain.

(1) How should the solo slope and composite slope anisotropic reflectance properties be described?

Solo slope and composite slope surfaces have different topographic effect mechanisms in
the BRDE, which leads to different core sensitivity factors considered in remote sensing BRDF
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modeling. Accurately building a BRDF model depends on how the topographic characteristics
are parameterized. The pixel-level topographic effect dominates the reflectance of the solo slope
through the alteration of local incidence and viewing geometry, as well as the distribution of the
illuminated irradiance [20,29]. However, this effect is relatively small for the composite slope BRDF,
and the sub-pixel level topographic effects become the primary factors, which include the shadow,
distribution of sub-topographic slope and aspect statistic, and the redistribution of radiation within
a remote sensing pixel [4,31].

(2) How can we implement the solo slope or composite slope atmospheric correction to correctly
derive reflectance?

Currently, the surface anisotropy reflectance, coupled with atmospheric parameters, is derived
from the airborne and satellite remote sensing observations. The second simulation of the satellite
signal in the solar spectrum radiative transfer process (6S) [40] model and the MODerate resolution
atmospheric TRANs mission (MODTRAN) [41] model are the two methods to describe the atmospheric
effects and can be used to retrieve the land surface reflectance from the top of the atmosphere radiance.
The topographic effect is always neglected in these algorithms. Some efforts have been made to
extend the 65 atmospheric correction algorithm, coupled with a topography consideration for a solo
slope [18,19]. For a composite slope, the topographic effects on the atmospheric correction process are
not included, because the slope of the pixel level is considered as flat. Otherwise, if the orientation of
sub-topography is statistically dependent on the overall slope and aspect, the atmospheric correction
should be coupled with topography.

(8) How can we develop the BRDF (BRF) validation technique and conduct experiments over
rugged terrain?

When compared with flat surfaces, the spatial and temporal heterogeneity of surface BRDF
appears more obvious over mountainous areas. The validation of the mountainous surface BRDF
is an important issue, which includes sampling strategy and respective experiment conduction.
With current observations covering several scales from ground measurements with ground-based
instruments, meter-scale with unmanned aerial vehicles and km-scale with satellites, the multi-scale
validation technique may potentially address this issue.

3. Remote Sensing Atmospheric Correction over Rugged Terrain

The BRDF properties of land surfaces are commonly retrieved against multiple directional
reflectance to sufficiently sample anisotropy. Thus, it is necessary that the atmospheric correction is
completed prior to the BRDF retrieval. However, the topography intensely affects the atmospheric
correction, and consequently, also affects the land surface reflectance. Without DEM consideration in
the atmospheric correction, the reflectance is varied in its response to similar topographic features,
where the solar and sensor geometries correspond to a flat surface. According to Figure 5, the corrected
reflectance without a DEM is not the reflectance referenced to the slope BRF defined a slope-parallel
reference plane or the remote sensing BRF defined a horizontal reference plane, where the sensor
view angle is the local angle corresponding to the slope surface. Although topographic correction
can normalize the reflectance to that of flat surface, such as C correction [42], sun-canopy-sensor
(SCS) correction [43], and their integrated method [44], the reflectance is still not applicable to the
slope surface BRDF model retrieval due to its contradiction with the geometry defined slope of the
BRDF model. To obtain an accurate reflectance over rugged terrain, the atmospheric correction should
be coupled with topography, which is based on the mountain radiation transfer prototype model
and DEM.
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3.1. Lambertian-Based Atmospheric Correction

The mountain radiation transfer algorithms describe the radiance received by the sensor over
a mountainous area. On rugged terrain, the irradiance at the target surface is composed of solar direct
irradiance E;, sky diffuse irradiance E;, and adjacent terrain reflected irradiance E,, which are shown
in Figure 7.

o

Es

Figure 7. Irradiance at the land surface.

Direct solar radiation over rugged terrain is the most important component of the total surface
radiation that reaches to the surface. When compared with flat surfaces, this depends on the relative
local incident angle between the sun and the normal to slope surface. Therefore, the direct solar
radiation changes with different slope surfaces. The sky diffuse irradiance will be reduced when
the sky dome overlying a surface is not an integrated hemisphere of a horizontal surface. However,
the adjacent terrain reflected irradiance increases the total radiation reaching the slope surface. Thus,
the total radiation is the function of the DEM and atmospheric parameters.

If the slope surface reflectance is p and the solar and sensor geometry are (65, ¢s) and (6, ¢y),
respectively, the sensor received radiance L can be expressed as follows [35]:

L:LpJF(EsﬁLE,jJrEu)pe*T/c"ssv/ﬁ(l73,0) )

where L), is the path radiance, 7 is the atmospheric aerosol optical depth, and s is the atmospheric
diffuse albedo. Es can be expressed as follows [45]:

E; = ©F cos(is)e ™/ cos(ts) €)

where Ej is the exo-atmospheric solar irradiance and © is a binary coefficient, which is set to zero to
show whether a pixel is shadowed and set to one otherwise.
The sky diffuse irradiance E; is as follows [43]:

_ cos(is)
Ea =By x (kcos(Gs)

+ (1 =k)Vy) *)

1 [2n
v, = ﬂ/o [cosocsin2 Hg + sina cos(¢ — B) (Hy — sin Hy cos Hq,)] de 5)

where Ej, is the sky diffuse radiance on a horizontal surface, k is an anisotropy index related to the
atmospheric transmittance for direct irradiance and values between 0 and 1, and Vj; [45] is sky view
factor defined as the unobstructed portion of the sky at any given point. Hy, is the horizontal angle
from the zenith downward to the local horizon for direction ¢. a and f are the slope and aspect
angles, respectively.
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The adjacent terrain reflected irradiance E, can be expressed as follows [20]:

Ly cos Ty cos TydS
Ep=) (6)

N "MN

where Ly is the radiance reflected from the land surface at point N and can be received by point M,
dSy is the area of N, Ty and Ty are the angles between the normal to the surface and the line of M
and N, respectively, and r,y; is the distance between M and N.

The solution to Equation (2) is the reflectance p when the sensor radiance and the atmospheric
variables affected by topography are accurately estimated, which plays an important role in early
remote sensing topographic correction and land surface reflectance estimation over mountainous
areas [25,46,47]. However, the literatures show that the mountain radiation transfer prototype
model, which is based on Lambertian land surface assumptions, often leads to an overcorrected
reflectance [18,19,26]. Therefore, the radiation between the earth’s surface and atmosphere and the
anisotropic land surface reflectance are the two core issues, where scientists are greatly concerned
about improving the reflectance quality over mountainous areas.

3.2. Non-Lambertian-Based Atmospheric Correction

Recent literature shows that without considering the surface BRDF effects in atmospheric
correction, the result will be errors of up to 10-20% in the worst cases [48]. Surface BRDF retrieval and
atmospheric correction can be coupled in a converging iteration, which is operationally employed
to achieve MODIS land surface reflectance retrievals [49]. It is distinct from atmospheric correction
and BRDF correction, where the BRDF normalizes the reflectance to a certain geometry [13-15,50].
However, if the BRDF cannot be deduced from the remote sensing data themselves through inversion
and iterative coupling, an alternative solution is to apply the BRDF prior knowledge from different
remote sensing data [50], where the BRDF shape, rather than its magnitude, is required to resolve
the effects. Previous research reported that land surface BRDF prior knowledge can improve the
atmospheric and topographic correction quality and reduce the uncertainties in reflectance over
rugged terrain [18,19,26].

According to the 6S atmospheric model, the target radiance to the sensor is described as the sum
of four terms: (1) the photons directly transmitted from the sun to the target and directly reflected back
to the sensor, (2) the photons scattered by the atmosphere, reflected by the surrounding target and
directly transmitted to the sensor, (3) the photons directly transmitted to the target but scattered by the
atmosphere on their way to the sensor, and, finally, (4) the photons that have at least two interactions
with the atmosphere and one with the target. Thus, Equation (2) can be rewritten as follows [15,16]:

L=1L,+ %(Espdd(ib‘r @s, 1o, ‘Pﬂfﬁ cos(®) (Eg + Ea)onaiv, G"v)eq/ cos(6)

Eypanlis 9214 (0) & (B + En)punta(80) + (s + Eo+ ) ptultdadyy - ()
where p44(is, ¢s, 10, 90), Pnaliv, 9o0), Pan(is, ¢s), and ppy;, are the slope surface directional-directional
reflectance, hemispheric-directional reflectance, directional-hemispheric reflectance, and bi-hemispheric
reflectance, respectively. Similar to the MODIS atmospheric correction method [48], p44(is, ¢s, iv, Po) is
resolved by introducing BRDF prior knowledge [16]. One of the assumptions for the BRDF coupled
mountain radiation transfer model is that the BRDF shape depends on the land cover, and the BRDF effect
for the slope is the BRDF for the rotated angles. An image dependent BRDF shape was first developed from
a regression method or a regionally averaged BRDF shape using an image scene [51]. Another method is
that a statistics-based MODIS BRDF prior knowledge look-up table (LUT) was proposed as the BRDF shape
and used in the BRDF-based atmospheric correction (BRATC) [19].
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4. Solo Slope BRDF Model

4.1. Physical Basis

The topographic effects on the solo slope BRDF depend on the slope and aspect angle, and the
structural and optical properties of the vegetation. The surface’s slope and aspect change the local
solar incidence and the sensor observation directions. Although vegetation shows crown geotropism,
regardless of the terrain slope, its projection on the slope surface varies with the slope and aspect,
and the direct and diffuse irradiance are redistributed. This changes the incident radiation received by
the slope surface and the sensor observed radiation. Thus, the slope surface BRDF characteristics are
distorted by the topography.

The solo slope BRDF model focuses on development of the slope changed radiation and accurate
estimation of the 3D structure of vegetation and soil over the slope surface. Many physical BRDF
models, such as the scattering by arbitrarily inclined leaves (SAIL) model [52], geometric-optical
and radiative transfer (GORT) model [53], and forest reflectance and transmittance (FRT) model [54],
as well as the computer simulation model of discrete anisotropic radiative transfer (DART) [38]
and radiosity-graphics combined model (RGM) [55], have addressed the problems associated
with solar radiation and complex 3-D canopy structure and background. The simulated BRF
varied widely between these models under the activity provided by the radiative transfer model
intercomparison (RAMI) [56], where a complex 3-D vegetation scenario is used as the benchmarking.
However, the topography will introduce difficulty in the vegetation canopy anisotropic reflectance
characterization. The reflectance anisotropy of the solo slope is the following function:

BRF = f(Q, Oy, DEM, para,ref, E) (8)

where Qs, O, and DEM are the geometric parameters used to describe the anisotropic reflectance;
para indicates the canopy structure and land biophysical parameters, including crown height, crown
density, crown shape, LAI etc.; ref represents the optical reflectance properties, such as leaf and
background reflectance; and E is the incident direct and diffuse irradiance.

Specifically, the topography alters the local solar incidence angle and the sensor observation
geometry, as Figure 8 shows, which induces area changes in the canopy shadows cast on the
background, as well as the mutual shadowing relationship between discrete heterogeneous tree
crowns [21,57], photon path length within the homogeneous vegetation layer [20,27], and effective
local illuminated slope irradiance [58]. Therefore, differences in terrain configuration significantly vary
in reflected signals of surfaces with similar land cover, structural, and optical properties. A rotational
transition matrix between horizontal coordinates and local slope coordinates is adopted to correct the
geometric relationship.

sin 0;(,) €OS Pis () cosa 0 —sina sin O;(,) cos(Ps(p) — B)
sin Gis(v) sin ¢is(z:) = 0 1 0 sin es(v) Sin(‘Ps(U) -B) )
0s 0j5(y) sine. 0 cosa cos 05)

where 0 and ¢ are the zenith and azimuth angles, respectively, the subscripts is and iv represent
the local incident and observation geometries, and the subscripts s and v represent the incident and
observation geometries.

However, the rotational geometric correction leads to crown inclination. This contradicts with the
geotropic nature of tree crowns where the trees grow vertically and orient with the gravitational field,
regardless of the slope. The crown structural and optical properties over the solo slope remain
the same as those on the flat surface. For example, the leaf angle distribution (LAD) and leaf
reflectance and transmittance reflectance are not affected by the terrain [27]. However, for the discrete
forest stands, the crown shadowing projections on the background are influenced by the geotropic
nature of tree crowns (as shown in Figure 9). The geometry correction using Equation (9) without

71



Remote Sens. 2018, 10, 370

negative geotropism consideration will lead to an incorrect crown shadowing (Figure 9b), as well
as an inappropriate canopy reflectance. However, the tree crowns are virtually inclined after the
geometric correction (Figure 9¢). The importance of the geotropic nature of tree crowns has been
stressed in the topographic correction of forested terrain [43,59].

JTTITT777 /7777777777777 7777777777777

Figure 8. Canopy shadow cast on flat and sloped forest. (a) Flat forest. (b,c) Sloped forest. The dotted
lines represent the incident solar beam.

Figure 9. Topographic effects on crown sun-canopy-sensor geometry. (a) Forest stand on solo slope surface,
(b) geometry correction without negative geotropism consideration, and (c) geometry correction with
negative geotropism consideration.

Another topographic effect on the canopy reflectance is through the redistribution of surface
global incident solar radiation, which modifies the upper boundary condition during the radiative
transfer process. When compared to the flat terrain, the topography redistributes the direct solar
irradiance by changing the surface’s local illumination and viewing geometry. The terrain restricts the
diffuse skylight and enhances the diffuse irradiance that is reflected from adjacent slopes [25,59-61].
The last two diffuse components can account for 40% of the global radiation of a sunlit slope when the
solar zenith angle is high, and this can even approach 100% when the slope is obstructed by adjacent
terrains [46,62]. Moreover, varied elevation will induce rapid changes in concentrations of aerosol,
water vapor, and cloud properties, which give rise to significant variations in the amount of direct and
diffuse incident irradiance [63].

In the past decades, physical solo slope BRDF models have been proposed to account for the
topographic effects on pixel reflectance. These are the BRDF models based on radiative transfer,
geometric-optical, and hybrid methods (Table 1). Three key scientific issues include the geometry
correction, negative geotropism of trees, and the irradiance redistribution, which affect the topographic
BRDE. Since vegetation cover, such as forest and grassland, dominates the complex mountainous land
ecosystem, current physical solo slope BRDF models mainly focus on the vegetation.
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Table 1. List of physical solo slope surface BRDF models.

Model Model Geometry Tree’s Negative Diffuse

Category Name Correction Geotropism Irradiance Typical Reference

Radiative =~ ROSST 4 v X Combal et al. [27]
transfer PLC Vv vV Vv Yin et al. [20]
Geometric GOMST 4 X X Schaaf et al. [21]
optical GOST1 Vv Vv X Fanetal. [17]
SLCT V4 X V4 Mousivand et al. [64]
Hybrid GOST2 4 4 X Fan et al. [24]
GOSAILT 4 Vv Vv Wu et al. [65]

The symbols / and x indicate that with and without consideration in the BRDF model, respectively. ROSST is the
improved ROSS model for solo slope terrain; PLC is A Physical Solo Slope Canopy Reflectance Model Based On The
Path Length Correction; GOMST is the geometric-optical mutual shadowing model for solo slope terrain; GOST is
the 4-scale geometric-optical model for solo slope terrain; SLCT is the soil-leaf-canopy model for solo slope terrain;
GOSAILT is the hybrid model of GOMS and scattering by arbitrarily inclined leaves (SAIL) coupled topography.

4.2. Model Development

4.2.1. Radiative Transfer Model

The radiative transfer process captures the vegetation canopy reflectance and further retrieves the
vegetation physical and biophysical parameters, which treats the forest canopy as an homogeneous,
turbid medium with discrete leaf elements [66]. The descriptions of leaf structural and optical
characteristics, such as leaf size and shape, LAL LAD, scattering phase function, and single scattering
albedo, are key to this approach [53].

The importance of the topographic effect in the radiative transfer was first proposed by
Combal et al. [27] who successfully extended the Ross radiative transfer theory [67] for flat plant
canopies to solo slope with a vertical plant stand. The topographic effect on local geometry relationship
has been considered in the ROSST model [27] through the transformation between horizontal and slope
coordinate systems. The geotropic nature of tree crowns was accounted for by using the leaf structural
and the optical characteristics defined in the horizontal coordinate to solving the one-dimensional
(1-D) analytical radiative transfer equation. However, only the direct solar radiation was considered,
the effect of diffuse skylight, path radiance, and diffuse irradiance from adjacent slopes are neglected.
Recently, the topographic effect on the bidirectional gap probability has been regarded as the primarily
factor affecting canopy reflectance [20,53,68]. A physical solo slope canopy reflectance model based on
the path length correction (PLC) [20] was proposed to account for the topographic effect on the canopy
photon path length and its BRDE. The geometry correction, geotropic nature of the tree crown, and the
diffuse skylight are coupled in this model. However, the diffuse irradiance from neighboring terrains
is still neglected.

4.2.2. Geometric-Optical Model

The geometric-optical model has an advantage in understanding the 3-D complex crown
structure’s effects on the canopy reflectance [69,70], in which the pattern of sunlit and shaded crowns
and backgrounds seen in a particular direction were considered to be the key factor. According
to the geometric-optical theory, the canopy reflectance is assumed to be composed of four scene
components: sunlit crown, sunlit background, shaded crown, and shaded background with their
respective areal proportions.

The topographic effect on the canopy reflectance in the geometric-optical model was firstly
evaluated by Schaaf et al. [21], who extended the Li-Strahler geometric-optical mutual shadowing
model for a solo slope surface (GOMST) through a simple geometry correction, while retaining other
structural and optical properties the same as those in the horizontal forest. The accurate estimation of
the topographic effect on the crown cast shadow for the background is critical for canopy reflectance.
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When a slope faces toward the sun, less crown shadows are projected on the background, and more
shadows are cast on the background when it is away from the sun [18,57]. The trees are assumed to be
perpendicular to the solo slope without negative geotropism in the GOMST model, which will lead to
an underestimation in the red reflectance. This is because the areal proportion of the background will
be underestimated, while the areal proportion of the crown will be overestimated in this case. However,
the canopy reflectance and albedo also appear to be significantly affected by terrain even without
consideration of the trees’ negative geotropism [21]. Fan et al. [17] incorporated the topographic effect
into the 4-scale geometric-optical model for solo slope terrain (GOST1), which acknowledged the
geotropic nature of tree crowns. However, the diffuse irradiance components are neglected in the
current geometric-optical models, which will cause an underestimation of global incident irradiance
and surface reflected signals.

4.2.3. Hybrid Model

The radiative transfer model is accurate in estimating the canopy reflectance with micro-scale
leaf reflectance, especially for high orders of scattering and diffuse irradiance effects, and the
geometric-optical model is accurate in describing the single scattering results from 3-D forest crown
structure. Thus, hybrid models that combine the two approaches can capture discontinuous canopy
reflectance at the landscape scale [52,53,71].

In mountainous regions, the GOST1 model was coupled with the recollision probability theory
to parameterize the component reflectivity, which is called the GOST2 model [24]. The multiple
scattering within canopy-background system is considered in the GOST2 model. However, GOST2
reflectance seems to be overestimated. The main reason might be that a fixed relationship between
the canopy structural parameters, LAI and photon recollision probability was implemented in the
GOST2 model. Like the GOST1 model, the diffuse irradiance components are neglected in the GOST2
model. The soil-leaf-canopy (SLC) model has successfully captured discontinuous canopy reflectance
through incorporating the crown clumping effects, vertical leaf color gradient, and non-Lambertian
soil background into the scattering by arbitrarily inclined leaves (SAIL) model [52]. It has been
extended to the solo slope surface (SLCT) by simply applying the geometric correction without
consideration of the geotropic nature of the tree crowns [64]. Therefore, the red and NIR reflectance
of the SLCT model were underestimated and overestimated, respectively. Similar to SLCT, GOMST
was recently extended by the SAIL model and coupled topography (GOSAILT), for sloping forest,
where the effects of slope, aspect, geotropism of the tree crown, multiple scattering scheme, and diffuse
skylight are considered [65]. This avoids the issues of reflectance simulation being underestimated
and overestimated over rugged terrain.

The computation simulation model can be treated the same as the hybrid model since it can
accurately simulate canopy reflectance for both continuous and discontinuous forest stands [38].
Currently, the Monte Carlo ray-tracing (MCRT) computational models have been modified for the solo
slope through a coupling of the surface’s complex topography by importing the digital elevation model
(DEM) datasets or a bilinear surface interpolation based on some simple terrain parameters [38,72].
When compared with the flat terrain, the simulations for rugged mountainous regions face a greater
burden of huge memory requirement and computational loading, especially for complex terrain with
large maximum elevation differences or large scenes [73].

4.3. Topographic Effect on Solo Slope BRDF

According to the solo slope BRDF simulated results from previous studies, we can conclude
that the hotspot still occurs in the solar direction, regardless of slope when the canopy is located on
a solo slope terrain. However, the magnitude and shape of BRDF shows an almost random difference
caused by shadowing patterns, and the local illumination angle varies with the slope elevation and
aspect almost randomly [20,21,57]. For example, as shown in Figure 10, when compared to a flat
canopy illuminated by the north solar angle, the slope increases the canopy red reflectance in the
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backward direction and decreases the red reflectance in the forward direction relative to the solar
incidence, respectively. However, The canopy NIR BRDF shape over a steep slope (60°) is distorted,
especially in the forward direction, which is where the reflectance is higher than that in backward
direction (Figure 10f) [21]. However, the slope seems to have no effect on the canopy reflectance in the
direction perpendicular to the aspect of the solo slope terrain because the path length remains constant
in the nadir direction due to the geotropic nature [20]. The skewed BRDF in the hemisphere leads to
a distinct variation in the albedo values. When compared to the slope angle, the surface albedo is more
sensitive to the aspect over the steep slopes. In particular, a larger albedo occurs for the slope facing
away from the sun than the sunward facing slope due to the increasing local solar zenith angle and
mutual shadowing.
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Figure 10. Solo slope reflectance simulated by the GOMST extended by the SAIL model and coupled
topography (GOSAILT) model, where (a—c) are the red reflectance and the (d—f) are the NIR reflectance.
The solar zenith is 30° and azimuth is 0°. The slopes aspect are also 0°; (a,d) are the flat terrain;
(b, e) are the 30° slope; and (c,f) are the 60° slope; Red lines indicate the BRFs along the PP. The radial
distance and polar angle of polar coordinate system are view zenith angle and the view azimuth
angle, respectively.

5. Composite Slope BRDF Model

5.1. Physical Basis

The composite slope terrain, which is composed of many micro-sloping terrains within one pixel,
is shown in Figure 11. For the composite sloping terrain, the topographic effects on reflectance are
generally focused on the integrated effects of the micro-slopes within one remote sensing pixel, and they
ignore the effects at the pixel level [29,74]. The micro-slope terrain variabilities lead to the shadows
coming from both self-shadowing and shadows from the surrounding topography, and this alters the
distribution of the composite slope incident radiation. Different spatial distribution characteristics
of the micro-topography lead to different spatial geometric configurations of sun-sub-terrain-sensor,
multi-scattering, and obstructing effects within the pixel. Characterizing and parameterizing the
spatial distributions of the micro-slope topographic features are the key to modeling the BRDF over
the composite slope terrain.

The anisotropy reflectance BRFcosrse Of the composite slope terrain has the following
functional form:

BRFeoarse = f(Qs/ Qo, DEMfiner BRFfine) (10)
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where BRFy;,, is the bidirectional reflectance of the micro-slope, which can be calculated with the
BRDF models of the solo slope. DEMj;,, represents the fine scale digital elevation models compared
with the composite terrain.

A Pixel

Figure 11. Radiative transfer process over the composite slope terrain.

Specifically, according to the principle of geometric optics and radiosity [75], under the assumption
of a horizontal composite slope surface, its directional reflectance is as follows:

J cos isiBRF fine (isj, ivj, @sj, Poj) COSiyjd Ay
A(sv)

BRFeoarse = (11)

cosfs [ cosiyidAy
A(v)

where the subscript ¢} is the jth micro-slope; A;; denotes the incremental surface area of the micro-slope;
isj, Tpj, ¢sj, and @y; are the relative solar zenith angle, relative sensor zenith angle, relative solar
azimuth angle, and relative sensor azimuth angle, respectively, which correspond to the micro-slope;
05 and 6, are the solar zenith angle and sensor zenith angle, which correspond to the horizontal
plane; A(s, v) denotes the micro-slopes that are both illuminated and visible; and, A(v) denotes the
visible micro-slopes.

From Equation (11), it can be concluded that BRDF modeling over the composite slope terrain is
an inherently upscaling procedure. In addition to the effects of the micro-surface slope and aspect,
the shadowing distribution within the composite slope is also identified as an essential factor to account
for the topographic effects on BRDF. The amount and distribution characteristics of the shadow have
great effects on the surface BRDF [76]. The shadowing function (also called the geometric attenuation
factor) is built to describe the shadowing and masking effect [30,77-80]. Models are used to describe
the complex upscaling process by combining the shadowing function S and an equivalent reflectance
BRF,g, which neglect the shadowing effect. In this case, the BRDF over the composite slope terrain can
be written as follows:

BRFcoarse = BRFug X S(Qhs, Qo DEM i) 12)

Essentially, the composite slope BRDF depends on the distribution characteristics of the interior
topography of the remote sensing pixels. From the description of the topographic characteristics,
BRDF models over the composite slope terrain can be divided into the special-shape based model,
random field based model, and real DEM based model (Table 2).
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Table 2. Overview of composite slope BRDF models.

Terrain

Type Description Interior Topography Characteristics Typical Reference
. . Torrance et al. [79];
V-cavity The surface consists of small symmetrical Liu et al. [81];

or non-symmetrical V-cavities Blinn et al. [82]

Buhlet al. [83];
Poulin et al. [84];
Koenderink et al. [85]

Special-shape

The surface consists of periodical positive

Sphere-cavit o, . -
P Y sphere-cavities or negative sphere-cavities.

The height or the slope conforms to the Despan etal. [77];

diIs{?rrilgl(:trir(l) n Gaussian normal distribution, the exponential Brockg?fl):r? ([ft;(;]l; [86];
Random field distribution, or other random distributions . ’ ’
Smith [87]
Fractal Describes the dependence of surface Barsky et al. [78];
roughness on scale by a power law Shepard et al. [88]
The terrain is described by high spatial Wen et al. [29];
DEM DEM resolution digital elevation models Roupioz et al. [31]

5.2. Model Development

5.2.1. Special-Shape Based Model

A simple and effective method used to characterize the topographic effects on BRDF is to
take the terrain surface as a special-shape to model the surface anisotropic reflectance. Specifically,
the composite slope surface is assumed to be composed of several elements with a repeated primitive
shape, such as the V-cavities and spherical-cavities, which are shown in Figure 12. For the V-cavities,
the distribution of the slope angle with respect to the horizontal plane is used to describe the surface
roughness [78]. Positive sphere-cavities and negative sphere-cavities are the two types of terrain
configurations, as shown in Figure 12b,c. The depth-to-diameter ratio of each spherical-cavity [79]
and the distance between the centers of the two adjacent spherical-cavities [81] are the two main
parameters used to describe the surface roughness. Although the actual terrain shape is probably
much more complex, because it consists of various oriented micro-slopes, to describe the topographic
relief and its shadow, a spherical or V geometry represents a reasonable physical approximation and

mathematical treatment.

(a) V-cavity

NANANANAND.

(b) spherical-cavity

YAV ATEN

(¢) negative spherical-cavity

Figure 12. Modeled surfaces with different spherical shape hypotheses.
For V-cavities, when considering the effects of shadowing and masking of facets by adjacent
facets, the T-S model [79] first took this terrain configuration and further introduced a simplified,

piecewise trigonometric function [82] to improve the qualification of shadowing effects. Although
V-cavities have a simple configuration, the model assumes that adjacent micro-slopes have the same
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slope angle with opposite orientations, which will result in sharp, abnormal turning points in BRDF
curves [81]. Therefore, by assuming that adjacent micro-slopes are oriented in opposing directions,
but not symmetrical and the slope angle of each micro-slope follows a semi-Gaussian distribution,
an improved anisotropic reflection model was developed, which is closer to the natural configuration
of the topography. The results showed that this model reached better physical rationality and improved
the accuracy of the BRDF model [81]. However, it would be difficult to elaborate an analytical model
coupled with the multi-scattering component over the composite slope terrain. Although a simple and
physically plausible construction is proposed for the multi-scattering effect and is coupled with the
single reflection in the research by Kelemen et al. [89], the multi-scattering effect is usually neglected
or handled as a constant diffuse factor, which is against practical observations [90].

The positive spherical cavities allow for large grooves with relatively sharp edges that are
better than the V-cavities [83]. The negative spherical cavities can approximately depict a rough
surface, like the small craters on the moon [84]. Buhl et al. (1968) [83] first assumed the rough
surface to be a collection of positive spherical cavities, but did not present a complete mechanism
that accounts for masking and shadowing effects for arbitrary incidence and exit. Following this,
analytical anisotropic reflection models for positive sphere-cavities and negative sphere-cavities were
derived [84], which take into account hiding and shadowing between spherical cavities and can be
easily implemented. An algebraic solution for multi-scattering in the spherical cavity was further
provided and confirmed that the exact (numerical) calculations for a spherical geometrical surface,
coupled with the multi-scattering effect are physically realizable [85].

5.2.2. Random Field Based Model

While the hypothesis of V-cavities or sphere-cavities is appropriate mathematically, it is not
physically plausible. The terrain surface is far from the V-cavities or spherical cavities. More complex
and realistic configurations for the topography description are the random field, which include
the fractal characteristics [91,92], exponential distributions [45,93,94], Laplace distribution [94],
and Gaussian normal distribution [3,95]. These are widely applied in early quantitative mathematic
reflectance models over the random rough surface [96] in optical engineering, radiophysics, metrology,
computer graphics, and machine vision fields. Remote sensing scientists have developed a series of
anisotropic reflectance models based on the random field, especially when it was assumed that the
micro-slope distribution follows a random Gaussian distribution and self-affine fractals. For the surface
with a Gaussian random distribution, the root mean square (RMS) slope [87], correlation length [87],
and mean slope angle [30] are adopted to parameterize the characteristics of the random surface.
For the surface with self-affine fractal characteristics, the Hurst exponent is the key to determining the
roughness features. Figure 13 shows the rough surface with a typical, random normal distribution.

Figure 13. Random surface with normal distribution.

Initially, a series of shadowing functions have been developed over one-dimensional surfaces with
a Gaussian random distribution to describe the interior topographic effects on the surface anisotropic
reflectance. The first attempt of analytical derivation of the shadowing function can be traced back to
the work of Beckmann [97] who derived the Beckmann shadowing function, which uses a Gaussian
correlation function to characterize the random surface. However, it does not agree well with the
numerical simulation [86] because of a mathematical error in the model derivation [98]. A rigorous
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shadowing function expression based on the surface with a Gaussian height field was presented
by Wagner [99]. The Wagner shadowing function adopted integral approximations and ignored the
correlation between the height of the rough surface and its slope, which leads to large analytical
complexity. The Smith shadowing function further improved the Wagner shadowing function by
introducing a normalization function and simplified the calculation complexity [87].

Heitz et al. (2016) [100] extended the Smith model to include micro-surface multiple scattering at
rough material interfaces, which agree well with the computer simulation. However, these shadowing
functions assume that the joint probability density of the random surface heights and slopes is
uncorrelated. The effects on the Wagner and Smith shadowing functions were quantified and showed
that they have large errors when the incidence angle is large because the real-world continuous surfaces
have wider autocorrelation functions [101].

Extending the one-dimensional model to a two-dimension model is another important way to
derive a shadow function [102], such as the Hapke shadowing function [80] and the Despan shadowing
function [77]. The Hapke shadowing function is derived from the radiative transfer process and the
raw equivalent slope principle. This function accounts for any general configuration of incidence,
emission, and azimuth angles on the two-dimensional (2-D) surface [80], which involves only one
arbitrary parameter of the mean slope angle. The Despan shadowing function was derived by
using rigorous probabilistic techniques, including a conditional probabilistic distribution and total
expectation formula [77], where the random rough surface is described as an isotropic 2-D Gaussian
stochastic process with a Gaussian autocorrelation function.

