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Abstract: Mapping the regional distribution of forest canopy height and aboveground biomass is
worthwhile and necessary for estimating the carbon stocks on Earth and assessing the terrestrial
carbon flux. In this study, we produced maps of forest canopy height and the aboveground biomass
at a 30 m spatial resolution in Maryland by combining Geoscience Laser Altimeter System (GLAS)
data and Landsat spectral imageries. The processes for calculating the forest biomass included the
following: (i) processing the GLAS waveform and calculating spatially discrete forest canopy heights;
(ii) developing canopy height models from Landsat imagery and extrapolating them to spatially
contiguous canopy heights in Maryland; and, (iii) estimating forest aboveground biomass according
to the relationship between canopy height and biomass. In our study, we explore the ability to use
the GLAS waveform to calculate canopy height without ground-measured forest metrics (R2 = 0.669,
RMSE = 4.82 m, MRE = 15.4%). The machine learning models performed better than the principal
component model when mapping the regional forest canopy height and aboveground biomass.
The total forest aboveground biomass in Maryland reached approximately 160 Tg. When compared
with the existing Biomass_CMS map, our biomass estimates presented a similar distribution where
higher values were in the Western Shore Uplands region and Folded Application Mountain section,
while lower values were located in the Delmarva Peninsula and Allegheny Mountain regions.

Keywords: forest canopy height; aboveground biomass; ICESat GLAS; Landsat; random forest model

1. Introduction

Increasing concerns regarding global climatic changes have emphasized the urgency of finding
efficient ways to quantify terrestrial carbon stocks at regional, continental, and global scales [1]. Forest
biomass is of primary importance for the assessment and management of carbon resources on Earth.
At the same time, changes in forest biomass can be a good proxy for the analysis of the global carbon
cycle and a valid resource for the estimation of sequestration and carbon sources/sinks [2,3]. Scientific
researchers also use forest biomass to study ecosystem biodiversity [4,5]. In recent years, efforts have
been made to mitigate the deforestation and emissions of greenhouse gases. Such forest biomass studies
will record valuable information that can be used to evaluate the effects of these efforts. Furthermore,
it is helpful to provide governments with constructive suggestions for biodiversity conservation and
ecosystem management. Hence, it is strongly necessary to explore an efficient approach to assess forest
biomass at regional, continental, and even global scales.

Field forest measurements provide a straightforward, accurate method in order to calculate the
amount of terrestrial aboveground forest resources and evaluate the global carbon cycle [6]. Tree metrics,
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such as height, DBH (diameter at breast height), tree age, tree species, and LAI (leaf area index) can
link forest biomass estimates with allometric relationships [7–10]. Nevertheless, ground inventory
campaigns require huge investments of labor, time, and money, which result in inconsistency over
large regions and the lack of ground-based inventories in remote areas.

LiDAR is another method to link forest height and other biophysical characteristics. It can be
used to make digital three-dimensional (3D)-representations of the target and high-resolution maps
with wide applications in forestry [11–13]. Tree heights obtained by airborne LiDAR have proven
to be a good predictor of forest biomass [14]. Naesset and Goabakken explained 88% and 85% of
the variability in aboveground and belowground biomass, respectively, using airborne LiDAR [15].
Drake et al. explored the sensitivity of LiDAR to differences in canopy structure and aboveground
biomass in a dense, neotropical rainforest [16]. However, the application of airborne LiDAR to forest
biomass also has challenges as airborne LiDAR relies heavily on financial support and does not
cover the global surface. Thus, researchers have turned to Earth observation satellites to obtain
nearly real-time overviews of the terrestrial carbon stocks [17]. The NASA (National Aeronautics and
Space Administration) GLAS (Geoscience Laser Altimeter System) instrument, on board the ICESat
(Ice, Cloud and Land Elevation Satellite) records the full waveforms of detected footprints (~65 m
on the surface of Earth), which provide vertical information of the surface of the Earth, including
vegetation [18,19]. The GLAS waveform has demonstrated tremendous potential in calculating forest
canopy heights and biomasses even though it was designed with the primary objective of monitoring
polar ice sheets. One of the distinct superiorities of GLAS data is that we are able to acquire tree
heights within a single footprint, which makes it a valuable supplement to field inventories. Therefore,
the ICESat potentially supports the study of terrestrial carbon resources, especially in remote areas
that humans are unable to reach. However, GLAS data, which are distributed as scattered points,
cannot provide spatially contiguous records. Thus, interpolation processes, such as the kriging
method [20–22] or spatially continuous optical imagery, are included to produce regional forest
biomass estimates [23–31].

Multispectral sensors record the information from visible light to short wave infrared light,
and red and near-infrared light are sensitive to vegetation. Therefore, spectral imagery offers another
resource for estimating forest aboveground biomass. Landsat sensors provide 16-day repeat coverage
of the surface of the Earth with a spatial resolution of 30 m. Numerous studies have proven the
feasibility of using Landsat data to survey forest resources and monitor the changes in terrestrial
carbon stocks [32–38].

NASA is planning to launch ICESat-2 and GEDI (The Global Ecosystem Dynamics Investigation)
in 2018; ESA (The European Space Agency) will launch BIOMASS in 2020. These missions will provide
great supports for the research of forest biomass and carbon cycle. Therefore, it is necessary to study
efficient methods of evaluating forests to service further research. The main purpose of this paper
was to analyze and compare the performances of the principal components model and three machine
learning models, including BPANN (backpropagation artificial neuronal network), SVR (support
vector regression), and RF (random forest) for estimating the forest biomass. Our basic processes
were (i) to compute the forest canopy height within discrete GLAS footprints using the full waveform
parameter; (ii) to link the canopy height produced by GLAS with the vegetation indexes and then
establish the principal component model and machine learning models to map spatially contiguous
canopy heights; and, (iii) to develop a power equation from the forest canopy heights to estimate
the aboveground biomass. Finally, we compare our estimates to other existing forest aboveground
biomass values in Maryland and explain why our method has potential at larger scales.
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2. Study Area and Datasets

2.1. Study Area

Maryland (37.8◦N–39.8◦N, 75.0◦W–79.5◦W) lies in the mid-Atlantic region of the United States,
bordering Virginia and Washington to the south and west and covering a land area of ~25,600 km2 [39].
The east of Maryland is relatively flat with elevations from 0–200 m and has a humid subtropical
climate, with hot, humid summers and short, cool winters, while the opposite region around the
Appalachian Mountains is higher and more complicated with elevations from 150–900 m and has a
humid continental climate. The rainfall in Maryland ranges from 890–1140 mm and is even greater at
higher elevations. Maryland is divided into 24 counties when considering the political functions, and it
can also be separated into nine physical regions when natural elements, such as location, topography,
and climate are concerned (Figure 1a). Overall, Maryland has a wide array of climates due to the
variances in the elevation and proximity to water.

Maryland possesses abundant forest resources, and the forested lands account for 42.8% of the
total land cover in spite of the urbanization that occurred by 2000 [40]. From the forest distribution
map produced by the MRLC (Multi-Resolution Land Characteristics Consortium (Figure 1b)), it is
apparent that Maryland is dominated by deciduous forest apart from the evergreen forests in the
southeast and there are only minimal mixed forests in the western shore upland region. It is the wide
variabilities in the topography and natural environment and the abundant forest resources that make
Maryland a suitable place to study forest biomass.

Figure 1. Overall introduction to the study area. (a) The elevation map and the distribution of the
physical regions. (b) The distribution of the forest in Maryland and Geoscience Laser Altimeter System
(GLAS) footprints located in forest areas.
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2.2. ICESat GLAS Laser Altimetry Data

The GLAS instrument was mounted on the Ice, Cloud and Land Elevation Satellite (ICESat) and
was the first satellite-based earth orbiting laser altimeter that was part of the Earth Observing System
(EOS) of NASA and was operational from January 2003 to October 2009 [41]. Even though the primary
purpose of the ICESat mission was to take ice sheet elevation measurements in the polar regions [42],
GLAS data have been widely applied to accurately map regional, continental, and global vegetation
heights and carbon volumes with active pulse emission/reception [43]. The laser altimeters provide
the range between the spacecraft and the illuminated spot on the surface of the Earth by measuring the
round-trip travel time of the laser pulse. The GLAS sensor acquires altimetry information at 1064 nm
with 40 Hz lasers, which consequently leave nominal ~65 m diameter footprints and ~170 m intervals
between spots [44].

GLAS laser altimeter data can be downloaded from the National Snow and Ice Data Center
(NSIDC) website (https://nsidc.org/data/icesat). The database provides 15 Level-1 and Level-2
data products (GLA01 to GLA15), and the GLA01 and GLA14 products were used in this study.
The instrument determines the range by measuring the time between the emission of the laser pulse
and the detection of the photons reflected from the surface of the Earth. The detected pulse is digitized
in 1ns (15 cm) range bins. From a total of 1000 selected range bins, a smaller number 544 over land and
ice sheets and 200 over oceans and sea ice regions was selected for transmission. The corresponding
range widths of the transmissions were 81.5 m and 30 m. What requires more attention is that the
size from 1 to 151 bins is prolonged to 4 ns (60 cm), starting from L3A; therefore, the length of the
corresponding waveform increases to 150 m [45,46]. GLA01 is a level 1A product and records the actual
waveform. GLA14 is a level 2 land product and contains other crucial information on the footprints,
such as the elevation (i_elev), latitude (i_lat), longitude (i_lon), transmission time of the first shot in the
frame in J2000 (i_UTMTime), start and end range increment of the signal (i_SigBegOff, i_SigEndOff),
signal saturation index (i_satNdx), standard deviation of the background noise (i_sDevNsObl), max
amplitude of the received echo (i_maxRecAmp), likely presence of clouds (i_Frir_qaFlag), amplitude
of the Gaussian distribution (i_Gamp), sigma of the Gaussian distribution (i_Gsigma), and the centroid
range increment for the Gaussian fits (gpCntRngOFF). Sun et al. demonstrate that the six Gaussian
distributions have a strong relationship with the vertical features of the forest and the underlying
topography [47].

In this study, we downloaded all year round GLAS data in Maryland from 2005–2008 to maintain
consistency with the validation data. Then, we extracted the data from the raw GLAS file using the
IDL tools provided by the NSIDC. Next, it was necessary to filter out invalid data according to the
parameters of GLA14. We deleted all of the contaminated points when i_satNdx exceeded 2 or the SNR
(signal-to-noise ratio = i_maxRecAmp/ i_sDevNsObl) was less than 60. At the same time, we only retained
the cloud-free footprint when the i_Frir_qaFlag was equal to 15. We also used NLCD 2011 (National Land
Cover Database 2011) to select points, which were within forest areas in Maryland. Finally, the selected
dataset contained a total of 2720 valid GLAS records (Figure 1b). The laser campaigns we used in
this study included 3B, 3C, 3D, 3E, 3G, 3H, 3I, 3J, and 3K. The ICESat elevation corresponded to the
TOPEX/Poseidon ellipsoid; so, we converted it into WGS84 to maintain consistency with other data.
After that, the GLAS waveforms needed to be filtered using wavelet transformation to eliminate sharp
noise. Furthermore, a critical step was to decompose the GLAS waveform into multiple Gaussian
distribution curves, as described in previous studies [17,47,48]. Finally, we quantified the background
noise by calculating the mean value and standard deviation of the background signal, and then we set
thresholds to identify the start and end of the signal. The start noise and end noise presented different
characteristics, so we dealt with them separately. Usually, the threshold is defined as the mean value
plus n times of the standard deviation. However, the value of n varies in different studies (n = 3 [47],
n = 3.5 [49], n = 4 [50], n = 4.5 [51]). In this study, n = 3 was used. Furthermore, we also calculated the
slope index [52] within each footprint to reduce the impact of terrain.
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2.3. CMS_RF Forest Canopy Height and Aboveground Biomass for Maryland

The CMS (Carbon Monitoring System) forest canopy height and aboveground biomass data,
as part of the NASA CMS plan, are accessible from the ORNL DAAC (The Oak Ridge National
Laboratory Distributed Active Archive Center) CMS website (https://daac.ornl.gov/cgi-bin/dsviewer.
pl?ds_id=1320). The NASA CMS is designed to make significant contributions to characterizing,
quantifying, and predicting the evolution of global carbon sources and sinks by improving the
monitoring of carbon stocks and fluxes. This dataset provided a 30-m gridded estimation of canopy
height and aboveground biomass for the state of Maryland in 2011 [53]. The tree canopy height
was modeled by high-resolution (one meter) airborne LiDAR, which is then aggregated to a height
distribution of 30 m [54]. The aboveground biomass map was produced by combining the leaf-off
LiDAR data with file allometric estimates from 848 variable plots across Maryland. Field-based
estimates were then related to the LiDAR height and volume metrics using random forest regression
models to generate a statewide biomass map. The aboveground biomass map explained ~50% of the
variability when compared with the field plots (R2 = 0.49, RMSE = 89.3 Mg ha−1, n = 848), and was
then cross validated with FIA (forest inventory and national analysis program) data that showed
better agreement (R2 = 0.69, RMSE = 58.2 Mg ha−1, n = 1055). More details of the canopy height and
aboveground biomass are available in [39,55].

2.4. Landsat Data

The Landsat program is co-managed by NASA and USGS (United States Geological Survey) and
provides the longest continuous records to help policymakers and land managers to make wise and
farsighted decisions regarding global resources and the environment. Multi-temporal data ensures the
possibility of downloading cloud-free, high quality, and atmospherically uncontaminated imageries
covering the entire state [56]. The TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper
Plus) data record information from visible to infrared light, which has been proven in previous
studies as qualified to distinguish different land cover types or even vegetation types with different
volumes [57–61]. Powell et al. modeled live aboveground biomass using Landsat satellite imagery
and derived the trajectories of the biomass dynamics in Arizona and Minnesota [62]. Liu et al. built
an algorithm to estimate the forest aboveground biomass using TM data, which provided a reliable
estimate (R2 = 0.71, RMSE = 39.60 Mg ha−1) in the Changbai Mountains [24].

We downloaded surface reflectance data products that had been atmospherically corrected, from
the USGS website (https:earthexplorer.usgs.gov). In this study, the data included six scenes of TM
imagery (P14R33_20090521, P14R34_20090521, P15R32_20110603, P15R33_20100429, P16R32_20090519,
and P16R33_20090519) and two scenes of ETM+ imagery (P17R32_20090518, and P17R33_20090518),
which were acquired during the vegetation growing period in this study. The products were mapped
in World Geodetic System (WGS) 84 datum and the Universal Transverse Mercator (UTM) projection.

2.5. National Land Cover Database 2011

We downloaded the NLCD 2011 from https://www.mrlc.gov.nlcd2011.php. The data are the
most recent national land cover product created by the MRLC Consortium. The product uses Landsat
imagery as the primary data resource and has a spatial resolution of 30 m. The database classifies the
national surface into 20 land cover types, and deciduous forest, evergreen forest, and mixed forest
constitute the American forest. The overall accuracies of NLCD 2011 was 88% [63]. The NLCD 2011
has been recognized as an important source to analyze carbon cycle problems within certain land
cover types at both the regional and national scales [64]. The CMS_RF forest canopy height and the
aboveground biomass introduced in Section 2.3 were also calculated with the help of the NLCD.
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3. Methods

3.1. Estimating Forest Canopy Height from the GLAS Waveform

After the preprocessing steps described in Section 2.2, we extracted several key variables (Figure 2)
needed to calculate the forest canopy height and biomass from the GLAS waveforms. Even though the
GLA14 product contains information that can be used to identify these critical parameters, we chose
to define the key positions through a series of algorithms when considering the underlying noise in
the GLA14 data [49]. The total waveform length, which is the distance from signal start to signal
end, contains all of the vertical height information in the vegetation region and even includes some
topographic slope noise [18]. The signal start and end were determined using the start and end
thresholds acquired by the preprocessing steps. The last peak was regarded as the ground peak only if
the amplitude was higher than those of the nearby peaks and the distance between the selected peak
and the signal end exceeded the half width of the laser pulse (60 cm) [18,65,66]. The centroid of the
waveform records the half energy from the signal start to the ground peak. The trailing edge extent
was determined as the difference between the signal end and the last bin where the signal intensity of
the waveform is half the maximum intensity. In this study, we calculated the distance from the signal
start to the ground peak as the canopy height, and then added the terrain index to optimize the canopy
height within GLAS footprint.

An approach developed by Mahoney [52] for calculating the slope from GLAS was applied for
terrain correction. We used a simple way to calculate the slope (θ) within each GLAS footprint with
Equation (1).

θ = atan(
2 ∗ Trailext

d
) (1)

where Trailext is the trailing edge extent; and d is the mean diameter for the GLAS footprint.
In this process, Trailext was directly used as the terrain index. We built a linear formula to combine

the maximum canopy height and terrain index to improve the accuracy of the estimated canopy height.

Figure 2. A typical waveform profile of a GLAS shot in Maryland.

3.2. Extrapolating Canopy Height to the Study Area

Using the GLAS waveform to supplement field inventory data is a significant method to evaluate
the forest volume and carbon stocks at regional and global scales. However, the GLAS data are
scattered over the study area, so it is necessary to combine these data with spectral imageries (Landsat
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imageries) to produce a spatially contiguous canopy height map. The size of a GLAS footprint
is approximately 65 m, while the resolution of Landsat imagery is 30 m. Thus, we upscaled the
spectral data to 60 m, and then built relationships between the forest canopy height and the vegetation
indexes. Next, we applied the relationships to the non-upscaled imageries. In total, we selected
five vegetation indexes, the NDVI (normalized difference vegetation index) [67–69], EVI (enhanced
vegetation index) [68], RVI (ratio vegetation index) [70], DVI (difference vegetation index) [69], and the
VARI (visible atmospherically resistant index) [71].

In order to take into account all the vegetation indexes, we conducted PCA (principal components
analysis), machine learning models (BPANN, SVR, and RF) to estimate the spatially contiguous
canopy height.

PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly uncorrelated variables called principal
components. These new components are linear combinations of the original variables [72–74]. The first
principal component has the largest possible variance (that is, accounts for as much of the variability
in the data as possible), and each succeeding component in turn has the highest variance possible
under the constraint that it is orthogonal to the preceding components. The resulting vectors are
an uncorrelated orthogonal basis set. Thus, PCA is often used in data reduction to identify a small
number of factors that can explain most of the variances.

The BPANN algorithm consists of forward-propagation of the data stream and back-propagation
of the error signal. For the forward propagation, the direction is input layer→hidden layer→output
layer, and each layer determines the next layer. If the results fail to meet the expected output, the error
signal helps adjust the data stream in reverse [75]. BPANN is sensitive to the number of neurons in
hidden layers and the type of activation functions for the layers [76]. In this process, Matlab toolboxes
were used to train the models. We chose three categories of transfer functions: the tansig (hyperbolic
tangent sigmoid), logsig (log-sigmoid), and purelin (linear) transfer function. The tansig transfer
function can produce both positive and negative values, which tends to yield faster training than the
logsig transfer function, which produces only positive values. In terms of training algorithms, we
chose traingd, traingdx, trainingda, trainrp, trainlm, trainbfg, trainscg, trainoss, traincgf, and traincgp.
More detailed information of these training algorithms is available in [77].

The SVR is a version of SVM (support vector machine) for regression. Its basic idea is to minimize
the structural risk and keep the target as flat as possible [78]. The main design of a SVR model is
the kernel, which is an inner product in the SVR feature space. Since inner products induce distance
metrics and vice versa, the basic goal in SVR kernel design is to find an appropriate metric in the
SVR feature space relevant to the regression problem [79]. The Libsvm toolbox supports two kinds
of formulations for regression. In this study, we trained ν-SVR [80] and ε-SVR [81], and chose linear,
polynomial, and RBF (Radial Basis Function) kernels.

Random forest is an ensemble learning method that constructs a multitude of decision trees and
then outputs a mean prediction regression of the individual trees [82]. RF takes advantage of two
powerful machine learning techniques: bagging and random feature selection. In bagging, each tree is
trained on a bootstrap sample of the training data, and predictions are determined by the majority vote
of the trees. It performs a type of cross-validation in parallel using the so-called out-of-bag samples to
assess the predictions [83]. In this research, we changed the number of trees and the features randomly
selected in each node of each tree in order to optimize the model.

Furthermore, to avoid overfitting, we conducted 10-fold cross validation to analyze the result of
each model.

3.3. Estimating Forest Aboveground Biomass in Maryland

Forest canopy height provides a crucial indicator to calculate the forest aboveground biomass.
Several studies have studied the relationships between canopy height and biomass [1,51,84]. In this
section, we extracted forest canopy height and biomass from CMS maps within GLAS shot locations,
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and then developed a power model from forest canopy height to biomass. Similarly, 1800 points were
used to establish the model and 920 points were used to validate the model.

4. Results

4.1. GLAS Waveform to Forest Canopy Height

After preprocessing the GLAS waveform data and identifying the key parameters, we obtained
2720 forest canopy heights in Maryland. Figure 3a shows the results of the simple canopy height
method (R2 = 0.606, RMSE = 4.78 m, MRE = 15.9%).

Furthermore, we also used 1820 points to establish a linear empirical relationship (Equation (2))
in order to optimize canopy height (H).

H = Hmax − 0.73 ∗ Trailext (2)

where Hmax presents the distance between the signal start and ground peak.
Figure 3b illustrates the evaluation result of the terrain corrected canopy height by the remaining

900 points (R2 = 0.669, RMSE = 4.82 m, MRE = 15.4%). This result indicates that the method in this study
was qualified and reliable, and terrain correction could improve the estimation accuracy. In previous
studies, Lee et al. [85] and Cao et al. [86] conducted slope correction by H = Hmax − 0.5 ∗ d ∗ tan(θ),
which was similar to ours. Therefore, we considered the equation to be reliable for the slope correction.

Figure 3. The evaluation of estimated canopy height by the GLAS waveform. (a) The evaluation of
canopy height without slope correction; and, (b) The evaluation of canopy height with slope correction.

4.2. Extrapolating Canopy Height to the Study Area

When considering the high correlations between vegetation indexes, PCA was first conducted
to reduce the number of variances. We extracted the principal components if the corresponding
eigenvalue exceeded 1. Finally, only the first principal component was selected. Figure 4 shows the
relationship between the first principal component and canopy height.
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Figure 4. PCA analysis results. (a) Power model; and, (b) Evaluation of this model.

We also trained 22 BPANN models, four SVR models, and 11 RF models to estimate the forest
canopy height. Appendix A Table A1 summarizes the BPANN performances (R2) using different
numbers of neurons, transfer functions, and training algorithms. Generally, all of the BPANN models
obtained similar performance results. It can be seen that eight neurons-model performed best, while
50 neurons-model gained a poor result. The different transfer functions and training algorithms
seemingly had few effects on the results, except for the training algorithm of traingd. The best BPANN
model was constructed by eight neurons, logsig, and purelin transfer functions, and a trainlm training
algorithm. Appendix A Table A2 illustrates the SVR performances using different SVR formulations
and kernels. This showed that these SVR models obtained nearly the same performances, and the model
with ε-SVR, RBF kernel performed better than the others. Similarly, few variations were seen in different
RF models. Appendix A Table A3 demonstrates that the more trees gained better results, and when the
number of features randomly selected in each node of each tree was 2, the result was better.

Next, we respectively chose the best model to analyze the performances of three machine learning
models. The evaluation results (Figure 5) indicated that machine learning models could potentially be
used to estimate forest canopy heights from spectral imagery. The three methods performed similarly
with R2 values from 0.42 to 0.46, RMSE values from 3.71 m to 4.11 m, and MRE values from 10.6 to
11.96%, and the RF model reached the most acceptable agreement with the validated canopy height
from GLAS (R2 = 0.46, RMSE = 3.71 m, MRE = 10.6%). However, there was a common limitation where
the canopy height estimates were lower than the validated values in the high canopy height areas
(greater than 35 m), while the canopy height estimates were higher in the low canopy height areas
(less than 15 m). Namely, most estimates were inclined to fall in a median area, which usually resulted
from the machine learning model.

Figure 5. The evaluation results of the machine learning models. (a) Evaluation result of the BPANN
model; (b) evaluation result of the SVR model; and, (c) evaluation result of the RF power model.
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Next, we applied the first principal component power model and three machine learning models
to the entirety of Maryland. Figure 6 demonstrates that these four models performed similarly even
though there were subtle differences. Overall, the forest canopy height was relatively high at 30–50 m
within the Western Shore Uplands region and Folded Application Mountain section, while it was lower
at 10–20 m in the Blue Ridge province and Allegheny Mountain section. The trees with extremely low
canopy heights (0–10 m) were scattered at the edges of the forest instead of being aggregating into
blocks. The Lowland and Upland sections were made up of median forest heights (10–30 m). From
the distribution of these models, machine learning models performed better than the first principal
component power model that produced canopy height concentrated at 20–40 m and showed few local
variations. However, machine learning models require significant additional costs in terms of time,
effort, and computational resources.

Figure 6. Cont.

10



Remote Sens. 2018, 10, 344

Figure 6. The distribution of forest canopy height in Maryland. (a) Forest canopy height estimated
by the first principal component power model; (b) Forest canopy height estimated by the BPANN
model; (c) Forest canopy height estimated by the SVR model; and (d) Forest canopy height estimated
by the RF model.

4.3. Forest Canopy Height to Aboveground Biomass

In this section, we developed a general model to estimate forest biomass from the spatially
contiguous canopy height data throughout Maryland. Figure 7 demonstrates that the biomass and
canopy height in Maryland are closely linked, and the evaluation results were satisfactory (R2 = 0.70,
RMSE = 35.81 Mg/ha, MRE = 17.0%). Cao [86] and Lefsky [50] discussed biomass estimation models in
their studies, and our equation was similar to those in the previous studies. Therefore, we considered
the equation to be valuable and reliable for biomass estimation in Maryland.

Figure 7. Forest aboveground biomass model and the evaluation results. (a) Power model to estimate
forest aboveground biomass; and, (b) Evaluation result of the biomass estimation model.

As shown in Figure 8, the forest aboveground biomass ranged from 0–400 Mg/ha. As we estimated
the forest aboveground biomass using a direct, univariate power model, the distribution of the biomass
resembled the canopy heights. The forest biomass in the Western Shore Uplands region and Folded
Application Mountain section was higher. In contrast, the lower biomass forests were distributed in
the Blue Ridge province and Allegheny Mountain regions. Similarly, the first principal component
model failed to distinguish the high biomass and low biomass areas. After taking the model evaluation
results described in Section 3.2 and the forest biomass distribution described in this section into
comprehensive consideration, we suggest that the RF estimate was the best.
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Figure 8. Cont.
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Figure 8. The distribution of forest aboveground biomass in Maryland. (a) Forest aboveground
biomass estimated by the PCA power model; (b) Forest aboveground biomass estimated by the
BP-ANN model; (c) Forest aboveground biomass estimated by the SVR model; (d) Forest aboveground
biomass estimated by the RF model; and, (e) Forest aboveground biomass estimated by the CMS.

4.4. Comparing Biomass Estimates to Other Data Resources

In this section, we compared our forest biomass maps with Biomass_CMS in terms of the
distribution and quantity. As introduced in Section 2.3, the forest Biomass_CMS in Maryland was
produced by the NASA CMS using LiDAR and allometric estimates with small footprints. Overall,
our biomass estimates shared a similar distribution with Biomass_CMS, where higher values were
obtained in the Western Shore Uplands region, while lower values were located in Blue Ridge province
and Allegheny Mountain region. However, the Biomass_CMS appeared more scattered with low
biomass flecks due to the land cover errors. The non-forest, which was mistakenly regarded as forest,
may be identified as high biomass, according to the spectral information (the biomass data source in
this study), while the Biomass_CMS was small when considering the lower airborne LiDAR values
(the Biomass_CMS data source). Figure 9 demonstrates the distribution of forest biomass difference
between the biomass estimated by RF and Biomass_CMS in Maryland. It can be seen that 53% of the
absolute difference of forest biomass were less than 50 Mg/ha, and 85% for 100 Mg/ha. In this map,
positive values represent that the Biomass_RF exceeded the Biomass_CMS. Our method overvalued
the forest biomass in the Folded Application Mountain section and southern areas in the Upland
section. The areas where the difference exceeded 100 Mg/ha took up around 10% of the total forest in
Maryland. On the other hand, our model underestimated the forest biomass in some small areas of the
Allegheny Mountain region, Upland section, and Western Shore Upland region.

Figure 9. Cont.
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Figure 9. The results of forest biomass difference. (a) The map of biomass difference in Maryland;
(b) The statistical result of biomass difference.

Next, the forest biomass in each physical region and political county were statistically compared
to quantitatively analyze the biomass distribution. Figure 10 presents the forest aboveground biomass
(Tg) in each county and physical region and the total values throughout Maryland. The estimates
from all of the models had parallel tendencies. Garrett and Allegany counties had the most abundant
forest resources (more than 15 Tg) due to the large forest areas, followed by Charles, Baltimore,
and Frederick counties (more than 10 Tg). In contrast, there were five counties (Worcester, Talbot,
Dorchester, Somerset, and Baltimore City) where the forest aboveground biomass was less than 3 Tg.
When analyzing the biomass based on the physical regions, distinct characteristics were recognized.
The forest biomass in the Western Shore Uplands region (approximately 45 Tg) constituted 30% of
the total forest aboveground biomass in Maryland, which was far more than that in other regions.
In contrast, the Great Valley section and the Western Shore Lowlands region contained the least forest,
around 3Tg. Following the Western Shore Uplands region, the upland section had the second highest
forest biomass (nearly 35 Tg). Then, the Allegheny Mountain section, Delmarva Lowlands region,
and Folded Appalachian Mountains section followed, where the forest resources were similarly rich
(approximately 20 Tg). In addition, the Blue Ridge Province and the Lowland section made petty
contributions to the forest biomass in Maryland.

Figure 10. Cont.
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Figure 10. The forest aboveground biomass in Maryland. (a) Statistical forest biomass values of each
county; (b) statistical forest biomass values of each physical region; and (c) the total biomass estimated
by all models.

The total biomass in the state of Maryland reached approximately 160 Tg (Figure 10). Generally,
our models all overvalued the total forest biomass in Maryland. The BPANN method gained the
highest estimate with 171 Tg, while the SVR estimate was comparatively lower with 166.2 Tg, which
most likely resulted from the underestimation of some areas.

5. Discussion

We estimated the forest canopy height and aboveground biomass in the state of Maryland by
combining spaceborne LiDAR, spectral imageries, and forest resource data produced by NASA.
The results showed the capacity of our approach for regional-scale forest biomass estimation and
allowed us to evaluate the various sources of error and uncertainty.

5.1. Processing the GLAS Waveform

The GLAS waveform provides a crucial approach to calculate forest parameters, such as canopy
height, especially without any tree metrics. Even though the GLAS records the waveform along only
the narrow flight lines, it still presented a strong ability to extract valuable forest parameters, which
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has also been proven in a large number of studies. We estimated the canopy height from GLAS by
calculating the distance from the start of the signal to the ground peak and added the terrain index to
optimize the canopy height. Then, a regression was run between the estimated canopy height from the
GLAS waveform and the canopy height from the NASA CMS with an acceptable result (R2 = 0.669,
RMSE = 4.82 m, MRE = 15.4%). Nevertheless, the result also suggests that future efforts need to focus
on forming a better relationship.

In Section 3.1, we introduced a series of Gaussian parameters within the GLA14 product that
could be used to estimate the canopy height. Gaussian parameters always include mass noise, so they
may fail to reliably estimate the canopy height. Thus, we utilized a different method in this study.
The procedure comprised preprocessing the GLAS waveform, identifying critical parameters, and,
adding the terrain index to optimize canopy height. Even though we filtered out invalid GLAS points,
some still failed to produce the desired canopy height. The error may be caused by the fact that each
GLAS laser had different pulse intensities. If we deal with all of the GLAS data using the same method,
some may lead to errors. We can separately process waveform according to GLAS laser in future
study. Furthermore, to gain a large number of the GLAS data, we did not filter out the points that were
recorded within leaf off periods. This may be another error source.

5.2. Extrapolating to A Larger Spatial Scale with Spectral Images

The extrapolation process described in this article was used to establish the first component model
and machine learning models between the canopy height estimated from GLAS and the vegetation
indexes from spectral imageries. Therefore, the quality of the spatially contiguous canopy height
heavily depended on the spectral imageries. In this study, we first upscaled the Landsat data to 60 m
to keep it spatially consistent with the GLAS waveform data, and then the model that was established
at the upscaled resolution was used to estimate the spatially continuous canopy height at the original
resolution of 30 m. A scale effect may exist between the remote sensing data of different spatial
resolutions, which might cause an error when applying the relationship built from 60 m resolution
data to 30 m resolution data. The study area was covered by eight Landsat imagery scenes. Even
though we selected images that were as close as possible during the vegetation growing season, there
were still variations in the acquisition time. Due to the different phenophases of the forest in different
images, the vegetation index that corresponded to the same biomass value might present different
records in different images. That is, using the same formula to estimate biomass over multiple scene
images is likely to introduce an error. Furthermore, the difference in the spectral bandpass of Landsat5
and Landsat7 may introduce errors, as it leads to a difference performance between the indices that
we used to estimate forest biomass. Landsat data also contains the information of SWIR (short wave
infrared), which supports the detection of vegetation sensitivity, so it is worthwhile adding SWIR data
into the estimation models in further study.

5.3. Linking Forest Canopy Height to Biomass

In this study, the forest aboveground biomass was calculated through a power equation that is
associated with canopy height. The evaluation result (R2 = 0.70, RMSE = 35.81 Mg/ha, MRE = 17.0%)
proved the equation to be reliable when producing a biomass map in Maryland. Our biomass
estimation formula agreed well with previous studies [50,86]. However, the CMS maps error,
as described in Section 2.3, will reduce the accuracy of our model. Apart from the forest canopy
height, the forest aboveground biomass also maintained a close relationship with the DBH [9]. We can
improve the accuracy by adding other remote sensing parameters that are related to DBH, such as LAI
in future research.

5.4. Future Development

The GLAS instrument offers an unprecedented opportunity to estimate canopy height and
biomass without field-measured trees metrics. Even though its principal objective was to measure ice
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sheet elevation change and sea ice thickness, the GLAS products were also widely applied to monitor
land and vegetation. In this article, we only focused on only the vegetation within Maryland where
the forest is relatively homogeneous. In future studies, an improved method will be put forward to
compute the forest biomass at the continental or even global scales. Fortunately, NASA is planning to
launch ICESat-2 and GEDI in 2018, and ESA will launch BIOMASS in 2020. With these data, researchers
will have free access to the latest valuable data for assessing terrestrial forest changes.

6. Conclusions

This study demonstrated that the combination of the GLAS waveform and Landsat imagery
could be used to monitor the forest aboveground biomass in Maryland. The total forest aboveground
biomass in Maryland reached approximately 160 Tg. As the GLAS and Landsat data both covered the
global surface, this method has the potential to evaluate forest resources at a larger scale. In this study,
we conducted four different methods to estimate forest biomass and compared their performances.
From the distribution of the estimates, machine learning models perform better than the first principal
component power model, which produced canopy height concentrated in 20-40m and showed few
local variations. However, machine learning models require significant additional costs in terms of
time, effort, and computational resources.
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Appendix A

Table A1. Results (R2) using different parameters in the BP-ANN model.

Cross Validation no.1 no.2 no.3 no.4 no.5 no.6 no.7 no.8 no.9 no.10 Average Value

5,t,l,tlm 0.441 0.328 0.439 0.422 0.443 0.322 0.423 0.479 0.340 0.289 0.392
8,t,l,tlm 0.427 0.420 0.453 0.399 0.438 0.406 0.396 0.411 0.341 0.299 0.399
20,t,l,tlm 0.234 0.362 0.497 0.430 0.435 0.411 0.270 0.426 0.326 0.265 0.366
50,t,l,tlm 0.308 0.246 0.563 0.239 0.240 0.377 0.207 0.330 0.238 0.251 0.300
8,t,t,tlm 0.418 0.383 0.473 0.435 0.452 0.438 0.402 0.408 0.330 0.310 0.405
8,t,l,tlm 0.461 0.409 0.454 0.446 0.409 0.414 0.385 0.451 0.286 0.337 0.405
8,l,t,tlm 0.413 0.398 0.464 0.424 0.437 0.418 0.381 0.268 0.345 0.290 0.384
8,l,l,tlm 0.468 0.368 0.457 0.402 0.458 0.419 0.376 0.393 0.328 0.307 0.398
8,l,p,tlm 0.481 0.434 0.425 0.439 0.440 0.433 0.409 0.500 0.373 0.352 0.429
8,p,t,tlm 0.461 0.403 0.430 0.438 0.442 0.436 0.383 0.485 0.339 0.326 0.414
8,p,l,tlm 0.214 0.436 0.420 0.413 0.434 0.438 0.417 0.430 0.321 0.339 0.389
8,p,p,tlm 0.468 0.413 0.391 0.401 0.403 0.414 0.418 0.457 0.350 0.328 0.404
8,t,l,tgd 0.408 0.051 0.287 0.217 0.206 0.321 0.216 0.301 0.013 0.256 0.228

8,t,l,tgdx 0.448 0.412 0.382 0.396 0.408 0.400 0.408 0.469 0.344 0.352 0.402
8,t,l,tgda 0.462 0.407 0.372 0.373 0.370 0.424 0.397 0.423 0.339 0.306 0.387
8,t,l,trp 0.477 0.426 0.422 0.445 0.432 0.436 0.421 0.481 0.357 0.345 0.424
8,t,l,tlm 0.449 0.402 0.446 0.439 0.422 0.408 0.381 0.454 0.338 0.335 0.407
8,t,l,tfg 0.463 0.429 0.435 0.455 0.436 0.442 0.423 0.470 0.375 0.351 0.428
8,t,l,tcg 0.478 0.427 0.427 0.443 0.419 0.436 0.418 0.469 0.345 0.364 0.423
8,t,l,tss 0.480 0.425 0.422 0.439 0.421 0.444 0.414 0.452 0.363 0.357 0.422
8,t,l,tgf 0.470 0.365 0.425 0.347 0.427 0.443 0.417 0.478 0.352 0.352 0.408
8,t,l,tgp 0.401 0.433 0.406 0.412 0.433 0.434 0.409 0.476 0.359 0.355 0.412

5, 8, 20, 50 represent the the number of neurons in hidden layers; t, l, p represent the tansig, logsig, and purelin
transfer function; tgd, tgdx, tgda, trp, tlm, tfg, tcg, tss, tgf, tgp represent traingd, traingdx, trainingda, trainrp,
trainlm, trainbfg, trainscg, trainoss, traincgf, and traincgp training algorithms, respectively. The bold were the
experiments with the best validation results.
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Table A2. Results (R2) using different parameters in the SVR model.

Cross Validation no.1 no.2 no.3 no.4 no.5 no.6 no.7 no.8 no.9 no.10 Average Value

-s 4 -t 2 -c 1 -g 1 -n 0.5 0.477 0.418 0.405 0.416 0.383 0.414 0.406 0.466 0.336 0.332 0.405
-s 3 -t 0 -c 1 -g 1 -p 0.1 0.468 0.410 0.389 0.400 0.401 0.413 0.419 0.452 0.350 0.328 0.403
-s 3 -t 1 -c 1 -g 1 -p 0.1 0.455 0.378 0.379 0.394 0.418 0.406 0.379 0.427 0.363 0.339 0.394
-s 3 -t 2 -c 1 -g 1 -p 0.1 0.471 0.425 0.410 0.422 0.389 0.426 0.412 0.466 0.330 0.344 0.409

-s 3, -s 4 represent ε-SVR and ν-SVR; -t 0, -t 1, -t 2 represent the linear, polynomial and RBF kernels; -c represents
the cost function; -g represents the gamma function; and -p and -n are the parameters in cost function for ε-SVR
and ν-SVR respectively. We used defaults for -c, -g, -p and -n. The bold were the experiments with the best
validation results.

Table A3. Results using different parameters in the RF model.

Cross Validation no.1 no.2 no.3 no.4 no.5 no.6 no.7 no.8 no.9 no.10 Average Value

10_2_1 0.407 0.376 0.655 0.432 0.416 0.402 0.389 0.435 0.409 0.396 0.432
50_2_1 0.480 0.410 0.689 0.459 0.439 0.418 0.393 0.468 0.456 0.409 0.462
100_2_1 0.482 0.419 0.700 0.469 0.442 0.417 0.398 0.471 0.452 0.420 0.467
200_2_1 0.478 0.424 0.704 0.475 0.442 0.424 0.395 0.476 0.449 0.418 0.468
500_2_1 0.478 0.423 0.707 0.473 0.446 0.428 0.396 0.482 0.445 0.423 0.470

1000_2_1 0.480 0.423 0.706 0.475 0.445 0.430 0.396 0.482 0.443 0.423 0.470
100_1_1 0.481 0.419 0.693 0.470 0.451 0.424 0.392 0.474 0.440 0.412 0.466
100_3_1 0.472 0.414 0.708 0.465 0.439 0.414 0.393 0.487 0.438 0.427 0.466
100_4_1 0.461 0.415 0.712 0.447 0.447 0.413 0.399 0.476 0.432 0.429 0.463
100_5_1 0.457 0.421 0.713 0.445 0.429 0.411 0.388 0.474 0.434 0.424 0.460
100_2_0 0.472 0.414 0.707 0.465 0.429 0.411 0.395 0.486 0.440 0.428 0.465

10, 50, 100, 200, 500, 1000 represent the number of trees; 1, 2, 3, 4, 5 in the second parameter represent the features
randomly selected in each node of each tree; and 1, 0 in the third parameter represent calculating the importance or
not. The bold were the experiments with the best validation results.
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Abstract: Precipitation is a key aspect of the climate system. In this paper, the dependability of five
satellite precipitation products (TRMM [Tropical Rainfall Measuring Mission] 3BV42, PERSIANN
[Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks]
CDR, GSMaP [Global Satellite Mapping of Precipitation] RENALYSIS, CMORPH [Climate Prediction
Center’s morphing technique] BLD and CMORPH_RAW) were compared with in situ measurements
over China for the period of 2005 to 2013. To completely evaluate these precipitation products, the
annual, seasonal and monthly precipitation averages were calculated. Overall, the Huaihe River and
Qinlin mountains are shown to have heavy precipitation to the southeast and lighter precipitation to
the northwest. The comparison results indicate that Gauge correction (CMORPH_BLD) improves
the quality of the original satellite products (CMORPH_RAW), resulting in the higher correlation
coefficient (CC), the low relative bias (BIAS) and root mean square error (RMSE). Over China, the
GSMaP_RENALYSIS outperforms other products and shows the highest CC (0.91) and lowest
RMSE (0.85 mm/day) and all products except for PERSIANN_CDR exhibit underestimation.
GSMaP_RENALYSIS gives the highest of probability of detection (81%), critical success index
(63%) and lowest false alarm ratio (36%) while TRMM3BV42 gives the highest of frequency bias
index (1.00). Over Tibetan Plateau, CMORPH_RAW demonstrates the poorest performance with
the biggest BIAS (4.2 mm/month) and lowest CC (0.22) in December 2013. GSMaP_RENALYSIS
displays quite consistent with in situ measurements in summer. However, GSMaP_RENALYSIS and
CMORPH_RAW underestimate precipitation over South China. CMORPH_BLD and TRMM3BV42
show consistent with high CC (>0.8) but relatively large RMSE in summer.

Keywords: precipitation; statistics methods; China; Tibetan Plateau; South China’s

1. Introduction

Precipitation is one of important factors in the global water cycle and plays a key role in the global
energy system. Accurate precipitation data is helpful for short-term and long-term weather forecasts,
which allow proactive measures to prevent natural hazards, such as floods, landslide and debris flow,
using rainfall models. Measurements of precipitation can be made using rain gauge stations, ground
radar, or remote sensing technology. Rain gauge stations are traditional point measurements and
have higher accuracy but it is difficult to obtain such precipitation measurements over oceanic and
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high-altitude areas where only sparse rain gauge stations are available. Ground radar is considered
to more accurate for retrieving regional rainfall estimates but ground radar is aimed at monitoring
extreme events over limited time spans [1]. Additionally, ground radar is limited over relatively
complex terrains, where radar signals maybe be affect by beam blockages and vertical reflectivity
profiles [2]. The development of satellite remote sensing has provided several advantages, including its
broad spatial coverage, automatic data acquisition and long-term continuity but the signals themselves
are affected by the atmospheric and the surface, which will lead to retrieval uncertainties [3]. However,
remote sensing is an important method for retrieving high spatial and temporal resolution rainfall
measurements over complex terrains and mountainous areas, where both rain gauge stations and
ground radar are very limited or unavailable. The satellite retrieval methodologies fall primarily into
three categories, which there are the visible and infrared (VIS/IR) methods, microwave (MW) methods
and multi-sensor methods.

The VIS precipitation retrieval method mainly utilizes the empirical relationship between cloud
brightness and rainfall because precipitation is considered to occur under highly bright clouds, which
can be associated with cloud types, cloud areas and cloud growth rates [4–6]. IR imagery is associated
with cloud top temperatures and cloud growth rates can be obtained via the thermal emissions during
both night and day; generally, heavier rainfall tends to be associated with larger, taller clouds with
colder cloud tops [5]. Many researchers have developed different methods to retrieve precipitation
based on VIR/IR data from geosynchronous earth orbit (GEO) and low-earth orbit (LEO) satellites,
including the 3-hourly and monthly mean rainfalls [6–10]. MW sensors can detect rain clouds directly
and can provide information about the atmospheric constituents and hydro-meteorological profiles,
which are more directly related to the ground precipitation rate [11,12]. Many previous works have
developed a number of MW methods to retrieve precipitation [13–15]. However, precipitation is not
always associated with clouds and the VIS/IR methods cannot detect information below clouds [16].
Meanwhile, MW instruments are restricted to polar-orbiting platforms, meaning that they obtain
only a small amount of data and have the disadvantages of low spatial and temporal resolutions [17].
The idea of combining VIS/IR and MW observations to retrieve precipitation from multiple satellite
sensors was proposed to compensate for the weaknesses of the two methods [18]. Many products
were developed by blending the MW and IR data, such as CMORPH (Climate Prediction Center’s
morphing technique), PERSIANN (Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks), TRMM (Tropical Rainfall Measuring Mission), GSMaP (Global
Satellite Mapping of Precipitation). These precipitation products can help climate and hydrological
research. Many researchers have compared different satellite precipitation products with in situ
measurements over different areas and have proved that satellite estimates showed non-negligible
biases. For example, Hirpa et al. evaluated the accuracies of three products (CMORPH, PERSIANN and
TRMM3BV42) and found that both CMORPH and TRMM underestimated precipitation over higher
elevations [19]. Guo Hao et al. evaluated four products (TRMM, CMORPH, PERSIANN, GSMaP) using
in situ measurements over Central Asia from 2004 to 2006 and most of the products overestimated the
precipitation [20]. Awange et al. used a “three-cornered-hat” method to assess six precipitation products
and indicated that the RG-merged products had higher accuracies than the satellite-only products [21]. It is
necessary to discuss the performances of satellite precipitation products with the aim of determining
whether a certain product is appropriate for a specific region. However, there are few researches
among multi-satellite precipitation products evaluation based on long time series over China.

In this study, considering the study region and the availability of period for all satellite
precipitation products, we will mainly assess the strengths and weaknesses of a few widely used
rainfall products (CMORPH_CDR, CMORPH_RAW, TRMM3BV42, GSMaP_gauge_renalysis and
PERSIANN_CDR) over China from 2005 to 2013. The spatial distributions, temporal variations and
rainfall intensities were analyzed and compared with in situ measurements. Precipitation has a
particular spatiotemporal distribution over China and thus, we discuss the precipitation over the
Tibetan Plateau and South China in 2013. This paper aims to lead the reader to select more accurate
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satellite precipitation products over China and this research can help to improve the corresponding
precipitation retrieval algorithms. This paper is structured as follows: the first part is an introduction.
The rainfall products will be present in Section 2. Section 3 expounds on an integrated analytical
approach and debates the performances of the space-time variations and errors of different datasets.
Finally, the comparative result will be discussed.

2. Satellite and Rain Gauge Precipitation Datasets

2.1. Satellite-Based Precipitation Products

The TRMM satellite was launched in 1997 and was first used to measure precipitation.
The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC)
developed the Multisatellite Precipitation analysis (TMPA) algorithm. The TMPA algorithm combined
multiple pass microwave (PMW) datasets, including the Microwave Imager (TMI), Special Sensor
Microwave Imager (SSM/I), Advanced Microwave Scanning Radiometer-Earth Observing System
(AMSR-E), Advanced Microwave sounding Unit-B (AMSU-B) and IR data being obtained by the
international constellation of GEOs satellites [22]. The algorithm first calibrated the PMW data, which
were used to create infrared precipitation data. Then, both datasets were combined and the rain gauge
data were incorporated. TRMM has different spatial and temporal resolutions to satisfy the demands
of its users. The real-time and post-real-time versions have the same spatial resolutions of 0.25◦ but the
data in the post-real-time version is not corrected by the rain gauge data and has a relatively narrow
coverage area. The TRMM products have three different temporal resolutions, including three hourly,
daily and monthly. This study obtained a TRMM3BV42 with a daily/0.25◦ resolution, which was
gauge-corrected by the Global Precipitation Climatology Center (GPCC) and the Climate Assessment
and Monitoring System (CAMS).

CMORPH is produced based on PMW and IR measurements from the National Oceanic and
Atmospheric Administration (NOAA)/Climate Prediction Center (CPC) and has a relatively high
spatiotemporal resolution [11,23]. IR images (including Meteosat-5/7, Geostationary Meteorological
Satellite-5 [GMS-5] and Geostationary Operational Environmental Satellite [GOES-8/10]) are obtained
every 30 min at large zenith angles [23] and PMW (including TMI, SSM/I and AMSU-B) can be
used to retrieve rain rate relations to the IR images. Joyce et al. exploited IR data to deduce motion
fields and spread the PMW rain domains across space and time via a time-weighting interpolation
algorithm [11]. There are three different spatial and temporal resolution CMORPH products:
8 km-30 min, 0.25◦-3 hourly and 0.25◦-daily. These products can be freely downloaded from NOAA
for all dates since 2002. This paper employed two types of CMORPH data (CMORPH_RAW and
CMORPH_BLD) to analyze the precipitation characteristics from 2005 to 2013 with a spatiotemporal
resolution of 0.25◦/h. CMORPH_BLD indicates that the satellite data have been calibrated by CPC
unified daily gauge analysis methods over land [24].

PERSIANN is a pure satellite precipitation product, which is produced based on an artificial
neural network (ANN) model by the Center for Hydrometeorology and Remote Sensing (CHRS)
of the University of California [25,26]. The PERSIANN algorithm combines IR images of the
Geostationary Environmental satellite and TMI on TRMM. The algorithm mainly depends on the
statistical relationship between IR and the precipitation rate and the retrieved precipitation displays
considerable uncertainty [26]. Therefore, when PMW data are available, studies adopt a training
technique to revise the PERSIANN products with the PMW data. PERSIANN products have three
different temporal resolutions (3 h, 6 h and daily) and a spatial resolution of 0.25◦ and the all products
can be freely downloaded for dates since 2000. This paper employed the PERSIANN_CDR products
with a spatiotemporal resolution of 0.25◦/daily; these are calibrated by the Global Precipitation
Climatology Project (GPCP) monthly gauge analysis [27].

GSMaP is a multi-satellite precipitation data source developed by the Japan Science and
Technology Agency (JST) and Japan Aerospace Exploration Agency (JAXA) in November 2002 [28,29].
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The algorithms adopt a Kalman filtering technique to estimate the hourly global precipitation, wherein
the highest spatiotemporal resolution of GSMaP is 30 min/0.0365◦ over the equator and 0.1◦-daily
other area, as well as merged PMW (including TMI, AMSR-E and SSM/I) data and IR images from
GEO satellite [28]. GSMaP is researched to achieve three mainly goals: first, the project uses the
current PMW data to produce high spatiotemporal resolution global precipitation maps. Second, the
algorithm of the physical model of the precipitation and rainfall rate can constantly be improved. Third,
evaluating the accuracy of the precipitation products can aid the Global Precipitation Measurement
(GPM) projection, which launched in 2014. The GSMaP team has achieved different standard products
according to diverse algorithms, including the GSMaP_NRT, GSMaP_MVK, GSMaP_Gauge and
GSMaP_RENALYSIS. The study selected the GSMaP_RENALYSIS merged with the CPC global
rain gauge data to analyze the precipitation over China after considering the features of the study
period [30]. Information concerning all the products is listed in Table 1.

Table 1. Description of the precipitation datasets utilized in this study.

Product Temporal Resolution Spatial Resolution Domain Yes or No Added Gauges

CMORPH_RAW 1 day 0.25◦ 60◦S–60◦N No
CMORPH_BLD 1 day 0.25◦ 60◦S–60◦N Yes

PERSIANN_CDR 1 day 0.25◦ 60◦S–60◦N Yes
GSMaP-RENALYSIS 1 day 0.1◦ 60◦S–60◦N Yes

TRMM3BV42 1 day 0.25◦ 50◦S–50◦N Yes

2.2. Gauge Stations

This study adopted 830 rain gauge stations from the China Meteorological Data Sharing Service
System (http://data.cma.cn/) and nine years of daily data were obtained from 2005 to 2013 to assess the
distribution of precipitation over a long time. Meanwhile, we used data from 2280 rain gauge stations in
2013 to completely analyze the accuracies of the satellite precipitation products over the Tibetan Plateau
and South China areas. Rain gauge stations are sparsely distributed across the Tibetan Plateau because
of its extreme terrain and climatic conditions and some rain gauge stations are closed in the winter
to protect their instruments, so some data is unavailable. There are more stations over the Yangtze
River, South China and North China, which are used to accurately analyze the distributions of the
rainfall. The western Northwest region also has relatively few stations. The elevation data of the study
area were obtained from Shuttle Radar Topographic Mission (SRTM on http://srtm.csi.cgiar.org/),
of which the spatial resolution is about 90 m. The rain gauge station distributions and the topography
of China are shown Figure 1.

Figure 1. Site distribution and topography.

26



Remote Sens. 2018, 10, 168

3. Statistical Evaluation Methods

In this study, five products are compared with the data from rain gauge stations, which are often
viewed as true values. We will discuss the characteristics of the precipitation on the yearly, seasonally,
monthly and daily time scales. We use statistical analysis methods, including the linear correlation
coefficient (CC), relative bias (BIAS), root mean square error (RMSE), the frequency bias index (FBI),
probability of detection (POD), false alarm ratio (FAR) and critical success index (CSI) to compare
the differences from pixel to point [31,32]. There is a high correlation between the satellite products
and in situ measurements if the CC is greater than 0.7 [33]. The result is considered underestimation
(overestimation) of the precipitation when the BIAS is less than (more than) zero [34]. POD and FAR
express the ratios of the rainfall events, which are accurately measured and provide error warnings.
The CSI denotes the overall ratio of the rainfall events that are accurately estimated by the satellite.
The best comparison result occurs when the FBI, POD and CSI are equal to one and when FAR equals
zero [35]. All indices are defined as follows.

CC =
cov(S − G)

σsσv
=

N
∑

i=1
(Gi − G)(Si − S)√

N
∑

i=1
(Gi − G)

2
√

N
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i=1
(Si − S)2

(1)
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N
∑

i=1
(Si − Gi)

N
∑

i=1
Gi

(2)

RMSE =

√√√√ 1
N

N

∑
i=1

(Si − Gi)
2 (3)

FBI =
H + F
H + M

(4)

POD =
H

H + M
(5)

FAR =
F

H + F
(6)

CSI =
H

H + M + F
(7)

where S represents the satellite-retrieved precipitation and G represents the in situ-measured
precipitation. S and G indicate the mean satellite precipitation and in situ-measured precipitation,
respectively. N is the number of rainfall pairs between the gauge and satellite data. σs and σv are the
standard deviations of the satellite and gauge. H, F and M denote the amounts of hits, false alarms
and misses, which are calculated as described in Table 2 [32]. The threshold was set 0.1 mm/day
considering the minimum of the situ measurements.

Table 2. Contingency table comparing rainfall retrievals by satellites and gauges.

Gauge ≥ Threshold Gauge < Threshold

Satellites ≥ threshold H F
Satellites < threshold M Z
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4. Results and Discussion

4.1. Evaluation on the Regional Scale

4.1.1. Nine-Year Daily Mean Precipitation

China has special topographic and geomorphological features and its precipitation shows different
distributions. Overall, all satellite-based products and in situ measurements have the same trends,
wherein the precipitation distribution decreases from the southeast coast to the northwest inland.
Figure 2 shows the nine-year daily mean precipitation of 2005 to 2013. The southeast has a higher
mean daily precipitation than that in other areas, which some areas are as high as to 12 mm/day.
The northwest has a typical semi-arid and arid climate with little precipitation, which most of
areas are less than 2 mm/day. The phenomenon is mainly determined by climate and topography.
CMORPH_BLD, CMORPH_RAW and TRMM3BV42 have clearly underestimated precipitation
compared with the in-situ measurements in the south. This can be explained that there is more
shallow and warm rains in the south, while the microwave-based algorithms can more easily obtain
data for heavy rainfall events than weak rainfall events [36,37]. PERSIANN-CDR show a remarkable
overestimation of precipitation in most areas, such as southern Tibet and regions of South China (such
as Guangzhou and Fujian), wherein PERSIANN mainly adopts the IR brightness temperature data
from geostationary satellites to estimate rainfall rates. MW is used only to adjust the model parameters,
which differs from other satellite retrieval algorithms [25,27]. CMORPH_BLD, CMORPH_RAW,
TRMM3BV42 and PERSIANN underestimated in north China, in where the precipitation mainly
occurs in July and August. The precipitation is characterized by strong rainfall but short duration, so it
is possible that sensors missed precipitation during the period. GSMaP_RENALYSIS is most consistent
with the in-situ measurements but also overestimated values in some regions in the south (such as
the south of Sichuan, Guangdong, Jiangxi) and northeast of China. All satellite products showed
overestimations over the south of Tibet, in where are no-rain gauge stations (Figure 1). The precipitation
was obtained by interpolation technique based on surrounding stations located semi-humid region.
The south of Tibet belongs to humid region and has heavy precipitation. Therefore, the precipitation by
interpolation is less than satellite retrieval. However, all satellite products underestimated precipitation
over the most of arid region, the passive microwave retrieval of precipitation might be hampered by the
snow and ice surface [38,39]. The satellite bias-corrected product (CMORPH_BLD) is more consistent
with the in-situ measurements than the original satellite product (CMORPH_RAW) according to
the precipitation distribution. Therefore, the bias-correction using the in-situ measurements greatly
improved the product accuracy.

The density-colored scatter plots are shown in Figure 3, which provides a quantitative comparison
among the satellite products and in situ measurements for the nine-year mean daily precipitation values
over China (including 830 stations). The bias-corrected products, except for that of PERSIANN_CDR,
have greater R and lower RMSE than CMORPH_RAW. The R of CMORPH_BLD is 0.8 higher than
CMORPH_RAW (0.73) and the slope of CMORPH_BLD and CMORPH_RAW are 0.58 and 0.32,
respectively. The result suggest that the bias-corrected products have improved the accuracy greatly
(Figure 3a,b). TRMM3BV42 and CMORPH_BLD have similar distributions of density scatter and
the differences of R and RMSE are small (Figure 3b,c). The PERSIANN_CDR has a high R (0.78) but
also yields high RMSE (2.93 mm/day) and the discrete degree of point is larger than other products,
which PERSIANN uses only IR data to estimate rainfall rate (Figure 3d). The highest R and lowest
RMSE of GSMaP_RENALYSIS are 0.91 and 0.85 mm/day and these points are uniform distributed,
because GSMaP_RENALYSIS has inherited CMORPH’s morphing algorithm and employs a new
Kalman filter approach to assimilate IR-derived rain rates, which it can help to reduce the total errors
(Figure 3e) [11,39,40].

To analyze the continuous variations, the CC, RMSE and BIAS are calculated for each year from
2005 to 2013, as is shown Table 3. GSMaP_RENALYSIS has the highest CC (more than 0.8) and the
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lowest RMSE and BIAS (about ±0.1 mm/day). GSMaP_RENALYSIS underestimated the precipitation
in both 2005 and 2006 according to its BIAS, which is less than zero but it slightly overestimated the
precipitation during 2007 to 2013. The PERSIANN_CDR overestimated the precipitation in each year
and CMORPH_BLD, CMORPH_RAW and TRMM3BV42 underestimated the precipitation, which is
similar to the nine-year daily mean precipitation. Note that all products have greater CC in 2007 than
in 2008 but the RMSE are also higher, which is attributed to the occurrence of the decadal maximum of
precipitation, such that the national mean precipitation was approximately 654.8 mm. In 2012, the CC
of CMORPH_RAW and CMORPH_BLD were 0.37 and 0.76, respectively, which shows that the gauge
correction greatly improved the precipitation estimation accuracies. Overall, GSMaP_RENALYSIS’s
performance is comparable to other satellite-based products over China.

 

Figure 2. Spatial features of the nine-year mean daily rainfall obtained from CMOPRH_BLD,
CMORPH_RAW, TRMM3BV42, PERSIANN_CDR, GSMaP_RENALYSIS and GAUGE_STATION.

 
(a) (b) (c) 

  
(d) (e)

Figure 3. Density-colored scatterplots of the different products against the in-situ measurements
for the nine-year mean daily precipitation. The red line is the fit and the black is 1:1. (a) denotes
CMOPRH_RAW &gauge, (b) denotes CMOPRH_BLD &gauge, (c) denotes TRMM3BV42 &gauge,
(d) denotes PERSIANN_CDR &gauge, (e) denotes GSMaP_RENALYSIS &gauge.
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Table 3. The CC, BIAS and RMSE values for a variety products and the gauge station data for a year of
the daily mean precipitation values over China.

Products Factors 2005 2006 2007 2008 2009 2010 2011 2012 2013

CMORPH_BLD
CC 0.74 0.82 0.70 0.75 0.76 0.77 0.74 0.76 0.76

RMSE 1.45 1.34 1.46 1.50 1.41 1.36 1.30 1.38 1.50
BIAS −0.42 −0.46 −0.47 −0.45 −0.46 −0.39 −0.47 −0.39 −0.46

CMORPH_RAW
CC 0.68 0.71 0.60 0.67 0.63 0.71 0.61 0.37 0.66

RMSE 1.57 1.63 1.65 1.69 1.70 1.53 1.56 1.61 1.77
BIAS −0.58 −0.57 −0.56 −0.58 −0.62 −0.54 −0.59 −0.55 −0.57

TRMM3BV42
CC 0.74 0.83 0.70 0.76 0.76 0.78 0.76 0.78 0.79

RMSE 1.45 1.31 1.48 1.48 1.42 1.35 1.30 1.35 1.47
BIAS −0.38 −0.42 −0.43 −0.41 −0.42 −0.36 −0.44 −0.35 −0.43

PERSIANN_CDR
CC 0.73 0.80 0.67 0.72 0.67 0.73 0.71 0.73 0.80

RMSE 1.48 1.41 1.54 1.56 1.63 1.47 1.40 1.50 1.42
BIAS 0.47 0.31 0.30 0.34 0.42 0.34 0.41 0.54 0.26

GSMaP_RENALYSIS
CC 0.82 0.87 0.81 0.82 0.84 0.84 0.83 0.85 0.84

RMSE 1.28 1.21 1.28 1.42 1.23 1.36 1.16 1.19 1.27
BIAS −0.05 −0.11 0.04 0.03 0.04 0.07 0.02 0.05 0.01

4.1.2. Seasonal Daily Mean Precipitation

Figure 4 shows the distribution of the seasonal daily mean precipitation values interpolated from
the rain gauge stations and the multiple satellite-based precipitation products over China. The CC,
BIAS and RMSE statistical values are plotted in Figure 5.

As shown in the seasonal precipitation distribution interpolated from the rain gauge stations
(GAUGE_STATION), the summer and spring experience more precipitation (the maximum amounts
are 15 mm/day and 10 mm/day, respectively) because both are part of the “rainy” season in China
influenced by the southwest monsoon and southeast monsoon. The winter and autumn experienced
less precipitation (with maxima of 5 mm/day and 8 mm/day, respectively). This phenomenon is
related to the passage of rain over China. It should be noted that there have more precipitation in
summer and spring than in autumn and winter because the rainfall events begin in southern China
from February to May every year. The precipitation then moves north with the heat of the seasons.
Rainfall begins to fall rapidly when the cold air comes from the north at the end of August or the
beginning of September. There is greater rainfall in the summer than in the autumn over the south
because the period of the “plum rains” season occurs from April to June in China. The northwest
experiences little precipitation in all four seasons as it belongs to the arid and semi-arid region of
China, in where is far from the sea and is blocked by mountains.

Generally, the distributions of the satellite precipitation products are similar to that of the rain
gauge stations, except for CMORPH_RAW, which is not bias corrected. The GSMaP_RENALYSIS
are the most similar to the rain gauge data (CC more than 0.8 and BIAS less than ±0.1 mm/day,
respectively). All satellite products underestimated the precipitation in the winter over some
regions, such as northeast of Neimeng and northwest of Tibet. This might be attributed to
the following reasons: The little precipitation in this area is mainly produced from the Atlantic
Ocean through the western wind belt and it is difficult to capture low-level precipitation by PMW
sensor. Meanwhile, it might be caused the more snow and ice cover on the ground in winter.
All products overestimated the precipitation in the summer over the south of Tibet, in where have
heavy precipitation. The phenomenon might be related to the sparsely and unevenly rain gauges.
The interpolation technique is used to spread nonzero precipitation into zero and lead to obtain
less precipitation. CMORPH_RAW is poorly consistent with all other products and with the in-situ
measurements over all four seasons. CMORPH_RAW and CMORPH_BLD show some abnormal zero
precipitation over Tibetan Plateau in winter. It is possible that the ice and snow surface tend to influence
PWM-based accurate retrieval over land [37]. PERSIANN_CDR exhibited serious overestimations
of precipitation over southern China. This result may be attributed to the lack of training of the
ANN parameters over China because PERSIANN_CDR is only adequately trained over the United
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States [41]. We calculated the quality analysis of the satellite products and in situ measurements, as
shown in Figure 5. All products provide the highest CC and lowest RMSE (greater than 0.8 and less
than 1 mm/day, respectively) in the winter but the highest BIAS also occurs in the winter. This might
be related to the following reasons: the rainfall events are less than other seasons due to climate and the
rainfall intensity is usually small in winter. Next, the ice and snow surface might to influence satellite
retrievals over land and the gauge stations might measure abnormal data over the high-latitude areas
and high-altitude areas, which the data were considered abnormal data during dealing. This should be
partially responsible for the high CC, BIAS and low RMSE in winter. There are more strong convective
precipitation events well detected by microwave-base algorithms during the summer [36,37]. However,
the satellite might miss some precipitation events because the duration of precipitation is short, which
may cause some errors. All products show the lowest BIAS (less than 0.5 mm/day) and highest RMSE
(about 2 mm/day) in summer, meanwhile the CC (more than 0.7) is relative high.

 

Figure 4. Seasonal nine-year daily mean rainfall features of CMOPRH_BLD, CMORPH_RAW,
TRMM3BV42, PERSIANN_CDR, GSMaP_RENALYSIS and GAUGE_STATION.

Spring Summer Autumn Winter
0.0

0.2

0.4

0.6

0.8

1.0

C
C

seasons

 CMORPH_BLD    CMORPH_RAW
 TRMM3BV43        PERSIANN_CDR
 GSMaP_RENALYSIS

(a) Spring Summer Autumn Winter
0

1

2

3

4

5

R
M

S
E 

(m
m

/d
ay

)

seasons

 CMORPH_BLD    CMORPH_RAW
 TRMM3BV43        PERSIANN_CDR
 GSMaP_RENALYSIS

(b) Spring Summer Autumn Winter
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

B
ia

s 
(m

m
/d

ay
)

seasons

 CMORPH_BLD    CMORPH_RAW
 TRMM3BV43        PERSIANN_CDR
 GSMaP_RENALYSIS

(c) 

Figure 5. (a–c) denote the CC, BIAS and RMSE values of the satellite products and rain gauge stations
for the seasonal daily mean precipitation values, respectively.
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4.1.3. Monthly Daily Mean Precipitation

Statistical information (e.g., CC, BIAS and RMSE) is computed to study the monthly daily mean
precipitation from 2005 to 2013, as shown in Figure 6. Some previous works have suggested that the
biases and errors could be magnified over regions with no gauge stations [42]. Therefore, this study
calculated only the monthly mean daily data to guarantee more than one gauge station per pixel.

The CC, RMSE and BIAS of the products exhibit similar fluctuates, except for those of
CMORPH_RAW, as shown in Figure 6. The higher CC generally occurs in May and December, while
lower CC occur in September and October. Overall, CMORPH_BLD and GSMaP_RENALYSIS have
higher CC than the other products but the CC of GSMaP_RENALYSIS is also occasionally low, such as in
February 2008. When CMORPH_BLD and TRMM3BV42 are greater than 0.7, the GSMaP_RENALYSIS
CC is approximately 0.4. The trends of the RMSE distributions for several satellite-based precipitation
time series are the same, showing a w-style trend. The maximum is in July and both January and
December are low because there is a higher daily mean rainfall the in summer and a lower daily mean
rainfall in the winter. The BIAS trends have the following characteristics: GSMaP_RENALYSIS and
CMORPH_BLD BIAS present stable and relative low values (±0.5 mm/day). CMORPH_RAW and
TRMM_3BV42 have the same regular biases, while PERSIANN_CDR presents a large fluctuating trend
and positive deviation with a high CC in the winter (December, January and February). This can be
put down to the inaccurate input of the IR data in the winter, which can bring about inferior data from
the IR-based PERSIANN retrieval method.

Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec
0.0

0.2

0.4

0.6

0.8

1.0
 CMORPH-BLD                                 CMORPH-RAW                                     TRMM3BV42                                     PERSIANN-CDR                      GSMaP-RENALYSIS

C
C

month (a) 

Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec
0

1

2

3

4

5

6

R
M

S
E

(m
m

/d
ay

)

month (b) 

Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec Jun Dec
-1

0

1

2

3

Bi
as

 (m
m

/d
ay

)

month (c) 

Figure 6. (a–c) denote the time series of the CC, RMSE and BIAS from a variety products spanning
2005 to 2013 over China, respectively.