Self-affine fractals are another way to describe natural surfaces [88]. They describe the dependence
of surface roughness on scale by a power law. Shepard and Campbell (1999) first proposed an empirical
formula for the fractal shadowing function, but no rigorous analytical models of self-shadowing on
a fractal surface currently exist [88]. Further, an analytical integral form of the shadowing function for
fractal surfaces with different fractal and roughness parameters [78] was offered and opens possibilities
for further exploration of fractal surfaces behavior. An agreement was demonstrated between the
fractal model and experimentally calculated shadowing functions using the Monte Carlo method.

5.2.3. DEM-Based Model

Random field models are usually constructed based on rigorous probabilistic techniques. Thus,
in general, the random field of Gaussian normal distribution or other statistical distribution regarding
the terrain is acknowledged at a large scale (more than 10 km). However, the real terrain surfaces often
exhibit non-random spatial distribution characteristics at a relatively small scale (such as a 1 km remote
sensing pixel). Investigations have shown the sub-terrain slope distributions within each kilometric
pixel of more than 50% over the Tibetan Plateau is not normal [31]. It is questionable to directly apply
the random field hypothesis to remote sensing BRDF modeling at a kilometer scale. Recently, accurate
digital elevation models (DEM), such as GDEM2 [103] have become available at a global scale with
a 30-m spatial resolution. These DEMs offer an efficient way to describe the surface topography. Rapid
and accurate methods for calculating slope and azimuth, solar illumination angle, shadow factor,
and sky view factors have been proposed [104]. These methods prompt us to model the BRDF by
considering the micro-topographic effects based on the DEM.

According to the radiosity theory [75], a physical BRDF upscaling model based on Equation (11)
and the multi-scattering consideration for sub-topographic effects [31] was developed. However,
this procedure requires the micro-slope surface BRDF and topographic factors, which leads to
complexity and low computational efficiency. Similarly to mean slope derived from the random
field, the equivalent slope model (ESM)was proposed to derive the equivalent slope and aspect [29] to
simplify this process. This model assumes that there is a virtual smooth slope where the incoming
and outgoing radiation are the same as that of the composite sloping terrain and this is related to the
position of the sun, sensor and micro-surface slope and aspect of the DEM, which is shown in Figure 14.
Thus, ESM can account for the effects of the sub-topography and shadow distribution. Similar to

79



Remote Sens. 2018, 10, 370

the shadow function, a sub-topographic impact factor T can be derived from the equivalent slope.
Therefore, BRFcoarse can be expressed as a function of anisotropic reflectance BRF, of the equivalent
slope and the sub-topographic impact factor T:

BRFeoarse = BRFeq X T(QS,QU,DEMﬁ-m,) (13)
where BRF,; can be obtained by the solo slope BRDF models, and T is written as follows:

cosifesoil [ dAy
A(s,0)
cos(bs) [ cosivjdAy
A(v)

T(Qs/ Oy, DEMfine) =

(14)

where £, i§, @5, and ¢f are the relative solar zenith angle, relative sensor zenith angle, relative
solar azimuth angle, and relative sensor azimuth angle, respectively, which correspond to the
equivalent slope.

When compared with the Hapke shadowing function S, which represents the amount of shadow
on the composite slope, the sub-topographic impact factor T represents the effects of the tilted
micro-slope distribution and mutual shadowing. For example, when the solar zenith angle is 0°,
S is one regardless of the sensor zenith angles and mean slopes. This is because there is no shadow
when the sun is at nadir. However, T is smaller than 1 when the mean slope is large and changes
slightly with the view zenith angle when the solar zenith angle is 0°. When the solar zenith angle is
45°, both of these values are less than one [29].

Figure 14. Equivalent slope: a virtual smooth surface.

5.3. Topographic Effect on Composite Slope BRDF

The magnitude and shape of BRDF over composite sloping terrain shows significant changes
in response to the altered topography, which is because of the nonlinear dependence of BRDF
on the micro-slope spatial configuration [29,76,105]. An asymmetric distributions of BRDF can be
observed because of the shadow effects and the adaption of the sun-terrain-sensor geometry [29,72,105].
However, the BRDF peak location over the composite slope terrain is identical to that over flat
terrain [72]. With the same sun and sensor directions, the deviation between the reflectance over
composite slope terrain and that over flat terrain is sensitive to the mean slope. The deviation cannot be
neglected even when the mean slope is small [36]. The deviation increases gradually with an increased
mean slope, and it reaches 80% at about 37° of the mean slope when the SZA and VZA are around
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60° [29]. The lowest deviations are found for the sun at zenith, and they increase considerably with
an increase in SZA. Generally, there is a larger reflectance value when the VZA is larger. It also
depends on the VAA and decreases when the viewing direction changes from the principal plane to
the perpendicular principal plane [36].

6. Future Development and Perspective on BRDF Products Generation

Accurately generating a BRDF product over rugged terrain at the global scale is crucial for
vegetation monitoring, as well as the energy budget for global climate change research. Various
BRDF forward models have been developed to fit and explore the topographic effects of BRDF over
rugged terrain. Because of a lack of operational algorithms for the BRDF product over rugged terrain,
the current BRDF products do not account for the topographic effects, and thus, they show large
uncertainties. According to the key steps of BRDF modeling, users should choose a high quality DEM
and fast parameterization methods to obtain topographic factors. To extend the forward BRDF model
to the operational one, it is necessary to adopt new and innovative ideas to overcome the limitations of
BRDF applicability over rugged terrain, and to develop an effective method for validating the BRDF
algorithm and satellite product performance.

6.1. High Quality DEM

The availability of high quality DEMs promotes the development of BRDF modeling over
rugged terrain. In recent years, stereo photogrammetry and interferometric synthetic aperture radar
techniques have been widely used to generate DEMs, as well as providing fast, reliable, and accurate
solutions. Accurate DEM products are available at a global scale with resolutions of up to 30 m,
which include GTOPO30 DEM, SRTM3DEM, SRTM CGIAR-CSI DEM, TanDEM-X DEM, ASTER
GDEM1, and ASTERGDEM?2.

The BRDF models of solo slope, composite slope, and the sloping reflectance retrieval show that
their accuracies depends on the quality of the calculated topographic terms from the DEM. The issues
of elevation accuracy, spatial resolution, and the co-registration accuracy between the DEM and
satellite image are easy to identify but difficult to assess. Geo-location errors, elevation aberrations,
and even blunders in the DEM base data can result in significant local errors in BRDF modeling. A high
quality DEM is the basic necessity prior to successful BRDF modeling over rugged terrain. An external
validation showed that the elevation accuracy of ASTERGDEM2 is 8.5 m and that of SRTM3 USGS is
6 m [103]. The precision of the DEM enables us to apply the observed correlation between shading
and images [106] to improve the co-registration accuracy. DEM spatial resolution is another factor
that should be considered in modeling the BRDF over rugged terrain. A low resolution DEM when
compared to the remote sensing pixel will not provide detailed topographic information because the
DEM resolution changes [107-109], mean slopes and curvatures decrease, and terrain details disappear.
Thus, a scale appropriate for the satellite data is of great importance in BRDF modeling. We suggest
that a high quality and high spatial resolution DEM is necessary for BRDF modeling based on both
high resolution and low resolution remote sensing images, which correspond to the solo slope BRDF
modeling and composite slope modeling, respectively.

6.2. Topographic Factor Parameterization

Because the DEM describes 3-D surface, several parameters to characterize landforms and
surface-received solar radiation can be extracted from DEM datasets, and consequently, these can be
used in the BRDF models. These include the slope and aspect describing the topography gradient
and orientation, the topographic shadow mask indicating whether the target surfaces are sunlit,
the sky view factor representing the proportion of the sky visible to the target surface, and the
topographic configuration factor, illustrating the proportion of target slopes that are visible to the
surrounding slopes [104]. All of these parameters are regional properties because their calculations
depend on a suitable neighboring area. Although a formidable computational problem occurs during
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the calculation of these parameters, they require calculation only once, and thus, they can be stored as
look up tables (LUT) before the actual model execution due to their stationary property, especially for
deriving global products.

Specifically, the calculation of the slope and aspect of the target slope depends on the gradients
in the east-west and north-south directions [110]. A moving 3 x 3 window is commonly used to
derive the gradients. According to the pixels in the window adopted to calculate the gradients and
their respective weights, six slope and aspect algorithms are frequently used. These algorithms
include second-order finite difference [111,112], third-order finite difference [113,114], third-order
finite difference weighted by reciprocal of squared distance [113], third-order finite difference weighted
by reciprocal of distance [115], frame finite difference [116], and simple difference [117]. The algorithm
for the topographic shadow mask indicates whether the slope is shadowed by the neighboring slope
from the solar direction. The global decision tree [31], minimum radius search [118], and indirect
horizontal angle [104] algorithms are the three frequently used methods. The sky view factor is defined
as the ratio of the diffuse skylight that is received by the target slope to an unobstructed horizontal
surface [104]. This value is restricted between 0 and 1. Values close to 1 indicate that the point is located
at the top of the topography, and values that reach 0 indicate the point lies in the low part of a deep
valley. This factor accounts for the slope and aspect, the obstruction from neighboring slopes, and the
anisotropy of diffuse skylight. However, the anisotropic diffuse skylight is always neglected in the
current sky view factor algorithm. Several algorithms have been proposed depending on whether the
neighboring topographic obstruction effect is considered or the horizontal or inclined slope are taken as
a reference [104,119-121]. Similar to the sky view factor, the topographic configuration factor is defined
as the ratio of the nearby slope reflected irradiance received by the target slope on an unobstructed
horizontal surface [104]. Directly calculating the topographic configuration factor is difficult, since the
reflected irradiance of every slope facet visible to the target slope needs to be known. The alternative
solution for the topographic configuration factor is that it can be expressed as the difference between
the sky proportion for an infinite slope and the actual slope sky view factor [104,120].

6.3. Potential Method to Derive the BRDF Product over Rugged Terrain

Since the solo slope and composite slope BRDF models in this study are forward BRDF models, it is
not possible to use these models as the BRDF operational algorithm to generate the BRDFs. The current
linear kernel-driven model has been successfully adopted to derive the satellite BRDF /albedo products
because of its simplicity, feasibility, and physical basis [122,123]. There has been no significant further
progress in the kernel-driven model to fit the BRDF with multi-spectral and multi-angular reflectance.
However, the effects of topography are rarely coupled in the kernel-driven models, which leads to
uncertainties in the BRDF/albedo retrieval over mountainous areas [9,19]. Thus, a suitable forward
BRDF model to derive the kernel function coupled with topographic effects is necessary to generate
the BRDF product at the global scale.

As for the solo slope surface, most of the forward BRDF models cannot be directly derived with the
kernel functions due to its complicated physical processes. Therefore, the current kernel driven models
that are applied in mountainous areas are modified by a geometric relationships transformation between
the horizontal surface and sloping plane. Specifically, this transform changes the solar and sensor view
angles corresponding to the slope surface in the kernel function to reflect the sloping surface effects.
Because of the shadow that is caused by the topography obstruction, the diffuse skylight serves as the
dominant illumination energy source. Then, the kernel function derived from the BRDF model may be
a constant according to a geometric-optical model, where the component spectral contrasts are neglected
when the pure diffuse surface scatters. However, the spectral signatures of the scene components still
show distinct difference even under the pure diffuse skylight illumination [71]. This may also be described
by the hemispherical directional reflectance factor (HDRE, [8]) and the pixel HDRF displays an angular
heterogeneity [8,124,125]. For the composite slope surface, the coarse-scale pixel directional reflectance is
affected by the micro-slope internal to the pixel, in addition to the 3-D object structure itself, which includes

82



Remote Sens. 2018, 10, 370

the proportion of shadow, and micro-surface slope and aspect distribution. However, the current kernel
driven model is applied directly to mountainous areas under the assumption that the topographic relief is
a special 3-D object. The accuracy and uncertainties of this model are not yet credible and should be further
evaluated. One of the deficiencies in the current kernel driven function is that it neglects topographic effects,
which results in no topographic factors being included in the kernel function.

Therefore, a possible solution is to derive a united kernel driven function suitable for both solo-slope and
composite-slope surfaces. According to the current BRDF model developed over rugged terrain, GOSAILT
can be further derived as the solo slope kernel function, which is then is coupled with a sub-topography
impact factor of the equivalent slope model (ESM) to form the composite slope kernel function. The ESM can
extend the solo slope BRDF to the composite slope BRDFE. The most important feature of these two models
is that they are forwarded based on a real DEM, which will enable us to further promote the possibility of
a united kernel function. Specifically, GOSAILT can be implemented to derive the linear semi-empirical
kernel-driven model that is suitable for sloping terrains under both clear and overcast skies; this model
has a similar framework to the RossThick-LiSparse Reciprocal (RTLSR) BRDF model [9], which includes
sloped geometric-optical and volume scattering kernels. The ESM, an anisotropic reflectance model over the
composite sloping terrain, was developed based on the equivalent slope principle. It extends the directional
reflectance model for the solo sloping terrain to the reflectance model for the composite sloping terrain by
a sub-topography impact factor, which describes the topographic influence. Similar to BRDF extension,
by coupling with the sub-topography impact factor, the GOSAILT kernel function can be easily applied to
the BRDF retrieval over rugged terrain.

Progress is also expected in the retrieval method development, which uses data from combined
multi-sensors in mountainous areas. Low quality and cloud occlusion causes remote sensing data
unavailability in mountainous areas to be more severe. Thus, the significant merit of combining multi-sensor
reflectance is that it can provide additional multiple angular information, and then, this can improve the
inversion accuracy of the BRDF on mountainous surfaces. For example, the multi-angular and multi-spectral
kernel function (ASK) model [126,127] and multi-sensors combined BRDF inversion (MCBI) model [128]
are proposed from the improvement of the BRDF kernel function, as well as the need to retrieve the BRDF
synthetically by combined multiple sensor reflectance, which has a continuous spatial distribution and
shorter-time scale of BRDFs.

Lastly, the remaining difficulties include the fast extraction of the DEM topographic factor and
the support of the kernel function to fit the BRDF over rugged terrain. The look up table (LUT) might
be a practical method to store all of the topographic factors, including slope, aspect, and shadow,
as well as the sub-terrain impact factor with the different solar SZA, SAA, and DEM longitude and
latitude. When the sloped kernel driven model is implemented, the global shadow, observing mast,
sky view factor, topographic configuration factor, and ESM LUT provide the essential parameters
that are needed to produce global BRDFs. For example, the SZA is from 0° to 65° with an interval 5°,
and the SAA is from 0° to 330° with an interval 30° in the global topographic shadow mask (TSM)
LUT. Figure 15 is the global topographic shadow mask, where the SZA is 40° and SAA is 0°.

Figure 15. Global topographic shadow mask (TSM).
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6.4. Validation Methods for the BRDF over Rugged Terrain

In situ multi-angular reflectance data, which is measured at sites with typical, homogeneous
surfaces, is the ground reference truth for the land surface BRDF validation. However, the BRDF
validation dataset is still far from sufficient to support the global BRDF validation, which is mainly
due to the limitations of multi angle observation instruments and technique developments.

In mountainous areas, the BRDF measurement can be more difficult than those on flat surfaces
due to the slope effects. First, there is still some controversy regarding the measurement method of
the sloped BRDF. For example, whether the observation instrument should be parallel to the slope
surface or the horizontal surface is a question that needs to be answered according the definition of
the modeled BRDF. Second, mountainous area generally belongs to the forest land type, where the
tree height might be too high for users to reach. It is difficult to carry out multi-angular forest canopy
reflectance measurements with ground based instruments. One of the alternative methods is to use
a tower to implement the multi-angular measurements, where the height of the tower should be
higher than that of the forest canopy. Another alternative is the use of unmanned aerial vehicle (UAV)
technology. A UAV can carry the optical CCD and provide multi-angular reflectance measurements
for a small-scale area. The tower-based or UAV-based measurements only represent the scale of the
solo slope. To validate the BRDF over the composite slope surface, a multi-scale validation strategy is
important to solve the spatial scale mismatch between the ground-based and the satellite-based BRDE.
However, the technique for BRDF upscaling over rugged terrain is still an ongoing subject of research,
which has limited the applicability of the multi-scale validation strategy.

A current alternative validation method, especially for the BRDF validation of the composite-slope,
is generally based on computer simulation technology [38,73,129], or the use of a miniature terrain
sandbox to simulate the BRDF under the influence of topography as the reference truth. Computer
simulation technology, such as discrete anisotropic radiative transfer (DART) [38], can set up different
DEMs and different types of trees to build a real scene of solo slope or composite slope forest over
rugged terrain. With the flux tracing technique, the multi-angular reflectance reference dataset is
simulated. The terrain sandbox can simulate different typical composite terrains, as well as the
different vegetation above the terrain. With the help of existing imaging spectroscopy technology,
the multi-angular observation can be implemented to obtain the reference reflectance dataset.

7. Conclusions

In this paper, the model of bidirectional reflectance distribution function (BRDF) over rugged
terrain has been comprehensively reviewed. The results of the literature analysis demonstrate that
the subject of BRDF modeling over rugged terrain has been intensively addressed by remote sensing
scientists over the past ten years. Referencing the BRDF definition, we proposed two kinds of BRDF
over rugged terrain, according to the relationship between the spatial resolution of the DEM and
remote sensing image pixel. These are the solo slope BRDF and the composite slope BRDE. Their scale
difference and their self-consistencies should be emphasized.

The dominant factors of the BRDF over the solo slope and composite slope are different.
The surface slope and aspect of the pixel level, which change the sun-terrain-sensor geometry, as well as
the radiation distribution, are the factors controlling the solo slope BRDF. However, with the composite
slope BRDF, besides the influence of the micro-slope within the pixel, the influencing factors are also
the shadow distribution of the terrain occlusion, overall distribution of the micro-terrain, and the
multiple scattering between micro-slopes. These sensitive factors should be concentrated on when
modeling the BRDF over these two kinds of slopes.

Specifically, an accurate description of the interaction between the 3-D vegetation structure,
soil, and atmosphere is of great importance for solo slope BRDF modeling. Radiative transfer,
geometric-optical, and the hybrid theory are the three basic theories that are used to mathematically
solve the interaction process. The geotropic nature of tree crowns and accurate parameterization of
the components radiation signal of vegetation and soil in the solo slope BRDF modeling is important.
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However, the description of the sub-topographic effects is the critical step for composite slope BRDF
modeling, which is where the virtual random distributed topography and real DEM are the two
solutions for the description of sub-topography inside the coarse scale pixels. The shadow function
and the sub-topography impact factor are the two parameterizations. The sub-topography impact
factor can be linked to the solo slope BRDF and the composite slope BRDF, where they both are based on
the real DEM. When compared with the solo slope BRDF model, the development of a composite slope
BRDF model should be further researched based on the simulated data and to achieve better accuracy.

According to the current BRDF model over rugged terrain, it is concluded that the topography
can intensely affect both the shape and magnitude of the land surface BRDF. Generally, when a slope
increases of the solo slope surface, the canopy reflectance opposite to the solar direction also increased,
but the reflectance in the forward to solar direction decreased, which resulted in a skewed BRDF in the
hemisphere. Thus, this consequently led to a distinct variation in the albedo values, as well as other
parameters that are derived from the land surface BRDF. However, the hotspot direction and the solar
orthogonal plane to the aspect of the solo slope terrain seem to have less topographic effects on the
canopy reflectance. The composite slope surface, shadow, and sub-terrain slope result in asymmetric
distributions of BRDF. The BRDF shape and magnitude depends on the mean slope, the dominated
aspect of sub-terrain, the SZA, and SAA. With the mean slope increased, the topographic effects of
BRDF are more intense under the same sun and sensor location. Even in the case of a relatively smaller
mean slope, the deviation between the reflectance over composite sloping terrain and that over flat
terrain is still significant.

Although relatively high quality DEMs are available, and the topographic factors can be
parameterized quickly, it seems that the operational BRDF model used to fit the remote sensing
satellite multi-angular reflectance does not show significant progress. Similar to the kernel driven
model used in the MODISBRDEF/albedo product, the kernel functions derived from the current forward
BRDF model over rugged terrain are still a subject for ongoing research. Although GOSAILT seems to
be able to derive the kernel function of the solo slope and composite slope, more efforts should be put
toward operational BRDF model development and its validation over rugged terrain.
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Abstract: This paper proposes a modified model based on the PROSPECT-5 model to simulate the
spectral reflectance of copper-stressed leaves. Compared with PROSPECT-5, the modified model adds
the copper content of leaves as one of input variables, and the specific absorption coefficient related
to copper (K¢,) was estimated and fixed in the modified model. The specific absorption coefficients of
other biochemical components (chlorophyll, carotenoid, water, dry matter) were the same as those
in PROSPECT-5. Firstly, based on PROSPECT-5, we estimated the leaf structure parameters (N),
using biochemical contents (chlorophyll, carotenoid, water, and dry matter) and the spectra of all the
copper-stressed leaves (samples). Secondly, the specific absorption coefficient related to copper (Kc;)
was estimated by fitting the simulated spectra to the measured spectra using 22 samples. Thirdly,
other samples were used to verify the effectiveness of the modified model. The spectra with the new
model are closer to the measured spectra when compared to that with PROSPECT-5. Moreover, for
all the datasets used for validation and calibration, the root mean square errors (RMSEs) from the
new model are less than that from PROSPECT-5. The differences between simulated reflectance and
measured reflectance at key wavelengths with the new model are nearer to zero than those with the
PROSPECT-5 model. This study demonstrated that the modified model could get more accurate
spectral reflectance from copper-stressed leaves when compared with PROSPECT-5, and would
provide theoretical support for monitoring the vegetation stressed by copper using remote sensing.

Keywords: vegetation remote sensing; reflectance model; spectra; leaf; copper; PROSPECT

1. Introduction

Remote sensing provides a rapid and large-scale tool for geobotanical prospecting [1-3] and
environmental monitoring [4]. For the vegetation on copper deposits or the area polluted by industrial
activities related to copper, excessive copper elements would be absorbed by root systems, and then
stress the growth of plants and change the spectral reflectance of leaves. In addition, spectral reflectance
is the vital foundation of vegetation remote sensing. Hence, the reflectance of leaves on copper-stressed
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vegetation is crucial for prospecting copper deposit and monitoring copper-pollution. Currently, most
studies on remote sensing of vegetation stressed by heavy metal or other stress factors focus on the
change of reflectance and vegetation indices using empirical statistical methods; many statistical
models have been proposed, but little research has focused on the physical model [4-10]. However, for
many users, statistical models cannot meet the requirement for understanding the action mechanism
of copper (Cu) stress on leaf reflectance. Moreover, many parameters in statistical models are sensitive
to the case study and have no physical meaning. Hence, a model that can accurately simulate the
spectral reflectance of copper-stressed leaves should be developed, which would compensate for some
of the deficiencies of statistical models.

The PROSPECT leaf optical properties model has been an important and most popular
physical model to simulate leaf directional hemispherical reflectance and transmittance from 400
to 2500 nm [11,12]. Here we review the evolution over time of PROSPECT in order to illustrate the
novelty of our study. To explain the interaction of isotropic light with a compact leaf, a theoretical
model called “Plate Model” was proposed, which regards a compact leaf as an absorbing plate [13].
Plate Model was later generalized to the non-compact leaf [14]. Based on the generalized Plate Model,
the PROSPECT model was proposed to simulate the spectral reflectance and transmittance of a leaf [11].
In this initial version, the reflectance and transmittance were calculated by the refractive index (1),
a parameter describing the leaf structure (N), pigment concentration (C,p), equivalent water thickness
(Cw), and the corresponding specific absorption coefficients (K,, and Ky,), where n, K, and K, have
been fitted by data with varying plant types and status. After this version, the content (C;;) and
corresponding specific absorption coefficient (K;;) of the dry matter that influences the absorption
features in shortwave infrared (SWIR), including cellulose, lignin, protein, hemicellulose, starch, and
sugar, were introduced into the PROSPECT model [15-19]. The spectral resolution was improved
from 5 nm to 1 nm in an unreleased version [20,21], and the model was modified to account for
surface directional reflectance of a leaf [21,22]. In 2008, the PROSPECT model was further calibrated
and two new versions (PROSPECT-4 and PROSPECT-5) were proposed [21]. The difference between
PROSPECT-4 and PROSPECT-5 is that PROSPECT-5 separates total carotenoids from total pigments.
In recent years, PROSPECT-5 has been popularly used in the remote sensing of vegetation instead of
other versions.

However, the PROSPECT versions above were developed for healthy leaves. For copper-stressed
leaves, excessive copper would change the spectral reflectance of leaves. Hence, to simulate the
reflectance of copper-stressed leaves, the copper content and the specific absorption coefficient related
to copper was added into the PROSPECT model [23]. Zhu et al. [23] initiated research on the physical
reflectance model of copper-stressed leaves. However, in [23], there are still some problems needing
to be addressed, whereas subsequent studies were not found in public literatures. These problems
are shown as follows. (1) The structure parameter N of copper-treated leaf is determined using the
reflectance at 800-1200 nm, and the absorption of copper ion was ignored in this wavelength range in
the [23]. However, according to the theory of electron transition and experimental observation [24],
there is a significant absorption of copper ion at 700-900 nm. (2) Carotenoid content has been treated
as an input variable in the popular PROSPECT-5 model and has important influence on the reflectance
of leaves. However, the carotenoid content and its specific absorption coefficient were ignored in
the model developed in [23]. (3) The absorption characteristics of biochemical components (water,
chlorophyll, dry matter, pigment) are inherent and should be remained unchanged in the advanced
model for copper-stressed leaves.

Hence, based on above problems, the study on the reflectance model of copper-stressed leaves
should be continued. In other words, the specific absorption coefficient related to copper needs to be
improved, and a more accurate model for simulating the reflectance of copper-stressed leaf should
be developed. Based on this motivation, we estimated the specific absorption coefficient related to
copper and added it into the popular PROSPECT-5 model, and then developed a modified model to
simulate the reflectance of copper-stressed leaf. The proposed model considers the carotenoid content,
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copper content and corresponding specific absorption coefficients. In addition, it avoids the coupling
influence on the reflectance from structure parameter N and the absorption of copper ions.

2. Datasets

In this study, wheat (Triticum aestivum L., cultivar: “Xinchun-17") and pak choi (Brassica chinensis L.,
cultivar: “Shanghaiqing”) were treated by copper with different levels using control experiments.
Soil was collected from a vegetable garden without any contamination. Seeds were planted in the
soil mixed with copper sulfate (CuSOj,) solutions in impermeable plastic pots (Figure 1). The copper
contents in soil were controlled as 0, 25, 50, 100, 200, 400, 800, 1600, 3200, and 4800 mg/kg, respectively.
The pot distribution of wheat and experimental scene of some samples are shown in Figure 1, and the
pot distribution of pak choi is same as that of wheat. Therefore, the total number of pots is 60. For the
group with 0 mg/kg copper content, the plants were regarded as healthy vegetation. Thus, the data
from this group was not used for the calibration of the reflectance model for copper-stressed vegetation.
This group was only used as a reference for observing the growth of copper-stressed vegetation.
There are same characteristics (except copper content) of the experimental soil with different Cu levels,
including nitrogen (N) content, phosphorus (P) content, potassium (K) content, water content, particle
size, pH, and so forth. There are three pots for each copper-stress level experiment (three parallel
experiments) to reduce accidental errors (Figure 1).
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(b) ‘ ©

Figure 1. The experimental scene of some samples: (a) The distribution of plastic pots of wheat.
(The pots distribution of pak choi is same with that of wheat. Circle: a pot); (b) Some samples of wheat
(stress level: 400 mg/kg; 800 mg/kg); (c) Some samples of pak choi (stress level: 0 mg/kg; 25 mg/kg).

The spectral reflectance of leaves was measured by ASD (Analytical Spectral Devices) FieldSpec
FR spectroradiometer (Boulder, CO, USA) with an Li-1800 integrating sphere (Li-Cor, Lincoln, NE,
USA). The inside of the sphere is covered with BaSO4. The diameter of sample port of the integrating
sphere is about 14 mm, which could be covered by the measured leaves. The standard white reference
was measured (the fiber faced the sample port) before each measurement of a sample (the fiber faced
the reference). The light source is a halogen lamp. Due to the data quality from 1650 to 2500 nm from
the integrating sphere, auxiliary spectra were also measured with a leaf clip, and these spectra from
1650 to 2500 nm were linearly scaled to replace the corresponding data from the integrating sphere.
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In future studies, other integrating spheres with better data (e.g., RT-060-SF, Labsphere, NH, USA) are
recommended to readers. The wavelength range of final measured spectra was from 350 to 2500 nm,
and the spectral resolution was 1 nm, which is the same as that of the PROSPECT-5 model.

After the reflectance measurement in the laboratory, the leaves were immediately processed to
measure biochemical components. Thus, the changing of biochemical components with different
hours in a day almost has no impact in this study. The content (per surface area unit) of every
biochemical component (i.e., chlorophyll, carotenoid, water, dry matter, and copper) in the leaves
was measured using corresponding chemical methods. In detail, for each measurement, the leaf was
sampled using a puncher with a hole of a known area. For the chlorophyll and carotenoid of a sample,
the sample was triturated and then 80% acetone was used for extracting the chlorophyll and carotenoid.
The absorbance of the solution was measured by a spectrophotometer at 470 nm, 646 nm, and
663 nm [23,25]. The concentration (mg/L) of chlorophyll and carotenoid was calculated based on the
quantitative relationship between absorbance and pigment concentration (Lambert-Beer Law) [23,25].
According to the volume of the solution and the surface area of sample, the content (per surface area
unit) of chlorophyll and carotenoid in a sample can be determined. For the measurement of copper
content, the leaf sample was digested in concentrated nitric acid and perchloric acid. The solution was
filtered, and the copper concentration was determined by atomic absorption spectrophotometry [23,26].
For the measurement of water content and dry matter content, the leaves were continuously heated
at 105 °C for 30 min to kill the leaves to cease the metabolism and avoid some matter decomposition
in the next step. The leaves were dried at 70 °C to get a constant weight, and then the leaves were
weighed to determine the content of water and dry matter. Hence, for each sample, data on the content
(per surface area unit) of copper, chlorophyll, carotenoid, water, and dry matter were collected as well
as the corresponding spectral reflectance.

In addition, the images of internal structure of leaves with different stress levels were acquired by
scanning electron microscopy (SEM). The samples were processed by freeze fracture technique and
immediately put into the 2% glutaraldehyde solution (solvent: 0.1 mol/L potassium phosphate buffer,
pH =7.2). All the samples were preserved at constant 4 °C and observed with SEM [23]. The SEM
used in this study was KYKY-EM 3200 with a resolution better than 6 nm.

In this study, the leaves were collected at different growth stages of the two vegetation
(wheat: elongation stage, heading stage; pak choi: six leaves period, eight leaves period). The leaves
sampled were the visually representative leaves in the plant. With the exception of the normal leaves
(stress level = 0 mg/kg) and outliers, 33 groups of datasets of copper-stressed leaves were finally used
for this study. The 33 groups of datasets of copper-stressed leaves were randomly divided into two
parts (22 groups and 11 groups). Twenty-two groups of datasets were used to develop the new model,
and the remaining 11 groups were used to perform validation of the new model.

In addition, this study also used a public dataset named LOPEX93 [27] for the comparison with
the data of copper-stressed leaves on the leaf structure parameters. The LOPEX93 dataset includes the
biochemical components and spectra of a variety of plants and has been widely used in the remote
sensing of vegetation. In this study, the LOPEX93 dataset was downloaded from the website in [28].

3. Methods

In the PROSPECT model, a leaf is assumed to be composed of N homogeneous compact layers of
biochemical components separated by (N — 1) layers of air. N described the overall characteristics
of the leaf structure and varies with different leaves. In the PROSPECT-5 version, the following
parameters have been estimated and fixed in the model, and these parameters do not vary with
different leaves: the angle of incidence of incoming radiation («), refractive index (1(A)), specific
absorption coefficient of each biochemical components (K,;(A), Kear(A), Ki(A), and K, (A) represent the
specific absorption coefficient of chlorophyll, carotenoid, water, and dry matter, respectively); n(A),
Kap(A), Kear(A), Kop(A), and Ky () are the functions of wavelength A. Since above parameters were fixed,
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the simulations for the spectral reflectance of different leaves depend on the absorption coefficient of a
compact layer (K(A)).
The calculation method of K(A) is given by Equation (1) in PROSPECT-5 [21].

Kab(/\) : Cub + Kcar()\) . CCﬂV + Kw()\) : Cw + Km()\) ° Cm

K(A) = -

)

where Cpp, Cear, Cw, Cpy are the contents of chlorophyll, carotenoid, water (equivalent water thickness),
and dry matter in leaf, respectively. Hence, to simulate the spectral reflectance of different leaves,
following parameters which varies with different leaves are the five input variables of PROSPECT-5:
N, Cup, Cear, Cw, Ciy. In other words, the PROSPECT-5 considers the absorption of four biochemical
components: chlorophyll; carotenoid; water, and; dry matter.

However, several studies have indicated that heavy metal stress would damage the leaf structure,
leading to a disorderly cell arrangement (e.g., [23,29]). Moreover, the copper content in copper-stressed
leaf could be approximately 100 times more than that in normal leaf, so the absorption related to copper
should not be ignored in the new model. Hence, we further analyzed the leaf structure parameter
(N) and the specific absorption coefficient related to copper. Thus, «, n(A), K;p(A), Kear(A), Ki(A), and
Ki(A), which were analyzed and determined in PROSPECT-5 [21], were used in the new model with
no change, because there are no existing studies or theories that link these parameters to copper stress.

The flowchart of the method used in this study is shown in Figure 2. (1) The leaf structure
parameters of all the 33 samples were estimated by fitting the simulated spectra to the measured
spectra in 400-510 nm using PROSPECT-5. The detailed method for calculating N could be found
in Section 3.1; (2) 22 samples were used to estimate the specific absorption coefficient related to
copper. The leaf structure parameter N and the specific absorption coefficient related to copper were
determined independently in this study; (3) Other samples were used for the validation of the modified
model. This procedure is explained in detail in Sections 3.1-3.3.

The modified model considers the absorption related to copper and adds the content of copper
(Cey) as an input variable when compared with PROSPECT-5. The input variables of both the modified
model and the PROSPECT-5 model could be read from Table 1. In fact, only the content of copper (Cey)
was added to the modified model when it is compared with PROSPECT-5 (Table 1).

Copper-stressed leaves

Reflectance; Contents of

biochemical components
PROSPECT-5 *

Estimating N'
400-510 nm

Divide the datasets into
two parts

One part
Estimating the specific
absorption coefficient
related to copper

Modified PROSPECT
model

Another
part

Figure 2. The steps of the method used in this study.

Table 1. The input variables of the modified model and the PROSPECT-5 model (for comparison).

Model PROSPECT-5 Modified Model
Leaf structure parameter N N
Content of chlorophyll Caup Cup
Content of carotenoid Cear Cear
Equivalent water thickness Cuw Ca
Content of dry matter Cm Cm
Content of copper / Ceu
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3.1. Determination of N under Copper Stress

As previously mentioned, excessive copper in a plant would damage the leaf structure, which
would result in a disorderly cell arrangement ([23,29]). To further illustrate the change of internal
structure of copper-stressed leaves, some SEM images of leaves with different levels of copper stress
are shown in Figure 3. It is clearly observed that more disordered internal structure was present
in higher-stressed leaves, including atrophic mesophyll cells, disintegrating vascular bundle, and
disorderly cell arrangement.

The PROSPECT model regards the leaf as N homogeneous compact layers of plates separated
by (N—1) layers of air. The leaf structure parameter (N) describes the leaf mesophyll structure and
increases with a more disorderly cell arrangement. The value of N should be estimated accurately
when the PROSPECT model is used for simulating the spectral reflectance of leaf.

The influence from the absorption by regular biochemical components at 800-1300 nm is
the minimum in the whole wavelength. Moreover, the specific absorption coefficients of regular
biochemical components is unknown and also needed to be estimated in the previous calibration
on PROSPECT for healthy leaves ([21,23]). Hence, in previous studies on PROSPECT, the range of
800-1300 nm was selected for estimating N to avoid the influence from the absorption by regular
biochemical components ([21,23]).

However, in this study, the specific absorption coefficients of above biochemical components in
PROSPECT-5 remained unchanged in the modified model and did not need to be recalculated. So the
influence from the absorption by regular biochemical components did not need to be considered.
For estimating N in this study, the real influence may come from the absorption related to copper and
the specific absorption coefficient related to copper was not yet determined. Hence, a wavelength range
where the absorption of copper is at minimum should be selected to determine N of copper-stressed
leaves to avoid the coupling influence. The absorption spectra of aqueous copper sulfate solutions
were measured in [24], and the results demonstrated that the absorption of copper sulfate solutions
almost equals zero in the range from 400 to 510 nm. As the wavelength A ranges from 400 to 2500 nm
in Equation (1), the reflectance in the whole wavelength would vary with different N. To verify this
point and observe the detailed influence from N on the reflectance at 400-510 nm, the contents of
biochemical components were fixed, and a series of reflectance spectra were generated with varying
N. Figure 4 shows that changing N would cause the changes of reflectance in the whole wavelength
range (400 to 2500 nm), including 400-510 nm. Therefore, we selected 400-510 nm, not 800-1300 nm,
to estimate N.

In this study, we estimated the N of j-th leaf (N;) by minimizing the merit function given by
Equation (2) from 400 to 510 nm. In detail, for a leaf, the method is to find the minimum J (N;) and the
corresponding N when N ranges from 1 to 7 with step = 0.01.

](N]) = (Rmes,j(/\l) - Rsim,j(Nj/ )‘1))2 + (Rmes,j()‘Z) - Rsim,j(N/ )‘2))2/ 2

where R ; and Ry, j are the j-th measured reflectance and corresponding modeled reflectance at the
wavelength A; and A,, respectively. The wavelengths A1 and A, were where the measured reflectance
reached maximum and minimum, respectively.

The leaf structure parameter N varies with different leaves and is a necessary input variable for
both PROSPECT-5 and the modified model (Table 1). In this study, the leaf structure parameters N
of 22 samples need to be estimated and then need to be used in the PROSPECT-5 model to calculate
the specific absorption coefficient related to copper. The leaf structure parameters N of 11 samples
for validation also need to be estimated to simulate the spectral reflectance of copper-stressed leaves
using the modified model. Hence, the leaf structure parameters of all the samples need to be estimated.
According to Equation (2), the calculation for N in a sample is independent and has nothing to do
with other samples. Therefore, in this study, the leaf structure parameters N were estimated sample by
sample, and the N of all the 33 copper-stressed samples were estimated.
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Figure 3. Scanning electron microscopy (SEM). images of leaves with different copper contents in soil:
(a) Normal wheat; (b) Wheat with 200 mg/kg copper content in soil; (c) Wheat with 400 mg/kg copper
content in soil; (d) Wheat with 1600 mg/kg copper content in soil; (e) Normal pak choi; (f) Pak choi
with 200 mg/kg copper content in soil; (g) Pak choi with 400 mg/kg copper content in soil; (h) Pak
choi with 800 mg/kg copper content in soil.
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Figure 4. The modeled reflectance generated by PROSPECT-5 with different N. (Cpp, Cear, Cow, and Cpy
are fixed as 33 pg/cm?, 8.6 pg/cm?, 0.012 cm, 0.005 g/cm?, respectively).

3.2. Determination of Specific Absorption Coefficient Related to Copper

Copper content in a healthy leaf is normally 5 to 30 mg/kg [4]. However, as previously mentioned,
the copper content in a copper-stressed leaf would be approximately 100 times more than that in a
normal leaf, which has been verified by the measured results from several previous studies (e.g., [4,6]).
Hence, the absorption related to copper should be considered, and thus the calculation method of K(A)
was modified as Equation (3).

Kap(A) - Cap + Kear(A) - Cear + Kup(A) - Cop + Ky (A) - Cp + Ke (A) - Ceus

Knew (/\) = N

©)
where K., and C,, are the specific absorption coefficient related to copper and the copper content in
leaf, respectively. Kjew(A) is the absorption coefficient in the new model.

The estimating method of K, in this study was similar with the methods for estimating specific
absorption coefficients of other biochemical components in [21,23]. At each wavelength, we minimized
the merit function given by Equation (4).

Num
](Kcu()\)) = / (Rmes,j(/\) - Rsim,j(Knew()\)/ /\))2’ 4)

=

-
If

where Rye5,/(A) and Ry, j(Keu(A), A) are the j-th measured reflectance and corresponding modeled
reflectance at the wavelength A. Num is the number of samples for estimating K. In this study,
Num = 22.

An illustration on the modification strategy in this study should be presented here. The reflectance
from 400 to 510 nm is controlled mainly by chlorophyll and carotenoids. Copper almost has no direct
contribution to the reflectance from 400 to 510 nm. Although the copper-induced physiological
implications (change of pigments) could affect the reflectance from 400 to 510 nm, this effectiveness
should not be considered when the two pigments were measured correctly. Hence, the leaf structure
parameter N was determined in the wavelengths from 400 to 510 nm since parameters of chlorophyll
and carotenoids are known. In addition, the leaf structure parameter N and K, can be determined
independently since N can be estimated by using reflectance spectra over the spectral range with no
copper-related absorption.
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3.3. Validation of the Modified Model

In this study, 11 groups of datasets on copper-stressed leaves were used for the validation of the
new model. The simulated reflectance spectra were generated using PROSPECT-5 and the new model
with the estimated N, respectively. The mean (+standard deviation, SD) of the simulated spectra
and measured spectra of the 11 samples were calculated for comparison. The simulated spectra and
measured spectra of two selected representative samples (No. 5 and No. 7) from 11 samples were also
used for comparison. By observing the spectra, the modified model will be better than PROSPECT-5
if the spectra with the modified model is closer to the measured spectra. The differences between
simulated reflectance and measured reflectance at seven key wavelengths, including 550 nm, 660 nm,
700 nm, 850 nm, 1400 nm, 1900 nm, and 2200 nm, were calculated. The modified model will be better
than PROSPECT-5 if the differences with the modified model are nearer to zero than those with the
PROSPECT-5 model. The root mean square error (RMSE) between the simulated spectra and measured
spectra were calculated for both calibration and validation samples. The modified model will be better
than PROSPECT-5 if the RMSEs with the modified model are less.

4. Results

The mean, standard deviation (SD), and coefficient of variation (CV) of datasets for calibration
and validation were calculated (Table 2). Coefficient of variation characterizes the inter-difference
degree in a dataset. In this study, all the coefficient of variations are significant high and the CVs with
copper are the highest. Table 2 demonstrates that there are significant differences in leaf Cu and in
other biochemical components for both calibration and validation datasets.

Table 2. Mean, standard deviation (SD), and coefficient of variation (CV) of datasets for calibration and
validation (water: cm; dry matter: g/cm?; chlorophyll, carotenoids, and copper: pg/cm?).

Calibration Datasets Validation Datasets
Mean SD Ccv Mean SD Ccv
water 0.0175 0.00771 44.04% 0.0213 0.00964 45.26%
dry matter 0.0041 0.00084 20.34% 0.0042 0.00094 22.08%
chlorophyll 32.64 7.853 24.06% 33.79 8.062 23.86%
carotenoids 13.36 5.942 44.48% 15.67 7.388 47.15%
copper 0.1220 0.09784 80.22% 0.1507 0.1571 104.22%

In this study, the leaf structure parameters N were estimated sample by sample, and the results
of estimating N of all the 33 copper-stressed samples are presented here (Figure 5a). In addition,
we randomly selected 33 groups of leaf structure parameters of normal leaves from the LOPEX93
dataset [27], which is also shown in Figure 5a. The box-and-whisker plots of the N of copper-stressed
leaves and normal leaves are shown in Figure 5b. Figure 5a,b show that the leaf structure parameters
of copper-stressed leaves are obviously more than those of normal leaves. Moreover, the distributed
range of N with copper-stressed leaves is larger. The leaf structure parameters vs. leaf copper content
with different symbols for each species were plotted in Figure 5¢c. The stress datasets were divided
into three parts based on stress levels (low, medium, high). The averages of leaf structure parameters
were plotted in Figure 5d for different classes and species. Figure 5c,d show that the leaf structure
parameters tend to increase with stress levels.

The estimated specific absorption coefficient related to copper (K,) is shown in Figure 6.
Following characteristics could be read from Figure 6: K., is near zero from 400 to 510 nm. High values
of K, are presented at 590-710 nm with a valley near 680 nm, respectively. In addition, there are three
major peaks near 1400 nm, 1900 nm, and 2400 nm, respectively.
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Figure 5. Leaf structure parameters N of copper-stressed leaves and normal leaves: (a) The value of
leaf structure parameters; (b) The box-and-whisker plots of leaf structure parameters; (c) Leaf structure
parameters vs. leaf copper content with different symbols for each species; (d) Bar graphs for the
average of different stress levels (low, medium, high) and species.
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Figure 6. The specific absorption coefficient related to copper (Ke;).
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The mean (+standard deviation, SD) of simulated spectra and measured spectra of the 11 samples
is shown in Figure 7a. The simulated spectra and measured spectra of two selected representative
samples (No. 5 and No. 7) from 11 samples are shown in Figure 7b,c. Samples of No. 5 and No. 7
are from wheat and pak choi, respectively. Figure 7 shows that, in the whole range of wavelength,
the values of spectral reflectance with PROSPECT-5 are larger than the measured values, while the
spectral reflectance with the new model is closer to the measured spectra. The 11 groups of RMSEs
between the simulated spectra (PROSPECT-5 and the new model) and measured spectra are shown
in Table 3. We also calculated the RMSE of each model for the calibration datasets (Table 4). For all
the datasets used for validation and calibration, the RMSEs from the new model are less than that

from PROSPECT-5.
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Figure 7. The simulated spectra (PROSPECT-5 and the new model) and measured spectra: (a) The mean
(+standard deviation, SD) of simulated spectra and measured spectra of the 11 samples; (b) The
selected representative sample: No. 5 sample (wheat: Cy = 49.63 ug/cm?; Cer = 8.94 ug/cm?;
Cyp = 0.0096 cm; C, = 0.0061 g/cmz; Ce = 0.0557 ug/cmz); (c) The selected representative
sample: No. 7 sample (pak choi: C,, = 27.61 ug/cmz; Cear = 19.32 ug/cmz; Cyp = 0.0320 cm;
Cp = 0.0031 g/cm?; Cgyy = 0.1520 pug/cm?).

To further illustrate the effectiveness of the new model, the reflectance values at several key
wavelengths were selected for comparison where the reflectance curve of vegetation shows peaks,
valleys, or obvious high values, including 550 nm, 660 nm, 700 nm, 850 nm, 1400 nm, 1900 nm, and
2200 nm. We calculated the differences between simulated reflectance and measured reflectance at
these seven key wavelengths, and plotted these differences vs. wavelength and 11 samples, including
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wheat and pak choi (samples 1-6: wheat; samples 7-11: pak choi) (Figure 8). Figure 8 shows that the
differences with the modified model are nearer to zero than those with the PROSPECT-5 model.
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Figure 8. Differences between simulated reflectance and measured reflectance at key wavelengths.

Table 3. Root mean square errors (RMSEs) between the simulated spectra (PROSPECT-5 and the new
model) and measured spectra of 11 groups samples used for validation.

Samples No. 1 No. 2 No. 3 No. 4 No. 5 No. 6

PROSPECT-5  0.1567 0.1685 0.0810 0.0613 0.0988 0.0708
New model 0.0776 0.0576 0.0261 0.0225 0.0265 0.0486

Samples No. 7 No. 8 No.9 No.10 No. 11

PROSPECT-5  0.1489 0.1492 0.0781 0.1874  0.1924
New model  0.0395 0.0942 0.0135 0.1038 0.0190

Table 4. RMSEs between the simulated spectra (PROSPECT-5 and the new model) and measured
spectra of 22 groups of samples used for calibration.

Samples No. 1 No. 2 No. 3 No. 4 No. 5 No. 6

PROSPECT-5  0.1619 0.1943 0.1741 0.1444  0.1437  0.1489
New model  0.0943 0.1261 0.0496 0.0563 0.0491 0.0488

Samples No. 7 No. 8 No. 9 No.10 No.11 No. 12

PROSPECT-5  0.1010 0.0433 0.0188 0.0791 0.0702 0.0377
New model 0.0312 0.0316 0.0173 0.0302 0.0210 0.0165

Samples No.13 No.14 No.15 No.16 No.17 No.18

PROSPECT-5  0.0483 0.0543 0.1504  0.0254  0.1935 0.1214
New model  0.0175 0.0274 0.1043 0.0182  0.0949 0.0481

Samples No.19 No.20 No.21 No.22

PROSPECT-5  0.1328 01321 0.1347 0.1352
New model 0.0438 0.0253 0.0112 0.0782

5. Discussion

This paper advances the PROSPECT-5 model to simulate the reflectance of copper-stressed
leaves and get accepted results of validation. There are some results needing further explanation
and discussion.
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The leaf structure parameters of copper-stressed leaves were estimated in the range from 400 to
510 nm, not from 800 to 1300 nm. Due to the low absorption of copper ion in this range, the estimation
of the leaf structure parameters in this study avoided the influence from copper. The results of leaf
structure parameters of copper-stressed leaves show three characteristics (Figure 5): they are generally
larger than those of normal leaves; the distributed range is also larger; the leaf structure parameters
tend to increase with stress levels. The most probable reason is that the structures of copper-stressed
leaves were damaged due to excessive copper, and the cells were more disorderly with a higher level
copper stress. This reason was also partially demonstrated by the SEM images (Figure 3). In addition,
for estimating N in this study, we assumed the influence may come from the absorption related to
copper, so we used a wavelength range where the absorption of copper ion is near zero, yet it might
be that copper has other influences that we do not know about. Due to the indirect influence on
reflectance from copper stress by changing the leaf structure, it is a good idea to establish a statistical
relationship between N and copper content of a particular vegetation in the future. As there is a little
information on the leaf structure parameter N considering monocotyledon and dicotyledon plants
discrimination [11,15-21], this point may also deserve to be investigated in detail for copper-stressed
vegetation in the future.

The simulated spectra from PROSPECT-5 are obviously higher than the measured spectra for
copper-stressed leaves, while the simulated results from the new model are much nearer to the
measured results (Figures 7 and 8). As previously mentioned, the copper content in normal leaf is
relatively low (5 mg/kg to 30 mg/kg), but it is able to exceed 1300 mg/kg in a copper-stressed leaf.
For normal leaves, the absorption by copper could be ignored and satisfying results could be acquired
by PROSPECT-5. For copper-stressed leaves, excessive copper should be considered, and thus better
results were acquired by the new model (Figures 7 and 8; Tables 3 and 4). Specifically, PROSPECT-5
was designed for healthy leaves, so it ignores the energy absorbed by copper-related matter, which
leads to higher simulated reflectance for copper-stressed leaves. This is the reason why the simulated
spectra from the modified model are much nearer to the measurements and the RMSEs with the
modified model are less.

For the specific absorption coefficient related to copper (K.,), Figure 6 suggests that it almost equals
zero in the wavelength range of 400-510 nm, which is different from the results in [23]. However, the
absorption spectra of aqueous copper sulfate solutions measured strictly in the laboratory [24],
is consistent with the results in our study at 400-510 nm, which indicates that our results are more
reasonable than that in [23].

The high values of K., at 590-710 nm, near 1400 nm, 1900 nm and 2400 nm, agree with the
results in [23,30] well. For the explanation on the apparent characteristics near 1400 nm and 1900 nm,
Zhu et al. [23] simply pointed that the coordinate bonds with hydroxide contribute to the observed
features near 1400 nm and 1900 nm. Here, we try to give a more detailed explanation on all the
observed features at 590-710 nm, 1400 nm, 1900 nm and 2400 nm. For copper-stressed vegetation,
excessive copper in the soil was easily absorbed by plants via Cu?* and Cu(OH)". In leaves, the CuZ*
and Cu(OH)* were transferred into chelate and fixed in organelle to hinder copper from diffusing and
to protect other tissues in the plant [30,31]. According to the spectral theory, reflectance at 400-1300 nm
is controlled by the electron transition of metal ions, while reflectance at 1300-2500 nm is determined
by anionic group (e.g., hydroxyl, carbonate, sulfate) [32,33]. In this study, the high values of K, at
590-710 nm are similar with the absorption of copper sulfate and copper chloride [23,30], and the
high values near 1400 nm and 1900 nm are similar with the absorption of water [22]. Hence, it can
be inferred that Cu?* contributes to the absorption at 590-710 nm, and hydroxyl contributes to the
absorption near 1400 nm and 1900 nm. Sulfate ion shows absorption at 2400 nm [34]. The vegetation
in this study was treated by copper sulfate (CuSOy), so it was inferred that sulfate ions contributed to
the high values of K., near 2400 nm. In addition, it appeared that the valley near 680 nm of K, could
be observed. Vegetation stress always induces the enhancement of chlorophyll fluorescence [35-37].
According to the shape of chlorophyll fluorescence [35,38], it can be inferred that a high chlorophyll
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fluorescence (red fluorescence, RF) is also present near 680 nm. Thus, idealized K., needed to be
reduced to enlarge the simulated reflectance to meet the enhancement from chlorophyll fluorescence.
Therefore, RF is a very possible factor that makes contributions to this valley. Chlorophyll fluorescence
also possesses high values called blue green fluorescence (BGF), ranging from approximately 350 nm
to 520 nm [35,38], so some measured spectra are higher than simulated spectra generated by both
PROSPECT-5 and the modified model in the visible range (Figure 7). In other words, this problem was
also present in PROSPECT-5. K, is near zero in this wavelength range (Figure 6), so the enhancement
on measured reflectance from BGF cannot be meted by reducing K.,. Hence, chlorophyll fluorescence
should be removed from the measured reflectance in the future to improve the ability to predict the
spectra in the visible range. In total, K, reflects the overall influence from copper ion and its chelate,
and other factors induced by copper, so we tentatively termed K., “specific absorption coefficient
related to copper”, not “specific absorption coefficient of copper ion”. Moreover, copper stress impacts
the leaf structure parameter N and we also changed the wavelength range for estimating N due to the
copper presence. Hence, the modified model considers the physiological reaction of the leaf to copper
presence, not just adding copper to the leaf spectra. In the future, what biochemical components that
make contribution to the specific absorption coefficient related to copper (K.;) and the mechanism
of these absorptions should be further investigated and clarified. In addition, based the work in this
paper, estimating the copper content in leaves and classifying the vegetation with different copper
contamination using remote sensing could also be the basis of a good future study.

In terms of other advantages, this study would help the research on remote sensing of stressed
vegetation. For example, similar changes in reflectance and vegetation indices may be resulted from
copper stress as well as other stress [39-41], but this study provided some physical foundations to
distinguish copper stress from other stress.

In this study, the soil before treatments was collected from vegetable garden without any
contamination. In general, the copper content in this kind of soil is <2 mg/kg [42,43]. The increments of
copper content in the soil after treatments are 25, 50, 100, ... , 4800 mg/kg. Hence, the copper content
in the soil at a minimum stress level exceeds that in the normal soil by 10 times. The initial copper
content in soil almost has no impact. In fact, the use of the numbers, including 25, 50, 100, ... , 4800,
are simply labels to distinguish the different stress levels. In general, the vegetation can be regarded as
copper-stressed vegetation if the growth and biochemical components are obviously influenced when
excessive copper is present in the soil, water and the atmosphere [4,44,45]. Kabata-Pendias et al. [44]
indicated that vegetation activities would be stressed when the copper content in soil amounted to
two to 10 times that in normal soil. Hence, the vegetation could be called copper-stressed vegetation in
this paper.

Compared with normal leaves, copper-stressed leaves have been verified that the leaf structure
is disrupted and copper content significantly increases [4,45]. The data in this study also illustrates
these facts to some degree. Moreover, the simulated reflectance generated by the measured contents of
biochemical components (the measurements are regarded as correct) and the standard PROSPECT-5
model was away from the measured reflectance. Based on above facts, we set two hypothesis: (1) the
disruption of leaf structure resulted in the increase of N; (2) the increase of copper content resulted in
more absorption of energy. Thus, the modification strategy is estimating N in the wavelength range
where copper absorption is near to zero, and estimating the specific absorption coefficient related
to copper using correct N. This modification strategy is regarded as reasonable. In this sense, this
approach also has some physical basis. In the future, others may propose more reasonable approaches
to get similar output reflectance. However, the mentioned two hypothesis have not been absolutely
verified since Figure 5c is not a good proof and it shows that the approach is not statistically robust.
Ky reflects the overall effects from copper stress, not only the absorption of copper ions. Moreover,
the tolerance to copper stress varies with different vegetation. From this point of view, the approach
in this study is empirical, and not a true physical modification approach. As previously mentioned,
other modification approaches may provide the same total output reflectance with that in this study.
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For example, if the contents of biochemical components were measured incorrectly, the obtained
results in this study, in terms of the accuracy, may be obtained using standard PROSPECT-5 model by
changing the N value and the effective content of water in the leaf, and maybe of pigments as well.

There is a difference between this study and the studies on remote sensing of normal vegetation.
The samples with copper-stressed vegetation are much more difficult to acquire due to experimental
complexity. Therefore, the number of samples in many studies related to copper-stressed vegetation is
similar to this study (e.g., [46,47]). Even so, we have also realized that more datasets should be used to
improve the specific absorption coefficient related to copper (K,) to further advance the new model.
Both the modified model and PROSPECT-5 are based on the leaf scale. LAI (Leaf Area Index) and view
and illumination geometry are usually in canopy models, which were not considered in this study.
The application of the modified model on remote sensing image needs the coupling with reflectance
models at the canopy scale, for example, the SAIL model. The coupling with canopy reflectance model
could provide an effective and rapid way for monitoring copper-stressed vegetation on a large scale
using remote sensing image, which is also the basis for good future work.

6. Conclusions

This study developed a new model for copper-stress leaves based on PROSPECT-5, and
validations were conducted. In this study, the reflectance at 400-510 nm was used to estimate leaf
structure parameters (N) of copper-stress leaves. The absorption related to copper was considered,
and the specific absorption coefficient related to copper (K.,) was estimated. The new model
includes six inputs: leaf structure parameters (N); chlorophyll content; carotenoid content; equivalent
water thickness; dry matter content, and; copper content. Factors that influence the reflectance of
copper-stressed leaves are considered as much as possible. The new model shows better performance
than PROSPECT-5 on copper-stressed leaves. Hence, this study solved some problems left by
previous studies and developed a better model for simulating the copper-stressed leaves, and provides
theoretical support for the research on copper-stressed vegetation using remote sensing. Moreover,
it has potential significance for prospecting copper deposit and monitoring environmental pollution
caused by copper. However, due to the difficulties on the acquirement of datasets of copper-stressed
vegetation, more samples should be acquired and used to improve the specific absorption coefficient
related to copper (K;) and the accuracy of new model in the future.
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Abstract: Satellite remote sensing has been widely used to retrieve aerosol optical depth (AOD),
which is an indicator of air quality as well as radiative forcing. The dark target (DT) algorithm
is applied to low reflectance areas, such as dense vegetation, and the deep blue (DB) algorithm is
adopted for bright-reflecting regions. However, both DT and DB algorithms ignore the effect of
surface bidirectional reflectance. This paper provides a method for AOD retrieval in arid or semiarid
areas, in which the key points are the accurate estimation of surface reflectance and reasonable
assumptions of the aerosol model. To reduce the uncertainty in surface reflectance, a minimum
land surface reflectance database at the spatial resolution of 500 m for each month was constructed
based on the moderate-resolution imaging spectroradiometer (MODIS) surface reflectance product.
Furthermore, a bidirectional reflectance distribution function (BRDF) correction model was adopted
to compensate for the effect of surface reflectance anisotropy. The aerosol parameters, including AOD,
single scattering albedo, asymmetric factor, Angstrém exponent and complex refractive index, are
determined based on the observation of two sunphotometers installed in northern Xinjiang from
July to August 2014. The AOD retrieved from the MODIS images was validated with ground-based
measurements and the Terra-MODIS aerosol product (MODO04). The 500 m AOD retrieved from
the MODIS showed high consistency with ground-based AOD measurements, with an average
correlation coefficient of ~0.928, root mean square error (RMSE) of ~0.042, mean absolute error (MAE)
of ~0.032, and the percentage falling within the expected error (EE) of the collocations is higher
than that for the MOD04 DB product. The results demonstrate that the new AOD algorithm is more
suitable to represent aerosol conditions over Xinjiang than the DB standard product.

Keywords: BRDF; aerosol; MODIS; sunphotometer; arid /semiarid

1. Introduction

Xinjiang province in northwest China is part of the Central Asian dust storm area, which is
one of the main sources of dust aerosols [1]. In recent years, many Xinjiang cities, especially the
capital, Urumgqi, have suffered a severe deterioration in air quality with significant contributions
from atmospheric particulates [2]. Aerosols can significantly influence the ecosystem, climate and
hydrological cycle by affecting radiative forcing [3] and its relation with the air quality indicators
proportionated for sustainable development [4]. High aerosol pollution events have a wide-ranging
impact on visibility [5] and human health [6]. Scientific data about the spatial and temporal dynamic
of dust aerosol in Xinjiang are needed by the local government to facilitate development of policies to

Remote Sens. 2018, 10, 197; d0i:10.3390/rs10020197 109 www.mdpi.com/journal /remotesensing



Remote Sens. 2018, 10, 197

protect the ecosystem and diminish dust storms. Due to the lack of ground stations in this vast area,
satellite retrieval is the practical way to provide the spatial and temporal distribution of aerosol optical
depth (AOD) [7-9].

Many satellite sensors have released AOD products, including the total ozone mapping
spectrometer (TOMS) [10], geostationary operational environmental satellite (GOES) [11], ozone
monitoring instrument (OMI) [12], medium resolution imaging spectroradiometer (MERIS) [13],
advanced very high resolution radiometer (AVHRR) [14], multi-angle imaging spectroradiometer
(MISR) [15], sea-viewing wide field-of-view sensor (SeaWiFS) [16], moderate-resolution imaging
spectroradiometer (MODIS) [17], and visible infrared imaging radiometer suite (VIIRS) [18]. Yet, the
quality of AOD products over arid/semiarid areas, such as Xinjiang, is relatively low due to a large
bias in the surface reflectance estimation as well as the aerosol model used in the retrieval algorithms.
The operational MODIS AOD product over land is based on two algorithms: the dark target (DT) and
deep blue (DB) algorithms [19]. In the Xinjiang area, the MODIS AOD product is mostly retrieved with
the DB algorithm which is applied over bright areas, where the surface reflectance is relatively high,
and distinguishing atmospheric aerosol contributions from the satellite sensor energy is difficult.

In the DB algorithm, for arid and semiarid regions, the surface reflectance was determined
based on a pre-calculated surface reflectance database, which was compiled based on the minimum
reflectivity method at the resolution of 0.1° x 0.1° for each season using MODIS images [20].
The derived surface reflectance database therefore depends on the scattering angle, normalized
difference vegetation index (NDVI), and season. Most of the validation studies concluded that,
in general, MODIS DB retrieved aerosol products were comparable to aerosol robotic network
(AERONET) data, and an expected error (EE) envelope could be defined that contained approximately
50-70% of the matchups [21]. Bilal and Nichol reported up to 75-80% of the DB retrievals within the
EE [22]. One of the major error sources for the DB algorithm is the difference between the surface
reflectance corresponding to the images and that from the pre-calculated database, as a result of the
anisotropic surface reflectance. Another crucial aspect in AOD retrieval is the aerosol model. In the DB
algorithm, the microphysical and optical properties of aerosols are based on a cluster analysis of the
global AERONET database through 2010 [17]. However, the aerosol characteristics vary locally, and
they cannot be accurately described using a global aerosol model, which increases the uncertainty in
AOD retrieval [23].

In this paper, a monthly minimum land surface reflectance (MLSR) database for Xinjiang area
(band: blue; resolution: 500 m; time span: 2010-2014) was established using MODIS surface reflectance
product (MODO09A1), based on the minimum synthesis technique (MST) method to reduce the impact
of cloud contamination [20,24,25]. A bidirectional reflectance distribution function (BRDF) correction
model for angle normalization was adopted to compensate the effect of surface reflectance anisotropy.
In addition, the CE-318 sunphotometer data are used to determine the aerosol characteristics of the
study area.