4.2. Probability Distribution and Contingency Statistics

To determine the universal characteristics of precipitation, it is important to evaluate the
precipitation frequencies of different intensities as well as their means and spatiotemporal variation
distributions [37]. Different precipitation intensities may lead to different natural disasters, such as
floods and mudslides [41,43]. Therefore, the PDF (probability distribution function), which offers more
information about the frequencies of different intensities of precipitation events, is used to analysis
more detailed rainfall characteristics.
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In this paragraph, the satellite precipitation products are compared with in situ measurements
for detecting the precipitation events and intensities over China during the nine years from 2005 to
2013. The PDF is the proportion of the number of times that rainfall events from each bin occurs
divided by the total number of rainfall events. To considering the rainfall intensity (R), this study has
divided rainfall into eight bins [20]: (1) no rain (R = 0), (2) 0 < R ≤ 0.5 mm/day, (3) 0.5 mm/day < R
≤ 1 mm/day, (4) 1 mm/day < R ≤ 2 mm/day, (5) 2 mm/day < R ≤5 mm/day, (6) 5 mm/day < R ≤
10 mm/day, (7) 10 mm/day< R ≤ 20 mm/day and (8) R > 20 mm/day. The pixels nearest the gauge
stations were selected to calculate the rainfall intensities. Approximately 60% of the values computed
using the rain gauge stations show no-rain events, as shown in Figures 7 and 8. CMORPH_RAW,
CMORPH_BLD and TRMM3BV42 can be inclined to detect more no-rain events than the gauge
stations (around 79%, 65.4% and 64.3%, respectively), which suggests that satellite measurements may
miss some rain events. CMORPH_RAW detected more no-rain events than CMORPH_BLD, which
showed that the bias-corrected satellite data tend to record more rainfall events. GSMaP_RENALYSIS
and CMORPH_BLD record more light rainfall events (0 < R ≤ 0.5 mm/day, around 8.5% and 8.8%,
respectively) than the other datasets. CMORPH_BLD, GSMaP_RENALYSIS and PERSIANN_CDR
can record more rainfall events than the other products when the rainfall intensities are between 0.5
mm/day and 5 mm/day, where they may have an R value as high as 2 < R ≤ 5 mm/day (around
7.7%, 9.3% and 8.1%, respectively). These results can be explained follows: (1) the satellites can easily
detect strong, convective rainfall events but are inclined to miss shallow and warm rains; (2) the
bias-corrected methods can boost the amplitudes of the detected events to compensate for the missed
events [37]. This study analyzed FBI, POD, CSI and FAR to evaluate the qualities of the errors between
the satellite products and the gauge station data. The results of the statistical analyses are shown in
Table 4. CMORPH_RAW FBI is better than CMORPH_BLD, such that the POD and CSI are low and
FAR is high. TRMM3BV42 FBI is the closest to the gauge data of all the products but the POD and CSI
are lower and the FAR is higher than for GSMaP_RENALYSIS. Therefore, GSMaP_RENALYSIS can
more accurately detect rain events than the other products.

Table 4. The results of the statistics of FBI, POD, CSI and FAR.

CMORPH_BLD CMORPH_RAW TRMM3B42 V PERSIANN GSMaP_RENALYSIS

FBI 1.27 1.13 1.00 1.03 1.01
POD 0.76 0.57 0.60 0.57 0.81
CSI 0.50 0.37 0.57 0.46 0.63
FAR 0.40 0.49 0.45 0.42 0.36

Figure 7. Probability density function of daily rainfall for the no-rain case.
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Figure 8. Probability density function of the daily rainfall events with different intensities.

4.3. Typical Regional Analysis

In this study, we collected data from 2280 rain gauge stations to analyze the precipitation
in 2013 over the Tibetan Plateau and South China. The total precipitation was mapped in all
four seasons and the CC, RMSE and BIAS were calculated in every month, which are shown in
Figures 9–12. Tibetan Plateau is a typical of rainfall distribution including humid regions, semi-humid
regions and semi-arid regions, which the distribution is influenced by atmospheric circulation and
topography. Rain gauge stations are sparsely distributed over the Tibetan Plateau and the elevation
ranges from 86 m to 8755 m and there are exceedingly few gauge stations built in areas with high
elevation (Figure 9a). Figure 9b shows the spatial distribution of the total precipitation in four
seasons. The total precipitation is relatively low and the spatial distribution trend of precipitation is
decreasing from southeast to northwest. The satellite precipitation distribution is similar to the gauge
stations but some regions show considerable differences. All products exhibited overestimation in the
winter over the western regions, which the result related to the no-gauge stations and interpolated
technique. All products overestimated the precipitation in the summer, excepting CMORPH_BLD.
CMORPH_RAW overestimated the precipitation and its RMSE and BIAS showed large fluctuating
patterns, demonstrating that uncorrected satellite products perform poorly over semi-arid and arid
areas. CMORPH_RAW and CMORPH_BLD show some abnormal zero precipitation over Tibetan
Plateau. It is possible that the ice and snow surface tend to influence PWM-based accurate retrieval
over land [37]. The RMSE of GSMaP_RENALYSIS showed large differences in four seasons and
GSMaP_RENALYSIS produces underestimation in the spring and overestimation in the summer
and autumn.

To evaluate the performances of the satellite-based precipitation measurements, we calculated the
CC, RMSE and BIAS values for each month, as shown in Figure 10. The CC of all the products are high
from April to October (more than 0.6) and are relatively low in those months when the climate is dry.
This result can be explained by the following reasons: (1) compared with weak precipitation, satellite
sensors are more able to obtain heavy rainfall events; (2) Over the higher elevation mountainous area of
eastern China, it is difficult to obtain accurate precipitation values via remote sensing methods due to
the snow and ice on the surface in the winter; (3) Because of the complicated land surface characteristics
and their effects on the upward microwave radiation, impacting SSM/I, AMSR-E and AMSU-B, it is
difficult for the satellites to resolve rainfall over areas with low rainfall amounts [44]. PERSIANN_CDR
has the worst CC among the satellite products and its RMSE and BIAS values show the largest errors,
which can be explained by the poor input IR data over Tibetan Plateau. Overall, GSMaP_RENALYSIS
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has the best performance of all the products over the Tibetan Plateau and PERSIANN_CDR has the
worst performance, both seasonally and monthly.

(a) (b)

Figure 9. The precipitation distributions of the rain gauge stations (a) and multiple satellite (b) in 2013
over southern China.
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Figure 10. (a–c) denote the CC, RMSE and BIAS among a variety of products for each month in 2013
over the Tibetan Plateau, respectively.

There are more rain gauge stations and precipitation events in southern China than over the Tibetan
Plateau, so we researched the regions including Fujian, Guangdong, Jiangxi, Hunan and Guangxi.
The area of study and the elevation data are shown in Figure 11. The seasonal precipitation events
detected by the satellites are similar to the in-situ measurements and the max annual precipitation
is approximately 1500 mm in the spring and summer over Guangdong as well as over the south of
Guangxi. This might be related to the period of precipitation: the study area is mainly affected by the
southeast monsoon from the Pacific Ocean and the southwest monsoon from the India Ocean, which
the period of precipitation is from May to September. The north of Hunan and Guangdong had more
precipitation events than the other regions in all seasons except winter. Jiangxi and Fujian had more
precipitation in the winter. This regional precipitation is mainly affected by the cold and warm air in the
south. Note that little precipitation was measured over Hunan because of the effects of summer winds
leading the precipitation northward in the summer. The CC, RMSE and BIAS values were calculated
for each month and were compared with in situ measurements, as shown in Figure 12. The CC of all
products are low in January, October and December and the RMSEs are high in the summer. The BIAS
is near zero, except in CMORPH_RAW. CMORPH_RAW shows poor CC values, with a low near
zero occurring in January. CMORPH_BLD and TRMM3BV42 show highly consistent precipitation
distributions and both have higher CC than the other products. However, the CC of CMORPH_BDL
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is higher than that of TRMM3BV42 in January and November and its BIAS is lower. According to
the precipitation distribution and the calculated statistical correlations, the CMORPH_BDL product is
consistent with the in-situ measurements.

(a) (b)

Figure 11. The precipitation distributions from the rain gauge stations (a) and multiple satellites (b) in
2013 over southern China.
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Figure 12. (a–c) denote the CC, RMSE and BIAS values of the studied products for each month in 2013
over southern China, respectively.

5. Conclusions

This paper mainly discusses the CMORPH_BLD, CMORPH_RAW, TRMM3BV42, PERSIANN_CDR
and GSMaP_RENALYSIS precipitation products and their spatiotemporal precipitation distributions
based on daily, monthly, seasonal and annual values. We compared the satellite products with data
from rain gauge stations using statistical tools, such as their CC, BIAS and RMSE, for the period of
2005 to 2013. The five satellite rainfall products based on four different methods were analyzed via a
quantitative study of their error features and the following points were concluded:

(1) According to the nine-year daily mean precipitation over China (Figures 2 and 3), the characteristics
of precipitation is clearly gradually increasing in the south and decreasing in the northern
regions of the Qinling Mountain and Huaihe River. There is more than 10 mm/day in
the south and less than 5 mm/day in the northwest. Among the five satellite products,
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GSMaP_RENALYSIS suggests the best performance with the highest of R (0.91) and the lowest
RMSE (0.85 mm/day). CMORPH_RAW demonstrates the poorest capability with the lowest
of R (0.73) and higher RMSE (2.79 mm/day). For the CC, RMSE and BIAS each annual daily
mean precipitation from 2005 to 2013 (Table 3), GSMaP_RENALYSIS gives the highest CC (>0.8)
and smallest RMSE (~1.2 mm/day) and the low BIAS (±0.1) in every year. GSMaP_RENALYSIS
underestimates precipitation from 2005 to 2006 but it overestimates precipitation from 2007 to
2013. CMORPH_BLD, CMORPH_RAW and TRMM3BV42 exhibit underestimation precipitation
but PERSIANN_CDR shows overestimation precipitation.

(2) For the seasonal daily mean precipitation, the maximum precipitation is more than 15 mm/day
in summer and about 5 mm/day in winter. Five satellite products show the best capability with
the highest CC (~0.8) and the smallest RMSE (~1 mm/day) but relatively the biggest BIAS in
winter. In summer, all products give the smallest BIAS but the biggest RMSE (~2 mm/day) and
high CC. GSMaP_RENALYSIS remains CC more than 0.8 and BIAS less than 0.2, as well as low
RMSE (<2 mm/day). For the monthly daily mean precipitation, CMORPH_RAW gives the lowest
CC (<0.2) in December and January and PERSIANN_CDR exhibits the biggest BIAS in January.

(3) The PDFs reveal that CMORPH_RAW, CMORPH_BLD and TRMM3BV42 detected more no-rainfall
events than other products (79%, 65.4% and 64.3%, respectively) and GSMaP_RENALYSIS is
consistent with gauge stations. All the precipitation products detected heavier rainfall events
than the rain gauge stations measured. According to the statistical parameters of the rainfall
events (e.g., FBI, POD, CSI and FAR), TRMM3B42V exhibits the relative perfect performance with
FBI but the low POD and high FAR. CMORPH_BLD gives the higher POD but relative high FBI
and FAR. GSMaP_RENALYSIS outperforms other products with the highest POD and CSI and
lowest FAR.

(4) We analyzed two typical regions (the Tibetan Plateau and South China) in 2013. Over Tibetan
Plateau, all products show the highest CC (~0.7) and low BIAS (±0.5 mm/month) and relative
low RMSE (~3 mm/month) in July. The lowest CC (<0.3) and biggest RMSE were calculated
in December and September, respectively. GSMaP_RENALYSIS exhibits the best consistency
with gauge stations. Over south China, the maximum total monthly precipitation is more than
1500 mm/month. All products (except PERSIANN_CDR) give the highest CC (>0.8) and smallest
BIAS in February. According to the precipitation distribution and the calculated statistical
correlations, the CMORPH_BLD product outperforms other products with reference to the in
situ measurements.

(5) The gauge-corrected products outperform the CMORPH_RAW. CMORPH_BLD compared with
CMORPH_RAW performs better with increase in CC (from 0.73 to 0.80) and the reduction of
RMSE (from 2.79 mm/day to 2.14 mm/day) in nine-year mean daily precipitation. The CC of
CMORPH_BLD is from 0.70 to 0.82 during 2005–2013, while the CC of CMORPH_RAW is from
0.36 to 0.71.

This paper analyzed the CMORPH_BLD, CMORPH_RAW, TRMM3BV42, PERSIANN_CDR and
GSMaP_RENALYSIS precipitation products over China. The results are useful for selecting suitable
satellite precipitation products for users with a variety of research interests. Because the differences in
the algorithms may lead to varying degrees of error, it is necessary to adapt the method of retrieving
precipitation information. This study evaluated only the study area of the Tibetan Plateau and southern
China, so further precipitation research focusing on different terrains, such as high altitudes, basins
and southern rainy areas, is necessary. These studies are useful for researching on atmospheric
compositions and other fields and can help to improve GPM algorithms and comparisons.
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Abstract: Heterogeneity, including the inhomogeneity of landscapes and surface variables,
significantly affects the accuracy of evapotranspiration (ET) (or latent heat flux, LE) estimated
from remote sensing satellite data. However, most of the current research uses statistical methods
in the mixed pixel to correct the ET or LE estimation error, and there is a lack of research from the
perspective of the remote sensing model. The method of using frequency distributions or generalized
probability density functions (PDFs), which is called the “statistical-dynamical” approach to describe
the heterogeneity of land surface characteristics, is a good way to solve the problem. However,
in attempting to produce an efficient PDF-based parameterization of remotely sensed ET or LE,
first and foremost, it is necessary to systematically understand the variables that are most consistent
with the heterogeneity (i.e., variability for a fixed target area or landscape, where the variation in the
surface parameter value is primarily concerned with the PDF-based model) of surface turbulence
flux. However, the use of PDF alone does not facilitate direct comparisons of the spatial variability of
surface variables. To address this issue, the objective of this study is to find an indicator based on
PDF to express variability of surface variables. We select the dimensionless or dimensional consistent
coefficient of variation (CV), Gini coefficient and entropy to express variability. Based on the analysis
of simulated data and field experimental data, we find that entropy is more stable and accurate than
the CV and Gini coefficient for expressing the variability of surface variables. In addition, the results
of the three methods show that the variability of the leaf area index (LAI) is greater than that of the
land surface temperature (LST). Our results provide a suitable method for comparing the variability
of different variables.

Keywords: spatial heterogeneity; variability; evapotranspiration; land surface variables; probability
density function; HiWATER

1. Introduction

Evapotranspiration plays a key role in the Earth’s surface energy and water balances, and it has
substantial effects on global climate change, water management and crop yield [1–3]. Satellite-based
remote sensing has been identified as a suitable means of mapping the spatial distribution of ET or LE.
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Because of technical and methodological limitations, many remote sensing-based ET or LE models
have been conducted under quite homogeneous and flat conditions, with the use of decametric to
kilometric spatial resolution sensors [4,5]. However, the Earth’s surface geometry, physical processes
and associated variables are inherently heterogeneous. Due to the nonlinear nature of many land
surface processes, heterogeneity can profoundly affect the result of estimating ET or LE [1,6].

The effect of surface heterogeneity on remote sensing-based ET or LE estimation is mainly caused
by two aspects: the heterogeneity produced by the landscape and the heterogeneity produced by
surface variables [1]. Three basic types of methods have been proposed to compensate for the errors
caused by surface heterogeneity or considering subpixel scale land surface heterogeneities when
estimating surface ET or LE [7–12]. The error caused by the landscape heterogeneity is usually
corrected using the mosaic or area weighting method [1,11] and the correction factor compensation
method [13]. The mosaic or area weighting method neglects all small-scale interactions by dividing
each grid cell into several homogeneous patches according to the different land-use types, assuming
that the various patches do not interact with each other but interact vertically with the atmosphere
directly above them [14]. The grid fluxes are the averages of the patch fluxes weighted by their
fractional area no matter where within the grid cell the individual patches are located [9,15]. Therefore,
in the same landscape, the errors caused by the heterogeneity of spatial patterns change of the surface
variable are negligible for the ET or LE calculation. The error caused by the heterogeneity of the surface
variables (i.e., land surface temperature (LST)) is usually corrected by the temperature-sharpening
method [1,16], and it is capable of decreasing the influences of the heterogeneity of the LST [17,18].
The core of these two methods is to combine the high-resolution satellite data with the low-resolution
satellite data and using statistical methods to describe and express the heterogeneity of the landscape
composition or the spatial distribution of the variables in the mixed pixel to correct the ET or LE
estimation error. In addition, the physical mechanisms of some methods (e.g., the correction factor
compensation method) are not clear, leading to low portability [13,19].

Therefore, the study of surface heterogeneity in ET or LE estimation from the perspective of
remote sensing model is still needed. The method of using frequency distributions or generalized
probability density functions (PDF), which is called the “statistical-dynamical” approach, to describe
the variability of land surface characteristics is a good way to solve the problem [10,20–22]. It is based
on the assumption that climate forcing (temperature, precipitation, humidity, etc.) and land surface
characteristics (i.e., soil, vegetation, topography, etc.) vary according to the distributions which can
be approximated by continuous analytical PDFs rather than a single representative value. The grid
fluxes are calculated by statistical-dynamical method using numerical or analytical integration over
appropriate PDFs [23]. Li and Avissar [10] demonstrated that the results of determined fluxes depend
on the spatial distribution of the land surface parameters, and the more skewed the distribution within
the range of values, the larger the error (for nonlinear relationships) of the flux calculated using the
mean instead of the distribution. Tittebrand and Berger [14] confirmed the possible application of
the PDF-approach for the determination of LE with Penman-Monteith using Normalized Difference
Vegetation Index (NDVI), albedo, relative humidity and wind speed for grassland and coniferous
forest. The PDF-based flux estimation model can be used to describe spatial variability of specific
surface parameters for a model grid or a satellite pixel with coarser spatial resolution that is described
by a higher resolved dataset [10,14,20–23].

The appropriate choice of spatial heterogeneity description method based on different usages is the
key to eliminate ET or LE estimation error. The heterogeneity produced by landscape is often expressed
by a landscape pattern index including Moran’s I spatial autocorrelation index [24], Getis statistics [25],
porosity indices, etc. The heterogeneities of surface variables are regarded as two different aspects
with or without considering the spatial patterns of surface variables [26,27]. By considering spatial
patterns or spatial arrangement as well as the value of the gray scale of the pixels, the changes in
spatial patterns with more or less chaotic spatial arrangements correspond to greater or smaller
spatial heterogeneity [2,10]. In the other way, only the heterogeneity caused by the change in the
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variable value or gray value (i.e., spatial variability of the surface property over the observed scene)
is considered [26]. Correspondingly, the description of spatial heterogeneity contains two groups of
methods. One group considers both the spatial patterns and spatial variability of the variable, including
empirical, probabilistic and other methods. Empirical approaches such as local variance [28], Haralick
indices [29] and ANOVA-quadtree analysis [30] may be limited in charactering the image spatial
heterogeneity because of the lack of an underlying theoretical framework [26]. Probabilistic approaches
(e.g., spatial entropy, multifractal, fractal, variogram [31], and q-statistic method [27]), which consider
the image as a realization of the stochastic process called random function [26], provide more efficient
tools to model the spatial heterogeneity of components. Other methods involve mathematical models
such as wavelet analysis [19] and Fourier transform [32]; moreover, geographically weighted regression
has become popular to explore spatial heterogeneity [33]. These methods are mostly used to analyze
the heterogeneity of land surface solely, so the spatial patterns of pixels and spatial variability of the
variable values both need to be considered [26,34]. The other group focuses only on spatial variability
of the variable values and does not consider the spatial patterns. The commonly used methods include
the quantile, range, deviation, variance/standard deviation, moment, coefficient of variation (CV) [25],
Gini coefficient and entropy [34,35], and these methods are often used for specific purposes (e.g.,
building models) [36].

Though most PDFs are described by only a few parameters, implementing a PDF for each
land-surface characteristic would greatly increase the complexity of this type of parameterization,
as well as the computational burden of the model [10]. Therefore, in attempting to produce efficient
PDF-based parameterization of remotely sensed ET or LE, one needs to solve a basic question: which
surface variables’ heterogeneity must be considered when establishing an ET or LE estimation model,
i.e., which variability of surface variables varies similarly or consistently with the variability of the
turbulent flux in time. Since the use of PDF alone does not facilitate direct comparisons of the spatial
variability of surface variables, in order to answer the question, an index that quantitatively describes
the overall variability of the PDF is still required [37]. The main objective of this study is to find
an index to describe the heterogeneity caused by the fluctuation of the surface variable values, i.e.,
the spatial variability of the surface variables over the observed scene. Based on simulation data
and Heihe Watershed Allied Telemetry Experimental Research (HiWATER) data, we used the PDF
as a starting point to explore the spatial variability expression method of surface variables, and this
approach could be used to systematically analyze the spatial variability of surface variables and
compare the variability of different variables over the same observed scene.

2. Study Area and Datasets

2.1. Study Area

The study area (Figure 1b), which includes the Yingke and Daman irrigation districts in the
Zhangye oasis and adjacent Gobi Desert, is located at 100.10◦E–100.66◦E, 38.68◦N–39.15◦N in the
central reaches of the Heihe River Basin (HRB) and near the city of Zhangye in the arid region
of Gansu Province in northwestern China (Figure 1a). The climate is cold and arid, with a mean
annual precipitation, temperature, and potential evapotranspiration of 100–250 mm, approximately
7 ◦C, and 1200–1800 mm, respectively. Its terrain is flat, and its elevation is approximately 1480 m.
The two irrigation districts are key experimental areas of the HiWATER project (see Li et al. [38]
and Liu et al. [39] for details). One major objective of the HiWATER project, namely, the Multi-Scale
Observation Experiment on Evapotranspiration (HiWATER-MUSOEXE), is to capture the strong
land surface heterogeneities and associated uncertainties within a watershed [3,38,39]. The core
experimental area is heterogeneous and dominated by maize, spring wheat, vegetables, orchards,
and residential areas (Figure 1c).
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Figure 1. Geographical information of the study area: (a) schematic of Zhangye city and middle
Heihe River Basin; (b) locations of HiWATER-MUSOEXE observation matrix; (c) detailed locations
of the 17 EC systems and AWSs inside the Zhangye oasis. EC/AWS is the abbreviation for eddy
covariance/automatic weather station.

2.2. Datasets

2.2.1. Ground Observation Data

Several ground observation datasets from HiWATER were employed in this study. HiWATER
was designed as a comprehensive ecohydrological experiment to address problems that include
heterogeneity, uncertainty, scaling, and closing the water cycle at the watershed scale implemented in
the HRB, an inland river watershed [2]. MUSOEXE, a component of HiWATER, was implemented to
reveal the spatial heterogeneities of heat and water fluxes by constructing a flux matrix (Figure 1c) from
May to September 2012. The matrix includes 17 eddy covariance (EC) systems together with automatic
weather stations (AWSs) that were installed in the 5.5 × 5.5 km2 kernel experimental area (Figure 1c)
according to the distribution of crops, shelterbelts, roads, residential areas and canals, as well as
according to soil moisture and irrigation status [39]. Among the 17 EC systems, 14 were installed
in maize fields, and the other three were located in a residential area (EC4 in Figure 1c), a vegetable
field (EC1 in Figure 1c) and an orchard (EC17 in Figure 1c). The EC station mainly provides flux
data (including carbon dioxide flux, sensible heat flux and latent heat flux), friction wind speed, etc.
Meteorological data, including air temperature and humidity, wind speed and direction, solar radiation
and net radiation, layers of soil temperature and humidity, etc., were recorded at the AWSs.

The consistency of all of the EC systems and the quality of the data were ensured using the
following steps. First, the consistency of the EC instruments was tested during an inter-comparison
campaign in the flat, open Gobi Desert, over a surface covered by coarse grain sand and small pebbles
with withered sparse scrub vegetation. This campaign was completed before HiWATER-MUSOEXE
was conducted [40]. Second, all of the raw data were acquired at 10 HZ and processed using the
Edire software package developed by the University of Edinburgh (Edinburgh, UK). The processing
steps included spike removal, lag time correction, coordinate rotation (2D rotation), frequency
response correction, corrections for density fluctuations (WPL-correction), and averaging to half-hourly
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fluxes [39,41]. Third, a four-step procedure was performed to control the quality of the EC data;
for more details, see [1,2]. Because night turbulence is weak and considerable data are either missing or
of poor quality, this study used data from 10:00 to 18:00 Beijing time to ensure the quality of turbulent
flux observation data. The crop growth season is from June to September, and good quality data for
5 days were selected for each month, including 25, 26, 28–30 June; 23, 26, 27, 30 and 31 July; 4, 5, 8,
22 and 25 August; and 2, 6, 8, 12 and 14 September, for a total of 20 days.

2.2.2. Airborne Data

The remote sensing data used in this study included multiangular and multispectral images
that were collected by an airborne wide-angle infrared dual-model line/area array scanner (WiDAS)
and high-resolution land cover maps derived from an airborne compact airborne spectrographic
imager (CASI). Land cover maps with 1-m resolution were produced by an object-oriented workflow
using CASI images [42]. The landscape was classified into fourteen detailed land cover types
(Figure 1c), and the results were validated using ground survey points. The overall accuracy was
88.48%, and the Kappa coefficient was 0.87 [42]. WiDAS is one of the major instruments used in
the HiWATER-MUSOEXE airborne missions to acquire multiangular observation data. It acquires
images using four CCD cameras in the visible near-infrared (VNIR) bands and two thermal cameras
in the mid-infrared (MIR) and thermal infrared (TIR) bands. The specification payloads of WiDAS
can be seen in Liu et al. [43]. For the flight data collected on 3 August 2012, 15 tracks are included
in total. After calibration, lens distortion correction, geometric correction, viewing angle retrieval,
and atmospheric correction, the resolutions of the visible infrared band and thermal infrared band are
0.5 m and 5 m, respectively. To ensure that each track has 750 rows × 250 columns (3750 × 1250 m2)
as a prerequisite, six tracks were selected from 15 tracks. Each track is divided into three regions,
each with a size of 1250 × 1250 m2 as the test area. We used pre-processed WiDAS data to calculate the
LAI [1] and LST [43], and resampled the surface variable data to 5 m.

3. Methodology

The remote sensor above the land surface receives not only the signal of the mean and variance
but also the signal of all values present on the surface. Thus, modelers are especially interested in
the PDF of the surface variable [14,34], which tells how frequent a certain parameter value occurs.
For the same variable, if the PDF is narrow, then the surface is more homogeneous, and if the PDF is
broad, the surface is more heterogeneous [34]. PDF can describe heterogeneity in a qualitative manner,
however, it is unable to quantify the information content and cannot be used to compare the variability
of different variables over the same observed scene [34]. As we mentioned in the introduction,
the commonly used methods that express the spatial variability of surface variables include the
quantile, range, deviation, variance/standard deviation, moment, CV, Gini coefficient and entropy.
Because the magnitude and dimension of each surface variable vary, a dimensionless or dimensional
consistent indicator is required to compare the variability between variables directly. After comparing
the aforementioned methods, the indicators that can satisfy the above demand and better represent the
variability are the CV, Gini coefficient and entropy. The first two are dimensionless. For a fixed scale,
the amount of information can be quantified via the entropy and its dimension is consistent; the unit in
this paper is nats. We illustrate the characteristics of the three methods in expressing spatial variability
from both aspects of simulated data and experimental data. The framework and flowchart of this
paper is shown in Figure 2. PDF is the starting point for our research of surface spatial variability.
The framework in Figure 2 is as we reviewed in the introduction, and for the flowchart (i.e., the main
purpose of this paper), it is the first step to answer the basic question, and also the first step to build a
more efficient PDF-based ET or LE estimation model. The details of the three methods are described in
the following paragraphs.

CV is dimensionless and often used for auxiliary modeling, such as the use of CV to characterize
surface variability when establishing a temperature-sharpening method, and lower CV values
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correspond to more homogeneous land surface values [1,3,36]. CV can evaluate the variability of a
sample in a population as follows [25]:

CV =
std(x)
u(x)

=

√
1

n−1 ∑n
i=1 (xi − u)2

1
n ∑n

i=1 xi
(1)

where std(x) and u(x) are the standard deviation and the average value of the sampling point,
respectively. u(x) can be negative, then the above equation is also negative. However, if CV is
negative, its absolute value should be used to measure the degree of variability (i.e., the greater
the absolute value, the stronger the degree of variability, and vice versa). Generally, a value of
CV < 0.15 indicates a variable with low variability; 0.15 ≤ CV ≤ 1 indicates a variable with moderate
variability; and CV > 1 indicates a variable with a high degree of variability [1,36].
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Compared to CV, the Gini coefficient is also dimensionless and is more likely to represent the
ratio of deviations between data [44]. The Gini coefficient is an index of the fairness of the income
distribution in the field of economics, and it is in the range of [0, 1]. For n values of the variable x,
a number of methods are available to calculate the Gini coefficient. The calculation method used in
this study is as follows [44]:

Gini =
∑i ∑j

∣∣xi − xj
∣∣

2 ∑i ∑j xi
=

∑i ∑j
∣∣xi − xj

∣∣
2n2x

(2)
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Information entropy is a state variable in thermodynamics that indicates the degree of chaos,
and it was introduced into information theory by Shannon (sometimes called Shannon entropy) and
now represents a measure of the uncertainty of a random variable. The random variable is divided
into several intervals, each of which represents a state of the variable, and entropy is the average
uncertainty of all possible states of the variable. It is also a common tool to quantify the information
included in the PDF [34,45]. For discrete data, the formula is as follows [46]:

S = −
n

∑
i

pilnpi (3)

where pi is the probabilistic mass function (PMS) of the variable that falls within the ith interval
after dividing the set of points into n intervals, and it satisfies the normalization condition ∑n

i pi = 1.
The calculation of entropy is related to the size and the start of the probability density interval
segmentation, and Brunsell, Ham and Owensby [35] suggested using the kernel density estimation
method to determine the interval size and the starting value. In this paper, we used the Gaussian kernel
density estimation method to divide the interval into 512 aliquots and calculate the probability [47].
When the variable has only one state or a single value distribution, the entropy value is 0; and when
the variable is evenly distributed, the entropy value of the variable is the largest, which is ln n.

Because the number of observations involved in the calculation of each variable varies, in order
to make the variability of each variable comparable, the entropy of all variables must be normalized,
and the formula is as follows:

S′ = −
n

∑
i

pilnpi/lnm (4)

where m is the number of observations.
The above three methods are often used in remote sensing-assisted modeling [1,3,34,44]. Therefore,

compared with other methods (i.e., quantile, range, deviation, variance/standard deviation and
moment) the three methods are not only dimensionless or dimensional consistent, but also have
representativeness. In this paper, we analyze the three methods from different type of data (e.g.,
remote sensing airborne data) to express variability.

4. Results and Analysis

4.1. Analysis Based on Simulation Data

As we mentioned before, PDF is the starting point for our research of surface spatial variability.
Therefore, the variability of the value of remote sensing variables is the object of this paper.
The variability of different surface variables (such as LST, soil moisture, and stomatal conductance) is
commonly studied using the following distribution models: normal distribution, beta distribution,
gamma distribution, Weibull distribution, and exponential distribution [12,14]. To better compare the
ability of the Gini coefficient, CV and entropy to express variability, we have designed three schemes
from the perspective of simulation data. In Scheme 1 (see Figure 3 for details), we simulated 18 groups
of random numbers with six types of distribution, all of which passed the Kolmogorov-Smirnov test
at p > 0.05. The design of Scheme 1 is mainly used for the comparison of the methods within the
distribution, and each group yields 10,000 random numbers to calculate the aforementioned methods.
The Schemes 2 and 3 are designed to compare the three methods in describing the variability between
the different distributions. However, even for the same remote sensing variable that satisfies the same
distribution, the range of its value may also be different for various reasons (e.g., different acquisition
times). Scheme 3 is designed to reflect this difference and is therefore more specific. The calculation
results of the three methods for the simulated data in Scheme 1 are shown in Table 1.
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Figure 3. The PDF distribution of simulated data in Scheme 1. (a–f) refer to Gaussian distribution,
beta distribution, gamma distribution, weibull distribution, exponential distribution and uniform
distribution, respectively.

Table 1. Calculation results of the three methods for the simulated data in Scheme 1.

Distribution Type Specific Parameters S CV Gini

Normal
N(1) u = 0.5, sd = 0.12 3.8596 0.2311 0.1305
N(2) u = 0.5, sd = 0.09 3.5437 0.1685 0.0950
N(3) u = 3, sd = 0.30 4.7925 0.0986 0.0557

Beta
B(1) α = 6, β = 1 5.0479 0.1445 0.0771
B(2) α = 1, β = 6 5.0478 0.8697 0.4638

B(3) α = 0.5, β = 0.5 5.7996 0.7081 0.4057

Gamma

G(1) k = 1, θ = 2 4.3049 0.9901 0.4965
G(2) k = 2, θ = 2 4.8676 0.7066 0.3756
G(3) k = 3, θ = 2 5.1169 0.5777 0.3126
G(4) k = 1, θ = 5 3.3721 0.9291 0.4848

Weibull
W(1) k = 5, λ = 0.5 2.9733 0.2262 0.1278
W(2) k = 1, λ = 1 4.8165 0.9824 0.4947
W(3) k = 15, λ = 1 2.6494 0.0807 0.0446

Exponential
E(1) λ = 1 4.7244 1.0090 0.5011
E(2) λ = 4 3.3821 0.9968 0.4975
E(3) λ = 8 2.7327 0.9941 0.5005

Uniform
U(1) min = 0, max = 1 3.7550 0.5779 0.3336
U(2) min = 0, max = 10 5.9966 0.5734 0.3310

Note: u represents the mean; sd represents the standard deviation; s represents the entropy value; in the same
distribution, the interval division of entropy is consistent.

Table 1 shows that there are some differences between the three methods (i.e., entropy, CV and Gini
coefficient) in expressing spatial variability, and the trends of CV and Gini coefficient are basically the
same. Through the analysis, we can find that the difference between the three methods basically occurs
in the range of data values that vary greatly or with extreme data value distribution. For example,
the data range of the N(3) group is larger than the other two groups in the normal distribution or three
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group data in the beta distribution. However, the N(3) group of PDF is broader than the other two
groups, so it should be more heterogeneous, while the CV and Gini coefficient are not very stable.
In addition, from the exponential distribution, the CV of the E(2) group is larger than the CV of the
E(3) group, whereas the Gini coefficient is the opposite. Combined with Figure 3, it can be found that
the PDF distribution of E(3) group is more concentrated, which indicates that it is more homogeneous.
Gini coefficient is more likely to represent the ratio of deviations between data [44], so it is worse than
the CV when expressing the variability.

To compare the three methods in describing the variability between the different distributions,
we designed Scheme 2. The data of Scheme 2 are the nine groups of data that are in the same interval
(i.e., [0, 1]) selected in Scheme 1. These nine sets of data also cover six distributions, and their PDF
distributions are shown in Figure 4. The nine groups of data in Scheme 2 represent the different
variability distributions: the variability represented by (a) is stronger than that represented by (b);
(c) and (d) represent a large number of uniform data mixed with a small amount of non-uniform data,
but their spatial variability is basically the same; (e) represents a bimodal distribution; (f) and (h) are
similar to (d), and (g) is similar to (a); (i) is an extreme case with a maximum variability, where the
uniform distribution of (i) refers to the probability that the spatial distribution of the data is uniform,
which is completely opposite to the uniform distribution of surface variables in the study of remote
sensing (the uniform distribution in remote sensing usually refers to a single value distribution, that is,
the entire study area has only one value). Combined with Figure 4a, the variability of these data is
roughly sorted as follows: (i) > (e) > (f) > (c) ≈ (d) > (h); (a) > (g) > (b). The entropy is calculated
in the same way as the interval division of the data in group (i), and the calculation results of the
three methods are shown in Table 2. We can find that the results of the entropy can better reflect the
variability of the data in Scheme 2, while the results of CV and Gini coefficient are not very stable.
For example, the variability of (c) and (d) is basically the same, whereas the results of the CV and the
Gini coefficient vary considerably. The reason is that CV and Gini coefficient are affected by the values
of the variable. To confirm this, we designed Scheme 3.

In Scheme 3, we add 1 to the original random number generated in Scheme 2 so that the interval
range becomes [1, 2], as shown in Figure 4b. The variability of each simulated data in Scheme 3
is also calculated using three methods, and the results are shown in Table 3. The data in Scheme
3 have the same variability as in Scheme 2, and the standard deviation is also the same. However,
from the calculation results, only the value of entropy is unchanged, and the CV and Gini coefficient
results undergo great changes. Thus, the CV and Gini coefficient are influenced by the variable values,
specifically the mean of the variables, which can be seen via the calculation equations of the two [25,44].

Table 2. Calculation results of the three methods for the simulated data in Scheme 2.

Distribution Type Specific Parameters S CV Gini

Normal
(a) u = 0.5, sd = 0.12 5.2604 0.2311 0.1305
(b) u = 0.5, sd = 0.09 4.9459 0.1685 0.0950

Beta
(c) α = 6, β = 1 5.0479 0.1445 0.0771
(d) α = 1, β = 6 5.0478 0.8697 0.4638

(e) α = 0.5, β = 0.5 5.8003 0.7081 0.4057

Gamma (f) k = 1, θ = 5 5.3579 0.9291 0.4848

Weibull (g) k = 5, λ = 0.5 5.1505 0.2262 0.1278

Exponential (h) λ = 8 4.9230 0.9941 0.5005

Uniform (i) min = 0, max = 1 5.9984 0.5779 0.3336

Note: u represents the mean; sd represents the standard deviation; s represents the entropy value.
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Figure 4. The PDF distribution of simulated data: (a) Scheme 2; (b) Scheme 3.

Table 3. Calculation results of the three methods for the simulated data in Scheme 3.

Distribution Type Specific Parameters S CV Gini

Normal
(a) u = 1.5, sd = 0.12 5.2604 0.0771 0.0435
(b) u = 1.5, sd = 0.09 4.9459 0.0561 0.0316

Beta
(c) α = 6, β = 1 5.0479 0.0667 0.0356
(d) α = 1, β = 6 5.0478 0.1085 0.0578

(e) α = 0.5, β = 0.5 5.8003 0.2361 0.1353

Gamma (f) k = 1, θ = 5 5.3579 0.1516 0.0791

Weibull (g) k = 5, λ = 0.5 5.1505 0.0713 0.0403

Exponential (h) λ = 8 4.9230 0.1103 0.0556

Uniform (i) min = 1, max = 2 5.9984 0.1924 0.1111

Note: u represents the mean; sd represents the standard deviation; s represents the entropy value; (c–h) are obtained
by shifting one unit to the right on the basis of the Scheme 2.

From a comprehensive comparison of Tables 1–3, we can find that: (1) the variation range of
entropy is larger than that of the CV and Gini coefficient, although the magnitude fluctuation of
entropy is smaller than that of the other two; (2) the variation trend of the CV is consistent with that of
the Gini coefficient; (3) for non-extreme cases, the entropy, CV and the Gini coefficient can be a good
measure of the degree of discretization, such as (a) and (b) in Schemes 2 and 3; (4) however, for extreme
cases, the CV and the Gini coefficient are less effective than the entropy value for measuring spatial
fluctuations, for example, the fluctuation degree of (i) is the largest but the CV and Gini coefficient
values are smaller than (d) and (e) in Scheme 2; moreover, the variability of (c) and (d) is basically
the same, whereas the results of the CV and Gini coefficient vary considerably in both Schemes 2 and
3; and (5) the entropy values are relatively stable and do not change with the value of the variable
given for the same distribution, whereas the CV and Gini coefficient values are easily affected by the
variable mean value. Specifically, when the range of variable values in Scheme 3 changes, the entropy
values remain unchanged, while the CV and the Gini coefficient change greatly. From the analysis
of the simulated data, we can draw the preliminary conclusion that entropy can better describe the
spatial fluctuation than the other two methods, and it is more suitable for the comparison of variability
among different variables.

4.2. Analysis Based on Field Experimental Data

4.2.1. Analysis Based on Airborne Data

As mentioned in Section 2.2.2, we divided the selected tracks into three equal areas, with each
containing 250 × 250 pixels. The LAI and LST of each track are retrieved respectively. The CV,
Gini coefficient and entropy of each variable in each region were calculated, and the calculation results
are shown in Table 4. In addition, the corresponding land cover maps for each region is obtained.
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Taking track 5-1 as an example, the experimental area corresponds to Area NO. 1–Area NO.
3. The spatial distribution of the variables and the surface types of the three study areas are
shown in Figure 5. The area (pixel number) proportion of vegetated, shadow and non-vegetated
areas were 0.858:0.016:0.126 (53,634:1018:7848); 0.825:0.01:0.165 (51,554:633:10,313) and 0.784:0.01:0.206
(49,001:559:12,900), respectively, which resulted in a larger variation of the variable range. Figure 6 is
the probability density distribution of the surface variables (i.e., LAI and LST) and the surface types.
The proportion of vegetated area (especially corn area) is large; therefore, the distribution of variables
is concentrated. Combined with Table 4, the following conclusions can be drawn.

(1) Figure 6b shows that the LAI values of the three study areas are mainly distributed near 0 and high
value (between 4.0 and 7.0), thus showing a bimodal distribution. For the LAI, the CV and Gini
coefficient calculation results show that Area NO. 2 has more variation than Area NO. 1, although
the entropy results show that Area NO. 1 is more variable. A comparison of the frequency
distribution histograms (bandwidth = 1) of LAI in the two study areas (Figure 6c) shows that
the LAI peak width of Area NO. 2 is narrower, meaning that the probability distribution of LAI
in Area NO. 2 is more concentrated; therefore, the entropy of Area NO. 2 is smaller than that of
Area NO. 1. Moreover, the proportion of non-vegetated area (LAI = 0) in Area NO. 2 is larger,
which results in a widened standard deviation and a lower mean. Therefore, the calculated CV
and Gini coefficient results are relatively large. However, the spatial variability of LAI in Area
NO. 1 is greater overall than that in Area NO. 2.

(2) The LST range of Area NO. 1~Area NO. 3 is nearly 30 ◦C, and the distribution of the values is
mainly between 30~35 ◦C (Figure 6d). For the LST, the entropy, CV and Gini coefficient calculation
results are consistent and all are incremental; thus, the LST variability of the three study areas is
as follows: Area NO. 3 > Area NO. 2 > Area NO. 1.

(3) For the variability of variables, LAI > LST. Although the value range of LST is larger than that
of LAI, the variability of LAI is larger than that of LST, which can be directly obtained via
calculations using the three methods.

(4) The variability of LST seems to have a certain relationship with the variability of LAI, in this
paper, the LST-LAI variability is negative. Because of the complex relationship between vegetation
information and LST (e.g., NDVI-LST) [48], the correlation between the two variabilities needs to be
further studied.

 

Figure 5. Data for each region on track 5-1: (a) 1-m classification data derived from CASI and (b) LAI
and (c) LST retrieved by WiDAS.
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Figure 6. Probability density distribution and histogram of the surface variables and the surface types
in three study areas: (a) histogram of 1-m classification data; (b) probability density distribution of LAI;
(c) frequency distribution histograms of LAI (bandwidth = 1); and (d) probability density distribution
of LST. Note: in the classification histogram, the values 1–14 represent maize, leeks, aspen, cauliflower,
potato, lettuce, orchard, melon, beam, pear, peper, unclass, shadow and non-veg, respectively.

Figure 7 shows the variation of the three methods as the range of the LST increases (i.e., the number
of pixels increases gradually). The trend of the three methods is similar. In the range of 5–300 m,
the curve changes steeply, and the slope is large, which is due to additional points caused by the new
mixed other types of land or the growth of large differences in vegetation, so the variability in the
study area increases rapidly. In the range of 300–800 m, the variability of the variable tends to be stable,
which may be related to the optimal scale [19]. From the perspective of probability density distribution,
the scale range increases, which leads to more occurrences of the variable in a certain range (state),
that is, the probability is greater, indicating that the value of the variable is more concentrated and
more dominant than other states, so its spatial variability remains stable or even reduces.
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Figure 7. Variation of the three methods when the LST scale is expanded. Note: The abscissa indicates
the length of the study area that gradually increases from the upper left corner of Figure 5c with a
gradient of pixels 5i × 5i (i = 0, 1, 2 . . . 50).
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Table 4. Calculation results of the three methods for each variable in different areas.

Track NO. Area NO.
S CV Gini

Track NO. Area NO.
S CV Gini

LAI LST LAI LST LAI LST LAI LST LAI LST LAI LST

track 5-1
1 5.3350 4.4594 0.4050 0.1303 0.2114 0.0545

track 10-1
10 5.3660 4.2306 0.4715 0.1329 0.2478 0.0574

2 5.3209 4.5029 0.4427 0.1389 0.2334 0.0604 11 5.3818 4.0387 0.4022 0.1023 0.2093 0.0401
3 5.3494 4.6007 0.5692 0.1494 0.3128 0.0708 12 5.5580 4.3174 0.4653 0.1106 0.2528 0.0473

track 5-2
4 5.3034 4.5020 0.4014 0.1288 0.2080 0.0543

track 11-1
13 5.5324 4.3848 0.5158 0.1292 0.2814 0.0571

5 5.3407 4.5748 0.4309 0.1347 0.2268 0.0591 14 5.5262 3.9989 0.3937 0.0968 0.2065 0.0383
6 5.3939 4.5033 0.5083 0.1410 0.2750 0.0632 15 5.5739 4.1628 0.4020 0.0997 0.2120 0.0402

track 7-2
7 5.3480 4.1616 0.3737 0.1140 0.1925 0.0434

track 12-1
16 4.8339 4.4876 0.7941 0.1176 0.4462 0.0523

8 5.3573 4.3790 0.4258 0.1196 0.2240 0.0508 17 4.7221 4.1904 0.7181 0.0868 0.3955 0.0362
9 5.4848 4.5773 0.5030 0.1357 0.2751 0.0667 18 4.8323 4.3546 0.6973 0.1084 0.3830 0.0480

For the LAI in our study area, as the scale range increases, the following occurs: (1) when the
dominant land cover of the pixel is covered by buildings or bare soil and only a very small number
of pixels or individual pixels are vegetation cover, the value of LAI is largely zero and only a small
number of non-zero values are observed; or (2) only a small amount of the pixel is covered with
buildings or bare soil and these land types are mixed with a large number of vegetation area; thus,
the value of LAI is largely non-zero. These two cases often occur with mixed pixels, such as at the
junction of farms and villages. In such situations, the pixels are obviously relatively pure, the spatial
variability is relatively weak, but the CV values in case (1) are much larger than those in case (2) and
the Gini coefficient values are close to 1 and 0 in both cases. However, the entropy values are consistent
in both cases, which is similar to cases (c) and (d) in Schemes 2 and 3 of the simulated data described
in Section 4.1. These findings show that the CV and the Gini coefficient are insufficient for measuring
spatial variability. Because the Gini coefficient is not ideal, the calculation is large and the trend is
similar to that of the CV; thus, the following analyses will no longer consider the Gini coefficient.

4.2.2. Analysis Based on Ground Observation Data

The variables that can be analyzed using airborne data are limited, and ground observation data
(i.e., AWSs and ECs) can provide multivariate continuous observation data, which are beneficial for
analyzing the overall variability of each variable and its temporal variation. Nine surface variables are
analyzed in this section, and the number of observations for each variable is shown in Table 5.

Table 5. The number of observations in the calculation of each variable.

Variable Number of Observation Variable Number of Observation Variable Number of Observation

H 17 RH_5m 17 albedo 16
LE 17 Ta_5m 17 Rn 16

Ustar 17 Ms_2cm 17 Ts_0cm 17

Note: H represents sensible heat flux; LE represents latent heat flux; Ustar represents the friction wind speed which
is observed by an ultrasonic anemometer; RH_5m represents air humidity at 5 m; Ta_5m represents air temperature
at 5 m; Ms_2cm represents soil moisture at a depth of 2 cm; albedo represents the surface albedo, which is obtained
by the ratio of the upward shortwave radiation to the downward shortwave radiation; Rn represents net radiation;
Ts_0cm represents soil temperature at a depth of 0 cm (i.e., the temperature measured by the detector exposed to the
Earth’s surface).

Among them, H, LE, and Ustar were observed by the EC systems and RH_5m, Ta_5m, Ms_2cm,
Rn and Ts_0cm were observed by the AWS stations. Because one of the stations (i.e., EC16) lacked
radiation observation data, the albedo and Rn have only 16 observation data. To make the variability of
each variable comparable, the entropy of each variable needs to be normalized according to Equation
(4). The normalized entropy and CV are calculated from the half-hourly of ground observation data
processed in Section 2.2.1. Taking the surface variables (i.e., H, LE and Ts_0cm) from June 2012 as an
example, the variation in entropy and CV with time is shown in Figure 8. The evaporation from crops
is greater during the growing season, and the value of the sensible heat flux (H) is much smaller than
that of the latent heat flux (LE). Studies have shown that at an oasis in the summer, a temperature
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inversion occurs [1–3], and H is sometimes less than 0 and its mean is close to 0 or even negative.
In addition, the CV values are large and the variation is intense; therefore, the CV values of H are
unstable. This situation is similar to that described in Section 4.1, meaning that a large number of
zero values are mixed with non-zero values. In contrast, entropy values do not change dramatically
because entropy does not consider the specific size of the variable value and is only related to the
frequency of the variable value within a certain interval. In addition, the CV values of H show that the
turbulence flux spatial fluctuation is relatively small at approximately 11:00 a.m. because with solar
radiation enhancement, the surface begins to heat up, evapotranspiration increases, and the H spatial
variation changes are stable. However, in the afternoon, the oasis effect appears, and H is negative for
the observation site and gradually increases, resulting in CV values that begin to fluctuate violently.
Figure 8 shows that the CV values and entropy values of the LE variations are also more intense.
Furthermore, the trend of H and LE seems to show a certain diurnal variation and this requires further
detailed study.
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Figure 8. Temporal variation of the entropy and CV of surface variables (i.e., H, LE and Ts_0cm).

54



Remote Sens. 2018, 10, 91

Table 6 shows the statistics of entropy calculated for the nine variables over 20 days. It can be seen
that the entropy of Ms_2cm is the largest. The reason may be due to that the LE has a strong variability
and is relatively discrete (STD = 0.048), coupled with other factors such as wind speed, resulting in
significant differences in evapotranspiration [2]. Thus, the distribution of surface soil moisture is
quite different. Followed by Ustar and Ts_0cm, they also have strong variability. The reason for the
entropy of Ustar being higher may be related to the influence of surface geometry and atmospheric
conditions on wind speed; the HiWATER-MUSOEXE test area is surrounded by HRB and the Gobi
Desert (Figure 1b), so the spatial variation of the wind speed is large. For the soil temperature at 0 cm
(Ts_0cm), there is a high degree of spatial variability because of the influence of surface humidity
and the shadow of each observation site. In general, the evaluation of entropy as a representation of
variability is more credible than that of the CV.

Table 6. Statistics of the entropy for each variable.

Variable MIN MAX MEAN STD

H 0.649 1.000 0.913 0.061
LE 0.747 1.000 0.929 0.048

Ustar 0.798 1.000 0.946 0.036
RH_5m 0.748 1.000 0.923 0.041
Ta_5m 0.693 1.000 0.875 0.050

Ms_2cm 0.863 1.000 0.982 0.024
albedo 0.670 1.000 0.919 0.049

Rn 0.423 1.000 0.918 0.056
Ts_0cm 0.769 1.000 0.932 0.048

5. Discussion

The entropy describes the spatial variability much better than CV and Gini coefficient. Generally,
the CV and Gini coefficient have similar characteristics when expressing spatial variability, but the
Gini coefficient is more focused on the deviation ratio between data. Therefore, in some cases, the Gini
coefficient is worse than the CV in expressing spatial variability, and the Gini coefficient has a large
computational effort. In summary, the advantages of entropy are described as follows:

1. Entropy is more consistent with PDF when describing spatial variability, and in some extreme
distributions, entropy can express spatial variability more accurately, while CV and Gini
coefficients cannot.

2. In this paper, the unit of entropy is nats, which can be used directly to compare the spatial
variability of variables. While the CV and Gini coefficients cannot, they are affected by the specific
value (i.e., the average) of the variable.

Nevertheless, it is worth mentioning that PDF is the starting point for our research of surface
spatial variability. If we do not use this as a prerequisite to analyze the heterogeneity of surface
variables separately, the spatial patterns (also known as spatial structure) or spatial autocorrelation
of the surface must be considered [26,34]. Entropy calculates the variability of variables in their
own range. In Table 1, if we compare the three methods in describing the variability between the
different distributions, the result is still reliable. However, we must consider the actual range of
variables. For example, if variable A satisfies a uniform distribution, its value can range from 0 to
10, and in some cases (e.g., an observation scene of a remote sensing image or the target area that we
are interested in) its value falls in the range of 0–1. If there is no value in the 1–10 range, similar to
U (1) in Table 1, then its variability is not necessarily stronger than variable B which belongs to other
distributions (e.g., the beta distribution in Table 1) in the actual sense. In this article, the design
and arrangement of the scheme is to gradually illustrate the characteristics of the three methods in
expressing spatial variability. In addition, entropy takes into account the distribution of variable values,
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and its calculation has a certain dependence on the number of samples. Considering the high cost of
the experiments, the datasets of the seventeen EC systems and AWS stations in the 5.5 × 5.5 km2 kernel
experimental area are very valuable [39]. Moreover, the conclusions drawn from the analysis based
on the spatial data may be quite preliminary but are important and valuable for future exploration in
this area. More data from wireless sensor network [49] will be added and used for more sophisticated
analysis. More reliable and interesting findings will be discovered with increased number of sites and
observations. Detailed information on the spatial variability of variables derived from the ground
observation network and the time variation of the variability of surface variables will be introduced in
another paper.

6. Conclusions

The estimation of ET or LE using remote sensing data does not usually consider the influence
of advection or interaction between subpixels; hence, the distribution of surface variable values (i.e.,
spatial variability) is usually the focus for building a model that considers the heterogeneity produced
by surface variables for a target area or landscape. PDF is the most promising way to describe
subpixel variability for given data. In attempting to produce efficient PDF-based parameterization
of remotely sensed ET or LE, it is important to determine which variables are similar or consistent
with the variability of turbulent flux in time. However, the use of PDF alone does not facilitate
direct comparisons of the spatial variability of surface variables. To address this, we chose three
dimensionless or dimensional consistent indicators, i.e., CV, Gini coefficient and entropy values,
to express the variability in surface variables. Based on the analysis of simulated data and the
field experiment data, we found the following: (1) Entropy has a high consistency with the PDF of
surface variables, which is more stable and efficient in expressing the variability of surface variables.
The entropy of the airborne data shows that the variability of LAI is greater than that of LST; (2)
Regardless of whether it is from the analysis of simulated data or field experimental data, the CV and
the Gini coefficient are insufficient for measuring spatial variability. They are susceptible to the mixing
of special values, such as the inversion of temperature at the oasis in the summer; (3) The results of
normalized entropy of different variables observed by EC systems and AWS stations show that the
variability of soil moisture at depth of 2 cm (MS_2cm) is the strongest, and the variability of friction
wind speed (Ustar) is relatively strong, which is related to the special geographical environment of the
study area. Furthermore, the trend of sensible heat flux (H) and latent heat flux (LE) seems to show a
certain diurnal variation.

The findings of this study provide a reference for expressing the spatial variability of surface
variables and illustrate a suitable method for comparing the variability of different variables. How to
combine it with the analysis in which surface variables vary similarly or consistently with the variability
of the turbulent flux in time and to establish a more efficient PDF-based remote sensing ET or LE
model will be the next research goal.
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Abstract: Evapotranspiration (ET) is a critical process for the climate system and water cycles.
However, the spatiotemporal variations in terrestrial ET over Northeast China over the past three
decades calculated from sparse meteorological point-based data remain large uncertain. In this paper,
a recently proposed modified satellite-based Priestley–Taylor (MS–PT) algorithm was applied to
estimate ET of Northeast China during 1982–2010. Validation results show that the square of the
correlation coefficients (R2) for the six flux tower sites varies from 0.55 to 0.88 (p < 0.01), and the
mean root mean square error (RMSE) is 0.92 mm/d. The ET estimated by MS–PT has an annual
mean of 441.14 ± 18 mm/year in Northeast China, with a decreasing trend from southeast coast
to northwest inland. The ET also shows in both annual and seasonal linear trends over Northeast
China during 1982–2010, although this trend seems to have ceased after 1998, which increased on
average by 12.3 mm per decade pre-1998 (p < 0.1) and decreased with large interannual fluctuations
post-1998. Importantly, our analysis on ET trends highlights a large difference from previous studies
that the change of potential evapotranspiration (PET) plays a key role for the change of ET over
Northeast China. Only in the western part of Northeast China does precipitation appear to be a major
controlling influence on ET.

Keywords: evapotranspiration; Northeast China; MS–PT algorithm; spatial-temporal variations;
controlling factors; potential evapotranspiration

1. Introduction

Over the past three decades, global warming has influenced the climate condition and the
hydrological cycle of Northeast China [1,2]. Especially for evapotranspiration (ET), it is an important
process in an ecosystem water budget, energy balance, and carbon cycles, and strongly affects surface
dry conditions and climate change [3–5]. Numerous studies have reported that significant changes
in ET are influencing ecosystem processes, surface drought conditions, and the consequent local
climate feedback over Northeast China [6–11]. Based on the meteorological measurements, the annual
reference ET (ET0) of Northeast China has increased at a rate of 3.89 mm/decade during 1961–2007,
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with large interannual fluctuations [12]. However, due to a lack of direct measurements, there are
still large biases in estimating the actual ET for the detection of variations in water budget and
surface drought in Northeast China. Therefore, it is urgent to improve ET estimation and evaluate the
long-term variation of ET for understanding the hydrologic changes and solving problems in water
resource management.

Based on the large ground-measurements, several traditional approaches have been widely used
to estimate ET in Northeast China. Among them, eddy covariance data can be considered to be reliable
for quantifying ET at the local scale [13,14]. However, since their measurements are of short duration
and sparse spatial coverage, they cannot provide long-term regional estimates of ET [15]. Similarly,
the application of traditional ET estimation models, whose parameters derived mostly from field
observations, is greatly restricted in Northeast China [16]. For example, Gao et al. [7] used the water
balance methodology to estimate monthly ET for 686 stations over China and found the actual ET
tends to decrease in most areas of Northeast China during 1960–2002. Nevertheless, due to the problem
of scale conversion, such ET methods require a very large amount of ground-observation data and can
only be accurate at the local scale [3].

Currently, remote sensing has provided real-time and dynamic information for terrestrial energy
systems, facilitating effective regional ET estimation [17,18]. Based on satellite-based observations,
several approaches have been used to estimate the spatial and temporal variation in ET over Northeast
China. For instance, Tian et al. [19] combined water balance components and surface energy balance
components by Noah land surface model and found decreasing changes in ET over Northeast China
during 1986–2008. Based on global Moderate Resolution Imaging Spectroradiometer (MODIS) ET
products, Tian et al. [20] reported that ET shows a positive trend in the Northeast Plain during
2001–2010 and attributed this trend to the change of vegetation condition. Yang et al. [21] using
the GLEAM (global land-surface evaporation: the Amsterdam methodology) model, documented a
negative trend in the western part of Northeastern China during the 1981 to 2010 period and pointed
out that the annual trend shows a remarkable correlation with the trend in summer. Although these
studies have focused on the detection of variation in ET over Northeast China, due to the difference in
model structures and dominant variables, the interannual variability of ET vary significantly between
models [22]. Large uncertainties in the spatial-temporal variation of ET over long time periods still
remain in Northeast China. A recently modified satellite-based Priestley–Taylor (MS–PT) algorithm
proposed by Yao et al. [23] has been used to estimate ET in mainland China. According to validation
for 16 EC flux tower sites throughout China, the average RMSE between measured and predicted
site-averaged daily ET was approximately 5 W/m2 lower (99% confidence) for the MS–PT compared
to the Priestley–Taylor-based ET (PT–JPL) algorithm. It is physically based, requiring no subjective
parameter calibrations as employed by many other traditional methods, which exactly solved the
problem of insufficient input data. Importantly, this method is also satisfactory in detecting the
interannual variability in China [24]. However, there is a lack of similar studies that simulate regional
terrestrial ET over Northeast China by using the MS–PT algorithm and satellite datasets. As a result,
little is accurately understood regarding spatiotemporal characterization of the response of regional
terrestrial ET to climate change for long periods.

In this study, we used the MS–PT algorithm driven by remote sensing data and meteorological
reanalysis data to estimate ET in Northeast China. We had two major objectives. First, we evaluated
the performance of the MS–PT algorithm using ground-measured flux data collected from six flux
towers in Northeast China. Second, we analyzed the spatiotemporal variation in ET from 1982 to 2010
and detected the issue of what factors contribute to the variability and trends of ET in Northeast China.
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2. Materials and Methods

2.1. Study Area

Northeast China (38◦42′–53◦55′N, 115◦32′–135◦09′E) is located in a transition region between
the subarctic region and temperate region [25]. The total area is approximately 1.24 × 106 km2,
covering four provinces, including Heilongjiang, Jilin, and Liaoning, and some areas of the Inner
Mongolia Autonomous Region: Hulun Buir, Xingan Meng, Tongliao, and Chifeng. The study area has
a typical continental monsoon climate with cold, dry winters and warm, wet summers. According
to a previous study, the annual precipitation of Northeast China is about 489 mm, of which 75%
falls in the period of June to September [26]. The annual average temperature is about 1.9 ◦C–5.3 ◦C,
and has increased at a rate of 0.34/decade during 1959–2002 [1]. Due to the suitable plant growth
environment, Northeast China not only produces a large quantity of grain, but also has abundant forest
reserves, which accounts for more than 1/3 of total in China [27]. The natural vegetation of Northeast
China includes the forest steppe or meadow steppe, typical steppe, and desert steppe, rendering the
ecological environment sensitive and fragile. A previous study illustrates that extreme precipitation
and dryness events have become more and more frequent and intensified [6].

The study area can be divided into two major basins: Liaohe (LH) basin and Songjiang (SJ) basin
(Figure 1). These two basins have different climatic and hydrological characteristics. For instance,
the land use type of the LH basin is mainly cropland and desert land [28], which has severe water
environment problems. Although the utilization rate of water resources is high, the water resources of
the LH basin are still quite limited [29]. On the contrary, the land use type of the SJ basin is mainly
forestland and cropland [30]. Since the annual precipitation of the SJ basin varies significantly, droughts
and floods occurred frequently [31]. Separating Northeast China into these two basins will be helpful
to evaluate the ET variability.

Figure 1. Map of the land cover type and the location of flux towers (Jinzhou, Duolun, Changbaishan,
Tongyu, Laoshan) in Northeast China. The two main basins are also shown in inset panel: Songjiang
(SJ) basin and Liaohe (LH) basin.
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2.2. Data

2.2.1. Remote Sensing Data

To estimate long-term ET over Northeast China, we use the Global Inventory Modeling and
Mapping Studies (GIMMS) NDVI3g data (1982–2010) generated from the Advanced Very High
Resolution Radiometer (AVHRR). The GIMMS NDVI3g product contains global bimonthly NDVI at
8 km spatial resolution and can be obtained from National Oceanic and Atmospheric Administration
(NOAA) [32]. In our study, the GIMMS NDVI3g data was converted to a resolution of 0.1◦ × 0.1◦

using bilinear interpolation and temporally interpolated from the bimonthly averages to a daily value
using linear interpolation.

To evaluate the performance of the MS–PT algorithm, the MOD16 eight-day ET product with
1 km spatial resolution is used to compare with the estimated ET. The MOD16 product is available
from the National Aeronautics and Space Administration (NASA) Land Processes Distributed Active
Archive Center (LP DAAC) [33]. The MOD16 product is based on the Penman–Monteith equation and
uses daily meteorological reanalysis data and eight-day vegetation dynamics as inputs [34,35].

We also use the Climate Prediction Center soil moisture dataset (1982–2010) and MODIS land
cover type product (MCD12C1). The soil moisture dataset provided by the NOAA [36] contains
monthly averaged soil moisture at 0.5 degree and can be used to analyze the relationship with ET.
The MCD12C1 data from 2001 to 2010 can be obtained online [33] and the spatial resolution of the data
is 0.05 degrees.

2.2.2. Meteorological Reanalysis Data

The China Meteorological Forcing Dataset was produced by merging a variety of surface
meteorological and environmental data sources, including instantaneous near surface air temperature,
pressure, relative humidity, wind speed, precipitation, and surface downward shortwave radiation.
To estimate the spatiotemporal variations in ET over Northeast China, we use the daily gridded
meteorological reanalysis dataset as input parameters (except precipitation) to calculate ET during
1982–2010 [37]. The independent precipitation data is used to analyze the relationship with ET. This
daily meteorological reanalysis dataset covers the period 1981–2010, with a resolution of 0.1 deg and
3 h. This dataset can be used for hydrological modeling, land surface modeling, land data assimilation,
and other terrestrial modeling. Previous studies demonstrated that this dataset provides more accurate
meteorological parameters than other reanalysis and satellite products, with less RMSE and higher
correlation coefficients [38,39].

2.2.3. Ground-Based Observations

To evaluate the performance of both MS–PT algorithm on the site scale, we use the
ground-observed data from six flux towers, which are distributed all around Northeast China (Figure 1).
The data are provided by ChinaFLUX, LathuileFlux, and the Coordinated Enhanced Observation
Network of China (CEOP) [40]. The basic information of flux observation site is shown in Table 1.
All sites are based on the eddy correlation (EC) method [41,42]. Although the EC method has been
widely used in the global measurement experiment, this method does not conserve energy. Therefore,
in this study, we have selected the method developed by Twine et al. [43] to correct the ET from all
flux towers.
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Table 1. Location of the six flux towers used in this study.

Site Name Lat, Lon Elevation(m) Land Cover Type Time Period Network

Changbaishan,
Jilin

42.40◦N,
128.10◦E 761 Mixed forest 2002–2007 China Flux

Laoshan,
Heilongjiang

45.28◦N,
127.58◦E 340 Larch forest 2001–2007 China Flux

Duolun1, Inner
Mongolia

42.045◦N,
116.671◦E 1350 Cropland 2006 Lathuile-Flux

Jinzhou,
Liaoning

41.18◦N,
121.21◦E 22.3 Cropland (maize) 2008–2009 CEOP

Duolun2, Inner
Mongolia

42.047◦N,
116.284◦E 1350 Grassland 2006 Lathuile-Flux

Tongyu, Jilin 44.57◦N,
122.88◦E 184 Grassland 2008 CEOP

2.3. Methods

2.3.1. MS–PT Algorithm

The value of ET can be influenced by numerous factors, including surface moisture, stomatal
conductance, air temperature (Tair), surface radiation energy [44]. Priestley and Taylor [45] combined
theoretical and practical experiences and proposed a simple ET equation:

ET = α
Δ

Δ + γ
(Rn − G) (1)

where α is the PT coefficient and Δ is the slope of the saturated vapor pressure curve (kPa/◦C). γ is
the psychometric constant (kPa/◦C). Rn is the surface net radiation (W/m2). G represents the soil
heat flux (W/m2). The Priestley–Taylor algorithm solve the uncertainty of the resistances in the
Penman–Monteith equation and can be accurate where aerodynamic and surface resistance is not
available [44,46]. Based on the Priestley–Taylor algorithm, many revised approaches to estimate ET
have been built. However, these methods require a continuum of soil moisture and vegetation status
to acquire the surface conditions [46].

To minimize the need for ancillary meteorological data while maintaining a physically-realistic
representation of evapotranspiration process, Yao et al. [23] modified the Priestley–Taylor [45]
algorithm by using vegetation indices (VIs) and apparent thermal inertia (ATI) as the primary
parameters and propose the MS–PT algorithm:

ET = ETs + ETc + ETws + ETic (2)

The MS–PT algorithm separates the total ET into the unsaturated soil evaporation (ETS),
the canopy transpiration (ETC), the saturated wet soil surface evaporation (ETws), and the canopy
interception evaporation (ETic). Unsaturated soil evaporation can be expressed as

ETs = (1 − fwet) fsmα
Δ

Δ + γ
(Rns − G) (3)

where fwet is the wet surface fraction (fsm
4), fsm can be derived from ATI (ATI = (1/DT) DT/DTmax).

DT is the diurnal air temperature range (DTmax = 40 ◦C). Rns is the surface net radiation to the soil
(Rns = Rn(1 − fc)), fc is the vegetation cover fraction (fc = (NDVI − NDVImin)/(NDVImax − NDVImin)).
NDVImin and NDVImax are the minimum and maximum NDVI during the study period, respectively.
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Rn is the surface net radiation and can be calculated using the method of Wang et al. [47]. G is the sum of
the soil heat flux and can be calculated using a simple empirical Rn-based algorithm (0.18(1 − fc)Rn) [24].

Canopy transpiration can be calculated using a modified linear two-source model:

ETc = (1 − fwet) fc fTα
Δ

Δ + γ
Rnv (4)

where fT represents plant temperature constraint (exp(−(Tmax − Topt)/Topt)2), Topt is an optimum
temperature (25 ◦C). Rnv represents the surface net radiation to the vegetation (Rnv = Rnfc).

Saturated wet soil surface evaporation can be described as

ETws = fwetα
Δ

Δ + γ
(Rns − G) (5)

Vegetation interception evaporation can be calculated from the following equation:

ETic = fwetα
Δ

Δ + γ
Rnv (6)

2.3.2. Potential ET Estimation

Potential evapotranspiration (PET) is an important indicator of atmospheric evaporation demand
and refers to ideal evaporation rate when soil moisture is abundant. In this study, the FAO
Penman–Monteith (PM) method driven by meteorological reanalysis data and NDVI3g data was
used to estimate PET of Northeast China, which was validated to all basins of China in previous
studies [48,49]. The PET estimation method can be expressed as

PET =
0.408Δ(Rn − G) + γ

(
900

Tair+273

)
WS(es − e))

Δ + γ(1 + 0.34WS)
(7)

where WS is the wind speed, es is the saturated vapor pressure, and e refers to air water vapor pressure.
VPD is vapor pressure deficit and equals to es − e.

2.3.3. Statistical Analysis

The Mann–Kendall test, proposed by Mann [50] and improved by Kendall [51], is a nonparametric
method for testing trends in hydrological processes and other related physical variables [52]. The null
hypothesis H0 suggests that the data are a sample of independent variables and the hypothesis H1

states that the distribution of xk and xj are not identical for all k, j ≤ n with k 
= j. The test statistic is
given as follows:

S =
n−1

∑
j=1

n

∑
k=j+1

sgn(x k − xj) (8)

where x is the individual data values, n is the total number of data, and

sgn
(

xk − xj
)
=

⎧⎪⎨
⎪⎩

1 xk − xj > 0
0 xk − xj = 0
−0 xk − xj < 0

(9)
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The statistic S is nearly normally distributed, and the statistic Z is a standard normal variable:

Z =

⎧⎪⎪⎨
⎪⎪⎩

s−1√
Var(S)

S > 0

0 S = 0
s+1√
Var(S)

S < 0
(10)

Var(S) =
1
18

[n(n + 1)(2n + 5)−
n

∑
i=1

ti(ti − 1)(2ti + 5)] (11)

where i is the number of tied groups, and ti is the number of data values in the group. The presence of
a statistically significant trend is evaluated using the Z value: positive (negative) value of Z indicates
an upward (downward) trend. The null hypothesis H0 that Z is statistically significant or not is
determined by whether – Z1 − α/2 ≤ Z ≤ Z1 − α/2, where ± Z1 − α/2 are the standard normal deviates
obtained from the standard normal cumulative distribution tables, and α is the significance level for
the test.

The Mann–Kendall test is also satisfactory for estimating the magnitude of the trend. The Kendall
slope can be obtained by an unbiased estimator of trend magnitude:

β = Median (
xi − xj

i − j
) (12)

where xi is the annual value of ET or other meteorological elements.

3. Results

3.1. Evaluation of MS–PT Performance in Estimating ET

To evaluate the ability of the MS–PT algorithm to estimate ET over Northeast China, we have
validated the MS–PT algorithm at daily timescales based on the EC observations. Figure 2 shows
that the bias of the estimated daily ET using the MS–PT algorithm varies from 0.02 to 0.85 mm/d
with a mean value of 0.33 mm/d, the root mean square error (RMSE) varies from 0.69 to 1.43 mm/d
with a mean value of 0.92 mm/d, and the square of correlation coefficients (R2) varies from 0.55 to
0.88 (p < 0.01) with a mean value of 0.68. Since the sites have different biomes, a comparison of the
site-averaged ET demonstrates the ability of MS–PT algorithm to estimate spatial variation in ET,
as shown in Figure 3. The RMSE of the comparison is 0.43 mm/d and the R2 is 0.93. Batra et al. [53]
showed that ET was estimated with an RMSE of 1.85, 1.78, and 1.97 from MODIS, NOAA16, and
NOAA14 sensors, respectively. Seguin et al. [54] proposed that the majority of published remote
sensing methods for estimating ET had an accuracy of ±1.5 mm/d. Kalma et al. [55] summarized most
remote sensing ET models have an average RMSE just over 1.75 mm/d. Therefore, the good accuracy
of the MS–PT algorithm indicates that the model has a potential to be used for analyzing ET patterns
in Northeast China.

A statistical comparison of MS–PT monthly estimations and MOD16 monthly products illustrates
that the MS–PT algorithm provides a more favorable agreement with the ground-measured data at
most sites (except Laoshan station). The MODIS monthly ET are composed of MOD16 eight-day
products. As shown in Table 2, the average monthly R2 of MOD16 products for all sites is 0.67 and the
average RMSE is 21.02 mm/month. In contrast, the ET simulations using the MS–PT algorithm has
a higher R2 (0.8) and lower RMSE (19.68 mm/month). The negative bias of both MOD16 products
(–22.4 mm/month) and MS–PT model (–12.5 mm/month) may be owing to the unclosed energy
balance problem in the eddy covariance datasets [42]. One should note that the R2 of MOD16 is higher
than it of MS–PT in the Laoshan station, which may be related to the quality of the observation data.
To further illustrate the performance of the MS–PT algorithm to detect the interannual variability in
ET, we map the monthly variations of ET over Northeast China from 2001 to 2010 (Figure 4). The flux
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tower site Changbaishan was selected, where at least five years of observation are available. As shown
in Figure 4, the monthly variations of ET are well captured by MS–PT-estimated ET, with a lower RMSE
and a higher R2. Thus, we can know clearly that the MS–PT algorithm improves the ET estimates
at most flux towers sites and shows a better ability to detect the interannual variability in ET at
different sites.

Table 2. Statistics of estimated eight-day evapotranspiration (ET) against the eddy-flux tower
observations. All R2 values are significant with a 99% confidence.

Site Name
Bias (mm/Month)

RMSE
(mm/Month)

R2

MS–PT MOD16 MS–PT MOD16 MS–PT MOD16

Changbaishan –11.04 –13.14 18.68 22.13 0.94 0.92
Laoshan –7.35 –13.54 25.39 25.5 0.76 0.79
Duolun1 –7.93 –18.37 15.71 32.24 0.91 0.63
Jinzhou –27.78 –42.13 30.15 47.09 0.46 0.46
Duolun2 –9.52 –11.26 13.86 20.58 0.9 0.65
Tongyu –11.38 –35.96 14.3 38.55 0.85 0.56

ALL –12.5 –22.4 19.68 21.02 0.8 0.67

Figure 2. The scatterplots between flux tower observations and estimated ET at daily scale:
(a) Changbaishan; (b) Laoshan; (c) Duolun1; (d) Duolun2; (e) Jinzhou; (f) Tongyu. The bias and
RMSE are in units of mm/d. The solid line is the 1:1 line.
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Figure 3. Comparisons of the predicted and measured site-averaged ET at six sites. The bias and RMSE
are in units of mm/d. The solid line is the 1:1 line.

Figure 4. The monthly time series comparison of MS–PT-based ET and MOD16 ET in the Changbaishan
station. RMSE is in units of mm/month.

3.2. Mean Spatial Pattern of ET in Northeast China

3.2.1. Annual

The multiyear (1982–2010) average annual ET spatial distribution is shown in Figure 5a.
The annual mean ET estimated by the MS–PT algorithm during 1982–2010 is 441.14 ± 18 mm/year
in Northeast China. As shown in Figure 5a, the area with lower ET (300–400 mm/year) is mainly
distributed in Inner Mongolia, where the land use type is mainly desert and grassland. We also found
that the regions with larger ET (500–600 mm/year) were mainly distributed in the eastern part of the
LH basin, where croplands and forests were densely distributed. More importantly, this area was
also characterized by a relatively abundant precipitation. Moreover, a decreasing trend of ET from
the southeast coast to northwest inland is noticeable in Figure 5a. Since Northeast China is located
in East Asian monsoon climate zone influenced by the ocean monsoon, the precipitation can directly
affect the surface soil moisture, further controlling ET of this region. Thus, compared with the average
precipitation and soil moisture pattern (Figure 5b,c), we can clearly find that the annual average ET
spatial pattern illustrates the strong regional variation corresponding to the surface water supply.
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(a)

 
(b) (c)

Figure 5. Spatial patterns of (a) multiyear average ET, (b) multiyear average precipitation, and (c)
multiyear average soil moisture in Northeast China. All are in units of mm/year.

3.2.2. Seasonal

Multiyear (1982–2010) seasonal patterns of ET over Northeast China are shown in Figure 6.
Distinct seasonal cycles of ET can be detected over Northeast China, which corresponds to the East
Asian monsoon climate characterized by a wet summer and a dry winter. As shown in Figure 6a,
the seasonal mean ET of MAM (March, April, and May) is 20–50 mm/month because of the lower
temperature and precipitation. In contrast, during JJA (June, July, and August), when the air
temperature and precipitation reach the maximum for the whole year, the monthly ET of most areas in
Northeast China exceeds 60 mm/month and accounts for over half of the annual ET (see Figure 6b).
After summer, ET has significantly decreased over Northeast China (see Figure 6c,d).

In addition, we also found that the regional distribution characteristic of ET over Northeast China
differs among the four seasons. For example, during MAM, peak ET occurs in the southeastern part of
the region, which has plentiful solar radiation and rising temperature. However, when summer comes,
peak ET expands and moves northward (Figure 6b). Previous study states that, accompanied by
plentiful solar radiation, rising air temperature, and fierce vegetation transpiration, the ET of the forest
ecosystem is stronger than other ecosystems in the summer [56]. As seen from Figure 6b, the region
with high ET is mainly distributed in the north and east regions of Northeast China, where forests were
densely distributed. In other words, the distribution of forest determines the distribution characteristic
of ET in JJA. When the rainy season has gone and the air temperature is declining, ET has decreased
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noticeably from SON (September, October, and November) to DJF (December, January, and February).
As a result, the ET of the southern part of the study area is higher than the northern part, which is
different from the distribution feature of the ET in JJA.

 
(a) (b)

 
(c) (d)

Figure 6. Multiyear seasonal patterns of ET in Northeast China: (a) MAM (March, April, and May);
(b) JJA (June, July, and August); (c) SON (September, October, and November); (d) DJF (December,
January, and February). The ET are in units of mm/month.

3.3. Characteristics of ET Trends

3.3.1. Annual

The ET of Northeast China estimated by MS–PT has increased by 4.5 mm/decade during
1982–2010 (Figure 7a). This increase in annual ET mainly occurred in the period from 1982 to 1998,
with a linear trend of 12.3 mm/decade (p < 0.1), which is consistent with the expected acceleration
in response to global warming [9]. After that, coincident with the last major El Nino event in 1998,
the positive trend in ET seems to have ceased, with a non-significant trend of −13.0 mm/decade
(p = 0.42). The estimates of the trend statistics Z values and the Mann–Kendall slope for annual ET are
given in Table 3.

Considering the difference in climatic and hydrological condition between the LH basin and
the SJ basin, we further calculated the trend of ET in the SJ basin and the LH basin, respectively.
The difference in the ET trends between the pre-1998 period and the post-1998 period became more
obvious. As seen from Figure 7b, in the years between 1982 and 1998, the annual land ET of the LH
basin increased at a rate of 16.4 mm/decade (p < 0.01). After 1998, the annual land ET of the LH basin
decreased rapidly with a linear trend of −45.1 mm/decade (p < 0.01). This enormous decrease in
ET may be driven by the human activity, such as the reclamation of grassland into cropland or the
exploitation of mineral resources [20]. Similarly, the annual land ET of the SJ basin increased from 1982
to 1998 with a linear fit having a slope of 11.4 mm/decade. After that, the annual land ET of the SJ
basin also decreased by −4.2 mm/decade.

70



Remote Sens. 2017, 9, 1140

Figure 7. (a) Interannual variability of ET from 1982 to 2010 in Northeast China; partly interannual
variability of ET: (b) the LH basin; and (c) the SJ basin.

Table 3. Mann–Kendall test results for the ET trend.

Region Season Z β R/A

Northeast China

All 1.46 0.45 R
MAM –0.14 –0.04 R

JJA 0.82 0.26 R
SON 3.24 0.19 A
DJF 2.42 0.05 A

The LH Basin

All –0.78 –0.52 R
MAM –0.25 –0.13 R

JJA –1.57 –0.51 R
SON 1.07 0.04 R
DJF 2.71 0.08 A

The SJ Basin

All 2.07 0.74 A
MAM 0.03 –0.02 R

JJA 1.74 0.48 R
SON 3.85 0.24 A
DJF 2.03 0.04 A

R: reject hypothesis H0; A: accept hypothesis H0.

3.3.2. Seasonal

Figure 8 shows interannual land ET variations of Northeast China, the SJ basin, and the LH basin
for the four seasons. Except for summer, we found ET increases significantly (p < 0.1) from 1982 to
1998 for all periods. However, after 1988, these positive trends appear to have stalled, which is similar
to the trend of interannual ET variations. For example, in MAM, ET increased significantly at a rate
of 0.4, 0.36, and 0.58 mm·month−1 per year from 1982 to 1998 for the whole study area, the SJ basin,
and the LH basin, respectively (Figure 8(a–a2)). After 1998, ET decreased year by year, with a rate of
−1.05, −0.91, and −1.55 mm·month−1 per year for the whole study area, the SJ basin, and the LH
basin. The estimates of the trend statistics Z values and the Mann–Kendall slope for seasonal ET are
also given in Table 3.
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Figure 8. First column: interannual variability of ET from 1982–2010 in Northeast China: (a) MAM;
(b) JJA; (c) SON; (d) DJF. Second column: interannual variability of ET in the SJ basin: (a1) MAM;
(b1) JJA; (c1) SON; (d1) DJF. Third column: interannual variability of ET in the LH basin: (a2) MAM;
(b2) JJA; (c2) SON; (d2) DJF.

We also found the variation trend of interannual land ET has obvious seasonal cycles (Figure 8).
The trends of seasonal ET for MAM, SON, and DJF are similar to the annual ET trend. However, for JJA,
the annual ET changes irregularly. During 1982–2010, the annual ET of Northeast China increases at
a rate of 0.26 mm month−1 per year in summer (p = 0.46). Such a non-significant increment mainly
occurred in the SJ basin with 0.48 mm·month−1 per year. For the LH basin, the annual ET decrease at a
rate of −0.51 mm·month−1 per year in summer (p < 0.1). Moreover, the magnitudes of the ET trends
changes during JJA are higher than the other three seasons. For example, the annual ET increased at
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a rate of 0.47 and 0.43 mm month−1 per year in JJA before 1998 over the SJ basin and the LH basin.
After 1998, ET still increased 0.58 mm month−1 per year in the SJ basin. For the LH basin, the trend of
ET becomes negative and significant (−2.38 mm·month−1 per year, p < 0.05). On the contrary, as seen
from Figure 8(d1,d2), the trend of ET is nearly zero for both the SJ basin and the LH basin during
1982–2010 (0.04 mm month−1 per year, p < 0.1; 0.08 mm·month−1 per decade, p < 0.01), which is far
lower than the trend in JJA. This is because low temperature and limited solar energy restrain soil
surface evaporation and vegetation transpiration.

3.4. Spatial Patterns of ET Trend Changes in Northeast China

3.4.1. Annual

Figure 9a shows the spatial distribution of ET trends over Northeast China from 1982 to 2010.
Our results illustrate that the ET of Northeast China has increased on average by 6.8 mm/decade
during 1982–2010. Fifty-nine percent of the pixels in the study area show an increasing trend in ET and
23.6% of the pixels have a significant increasing trend (p < 0.05). Among them, the positive ET trends
mainly occur in the north part and east part of the SJ basin, where exactly is vegetated land surface [28].
Only 9.8% of the pixels show a significant decreasing trend and mainly located in the southern part of
Inner Mongolia and Western Jilin, which mainly consists of unused land. The reclamation of desert
land for cropland has influenced the original ecosystem of these regions and may result in this negative
trend of ET [20].

(a)

 
(b) (c)

Figure 9. Spatial distributions of ET trends in Northeast China: (a) during 1982–2010; (b) during
1982–1998; (c) during 1998–2010. The ET trend is in units of mm/year. The inset panels show the area
where the ET trend is statistically significant (p < 0.05). Red represents a significant increase and blue
represents a significant decrease.
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We also analyzed changes in annual ET trends before and after 1998. We found that, for most
regions of Northeast China, the overall increment in annual ET from 1982 to 2010 can largely be
attributed to the upward trend of 1982–1998. As shown in Figure 9b, 86.5% of the regions show an
upward trend in ET from 1982 to 1998, which is relative to the remarkable warming phenomenon
over Northeast China [1]. After 1998, most parts of Northeast China show a negative part, only a few
regions of Songjiang basin (32.5%) keep rising in ET (Figure 9c). The difference in ET trends between
the two periods indicates that the positive trend of annual ET has ceased, or even reversed.

3.4.2. Seasonal

Figure 10a–d shows the spatial distributions of four seasonal ET trends over Northeast China.
From our results, the distribution of interannual land ET trend has obvious seasonal characteristics.
In MAM, areas with positive ET trends are mostly located in the LH basin, with its vegetated land
surface (Figure 10a). In contrast, for DJF, positive ET trends are mostly located in the SJ basin, with a
lower latitude (Figure 10d). As shown in Figure 10b, the spatial distribution of ET trends in JJA
is consistent with the annual spatial distribution (Figure 9a), which coincides with the finding by
Yang et al. [21]. In summer, ET is the highest among the four seasons. As a result, the ET trend change
of JJA can account for most of the total annual ET trend change. We also notice that the spatial
distribution of significant trends also coincides with annual significant trends.

 
(a) (a1) (a2) 

 
(b) (b1) (b2) 

Figure 10. Cont.
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(c) (c1) (c2) 

 
(d) (d1) (d2) 

Figure 10. (First column) Spatial distributions of ET trends in Northeast China during 1982–2010:
(a) MAM; (b) JJA; (c) SON; (d) DJF; (second column) during 1982–1998: (a1) MAM; (b1) JJA; (c1) SON;
(d1) DJF; (third column) during 1998–2010: (a2) MAM; (b2) JJA; (c2) SON; (d2) DJF. The inset panels
show the area where the ET trend is statistically significant (p < 0.1).

Then, we analyzed changes in seasonal ET trends before and after 1998. The trend of ET is
dominated by that in summer during both the pre-1998 period and the post-1998 period. In other words,
the influence of the other three seasons on the trend of annual ET is weaker than JJA. Additionally,
the positive annual ET trend change during the four seasons mainly originates from that influence
during 1982–1998. Comparing annual ET trends for all seasons before and after 1998, more and more
pixels experienced a decreasing trend during the post-1998 period. This is particularly evident for
the first half of year, when more pixels of Northeast China show a negative trend change from 1988
to 2010.

4. Discussion

4.1. The Performance of the MS–PT Algorithm in Estimating ET

Model validation at six EC flux tower sites illustrates that the MS–PT algorithm for estimating ET
was reliable and robust across multiple biomes in Northeast China (Figure 2). Due to the difference in
the water cycle and land surface characteristics, biases exist in the application of global ET products in
specific areas [57]. Yao et al. [24] compared the MS–PT algorithm with the PT–JPL algorithm using
ground observations collected from 40 flux towers distributed around the world and found MS–PT
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algorithm improved ET estimates at most flux towers sites, with a higher R2 (0.41–0.89) and a lower
RMSE (23.7–48.6 W/m2). Compared with MOD16 product, our results illustrate that the MS–PT
algorithm improves the accuracy of ET quantification at most flux tower sites in Northeast China,
indicating this method may be a better tool for analyzing the variation of ET over Northeast China.
However, one should note that the MS–PT algorithm has a relatively poor performance at flux sites
from the CEOP network. Perhaps complex terrain and instrument calibration contribute to large biases.

We also found that the MS–PT algorithm show inter-biome differences and performs better for
forest land sites (Figure 2). The seasonality for vegetation indices and canopy structure may be critical
in determining satellite-based ET model performance [58]. Previous studies have revealed that some
satellite-based ET algorithms can estimate ET more accurately for deciduous broadleaf forest [46,59].
Since the major seasonal vegetation types of the forest region in Northeast China are deciduous
broadleaf forest and coniferous forest [25,60], our validation results are similar with previous findings.
In contrast, for some cropland and grassland sites, such as the Jinzhou flux site, the MS–PT algorithm
still has relatively low R2 and high RMSE. The limitation of the MS–PT algorithm, such as neglecting
of the differences in parameters from different biome types, may cause this problem [24].

We should note that the accuracy of MS–PT algorithm depends on the errors for EC ET
observations because we consider ET observations as true values in calculating the weights for
the MS–PT algorithm. Although we correct ET by Twine et al. [43] method, the inaccuracy in the
measured data still exists, such as the energy imbalance issue, with H + LE < Rn − G (H: sensible
heat flux; LE: latent heat flux) [61]. The mismatches in scale among different datasets may also lead to
differences between the simulated and measured values. For example, the original spatial resolutions
of meteorological reanalysis data and the NDVI3g data are 0.1 degree and 8 km, respectively. While the
NDVI3g data was converted to a resolution of 0.1◦ × 0.1◦ using bilinear interpolation, the resample
process may also result in biases. Additionally, EC observations represent a point-based value with
merely hundreds of meters in diameter, which may also cause differences between ET observations
and the true ET [62]. If the input data has a higher spatial resolution, the performance of MS–PT can
be greatly improved.

4.2. Climate Change Controls on Land ET Trends in Northeast China

Major global climatic perturbations and influences, such as the last major El Niño event in 1998,
have caused alterations in the global water cycle and land–atmosphere water flux [46]. Our findings
confirm that ET of Northeast China has increased significantly (p < 0.1) over the last two decades
of the twentieth century [19] and decreased with large interannual fluctuations (p = 0.42) after 1998
(Figure 6a) [20]. Most previous studies suggest that the limitation by surface water supply is the
dominant factor in determining this ET trend change [7,22,63,64], because of the relatively sparse
precipitation in some regions of Northern China. However, some studies propose that the changes
in the ET trend may be the result of the variation in air temperature, vegetation condition, or surface
energy [56,65–68]. Additionally, due to the nonlinear dependence of ET on related climate factors,
their relative contributions to the ET trend are not obvious. Thus, it is difficult to assess climate change
controls on ET trends in Northeast China.

In this study, based on the interannual variations of ET calculated by MS–PT algorithm, we find
moderate spatial correlation between the trend of ET and precipitation in the west part of Northeast
China (Figure 11a). Only in the western region of Northeast China, where annual rainfall is infrequent,
the trend of precipitation shows a positive correlation with the variation of ET. Similarly, the trend
of soil moisture also shows a correlation with ET trends in this area (Figure 11b). These positive
correlations can be explained by the fact that, under dry condition (Figure 5b), less precipitation leads
to lower soil moisture, which, in turn, limits ET [69]. Furthermore, a reduced ET would decrease the
precipitation and further reduce soil moisture [70,71]. Therefore, precipitation can play a key role
for the annual variation of ET. However, in other areas of Northeast China, weak spatial consistency
is found between ET trend changes and precipitation trend changes, which is also documented by
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Tian et al. [19]. It is possible that different surface vegetation and water supply cause the consistency
difference. For instance, there is more deep-rooted vegetation in the northern part of Northeast China,
where roots of the vegetation can reach groundwater and extract water from the whole layer of soil [72].
As a result, precipitation is no longer a good indication of ET in these areas, which is different from
previous studies. In a word, only under dry conditions, such as the western region of Northeast China,
is precipitation is a critical meteorological factor influencing ET trend.

(a) 
 

(b) 

(c) 
 

(d) 
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Figure 11. Map of the correlation coefficient between the annual ET trend (1982–2010) and the trend of
(a) precipitation, (b) soil moisture, (c) Tair, and (d) PET. The inset panels show the frequency of various
change trends. The degree of correlation is classified into three ranks according to the correlation
coefficient: strong (R2 ≥ 0.7); moderate (0.3 < R2 < 0.7); weak (R2 ≤ 0.3).

As shown in Figure 5c, in the humid areas, such as the southeast coast and north part of Northeast
China, the changes in ET are unrestricted by water supply because of relatively abundant soil moisture.
PET, an important indicator of atmospheric evaporation demand, represents the maximum ET rate
when given an unlimited water supply and may influence the trends of ET in these areas [73,74].
Mo et al. [56] suggested that there exists an opposite trend of ET and PET in China, which reveals
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a complementary relationship between ET and PET. Gao et al. [7] found that the decreasing PET
largely influences the decreasing trends of ET in Southeast China and proposed that the change of
PET appeared to be the major factor determining the change of actual ET in subtropical humid area.
However, we found a strong spatial correlation between PET trend changes and ET trend changes in
wet regions of Northeast China, which demonstrates that PET may be the dominant factor determining
the trend changes in ET (Figure 11d). Moreover, previous substantial studies suggest that Tair is a
key controlling factor influencing ET in high latitude region [75], because it can be recognized as a
surrogate for atmospheric demand [76]. Our results illustrate that the trend of Tair is positively related
to ET trends in these areas (Figure 11c), but the correlation is weaker than PET. This can be explained
that PET is influenced by a number of climate elements, including Tair, net radiation, wind speed,
and vapor pressure, and ET is limited by freezing temperatures, wind speed, and surface energy in
Northeast China [77]. Integrated with different climatic factors, PET appears to better control the trend
of ET. Overall, in high latitude and wet canopy conditions, PET tends to exert the most significant
control over ET.

5. Conclusions

The goal of this study was to estimate terrestrial ET of Northeast China during 1982–2010 using
the MS–PT algorithm. This approach in modeling ET is physically based, requiring no subjective
parameter calibration as employed by many other traditional ET methods. Using the ET measurements
of the six eddy covariance sites, our validation showed MS–PT algorithm provided the reliable ET
estimations at site scale. We also used meteorological reanalysis data and remote sensing data to
analyze the spatiotemporal variation in ET during 1982–2010. The results demonstrated that MS–PT
algorithm has a good performance in estimating regional ET over Northeast China.

In this paper, we found the annual mean ET during 1982–2010 is 440.68 ± 18 mm/year in
Northeast China. For the spatial pattern of annual averaged ET over Northeast China, we found a
decreasing trend from southeast coast to northwest inland, which is influenced by the surface water
resource. Over the entire study area, ET has increased on average by 5 mm year−1 per decade over
Northeast China during 1982–2010, and the pixels with a positive trend were mainly distributed in
the SJ basin. We found an especially obvious difference before and after 1998 and concluded that the
increase in annual ET mainly occurred in the period from 1982 to 1998. Further, we evaluate what have
caused any spatial-temporal variation in ET. Our findings illustrate that PET is the most important
factor influencing ET trend in most parts of Northeast China. Over semiarid and arid areas, such as
the west of Northeast China, precipitation can also affect ET variation. Thus, future studies are needed
to clarify the relative contributions of the different climatic variables and understand the contributing
process of different climatic variables in ET.
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Abstract: Terrestrial latent heat flux (LE) is a key component of the global terrestrial water, energy, and
carbon exchanges. Accurate estimation of LE from moderate resolution imaging spectroradiometer
(MODIS) data remains a major challenge. In this study, we estimated the daily LE for different plant
functional types (PFTs) across North America using three machine learning algorithms: artificial
neural network (ANN); support vector machines (SVM); and, multivariate adaptive regression spline
(MARS) driven by MODIS and Modern Era Retrospective Analysis for Research and Applications
(MERRA) meteorology data. These three predictive algorithms, which were trained and validated
using observed LE over the period 2000–2007, all proved to be accurate. However, ANN outperformed
the other two algorithms for the majority of the tested configurations for most PFTs and was the only
method that arrived at 80% precision for LE estimation. We also applied three machine learning
algorithms for MODIS data and MERRA meteorology to map the average annual terrestrial LE of
North America during 2002–2004 using a spatial resolution of 0.05◦, which proved to be useful for
estimating the long-term LE over North America.

Keywords: latent heat; machine learning algorithms; plant functional type

1. Introduction

Terrestrial latent heat flux (LE) plays an important role in the global water cycle, carbon, and
surface energy exchanges [1–3]. LE can be measured directly by using lysimeter and eddy covariance
(EC) flux towers, but the former method is time-consuming, expensive, and needs carefully planned
experiments [4]. Although the FLUXNET project has provided EC flux towers to measure LE, it is
inherently difficult to accurately estimate LE, especially at large spatial scales due to the heterogeneity
in the terrestrial landscape. Moreover, the sparse observations from EC flux towers limit the accurate
characterization of spatiotemporal LE patterns over large spatial scales.

Remote sensing, especially from the Moderate Resolution Imaging Spectroradiometer (MODIS)
satellite, can provide temporally and spatially continuous information for estimating LE, such as:
land surface temperature (LST); the fraction of absorbed photosynthetically active radiation (FPAR);
the normalized difference vegetation index (NDVI); the enhanced vegetation index (EVI); leaf area
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index (LAI); and, albedo [5–7]. Currently, there are numerous satellite-based algorithms available
to estimate LE, e.g., surface energy balance (SEB) models [8,9] use remotely sensed products and
meteorological data driving a residual SEB equation to estimate LE. Penman-Monteith (PM) and
Priestley-Taylor (PT) approaches used PM and PT equations to calculate LE, respectively [10–13].
Statistical and empirical methods calculated LE using empirical equations, which include vegetation
parameters and LE observations [6,14–17]. Data assimilate methods improved LE estimation by
assimilating satellite land-surface variables into land surface models [18,19]. However, these algorithms
show substantial differences in LE estimation [20]. Additionally, the existing global LE products, such
as MOD16 and the EUMETSAT Satellite Application Facility on Land Surface Analysis (LSA-SAF)
product (LSA-SAF MSG), have a 5 km spatial resolution and daily temporal resolution [7], but
validation results have revealed that these products often overestimate LE at most AsiaFlux sites [21].

Satellite-based empirical and semi-empirical LE algorithms have been scaled up from site
to regional scales by relating observed LE to satellite-based vegetation parameters and other key
meteorological variables [14]. As the most viable empirical algorithms, machine learning algorithms
have the potential to generate robust relationships, and once trained, they are very fast to apply [22].
These algorithms can provide accurate LE estimation as long as enough training datasets are
representative of all the behaviors in the systems. However, there is still some controversy about
which machine learning algorithm is best in LE estimates. Different input variables with different
plant functional types (PFTs) over different study regions may lead to different result. For example,
Bruton et al. [23] employed precipitation (P), air temperature (Ta), solar radiation (Rs), wind speed (Ws),
and relative humidity (RH) as input data for the artificial neural network (ANN) algorithms to estimate
LE. The validation results showed that ANN algorithm was able to perform reliable LE estimation with
an R2 of 0.717 and a root mean square error of 1.11 mm. Compared with multiple linear regression
and the Priestley-Taylor method, the ANN method estimated the most accurate LE with all of the
available variables. El-Shafie et al. [24] used ANN models for prediction evapotranspiration in Iran.
The results demonstrated that an ANN model predicted daily E with a significant level of accuracy
using only the maximum and minimum temperatures successfully. Shrestha and Shukla [25] used
SVM for predicting generic crop coefficient (Kc) and crop evapotranspiration (ETc), using a uniquely
large dataset from lysimeters for multiple crop-season combinations under plastic mulch conditions.
The results showed that the SVM model was superior to the Artificial Neural Network and Relevance
Vector Machine models, two data-driven models used in hydrology. Deo et al. [26] used three machine
learning algorithms, including Relevance Vector Machine (RVM), Extreme Learning Machine (ELM),
and MARS for the prediction of monthly evaporative loss using limited meteorological data from the
Amberley weather station in Australia. All three machine learning models performed well, with RVM
proving to be the best. They also found that incident solar radiation and air temperatures are the two
most influential factors in determining the performance of machine learning algorithms.

The observation data from EC flux towers are more adequate and accurate over North America,
so there already exist some studies of machine learning algorithms for LE estimation over
North America. For example, Yang et al. [27] used SVM combined with ground-measured ET from
25 AmeriFlux sites and remotely sensed inputs (land surface temperature, enhanced vegetation index,
and land cover) to predict ET over the United States (U.S.) with an average test error of 0.62 mm/day
and an R2 of 0.75. When compared to neural network and multiple regressions, SVM performed
better. Adnan et al. [28] developed a model to estimate evapotranspiration with meteorological
parameters (temperature, relative humidity, wind speed, and precipitation) using different machine
learning techniques. They found that ANN performed better than LLSVM, MARS, and M5Tree models
and gave the nearest values as compared with the actual value. Therefore, substantial differences
still exist in simulating LE for different machine learning algorithms. Moreover, there is a lack of
validating and evaluating different machine learning algorithms for LE estimation at different PFTs
over North America.
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In this study, we evaluated and applied three machine learning algorithms to estimate terrestrial
LE over North America. These machine learning algorithms included artificial neural network (ANN),
support vector machines (SVM), and multivariate adaptive regression spline (MARS), which were
using air temperature (T), relative humidity (RH), wind speed (Ws), and MODIS-based NDVI as
input data. The objectives of this study were as follows: (1) to assess the performance of the three
machine learning algorithms for different PFTs based on a series of cross-validations using long-term
Ameriflux EC observations from 2000 to 2007, and (2) to generate a daily LE product during 2002–2004
over North America using three machine learning algorithms with well-quantified accuracy based
on MODIS data and Modern Era Retrospective Analysis for Research and Applications (MERRA)
meteorological data.

2. Materials and Methods

2.1. Machine Learning Algorithms

2.1.1. Artificial Neural Network

An Artificial neural network (ANN) consists of a set of processing elements, including input,
hidden, and output layers. Each layer includes an array of processing elements. There is a connection
between each of the neurons in any given layer with each of the neurons in the next layer [4].
This connection between neurons can be described as following function:

yi = fi(
n

∑
j=1

wijxj − θi) (1)

where yi is the output of the neuron i, fi is nonlinear, such as Gaussian function, etc. wij is the
connection weight between neuron i and j. xj is the jth input to the neuron and θi is the bias of
the neuron.

The processing steps require aggregating the weighted inputs and the activation function, such
as the Sigmoid function and Tanh function. The activation function limits the output values between
two asymptotic values, typically 0 and 1 or −1 and +1. In feed-forward artificial neural networks
(FFNN), each neuron at input and inner layers receives input data then processes and passes to the
next layer. The output result is carried out layer by layer in the forward direction. The weights
are adjusted through reverse pass, which calculated error signals propagate backward through the
network. The weights of the output neuron layer are adjusted first because the target value of output
neuron layer can guide the adjustment of the associated weights. The numbers of input and output
parameters determine the numbers of neurons in the input layer and the output layer, respectively [29].
The model of FFNN is shown in Figure 1.

 

Figure 1. Architecture of the neural network model used in this study.
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2.1.2. Support Vector Machine

Support vector machine (SVM) were developed by Cortes and Vapnik (1995) to separate the
sample data through some nonlinear mapping from the input vectors into the high dimensional feature
space, and can find an optimal separating hyper plane between data points of different classes in a
high dimension space [27,30,31]. When using SVM classification, we seek the optimal classification
plane to maximize the distance between the two classes, with the points falling within the boundary,
called the support vector [30]. Mapping technology is implemented through the kernel function. We
used the radial basis function (RBF) kernel function type in this study because former studies shows
that the RBF kernel performs better than any other kernel functions [32], it can be expressed as:

K(xi, xj) = exp(− 1
2σ2 ‖xi − xj‖2) (2)

Here, σ is variance. The complexity of SVM does not depend on the dimensions of the feature
space, but rather on the number of support vectors (Figure 2).

Figure 2. One-dimensional linear regression with ε-insensitive band for the support vector machine
(SVM) algorithm.

The regression estimation with support vector is to estimate a function according to a given
data set {(xi, yi)}n. Herein, the input vectors (xi) refer to T, RH, Ws, and NDVI, whereas the target
values (yi) refer to the ratio of LE values as determined by the ground-measured data and surface net
radiation (Rn), and n is the total number of data sets.

The linear regression function uses the following function:

f (x)′ = w · f (x) + b (3)

Here, f (x) is a nonlinear function, by which x is mapped into a feature space, b is a weight
vector, and w denotes a coefficient that has to be estimated from the data. A nonlinear regression
function is given by minimizing the sum of the empirical risk and a complexity term, as in the
following expression:

f (x) =
n

∑
i=1

(a∗i − ai)K(xi, xj) + b (4)

With aia∗i ≥ 0, (ai and a∗i are Lagrange multipliers). i = 1, . . . , N, K(xi, xj) is the kernel function
and b can be calculated as following function:
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b = 1
NSV

{
∑

0<ai<C

[
yi − ∑

xj∈SV
(aj − aj

∗)K(xj, xi)− ε

]
+ ∑

0<ai
∗<C

[
yi − ∑

xj∈SV
(aj − aj

∗)K(xj, xi) + ε

]}
(5)

where NSV is the number of support vectors.

2.1.3. Multivariate Adaptive Regression Spline

Multivariate adaptive regression spline (MARS) is a flexible nonparametric modeling tool that
was popularized by Friedman (1991) for solving regression-type problems [33]. It does not require
an assumption about the particular type of relationship between outcome variable and predictor
variables [34,35]. Instead, MARS use coefficients and basic functions that are decided entirely by
regression data to construct this relation. The MARS model can be described as follows:

f (x) = β0 +
k

∑
i=1

ciBi(x) (6)

Here, the summation f (x) is over the k non-constant terms in the model. β0 is the intercept
parameter. Each ci is a constant coefficient, Bi(x) is a basic function, which takes one of following
forms: a constant 1, a hinge function or two or more hinge functions. A hinge function (Figure 3) has
the form max(0, x − c) or max(0, c − x), c is a constant, called the knot.

The first step to build a MARS model is partitioning the training data set into several splines in
equivalent interval basis [33]. Most importantly, the model ensures that there is adequate data in a
subgroup in order to avoid over-fitting using the shortest distance between neighboring knots [36,37].
The forward pass and the backward pass are two important phases in building a MARS model. To find
the best subset, we use generalized cross validation (GCV) to compare the performance of sub-models.
Better sub-model has lower GCV values. GCV can be calculated as follows:

GCV(N) = (
1
n

∑N
m=1 (yi − ∧

yi)
2

(1 − C(M)
n )

2 ) (7)

Here, the n was the number of observations, yi was the response value of object i,
∧
yi was the

predicted response value of object i, and C(M) was the penalty factor.

Figure 3. The hinge functions and knot location in the multivariate adaptive regression spline
(MARS) model.
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2.2. Experimental and Simulated Data

2.2.1. Eddy Covariance Observations

The machine learning algorithms were validated and evaluated using ground-measured flux
data. All of the turbulent flux observations were measured by the EC method and the data cover the
period from 2000 to 2007. The data were collected from 85 EC flux tower sites and were provided by
AmeriFlux. These flux towers are located mainly in North America (50◦–170◦W, 10◦–70◦N, Figure 4).
The flux tower sites cover five major global land-surface biomes: cropland (CRO; 7 sites), deciduous
broadleaf forest (DBF; 11 sites), evergreen needleleaf forest (ENF; 41 sites), grass and other types (GRA;
17 sites), and shrubland (SHR; 9 sites). These data sets include half-hourly or hourly ground-measured
incident Rs, RH, Ta, diurnal air temperature range (DT), Ws, vapor pressure (e), sensible heat flux (H),
surface net radiation (Rn), ground heat flux (G), and LE. We acquired daily data from aggregated
half-hourly or hourly data without using additional quality control [38–40] and removed the zero
values. For the unclosed energy problem, we used the following method that was developed by
Twine et al. [41] to correct the LE for all flux towers:

LE = (Rn − G)/(LEori + Hori)× LEori (8)

where LE is the corrected latent heat, Hori and LEori are the uncorrected sensible heat flux and latent
heat, respectively.

 

Figure 4. Location of the 85 eddy covariance flux towers used in this study. INV means the data of this
site were used to inverse, TRA means that the data of this site were used for training.

2.2.2. MODIS and MERRA Data

We used the NDVI values as the input variables and the daily NDVI values were temporally
interpolated from the 16 day MODIS NDVI (MOD13A2) product [42] at 1-km spatial resolution using
linear interpolation [43]. When 16 day NDVI data are missing or not available, we used the closest
reliable 16 day values to replace the missing or original data.

We used the daily Rn, RH, Ta, and Ws products with a spatial resolution of 1/2◦ × 2/3◦ from
MERRA data provided by National Aeronautics and Space Administration (NASA) to evaluate the
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performance of all the LE algorithms for all the flux tower sites in this study. To match MODIS pixels,
we used the method proposed by Zhao et al. [43] which is a spatial interpolation method using a cosine
function to interpolate coarse-resolution MERRA data to 1 km2 pixels. Theoretically, this method uses
the four MERRA cells surrounding a given pixel to remove sharp changes from one side of a MERRA
boundary to the other to improve the accuracy of MERRA data for each 1 km pixel.

To map the final LE product with 0.05◦ spatial resolution using three machine learning algorithms,
we used Collection 5 MODIS NDVI (MOD13C1: CMG, 0.05◦) [44] and the daily 0.05◦ MERRA data
interpolated using the method proposed by Zhao et al. [43] from the original MERRA data. To evaluate
the performance of three machine learning algorithms, we used MODIS LE product (MOD16A2) [7]
with 0.05◦ spatial resolution.

2.2.3. Criteria of Evaluation

We used three different statistical criteria to evaluate the performance of the machine learning
algorithms that were used in this study: coefficient of determination (R2); the average deviation of
ground-measured LE value and estimated LE value (Bias); and, root mean square error (RMSE) [45,46].

R2 can be defined as the square of correlation coefficient R. The difference between it and the
correlation coefficient is to remove |R| = 0 and 1, as it can prevent an exaggerated interpretation of
the correlation coefficient. The closer that R2 is to 1, the more relevant the observations and estimates.
The following equation was used to calculated coefficient of determination:

R2 = (
∑n

i=1 (Xi − X)(Yi − Y)√
∑n

i=1 (Xi − X)
2
(Yi − Y)2

)

2

(9)

where Xi and Yi are the observed and estimated values, respectively, X and Y are the average of Xi
and Yi, and n is the total number of the data.

Bias is the average value of the absolute of differences between the predicted and observed
LE values. A low bias indicates a good model performance. The bias can be calculated from the
following equation:

Bias = ∑n
i=1 (Xi − Yi)

n
(10)

where Xi and Yi are the observed and estimated values, respectively, and n is the total number of
the data.

RMSE can be defined as the square root of the average value of the differences between the
predicted and observed LE values. A perfect match between the two values would yield RMSE = 0,
and it implies the best performance model. The larger RMSE is, the lower model performance. RMSE
can be calculated from the following function:

RMSE =

√
1
n

n

∑
i=1

(Xi − Yi)
2 (11)

where Xi and Yi are the observed and estimated values, respectively, and n is the total number of
the data.

2.2.4. Experimental Setup

For each PFT, we chose half of the sites to train, the remaining sites were used to reverse. As for PFT
CRO, three sites were for training and four for reversing. For DBF, five sites were for training and six for
reversing. ENF/GRA/SHR has 21/9/5 sites for training and 20/8/4 for reversing, respectively. We put
the same PFT data together for the training and validation of three machine learning algorithms. For the
training step, we chose Ta, RH, Ws, and NDVI as input variables and the ratio of ground-measured LE
and Rn as output variables, and built the ANN/SVM/MARS model. Then, we put the input variables
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of testing data to the model and got the predicted LE/Rn. To get the predicted LE, we multiplied the
results by the Rn of the testing data. Finally, we evaluated the predicted LE with the ground-measured
LE of the testing data. Meteorology data including Ta, RH, Ws, and Rn were acquired from EC flux
tower sites and MERRA data, respectively.

For the ANN algorithm, we trained, validated, and tested the data by using feed-forward artificial
neural networks (FFNN), which is the most commonly used ANN model. Levenberg-Marquardt
algorithms were applied to train the network and a Sigmoid function was used since it gave the best
results of the model. The number of hidden layers and neurons in hidden layers was determined by
trial and error, and we finally decided that the number of hidden layers was 10. For the SVM algorithm,
we implement the SVM on R platform using R language with package e1071, which provided an
interface connects libsvm that was based on the C++ language, developed by Chih Chung-Chang
and Chih-Jen Lin [47,48]. The process of modeling training and inversion was similar to the ANN
process. The present study built the MARS model and estimated testing data LE using ARESlab
(Adaptive Regression Splines toolbox) in MATLAB, and set the maxfuncs and maxinteractions to 15
and 4, respectively.

3. Results

3.1. Algorithms Evaluation Based on Specific Site Data

At the flux tower site scale, the three machine learning algorithms exhibited substantial differences
in LE modeling for different PFTs. The statistical parameters of training and validation of each model
are provided in Table 1.

Table 1. Training and validation statistics for the different algorithms based on specific site. All of the
coefficient of determination (R2) values are significant with a 99% confidence.

R2 Bias (W/m2) RMSE (W/m2)

PFT Algorithms Train Test Train Test Train Test

CRO

ANN 0.83 0.81 0.4 0.6 16.47 21.86
SVM 0.83 0.8 −0.54 1.1 17.92 24.37

MARS 0.81 0.78 1.15 2.7 19.23 25.38

DBF

ANN 0.89 0.88 −0.08 0.7 14.48 17.17
SVM 0.89 0.84 1.19 1.6 17.25 17.91

MARS 0.88 0.85 −0.8 −1.6 17.15 18.19

ENF

ANN 0.82 0.77 0.55 1.05 12.15 17.74
SVM 0.83 0.72 −1.35 −3.47 13.69 20.02

MARS 0.81 0.72 −1.88 −2.36 14.63 20.05

GRA

ANN 0.83 0.8 1.1 3.55 15.05 16.14
SVM 0.84 0.62 5.3 8.37 15.81 24.76

MARS 0.83 0.6 4.12 6.35 16.45 25.39

SHR

ANN 0.72 0.7 0.13 0.25 13.05 13.35
SVM 0.7 0.64 −0.08 −0.17 14.24 15.22

MARS 0.67 0.6 0.2 −0.71 14.78 15.95

Figure 5 shows that the ANN algorithm performed best among the three algorithms for each PFT,
while SVM performed better than MARS for CRO, GRA, and SHR, and made a poor performance for
DBF land cover type. For CRO, the validation result showed that the R2 was very close among the three
algorithms, the highest R2 of ANN was 0.81, while the lowest R2 was 0.03 lower than that and each of
the three algorithms had a large RMSE greater than 20 W/m2. Meanwhile, ANN had a lower bias than
SVM and MARS. ANN for DBF had the best performance with the highest R2 (0.89/0.88) (p < 0.01) and
lower RMSE (14.48/17.17 W/m2) in comparison to other PFTs for training and validation, respectively.
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This may be caused by the characteristic of the DBF. Although the R2 of SHR was the lowest among
the five PFTs for validation results, the bias and the RMSE of SHR were lower than any other PFTs,
with the lowest bias and RMSE reaches of −0.17 and 13.35 W/m2. For ENF and GRA sites, the lowest
RMSE of the estimated LE versus ground observations was approximately 17.74 and 16.14 W/m2,
respectively, and the R2 was approximately less than 0.8. Especially, for GRA sites, the ANN algorithm
that was driven by tower-specific meteorological variables and satellite-based NDVI had an absolutely
higher R2 and a lower bias and RMSE than the other machine learning algorithms tested.

 
Figure 5. Bar graphs of the training and validation statistics (R2, Bias and root mean square error
(RMSE)) of three algorithms driven by tower-specific meteorology for five PFTs at the 85 flux tower site.
All R2 values are significant with a 99% confidence.

Figure 6 shows that the three algorithms exhibited most features of measured LE seasonality
in the observed inversion data for different PFTs. We randomly selected an inversion site that has
at least three years of complete ground-measured data for each PFT, and then chose three years
of complete ground-measured data and the corresponding estimated LE data using three machine
learning algorithms. We plotted the eight-day average LE to replace daily LE data. Five sites were
US-Ne3 (CRO), US-WCr (DBF), CA-Qcu (ENF), US-FPe (GRA), and US-SO4 (SHR). We compared
the estimated LE with the observed LE in 2002–2004 except at US-SO4, for which we used the period
2004–2006. In comparison to the other two algorithms, the ANN algorithm produced seasonal LE
variations that were closest to the observed LE. Estimated LE showed great consistency, with observed
LE in lower values for all of the PFTs in Figure 6, but for GRA land cover type, the ANN and the SVM
kept the same trend, while the results of the MARS were absolutely lower than result of the ANN, the
SVM and observed LE in high value area. We also found some abnormal observed LE value in 2004
for SHR, which may lead to the inaccuracy of estimation results.
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Figure 6. Examples of the eight-day terrestrial latent heat flux (LE) average as measured and estimated
using different machine learning algorithms for the different PFTs.
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3.2. Algorithms Evaluation Based on MERRA Data

Table 2 shows the statistical parameters of training and validation of each model that is driven by
MERRA meteorology. When compared to the results that are driven by tower-specific meteorology,
results driven by MERRA meteorology showed poor performance in all PFTs. This may be related to
the uncertainty of MERRA data.

Figure 7 shows the training and validation statistics R2, bias, and RMSE of the three algorithms
that are driven by MERRA meteorology for five PFTs. The value of R2 was lower and RMSE was higher
when compared to the results that are driven by tower-specific meteorology. With similar results being
shown in Figure 5, the ANN demonstrated the best performance among the three machine learning
algorithms at both the training and validation stages. The biggest difference, however, was that the
ANN performed absolutely higher R2 than any of the other algorithms in Figure 7, while the R2 is very
close among the three algorithms in Figure 5 for CRO and DBF. Since the only difference in input was
meteorology data, the most likely reason that the ANN performed better than than SVM and MARS
when using inaccurate input variables (besides MERRA meteorology data being more inaccurate than
the tower-specific meteorology data) has to do with the ANN’s own characteristics. As for bias, ANN
performed much better than the others, while SVM showed the poorest performance for most PFTs.
As for RMSE, results of SVM may be a little better than results of MARS for some PFTs, but on the
whole, their performances were similar.

Figure 7. Bar graphs of the training and validation statistics (R2, Bias and RMSE) of three algorithms
driven by MERRA meteorology for five PFTs at the 85 flux tower sites. All of the R2 values are
significant with a 99% confidence.
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Table 2. Training and validation statistics for the different algorithms based on MERRA data. All R2

values are significant with a 99% confidence.

R2 Bias (W/m2) RMSE (W/m2)

PFT Algorithms Train Test Train Test Train Test

CRO

ANN 0.81 0.77 −0.6 1.4 23.2 25.9
SVM 0.63 0.57 −1.8 2.1 20.83 29.22

MARS 0.58 0.53 0.9 1.7 25.35 30.33

DBF

ANN 0.88 0.85 1.3 2.1 13.25 17.45
SVM 0.75 0.72 2.82 3.06 22.42 28.39

MARS 0.79 0.76 −1.03 −1.19 19.92 23.44

ENF

ANN 0.78 0.75 1.06 2.05 13.34 16.18
SVM 0.77 0.74 −2.81 −3.95 16.13 17.31

MARS 0.76 0.72 −1.9 −2.65 14.12 18

GRA

ANN 0.73 0.67 −0.35 3.75 20.85 23.3
SVM 0.72 0.66 5.27 6.37 21.01 23.68

MARS 0.66 0.63 4.8 5.35 21.68 24.43

SHR

ANN 0.69 0.65 0.22 0.61 12.08 14.85
SVM 0.68 0.63 −1.81 −1.04 11.22 15.63

MARS 0.69 0.62 −0.31 −1.5 16.21 17.1

3.3. Mapping of Terrestrial LE Using Three Machine Learning Algorithms

We applied the ANN algorithm, the SVM algorithm, and the MARS algorithm with MERRA
meteorological data and MODIS product to estimate annual LE at a 0.05◦ spatial resolution from
2002–2004 over North America. Figure 8 shows maps of annual terrestrial LE averaged for 2002–2004
over North America.

 

Figure 8. The map of mean annual terrestrial LE from 2002 to 2004 at a spatial resolution of 0.05◦ using
three machine learning algorithms driven by MERRA meteorology over North America.

All of the algorithms yielded high annual LE over the east and west coasts of the United States.
In the low latitudes, the highest annual LE was approximately larger than 90 W/m2, appearing on
the area with latitudes lower than 20◦N. The biggest difference between the three algorithms was the
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ANN estimated higher LE values on the east coast of the United States and lower LE values in areas of
the western United States when compared to the SVM and the MARS, which returned similar results.

4. Discussion

4.1. Performance of the Machine Learning Algorithms

Our study, based on the estimated daily LE at 85 EC flux tower sites using different machine
learning algorithms that were driven by tower-specific and MERRA meteorology, illustrated that the
ANN algorithm yielded the best LE estimate. The ANN had the highest R2 (0.81 and 0.70) (p < 0.01)
and lowest RMSE (17.33 and 20.22 W/m2) in comparison to the SVM and MARS algorithms for
tower-specific and MERRA meteorological data, respectively (Figures 9 and 10). The results were
consistent with the findings of Lu and Zhuang, 2010, which used remote sensing data from the MODIS,
meteorological and eddy flux data, and an ANN technique to develop a daily product for the period
of 2004–2005 for the conterminous U.S. [49]. They found that the ANN predicted daily LE well
(R2 = 0.52–0.86).

 

Figure 9. Comparison of daily LE observations for all 85 flux tower sites and LE estimates using
different machine learning algorithms driven by tower-specific meteorology.

Validation for 85 EC flux tower sites also indicated that the three machine learning algorithms
used were reliable and robust for major land cover types in North America. Figures 9 and 10 both
show that the ANN algorithm had no significant LE bias and yielded the closest LE to tower flux data
relative to the SVM and MARS algorithms. We also found large inter-biome differences, with better
performance at DBF and CRO sites. Several studies have revealed that some algorithms that exhibit
strong seasonality for vegetation indices, such as NDVI for accurate capture of information on seasonal
changes in vegetation can yield considerably better LE estimates for seasonal vegetation types such
as DBF [10,50–54]. Thus, NDVI as an input variable determined the accuracy of LE quantification.
All of the machine learning algorithms yielded poor LE estimation for GRA and SHR sites, which
may be attributable in part to the fact that seasonal GRA and SHR variation was less evident when
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satellite-derived vegetation indices (e.g., NDVI) saturate asymptotically. Performance differences
among machine learning algorithms may be caused by the different scope for each algorithm, as well as
the quality and quantity of input variables. The SVM and MARS highlight global rather than local
optima, while the ANN may ensure local optimization and leads to a better performance when
compared to SVM and MARS [24,27,30,55]. When using MERRA meteorology data as input variables,
SVM and MARS showed even worse results, while ANN was slightly worse as compared with results
using tower-specific meteorology data as input variables. On the other hand, some studies have
indicated that ANN can be considered more suitable to serve as a tool to estimate LE when input
meteorological variables are insufficient [29]. Thus, we may conclude that ANN performs better than
SVM and MARS, especially when there are insufficient input variables or the accuracy of them was
not very high.

 

Figure 10. Comparison of daily LE observations for all 85 flux tower sites and LE estimates using
different machine learning algorithms driven by MERRA meteorology.

Several previous studies have shown that spatial scale mismatch among different data sources,
model input errors, and the limitations of the machine learning algorithms itself all affect the accuracy
of LE estimation [7,10,56]. We used MERRA products with a spatial resolution of 1/2◦ × 1/3◦ and
MODIS products with a resolution of 1 km, their resolution being greater than the footprint for
field measurements, which is usually several hundred meters [57,58]. This is one of the reasons that
estimated LE using tower meteorology as input data performs better than the estimated LE using
MERRA meteorology as input data. Such representation of the field measurement footprint may also
lead to bias in the machine learning algorithms. In addition, the accuracy of model input variables can
also influence the accuracy of the LE estimates. Many studies have demonstrated that there are large
errors in the MERRA meteorology and MERRA data tend to underestimate Rn at high values when
compared with ground measurements [49,58]. Recent studies have also revealed errors in MODIS
NDVI when compared with ground measurements [49,57].
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4.2. Comparison between Different LE Products

When compared with the SVM and the MARS algorithms, the ANN algorithm yielded lower
annual terrestrial LE in central and southern North America and higher LE in the northern and
eastern portions of this study area (Figure 11a,b). The LE values that were estimated using MARS
algorithm were lower than the LE values estimated using the SVM algorithm in most areas, but overall,
the difference between them was small and less than 10 W/m2 (Figure 11c). The relevant differences
between the flux estimations at the Mexican highlands, which are surrounded by Sierra Madre, may
be mostly caused by the land surface heterogeneity and the different plant functional types. The PFT
of the highlands is mainly grassland, while coastal and southeastern parts are covered with rainforest.
The spatial differences among three machine learning algorithms may be mostly caused by different
PFTs. The ANN showed higher LE for ENF and DBF, which are mostly located at the coasts of
North America. In the center and west of the study area, due to the relatively high elevation and
its own geographic and geomorphic conditions, the PFTs mostly contain SHR or GRA, so the ANN
yielded lower LE than SVM and MARS. However, the results that are presented by SVM and MARS
show no obvious difference for different PFTs.

Figure 12 shows spatial differences in annual terrestrial LE (2002–2004) between the MODIS LE
product and the LE product using three machine learning algorithms. Relative to MODIS LE product,
the ANN, SVM, and MARS results yielded lower LE in the north and central study area, and higher
LE on the east coast and in the northeast of North America. This may be caused by the precision
and quantity of the test data sample, as well as the characteristics of the machine learning algorithms,
so the simulation value of machine learning LE is lower than the value of the MODIS LE product over
a high LE area. This finding is consistent with other studies that showed that the MODIS LE product
overestimated LE at high LE areas [23]. The difference between them was less than 20 W/m2 in most
areas. Given the accuracy of MERRA meteorology data and the MODIS LE product, we can conclude
that machine learning algorithms are applicable for terrestrial LE mapping and the inversion results
have a relatively small gap when compared to the MODIS LE product.

 

a) b) 

c) 

Figure 11. Spatial differences in the average annual terrestrial LE (2002–2004) between three machine
learning algorithms. .
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a) b) 

c) 

Figure 12. Spatial differences in the average annual terrestrial LE (2002–2004) between MODIS LE
product and LE product using three machine learning algorithms.

4.3. Limitations and Recommendations for Future Research

Although the ANN leads to better performance when compared to other machine learning
algorithms, it has several limitations. First, ANN requires a relatively long processing time to
train a model, especially for ENF and GRA, the input data of which are inaccurate, and thus
require more learning cycles. Second, the ANN model may trap in local optimization, leading
to worse generalization performance. Further, all machine learning algorithms behave relatively
unpredictably when used with input ground-measured LE deviating from those presented during the
training stage [24,59]. Most importantly, we evaluated and validated LE performance using the same
ground-measure LE data from EC sites. The machine learning algorithms do not possess the useful
information to directly deliver additional confidence LE maps, and we cannot ensure the accuracy of
these ground-measure LE data [60].

To make the training samples more applicable over North America, we should add samples from
other PFTs, such as evergreen broadleaf forest and deciduous needleleaf forest [59]. The EC data
of these specific PFTs is few over North America, however. We may develop the machine learning
algorithms coupled with semi-empirical and physical methods that do not require training samples in
the future to improve the terrestrial LE at more different PFTs.

5. Conclusions

The primary objective of this paper was to demonstrate the usage of three machine learning
algorithms to estimate terrestrial LE for different PFTs over North America. We used tower-specific
and MERRA meteorology data and MODIS NDVI product as input data and the ratio of observed LE
and meteorology parameter Rn as output data to build training models. All three machine learning
algorithms proved to be reliable and robust for major land cover types in North America but the
ANN algorithm performed better than the SVM and MARS algorithms based on specific site and
MERRA data.

The results revealed that the ANN algorithm was more efficient in accounting for the nonlinear
relationship between climatic variables, vegetation indices, and the corresponding LE. We found
that ANN performed better in most land cover types, for except ENF and GRA, when using MERRA
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meteorology data as input data in the study area. The validation results for machine learning algorithms
driven by tower-specific meteorology and MERRA meteorology showed that the results of SVM were
similar to the results of MARS. For DBF sites, the MARS has a higher R2 and a lower RMSE than SVM,
for other sites, SVM perform a little better than MARS.

We concluded that it is reasonable to use machine learning algorithms to estimate LE by building
relationships between input variables and outputs (LE). The accuracy of input variables, such as
meteorology data and MODIS NDVI, can also influence the accuracy of the LE estimates. It is also
applicable to map the terrestrial LE in different regions for different PFTs using any of these three
machine learning algorithms; although, the performance of ANN was the best, the differences among
them were small. The inversion results have a relatively small gap compared with MODIS LE product,
with the difference between them being less than 20 W/m2 in most areas, and machine learning
algorithms performing better at the area where MODIS LE product overestimated LE.
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Abstract: Transition of freeze/thaw (F/T) affects land-atmospheric interactions and other biospheric
dynamics. Global F/T statuses are normally monitored using microwave remote sensing, but at
coarse resolutions (e.g., 25 km). Integration of coarse microwave remote sensing data with finer
satellite products represents an opportunity to further enhance our ability to map F/T statuses
regionally and globally. Here, we implemented and tested an approach to generate daily F/T status
maps at a 5-km spatial resolution through the fusion of passive microwave data from AMSR2 and
land surface temperature products from MODIS, using China as our study area for the year 2013 and
2014. Moreover, possible influences from elevation, vegetation, seasonality, etc., were also analyzed,
as such analysis provides a direction to improve the approach. Overall, our freeze/thaw maps agreed
well with ground reference observations, with an accuracy of ~86.6%. The new F/T maps helped to
identify regions subject to frequent F/T transitions through the year, such as the Qinghai-Tibetan
Plateau, Xinjiang, Gansu, Heilongjiang, Jilin, and Liaoning Province. This study indicates that the
combination of AMSR2 and MODIS observations provides an effective method to obtain finer F/T
maps (5-km or lower) for extensive regions. The finer F/T maps improve our knowledge of the F/T
state detected by satellite remote sensing, and have a wide range of applications in regional studies
considering land surface heterogeneity and models (e.g., community land models).

Keywords: high-resolution freeze/thaw; AMSR2; MODIS

1. Introduction

About 55% of the exposed land surface in the northern hemisphere experiences freeze/thaw
(F/T) transitions annually [1]. These transitions occur within the upper permafrost layers and frozen
grounds that react sensitively to climate and environmental changes. By controlling water and heat flux
exchange at the land-atmosphere interface, F/T status imposes a significant constraint on ecosystem
processes [2,3] and vegetation growth [4,5], resulting in important impacts on surface water, and the
nitrogen [6] and carbon cycle [7]. To evaluate these ecological or hydrological impacts accurately, data
of the F/T status with high spatial and temporal resolutions are essential [8]. However, observations
of the F/T status with high spatial and temporal resolution in a global or regional scale are still
unavailable. Traditional in situ observations or numerical modeling could provide accurate point
measurements for the investigation of F/T transitions [9], but these conventional methods are limited
to regional areas with continuous coverage. Instead, remote sensing data, especially microwave remote
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sensing, has provided a chance to detect the F/T status in recent years. The foundation of detecting
the F/T status by microwave remote sensing is the distinct contrast between dielectric properties that
occurs when water transitions between solid and liquid [10], which means the phase of soil water
during the F/T transitions will severely affect the sensitivity of radiometer brightness temperature
(Tb) and radar backscatter signatures.

Based on the dramatic changes of the signal on the F/T status observed by passive microwave
sensors, many approaches have been developed. Most of these approaches, such as dual-index [9],
decision tree [11], seasonal threshold [4,12], and discriminant function algorithm (DFA) [13], combine
observations from multiple channels from a specific sensor, for example, SSM/I, AMSR-E, AMSR2,
SMMIS, etc., to capture the changes of soil temperature and moisture during F/T transitions. However,
the F/T status derived using passive microwave remote sensing suffers from a coarse spatial resolution
of 0.25 degrees (about 25 km at the equator). Data or products with such a coarse resolution are no
longer applicable for hydro-meteorological and agricultural studies [14]. High-resolution data are
needed for a deeper understanding of processes that link to the terrestrial water, energy, and carbon
cycles, as well as for significant improvement in numerical models, such as weather prediction and
seasonal climate, flood and drought forecasting, crop yield estimating models, etc., that relate to land
surface heterogeneity [8,14,15].

Backscatter signatures from active remote sensors, such as satellite- or aircraft-based radar and
scatterometers, are also able to capture signal changes during F/T transitions. Daily frozen and
non-frozen statuses of Alaska were determined by Kimball et al. [5] with temporal change detection
analysis relying on NASA scatterometer observations. A similar method was also used by Du et al. [15]
to classify F/T status over Alaska based on Polarimetric SAR data with a spatial resolution of about
100 m. Zwieback et al. [16] developed a statistical model to detect frozen soils using Advanced
Scatterometer data and ERA Interim temperatures. Usually, observations acquired from active
microwave remote sensing have a high spatial resolution (several kilometers or less). However,
these observations are still limited to regional areas, as well as long revisit periods that are not feasible
to monitor F/T transitions.

To overcome the limitations introduced by purely relying on passive or active remote sensing,
a combination of multi-source remote sensing data for F/T retrieval has been recently studied for
two satellite missions. One is the Soil Moisture Active Passive (SMAP) mission initiated to map the
F/T status with a high spatial resolution of 2–3 km covering high northern latitude (>45◦N) areas and
a short revisit period of 2–3 days by combining its active and passive measurements [8]. Unfortunately,
the radar equipped on the satellite failed to work after operations of about three months, so the F/T
maps are produced at a resolution of about 25 miles with just its radiometer now. The other satellite
mission, Water Cycle Observation Mission (WCOM), aims to obtain the F/T status globally with a
resolution of less than 5 km [17,18] relying on both innovative theory and techniques for retrieval
and new sensing payloads. The payload configuration of the WCOM is a combination of active and
passive, wide frequency coverage, microwave remote sensors. Although the combination of passive
and active microwave remote sensing is promising to provide high-resolution F/T maps covering a
large area, such a map is still presently unavailable.

Instead of combining active and passive microwave observations, a recent experiment of fusing
thermal and passive microwave remote sensing shows potential to obtain the F/T status at a fine
spatial resolution [17]. Classification of the F/T status by remote sensing is based on changes in
two main aspects of the soil: water content and temperature. The changes of the soil water content
can be captured by passive microwave bands. And the soil temperature can be measured by both
thermal and microwave bands. The overlapping temperature information makes it possible to fuse
observations from sensors of these two bands. Both thermal and microwave sensors have their own
advantages. Thermal remote sensing data may suffer from many limitations, such as long revisit
time periods (8–16 days) in boreal regions, but they have higher spatial resolutions compared with
data from passive microwave remote sensing, for instance, the resolution of land surface temperature
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products derived from MODerate-resolution Imaging Spectroradiometer (MODIS) thermal bands can
be as high as 1 km. Passive microwave observations, such as brightness temperatures from AMSR2,
have a coarse spatial resolution of 25 km at the equator, but they can capture dynamics during the
F/T transition process in a short revisit period (2–3 days) over large areas. The fusion of thermal and
passive remote sensing combines the relative strengths of thermal and passive microwave remote
sensing for enhanced soil F/T mapping.

The overall objective of this article was to evaluate a method to obtain high-resolution F/T dataset
(here “high-resolution” is compared to the spatial resolution of passive microwave observations) by
taking advantage of current thermal and passive microwave remote sensing data in large regions,
such as China. An algorithm developed for AMSR sensors, DFA, was applied to observations from
AMSR2 to acquire coarse resolution maps of F/T. These F/T maps have a spatial resolution of
0.25 degree, the same to that of AMSR2 observations. Two variables, F and T score (DF and DT), were
generated by the DFA for each pixel, and they were the criteria to determine if a pixel is frozen or
thawing. The specific objectives of this study were to: (1) analyze the relationship between land surface
temperature from MODIS and the two variables (DF and DT) calculated by DFA; (2) investigate the
usage of this relationship over China; and (3) combine the MODIS land surface temperature with coarse
F/T datasets obtained from passive microwave observation (AMSR2) to generate the high-resolution
F/T map of China (0.05 degree, around 5-km at the equator). Finally, the derived high-resolution F/T
maps were verified by in situ soil temperatures at 0-cm depth across China.

2. Materials and Methods

2.1. Remote Sensing Observations

Remote sensing observations used here are acquired from passive microwave and thermal sensors.
The passive microwave remote sensing data are obtained from the Advanced Microwave Scanning
Radiometer-2 (AMSR2) onboard the Global Change Observation Mission 1st-Water (GCOM-W1)
satellite [18] which was launched on 18 May 2012. AMSR2 is equipped with the world’s largest
revolving space antenna to detect radiometry from the Earth with an appropriate 1450-km width
in one scan, so its observation can cover almost 99% of the globe in two days. The observations
are obtained in six different channels (6.9, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz) with horizontal and
vertical polarization, and twice daily at local times around 13:30 (ascending) and 1:30 (descending)
at the equator. The detailed characteristics of AMSR2 were summarized in Table 1. Daily brightness
temperatures (Tb) can be obtained from both the National Snow and Ice Data Center (NSIDC) and
the Japan Aerospace Exploration Agency (JAXA). The Tb used here were from GCOM-W1 Data
Providing Service [19] and they are daily quarter-degree gridded (version 02) data in global coverage.
In addition to Tb, precipitation data are also used here to exclude raining areas because of their
significant influence on microwave emission. The precipitation data are the Level 3 standard products
(version 02) of AMSR2, which can also be obtained from the GCOM-W1 Data Providing Service.

Table 1. The characteristics of AMSR2.

Central Frequency (GHz) 6.925 10.65 18.7 23.8 36.5 89.0
IFOV (km) 43 × 75 29 × 51 16 × 27 18 × 32 8.2 × 14.4 3.7 × 6.5 3.5 × 5.9

Polarization Horizontal and Vertical
Incidence Angle 55◦

Swath 1445 km
Dynamic Range (K) 2.7–340

Thermal observations are daily land surface temperature (LST) products (MYD11C1, version 5)
from MODIS, a key instrument aboard the Terra and Aqua satellites. MODIS carried on the Aqua
satellite was selected for this study [20]. Since the orbit of MODIS on Aqua shares numerous
characteristics, for instance, the equator crossing time, revisit period, etc., with that of AMSR2,
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these characteristics provide a unique opportunity to combine observations of these two sensors
with less systematic differences. MODIS can provide observations in as many as 36 spectral bands
to improve our understanding of global dynamics and processes occurring on the land, in the
atmosphere, and in the ocean. The data from MODIS are processed at various levels ranging from
level 0 to level 4. Products at level 3 of two years (2013, 2014) are used here, which includes both
LST and quality assessment values at 0.05 degree latitude/longitude climate modelling grids (CMG,
7200 columns × 3600 rows) covering the global area [20]. The LST of two years (2013, 2014) was
selected to investigate its potential relationship with DF and DT that are used to classify the F/T status.
In addition to the land surface temperature data, ancillary data, such as the MODIS IGBP (International
Geosphere-Biosphere Program) map, are also included to identify the areas with permanent snow.

2.2. Meteorological Data

Assessment of F/T maps usually relies on in situ measurements. Soil temperatures at 0-cm
depth were collected from 2425 stations across China to evaluate the high-resolution F/T maps here.
The temperature measurements are extracted from the datasets (SURF_CLI_CHN_MUL_DAY_V3.0)
archived by China Meteorological Administration (CMA) [21]. Most of these meteorological stations
have data records for more than one year, but not all of them have continuous records for every day of
the year. Moreover, the temperatures are only measured by sensors on the ground four times (2:00,
8:00, 14:00, 20:00) daily. The records at 2:00 and 14:00 were chosen to compare with the F/T maps
generated by satellite observations at 1:30 and 13:30, respectively. The comparison is based on our
assumption that the F/T status when the soil temperature measurements are conducted is approximate
to that when the satellites pass over. Similar assumptions have also been made to verify accuracy of
the F/T status derived from satellite observations [4,12,16]. To make the assessment convincing, in situ
temperature measurements in 2013 were chosen to evaluate the agreement with the F/T maps.