2. Field Measurements and Data Used

The CE-318 sunphotometer is an automatic ground-based radiometer measuring both direct solar
irradiance and diffuse sky radiance for almucantar and principal solar planes with a 1.2° field of view.
Although the channel wavelength configuration depends on the instrument version, filters at 440, 500,
675, 870, 940 and 1020 nm wavelengths are always present [26], with an uncertainty of 0.01-0.02 [27].
The Microtops II sunphotometer is a portable, manually-operated instrument which measures AOD
through direct solar irradiance measurements in five wavebands (380, 500, 675, 870, and 1020 nm) with
an uncertainty of ~0.015-0.02 [28,29].

In order to obtain the characteristic parameters of atmospheric aerosol in the study area, the
CE-318 and Microtops II sunphotometers were used at two ground-observed sites (Dahuangshan
and Wucaiwan site). The Dahuangshan site is located in a coal mining area with sparse vegetation
coverage and the Microtops II sunphotometer observation was carried out from 10 July to 24 August
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2014. The Wucaiwan site is located in a remote rural area near the Gurbantunggut Desert and the
CE-318 sunphotometer observation was carried out from 15 July to 21 August 2014. A map of the
study area is shown in Figure 1, and the detailed information of sites and instruments is presented in

Table 1.
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Figure 1. Map of the study area and the two ground-observed sites.

Table 1. The detailed information of sites and instruments.

Site Instrument Lon. (°E) Lat. (°N) Elevation (m) Start Date  End Date
Dahuangshan  Microtops II 88.645 44,041 1018 2014/7/10 2014/8/24
Wucaiwan CE-318 88.099 44.776 450 2014/7/15 2014/8/21

The MODIS (Terra) data products, namely calibrated radiance product (MOD02HKM), geolocation
product (MODO3), surface reflectance product (MOD09A1), BRDF/albedo product (MCD43A1), and
the Collection 6 (C6) aerosol product (MODO04), were obtained from the Level-1 and Atmosphere
Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC) at the Goddard
Space Flight Center (GSFC) (http://ladsweb.nascom.nasa.gov). The information of these satellite
products and their applications is listed in Table 2.

Table 2. Moderate-resolution imaging spectroradiometer (MODIS) images used for aerosol optical
depth (AOD) retrieval in this study.

Data Name Date Tile N Application
MOD09A1 2010-2014 H23-H25, V04-V05 240 Build surface reflectance and angle
information database
MCD43A1 2014/07/10-2014/08/24  H23-H25, V04-V05 276 Build BRDF correction model
MODO02HKM  2014/07/10-2014/08/24 55 Calculate the top of the atmosphere reflectance
MODO03 2014/07/10-2014/08/24 55 Obtain geolocation data
MOD04 2014/07/10-2014/08 /24 55 Validation

Note: N is the number of images.
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3. Methodology

The top-of-atmosphere (TOA) reflectance (o7), measured by a satellite sensor, is a function of
surface and atmosphere optical parameters as well as solar/view zenith and azimuth angles; it can be
estimated using Equation (1):

o1 (Ta, 05,00, 9) = p4(Ta, 05,00, @) + pr (65,00, @) + 1‘075]"(1—”, 05)T (1, 6) 1)
~ps x 5(x)

where 6; is the solar zenith angle, 05, is the view zenith angle, ¢ is the relative azimuth angle, 7, is the
aerosol optical depth, p 4 is the aerosol reflectance resulting from multiple scattering in the absence of
molecules; pg is the Rayleigh reflectance resulting from multiple scattering in the absence of aerosols;
ps is the surface reflectance; T(1,,6;) and T(1,,6,) are the transmissions of the atmosphere on the
sun-surface path and the surface-sensor path, respectively; and S(1;) is the atmospheric backscattering
ratio to account for multiple reflections between the surface and atmosphere.

Equation (1) indicates that the TOA reflectance comes from two parts: the pure atmospheric
contribution (the first two terms in Equation (1)) and the combination of the atmosphere and land
(the last term in Equation (1)). A key step of the satellite-retrieved AOD is to remove the surface
contributions from the satellite image. An overview of our retrieval algorithm is represented as a
dataflow diagram in Figure 2. This algorithm cannot retrieve cloud-contaminated pixels; therefore,
before beginning the retrieval processing, we screened areas for the presence of clouds, and used the
universal dynamic threshold cloud detection algorithm for cloud detection [30]. The surface reflectance
for a given pixel was then determined from the pre-calculated MLSR and angle information database,
which was built using MOD09A1 products. The aerosol model is an important parameter that affects
the precision of AOD retrieval and must be considered carefully. In this study, it was established by
the ground-based measurements data.

MODO03
Geolocation Product

[ } | '

MODO09A1 Product

. Solar/Sensor Solar/Sensor Monthly Surface
Elevation Zeni : Reflectance and Angle
enith Angles Azimuth Angles
i Database
BRDF transformation MCD43A1
Rayleigh Surface Reflectance €——— model Product

Correction ¢

Retrieval MODO02HKM TOA

‘ Reflectance
Look-up
Table ¢
AOD

Figure 2. Flowchart of the aerosol retrieval algorithm in the study.

3.1. Construction of Surface Database

In order to remove the surface contributions from the satellite signal, a database of surface
reflectance was built for the AOD retrieval. The MODO09A1 dataset provides surface reflectance at
500 m resolution in sinusoidal projection. Each MOD09A1 pixel has the best possible observation
during an 8-day period as selected by high observation coverage, small view angle, absence of clouds or
cloud shadow, and low aerosol loading. Validation has been carried out for the MOD09 which indicated
that 50.52% of the observations in the blue band were within the MODIS theoretical uncertainty of
£(0.005 + 5% x pgs), where pg is the surface reflectance [31]. In this study, MOD09A1 datasets for
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5 years (2010-2014) and six tiles (H23-H25 and V04-V05) were used to build the surface reflectance
database to support AOD retrieval.

Ideally, the MOD09A1 product should be the surface reflectance corrected for aerosol effect and
cloud masked in the quality flag. However, detection of thin cloud or subpixel cloud are difficult, and
there is also uncertainly in the aerosol effect correction [31]. Following the approach in the paper by
Sun et al. [32], we adopted the criterion of minimum land surface reflectance (MLSR) for database
synthesis because it is the most efficient way to avoid cloud contamination. In each 500 m pixel, the
lowest surface reflectance value in the twenty images time series, i.e., four images per month for 5
successive years, was identified as the clearest observation. In order to correct the effect of surface
bidirectional reflectance in AOD retrieval, the angle information in MOD09A1 was stored in the MLSR
database along with the minimum reflectance. Figure 3 shows the distribution of surface reflectance in
July, as well as the solar/view zenith and relative azimuth angles.
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Figure 3. Example of a pre-calculated minimum land surface reflectance (MLSR) database using 5
years of MOD09A1 at 500 m resolution for July. (a): the surface reflectance at blue band; (b): the solar
zenith angle; (c): the viewing zenith angle; (d): the relative azimuth angle.

3.2. BRDF Correction Surface Reflectance

In the aerosol retrieval algorithm, the accurate determination of the surface reflectance is one
of the most crucial concerns. For the DB algorithm, the surface reflectance is prescribed by one of
several methods, dependent on location, season, and land cover type, from a global surface reflectance
database in visible bands. However, all methods do not consider the influence of imaging geometry.
As the surface has anisotropic reflection characteristics and the geometric angles of the satellite sensors
vary, the surface reflectance of the MLSR is different from that of images used to retrieve AOD. Thus,
the pre-calculated MLSR database cannot be directly used for AOD retrieval. In this study, we adopted
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the kernel-driven BRDF model for the correction of the effects of anisotropic reflection of the surface.
The correction model was proposed based on the kernel-driven BRDF model. The kernel-driven
BRDF model is a semi-empirical models which is derived as a simplification of physically based BRDF
models, with the merit of its linear form and small number of model parameters. It can be generally
described by Equation (2) [33]:

R(es/ 0o, P, /\) = fz‘so(/\) + fval ()‘) : KWI(GS, 0o, (P) + fgm(/\) : nga(GSr 0o, (P) (2)

where K, and Kg, are the volumetric and geometric kernels, respectively, which are functions of
illumination and viewing geometry, describing volume and geometric scattering from surface elements
fools fgeo are the weights for the volumetric and geometric kernels, respectively, and fis, is to the weight
of the isotropic reflectance.

By simply normalizing the kernel weights with the isotropic weight, we define the anisotropy
shape factors as Ay = fy01/ fiso and Ay = feeo/ fiso- Then, the directional surface reflectance under
geometric angle 651, 6,1, @1 can be predicted from the direction surface reflectance in the MLSR
database under geometric angle 05, 6,7, @2, with Equation (3):

1+ Al : Kval(951/9v1/ 471) + Az - nga(esllevlr 401)

R1(0s1,001, 91,A) =
1( sl %ol 91 ) 1+A1'Kval(652r9v2r(l72)+A2‘ngo(95219v2r({’2)

Ry (052,002, @2, A) 3

Studies show that the combination of Ross—Thick and Li-SparseR (RTLSR) kernels works well
with the observed data [34], and the fis,, fy01, and fgeo parameters of this combination are provided
in the MCD43A1 products. However, as inversion of the BRDF is difficult, the BRDF parameters
in MCD43A1 are noisy and cannot be directly used. Vermote et al. showed that the anisotropy of
the surface is related to vegetation status [35]. So, in this study, we classify the study area into three
categories, i.e., sparse vegetation, median vegetation and dense vegetation, according to the threshold
of the Enhanced Vegetation Index (EVI). Statistical mean values of A; and A, were calculated for each
category from pixels marked as best quality (QC = 0) in the MCD43A1 product. The mean values of
A; and A, were then applied for all pixels in the category. The statistical mean values of A; and A, are
shown in Table 3.

Table 3. The statistical mean values of A; and A, for three vegetation statuses.

Category EVI Aq A,
Sparse vegetation EVI<0.15 0.203 0.037
Median vegetation 0.15 < EVI < 0.60 0.438 0.173
Dense vegetation EVI > 0.60 0.762 0.143

3.3. Aerosol Parameter Determination

To reduce the computation requirement, a look-up table (LUT) was constructed using the latest
version (Version 2.1 Vector Code) of the 6S (second simulation of the satellite signal in the solar
spectrum) (6SV) radiative transfer model (RTM) [36]. The 65V code is a widely-used radiative transfer
code that simulates the satellite signal accounting for elevated targets. One of the practical advantages
of 6SV is that it provides standard atmosphere and aerosol models. The 65V model was used to
construct a LUT of atmosphere optical parameters according to the parameters values listed in Table 4.
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Table 4. The parameters used in the look-up table construction.

Parameter Number Values
Band 1 Band 3 (Blue band)
AOD at 550 nm 15 0.0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,0.6,0.7,0.8,0.9,1.0,1.2,1.5

0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15,

Surface reflectance 18 0.18.0.20
Solar zeniths (°) 14 0, 6,12,18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78
Satellite zeniths (°) 14 0,6,12,18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78
Relative azimuths (°) 19 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180

In this work, the CE-318 ground-based data were used to determine the aerosol microphysical
and optical parameters, such as the Angstrém exponent (AE), complex refractive index (RI), single
scattering albedo (SSA), and asymmetric factor (g). The AE can be used to determine aerosol models;
for example, the AE of desert aerosols is —1.0 to 0.5 [37]. For the desert model, the value of the real
part of Rl is 1.5-1.6 and the value of the imaginary part is approximately 0.01. Table 5 shows the
values of the AE and Rl in the study. The aerosol optical parameters, including the SSA and g at four
wavelengths (i.e., 440, 675, 870, and 1020 nm; Figure 4), were retrieved from sky radiance almucantar
measurements and direct sun measurements by a CE-318 sunphotometer. In this study, the first step
is to calculate the average values of SSA and g at 440 and 675 nm, and then the inverse distance
weighting interpolation [38] is adopted to obtain the values of SSA and g at 550 nm, which is 0.827 and
0.910, respectively.

Table 5. Calculation results of aerosol parameters of the Angstrém exponent and complex
refractive index.

. . Date/Value
Aerosol Optical Properties 15 July 3 August 4 August 21 August
Angstr(‘)m exponent (440-870 nm) 0.467 0.409 0.441 0.443
Real part of RI 1.597 1.541 1.548 1.592
Imaginary part of RI 0.009 0.008 0.011 0.010

870 1020

675
wavelength(nm)

+07/15g +0803g +0804g -+0821g
- 07/15 SSA - 08/03 SSA * 08/04 SSA -+ 08/21 SSA
Figure 4. Time series of aerosol parameters of single scattering albedo (SSA) and g retrieved from
sky radiance almucantar measurements and direct sun measurements. 15 July, 3 August, 4 August,
and 21 August are the start date, the stable weather data, the maximum AOD date, and the end
date, respectively.
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3.4. Rayleigh Correction for Elevation Effect

Within the MODIS blue wavelength range, where Rayleigh scattering is relatively important
compared to longer wavelengths, neglect of polarization in the radiative transfer code leads to
significant errors in the calculated reflectances [39]. At sea level, the Rayleigh optical thickness
(ROT) at visible channels can be estimated with an empirical function of wavelength A [40]:

TR(A, Z = 0) = —0.00877 x A~405 (4)

At a height above sea level, the ROT should be modulated by atmospheric pressure or
elevation [41]:

WA Z =z) = (A, Z = 0) exp<£> G)

where z is the ground height above sea level in kilometers, and 8.5 is the exponential scale height of
the atmosphere. In this study, the MODO03 product was used for providing the altitude z for each pixel.

3.5. Error Indicators

The error statistics of the algorithm were verified by comparing the satellite-retrieved AOD
with ground-based measurements from sunphotometers. We used the following four indicators
to evaluate the error: the correlation coefficient (R), mean absolute error (MAE), root mean square
error (RMSE), and EE. R is an indicator of relative agreement between satellite-retrieved AOD and
ground-observed AOD; the MAE is the most natural measure of mean error magnitude; the RMSE
is used to measure the systematic and random differences between these two AOD observations;
and the EE, representing the confidence envelopes of the retrieval algorithm, is used to evaluate the
quality of a new algorithm relative to MODIS C6 AOD. Good matches of satellite-retrieved AOD are
reported when the satellite-retrieved AOD falls within the envelope. The statistical indicators are
defined as follows:

(D) —7)

R= =1 (6)

¢ L (=% (vi=9)
RMB =x;/y; @)
RMSE = (| 13" (x; — )2 8
- ;1:21 (xz - yz) ( )
MAE = %Z\x,-—y,-| 9)

i=1

EE = £(0.05 +0.15x;) (10)

where x; is the ground-based sunphotometer measurement of AOD, y; is the satellite-retrieved AOD;
X and ¥ are average values of x; and y;.

4. Results and Discussion

4.1. Spatial Distribution of AOD

In this study, 55 MOD02HKM images from July and August 2014 were selected to retrieve AOD.
Figure 5 shows the MODIS standard false-color images (R, G, B: 2, 1, 4) in the northern Xinjiang
area for 11 July, 15 July, 12 August and 21 August 2014. The landscapes of this area includes the
Altai Mountains, Tianshan Mountains, and Gurbantunggut Desert, which are located in the Zhungeer
basin and exhibit high surface reflectance in the blue band (Figure 3a). Figure 6 shows the spatial
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distribution of AOD retrieved from MODIS at a 500-m resolution, corresponding to the images in
Figure 5. The MODIS C6 DB AOD products (10 km) are shown in Figure 7. The satellite-retrieved
AOD from OLI data is more suitable than C6 DB AOD to represent the spatial pattern of aerosols over
bright-reflecting source regions of northern Xinjiang. The revealed details in the aerosol distribution
and variability are valuable in the study of transient aerosols. These results demonstrate that the new
algorithm can achieve a continuous AOD distribution even in the bare land or desert areas, which
have a high reflectance.
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Figure 5. MODIS false-color images for the northern Xinjiang area (R, G, B =2, 1, 4). (a): 11 July 2014;
(b): 15 July 2014; (c): 12 August 2014; (d): 21 August 2014.
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Figure 7. Distribution of MODIS 10-km deep blue (DB) AOD products for the northern Xinjiang area.
(a): 11 July 2014; (b): 15 July 2014; (c): 12 August 2014; (d): 21 August 2014.

4.2. Validation

The satellite-retrieved AOD were validated at the two ground sites. As satellite-retrieved AOD
retrievals are at 550 nm, the ground observations are not available at this wavelength, data are
interpolated to 550 nm using the Angstrém function [42], defined as

() =px A" (11)

where 7,(A) is the AOD at wavelength A, B is the turbidity factor, and « is the band index. § and «
can be estimated from sunphotometer observations of AOD at two wavelengths A1 and Ay, with the
following expression:
o= 711’1(Ta(/\1)/’l'a()\2)) /5 _ Ta(/\l)
In(A1/A;) ! ALY

12)

Referring to the results of previous studies [43,44], the nearest available pair of wavelengths from
CE-318 and Microtops II sunphotometer (normally 675 nm and either 440 or 500 nm) are used.

In this study, to match the instantaneous AOD value provided by satellites with the
repeated measurements observed by sunphotometers, we followed the matchup methodology of
Ichoku et al. [45]. The ground-observed data averaged within 30 min of the MODIS overpass are
extracted and compared with MODIS AOD data averaged within 1.5 km (3 x 3 pixels) surrounding
of the ground site. A total of 32 and 26 of the satellite-retrieved AOD observations coincided with
Dahuangshan and Wucaiwan AOD measurements, as shown in Table 6. The AOD from the new
algorithm achieved high correlation (~0.918-0.928) with low absolute error (~0.025-0.037), relative
error (~13.9-16.7%) and the percentage falling within the EE of the collocations is ~96.9%, 96.2% at
the Dahuangshan and Wucaiwan site, respectively. The total average absolute error and relative error
were ~0.036 and ~16.6%, respectively, and with ~96.6% collocations falling within the EE envelope.
These results indicate that the new algorithm could retrieve AOD with high accuracy and stability.
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Table 6. Comparisons of retrieval accuracy between the new algorithm (New) and Terra-MODIS C6

DB product (DB).
si Count R Absolute Error Relative Error (%) r (%)
ite New DB New DB New DB New DB New DB
Dahuangshan 32 29 0.928 0.774 0.037 0.047 13.9 17.4 96.9 90.6
Wucaiwan 26 24 0.918 0.931 0.025 0.023 16.7 15.7 96.2 96.2
Total 58 53 0.928 0.871 0.032 0.036 15.1 16.6 96.6 92.5

r is the percentage falling within the expected error (EE) of the collocations.

Figure 8 shows the scatter plots of the satellite-retrieved AOD against those obtained from the
ground-based sunphotometer during the study period. Figure 8a is the results of the proposed
algorithm. Figure 8b is the scatter plots of MODIS DB AOD at 10 km resolution against ground-based
measurements. Figure 8c is the result of retrieved AOD without angle normalization, which used the
same pre-calculated MLSR database as Figure 8a. It is evident that the new algorithm retrievals have
the highest percentage within EE (~96.6%), highest correlations with AERONET AOD measurements
(R =~0.928) and smallest RMSE (~0.042) and MAE (~0.032). The AOD from MODIS DB was also highly
correlated (R = 0.871), and the RMSE was 0.050 and MAE was 0.036. Nearly 92.5% of the collections fell
within the EE envelope. Notably, the retrieved AOD values from new algorithm were close to the 1:1
line (slope = ~0.795, intercept = ~0.037), whereas the DB AODs were far from the line (slope = ~0.747,
intercept = ~0.041). The retrieved AOD form without angle normalization has relatively low accuracy,
with R = ~0.906, RMSE = ~0.055, and MAE = ~0.041. Only nearly 89.6% of the collocations fell within
the EE envelope. This implies that angle normalization can improve the retrieval accuracy and is
necessary for the AOD retrieval.
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Figure 8. Validation of retrieved AOD from the (a) new algorithm (500 m), (b) MOD04 C6 DB algorithm
(10 km), and (c) the new algorithm without angle normalization (500 m) against the ground-based
sunphotometer AOD measurements. The black dashed lines are the EE lines, the black solid lines are
the 1:1 line and red solid lines are the regression lines.

4.3. Uncertainty Analysis

Errors in AOD retrieval are attributed to several factors, including surface reflectance estimation
and the aerosol model [46]. In this study, we assumed the change in surface reflectance within a few
days to be negligible and thus determined the surface reflectance from the MLSR database and BRDF
correction model. Changes in land cover doubtlessly lead to some errors in determining the true
reflectance. Studies by Kaufman et al. show that errors of about 0.01 in assumed surface reflectance
lead to errors on the order of 0.1 in AOD retrieval [47]. The land cover in Xinjiang has a strong seasonal
cycle; most of the area is covered by sparse and dry vegetation between March and October, and
snow is frequent in winter [48]. Figure 9a,b shows the variations in surface reflectance in the blue
band around the two sites from MODIS data during the same month in different years. As shown in

119



Remote Sens. 2018, 10, 197

Figure 9, the yearly variation in the same month was small and mainly in a range of 0.01, except for
winter. The surface reflectance exhibited a stable variation during April to October, with an absolute
difference value of £0.01. However, the surface reflectance decreased by almost 0.35 from February
to March; and increased by 0.40 from October to November. Such a variation is related to the snow
melting and accumulation in March and November, respectively. In addition, due to the differences in
snowfall in different years, the change in surface reflectance in winter is more obvious than in other
seasons. Thus, it is not appropriate to determine surface reflectance through the MLSR database from
November to February.
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Figure 9. The variation of surface reflectance during the same month in different years near the ground
sites. (a) Dahuangshan; (b) Wucaiwan. The error bars represent the maximum absolute error compared
with the average value for 5 years.

5. Conclusions

In this study, a modified aerosol retrieval algorithm was proposed for retrieving AOD over
the arid/semiarid region of northern Xinjiang from MODIS data at 500 m spatial resolution.
The assumptions in this algorithm are as follows: the variation in surface reflectance is small over a
month, and single scattering albedo (SSA) and asymmetry factors (g) are regionally constant for a few
days. The MODIS surface reflectance products (MOD09A1) were used to determine the surface
reflectance, and a LUT was constructed based on the 65V RTM, which uses SSA and g values
from ground-based measurements. The retrieved AOD values were validated by ground-based
sunphotometer observations in two sites and compared with the MODIS DB AOD products. The results
show that the new algorithm accurately retrieved aerosol AOD over the arid/semiarid region of
northern Xinjiang, and the retrieved aerosol distribution contained more spatial details and variability
than that of the DB AOD products. In this study, a BRDF correction model was applied to reduce the
effect of surface reflectance anisotropy in AOD retrieval; thus, the retrieval ability is improved especially
over the area with obvious surface bidirectional reflectance characteristics. However, according to
the uncertainty analysis, the proposed algorithm has some limitations that should be improved:
(1) Errors may occur by using constant values of SSA and g for the day of retrieval; (2) the MLSR
database approach was sometimes found to be unsuccessful over snow surfaces, particularly when
seasonal changes are significant, such as the snow melting in March and accumulation in November,
respectively; (3) the BRDF correction only considered the mean values of anisotropy shape factors;
thus, it ignored the variation of BRDF shape within the categories of land surface. These limitations
will be explored in our future studies.
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Abstract: Downward shortwave radiation (DSR) is an essential parameter in the terrestrial radiation
budget and a necessary input for models of land-surface processes. Although several radiation
products using satellite observations have been released, coarse spatial resolution and low accuracy
limited their application. It is important to develop robust and accurate retrieval methods with
higher spatial resolution. Machine learning methods may be powerful candidates for estimating
the DSR from remotely sensed data because of their ability to perform adaptive, nonlinear data
fitting. In this study, the gradient boosting regression tree (GBRT) was employed to retrieve DSR
measurements with the ground observation data in China collected from the China Meteorological
Administration (CMA) Meteorological Information Center and the satellite observations from the
Advanced Very High Resolution Radiometer (AVHRR) at a spatial resolution of 5 km. The validation
results of the DSR estimates based on the GBRT method in China at a daily time scale for clear sky
conditions show an R? value of 0.82 and a root mean square error (RMSE) value of 27.71 W-m 2
(38.38%). These values are 0.64 and 42.97 W-m~2 (34.57%), respectively, for cloudy sky conditions.
The monthly DSR estimates were also evaluated using ground measurements. The monthly DSR
estimates have an overall R? value of 0.92 and an RMSE of 15.40 W-m~2 (12.93%). Comparison of
the DSR estimates with the reanalyzed and retrieved DSR measurements from satellite observations
showed that the estimated DSR is reasonably accurate but has a higher spatial resolution. Moreover,
the proposed GBRT method has good scalability and is easy to apply to other parameter inversion
problems by changing the parameters and training data.

Keywords: downward shortwave radiation; machine learning; gradient boosting regression tree;
AVHRR; CMA

1. Introduction

Downward shortwave radiation (DSR) is a key parameter in the land-atmosphere interaction,
which largely controls human life and ecosystems due to its important role in energy cycles [1,2],
the hydrological cycle [3,4], the carbon cycles [5,6], and solar energy utilizations [7-13]. Therefore,
knowledge of DSR is essential for improving our understanding of the Earth’s climate and potential
climatic changes [14]. A number of gridded global DSR products exist from remote sensing, reanalysis,
and general circulation models (GCMs). Satellite remote sensing is one of the most practical ways to
derive DSR measurements with relatively higher spatial resolution and accuracy.

Currently, DSR data can be obtained in three ways. The first is through collection from ground
measurements. This method is characterized by high precision and uneven geographic distribution.
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The second is estimation from reanalysis data and simulations from GCMs, which have relatively low
spatial resolution and accuracy [15-17]. Examples include the ERA-Interim provided by European
Center for Medium-Range Weather Forecast (ECMWFE), the Japanese 55-year Reanalysis (JRA-55)
provided by Japan Meteorological Agency, and the Modern-Era Retrospective analysis for Research and
Applications (MERRA) reanalysis dataset provided by NASA. The third way is retrieval from remote
sensing data [18-20], which can provide spatio-temporal continuous DSR estimates with relatively
higher precision. Commonly used remote sensing datasets of surface solar radiance include the
Global Energy and Water Cycle Experiment-Surface Radiation Budget (GEWEX-SRB), the International
Satellite Cloud Climatology Project-Flux Data (ISCCP-FD), the University of Maryland-Shortwave
Radiation Budget (UMD-SRB), and the Earth’s Radiant Energy System (CERES). Each type of DSR data
from a different source has advantages and limitations: the ground measurements provide accurate but
sparse spatial coverage, whereas products from the two other methods may have larger uncertainties.
The ground measurements are always used to evaluate the other two types of DSR estimates. GCMs are
widely believed to have an advantage in simulating global scale climate changes [21]. A reanalysis
product is a combination of a model and measurements. It uses observations to constrain the dynamic
model to optimize complete coverage and accuracy [22]. DSR retrievals from remote sensing data
always have a relatively higher accuracy than those from reanalysis data and simulations from GCMs.
These DSR products have been widely evaluated using ground measurements [23-26]. For example,
Zhang et al. [26] evaluated four current representative existing remote sensing products using 1151
sites from the Global Energy Balance Archive and the China Meteorological Administration (CMA).
The results implied that DSR estimates from remotely sensed data were more accurate than those
acquired from reanalysis and simulations from GCMs. The maximum spatial resolution of these
four products is 0.5°, and the temporal resolution is thrice-hourly. Although the current global
radiation products have finer temporal resolution, they have lower spatial resolutions, which limit
their application [27]. Therefore, it is still necessary to generate higher spatial resolution DSR estimates
using satellite observation.

Several algorithms have been developed for retrieving DSR measurements. The first way is to
estimate DSR based on statistical models [28-33]. Perez et al. [31] developed a simple solar radiation
forecast model using sky cover predictions. Yang et al. [32] used a hybrid model with CMA routine
data to estimate DSR, and the validation results of this proposed model against ground measurements
collected in Tibetan Plateau were better than satellite estimations from existing satellite products.
Wang et al. [33] used a statistical model to establish the relationship between top of atmosphere
(TOA) reflectance and net surface shortwave radiation using multiple regression and revised methods,
and they then compared the precision of these methods using various parameters. Empirical statistical
models usually construct a regression model directly using observed data and measured DSR values.
These models are easy to apply but are disadvantaged by their lack of universality; the relationship
established in a particular atmospheric condition or region may not be applicable in another area.
The second method to retrieve DSR measurements is to estimate them based on parametric physical
modeling methods [34-39]. Li et al. [37] proposed a parameterized model in which the normalized
net surface shortwave radiation flux of the top incident irradiance of the atmosphere was used to
establish a parametric relationship with the planetary albedo. Qin et al. [38] used satellite atmospheric
and land products—including ozone thickness, precipitable water, aerosol loading, cloud water path,
clouds effective particle radius, cloud fraction, and ground surface albedo—to establish a physically
based parameterization model. They then used the model to estimate surface solar irradiance with
a mean RMSE of approximately 100 W/m? and 35 W/m? on an instantaneous and daily mean
basis, respectively. Lépez et al. [39] proposed a new, simple parametric physical model to estimate
global solar radiance under cloudy sky conditions. These methods often construct a physical model
by simulating direct interaction between solar radiation and the atmosphere. This requires many
parameters (e.g., aerosol optical depth, surface albedo, and moisture). It is obvious that model accuracy
depends on these parameters.
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Machine learning methods, which learn the relationship between inputs and outputs by fitting
a flexible model directly from the data, are some of the most widely used methods to estimate
DSR [40-45]. Wang [43] proposed a method try to derive DSR measurements using Moderate
Resolution Imaging Spectroradiometer (MODIS) data (e.g., atmospheric profile product and surface
reflectance) based on an artificial neural network (ANN) model. The validation results against ground
measurements showed that the maximum root mean square error (RMSE) was less than 45 W-m~2,
Qin et al. [44] used an ANN-based method to establish the relationship between the measured monthly
mean of daily global solar radiation levels and available remote sensing products with the aim of
estimating global solar radiation. Zhou et al. [45] suggested that the Random Forest (RF) model
was another feasible way to estimate DSR using satellite observations. These machine learning
methods have their own advantages and disadvantages. For example, the attractiveness of an ANN
is nonlinearity and high parallelism [46], and the RF cannot extrapolate beyond the training data
and may not interpret well for conditions with few samples [47]. Although machine learning may
provide powerful methods for estimating DSR from remote sensing data due to their ability to perform
adaptive and nonlinear data fitting [48-50], the accuracy of the results is limited and many machine
learning methods are prone to the phenomenon of overfitting. This can be avoid by using the gradient
boosting regression tree (GBRT) method [51]. In addition, the GBRT can efficiently provide high
accuracy. However, it has not been widely used for estimating DSR.

The objective of this study is to use a machine learning method, the GBRT, to obtain high accuracy
DSR estimates from remote sensing and surface observed data under both clear and cloudy sky
conditions in China. Moreover, this study aims to compare the DSR estimates from the GBRT with
estimated values from classical ANN and existing remote sensing and reanalysis data.

The paper is organized as follows: Section 2 provides a brief introduction to the ground
measurement and remote sensing data used. Section 2 also describes the methods used. Section 3
presents the results and an analysis. The conclusions are presented in Section 4.

2. Materials and Methods
2.1. Materials

2.1.1. Ground Measurements

The measurements of daily DSR used in this study were supplied by the CMA Meteorological
Information Center. DSR was first measured in 1957, and its measurement was gradually collected
at a total of 122 stations. However, the measurement at some stations have stopped sometime in
the past. In 1994, there were 96 stations remaining to measure DSR. Quality control of the CMA
DSR data was performed before the release; this included a spatial and temporal consistency check
and manual inspection and correction [52]. Previous studies showed that the systematic errors in
radiation measurements due to technical failure and operation-related problems are not rare [53,54].
Hence, a critical quality control procedure was performed to the ground measurements from the CMA
before they were used in this study. The procedure is as described by Zhang [26]. Figure 1 shows
the geographical distributions of the sites from the CMA. For more detailed information about the
radiation data, it is possible to refer to the data description at the website http://data.cma.cn/.

This study used the daily DSR data collected from 96 radiation stations in China from 2001 to
2003. The daily DSR data from 2001 and 2002 were used to train the models, and the daily DSR data
from 2003 was used to validate the model.
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Figure 1. Spatial distribution of the radiation sites provided by the China Meteorological
Administration (CMA) Meteorological Information Center.

2.1.2. Satellite Data

The National Oceanic and Atmospheric Administration (NOAA) Climate Data Records (CDR) of
Visible and Near Infrared Reflectance from the Advanced Very High Resolution Radiometer (AVHRR)
and the NASA Langley Research Center (LaRC) Cloud and Clear Sky Radiation Properties dataset
were used in the paper. The two satellite datasets are from the Advanced Very High Resolution
Radiometer (AVHRR) Global Area Coverage (GAC) Level 1B data, which has been quality controlled.
These were taken from the NOAA-16 sun-synchronous orbit satellite observations provided by the
NOAA CDR program. The NASA LaRC Cloud and Clear Sky Radiation Properties dataset is generated
using the CERES Cloud Mask and Cloud Property Retrieval System (CCPRS) [55]. The NOAA CDR of
Visible and Near Infrared Reflectance from AVHRR was calibrated by a multiple invariant Earth target
calibration approach [56,57]. The NASA LaRC Cloud and Clear Sky Radiation Properties dataset was
generated using algorithms initially designed for application to the Tropical Rainfall Measurement
Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery within the
NASA Clouds and the Earth’s Radiant Energy System (CERES) program [58]. The spatial and temporal
resolution of the dataset is about 4 km at the nadir and one day, respectively. Variables of the radiation
properties dataset include cloud and clear sky pixel detection, cloud optical depth, cloud particle
effective radius, land and sea surface temperature retrieval, shortwave broadband albedo, etc. [58].
Two variables including the calibrated 0.63 micron channel reflectance (channel 1) and the calibrated
0.86 micron channel reflectance (channel 2) were utilized for DSR estimation in this study [59]. Table 1
lists the corresponding information extracted from the AVHRR dataset used in this study.
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Table 1. Input settings of the GBRT-based downward shortwave radiation (DSR) clear and cloudy

sky models.
Inputs Data Model Unit Range
Solar zenith angle Clear and cloudy sky Degrees 0-180
Viewing zenith angle Clear and cloudy sky Degrees 0-90
Relative azimuth angle Clear and cloudy sky Degrees 0-180
Top of atmosphere shortwave broadband albedo Clear and cloudy sky N/A 0-1.5
Reflectance of channel 1 and 2 of AVHRR Clear and cloudy sky Percent 0-12.5
Brightness temperature of channel 4 and 5 of AVHRR  Clear and cloudy sky =~ Degrees/Kelvins  160-340
Cloud optical depth Cloudy sky N/A 0-150
Cloud mask Clear and cloudy sky N/A 0-1

2.1.3. DSR Products

The two DSR products, the MERRA and the GEWEX-SRB DSR, were used in the paper.
The MERRA product is a second reanalysis project from NASA for the satellite era (i.e., from
1979 to the present) using an updated new version of the Goddard Earth Observing System Data
Assimilation System Version 5 (GEOS-5) [60]. The spatial resolution of the daily MERRA DSR estimate
is 0.5° x 0.667°. The GEWEX-SRB radiation product from remotely sensed data used here was from
the NASA/GEWEX-SRB shortwave version 3.0. The primary inputs to produce the data include
shortwave and longwave radiances derived from International Satellite Cloud Climatology Project
(ISCCP) pixel-level (DX) data, cloud and surface properties derived from the same source, temperature
and moisture profiles, etc. [61]. The GEWEX-SRB DSR product was provided with a temporal resolution
of 1 day and a spatial resolution of 1° from July 1983 to December 2008.

2.2. Methods

2.2.1. Gradient Boosting Regression Tree

The GBRT is a powerful, advanced statistical method widely used in classification and prediction.
Because it does not require making assumptions on the data, it is extensively used in certain fields,
such as in the optimization of recommendation systems [62,63], visual tracking algorithms [64],
and traffic systems [65-68]. The attractiveness of GBRT comes from its ability to deal with the uneven
distribution of data attributes, its lack of limitation for any hypothesis of input data, its better predictive
capacity than a single decision tree, its power to deal with larger data size, and its transparency in
terms of model development.

The GBRT produces competitive, highly robust, and interpretable procedures for both regression
and classification. This was a method first proposed by Friedeman [51]. The core idea of this model
is to generate a strong classifier by constructing an M amount of different weak classifiers through
multiple iterations in order to reach the final combination. Each iteration is designed to improve the
previous result by reducing the residuals of the previous model and establishing a new combination
model in the gradient direction of the residual reduction. To describe the accuracy of the model, a loss
function defined as L(y, F) is introduced. The frequently employed loss functions include squared-error
and absolute error [51]. Suppose that {x;, yi}f\i ; is the training sample. The x represents explanatory
variables. The y represents the response variable. N is the number of the training sample. Let the
M different individual decisions trees be represented by {h(x; txi)}f\i 1, wWhich is the parameterized
function of the explanatory variables x and is characterized by & = {a }WAf:l, B is the weight of each
classifier, and « is the classifier parameter. Each tree divides the input space into the number of
independent areas numbered ], as in Ry, - .. , Rj. Each Rj, has a corresponding predicted value 7.
If the x-value is in the area Rj;,, it means x€ R;;, and the constant I equals 1. However, the constant
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I'=0. Hence, the function (F(x)), which is an approximation function of the response variable. It can be
written as follows:

M
F(x) = Z ﬁmh (x;fxm)

m=1

]
h(x; 0m) = jgl Yjml (x € Rjy), where I = 1if x € Rjy; I = 0, otherwise

The general process of GBRT shown in Figure 2 and more detail of GBRT can be find in
Hastie et al. [69] and Ridgeway [70].

1. Tnitialize () to be a constant, F;,(x)=arg min,, Z;:L(yi ,P) -

2. Form=1to M do:
For i =1toNdo:

3. Compute the negative gradient
5 = _{all(y, F(x, »}
or (xi) F(x)=F,y (x-1)

4. End;
5. Fit a regression tree h(x; 0-’m) to predict the targets 7, from covariates X, for all
training data.

6. The ¢, canbe obtained as followed:

v
o, =argmin,, , > [7, —Bh(x;0, )]2

i=1

7. Compute a gradient descent step size as:
N
p, =argmin, Y L(y,F, ,(x)+ ph(x;0,,))
i=1

8. Update the model as :

End

Output the final model F,(x)

Figure 2. The main procedures of the gradient boosting regression tree (GBRT) method.

The GBRT model can be constructed in three steps: (1) the preparation of the training database,
(2) the architecture design and training phase, and (3) the application of the GBRT method. The next
step is then to divide the data into clear sky and cloudy sky conditions according to the NOAA CDR
of cloud mask data. If the pixel was marked as “cloud” by AVHRR data, it means it is under cloudy
conditions. Otherwise, there is clear sky conditions. The GBRT-based DSR clear and cloudy sky model
were trained using cloud mask data provided by the AVHRR data.

The performance of the DSR estimates was tested using the holdout method, which is a simple
type of cross-validation. The dataset was randomly stratified into two groups, with 80% made part of
the training dataset and 20% made part of the testing dataset. The main procedures are as follows.
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Extracting the TOA radiance from the NOAA CDR of Visible and Near Infrared Reflectance
from AVHRR;

Extracting the cloud properties from the NASA LaRC Cloud and Clear Sky Radiation
Properties dataset;

Training the clear and cloudy sky models. The inputs of the clear sky model include the solar
zenith angle, viewing zenith angle, relative Azimuth angle, TOA shortwave broadband albedo,
reflectance (from channel 1 and 2) of AVHRR, and the brightness temperature (from channel 4
and 5) of AVHRR. The input of the cloudy sky model used the same input variables as the clear
sky model and cloud optical depth;

Configuring the model coefficients. The optimal parameterization scheme was determined by
looping in each parameter threshold. Table 2 shows the parameter setting details to determine the
optimal parameterization for both the clear sky and cloudy sky conditions through the evaluation
results (highest R? value and lowest bias and RMSE values) of the testing dataset for each loop;
Evaluating against the ground measurements.

Figure 3 shows the flowchart of the proposed GBRT model used in this study.

Table 2. Parameters setting to determine the optimal parameters for the GBRT model.

Parameters Threshold Intervals
The number of iterations 50-300 50
Shrinkage 0.1-1 0.3
The depth of the tree 6-9 1
Sampling rate 0.2-1 0.2

Ground Solar/View TOA Cloud
measurements geometries reflectance propterises

Generating
dataset

l

Training dataset

Cloud
detection

Validation dataset

k.

GBRT-based DSR GBRT-based DSR
clear sky model cloudy sky model
Testing model

Figure 3. Flowchart of the GBRT method.

2.2.2. Artificial Neural Networks

ANNS s are used as an empirical statistical method in a variety of applications such as classification,

pattern recognition, forecasting, optimization, etc. [71-73]. An ANN model can be any model in which
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the output variables are computed from the input variables using compositions or connections of
basic functions. In this research, a feedforward backpropagation neural network consisting of several
layers of neurons was used. A neuron is a simplified mathematical model of a biological neuron, and a
connection is a unique information transport link from a sending to a receiving neuron. Figure 4 shows
a structural diagram of the ANN used in this study. The ANN model used here consists of three layers
of neurons: input layers, hidden layers, and an output layer. Input {x J'};'nzl is transmitted through a

connection that multiplies its strength by a weight represented by {w,-j}:.‘:l. This gives the value x;w;;,
which is an argument to a transfer function f that yields an output y;.

yi = f()_ wijx)) 2
=

where i is the index of neuron in the hidden layer and j is the index of inputs to the neural network.
A typical feedforward network trained with a resilient backpropagation algorithm [74,75] is employed
to estimate DSR in this paper.

Input layer Hidden layer Qutput layer

Figure 4. Artificial neural network (ANN) structure used in this study.

2.3. Constructing the Model

According to the characteristic variables in Table 1, corresponding data was extracted to establish
the training dataset. Daily observed data from the CMA Meteorological Information Center from 2001
and 2002 were used as the response values (true values) of the training dataset. Information from the
AVHRR cloudy and clear sky pixel detection was used to divide the training dataset into a cloudy sky
training dataset and a clear sky training dataset. In addition, the missing values were removed both
from the training and validation dataset.

2.3.1. Constructing the GBRT-Based DSR Model

The key step in building an efficient GBRT model is finding the optimal architecture. Building
the GBRT model in a stage-wise fashion and regenerating the model minimizes the expected value of
a certain loss function. After adding many trees to the model, the fitted model should have a small
training error. However, it is important to remember that the generalization ability does not improve in
direct proportion with the size of the fitted model; if the model is overfitted and possesses an extremely
small error with the training dataset, its generalization ability will be poor. The performance of the
GBRT model is influence by these four parameters as follows: the number of iterations, shrinkage,
the depth of the tree, and the sampling rate [63]. As the number of iterations increases, model
complexity will also increase, leading to poor prediction performance on the test dataset. Determining
the appropriate number of iterations is essential to minimize future risks in prediction. Overfitting
can be avoided by limiting the number of iterations and reducing the contribution of each tree. This
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is also known as shrinkage (or learning rate). There is a tradeoff between the number of iterations
and the learning rate. A lower learning rate value means that the model is more robust but has a
slower computing speed. The size of each tree is called the depth of the tree. The depth of the tree
refers to the number of nodes in a tree. This parameter depends on the number of data points and the
characteristic variables of the data. In theory, if the value of this parameter is too large, the model will
run at a slower rate. The sampling rate is the ratio of the subsample to the total number of training
instances. When set to 0.5, it means that the model randomly collected half the data instances to grow
trees. This will prevent overfitting. This procedure should be used with adjusting the learning rate
and the number of iterations.

In the present case, successive performance testing showed that an architecture of 250 trees with a
tree depth of 6, a sampling rate of 0.6, and a learning rate of 0.1 was optimal to estimate the DSR under
clear sky conditions. These values are 250, 6, 0.8, and 0.1, respectively, under cloudy sky conditions.

Considering that cloud optical depth is related to DSR under cloudy sky conditions, the cloud
optical depth was chosen as the input data for the cloudy sky model. This was different from the input
data used for the clear sky model. Table 1 shows the input data of the GBRT-based DSR model under
clear sky and cloudy sky conditions. The debugging procedure for key parameters such as the number
of trees, the size of each tree, the learning rate, and the subsample ratio was described earlier.

2.3.2. Constructing the ANN-Based DSR Model

The ANN training databases in this study were the same as those used in the GBRT model.
The architecture is mainly defined by the number of layers, the number of neurons in each layer, and the
transition function associated with each neuron. As for other parameters (e.g., initial weighting), details
of these will not be shown in this paper. In the present case, successive performance testing has shown
that an architecture with one hidden layer is sufficient to estimate DSR. The number of nodes in
the input layer was set to nine nodes, and the number of nodes in the output layer was set to one.
After testing, the number of the nodes in the hidden layer was 12 under clear sky conditions and 14
under cloudy sky conditions. The transfer function of the hidden layer was a tan-sigmoid transfer
function, and those of the other two layers were linear functions under both clear sky and cloudy sky
conditions. Theoretically, various sets of functions such as step, linear, and no linear functions could
be used as the transfer function of different layers. However, the tan-sigmoid (for the hidden layer)
and linear (for the input and output layers) types were most commonly used in the literature [71].

3. Results and Analysis

The estimated daily and monthly mean DSR based on the GBRT method were not only evaluated
against ground measurements but also compared with the evaluation results from those estimated
from the ANN-based DSR model. Additionally, the estimated DSR values were also compared with
current existing DSR products from the GEWEX-SRB and the MERRA. The validation results were
shown in terms of bias, RMSE, and correlation coefficient (R?).

3.1. Validation with Ground Measurements

3.1.1. Validation at a Daily Time Scale

The ground measurements at the selected 96 stations collected from CMA in 2003 were compared
to the grid points of the estimated DSR based on the GBRT method. The performance of the GBRT-based
DSR clear sky model using the training dataset and the validation dataset is shown in Figure 5.
As shown in Figure 5, the daily estimated DSR correlates well with ground measurements under
clear sky conditions. The daily DSR estimates under the clear sky conditions for the training dataset
have an overall RMSE value of 19.05 W-m~2 (19.06%), a bias value of 0.00 W-m~2 (2.41%), and an R?
value of 0.92. These values were 27.71 W-m~2 (38.38%), —2.53 W-m 2 (1.37%), and 0.82, respectively,
for the validation dataset. The validation results at a daily time scale demonstrate that the GBRT is
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a practically applicable and effective method for estimating DSR under clear sky conditions using
satellite observations from AVHRR data.
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Figure 5. (a) Evaluation results of the training set’s daily estimated DSR based on the GBRT-based clear
sky model against ground measurements in 2001 and 2002. (b) Evaluation results of the validation
set’s daily estimated DSR based on the GBRT-based clear sky model against ground measurements in
2003. The number in the parentheses is the percent bias or root mean square error (RMSE) value.

Figure 6 presents the evaluation results of the GBRT-based DSR cloudy sky model using the
training dataset and the validation dataset. The daily DSR estimates for the training dataset under the
cloudy sky conditions have an overall RMSE value of 33.37 W-m~2 (30.21%), an R? value of 0.79, and a
bias value of 0.01 W-m~2 (4.74%). These values for the validation dataset were 42.97 W-m~2 (34.57%),
0.64, and —2.83 W-m~2 (1.45%), respectively. The accuracy was slightly lower than that of the clear
sky model, which may be related to the influence of clouds [76].
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Figure 6. (a) Evaluation results of the training set’s daily estimated DSR based on the GBRT-based
cloudy sky model against ground measurements in 2001 and 2002. (b) Evaluation results of the
validation set’s daily estimated DSR based on the GBRT-based cloudy sky model against ground
measurements in 2003. The number in the parentheses is the percent bias or RMSE value.

When building the models for DSR estimation, we found that channel 4 and 5 influence the
model accuracy. Figures 7 and 8 show a comparison of the evaluation results without considering
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AVHRR channels 4 and 5 under clear and cloudy sky conditions, respectively. As shown in Figure 7,
the daily DSR estimates without considering these two channels under clear sky conditions of the
training dataset have an overall RMSE value of 26.52 W-m~2 (23.93%), a bias value of —0.26 W-m 2
(3.25%), and an R? value of 0.85. It can be concluded that the clear sky model yields higher accuracy if
AVHRR channels 4 and 5 are considered. Similar results were also found under cloudy sky conditions.
The daily DSR estimates without considering these two channels under cloudy sky conditions of the
training dataset have an overall RMSE value of 37.52 W-m~?2 (31.86%), a bias value of 0.16 W-m 2
(4.66%), and an R? value of 0.73. A potential reason for this may be the total atmospheric water vapor
effect on DSR estimation, which may be to cause large uncertainties. Previous studies showed that
AVHRR channels 4 and 5 have been widely used to retrieve the total atmospheric water vapor [77,78].
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Figure 7. Validation results of the estimated daily DSR based on the GBRT model under clear sky
conditions without considering Advanced Very High Resolution Radiometer (AVHRR) channels 4 and
5 as the input variables. The number in the parentheses is the percent bias or RMSE value.
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Figure 8. Validation results of the estimated daily DSR based on the GBRT model without considering
AVHRR channels 4 and 5 as the input variables under cloudy sky conditions. The number in the
parentheses is the percent bias or RMSE value.
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3.1.2. Validation at a Monthly Time Scale

To further show the relative accuracy of the GBRT method, we also validated the estimated
DSR at a monthly time scale. To perform the comparison, monthly DSR estimates were obtained by
averaging the daily DSR data of each month. Figure 9 shows the evaluation results of the training
dataset and validation dataset based on the GBRT model of 2003 at a monthly time scale. The monthly
estimated DSR of the training dataset has an overall RMSE value of 14.22 W-m~2 (12.50%), a bias
value of —0.30 W-m~2 (2.04%), and an R? value of 0.94. These values were 15.40 W-m~2 (12.93%),
—2.25 W-m~2 (1.01%), and 0.92, respectively, for the validation dataset. Like the validation results
at a daily time scale, the validation results at a monthly time scale showed that the GBRT model is
reasonably accurate.
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Figure 9. (a) Evaluation results of the training set’s estimated monthly mean DSR based on the
GBRT-based DSR model against ground measurements in 2001 and 2002. (b) Evaluation results of the
validation set’s estimated monthly mean DSR based on the GBRT-based DSR model against ground
measurements in 2003. The number in the parentheses is the percent bias or RMSE value.

3.2. Comparison with the ANN-Based Method

3.2.1. Validation at a Daily Time Scale

Figure 10a,b shows the evaluation results of the estimated daily DSR of the training and the
validation dataset based on the ANN-based DSR model under clear sky and cloudy sky conditions.
The daily DSR estimates based on the ANN-based clear sky model of the training dataset have an
overall RMSE value of 26.53 W-m~2 (41.84%) and a bias value of —0.09 W-m~2 (0%). These values were
27.15 W-m~2 (46.07%) and —3.67 W-m~2 (1.60%), respectively, for the validation dataset. Although the
RMSE of the estimated daily DSR of the validation dataset was slightly lower than that of the GBRT
model, the mean absolute bias of the ANN-based model was 3.67 W-m~2 (1.60%), which is larger than
that of the GBRT model (2.53 W-m~2 (1.37%)) (Table 3). The evaluation results of the ANN-based
cloudy sky model are shown in Figure 11. The daily DSR estimates based on the training dataset’s
ANN cloudy sky DSR model have an overall RMSE value of 42.07 W-m~2 (33.99%) and a bias value of
0.17 W-m~2 (3.13%). These values were 42.39 W-m~2 (34.50%) and —4.35 W-m~2 (0.17%), respectively,
for the validation dataset. According to the comparison results shown in Figures 10 and 11 and Table 3,
it was clear that the predictive abilities of the GBRT model are better than the ANN model at a daily
time scale.
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Figure 10. (a) Evaluation results of the training dataset’s daily estimated DSR based on the ANN-based
clear sky model against ground measurements in 2001 and 2002. (b) Evaluation results of the validation
dataset’s daily estimated DSR based on the ANN-based clear sky model against ground measurements
in 2003. The number in the parentheses is the RMSE value.
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Figure 11. (a) Evaluation results of the training dataset’s daily estimated DSR based on the ANN-based
cloudy sky model against ground measurements in 2001 and 2002. (b) Evaluation results of the
validation dataset’s daily estimated DSR based on the ANN-based cloudy sky model against ground
measurements in 2003. The number in the parentheses is the percent bias or RMSE value.

Table 3. Comparison of the results of the ANN and GBRT models at a daily time scale (using
measurements from 2001 and 2002 as the training dataset and measurements from 2003 as the validation
dataset). The number in the parentheses is the percent bias or RMSE value.

Sky Condition Dataset Method R? RMSE (W-m~2) Bias (W-m~2)
Trainine set GBRT 0.92 19.05 (19.06%) 0 (2.41%)
& ANN 0.85 26.53 (41.84%) —0.09 (0%)
Clear sky

Validati GBRT 0.82 27.71 (38.38%) —2.53 (1.37%)
alidation set ANN 0.83 27.15 (46.07%) —3.67 (1.60%)

Training set GBRT 0.79 33.37 (30.21%) 0.01 (4.74%)

Cloudy sky ANN 0.66 42,07 (33.99%) 0.17 (3.13%)
Validati GBRT 0.64 42.97 (34.57%) —2.83 (1.45%)
alidationset  y\qy 0.65 42.39 (34.50%) —4.35 (0.17%)
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3.2.2. Validation at a Monthly Time Scale

Similar to what we did with the GBRT model, we also validated the estimated DSR at a monthly
time scale to further show the accuracy of the ANN method. To perform the comparison, monthly DSR
estimates were calculated by averaging the daily DSR of each month. Figure 12a shows the evaluation
results of the training dataset based on the ANN-based DSR model in 2003 at a monthly time scale.
The R? was 0.88, which was lower than that of GBRT model. The RMSE was 18.95 W-m~2 (15.81%)
larger than that of GBRT model. The evaluation results of the validation dataset’s monthly estimated
DSR based on the ANN-based DSR model is shown in Figure 12b. The R? was 0.87, and the RMSE was
20.05 W-m~2 (16.20%). As in the evaluation results at a daily time scale, it is obvious that the GBRT
model performs better than the ANN model at a monthly time scale.
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Figure 12. (a) Evaluation results of the training set’s estimated monthly mean DSR based on the
ANN-based DSR model against ground measurements in 2001 and 2002. (b) Evaluation results of the
validation set’s estimated monthly mean DSR based on the ANN-based DSR model against ground
measurements in 2003. The number in the parentheses is the percent bias or RMSE value.

Although the DSR estimates based on the GBRT model at both daily and monthly time scales were
relatively higher accuracy than those from the ANN-based model, the machine learning methods including
GBRT and ANN are sensitive to the choice of parameters. Therefore, the parameters chosen for these two
machine learning methods may influence the accuracy of the DSR estimates. In this study, the optimal
parameterization scheme was determined by looping in each parameter threshold. Advanced methods for
deriving the optimal parameters for both GBRT and ANN should be tested in the future.

3.3. Comparison with Existing DSR Products

3.3.1. Mapping DSR over China

To demonstrate the applicability of the GBRT-based DSR model for regional mapping, the surface
monthly mean DSR was estimated based on the GBRT method in the mainland of China in March
2003. Figure 13a shows the estimated results for monthly DSR in March 2003. The GEWEX-SRB and
MERRA monthly DSR for the same month are also shown in Figure 13b,c for comparison. According
to these three figures, it can be concluded that the spatial distribution of estimated DSR based on
the GBRT method is similar to that from the GEWEX-SRB. However, large discrepancies occurred in
the comparison with the MERRA. Moreover, the DSR estimates from the GBRT model provide more
details compared to the other two existing DSR products.

Figure 13d,e shows the differences between the monthly mean DSR estimates from the GBRT
model and those from the GEWEX-SRB and the MERRA, respectively. Before comparison, the DSR
estimates from the GBRT model and the MERRA were projected onto a 1° spatial resolution using
bilinear interpolation to match the resolution of the GEWEX-SRB data. As shown in the Figure 13, the
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differences between the GBRT-based DSR estimates and the GEWEX-SRB DSR product were smaller
than that between the GBRT-based DSR estimates and the MERRA DSR product. The maximum
differences between the GBRT-based DSR estimates and the GEWEX-SRB DSR product were found
in the Tibetan Plateau. The maximum differences between the GBRT-based DSR estimates and the
MERRA DSR product were found in southeast China, which were greater than 100 W-m~2 at some
areas. The large discrepancies in the Tibetan Plateau may be related to the high elevation of the area.
Yang et al. [32] pointed out that the discrepancies among the satellite products were always larger in
highly variable terrain and smaller for non-variable terrain. The large differences in southeast China
were probably due to inappropriate representation of aerosols and clouds, as well as their interactions
with the algorithms used for this region [79,80]. In this area, heavy pollution is occurring due to rapid
economic development and high population density. However, the DSR comparison of the GBRT
model and current existing products were only performed for one month. This may also cause large
uncertainties. Therefore, further investigations should be conducted for DSR estimation in the future if
long-term DSR estimates are generated based on the GBRT method.
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Figure 13. The spatial distribution of the DSR estimates from (a) the GBRT model, (b) the GEWEX-SRB,
and (c) the MERRA in March 2003. (d) The differences between monthly mean DSR estimates of the
GEWEX-SRB and the GBRT model (i.e., the GEWEX-SRB estimates minus the GBRT-based estimates)
in March 2003. (e) The differences between monthly mean DSR estimates of the MERRA and the GBRT
model (i.e., the MERRA estimates minus the GBRT-based estimates) in March 2003.
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3.3.2. Validation with Ground Measurements

To further show the accuracy of the DSR estimates based on the GBRT method, we also compared
the evaluation results of the GBRT-based daily estimated DSR against ground measurements from
CMA in 2003 with those of current existing DSR products from the GEWEX-SRB and the MERRA.
As shown in Figure 14, the daily estimated DSR based on the GBRT method correlates very well
with the ground measurements, with an RMSE value of 31.65 W-m~2 (21.34%) and a bias value of
0.86 W-m~2 (1.50%). These values were 40.82 W-m~2 (30.93%) and 27.39 W-m~2 (17.86%), respectively,
for the GEWEX-SRB-based estimates, and 74.2 W-m~2 (39.40%) and 57.27 W-m~2 (30.06%), respectively,
for the MERRA-based estimates. It was obvious that the evaluation results of the GBRT-based DSR
model were better than those of the other two products. However, the spatial representativeness of
ground measurements is a potential error source for DSR evaluation.
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Figure 14. Scatter plots comparing the results from (a) the GBRT-based DSR model, as well as the DSR
products (b) the Global Energy and Water Cycle Experiment-Surface Radiation Budget (GEWEX-SRB)
and (c) Modern-Era Retrospective analysis for Research and Applications (MERRA) against ground
measurements in 2003. The number in the parentheses is the percent bias or RMSE value.

As pointed out by Hakuba et al. [81], the monthly and annual mean representation error at the
surface sites with respect to their 1° surroundings are, on average, 3.7% (4 W-m~2) and 2% (3 W-m~—2),
respectively. The DSR estimates from the GBRT model and current existing radiation products have
different spatial resolutions. Therefore, the regional dependence of errors of coarse-resolution satellite
products for complex terrain may cause large discrepancies.

4. Conclusions

DSR is an essential parameter in the terrestrial radiation budget and a necessary input for
land-surface process models. Although several radiation products using satellite observations have
been released, their coarse spatial resolution and low accuracy limit their application. Therefore, high
spatio-temporal resolution and high accuracy DSR is still required for many applications. To achieve
this goal, a fast, accurate, and robust GBRT method that has the ability to handle different types of input
variables and model complex relations was developed to estimate DSR using satellite observations
from AVHRR.

The estimated DSR was evaluated using the ground measurements from CMA and was compared
with one remote sensing DSR product (the GEWEX-SRB) and one reanalysis DSR product (the MERRA).
The daily estimated DSR had an overall R? value of 0.82, an RMSE of 27.71 W-m—2 (38.38%), and a
bias of —2.53 W-m~2 (1.37%) under clear sky conditions, and an R? of 0.64, an RMSE of 42.97 W-m—2
(34.57%), and a bias of —2.83 W-m~2 (1.45%) under cloudy sky conditions. Comparison of the DSR
estimates with the reanalyzed and the retrieved DSR values from satellite observation showed that the
estimated DSR values are reasonably accurate but with higher spatial resolution. However, the DSR
comparison of the GBRT model and current existing products was only performed for one month,
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which may cause large uncertainties. Beside this, measurement errors (e.g., instrument sensitivity,
drift, and urbanization effects) and spatial representativeness of surface measurements are potential
sources of error in DSR estimation [81]. Therefore, further investigations should be conducted for DSR
estimation in the future if long-term DSR estimates are generated based on the GBRT method.

The strengths of GBRT are accuracy, speed, and robustness [51]. To show the advantages of GBRT,
an ANN model was built. The results were compared between the GBRT-based DSR model and the
ANN-based DSR model under clear and cloudy sky conditions, as shown in Section 3.2. The daily
validation analysis showed that the maximum RMSE for GBRT-based and ANN-based clear sky model
was less than 28 W-m~2, but the bias of the GBRT-based clear sky model (—2.53 W-m~—2) was less
than that of the ANN-based clear sky model (—3.67 W-m~2). Similar results were also found for the
cloudy sky model. The ANN has two known disadvantages: it needs a relatively long processing
time to train a model with many input variables, and it behaves unpredictably when overestimation
occurs during the training stage [82]. In contrast, the GBRT was evaluated as a promising machine
learning approach in terms of processing speed and accuracy. All experiments were conducted on
a Windows 7 Intel(R) Core(TM) i7-6700 CPU, 3.4 GHz, 20.00 GB RAM processor. The means for the
elapsed time of completion of the GBRT clear sky model and the GBRT cloudy sky model were within
10 seconds. Therefore, we conclude that the GBRT method performs better than the ANN method for
DSR estimation in this study. As it is well known, the mechanisms of machine learning methods are
often considered to be black boxes, and the training procedure is sensitive to the choice of parameters.
These limitations may influence the accuracy of the DSR estimates.

The contributions of this study demonstrate that the GBRT is efficient and practical for estimating
DSR using remote sensing and ground observation data. Simultaneously, this method has a very good
development procedure for defining training data and generating parameters. The method also has
more extensive applicability than other current methods. The proposed GBRT-based method can also
be used for the retrieval of other land surface variables.
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Abstract: Incoming surface solar irradiance (SSI) is essential for calculating Earth’s surface radiation
budget and is a key parameter for terrestrial ecological modeling and climate change research.
Remote sensing images from geostationary and polar-orbiting satellites provide an opportunity for
SSI estimation through directly retrieving atmospheric and land-surface parameters. This paper
presents a new scheme for estimating SSI from the visible and infrared channels of geostationary
meteorological and polar-orbiting satellite data. Aerosol optical thickness and cloud microphysical
parameters were retrieved from Geostationary Operational Environmental Satellite (GOES) system
images by interpolating lookup tables of clear and cloudy skies, respectively. SSI was estimated
using pre-calculated offline lookup tables with different atmospheric input data of clear and cloudy
skies. The lookup tables were created via the comprehensive radiative transfer model, Santa Barbara
Discrete Ordinate Radiative Transfer (SBDART), to balance computational efficiency and accuracy.
The atmospheric attenuation effects considered in our approach were water vapor absorption and
aerosol extinction for clear skies, while cloud parameters were the only atmospheric input for
cloudy-sky SSI estimation. The approach was validated using one-year pyranometer measurements
from seven stations in the SURFRAD (SURFace RADiation budget network). The results of the
comparison for 2012 showed that the estimated SSI agreed with ground measurements with
correlation coefficients of 0.94, 0.69, and 0.89 with a bias of 26.4 W/m?2, —5.9 W/m?, and 14.9 W/m?
for clear-sky, cloudy-sky, and all-sky conditions, respectively. The overall root mean square error
(RMSE) of instantaneous SSI was 80.0 W/m?2 (16.8%), 127.6 W /m?2 (55.1%), and 99.5 W/m? (25.5%)
for clear-sky, cloudy-sky (overcast sky and partly cloudy sky), and all-sky (clear-sky and cloudy-sky)
conditions, respectively. A comparison with other state-of-the-art studies suggests that our proposed
method can successfully estimate SSI with a maximum improvement of an RMSE of 24 W/m?.
The clear-sky SSI retrieval was sensitive to aerosol optical thickness, which was largely dependent
on the diurnal surface reflectance accuracy. Uncertainty in the pre-defined horizontal visibility for
‘clearest sky” will eventually lead to considerable SSI retrieval error. Compared to cloud effective
radius, the retrieval error of cloud optical thickness was a primary factor that determined the SSI
estimation accuracy for cloudy skies. Our proposed method can be used to estimate SSI for clear and
one-layer cloud sky, but is not suitable for multi-layer clouds overlap conditions as a lower-level cloud
cannot be detected by the optical sensor when a higher-level cloud has a higher optical thickness.