2.3. Methods

Our methodological framework (Figure 1) includes combining thermal and passive microwave
remote sensing data to generate F/T maps in China and evaluating the accuracy of this approach using
in situ ground temperatures.

2.3.1. Discriminant Function Algorithm (DFA)

DFA is developed specifically for AMSR-E and performs well to determine the land surface F/T
status. This algorithm has been evaluated by Zhao et al. [13] using the 4-cm soil temperature on
Qinghai-Tibetan Plateau and the result shows an overall classification accuracy of 86%. It also has the
highest accuracy compared with two other algorithms, dual index [9] and decision tree algorithm [11],
when applied to AMSR-E data [22]. In addition, further validation of this algorithm was conducted
in our previous work using in situ air temperature measurements from the World Meteorological
Organization (WMO, 88.37% and 82.76% for observations at 1:30 and 13:30, respectively), 0–5 cm
soil temperature from International Soil Moisture Network (ISMN, 86.63%), as well as modelled soil
temperature by the Global Land Data Assimilation System (GLDAS, 89.74% and 87.6% for observations
at 1:30 and 13:30, respectively) [23].
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Figure 1. Flowchart of generating high-resolution F/T maps.

A brief introduction of DFA is presented here. DFA was developed based on observations
from a truck-mounted multi-frequency microwave radiometer and simulated data from a set of
combined models related to vegetation, snow, and soil [13]. The principle of the algorithm is to
determine the status of soil in each pixel using two criteria: one is the brightness temperature observed
by radiometers at 36.5 GHz in vertical polarization, which is closely related to surface temperature;
the other one is called quasi-emissivity and it is the ratio of the brightness temperature in the horizontal
polarization at low frequency, such as 6.9, 10.65, and 18.7 GHz, to that in vertical polarization at
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36.5 GHz. The quasi-emissivity is related to soil water content. These two criteria are used to construct
the discriminant functions based on Fisher linear discriminant analysis [24]:

DF = 1.47 ∗ Tb36.5V + 91.69 ∗ Qe18.7H − 226.7 (1)

DT = 1.55 ∗ Tb36.5V + 86.33 ∗ Qe18.7H − 242.41 (2)

Qe18.7H =
Tb18.7H
Tb36.5V

(3)

FTI = DF − DT (4)

where Tb36.5V is the vertically-polarized brightness temperature at 36.5 GHz and Qe18.7H is the
quasi-emissivity calculated by the low frequency of 18.7 GHz. DF and DT are calculated for each pixel
and used to classify a pixel as frozen or thawing. If DF is greater than DT, the pixel will be classified
as frozen; otherwise it will be classified as thawing. The difference of DF and DT is called F/T index
(FTI) [17].

2.3.2. Fusion of F/T Dataset with LST

The F/T index has shown a linear relationship with LST in previous studies conducted on the
Qinghai Tibetan Plateau (QTP). The regression model is in the following form:

FTI = a ∗ LST + b (5)

where a and b are parameters in the model. The main problem of determining a and b is the unmatched
spatial resolutions of LST and FTI.

The approach to matching LST and FTI is by upscaling the spatial resolution of LST to that of FTI.
LST is a product of MODIS with 0.05-degree spatial resolution. However, FTI has the same resolution as
the passive microwave observations (0.25 degree). For each grid of FTI, 5 × 5 grids are needed to cover
the same area in the LST. If more than 12 of the 5 × 5 grids have valid records (determined by quality
control data), the average of these valid values will be used to match the value in an FTI grid. Then,
a simple linear regression analysis is conducted to determine the relationship based on the matched
data pairs between FTI and LST. Once the two parameters a and b are obtained, the linear model can
be applied to each pixel of the MODIS LST products to acquire a new FTI, which we called LST-based
FTI because it has the same spatial resolution as the LST. For pixels in the LST-based FTI, those with
values greater than 0 are classified as frozen, otherwise, they are classified as thawing. If pixels in the
LST-based FTI have no values because of gaps or invalid data in the LST, they will be determined using
microwave observations alone. Those pixels which are detected as raining will not be determined
and just labelled as rain. The new F/T map based on the LST-based FTI is called the high-resolution
F/T map because its spatial resolution (0.05 degree) is higher than F/T maps derived from FTI just
using microwave observations (0.25 degree). Permanent snow areas are also marked according to the
MODIS-International Geosphere-Biosphere Programme (IGBP) land cover classifications.

2.3.3. Evaluation of the High-Resolution F/T Maps

A comparison of high-resolution F/T maps and 0-cm soil temperatures is divided into two aspects:
temporal and spatial agreement. Temporal agreement is calculated daily and it is the ratio of the
number of stations whose observations are consistent with the classification result of F/T maps and
the total number of stations; spatial agreement is calculated by dividing the total observations in a
year with the observations that are consistent with the F/T maps for each station. Both the temporal
and spatial agreement can be calculated by the equation below:

A =
NFF + NTT

NFF + NFT + NTF + NTT
(6)
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where NFF means the number of pixels where a station is located are classified as frozen, while
the ground temperatures are equal, or less than, 0 ◦C; NFT represents the numbers of pixels when
they are classified as frozen, while the ground temperatures are above 0 ◦C. NTT and NTF follow
similar meanings.

3. Results

3.1. Relationship of MODIS LST and Freeze/Thaw Index

MODIS LST and FTI determined by DFA (Equation (4)) show a high negative correlation in
most areas of China (Figure 2). Areas with values below −0.8 take up about 95.4% and 92.6% of
the domain for observations at 13:30 and 1:30, respectively. The correlation values for both passes
are not homogeneously distributed. For ascending and descending time, low correlation less than
0.7 occurs on the QTP, in Central Northeast China and northeast of Xinjiang Province; and most of
these three areas also have correlation values around −0.85. Other parts of the domain have a high
negative correlation above 0.9. Correlation for observations at 1:30 has many more values lower
than 0.85. Especially in Southeast of China, in the Hengduan Mountains, correlations are below 0.6.
Low correlation values will introduce some inconsistencies between coarse-resolution F/T maps and
high-resolution F/T maps, and affect the accuracy of F/T classification. The low correlations may
result from many factors, for instance, frequent F/T transitions [25], elevation, land cover, as well as
the accuracy of observations [26,27].

Figure 2. (a,b) are correlations of the MODIS LST and freeze/thaw index (FTI) for observations at 13:30
and 1:30, respectively.

The parameters “a” and “b” in Equation (5) for each pixel also vary spatially (Figure 3). The low
values (<−0.1) of “a”, the slope of regression models, exists in the northeast and parts of Xinjiang
province in China. In southeast and central parts, the slope is above −0.1. About 70% of the pixels have
a value between −0.1 and −0.06 for “a” observations at both 13:30 and 1:30. However, observations
at 1:30 have more low values than that at 13:30. The slope of a model, as well as the intercept,
are adjustments made to match the emissivity of MODIS in thermal bands to that of AMSR2 in the
36.5 GHz band (Equations (4) and (5)). These two parameters depend on how many observations are
used and at what time observations are acquired. Here, observations of only two years (2013 and 2014)
were used to fit linear models for each pixel. Taking a pixel (31◦N, 91◦E) as an example, 455 effective
data pairs are selected for 13:30, while only 350 data pairs are used for observations at 1:30 to fit a
model. In addition, the pattern of data pairs is not the same (subplots in Figure 3a,b). This pixel
experiences both freezing and thawing at 13:30 during the two years, so some values of FTI are greater
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than 0 and some are less than 0. However, for observations at 1:30, the status of this pixel is frozen
most of the time, so many values of FTI are less than 0.

 

(a) (b)

(c) (d)

Figure 3. Spatial distribution of parameters “a” and “b” in regression models for observations at 13:30
and 1:30, respectively. (a,b) are for “a”; (c,d) are for “b”.

3.2. Daily High-Resolution F/T Map of China

Daily high-resolution F/T maps are a combination of AMSR2-based and MODIS LST-based
F/T maps (Figure 1). AMSR2-based F/T maps are determined by FTI, which is calculated by
applying DFA to AMSR2 observations directly. Such a map has a coarse resolution of 0.25 degree,
so we use “coarse-resolution” here to describe F/T maps based on passive microwave observations.
MODIS LST-based FTI is calculated by applying Equation (5) to daily MODIS LST maps. Once the
LST-based FTI was acquired, discrimination analysis is applied to each pixel to acquire high-resolution
F/T maps. Such an F/T map has a resolution of 0.05 degree. Although 0.05 degrees is not actually
high, we use “high-resolution” to represent the F/T map generated by the MODIS LST compared
with that by passive microwave observations. The high-resolution F/T maps cover all land surfaces in
China where F/T transitions probably occur and consist of five values, namely: frozen (0), thawing (1),
no data (2), rain (3), and permanent snow (15). The rain information comes from coarse-resolution
F/T maps. Permanent snow areas are labeled as 15 because they are determined by the MODIS-IGBP
land cover classifications.

Coarse-resolution F/T maps not only provide information about precipitation, but also act as
supplements where gaps or invalid data appear in MODIS observations. The gaps in high-resolution
maps means observations are invalid for both MODIS and AMSR2, so they are smaller than that from
either sensor. Since parts of gaps are filled, daily high-resolution F/T maps can provide much more
information in a finer resolution than coarse-resolution F/T maps. As the high-resolution F/T maps
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are combined by information from both high-resolution and coarse-resolution, we estimated how
much information from MODIS (actual high resolution) can be used for each day. Figure 4a shows
that an average of 58.5% and 65.4% of the whole area can have actual high-resolution information at
ascending and descending times, respectively. Moreover, the frequency of each pixel with actual high
resolution in the year of 2013 varies spatially (Figure 4b,c). Areas in Western China have more days of
high-resolution observations. Some areas, such as Sichuan, Guizhou, and Guangxi Provinces have
fewer days of high-resolution observations. This pattern is much more obvious at the descending time.

 
(a)

(b) (c)

Figure 4. Coverage of MODIS observations over China in 2013 (a) and frequency of valid MODIS
observations for each pixel at 13:30 (b) and 1:30 (c) in 2013.

3.3. Agreement between the Ground Temperature and High-Resolution F/T Maps

Agreements between high-resolution F/T maps and ground temperatures are calculated
temporally and spatially. The temporal agreement was calculated separately at ascending (Figure 5a)
and descending times (Figure 5b). Overall temporal agreements for ascending and descending times
are 95.37% and 86.6%, respectively. The high temporal agreements come from thaw status. NTT,
the number of stations where the ground temperature is above 0 degrees and the pixels where stations
are located are classified as thaw, take up more than 90% of the four components (NTT, NTF, NFF, NFT)
through the whole year, which means that many days in 2013 are thawing at around 13:30. The overall
low agreement at 13:30 appears in late fall, winter, and early spring (the average accuracy is 93% in
winter and 91.01% in spring) during which the F/T transitions are occurring in most areas of the
north of the Yangzi River in China. Low agreement in similar periods also appears for observations
at 1:30 (82.1% in spring and 82.5% in winter), but the pattern of time-series agreement at 1:30 is
slightly different from that at 13:30. Thawing components detected by both stations and satellite (NTT)
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are lower than frozen components (NFF) in winter and early spring. This is reasonable because the
descending time is around 1:30 a.m., when the minimum temperature of a day is usually observed.

 
(a)

 
(b)

Figure 5. Temporal agreement between in situ measurement and F/T maps for observations at 13:30
(a) and 1:30 (b).

Figure 6 shows that high-resolution F/T maps have high agreement with in situ ground
temperature (overall agreement: 91.25%). The agreement is not distributed homogeneously across
China, but the pattern is similar to that of correlation mentioned in Section 3.1. Areas with low
agreement below 80% are mainly located in Western and Northeast China, the Yangzi River Delta,
and other areas near the sea. The reasons for low agreement are various. In Western China,
the meteorological stations are distributed sparsely, and not enough measurements may account
for the low agreement. In addition, both the northwest and northeast are cold and arid zones, such as
the Qinghai-Tibetan Plateau, Xinjiang, Gansu, Heilongjiang, Jilin, and Liaoning Province. These areas
experience low mean annual temperature and large F/T dynamics. Other areas, for example, the Yangzi
River Delta, Liaoning, and Shandong Peninsula, are near rivers or the sea. Locations near water may
be an important factor leading to low accuracy [28].
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Figure 6. Accuracy assessment of F/T maps at individual meteorological stations in China.

4. Discussion

4.1. High-Resolution F/T Maps

Fusion of passive microwave and thermal observations to generate high-resolution F/T maps
is proved possible. However, fused F/T maps depend greatly on DFA, an algorithm derived
for observations of AMSR-E. Although AMSR-E and AMSR2 have been reported to have slight
differences [29,30], eliminating the difference is still necessary through inter-calibration before applying
the same algorithm (e.g., DFA) to observations of these two sensors [31]. The data of AMSR2
used in this study have been calibrated with AMSR-E without many details being obtained [23].
The high-resolution F/T maps also depend significantly on thermal observations, especially the spatial
resolution. Theoretically, the higher the resolution of thermal observations, the finer the fused F/T
maps will be. For example, F/T maps with 1-km resolution are also possible to acquire if the LST
products with 1-km resolution are used.

Increasing the resolution of land surface parameters (LST, albedo, soil moisture, etc.) has been
of considerable interest for the land surface community as the improved knowledge of land surface
parameters can enhance a wide range of applications and scientific studies, such as the community
land model [32–36]. F/T maps derived by DFA or other algorithms [12] based on passive microwave
observations usually have a spatial resolution of 0.25 degree. Such a coarse resolution limits the
application of F/T data in climate or hydrological models that consider land surface heterogeneity [14].
Finer resolution of F/T maps are needed to meet the current scientific research requirements [15].
High-resolution F/T status detections by radar or scatterometer are considerably mature [37], but F/T
maps with high resolution in large scales and short revisit times are still unavailable. The fusion of
microwave observation-based F/T maps and thermal observations has been proved promising on
QTP areas [17]. The similar approach has been tested in China and performs well. Theoretically,
the study areas can be extended to the globe, and a long-time series F/T record can also be built
using observations within the life span of AMSR2 and MODIS. However, impacts on F/T transitions
from factors, for instance, snow, vegetation, topography, etc., are challenges faced by remote sensing
observations [38]. The influence of land cover is weakness of the approach proposed here. More work is
needed to tackle the influence the F/T dynamics caused by snow, vegetation, elevation, etc., at a finer scale.

4.2. Strengths and Weaknesses of Fused F/T Maps

The fused F/T maps are superior to those derived directly based on passive microwave or thermal
observations alone in at least two aspects: more information and finer spatial resolution (at least part
of the map actually has high resolution). Compared with F/T maps derived directly from passive
microwave observations, much finer information was introduced to the F/T maps, which is more
promising for future use in many regional studies [33] or land models [14,32]. Compared with the F/T
status determined by the MODIS LST threshold (we use 0 ◦C as a cutoff: frozen if a pixel lower or equal

113



Remote Sens. 2017, 9, 1339

0, otherwise thawing), fused maps provide more effective observations and without losing accuracy.
Table 2 is a case study using several randomly-selected meteorological stations for different land cover
types. MODIS LST has many observations of barren areas, such as Qinghai Province (Figure 4b,c),
with high agreement with station measurements, but it has fewer observations in areas with a large
amount of vegetation and high elevation (e.g., station 56649). For fused F/T maps, both accuracy and
effective observations are very stable in different kinds of areas and land cover types.

Table 2. Comparision of F/T status determined by the MODIS LST threshod (0 ◦C) and fused F/T maps.

Station ID Land Cover
Latitude

(◦N)
Lontitude

(◦E)
Accuracy_MOD

Effective
Observations (MOD)

Accuracy_F
Effective

Observations (F)

51777 Barren areas 39.033 88.167 93.27% 271 89.63% 363
56067 Gras land (1) 1 33.433 101.48 80.76% 260 86.96% 363
54012 Grassland (2) 1 44.567 117.63 89.91% 238 87.68% 363
50434 Forest (1) 1 50.483 121.68 93.47% 230 90.51% 363
50349 Forest (2) 1 51.667 124.4 90.91% 231 90.33% 363
56649 Forest (3) 1 21.6 99.967 77.38% 252 89.80% 363
58011 Cropland 34.8 116.07 86.34% 183 90.89% 363
57343 Deciduous Forest 31.9 109.53 86.07% 201 93.36% 363
59205 Savanna 23.65 105.63 97.48% 119 99.42% 363

1: Grassland (1) is located on the QTP; Grassland (2): Inner Monngolia; Forest (1): Daxinganling Forest; Forest (2):
Xiaoxinganling Forest; Forest (3): the Hengduan Mountains.

The fused F/T maps also have some limitations because they depended on the match of MODIS
LST with microwave observations. The correlation of and coefficents (“a“ and “b“ in Equation (5))
of the linear regression model will be influenced by many factors, for instance, land cover types,
vegetaion, elevation, seasonality, etc. Figure 7 shows how correlation varies with different elevations
between the MODIS LST and FTI derived by microwave observations. For both observations at 13:30
and 1:30, the rise in elevation is companied with the decrease in correlation, and correlation remains
high and stable when elevations are below 2000 m. We also investigated how correlations vary with
Normalized Difference Vegetation Index (NDVI) at different sites with different land cover (Figure 8).
NDVI also shows a negative influence on correlation, especially for observations at 1:30 with extreme
high NDVI values. We guess that MODIS measures the temperature of vegetation while AMSR2
can penetrate vegetation to measure near surface temperature of the ground in forest areas. Another
limitation for the regression models is that parameters ”a” and “b” for each pixel are fixed at different
seasons through the year. However, as they are adjusted to approximate the emissivity of MODIS at
thermal bands to AMSR2 in the 36.5 GHz band, they may vary at different times of the year, especially
as land cover changes with time, for example, vegetation (Figure A1) and snow cover. This problem is
not solved in this study, but the analysis provides directions on how to improve our regression model;
for example, we can let “a” and “b” vary with NDVI.

Figure 7. Correlation of the MODIS LST and FTI derived by microwave observations from
70 randomly-selected stations at different elevations. Ele is the elevation of the stations; Coeff_a is the
correaltion at 13:30; Coeff_d is the correlation at 1:30.
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Figure 8. Correlation of the MODIS LST and FTI derived by microwave observations from
70 randomly-selected stations with different annual average NDVI. Corr_a is the correaltion at 13:30;
Corr_d is the correlation at 1:30.

4.3. Accuracy Estimate by Ground Temperature

The accuracy estimation shows that the high-resolution F/T maps have high agreement with
ground temperature. However, the main concern is, and has been argued for a long time, that the
0-cm temperature on the ground is explicit to define the F/T state of the land surface. The ground may
be thawing when the 0-cm temperature is equal, or less than, 0 ◦C, and factors, such as wind or land
cover (snow, vegetation, etc.) may also lead to the thaw status. However, until now, there has been
no better criteria to define the absolute real boundary of the temperature when the ground is frozen
or thawing. Compared with other choices, for example, air temperature [4] and soil temperatures
at different depths or from models [16], 0-cm ground temperature may be a better choice because it
reflects the surface state of the ground. This “surface “ is probably what remote sensing is detecting.

5. Conclusions

F/T transitions of near surface soil have been investigated by microwave remote sensing, but most
of them are in a coarse resolution or in a small area. Fine-resolution F/T status data records at a large
scale and short revisit time are still unavailable presently. Thus, a new approach to detecting F/T
status was tested and evaluated in a large area (China) in this study. This approach takes advantage
of passive microwave and thermal remote sensing observations to map F/T status in a high spatial
resolution (0.05 degree). This high-resolution F/T map is a fusion of the coarse-resolution F/T maps
from AMSR2 and MODIS LST-based FTI. Then the high-resolution F/T map was validated using 0-cm
ground temperatures across China. The following conclusions can be drawn from this paper:

(1) The determination function algorithm (DFA) provides an interface between passive microwave
and thermal observations. Their relationship can be described using a linear regression model
through the parameter FTI.

(2) The regression model applied to MODIS temperature can provide high-resolution F/T maps
which are promising to fill the gap when no other high-resolution F/T maps can cover the globe
or a large area.

(3) The high-resolution F/T maps show high agreement with 0-cm ground temperatures with spatial
agreement above 90% and temporal agreement around 95.37% and 86.62% for ascending and
descending passes, respectively. The high agreement enhances the reliability of the derived
high-resolution F/T maps which can be used for further research in Earth sciences.

High-resolution F/T maps by fusing multi-source remote sensing data have several advantages:
providing much more F/T information than those relying purely on passive microwave remote sensing;
and having fewer gaps in the image than that from either AMSR2 or MODIS. Both microwave and
thermal sensors have their own advantages, fused F/T maps reach a balance between temporal and
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spatial resolution of remote sensing observations. Although the approach used here is proved to be
promising, it still has many limitations because of the influence of topography, seasonality, vegetation
cover, etc. Future studies of incorporating NDIV, emissivity, and flexible coefficients varying with time
are highly recommended to improve the approach.

Acknowledgments: This study was jointly supported by the National Key Basic Research Program of China
(2015CB953701), the National Natural Science Foundation of China (41671355), the Chinese Academy of
Sciences “Light of West China” Program, and the Youth Innovation Promotion Association (no. 2016061).
K.Z. acknowledges the supports from the Open Research Fund from the State Key Laboratory of Digital
Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences(OFSLRSS201604)
and a Microsoft Azure Research Award (CRM:0518513). All data of AMSR-E and MODIS are obtained
from the National Snow and Ice Data Center (NSIDC). The ground temperature data are from the China
Meteorological Administration.

Author Contributions: T.H., T.Z., J.S., and K.Z. contributed to intellectual design and initial drafting.
T.H. compiled and processed data. T.H., T.Z., S.W. and K.Z. contributed to data analysis and interpretation.
D.L. and H.Q. assisted with graphing and the manuscript revision. All the authors contributed to the writing of
the final draft.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

 
(a) 

 
(b) 

Figure A1. Cont.
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(c) 

 
(d) 

Figure A1. Parameter “a” and NDVI on forest (a), barren (b), grass land (c) and crop land (d).
P_a_asc and P_a_des are for observations at 13:30 and 1:30, respectively.
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Abstract: Ongoing information on snow and its extent is critical for understanding global water and
energy cycles. Passive microwave data have been widely used in snow cover mapping given their
long-time observation capabilities under all-weather conditions. However, assessments of different
passive microwave (PMW) snow cover area (SCA) mapping algorithms have rarely been reported,
especially in China. In this study, the performances of seven PMW SCA mapping algorithms were
tested using in situ snow depth measurements and a one-kilometer Interactive Multisensor Snow
and Ice Mapping System (IMS) snow cover product over China. The selected algorithms are the
FY3 algorithm, Grody’s algorithm, the South China algorithm, Kelly’s algorithm, Singh’s algorithm,
Hall’s algorithm and Neal’s algorithm. During the test period, most algorithms performed reasonably
well. The overall accuracy of all algorithms is higher than 0.895 against in situ observations and
higher than 0.713 against the IMS product. In general, Singh’s algorithm, Hall’s algorithm and Neal’s
algorithm had poor performance during the test. Their misclassification errors were larger than those
of the remaining algorithms. Grody’s algorithm, the South China algorithm and Kelly’s algorithm
had higher positive predictive values and lower omission errors than those of the others. The errors
of these three algorithms were mainly caused by variations in commission errors. Comparing to
Grody’s algorithm, the South China algorithm and Kelly’s algorithm, the FY3 algorithm presented
a conservative snow cover estimation to balance the problem between snow identification and
overestimation. As a result, the overall accuracy of the FY3 algorithm was the highest of all the
tested algorithms. The accuracy of all algorithms tended to decline with a decreased snow cover
fraction as well as SD < 5 cm. All tested algorithms have severe omission errors over barren land and
grasslands. The results shown in this study contribute to ongoing efforts to improve the performance
and applicability of PMW SCA algorithms.

Keywords: snow cover; passive microwave; FY-3C/MWRI; algorithmic assessment; China

1. Introduction

Snow cover is an important geophysical parameter for understanding global climate change,
the radiation budget and the water cycle [1,2]. Given the importance of snow, snow cover extent has
been a key observation target since the beginning of the satellite remote-sensing era dating to the
mid-1960s [3]. Snow cover area (SCA) monitoring using optical and microwave sensors has been
reported for decades [4]. A number of snow cover detection algorithms using optical sensors have been
developed since the 1980s [5–9]. However, snow cover maps derived from optical sensors are strongly
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influenced by observation conditions such as cloud obscuration and solar illumination. Inaccessibility
in cloud cover and weak sun exposure regions greatly limit the applicability of optical SCA products
in regional and global applications [4].

Passive microwave (PMW) observation is another data source for SCA detection [10–12]. Dry snow
is a type of microwave scattering material and can be identified by its volume scattering signature.
The positive brightness temperature (Tb) gradient between low and high frequencies is a crucial
criterion for snow cover identification [13]. Most PMW SCA detection algorithms are based on a
decision tree classification approach. Snow can be distinguished from other scattering or non-scattering
surfaces via various filters. These algorithms can be divided into three groups: (1) identify snow
with detailed types of snow [14,15]; (2) identify snow and non-snow types simultaneously [16,17];
and (3) simply identify snow without any in-depth information [18–20].

The primary advantage of using PMW data is the ability of microwaves to observe land surface
conditions through clouds during day and night. At present, the PMW SCA products have been
mainly used to fill the cloud gap of long-term optical SCA products [21–24] or act as a preprocessing
step for producing PMW snow water equivalent (SWE) and snow depth (SD) products [25–28].
Errors inherent to PMW SCA products propagate into and corrupt the combined products. The false
snow and snow-free identifications affect the accuracy of the associated SD, SWE and SCA products.
Thus, an in-depth evaluation is needed to understand the uncertainty of PMW SCA mapping methods
as well as to develop new methods.

In this study, seven PMW SCA mapping methods were tested, including Kelly’s algorithm [14],
the FY3 algorithm [15], Grody’s algorithm [16], the South China algorithm [17], Singh’s algorithm [18],
and Hall’s algorithm [19], Neal’s algorithm [20]. These algorithms were selected because they are
well-documented, have been successfully applied and have an indicative effect on later research.
Common approaches for evaluating satellite-derived SCA would be to compare it to in situ
measurements [11,29,30] or satellite images with higher spatial resolutions [8,31–34]. We used similar
strategies in this assessment. The performance of different PMW SCA mapping algorithms was
evaluated against in situ snow depth measurements along with the Multisensor Snow and Ice Mapping
System (IMS) snow cover product at a one-kilometer resolution. The one-kilometer IMS snow cover
product was taken as a validation dataset because it is cloud-free and of high spatial resolution
(compared to PMW observations) and is a high-quality SCA product.

This paper is organized as follows. Section 2 describes the data used and the PMW SCA algorithms.
Section 3 presents the evaluation results and the effects of land cover, snow cover fraction (SCF),
and snow depth on SCA mapping accuracy. Section 4 is dedicated to the discussion of the tested
algorithms. Finally, a conclusion has been presented in Section 5 for the whole work of this paper.

2. Data and Methodology

In this study, FY3C-MWRI data were used for snow cover mapping. In situ snow depth
observations together with the IMS snow cover product were used to evaluate different PMW SCA
mapping algorithms. The data and algorithms are described in detail in the following subsections.

2.1. FY-3C/MWRI Data

The FY-3C satellite is one of the second generation polar-orbit meteorological satellite series
of China. The FY-3C satellite was launched on 23 September 2013 with the goal of observing
global atmospheric and geophysical features around the clock. The Microwave Radiation Imager
(MWRI) is one of the 13 remote-sensing instruments onboard the FY-3C satellite. MWRI is a
ten-channel, five-frequency, PMW radiometer system. It measures horizontally and vertically polarized
brightness temperatures ranging from 10.65 GHz to 89 GHz. The local time on the descending
node (LTDN) is near 10:00 a.m. Spatial resolution of the individual measurements varies from
7.5 km × 12 km at 89 GHz to 51 km × 85 km at 10.65 GHz. The FY3C-MWRI L1 swath data are
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available from the China Meteorological Administration/National Satellite Meteorological Center
website (http://www.nsmc.org.cn/).

2.2. In Situ Measurements

Daily meteorological data are provided by the National Meteorological Information Center,
China Meteorological Administration. Daily SD observations from 753 stations (Figure 1) were used
to evaluate the PMW snow cover detection algorithms during the snow season. Recorded variables of
weather stations include site name, observation time, site location (latitude and longitude in degrees),
geodetic elevation (m), surface temperature and snow depth (cm). The records were selected only if
the surface temperature was less than 0 ◦C to avoid the impact of wet snow.

Figure 1. Chinese meteorological stations used in this work.

2.3. IMS Data

The IMS snow cover product of the National Ice Center combines multiple data sources to map
daily cloud-free snow extent of the Northern Hemisphere at three different resolutions: 1 km, 4 km
and 24 km. The 1-km IMS data became available during December of 2014. In this study, 1-km IMS
data were used as the validation dataset. The data were obtained from the National Snow and Ice Data
Center (http://nsidc.org/).

2.4. PMW Snow Cover Mapping Algorithms

Dry snow is a type of strong scattering material. Snow cover produces a positive brightness
temperature gradient between low- and high-frequency channels [13]. Although this characteristic
of scattering materials identifies snow, it identifies other scattering materials such as precipitation,
deserts, and frozen ground [10] because these non-snow types may produce a spectral response in
the microwave similar to that of snow. To objectively detect snow cover, various filters are used to
separate scattering signals of snow cover from other scattering and non-scattering surfaces [35].

Seven PMW SCA mapping algorithms were selected for evaluation in this paper. Classification
criteria of these algorithms are shown in Table 1. The frequencies listed in Table 1 are subject to
FY-3C/MWRI. Grody’s algorithm and the South China algorithm identify snow and the non-snow
types (precipitation, cold deserts and frozen soil) simultaneously. The FY3 algorithm and Kelly’s
algorithm not only identify snow-covered areas but also divide snow into detailed categories. The last
three algorithms are simply designed to detect snow.
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3. Results and Analysis

To test and compare the performance of the seven algorithms, the SCAs derived from PMW SCA
mapping algorithms were quantitatively evaluated using in situ SD observations and the one-kilometer
IMS snow cover product. Only dry snow records of in situ observations were used for analysis because
the seven tested algorithms are mostly for dry snow discrimination. The one-kilometer IMS data were
reprojected to the projection of the PMW SCA maps. Then, the snow cover fraction in each PMW pixel
was calculated. We set the threshold of a snow cover fraction value to 50% to determine whether pixels
have snow or do not. All pixels with SCF less than the threshold were labelled snow-free.

Four assessment indexes, overall accuracy (OA), omission error (OE), commission error (CE),
and positive predictive value (PPV), were used for the analysis. OA describes the percentage of the
correct classifications including inerrant snow-covered and snow-free identifications. PPV describes the
probability that a pixel identified with snow indeed has snow [31]. OE and CE are both related to false
classification. OE indicates PMW snow map misclassifications as snow-free instead of snow-covered
and CE as snow-covered instead of snow-free. Given the available data, the testing period using
in situ measurements was from October 2013 to December 2015, and that using IMS data was from
December 2014 to December 2015. Table 2 shows the normal metrics used to evaluate the PMW SCA
mapping algorithms.

Table 2. Classification error matrix.

Reference SCA: Snow Reference SCA: Snow Free

PMW SCA: snow true positive (TP) false negative (FN)
PMW SCA: snow free false positive (FP) true negative (TN)
Overall accuracy (OA): (TP + TN)/(TP + TN + FN + FP)
Omission error (OE): FP/(FP + TP)
Commission error (CE): FN/(FN + TP)
Positive predictive value (PPV): TP/(TP + FP)
Reference SCA: Ice mapping system (IMS) SCA data and in situ measurements

Tests were conducted for both ascending and descending data. The FY-3C/MWRI L1 swath data
were resampled to a global equidistant cylindrical projection at 0.25◦ resolution for snow mapping.
It should be noted that the South China algorithm identified snow using both ascending and descending
data, resulting in a blended product for testing. The performances of the different PMW SCA maps
for 7 January 2014 are shown in Figure 2. Snow extent determined using the seven methods clearly
indicates the geographical distribution of snow over the three main seasonal snow-covered regions
(Northwest, Northeast, and Tibetan Plateau). All methods achieved similar SCA estimations in the
Northwest and the Northeast except for Singh’s algorithm, which missed significant snow. Over the
Tibetan Plateau, the Kelly SCA algorithm tended to identify more snow. The FY3 algorithm and Singh
algorithm, in contrast, estimated less snow.

For each algorithm, OA, PPV, OE and CE were calculated for the testing periods. Table 3
summarizes the evaluation results. For each algorithm, 276,946 station records were used for evaluating
the ascending PMW SAC mapping results, and 275,774 station records were used for the descending
data. Compared to in situ SD observations, all methods achieved a high OA ranging from 0.895 to
0.950. Grody’s algorithm, the South China algorithm and Kelly’s algorithm have higher PPV values
(from 0.656 to 0.827) and lower OE values (from 0.173 to 0.344). Singh’s algorithm, Hall’s algorithm
and Neal’s algorithm, with higher OE (from 0.492 to 0.860) and lower PPV (from 0.140 to 0.508) values,
severely underestimated SCA during the testing periods. The descending orbit shows lower PPV and
CE but higher OE than that of the ascending orbit. Because the local times on the ascending node and
descending node are near 10:00 p.m. and 10:00 a.m., respectively, microwave brightness temperature
at a high frequency may be more affected by atmospheric conditions during the descending orbits
than during ascending orbits [33,36]. In addition, snow would melt during the day (descending orbit),
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and moist or wet snow is difficult to separate from land, which may lead to an increasing OE and
decreasing PPV. Soil tends to be frozen during cold nights (ascending orbit), and it is difficult to
separate frozen soil from dry snow, resulting in a higher CE. Evaluation results using IMS snow cover
data as a reference are similar to the case using station observations. Whereas compared to evaluation
results based on in situ observations, the results based on IMS snow cover product show higher
classification error. The possible reasons for this difference include (i) the differences in the resolution
of the evaluation datasets (i.e., point scale vs. image scale); (ii) the different snow types of the two
datasets: only dry snow records of in situ observations were used for analysis, but IMS maps show
both dry and wet snow; and (iii) errors in the IMS snow cover product. The performance of the IMS
snow cover product deteriorates when identifying snow-free areas [37]. IMS is likely to overestimate
snow cover in rugged terrain and tends to map more snow when the snow cover is patchy [31].

Figure 2. Comparison of PMW SCA maps for 7 January 2014: (a) FY SCA map, (b) Grody’s SCA map,
(c) Hall’s SCA map, (d) Kelly’s SCA map, (e) Neal’s SCA map, (f) Singh’s SCA map, (g) the South
China SCA map. (blended SCA image (g) using both ascending and descending data for the South
China algorithm and descending SCA images(a–f) for the remaining PMW SCA mapping algorithms).

Monthly OA, OE, CE and PPV present a clear seasonal pattern as shown in Figures 3 and 4.
The OA of all algorithms is mostly high throughout the testing periods, and it improves to nearly
1.0 during the summer months when most regions are snow-free. Snow cover is small and patchy
during the shoulder seasons (i.e., autumn, spring, and summer) leading to deteriorating capability of
all PMW SCA mapping algorithms to detect snow. The OE and CE for all methods increase during the
shoulder seasons when snow is accumulating or melting. During winter, the OE and CE of the seven
algorithms mostly decrease to less than 0.5, and the PPV exceeds 0.5. Overall, the performance of the
seven algorithms is comparable except for that of Singh’s algorithm, which exhibits larger errors than
the others.
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Table 3. OA, OE, CE and PPV of the PMW SCA mapping algorithms.

SCA Reference

In Situ Measurements IMS SCA (SCF > 50%)

Algorithm OA OE CE PPV OA OE CE PPV Node

FY3 SCA
Algorithm

0.950 0.384 0.210 0.616 0.902 0.289 0.102 0.711 A 1

0.950 0.399 0.201 0.601 0.894 0.319 0.105 0.681 D 1

Grody’s
Algorithm

0.921 0.268 0.453 0.732 0.853 0.155 0.319 0.845 A 1

0.945 0.329 0.291 0.671 0.899 0.207 0.179 0.793 D 1

South China
Algorithm 0.919 0.173 0.498 0.827 0.958 0.164 0.420 0.836 A 1 and D 1

Neal’s Algorithm 0.926 0.606 0.348 0.394 0.782 0.487 0.395 0.513 A 1

0.934 0.645 0.187 0.355 0.820 0.531 0.239 0.469 D 1

Singh’s
Algorithm

0.920 0.855 0.178 0.145 0.745 0.831 0.431 0.169 A 1

0.921 0.860 0.040 0.140 0.764 0.860 0.160 0.140 D 1

Hall’s Algorithm 0.931 0.492 0.347 0.508 0.848 0.305 0.276 0.695 A 1

0.941 0.534 0.197 0.466 0.874 0.382 0.128 0.618 D 1

Kelly’s
Algorithm

0.895 0.280 0.549 0.720 0.713 0.299 0.526 0.701 A 1

0.931 0.344 0.387 0.656 0.754 0.347 0.469 0.653 D 1

1 A = ascending data, D = descending data.

Figure 3. Monthly OA (a), PPV (b), OE (c) and CE (d) of the seven PMW SCA maps based on in situ
SD observations.
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Figure 4. Monthly OA (a), PPV (b), OE (c) and CE (d) of the seven PMW SCA maps based on the IMS
snow cover product.

3.1. Effect of Land-Cover Types on Snow Cover Mapping Accuracy

The seven SCA identification algorithms presented in this study are all based on the decision
tree approach with fixed threshold filters. The thresholds remain constant within different land-cover
types. Because microwave radiation characteristics are related to land-cover types [13], the constant
thresholds may introduce errors into classification. Therefore, it is necessary to identify the effects
of land cover on PMW SCA mapping accuracy. Cropland, forest, grassland, and barren are the
main land-cover types of seasonal-snow-dominated regions in China [38]. Their influences on snow
mapping accuracy were analyzed using the land-cover map and in situ observational data.

The land-cover map (Figure 5) used in this study is a resampled product from the Globeland30
land-cover map. The Globeland30 land-cover map was projected and resampled to the same projection
as that of the PMW SCA maps using the majority method. The majority algorithm assigns the most
popular values within the filter window as the label of a pixel. This provides a more interpretable
sense of the majority of land-cover types within each filter window. Pixels with a major land-cover
fraction less than 70% have been removed from analysis because they are dominated by more than one
land-cover type.

Figure 6 shows the OA, CE, PPV and OE of seven PMW SCA maps against station observations
over barren, grassland, cropland and forests. As seen in Figure 6, the OA of all algorithms is not
sensitive to land-cover type. Except for the South China algorithm, the CE of all algorithms over barren
land and grasslands is higher than over the other land-cover types. The misclassification over barren
land and grasslands may be a result of the difficulty in separating snow from frozen ground. Snow and
frozen ground are scattering materials and have similar microwave radiation characteristics, making
them difficult to distinguish. For the South China algorithm, severe omission error occurred over
barren land versus other types of land cover. The OE in the FY algorithm and Grody’s algorithm is not
sensitive to land-cover type. For Hall’s algorithm, Neal’s algorithm, Singh’s algorithm and Kelly’s
algorithm, the OE is slightly higher over forested areas than over other land-cover types.
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Figure 5. Globeland30 land-cover map.

Figure 6. OA (a), PPV (b), OE (c) and CE (d) of the seven PMW SCA maps compared to station
observations in different land-cover types.

3.2. Effect of SCF on Snow-Cover Mapping Accuracy

PMW SCA detection methods provide a binary snow classification that is sensitive to SCF [7,32].
Pixels with low SCF would be hard to detect using binary methods as the lack of snow signals

128



Remote Sens. 2018, 10, 524

can be captured by satellite sensors. The SCF values at 0.25◦ resolution were calculated using the
one-kilometer IMS snow-cover product. Because only the snow-covered pixels (SCF > 0) were part
of the analysis, the indexes OE and PPV were used for assessment. Figure 7 shows the statistics
of OE and PPV associated with SCF. An increase in SCF from 0 to 100% results in a linear decline
in underestimation of snow cover. In contrast to OE, values of PPV increase with increased SCF.
Generally, the binary SCA product derived from optical remote sensing intends to indicate snow
when the pixel’s snow cover exceeds 50% [7,32]. The PMW binary SCA does have apparent omission
errors of less than 50% snow cover as shown in Figure 7. Though the IMS product has the problem of
overestimating snow cover [31], it is still reasonable to believe that PMW binary SCA algorithms are
sensitive to SCF, and their capability to estimate snow cover improves with higher SCF.

Figure 7. OE (a) and PPV (b) of the PMW SCA mapping algorithms associated with different SCFs.

3.3. Effect of SD on Snow Cover Mapping Accuracy

Previous studies have shown the relationship between SD and the accuracy of SCA products: the
accuracy of SCA decreases with decreasing SD [39,40]. In this study, we found a similar relationship
between SD and PMW SCA. In addition, we found different effects of SD on the seven PMW SCA
mapping methods.

Figure 8 presents the PPV and OE of the snow-cover maps for different SD ranges. Observed
SD data were divided into six categories: SD < 5 cm, SD = 5–15 cm, SD = 15–25 cm, SD = 25–35 cm,
SD = 35–45 cm and SD > 45 cm. The omission errors of the seven PMW SC maps show similar
responses to SD ranges. The OE for all algorithms was highest when SD is less than five centimeters
and tended to decline as SD exceeded five centimeters. This can be explained by the positive relation
between SD (or SWE) and snow-cover fractions [41,42]. When snow surrounding the station is shallow,
snowfall events are more likely to occur within a small area of the sensor’s field of view. Under this
situation, pixels tend to be classified as snow-free generating increased OE. In contrast, when SD
observed by station is quite high, pixels tend to be entirely covered by snow resulting in a decreased
possibility of underestimation. PPV for all algorithms was lowest when SD is less than five centimeters.
PPV values were nearly greater than 0.7 for the FY3 algorithm, Grody’s algorithm, the South China
algorithm and Kelly’s algorithm when SD is greater than five centimeters. Variations in PPV of
Grody’s algorithm and Kelly’s algorithm were less affected by SD than that of the other algorithms.
These results indicate that Grody’s algorithm and Kelly’s algorithm are less sensitive to SD than the
other algorithms.
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Figure 8. OE (a) and PPV (b) of the seven PMW SCA maps compared to ground observations at
different snow depths.

4. Discussion

In this study, the performances of seven PMW SCA mapping methods in China were evaluated
using in situ snow depth measurements and the one-kilometer IMS snow-cover product. The purpose
of the study was to evaluate the differences among the PMW SCA mapping algorithms and to identify
the influencing factors on the algorithms. Previous studies have demonstrated several difficulties in
evaluating satellite-derived snow cover [30–32,39]. The use of point data and high-resolution SCA
products for evaluation are both problematic [43]. Which data source is better for validation needs
further study. However, to date, they are still the most reliable and useful validation datasets for
evaluating satellite-derived SCA products [8,11,29,32].

All tested methods are based on the decision tree approach. The different SCA estimations
are attributed to various classification criteria. Criteria for identifying various types of snow
may lead to different positive predictive values and commission errors. Criteria for non-snow
type identification such as precipitation and cold desert may introduce omission errors into snow
identification. To determine whether these criteria can separate snow from other features accurately,
the performances of the criteria in each algorithm as listed in Table 1 were tested using in situ data as
described in Section 4.1. In addition, a classification structure of a decision tree was made of various
nodes [44]. For PMW SCA detection, the nodes of the decision tree were mostly constructed by a
selected multi-band combination of Tb or single-band Tb (hereafter termed Tb index) and the given
thresholds. Proper Tb indexes and thresholds would exactly and accurately separate snow cover from
other features. The performances and effects of Tb indexes and thresholds used in the seven PMW
SCA mapping algorithms were analyzed and are described in Sections 4.2–4.4.

It should be noted that this study tended to evaluate the capability of each tested algorithm on
snow identification, rather than on other feature classification. Thus, we only tested and assessed the
performance of each criterion on snow identification. The classification accuracy of non-snow features
such as precipitation, frozen ground, etc. are not discussed in this paper.

4.1. Criteria of PMW SCA Algorithms

Criteria of the testing PMW SCA algorithms for assessment are listed in Table 1. Evaluation
results are shown in Figure 9. For the FY3 algorithm, the criterion for thin dry snow had a much higher
PPV and slightly higher CE than that of the other four criteria. Therefore, the thin dry snow criterion
could be regarded as a more effective criterion than the other four criteria for snow identification in
China. The criteria of Grody’s algorithm for snow identification and Kelly’s algorithm for deep snow
identification had higher PPV values (>0.65) but introduced large commission errors. For Grody’s
algorithm, the OE caused by the non-snow identification criteria was very small (<0.023) except
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for the precipitation filter, which is the major OE source. Both the PPV and CE of the shallow
snow criterion of Kelly’s algorithm were near zero. These results indicated that the shallow snow
criterion was essentially useless for snow detection in China. The South China algorithm designed
two sets of criteria for identifying snow in forest- or dense-vegetation-covered regions (F-region)
and sparse-vegetation regions (S-region), respectively. Testing results showed that the F-region snow
criteria, with a higher PPV (>0.67) and lower CE (<0.18), performed much better than the S-region
snow criteria. The commission errors of the South China algorithm were mainly attributed to the
S-region snow criterion. The omission errors caused by each non-snow criterion were small (<0.14).
The frozen ground filters were the major OE source of the South China algorithm, and this could be an
important reason why severe omission errors occurred over barren rather than other types of land
cover. Singh’s algorithm, Hall’s algorithm and Neal’s algorithm have shown apparent underestimation
issues as shown in Figure 9, especially for Singh’s algorithm. The OE of Singh’s algorithm reached
0.86, the highest of the seven algorithms. Otherwise, the differences in error characteristics between
ascending and descending data are identical to the conclusion described in Section 3.

Figure 9. Cont.
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Figure 9. The evaluation results of classification criteria for each algorithm: PPV (a), CE (b), OE (c).

4.2. Tb Indexes of PMW SCA Algorithms

The ideal Tb index should exactly separate snow cover from snow-free land. This means the Tb
index values for snow and non-snow should be completely different. The decision tree would have
better classification if its Tb indexes had significantly different values for snow and non-snow.

The Tb indexes used in the seven tested algorithms can be divided into five classes: single-band
Tb, Tb gradient, polarization difference, polarization ratio and day–night Tb difference indexes.
The five classes of Tb indexes and their values for snow and non-snow are shown in Figure 10. Snow,
as a typical cold scattering material, has lower Tb values than the absorbing material (moist soil,
vegetation, etc.). The Tb of snow decreases with increasing frequency. Thus, single-band Tb
indexes and Tb gradient indexes are mainly used to identify snow from other absorbing or warm
materials [16,35]. As expected, values of the single-band Tb indexes for snow and non-snow
are largely different (Figure 10). These results demonstrate the availability of the single-band Tb
indexes for snow discrimination. Most of the Tb gradient indexes have similar snow discrimination
ability, except for (Tb23V − 0.49 × Tb89V). The index (Tb23V − 0.49 × Tb89V) has been used for
filtering precipitation [16,17]. In this study, precipitation is considered non-snow. The range
of (Tb23V − 0.49 × Tb89V) for snow entirely contains non-snow. This means snow would be
barely separable from any other features (including precipitation) using this index. The failure of
(Tb23V − 0.49 × Tb89V) in this study may have been caused by the insufficient training and analysis
data for a global algorithm development [16,35]. Previous studies have proven that the polarization
difference at 19 GHz for cold desert was greater than that of snow [16,18,35]. In this study, there is no
observation station in desert. The index (Tb19V–Tb19H) presents little effect on snow discrimination.
This is reasonable because the polarization difference for various absorbing materials and scattering
materials could be the same, although their scattering characteristics are different [16,45]. The capability
of the polarization difference index at 19 GHz should be investigated based on reliable data in further
studies. The day–night Tb difference index, the polarization difference and the polarization ratio index
at 37 GHz compromised with the Tb gradient indexes can be used to filter wet snow [17,18,45,46].
Only dry snow station records have been used in this study. Therefore, we just tested their effect on
dry snow detection. As seen in Figure 10, the three types of indexes previously mentioned do not
divide snow from non-snow effectively because the index values for snow and non-snow are very
similar. Further research needs to be completed to understand their effects on wet snow detection.
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Figure 10. Box plots of the single-band indexes (a1,a2), the Tb gradient indexes (b1,b2), the polarization
difference indexes (c1,c2), the polarization ratio indexes(d1,d2) and the day–night Tb difference
indexes (e).
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4.3. Thresholds of PMW SCA Algorithms

Thresholds are the other important factor in decision trees. Figure 11 summarizes the Tb indexes
and thresholds used in the seven PMW SCA algorithms. Thresholds defined the upper bounds and
lower bounds of the Tb index values for classification. The upper bounds for snow identification
were mostly near the upper quartile of the snow box plots and lower quartile of the non-snow box
plots. In contrast, the lower bounds for snow identification were mostly near the lower quartile of
the snow box plots and the upper quartile of the non-snow box plots. These results mean nearly
75% of the snow could be detected and nearly 25% of the non-snow would be misclassified as snow.
Similarly, the upper (lower) bounds for non-snow identification were mostly near the upper (lower)
quartile of the non-snow box plots and the lower (upper) quartile of the snow box plots. These results
mean nearly 75% of the non-snow could be successfully filtered and nearly 25% of the snow would be
misclassified as non-snow.

4.4. Effects of Tb Indexes and Thresholds on PMW SCA Algorithms

The criteria for snow identification are essentially a compromising set of various filtering
conditions [16]. The classification results are the compromising product of multiple conditions.
The SCA mapping accuracy is attributed to all of the Tb indexes and thresholds used in the algorithm.
The assessment results are described in Section 3 and can be explained based on the analysis of Tb
indexes and thresholds.

Grody’s algorithm, the South China algorithm and Kelly’s algorithm have a higher PPV and
a lower OE than the other algorithms. As seen in Figures 10 and 11, it was found that most of
the Tb indexes used in the Grody’s algorithm, the South China algorithm and Kelly’s algorithm
have significantly different values for snow and non-snow. The proper Tb indexes provide a higher
possibility for snow discrimination. In contrast, the relatively poorer discrimination ability of the
Tb indexes for snow discrimination lead to misclassification, such as index (Tb23V − 0.49 × Tb89V).
The performances of (Tb23V − 0.49 × Tb89V) used in Grody’s algorithm and the South China algorithm
are unsatisfactory in this study. The index (Tb23V − 0.49 × Tb89V) should be an error source for the
two algorithms. The thresholds are the other important error source of the algorithms. For example,
most of the thresholds used in Kelly’s algorithm tended to identify more snow, resulting in higher
PPV and CE. Similarly, the thresholds of Tb89V and (Tb23V − Tb89V − Tb19V + Tb37V) used in the
South China algorithm were likely to overestimate SCA, leading to a higher PPV and CE. Compared to
Grody’s algorithm, the South China algorithm and Kelly’s algorithm, the compromising set of criteria
used in the FY3 algorithm is conservative for snow discrimination. It balances the problem between
snow identification and overestimation. Though the conservative criteria for snow identification
increases the OE, the FY3 algorithm still balances misclassification errors and snow identification well.
As a result, the overall accuracy of the FY3 algorithm was the highest of all the tested algorithms.

The misclassification problem is severe for Neal’s algorithm, Singh’s algorithm and Hall’s
algorithm. The three algorithms do not have typical criteria for identifying snow from other
scattering materials, and they build conservative condition criteria for snow detection. The lack
of filters and the strict criteria for snow are important error sources. In addition, there are some
other triggers for misclassification. For Neal’s algorithm, its Tb indexes have a poor ability
for snow discrimination (as seen in Figure 11). The threshold for the polarization ratio index
(Tb37V − Tb37H)/(Tb37V + Tb37H) used in Singh’s algorithm seems too high and tends to misclassify
snow as non-snow, leading to a high OE.

134



Remote Sens. 2018, 10, 524

Figure 11. Cont.
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Figure 11. Box plots of Tb index values and thresholds of the seven PMW SCA mapping algorithms:
Grody’s algorithm (a1,a2), Kelly’s SCA algorithm (b1,b2), the South China algorithm (c1–c3), FY SCA
algorithm (d1,d2), Neal’s algorithm (e1,e2), Singh’s algorithm (f1,f2), Hall’s algorithm (g1,g2). (The up
and down arrows indicate the lower bounds and upper bounds of the thresholds, respectively. Arrows
in red and in blue indicate thresholds for snow identification and non-snow identification, respectively.)

It was found that the thresholds and Tb indexes were identical for both ascending data and
descending data as shown in Figures 10 and 11. Though the difference between ascending data and
descending data for most Tb indexes was small, the identical thresholds used in the algorithms still
possibly generate false classification. Thus, the identical thresholds for ascending data and descending
data may be a reason why ascending data and descending data resulted in a different performance.

As shown in Table 4, data for algorithm training and for the presented assessment work are
from various satellite datasets, ground observation datasets and auxiliary datasets spanning different
regions and years. A rich data source for algorithm development as for Grody’s algorithm can
improve the stability of the algorithm. The South China algorithm and the FY3 algorithm were trained
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using Chinese local ground data. As a result, they were more likely to identify the land surface
characteristics as compared to the remaining algorithms over China. This should be a reason for their
good performance in the assessment.

The satellite data for developing the seven tested algorithms include AMSR-E data and SSM/I
data. The Tb data used for evaluating the algorithms are from FY-3C/MWRI. The frequencies for
MWRI are in accord with AMSR-E, and similar to SSM/I. MWRI, SSMI and AMSR-E have similar
configurations. The difference between MWRI, SSMI and AMSR-E observations approximates to
0–2 K [47,48]. The impact of inter-sensor calibration issue is around −0.064–0.056 for OE and CE
calculation, which has rarely affected the assessment results and conclusions shown in this paper.
If the difference between various satellite measurements is obvious, an assessment of the impact of
inter-sensor calibration issues should be carefully considered.

Table 4. Training dataset information for the tested algorithms.

Methods
Information of the Training Datasets

Spatial Coverage
Temporal
Coverage

Satellite
Data

Ground Truth Data and Auxiliary Data

Grody‘s
algorithm

Various regions in the world
including the USA, Canada,
Africa, Australia, etc.

Various days in
1987 and 1993 SSM/I Surface survey reports including

precipitation, snow cover, etc.

South China
algorithm

North China Plain, the South
China and the southern part
of Inner Mongolia

1 Jaunary 2008–20
February 2008 AMSR-E Chinese Meteorological observations,

one-kilometer Chinese land-use map

Kelly‘s
algorithm Northern hemisphere 2007–2008 winter

seasons AMSR-E

Snow climatology dataset
Land, ocean, coasts and ice product,
MODIS land cover product
Forest characterization map

FY3 algorithm
North-east Inner Mongolia
Autonomous Region and
Taklamakan Desert

October
1998–March 2003
winter seasons

SSM/I Chinese Meteorological observations,
NOAA/AVHRR snow cover map

Neal‘s
algorithm USA Several days

during 1987–1988 SSM/I
Major Land Resource Region classification
of the Soil Conservation Service; NOAA
cooperative network of stations

Singh‘s
algorithm Red River basin in USA 1988,1989 and 1997

winter seasons SSM/I Airborne gamma radiation survey dataset
of NWS-USA

Hall‘s
algorithm A modified version of Chang snow depth algorithm (SD = 1.59 × (Tb19H − Tb37H)) for dry snow identification

5. Conclusions

PMW SCA products are an important data source for snow cover monitoring. However, to date,
uncertainty analysis for current PMW SCA mapping methods is rarely reported, especially in China.
To investigate the performances of existing PMW SCA mapping algorithms in China, a thorough
quantitative assessment of seven PMW SCA mapping algorithms in China was conducted in this study.
Taking in situ SD observations and IMS snow cover as “ground truth” references, we compared the
results of the PMW SCA maps derived from the seven algorithms.

Evaluation results for the PMW SCA maps showed the OA to be generally greater than 0.713
and 0.895 with respect to IMS and in situ observations, respectively. Grody’s algorithm, the South
China algorithm and Kelly’s algorithm had higher positive predictive values and lower omission errors
than the remaining studied algorithms. Their major error sources were the commission errors, which
means they tended to estimate more snow. The FY3 algorithm estimated snow conservatively to reduce
these commission issues. The overall accuracy of the FY3 algorithm was the highest of all the tested
algorithms. Because of their conservative criteria for snow detection and the lack of filters for eliminating
non-snow scattering materials, Singh’s algorithm, Hall’s algorithm and Neal’s algorithm had greater
misclassification errors. The descending orbit exhibited a larger PPV, OA, and CE but a smaller OE for
all of the algorithms. The difference in SCA accuracy between the descending and ascending orbits may
be driven by the different atmospheric conditions and daily freeze/thaw cycles. The OA, OE and CE of
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each algorithm showed a clear seasonal pattern, decreasing at the onset of winter and increasing as the
shoulder seasons progressed, while the PPV had the opposite seasonal trend.

The effects of land-cover type, SCF and SD were also analyzed in this study. The results indicated
that serious underestimation of snow occurred over barren land and grasslands using the tested
algorithms. All algorithms are sensitive to SCF and SD. However, Grody’s algorithm and Kelly’s
algorithm are less sensitive to SD than the other algorithms. The capability of the PMW SCA mapping
methods improved as SCF increased as well as when the SD exceeded five centimeters.

In addition, we analyzed each criterion used in the seven PMW SCA mapping algorithms.
The characteristics of the Tb indexes and thresholds used in the tested PMW SCA algorithms were
dissected. We found that some criteria used in the algorithms did not work effectively as designed.
The failure criteria had a slight contribution to snow identification or introduced large classification
errors. Revising the failure Tb indexes and thresholds would be a means to improve the algorithms.
For example, the omission error is the main error course of FY algorithm. Extending the snow criteria
of FY algorithm is the proposed method to reduce its omission error. For Kelly’s algorithm, Grody’s
algorithm and the South China algorithm, their main error source is the commission error. It means
these three algorithms tend to overestimate snow. Tightening their criteria for snow may reduce
their omission error and improve their accuracy. Our analysis can be useful in understanding the
uncertainties and the weaknesses of different PMW SCA mapping algorithms. The results shown in
this study can be useful in developing new methods and can be taken as a reference when using PMW
SCA products in different applications.
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Abbreviations

PMW Passive microwave
SCA Snow cover area
SCF Snow cover fraction
SD Snow depth
SWE Snow water equivalent
Tb Brightness temperature
DTb Brightness temperature of descending orbit
ATb Brightness temperature of ascending orbit

10 H, 18 H, 23 H, 37 H, 89 H
Brightness temperatures at the frequencies of 10.65 GHz, 18.7 GHz, 23.8 GHz,
36.5 GHz and 89.0 GHz for horizontal polarization

10 V, 18 V, 23 V, 37 V, 89 V
Brightness temperatures at the frequencies of 10.65 GHz, 18.7 GHz, 23.8 GHz,
36.5 GHz and 89.0 GHz for vertical polarization

ASCT = ATb23.8V − ATb89V − (ATb18.7V − ATb37.5V)
KLVN = 58.08 − 0.39 × Tb19V + 1.21 × Tb23V − 0.37 × Tb37H + 0.36 × Tb89V
F-region Forest-covered region or dense-vegetation-covered region
S-region Sparse-vegetation-covered region
OA Overall accuracy
OE Omission error
CE Commission error
PPV Positive predictive value
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Abstract: Accurately estimating vegetation productivity is important in research on terrestrial
ecosystems, carbon cycles and climate change. Eight-day gross primary production (GPP) and annual
net primary production (NPP) are contained in MODerate Resolution Imaging Spectroradiometer
(MODIS) products (MOD17), which are considered the first operational datasets for monitoring
global vegetation productivity. However, the cloud-contaminated MODIS leaf area index (LAI) and
Fraction of Photosynthetically Active Radiation (FPAR) retrievals may introduce some considerable
errors to MODIS GPP and NPP products. In this paper, global eight-day GPP and eight-day NPP
were first estimated based on Global LAnd Surface Satellite (GLASS) LAI and FPAR products. Then,
GPP and NPP estimates were validated by FLUXNET GPP data and BigFoot NPP data and were
compared with MODIS GPP and NPP products. Compared with MODIS GPP, a time series showed
that estimated GLASS GPP in our study was more temporally continuous and spatially complete
with smoother trajectories. Validated with FLUXNET GPP and BigFoot NPP, we demonstrated that
estimated GLASS GPP and NPP achieved higher precision for most vegetation types.

Keywords: GPP; NPP; MODIS; validation

1. Introduction

As vegetation productivity is one of the most variable components of the terrestrial carbon
cycle, accurately estimating this component is important in research on terrestrial ecosystems,
carbon cycles and climate change [1]. On a global scale, MOD17 products are the first operational
data sets to regularly monitor global vegetation productivity from MODerate Resolution Imaging
Spectroradiometer (MODIS). Eight-day gross primary production (GPP) and annual net primary
production (NPP) with 1 km spatial resolution are components of the MOD17 product. MOD17 is
derived from a light use efficiency (LUE) model [2,3] based on the MOD12 land cover product,
Data Assimilation Office meteorological datasets, and the MOD15 Leaf Area Index (LAI) and Fraction
of Photosynthetically Active Radiation (FPAR) products. Consequently, the uncertainties of these input
data will influence the accuracy of the MOD17 product [1]. Therefore, estimating global vegetation
productivity products from datasets with a higher precision is imperative for improving the quality of
vegetation productivity products.

Studies have shown that the contaminated or missing MOD15 LAI and FPAR products may
introduce some considerable errors to MODIS GPP and NPP products [4]. In addition, MOD15 LAI
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and FPAR products generated from individual satellite data have been demonstrated to be spatially
and temporally discontinuous on regional and global scales, and are less representative in some
vegetation types [5–8]. Thus, to generate more accurate and consistent GPP and NPP products,
more consistent and higher quality LAI and FPAR datasets should be used. Global LAnd Surface
Satellite (GLASS) LAI products were developed based on time-series MODIS and Advanced Very
High Resolution Radiometer reflectance data using General Regression Neural Networks (GRNNs)
trained with fused time-series LAI from MODIS and Carbon CYcle and Change in Land Observational
Products from an Ensemble of Satellites (CYCLOPES) [9–11]. Studies [9,10,12] have shown that the
GLASS LAI product achieves a higher precision than MODIS LAI and is more temporally continuous
and spatially complete with smoother trajectories. Moreover, Xiao et al. [13] developed the GLASS
FPAR product with continuous trajectories and high accuracy based on the GLASS LAI product.
Therefore, more continuous results with higher precision may be obtained when estimating global
vegetation productivity using GLASS LAI and FPAR products.

For the estimation of vegetation productivity, many models have been developed on both
regional and global scales. Climate productivity models, such as the Miami model, Thornthwaite
Memorial model [14], and Chikugo model [15], are based on the relationships between GPP/NPP
and climate factors. LUE models have great potential to address the spatial and temporal dynamics
of GPP/NPP [16], such as the Carnegie, Ames, Stanford Approach (CASA) [17] and the GLObal
Production Efficiency Model (GLO-PEM) [18]. The basis of eco-physiological process models is
ecological and biophysical process theories, such as the CENTURY [19], Terrestrial Ecosystem Model
(TEM) [20], and Biome Bio-Geochemical Cycle (Biome-BGC) model [21]. MOD17 daily GPP and annual
NPP products are derived from the LUE model. FPAR is related to GPP assimilation, and LAI is
related to respiration when estimating NPP. However, daily MODIS Net Photosynthesis (PSNnet) does
not include the calculation of growth respiration and maintenance respiration associated with living
wood when compared with NPP. In this case, developing a more reliable algorithm to estimate global
daily GPP and NPP by integrating high quality GLASS data and eco-physiological processes is of
great significance.

The aims of this paper are (i) to generate more accurate and continuous global GPP and NPP products
with GLASS data; (ii) to validate the GPP and NPP estimates, and to compare the results with products;
and (iii) to analyze the temporal and spatial variation of global GPP and NPP from 2004 to 2012.

2. Materials and Methods

2.1. Method

2.1.1. Estimation of GPP and NPP

A flowchart of GPP and NPP estimation and validation is shown in Figure 1. To estimate global
daily GPP/NPP by integrating remote sensing data and eco-physiological processes, the Multi-source
data Synergized Quantitative (MuSyQ) NPP algorithm [22] was adopted in this paper. The MuSyQ-NPP
algorithm is essentially a LUE model; thus, daily GPP could be described as:

GPP = ε × FPAR × PAR (1)

where ε is the LUE, and PAR is the photosynthetically active radiation (PAR), which could be obtained
from Global Land Data Assimilation System (GLDAS) incident shortwave radiation R using the
following equation:

PAR = 0.5 × R (2)

LUE may be influenced by many environmental stressors, such as low temperature and water
shortage. In this condition, ε could be described as:

ε = εmax × f1(T)× f2(β) (3)
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where εmax is the biome-specific potential of LUE, and f1(T) and f2(β) are the down-regulation effects
of temperature and water conditions on εmax, respectively. A biome-specific potential εmax Look-Up
Table (LUT) was established by referring to land cover categories according to the Biome Properties
Look-Up Table (BPLUT) of the MODIS GPP/NPP algorithm [23]. It is noted that a potential εmax value
of 1.5 g C MJ−1 for crops was used in the algorithm. f1(T) was calculated according to the CASA
model [17]. The effect of water conditions on plant photosynthesis f2(β) could be described as:

f2(β) = 0.5 + 0.5ET/ETP (4)

where ET represents actual evapotranspiration, which is estimated from a modified P-M approach,
LAI and Fcover products [22,24,25]. ETP represents potential evapotranspiration, which is estimated
using the Priestley and Taylor (PT) equation [26].

NPP is the net flow of carbon from the atmosphere to plants, which is defined as the balance
between GPP and autotrophic respiration.

NPP = GPP − Ra (5)

where Ra is autotrophic respiration. Autotrophic respiration (Ra) could be separated into two parts:
maintenance respiration Rm, which refers to the energy necessary to maintain biomass, and growth
respiration Rg which refers to the energy needed for converting assimilates into new structural
plant constituents.

Ra = Rm + Rg (6)

When estimating Rm, non-forest and forest lands were estimated separately. For non-forest land,
Rm was estimated with LAI and specific leaf area (SLA).

Rm = LAI/SLA × 0.5 × 2(T−Tb)/10 (7)

where SLA was obtained from the BPLUT of MODIS GPP/NPP algorithm [23] in our model.
For forest land, Rm was obtained by summing the maintenance respiration of leaves, stems,

and roots [22].
Rm,i = Mirm,iQ

T−Tb/10
10,i (8)

where Mi is the biomass of plant component i, rm,i is maintenance respiration coefficient for component
i, Q10,i is the temperature sensitivity factor, T is the daily average temperature and Tb is the base
temperature, rm,i is the maintenance respiration coefficient. Forest lands are classified into four classes:
needle-leaf forests, broadleaved forests, mixed forests and others, and Q10,i and rm,i for each class
are obtained according to the BPLUT of MODIS GPP/NPP algorithm [23]. Specifically, leaf mass is
estimated from LAI and SLA:

M1 = LAI/SLA (9)

Stem and root mass are obtained using:

M2 = biomass/(1 + y) (10)

M3 = y × M2 (11)

where y is the ecophysiological biome-specific constant obtained from the Boreal Ecosystem
Productivity Simulator (BEPS) model [27]. The leaf, stem, fine root and coarse root respiration
items were calculated separately, according to the BEPS model.

Growth respiration (Rg) was considered to be proportional to the difference between GPP and
maintenance respiration (Rm):

Rg = γ(GPP − Rm) (12)
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where γ is the growth respiration coefficient and is defined as 0.25.

 

Figure 1. Flowchart of gross primary production (GPP) and net primary production (NPP) estimation
and validation. FPAR: Fraction of Photosynthetically Active Radiation; LAI: Leaf Area Index; LUE:
Light Use Efficiency; PAR: Photosynthetically Active Radiation; APAR: Absorbed Photosynthetically
Active Radiation; DEM: Digital Elevation Model.

2.1.2. Validation of Estimated GLASS GPP and NPP

To assess the performance of the MuSyQ-NPP algorithm, FLUXNET GPP and BigFoot NPP were
used to validate the GLASS GPP and NPP estimates. Specifically, eight-day GLASS GPP estimates
were compared with ground level eight-day FLUXNET GPP, and the average GLASS NPP estimates
in 2004, 2008 and 2012 at each Bigfoot site were compared with ground level yearly BigFoot NPP
for 2000–2004.

2.2. Data and Data Processing

2.2.1. Remote Sensing Data

GLASS LAI/FPAR Products: The GLASS LAI/FPAR products, with a temporal resolution of eight
days and a spatial resolution of 1 km, were generated and released by the Center for Global Change
Data Processing and Analysis of Beijing Normal University [28]. They are also available from the
Global Land Cover Facility [29]. The GLASS LAI product was estimated from time-series MODIS and
AVHRR reflectance data using GRNNs, which were trained for each biome type by fusing MODIS and
CYCLOPES LAI. The GLASS LAI product is believed to be more temporally continuous and spatially
complete compared to the MODIS LAI product [11]. The GLASS FPAR product was generated from the
GLASS LAI product; thus, it shows the same properties as the GLASS LAI product. Validation against
the VAlidation of Land European Remote sensing Instrument (VALERI) ground-based estimates has
shown that both GLASS LAI and FPAR products had high accuracy (RMSE = 0.7848 and R2 = 0.8095 for
the LAI product, RMSE = 0.1276 and R2 = 0.8048 for the FPAR product) [10,13].

MODIS land cover product: The MODIS Land Cover Dynamics product (MCD12Q2) provided
estimates of yearly vegetation phenology on a global scale [30]. The product identified 17 land cover
classes defined by the International Geosphere Biosphere Program (IGBP) with a spatial resolution
of 1 km, which includes 11 natural vegetation classes, three developed and mosaicked land classes,
and three non-vegetated land classes [31].

TRAGL fractional vegetation cover (FCover) product: The TRAGL FCover product, with a temporal
resolution of eight days and a spatial resolution of 1 km, was derived from the GLASS LAI product
based on the method proposed by Xiao et al. [32]. The product is believed to be more spatially and
temporally complete with continuous trajectories compared with the GEOV1 product. Direct validation
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with ground-based FCover estimates demonstrated that the TRAGL FCover product was generated
with high accuracy (RMSE = 0.0865 and R2 = 0.8848) [26].

Global Biomass Map: A global biomass map with a spatial resolution of 1 km was generated by
the Carbon Dioxide Information Analysis Center (CDIAC) [33] using International Panel on Climate
Change (IPCC) methods [34,35]. The global biomass carbon stocks were firstly estimated using the
globally consistent default values provided for aboveground biomass [35], then belowground biomass
(root) was added using the IPCC root to shoot ratios for each vegetation type.