Keywords: surface solar irradiance; geostationary satellite; polar orbiting satellite; LUT method; SURFRAD
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1. Introduction

Surface Solar Irradiance (SSI) is commonly referred to as the amount of downward solar energy
incident to a horizontal surface, and is a major component of the surface energy balance that governs
the exchange processes of energy between Earth’s land surface and atmosphere [1,2]. SSI is required
by land-surface models, hydrological models, and ecological models to simulate land-atmosphere
interactions [3,4]. Accurate observation and estimation of global energy spatial-temporal distribution
is essential for climate change monitoring and forecasting [5].

A non-uniform spatial and temporal distribution of SSI has large effects on regional and global
climates. However, sparse networks of ground SSI measurements are insufficient for modeling
land-surface processes and Earth radiation budget research. Furthermore, fewer surface stations
are located in mountainous areas, yet SSI is highly dependent on topography and features larger
temporal and spatial variations than horizontal surfaces [6]. Numerous attempts have been made
at estimating SSI from satellite data on local or regional scales with multi-scale temporal resolutions
in order to overcome the limitations of in situ records [7-15]. Perez et al. (1997) demonstrated that
satellite-derived irradiation is more accurate compared to interpolation techniques obtained from
station measurements if the distance from the station exceeds 34 km for hourly irradiation and 50 km
for daily irradiances [16].

Global SSI datasets have been available since the 1990s at different spatiotemporal resolutions
based on multi-source remotely sensed data. These include the International Satellite Cloud
Climatology Project (ISCCP) [17], the Earth Radiation Budget Experiment (ERBE) [18], the National
Centers for Environmental Prediction and National Center for Atmospheric Research Reanalysis
Project [19], the Global Energy and Water Cycle Experiment Surface Radiation Budget (GEWEX-SRB),
the Clouds and the Earth’s Radiant Energy System (CERES) [20], Satellite Application Facility on
Climate Monitoring Solar Surface Radiation Heliosat (CM SAF SARAH) [21], and Global Land
Surface Satellite (GLASS) products [22]. The above satellites and their parameter-based meteorological
products provide long-term, multiple time-scale global SSI data, but are generally associated with
coarser spatial resolutions (e.g., >1°), excluding GLASS and CM SAF SARAH, which have a 5-km
resolution and bias estimation. The majority of these products cannot meet the requirements for
studying land-surface processes and fail to describe the spatial changes with sufficient accuracy due to
their coarse spatial resolutions [14]. Zhang et al. (2015) evaluated four products using 1151 ground
sites and found that SSI was generally overestimated by approximately 10 W/m?, while the averaged
global annual mean SSI from the ground-measured-calibrated value was 180.6 W/ m? [23]. Differences
range from 10 to 30 W/m?, with maximum discrepancies in areas of high cloud cover in the tropics
between the ISCCP and ERBE datasets [24]. These differences may be partly due to spatial resolution;
in fact, Pinker and Laszlo found an average difference of about 8-9% in daily surface irradiance when
adjusting the resolution from 8 to 50 km [25]. Another possible explanation for the bias found in these
products can be attributed to the cloud fractional cover and aerosol optical depth [6].

Satellite-based SSI products are useful for historical global SSI analysis, while the general
circulation model (GCM) and the numerical weather prediction (NWP) model can be used to estimate
SSI at timespans ranging from days to decades using projection scenarios of emissions and land use.
The errors obtained from NWP models are generally less than 50 W/m? or exceed 200 W/m? for
clear-sky and cloudy-sky conditions, respectively [26]. Lara-Fanego et al. (2012) found the forecast
errors produced by Weather Research and Forecasting (WRF) to be 2% under clear-sky conditions and
18% for cloudy skies [27]. Due to the coarse resolution of most WRF models and the GCM, detailed
cloud properties and Earth’s energy budget have not been clearly demonstrated. Accurately estimated
“kilometer-level” SSI datasets are necessary to overcome the limitations of cloud representations in the
climate model.

Besides “single point” ground observations and “kilometer-level” SSI datasets, SSI can be
directly retrieved using the relationship between SSI and the top-of-atmosphere (TOA) radiance
measured by satellite sensors [4,11,28] or indirectly retrieved through rigorous radiative transfer
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models (RTMs). However, RTMs are disadvantageous since they are generally time-consuming
and require a substantial amount of unavailable detailed atmospheric profile data, and are thus not
convenient for applications to large areas with a fine-resolution grid. Semi-empirical models have been
developed that contain meteorological variable inputs and feature a parameterized hybrid model with
simplified atmospheric transmittance. Some of these models include the pre-computed lookup tables
(LUT) method based on RTMs, which has a reduced computational time at the expense of accuracy.
These studies considered the extinction and absorption of solar radiation caused by aerosols, water
vapor (PW), ozone, and clouds [4,7,14,29].

SSI estimation under cloudy skies is much more complex compared to clear-sky models.
The performance of physical SSI models under cloudy skies is largely dominated by cloud
macrophysical and microphysical properties, such as cloud fractional cover (CFC), cloud optical
thickness (COT), and cloud effective particle radius (ER) with high variability in space and time [30,31].
The Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites
provides detailed and consistent atmospheric, terrestrial, and oceanic products, and studies have
been developed for SSI mapping from pairs of MODIS products [2,32]. Barzin et al. (2017) proposed
a combination of principal components analysis (PCA) and regression models for estimating daily
average downward solar radiation using MODIS data for ten synoptic stations in Fars Province, Iran,
with a root mean square error (RMSE) of 0.9-2.04 M]/ (m?-d) [33]. The largest uncertainties resulting
from SSI retrieval arise from inadequate information on cloud properties. Many studies have taken
advantage of the fine spatial resolution and higher temporal resolution (5-30 min) of geostationary
satellites to derive inhomogeneous and rapidly changing atmospheric parameters. The HELIOSAT
algorithm uses a simplified parameterization for cloud transmission, also denoted the cloud index,
derived from geostationary satellite measurements and a clear-sky model to calculate sky SSI [34].
Newly improved HELIOSAT-based models have been proposed [35]. An Artificial Neural Network
(ANN) can be used to predict SSI simulation from meteorological parameters and satellite images
using training data [12,36]. Few studies have focused on SSI estimation for different cloud phases
despite the thermodynamic effects of cloud processes being significantly different [14].

The bispectral solar reflectance method has been widely used for retrieving COT and ER from
passive satellite multispectral imagers [37]. It has been employed in cloud property retrieval for
MODIS [38], the Advanced Very High Resolution Radiometer (AVHRR) [39], and the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) [40]. However, the passive optical remote-sensing-based pixel-level
COT retrieval uncertainty will be larger than 10% for clouds having COT >70 (MODIS cloud optical
properties product Algorithm Theoretical Basis Document for collection 6, MOD06/MYD06-ATBD. See
details from https://modis-atmos.gsfc.nasa.gov/sites/default/files/Mod Atmo/C6MOD060PUser-
Guide.pdf). The millimeter-wavelength cloud-profiling radar (CPR) on CloudSat and the cloud-aerosol
lidar with orthogonal polarization (CALIOP) on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation (CALIPSO) provides an opportunity for detailing the structures of clouds, but the temporal
resolution of them is too low to monitor the rapid changes of clouds.

This paper presents a lookup-table-based method for all-sky SSI retrieval from combined
polar-orbiting and geostationary satellites with rapid retrieval of changing cloud micro-physical
properties. The cloud properties retrieval was based on an assumption of a homogeneous one-layer
cloud model, and the method is valid for pixels with a solar zenith angle less than 81.4 to better
match the “daylight” region as referenced by MOD06/MYDO06-ATBD. The SSI estimation approach we
proposed should be applicable to clear sky and cloudy sky having COT <70 with less COT retrieval
uncertainty as indicated by MOD06/MYD06-ATBD. This paper is organized as follows: Section 2
describes our method and the datasets used in our study to estimate SSI. Validation and a comparison
of the results are provided in Sections 3 and 4. Conclusions are provided in Section 5.

The variations in cloud vertical structures and morphology affect the atmospheric circulation,
radiation budget, and satellite-retrieved cloud properties. Most of the sensor-received radiance came
from the top of cloud for conditions in which upper optical thick cloud overlaps the lower optical
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thin cloud. The maximum difference of sensor-received radiance and surface-received radiance is
about 4 W/m? (7%) and 75 W /m? (60%) for upper cloud having COT of 70 when lower cloud COT
changes from 1 to 100 (Figures 1 and 2. Sensor and surface-received radiance were estimated using
the following parameters: solar zenith angle is 30°, surface albedo is 0.2, cloud phase is water cloud,
upper cloud top height is 8 km, upper cloud base height is 6 km, lower cloud top height is 3 km, lower
cloud base height is 1 km, cloud particle effective radius is 6 um). For upper cloud having higher COT,
lower-level cloud has a minor impact on satellite-retrieved cloud properties but a larger impact on SSI.
Our proposed method for SSI estimation is suitable for one-layer cloud sky, and larger errors may be
introduced for multi-layer clouds overlap conditions.
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Figure 1. Estimated sensor-received radiance for multi-layer clouds overlap conditions.
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Figure 2. Estimated surface-received radiance for multi-layer clouds overlap conditions.

2. Materials and Methods
2.1. Materials

2.1.1. Geostationary Images

The data used in this study was acquired from the third-generation GOES-13 (Geostationary
Operational Environmental Satellite System) satellite operated by the national environmental satellite,
data, and information service of the National Oceanic and Atmospheric Administration (NOAA).
GOES-13 was used for weather forecasting, severe storm tracking, and meteorology research. GOES-13
was launched on 24 May 2006, and is positioned at 75°W, 35,786 km over the Equator. The imager
on-board GOES-13 scans Earth’s surface every 30 min and provides five spectral channels. The nadir
spatial resolution is 1 km for the visible channel (0.65 um), 4 km for three thermal infrared channels
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(3.9 um, 6.48 um, and 10.7 um), and 8 km for channel 6 (13.3 um). Details can be seen from
http:/ /www.ssec.wisc.edu/datacenter /standard_ GOES8-15.html, and data can be downloaded freely
from http:/ /www.class.ncdc.noaa.gov/saa/products/welcome.

2.1.2. Ancillary Input Data

The MCD43D (V006) surface albedo product derived from the combined Terra and Aqua satellites
was used in this study. The bidirectional reflectance distribution function (BRDF) was estimated from
all cloud-free observations during a 16-day period. The MCD43D product incorporates the Climate
Modeling Grid (CMG,) structure and the pixel resolution is 1000 m. The broadband (0.2-4.0 pm) surface
albedo for clear skies was calculated as the interpolation between the white-sky and black-sky albedo
values dependent on the aerosol optical depth and solar zenith. Only the white-sky albedo product
was used for cloudy skies due to minor differences discovered when introducing black-sky albedo for
direct beam reflection [41].

The NCEP Climate Forecast System Reanalysis (CFSR) data created using the National Centers
for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) (https:/ /rda.ucar.
edu/datasets/ds094.1/#!description) was used in our study. The files in this dataset were grouped by
month. The grid spacing was 0.205~0.204° from 0°E to 359.795°E, and 89.843°N to 89.843°S (1760 x 880
Longitude/Gaussian Latitude) [42]. Ground surface temperature was selected to be an ancillary input
for the cloud effective radius retrieval method for the GEOS-13 infrared channel. The precipitable water
of the entire atmosphere was selected to drive the SSI retrieval algorithm, since the 12.0-um channel
was replaced by a 13.3-um channel. Furthermore, the GOES-13 satellite and the retrieval of precipitable
water from the “split window” method (using channels 11.0 um and 12.0 um) was inapplicable.

The global 1-km Shuttle Radar Topography Mission with 30 arc-second resolution data (SRTM30)
was used to represent the surface elevation (http:/ /vterrain.org/Elevation/SRTM/) required for the
retrieval of SSI.

2.1.3. Pyranometer Data for Validation

The Surface Radiation Budget Network (SURFRAD) was established in 1993 with the support
of NOAA's Office of Global Programs. Its primary mission was to support climate research
using accurate, continuous, and long-term measurements of the surface radiation budget over
the United States. Seven SURFRAD stations are currently operating in climatologically diverse
regions in the United States, including Fort Peck, Montana (FPK), Table Mountain, Colorado (TBL),
Bondville, Illinois (BON), Goodwin Creek, Mississippi (GWN), Penn State, Pennsylvania (PSU),
Desert Rock, Nevada (DRA), and Sioux Falls, South Dakota (SXF). The downwelling global solar
irradiance (0.28-3 pm) is measured by a pyranometer (model SpectroSun SR-75) with reported
uncertainties of 2% to £5% [43]. SURFRAD data are provided daily with a sample rate of 1 min
(https:/ /www.esrl.noaa.gov/gmd/grad/surfrad/). The maintenance and quality control of these
measurements follow World Meteorological Organization (WMO) standards.

2.2. Methods

SSI is retrievable by assuming a homogeneous and plane-parallel atmospheric layer without
considering the three-dimensional effects. The discrimination of clear and cloudy conditions was
implemented by a cloud detection procedure, and the cloud thermodynamic phase was retrieved
using IR channels. The cloud parameters (cloud optical thickness and effective particle radius) were
inversed from the visible channel and IR channels based on the previous work of Nakajima [37,39].
SSI was estimated using a LUT-based method with the atmospheric and land-surface parameters
derived above. The proposed SSI retrieval scheme is given in Figure 3. Clear and cloudy skies were
first labeled using the cloud detection procedure. Aerosol optical depth (AOD) and precipitable water
were retrieved for clear skies and cloud microphysical parameters were derived for cloudy skies using
the pre-calculated LUT. SSI was calculated using the LUT for both clear and cloudy skies. Cloud
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detection is briefly described in Section 2.2.1. The details for retrieving AOD and cloud microphysical
parameters are described in Sections 2.2.2 and 2.2.3.

MODIS
( Land cover O ( Snow & ice O Visible and IR
product channels of GOES
Surface reflectance and
brightness temperature
retrieval for “clearest sky ™

|
" NCEP CISR
Cloud phase : GOES images data
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MODIS

Figure 3. Flow chart of surface solar irradiance (SSI) retrieval from geostationary and polar-orbiting

satellite data. MODIS: Moderate Resolution Imaging Spectroradiometer; GOES: Geostationary
Operational Environmental Satellite; NCEP CFSR: National Centers for Environmental Prediction
Climate Forecast System Reanalysis; LUT: lookup table; AOD: aerosol optical density; DEM: digital
elevation model.

2.2.1. Pre-Processing the Images

Surface reflectance can be estimated from the visible band’s at-sensor spectral radiance under
clear-sky conditions through atmospheric radiative transfer models, such as the Santa Barbara DISORT
Atmospheric Radiative Transfer (SBDART) [44]. The top-of-atmosphere reflectance is converted
into surface reflectance given the solar-sensor geostationary viewing geometry, Rayleigh scattering,
well-mixed gaseous absorption, ozone and water vapor absorption, and aerosol extinction through
atmospheric correction. An aerosol visibility of 100 km and a rural model is used to represent clear
atmospheric conditions. The water vapor and other trace gases are initialized with the default values
of the SBDART model. Surface reflectance is determined by the minimum reflectance retrieved from
the visible band taken at the same local time per daylight hour over a temporal period of one month
for cloud-free detection due to the difficulty of discriminating the “clearest” atmospheric conditions.
Details of the proposal have been discussed by Liang et al. (2006) [28] and Zhang et al. (2014) [4]. A 30°
threshold on the glint cone angle was applied to avoid sun-glint affecting water surfaces, and a lower
reflectance threshold of 0.005 was applied for the land surface to exclude cloud shadow pixels [45].

Cloud detection was performed pixel-by-pixel using the coupled Cloud Depiction and Forecast
System model using the reflectance of visible bands and the brightness temperature of infrared
bands [46]. This procedure incorporated temporal differencing, dynamic thresholding, and spectral
discrimination to detect clouds with the appropriate optical thickness.
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2.2.2. Aerosol Optical Depth Estimation

Aerosol plays a key role in Earth’s radiation budget by scattering and absorbing solar and
terrestrial radiation. The single broadband visible channel of most geostationary satellites is not
sufficient to retrieve the aerosol size and single scattering albedo, although they are important for
radiation extinction. The AOD was retrieved using the visible band of GOES with a pre-calculated LUT.
The dimensions of the LUT are summarized in Table 1. The rural type was defined as incorporated
in the SBDART radiative transfer code with a single scattering albedo at 0.55 um of 0.9558 and
an asymmetry factor of 0.6891. The standard atmospheric profile of the midlatitude summer model
was used as the default.

Table 1. LUT dimensions for AOD retrieval.

Input Variable Value Range Increment
Solar zenith angle 0-89° 5°
Viewing zenith angle 0-89° 5°
Relative azimuth angle 0-180° 30°
Aerosol horizontal visibility 5,10, 20, 30, 40, 50, 70, 100 km -
Aerosol type Rural -
Water vapor 0.01-5.0 g/cm2 0.5
Surface altitude 0-6 km 1km
Surface reflectance 0-1.0 0.1

The LUT was pre-generated using the SBDART model for a range of discrete atmospheric
and land-surface values to improve the calculation efficiency without reducing accuracy. SBDART
was numerically integrated with Discrete Ordinate Radiative Transfer (DISORT), which assumes
a plane-parallel radiative transfer in a vertically inhomogeneous atmosphere. The number of streams
for radiance computations was 20 for the zenith angle and azimuth angle. The surface reflectance
and cloud mask was determined for each pixel as described in Section 2.2.1. Aerosol horizontal
visibility (VIS) was computed for every cloud-free pixel using the rural aerosol model and the
given solar position, satellite position, amount of water vapor, and surface altitude. A linear
interpolation of the lookup table entries to the actual aerosol visibility was used in this study.
Once the VIS was known, the AOD (at 550 nm) was estimated using the following equation [44]
(http:/ /www.ncgia.ucsb.edu/projects/metadata/standard /uses/sbdart.htm):

1.05 x W+ 151 x (1— W)
VIS

AOD (g 55,m) = 3912 x 1)
where W is a weighting factor, which is a piecewise function depending on the value of VIS and is
given by the following equation:

_ (1/VIS—1/23
W= (B2, 5< VIS <23
W=1, VIS<5 )
W =0, VIS > 23

2.2.3. Retrieving Cloud Microphysical Properties

The cloud thermodynamic phase, cloud optical thickness (COT), and effective particle radius were
used to describe the radiative properties of clouds in the solar spectral region. The thermodynamic
phases of the cloud were classified as: water clouds, ice clouds, mixed clouds, and undetected clouds
following the cloud phase determination proposed by Choi et al. (2007) [47]. The retrieval method
was based on the theory that cloud reflectance at non-absorbing wavelengths of the visible band is
strongly related to COT, while the reflection at the absorbing wavelengths of the near infrared bands is
primarily a function of ER [37]. In this study, the visible channel was used to derive COT and the IR3.9
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channel was chosen to obtain ER. The radiance received by the sensor at 3.9 um (Lg?’;‘) was composed
of solar reflection, cloud thermal radiance, and ground thermal radiance for thin clouds. The radiance
for 0.65 pm and 3.9 um is given simply as follows:

Lk = L34 + Lilgs 3)

Lg‘bgs _ Lg{gud + ng + L;I?g(cloud) + Lg{zg(sr) )

where L§94 and L§5" are the cloud-reflected radiance at the VIS and IR3.9 channels, respectively,

Ly¢s and Ly are the ground-reflected radiance at the VIS and IR3.9 channels, respectively. Lg‘édoud)

and Lg’_zésr) are the cloud and ground thermal radiance, respectively. L3q and Lg"ésr) were assumed to

be 0 for thick clouds (COT >16). LY and Lg"ésr) were simulated based on the Planck function of ground
temperature (Ty) and cloud-top temperature (T;) to remove the thermal effects of ER retrieval for thin
clouds (COT <16). Tg data were derived from the NCEP-CFSv2 dataset, and T, was approximated by
the cloud-top brightness temperature given by the IR channel at 10.7 pm.

COT and ER were retrieved using LUTs generated from the SBDART one-dimensional radiative
transfer code. The LUTs were calculated for different values of COT, ER, solar zenith angle,
satellite viewing angle, relative azimuth angle, surface albedo, surface temperature, and cloud-top
temperature using the different spectral response functions of the visible and infrared bands (Table 2).
These calculations were carried out under the following assumptions: (1) there is only one single layer
of clouds for every pixel, (2) the clouds are homogeneous, plane-parallel, and cover the whole pixel,
and (3) ice clouds are composed of spherical particles. COT and ER were assigned to be the average
value of water and ice clouds for mixed-phase clouds.

Table 2. Characteristics of LUT for the retrieval of cloud microphysical parameters.

Input Variable Value Range Increment
Solar zenith angle 0-89° 5°
Viewing zenith angle 0-89° 5°
Relative azimuth angle 0-180° 30°
coT 05,1,2,5,8,11, 15, 20, 30, 50, 70, 100 -
ER (1m) Water cloud: 2,4, 8,16, 32 )
Ice cloud: 2, 4, 8, 16, 32, 64
Surface albedo 0-1.0 0.1
Surface temperature (K) 280-320 2
Cloud-top temperature 195-300 5
Cloud phase Water, ice

2.2.4. All-Sky SSI Estimation

SSI was estimated separately for clear and cloudy skies with different input data using AOD
data and cloud physical parameters efficiently derived from geostationary images (as discussed in
Sections 2.2.2 and 2.2.3). CO; and ozone were set to default values in SSI estimation since they had
a negligible impact. PW and aerosol had a considerable influence on SSI in cloud-free conditions.
Clouds played a dominant role in SSI during cloudy-sky conditions, and PW was set at 2.9 g/cm? as
defined in the standard atmospheric profile of the midlatitude summer model. Aerosol horizontal
visibility was set to 100 km for the SSI estimation of cloudy skies since AOD was insignificant compared
to clouds and difficult to derive under cloudy conditions.

The all-sky SSI estimation was derived using LUTs generated for clear and cloudy skies.
The common variables used for the LUTs were the solar zenith angle, surface altitude, and surface
albedo. The LUT atmospheric variables for clear skies were PW and aerosol visibility, while the LUT
for cloudy skies contained cloud phase, COT, and ER. The SSI for “mixed-phase clouds” was assigned
to be the averaged SSI estimation for water and ice clouds. The SSI for “undetected cloud phase”
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pixels was calculated using the LUT of water clouds. The range of values and the increments of the
above variables were the same as in Tables 1 and 2. The instantaneous SSI was estimated by linear
interpolation from the lookup table once the above input data were known.

3. Results

In this section, the algorithm discussed above is evaluated using the data from seven SURFRAD
stations during the entire year of 2012 and a comparison is performed with other SSI estimates.
The performance of the SSI estimate is evaluated using three metrics: the mean bias error (MBE,
in W/m?), RMSE (in W/m?2), and correlation coefficient (R?).

Huang et al. (2016) [48] demonstrated that the observed SSI averaged over 30 min was optimal
for a comparison with kilometer-level satellite-based SSI estimation. Therefore, we adopted half-hour
averaged SSI observations centered at the acquired time of the satellite images to evaluate the
satellite-derived instantaneous SSI estimation. The validation results gathered from seven SURFRAD
stations in 2012 under clear- and cloudy-sky conditions are displayed in Figure 4 and the statistics
are compared in Table 3. The overall root mean square error (RMSE) values were 99.5 W/m?
(25.5%), 80.0 W/m? (16.8%), and 127.6 W /m? (55.1%) for all-sky, clear-sky, and cloudy-sky conditions,
respectively. The validation revealed a positive bias of 26.4 W/m? (5.5%) and a negative bias of
—5.9 W/m? (—2.6%) for clear and cloudy skies. The RMSE values for all-sky ranged from 83.3 W /m?
(21.7%) to 132.1 W/m? (32.5%), the RMSE values for clear skies ranged from 61.4 W/m? (11.8%)
to 118.6 W/m? (24.7%), and the RMSE values for cloudy skies ranged from 98.5 W/m? (45.2%) to
141.5 W/m? (65.2%).
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Figure 4. Validation results for the instantaneous surface solar irradiance estimated at seven Surface
Radiation Budget Network (SURFRAD) stations by the scheme proposed in this study. BON: Bondville,
Tllinois; DRA: Desert Rock, Nevada; FPK: Fort Peck, Montana; GWN: Goodwin Creek, Mississippi;
PSU: Penn State, Pennsylvania; SXF: Sioux Falls, South Dakota; TBL: Table Mountain, Colorado.
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These statistics indicate that the quality of the retrieval was better for clear skies, which had
a correlation coefficient (R?) ranging from 0.9 to 0.96, in comparison to cloudy skies for all stations,
which featured a correlation coefficient ranging from 0.60 to 0.80; this was true for both systematic bias
and scatter (Figure 4). The largest RMSE values for clear- and all-sky conditions both occurred at Table
Mountain, while the smallest RMSE values for clear- and all-sky conditions occurred at Desert Rock.
All stations exhibited a positive bias for clear- and all-sky conditions.

Further investigation was carried out in our study due to a larger positive bias being discovered
in Table Mountain (TBL) compared to other stations with clear skies. The surface of the TBL station in
Colorado was mixed by rocks, sparse grasses, desert shrubs, and small cactus, and the surface altitude
was 1689 m. The positive bias was partially due to the errors of cloud detection for a mixed surface
with a higher altitude. Some pixels covered by thin clouds or haze were classified as “clear sky”, and
thus resulted in an overestimation of SSI. Nevertheless, as is well-known, the aerosol “dark target”
approach is only valid for a dense dark vegetation (DDV) surface, and it is inappropriate for the TBL
station with a lower vegetation fractional cover, and thus will generally lead to substantial errors in
the retrieved AOD.

On the “station observation” scale, clouds generally deviate much more under the horizontal/
vertical homogeneity assumption of the SSI estimation approach than other atmospheric variables, such
as aerosol and total water vapor. The inhomogeneous properties of clouds may cause substantial errors
in retrieving cloud optical thickness from visible channels with a 1-km resolution and an effective
particle radius from an infrared channel with approximately 4 km from satellite data. The larger
discrepancies for cloudy-sky SSI estimation may be attributed to the horizontal /vertical inhomogeneity
of clouds and the spatial observing scale mismatches in sensor footprints between ground-observed
and satellite-retrieved data. The negative effects of the mismatches will be enlarged for a lower solar
zenith and viewing zenith, resulting in poorer SSI estimation and evaluation accuracy, especially for
partially covered clouds or broken clouds.

4. Discussion

4.1. Comparison with Other SSI Estimates

SSI estimation with in situ observations at SURFRAD sites were collected in order to compare the
accuracy of our proposed algorithm with previous studies that estimate SSI from geostationary and
polar-orbiting satellite data. The results are listed in Tables 4 and 5.

Zhang et al. (2014) used a LUT-based method from geostationary satellite images to estimate
incident shortwave radiation at 5-km resolution, which was validated with observation data at seven
SURFRAD sites of 2008 (Table 4) [4]. The results revealed that the RMSE values produced by our
proposed method were less than the values provided by Zhang’s estimation, apart from the validation
at GWN, which had RMSE values of 90.7 W/m? and 86 W/m?, respectively. Our proposed model
exhibited an overall positive bias at all seven sites, while Zhang’s model provided a negative bias
at DRA and TBL. The largest bias in our model was 33.8 W/ m? at TBL, compared with —55 W/ m?
produced by Zhang’s method at DRA.

Table 4. Overview of error statistics for all-sky SSI for the year of 2008 (Zhang et al., 2014). RMSE: root
mean square error.

Site R? BIAS (W/m?) RMSE (W/m?)
BON 0.86 20 100
DRA 0.88 —55 119

FPK 0.82 55 111
GWN 0.92 1.7 86

PSU 0.87 12 100

SXF 0.86 14 102

TBL 0.77 8.7 140
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Qin et al. (2015) developed a physical parameterization to estimate SSI from MODIS atmospheric
and land products and the retrievals were validated against in situ measurements at SURFRAD for
three years (2006-2008) (Table 5) [29]. Different validation results can be examined between our model
and Qin’s method. Qin’s method yielded a better performance for clear sky at all sites. The unfavorable
comparison results may attribute to the inaccurate input data of our model with total precipitable
water at approximately 20-km resolution and the uncertainty of retrieved AOD which will be discussed
later. Our model provided an improved performance with a lesser RMSE of 1-12 W/m? compared
to Qin’s method for all-sky conditions at BON, FPK, PSU, SXF, and GWN, which used input data
from Aqua, while Qin’s method yielded values in agreement at DRA, TBL, and GWN with input
data from Terra. All three methods yielded a poorer validation at TBL; this might have been caused
by pyranometer calibration accuracy, climatic conditions, and mixed ground cover. Furthermore,
our proposed model indicated a lesser RMSE of about 2-4 W /m? compared to the method provided by
Tang et al. (2016) [14], which combined an artificial neural network and parameterization model for SSI
estimation from multifunctional transport satellite (MTSAT) geostationary satellite images and MODIS
atmospheric and land products. The overall accuracy of our model with an RMSE of 99.5 W/m? (25.5%)
is comparable to the MODIS-products-driven Breathing Earth System Simulator (BESS) shortwave
products with an RMSE of 111.1 W/m? (22.6%) and 137.1 W/m? (31.7%) for temperate and continental
climate zones, respectively [49].

Asindicated by Yeom, a reduced RMSE of about 10 W/ m? can be found with the spatial resolution
changed from 1 km to 5 km [13]. Considering the estimated SSI of our model with 1-km resolution
and the referenced studies with 5-km resolution, we can draw a conclusion that the performance of
our proposed scheme was comparable with or even more accurate than state-of-the-art satellite-based
SSI retrieval models.

Table 5. Overview of error statistics for all-sky SSI derived from MODIS products for the years
2006-2008 (Qin et al., 2015).

Clear Sky (W/m?) All Sky (W/m?)
Site Terra Aqua Terra Aqua
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
BON 11.5 411 15.3 54.4 4.0 86.3 7.6 95.0
DRA —11.3 419 8.4 34.4 —11.0 55.0 8.1 69.7
FPK 20.2 43.8 29.9 49.0 —4.3 105.6 7.8 95.1
GWN 21.7 47.2 247 56.7 17.1 724 22.0 92.8
PSU 27.0 57.8 25.1 59.7 21.8 101.7 15.1 99.0
SXF 17.7 43.3 19.1 47.0 —5.3 101.0 —2.2 98.8
TBL 2.1 37.6 7.1 42.9 -17.7 113.6 -1.9 123.0

4.2. Error Analysis in SSI Retrieval

Aerosol and clouds are the primary atmospheric parameters (besides the solar zenith and surface
altitude) that affect SSI for clear and cloudy skies. The retrieval uncertainty of these two parameters
will be discussed in this section.

The diurnal change of the underlying surface reflectance is a key parameter for AOD retrieval,
and it is gathered by searching for the minimum value of surface reflectance within a 30-day period.
The surface reflectance was inversed using a lookup-table-based method and a horizontal visibility set
to 100 km (which was approximated to be 0.06 of the AOD value using the relationship between the VIS
and AOD as indicated by Equations (1) and (2)). However, the assumption will inevitably introduce
some uncertainty since a great spatial and temporal variation of aerosol has been discovered. The AOD
data from SURFRAD sites generated from visible Multi-Filter Rotating Shadow band Radiometers
(MFRSR) were collected in our study to further investigate the changes in AOD. The statistical results
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of observed AOD gathered from six SURFRAD sites are displayed in Figure 5 (except for PSU since
there was no observed AOD data in 2012).
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Figure 5. Statistical results of observed AOD at six SURFRAD stations. The dashed lines on
the vertical axis are AOD values of 0.06 for pre-defined clearest-sky conditions of diurnal surface
reflectance retrieval.

A high yearly temporal variation can be found at all six sites. A maximum AOD value was
found in summer and a minimum value in winter, and a maximum variability of AOD occurred
during the summer months. The pre-defined AOD of 0.06 for clearest-sky conditions had: an overall
underestimation at BON, SXF, and GWN for the entire year of 2012; an overall underestimation
in summer and overestimation in winter at TBL and DRA; and an overall underestimation in
summer at FPK. A lower assumed AOD may have been responsible for the SSI overestimation
in our proposed method. The surface reflectance was overestimated due to the lower predefined
AOD value for clearest-sky conditions, which in turn resulted in underestimations of the retrieved
AOD and the overall overestimation of SSI for clear skies. The surface reflectance was invariable
for every month, and larger uncertainty had arisen for snow seasons with higher reflectance and
vegetation-growing seasons with a lower reflectance. Furthermore, an overestimation of surface
reflectance caused an underestimation of cloud optical thickness and an underestimation of cloud
transmittance for transparency or semi-transparency. Besides the uncertainty of surface reflectance,
the aerosol attenuation effects were influenced by a large solar zenith angle and bright surface.

Cloud microphysical parameters, such as cloud optical thickness, thermal phase, and effective
particle radius, are important variables in estimating SSI. Large negative effects on the performance of
the SSI retrievals were possibly caused by cloud parameter retrieval errors due to the inhomogeneity
and spatiotemporal variation of clouds. The sensitivity of SSI to cloud optical thickness and the
effective radius of water clouds is presented in Figure 6. SSI was estimated using the rigorous radiative
transfer model (SBDART) with the input variables set as: a midlatitude summer atmospheric profile
with total precipitable water of 2.92 g/ cm?, a total ozone column of 320 DU, a solar zenith angle of 30°,
a surface elevation of 0 km, a surface albedo of 0.2, and a horizontal visibility of 100 km. A positive
relationship between the effective particle radius and SSI can be seen, while a negative relationship
between the SSI and cloud optical thickness can be observed. SSI will change about 88 W/m? and
90 W/m? with the effective particle radius range of 2 m to 30 pm for water and ice clouds, respectively.
SSI is not dependent on the effective radius when the cloud particle radius is greater than 20 pm since
the variation of SSI does not exceed 5 W/m?. The SSI will change by about 548 and 600 W /m? for
a cloud optical thickness range of 2 to 30 for water and ice clouds, respectively. It can be concluded that
the error in SSI estimation for cloudy skies is primarily affected by the uncertainty of the cloud optical
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thickness retrieval. There may be more than one solution for optical thickness and effective radius
retrieval for optically thin clouds. The retrieved cloud optical thickness only represents 20-40% of the
total optical thickness of the total cloud layer for clouds having COT >8, as indicated by Nakajima [37].
This situation can partially explain the positive bias of SSI estimation for cloudy skies.

cloud optical thickness cloud optical thickness
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Figure 6. The sensitivity of SSI to cloud optical thickness (given an effective particle radius of 20 um)
and effective particle radius (given a cloud optical thickness of 20) for water clouds (left) and ice
clouds (right).

An overall underestimation of SSI with a maximum bias of 62.5 W/m? and a minimum of 1 W/m?
for water clouds is indicated in Figure 7 and Table 6. All scatterplots for water and ice clouds are
uniformly distributed between the line of 1:1. The RMSE has a maximum value of 177.6 W/ m? at DRA,
thereby exceeding the values for clear skies (61.4 W/m?) by a factor of three. The minimum RMSE value
is 80.2 W/m? at SXF, which is nearly the same as clear skies. Compared with water clouds, ice clouds
tend to have a larger RMSE and a lower correlation coefficient (Figure 8, Table 6). The validation
results for ice cloud cases reveal a negative bias at DRA and TBL, which have an elevation greater than
1000 m. The largest RMSE for ice clouds was 211.3 W/m?, which is about 75.3% of the systematic error.
The relative accuracy of the modeled SSI for ice cloud cases is lower than 40%. This might be caused
by the ice crystal density, particle size, shape, or direction, which are difficult to derive and describe
for accurate scattering computation.

Besides the uncertainty of the input variables derived from satellite data, large uncertainty may
arise from the assumption of plane-parallel, homogeneous atmospheric conditions. Furthermore,
a one-dimensional atmospheric transfer model cannot deal with the geometrical effects of scattering
from a higher solar zenith. The model is less reliable when the sub-pixel is partially cloudy, or when
a rapid change in the atmospheric profile occurs during satellite observations.

Table 6. Validation results at seven SURFRAD stations for water and ice clouds.

Mixed  Undetected

Site Water Clouds Ice Clouds Clouds Clouds
Bias RMSE Bias RMSE
2 2
B wmre wmeo N B wmien  wm?e N0 NO- NO-

BON 0.74 —8(—3.5) 106 (49.5) 280 0.66 27 (19.8) 93 (68.7) 121 222 31
DRA 070  —63(—21.0) 178(59.6) 149 038  —44(-15.7) 211(75.3) 78 74 20
FPK 0.62  —25(—10.00 157(63.7) 187 0.54 15 (6.6%) 150 (67.2) 133 220 34
GWN 078  —31(-10.6) 136 (46.3) 326 0.75 45 (32.0) 101 (71.2) 130 181 44
PSU 0.81 —1(-0.42) 105 (43.7) 576 0.81 44 (35.8) 83 (67.7) 83 217 20
SXF 0.80 —5(—2.6) 80 (43.0) 233 0.49 29 (16.5) 135 (78.1) 109 243 47
TBL 0.64 —38(—129) 169 (57.5) 197 0.61 —0.2(-0.1) 118 (61.1) 186 173 20
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Figure 7. Validation of SSI for water cloud cases at SURFRAD sites (mixed and undetected clouds were
not included in the comparison).
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Figure 8. Validation of SSI for ice cloud cases at SURFRAD sites (mixed and undetected clouds were

not included in the comparison).
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5. Conclusions

The paper describes a novel approach to estimating surface solar irradiance (SSI) from a combined
geostationary satellite image, MODIS land-surface albedo, and NCEP CFSR data. Aerosol optical
thickness and cloud parameters (cloud phase, effective particle radius, and cloud optical thickness)
were directly retrieved from the visible channel of geostationary satellite images for clear and cloudy
skies. Total precipitable water was derived from the NCEP data, and other atmospheric variables,
such as ozone, carbon dioxide, and trace gases, were not considered in our SSI estimation. The SSI
was obtained by searching for and linearly interpolating a pre-calculated lookup table, which was
created using the one-dimensional radiative transfer model for computational efficiency at the cost of
calculation accuracy.

The validation was performed via station observations at SURFRAD and other developed
algorithms were used with input from satellite data on an instantaneous basis to evaluate the
performance of the estimates. The results demonstrated that our method could effectively retrieve
instantaneous SSI with correlation coefficients of 0.94, 0.69, and 0.89, and an overall RMSE of
80.0 W/m?2 (16.8%), 127.6 W/m? (55.1%), and 99.5 W/m? (25.5%) for clear-sky, cloudy-sky, and all-sky
conditions, respectively. Our algorithm generally overestimated the SSI for clear- and all-sky conditions.
Uncertainty analysis revealed that the accuracy of AOD retrieval was largely dependent upon diurnal
surface reflectance. An overestimation of surface reflectance resulted in an underestimation of AOD
and led to an overestimation of SSI. Large uncertainty may arise for optically thin clouds due to the
ambiguous solutions for cloud optical thickness and effective radius. The RMSE for ice clouds is
generally larger than water clouds since the radiative transfer process for ice clouds is mainly affected
by ice crystal shape and particle size, which are difficult to directly retrieve with acceptable accuracy.
In summary, our proposed method holds great promise for accurately estimating regional or global
SSI and conducting research on Earth’s energy budget using products from geostationary satellites,
such as FY2, Himawari-8, MTG, and MODIS.
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Abstract: Surface shortwave (SW) irradiation is the primary driving force of energy exchange in the
atmosphere and land interface. The global climate is profoundly influenced by irradiation changes
due to the special climatic condition in Antarctica. Remote-sensing retrieval can offer only the
instantaneous values in an area, whilst daily cycle and average values are necessary for further studies
and applications, including climate change, ecology, and land surface process. When considering the
large values of and small diurnal changes of solar zenith angle and cloud coverage, we develop two
methods for the temporal extension of remotely sensed downward SW irradiance over Antarctica.
The first one is an improved sinusoidal method, and the second one is an interpolation method
based on cloud fraction change. The instantaneous irradiance data and cloud products are used
in both methods to extend the diurnal cycle, and obtain the daily average value. Data from South
Pole and Georg von Neumayer stations are used to validate the estimated value. The coefficient of
determination (R?) between the estimated daily averages and the measured values based on the first
method is 0.93, and the root mean square error (RMSE) is 32.21 W/ m? (8.52%). As for the traditional
sinusoidal method, the R? and RMSE are 0.68 and 70.32 W/m? (18.59%), respectively The R? and
RMSE of the second method are 0.96 and 25.27 W/m? (6.98%), respectively. These values are better
than those of the traditional linear interpolation (0.79 and 57.40 W/m? (15.87%)).

Keywords: downward shortwave radiation; daily average value; Antarctica; sinusoidal method;
cloud fraction; interpolation

1. Introduction

Solar shortwave (SW) radiation reaching the surface of the Earth is the primary energy source,
which plays a significant role in surface energy balance, temperature variations, hydrological cycle,
and terrestrial net primary productivity [1-3]. Although the annual change is small, the impact on the
global climate is difficult to ignore for an “amplification effect’ [4-6].

Antarctica is the coldest, highest, driest, and windiest continent in the Earth [7]. The surface
changes that are caused by irradiation in the Antarctic area affect the entire planet by the ice albedo
feedback mechanism [4,8,9]. Therefore, studying the changes in the SW irradiation in Antarctica is
significant [10,11].
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Irradiation flux data are required in many regional climate system models and applications as
input parameters [12-14]. However, the irradiation that was measured by ground observation stations
has been proven to be spatially inadequate [15]. Satellite remote sensing technique is a suitable way
to obtain solar irradiance data at continent scale [16]. The estimated values based on remote-sensing
images are instantaneous. Climate, ecology, and land surface process models require daily average or
diurnal cycle data. Directly integrating daily solar irradiation values on the basis of few instantaneous
irradiance values is inaccurate. Therefore, numbers of methods, including empirical method [17],
sinusoidal method [18-20], meteorological parameter interpolation method [21,22], lookup table (LUT)
method [23], quadratic polynomial regression method [24], and polar orbit and static satellite data
fusion method, have been developed to obtain daily values [25].

The empirical method uses a large number of ground entity sample data to establish the
empirical relationship between instantaneous irradiance and daily average irradiation to calculate daily
values [17]. On the one hand, this method has high accuracy. On the other hand, this method relies on
a large amount of surface data, which means that it is limited when ground stations are inadequate.

The sinusoidal model method assumes that surface irradiation follows the sinusoidal curve on the
time scale, which means that daily average irradiation can be calculated on the basis of instantaneous
irradiance and satellite overpass time [19]. This method also assumes that the change in solar zenith
angle (SZA) is the main factor for the daily variation in irradiance. However, in polar regions, this
assumption is not true due to the large SZA and perpetual day. Furthermore, this method ignores the
cloud influence, and it is only applicable under clear sky conditions.

The direct meteorological parameter interpolation method extends meteorological parameters
by linear interpolation to estimate irradiance, using temporal scaling-up meteorological data [21].
This method is easy to operate, although the number of instantaneous meteorological values is
necessary to increase to achieve good results. However, in polar regions, long-term meteorological
data are difficult to obtain.

The LUT method uses surface reflectivity (clear sky condition) to establish a LUT of various
atmospheric conditions. This method utilises the table to find the atmospheric visibility of other
observation time points, produces the linear interpolation every 30 min and obtains the instantaneous
value of irradiance at that moment [23]. This method requires long-term data accumulation to obtain
the surface reflectivity of the entire area, which means that it is inapplicable in Antarctica.

The quadratic polynomial regression method has a similar curve shape to the sine function
method; it assumes that solar irradiance is zero at sunrise and sunset [24]. However, this assumption
is unreliable because of the perpetual day in Antarctica.

The polar-orbit satellite and geostationary satellite data fusion method considers cloud coverage
and uses the geostationary satellite to map the cloud [25]. However, no geostationary satellite data are
available over Antarctica.

As mentioned above, no suitable temporal extension method exists for the study of surface SW
radiation over Antarctica. This study intends to improve two of the methods above. One is called
improved sinusoidal method, which considers the small diurnal change in SZA. The other is called
cloud fraction (CF) parameter interpolation, which can handle the rapid cloud coverage change in a
day. The data and two improved methods are described in Section 2. The interpolation results and
validation are introduced in Section 3. The discussion is presented in Section 4, and the conclusion is
in Section 5.
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2. Materials and Methods
2.1. Data

2.1.1. Cloud Data and Instantaneous Irradiance Data

The cloud data in this study are mainly based on Suomi National Polar-Orbiting Partnership
(S-NPP) satellite cloud product, which uses inversion of Visible Infrared Imaging Radiometer Suite
(VIIRS) data. The S-NPP satellite has the same orbital plane as the Terra and Aqua satellites. Its orbital
height is approximately 824 km, and its corresponding orbital period is approximately 101 min.
The VIIRS sensor has a field of view of 112.56° and a scan width of approximately 3040 km [26,27].
This wide scan area can offer considerable data at high latitudes and allow numerous cloud products
in a single day. The satellite passes the study area more than five times a day (Figure 1). Consequently,
much data are collected to show the change in cloud coverage and reduce the uncertainty when
integrating. In this study, we select geographic positioning products, cloud optical thickness (COT)
and cloud base height (CBH) of VIIRS, and calculate hemispherical effective CF (HECF) and regional
CF (RCF) (shown in Appendix A). We use the data from December 2013 to February 2014, from
December 2014 to February 2015, from December 2015 to February 2016, and from December 2016 to
January 2017. The total number of cloud data is 13,986. The number of cloud data near the Georg von
Neumayer (GVN) station is 2665 and that near the South Pole (SPO) station is 3331.

We select high spatial resolution (1 km) instantaneous estimated flux data, which are mainly
calculated by Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART)-CF model, on the
basis of our previous research [28]. SBDART-CF is based on the traditional one-dimensional radiative
transfer model SBDART and classifies the actual sun/cloud-viewing geometric conditions into nine
subtypes. The main input parameters to the model are listed in Appendix A. The data cover the whole
Antarctica area and can consider clear and cloudy sky conditions. The time scale and total number of
instantaneous irradiance data are the same as cloud data.
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Figure 1. Overpass times of the Suomi National Polar-Orbiting Partnership satellite in one day and
distribution of Baseline Surface Radiation Network stations in Antarctica.
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2.1.2. Ground Station Data

We use ground measured data of solar radiation from the Baseline Surface Radiation Network
(BSRN) observing stations to validate our estimated results. Four stations (shown in Figure 1) of
BSRN exist in Antarctica [29]. The BSRN offers the link to download the data (ftp:/ /ftp.bsrn.awi.de).
We select the GVN and SPO stations to validate our estimated value (shown in Table 1). The GVN
station was established by Germany in 1981, and it has provided radiation observation data from
1992 [30]. SPO station founded by the United States (US) in November 1956, is near the South Pole, and
it has offered radiation data from 1992 [31]. We use the Shortwave downward (GLOBAL) radiation
included in the ‘LR 0100 + LR 0300" data set, which means basic radiation and other radiation
measurements. The time resolution of the global radiation is 1 min. 333 days in the two stations are
used to validate our result.

Table 1. Information of surface stations in the Antarctic Continent.

Station Name Abbreviation Latitude Longitude Elevation (m) Surface Condition
Georg von Neumayer GVN 70.65°S 8.25°W 42 Ice sheet
South Pole SPO 89.98°S 24.80°W 2800 Glaciers and deposits

2.2. Temporal Scaling-Up Method

2.2.1. Calculation of the Diurnal Variation Range of SZA

In most areas, the diurnal variation in SZA is larger than 90°; it is the most important factor that
affects downward shortwave irradiance [28]. The range of SZA diurnal variation is determined by
latitude and date. We demonstrate the changes in DSR and SAZ on 17 October 2013 and 22 December
2013 at the GVN and SPO stations, respectively, to explain the diurnal variation in shortwave irradiance
on the Antarctic surface in summer at different latitudes (shown in Figure 2).
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Figure 2. (a) Diurnal variation range of solar zenith angle (5ZA) and downward surface shortwave
irradiance (DSSR) at the Georg von Neumayer (GVN) station on 17 October 2013; (b) Diurnal variation
range of SZA and DSSR at the GVN station on 22 December 2013; (¢) Diurnal variation range of SZA
and DSSR at the South Pole (SPO) station on 17 October 2013; and, (d) Diurnal variation range of SZA
and DSSR at SPO station on 22 December 2013.
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The first step in our method is to calculate the range of diurnal SZA variation, sunrise time point
and sunset time point [32]. Our sensitivity analysis indicates that if the range is larger than 10°, then
SZA remains an important parameter when calculating radiation value. Consequently, we improve
the sinusoidal method. If the change range is less than 10°, then cloud coverage becomes the most
important influencing factor, which makes cloud coverage fraction interpolation a better choice.

2.2.2. Improved Sinusoidal Method

Traditional sinusoidal method firstly obtains satellite passing time point and the instantaneous
irradiance value at this time point. Sunrise and sunset time points are then captured. The instantaneous
values are determined with Formula (1) to calculate the maximum radiation in one day.

ROUL’VP”SS
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@

The time point of satellite passing is marked as toverpass, and the instantaneous value is marked as
Roverpass- This formula leads to overestimated data of radiation because the SZA has small range of
change in Antarctica. We improve this formula as Formula (2).
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A larger SZA in a high latitude area is considered, and parameter ‘a’ is inserted to compress the
sine function. Downward irradiance is always positive during polar days; therefore, parameter ‘d’
is introduced to match the case. Parameters ‘b’ and ‘c” are inserted to balance the different periods
of time when SZA changes when compared with low-latitude areas. The curve can be fitted by least
square method, after which the values of parameters ‘a,” ‘b,” “c’ and ‘d’ of each pixel in the area can
be determined. The values of ‘a,” ‘b, ’c’, and ‘d” are input into Formula (3), and we can obtain the
irradiance value at any time in one day.
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2.2.3. Cloud Coverage Fraction Interpolated Method

The improved sine curve model can match the case in most Antarctic areas, except near the South
Pole. In this area, the daily change in SZA is insignificant. Instead, the main element that impacts
downward shortwave irradiance is the cloud change. In our previous study, the most sensitive cloud
parameters for irradiance estimation are HECF, COT, and RCF [28,33]. Consequently, we use satellite
data to calculate instantaneous parameters to generate accurate data in this area. Other values at
different times can be calculated with Formula (4).

tipg — t—t
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. ) #P(tir1) @)
tz+1 —t
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‘t’ is the time point between two overpass times, when the latest polar-orbiting satellite overpass
time is 't;” and the next overpass time is ‘t;;;’, ‘P(f)" is the cloud parameter value at time ‘t’, and ‘P(t;)’,
‘P(tiy1)" are the values at overpass time. We can let '+’ to represent 24 h in one day.

We can then calculate the hourly downward shortwave irradiance flux by SBDART-CF model.
In this way, the daily change in downward irradiance in this area can be revealed accurately.
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2.2.4. Modelling Daily Solar Radiation

The process of calculating daily average downward shortwave irradiation values is described
in Figure 3. The interpolation based on the improved sinusoidal method can integrate the values of
irradiance from sunrise to sunset (00:00 to 24:00 during polar day) with Formula (5).

Eset
Rdaily:/ Ry(t)dt 5)
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The diumnal changes of
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Cloud fraction Improved sinusoidal
Yes—p|

parameters curve interpolated
interpolated method method
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parameters parameters

l
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shortwave
iradiance

Daily average of
surface shortwave
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Figure 3. Process of calculating daily average downward shortwave irradiation values.

The cloud coverage fraction interpolated method can calculate the total radiation using

Formula (6).

Rdaily ft L Ral(t

n—
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We obtain hourly instantaneous values, and the other values between two instantaneous values are
calculated with weighted average method. The daily average value can be estimated with Formula (7).

Rdaily_avg = Rduily/(tSEt — trise) 7)
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3. Results

3.1. Diurnal Variation in SZA

We can calculate the diurnal variation in SZA at different dates and latitudes. During one year,
the polar days and nights alternately show up in the southern hemisphere high-latitude area. We can
calculate the range of SZA in one day on the basis of dates and latitudes. We can then decide which
method should be used in specific area and date. Figure 4 shows the SZA change through the year at
latitudes of 60°S, 70°S, 80°S, and 90°S.
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Figure 4. Change range of solar zenith angle at latitudes of 60°S, 70°S, 80°S, and 90°S in all year.

3.2. Diurnal Cycle of Interpolated Irradiance at Different Stations

The areas around the GVN and SPO stations are taken as examples. The diurnal variation
in instantaneous downward shortwave irradiance estimated by two interpolation methods is
shown below.

The interpolation results of the area around the GVN station are shown in Figure 5. Midnight sun
occurs at the GVN station on that day; thus, the shortwave downward irradiance has a positive value
over the entire 24-h period. Eight times of S-NPP transiting and corresponding products in the day at
0:47,02:33, 14:32, 16:09, 17:15, 19:28, 21:10, and 22:47 are available. Although only 24 values are shown,
the sinusoidal method can generate the irradiance value at any time in a day.

The shortwave irradiance around the GVN station shows a significant sinusoidal variation in one
day. The maximum value appears near 14:00, and the values in the morning and evening are obviously
lower. The lowest value is approximately 30 W/ m?, which matches the value that was measured by
the GVN ground station.

Figure 6 shows the diurnal cycle results of surface shortwave irradiance where the SPO station is
located. The cloud coverage parameter interpolation on 2 January 2015, indicates that the SPO station
has 10 cloud parameter products on this day, and the satellite transit times are 0:03, 01:45, 03:22, 05:04,
06:47,08:29, 11:54, 13:31, 18:38, and 22:03. The shortwave irradiance is stable around the SPO station,
which is between 400 and 480 W/m?2. In fact, the more times the satellite can transit, the closer to
actual situations the simulation cloud movement condition can be. On the contrary, when the satellite
transits less, the insufficient consideration of temporal and spatial changes in clouds will lead to error.
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Figure 6. Results of hourly interpolation in the South Pole station area on 2 January 2015.

3.3. Average Daily Irradiation at Different Stations

We can calculate the total irradiation value of a day around the ground station with Formula (5)
or (6) (shown in Figure 7). In polar days, we consider the length of day as 24 h; in other days, we can
obtain the time points of sunrise and sunset [32]. Theoretically, the higher the temporal resolution of
the instantaneous irradiance is, the more accurate the daily total and daily average values can be.
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Figure 7. (a) Daily average value of solar global irradiation over horizontal surface in the Georg von
Neumayer station area on 9 December 2014; and, (b) Daily average value of solar global irradiation
over horizontal surface in the South Pole station area on 2 January 2015.

We use the data from December 2013 to February 2014, from December 2014 to February 2015,
from December 2015 to February 2016, and from December 2016 to January 2017 to validate our
estimated daily average values. The data quality control process is performed before validation to
ensure that invalid data are deleted. We filter the data for SZA less than 90° and delete values that are
less than zero. The measured value for some time periods is 0, which may be due to the snow cover
being caused on the instrument surface. The irradiance values for these periods are also removed.
We calculated the interpolation values in the neighbouring pixel (10 km x 10 km) and the daily average
values measured by the ground station in summer are compared and analyzed. After data control,
the number of daily average value in the SPO station is 326, and that in the GVN station is 332. In the
formulas below, the ground-observed daily average irradiation data will be noted as Rp, and the
estimated daily average irradiation data will be noted as R,. The mean values of the two distributions
are noted as Rp,,;, and Ry;;. The total number of data is noted as N. Three statistical metrics are used to
evaluate the estimates: the coefficient of determination (R?) calculated by Formula (8); the root mean
square error (RMSE), as calculated by Formulas (9) and (10) and Mean bias error (MBE) calculated by
Formulas (11) and (12) [34-37]. The RMSE and MBE are expressed here both in percent and absolute
unit, as shown in Figure 8. The red line demonstrates the equation which includes Re and Rg, while
the blue line is the demonstration when ‘Re = Rg’ for comparison.
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Figure 8. (a) Comparison of the estimated downward shortwave irradiation from the improved

sinusoidal method and the ground-measured downward shortwave irradiation in the Georg von
Neumayer station; and, (b) Comparison of the estimated downward shortwave irradiation from
the cloud coverage fraction interpolated method and the ground-measured downward shortwave

irradiation in the South Pole station area.

4. Discussion

4.1. Comparison of the Algorithm of the National Aeronautics and Space Administration (NASA)'s Surface
Solar Radiation Budget Data Set

The U.S. NASA’s Surface Solar Radiation budget data set (https://gewex-srb.larc.nasa.gov/)
produced for the Global Energy and Water Exchanges Programme provides daily average shortwave
(SW) downward solar irradiation flux starting no later than July 1983 and extending to December 2007.
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SW surface radiation budget data sets are derived on a 1° x 1° global grid with two sets of algorithms,
known as primary SW algorithm and Langley parameterized SW algorithms (LPSA) [38,39].

The primary SW algorithm gains irradiances from logarithmically averaged three-hourly
International Satellite Cloud Climatology Project data. The satellite configuration consists of five
geostationary satellites and at least one polar-orbiting satellite. The measurements taken at 00:00, 03:00,
06:00, 09:00, 12:00, 15:00, 18:00, and 21:00 UTC are included. The daily average irradiation is averaged
by them. The LPSA using the values of daily average irradiation is computed by averaging measured
daytime instantaneous (3 h) reflectance, weighted by the instantaneous value of cos SZA.

4.2. Comparison with Traditional Interpolation Methods

We intend to use two different interpolation methods to obtain the daily average values with high
accuracy of DSSR in the study area. In 1979, Tarpley indicated that the sinusoidal formula of the SZA
can be used to approximate the daily variation IN solar radiation [19]. The diurnal variation in surface
shortwave irradiance is not a simple sinusoidal model due to geographical location, atmospheric
conditions, and other factors, which means that the model needs to be corrected.

Lagouarde and Brunet advanced a sinusoidal model that can describe the diurnal variation in
surface temperature and considers the time span and amplitude of curve [20]. Bisht proposed a diurnal
sinusoidal model of surface net radiation, which is suitable for interpolation with MODIS data under
clear sky conditions [18]. Wang proposed a modified sinusoidal method, supposing the values of
irradiance at sunrise and sunset are zero [23]. However, the curve amplitude is smaller due to the
smaller diurnal variation in SZA in Antarctica. In addition, no sunrise or sunset exists due to the polar
day in summer, which makes the curve time span longer, even one cycle longer than the traditional
curve. We set parameters ‘a” and ‘d” to adjust the curve amplitude in Formula (2), and parameters ‘b’
and ‘¢’ to control time span and cycle.

The transit time is more than four in one day; therefore, we can set four parameters to adjust the
sinusoidal curve. Table 2 shows the estimated daily average downward shortwave irradiation based
on the traditional sinusoidal curve (the R? is near 0.68, and the RMSE is 70.32 W/m?). The parameters
of the linear fits R, = C1+ C, x Rq for the two methods in the GVN station are also shown in Table 2.

Table 2. Comparison between the daily average values estimated by four different interpolation
methods and ground measurements from two stations.

C RMSE RMSE MBE MBE

. 2 1

Station Method R (W/m?) C, (W/m2) (%) (W/m?2) (%)
GVN Improved sinusoidal curve 0.93 35.49 0.95 32.21 8.52 17.77 4.70

station Traditional sinusoidal curve 0.68 55.50 1.09 70.32 18.59 36.39 9.62
SPO Cloud coverage fraction Interpolation  0.96 13.97 0.96 25.27 6.98 0.32 0.08

station Linear interpolation 0.79 28.51 1.04 57.40 15.87 30.18 8.34

In Antarctica, the sensitivity analysis method is used to prove that the cloud coverage fraction is
the main parameter when diurnal changes in SZA are small. Unlike in the linear interpolation method,
whether interpolation or calculation should be performed firstly does not matter in the cloud coverage
fraction interpolation. In our calculations, the relationship between cloud coverage and downward
shortwave irradiance values in the SBDART-CF model is nonlinear, which leads to different results.
Table 2 shows the results from the linear interpolation method. If cloud coverage does not change over
time, the results of two methods should be similar. Therefore, the cloud coverage interpolation method
is more suitable when the cloud cover changes. The parameters of the linear fits R, = C1+ Ca x R, for
the two methods in SPO station are shown in Table 2.
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4.3. Limitation and Further Study

In Figure 5, the DSR is not continuous in space, because when we fit the four parameters, the
influence of the cloud is ignored in some areas and enlarged in other areas. An apparent disadvantage
of the sinusoidal method is that the cloud coverage in every transmit time will affect the four parameters
in Formula (2).

In Figure 8a, the results of daily average irradiation values are slightly overestimated. In the
experiments, the changes of irradiance near the station are not only caused by the change of SZA,
but also by cloud conditions. Consequently, this method is more suitable under clear sky conditions.
We need more cloud data from polar satellite to capture the change of cloud. S-NPP is the only satellite
on which this paper relies. Obtaining data from more satellites can reduce the error between the
interpolation results and the real-time measured values.

The cloud coverage interpolation method is computationally intensive and inefficient. With the
accumulation of future cloud data, a look-up table between cloud coverage changes and the DSR in
this area can be established to speed up the operation.

The methods of this study are not suitable for low and middle latitude areas because of inadequate
satellite transits. However, the fusion of multi-source orbit satellite cloud data can cover the shortage
of inadequate transits to some extent. Thus, the high spatial resolution geostationary satellite will be
helpful in making our methods suitable for lower latitude areas [40,41].

More profound problems must be solved in the future. Firstly, the terrain effect in the research
area is not considered in this paper. The influence of different topography on downward shortwave
irradiance in Antarctica should be considered in further studies when combined with our previous
studies [42]. Secondly, the influence of surface weather conditions is ignored owing to the lack of the
surface weather data. Thirdly, the data for interpolation are available only after 2013 because of the
limitation of the satellite launch time. In further studies, AVHRR and MODIS satellite sensors can be
used [43], and the surface shortwave radiation estimate data set with long-term data series based on
the method that is provided in this paper can be established.

5. Conclusions

In this paper, two interpolation methods to estimate daily average values of downward shortwave
irradiation are mainly discussed. On the basis of the sinusoidal method provided by previous
research, this research has improved the traditional sinusoidal interpolation method. Meanwhile, we
present new cloud fraction parameter interpolation method to consider the cloud condition change in
Antarctica. Four parameters are introduced (‘a’, ‘b’, ‘c” and ‘d") and are fitted in the improved sinusoidal
method, with the data support of the S-NPP satellite that passes through polar areas several times a
day. In this manner, the traditional sine curve model is improved to prevent overestimation. For cloud
coverage fraction parameter interpolation method, the S-NPP satellite cloud product provides cloud
fraction data of the hemisphere space, which are the input parameters to obtain the interpolation results.

According to the validation by the data from two BSRN surface stations, the R? of the first
method is 0.93; the RMSE is 32.21 W/m? (8.52%) and the MBE is 17.77 W/m? (4.70%) in GVN station
area. The R2, RMSE and MBE of the second method are 0.96, 25.27 W /m? (6.98%) and 0.32 W/ m?
(0.08%), respectively, in the SPO station area. When compared with existing methods, our methods are
more accurate than the traditional sinusoidal method (R? = 0.68; RMSE = 70.32 W/m? (18.59%) and
MBE = 36.39 W/m? (9.62%)) in GVN station area and the direct linear interpolation method (R =0.79;
RMSE = 57.40 W/m? (15.87%); MBE = 38.18 W/m? (8.34%)) in SPO station area.
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Appendix A

The SBDART-CF model was improved by Santa Barbara DISORT Atmospheric Radiative Transfer
(SBDART), which has been established to simulate radiative transfer. To consider the effect of cloud
radiative forcing, we should analyze whether the directions of the sun and sensor are obscured by
clouds. We can calculate HECF and RCF by Formulas (A1) and (A2) [33].