2.2.2. Meteorological Data

Meteorological data were derived from Global Land Data Assimilation System (GLDAS)
products [36]. GLDAS products were generated using four land surface models and data assimilation
techniques with both satellite data and ground based observational data [37,38]. Daily near surface air
temperature, near surface specific humidity, and net shortwave radiation were obtained in our study
by averaging the GLDAS three-hour products. As the spatial resolution of this product was 0.25◦,
bilinear interpolation was adopted to generate the 1 km meteorological datasets.

2.2.3. Field Data

FLUXNET GPP data: FLUXNET is a global network of micrometeorological tower sites used
to measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and
atmosphere. This global network includes more than eight hundred active and historic flux sites,
which are dispersed across most of the world’s climate space and across representative biomes.
FLUXNET data are most commonly used in validation and calibration of ecosystem models, parameter
estimation and optimization procedures in data assimilation systems [39,40]. In our study, daily GPP
derived by the daytime partitioning method from 59 FLUXNET sites (See Table S1 in Supplementary
Materials) was firstly collected, and then eight-Day GPP were obtained by averaging the daily GPP to
validate our GPP estimates and MODIS GPP product [41]. Vegetation types in these FLUXNET sites
include deciduous broadleaved forest (DBF), evergreen broadleaved forest (EBF), evergreen needle-leaf
forest (ENF), cropland (CRO), grassland (GRA), and mixed forest (MF). The locations of FLUXNET
sites used in this study, and the IGBP landcover classes are shown in Figure 2.

BigFoot NPP data: The overall objective of BigFoot was to provide ground validation for MODIS
land cover, LAI, FPAR and NPP products [42]. Nine BigFoot sites were established from Alaska to
Brazil. The BigFoot NPP product was generated using the Biome-BGC model [21], based on Landsat
ETM+ derived land cover and LAI, tower measured meteorological data and eco-physical parameters.
Each BigFoot NPP product covered a 7 × 7 km area with a temporal resolution of one year and a spatial
resolution of 25 m. In our study, BigFoot NPP data were used to validate NPP estimates and the
MODIS NPP product. Basic information on BigFoot sites is summarized in Table 1.

Table 1. Basic information of BigFoot sites.

Site Name Latitude Longitude Biome Type Year

NOBS 55.8853 −98.4773 Boreal forest 2001–2003
AGRO 40.0067 −88.2915 Crop 2000
HARV 42.5285 −72.1729 Temperate mixed forest 2003
CHEQ 45.9453 −90.2731 Temperate mixed forest 2000–2002
METL 44.4508 −121.5733 Temperate needleleaf forest 2002
TAPA −2.86957 −54.9497 Tropical broadleaf evergreen forest 2004
KONZ 39.0890 −96.5714 Tallgrass prairie 2000–2002
SEVI 34.3509 −106.6900 Desert 2003

TUND 71.2719 −156.6130 Arctic tundra 2002
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Figure 2. MODerate Resolution Imaging Spectroradiometer (MODIS) International Geosphere
Biosphere Program (IGBP) land-cover and location of FLUXNET sites and BigFoot sites.

3. Results

3.1. Temporal and Spatial Variation of Global GPP and NPP

Using the MuSyQ-NPP algorithm, maps of global estimated 1 km GLASS GPP and NPP
in 2004, 2008, and 2012 were obtained, as shown in Figure 3. The highest vegetation
productivity (GPP > 2000 g C·m−2, NPP > 1000 g C·m−2) was found in the humid tropic areas,
such as Amazonia, Central Africa and South-east Asia, where both temperature and moisture
requirements are fully satisfied for photosynthesis. Temperate regions have an intermediate
vegetation productivity (GPP ≈ 1000–1400 g C·m−2, NPP ≈ 500–800 g C·m−2), and the lowest vegetation
productivity (GPP < 400 g C·m−2, NPP < 200 g C·m−2) was found in either cold or arid regions,
where either temperature or precipitation are limiting factors. Variations in GPP and NPP are demonstrated
in Figure 4. In general, from 2004 to 2008, few changes occurred in most areas. The largest GPP
increases, about 100 g C·m−2, were in Central China and Eastern Russia. In addition, the largest decreases,
about 150 g C·m−2, occurred in Amazonia and South-eastern Asia. From 2008 to 2012, GPP and NPP
increased in most areas. Specifically, the largest increasing trends occurred in tropic areas, such as Amazonia
and South-eastern Asia, in which GPP increased by approximately 400 g C·m−2 and NPP increased
approximately by 200 g C·m−2. The next largest increases were seen in areas in Russia, Northern America,
and Northeastern China, in which GPP increased by about 100 g C·m−2 and NPP increased by about 50 g
C·m−2. The largest decreasing trends occurred in areas of Eastern Brazil, where GPP decreased by about
300 g C·m−2 and NPP decreased by about 150 g C·m−2.

Global total GPP in 2004, 2008 and 2012 was 108.84 Pg C, 107.30 Pg C and 119.73 Pg C, respectively.
Global total GPP estimates are comparable with values of 109.29 Pg C [4], 110.5 ± 21.3 Pg C [43] and
132 ± 22 Pg C [1]. Global total GPP decreased 1.41% from 2004 to 2008 and increased 11.58% from
2008 to 2012. Global NPP in 2004, 2008 and 2012 was 61.15 Pg C, 60.15 Pg C and 69.53 Pg C, respectively,
which was comparable to previously reported values of 56.40 Pg C [44], 56.02 Pg C [4] and values
between 39.9 Pg C and 80.5 Pg C with a mean of 54.9 Pg C [45]. Global total NPP decreased by
1.64% from 2004 to 2008 and increased by 15.59% from 2008 to 2012 according to our study (Figure 5).
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The mean and standard deviation of GPP and NPP for different land cover types are shown in
Figure 6. GPP and NPP values were highest in EBF. GPP could be as high as 2799.90 g C·m−2·yr−1,
and NPP was approximately 1311.29 g C·m−2·yr−1. GPP and NPP values were lowest in Bare Land:
GPP was only 47.25 g C·m−2·yr−1, and NPP was only 25.71 g C·m−2·yr−1. Generally, GPP and NPP in
2012 were higher than these in 2004 and 2008 at all land cover types. GPP and NPP in 2008 were at their
minimums among these three years. This is more obvious in EBF. GPP was 3097.35 g C·m−2·yr−1 in 2012,
389.76 g C·m−2·yr−1 more than in 2004 and 502.61 g C·m−2·yr−1 more than in 2008. NPP in 2012 could be
as high as 1571.14 g C·m−2·yr−1, 354.75 g C·m−2·yr−1 more than in 2004 and 424.82 g C·m−2·yr−1 more
than in 2008. However, in DNF, MF, open shrubland (OSH) and bare land (BL), GPP kept increasing from
2004 to 2012. Variation in global total GPP and NPP for all vegetated land cover types is demonstrated
in Figure 7. Generally, variations in GPP and NPP from 2004 to 2008 were less than those from 2008 to
2012. The largest variation occurred in the EBF, in which GPP decreased 1.22 Pg C from 2004 to 2008 and
increased 3.24 Pg C from 2008 to 2012. The next largest increases were seen in MF, OSH, woody savannas
(WSAV), savannas (SAV) and GRA, GPP increased about 1 Pg C, and NPP increased about 0.6 Pg C from
2008 to 2012. The lowest variations were in DNF, DBF, close shrub-land (CSH), CRO, artificial land (AL),
cropland/natural vegetation mosaic (C/NV) and BL, in which variations of GPP and NPP were less than
0.2 Pg C. Considering that some of that variability can be explained by regional patterns, we also studied
the mean GPP and NPP for different biomes, as well as the variation in GPP and NPP in different biomes
(See Text S1 in Supplementary Materials).

Figure 3. Global 1 km GPP and NPP in 2004, 2008 and 2012: (a) global GPP in 2004; (b) global NPP in
2004; (c) global GPP in 2008; (d) global NPP in 2008; (e) global GPP in 2012; (f) global NPP in 2012.
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Figure 4. Variations in global GPP and NPP from 2004 to 2012: (a) variation in GPP from 2004 to 2008;
(b) variation in NPP from 2004 to 2008; (c) variation in GPP from 2008 to 2012; (d) variation in NPP
from 2008 to 2012.

Figure 5. Global GPP and NPP in 2004, 2008 and 2012 estimated using Global LAnd Surface Satellite
(GLASS) data.

Figure 6. Global mean and standard deviations of GPP and NPP for all vegetated land cover types:
(a) global mean and standard deviations of GPP; (b) global mean and standard deviations of NPP.
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Figure 7. Variation in global total GPP and NPP for all vegetated land cover types: (a) variation in
global GPP; (b) variation in global NPP.

3.2. Validation of Estimated GLASS GPP

3.2.1. Seasonal Variation in GPP

For various vegetated land cover types, we compared our GPP estimates with eight-day MODIS
GPP product and FLUXNET GPP, as shown in Figure 8. With the application of temporal infilling
of cloud-contaminated pixels and a consistent forcing meteorology in MODIS revised GPP product
(MOD17 C55), we found that the time series of MOD17 C55 GPP was more continuous than the MODIS
standard GPP product (MOD17 C05). But, the time series of estimated GLASS GPP in 2004, 2008 and
2012 are clearly more continuous with smoother trajectories than MODIS GPP (both MOD17 C05 GPP
and MOD17 C55 GPP), and they agree well with the variations in FLUXNET GPP.

More specifically, the time series of estimated GLASS GPP in deciduous broadleaved forests
(DBF) are shown in Figure 8a. It can be clearly seen that estimated GLASS GPP agrees better with
FLUXNET GPP than MODIS GPP does and is more continuous, especially during the growing season.
At US-Ha1 and De-Hai, estimated GLASS GPP matches much better with the FLUXNET GPP and
reflects the peak of the growing season, but MODIS GPP is somewhat underestimated at the peak of
the growing season, especially MOD17 C05 GPP in 2004. FLUXNET GPP and estimated GLASS GPP
could be as high as 14 g C·m−2·d−1 in the peak of the growing season, but MODIS GPP is much lower,
only approximately 8 g C·m−2·d−1.

In evergreen broadleaved forests (EBF), estimated GLASS GPP is obviously more continuous and
generally showed better agreement with the FLUXNET GPP, as shown in Figure 8b. FLUXNET GPP
showed little seasonal variation at the GF-Guy site, which is located in South America and near the
equatorial region. But, at this site, MODIS GPP varied significantly, especially the MOD17 C05 GPP,
and was underestimated in the first half of 2004, 2008 and 2012. In 2008 and 2012, MODIS GPP was
underestimated most of the time and failed to catch the changes in FLUXNET GPP.

Figure 8c shows the GPP time series in evergreen needle-leaf forests (ENF). Good agreement was
achieved between estimated GLASS GPP and FLUXNET GPP, in terms of the absolute values and
seasonal trends. Overall, the time series of estimated GLASS GPP was more continuous than MODIS
GPP. But at DE-Tha, estimated and MODIS GPP were a little underestimated. In 2008, the estimated
growing season was delayed a little compared to the FLUXNET growing season.

Figure 8d demonstrates the GPP time series in croplands (CRO) in 2004, 2008 and 2012. Both
MODIS GPP and estimated GLASS GPP significantly underestimated the FLUXNET GPP. Particularly
during the growing seasons, estimated GLASS GPP and MODIS GPP were much lower than the
FLUXNET GPP. The FLUXNET GPP could be as high as 16 g C·m−2·d−1 at the peak of the growing
season, but our estimated GLASS GPP was only approximately 8 g C·m−2·d−1. The MODIS GPP was
much less, just about 6 g C·m−2·d−1. But in the fallow season, estimated GLASS GPP and MODIS
GPP were higher than the FLUXNET GPP. FLUXNET GPP started to increase rapidly in early June,
but the estimated GLASS GPP and MODIS GPP started to increase in March.

150



Remote Sens. 2018, 10, 327

Figure 8. Seasonal variation in the estimated GLASS GPP, FLUXNET GPP, MOD17 C05 GPP and
MOD17 C55 GPP for several sites with different vegetation types.

In grasslands (GRA), as shown in Figure 8e, peak profiles of FLUXNET GPP appeared in May
and July at the DE-Gri and AT-Neu sites. MODIS GPP and estimated GLASS GPP did not reflect these
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high values. But the matches between the estimated GLASS GPP, MODIS GPP and FLUXNET GPP
were very good at other times.

The time series for the estimated GLASS GPP, MODIS GPP and FLUXNET GPP in mixed forests
(MF) are displayed in Figure 8f. Generally, estimated GLASS GPP and MODIS GPP could capture
the seasonal dynamics of FLUXNET GPP. But estimated and MODIS GPP were a little overestimated
during the growing seasons in 2008 and 2012.

In conclusion, estimated GLASS GPP in DBF, EBF, ENF and MF could capture the variations of
FLUXNET GPP, and their time series are obviously more continuous with smoother trajectories than
MOD17 C05 GPP and MOD17 C55 GPP time series. But in CRO and GRA, estimated GLASS GPP,
MOD17 C05 GPP and MOD17 C55 GPP underestimated the FLUXNET GPP during the growing season.

3.2.2. Validation against FLUXNET GPP

Scatter plots between estimated GLASS GPP and FLUXNET GPP, and scatter plots between
MODIS GPP (MOD17 C05 GPP and MOD17 C55 GPP) and FLUXNET GPP over different vegetative
land cover types were analyzed, as shown in Figures 9–11.

R2 between estimated GLASS GPP and FLUXNET GPP in DBF could be as high as 0.86 in
2004, 0.81 in 2008 and 0.79 in 2012, and RMSE was 1.74 g C·m−2·d−1 in 2004, 2.22 g C·m−2·d−1 in
2008 and 2.12 g C·m−2·d−1 in 2012. As for the MOD17 C55 GPP, RMSE was 2.80 g C·m−2·d−1 in
2004, 2.23 g C·m−2·d−1 in 2008 and 3.19 g C·m−2·d−1 in 2012. For the MOD15 C05 GPP, RMSE was
2.40 g C·m−2·d−1 in 2004, 3.03 g C·m−2·d−1 in 2008 and 3.28 g C·m−2·d−1 in 2012. The comparison
demonstrated that estimated GLASS GPP was more accurate, compared to MODIS GPP (MOD17 C05
GPP and MOD17 C55 GPP) in DBF. In EBF, RMSE between our estimated GLASS GPP and FLUXNET
GPP in 2004, 2008 and 2012 were much lower than RMSE between MODIS GPP and FLUXNET GPP.
Scatter plots of estimated GLASS GPP were distributed more closely around the 1:1 line, but many MODIS
GPP scatter plots are decentralized and are distributed below the 1:1 line. R2 between estimated GLASS
GPP and FLUXNET GPP could be as high as 0.63, 0.65 and 0.64 in 2004, 2008 and 2012, respectively.
But R2 between MODIS GPP (MOD17 C05 GPP and MOD17 C55 GPP) and FLUXNET GPP were relative
smaller. In ENF, we found that RMSEs between our estimated GLASS GPP and FLUXNET GPP in
2008 and in 2012 are marginally higher than RMSE between MODIS GPP and FLUXNET GPP in 2008 and
2012. In CRO, estimated GLASS GPP and MODIS GPP were much lower than FLUXNET GPP within
growing seasons. Therefore, most of the scatter plots were below the 1:1 line, which indicates that both
our estimated GLASS GPP and MODIS GPP were underestimated. In GRA, we found that the RMSE was
lower between estimated GLASS GPP and FLUXNET GPP than that between MODIS GPP and FLUXNET
GPP in 2004. Most scatter plots of MODIS GPP were located under the 1:1 line, which demonstrates that
MODIS GPP is underestimated most of the time. In MF, RMSE was lower between estimated GLASS GPP
and FLUXNET GPP in 2004 and in 2008. MODIS GPP was overestimated in 2008 at BE-Bra and US-PFa.

In conclusion, we found that RMSE between estimated GLASS GPP and FLUXNET GPP was the
smallest in DBF, EBF, CRO, GRA and MF. But in ENF, RMSE between MOD17 C55 GPP and FLUXNET
GPP was the smallest. Therefore, estimated GPP achieved the highest precision in DBF, EBF, CRO,
GRA and MF.
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Figure 9. Validation of estimated GLASS GPP against FLUXNET GPP.153
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Figure 10. MODIS C05 GPP validation against FLUXNET GPP.
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Figure 11. MODIS C55 GPP validation against FLUXNET GPP.
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3.3. Validation of Estimated NPP

Time-inconsistencies were found between Bigfoot NPP and our estimation. The Bigfoot NPP
data were acquired from 2000 to 2004, but our estimation results are from 2004, 2008 and 2012.
To preliminarily validate the model, we calculated the average NPP in 2004, 2008 and 2012 at each
Bigfoot site and compared this to the average BigFoot NPP for 2000–2004. In general, a good linear
relationship exists between estimated NPP and BigFoot NPP (Figure 12). The R2 between estimated
NPP and BigFoot NPP was as high as 0.84, and RMSE was 160.16 g C·m−2·yr−1. R2 between MODIS
NPP and BigFoot NPP was 0.55, and RMSE was 219.26 g C·m−2·yr−1. A higher R2 and lower RMSE
demonstrate that the estimated NPP achieved a better precision than the MODIS NPP product and
indicate the applicability and reliability of the MuSyQ-NPP algorithm in estimating global NPP.

Some studies demonstrate that MODIS products tend towards overestimation of NPP at low
productivity sites (such as SEVI) and underestimation at high productivity sites (such as TAPA) [46,47].
Generally, the overestimation appears to be primarily a problem with high MODIS FPAR, and the
underestimations are primarily a function of low values for the maximum light use efficiency [46,47].
Scatter plots of estimated NPP in our study were located closer to the 1:1 line (Figure 5), especially
at high productivity sites (such as TAPA, KONZ). Overestimates of FPAR at SEVI, METL and CHEQ
in midseason contributed to the high MODIS NPP estimates at those sites [46]. Problems with cloud
effects on FPAR and LAI estimates also lead to some artificial variation in the MODIS products [46],
but the data assimilation framework to generate the GLASS FPAR and LAI products can estimate
temporally complete land-surface parameter profiles from time-series reflectance data even if some of
the reflectance data are contaminated by residual clouds or missing data [13]. Therefore, NPP estimates
at TAPA are more accurate than MODIS NPP.

Figure 12. Validation of estimated GLASS NPP and MODIS NPP against BigFoot NPP: (a) validation
of estimated GLASS NPP against BigFoot NPP; (b) validation of MODIS NPP against BigFoot NPP. x is
the average of BigFoot NPP, the years being averaged are shown in Table 1; y is the average of NPP in
2004, 2008 and 2012.

4. Discussion

4.1. Reasons for GPP Underestimation in Croplands

Estimated GLASS GPP and the MODIS GPP product underestimated and poorly represented
FLUXNET GPP, especially in croplands. Estimated GLASS GPP and MODIS GPP were much lower
than FLUXNET GPP within growing seasons, but estimated GLASS GPP and MODIS GPP were higher
than FLUXNET GPP in non-growing seasons. One of the reasons for these results may be that the
potential LUE for crops shows no difference between C3 and C4 species in the algorithm. The C4
crop species have a larger photosynthetic capacity compared to the C3 species; thus, it is necessary
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to have accurate species-distribution potentials for LUE products in order to determine regional
and global estimates of GPP [48]. Second, the height of the eddy covariance instruments, related to
the spatial representativeness of the observed carbon flux data, is usually low in croplands, such as
BE-Lon and US-Ne3 (about 3.5 m). Scale mismatch exists between ground observed footprint size and
satellite-derived footprint size. Thirdly, the problem of mixed pixels may also have an influence on
the accuracy of estimated GLASS GPP. Some other types of land cover (such as bare land, grassland
and artificial land) may exist in a MODIS 1 km cropland pixel, which may lead to overestimation of
FPAR and LAI in the non-growing season, and underestimation of FPAR and LAI in the growing
season [49,50]. This might also be the reason for the overestimation of GPP in the non-crop-growth
season and underestimation in the crop growth season.

4.2. Limitations in NPP Validation

Site-level validation of MODIS NPP has been more limited because of the logistical constraints
of measuring NPP and scaling it to the size of a MODIS grid cell [43,51]. The BigFoot project
was designed to provide ground validation data for MODIS land products, including NPP. Thus,
the BigFoot data used in this paper to validate GLASS NPP results, varies widely, according site
characteristics, i.e., different climate and vegetation types. As BigFoot data are only generated from
2000 to 2004 (Table 1), the problem of time-inconsistency exists when validating the GLASS NPP
estimates. To reduce the bias, mean BigFoot NPP in different years (Table 1) were used to validate
the estimated mean NPP in 2004, 2008 and 2012. In conclusion, BigFoot NPP could be only used to
validate the GLASS NPP estimates preliminarily.

4.3. Future Work

Satellite derived GPP and NPP are difficult to validate, due to the differences in spatial scale between
the ground and satellite data. First, the height of the sensors at FLUXNET sites, which is related to
the representativeness of the observed data, depends on the type of the vegetation, the extent of fetch,
the range of wind velocity and the frequency response of the instrument [51]. Second, the land surface at
the site should ideally be flat, with an extensive fetch of uniform vegetation. But in the real environment,
many flux tower sites are on undulating or gently sloping terrain, as this is where native vegetation
exists [52]. Moreover, some sites consist of mono-specific vegetation (such as cropland and grassland),
and others contain a mixture of species. Spatial heterogeneity may lead to some mixed pixels in remote
sensing data, therefore, leading to some bias in GPP and NPP estimation and validation. In the future,
we may study the spatial representativeness of ground observation data through footprint analysis [53–55]
and validate the remotely sensed vegetation productivity through the upscaling of ground observation
and fine spatial resolution remote sensing data.

Producing accurate estimates of predictions of LUE is another issue that urgently needs to be
addressed when estimating vegetation productivity. In this study, the biome-specific potential LUE
εmax was set at a certain value for each vegetation type. In addition, in this algorithm, actual LUE was
calculated based on the assumption that LUE was influenced only by low or high temperatures and
water shortages. However, in the real environment, LUE could also be influenced by many other factors,
such as the eco-physiological processes in the vegetation, light intensity, and concentrations of CO2

and O3 in the atmosphere [56,57]. In addition, LUE shows obvious spatial heterogeneity and temporal
variation under the combined influence of vegetation distribution and climate features [58–60].
Therefore, accurate predictions of LUE are an important issue should be solved. In the future, we may
obtain the spatial distribution of LUE by regression or machine learning methods, such as random
forest and support vector machine. Parameter optimization based on process models (such as the
Biome-BGC) may be another way to estimate the spatial patterns of LUE. Moreover, relationships
between LUE and the fraction of PAR absorbed by chlorophyll (FPARchl) [61] could also be used in
LUE estimation.
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5. Conclusions

In this paper, global GPP and NPP were firstly estimated with GLASS data using the MuSyQ-NPP
algorithm, and an eight-day global GPP and NPP product with a resolution of 1km was developed.
Secondly, GLASS GPP/NPP estimates were validated against FLUXNET GPP data and BigFoot
NPP data and were compared with MODIS GPP/NPP products. Then, the temporal and spatial
variation in global GPP and NPP from 2004 to 2012 was analyzed. Lastly, the advantages of the
MuSyQ-NPP algorithm and limitations of this study were discussed. The results of this study indicate
that GLASS data and the MuSyQ-NPP algorithm have great potential in regional and global GPP and
NPP estimates.

Generally, time series of estimated GLASS GPP in 2004, 2008 and 2012 agreed well with the time
series of FLUXNET GPP and MODIS GPP. In addition, the time series of estimated GLASS GPP in our
study was more temporally continuous and spatially complete with smoother trajectories compared to
MODIS time series. Estimated GLASS GPP matched better with FLUXNET GPP in DBF, EBF, ENF and
MF. But in CRO, estimated GLASS GPP and MODIS GPP were lower than FLUXNET GPP within the
growing season. Second, estimates of global GPP/NPP in our study achieved higher precision than
MODIS GPP/NPP. In DBF, EBF, CRO, GRA and MF, RMSEs were lower between our estimated GLASS
GPP and FLUXNET GPP than those between MODIS GPP and FLUXNET GPP. As for NPP, the RMSE
between estimated GLASS NPP and BigFoot NPP was only 160.16 g C·m−2·yr−1, much lower than the
RMSE between MODIS NPP and BigFoot NPP. Thirdly, the global total GPP decreased by 1.41% from
2004 to 2008 and increased 11.58% from 2008 to 2012. In addition, global NPP decreased by 1.64% from
2004 to 2008 and increased by 15.59% from 2008 to 2012. GPP and NPP in 2012 were higher than
in 2004 and 2008 for almost all land cover types. Finally in 2008, GLASS GPP and NPP reached the
minimum value of the period analyzed.
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Abstract: Gross primary productivity (GPP) is an important parameter that represents the
productivity of vegetation and responses to various ecological environments. The Greater Khingan
Mountain (GKM) is one of the most important state-owned forest bases, and boreal forests, including
the largest primeval cold-temperature bright coniferous forest in China, are widely distributed in the
GKM. This study aimed to reveal spatiotemporal vegetation variations in the GKM on the basis of
GPP products that were generated by the Global LAnd Surface Satellite (GLASS) program from 1982
to 2015. First, we explored the spatiotemporal distribution of vegetation across the GKM. Then we
analyzed the relationships between GPP variation and driving factors, including meteorological
elements, growing season length (GSL), and Fraction of Photosynthetically Active Radiation (FPAR),
to investigate the dominant factor for GPP dynamics. Results demonstrated that (1) the spatial
distribution of accumulated GPP (AG) in spring, summer, autumn, and the growing season varied
due to three main reasons: understory vegetation, altitude, and land cover; (2) interannual AG in
summer, autumn, and the growing season significantly increased at the regional scale during the
past 34 years under climate warming and drying; (3) interannual changes of accumulated GPP in
the growing season (AGG) at the pixel scale displayed a rapid expansion in areas with a significant
increasing trend (p < 0.05) during the period of 1982–2015 and this trend was caused by the natural
forest protection project launched in 1998; and finally, (4) an analysis of driving factors showed that
daily sunshine duration in summer was the most important factor for GPP in the GKM and this is
different from previous studies, which reported that the GSL plays a crucial role in other areas.

Keywords: boreal forest; GPP; spatiotemporal distribution and variation; meteorological factors;
phenological parameters

1. Introduction

The importance of vegetation in the global carbon cycle is well known [1–3]. Understanding the
response of vegetation growth to climate variations in recent decades is critical for projecting future
ecosystem dynamics. Although relatively simple in vegetation structure, boreal forests and woodlands
cover nearly 14.5% of the land surface and play an important role in the global carbon budget [4–6].
They are extremely sensitive to climate change and numerous studies have documented the enhanced
terrestrial vegetation growth in the middle and high latitudes of the Northern Hemisphere over the
past three decades [3,7,8].

Remote Sens. 2018, 10, 488; doi:10.3390/rs10030488 www.mdpi.com/journal/remotesensing162



Remote Sens. 2018, 10, 488

The gross primary productivity (GPP) of a terrestrial ecosystem refers to the organic compounds
that are accumulated by green plants on land through assimilating carbon dioxide in the atmosphere
by photosynthesis and a series of physiological processes in plants [9–11]. Terrestrial GPP is the major
driver of land carbon sequestration, and it plays a pivotal role in the global carbon balance, providing
terrestrial ecosystems the capacity to partly offset anthropogenic CO2 emissions [11–14]. GPP varies
diurnally and seasonally in response to both changes in climate (e.g., light, precipitation, temperature,
and humidity) and nutrient availability, whereas the spatial distribution is determined primarily by
climatic conditions [11]. To date, only a few studies [10] have reported on how the GPP of boreal
forests vary with climate.

The increasing availability of remote sensing measurements provides complete global coverage
with a high revisit frequency for vegetation monitoring [15]. The popular data-driven approach to
quantify vegetation variations at the global scales or regional scale is based on vegetation index,
such as the NDVI (normalized difference vegetation index) and EVI (enhanced vegetation index),
which are directly related to vegetation activity [16]. However, the vegetation index can be affected by
many factors that are unrelated to ecosystem structure or function, such as satellite drift, calibration
uncertainties, inter-satellite sensor differences, and bidirectional and atmospheric effects [3,17–22].

Another method of vegetation monitoring is based on remotely sensed GPP models. The major
approach to this method is to employ the maximum light use efficiency (LUE) [23–28]. LUE is the core
of physical models of global GPP products [29], including the Carnegie–Ames–Stanford Approach
(CASA) [30,31], Global Production Efficiency Model (GLOPEM) [28], Eddy Covariance-Light Use
Efficiency (EC-LUE) [32,33], C-Fix [34], MOD17 algorithm [35], Vegetation Photosynthesis Model
(VPM) [6,36], and C-Flux [37,38]. Although the formulas and parameterization schemes vary among
these models, the key idea is still the same, which is to combine all of those factors affecting GPP
in a relatively simple linear or nonlinear way. The EC-LUE model is one of the most powerful GPP
models and has been verified at 54 eddy covariance sites, suggesting that the EC-LUE model is robust
and reliable [32,33]. In addition, and the Global LAnd Surface Satellite (GLASS) GPP data using the
EC-LUE model can provide a good data source for the study of GPP.

Apart from modeling research, studies about spatiotemporal distribution and variation in GPP,
as well as its influence mechanism, are also hot topics [11,39,40]. GPP can be affected by many factors,
such as fire, logging, harvesting, insect outbreaks, and ecosystem dynamics [11]. Temperature was
reported as the main factor of GPP variability in the middle and high latitudes of the Northern
Hemisphere [7,41,42]. Phenological parameters can also result in large changes in annual GPP [43].

The forest ecosystems in northeast China play an important role in the national carbon budget
because they comprise more than 30% of the total forest area in China [44]. Located in northeastern
China, the Greater Khingan Mountains (GKM) is an important state-owned forestry base; also, it is a
unique bright coniferous forest of the cool temperate zone in China, making up the southern boundary
of the boreal forests in Eurasia. The GKM is said to be especially sensitive to climate change [45,46],
and usually precedes low elevation regions in climate change. Over the past 70 years, this area has
been increasingly affected by humans; many of these forests have been subjected to fire disasters and
excessive deforestation. Monitoring and understanding how much the major factors contribute to GPP
variation across the GKM and estimating the spatial patterns of these possible mechanisms are critical.
However, studies on the vegetation of this region are rare or only consider a relatively short period.
No thorough discussion has been carried out on the main factors influencing vegetation variation in
the GKM.

From this point of view, the main objectives of this study are to: (1) reveal the distribution and
dynamics of GPP across the boreal forest, especially the bright coniferous forest; and, (2) understand
the way GPP responses to driving factors and identify the dominant driver to the variations of GPP.
As a result, this paper is organized as follows: Section 2 will introduce the study area and data as well
as methods; Sections 3 and 4 will present spatiotemporal dynamics of GPP and its response to driving
factors respectively; finally, discussions and conclusions are presented in the last two sections.
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2. Materials and Methods

2.1. Study Area

As shown in Figure 1a, the GKM region (50◦10′~53◦33′N, 121◦12′~127◦0′E) is located in the
northernmost area of China. This study area is adjacent to the Lesser Khingan Mountains in the
east, near the vast Hulunbeir Prairie in the west, bordering the fertile Songnen plain in the south,
and separated from Siberia in Russia by the Heilongjiang River. Lying in the east slope of the
Greater Khingan Mountains ridges (GKMR), the study area has an obvious decrease in elevation from
southwest to northeast (Figure 1b). The GKM belongs to the frigid temperature monsoon climate zone,
which has an annual average temperature of −2.6 ◦C. The annual average precipitation is 400–600 mm,
and the majority of the precipitation is concentrated in July to September, providing a relatively
humid environment for vegetation growing. The soils are mainly dark brown coniferous forest soils.
The GKM is an important state-owned natural forest region that serves as a biological protective screen
for northeastern and northern China. Also, it includes a first-grade National Nature Ecological Reserve
with abundant forest resources whose area covers about 80% of this region (Figure 1c), including the
largest and best preserved primeval cold-temperature bright coniferous forest in China (Figure 1a).
However, its forest structure is relatively simple due to the cold weather. The dominant species are
Larix gmelinii and Mongolian pine [45].

Figure 1. (a) Distribution of vegetation type and location of the Greater Khingan Mountains (GKM)
in China, based on the Vegetation Regionalization Map of China (1:6,000,000) [47]; (b) DEM(Digital
Elevation Model) and the meteorological station of the GKM; and, (c) Land cover of the GKM. The land
cover data is from the MODIS dataset of 2001.
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2.2. Data

2.2.1. GLASS GPP Dataset

GPP data was provided by the Global Land Surface Satellite (GLASS) program [48].
This GLASS-GPP product was estimated by an improved EC-LUE model, which was derived from
only four variables: normalized different vegetation index (NDVI), photosynthetically active radiation
(PAR), air temperature, and the Bowen ratio of sensible-to-latent heat flux. Given the invariant
parameters (i.e., the potential LUE and optimal plant growth temperature) across the various land cover
types [33], GPP can address the spatial and temporal dynamics of the carbon cycle. When compared
with the MODIS-GPP product, the GLASS-GPP product exhibited a longer temporal cover, which
includes data every eight days starting from 1982 to the present. Also, it can provide information of
vegetation before and after 1987, when a disastrous fire occurred in the northern part of the GKM.
In conclusion, the GLASS-GPP product demonstrated a high reliability with the revised EC-LUE model
and had a long time series dataset [33], so it can be used to analyze the spatiotemporal distribution
and variation of GPP in the GKM.

A total of 1564 scenes from 1982 to 2015 with 46 scenes per year were analyzed. The original
eight-day GPP product exhibited a spatial resolution of 0.05◦ with WGS1984 coordinate. We extracted
the GPP data using the GKM’s boundary and then projected the data to UTM. The Savitzky–Golay (S-G)
filter [49] in the software TIMESAT [50] was used to smooth some outliers caused by the environment
noise and system error of sensor in the original GPP time series. The S-G filter is widely used because
it can remodel the raw time series dataset to closely capture the sudden change in original values.
After the repeating test, we used a 4 × 4 filter window to rebuild the GPP time series data that was
required in the following step. We finally calculated the accumulated GPP (AG) over a certain period
(i.e., total GPP during the growing season) within one year.

2.2.2. Datasets for Auxiliary Analysis

Meteorological data from five field observation stations in the GKM (Figure 1b) were available
from China’s meteorological data web [51]. Several daily meteorological parameters, including
sunshine duration, average temperature, maximum temperature, minimum temperature, and
precipitation, were used from 1982 to 2015, and then daily parameters were aggregated to determine
seasonal averages for spring (March–May), summer (June–August), autumn (September–November),
winter (December–February), and the growing season (April–October). Furthermore, with the inverse
distance weighting (IDW) interpolation method, we obtained spatially distributed meteorological data
that has the same spatial resolution as the GLASS-GPP products.

Phenological parameters were acquired from the 8-km AVHRR NDVI-3g product with a 15-day
interval from 1982 to 2015 that was produced by the Global Inventory Modeling and Mapping Studies
(GIMMS) project [52]. The AVHRR NDVI-3g dataset was generated with a maximum value composite
(MVC) per half-month and then corrected to minimize the influence of calibration loss, volcanic
eruptions, and orbit drift [26]. To eliminate bare soil and sparsely vegetated pixels on the NDVI image,
we excluded pixels with a mean NDVI < 0.05 in the growing season. Similarly, the S-G filter was used
to smooth the original NDVI data. Finally, the dynamic threshold method [53] was used to obtain the
phenological parameters, and the results were consistent with previous studies [45,54].

Similar to the GPP product, the Fraction of Photosynthetically Active Radiation (FPAR) dataset of
GLASS was used. This kind of product was derived from leaf area index (LAI) via the LUT method [55]
and had the same spatiotemporal resolution as the GPP product.
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2.3. Methods

2.3.1. Unary Linear Regression

On the basis of filtered GPP time series, we used unary linear regression [56] to acquire the
interannual variation characteristics of GPP in the GKM during 1982–2015 at both the regional and
pixel scale. Here, we assumed time t as an independent variable and GPP as a dependent variable
to establish the unary linear regression equation. The principal of unary linear regression can be
generalized by the following equation:

θ =
n × ∑n

j=1 j × GPPj − ∑n
j=1 j∑n

j=1 GPPj

n × ∑n
j=1 j2 − (∑n

j=1 j)2 (1)

where n is the length of the study period (year of monitoring interval); GPPj is the accumulated GPP
of j year; and, θ is the regression slope (annual change ratio of accumulated GPP) acquired by the least
square method. θ > 0 indicates that the accumulated GPP increased over n years and vice versa.

2.3.2. Pearson Correlation

Pearson correlation is considered a standard method to analyze the relationship between two
variables. It can be expressed as follows:

r = ∑n
i=1 (xi − x)(yi − y)√

∑n
i=1 (xi − x)2

√
∑n

j=1 (yj − y)2
(2)

where xi and yi (i = 1, 2, . . . . . . , n) are the time series for two variables; x and y are the multi-year
average values of two variables; and, r is the correlation coefficient. r > 0 indicates a positive correlation
between two variables, whereas r < 0 suggests a negative correlation. The absolute value of r can
represent the closeness of two variables; the larger the r, the closer the two variables are and vice versa.

Several factors affect the distribution and variation of GPP in both temporal and spatial
dimensions. Meteorological elements and phenological parameters are widely considered as
influencing factors and verified in many regions [40,57–59]. Apart from meteorological and
phenological factors, we also considered FPAR, representing the structure and the adaptive capacity of
vegetation, as a factor. Pearson Correlation analysis was conducted between the above factors and GPP
during the period of 1982–2015 at a pixel resolution to assess the influence of individual environment
drivers on vegetation dynamics.

2.3.3. Standardized Multivariate Linear Regression (SMLR) Model

The SMLR model combined several driving factors to explain the dynamics of GPP. To separate
the relative contribution of each driving factor, the fraction in variation partitioning of the multiple
standardized regression was applied. The SMLR model is expressed as follows:

GPP − GPP
σGPP

= β0 + β1
ED1 − ED1

σ1
+ . . . + βn

EDn − EDn

σn
, (3)

where GPP represents a time series of accumulated GPP in the growing season (AGG); EDi (i = 1, 2,
. . . . . . , n; n is the total of driving factors) is a time series of a certain influencing factor covering the
whole study period at the pixel scale, including daily sunshine duration in summer, daily average
temperature in summer, daily precipitation in summer, growing season length (GSL), and FPAR;
GPP and ED1 are the multi-year mean values of AGG and influencing factors, respectively. δGPP and
δED are standard deviations of AGG and influencing factors. Each time series was normalized by
subtracting its mean value and then dividing it by its standard deviation. Thus, any unit change in
each variable has the same statistical meaning and the effects of changes in different factors can be
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compared. β1, β2 . . . βn are regression coefficients that represent the importance of each driving factors
to the GPP. Factors with a large coefficient were assumed to contribute more to the variation in GPP,
and the largest coefficient was identified as the dominant factor to GPP in our study area during the
period of 1982–2015. Also, we used the Variance Inflation Factor (VIF) to examine the multicollinearity
of our driving factors before conducting the SMLR model. Significant multicollinearity exists when the
VIF ≥ 10. Each SMLR model and their coefficients were verified by the F-test and t-test, respectively.

3. Results

Given that the GPP was nearly zero during winter in the GKM, only the AG in spring, summer,
autumn, and the growing season (GS) were considered for analysis.

3.1. Spatial Distribution of GPP

We acquired the multi-year mean AG in spring, summer, autumn, and the growing season
to analyze the spatial distribution of GPP in the GKM over the past 34 years (1982–2015), and the
results are shown in Figure 2. The spatial distribution of AG in the three seasons and the growing
season differed considerably; in spring, the AG decreased from the northeast (134 g C/m2) to
southwest (73 g C/m2). In summer, the northern extreme and southern extreme had large GPP
values (>755 g C/m2), while the west central GKM had the smallest GPP values (<665 g C/m2).
Different from spring and summer, high values began to concentrate in the southern GKM in autumn,
whereas the middle part still had the lowest values. The spatial pattern of the AG during the growing
season (AGG) showed great similarities to the AG in summer, but had larger spatial heterogeneity.
The highest AGG value over the whole region reached 1070 g C/m2, and the lowest AGG value was
about 680 g C/m2.

Figure 2. Spatial distribution of (a) spring-average accumulated gross primary productivity (AG);
(b) summer-average AG; (c) autumn-average AG; and, (d) growing season (GS)-average AG
during 1982–2015.
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3.2. Changes in GPP at a Regional Scale

Temporal variation of GPP at the regional scale can be investigated from two perspectives: intra-
and interannual variation.

Results in Figure 3 showed a significant annual unimodal variation in GPP across the GKM from
1982 to 2015. GPP values began to progressively increase in mid-April, rapidly rose during mid-May to
late-June, and peaked in mid-July. In October, GPP values fell back to a relatively low level. June to August
was the vigorous growth period with high GPP values in a year whose daily GPP was usually greater than
6 g C/m2.

Figure 3. Intra-annual variation characteristic of gross primary productivity (GPP) values during 1982–2015.

Apart from the spatial distribution of AG in different seasons, interannual AG trends in three seasons
and the growing season in the GKM during 1982–2015 were calculated and are shown in Figure 4. Except
for spring, the other two seasons and the growing season exhibited a significant increase in AG with
fluctuations from 1982 to 2015 (Figure 4). However, the increasing levels varied. Among the three seasons,
the AG in summer presented the biggest enhancement (ratio = 2.669 g C/m2 yr−1, p < 0.01), followed by
the autumn (ratio = 0.89546 g C/m2 yr−1, p < 0.01). Statistics showed that the AG in summer accounted for
80% of the AGG of a year and thus could explain the majority increment in AGG.

Figure 4. Cont.
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Figure 4. Interannual variation trends of AG in the GKM from 1982 to 2015.

In addition to the difference in variation trends, years with extreme AG values in different seasons
also varied. In spring, the minimum AG occurred in 1987 and the maximum was in 2014. In summer,
the minimum GPP occurred in 2003 and the maximum was in 2007; and, in autumn, the minimum and
maximum AG occurred in 1982 and 2015, respectively. Also, extreme values in the growing season
showed great similarities to those in summer.

3.3. Spatial Patterns of GPP Trend

Apart from interannual change at the regional scale, we also analyzed variation at the pixel scale.
Because the AGG variation trend was not obvious before 1999, we only displayed linear trends of the
AGG over progressively longer periods from 18 (1982–1999) to 34 (1982–2015) years, starting in 1982.

The amounts of pixels that are characterized by significantly increased AGG were greatly
enhanced after 1999 (Figure 5). Two periods exhibited a notable increase: 1999–2002 and 2003–2008.
A minor dip was observed in 2003 because of the combined effect of low temperature and adequate
precipitation. After 2008, variations in the AGG became flat and the percentage of pixels with a
significant increasing trend was maintained at about 57%.

Figure 5. Area fraction of the AGG displaying different statistical significance levels with progressively
longer time series since 1982 (%). Significant positive stands for the increasing of GPP and significant
negative refers to the reduction of GPP; both indicate a statistical significance of the linear regression
with a Pearson correlation less than 0.05.
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Further exploration (Figure 6) found that pixels characterized by significantly increased AGG
mainly concentrated in the central and southern GKM, while most of the pixels in the north still
showed non-significant trends during the study period. After 2010, though areas with increasing
AGG were still expanding, the variation ratio of some areas, especially the middle part, decreased
(comparing Figure 6c,d).

Figure 6. Spatial distribution of AGG trends across the GKM during the periods of (a) 1982–1999;
(b) 1982–2005; (c) 1982–2010; and, (d) 1982–2015. The linear trends of the AGG were calculated at the
95% confidence level.

3.4. Correlations between GPP and Driving Factors

3.4.1. Effects of Local Meteorological Factors on GPP

In order to compare meteorological variables acquired from the meteorological stations with
GPP values, the time series of GPP in the buffer distance of 25 km [60] around each meteorological
station were extracted for 1982–2015. A Pearson correlation method was then performed between
the extracted time-series and meteorological data to analyze the relationship between the GPP and
meteorological factors. Because the effect of meteorological factors differed under varying seasons
during the year, we calculated the correlation coefficient in different seasons, and the results are listed
in Table 1.
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Table 1. Correlation coefficients of the AG in three seasons and the growing season versus meteorological
factors obtained from five different meteorological stations over the GKM from 1982 to 2015.

Station SD DAT DMAT DMIT DP

Spring

50,136 0.419 ** 0.335 * 0.398 ** 0.257 −0.153
50,246 0.279 0.435 ** 0.495 ** 0.279 −0.179
50,349 0.397 * 0.448 ** 0.482 ** 0.292 * −0.310 *
50,353 0.390 * 0.381 * 0.493 ** 0.200 −0.150
50,425 0.295 * 0.445 ** 0.419 ** 0.407 ** −0.070

Summer

50,136 0.631 ** 0.339 * 0.459 ** −0.144 −0.324 *
50,246 0.614 ** 0.669 ** 0.811 ** −0.155 −0.580 **
50,349 0.814 ** 0.717 ** 0.810 ** −0.017 −0.482 **
50,353 0.835 ** 0.665 ** 0.753 ** 0.247 −0.640 **
50,425 0.565 ** 0.590 ** 0.642 ** 0.304 * −0.470 **

Autumn

50,136 0.474 ** −0.041 0.349 * −0.255 −0.608 **
50,246 0.491 ** −0.026 0.410 ** −0.328 * −0.484 **
50,349 0.677 ** −0.041 0.314 * −0.335 * −0.441 **
50,353 0.134 0.176 0.317 * −0.051 −0.429 **
50,425 0.466 ** 0.304 * 0.333 * 0.206 −0.447 **

Growing Season

50,136 0.620 ** 0.385 * 0.50,2 ** −0.055 −0.371 *
50,246 0.587 ** 0.602 ** 0.789 ** −0.137 −0.544 **
50,349 0.753 ** 0.626 ** 0.773 ** 0.005 −0.513 **
50,353 0.659 ** 0.604 ** 0.704 ** 0.294 * −0.623 **
50,425 0.577 ** 0.572 ** 0.603 ** 0.367 * −0.470 **

SD refers to sunshine duration, DAT refers to daily average temperature, DMAT represents daily maximum
temperature, DMIT represents daily minimum temperature, and DP represents daily precipitation; * p < 0.05,
statistical significance of Pearson correlation; ** p < 0.01, statistical significance of Pearson correlation.

In spring, sunshine duration and temperature played key roles in AG, while precipitation had
little influence on AG during the study period. In summer, vegetation grew rapidly and AG was high.
All of the factors had significant impacts on AG. Sunshine duration and temperature showed nearly the
same positive effects on AG, while precipitation was negatively correlated with AG. AG in autumn and
summer were alike in correlation with meteorological factors, but the effect of precipitation exceeded
that of temperature in autumn and demonstrated an equally significant influence on AG as sunshine
duration. As for AG in the growing season, the relationship between the AG and meteorological
factors were basically the same as that in summer.

3.4.2. Effects of Phenological Parameters and FPAR on GPP

Based on the phenological parameters acquired as shown in Figure 7, we explored the relationship
between the phenological parameters and GPP.

In the GKM, an advance in SOG and delay in EOG leaded to an obvious extension of GSL over the
last 34 years. This result was consistent with previous findings, demonstrating that climate warming
causes an extension of GSL [46,61].

According to many studies [59,62,63] that were conducted in other regions, the extension of GSL
is an important factor for the increasing GPP. We also conducted correlation analysis between GPP and
GSL per pixel along the temporal dimension and obtained the spatial distribution of the correlation
coefficient; the result is displayed in Figure 8.

Results (Figure 8) showed that in the central and southern GKM, there was a significant positive
correlation between GSL and AGG, as was the case in abovementioned areas. The extension of GSL
could explain the increase of AGG in some areas belonging to the GKM over the past 34 years, and
this was consistent with the results of a previous study [59]. The majority of regions in the north and
along the GKMR did not show a significant correlation between AGG and GSL, therefore some other
elements should be considered as driving factors in those areas.
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Figure 7. Variation in phenological parameters in the GKM from 1982 to 2014 (SOG means starting day of
growing season, EOG means ending day of growing season, and GSL means growing season length).

Figure 8. Correlation coefficient between GSL and AGG in the GKM during 1982–2014. (Green indicates
significant positive correlation (r > 0, p < 0.05), brown indicates significant negative correlation (r < 0,
p < 0.05), and gray indicates non-significant correlation (p > 0.05)).

172



Remote Sens. 2018, 10, 488

Apart from phenological parameters, FPAR, which refers to the fraction of absorbed PAR in
vegetation photosynthesis, may also be an important driving factor for GPP, because it can directly
impact the total vegetation productivity during photosynthesis. Correlation analysis, as depicted in
Figure 9, showed a significant positive correlation between GPP and FPAR in the Mohe County, along
the GKMR, and in part of the southern GKM, meaning that FPAR in the areas mention above was an
important factor for AGG; however, little significant correlation was found in the central GKM.

Figure 9. Correlation coefficient between Fraction of Photosynthetically Active Radiation (FPAR)
and AGG in the GKM during 1982–2014. (Yellow and red indicate significant positive correlation
(r > 0, p < 0.05), blue indicates significant negative correlation (r < 0, p < 0.05), and gray indicates
non-significant correlation (p > 0.05)).

A comparison between Figures 8 and 9 showed a great difference of driving factors in different
regions. It is necessary to combine all of the factors mentioned above to explore the spatial distribution
of the dominant factor affecting GPP across the GKM; this will help us to further understand the
underlying mechanism of vegetation dynamics in our study area over the past 34 years.

3.4.3. Dominant Factor for GPP Variation

The above-mentioned five factors (daily sunshine duration of summer, daily mean temperature
of summer, daily precipitation of summer, GSL, and FPAR) all had a direct or indirect impact on GPP.
In this section, we determined the regression between AGG and these five factors with an SMLR model
at the pixel level, and thus found the dominant factor for the GPP variation.

The result of the regression was displayed in Figure 10. It showed that, except for some areas
in the northern GKM, most parts of the GKM were highly correlated with daily sunshine duration
and mean temperature in summer, so these two factors acted as dominant or subdominant factors in
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our study area. Observations in an area called Mohe County in the northern GKM differed where
most parts were closely related to FPAR instead of daily sunshine duration and mean temperature of
summer. Furthermore, GSL and daily precipitation did not exert key effects on GPP when compared
with the other three factors.

Figure 10. Spatial distribution of (a) dominant and (b) subdominant factors for AGG in the GKM from
1982 to 2015 (Non-significant means that there is no significantly effective factor for AGG among these
five driving factors according to the F-test and t-test. A significant F-test was under p < 0.05, and a
significant t-test was under the absolute value of t ≥ 1.96).

According to the coefficients before each independent variable derived from the SMLR model at the
pixel level, we calculated the zonal mean value of coefficients for each dominant factor and the results are
shown in Table 2. Taking sunshine duration as an example, when sunshine duration is a dominant factor
in our study area, each unit increase in sunshine duration causes a 0.519 unit increase in AGG.

Table 2. Zonal mean value of the coefficient for each dominant factor.

Dominant Factor GSL FPAR Temperature Sunshine Duration

Zonal mean coefficients 0.399134 0.453251 0.448733 0.518619

4. Discussions

4.1. Analysis of GPP Spatiotemporal Dynamics

In the GKM, different seasons displayed different patterns of spatial distribution and we
considered three reasons for these phenomena according to our analysis. Understory vegetation,
such as dwarf shrubs, mosses, and reindeer lichens, played an important role. Studies found that the
productivity of understory vegetation is probably comparable with that of the trees [64], and this is
especially obvious in spring when understory vegetation grew more lushly, while most of the trees
were just starting to sprout new leaves, providing a bright environment in which understory vegetation
can acquire more sunshine. The northern GKM had the largest AG values (Figure 2a) in spring, which
can be attributed to understory vegetation. We found much evidence demonstrating that understory
vegetation in the northern GKM was much lusher than that in other parts of the GKM. On one hand,
a majority of bright coniferous forest, which is usually sparser than mixed broadleaf-conifer forest or
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broadleaf forest, mainly concentrated in the northern GKM (Figure 11 shows the contrast of spring AG
in the bright coniferous zone and other areas), so understory vegetation flourished here [65]. On the
other hand, fire is also a primary determinant for understory vegetation [64,66], so the disastrous fire
that occurred in the northern GKM in 1987 may have contributed to the luxuriance of the understory
vegetation in that region.

Figure 11. Contrast of AG in specific land cover and other areas in the GKM.

Altitude was another crucial factor for the spatial distribution of AG in our study area. GPP in
areas lying along the Greater Khingan Mountain Ridges (GKMR) was always smaller than that in
other parts (Figure 12 shows the variation of AGG with elevation, ratio = −0.18 g C/m2 m−1, p < 0.05);
this was especially obvious in summer (as shown in Figure 3b). As we all know, temperature decreases
with the increase in elevation, so the GKMR is a low-temperature zone with low GPP values by nature.
In summer, vegetation in the high-temperature zone grew rapidly, while growth remained slow along
the GKMR, so the gap in productivity increased further.

Figure 12. Variation of AGG with elevation.

Land cover also influenced the spatial distribution of AG. When combining with land cover
data of the GKM (Figure 1c), we found cropland, instead of forest, being widely distributed in the
southern GKM (Figure 11 shows the contrast of spring AG in the cropland zone and other areas).
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Because of human intervention, cropland can grow well in a relatively low temperature and thus the
southern GKM had the largest GPP values across the GKM in autumn when the temperature has
greatly decreased.

Apart from spatial distribution, reasons for the temporal variation of AG were also analyzed.
Annual variation in GPP displayed an obviously unimodal seasonal cycle because Larix gmelinii, a kind
of deciduous coniferous forest, is the dominant species in the GKM. Due to the low temperature and
frozen soil before the 100th day (mid-April) and after the 270th day (early-October), photosynthesis is
weak and thus GPP is mainly produced from mid-May to mid-September, so there is a shorter growing
period than in other regions.

The interannual change of AG at the regional scale displayed significant increasing trends in
summer, autumn, and the growing season; this observation was consistent with findings in a previous
study [67]. Moreover, according to Figure 13 and previous studies [68,69], there was a significant
warming and drying trend of the climate (daily average temperature: ratio = 0.0391 ◦C/yr−1, p < 0.01;
daily precipitation: ratio = −0.0138 mm/yr−1, p = 0.146) in the GKM. What is more, our study area
aggregates a number of heliophilous larch, which is suited to warm and dry environments, so the
climate in the GKM benefitted vegetation growth and resulted in an obvious increase in the AG over
the past 34 years.

Figure 13. Variation in annual mean daily temperature and annual mean daily precipitation in the
growing season over the GKM from 1982 to 2015.

Further studies on interannual variation trends at the pixel scale did not find significant variation
during 1982–1999. As an important source of commercial timbers in China, the effects of the
GKM on maintaining ecological balance and improving the ecological environment have always
been overlooked; for instance, intense anthropogenic activity intervention, such as reclamation and
excessive deforestation, occurred frequently, which led to a dramatic drop in its forest areas. After the
natural forest protection project launched in 1998, timber yield dramatically decreased (Figure 14).
So, there was an obvious increment of AGG in the central and southern GKM entering the 21st century.
Furthermore, the variation of AGG after 2010 was slowed down because of the formation of a relatively
stable vegetation community in the GKM a decade after the natural forest protection project in 1998.
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Nevertheless, some regions in the northern GKM still showed little variation trend, which could
partly be explained by the severe fire in 1987 (Figure 15). In severely burnt area, there was nearly no
natural forestry resources left. A secondary succession procedure occurred, which had dynamic land
cover [70–73] and led to the non-significant changing ratio of AGG.

Figure 14. Variation in timber yield in Heilongjiang Province since 1980.

Figure 15. Burnt zone of the fire in 1987 and land cover in the GKM.
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4.2. The Response of GPP to Driving Factors

Daily sunshine duration in summer acted as a dominant factor for most regions in the GKM.
The sunshine duration in meteorological observation is defined as the period during which direct solar
irradiance exceeds a threshold value of 120 W/m2 [74]. It is a general indicator of the cloudiness of a
location [75]. According to Figure 13, a warming and drying trend has occurred in the GKM, so daily
sunshine duration increased simultaneously. When compared with the impact of GSL on AGG by
extending photosynthesis time in spring (advance of SOG) and autumn (delay of EOG), the daily
sunshine duration in summer prolonged the photosynthesis time in summer when photosynthesis
efficiency is high, and a slight extension of daily sunshine duration contributed to a large enhancement
in AGG. Also, vegetation can absorb more solar radiation over a long sunshine duration, which is
directly related to photosynthesis and was confirmed to be a limited factor in high latitude regions [76].

Temperature had positive effects on GPP, while precipitation had negative effects on GPP,
which were in agreement with relevant study results [40,59–61]. GKM vegetation system was
strongly constrained by low temperature, so the warming trend that is reported above was bound to
increase GPP. Precipitation inhibited GPP across the GKM in most periods when precipitation was
adequate, illumination time and temperature decreased with the thick cloud cover that was brought
by precipitation, which weakened photosynthesis and reduced vegetation GPP; thus, the precipitation
was not a direct factor for GPP. However, in spring when precipitation was rare, no obvious correlation
between GPP and precipitation was found, due to the alimentation of snow.

FPAR, instead of sunshine duration and temperature, was a dominant factor in part of northern
GKM. Overlay analysis revealed a high correlation of the above-mentioned areas with the severely
burnt zone caused by the fire in 1987 (Figure 15). Previous studies [63–65] demonstrated a secondary
succession process in burnt areas. Variation in vegetation type and tree age during the succession
process may have contributed to a non-significant correlation between climate changes and GPP
interannual variation in the northern GKM. On the other hand, FPAR is an important parameter
for photosynthesis, and one previous study [77] revealed a close relationship between FPAR and
vegetation type. Therefore, GPP in the severely burnt area in the northern GKM was closely related
with FPAR.

4.3. Study Limitations

When compared with previous studies that used MODIS datasets after 2000 to analyze
vegetation variation [78,79], this study used the GLASS GPP product and revealed the spatiotemporal
characteristics of GPP in the GKM from 1982 to 2015. Obviously, an extension of the study period
could provide much more information about the dynamic change of vegetation and the carbon cycle.
However, some problems still existed. The precision of the GLASS-GPP time series in our study area
needs to be verified with data observed in the eddy covariance flux tower, however, because of poor
management, data acquired from the tower cannot be used in the verification, so supplementary
analysis using the mainstream MODIS dataset is necessary for making a comparison. On the other
hand, when compared with the distribution area of boreal forest (especially the bright coniferous
forest), the spatial resolution of GLASS-GPP data that we used is a little coarser, and therefore details
may be overlooked. For this reason, further studies combining with spatially finer TM datasets have
been undertaken.

Uncertainty in our correlation results may be caused by the interpolated meteorological data,
the calculated phenology parameters and pixel mismatches (use of remotely sensed data from different
sources). The meteorological observation station are sparsely distributed in the GKM which is
the northernmost part of China, there are only five stations in our study area and the remaining
stations that are distributed around the GKM are far away. Moreover, there are no stations in the
surrounding northern and eastern direction. All of these factors may increase the uncertainty of
the interpolation. There are also some limitations that are caused by the phenological parameters.
Although the phenology parameters we used have been verified by many relative studies [54,80],

178



Remote Sens. 2018, 10, 488

field observation data is still necessary for authenticity verification. Unfortunately, no field observation
data is available for the GKM in the study period, so our work should be improved by further field
observations. Pixel mismatches also caused some errors. Since we used remotely sensed data from
different source, pixel mismatches were inevitable. For example, GLASS-GPP had a 5-km resolution,
while NDVI had an 8-km resolution, so we resampled NDVI to match GPP data, which caused error
in NDVI.

This paper only considered five factors affecting the spatiotemporal dynamics of GPP; other
factors are also important, especially anthropogenic activities and fire in the GKM. For example,
the natural forest protection project launched in 1998 played an important role in our study area,
as mentioned above. However, because such roles hard to quantify, it is difficult for us to know
their specific effect on GPP. What is more, we cannot entirely separate the effect that is brought by
anthropogenic activities and the quantified environment factors, which added some uncertainty to
our study. Therefore, further studies should be concentrated on finding alternatives and analyzing
effects brought by anthropogenic activities and fire. Further study is needed before we can thoroughly
understand the potential mechanisms affecting the spatiotemporal pattern of GPP in the GKM.

5. Conclusions

Based on an analysis of vegetation spatiotemporal dynamics as well as the correlation between
GPP and its driving factors, we drew the following conclusions:

1. In the GKM, different seasons displayed different patterns of spatial distribution because of the
difference in understory vegetation, altitude and land cover. Areas with bright conifer forest
always have a larger GPP because the understory vegetation contributes a great deal to vegetation
total productivities. Altitude impacts GPP by changing temperature. Land cover with intense
human intervention showed different seasonal changes in AGG.

2. Temporal trends of AG at the regional scale showed a dramatic increase from 1982 to 2015 in
summer, autumn, and the growing season. This observation could be considered to be a result of
the warming and drying trend that is seen in the GKM over the past 34 years.

3. Interannual GPP trends at the pixel scale showed that the areas with significant AGG variation
(mostly significant increasing trends) were strikingly expanded after 2000 because of the natural
forest protection project launched in 1998, but the AGG variation displayed a flattened trend over
the last five years due to the formation of a relatively stable vegetation community.

4. Upon aggregating all of the above factors, daily sunshine duration in summer, instead of GSL, acted
as the dominant factor in most of the areas, whereas daily mean temperature in summer was the
dominant factor in a fraction of the GKM. FPAR also acted as the dominant factor in part of the
northern GKM and was closely related to vegetation change that was caused by the fire in 1987.
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Abstract: Due to the spatial heterogeneity of land surfaces, downscaling is an important issue in the
development of carbon cycle models when evaluating the role of ecosystems in the global carbon cycle.
In this study, a downscaling algorithm was developed to model gross primary productivity (GPP)
at 500 m in a time series over rugged terrain, which considered the effects of spatial heterogeneity
on carbon flux simulations. This work was carried out for a mountainous area with an altitude
ranging from 2606 to 4744 m over the Gongga Mountain (Sichuan Province, China). In addition,
the Moderate Resolution Imaging Spectroradiometer (MODIS) GPP product at 1 km served as the
primary dataset for the downscaling algorithm, and the 500 m MODIS GPP product was used as
the reference dataset to evaluate the downscaled GPP results. Moreover, in order to illustrate the
advantages and benefits of the proposed downscaling method, the downscaled results in this work,
along with ordinary kriging downscaled results, spline downscaled results and inverse distance
weighted (IDW) downscaled results, were compared to the MODIS GPP at 500 m. The results showed
that (1) the GPP difference between the 500 m MODIS GPP and the proposed downscaled GPP
results was primarily in the range of [−1, 1], showing that both vegetation heterogeneity factors
(i.e., LAI) and topographic factors (i.e., altitude, slope and aspect) were useful for GPP downscaling;
(2) the proposed downscaled results (R2 = 0.89, RMSE = 1.03) had a stronger consistency with the
500 m MODIS GPP than those of the ordinary kriging downscaled results (R2 = 0.43, RMSE = 1.36),
the spline downscaled results (R2 = 0.40, RMSE = 1.50) and the IDW downscaled results (R2 = 0.42,
RMSE = 1.10) for all Julian days; and (3) the inconsistency between MODIS GPP at 500 m and 1 km
increased with the increase in altitude and slope. The proposed downscaling algorithm could provide
a reference when considering the effects of spatial heterogeneity on carbon flux simulations and
retrieving other fine resolution ecological-physiology parameters (e.g., net primary productivity and
evaporation) over topographically complex terrains.

Keywords: downscaling; GPP; spatial heterogeneity; remote sensing; subpixel information

1. Introduction

The gross primary productivity (GPP), which corresponds to carbon fixation by vegetation at the
ecosystem level, is an important indicator to assess the photosynthetic capacity of vegetation and the
function of the ecosystem. The accurate estimation of regional, continental and global GPP plays an
important role when monitoring vegetation growth conditions [1], the terrestrial carbon budget [2]
and the interactions in the soil-vegetation-atmosphere continuum [3].
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Carbon cycle models have been developed over many years to predict carbon-climate feedbacks
at multiple scale levels [4–6], which can be used to estimate spatially and temporally continuous GPP.
However, most carbon cycle models are generated from the site scale, without considering the spatial
heterogeneity within each modeling grid [7]. Moreover, due to the paucity of the data and computing
complexities, the carbon cycle model is usually executed at coarse resolutions, which are based on the
simplification of landscape complexities. Such a simplification results in large uncertainties due to
spatial heterogeneity, especially in topographically complex terrains. Some researchers have shown
that the oversimplification of landscape complexities may inevitably cause model simulations to be
considerably biased [8–10]. Landscape complexities typically present high spatial heterogeneity, and
spatial heterogeneity is scaled by multiple factors, including endogenous and exogenous factors [11,12].
Endogenous heterogeneity refers to the spatial variability of vegetation types and density (i.e., land
cover and leaf area index), while exogenous heterogeneity is associated with surface topography
(i.e., altitude, slope and aspect). Therefore, it is crucial to consider the effects of spatial heterogeneity
on carbon flux simulation by models.

The carbon flux simulation through carbon cycle models usually requires massive forcing data.
Atmospheric data are one of the most important inputs for carbon cycle model simulation. Theoretically,
atmospheric forcing data, such as air temperature, air humidity and solar radiation, describe the
external environment for the carbon cycle process and exhibit strong spatial variation characteristics
over complex terrain [13–15]. Dense field observations are required to determine the spatial patterns of
atmospheric forcing data, especially for rugged regions. However, due to insufficient meteorological
stations located in mountainous area, the atmospheric forcing data could not be provided accurately at
fine resolution [12]. To overcome the limitation of field meteorological observations for running the
carbon cycle model, downscaling is a potential method to obtain high resolution carbon flux simulation
in topographically complex terrains. Using the relationships between carbon flux estimation and the
surrounding landscape, the disaggregation of low spatial resolution carbon flux estimation and the
information from ancillary data could be introduced in the downscaling scheme.

Spatial scaling is a process of using information available at one scale to derive processes at
another scale, including upscaling and downscaling. Downscaling refers to an increase in spatial scale
following disaggregation of the coarse-resolution dataset and information from ancillary data at a
finer resolution, which restores the variations at a finer scale by assuming the values of the coarser
are the mean values at the finer scale. In the last decade, the downscaling of the carbon cycle process
has been one of the most challenging issues in environmental science, especially over mountainous
areas [16–18]. In the literature, some studies have been carried out to examine the effects of spatial
heterogeneity on the upscaling process of carbon fluxes [8,19], while little attention has been shown
towards the issue of downscaling carbon fluxes over complex terrains. Therefore, it is necessary to
downscale carbon fluxes using the subpixel information of topography and vegetation heterogeneity,
which is an important issue when evaluating the role of ecosystems in the global carbon cycle.

Vegetation heterogeneity and surface topography are important factors that introduce biases into
carbon modeling and water fluxes. Vegetation heterogeneity directly influences the photosynthetic
capacity per unit of surface area. Topography affects the redistribution of water, radiation and heat,
which have significant influences on the process of carbon assimilation. In this paper, the main purposes
are (1) to develop a GPP downscaling algorithm using the subpixel information of topography and
vegetation heterogeneity and (2) to assess the GPP inconsistency at 1 km and 500 m, to analyze the
relationship between spatial heterogeneity and the GPP difference at two scales.

2. Materials and Methods

2.1. Study Area

As shown in Figure 1, the experimental region is northwest of Gongga Mountain on the quaternary
sections of the Tibetan plateau. The summit of Gongga Mountain is 7556 m above sea level, which is
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the highest mountain in the Sichuan Province of China. Mt. Gongga has a mountainous climate that
ranges from a cool plateau climate to a subtropical lowland climate [20]. The annual precipitation is
approximately 3000 mm at the summit and declines to 1300 mm at lower altitudes [21]. The average
annual air temperature decrease with altitude, from approximately 11 ◦C at lower altitudes to −1 ◦C at
higher altitudes [21]. This experimental region, with an area of 2584 km2, has an altitude ranging from
2606 to 4744 m above sea level, and the dominant types of land cover are forestlands (i.e., evergreen
forests and mixed forests), grasslands and shrublands.

 
Figure 1. Study area.

2.2. Data and Processing

2.2.1. GPP Images at 500 m and 1 km

The Moderate Resolution Imaging Spectroradiometer (MODIS) has produced a regular estimation
of GPP since 2000, including the MOD17A2 (8-day, 1 km) and MOD17A2H (8-day, 500 m) products.
The algorithm for the MODIS GPP (gC m−2 day−1) is based on the concept of radiation conversion
efficiency and can be described as follows:

GPP = εmax × TMIN_scalar × VPD_scalar × SWRad × 0.45 × FPAR (1)

where εmax represents the maximum light use efficiency (gC MJ−1) related to the plant functional type
(PFT), which can be obtained from the Biome Properties Look-Up Table (BPLUT); TMIN_scalar and
VPD_scalar are the scalars for minimum air temperature and vapor pressure deficits (VPD), respectively,
ranging from 0 to 1; SWRad represents the incoming short wave radiation (MJ m−2 day−1), and FPAR
represents the fraction of absorbed photosynthetic active radiation, which can be obtained from MODIS
product. The MODIS GPP were scaled by multiple environmental factors, and each environmental
factor has a comparable level of influence on the final simulated GPP. More details regarding the
MODIS GPP algorithm can be found in the literature [22,23]. In addition, some research has been done
to evaluate MODIS GPP products across multiple biomes, suggesting that the MODIS GPP works
effectively for the majority of PFTs [23–25].

The MODIS GPP products MOD17A2 (version 5.0) and MOD17A2H (version 6.0) used in
our study were obtained from Julian day 169, 2010 to Julian day 209, 2010, which can be freely
acquired at National Aeronautics and Space Administration Distributed Active Archive Center
(http://www.modis.ornl.gov/modis/index.cfm). Using spatial heterogeneity information within each
1 km modeling grid, our study was designed to estimate downscaled GPP from a 1 km resolution to a
500 m resolution. Because the 1 km GPP product is executed at a coarse resolution without considering
the spatial heterogeneity within each 1 km modeling grid, the GPP product at 1 km served as the
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primary dataset for the downscaling algorithm in this work. The 500 m GPP product was used as a
reference dataset to evaluate the downscaled GPP results at 500 m.