" 5k cosd 0
HECF = — ' Al
ig) 271(1 — cosa)h? (A1)
RCF = %% (A2)

In the above two formulas, s is the area of target pixel, and A is the area of a 40 kmx 40 km
slide window; 1 is the number of Nadir-view cloud pixels; 6; is the angle between cloud pixel and
target pixel; the 277(1 — cosa) and ; is the attitude between cloud pixel and target pixel (shown in
Figure A1) [33].

Nadir-view cloud pixel

14310y aseq pnojy—

Cloud vertical
projection

Figure A1l. Cloud pixel and target pixel in the slide window.

We can calculate the instantaneous irradiance values by using SBDART-CF model, with the main
input parameters listed in Table Al. If the surface is Lambert, the surface irradiance flux can be
calculated as Formulas (A3)-(A7).

F(ui) = Fo(pi) + Fn(pi) (A3)
En(pi) = 7 isipwEW(Vi) (Ad)

In Formulas (A3) and (A4), y; is the cosine of the SZA; r; is the surface reflectance; Fy(};) represents
the downward surface irradiance flux when r, is 0. F;,(j4;) is the irradiance that is scattered multiple
times between ground and atmosphere; p is the spherical albedo of the atmosphere; E is the solar
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irradiance at the top of the atmosphere and 7(y;) is the total atmospheric transmittance of the solar
direction (including both direct and diffuse transmittance).

FO_clr = Dirdr + Difcld * HECF + Difclr * (1 — HECF) (AS)

Fy_c1a = Dirgq + Dif.qg * HECF + Dif, * (1 — HECF) (A6)

In Formulas (A5) and (A6), Fy ., and F o4 represent the downward surface irradiance flux
without ground contribution in clear sky and cloudy sky, respectively. The Dir, and Dir,; are direct
irradiance in clear sky and cloudy sky conditions, respectively. The Dif; includes scattering from
clouds, and the Dif,, is scattering from other atmospheric molecules in hemispherical space.

15 *[(1— HECF) % p, + HECF % p]

Fu = [Fo,, * (1 -RCF) + Fo 1— 1, [(1— RCF) # p, + RCF # p,|

* RCF}

eld (A7)

In Formula (A7), we assume that the surface is Lambert with stable reflectance rs to calculate the
multiple scattering value F,;; between the surface and the atmosphere. Meanwhile, the SBDART-CF
model considers the hemispheric partly cloudy condition. We classify the actual sun/cloud-viewing

geometric conditions into nine subtypes (shown in Figure A2).

N Fd / /
N\ Y N\ » // \ 7/
O\ S/ N // N\
N /Y N\ / N\ %
N\ fof S/ R /'y
W\ // \\ S/ N\ /
\ / NN J/ N\ //
AN N4 L. 4 W\ //
N o N4 \\//
N X/ N
Pixel Pixel Pixel

(a) All clear
cloudy hemisphere

(b) Clear illumination and viewing dircction,

/s S Z
/ // /
NN \\\ /S - - ////
AR % '/ \ /S
o \\\ /// - N\ /// - \ S
\ / \\\ /) N\ /)
N\ LS
\\\\ / / \\\\ // \\\\ // /
X/ X/ \ X/
Pixel Pixel Pixel

(d) Cloudy viewing direction and hemisphere, (e) Cloudy illumination direction

clear illumination direction

(f) Cloudy illumination and hemisphere,
clear viewing direction

N N / i
\\\. / >Y r/ /
N\ 4 /
< 7 -\ /7 N ,
AN o/ NS S/ AN\ /
N\ / % N\ // W\ /)
A\ /, \\// AN /)
A A/ \K’
Pixel Pixel Pixel
(g) Cloudy illumination and viewing direction, (h) Cloudy illumination, viewing direction (i) Overcast

clear hemisphere and hemisphere

Figure A2. The Classification for sun-sensor-hemisphere cloud cover conditions.

We list the main input parameters of the SBDART-CF model. In our method the cloud cover
parameters (CBH, COT, HECF and RCF) are included. The output data are instantaneous downward

shortwave irradiance values.
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Table Al. Main Input Parameters of the SBDART-CF Model.

Main Input Parameter Description Unit

SZA solar zenith angle e
Albedo surface albedo -

VIS visibility km
CcOoT cloud optical thickness -

CBH cloud base height km

Alt altitude km
HECF hemispheric cloud fraction -
RCF regional cloud fraction -
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Abstract: The issue for the validation of land surface remote sensing albedo products over
rugged terrain is the scale effects between the reference albedo measurements and coarse
scale albedo products, which is caused by the complex topography. This paper illustrates
a multi-scale validation strategy specified for coarse scale albedo validation over rugged terrain.
A Mountain-Radiation-Transfer-based (MRT-based) albedo upscaling model was proposed in
the process of multi-scale validation strategy for aggregating fine scale albedo to coarse scale.
The simulated data of both the reference coarse scale albedo and fine scale albedo were used to
assess the performance and uncertainties of the MRT-based albedo upscaling model. The results
showed that the MRT-based model could reflect the albedo scale effects over rugged terrain and
provided a robust solution for albedo upscaling from fine scale to coarse scale with different mean
slopes and different solar zenith angles. The upscaled coarse scale albedos had the great agreements
with the simulated coarse scale albedo with a Root-Mean-Square-Error (RMSE) of 0.0029 and 0.0017
for black sky albedo (BSA) and white sky albedo (WSA), respectively. Then the MRT-based model was
preliminarily applied for the assessment of daily MODerate Resolution Imaging Spectroradiometer
(MODIS) Albedo Collection V006 products (MCD43A3 C6) over rugged terrain. Results showed that
the MRT-based model was effective and suitable for conducting the validation of MODIS albedo
products over rugged terrain. In this research area, it was shown that the MCD43A3 C6 products
with full inversion algorithm, were generally in agreement with the aggregated coarse scale reference
albedos over rugged terrain in the Heihe River Basin, with the BSA RMSE of 0.0305 and WSA RMSE
of 0.0321, respectively, which were slightly higher than those over flat terrain.

Keywords: land surface albedo; multi-scale validation; rugged terrain; MRT-based model; MCD43A3 C6

1. Introduction

Land surface shortwave albedo is defined as the fraction of incident solar irradiance reflected
by Earth’s surface over the shortwave band (0.3-3 um) in the whole solar spectrum [1]. It is a key
climate-regulating parameter that determines the amount of solar radiation absorbed by the land
surface at regional and global scales [2,3]. Remote sensing satellites provide a practical method
to estimate land surface albedos because of their large spatial scale coverage and a high revisit
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frequency [4]. However, the retrieved albedos suffer from large uncertainties due to the inherent
complexity of the physical processes and their parameterization of retrieval algorithms [5]. Thus, it is
critical to evaluate the performance of the retrieved albedos prior to their wide application.

Many scientists have focused on assessing the accuracy of albedo products in recent decades over
flat and homogeneous land surfaces. Taking the MODIS albedo products validation as an example,
the validation results showed that the MODIS albedo products displayed high accuracy with
an uncertainty (Root-Mean-Square-Error, RMSE) below 0.03 at the snow-free land covers and 0.07 at the
snow-covered land surface, respectively, when the validation activities occurred in the homogeneous
land surface or in sites with high spatial representativeness [6-19]. Generally, the albedo product
can be assessed by direct comparison with in situ albedos at the sites where the land surface is
sufficiently homogeneous [6,9,10,20]. However, in the heterogeneous land surface, the in situ albedo
cannot be directly compared with albedo products because of the scale mismatching between the in
situ albedo and the albedo products, unless that in situ albedo can be considered with high spatial
representativeness over the sampled area [10,16,20,21]. The scale mismatching will result in about
15% disagreement between the MODIS albedo and in situ albedo [6,9,22]. As the sample sites with
limited spatial representativeness, multi-points albedo observing is generally adapted to capture the
spatial distribution characteristics of the albedo over the sampled area. The simplest and most efficient
method is to average these albedos within the area and as the reference truth to compare with the
albedo products [23]. Alternatively, the multi-scale validation strategy provides a solution to deal with
the scale mismatching over a heterogeneous land surface by introducing fine scale albedo products
(e.g., the Enhanced Thematic Mapper plus (ETM+) or China HJCCD (H]J) albedo) as an upscaling
bridge between in situ albedo and coarse scale satellite albedo products (e.g., MODIS and Global
LAnd Surface Satellite (GLASS) albedo) [8,17,24,25]. In situ albedos are used to calibrate the fine
scale albedo. Then, the calibrated fine scale albedos are aggregated to the coarse scale and for albedo
validation. Previous studies have indicated that the upscaling of albedo from fine scale to coarse
scale is highly linear over flat terrains [8,16,17,24-26]. Therefore, in the case of flat terrain, the linear
weighted average model was considered as a good performance model for upscaling the fine scale
albedo to a coarse scale.

As a special heterogeneous land surface, the topography has vast effects on the land surface
albedo [24,26]. Topographic slope, aspect, shadow, and solar location influence albedo values and
their spatial distribution when compared with that over flat terrain [13,27-30]. The coarse scale albedo
decreased with the increase of the slope facing away from the sun and increased when facing toward
the sun [30,31], and generally showed larger values over the slope facing toward the sun than that
facing away from the sun, especially, in the shadowing case [27,30,32]. The complex topography leads
to the intensive scale effects on albedo products among different spatial resolutions over the rugged
terrain [17,33]. However, neglecting the scale effect caused by the complex topography in albedo
products results in unreliable validation results [33-35]. Peng et al., (2014) assessed the MODIS products
by using the multi-scale validation strategy with the HJ albedo as the bridge to aggregate the in situ
albedo linearly to the MODIS pixel scale. The uncertainty distribution analysis showed that the largest
scaling uncertainty was at the pixels over rugged terrain and its uncertainty of MODIS was as high as
0.07, when neglecting the scale effects at the upscaling progress over rugged terrain [17]. Therefore,
neither the direct comparison nor the linear upscaling model in the multi-scale validation strategy
were suitable for the coarse scale albedo products validation over rugged terrain [33]. The albedo
spatial scale issue caused by topography should be emphasized in the multi-scale validation strategy
over rugged terrain.

The objective of this paper was to develop an upscaling method in the procedure of the multi-scale
validation strategy for albedo products validation over rugged terrain. Simulated data with different
mean slopes and solar zenith angle over nine Digital Elevation Models (DEM) were used to validate
the albedo upscaling method. Based on the proposed upscaling method, the aggregated HJ albedo,
which had been validated by the in situ albedo over the Heihe River Basin, was used as the reference
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truth for the MODIS albedo products preliminary validation. The paper is organized as follows:
Section 2 describes the multi-scale validation strategy, including the upscaling method and the fine
scale albedo products retrieval algorithm; Section 3 describes the experimental area and validation
dataset; Section 4 shows the performance of the albedo upscaling model and the preliminary validation
results for MODIS albedo products. The discussions are summarized in Section 5. Finally, a brief
conclusion is drawn in Section 6.

2. Multi-Scale Validation Methodology

2.1. Multi-Scale Validation Procedure over Rugged Terrain

The general multi-scale validation strategy includes three key procedures over rugged terrain.
The first one is the retrieval and accurate evaluation of fine scale albedo. The second is the calibration
of fine scale albedo products. Finally, the third process is to scale up the fine scale albedo products to
the coarse scale [17,24]. The multi-scale validation strategy over rugged terrain has similar procedures
than those over flat terrain, which is shown in Figure 1. The DEM was used here to calculate the
topographic factors (e.g., slope, aspect), and to couple with fine scale reflectance to retrieve fine scale
albedo. The fine scale albedo was assessed by direct comparison with in situ albedos and was calibrated
for reducing its uncertainties. An albedo upscaling model, which was based on the mountain radiation
transfer theory (MRT-based albedo upscaling model), was proposed to aggregate the fine scale albedo
to a coarse spatial scale. Consequently, the aggregated albedos could be directly compared with the
coarse scale albedo products. To implement a successful multi-scale validation strategy over rugged
terrain, two key issues should be solved including the albedo upscaling method and the fine scale
albedo-generated algorithm on sloping surfaces.

Fme:alabmz reEevEnd_cahEn(; o ] #Cahbrated fine scale / DEM / |
| = ; blue sky albedo
| e | o ] | T |
L | | *(\ upﬁﬁl:l?r-zrajf:del) |
| [ “Fine scale albedo - ———
| retrieval algorithm | | Aggregztlid 5““? scale |
edo
Fine scale albedo | L = - _ — — —
| / g albedo over sloping surface —_—— — — — — —_— — — —
| | MCD43A3 |/Aggregated| |Aggregated |/ /MCD43A3 |
| Validation | BSA BSA WSA WSA
| = Edlibration | BSA validation WSA validation
B - 1 1
| Call)llb: :tsid fisezjsle Coarse scale albedo validation |
L Y | | (MCD43A3 product validation)

Coarse scale albedo vahdatlon
Figure 1. The coarse albedo validation procedure over rugged terrain.

2.2. MRT-Based Albedo Upscaling Model over Rugged Terrain

Coarse scale albedo can be defined as the ratio of the reflected solar radiant flux and incident solar
radiant flux. Assuming that the coarse scale pixel is horizontal overall and the topographic effects
between the coarse scale pixels can be ignored, the incident solar radiant flux of a coarse scale pixel
can be expressed as the sum of direct and diffuse radiant flux at the micro-slope. Therefore, the coarse
scale reflected radiant flux was calculated by summing up the micro-slope reflected radiant flux. If the
micro-slope albedo is known, the coarse scale albedo can be expressed as:
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where A is the coarse scale albedo; (])ﬁ, (pﬁ are the coarse scale pixel’s reflected and incident solar
radiant flux, respective; N is the amount of micro-slope within the corresponding area of coarse
scale pixel; dy and dtp; ¥ are the albedo and incident radiant flux of the kth micro-slope, respectively.
lP;Lcr zpﬁ . are the coarse scale direct solar radiant flux and diffuse radiant flux, respectively. They can be
expressed as:

¢k = EsAreac @
¢} = EqAreac @)
Areac = NdAy, 4)

where E;, E; are the incident direct solar irradiance and diffuse irradiance on the horizontal plane;
Areac is the area of the coarse scale pixel, which can be expressed as the sum of the projected area
(dAyy) of the micro-slope on horizontal plane.

For each micro-slope, d(p}? ¥ can be expressed as the sum of direct radiant flux, diffuse radiant flux,
and terrain radiant flux reflected by adjacent terrain (Figure 2) [32,36]. The incident direct and diffuse
solar radiant flux of a coarse scale pixel can be expressed as the sum of the micro-slope’s solar direct
and diffuse radiant flux on the projected horizontal plane, respectively. Hence, Equation (1) can be
displayed as:

N
L 5+ dgy + gy
N(Es + Eg)dAy,

Ac =

®)

4
/”‘I_—‘\
- ~<

- ~
Outgoing radiant flux

Figure 2. The contributions of incident and outgoing radiant flux over a coarse scale pixel; direct,
diffuse and terrain irradiances.

The superscript “T” means that the pixel is on a sloping surface; the subscript 'k’ means that it is
the kth fine scale micro-slope; d(pSTT, dcp;,j , d(])HTkT are the reflected direct solar radiant flux, diffuse sky
flux, and terrain radiant flux of the kth micro-slope, respectively. They can be written as:
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where cos ig, cos 6 are the cosine of the relative incident angle on sloping surface and the incident
zenith angle on horizontal surface; ®y is the binary coefficient in the direction of the sun which is used
to show whether the pixel is shadowed by the terrain; E" e E! i are the incident solar direct and diffuse
irradiance on horizontal surface; d Ay is the area of the kth micro-slope surface; V; is the sky-view
factor, which is the sky portion seen from a specific surface [37]; and V} is the portion of adjacent terrain
seen from a surface (the methods for calculating these parameters are listed in Appendix A). &y is the
slope of kth micro-slope surface; al,,aI, are the micro-slope’s directional-hemisphere reflectance
(also as black-sky albedo, BSA) and bi-hemispherical reflectance (white-sky albedo, WSA) on a sloping
surface, respectively. Inserting Equations (6)—-(9) into (5), the coarse scale albedo can be rewritten as:

N

l; Cos i T l; T h oS i
kzl (Eslk cos Oy ccfsak (H)kabk + Ez;kvdawk + [Eck cos O cc};sak O + Edkvd} Vtkuwk)

Ac = NE T T (10)

We define a parameter S as the sky diffuse ratio factor, which is the proportion of diffuse solar
irradiance to the total radiation. It can be calculated by the ratio of the diffuse radiance on a horizontal
surface and the downward global solar radiance and exposes values between 0 and 1.

h
Edk (11)
Eh + E
Inserting Equation (11) into (10), the coarse spatial scale albedo can be simplified as:
Ac= LT (01— §) i@yl
c=nX [(1- )cosf)skcosa’k kubk]+
k=1 (12)
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Similar to the descriptions of the blue sky albedo of MODIS [38,39], the aggregated coarse scale
albedo can also be approximated through a linear combination of BSA and WSA, weighted by the sky
diffuse ratio factor. Thus, when S equals zero, it means that it has no diffuse skylight and the value of
Ac can be considered as the coarse scale BSA (BSAc). However, when S is 1, the A is the coarse scale
WSA (WSAc):

cosi k T T
BSAc- = s Vya: 1
SAc = Z [cos 0 cos oy Ok (e + Vikagy)] (13)

COS iy T T T
WSAc = Z e o CSOS o O Vi +Varayy + Var Vikzy| (14)
It is obvious that the BSA and WSA have intense topographic effects as they depend on
topographic factors and the solar incident angle [33]. Thus, they have scale effects in the validation
of albedo over rugged terrain. Furthermore, Equations (13) and (14) provide the albedo upscaling
method and function as the reference truth in albedo validation over rugged terrain.
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2.3. Fine Scale Albedo Retrieval Algorithm over Rugged Terrain

Currently, the Bidirectional Reflectance Distribution Function-based (BRDF-based) albedo
retrieval algorithms cannot be applied directly to fine scale albedo retrieval because of the lacking of
enough fine scale multi-angle observations [40,41]. A feasible method is the direct retrieval algorithm
such as the Angular Bin (AB) algorithm, which estimates the surface broadband albedo based on
a single-date/angular observation [40-43]. In the AB algorithm, the incident and observing hemisphere
were divided into several angular bins. The POLarization and Directionality of Earth Reflectance-BRDF
(POLDER-BRDF) data were used as prior knowledge in this algorithm for extracting anisotropy
reflectance information to build a Look-Up Table (LUT) of the land surface albedo at each angular
bin [41]. Then, the multi-variant linear regression models were established at each angular bin,
which linked the narrowband surface directional reflectance with broadband albedo, specifically,
the shortwave WSA and BSA corresponding to the solar angle at local noon [40,41]. The multi-variant
linear regression relationship can be expressed as:

n
asp = Co(s, ¢s, 00, @o) + Z Ci(6s, ¢s, 0o, (Pv)Pi(es, @s, 00, Po) (15)
i=1

where a 4 represents the land surface fine scale albedo including BSA and WSA; C;(6s, ¢s, 05, ¢o) is the
regression coefficient; and p;(6s, ¢s, 0o, ¢o) is the surface directional reflectance at band i, which are the
functions of solar/view angles (6;, ¢s, 0, ¢ ) are the solar zenith angle, solar azimuth angle, view zenith
angle, and view azimuth angle). The AB algorithm has the advantages of simple computation,
fewer input parameters, and consideration of surface bidirectional and spectral characteristics [41].
Preliminary validation of the AB algorithm showed good applicability for albedo retrieval with
an absolute error of 0.009 for vegetation, 0.012 for soil, and 0.030 for snow /ice [41-43].

However, the current AB algorithm had to be improved before being applied over rugged terrain
as the regression models and the LUT were built on horizontal land surface. Therefore, the coefficient
and the LUT were not suitable for the albedo retrieval over rugged terrain. One accessible approach
to improve the AB algorithm over rugged terrain was to rebuild the regression models and LUT on
the sloping surface. Under the assumptions that the BRDF shape was the same over the land cover,
the BRDF shape for the slope was the BRDF for the rotated angles. Sloping surface incident/observation
hemispheres were re-divided and rotated to the sloping surface at the sloping coordinate system.
Thus, it can be re-written on a sloping surface as:

n

aapr = Colis, s, iv, Pv) + Z Ci(is, Ps,iv, ¢o)pi(is, Ps, 1o, Po) (16)

i=1

where a 47 is the fine scale sloping surface albedo, is, ¢s, iy, P are the relative solar zenith angle, solar
azimuth angle, view zenith angle and azimuth angle on the sloping coordinate system, respectively.
0i(is, ¢s, iv, Pp) is the land surface reflectance on the sloping surface. C;(is, ¢s, iv, o) is the regression
coefficient on a sloping coordinate system. The sloping surface reflectance can be retrieved by the
Coupled-BRDF mountain radiation transfer model, which was developed by Wen in 2015 [44].

3. The Experimental Area and Dataset

3.1. Simulated Coarse Scale and Fine Scale Albedos

The simulated coarse scale albedos were used as reference data for comparison with the
aggregated coarse scale albedos, which were upscaled from a simulated fine scale albedo by using the
MRT-based upscaling model. The BSA can be simulated by integrating directional reflectance over the
exitance hemisphere, and the WSA can be obtained by integrating the directional reflectance over all
viewing and irradiance reflectance directions. The coarse scale directional reflectance can be simulated
according to the radiosity theory [33,34,45], which coupled with the DEM and micro-slope reflectance.
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In the coarse scale reflectance simulation, the micro-slope or the fine scale directional reflectance
can be directly simulated by the PROSAIL model [46], which couples the PROSPECT leaf optical
properties model [47] with the SAIL canopy reflectance model [48] and has been widely validated
and applied to reflectance modeling studies [49]. For directional reflectance simulation over rugged
terrain, the leaf inclination distribution function (LIDF) was assumed as a spherical type, and the
incident/observation geometrics were corrected to the sloping coordinate system to assess the photon
path length alteration. Table 1 illustrates the parameters of the inputted PROSAIL model for land
surface reflectance simulation over the sloping surface.

Table 1. The parameters and the values of the PROSAIL model.

Parameter Value
Solar Zenith Angle, SZA (degree) 0-60 (Interval 10)
Solar Azimuth Angle, SAA (degree) 0-360 (Interval 30)
View Zenith Angle, VZA (degree) 0-90 (Interval 10)
View Azimuth Angle, VAA (degree) 0-360 (Interval 30)
Leaf Chlorophyll a + b Concentration, Cab(ug/ cm?) 40
carotenoid content, Car (ug/ cmz) 8
equivalent water thickness, Cw (g/cm?) 0.01
dry matter content, Cm (g/ cm?) 0.009
scene leaf area index, LAI (m2 /m?) 3
average leaf angle, ALA (degree) 30
structure coefficient (N) 1.5
hot-spot size parameter(m/m) 0.01
Soil brightness parameter 1

Nine DEMs (Table 2) were generated with different Gaussian height distributions to provide
the various slope and aspect of micro-slope (shown in Figure 3). Specifically, the nine DEMs had
the same reference template, which was simulated by a Gaussian random distribution model with
one unit mean elevation and 0.25 unit standard error within the area of 100 units x 100 units.
By linking with the real distance of 30 m, the simulated micro-slope could be considered with
the 30 m resolution [33]. Additionally, the vertical elevation was exaggerated in 1, 10, and 20,
respectively. Through appropriate exaggeration in the elevation and different Gaussian smoothing
filtering parameters, the micro-slopes were generated with different slope and aspect. However, only the
central part 510 m x 510 m (17 x 17 grid cells) of the above DEM was considered as a coarse scale pixel
coverage to avoid the ambiguous calculation errors at the edge of the DEM. The mean slopes listed
in Table 2 were defined as the average slope of the grids within the 17 x 17 grid cells. Since the BSA
depends on the solar geometry (including SZA and SAA), the SZA varied from 0° to 60° with a 10°
interval, and SAA varied from 0° to 360° with a 30° interval. Therefore, 819 BSAs and nine WSAs from
nine DEM files were simulated.

Table 2. Mean slopes of the DEMs.

Exaggeration =1 Exaggeration =10  Exaggeration = 20

Filter

Mean Slope Mean Slope Mean Slope
1x1 3.38 29.69 47.18
3x1 2.7 24.68 41.25
5x1 1.98 18.76 33.23

187



Remote Sens. 2018, 10, 156

Exazgeration 1
Filler 141
Exaggeration=10 +
Fileter=1x1 . HE S S Lxaggeration-20
H Fileter=1x1

Exaggerstion=1 . . :
ileter-3+1 - - f Fileter 3+ | Exaggeration=20
B B H Fileter=3x1

Elevation (moir)
BEBES
Flevation (meter)

Exapgeration=1

Fileter 571 Exaggeration=10

Fileter=571
Exaggeration 20

Fileter=521 - T

Elevation {meter)
FEEEE
HEEBE

Elevation (metec)

Figure 3. Simulated DEM with Gaussian height distributions.

3.2. In Situ Albedo Measurements

The upper stream of the Heihe River Basin (HRB) was selected as the study area for coarse scale
albedo validation over rugged terrain. HRB is a typical inland river in the arid region of northwest
China (97.1°E-102.0°E, 37.7°N—42.7°N). This region was selected as the core experimental watershed
of Hi-WATER, because of the abundant accumulations of long temporal scale records since 1995 [50,51].
There are mountains in this region where the altitude ranges from 1025 m to 5076 m. The dominated
land covers are cropland, Gobi Desert, grassland, forest, and high-latitude meadows.

A prototype watershed observation system has been established since 2009 [52]. Fifteen Automatic
Weather Stations (AWS) were mounted in this observation system (Figure 4), which recorded
the essential parameters every ten minutes including upwelling solar shortwave radiance (USR),
and downwelling solar shortwave radiance (DSR). In situ albedo can be calculated as the ratio of USR
and DSR at the local solar noon (11:30-12:30). Figure 4 illustrates the study area and the location of the
selected AWSs.

The 15 AWSs in HRB are temporary sites where the measurements were only recorded at the
periods of the Hi-WATER experiments. Two CNR pyranometers were mounted back to back between
2 m and 2.5 m above the top of the canopy at every AWS. The measurement footprints were circular
and 80% of the signal came from a region with a diameter between 34.8 m and 43.5 m, which could be
easily calculated as per Sailor’s work [53]. The measurements recorded at 15 AWSs were considered
with the high representativeness of mean albedo within the 30 m HJ pixel. Table 3 summarizes the
details of the albedo measured sites used for validation.
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Figure 4. Study area: (A) the overview of the study area; (B) the location of the Automatic Weather
Stations (AWSs) in the DEM imageries; and (C) one example of the AWSs.

Table 3. The description of the selected AWSs.

Lat/Lon/Ele Slope Mean Slope
Site Name Land Covers Time Periods
(Deg/Deg/M) (Deg) (Deg)
A’rou Super 38.047/100.464 /3017 Grassland 1.148 25 2013, 2014
A’rou Sunny 38.09/100.520/3579 Grassland 5.746 11.64 2013, 2014
A’rou Shady 37.984,/100.411/3585 Grassland 9.871 15.703 2013, 2014
E’bu 37.949/100.915/3355 Grassland 2.316 3.376 2013,2014
Huang ZangSi 38.225/100.192/2651 Cropland 4764 6.503 2013, 2014
Huang CaoGou  38.003/100.731/3196 Grassland 6.968 3.917 2013, 2014
Jing YangLing 37.838/101.116/3793 Grassland 5.206 10.85 2013, 2014
Zhang Ye 38.975/100.446/1456 Cropland 4.847 2.882 2009, 2013, 2014
Hua ZhaiZi 38.765/100.319/1740 Desert 5.206 3.775 2009, 2013, 2014
Guan Tan 38.534/100.250/2839 Forest 14.943 11.418 2009
A’rou 38.051,/100.457 /2993 Grassland 3.554 3.671 2009
Bing Gou 38.067/100.222 /3438 Grassland 4.274 10.573 2009
Ya Kou 38.014/100.242 /4137 Grassland 8.432 9.504 2009
Ying Ke 38.858/100.41/1517 Cropland 1.148 2.296 2009
Ma LianTan 38.548/100.296 /2827 Grassland 15.42 18.561 2009

Ten AWSs were mounted in the grassland, three AWSs were located in the cropland, one site
in the desert, and one site in the forest. The slope of the AWSs and the mean slope of coarse scale
pixels (500 m in this paper) were obtained from the DEM were listed in Table 3. According to the mean
slope, if the mean slope was less than 5°, the coarse scale pixel was thought of as being of a gentle
slope. If the mean slope was greater than 5° and less than 10°, the coarse scale pixel was a relatively
rugged terrain. When the mean slope was greater than 10°, the coarse scale pixel was considered as
steep terrain. The DEM were collected from the Shuttle Radar Topography Mission (SRTM) DEM
data [54,55], and had a 30 m spatial resolution and UTM projection [56]. Slope, aspect, shaded factor,
and other terrain parameters were derived from the DEM referenced to the algorithm in Dozier’s
work [37].

3.3. Satellite Imagery

The 500 m Collection V006 MODIS albedo product (MCD43A3 C6) was selected as the coarse
scale albedo products for validation. The semi-empirical, kernel-driven BRDF model was the primary
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algorithm to retrieve surface BRDF and albedo at 16-day time periods [57]. A back-up algorithm was
employed for deriving the albedo in a situation of insufficient angular sampling because of cloud cover
or orbital constraints [28]. The MCD43A3 products provided shortwave broadband black-sky albedo
(BSA) and white-sky albedo (WSA) at a 500 m resolution [38].

The fine scale remote sensing data were collected from the China HJ-1/CCD sensor which
provides an opportunity to record earth land surface reflectance with high spatial resolution and
a broad coverage in China [44]. The HJ-1/CCD can record 4-band images with a 30 m spatial scale and
a revisiting circle of less than two days [17]. The HJ images were geo-rectified for matching with the
DEM file.

4. Results

4.1. Assessment of the MRT-Based Upscaling Model

A high-quality albedo upscaling model is of great importance for the application of multi-scale
validation strategy. The accuracy of the MRT-based albedo upscaling model was assessed through
a comparison of the aggregated fine scale albedo with the reference coarse scale albedo. Moreover,
to show the performance of the MRT-based upscaling method, the line weighted average model was
also used to scale up the fine scale albedo to a coarse spatial scale, which is the most commonly-used
model in the multi-scale validation method over flat terrain [8,9,24,58]. The bias, root-mean-square
error (RMSE), mean absolute percent error (MAPE), and coefficient of determination (R?) were used to
show the accuracy of the aggregated coarse scale albedos, which are expressed as follows:

n

Bias = Y (pi —0i)/n (17)
i=1
RMSE = i(pi —0)%/n (18)
i=1
MAPE = 172" (5, o) /27 (19)

R? = f (pi = Pi)(0i = 07)/ {f (pi = P2 nl(Oi - 01‘)2} (20)

i=1 i=1 i=

where p;, p; are the albedo observation and average albedo observation; 0;,0; are the reference albedo

measurement and average of reference albedo measurement; and n represents the amount of simulated
albedo measurements.

4.1.1. Accuracy of Using MRT-based Albedo Upscaling Model

Figure 5 shows the scatter plots between the reference coarse scale albedo and aggregated coarse
scale albedo as well as the histogram of bias distributions. The aggregated coarse scale BSAs showed
significant agreements with the reference simulated coarse scale albedo with an RMSE of 0.0029, Bias of
—0.0001, MAPE of 0.94%, and R? of 0.9962 (Figure 5A). The histogram showed that the bias reflected
a normal distribution with the maximum bias less than 0.015 (Figure 5B). Figure 5C shows that the
aggregated coarse scale WSAs had a similar accuracy with the BSAs. The bias was 0.0007, the MAPE
was 0.79%, the RMSE was less than 0.0017, and the R? is as high as 0.9984. The bias in Figure 5D
showed that the maximum bias among the nine simulated WSAs was less than 0.003 following the
change of the mean slope. Overall, these results showed that the aggregated coarse scale albedos had
fewer discrepancies with the reference coarse scale albedos.
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