2.2.2. LAI Data

The MODIS LAI products MCD15A2 (version 5.0) at 1 km and MCD15A2H (version 6.0) at 500 m,
were selected to describe the vegetation density in this study. The 8-day MODIS LAI product is
available at http://wist.echo.nasa.gov in the sinusoidal projection. According to the quality control
layer (FparLai-QC) involved in this product, the MODIS LAI consists of a main look-up-table (LUT)
algorithm (QC < 64) and a back-up algorithm (64 ≤ QC < 128). The LUT algorithm exploits surface
reflectance information in the red and near-infrared bands based on a 3-D radiative transfer equation.
When the LUT algorithm fails, the back-up algorithm adopts NDVI-LAI empirical relationships to
estimate the LAI [26]. The LUT algorithm usually has a higher reliability than that of the back-up
algorithm [26]; the clumping effects at the canopy scale are considered in the LUT algorithm [27].

2.2.3. DEM Data

Some researches have illustrated that the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) global digital elevation model (GDEM) data have a good elevation accuracy over
mountainous area [28–30], ASTER GDEM were adopted to describe the complex terrain in this work.
GDEM data available at a 30 m were averaged to obtain the values at 500 m and 1 km resolutions [7].
The surface slope and aspect were derived from the GDEM data, according to a fast algorithm based
on a 3 × 3 pixels window [31].

2.3. Algorithm for Downscaling

As shown in Figure 2, the proposed downscaling algorithm contains two phases: the regression
process and area-to-point kriging (ATPK) process. It firstly conducts regression analysis between GPP
and heterogeneity factors (i.e., altitude, slope, aspect and LAI), and then ATPK is performed on the
downscaling residuals from the regression process.

Figure 2. Flow chart of the proposed downscaling algorithm.

2.3.1. Problem Formulation

Let GPPR(xj) represent the random variable of pixel R centered at xj (j = 1, 2, . . . , N, where N is the
number of pixels) in 1 km resolution image of GPP, whereas GPPr(xi) represents the random variable
of pixel r centered at xi (i = 1, 2, . . . , M, where M is the number of pixels) in the 500 m resolution
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image of GPP. The notations R and r represent the 1 km and 500 m pixels, respectively. The purpose of
the downscaling method based on topographic factors and the LAI is to predict GPPr(x) at a 500 m
resolution. GPPr(x) can be described as

GPPr(x) = GPPr1(x) + GPPr2(x) (2)

where GPPr1(x) and GPPr2(x) represent the predictions of the regression and ATPK processes,
respectively. More descriptions about their calculation can be found in the following sections.

2.3.2. Regression between GPP and Topographic Factors

The regression takes advantage of valuable spatial heterogeneity information from the ancillary
data at 500 m spatial resolution. The relationship between topographic factors and MODIS GPP at
1 km is modeled by multiple linear regression:

GPPR_obs(x) = b0 + b1HR + b2COS(SR) + b3COS(AR) + b4LAIR (3)

where GPPR_obs(x), HR, SR, AR and LAIR represent the MODIS GPP(gC d−1), altitude (m), slope (deg),
aspect (deg) and LAI (m2 m−2) at a 1 km resolution, respectively. Since GPPR_obs(x), HR, SR, AR and
LAIR in Equation (3) are known, b0, b1, b2, b3 and b4 can be estimated. Currently, a wide range of fitting
methods has been applied in the theoretical framework of regression, such as generalized least squares
(GLS) and ordinary least squares (OLS). In this paper, the OLS algorithm was adopted to estimate the
regression coefficients.

The relationship in Equation (3) is assumed to be universal at different resolutions [32,33], and thus
the relationship modeled at a 1 km resolution can be implemented at a 500 m resolution. Based on this
assumption, the regression prediction GPPr1(x) is calculated as

GPPr1(x) = b0 + b1Hr + b2COS(Sr) + b3COS(Ar) + b4LAIr (4)

where Hr, Sr, Ar and LAIr represent the altitude (m), slope (deg), aspect (deg) and LAI (m2 m−2) at a
500 m resolution, respectively. Variables b0, b1, b2, b3 and b4 are regression coefficients.

2.3.3. ATPK for Downscaling Residuals

If the result of the first phase is perfect, there should be no bias between it and the original GPP
at a 1 km resolution. However, it is unrealistic to obtain such an ideal result, and there are inevitable
residuals from the first process. The residuals at a 1 km resolution are calculated as:

GPPR_residual(x) = GPPR_obs(x)− (b0 + b1HR + b2COS(SR) + b3COS(AR) + b4LAIR) (5)

In this work, the residuals at a 1 km resolution were considered for downscaling, and the ATPK
process served as the second phase when downscaling the residuals, GPPR_residual(x), at 1 km to those
at 500 m, GPPr_residual(x). In the ATPK approach, GPPr2(x) represents a linear combination of residuals
from N 1 km pixel, which can be described as:

GPPr2(x) =
N

∑
i = 1

λiGPPR_residual(xi) , s.t.
N

∑
i

λi = 1 (6)

where λi represents the weight for the residual of the ith 1 km pixel, which is centered at xi. As shown
in Equation (6), the ATPK phase takes the spatial correlation among pixels into account, which is not
considered in the above equations.
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The main issue of the ATPK phase is obtaining the weights, λ, which are estimated by minimizing
prediction error spatial variations at a 1 km resolution. The kriging system can be expressed as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

CRR(x1, x1) · · · CRR(x1, xN) 1
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·

CRR(xN , x1) · · · CRR(xN , xN) 1
1 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ1

· · ·
· · ·
· · ·
λN
μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

CrR(x, x1)

· · ·
· · ·
· · ·

CrR(x, xN)

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where CRR(xi, xj) is the residual covariance between a 1 km pixel centered at xi and a 1 km pixel
centered at xj, and CrR(x, xj) is the residual covariance between a 500 m pixel centered at x and a 1 km
pixel centered at xj. Variable μ represents the range multiplier. To estimate weight λ according to
Equation(7), these two types of residual covariance need to be calculated in advance.

Assuming each pixel as a point, s is intended to represent the Euclidean distance between two
pixels. The 1 km to 1 km residual covariance, CRR(s), and the 500 m to 1 km residual covariance, CrR(s),
can be estimated as:

CRR(s) = Crr(s) ∗ hR(s) ∗ hR(−s) (8)

CrR(s) = Crr(s) ∗ hR(s) (9)

where Crr(s) represents the 500 m to 500 m residual covariance, and hR(∗) represents the point spread
function (PSF). Variable −s indicates that the distance from a 500 m pixel (A) to another 500 m pixel (B)
within a 1 km pixel is opposite to the distance from a 500 m pixel (B) to a 500 m pixel (A) (i.e., s).

Supposing the value of the coarse pixel is the mean of the 500 m pixels within it, and F is the ratio
between the resolutions of 1 km pixel and 500 m pixel, then, PSF can be described as:

hR(x) =

{
1

F2 x ∈ R(x)
0 otherwise

(10)

Given Equations (8)–(10), the calculation of CRR(xi, xj) and CrR(x, xj) can be simplified as:

CRR
(

xi, xj
)
=

1
F4

F2

∑
m = 1

F2

∑
m′ = 1

Crr(smm′) (11)

CrR
(
x, xj

)
=

1
F2

F2

∑
m = 1

Crr(sm) (12)

where Smm’ is the distance between each pair of 500 m pixels from within two 1 km pixels centered
at xi and at xj, respectively, and sm is the distance between 500 m pixels centered at x and any 500 m
pixels within the 1 km pixel centered at xj. Therefore, the critical issue when estimating the weight is
the estimation of the 500 m to 500 m residual covariance, Crr(s), which is essentially semivariogram
modeling [32,34].

2.4. Result Validation and Method Evaluation

In this study, the performance of the proposed downscaling method was evaluated by MODIS
GPP at a 500 m resolution. The coefficient of determination (R2) and the root mean square error
(RMSE) between the downscaled results and the 500 m MODIS GPP were adopted as indicators of
validation. In addition to the proposed downscaling approach, other three downscaling methods,
including ordinary kriging (OK) [35], spline [36] and inverse distance weighting (IDW) [37], were used
to provide a systematic comparison and illustrate the advantages of the proposed downscaling method.
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3. Results and Analyses

3.1. Topographic and Vegetation Heterogeneities at Two Scales

Figure 3 shows the spatial distributions of topographic factors and the LAI on Julian day 193
at 500 m and 1 km resolutions. Although the values of these variables at two resolutions presented
similarity on the whole distributions, the spatial variations at a 500 m resolution are more pronounced
than those at a 1 km resolution.

Figure 3. Spatial distributions of altitude (a); slope (b); aspect (c) and LAI (d) at 500 m and 1 km.

The statistics of the topographic factors and the LAI on Julian day 193 at 500 m and 1 km are listed
in Table 1. The altitude at a 500 m resolution varied between a minimum of 2606 m and a maximum of
4744 m; at a 1 km resolution, the altitude varied between a minimum of 2647 m and a maximum of
4671 m. The mean altitudes at the two resolutions are similar, while the range and deviation in altitude
at 500 m is larger than that at a 1 km resolution. The slope had a maximum of 38◦ at a 500 m resolution,
which varied from the 28◦ maximum at a 1 km resolution. The mean slope value at 500 m (18◦) was
greater than that at a 1 km resolution (12◦), showing that there was a considerable loss of topographic
information at a coarse resolution. The statistical results also show that the LAI on Julian day 193 at
1 km had a smaller deviation than that at 500 m, and the mean value of the LAI at 500 m (7.0 m2 m−2)
was greater than that at a 1 km resolution (5.7 m2 m−2). In addition, the aspect at 500 m had a similar
range, mean value and deviation to those at 1 km.

Table 1. Comparisons of topographic factors and at 500 m and 1 km.

Pixel
Resolution (m)

Min Max Mean STD

500 1000 500 1000 500 1000 500 1000

Altitude (m) 2606 2647 4744 4671 3784 3787 501 489
Slope (deg) 0 0 38 28 18 12 8 6

Aspect (deg) 0 0 360 360 178 177 101 100
LAI (m2 m−2) 0 0 7.0 5.7 1.88 1.58 1.93 1.61

3.2. GPP Difference of the Two MODIS Products

To assess the GPP inconsistency at 1 km and 500 m, a pixel-by-pixel comparison between the
MODIS GPP at two resolutions was implemented with a time interval of 8 days during Julian days
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169–209. Figure 4a presents the relationships between MODIS products at 500 m and 1 km during
the study period. From Julian day 169 to Julian day 209, the 1 km MODIS GPP explained between
24% and 47% of MODIS GPP at 500 m, with RMSEs varying between 1.34 and 2.14 gC m−2d−1.
In general, the MODIS GPP at 1 km had a significant inconsistency with MODIS GPP at 500 m
(R2 = 0.36, RMSE = 1.62) during the whole study period, showing that the simplification of complex
terrain within each modeling pixel might cause the model results to be considerably biased.

Figure 4. Density scatterplot between MODIS GPP and downscaled GPP at 500 m during Julian
days 169–209. (a) represents the comparison between MODIS GPP products; and (b–e) represent the
comparison between downscaled GPP and MODIS GPP at 500 m. The solid lines are the regression lines,
while the dashed lines are the 1:1 lines. The green and red represent the low-density and high-density
areas, respectively.
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To investigate the effects of topography on GPP, a mismatched MODIS GPP between a 1 km
resolution and a 500 m resolution was analyzed. Figure 5 illustrates the relationships between
topographic factors (i.e., altitude, slope) and the inconsistency in the MODIS GPP at 500 m and 1 km
during Julian days 169–209. Altitude and slope were divided by 500 m and 10◦ intervals, respectively,
and the relative error (RE) was adopted to evaluate the inconsistency in the MODIS GPP at 500 m and
1 km. It was found that the inconsistency in MODIS GPP at two resolutions increased with the increase
of slope and altitude. In addition, there was not an obvious relationship between the aspect and the
inconsistency in MODIS GPP at two resolutions.

Figure 5. Relationships between topographic factors and inconsistency in the MODIS GPP at 500 m
and 1 km during Julian days 169–209.

3.3. Downscaled Results

To evaluate the quality of the downscaled GPP, a pixel-by-pixel comparison between the MODIS
GPP at 500 m and the downscaled GPP results was implemented during Julian days 169–209 (Figure 4b).
From Julian day 169 to 209, the downscaled GPP for all pixels could be explained between 85% and
91% of 500 m MODIS GPP, with RMSEs varying between 0.71 and 1.30 gC m−2d−1. The points in the
scatterplots clustered around the 1:1 lines (R2 = 0.89, RMSE = 1.03), and the downscaled GPP were
slightly higher than MODIS GPP at high GPP values. In general, the downscaled GPP showed a strong
consistency with the MODIS GPP at 500 m.

Figure 6 illustrates the absolute differences of GPP values between the 500 m MODIS GPP and
the downscaled GPP results. During Julian days 169–209, the percentages of absolute differences in
ranges of [0, 1], [1, 2], [2, 3], [3, 4], [4, 5] and [5, 6] were 70.78%, 23.02%, 3.47%, 1.61%, 0.89% and
0.23%, respectively. The pixels whose absolute GPP differences between the 500 m MODIS GPP and
the downscaled GPP results were in the range of [0, 2], accounting for 93.80% of the total pixels in
the study area, showing that the downscaling method proposed in this study could be effectively
used to obtain the GPP at 500 m resolution. Figure 7 shows the density distributions concerning the
GPP differences between the 500 m MODIS GPP and the downscaled GPP results. The mean values
of differences between downscaled GPP and 500 m MODIS GPP varied between 0.60 and 1.03 gC
m−2d−1, with standard deviations changing between 0.47 and 1.10 gC m−2d−1, which were smaller
than those between MODIS GPP at 500 m and 1 km (mean = 1.36, std. = 1.34). It was worthwhile to
note that, the proposed downscaling method could effectively solve the GPP underestimation of 1 km
MODIS GPP.
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Figure 6. The spatial distribution of absolute GPP differences between the 500 m MODIS GPP and the
downscaled GPP results for Julian days 169–209. Figures (a–f) indicate Julian days 169–209, respectively.

 
Figure 7. The density distributions concerning the GPP differences between the 500 m MODIS
GPP and the downscaled GPP results for Julian days 169–209. Figures (a–f) indicate Julian days
169–209, respectively.
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To illustrate the advantages and benefits of the proposed downscaling method, the downscaled
results in this work, along with the kriging downscaled results, spline downscaled results and
IDW downscaled results, were compared against the MODIS GPP at 500 m (Figure 4). In general,
the proposed downscaled results (R2 = 0.89, RMSE = 1.03) had a stronger consistency with the 500 m
MODIS GPP than the kriging downscaled results (R2 = 0.43, RMSE = 1.36), the spline downscaled
results (R2 = 0.40, RMSE = 1.50) and the IDW downscaled results (R2 = 0.42, RMSE = 1.10) for all Julian
days. Hence, it can be concluded that the proposed downscaling method has a potential application for
GPP downscaling to obtain 500 m GPP distributions, especially in mountainous areas. The results also
illustrated that vegetation heterogeneity factors and topographic factors were effective for downscaling
land surface fluxes, showing good matches with other related studies [7,8,38].

4. Discussions

4.1. The Topographic Effects on GPP Inconsistency at Two Resolutions

The time series GPP estimation is very important for monitoring vegetation growth conditions.
Mountainous regions typically present high spatial heterogeneity, which is characteristic of steep
slopes, altitude variations and notably biological diversity [11,39,40]. The results in this study showed
the topography had a significant relationship with MODIS GPP inconsistency at two resolutions, as the
topography influences the surrounding environment of the carbon assimilation procedure, such as
air humidity, air temperature, water redistribution and solar radiation. Generally, air temperature
increases linearly with the decrease of altitude. However, in most carbon cycle models, air temperature
is assumed to be homogeneous within each modeling grid. This assumption neglects the impact of
inner altitude variations in each grid, bringing uncertainties to the simulation over complex terrain.
Besides air temperature, solar radiation, air humidity and precipitation also face the same problems.
Related studies have illustrated that the spatial variations of altitude and slope greatly influenced
hydrologic procedure [13,14,41], and hence affect the carbon assimilation procedure [42–44]. In general,
the patchy ecosystem structures in mountain areas usually follow topographic and climatic gradients,
and the remarkably spatial heterogeneity has considerable effects on the spatial distributions of
GPP estimation.

4.2. Evaluations of the Proposed Downscaling Method

Serving as an effective tool in the estimation of GPP, the carbon cycle model is typically executed at
coarse resolutions due to the paucity of the data and computing complexities. Landscape complexities
are assumed to be simplified in a carbon cycle model by ignoring spatial heterogeneities within
each modeling grid. It has been illustrated that the oversimplification of landscape complexities
may inevitably cause model simulations to become considerably biased [8–10]. In this approach,
massive forcing data were required to run the carbon cycle model, including the spatial distributions
of temperature, radiation, vapor pressure deficits and so on. In mountainous areas, the regional
estimation of the meteorological element was a challenge, especially at fine resolution [12,13,45].

In this study, a downscaling algorithm of GPP was developed to obtain the GPP distribution at
500 m resolution. The proposed downscaling method contains two phases: a regression process and
an ATPK process. The first phase was used to reduce uncertainties caused by topographic effects and
vegetation heterogeneities. A regression analysis was first conducted between the GPP estimation
and spatial heterogeneity factors; then, the ATPK was performed to downscale residuals from the
regression process.

This study tested the thesis that the 500 m GPP could be obtained from 1 km GPP and spatial
heterogeneity information, which avoided complex calculation and the limit of forcing data through
the carbon cycle models. It was found that the proposed method could be effectively used to obtain
the GPP at 500 m resolution, showing significant advantages over the kriging method, spline method
and IDW method. Our results also illustrated that both endogenous factors (i.e., LAI) and exogenous
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factors (i.e., altitude, slope and aspect) were useful for GPP downscaling. Exogenous factors have
significant effects on the various instantaneous land surface fluxes due to the redistribution of water
and their interactions with atmospheric elements [43,46,47]. The endogenous factors can be regarded
as the accumulated outcomes of the surrounding environmental conditions [48], such as topography,
climate and soil property. Therefore, both exogenous and endogenous factors should be considered in
the downscaling scheme to remove biases within the coarse modeling grid.

4.3. Limitations of the Current Work and Prospects for Future Studies

The proposed downscaling method in this work fully utilized valuable topographic and vegetation
information from ancillary data at a 500 m spatial resolution to reduce uncertainties in spatial
heterogeneities over rugged terrain. However, due to practical constraints, there were also several
limitations in this study. First, the proposed downscaling algorithm was based on the MODIS GPP,
DEM and LAI data, and any errors in the source data would propagate into the final downscaled
results [49,50]. Second, the resampling method for 30 m GDEM data influenced the quality of DEM data
at 500 m and 1 km resolutions, and hence affected the accuracy of the topographic information [51,52].
In addition, the choice of algorithm for slope and aspect also resulted in uncertainty [53–55], besides
slightly affecting the downscaling procedure. Third, although our algorithm considered the main
factors (i.e., vegetation density, altitude, slope and aspect) for GPP downscaling, several other factors
(e.g., land cover, soil texture, and soil depth) were not included in the algorithm, which might result
in slight uncertainties. Finally, due to the lack of reference data for validation at smaller resolution,
MODIS GPP at 1 km resolution were scaled only down to a 500 m resolution. This study tested the
thesis that the 500 m GPP could be obtained from 1 km GPP and spatial heterogeneity information.
Based on this thesis, the relevant work of obtaining the GPP at a finer resolution (e.g., 30 m) will be
presented in an additional study.

To improve the performance of the proposed downscaling method, future studies should consider
more factors in the downscaling algorithm, and attention should be given to the effects of accurate
ancillary data (i.e., DEM and LAI data) on the final GPP downscaled results. Moreover, the proposed
downscaling method should be applied in more heterogeneous areas to test the feasibility and stability
of the algorithm.

5. Conclusions

In this work, a downscaling algorithm was developed to retrieve the GPP at 500 m resolution in a
time series over rugged terrain, which considered the effects of spatial heterogeneity on carbon flux
simulations. The GPP product at 1 km served as the primary dataset of the downscaling algorithm,
and the 500 m GPP product was used as the reference dataset to evaluate the downscaled GPP results.
It was found that the proposed downscaling method had advantages over the kriging method, spline
method and IDW method. Our results also showed that vegetation heterogeneity factors (i.e., LAI)
and topographic factors (i.e., altitude, slope and aspect) were useful for GPP downscaling.

Our study developed a reliable downscaling method to derive a 500 m resolution GPP for time
series over mountainous areas, which is an important issue when evaluating the role of ecosystems in
the global carbon cycle. Furthermore, our proposed downscaling algorithm could provide a reference
when considering the effects of spatial heterogeneity on carbon flux simulations and retrieving
other fine resolution parameters (e.g., net primary productivity and evaporation) in topographically
complex terrains.
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Abstract: Gross primary production (GPP) in forests is the most important carbon flux in
terrestrial ecosystems. Forest ecosystems with high leaf area index (LAI) values have diverse species or
complex forest structures with vertical stratifications that influence the carbon–water–energy cycles. In this
study, we used three light use efficiency (LUE) GPP models and site-level experiment data to analyze the
effects of the vertical stratification of dense forest vegetation on the estimates of remotely sensed GPP
during the growing season of two forest sites in East Asia: Dinghushan (DHS) and Tomakomai (TMK).
The results showed that different controlling environmental factors of the vertical layers, such as
temperature and vapor pressure deficit (VPD), produce different responses for the same LUE value
in the different sub-ecosystems (defined as the tree, shrub, and grass layers), which influences the
GPP estimation. Air temperature and VPD play important roles in the effects of vertical stratification on the
GPP estimates in dense forests, which led to differences in GPP uncertainties from −50% to 30% because
of the distinct temperature responses in TMK. The unequal vertical LAI distributions in the different
sub-ecosystems led to GPP variations of 1–2 gC/m2/day with uncertainties of approximately −30%
to 20% because sub-ecosystems have unique absorbed fractions of photosynthetically active radiation
(APAR) and LUE. A comparison with the flux tower-based GPP data indicated that the GPP estimations
from the LUE and APAR values from separate vertical layers exhibited better model performance than
those calculated using the single-layer method, with 10% less bias in DHS and more than 70% less
bias in TMK. The precision of the estimated GPP in regions with thick understory vegetation could be
effectively improved by considering the vertical variations in environmental parameters and the LAI
values of different sub-ecosystems as separate factors when calculating the GPP of different components.
Our results provide useful insight that can be used to improve the accuracy of remote sensing GPP
estimations by considering vertical stratification parameters along with the LAI of sub-ecosystems in
dense forests.

Keywords: vertical vegetation stratification; gross primary production (GPP); light use efficiency;
dense forest; MODIS; VPM; temperature profiles; humidity profiles

Remote Sens. 2018, 10, 1329; doi:10.3390/rs10091329 www.mdpi.com/journal/remotesensing199



Remote Sens. 2018, 10, 1329

1. Introduction

As a key component of the global carbon cycle, the terrestrial gross primary production (GPP)
in forests plays an important role in the global carbon, water, and energy cycles [1–3]. GPP is
the amount of illumination energy from the sun that is transformed into biomass energy, and is
dependent on the illumination, heat, and water in terrestrial ecosystems [4,5]. Precisely estimating
GPP is essential for evaluating terrestrial carbon cycles, which also influence climate change [6].
Approximately 40% of GPP is directly or indirectly used by humans [7]. Vegetation is the key
component in the ability of humans to adjust the climate and mitigate increasing atmospheric CO2 [8].
Currently, several GPP remote sensing products, such as MPI-BGC [9], MODIS [10], JULES [11,12],
BESS [13], and BEPS [14,15], which estimate GPP over large regions, exhibit different estimation
accuracies for different vegetation types.

Forest ecosystems cover more than 30% of the land surface and represent 80% of the aboveground
biomass on Earth [16,17]. In primeval forest ecosystems, the aboveground parts of the forest system can be
divided into two components, the overstory and understory. The overstory component is the tree layer
that intercepts direct solar radiation. The understory is defined as the vegetation structures under the
upper layer of the canopy, and it is mainly composed of species of vegetation that prefer shaded conditions.
In tropical and subtropical dense forests, the understory component can be divided into shrub and grass
layers, but in temperate forests, this component consists of mostly grasses and herbs [18,19].

Both overstory and understory species are important contributors to the carbon uptake in
terrestrial ecosystems [20,21]. Some studies have shown that understory vegetation contributes 32%
of the total GPP in tropical forests [22,23], but this contribution may be 25% in temperate forests [24].
A recent study showed that the shaded GPP has increased by 1.1% over the past three decades [25].
This variability is due to variations in the light, temperature, and humidity conditions in the understory
and overstory. Shaded leaves also have unique characteristics, with understory and overstory
vegetation exhibiting different responses to the environment and various photosynthetic traits [26–30].
However, in regions with high biodiversity and a high leaf area index (LAI) values in the forest zone,
such as evergreen broadleaf forests (EBF) and artificial forests, the estimation of GPP exhibits high
variance [31,32]. Furthermore, GPP estimations by remote sensing methods combined with canopy
photosynthesis models do not consider the understory incident radiation, and thus may underestimate
the total GPP [33–35].

In dense forest ecosystems, canopy species show multiple leaf functional traits that are important
for GPP estimation. Leaf traits vary greatly among overstory and understory species. When scaling
up different leaf traits to whole ecosystems [36,37], the structural parameters of ecosystems are some
of the most important controlling factors [38,39]. However, species in the same vertical stratification,
such as the tree and grass layers in temperate forests and the trees, shrubs, and grasses in tropical
rainforests, have similar living environments, and thus similar leaf traits [40–48].

Remote sensing is a useful approach for estimating ecosystem GPP at larger spatial scales [8,49].
In forest sites, many studies have demonstrated that micrometeorological parameters such as temperature,
humidity, photosynthetically active radiation (PAR), and longwave incident radiation exhibit vertical
gradients [50–54]. Moreover, the physiological parameters of vegetation such as chlorophyll contents
also exhibit vertical gradients [42,55,56]. However, it is difficult to capture these signals from deep in
the canopy. Many scientists have used models and methods to retrieve vertical environmental and
physiological parameters such as temperature, humidity, PAR, the fraction of absorbed PAR (FPAR),
the LAI, and the light use efficiency (LUE) [57–62]. Wu et al. and Kosugi et al. [63,64] also determined the
rules of the leaf-scale maximum carboxylation rates (Vcmax25) at different heights. All of these models or
methods were developed in specific regions; therefore, it may be difficult to determine the parameters on
a global scale. In this article, we introduce three GPP models based on LUE models that are based on the
Monteith [65] methods. Monteith’s function is calculated as:

GPP = LUE × PAR × FPAR (1)
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where LUE is the daily LUE, and FPAR is the fraction of the absorbed PAR estimated from the LAI
and zenith angle. The daily LUE is calculated by different factors that are used to determine LUEmax,
and the numerical exercises have specific input parameters.

Different models have various parameterizations of environmental stress for LUE; for example,
the vegetation photosynthesis model (VPM; Xiao et al. [66]) assumes that temperature is of low
importance to LUE at optimal growing temperatures, but it is of high importance at high (50 ◦C)
and low temperatures (0 ◦C). The MOD17 (MOD, Running et al. [4,67]) model was designed to use
remote sensing data for GPP estimation, and this model utilizes a higher stress factor (less than 10%
of the LUE for optimal growth) at low daily minimal temperatures (−8 ◦C) and a low stress factor
(100% of the LUE for optimal growth) at high daily minimal temperatures (9 ◦C). The model developed
by Wu et al. [63] assumed that high temperatures were important for LUE (more detailed information
can be found in the Supplementary Material).

However, the models mentioned above did not consider the effect of vegetation stratification
on the forest canopy. The goal of this study was to investigate the effect of vertical stratification on
remotely sensed GPP estimations in selected dense forest. We raised the following two questions:
(a) how do environmental drivers vary with height in multilayer dense forests; and (b) does adding
vertical stratification parameters to remotely sensed GPP algorithms improve the performance of the
estimations in forest canopies? To address these questions, we used eddy covariance flux data from
two sites, including one EBF and one artificial Japanese larch forest, in three remotely sensed LUE
models to evaluate the responses of GPP to different factors during the growing season. These sites
have meteorological data measurements at multiple heights combined with vertical stratification
information, such as temperature, vapor pressure deficit (VPD), and PAR.

2. Materials

2.1. Study Sites

In this research, we selected Dinghushan (DHS) and Tomakomai (TMK) as the research areas.
Both of these areas have dense forests and a conspicuous vertically stratified vegetation structure during
the growing season from April to October. DHS, which is located in a monsoon subtropical forest
climate zone in the southeast part of China, has a 15 m-high broadleaved forest canopy, while TMK,
which is located in the northeast part of Japan, has a 15 m-high deciduous needle leaf (DNF) canopy.
Vertical meteorological and canopy eddy covariance (EC) data were measured at both sites. A certain
amount of understory LAI (>0.9 m2/m2) was found in these two sites during the growing season.
Two selected sites’ detailed information is showed in Figure 1 and Table 1.
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Figure 1. Locations of the two study sites in East Asia.

2.1.1. Dinghushan (DHS)

The study area in the DHS Nature Reserve (DNR) is located in the west–central part of Guangdong
Province in southeast China. This study area is located in a southern subtropical monsoon humid
climate; the average annual temperature of the DNR is 21.8 ◦C, and the mean annual rainfall is 1927 mm.
The period from April through September represents the rainy season, and November to January
represents the dry season [68,69].

The flux tower located in the DNR study area (23◦10′ N, 112◦32′ E, 240 masl) is surrounded by
more than 70% of EBFs, and the remaining proportion is evergreen coniferous forest. The canopy
height near the flux tower is approximately 17 m. Vertically, the forest structure can be divided into
four layers: two tree layers, one shrub layer, and one herb and grass layer. The dominant species in
the canopy layers are Schima superba, Castanopsis chinensis, and Pinus massoniana. Near the flux tower,
the LAI values for the tree, shrub, and grass layers were 2.6 m2/m2, 0.26 m2/m2, and 0.92 m2/m2,
respectively, on 6 August 2005.

The flux tower contained seven levels of meteorology instrumentation for measuring different
variables above or within the canopy, such as temperature and humidity, with shielded and aspirated
probes (HMP45C, Campbell Scientific, Inc., Logan, UT, USA) at 4 m, 9 m, 15 m, 21 m, 27 m, 31 m,
and 36 m, and photosynthetic photon flux density (PPFD) instruments were installed at 36 m, 21 m,
9 m, and 2 m. For the above-canopy heights, the PPFD was measured by an LI190SB quantum sensor
(LI-COR Inc., Lincoln, NE, USA). An LQS7010-SUN sensor (APOGEE, Logan, UT, USA) was used to
measure the PPFD at heights under the overstory layer.

At 27 m, an open-path CO2/H2O gas analyzer (model LI-7500, LI-COR Inc.) and a 3D
sonic anemometer/thermometer (model CSAT3, Campbell Scientific Inc., Logan, UT, USA) were
installed on the tower at approximately two times the average canopy height (15 m) near the tower.
These instruments measure carbon and water flux exchange between terrestrial ecosystems and the
atmosphere [70,71]. All of the data were recorded at 30-min intervals. At this site, the LAI values of
the different layers were measured every three months from 2004 to 2005.
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2.1.2. Tomakomai (TMK)

The TMK study area is in the Tomakomai National Forest, which is approximately 15 km northwest of
Tomakomai, Hokkaido, in northern Japan. The area of larch forest is approximately 100 ha. From 2001–2003,
the average temperature was 6.5 ◦C, and the site was warm in summer and snowy in winter. The mean
annual rainfall was 1055 mm. The growing season extends from April to October, while there is little
vegetation cover in other months.

The flux tower was located in the center of the larch forest (42◦44′13.1” N, 141◦31′7.1” E, 115 masl),
and the surrounding trees were approximately 45 years old at the time of this study. The height of the
vegetation canopy was 18 m in 2003. The dominant species near the tower were classified as either overstory
or understory species. The overstory species included Japanese larch, birch, spruce, and Japanese elm,
and the understory species were ferns and other herbs. The LAI values near the flux tower in the overstory
and understory layers were 5.4 m2/m2 and 3 m2/m2, respectively, in August 2005 [72].

The flux tower contained eight levels of meteorology instrumentation for measuring different
variables such as temperature and humidity above and within the canopy, which were measured with
a platinum resistance thermometer and a capacitive hygrometer (HMP-45D, Inc., Logan, UT, USA) at
2 m, 5 m, 8 m, 14 m, 18 m, 22 m, 27 m, and 40 m. The PPFD was measured at 2 m, 5 m, 14 m, 18 m,
and 40 m by a quantum sensor (LI-190S, LI-COR Inc., Lincoln, NE, USA) in the tower and on the
forest floor. At 27 m, the CO2 flux between this ecosystem and the atmosphere was measured by open
and closed-path EC instruments (LI-7500 and LI-6262, LI-COR Inc., Lincoln, NE, USA). The tower was
destroyed by a typhoon in 2004, and monitoring therefore ceased. All of these data were recorded at
30-min intervals. LAI was measured every month from July to December 2003.

Table 1. General characteristics of the two flux towers. DHS: Dinghushan, EC: eddy covariance, LAI:
lead area index, PPFD: photosynthetic photon flux density, TMK: Tomakomai.

DHS TMK

Location 23.1733 N, 112.5361 E 42.7333 N, 141.5167 E

Elevation (m, above sea level) 240 115–140

Canopy height (m) 15 18–20

Period of data collection July to December 2005 July to December 2003

LAI overstory (m2/m2) 1
August 2.5 July 5.6

November 4.6
September 5.0

November 0.4

LAI understory (m2/m2)
August 1.25 July 3.6

November 1.25
September 3.0

November 0.2

KGCC (Köppen-Geiger climate classification [73]) Warm temperate, fully humid
with hot summer Snowy, fully humid warm summer

IGBP (International Geosphere-Biosphere Programme,
a land cover classification system) EBF (evergreen broadleaf forest) DNF 2 (Deciduous needle leaf; cropland

after destruction)

Height of EC measurement (m) 27 27

Heights of temperature and humidity measurements (m) 4, 9, 15, 21, 27, 31, 36 2, 5, 8, 14, 18, 22, 27, 40

Heights of PPFD measurements (m) 2, 9, 21, 36 2, 5, 14, 18, 40

Dominant species

Cleistocalyx operculatus,
Syzygium jambos,
Castanopsis chinensis, etc.
Many understory herb species

Overstory:
Japanese larch (Larix kaempferi Sarg.)
Birch (Betula ermanii and Betula platyphylla)
Japanese elm (Ulmus japonica)
Spruce (Picea jezoensis)
Understory:
Fern (Dryopteris crassirhizoma, Dryopteris austriaca)
and Pachysandra terminalis

1 LAI was measured near the flux tower by LI-2000 (LiCor Inc., Lincoln, NE, USA); 2 Classified as mixed forest in
the MCD12 vegetation cover product.
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2.2. Vertical Data Measurements in the Forest

2.2.1. Temperature and VPD Data Preprocessing

During the study period from 1 July 2005 to 31 December 2005, in DHS, the meteorological
instruments on the sixth and seventh levels malfunctioned, so all of the data from 31 m and 36 m
were missing for this period. Therefore, we did not compare the meteorology data from 1 July 2005 to
4 December 2005. For the other data during the study period at the two sites, the temperature and VPD
data were gap-filled by the data processor, and low-quality and missing data were removed [68,69,71].

2.2.2. PPFD Data Preprocessing

The PPFD data had some missing entries during the study period that were gap-filled by
the moving average method at 30-min intervals, and the PPFD data for different vertical layers
in the DHS site were provided [71]. To convert the mean PPFD data from μmol/m2/s to W/m2/s or
MJ/day for the PAR input for each layer, we used a linear regression between shortwave radiation
at the top of the tower and the PPFD of the top layer. These two factors were very highly correlated
(y = 1.4907x − 0.2526, x is the PPFD, unit in μmol/m2/s; y is the shortwave radiation, unit in W/m2/s;
r2 = 0.9951, root mean square error (RMSE) = 16.37 W/m2, bias (Bias is defined as the predicted result
minus the observational data.) <2.5 W/m2). In TMK, the PPFD was also calculated using this method.

2.3. GPP Data Processing

EC instruments directly measure the carbon exchange between terrestrial ecosystems and the
atmosphere, but the data must be transformed to determine the GPP. The net ecosystem exchange
(NEE) in these two sites included exchange items (Fc) and storage items (Fs), so these values would be
more accurate at these two sites under high LAI.

In this article, we converted the FLUXNET2015 flux GPP data at DHS and the gap-filled Asia
Flux NEE at TMK to GPP using the flux analysis tool [74]. After obtaining the quality-controlled NEE,
we partitioned the NEE into GPP and RE. For unreliable data, we used the harmonic analysis of time
series (HANTS) algorithm [75] to gap-fill the GPP data at 30-min intervals. The 30-min GPP data were
excluded when the solar radiation in the PPFD was less than 10 μmol/m2/s. All of the data, including
the carbon flux data, micrometeorological data, and LAI, were from the same source to ensure accurate
representation of the carbon exchange near the flux tower.

3. Methods

In this section, we used three LUE-based GPP models and parameterization methods,
which applied unequal temperature and water scalars to LUE. These weights can be applied to
remote sensing methods and site-level GPP modeling.

Diverse species inhabit the overstory and understory layers of the forest canopy, which have
unique ecophysiological parameters. The controlling environmental factors, such as temperature,
humidity, and light radiation, have vertical gradients corresponding to different heights in the canopy.
However, for certain vegetation groups, such as trees, shrubs, and grasses, and their living heights
in the forest canopy, the diverse ecophysiological properties of individual species are much more
likely to be affected by vertical gradients than the whole forest ecosystem [43,44]. To simplify the
photosynthetic processes of multiple species in this study, we defined the concept of sub-ecosystems,
which divided the entire terrestrial ecosystem into two or three parts. Examples include the overstory
and understory sub-ecosystems in TMK and the arbor, shrub, and grass sub-ecosystems in DHS.
Different sub-ecosystem LAI values can be used as the criteria to separate ecosystems into two or
three individual types, where GPP would be the aggregation of three different types of photosynthetic
processes, because leaves are the only photosynthetic organs in a plant species.
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3.1. Theoretical Background of the GPP Model

In this research, we used three LUE-based GPP models, namely, VPM [66], MOD17 [10,67],
and Wu [63], to model the GPP according to the following formula:

GPP = FPAR × PAR × LUEmax × f(T) × g(VPD) (2)

In Equation (2), PAR is the photosynthetically active radiation, and FPAR is the fraction of the
absorbed PAR, which is calculated as:

FPAR = 1 − e−k×LAI (3)

where k is the extinction coefficient, and LAI is the leaf area index in the selected area at a specific
canopy height. LUEmax is the maximum LUE, which is scaled by temperature and the VPD response
under diverse situations. Therefore, LUE can be expressed as:

LUE = LUEmax × f(T) × g(VPD) (4)

Detailed information on the three GPP models can be found in the Supplementary Material.
The models have different parameterizations for f(T) and g(VPD).

3.2. GPP Estimation Considering the Vertical Structure

In situ meteorology data for the height of each sub-ecosystem are available for the DHS and
TMK sites. Thus, the GPP of every sub-ecosystem can be described by the GPP model with the
meteorology data and model parameters from each height. In this research, we assumed that each
sub-ecosystem would have a different LUEi, which is defined as the LUE of the sub-ecosystem.
LUEi is affected by only certain environmental factors, such as temperature and the VPD at the
corresponding height. LUEi was calculated using Equation (4), and the LUEmax of the sub-ecosystems
(such as those of shrubs and grasses), temperature, and the VPD stress functions are provided in the
Supplementary Material.

At the ecosystem scale, using temperature and the VPD scalar produces the LUEmax,
which characterizes carbon sequestration from the LUE. Moreover, different vegetation types, such as
the tree, shrub, and grass layers, have various LUEmax values. Table 2 presents the various LUEmax
inputs for the GPP estimation results from four different articles. The results of Zhou and Madani stated
that overstory layers, such as the overstory tree layer, have an average LUEmax of 0.28 gC/m2/MJ,
which is higher than the LUE of the understory layer (grass).

Table 2. Tree, shrub, and grass maximum light use efficiency (LUEmax) parameterization values
(units: gC/m2/day) (EBF and DNF were defined as the LUEmax values of the tree layer in the
GPP simulations).

Tree (DHS) Overstory (TMK) Shrub Grass

Zhou [32] 1.120 1.180 0.930 1.520
MODIS [67] 1.268 1.051 0.841 0.860

Yuan [31] 1.680 1.640 0.660 1.520
Madani [76] 0.980 1.171 0.631 1.294

To analyze the effect of vertical structure on GPP estimation, we calculated GPP considering
vertical layers using the following function:

GPPm = ∑
i=sub−ecosystem

LUEi × APARi (5)
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where GPPm is defined as the modeled sum of GPP in two (overstory and understory) or three (tree,
shrub, and grass) sub-ecosystems. The ecosystems were divided into overstory and understory
groups at TMK and into tree, shrub, and grass groups at DHS using in situ LAI measurements.
The meteorology data can provide in situ air temperature and VPD stress values for each sub-ecosystem.
Temperature sensors at different heights measured the air temperature, while the VPD was calculated
from the relationship between VPD and both temperature and humidity [77,78]. APARi is the absorbed
PAR for the LUE of a specified height, and was calculated from FPAR and PAR. At the DHS site,
the whole ecosystem can be divided into three sub-ecosystems, namely, the tree, shrub, and grass
layers; thus, the GPP was calculated for the EBF, shrub, and grass layers (sub-ecosystems) using the
in situ temperature, VPD, PAR, and long-term LAI data for each layer, and specific LUEmax input
values for each sub-ecosystem. At the TMK site, we divided the ecosystem into DNF and grass
sub-ecosystems, and used the GPP input parameters for each layer, as used in the approach for DHS:

GPPs = LUEs × APARs (6)

GPPs represents the GPP of a specific ecosystem that was estimated using the big-leaf model,
which assumes that the entire ecosystem is a single leaf. At the DHS site, the LUE was calculated as
an EBF ecosystem with an EBF-based LUEmax (Table 3), and the temperature and VPD stress were
given by the mean canopy temperature and VPD. At TMK, the DNF-based LUEmax (Table 3) was
used, and the temperature and VPD stress were given by the mean canopy temperature and VPD.

GPPdif = GPPm − GPPs (7)

The GPP bias (GPPdif in Equation (7)) is the multilayer GPP result (GPPm) minus the single-layer
GPP result (GPPs), which represents the difference between the two models. Therefore, GPPdif is
the difference between considering and not considering vertical stratification. TMK and DHS have
overstory and understory vegetation, so using representative GPPs for the whole canopy would lead
to estimation uncertainties. The modeled GPP values produced by a variety of models were given
their own terms. For example, if a GPP result was produced without considering the vertical structure
in a VPM, this value was represented as GPP_s_VPM. If a GPP result was produced based on a MODIS
model that considered the vertical structure, it was represented as GPP_m_MOD.

Table 3. Understory photosynthetically active radiation (PAR) simulation: parameter value inputs
and results.

TMK DHS

Input parameters

Overstory LAI 5.4 2.6
X (leaf angle distribution in spherical distribution) 1 1

Daytime zenith angle (mean) 31 45

Output results

Direct PAR τb % 4.2 15.9
Diffuse PAR τd % 1.6 9.3

Understory simulation % 5.6 25.2
Understory in situ % 8.2 27.5

3.3. Modeling Vertical PAR with a Radiative Transfer Model

In this study, we also compared the measured PAR and modeled PAR values to simulate PAR in
the vertical direction. According to the light transfer function in the vegetation canopy [58], the vertical
PAR at different heights impacts the LAI through light absorption, reflectance, and transmittance.
In the vertical direction, incident PAR for direct light follows the Beer–Lambert law:

PAR(z)dir = PAR0 × eτb (8)
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where PAR0 is the incident PAR at the top of the canopy, z is the length of light transmission through
the canopy, and the τb is the transmitted ratio, which is calculated as:

τb = exp(−Kb × LAI) (9)

where Kb is the extinction coefficient, which is affected by the zenith angle φ [79]

Kb =

√
x2 + tan2 φ

x + 1.774(x + 1.182)−0.733 (10)

τd = 2
∫ π/2

0
τb(φ) sin φ cos φdφ (11)

Therefore, PAR(z) is the understory incident PAR, which can be expressed as follows:

PAR(z) = PAR0 × eτb + PARskylight × eτd (12)

To test the proportional impact of the LAI in different sub-ecosystems on the GPP estimation in dense
forests, we used the discrete anisotropic radiative transfer (DART [80,81]) model to simulate APAR based
on clear sky conditions in the tree, shrub, and grass layers under different vertical LAI distributions.

3.4. Statistical Indicators

At the same time, the maximal air temperature in the canopy was usually found at the top of
the canopy, while the minimal value was often found at the ground layer. We evaluated the largest
variance in the vertical temperature and VPD profiles using two parameters: Tdif and VPDdif. Tdif is
defined as the air temperature at the top of the canopy minus the temperature at the grass layer.
VPDdif is the VPD of the top layer of the canopy minus the VPD of the grass layer.

4. Results and Analysis

4.1. Analysis of Variance in Forest Canopy Vertical Stratification

In forest canopies, vertical temperature and VPD stratification vary with forest type and season.
Figure 2A,B show the differences in the daily average vertical temperature from day of year (DOY) 210
to 365 at the DHS site (EBF) in 2005, and from DOY 182 to 365 in 2003 at the TMK site (DNF).

Variances in air temperature occur in forest canopies during the growing season. In most cases,
the air temperature in the tree layer is higher than that in the grass layer, with an average temperature
difference of approximately 0.4 ◦C at the DHS site. In the DNF vegetation type at the TMK site,
the mean temperature difference was approximately 0 ◦C before DOY 240. From DOY 240 to 280,
the temperature of the tree layer was 0.5 ◦C higher than that of the grass layer. However, during the
non-growing season after DOY 290, the temperature differences of the forest layer ranged from 0.5 ◦C
to 1.5 ◦C, which means that the temperatures in the tree layer were higher than those in the grass layer.

Similarly, the VPD of the tree layer in the forest canopy was higher than that of the grass layer.
VPD varies with air temperature. During the summer to autumn period (DOY 180 to 300), the daily
average VPD of the tree layer was approximately 120 Pa higher than that of the grass layer at the DHS
site, and approximately 70 Pa higher than that at the TMK site. With the decrease in temperature
during the winter period (DOY 300 to 365), the VPD of the tree layer was 50 Pa higher than that of the
grass layer at the DHS site, and 25 Pa higher than that at the TMK site, which was not as great as the
difference during the summer period. Figure 2B,D shows that Tdif and VPDdif have a robust linear
relationship in months during the growing season.
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Figure 2. Seasonal patterns in the vertical variance in temperature and vapor pressure deficit (VPD) at
the DHS and TMK sites. In the subplots (A,C), the blue bars (VPDdif in Pa) are the biases between the
tree layer VPD and the grass layer VPD. The red line (Tdif in ◦C) is the bias between the air temperatures
of the top and grass layers. The green dotted line is the 0 ◦C line, indicating no difference between the
temperatures of the tree and grass layers. Subplots (B,D) show the relationships between Tdif and VPDdif
at the two sites. The dot colors are clustered by month.

In a forest canopy, overstory incident PAR is much higher than that in the understory layer because the
incident energy in the understory is affected by sky conditions and the overstory forest structure parameters.
At the TMK site, the understory incident PAR was approximately 10% of the overstory incident PAR during
the growing season when the LAI of the overstory was high (LAI = 5). However, when the overstory
LAI was low during the winter period (DOY 300 to 365), the understory incident PAR was 30% of the
overstory incident energy (Figure 3A). However, in EBFs such as those at the DHS site, the overstory LAI
did not intensely change throughout the year. Figure 3B shows that the incident PAR of the shrub layer at
the DHS site was 40% that of the tree layer, and the incident PAR of the grass layer was 20% that of the
tree layer. After DOY 250, the incident PAR of the overstory layer was steadier than that in the summer
period (before DOY 250) because there were fewer cloudy days; thus, the incident PAR of the grass layer
was approximately 15% that of the overstory layer.

The vertical forest structure parameters also influence the amount of understory incident PAR.
Table 3 indicates that the total amount of incident PAR in the understory layer was underestimated by
2% to 3% at these two sites.
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Figure 3. Bar chart for the daily average incident PAR in sub-ecosystems at the selected sites; each bar
represents the daily mean incident PAR in each layer (A) TMK; (B) DHS.

4.2. Influence of Vertical Stratification on GPP Estimation

Two main factors determine the estimation of GPP in LUE models: (1) the influences of
temperature, VPD, and LUEmax on LUE, and (2) the effects of PAR and LAI on the absorbed shortwave
energy in different components of the whole ecosystem. In this study, the major difference between
considering and not considering the vertical structure during the GPP estimation is the difference
between the overstory and understory LUE and APAR.

4.2.1. LUE in Different Sub-Ecosystems Is Influenced by the Vertical Stratification of Temperature,
VPD, and LUEmax

Vertical variations in temperature, VPD, and the LUEmax of sub-ecosystems led to differences in
LUE at various forest canopy heights. Some studies have shown that the vegetation in the understory
layer such as grass has a lower LUEmax. In addition, the vertical differences in temperature and VPD
led to variations during different periods of the year. Figure 4 shows the modeled LUE, which combined
the vertical variations in temperature and VPD in the sub-ecosystems. At the DHS site, high layers
in the canopy, such as the tree and shrub layers, had LUEs that were 0.3 gC/MJ to 0.6 gC/MJ lower
than those of understory layers, such as grass layers, throughout the study period. Prior to DOY 320,
the LUE of the shrub layer was 0.1 gC/MJ lower than that of the tree layer. After DOY 330, the LUEs
of the shrub layer and the tree layer were almost the same. Similarly, the understory LUE at TMK
was approximately 0.4 gC/MJ higher than that of the overstory layer throughout the growing season
(DOY 210 to 300).
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Figure 4. Modeled LUE values in the different sub-ecosystems.

209



Remote Sens. 2018, 10, 1329

The mean canopy air temperature influenced the estimation of GPP. The trend in GPPdif in
Figure 5 shows that with decreasing canopy mean temperature, the estimation based on GPPm
becomes much lower than that based on GPPs, and with increasing mean temperature, the estimation
based on GPPm becomes larger than that based on GPPs. The estimates of the three models are
similar: GPPdif reaches 0 at approximately 16 ◦C. The optimal growing temperatures of different
species in one sub-ecosystem, such as the tree layer, would not exhibit much variance. When the mean
canopy temperature reaches approximately 16 ◦C, the grass ecosystem reaches its optimal growing
temperature, and the LUE of grass would be 10% higher than that at 10 ◦C or lower. At the same time,
the LAI of the understory increases with increasing temperature, and the grass understory has a higher
photosynthetic ability. This situation causes the value of GPPm to be higher than that of GPPs.
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Figure 5. Differences in gross primary production (GPP) under different mean canopy temperatures.
The GPP difference is calculated as (GPPm-GPPs)/GPPs. DHS_VPM, DHS_W, and DHS_MOD are the
values calculated at the DHS site and by VPM, Wu’s method, and the MOD17 model, respectively.

The canopy vertical VPD stratification has a pattern that is similar to that of the canopy vertical
temperature stratification: there are variations in photosynthesis in the vertical layers that lead to
GPP estimation bias. Figure 6 shows that the GPPdif values are completely different at the DHS and
TMK sites. The trend of the change in GPPdif in Figure 6B shows that the estimation from GPPm
becomes much lower than that from GPPs as the mean canopy VPD decreases, and with an increase
in the mean VPD, the estimation from GPPm becomes larger than that from GPPs. At the DHS site,
the GPPdif varied nonsignificantly from approximately −5% to 5%. GPPdif declines with increasing
canopy mean VPD, which is opposite the pattern observed at the TMK site, where GPPdif increases
with VPD, because the VPD increases from 0 to a higher value at the DHS site. When the VPD is
greater than 0, the photosynthetic capacities of different vegetation components, including the tree,
shrub, and grass layers decrease, and the total GPP declines. GPPdif changes from −50% to 30% when
the mean canopy VPD increases from approximately 0 Pa to 500 Pa at the TMK site.
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Figure 6. Effects of both considering and not considering the vertical differences in VPD on GPP. The black
line is the fit line for the GPP difference scatterplot at different sites. Subfigures (A,B) are the GPP difference
comparisons based on different canopy mean VPDs at TMK and DHS, respectively.

4.2.2. Vertical Stratification of APAR Influenced GPP Estimation by the Multilayer Model

Forest structure parameters such as LAI influenced the absorption of radiation by the forest
canopy, so the total APAR of the forest canopy can be calculated using LAI and incident PAR. In this
section, we analyze LAI and incident PAR as influenced by the APAR in different sub-ecosystems and
the effect of separate APARs in the sub-ecosystems on GPP modeling.

In a natural environment, the variety of vertical LAI distributions leads to different absorbed PAR
distributions in the tree, shrub, and grass layers, which have diverse photosynthetic capacities that
lead to GPP modeling biases. Figure 7 shows the total GPP in different LAI distributions. We made
two assumptions. The first assumption is that the LUE on a daily scale in different layers is the mean
value, which is 1.05 gC/m2/MJ in the tree layer, 0.83 gC/m2/MJ in the shrub layer, and 1.47 gC/m2/MJ
in the grass layer. These values are the average values of the results of three models considering
optimal growing environments. The APAR for each layer is influenced by only the LAI and the total
incident PAR in the top layer. The second assumption is that the LUEmax in the shrub layer is lower
than that in the tree and grass layers [32]. Similar to the results at the DHS site, when the LAI ratio in
the tree, shrub, and grass layers is 2.5:0.6:0.9 (at DOY 249), GPPm is 5% higher than GPPs. At the TMK
site during the summer, the LAI ratio in the tree and grass layers is 2:1, and GPPm is 15% higher than
GPPs. As in the shrub and grass layers, the understory LAI would thus be the most important factor for
GPPdif, and its ratio to total LAI leads to a range of −40% to 25% for the GPP estimation uncertainties.

Incident PAR in the forest canopy also determined the GPP modeling difference whether or
not vertical stratification was considered. Figure 8A,C show that considering the effect of vertical
stratification on GPP leads to results that are similar to the GPP values that are measured by the flux
towers because understory species such as shrubs and grasses have high photosynthetic capacities
despite receiving little incident PAR [82]. When the incident PAR of the top of the canopy is lower
than 175 W/m2 at these two sites, the value of the flux tower-based GPP is 1–2 gC/m2 lower than
GPP, and is closer to GPPm than GPPs. When the incident PAR is higher than 175 W/m2, GPPm is
0.5–2 gC/m2 higher than the flux tower-based GPP, which has a lower bias than GPPs.
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Figure 7. Ternary contour for the differences between considering and not considering the vertical structure
during the GPP estimation with LAI separated into tree, shrub, and grass layers. This graph illustrates
that when the total LAI of the canopy is four, there is little temperature and humidity stress on the
LUE. We assumed that the LUE of the grass layer was 1.28 gC/m2/day/MJ, that of the shrub layer was
0.85 gC/m2/day/MJ, and that of the tree layer was 1.02 gC/m2/day/MJ.
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Figure 8. GPP differences considering multilayer and single-layer estimations of incident PAR.
Subfigure (A,C) show the GPP simulation results with flux tower measurements of GPP. The green
points represent multilayer results (GPPmMOD), and the red points represent single-layer results
(GPPsMOD). The black points represent the flux tower-based GPP results (GPPactual). Subfigure (B,D)
show GPP differences under various incident PAR.

Moreover, at high temperatures at the DHS site, the estimation of GPPm is lower than the
estimation of GPPs, and the difference between GPPm and GPPs increases with increasing incident PAR
(Figure 8B,D). At the TMK site, the difference between GPPm and GPPs increases with increasing PAR,
and reaches a maximum of approximately 70% of GPPs, which is much higher than that at the DHS site.
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When the incident PAR increases, the PAR reaching the understory also increases. Understory layers
have higher LUE values, and GPPm is capable of considering the higher photosynthesis from
understory components, which explains why GPPm is higher than GPPs. At the TMK site, GPPm is
lower than GPPs when the temperature is low, which is the opposite pattern of that at the DHS site.
The high temperatures at the DHS site and the low temperatures at the TMK site represent non-optimal
growing temperature conditions, under which the biases between GPPm and flux tower-measured
GPP are always lower than those between GPPs and flux tower-measured GPP with different degrees
of variation at different sites. When the temperature enters the optimal growing temperature range,
the estimation of GPPm is higher than that of GPPs, which considers the high photosynthesis capacity
of the understory.

4.3. Performance of GPP Estimation Results Based on Flux Tower-Based GPP

Estimating GPP with stratification information in the multilayer GPP model results in higher
estimation precision than with the single-layer method (Table 4). Table 4 illustrates that the GPPm
estimates at the DHS and TMK sites had higher accuracies than the GPPs estimations, and generally
had a lower RMSE (GPPm is 0.2 gC/m2/day lower than GPPs). At the DHS site, the modeled GPP that
considered vertical stratification showed a similar correlation when vertical layers were considered,
but with the higher LAI of the understory, the R2 value was 2% to 5% higher with GPPm than with
GPPs at the TMK site. The low mean bias in the multilayer model (DHS_m and TMK_m) indicates
that the multilayer model performs better than the single-layer model.

Table 4. Comparison of flux tower-based GPP and different model output results when considering
and not considering the vertical layer. Here, sitename_s is the single-layer GPP, sitename_m is the
multilayer GPPm, and sitename_adjust uses the same temperature and VPD inputs (root mean square
error (RMSE) and mean bias unit is gC/m2/day).

DHS_s DHS_m DHS_adjust TMK_s TMK_m TMK_adjust

VPM
R2 0.587 0.588 0.589 0.738 0.769 0.753

RMSE 0.99 0.99 0.99 2.51 2.36 2.43
mean bias −1.15 −1.08 −0.55 4.16 1.85 0.59

Wu
R2 0.595 0.599 0.595 0.726 0.771 0.754

RMSE 0.98 0.97 0.96 2.57 2.35 2.44
mean bias 0.53 0.49 0.09 3.84 1.5 0.21

MOD
R2 0.491 0.489 0.491 0.777 0.801 0.786

RMSE 1.1 1.1 1.1 2.32 2.19 2.27
mean bias −1.67 −1.57 −1.05 3.96 1.68 0.47

These selected GPP estimation models, including VPM, Wu’s model, and MOD, showed high
correlations with the flux tower-based GPP. Wu’s model and the VPM showed higher R2 values than
the MOD model at DHS, because they consider scalar temperature at high temperatures. The MOD17
model showed lower RMSE and higher R2 values than both Wu’s model and the VPM at the
TMK site, indicating that the MOD model exhibits better performance at that site. The estimation
results for the two sites were combined, which indicated that Wu’s model exhibited the best
model performance with the highest mean R2 (R2 = 0.685) and the lowest mean RMSE at these
two sites (RMSE = 1.66 gC/m2/day) when the vertical stratification information was included in the
GPP estimation. Figure 9 indicates that Wu’s model can track the variations in growing season GPP
when the vertical stratification information in the canopy is incorporated.
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Figure 9. Differences in GPP estimations in different seasons. Subfigure (A) showed the seasonal GPP
variance in DHS, while subfigure (B) showed the condition in TMK. Here, we used three different
types of LUEmax parametric approaches to model GPP using Wu’s method. GPPmW is the multilayer
result using two or three different LUEmax inputs for GPP estimation. GPPsW is the single-layer result
using an EBF-based LUEmax. GPPaW is the average LUEmax input in GPPmW, using the average
LUEmax for the different components.

Simplifying the vertical stratification parameters in the GPP model will also yield high
estimation accuracies. To simplify the parameters when considering vertical stratification during
GPP estimation, the adjusted method in Table 4 used the same temperature and VPD for every layer as
inputs, the LAI values in different sub-ecosystems were separated from that for the total ecosystem,
and LUEmax was used for different sub-ecosystems. The results showed that among all the methods,
the adjusted method had the smallest mean bias at the TMK and DHS sites. Additionally, the R2 value
differed depending on whether or not multilayer models were considered. This method requires
the canopy mean temperature and the VPD and LAI proportions in the understory and overstory,
the LUEmax set for different sub-ecosystems, and the incident PAR at the top of the canopy. The data
used here are easier to obtain than those required by the multilayer GPP estimation method, and the
performance results were also better than those when not considering vertical stratification.

Modeled GPP and flux tower-based GPP values still differ to some degree, as illustrated
in Figure 10. On a daily scale, the multilayer GPP model has a lower mean bias than the single-layer
GPP model. Figure 10b demonstrates that the multilayer method performs well during the growing
season (DOY 180 to 280) when the understory LAI is large. On some days when the shortwave incident
radiation is high, GPPm was overestimated because the understory PAR was overestimated, but GPPm
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showed little variance when the understory LAI was low (Figure 10a,b DOY 290 to 360). Most of
the results estimated by GPPs were lower than the GPP measured by the flux towers because the
understory LUEmax was underestimated. Therefore, the GPP estimation method that considered
vertical structure would be useful when the understory LAI is high (>1 m2/m2). Generally, adding the
understory vegetation GPP to the total GPP reduces the underestimation when the understory LAI
is high.

(a) 

(b) 

Figure 10. Differences in GPP estimation using different models with carbon flux tower measurements.
Subfigure (a) showed the condition in DHS, and subfigure (b) showed it in TMK. VPMm results
from using the multilayer VPM GPP minus the flux tower-based GPP. VPMs results from using the
single-layer VPM GPP minus the flux tower-based GPP. The Y-axis on the right is the daily mean
shortwave incident radiation.

5. Discussion

In this research, we examined the addition of vertical stratification parameters such as
temperature, VPD, PAR, LAI, and LUEmax to support remote sensing GPP estimation at the site level.
Temperature and VPD influenced the LUEmax at various canopy heights because the vertical
meteorology environments have greater variations at forest sites than those in other vegetation
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types, such as shrub and grass sites. PAR and LAI were used to determine the APAR of different
sub-ecosystems, which would lead to a great deal of uncertainty in energy allocation.

Vertical LUE is influenced by the vertical distributions of temperature, VPD, and LUEmax,
but there are uncertainties when modeling the LUE in different sub-ecosystems. LUEmax values differ
in sub-ecosystems, as explained in Section 4.2.1 of this article. At the TMK site, the GPPdif changes
from −50% to 30% when the air temperature at the canopy height increases from approximately 7 ◦C
to 20 ◦C. The variation is more significant at the TMK site than that at the DHS site, and one reason
for this difference is that the temperature differences among layers are more obvious at the TMK
site than at the DHS site, as shown in Figure 2. The effect of temperature stress on LUE differs
for tree, shrub, and grass layers under the same mean canopy weather conditions. As the optimal
temperatures of the tree, shrub, and grass layers differ by 2–5 ◦C at the same air temperatures in the
forest canopy, the temperature stresses of the layers on LUEmax differ, varying by 5–20% around the
optimal temperature [78,83]. However, when the temperature is above 23 ◦C, GPPdif changes only
slightly because the canopy and the understory layers experience high temperature stress, and the
LUE would decrease rapidly at this temperature range. On the other hand, the variation in GPPdif
did not significantly change with the increase in VPD, as Figure 6B shows that GPPdif at the DHS site
decreases only slightly when the VPD increased. Nepstad et al. [84] showed that the water contents of
plants are more related to soil moisture than to the water content of the air in seasonally moist forests.
The plants in the overstory and understory layers share the soil water content. Thus, the VPD does not
have a significant effect on the GPP estimation in dense forests. All of these effects result in different
LUE values at distinct canopy heights, as shown by previous research [85].

Uncertainties in the vertical LAI distribution lead to uncertainties in APAR in the sub-ecosystems.
LAI, which is a key parameter for separating an ecosystem into different photosynthetic components,
determines the contribution of different species to total ecosystem photosynthesis, the light transfer
process in the canopy, and the micrometeorological environment inside the forest [58]. As many studies
have shown that the distribution of PAR through the canopy structure is highly affected by LAD,
LAI, and the characteristics of different species in forest canopies with high heterogeneity, the PAR
distribution must consider the vertical structure [39,58,82]. The overstory tree layer determines the
intercept ratio of the incident PAR, so if the LAI in the overstory is high, a large amount of PAR
would be absorbed during the first turn of intercepted light. The vertical LAI distribution in different
vegetation covers follows its own rules (Figure 11), and therefore, remote sensing-based understory
and overstory LAI estimations are important for separating the APAR of sub-ecosystems and adding
unique LUE values when mapping the global GPP [86–89]. For all of the cases in a natural environment,
when the total LAI is four, the highest GPP appears when all of the leaves are grass species. As shown
in Figure 7, the LAI of the grass layer would not be higher than 2 m2/m2, and the highest GPP
would thus appear when the LAI of both the tree and grass layers is two. The highest GPP in
a dense natural forest would have a ratio of 0.5:0:0.5 for the tree, shrub, and grass layers. Under such
circumstances, GPPdif reaches its highest value, and increases in the LUE of both the tree and grass
layers would produce a greater GPP. The greatest GPP difference is 25% higher than that estimated via
the single-layer method, and if the canopy has a higher proportion of shrubs, the GPP difference is
20% lower. When the proportion of LAI is high in the shrub layer, the total GPP is lower than that
estimated by the single-layer method because the shrub LUE is low. As discussed in Section 4.2.2,
a high LAI in the understory produces a high GPP because the understory component absorbs diffuse
light and provides a better growing environment than that of the overstory. Figure 10 shows that
different ecosystems have different vertical LAI ratios. In forest sites such as EBF, DBF, ENF, and DNF,
the tree LAI ratio can be 60% or more, and the understory LAI can be as a great as 20% during the
growing season. With different LAI distributions in the forest ecosystem, the total APAR allocation of
the canopy in a sub-ecosystem would lead to uncertainties in the GPP estimation.
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Figure 11. Vertical LAI ratios in different ecosystems (EBF, evergreen broadleaf forest [71,90];
DNF, deciduous needleleaf forest [72]; ENF, evergreen needleleaf forest [91,92]; DBF, deciduous
broadleaf forest [26]; SAV, savanna [93]).

Wu’s model exhibited the best performance of the three models. This model better considers the
effect of temperature on GPP in overstory and understory layers. Wu’s model and the VPM consider
the temperature stresses when the temperature is high. Therefore, these models exhibit better variance
when the canopy temperature is high in both the multilayer model and single-layer model. In the
VPM, phenology was proven to be an important indicator. However, at the site level, the VPM cannot
obtain accurate spatially matched enhanced vegetation index (EVI) values, and the LAI of the canopy
changes only slightly during the growing season; thus, we omitted the effect of phenology. In future
research on multilayer GPP models, the phenology variance between understory and overstory layers
would be a potential way to improve the GPP estimation accuracy in the VPM and Wu’s model.

The continuous vertical acquisition of LAI is also challenging. On the one hand, many
researchers have shown that remote sensing methods underestimate understory LAI, indicating
that other GPP components are also underestimated in dense forests [39,94]. On the other hand,
most remote sensing-based LAI products currently do not separate the overstory from the understory
in forest sites. Without the LAI of different layers, the GPP of distinct vertical layers cannot be modeled;
thus, understory GPP is often underestimated from the high understory LUE.

Future versions of remote sensing-based GPP products should add forest vertical stratification
information to GPP models. For example, the use of remote sensing-based understory and overstory
LAI [90–93] to separate sub-ecosystems and the addition of prior LUE when combining the specific
LUEmax from sub-ecosystem-based temperature and VPD response functions can improve GPP
estimations compared to the performance of approaches that do not consider the vertical structure
(“adjusted” method in Table 4). The ‘adjusted’ method in Table 4 showed lower systemic biases and
a RMSE that was similar to that of GPPm, which indicated that this method has an estimation accuracy
that is similar to that of the multilayer method. However, this method requires only the two main data
sources as prior information, the LUEmax in height of the canopy, the canopy mean air temperature,
VPD, and the LAI values of the sub-ecosystems, which are simple to obtain via remote sensing.
This method can potentially be applied in remote sensing-based multilayer GPP models. Thus, a high
GPP estimation accuracy could be obtained in ecosystems with high understory LAI values by
considering the vertical structure (multilayer model).

The accuracy of GPP estimates in a complicated, vertically stratified forest canopy where the
understory LAI is high (e.g., in a tropical rainforest or old-growth forest) can be improved by using
multilayer methods. Additionally, Wu’s model showed that a potential model could estimate the GPP
with multilayer data inputs, but further global validation of the GPP model parameters is needed.
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Some articles have added vertical stratification data to GPP estimations in cropland [95,96], but
unlike the homogeneous landscape in croplands, a vertical structure would lead to variations in the
physiological parameters of vegetation in forest sites. Thus, there are still some limitations to this study.

6. Conclusions

In this article, we used three different LUE-based GPP models to analyze the effect of vertical
vegetation stratification on GPP calculations. Additionally, in situ temperature, VPD, and PAR data
were used to analyze the environmental factors that control GPP modeling. The results showed
the following. (1) Vertical temperature and VPD stratification at the selected sites varied with the forest
type, time of day, and season, but the difference was not significant. Moreover, incident PAR followed
the Beer–Lambert law; there was a significant difference between the overstory and understory
layers, and this difference was affected by the distributions of LAI in different sub-ecosystems.
(2) The stratifications of temperature, VPD, PAR, LAI, and LUEmax have an interactive influence on the
improvement of GPPm. Due to the importance of PAR in the estimation of GPP, the stratification of PAR
becomes obvious when the incident PAR increases and the difference between GPPm and GPPs exceeds
50% of GPPs. GPPdif is approximately 30% when temperature stratification is considered, and this
value is 20% when LAI stratification is considered. Multilayer LUEmax inputs are important for
accurate GPP estimations, and different inputs may lead to contrary results concerning the difference
between GPPm and GPPs. Therefore, quantitatively corrected understory LUEmax reduces the bias
in GPP estimations. (3) The accuracy of the GPP estimation can be improved by using multilayer
models, but the improvement is related to the forest type, the stratification of the canopy, and the
growing conditions. Furthermore, the improvement is more obvious when the multilayer model is
applied to canopies with obvious vertical stratification under optimal growing conditions. In this
article, GPPm was the most accurate at the TMK site from July to September. Since a multilayer GPP
estimation model considers the high photosynthetic ability and LAI of grass, GPPm is always larger
than GPPs. However, when the conditions are not optimal for growth—for example, if the temperature
becomes very low or high—the GPPm will be smaller than the GPPs.

In future studies on GPP remote sensing products, vertical stratification should be considered
in the models. Adding overstory and understory information such as LAI and LUEmax for diverse
sub-ecosystems can improve the estimation accuracy of the GPP product.
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Abstract: Accurately quantifying gross primary production (GPP) is of vital importance to
understanding the global carbon cycle. Light-use efficiency (LUE) models and process-based models have
been widely used to estimate GPP at different spatial and temporal scales. However, large uncertainties
remain in quantifying GPP, especially for croplands. Recently, remote measurements of solar-induced
chlorophyll fluorescence (SIF) have provided a new perspective to assess actual levels of plant
photosynthesis. In the presented study, we evaluated the performance of three approaches, including the
LUE-based multi-source data synergized quantitative (MuSyQ) GPP algorithm, the process-based boreal
ecosystem productivity simulator (BEPS) model, and the SIF-based statistical model, in estimating the
diurnal courses of GPP at a maize site in Zhangye, China. A field campaign was conducted to acquire
synchronous far-red SIF (SIF760) observations and flux tower-based GPP measurements. Our results
showed that both SIF760 and GPP were linearly correlated with APAR, and the SIF760-GPP relationship
was adequately characterized using a linear function. The evaluation of the modeled GPP against the
GPP measured from the tower demonstrated that all three approaches provided reasonable estimates,
with R2 values of 0.702, 0.867, and 0.667 and RMSE values of 0.247, 0.153, and 0.236 mg m−2 s−1 for the
MuSyQ-GPP, BEPS and SIF models, respectively. This study indicated that the BEPS model simulated the
GPP best due to its efficiency in describing the underlying physiological processes of sunlit and shaded
leaves. The MuSyQ-GPP model was limited by its simplification of some critical ecological processes and
its weakness in characterizing the contribution of shaded leaves. The SIF760-based model demonstrated
a relatively limited accuracy but showed its potential in modeling GPP without dependency on climate
inputs in short-term studies.

Keywords: GPP; SIF; MuSyQ-GPP algorithm; BEPS

1. Introduction

As the underlying process for plant growth, photosynthesis serves as an essential indicator of
plant efficiency and agricultural management practices. Spatially and temporally explicit estimations
of photosynthesis at the ecosystem scale (Gross Primary Production, GPP) can provide important
information used to study the terrestrial carbon budget [1,2].
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Traditionally, GPP studies have focused on field-based observations of specific species at
individual sites [3–5], which are usually time-consuming and laborious. In addition, these sparsely
distributed measurements are difficult to extend over large scales due to the spatial heterogeneity
of the land surface. At the landscape or regional scale, GPP is generally obtained using models
and algorithms that integrate ground observations with remotely sensed data [6]. Over the past
several decades, a variety of approaches have been developed to estimate the GPP of terrestrial
ecosystems, and they can be grouped into four categories [7]: (1) light use efficiency (LUE)
models; (2) process-based models; (3) data-driven models upscaled from eddy covariance (EC)
data; and (4) models based on sun-induced chlorophyll fluorescence (SIF). In general, LUE models
are well-known for their simplicity and efficiency when using remotely sensed data, but they
lose the links to some critical ecological processes by using empirical relationships and constants.
These models are represented by Carnegie, Ames, Stanford approach (CASA) [8], global production
efficiency model (GLO-PEM) [9], vegetation photosynthesis model (VPM) [10], moderate resolution
imaging spectroradiometer (MODIS) GPP [11], and multi-source data synergized quantitative
(MuSyQ) GPP [12]. Process-based biogeochemical models usually employ the enzyme kinetics
theory encapsulated by Farquhar et al. [13] for C3 plants and its modification for C4 plants [14].
However, these process-based models generally suffer from high complexity, large computational
demands, and calibration difficulties. The boreal ecosystem productivity simulator (BEPS) [15,16],
terrestrial ecosystem model (TEM) [17], simple biosphere (SiB) model [18], and biome biogeochemical
cycle (Biome-BGC) model [19] can be categorized as process-based models. By employing EC-derived
GPP data, data-driven models use various algorithms, such as model tree ensembles (MTE) [20]
or regression tree [21,22] approaches, and provide a practical way to upscale GPP from individual
sites to regional scales. These data-driven methods establish a series of rules using data mining
that relate in situ flux observations to satellite-based indices and climate data. SIF provides a new
perspective to assess plant photosynthesis and estimate regional GPP due to its inherent link to the
photosynthesis process [23–25]. However, the application of SIF is limited because of the difficulty
in obtaining high quality SIF data, including proper spatial and temporal resolution, and because
of the difficulty in quantitatively assessing the factors that affecting the relationship between SIF
and GPP. Although various methods have been developed to model GPP, it should be noted that
large uncertainties remain regarding the spatial distribution and seasonal dynamics of GPP [26,27],
and model comparison is also necessary to address to what extent the GPP models can capture the
spatial and temporal patterns of GPP.

Remote sensing has provided fundamental data to support the study and monitoring of GPP over
regional and global scales in recent years. It usually provides reflectance-based spectral measurements
of vegetation conditions. However, reflectance-based indices are proxies for vegetation “greenness”
and photosynthetic capacity, they often have a relatively low sensitivity to short term variation
in plant photosynthetic functioning and cannot be used to reflect the actual photosynthesis [28].
In addition, vegetation parameters derived from surface reflectance have little link to actual plant
photosynthetic functions [29]. To our knowledge, only the photochemical reflectance index (PRI),
which is based on the sensitivity of the reflectance at 531 nm to xanthophyll pigments, has been shown
to be sensitive to tracking actual photosynthesis through its correlation with the non-photochemical
quenching (NPQ) [30]. The PRI was designed to track NPQ that is related to the de-epoxidation cycle
of xanthophyll at leaf level [30]. The potential of PRI as a remote sensing proxy of photosynthetic
capacity has been demonstrated [31]. However, the PRI has also been proven to be very sensitive
to soil background, canopy structure and viewing angle [32]. Additionally, PRI has been shown to
be controlled by the changes in leaf pigments rather than NPQ over seasonal scales [33]. Unlike the
PRI, the SIF signal is emitted by the photosynthetic machinery of vegetation and is thus linked
to the actual photosynthesis. Although canopy SIF can also be affected by canopy structure [34],
viewing angle [35] and leaf pigment contents [36], SIF observations can provide an additional way
to track the functional status of plant photosynthesis. Recent field studies have demonstrated that
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SIF shows strong links to the GPP at the canopy level [25,37–39]. As SIF be successfully retrieved
using orbiting platforms such as the Japanese Greenhouse gases Observing SATellite (GOSAT) [23,40],
the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) [41],
the Global Ozone Monitoring Experiment-2 (GOME-2) [42], and the Orbiting Carbon Observatory-2
(OCO-2) [43], high correlations between SIF and GPP at ecosystem, landscape and regional scales
have been shown by Frankenberg et al. [23], Guanter et al. [24,44], Zhang et al. [7], and Cui et al. [45],
and simple regression models between remotely sensed SIF and GPP have been established. On the
other hand, SIF has also been considered to be more sensitive in tracking the GPP than the traditionally
used normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) [34,46].
In addition, some studies have also shown the potential use of SIF data to calibrate parameters
(maximum carboxylation capacity, Vcmax) in the photosynthesis model and provide an accurate
estimation of agricultural productivity [47,48].

Despite the experimental evidence of the direct and highly linear correlation between SIF and
GPP, the applications of SIF-based GPP models are relatively rare when compared to other GPP models
due to data availability and quality. Moreover, little research has been conducted to compare the
performances of SIF-based models and other GPP models. To the best of our knowledge, there is only
one study that has compared SIF-based, LUE-based, and process-based GPP models [49], in which
they used satellite-derived data combined with field observations to derive the daily GPP of crops.
However, some uncertainties arise due to spatial mismatches between satellite remote sensing data
and EC footprints and temporal mismatches between instant SIF and daily GPP measurements.
These mismatches should be reduced before assessing the performance of GPP models. In this
context, the objective of this study is to compare the performance of three GPP modeling approaches,
SIF-based, LUE-based MuSyQ-GPP and process-based BEPS models, in estimating the diurnal courses
of GPP for cropland. We focus on field observations with relatively small spatial and temporal scales
in this study, and data-driven models are beyond the scope of our research. This study lays the
foundation for accurately estimating the GPP of croplands at larger spatial and temporal resolutions.

2. Materials and Methods

2.1. Study Site Description

A field experiment was conducted near an eddy flux tower in the Zhangye oasis irrigation area
located in the middle of the Heihe watershed, northwestern China (100.372◦E, 38.856◦N, altitude 1556 m)
(Figure 1). This station was funded in May 2012 with the support of the Heihe Watershed Allied
Telemetry Experimental Research (HiWATER) (http://westdc.westgis.ac.cn/data) [50,51]. It was
dominated by maize during our experimental period. The research area is characterized by a mean
annual temperature of 6 ◦C and a mean annual precipitation of 114.9 mm, which falls mostly from June
to September. During our campaign, the average height of the canopy was approximately 1.8 m.
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Figure 1. Location of the study site.

2.2. Eddy Covariance Measurements

The EC system that was installed within our study area collected continuous
measurements beginning on 25 May 2012. It consisted of a three-dimensional sonic anemometer
(CSAT3, Campbell Scientific Inc., Logan, UT, USA) and an open path CO2/H2O analyzer
(LI7500A, LI-COR Biosciences, Lincoln, NE, USA). The anemometer measured the three-dimensional
wind velocity and temperature, and the CO2/H2O analyzer monitored the CO2/H2O density.
Both sensors were placed 4.5 m above the ground and separated 17 cm away from each other in
the horizontal direction. They were connected to a data logger (CR1000, Campbell Scientific Inc.,
Logan, UT, USA) that recorded the measurements with a sampling frequency of 10 Hz. The EC
measurements were processed to half-hourly averages using the EddyPro software package [50,51].

Measurements of air temperature and relative humidity were taken close to the EC system at seven
heights (3 m, 5 m, 10 m, 15 m, 20 m, 30 m, and 40 m). All data were processed to 10 min intervals [51].
To match the EC measurements, we used measurements at a height of 5 m in this research.

The diurnal courses of GPP (mg m−2 s−1) during our experiment period were obtained by
partitioning the observed net ecosystem exchange (NEE) into GPP and ecosystem respiration (Re)
according to Coops et al. [52] and Zhang et al. [53].

2.3. Field Data Collection

Spectral measurements at the canopy level were carried out under clear-sky conditions in
July and August 2015, when the maize plants were at the late big trumpet period and the ripening
stage, respectively. The vegetation fraction during our campaign is greater than 0.8. A calibrated
HR4000 high-resolution spectroradiometer (Ocean Optics Inc., Dunedin, FL, USA) was installed
at approximately 20 m from the eddy flux tower to measure the diurnal cycles of the canopy
radiometric response (Figure 2a). It records reflected radiation within the spectral domain of
647–1087 nm with a full width at half maximum (FWHM) bandwidth of 0.13 nm. During our
experiment, the spectroradiometer was housed in a thermally regulated box (SteadiQ, Ocean Optics
Inc., Dunedin, FL, USA) and the internal temperature was maintained at 25 ◦C to reduce dark current
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drift. Spectralon reflectance standards (WS-1-SL, Ocean Optics Inc., Dunedin, FL, USA) were used to
measure the incident irradiance.

Figure 2. Overview of the spectral measurements: (a) spectral measurement system; and (b) positions of
the standard reflectance panels (S) and the four canopy targets (T1–T4).

For the canopy measurements, the instrument’s fiber optic was attached to a swiveling mount
that was elevated approximately 1 m above the canopy and adjusted for nadir view. The daily cycles
of the reflectance spectra under clear sky conditions at four different canopy locations were collected
in our campaign. As the FOV (Field of View) of the instrument is 25◦, each measurement can acquire
a circle area of 0.5 m in diameter (Figure 2b). During the measurement, the swiveling mount was
manually controlled to acquire sequential observations of the standard reference panel and the canopy
targets. Specifically, each acquisition session consisted of the consecutive collection of spectra of
instrument dark current, radiance of the standard reference panel, canopy radiance and radiance of the
standard reference panel. After acquiring the radiance of the standard reference panel, the fiber optic
was immediately switched to the canopy target to acquire canopy radiance. Then the fiber optic was
switched to the standard reference panel to acquire its radiance again. The radiance of the standard
reference panel at the time of the canopy measurement was determined using the averaged spectrum of
the two measurements. To ensure high-quality spectral data, ten consecutive spectra were averaged as a
single spectrum at each measurement. The integration time was automatically optimized during the day
to maximize the signal-to-noise ratio (SNR). In the experiment, the spectral acquisitions were conducted
at 0.5 h intervals. Eventually, five diurnal courses of reflectance spectra were acquired (Table 1).

Table 1. Summary of the available day courses of radiometric measurements.

Period Date Time Window (hh:mm) Growth Stage

1 10 July 11:30–19:00 Late big trumpet period
2 17 July 8:00–18:30 Late big trumpet period
3 18 July 9:00–19:00 Late big trumpet period
4 21 August 8:00–18:30 Ripening stage
5 22 August 8:00–18:00 Ripening stage

In addition to the spectral measurements, the absorbed photosynthetically active radiation (APAR)
was collected simultaneously within 10 m away the FOV of the spectrometer using an LI-190SA
quantum sensor (LI-COR Biosciences, Lincoln, NE, USA) that measures PAR in the range of 400–700 nm.
APAR acquisition is based on the measurements of four radiation components: PAR reaching the
canopy, PAR reflected from the canopy, PAR transmitted through the canopy, and PAR reflected from
the ground. APAR was determined by referring to Gallo and Daughtry [54].

228



Remote Sens. 2017, 9, 1267

During our campaign, LAI was measured twice at 18 July and 22 August, respectively.
Each measurement was conducted shortly after sunset using an LI-2200 plant canopy analyzer
(LI-COR Biosciences, Lincoln, NE, USA). The measurements were conducted within a 10 m × 10 m
area around the spectral measurement instrument. The measurement at 18 July with value of 3.97 was
used for all the July studies, and the measurement at 22 August with value of 4.22 was used for all the
August studies, respectively.

2.4. SIF Retrival

Chlorophyll fluorescence is the re-emission of solar radiation absorbed by leaf chlorophyll at
longer wavelengths, and it has a distinct spectral shape with one peak at 685–690 nm (red fluorescence)
that is mainly attributed to the fluorescence emission of photosystem II (PSII) and another
at 730–740 nm (far-red fluorescence) that is attributed to both PSI and PSII [34]. The solar-induced
fluorescence (SIF) adds a weak signal to the reflected solar radiation. Depending on the wavelength,
the amount of SIF that is emitted by the canopy is approximately 8.7–21.9% and 2–5.2% of the total
reflected light at 685 nm and 740 nm, respectively [25,55,56].

The SIF signal is usually discriminated using the Fraunhofer lines in which irradiance is strongly
reduced [57,58]. Three Fraunhofer lines are generally used in the visible and near-infrared region:
Hα line (centered at 656.4 nm) due to hydrogen absorption in the solar atmosphere, O2-A (centered at
760.4 nm) and O2-B (centered at 687 nm) due to telluric oxygen absorption in the atmosphere [59–61].
As PSI emits fluorescence only in the near-infrared part of the fluorescence spectrum and PSII emits
over a wide spectrum and peaks in the red part, the two oxygen absorption lines that corresponded
with the two fluorescence emission peaks can be used to obtain SIF signal emitted mainly by PSI and
PSII, respectively [34]. Previous studies have demonstrated that red SIF is affected by the reabsorption
of leaf chlorophyll and LAI variations, which causes a lower correlation between red SIF and GPP
when compared with the far-red SIF [36,62]. Thus, we mainly consider the far-red SIF in this study.

Almost all SIF retrieval algorithms are based on the Fraunhofer line depth (FLD) principle that
was originally proposed by Plascyk [57] and Plascyk and Gabriel [58]. The principle assumes that the
reflectance signal and the SIF signal within and outside the dark line remain constant (see the review
written by Meroni et al. [59]).

In this study, we used the O2-A line to obtain the far-red SIF (SIF760) according to the modified
FLD method proposed by Maier et al. [63]. This approach, which is referred to as 3FLD, assumes that
the variations in the SIF and reflectance signals are linear. The signals at three bands, including one
within the absorption valley and two outside the valley, are used to derive the SIF. The weights of the
two outside channels are defined as

wleft =
λright − λin

λright − λleft
(1)

and
wright =

λin − λleft
λright − λleft

(2)

where λleft and λright indicate the shorter and longer wavelengths adjacent to the absorption valley,
respectively. The SIF can be generated using

SIF =

(
Eleftwleft + Erightwright

)
Lin − Ein

(
Lleftwleft + Lrightwright

)
(

Eleftwleft + Erightwright

)
− Ein

(3)

where E and L represent the ground irradiance and the canopy radiance, respectively.
Former studies have indicated that the 3FLD algorithm can generate reliable SIF signals when

used on datasets obtained using the aforementioned HR4000 (SR = 0.13 nm, SNR > 300) [64,65].
Therefore, we considered the derived SIF to be suitable for our research.
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2.5. Statistical Analysis of the SIF-GPP Relationship

According to the LUE theory proposed by Monteith [66], the GPP can be obtained by

GPP = APAR × LUEP (4)

where APAR represents the absorbed photosynthetically active radiation and LUEP refers to the
efficiency in which APAR is used in photosynthesis.

As a by-product of photosynthesis, SIF can be similarly expressed as

SIF = APAR × LUEF × fesc (5)

where LUEF is the light-use efficiency for SIF, which represents the fraction of APAR that is re-emitted
from the canopy as SIF photons and f esc is the fraction of SIF photons escaping the canopy [24].

By combining Equations (4) and (5), SIF can be theoretically linked with GPP as

GPP = SIF × LUEP

LUEF × fesc
≈ SIF × LUEP

LUEF
(6)

where f esc ≈ 1 can be assumed to be due to the low absorptance of leaves in the far-red wavelengths
and the relatively simple plant structure and high leaf area index of crops [24,67].

As shown in Equation (6), if the LUEP/LUEF ratio is constant, the SIF would be a good
constraint used to determine GPP regardless of changes in the APAR or stresses. Previous studies have
demonstrated that these two terms (LUEP and LUEF) covary in most cases, and the ratio of one to the
other tends to be constant under high light conditions, which makes it possible to establish a linear
statistical model between SIF and GPP [23,25,68]. In this study, we generated a statistical model to
assess the ability of SIF to estimate GPP.

2.6. MuSyQ-GPP Algorithm

The MuSyQ-GPP algorithm was designed as part of the multi-source data synergized quantitative
(MuSyQ) remote sensing production system [12]. It presents an LUE approach to model the GPP
using remotely sensed data and meteorological data with different spatial and temporal resolutions.
The algorithm was adopted to generate the GPP at the site level in this research.

The MuSyQ-GPP algorithm estimates GPP using the LUE theory described in Equation (4).
It employs down-regulating scalars to characterize the effects of temperature and water stress on the
LUEP as

LUEP = LUE0 × f1(T)× f2(β) (7)

where LUE0 is the potential or maximum LUEP (gC mol−1 PPFD), and f 1(T) and f 2(β) represent the
down-regulation effects of temperature and water conditions on LUE0, respectively. A theoretical
LUE0 value of 0.60 gC mol−1 PPFD that was reported in a previous study [69] was used in this study.

The temperature-limited effect on LUE0 is generated using two terms, T1 and T2

f1(T) = T1 × T2 (8)

where
T1 = 0.8 + 0.02Topt − 0.0005Topt

2 (9)

T2 = 1.1814/
{[

1 + e0.2(Topt−10−T)
][

1 + e0.3(−Topt−10+T)
]}

(10)

where Topt represents the optimum temperature, which is defined as 28 ◦C in our study as in
Kalfas et al. [70]
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The limited effect of water conditions on plant photosynthesis, which ranges between 0.5 and 1,
is derived following the algorithm

f2(β) = 0.5 + 0.5E/EP (11)

where E and EP represent the actual and potential evapotranspiration, respectively.
In the MuSyQ-GPP algorithm, a modified Penman–Monteith (P-M) approach with biome-specific

canopy conductance [71–74] is used to estimate the actual evapotranspiration (see Text S1 in
Supplementary Materials). The potential evapotranspiration is calculated using the Priestley and
Taylor (P-T) equation [75].

The original version of the MuSyQ-GPP model was established to estimate the daily GPP over
regional and global scales [12]. In our study, we deployed its original algorithms to generate half-hourly
averaged GPP at the site level to evaluate the performance of the LUE model.

2.7. BEPS Approach

The BEPS model used in our study is an hourly process-based diagnostic model [13,14,76]
that computes the canopy level GPP as the sum of the sunlit and shaded leaf groups using the
Farquhar, von Caemmerer and Berry (FvCB) photosynthesis model [18]. Although the BEPS was
initially developed for boreal ecosystems, it has been expanded and used for temperate and tropical
ecosystems in Asia [77,78], which laid the foundation for its application in croplands.

The BEPS adopts a sunlit-shaded leaves separation modeling mechanism that upscales
photosynthesis from the leaf level to the canopy level. This kind of “two-leaf” model has been proven
to be more effective in modeling canopy photosynthesis than the conventional “big-leaf” model [13,79].
The photosynthetic rate of the canopy, Ac, is modeled as the sum of the sunlit and shaded leaf groups as

Ac = AsunlitLAIsunlit + AshadedLAIshaded (12)

LAIsunlit = 2 cos θ(1 − e−0.5ΩLAI/ cos θ) (13)

LAIshaded = LAI − LAIsunlit (14)

where sunlit and shaded denote the sunlit and shaded leaf groups, respectively; θ is the solar zenith
angle; and Ω is the clumping index.

The photosynthesis model in the BEPS model is suitable for C3 carbon fixation pathways.
However, maize is a C4 species according to its photosynthetic pathway. In this study, the BEPS model
was modified to be suitable for C4 species estimation according to the theory of Collatz et al. [19].
The photosynthetic rate of the leaves for C4 species, An, is assumed to be limited by the
phosphoenolpyruvate carboxylase (PEP-carboxylase)-limited rate of assimilation (Wc), the light-limited
rate of assimilation (We), and the CO2-limited rate of assimilation (Ws) [80]

An = min(Wc, We, Ws)− Rd (15)

Wc = Vcmax (16)

We = PAR × (1 − ω)× ε (17)

Ws = 2 × 104VcmaxCi/p (18)

Rd = 0.0025Vcmax (19)

where Vcmax is defined as the maximum carboxylation rate (mol m−2 s−1), ω is the leaf-scattering
coefficient for PAR, ε represents the intrinsic quantum efficiency of CO2 uptake (mol mol−1), and Rd is
the leaf dark respiration rate (mol m−2 s−1).
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The C4 photosynthesis model was integrated into the BEPS model to couple with the Ball-Berry
stomatal conductance model to generate the photosynthesis rate using an iteration calculating
procedure [19,81].

3. Results

3.1. Diurnal Patterns in GPP and SIF760

The diurnal courses of GPP, SIF760, and PAR during our campaign are shown in Figure 3. Since the
canopy spectra were collected at four different positions, four SIF760 values together with one GPP
value were obtained at a time. As shown in Figure 3, both SIF760 and GPP exhibit similar patterns
to that of PAR with lower values in the early morning and late afternoon and higher values in the
middle of the day. These values tend to exhibit a single peak curve that follows the variation of
PAR. The distinct decrease in GPP at midday that is commonly found in C3 species, known as the
“midday depression”, was not observed in our experiment, which is consistent with the studies by
Cheng et al. [82] and Liu et al. [25] For C3 species, higher temperatures can decrease the affinity of
enzymes for CO2 and cause the carboxylation enzyme, Rubisco, to be less active, which leads to the
midday reductions in carbon assimilation. In addition, the higher evaporative demands at midday
reduces the stomatal conductance, which also affects the assimilation rate. In contrast, for C4 species,
CO2 is delivered to Rubisco, which is localized in the bundle sheath chloroplasts, by a metabolic
pump that concentrates CO2 [19]. This mechanism can inhibit photorespiration and promote carbon
assimilation. Consequently, C4 species exhibit higher photosynthesis capacities at high temperatures
where photorespiration is stimulated. In addition, C4 species generally have lower stomatal conductance
than C3 species [19]. Lower conductance coupled with higher photosynthetic capacity in C4 species
results in higher water use efficiencies in comparison to C3 species. The similar pattern between SIF760

and PAR indicates the capacity of SIF in protecting plant tissues from light energy that may be excessive
for photosynthesis and could otherwise damage tissues. Although some research has demonstrated
that SIF will increase with PAR at low light then decrease when NPQ increases and further increase
when NPQ reaches saturation [83], we did not find this kind of variation clearly in our experiment.
Actually, only one set of data on 17 July showed slight decreases at approximately 11:30 and 14:30,
which might correspond to the aforementioned decreasing trend. However, we also noticed that the
SIF760 values of the four canopy positions had relatively higher diversity on 17 July (as well as 10 July)
than on the other days. It is not clear whether it can to be attributed to the NPQ increment or observation
bias. Thus, further studies are needed, and both data quality and quantity should be considered before
drawing such a conclusion. For our study, we found that SIF760 showed a pattern with a single peak
that followed the variation of PAR as concluded by Liu et al. [25].
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Figure 3. Diurnal patterns of PAR, GPP and SIF760 during the experiment: (a) 10 July; (b) 17 July;
(c) 18 July; (d) 21 August; and (e) 22 August.

We also analyzed the relationships between APAR and both SIF760 and GPP. Both showed strong
linear correlations, and an R2 of 0.713 (Figure 4a) and 0.591 (Figure 4b) was achieved between APAR
and SIF760 and APAR and GPP, respectively. The averaged SIF760 values were also generated to reduce
some uncertainties introduced during our spectral acquisition. As our measurements were conducted
at four different canopy positions, we assumed their mean values could adequately represent the
situations of our study site. By analyzing the relationship between APAR and the averaged SIF760,
the R2 increased to 0.798 (Figure 4c). As illustrated in Figure 4, the slope of the SIF760-APAR relationship
is approximately the same LUEF, and the slope of the GPP-APAR relationship can be considered as
LUEP. Because both relations can be adequately expressed by linear equations, the ratio between LUEP

and LUEF, as described in Equation (6), can be considered nearly constant, which means that SIF760

and GPP can be directly linked.

Figure 4. Relationship between APAR (absorbed photosynthetically active radiation) and:
(a) individual SIF760; (b) GPP; and (c) averaged SIF. The error bar indicates the range of SIF760 values
for four measurements.
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3.2. Relationship between SIF and GPP

Statistical analysis was conducted to reveal the relationship between SIF760 and GPP. As shown in
Figure 5, we found a significant correlation between SIF760 and GPP, and their relationship could be
characterized by a linear function, regardless of using individual SIF760 of the four group measurements
(GPP = 0.570 × SIF760 + 0.666) or the averaged measurements (GPP = 0.621 × SIF760 + 0.614),
which suggests that SIF760 can be used as a direct proxy for GPP.

Figure 5. Relationship between: (a) individual SIF760 and GPP; and (b) averaged SIF760 and GPP.
The error bars indicate the range of SIF760 values for the four measurements.

3.3. Comparison of GPP Modeled by SIF, MuSyQ-GPP, and BEPS Models

In addition to the SIF-based GPP estimation, we also generated GPP using both the LUE-based
MuSyQ-GPP algorithm and the process-based BEPS model. As the BEPS model used in our study was
initially designed to run at hourly intervals, we modified it to a half-hourly time step to match the
observations in this study. Thus, all approaches were performed every 30 min in our analysis. As the
average of the four SIF760 measurements may represent the situations of our study site better than the
individual measurements, we only considered the statistical model generated using the averaged SIF760

values (GPP = 0.621 × SIF760 + 0.614) in this study. As shown in Figure 6, all three approaches estimate
the GPP well. Among which, the BEPS model (R2 = 0.867, RMSE = 0.153 mg m−2 s−1) performs
better than that of SIF760 (R2 = 0.624, RMSE = 0.237 mg m−2 s−1) and MuSyQ-GPP (R2 = 0.702,
RMSE = 0.247 mg m−2 s−1) models. We also modeled GPP using the statistical model generated with
SIF686 (GPP = 0.682 × SIF686 + 0.539) (see detailed results in Text S2, Figures S1–S4 in Supplementary
Materials). Compared with the SIF760-based model, SIF686-based GPP model showed a limited accuracy
with R2 = 0.456 and RMSE = 0.363 mg m−2 s−1.
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Figure 6. Relationships between modeled GPP and EC-based GPP by: (a) SIF760; (b) MuSyQ-GPP;
(c) BEPS; and (d) SIF686 during the experiment period. The dots in the red circle are the values at 8:30
on 21 August, and 8:30 on 22 August. The error bars indicate the range of the four SIF-based GPP
values, the red shades represent the 95% confidence bands for the regression functions.

We noticed that some of the SIF-based GPP estimates were higher than the EC-based estimates
when GPP was relatively low, which corresponded to the observations at 8:30 on 21 August
and 8:30 on 22 August (dots in the red circle in Figure 6a). When these two groups of data were
excluded from the analysis, both SIF based GPP models performed better with R2 increased to 0.667 and
RMSE decreased to 0.236 mg m−2 s−1 for the SIF760-based model, and R2 increased to 0.459 and RMSE
decreased to 0.352 mg m−2 s−1 for the SIF686-based model, respectively. The MuSyQ-GPP algorithm
was found to underestimate the GPP values at high productivity, which could be attributed to the
assignment of a constant LUE0 value in the algorithm as it could not properly handle the contribution
of both sunlit and shaded leaves to the total GPP. BEPS model was found to slightly underestimate
GPP at high productivity and overestimate GPP at low productivity. Among these three approaches,
BEPS model showed better performance than that of SIF-based or LUE-based MuSuQ-GPP models,
with higher R2 and lower RMSE.

4. Discussion

4.1. Uncertainties in the SIF Measurements

The SIF retrieval accuracy is dependent on the spectral characteristics of the reflectance and
irradiance spectra around the oxygen absorption lines. According to our validation based on EC-based
data, the SIF760-based GPP at 8:30 on 21 August and 8:30 on 22 August deviate from the EC-based
values significantly (dots in the red circles in Figure 6). During our experiment, we measured four
canopy positions sequentially from T1 to T4 as illustrated in Figure 2. The spectra of the reference
panel were collected eight times: once before and once after each of the four canopy measurements.
Incident radiance at 8:30 on 21 August and 8:30 on 22 August was then obtained (Figure 7). The incident
radiance showed significant variations during our measurement, especially at the left and right
shoulders of the absorption line. Additionally, the measured irradiance did not present a gradual
increase trend as expect. This may be attributed to the instability of irradiance in the morning. As light
travels a longer path at high solar zenith angle (SZA) in the morning, the influence of atmospheric
conditions would be larger than that at lower SZA. Hence, in future studies, it is necessary to consider
the influence of air conditions and the affection of imaging geometrical conditions such as the SZA
and relative azimuth angle in SIF retrieval.
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Figure 7. Incident radiance at: (a) 8:30 on 21 August; and (b) 8:30 on 22 August. T1 to T4 represent the
four canopy targets, B and A denote measurements before and after canopy measurement, respectively.

The data quality (DQ) indicator DQs presented by Cogliati et al. [84] was adopted to evaluate the
stability of the incident radiance. DQs is defined as the percentage of variation between the first and
the second irradiance measurement

DQs = |EB − EA|/EB × 100 (20)

where EB and EA represents the incident radiance before and after the canopy measurement, respectively.
In this study, the DQs values of the three bands used in the 3FLD algorithm were averaged to

represent the irradiance stability. As shown in Figure 8, the DQs values were generally higher at
morning and evening and lower at noon, the higher values also corresponded with the higher SZA
and longer path. For the observations at 8:30 on 21 August and 8:30 on 22 August, the DQs showed the
largest values, which indicated that the irradiance changed significantly during these measurement
sessions. Therefore, data quality check is needed especially when irradiance demonstrates significant
variations, the acquisition that do not meet the quality check should be rejected and no longer
considered in the analyses.
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Figure 8. DQs values of the measurements: (a) 10 July; (b) 17 July; (c) 18 July; (d) 21 August;
and (e) 22 August. T1 to T4 represent the measurements of the four canopy targets.

We used the 3FLD algorithm to generate SIF in this study. The 3FLD approach is based on the
assumption that the reflectance signal and the SIF signal vary linearly within and outside the absorption
band. However, the actual variations of reflectance and SIF signal are not being linear, which causes
a violation of the underlying assumption of the 3FLD method and lead to some uncertainties in SIF
retrieval. Additional studies are needed in generating SIF with more advanced SIF retrieval approaches
such as the improved FLD (iFLD) method [85] or the Spectral Fitting Methods (SFM) [86].

4.2. Uncertainties in the SIF-Based GPP Model

Previous studies have demonstrated that the relationship between remotely sensed SIF and GPP can
be characterized by a linear and ecosystem-specific function [23–25]. There is also evidence indicating
that the SIF and GPP relationship can be affected by various factors such as the rate of NPQ [61,87],
light conditions [46,87], nutrient availability [61], water availability [87], temperature [23,46,68],
and canopy structure [34]. Recent studies have suggested that there is a curvilinear relationship
between instantaneous SIF and GPP due to the rate of photosynthesis saturated under high
illumination, and this relationship tends to become linear when both SIF and GPP are temporally
aggregated [28,34]. However, the saturation of GPP with APAR were not found in our experiment
(Figure 4) as C4 species exhibit higher photosynthesis capacities at higher temperatures than C3 species.
Therefore, the relationship between SIF and GPP could be adequately characterized by a linear function in
our research. However, the SIF-GPP relationship may not be constant in spatial and temporal modeling,
which can be attributed to the ecosystem-specific structural and physiological characteristics as well as
the environmental situations associated with each ecosystem [34]. Therefore, for accurate quantification
and characterization of the SIF-GPP relationship, further experiments that overlap the entire growth
periods in various ecosystems are needed, especially for C3 species.

Remote measurements of SIF are likely representative of the upper layer of the canopy, which is
mainly characterized by sunlit leaves [34,59]. Although the upper layer substantially contributes to
the total GPP, there are still many layers of leaves that contribute to the canopy photosynthesis at
different rates depending on their sunlit or shaded exposure [59]. Thus, the heterogeneity of the
vertical canopy may lead to a mismatch between the SIF-based estimates and the EC-based GPP.
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Additionally, under low light unstressed conditions, there exists a competitive relationship between
leaf fluorescence and photosynthesis and a positive correlation between them under stressed and
high light conditions [87,88]. The relationships between SIF and GPP for sunlit and shaded leaves
are different as sunlit leaves receive more light and shaded leaves only receive diffuse light [88].
Therefore, additional studies are needed to address the contributions of the shaded leaf groups and
the structural sensitivities of canopy-leaving SIF signals.

Light energy absorbed by leaf chlorophyll molecules has three different pathways: photochemistry,
NPQ, and SIF. Accurately estimating any one of the de-excitation pathways require measurement
of the other two. Some researches indicated that most absorbed energy is used in photosynthesis
and both fluorescence and NPQ are low under low light conditions. Under high light and stressed
conditions, NPQ becomes dominant and the yields of fluorescence and photosynthesis decrease [87].
As a result, the relationship between SIF and GPP is influenced by NPQ. The mechanism of NPQ and
its regulation should be considered in the further studies.

Plant photosynthesis starts with absorption of light, mainly by chlorophyll molecules.
Accordingly, some mechanisms were used to modulate photosynthetic light. Former studies have
indicated that chloroplasts can change their orientation within the cell in response to the intensity
and direction of the incident light [89]. When light is limiting to photosynthesis, chloroplasts
move to positions that yielding maximum light absorption, whereas in saturating light they hide
themselves to make the light absorption minimized. The chloroplast avoidance movements can lead to
decreased light absorption and then influence the observed SIF signal, and further studies are needed.
Additionally, leaf movements and leaf angle adjustments can also significantly affect the fractions of
sunlit and shaded leaves, which should be considered in future research.

The mismatches of the spatial and temporal scales between canopy SIF and EC-based GPP also
lead to some uncertainties. The footprint of the EC tower covers 0.01 km2 to 10 km2 depending on the
measurement height, wind speed and turbulent state of atmosphere [90], whereas the canopy SIF are
instantaneously measured with a footprint less than one square meter.

The availability, quality, and spatiotemporal coverage of SIF data are expected to increase
drastically over the next few years. SIF measurements have been conducted at ecosystem,
landscape, and global scales using field spectroradiometers, airborne instruments, and satellite
platforms, respectively. The NASA’s OCO-2 [43], ESA’s Sentinel-5 Precursor (TROPOMI) [91] and
ESA’s Earth Explorer Fluorescence Explorer (FLEX) [92,93] can provide SIF data at much higher
spatial resolutions. In particular, the FLEX mission can provide auxiliary information such as NPQ
and canopy temperature along with fluorescence information. These data would improve our
estimation of the global carbon budget and our ability to track the health of terrestrial ecosystems.
Additionally, the development of the SCOPE (Soil-Canopy Observation, Photosynthesis and Energy
balance) model provides a theoretical way to model canopy SIF and photosynthesis by combing
Soil-Vegetation-Atmosphere-transfer (SVAT) model with radiative transfer models [94]. Despite this
promising scenario and the empirical evidence that SIF provides novel information to estimate
photosynthesis, as found in our study, there are still many uncertainties in relating SIF and GPP,
and further studies are needed.

4.3. Limitations of the LUE-Based Model

The basis of the LUE-based models is the initial linear relationship between the GPP and APAR of
the canopy [63]. However, this relationship is not linear at the individual leaf level and is characterized
by temporal heterogeneity associated with the variation of illumination levels [95]. Photosynthesis in
sunlit leaves is often light-saturated and limited by the level of Rubisco activity related to leaf nutrient
conditions and the ambient temperature [18], which results in a lower LUE, while photosynthesis in
shaded leaves is often not light-saturated and essentially has a linear response to APAR, which results
in a higher LUE [13,96–99]. In the LUE-based MuSyQ-GPP algorithm, LUE is determined by assigning
a constant maximum value of LUE0 and adjusting downward based on temperature and water
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conditions. Daily variability in the sunlit and shaded leaf fractions cannot be represented in this model.
Consequently, the internal physiological processes of these two leaf groups are substantially different
and the LUE of the shaded leaves is generally higher than that of the sunlit leaves [95]. As GPP can
vary greatly in space and time as a result of the variability between sunlit and shaded leaf fractions,
we argue that scaling the LUE0 without considering the difference between the sunlit and shaded leaf
groups can significantly limit the performances of the LUE-based models. There are some literature
suggests that the LUE models underestimate GPP at high productivity and overestimate GPP at low
productivity [96], and the underestimation is consistent with our research. However, the overestimation
cannot be clearly shown in our analysis. These results are not contradictory since our data at low
productivity is limited. In addition, the LUE0 used in the LUE-based models is usually defined as
a constant value for each broadly defined plant functional type (PFT). For our study, we used a
constant value of 0.60 gC mol−1 PPFD from the study by Zhang [69], which was conducted at the
same site as our study. However, other literature has suggested that LUE0 for maize at different
sites can be assigned as 1.50 gC mol−1 PPFD [67,100], 0.93 g C mol−1 PPFD [101], or 1.22 g C
mol−1 PPFD [101]. Therefore, LUE0 varies among vegetation types and study sites and should be
calibrated before using in the LUE-based approach. Moreover, the MuSyQ-GPP algorithm deploys
two down-regulating factors to represent the effects of temperature and water conditions while scaling
the LUE0. Although various strategies have been developed to characterize the impacts of temperature
and water stresses [8–11], the descriptions of their influences in the LUE-based approaches are still
empirical, which may introduce some uncertainties, especially for the water stress scalar. For the
MuSyQ-GPP algorithm, a calculation of evapotranspiration is conducted to represent water availability.
Predictably, the uncertainties existing in the evapotranspiration estimation would lead to significant
deviations in the final GPP estimation.

4.4. Uncertainties in the BEPS Model

The core idea of the BEPS model is that it adopts separate sunlit and shaded leaves modeling
mechanisms. The two-leaf model has been proven to be more efficient in simulating the daily variation
of canopy photosynthesis than the conventional “big-leaf” model [13]. The BEPS model employs the
enzyme kinetics theory for C3 plants proposed by Farquhar et al. [18] to generate the photosynthesis
rate. In this study, we adopted a modified version that was applicable for C4 species [19] and integrated
it into the BEPS model to couple with the Ball-Berry stomatal conductance model [81] to generate GPP as
well as the water and heat fluxes. Although it is designed in an explicit and tightly linked manner that
simulates the coupled hydrological, ecophysiological, and biogeochemical processes and the associated
feedback mechanisms, it should be noted that numerous parameters should be assigned before modeling.
One of the most important parameters in modeling photosynthesis, the maximum carboxylation rate
(Vcmax in Equations (16), (18), and (19)), has been proven to vary temporally [48,102–104], although it
is usually assigned as a specific value for each PFT [105]. In this study, we adopted a constant value
of 37 μmol m−2 s−1 by referring to Zhang et al. [48]. Although BEPS model simulated GPP better
than the SIF-based and LUE-based model in our study, there are still some underestimations at high
productivity and overestimations at low productivity. Therefore, additional studies are needed in
generating the seasonal variation of Vcmax. Former studies have demonstrated that Vcmax can be related
with reflectance [106] or leaf chlorophyll content [107], which made it retrievable using remotely sensed
data. Recently, a study conducted by Zhang et al. [48] presented an SIF-based approach for modeling
seasonal Vcmax, which provided a new method to assess plant photosynthesis using SIF.

5. Conclusions

In this study, we evaluated the ability of three different approaches, SIF, LUE-based MuSyQ-GPP,
and process-based BEPS, to estimate the diurnal courses of GPP at a maize site. In general,
all three approaches adequately estimated the GPP, and the process-based BEPS model had the
best performance, followed by the LUE-based MuSyQ-GPP algorithm and the SIF-based statistical
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model. The MuSyQ-GPP algorithm underestimated the GPP at high productivity, which can be
attributed to its weakness in characterizing the underlying ecological processes of vegetation and the
contribution of shaded leaves to total GPP. In contrast, the BEPS model that was established based on
the two-leaf theory and physiological mechanisms can provide more accurate estimations. Our study
indicated that the SIF760-based statistical model can provide reasonable estimates of GPP in the short
term without additional information such as climate inputs, which are required by the process-based
and LUE models.

The observational approach revealed that both SIF760 and GPP exhibited similar diurnal patterns
as PAR, both SIF760 and GPP were linearly correlated with APAR, and a linear function could well
characterize the relationship between SIF760 and GPP for maize over our study period. Despite its
limitations in applying to large area and long-term studies, SIF provided a proxy for GPP not available
from any other remote sensing measurements of vegetation.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/12/1267/s1,
Text S1: Estimation of water stress factor in the MuSyQ-GPP algorithm, Text S2: Performance of the SIF686-based
GPP model, Figure S1: Diurnal patterns of PAR, GPP and SIF686 during the experiment, Figure S2: Relationship
between APAR and individual SIF686 and averaged SIF686, Figure S3: Relationship between individual SIF686 and
GPP, averaged SIF686 and GPP, Figure S4: Relationships between SIF686-based GPP and EC-based GPP during the
experiment period.
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Abstract: Accurate estimation and monitoring of rice phenology is necessary for the management
and yield prediction of rice. The radar backscattering coefficient, one of the most direct and
accessible parameters has been proved to be capable of retrieving rice growth parameters. This paper
aims to investigate the possibility of monitoring the rice phenology (i.e., transplanting, vegetative,
reproductive, and maturity) using the backscattering coefficients or their simple combinations of
multi-temporal RADARSAT-2 datasets only. Four RADARSAT-2 datasets were analyzed at 30 sample
plots in Meishan City, Sichuan Province, China. By exploiting the relationships of the backscattering
coefficients and their combinations versus the phenology of rice, HH/VV, VV/VH, and HH/VH ratios
were found to have the greatest potential for phenology monitoring. A decision tree classifier was
applied to distinguish the four phenological phases, and the classifier was effective. The validation of
the classifier indicated an overall accuracy level of 86.2%. Most of the errors occurred in the vegetative
and reproductive phases. The corresponding errors were 21.4% and 16.7%, respectively.

Keywords: phenology; RADARSAT-2; rice; Synthetic Aperture Radar (SAR); decision tree

1. Introduction

Rice is one of the most important cultivated grain crops and is the staple food of nearly half of the
world’s population [1]. Approximately 969 million metric tons of rice were produced worldwide in
2010 and about one-third of them were from China [2]. Effective management of rice cultivation that
includes the prediction of the growth conditions and stages of rice accurately and timely is crucial to
food security and social stability. Thus, the accurate acquisition of rice phenological information is an
important component of the farming management system [3–5]. This type of information provides an
accurate knowledge on the status of rice plants, leading to different cultivation practices (e.g., irrigation,
fertilization, or harvest) [6–8]. Rice phenology is also used as an input in the rice growth and yield
prediction models, ecosystem productivity models, and land surface process models [6,9,10].

The phenological stages of crops can be measured using a field survey, simulation by bioclimatic
models, or detection with remotely sensed data [7,11]. Conventional ground-based rice phenology
monitoring provides accurate in situ information if properly designed and executed. The monitoring
is, unfortunately, linked to enormous costs of time, money, and man-power [12,13], and is not practical
at a large spatial extent and for long-term monitoring and analysis. During the past decades, a series
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of spaceborne optical and synthetic aperture radar (SAR) sensors with a high or moderate resolution
have been launched, and new approaches for the phenology study have been conceived. Optical data
such as the Moderate Resolution Imaging Spectroradiometer (MODIS) [3,14–17], and HJ-1 and Landsat
data [18] are used to effectively estimate rice phenology. However, an optical sensor is vulnerable to
the variation of atmospheric conditions and cloud covers. Compared to the optical sensor, SAR has
an all-time and all-weather imaging capability. SAR data are sensitive to surface features [19] and
inundated/un-inundated rice fields [20]. Thus, SAR plays an important role in the monitoring of rice
in cloudy or foggy areas.

Many researchers have obtained successful results in rice planting monitoring using X-band
sensors (e.g., COSMO-SkyMed and TerraSAR-X) [13,21–25] and C-band sensors (e.g., Envisat-ASAR,
RADARSAT-2, and Sentinel-1) [19,20,26–28]. After the successful launch of spaceborne SARs with short
revisit periods (compared to the main phenological phases of rice with a short duration, e.g., about
16 days of reproductive phase) or polarimetric mode, the acquisition of timely and accurate information
about the rice condition during the growing period became readily possible. Lopez-Sanchez et al. [5]
used TerraSAR-X data to retrieve rice phenological phases with the correlation and phase difference
between co-polar channels and parameters provided by polarimetric decomposition techniques.
The potential of TerraSAR-X data for rice phenology monitoring has been well documented [5,7,21–23].
However, the penetration depth into the canopy is shallow for radar energy at a high frequency
compared to that at a low frequency [29]. Therefore, the backscattering at X-band may provide less
information on the structure of rice plants than that at C-band [29,30]. Tian et al. [28] have used
C-band Sentinel-1A and Landsat-8 data to map multi-season paddy rice based on backscattering
coefficients (σ0) and the normalized difference vegetation index (NDVI) with a K-Means unsupervised
classifier. The high temporal resolution, six days using the two-satellite constellation of Sentinel-1,
makes Sentinel-1 data suitable for rice monitoring. However, Sentinel-1 SAR can only provide
single or dual-pol data. Since various polarized radar backscattering coefficients respond to rice
plants differently [6,25,31], quad-polarized data (e.g., RADARSAT-2) can supply more comprehensive
information on rice growth status than single and dual-polarized data.

Although the revisit time of TerraSAR-X (11 days) and Sentinel-1 (six or 12 days) is shorter than
that of RADARSAT-2, whose revisit period is 24 days, RADARSAT-2 can still observe a rice field at
least four times during the typical cultivation cycle of rice [6,9]. Because of the different cultivation
management (e.g., transplanting time and fertilization) and rice varieties in individual fields, the pace
of rice phenology evolution varies at field-by-field levels [11]. Thus, it is acceptable to observe the
fields in each of the four principle phenological phases (i.e., transplanting, vegetative, reproductive,
and maturity) once in 24 days or longer. Besides, RADARSAT-2 provides quad-polarization (VH,
VV, HH, HV) data, and is very effective in retrieving rice canopy parameters and estimating biomass
that are linked to the crop yield [30,32]. As a result, the sensor has become an ideal data source for
rice phenology monitoring. Lopez-Sanchez et al. [6] analyzed RADARSAT-2 data and proposed
a retrieval algorithm with radar target decomposition and compact polarimetric (CP) variables.
Francis et al. [27] found that the combination of the alpha angle and beta angle derived from the
Cloude-Pottier decomposition of RADARSAT-2 data provided satisfactory estimations of the crop
phenology. Yang et al. [9] used RADARSAT-2 data to simulate the CP SAR data for identifying seven
phenological phases of rice fields. However, most of these studies require various indirect parameters
like the CP and target decomposition parameters. The retrieval processes are generally complex
including filtering and image classification that may create new uncertainties in data analysis.

Of the SAR polarimetric parameters (i.e., amplitude and phase data), the backscattering coefficient
is proportional to the square of amplitude and is the most basic one [5]. Many researches have
demonstrated that the rice backscattering coefficient alone is sensitive to plant height, biomass, and leaf
area index (LAI) [19,20,33–37]. These plant parameters are highly correlated with rice phenology
development, showing a great potential to monitor rice phenology. However, the observed correlation
between rice biophysical variables and certain polarizations [25,30] can be temporally unstable. This

248



Remote Sens. 2018, 10, 340

is caused by changes of the electromagnetic interactions between radar waves and rice scattering
components as the plant grows and different polarization responses to the changes [20]. Li et al. [31]
used multi-temporal, quad-polarization RADARSAT-2 data to establish empirical regression models
to link rice biophysical parameters to backscattering coefficients. The optimal polarization to estimate
biophysical variables was a function of different stages, which suggests a piecewise fitting strategy
using different polarizations at different growing stages. As rice plants develop during a growing
season and biophysical variables change during different phenological phases, σ0 acquired at different
phases should be clustered in the domains of polarizations and/or combinations of polarizations,
making the decision tree strategy with particular thresholds theoretically feasible for the separation
of phenological phases. Therefore, the objective of this study is to use only radar backscattering
coefficients and their combinations derived from multi-temporal and full-polarized RADARSAT-2
datasets for rice phenology monitoring. The focus of the study is to utilize a simple decision tree
model for the characterization of rice phenology in the feature space of backscattering coefficients of
multi-temporal RADARSAT-2 datasets.

2. Materials and Methods

2.1. Study Area and Field Observation

Chengdu Basin, southwestern China, is a main rice production region in China, where rice is
cultivated once per year. The growing season is typically from May to August. Under the influence
of subtropical monsoon climate and basin terrain characteristics, the sky is constantly cloudy and
rainy for most of the growing period. The study area, Meishan City, is located in the western part of
Chengdu Basin. Field observations were conducted about every 12 days from 2 May to 8 August in
2016 at 30 sample sites (Figure 1). Each site was at least 50m wide and 50m long. A hand-held GPS unit
was used to locate the sites and 11 ground control points (GCPs), which were used to geo-reference
the radar data and sites. Plant height, stem diameter, length and width of leaves, and tiller and ear
number were measured to identify rice phenology.

 

Figure 1. The study area imaged by the French SPOT-6 optical sensor on 15 July 2016. Thirty sample
sites are located and numbered.
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2.2. Rice Phenology

Rice phenology can be divided into three main phases: vegetative, reproductive, and maturity,
according to the widely-used Biologische Bundesanstalt, Bundessortenamt und CHemische scale
(a German scale used to identify the phenological development stages of cereals, BBCH) [13,21,38].
The principal phases and corresponding numerical ranges are shown in Table 1. Most of the Asian
rice cultivars are largely grown under the transplanting procedure, which marks the beginning of
a cultivation cycle in fields. Transplanting induces a development stoppage followed by a recovery
period that can last about 19 days on average in this study area. Besides, the backscattering properties
of a rice paddy during this period can be quite different from other stages in the vegetative phase,
as shown later in this study. Therefore, the transplanting phase was extracted from the vegetative
phase and specially analyzed.

Table 1. Description of the phenology of cereals using the BBCH Scale.

Principle Phase BBCH Name

Vegetative 00–09 Germination
10–19 Leaf development
20–29 Tillering
30–39 Stem elongation
40–49 Booting

Reproductive 50–59 Heading
60–69 Flowering

Maturity 70–79 Development of fruit
80–89 Ripening
90–99 Senescence

Transplanting 00–19 Transplanting, recovery (rice only)

Four phenological phases, including the transplanting (from stage 0 to 19), vegetative (from stage
20 to 49), reproductive (from stage 50 to 69), and maturity (from stage 70 to 99) phases, are studied.
They are distinguishable based on field observations (Figure 2) according to the BBCH scale. Fields at
a sample site reach a particular BBCH stage when more than 50% of their plants reach that stage [6].
This criterion is considered in the analyses of the ground measurements and radar images.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Four rice phenological phases in the study area in 2016. (a) transplanting, (b) vegetative,
(c) reproductive, and (d) maturity.
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According to field observations, the average durations of the transplanting, vegetative,
reproductive, and maturity phase were 19, 45, 16, and 30 days, respectively, for fields in 30 sample sites
in 2016. The 24-day revisit period of RADARSAT-2 might be too coarse for the monitoring of the phase
with 16 or 19 days. However, because of the different cultivation management (e.g., transplanting
time and fertilization) and rice varieties, the evolution pace of rice phenology varied at different sites.
Accordingly, each phenological phase had an extended span and the corresponding phase can be
observed. For example, the reproductive phase lasted about 16 days for most of the fields, but field
observations showed that the reproductive phase started from June 22 and ended on July 26 in 2016
(Figure 3).

Figure 3. In situ rice phenology at 30 sample sites in 2016. Blue, green, yellow, and red dots, respectively,
represent the transplanting, vegetative, reproductive, and maturity phase. Four horizontal lines denote
the acquisition dates of four RADARSAT-2 datasets.

Table 2 shows the typical growth rhythm extracted from the field measurement. About 63%,
100%, 47%, and 67% of sample sites were, respectively, in transplanting, vegetative, reproductive,
and maturity phases on the dates of RADARSAT-2 acquisitions in 2016 (Table 2). It should be noted
that on 15 May 2016, fields where three sample sites were located were not planted yet.

Table 2. The number of sample sites in different phenological phases when SAR datasets were acquired.
On 15 May 2016, fields where three sample sites were located were not planted yet.

Acquisition Dates of SAR Datasets

15 May 8 June 2 July 26 July

Fields hase

Transplanting 17 0 0 0
Vegetative 10 30 16 0

Reproductive 0 0 14 10
Maturity 0 0 0 20

2.3. RADARSAT-2 Data Preprocessing

Four fine quad-polarized single-look complex (SLC) RADARSAT-2 SAR images were acquired
between May and July of 2016 (Table 2). The revisit period was 24 days. The images had a nominal
spatial resolution of 5.4 m in the slant range direction and 7.9 m in the azimuth direction. The swath
width of the image was about 25 km. The incidence angle ranged from 31◦ at near range to 33◦ at far
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range. The Next ESA SAR Toolbox (NEST) software (https://earth.esa.int/web/nest/downloads/)
was utilized for data preprocessing including radiometric correction, multilooking, geometry
reprojection, speckle filtering, and multi-temporal coregistration. A color composite is shown in
Figure 4. Backscattering coefficients (linear scale) of all images on four polarizations (VH, VV, HH,
and HV) were extracted for 30 sample sites. As described previously, each sample site is at least 50 m
wide and 50 m long and the preprocessed images have a pixel size of 11.6 m × 11.6 m, which means
that each sample site has at least 4 by 4 or 16 pixels. Therefore, the mean value of the backscattering
coefficients within a sample site was calculated to represent the backscatter properties of that site.

 

Figure 4. A RADARSAT-2 image acquired on 2 July 2016. VH, VV, and HH bands were assigned as
red, green, and blue colors, respectively. Study area is within the yellow box.

Cross-polarization VH data and HV data were the same. Thus, only VH, VV, and HH data
were used. Previous studies have found that combinations (e.g., addition, subtraction, multiplication,
and ratioing) of different polarized backscattering coefficients were more sensitive to the morphological
structures of rice plants [20,31,39]. These operations calculated in a linear scale first, and then the
results expressed in a logarithmic scale were explored.

All backscattering coefficients and combinations, acquired at different sample sites and on different
dates, were divided into four groups based on the four phenological phases identified from ground
observations (Table 2) for further analyses. Three-quarters of each group (i.e., 13 of 17 transplanting
datasets, 42 of 56 vegetative datasets, 18 of 24 reproductive datasets, and 15 of 20 maturity datasets) were
randomly chosen for training. The rest in each group was used for validation, respectively.

2.4. Decision Tree Method for Phenology Retrieval

The decision tree method is a classification strategy to process non-linear relationships between
features and classes without any assumptions about the data probability distributions and to
handle data measured on different scales [40]. The decision tree or similar methods like the
decision plane is effective in rice monitoring with compact polarimetric (CP) parameters or target
decomposition parameters [5,6,9]. The decision tree is of a treelike structure. The leaves are class
labels, and intermediate nodes are criteria with several possible outcome branches. The classification
processes begin at the root note and intermediate notes until encountering a leaf. A typical binary
decision tree is shown in Figure 5.
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Figure 5. A simple decision tree of a variable, λ. Three thresholds divide λ into four classes through
two decision layers.

In this study, four concerned phenological phases (i.e., transplanting, vegetative, reproductive,
and maturity) need to be separated. Therefore, at least three thresholds are required. In order to
distinguish rice phenology with the thresholds, one needs to ensure that backscattering coefficients
or their combinations must have reliable separability among four critical phases. Since rice plants
develop rapidly during the growing season and biophysical variables vary with phenological phases,
the development phases are separable from each other. For example, distributions of the phases vs.
VH backscattering coefficients are shown in Figure 6 using a boxplot. A division line near −20 dB can
divide the transplanting phase from the other three. Similar division lines between other phenological
phases were also observed on other polarizations (as shown in Figure 7). Once segmental thresholds
to delineate four phenological phases were determined, a decision tree classifier could be developed to
separate each development phase using backscattering coefficients.

 

Figure 6. Distributions of development phases vs. VH backscattering coefficients. The data are training
data. At about −20 dB, the transplanting phase is separated from other three phases.

3. Results

3.1. Backscattering Coefficient Analysis and Decision Tree Development

Distributions of backscattering coefficients of the training dataset, expressed in a logarithmic
scale, and their combinations (calculated in linear scale then expressed in logarithmic scale) at each
phase, are shown in boxplots (Figure 7). In the figure, VH/(2VH+VV+HH) was also plotted because
of its sensitivity to vegetation parameters [41]. In each subplot, four boxes were drawn to represent
the distributions of four phases. The red line visually showed a feasible division value. For example,
the VH backscattering coefficients increased in general from the transplanting phase to the maturity
phase (Figure 7a). The red line near −20 dB divided the transplanting phase from later phases with
few data points crossing the division line. Ranges of the later phases, especially the vegetative and
reproductive phase, severely overlapped with each other. Thus, VH data could not discriminate the
vegetative phase from the reproductive phase.
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Figure 7. Boxplots of backscattering coefficients (training dataset, expressed in logarithmic scale) and
their combinations (calculated in linear scale then expressed in logarithmic scale) at each phase, (a) VH,
(b) VV, (c) HH, (d) HH/VV, (e) VV/VH, (f) HH/VH, (g) HH × VV, (h) VV × VH, (i) HH × VH,
(j) HH − VV, (k) VV − VH, (l) HH − VH, (m) HH + VV, (n) VV + VH, (o) HH + VH, (p) VH/(2VH +
VV + HH). Red lines represent possible division values to separate at least two interquartile ranges
(grey part of boxes).
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As shown in Figure 7, there are varying degrees of overlaps between different phases and
for different polarization data. The single polarized HH or VV data can hardly differentiate all
phenological phases, but the joint use of several polarized data can achieve the needed separation.
Taking subplot (d), (e), and (f) of Figure 7 as an example, one can use HH/VV data to divide the
maturity phase from the vegetative and reproductive phases or the transplanting phase from the other
three phases. The VV/VH parameter can be used to distinguish the transplanting phase from later
phases. The HH/VH parameter can be used to differentiate the transplanting and vegetative phase
from the reproductive and maturity phase. Thus, a combination of three polarized data can be used to
distinguish four phenological phases. Then, a decision tree can be constructed (Figure 8).

Figure 8. A decision tree classifier. Thresholds of VV/VH, HH/VV, and HH/VH divide SAR data into
four phenological phases.

Thresholds, 8 dB of VV/VH, 9.6 dB of HH/VH, and 2.9 dB of HH/VV, are optimal division lines
which can separate the phases with the fewest overlaps of backscattering coefficient data (Figure 7).
For instance, when a VV/VH threshold is set to 8 dB to divide the transplanting phase from the
next three phases, the majority of backscattering coefficients are properly divided, and only 10.8% of
backscattering coefficients overstep the threshold boundary, as shown in Table 3.

Table 3. Thresholds of selected parameters. T stands for transplanting phase, V vegetative phase,
R reproductive phase, and M maturity phase. An error rate means the proportion of pixels whose
backscattering coefficients cross the threshold line.

Decision Tree Parameters

VV/VH HH/VH HH/VV

Divided Phase T vs. V, R, or M V vs. R or M R vs. M

Threshold 8 dB 9.6 dB 2.9 dB
Error rate 10.8% 19.3% 23.2%

3.2. Validation

The performance of the decision tree classifier is tested using the reserved validation data.
A confusion table [42] is built (Table 4). The overall accuracy (OA) is 86.2%. The producer’s accuracy
(PA) is between 78.6% and 100%. The user’s accuracy (UA) is between 71.4% and 100%. The kappa
coefficient is 0.802.

Table 4. Confusion table derived by validation data. UA stands for user’s accuracy, PA producer’s
accuracy, and OA overall accuracy. Kappa denotes kappa coefficient.

Ground Measured Phase

Transplanting Vegetative Reproductive Maturity UA

Extracted
phase

Transplanting 4 1 0 0 80%
Vegetative 0 11 1 0 91.7%

Reproductive 0 2 5 0 71.4%
Maturity 0 0 0 5 100%

PA 100% 78.6% 83.3% 100% OA = 86.2%
Kappa = 0.802
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The backscattering properties of a rice paddy during the transplanting period were mainly
affected by water since the plant was small and the plan coverage was sparse. Thus, backscattering
at this phase was quite different from that during the later three phases. As a result, backscattering
coefficients of the transplanting phase were more distinctive by many polarized data (Figure 7). This
was attributed to the high level of the determination accuracy (table 4). On the other hand, most of
the misclassification occurred in the vegetative and reproductive phases because the water was very
shallow or the field was dry. The rice canopy almost covered the fields continuously. Backscattering
coefficients exhibited no distinctive changes from the vegetative phase to the reproductive phase for
most polarized data (Figure 7). This was especially true during days of phase transition in which the
plant height and water content of the plants changed slowly. The backscattering was mainly influenced
by the plant density because rice plants in some fields had similar growth statuses (e.g., the number,
size, orientation and water content of stems, leaves and young heads). The statuses usually differed
because of different rice varieties and plants health.

3.3. Phenology Extraction and Mapping

Based on the decision tree constructed in Figure 8, spatial distributions of rice phenology were
mapped with multi-temporal SAR images (Figure 9). Pixels for the phase of transplanting, vegetative,
reproductive, and maturity were colored blue, green, yellow, and red, respectively. Pixel statistics of
each phase were annotated behind the legends, indicating a significant growth trend of rice paddies.

It is obvious that the spatial distribution of rice phenological phases varies on four dates, which
shows a general trend of phenology evolution over time. On 15 May, almost all of the pixels are
labeled as transplanting and vegetative phases, and transplanting pixels account for nearly 67%,
showing that in most fields at this time, rice seedlings were just transplanted to the water and some
earlier transplanted rice plants entered the vegetative phase. On 8 June, vegetative plants continued
with the vegetative growth and prepared for the coming reproductive phase. Late seedlings were
also extensively vegetative. These can be seen in map (b), where the pixels of the vegetative phase
increase to an overwhelming proportion of 74%, while the transplanting ones sharply fall to 15%.
On 2 July, about 58% of rice plants were in the reproductive phase. This ratio dropped to 17% on 26
July. In the last period, harvest pixels became the majority, with a proportion of 67%. All of these
statistics are consistent with field survey observations, which demonstrates a feasibility of the decision
tree classification.

 
 (a) 

 
(b) 

Figure 9. Cont.
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(c) 

 
(d) 

Figure 9. Map of rice phenological phases spatial distribution on (a) 15 May, (b) 8 June, (c) 2 July,
and (d) 26 July. Blue, green, yellow, and red colors, respectively, represent transplanting, vegetative,
reproductive, and maturity phases of rice plants in the study area.

4. Discussion

4.1. Phenology Extraction Comparison between Backscattering Coefficients and Decomposition Parameters

Compared with the most satisfactory retrieval accuracy given by previous studies, that is,
Lopez-Sanchez et al. [6] used eigenvalue/vector decomposition parameters (entropy, anisotropy,
and dominant alpha (α1, alpha of the dominant scattering mechanism)) to achieve an overall
success rate of 96%, our study achieved a lower overall accuracy of 86.2%. In order to investigate
the retrieval accuracy of the method proposed by Lopez-Sanchez et al. [6] in this study area,
three eigenvalue/vector decomposition parameters (entropy, anisotropy, and dominant alpha) were
extracted using the Polarimetric SAR Data Processing and Educational Tool (PolSARpro) software
(http://step.esa.int/main/download/). The entropy (H) characterizes the randomness of the
scattering processes. The anisotropy (A) characterizes the relative strengths of the second and
third scattering mechanisms. The alpha angle (α) defines the scattering mechanism for a given
eigenvector [43,44]. Dominant alpha (α1) is the alpha of the dominant scattering mechanism [6].

 
(a) 

 
(b) (c) 

Figure 10. Evolution of observables (training dataset) provided by the eigenvalue/vector decomposition
of the coherency matrix versus phenology, (a) Entropy, (b) Anisotropy, (c) Dominant alpha angle (α1, alpha
of the dominant scattering mechanism). Red lines represent possible division values to separate at least
two interquartile ranges (grey part of boxes).
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For each extracted decomposition parameter, we used all pixels of a sample site for averaging.
Again, all decomposition parameters were divided into four groups based on phenological
phases identified in field observations (i.e., transplanting, vegetative, reproductive, and maturity).
Three-quarters of each group were chosen for training. The rest in each group were used for validation,
respectively. Distributions of decomposition parameters (training dataset) during each phenological
phase are shown in the boxplots of Figure 10.

A decision tree can be constructed using entropy, anisotropy, and dominant alpha (Figure 11),
which is similar to the phenology retrieval algorithm designed by Lopez-Sanchez et al. [6].

 

Figure 11. Phenology decision tree. Thresholds of anisotropy, entropy, and dominant alpha angle
divide SAR data into four phenological phases.

The performance of the decision tree classifier is tested using the reserved validation data.
A confusion table [42] is built (Table 5).

Table 5. Confusion table derived by validation data for the phenology retrieval algorithm using entropy,
anisotropy, and dominant alpha. UA stands for user’s accuracy, PA producer’s accuracy, and OA
overall accuracy. Kappa denotes kappa coefficient.

Ground Measured Phase

Transplanting Vegetative Reproductive Maturity UA

Extracted
hase

Transplanting 4 0 0 0 100%
Vegetative 0 13 1 0 92.8 %

Reproductive 0 1 5 0 83.3%
Maturity 0 0 0 5 100%

PA 100% 92.8% 83.3% 100% OA = 93.1%

Kappa = 0.89

The method using eigenvalue/vector decomposition parameters achieved a higher overall
accuracy (93.1%) than the method using backscattering coefficients (86.2%). Compared with the
backscattering coefficients method, the decomposition parameters method had two fewer wrong
estimates (Tables 4 and 5). The first case corresponded to #8 sample site on 8 June. The phenology
identified in the ground observation was stage 32 (vegetative phase), but the backscattering coefficients
method misclassified the rice plants at the transplanting phase. Plants at #8 sample site were the last
to enter the transplanted phase. On 8 June, tillers and leaves were only partially developed, which
resulted in relatively low VH backscattering coefficients (about −20 dB). Scattering from the rough
surface of the flooded ground made VV exhibit a relatively high value (about −12 dB). Thus, rice
plants at #8 sample site had similar VV/VH values with the transplanting ones. However, using
decomposition parameters can correctly determine the phenology because low anisotropy (about 0.32)
was observed due to the comparable contribution from surface scattering and double-bounce scattering,
which were weaker than volume scattering during this time. The second case corresponded to #24
sample site on 2 July. The ground campaign indicated that the rice plants were in stage 44 (vegetative
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phase), whereas the backscattering coefficients method misclassified their phase as the reproductive
phase. One possible cause for the misclassification was that rice at the #24 sample site had a denser
canopy than other sites on 2 July. The attenuation by the denser canopy resulted in lower HH
backscattering coefficients. Hence rice plants at the #24 sample site had similar HH/VH values
with the plants in reproductive phase. However, the low entropy (about 0.5) of the #24 sample site
can be used to identify the vegetative phase. Since the ears had not appeared and the stems were
mostly vertical, double-bounce scattering still contributed significantly to the radar backscattering
mechanism. Another two wrong estimates of the backscattering coefficients method also appeared in
the decomposition parameters method. Corresponding rice plants were in the transition period from
the vegetative to the reproductive phase (stage 47 and 55). The gradual change of rice plants and the
similar backscatter properties of fields during this period caused the misclassification.

In general, the phenology retrieval method using backscattering coefficients is less effective than
the method using eigenvalue/vector decomposition parameters. Since additional data (phase data)
are considered in the decomposition, eigenvalue/vector decomposition parameters can provide
more information on the physical scattering mechanism. However, the result of the backscattering
coefficients method is still acceptable because only amplitude information of backscattering
coefficients is used.

4.2. Response of Backscattering Coefficients in Phenology Retrieval

Evolution of the backscattering coefficients during the growing season (Figure 7) reflected
the characteristics of rice phenology evolution and growth status change. By taking advantage
of responses of backscattering coefficients to different polarizations and in different phenological
phases, the phenology retrieval method (Figure 8) achieved a high overall accuracy (86.2%).

During the transplanting phase, rice plants were very small and short. The amount of scattering
attenuation was small because of the low rice height and sparse rice canopy. The Bragg scattering from
the rough surface of the flooded ground predicted that VV backscattering coefficients had moderate
values (−12.5 dB on average) [5,26]. VH backscattering coefficients were low (−22 dB on average)
because of the sparse rice canopy since VH polarization was sensitive to volume scattering from the
rice canopy [25,26]. HH backscattering coefficients were low (compared with later phases) due to
the weak double-bounce scattering between the small rice plants and the underlying water surface,
since HH polarization was sensitive to double-bounce scattering between rice plants and the ground
surface [45]. The difference between the responses at VV and VH was clearly illustrated by the VV/VH
ratio, which can be used to separate the transplanting phase from later phases.

During the vegetative phase, VH increased significantly with the development of the plants and
hence with increasing canopy density. HH also increased significantly because of the larger stalks
and increasing plants height. Double-bounce scattering between the rice plants and the underlying
surface increased [26]. VV increased slightly because it was affected by an extinction due to the vertical
preferred orientation of the plant elements (e.g., stems and leaves) [6].

During the reproductive phase, VH increased due to the denser plants canopy. Rice heads
emerged as new scattering elements in the upper part of the canopy. HH decreased because the dense
canopy reduced the microwave penetration to the surface and the double bounce off the rice plants [29].
VV decreased because the stems remained predominantly vertical and the amount of double-bounce
and surface scattering was small [26]. Because of the different trends in the HH and VH channels,
the HH/VH ratio can be used to separate the vegetative phase from later phases.

During the maturity phase, VH increased because the amount and size of rice heads increased.
HH decreased because of the large amount of attenuation by the rice canopy and the low volumetric
moisture content. Stems became drier and the reduced water content caused less vertical extinction,
especially for VV polarization [25]. The orientation of plant elements (i.e., stems, leaves, and heads)
became random during this period. The attenuation of the VV polarization by the vertical orientation
of the cylinders was reduced [25]. Therefore, VV stopped decreasing and the HH/VV ratio can be
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used to separate the reproductive phase from the maturity phase due to the different trends in HH and
VV channels.

Most of the misclassification occurred in the transition from the vegetative to the reproductive
phase, as shown in Table 4. In this period, backscattering properties of rice plants were mainly
influenced by planting density and rice plants growth status, which were usually affected by rice
varieties and plants health. Late vegetative (from stage 40 to 49) rice plants had similar backscatter
properties with early reproductive (from stage 50 to 59) rice plants because of the gradual development
of plants morphological structure. As shown in Figure 12, values of HH/VH decreased monotonously
from the early vegetative phase (from stage 20 to 39) to the late reproductive phase (from stage 60 to
69). The slow growth of rice plants and weak rice heads at the turn of the vegetative and reproductive
phase resulted in no significant change of HH/VH data. Range overlap appeared during the late
vegetative and early reproductive phase. As the water content of rice plants continuously fell and
rice heads gradually became important scattering elements in the late reproductive phase, backscatter
properties exhibited a notable change.

Figure 12. Gradual temporal change of HH/VH data on subdivisions of vegetative and reproductive phase.

There are still several issues waiting to be addressed in further research and development. First,
since phenology evolution is a continuous process, dividing phenology into discrete intervals makes it
hard to decide whether the plants are in one phase or another during the transition between phases.
For example, ground observation indicated that rice plants at #19 sample site on 2 July were at the
vegetative phase (stage 47), whereas the retrieval algorithm misclassified them as reproductive plants
(stages 50–69). In the BBCH scale, an error between stage 47 and 50 is minimal (3 over 100), but in
discrete intervals, it means an error between two phases (1 over 4). A possible alternative to avoid
this problem consists of dividing phenology into more phases or retrieving phenology in a continuous
range. This brings up another issue, that is, more ground observation and SAR data are needed. Rice
plants grow rapidly during the bimestrial season. The phenological phase (e.g., transplanting and
reproductive phase) lasts about two weeks on average and phase transition usually takes place in a
short interval. The 24-day revisit period of RADARSAT-2 is relatively long for monitoring growth
changes timely. To overcome this problem, different spaceborne C-band SAR sensors (e.g., Sentinel-1
and Gaofen-3) can be combined to increase the temporal resolution of SAR observations.

5. Conclusions

We analyzed statistical relationships between backscatter coefficients and rice phenology using
multi-temporal quad-polarized RADARSAT-2 SAR datasets and rice biophysical data measured in the
Meishan study area, Sichuan Province, China. Although the degree of the correlation is affected by
uncertain factors such as diverse patterns of rice cultivation, there was a strong correlation between
the RADARSAT-2 backscattering coefficients and rice phenology.

VH, VV, and HH backscattering coefficients were used to distinguish transplanting, vegetative,
reproductive, and maturity phases. In particular, the VV/VH threshold was used to separate plants in
the transplanting phase from plants in the vegetative, reproductive, and maturity phases, the HH/VH
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threshold to delineate plants in the vegetative phase from plants in the reproductive and maturity
phases, and the HH/VV threshold to distinguish plants in the reproductive phase from plants in the
maturity phase. Then, a decision tree classifier was developed. The accuracy level was 86.2% in the
delineation of rice phenology. The analysis procedure was relatively simple, ensuring the reliability of
the method. Therefore, there should be a great potential to use RADARSAT-2 SAR data to monitor
rice phenology during its growth period and in large spatial extent. Finally, the concise decision
logic should make this study easy understood and implemented in other studies related to local
rice production.
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Abstract: Vegetation phenology is considered a sensitive indicator of climate change, which controls
carbon, nitrogen, and water cycles within terrestrial ecosystems. The Moderate Resolution Imaging
Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) is an important
moderate resolution remote sensing data for monitoring vegetation phenology. However, Terra
MODIS Collection 5 (C5) vegetation index products were identified to be affected by sensor
degradation, which has been addressed in the recently released MODIS Collection 6 (C6) vegetation
index products. In order to compare the difference between MODIS C5 and C6 NDVI in monitoring
vegetation phenology, the start and end of growing season (SOS and EOS) of the alpine grassland
on the Tibetan Plateau (TP) were extracted using four common methods. Then, the C5 and C6
NDVI-derived SOS (SOSC5 and SOSC6) and EOS (EOSC5 and EOSC6) were compared with
ground-observed phenology data. Results showed that the multi-year average growing season
NDVIs of C6 were lower than those of C5 in most areas, while the inter-annual variation patterns
of regional average SOSC5 and SOSC6 (EOSC5 and EOSC6) were consistent. However, large spatial
differences in phenological trends were found between C5 and C6 NDVI products. From C5 to
C6, pixels with a SOS (EOS) trend shifting from significant to insignificant or from insignificant to
significant accounted for at least 14.58% (9.07%) of the total pixels. SOSC5 was more consistent than
SOSC6 with the ground-observed green-up dates. C5 NDVI may be more appropriate for monitoring
SOS than C6 NDVI in the study region, but more ground-observed phenology records are needed
to confirm it due to only four observational sites in this study. However, large differences and poor
correlations existed between EOSC5 (EOSC6) and the ground-observed beginning of leaf coloring.
To further evaluate the uncertainty of MODIS C5 and C6 NDVI in monitoring vegetation phenology,
higher resolution near-surface remote sensing data and corresponding validation methods should
be applied.

Keywords: vegetation phenology; Tibetan Plateau; MODIS; NDVI; start of growing season (SOS);
end of growing season (EOS)
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1. Introduction

Vegetation phenology dynamics can reflect the response of terrestrial ecosystem to climate
change and play an important role in adjusting the cycling of carbon, nitrogen, and water [1–3].
Remote sensing data have been widely used to monitor vegetation phenology at large scales [4–6],
because satellite-derived vegetation indices can measure vegetation canopy greenness and have the
advantages of wide coverage, high revisiting frequency, and relatively low cost. The Normalized
Difference Vegetation Index (NDVI) is one of the most commonly used vegetation indexes for
monitoring vegetation phenology [7–9].

Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data have been
increasingly used for monitoring vegetation phenology. MODIS sensors aboard Terra and Aqua
satellites have been in operation since 1999 and 2002, respectively, and can provide long-term remote
sensing records of >10 years. However, the designed lifetimes of the sensors are only six years.
In recent years, severe data problems were found to exist in MODIS Collection 5 (C5) ocean colors [10],
aerosols [11], and NDVI products [12–14], mainly resulting from sensor degradation. Due to the
increasing exposure of MODIS sensor to solar and cosmic radiation, severe degradation of Terra MODIS
near-infrared, red and blue bands has been observed. The sensor degradation was the most pronounced
in the Terra blue band and decreased with wavelength [12,13]. Though the blue band is not used
directly to calculate NDVI, degradation of blue top-of-atmosphere reflectance over time will influence
the calculation of surface reflectance in other spectral bands and NDVI [13,15,16]. Moreover, the sensor
degradation was much faster for Terra than Aqua [13,17]. To remove the effects of sensor degradation,
improved calibrated approaches were adopted to produce the recently released MODIS Collection 6
(C6) products [12,18]. When compared with C5, the C6 Level 1B data, including the top-of-atmosphere
reflectance in the near-infrared, red and blue bands were calibrated [13]. In addition, the NDVI retrieval
algorithms were also improved [19]. Unlike C5 NDVI, which uses daily reflectance data, C6 NDVI
uses pre-composed (8-day) surface reflectance data that are atmospherically corrected with a modified
compositing algorithm that aims to reduce the aerosol issues (minimizing the blue band) [17,19].

The differences between MODIS C5 and C6 NDVI have been evaluated in some previous
studies (e.g., [17,20]). However, no study has conducted a comparative analysis of the performance
of MODIS C5 and C6 NDVI in monitoring vegetation phenology. Given that MODIS C5 NDVI has
been extensively used for monitoring vegetation phenology [21–23], it is necessary to analyze the
difference between vegetation phenology derived from C5 and C6 NDVI and consequently investigate
the uncertainty in monitoring vegetation phenology due to sensor degradation. Due to the fact that
Terra data is more affected by the sensor degradation than Aqua data [13,17], this study focused on the
Terra MODIS NDVI products.

Four common methods were adopted to identify the start and end of growing season
(SOS and EOS) of the alpine grassland on the Tibetan Plateau (TP) based on Terra MODIS C5
and C6 NDVI. Then, a comparative analysis of vegetation phenology derived from the two NDVI
products was conducted for each phenology extraction method. Meanwhile, the performances of
vegetation phenology derived from C5 and C6 NDVI in capturing ground-observed phenology were
also evaluated.

2. Data and Methods

2.1. Remote Sensing Data

The Terra MODIS 250 m 16-day composited NDVI (MOD13Q1) products originating from C5 and
C6 during 2001–2015 were acquired from National Aeronautics and Space Administration (NASA)
Earth Observing System Data and Information System (EOSDIS). To reduce the effect of cloud and
Nadir Bidirectional Reflectance Distribution Function (BRDF), the composite of NDVI was performed
by the Constrained View Angle-Maximum Value Composite (CV-MVC) algorithm. The pixel reliability
(PR) layer from MOD13Q1 products was used to determine the pixel quality and calibrate NDVI time
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series. A PR value of 0 or 1 represents good pixel or marginal pixel in the NDVI time series. A PR
value of 2 or 3 represents pixel covered by ice/snow or cloud, which should be corrected.

2.2. Ground-Observed Phenology Data

The ground-observed phenology data were collected from the nation-wide phenological
observation network that was established by the China Meteorological Administration [24]. As Kobresia
humilis is the dominant species in the alpine grassland on the TP, the ground-observed phenology data
of K. humilis, including green-up (GU) and beginning of leaf coloring (BLC), were collected at Haiyan,
Gande, Henan, and Qumarleb sites from 2001–2012 (Table 1).

Table 1. Summary of ground-observed phenology data of Kobresia humilis.

Site Name Longitude Latitude Altitude (m) Number of Years

Haiyan 100◦51’E 36◦37’N 3140 12
Gande 99◦54’E 33◦58’N 4050 12
Henan 101◦36’E 34◦44’N 3500 12

Qumarleb 95◦47’E 34◦08’N 4175 12

2.3. Data Pre-Processing

The snow cover during the non-growing season on the TP will reduce NDVI values, resulting
in retrieval errors for the phenology data. To reduce the effect of snow, snow-contaminated NDVI
values (PR value equals 2) were replaced by the median value of the uncontaminated NDVI values
(PR value equals 0 or 1) during the non-growing season (from November to the following March) for
each pixel [25]. However, plenty of snow-contaminated pixels could not be flagged out by the PR
values. Therefore, another way was applied to eliminate snow contamination. For each pixel, all of
the NDVI values that were lower than the mean of the NDVI values during the non-growing season
were replaced by the mean. After that, the Savitzky-Golay filter was used to reconstruct the NDVI
time series to further remove cloud contamination [26]. In this study, all data were re-projected to the
Albers conic equal area projection.

Only the vegetation phenology in the alpine grassland was analyzed in this study. To eliminate
the effects of bare soil, sparse vegetation and evergreen forest, grass pixels were selected by the
following criteria [25,27]: (1) the average NDVI for June–September should be greater than 0.1; (2) the
annual maximum NDVI should exceed 0.15 and occur within July–September; (3) the average NDVI
for July–September should be greater than 1.2 times of the average NDVI for November–March;
and, (4) the average NDVI in winter (December–February) should be lower than 0.4.

2.4. Phenology Extraction Methods

Many methods have been used to extract vegetation phenology, but the vegetation phenology
varied with extraction methods [28]. To avoid the effect of phenology extraction methods on the
uncertainty analysis of remote sensing data in monitoring vegetation phenology, four commonly
used methods were adopted to extract the SOS and EOS in the alpine grassland on the TP, i.e., the
maximum curvature change method (MCC), dynamic threshold methods with a threshold of 0.2 and
0.5 (DT2 and DT5), and maximum slope method (MS).

2.4.1. MCC Method

A four-parameter logistic function [29] was employed to fit each increasing or decreasing
section of a NDVI time series and then the daily NDVI values were derived from the fitted function,
as shown below:

y(t) =
c

1 + ea+bt + d (1)
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where t is the time (Julian day of year, DOY), y(t) is the NDVI value at time t, a and b are fitting
parameters, c + d is the maximum NDVI value, and d is the initial background NDVI value [29].
Then, the curvature-change rate (CCR) of the fitted logistic curve was used to extract phenological
dates, according to Equation (2) [29]:

CCR = b3cz × 3z(1 − z)(1 + z)3 2(1 + z)3 + b2c2z

[(1 + z)4 + (bcz)2]
2.5 − b3cz × (1 + z)2 1 + 2z − 5z2

[(1 + z)4 + (bcz)2]
1.5 (2)

where z = ea+b. SOS is defined as the DOY when CCR reaches its first local maximum value during the
growth period, while EOS is defined as the DOY when CCR reaches its second minimum value during
the senescence period.

2.4.2. DT2 and DT5 Methods

The phenological metrics were derived using the dynamic threshold method developed by
White et al. [30]. In this method, the daily NDVI values were first generated using a linear interpolation
approach from the original 16-day composites. SOS and EOS are defined as the DOY when the
NDVI ratio reaches a certain threshold during the NDVI rising stage and decline stage, respectively.
The NDVI ratio is defined as:

NDVIratio =
NDVIt − NDVImin

NDVImax − NDVImin
(3)

where NDVIt is the NDVI value at time t, NDVImax is the annual maximum NDVI value, NDVImin is
the annual minimum NDVI value during the growth period for SOS or during the senescence period
for EOS. In this study, the threshold was set to be 0.2 (0.5) for DT2 (DT5) method.

2.4.3. MS Method

In this method, SOS or EOS is defined as the DOY when NDVI begins to rapidly increase (SOS)
or decrease (EOS) [31], which is identified based on the maximum absolute slope of the fitted NDVI
curve in Equation (1) during the growth or senescence period.

2.5. Data Analysis Methods

The temporal change trends of regional average growing season (April–October) NDVI (GSNDVI)
based on C5 and C6 products (GSNDVIC5 and GSNDVIC6) during 2001–2015 were calculated and
compared. The change trends in the regional average GSNDVI were computed as the slope of the linear
regression of the regional average GSNDVI against year. To analyze the spatial differences between
C5 and C6 GSNDVIs, the pixel-by-pixel multi-year average values and linear trends were further
calculated. With the same methods being used for comparing GSNDVI, the C5 and C6 NDVI-derived
SOS (SOSC5 and SOSC6) as well as EOS (EOSC5 and EOSC6) identified by each phenology extraction
method were further compared. Paired-samples t tests were conducted to compare the GSNDVI or
phenological metrics between C5 and C6.

To validate the satellite-derived vegetation phenology, the average phenology of a 3 × 3 window
centered at each site was extracted for comparison with the ground-observed phenology. The mean
error (ME) and the mean absolute error (MAE) were used to estimate the difference between
the satellite-derived phenology and the ground-observed phenology. They are calculated by the
following formulas:

ME =
1
n

n

∑
i
(P(rs)i − P(site)i) (4)

MAE =
1
n

n

∑
i
|(P(rs)i − P(site)i)| (5)
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where P(rs)i and P(site)i are the satellite-derived phenology and the ground-observed phenology
at sample i, respectively; n is the number of samples. In addition, the correlations between the
satellite-derived phenology and the ground-observed phenology were also calculated to evaluate
their consistency.

The statistical significance of all the regression coefficients and correlation coefficients was
examined using the F-test. P values less than 0.05 were considered significant.

3. Results

3.1. Comparison Between GSNDVIC5 and GSNDVIC6

The regional average GSNDVIC6 was significantly (p < 0.001) lower than GSNDVIC5 for the
alpine grassland on the TP (Figure 1). The annual regional average GSNDVI showed no obvious
trend for C5 (p = 0.424), but a significant increasing trend for C6 (7.26 × 10−4 yr−1, p < 0.05) during
2001–2015 (Figure 1). At spatial scale, the multi-year average GSNDVIC6 was lower than GSNDVIC5

over 85.8% of the total pixels (Figure 2). The multi-year average GSNDVI decreased more than 5%
from C5 to C6 over 30.13% of the pixels, while it increased more than 5% over only 0.12% of the pixels
(Figure 2a). Moreover, large spatial differences in trends between GSNDVIC5 and GSNDVIC6 were
found (Figure 3a). From GSNDVIC5 to GSNDVIC6, significant trends (p < 0.05) became insignificant
over 7.33% of pixels, while insignificant trends became significant over 9.98% of pixels. With regard to
the pixels where both GSNDVIC5 and GSNDVIC6 indicated significant trends, GSNDVI trend became
more negative over 9.03% of pixels and more positive over 4.10% of pixels from C5 to C6. A significant
(p < 0.001) difference between GSNDVIC5 and GSNDVIC6 trends was observed. The mean difference
in GSNDVI trend (C6–C5) was −3.74 × 10−4 yr−1. Besides, GSNDVIC6 showed increasing trends over
more area and decreasing trends over less area (65.3% increasing, 18.6% significantly increasing; 34.7%
decreasing, 4.5% significantly decreasing) when compared with GSNDVIC5 (55.8% increasing, 12.9%
significantly increasing; 44.2% decreasing, 7.6% significantly decreasing) (Figure 3b).

Figure 1. Comparison of annual regional average growing season Normalized Difference Vegetation
Index derived from MODIS C5 (GSNDVIC5) and C6 (GSNDVIC6) for the alpine grassland on the
Tibetan Plateau during 2001–2015.
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Figure 2. (a) The relative difference in the multi-year average growing season Normalized Difference
Vegetation Index between C6 (GSNDVIC6) and C5 (GSNDVIC5) ((C6–C5)/C5) during 2001–2015;
(b) The scatter plot of the multi-year average GSNDVIC6 against GSNDVIC5 during 2001–2015.

Figure 3. (a) Comparison of trends in growing season Normalized Difference Vegetation Index between
C5 (GSNDVIC5) and C6 (GSNDVIC6) during 2001–2015; and, (b) The histograms of trends in GSNDVIC5

and GSNDVIC6 during 2001–2015.

3.2. Temporal Differences in Regional Phenology

For each method, similar advancing trends were found between regional average SOSC5 and
SOSC6 during 2001–2015, but the advancing trend of SOSC5 was slightly smaller than that of SOSC6

(Figure 4, Table 2). For each method, the multi-year average regional SOSC5 was significantly later
than SOSC6 (p < 0.001), but the difference was only about one day (Table 2).
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Figure 4. Comparisons of annual regional average start of growing season from MODIS C5 (SOSC5)
and C6 (SOSC6) for the alpine grassland on the Tibetan Plateau during 2001–2015 for different methods:
(a) Maximum Curvature Change (MCC); (b) Dynamic Threshold 0.2 (DT2); (c) Dynamic Threshold
0.5 (DT5); and, (d) Maximum Slope (MS).

Table 2. Summary statistics for the regional average start of growing season derived from C5 and C6
NDVI products for the alpine grassland on the Tibetan Plateau during 2001–2015.

Method MCC DT2 DT5 MS

Product C5 C6 C5 C6 C5 C6 C5 C6

Mean 130.5 129.2 139.6 138.4 169.8 169.3 163.6 163.0
Std 2.5 2.6 2.9 3.0 2.7 2.8 2.5 2.6

Trend −0.278 −0.298 −0.339 −0.378 −0.312 −0.332 −0.258 −0.264
p value 0.060 0.050 0.043 0.028 0.047 0.040 0.088 0.091

Dall 30.79% 30.59% 26.87% 26.37% 27.91% 27.70% 28.65% 29.31%
Dsig 1.18% 1.17% 0.91% 0.79% 1.00% 0.93% 1.01% 1.03%
Aall 69.2% 69.4% 73.13% 73.63% 72.09% 72.30% 71.35% 70.69%
Asig 11.39% 12.03% 14.95% 16.31% 12.80% 13.52% 13.08% 12.75%

Mean: multi-year average regional SOS. Std: temporal standard deviation. Trend: slope of linear regression of
regional average SOS against year (days yr−1). p value: significance level for the trend. Aall and Dall: proportions of
advancing and delaying trends, respectively. Asig and Dsig: proportions of significantly (p < 0.05) advancing and
delaying trends, respectively.

The regional average EOSC5 and EOSC6 also showed consistent inter-annual variations but no
significant trends were found (Figure 5, Table 3). Different from SOS, the multi-year average regional
EOSC5 was slightly earlier than EOSC6 for each method, with a difference of less than one day, but the
difference was only significant (p < 0.05) for MCC and DT2 methods (Table 3).
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Figure 5. Comparisons of annual regional average end of growing season from MODIS C5 (SOSC5)
and C6 (SOSC6) for the alpine grassland on the Tibetan Plateau during 2001–2015 for different methods:
(a) Maximum Curvature Change (MCC); (b) Dynamic Threshold 0.2 (DT2); (c) Dynamic Threshold
0.5 (DT5); (d) Maximum Slope (MS).

Table 3. Summary statistics for the regional average end of growing season derived from C5 and
C6 Normalized Difference Vegetation Index (NDVI) products for the alpine grassland on the Tibetan
Plateau during 2001–2015.

Method MCC DT2 DT5 MS

Product C5 C6 C5 C6 C5 C6 C5 C6

Mean 312.3 313.0 303.0 303.5 272.5 272.6 279.1 279.3
Std 2.2 1.9 2.5 2.2 2.3 2.1 2.3 2.1

Trend −0.060 0.010 −0.068 −0.018 −0.101 −0.067 −0.093 −0.061
p value 0.665 0.929 0.670 0.895 0.490 0.622 0.523 0.645

Dall 43.75% 49.75% 42.53% 47.09% 39.66% 42.38% 39.64% 42.83%
Dsig 1.96% 2.80% 1.90% 2.54% 1.66% 2.00% 1.49% 1.85%
Aall 56.25% 50.25% 57.47% 52.91% 60.34% 57.62% 60.36% 57.17%
Asig 3.91% 2.75% 4.35% 3.40% 4.89% 4.26% 5.18% 4.31%

Mean: multi-year average regional EOS. Std: temporal standard deviation. Trend: slope of linear regression of
regional average EOS against year (days yr−1). p value: significance level for the trend. Aall and Dall: proportions of
advancing and delaying trends, respectively. Asig and Dsig: proportions of significantly (p < 0.05) advancing and
delaying trends, respectively.

3.3. Spatial Differences in Multi-Year Average Phenology

For each method, various degrees of differences between the multi-year average SOSC5 and SOSC6

were found (Figure 6). The multi-year average SOSC6 was earlier than the multi-year average SOSC5 for
most of pixels (68.7% for MCC, 66.2% for DT2, 57.6% for DT5 and 61.6% for MS) (Figure 6). As for the
pixels with differences of more than five days, SOS based on MCC and MS methods showed the largest
(14.4%) and smallest (4.9%) proportions of the total area, respectively (Figure 6). The corresponding
proportions for DT2 and DT5 methods were 13.2% and 7.4%, respectively. All four methods indicated
that the pixels with SOSC6 later than SOSC5 were mainly distributed in the northwestern TP, while the
differences between SOSC5 and SOSC6 varied with methods in the southern TP, with larger differences
for MCC and DT2 methods and less for DT5 and MS methods (Figure 6).
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Figure 6. Spatial differences between the multi-year average SOSC6 and SOSC5 (C6–C5) for different
methods: (a) Maximum Curvature Change (MCC); (b) Dynamic Threshold 0.2 (DT2); (c) Dynamic
Threshold 0.5 (DT5); (d) Maximum Slope (MS).

Similar to SOS, large differences were found for multi-year average EOSC5 and EOSC6 based on
four methods (Figure 7). The EOSC6 was later than the EOSC5 over 58.5% of pixels for MCC method,
while the proportions were 55.8%, 50.0%, and 53.1% for DT2, DT5, and MS methods, respectively
(Figure 7). The pixels with the differences of more than five days between EOSC5 and EOSC6 accounted
for 11.7%, 7.1%, 6.4% and 4.1% of the total area for MCC, DT2, DT5 and MS methods, respectively.
For each method, the pixels where EOSC6 was earlier than EOSC5 were mainly distributed in the
eastern and southwestern TP. The differences of EOS in the central TP were larger for MCC method
than the other methods.
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Figure 7. Spatial differences between the multi-year average EOSC6 and EOSC5 (C6–C5) for different
methods: (a) Maximum Curvature Change (MCC); (b) Dynamic Threshold 0.2 (DT2); (c) Dynamic
Threshold 0.5 (DT5); and, (d) Maximum Slope (MS).

3.4. Spatial Differences in Phenological Trends

For each method, the proportion of advancing trends was much higher than that of delaying
trends for both SOSC5 and SOSC6 (Table 2). The proportions of advancing (delaying) trends, as well as
significantly advancing (delaying) trends (p < 0.05) in SOSC5 and SOSC6 were similar based on the same
method (Table 2). However, the trends in SOSC5 and SOSC6 showed obvious spatial inconsistencies
(Figure 8). For all four methods, the significant levels of SOS trends shifted over a considerable
proportion of the study region. Significant trends in SOSC5 became insignificant in SOSC6 over 6.98%,
7.67%, 7.55%, and 7.74% of pixels for MCC, DT2, DT5, and MS methods, respectively (Figure 8).
Meanwhile, insignificant trends in SOSC5 became significant in SOSC6 over 7.60%, 8.92%, 8.20%, and
7.42% of pixels for MCC, DT2, DT5, and MS methods, respectively (Figure 8). For the pixels with
significant trends in both SOSC5 and SOSC6, SOS trends tended to be more negative from C5 to C6 for
each method (Figure 8). Significant (p < 0.001) difference was observed between the SOS trends of C5
and C6 for each method, with mean differences between C5 and C6 (C6–C5) of −0.05, −0.07, −0.05,
and −0.03 day yr−1 for MCC, DT2, DT5, and MS methods, respectively.

273



Remote Sens. 2017, 9, 1288

 

Figure 8. Comparison of trends in start of growing season between C5 (SOSC5) and C6 (SOSC6) during
2001–2015 for different methods: (a) Maximum Curvature Change (MCC); (b) Dynamic Threshold
0.2 (DT2); (c) Dynamic Threshold 0.5 (DT5); and, (d) Maximum Slope (MS).

The proportion of advancing trends was higher than that of delaying trends for both EOSC5 and
EOSC6 for each method (Table 3). Only a small proportion of significantly advancing or delaying trends
was found for both EOSC5 and EOSC6 (Table 3). For each method, the advancing trends in EOSC6

accounted for a higher proportion of the total pixels than those in EOSC5, while the delaying trends
in EOSC6 accounted for a lower proportion than those in EOSC5 (Table 3). Large spatial differences
in trends between EOSC5 and EOSC6 were also found (Figure 9). From C5 to C6, pixels with a EOS
trend shifting from significant to insignificant accounted for 4.70%, 4.71%, 4.80%, and 4.90% of the
total pixels for MCC, DT2, DT5, and MS methods, respectively. Meanwhile, insignificant trends in
EOSC5 became significant in EOSC6 over 4.37%, 4.41%, 4.51%, and 4.39% of pixels for MCC, DT2, DT5,
and MS methods, respectively. Although a significant difference was also found between EOSC5 and
EOSC6 trends (p < 0.001) for each method, a very small proportion of pixels with significant trends for
both EOSC5 and EOSC6 was found for each method (1.18% for MCC, 1.54% for DT2, 1.75% for DT5,
and 1.77% for MS) (Figure 9).
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Figure 9. Comparison of trends in end of growing season between C5 (EOSC5) and C6 (EOSC6) during
2001–2015 for different methods: (a) Maximum Curvature Change (MCC); (b) Dynamic Threshold
0.2 (DT2); (c) Dynamic Threshold 0.5 (DT5); and, (d) Maximum Slope (MS).

3.5. Comparison Between Satellite-Derived and Ground-Observed Phenology

The differences between the satellite-derived SOS (SOSC5 and SOSC6) and the ground-observed
GU were smaller for MCC and DT2 methods and larger for DT5 and MS methods (Table 4). For both
SOSC5 and SOSC6, the MEs and MAEs were about 10 days based on MCC and DT2 methods, but more
than 30 days based on DT5 and MS methods (Table 4). However, SOSC5 had a slightly smaller ME or
MAE than SOSC6 for each method (Table 4). Besides, both SOSC5 and SOSC6 were significantly and
positively correlated with GU for all of the methods (p < 0.01), but the correlation coefficient between
SOSC5 and GU was larger than that between SOSC6 and GU for each method (Table 4). Results based
on MCC method showed the highest correlation coefficients between SOS and GU (Table 4).

However, large differences between the satellite-derived EOS (EOSC5 and EOSC6) and the
ground-observed BLC were found. The MEs and MAEs of EOS were more than 18 days for each
method (Table 4). Moreover, both EOSC5 and EOSC6 showed very poor positive correlations with BLC
for all of the methods (Table 4). Nevertheless, the correlation between EOSC5 and BLC was still slightly
higher than that between EOSC6 and BLC for each method (Table 4).
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Table 4. Mean error (ME), mean absolute error (MAE) and correlation coefficient (r) between the
satellite-derived phenology and the ground-observed phenology.

Method Phenological Metric ME MAE r

MCC

SOSC5 −7.375 9.542 0.675 **
SOSC6 −7.979 10.479 0.637 **
EOSC5 60.354 60.354 0.073
EOSC6 59.896 59.896 0.067

DT2

SOSC5 4.146 9.479 0.580 **
SOSC6 4.271 9.688 0.538 **
EOSC5 48.979 48.979 0.172
EOSC6 48.396 48.396 0.164

DT5

SOSC5 35.125 35.125 0.532 **
SOSC6 35.417 35.417 0.478 **
EOSC5 18.813 19.521 0.207
EOSC6 18.292 18.750 0.180

MS

SOSC5 30.771 30.771 0.526 **
SOSC6 30.833 30.833 0.464 **
EOSC5 22.563 22.729 0.178
EOSC6 22.375 22.375 0.175

** indicates p < 0.01.

4. Discussion

The annual regional average GSNDVI for the alpine grassland on the TP showed no obvious trend
for C5 (p = 0.424), but a significant increasing trend for C6 (p < 0.05) (Figure 1). Moreover, GSNDVIC6

showed increasing trends over more areas than GSNDVIC5 (Figure 3). These greening trends may
result from the removal of sensor degradation, which can lead to a decline in NDVI, as previous
studies suggested [12,13]. Zhang et al. [17] also reported that the annual NDVI from Terra C6 showed
larger greening vegetation area than Terra C5 at global scale, which was consistent with the result of
our study. Besides, in a comparative study of cross-product NDVI dynamics in a tropical region in
Tanzania, significant increasing trends in NDVI also became more apparent in Terra C6 NDVI than
C5 NDVI [20]. In this study, the regional average GSNDVIC6 was significantly lower than GSNDVIC5

(Figure 1). At spatial scale, the multi-year average GSNDVIC6 was lower than the GSNDVIC5 in most
areas (Figure 2). These could cause the change of the NDVI curve shape, resulting in some differences
between phenology derived from C5 and C6 NDVI [32].

The identified vegetation phenology can be affected by the phenology extraction methods [28].
To avoid the bias of a single phenology extraction method [21], this study applied four common
methods to identify the vegetation phenological metrics. The identified SOSs from the earliest to the
latest ranked by MCC, DT2, MS, and DT5 (Table 2), which was almost consistent with the study of
Shen et al. [25]. Meanwhile, the order of the identified EOSs from the earliest to the latest was DT5,
MS, DT2, and MCC (Table 3). The difference in average SOS and EOS could be more than one month
among different methods. White et al. [28] found that individual methods differed in average SOS
by ±60 days, and the spatial phenological patterns derived from different methods often differed
among ecoregions by comparing 10 commonly used methods for estimating the SOS based on the
Advanced Very High Resolution Radiometer (AVHRR) NDVI in North America. Such differences
in phenology among methods were also found in other previous studies [33–35]. In our study, the
differences between phenology derived from C5 and C6 NDVI varied among methods (Tables 2 and 3,
Figures 6–9). Generally, most pixels showed an earlier multi-year average SOSC6 than SOSC5 and later
EOSC6 than EOSC5 (Figures 6 and 7). From C5 to C6, pixels with a SOS (EOS) trend changed from
significant to insignificant, or from insignificant to significant accounted for at least 14.58% (9.07%) of
the total pixels (Figures 8 and 9). This further confirmed the influence of the change in NDVI values
originated from sensor degradation and calibration methods on vegetation phenology monitoring.
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By comparing the satellite-derived with the ground-observed phenology, SOS identified by MCC
and DT2 methods was more consistent and correlated with the ground-observed GU than that by
MS and DT5 methods for both C5 and C6 NDVI (Table 4), implying that MCC and DT2 methods
were more suitable to monitor GU for the alpine grassland on the TP. Yu et al. [36] also found that
SOS that was extracted by DT2 from AVHRR NDVI was close to the ground observations on the
TP. Moreover, smaller differences and higher correlations were found between SOSC5 and GU than
between SOSC6 and GU (Table 4), implying that SOSC5 might be more consistent than SOSC6 with
the ground-observed GU. C5 NDVI may be more appropriate for monitoring SOS than C6 NDVI
in this area, but more ground-observed phenology records are needed to confirm it due to only
four available sites in our study. However, regarding EOS, large differences and poor correlations
between EOSC5, as well as EOSC6 and BLC, were found for all of the phenology extraction methods
(Table 4). When compared with SOS, EOS is much difficult to be monitored [37–39]. Many factors
can influence the evaluation of vegetation phenology shifts based on remote sensing data [38,40].
When comparing the satellite-derived with the ground-observed phenology, due to the difference in
observation scale (pixel versus individual plant) and content (spectral response of plant versus specific
phenological event of plant), the satellite-derived phenology (e.g., EOS) is considered to be related,
but not identical, to the ground-observed phenology (e.g., BLC) [28,41,42]. Therefore, it brings much
uncertainty to the validation of the satellite-derived phenology. Besides, plants often experience a
longer and slower change in canopy greenness in autumn than in spring [38,39,43], which may result
in a lower inter-annual variability of changes in EOS relative to SOS and consequently make it more
difficult to detect EOS from remote sensing time-series data [38]. Therefore, there is a need to use
near-surface remote sensing data with a higher resolution, including digital camera data [44–46] and
corresponding validation methods, for further evaluating the uncertainty in monitoring vegetation
phenology with MODIS C5 and C6 NDVI products.

This study aimed to compare the differences between MODIS C5 and C6 NDVI time series
in monitoring vegetation phenology on the TP. Based on the same selected grassland pixels, the
same data pre-processing methods and phenology extraction methods, the differences in phenology
derived from the two products were found to be mainly due to the sensor degradation and different
calibration methods. However, it should be noted that the selection criteria for grassland pixels and the
data pre-processing methods might influence the values of the satellite-derived phenological metrics.
Besides, the satellite-derived phenology is also influenced by the temporal [47,48], spatial [49], and
spectral resolutions [21] of remote sensing data.

5. Conclusions

This study conducted a comparative analysis of MODIS C5 and C6 NDVI-derived phenology for
the alpine grassland on the TP. Although the regional average SOSC5 and SOSC6 (EOSC5 and EOSC6)
showed consistent inter-annual variations, large spatial differences in trends between SOSC5 and SOSC6

(EOSC5 and EOSC6) were found. From C5 to C6, pixels with a SOS (EOS) trend changed from significant
to insignificant, or from insignificant to significant, accounted for at least 14.58% (9.07%) of the total
pixels. By comparing the satellite-derived phenology with the ground-observed phenology, SOSC5

was found to be more consistent than SOSC6 with the ground-observed green-up dates. C5 NDVI
may be more appropriate for monitoring SOS than C6 NDVI in this area, but more ground-observed
phenology records are needed to confirm it due to the only four available sites. However, both EOSC5

and EOSC6 showed large differences and poor correlations with the ground-observed beginning of
leaf coloring. The accuracy of vegetation phenology derived from remote sensing data was impacted
by many factors. Therefore, there is a need to use near-surface remote sensing data with a higher
resolution and corresponding validation methods for further evaluating the uncertainty of MODIS C5
and C6 NDVI products in monitoring vegetation phenology.
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Abstract: Many remote sensing metrics have been applied in large-scale animal species monitoring and
conservation. However, the capabilities of these metrics have not been well compared and assessed.
In this study, we investigated the correlation of 21 remote sensing metrics in three categories with the
global species richness of three different animal classes using several statistical methods. As a result,
we developed a new index by integrating several highly correlated metrics. Of the 21 remote sensing
metrics analyzed, evapotranspiration (ET) had the greatest impact on species richness on a global scale
(explained variance: 52%). The metrics with a high explained variance on the global scale were mainly in the
energy/productivity category. The metrics in the texture category exhibited higher correlation with species
richness at regional scales. We found that radiance and temperature had a larger impact on the distribution
of bird richness, compared to their impacts on the distributions of both amphibians and mammals.
Three machine learning models (i.e., support vector machine, random forests, and neural networks) were
evaluated for metric integration, and the random forest model showed the best performance. Our newly
developed index exhibited a 0.7 explained variance for the three animal classes’ species richness on a global
scale, with an explained variance that was 20% higher than any of the univariate metrics.

Keywords: biodiversity; remote sensing; species richness; metric comparison; metric integration

1. Introduction

Changes and losses in global biodiversity have been rapidly accelerating in recent years [1–6].
Understanding of both current patterns and change tendency is a key concern for scientists, ecologists,
and policy-makers. Biodiversity has a multitude of facets that can be quantified, and the most
commonly considered one is species richness [7,8]. Species richness is the number of species in a site,
habitat, or clade [1,9]. Much research has focused on the distribution of animal species richness [10–15].
In addition, a growing amount of data infrastructure has been constructed for continental-to-global
scale species monitoring and analysis [16,17]. The Global Biodiversity Information Facility (GBIF)
and the International Union for Conservation of Nature (IUCN) provides access to millions of current
global digitized species records [18–20]. However, the scale limitation of in situ data has hindered
large-scale species monitoring. The collection of in situ data is too costly to be applied in long
time-series species monitoring.

Remote sensing is a powerful tool in global biodiversity assessment because it enables consistent
observations of species across time and space, as well as the tracking of climatic change and other drivers
of species change [4]. Based on remote sensing technology, two common methods are used for the
observation of species richness: direct species monitoring and indirect species monitoring. In direct
species monitoring, the high spatial and spectral resolution of remote sensing data enables individual
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species to be distinguished from nearby pixels, and the associations of single species can be evaluated
based on the individual species [21,22]. However, this method requires extremely high spatial and spectral
resolution remote sensing data, which are generally not available to the general public. Considering the
distribution differences between different species or classes, a comprehensive biodiversity assessment
on a global scale is too costly to achieve by using direct species monitoring [10,11,23,24]. To increase
the monitoring scale and evaluate more species or classes, indirect species monitoring mainly maps
the key environmental factors which relate to species distribution using remote sensing data [25,26].
Compared with direct species monitoring, indirect species monitoring shows less requirement for high
spatial and spectral resolution of remote sensing data, and can thus facilitate continuous large-scale
species monitoring.

Previous studies have found that a variety of factors impact the distribution of animal species,
mainly in four categories: energy/productivity [27–29]; climate [11,30–32]; ecosystem texture [33,34];
and evolutionary history [24]. Energy/productivity, climate, and ecosystem texture can be continuously
monitored using remote sensing data. The species-energy hypothesis predicts that more species and
higher abundances of individual species will occur where more energy in the form of food is consistently
available [35–38]. Climate change can lead to systematic changes of species distribution [39,40]. Ecosystem
texture determines the physical structure of the environment, and therefore, has a considerable influence
on the distributions and interactions of animal species [41–43]. Based on these theories and hypotheses,
recent studies have developed several frameworks, such as Essential Biodiversity Variables (EBVs) and
Remote Sensing Essential Biodiversity Variables (RS-EBVs), which have been used to construct a global
species-observing system [2,44]. Meanwhile, many new remote sensing metrics have been developed
to monitor species on a global scale [25,26,45–48]. The most outstanding feature of these metrics is that
they can be generated on a global scale. Assessment of different remote sensing metrics on a global scale
and the development of a multivariate integration index is essential for global biodiversity assessment,
but such efforts are missing from the literature. Available larger-scale species richness datasets offer
a valuable database for the assessment of these remote sensing metrics. Instituto de Pesquisas Ecológicas
(Brasil) offers a suite of large-scale species richness data [49], which has been validated in previous studies
and exhibits high accuracy [50,51].

Machine learning provides a great opportunity for the study of species richness, while construction
of mechanistic models between species richness and remote sensing metrics is still challenging [52,53].
Compared with traditional mechanistic approaches, machine learning avoids the over-simplification
during modelling. Machine learning models are as complex as real ecosystems, therefore, in most
cases the results that come from machine learning are more valid for drawing any conclusions for
real situations [54,55]. Moreover, machine learning has been widely used for species assessment and
prediction [56–58].

In this study, to assess remote sensing metrics on a global scale, we selected in situ species richness
data on three animal classes (mammals, birds, and amphibians) and 21 remote sensing metrics that all
had global coverage and long-term availability (Table 1). We analyzed the correlations between animal
species richness and remote sensing metrics, and developed a multivariate integration index based on
a machine learning model. This study aimed to address the following questions:

(1) What are the differences between the distributions of various animal classes (mammals, birds,
and amphibians) on a global scale?

(2) What are the correlations between remote sensing metrics and species richness distributions on
a global scale?

(3) Given the major driving metrics, can we develop a multivariate integration index to map the
global species richness continuously?
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Table 1. Remote sensing metrics.

Category Metrics
Spatial

Resolution
Temporal

Resolution
Temporal
Coverage

Dynamic habitat index (DHI)-cum 1/12◦ yearly 2000–2011
Dynamic habitat index (DHI)-min 1/12◦ yearly 2000–2011

Energy/productivity Dynamic habitat index (DHI)-sea 1/12◦ yearly 2000–2011
Gross primary production (GPP) 0.05◦ monthly 2001–2015

Potential Evapotranspiration (PET) 0.05◦ monthly 2001–2014
Land surface temperature (LST) 0.05◦ monthly 2000–2011

Climate Evapotranspiration (ET) 0.05◦ monthly 2000–2014
Coefficient of variation (CV) 1 Km 5-year 2001–2005

Evenness 1 Km 5-year 2001–2005
Contrast (CON) 1 Km 5-year 2001–2005

Dissimilarity (DIS) 1 Km 5-year 2001–2005
Texture Entropy (ENT) 1 Km 5-year 2001–2005

Homogeneity (HOM) 1 Km 5-year 2001–2005
Range 1 Km 5-year 2001–2005

Shannon 1 Km 5-year 2001–2005
Simpson 1 Km 5-year 2001–2005

Standard deviation (SD) 1 Km 5-year 2001–2005
Correlation (COR) 1 Km 5-year 2001–2005
Maximum (MAX) 1 Km 5-year 2001–2005
Uniformity (UNI) 1 Km 5-year 2001–2005

Variance (VAR) 1 Km 5-year 2001–2005

2. Data and Methods

2.1. Data

2.1.1. Species Richness Data

Considering coverage and taxonomy, we chose to use the species richness dataset from the
Instituto de Pesquisas Ecológicas (Brasil) in this study. This dataset (grid format) consists of global
total mammal richness, global total bird richness, and global total amphibian richness. In this dataset,
the primary species range map data used to create the species richness maps are from the IUCN for
mammal and amphibian species, and jointly from BirdLife International and NatureServe for bird
species. During the data process, extinct species were removed, as were non-native distributions of
extant species. For each grid cell, any species that overlapped any part of the cell were counted as
a presence of that species. All species richness data exhibited a spatial resolution of 10 km and used
the equal-area projection [3,49,50,59].

2.1.2. Remote Sensing Data

Considering the availability of datasets, three categories of remote sensing metrics were collected:
energy/productivity metrics, climate metrics, and ecosystem texture metrics. Because the species
richness data was recorded and updated for decades, we selected the remote sensing data as long-term
as possible. In addition, all remote sensing data had global coverage.

For the energy/productivity category, we selected gross primary production (GPP), dynamic
habitat index (DHI), and potential evapotranspiration (PET). The GPP product was obtained from the
global monthly MOD17A2 GPP product [60]. The DHI, including Cumulative Annual Productivity
(DHI-cum), Minimum Annual Apparent Cover (DHI-min), and Seasonal Variation of Greenness
(DHI-sea), is a composite vector deduced from the Fraction of Absorbed Photosynthetically Active
Radiation (FAPAR) time-series, representing the vegetation dynamics. The monthly maximum
FAPAR-value is the basic input dataset to compute the three relevant annual indices for the subsequent
habitat analysis [51,61]. DHI-cum provides an indication of overall site vegetation productivity.
DHI-min represents the lowest (minimum value) level of vegetative productivity in a year. DHI-sea
refers to the variation of the vegetative productivity. Further details of the DHI can be found in previous
publications [51,61–63]. In this study, DHI was calculated from the Global Inventory Modelling and
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Mapping Studies (GIMMS) AVHRR-FAPAR 3g dataset. The PET product was obtained from the
MOD16A2 product. In our study, PET was taken as an energy/productivity metric, because it
characterizes the features of the surface temperature and radiance.

For the climate category, we selected evapotranspiration (ET) and land surface temperature (LST).
The ET product was obtained from the global monthly MOD16A2 ET product [64–68]. The LST product
used in this study was obtained from the global monthly MOD11C3 LST product, which belonged to
the temperature/surface emissivity global data sets (C5) [69].

For the texture category, we selected a suite of global terrestrial habitat heterogeneity data,
which was developed by Haralick et al. and computed by Tuanmu and Jetz using the Moderate
Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) product [25,70].
Heterogeneity is an important indicator of ecosystem texture, which has long been recognized as a key
landscape characteristic with strong relevance for biodiversity [71,72]. These heterogeneity metrics
consist of the coefficient of variation (CV), evenness, contrast (CON), dissimilarity (DIS), entropy (ENT),
homogeneity (HOM), range, Shannon, Simpson, standard deviation (SD), correlation (COR), maximum
(MAX), uniformity (UNI), and variance (VAR).

2.1.3. Biome Data

Biome data acquired from World Wildlife Fund (WWF) were used for this study. This data
depicted the 14 terrestrial biomes of the globe, which include eight forest biomes, four grassland biomes,
one tundra biome, and one desert biome [73]. Biomes are relatively large units of land containing
distinct assemblages of natural communities and species, with boundaries that approximate the original
extent of natural communities prior to major land-use change [74]. This comprehensive, global data
provide a useful tool for identifying areas of outstanding biodiversity and conservation priority.

2.2. Methods

The overall procedure for the proposed method is briefly illustrated in Figure 1. Comparison of
the remote sensing metrics and development of the multivariate integration index were achieved
through four tasks.

2.2.1. Data Integration and Standardization

In data integration, to enable all data to have the same resolution, long time-series LST, ET,
GPP, PET, DHI-cum, DHI-min, and DHI-sea data were averaged on time-scales. Mammal richness,
bird richness, and amphibian richness were added together to generate a variate “Allclasses” as the
surrogate for all three animal classes.

In data standardization, remote sensing metrics were normalized (0–1) using the feature scaling
method, because absolute values had large differences in magnitude. All species richness data and
remote sensing metrics were summed to a 0.1◦ spatial resolution separately using the nearest-neighbor
interpolation method, because the lowest spatial resolution of the datasets was 10 km (species richness
data). In order to remove the impact of non-value area, we excluded the areas which had non-value
pixels of species richness data or remote sensing metrics.
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Figure 1. Flowchart of the comparison of the remote sensing metrics and development of a multivariate
integration index.

2.2.2. Regression Analysis

Before the regression, we used the function randomu in Interface Description Language (IDL)
to extract 10,000 pixels randomly from the global terrestrial areas of species richness data and each
remote sensing metric. The univariate linear regression model was used to evaluate the correlation
of these metrics with animal species richness. Since the relationships between species richness and
some metrics were nonlinear, we used locally weighted regression (LOESS) to determine the pattern of
relationships [75,76]. We took a logarithmic transform for COR, CV, and DHI-sea, and used polynomial
regression for evenness, CON, DIS, ENT, HOM, range, Shannon, Simpson, SD, MAX, UNI, VAR, LST,
ET, GPP, and PET.
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2.2.3. The Akaike Information Criterion

The Akaike information criterion (AIC) was used to evaluate the model quality. The AIC is a measure
of the quality of each model, relative to each of the other models for a given set of data [77–79], and the
AIC value of the model can be expressed as:

AIC = − ln L + 2c (1)

where L is the maximum value of the likelihood function for the model, and c is the number of free
parameters in the model. The model with the smallest AIC is the best performance. Thus, the good
performance of different models in this study was normally based on the low AIC values.

2.2.4. Three Machine Learning Methods for Metrics Integration

After determining the relationships between each remote sensing metric and species richness,
we selected the high-explained-variance metrics to develop a multivariate integration index using
machine learning models. In this study, we compared the capability of support vector machine (SVM),
random forests (RF), and neural networks (NN) to integrate various metrics. Species richness was
trained on 50% of the randomly extracted pixels and cross-validated on the remaining 50%. The same
number of pixels was used for training and predicting in order to avoid under- or over-fitting due to
an unbalanced dataset [80].

Support vector machine (SVM) is a supervised machine learning model with associated learning
algorithms that analyze data used for classification and regression analysis [81]. SVM uses kernel
functions implicitly to map training data into a higher-dimensional feature space. The maximum
separation hyperplane is defined by a set of support vectors, which are a function of the training data
that lie on/the closest to the separating margin [82]. In this study, the e1071 library of the R statistical
package was utilized to optimize the SVM parameters [83].

Random forests (RF) is a regression model that grows an ensemble of trees [84,85]. Each tree
casts a unit vote for the most popular class according to the input variables. The growing process of
RF is by bootstrap aggregating (or bagging), where a tree is randomly grown from the dataset, and
this process can provide substantial gains in the accuracy of predicting models [86,87], and it requires
no pruning. In this study, we used the RF algorithm implemented in the randomForest R package,
with the parameter values for the algorithm, (i.e., number of trees to grow (ntree)) equaled to 500,
and the number of descriptors randomly sampled at each split (mtry) equaled to the total number of
descriptors in the dataset divided by three.

Neural networks (NN) is a non-linear statistical data modelling tool used for prediction and
regression. We selected the multilayer feed-forward neural network, which is one of the most popular
approaches to neural networks (NNs) [88–90]. The multilayer feed-forward NN is a backpropagation
network that trains the data using a backpropagation algorithm [84,91]. This network comprises three
layers: an input layer, one or more hidden layers, and an output layer. Neurons from one layer are in one
direction linked to all neurons in the subsequent layers [92]. This study used the nnet library provided by
the R package in order to develop the model [36]. The nnet package is the library for establishing multiple
feed-forward NNs with more than one hidden layer [93]. This study constructed the model by carrying
out the learning for a total of 30 times with the maximum number of iterations at 100.

3. Results

3.1. Richness Distribution of Three Animal Classes

The distribution of mammal, bird, and amphibian species richness (normalized) was mapped on
a global scale. Mammals, birds, and amphibians showed similar distribution patterns at low latitudes
(Figure 2). In the Amazon, the species richness patterns of mammals, birds, and amphibians were
almost equal. Distribution differences between mammals, birds, and amphibians were observed at
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mid–high latitudes. The species richness of birds and mammals was slightly higher than that of
amphibians in both Central Africa and Southeast Asia. Overall, the distribution patterns of species
richness for these three animal classes were not the same.

Figure 2. Geographic distribution of three animal classes. (a) bird richness, (b) amphibian richness,
(c) mammal richness, and (d) combined species richness where we assigned mammal richness to the
red band, bird richness to the green band, and amphibian richness to the blue band of the image.
All other colors show transition zones of mixtures of the different animal classes.

3.2. Characterization of Various Remote Sensing Metrics

The scatter plots of various metrics versus species richness showed that most metrics exhibited
nonlinear relationships with species richness, and one metric possessed the same type of relationship
with various animal classes (Figure S1). DHI-cum and DHI-min showed clear linear positive
correlations with species richness. Among the metrics which exhibited nonlinear relationships with
species richness, COR, CV, and DHI-sea followed power laws, while the other metrics showed mildly
or strongly unimodal relationships (Figure S2).

DHI-min, DHI-cum, ET, and GPP exhibited more than 40% explained variance with the
distribution of the sum richness of three animal classes on a global scale (Figure 3). These metrics with
high explained variance were mainly in the energy/productivity category and the climate category,
while the texture category showed weak explanatory power with the distribution of sum richness on
a global scale. Among the metrics in the energy/productivity category, DHI-min explained 50% of the
sum richness distribution, GPP explained 48%, and DHI-cum explained 46%. DHI-sea exhibited lower
than 10% explained variance of DHI-min. The low explained variance of DHI-sea in the southern
hemisphere drew down its explained variance on a global scale (Figure 4). For DHI, we detected
three dramatic declines of explained variance in 40◦N zones, 10◦S zones, and 40◦S zones (Figure 5).
In climate category, ET explained 51% of the sum richness of the three animal classes global distribution,
and LST explained 16%. We further observed a large data gap between PET and ET, and PET exhibited
lower than 40% explained variance of ET, which indicated that vegetation played an important role
in the distribution of animal species richness. The vegetation contributed less to the PET calculation
compared to the ET calculation, which might be the primary cause of the difference between PET
and ET in the explanation of species richness. Compared with the metrics in the energy/productivity
and the climate categories, almost all texture metrics showed low explained variance. Among the
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texture category, CV exhibited the highest explained variance (22%), while COR and evenness showed
negligible explained variance.

Figure 3. The explained variance of remote sensing metrics on species richness. Percentages of variance
explained by the regression model was built with different remote sensing metrics. For DHI-min and
DHI-cum, univariate linear regression was used to calculate the explained variance. For COR, CV,
and DHI-sea, linearization was achieved by taking the log of the data before using univariate linear
regression to calculate the explained variance. For the other metrics, polynomial regression was used to
calculate the explained variance. Allclasses is the sum of mammal richness, bird richness, and amphibian
richness, which was normalized. The measured values were obtained for 10,000 0.1-degree pixels randomly
selected from global terrestrial areas. The full names of abbreviations can be found in the Table 1.

Figure 4. The explained variance of DHI metrics on mammal richness at latitudinal zones (360◦ × 10◦).
For DHI-min and DHI-cum, univariate linear regression was used to calculate the explained variance.
For DHI-sea, linearization was achieved by taking the log of the data before using univariate linear
regression to calculate the explained variance. The measured values were obtained for 10,000 0.1-degree
pixels randomly selected from global terrestrial areas.
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(a) 

(b) 

(c) 

Figure 5. Geographic distribution of DHI-cum, DHI-min, mammal richness. (a) North America,
(b) Argentina and Chile, (c) Amazon.

Some differences were observed when we examined the relationship between remote sensing metrics
and individual animal class (Figure 3). Compared with mammals and amphibians, birds exhibited
higher explained variance with PET, and exhibited lower explained variance with ET. Birds showed lower
sensitivity than amphibians and mammals to the energy/productivity category metrics (e.g., GPP, DHI-sea,
DHI-min, and DHI-cum). Mammals were more sensitive to ET, with an explained variance that was
6% higher than that of birds and amphibians. For ENT and HOM, the explained variance of amphibians
was lower than that of mammals and birds.

3.3. Integration of Various Remote Sensing Metrics

Based on the characterization of various metrics and AIC values, DHI-min, DHI-cum, DHI-sea,
GPP, CV, ET, and LST were selected as the major metrics for the development of an integrated
biodiversity index. For the AIC values, the RF model gave the lowest AIC for species richness of
the three animal classes when compared to SVM and NN (Figure 6). The species richness data
of each animal class predicted by the same machine learning model were quite similar, and RF
exhibited a higher r-square value than SVM and NN in species richness of all three animal classes
(Figure 7). The r-square values of mammals, birds, and amphibians were 0.76, 0.76, 0.77, respectively,
according to the RF model; 0.7, 0.71, and 0.66, respectively, according to the SVM model; and 0.67, 0.67,
and 0.67, respectively, according to the NN model. In terms of the root mean squared error (RMSE),
the prediction of the RF model exhibited a lower RMSE than the other two models for all three animal
classes. Overall, the RF model outperformed the other two models for species richness prediction.
We used the RF model to integrate the seven metrics and develop a multivariate integration index.

The multivariate integration index exhibited a higher explained variance than the univariate
metrics, and exhibited more than 76% explained variance for the species richness of the three animal
classes on a global scale. For a single animal class, the gap between the multivariate integration
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index and the univariate metrics was more than 30% (Figures 3 and 7). On the whole, the simulated
species richness showed a consistent spatial pattern with in situ richness (Figure 8). At regional
scales, the simulated species richness was in good agreement with in situ species richness in most
regions. However, the differences between simulated species richness and in situ species richness
were observed. For mammals, simulated species richness was higher than in situ species richness in
40◦–60◦S zones and 120◦–140◦E, and simulated species richness was lower than in situ species richness
in 0◦–10◦N and 30◦–60◦W. For amphibians, simulated species richness was lower than in situ species
richness in 30◦–60◦W. Although disagreements between simulated species richness and in situ species
richness were found in some regions, the differences were relatively small in magnitude.

Figure 6. The Akaike information criterion (AIC) values of the three models.

Figure 7. The correlation between predicted species richness and in situ species richness. (a) training
dataset, (b) prediction dataset. The measured values were obtained for 10,000 0.1-degree pixels
randomly selected from terrestrial areas of the globe, and 5000 pixels were randomly selected for
training and prediction separately.
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Figure 8. Distribution of simulated species richness and in situ species richness at latitudinal/longitudinal
zones. The data are from a prediction dataset, which has 5000 samples.

4. Discussion

4.1. Differences in Distribution of the Three Animal Classes

Previous studies have found large mismatches between the priorities of biodiversity protection
and protected lands in the United States, even though many biodiversity protected areas have been
established since biodiversity loss was identified [6,50,94,95]. Beside the lack of biodiversity in situ
datasets, this mismatch has likely arisen from differences in the distribution of various animal classes.
Protected areas are generally established for the protection of specific species, while biodiversity
includes many different taxa. In the United States, mammal richness was found to be very high in
the west, and bird richness was high in coastal regions [49,50]. A similar result was also found in our
comparison, in which we examined the distribution of mammals, birds, and amphibians, based on
the latest global in situ data. In addition, the differences in the distribution of mammals, birds,
and amphibians were mainly observed at mid–high latitudes. This is probably because the limitation
of water or energy/productivity at mid–high latitudes leads the difference in species richness among
the three animal classes [96]. In this study, biodiversity metrics did not exhibit a large gap in explained
variance between various animal classes, although the global distribution of various animal classes
were different. This may be due to the offset of regional differences, which led to a similar statistical
result on a global scale.

4.2. Attribution of Differences between Remote Sensing Metrics

For energy/productivity category, a large number of studies have attempted to discover
the relationship between energy/productivity and species richness in past decades [29,97,98].
The species-energy theory proposes that the supply of useable energy in the environment is very
important to species richness [96,99]. Although this theory is based on studies which are mainly
focused on the richness of plant species, for animals, there is a less dramatic shift in the relationship
between productivity and species richness [100]. Animal richness is limited primarily by the production
of plants at the base of the global food web [35,99]. That is probably the reason that the high explained
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variance metrics were mainly found in the energy/productivity category among the remote sensing
metrics in this study. The relationship between energy/productivity metrics and the richness of animal
species exhibits several patterns, namely linear pattern, unimodal pattern, exponential pattern, or no
pattern at all [100–102]. Past researchers also found this relationship differs in different scales [100].
Our study showed, on a global scale, that DHI-min and DHI-cum exhibited a linear relationship
with richness of the three animal classes; DHI-sea exhibited an exponential relationship with richness
of the three animal classes; and GPP exhibited an unimodal relationship with richness of the three
animal classes. In our study, DHI-sea exhibited a low explained variance of 38.9%, which was
different to DHI-min and DHI-cum. Species richness may be reduced through a decrease in either
cumulative annual productivity or minimum annual productivity. However, the impact of DHI-sea on
species richness can be different to the impacts of DHI-min and DHI-cum. The influence of annual
variation on productivity will be limited when the cumulative annual productivity or minimum annual
productivity is constant. Since the impact of short-term low productivity can be offset by subsequent
high productivity, it has a less immediate impact than DHI-min and DHI-cum. That is probably why
we observed a smaller impact of DHI-sea. Overall, DHI-min, DHI-cum, and GPP should be selected as
main factors for predicting animal species richness on a global scale.

For climate category, past investigations showed that global patterns of species richness were
widely correlated with climate [24,103]. Climate change can influence the animal distribution directly
by itself, and also affects animal species richness through changing vegetation productivity. In this
study, we evaluated the impacts of LST and ET on animal species richness. ET exhibited the highest
explained variance among all remote sensing metrics, which indicated the great impact of the water
component on species distribution. Moreover, the difference of explained variance between ET and PET
indicated that vegetation productivity played an important role in the distribution of animal species
richness, because vegetation contributed less to the PET calculation compared to the ET calculation.
The explained variance of LST was lower than ET, DHI-min, DHI-cum, and GPP. This may be due to
the time-lag effects in the response of species richness to climate change. Previous studies showed
that the change in animal diversity lagged behind climate change [39]. Some research has revealed
that a warmer winter will lead animal diversity to change by causing the long-distance migration of
animals [40]. Moreover, climate can alter species richness distribution through changing the vegetation
productivity [104], and many studies have found a time-lag in the global vegetation response to climate
change [105–108]. Because the influence of climate factors on animal diversity varies with different
regions which leads to an offset on global-scale analysis, we expect that explained variance of LST are
higher in regional analysis.

For the ecosystem texture category, texture metrics have been proved to be important drivers of
animal species richness [11,25,48,71,72,109], but the relationship pattern of texture metrics with animal
species richness is still controversial. Various studies have found that species richness exhibited positive
relationships with environmental heterogeneity, while negative relationships between environmental
heterogeneity and species richness have also been reported [27,43,110–113]. Tuanmu and Jetz [25] validated
the performance of 14 heterogeneity metrics, using North American bird richness. They showed that the
texture metrics combined with net primary productivity (NPP) can explain up to 35.8% of the variance.
In addition, homogeneity could still explain about 8% of the variance by itself. In the ecosystem texture
category, our results showed that the CV was the strongest metric on a global scale, with an explained
variance of 22%. Compared with metrics in energy/productivity and climate category, this study showed
that texture metrics exhibited low explained variance on a global scale, while high correlations were
observed at smaller scales. In fact, the pattern of the relationship between animal species richness and
habitat heterogeneity was impacted by many factors. Previous studies have showed that the possible
effects of heterogeneity may also vary relative to the structural variable measured, and the effect of
habitat heterogeneity for one species group may differ in relation to the spatial scale [43,71]. In this study,
the high-correlation areas were mainly covered shrub lands, grasslands, and savannas, while the explained
variance of texture metrics were relatively low in forests (Table S1). This is probably because the texture
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dataset we used mainly focused on the horizontal structure of an ecosystem, while forest biome has
more complex vertical structures than shrub lands, grasslands, and savannas. Moreover, different regions
showed various major driving texture metrics. For example, DIS, ENT, and HOM exhibited high explained
variance in grasslands and savannas. Moreover, previous studies found that the predictive performance of
texture metrics would vary across different spatial scales [114]. Overall, texture metrics should be primarily
considered when determining the species distribution at regional scales.

For different animal classes, we found a gap in the explained variance between bird species
richness and the species richness of the other two animal classes, among the climate metrics.
The explained variance of PET on bird richness was much higher than that of both amphibian and
mammal richness, which indicated that radiance and temperature played a more important role in
bird richness distribution than in the other two animal classes.

4.3. Integration of Various Remote Sensing Metrics

The effect mechanism of different environmental variables on species distribution is
debatable [115], which limits the application of certain metrics to model the species distribution
quantitatively. We applied three commonly used machine learning models in the integration of
the remote sensing metrics. There were differences in the results generated from the three models;
RF generally outperformed SVM and NN in our case study. In this study, SVM and NN exhibited high
uncertainty in species richness modeling, with the estimated datasets showing higher r-square and
lower RMSE than the training datasets. In consideration of the AIC values, the RF model provided
a better representation of the metrics integration of remote sensing metrics in this study than the
other two models. Previous studies have suggested that differences in the results of various machine
learning models may be due to the sample size, or the ratio between the size of the training sample
and the estimated sample. [116,117]. However, there was no improvement in the performance of SVM
and NN in species richness modeling, when we increased the proportion of the training sample and
decreased the proportion of the estimated sample (Figure S3). RF has broader scope than SVM and
NN, because it has no limitation on the distribution pattern of the training data. The complexity of
the parameter setting may limit the performance of SVM and NN for model training [118]. Although,
SVM has the advantage on solving non-linear problems, a major downside of SVM is that it can be
painfully inefficient to train [119,120]. Another main advantage of RF is that it handles very well with
a large number of training examples, and it is not recommended to use SVM to handle large training
examples, which might lead to a better performance of the RF. In the training process, we observed
a large gap between RF, SVM, and NN. In addition, the computation time required for modelling
differed considerably among the three machine learning models (Table 2). The computational efficiency
of the SVM and NN models were much higher than that of the RF model.

Table 2. The time statistics of the three machine learning models with 5000 training samples and 5000
prediction samples.

Species SVM RF NN

Mammal 4.514s 13.635s 2.639s
Bird 4.465s 14.252s 2.651s

Amphibian 3.497s 14.173s 2.421s

In this study, the multivariate integration index based on the RF model exhibited 20% more
explained variance than the univariate metrics. Many species richness monitoring and modelling
studies have been carried out in previous decades [3,4]. Our result, using three categories of remote
sensing metrics, exhibited twice the explained variance of previous studies, which used texture
metrics and net primary productivity (NPP) [25]. Previous studies showed DHI components explained
between 47% and 75% of total bird species richness (BBS) in Ontario (North America), and we extended
the spatial scale from regional to global [61]. Although these studies selected different species richness
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datasets, a comparison of the correlations was still reasonable, and we asserted that the multivariate
integration index had a better correlation with species distribution than univariate metrics on a global
scale. Since the evolution of a species is a very slow process, the link between these remote sensing
metrics and species characteristics is stable for decades [121]. Thus, the multivariate integration index
we developed can be used for mapping the global species richness annually, which would provide
great support for global biodiversity trend detection.

At latitudinal and longitudinal zones, some differences between simulated species richness and
in situ species richness were observed (Figure 8). There were two possible reasons that led to this
disagreement. Firstly, these zones (e.g., 40◦–60◦S zones) where gaps of species richness were found
mostly had large areas of water or deserts, which led to a small sample size for model training.
This small sample size brought large uncertainty in simulated species richness. Secondly, in some
regions (0◦–10◦N zones), the limited in situ data constrained much detail of species richness, while the
remote sensing metrics we used exhibited high spatial resolution. This difference limited the explained
variance of some remote sensing metrics (e.g., DHI-min, DHI-cum, and DHI-sea) (Figures 3 and 7).
Overall, the impact of these differences on the multivariate integration index was limited, since these
differences were relatively small in magnitude.

4.4. Limitation and Recommendation for Future Research

Although the multivariate integration index showed a consistent pattern with in situ richness
data, it faced two known limitations. Firstly, the limited availability of in situ richness data constrained
the comparison and integration of remote sensing metrics. Three dramatic declines of DHI’s explained
variance in 40◦N zones, 10◦S zones, and 40◦S zones were found. It appeared that the in situ data of
mammal richness were insufficient, because of the detail loss in these regions (Figure 5). Once higher
resolution species richness data are available, the multivariate integration index should exhibit higher
accuracy. Secondly, relationship patterns between energy/productivity, climate and ecosystem texture
metrics, and animal diversity were limited by many other factors, namely scale, resolution, latitude,
and so on.

Future research will consider both scale and resolution when comparing remote sensing metrics.
Because the focus is taking full advantage of long time-series remote sensing data for species
monitoring, some important metrics (e.g., precipitation and air temperature) which are not available
from remote sensing data globally, were excluded in this study. To make biodiversity monitoring
and assessment more globally accurate, future research will consider more datasets from both remote
sensing data and model simulation data in integration index development. In addition, with the
collection of more species information of both plants and animals, future research will develop the
integration index for predicting plant species richness, as well as animal species richness.

5. Conclusions

In this study, 21 remote sensing metrics were assessed to determine their relationships with the
richness distribution of three animal classes. The correlation between the species richness of the three
animal classes and 21 biodiversity metrics was evaluated based on regression models, and ET exhibited
the strongest correlation with the global distribution of the three animal classes. The metrics with high
explained variance were mainly in the energy/productivity category. The ecosystem texture category
exhibited a higher correlation with species richness at regional scales. For a single class, we found
radiance and temperature had a larger impact on the distribution of birds than the other two animal
classes. Three commonly used machine learning models were evaluated to determine their capabilities
in developing a multivariate integration index, and the RF model was selected as the optimal model
for multivariate index integration. Having taken DHI-min, DHI-cum, DHI-sea, GPP, CV, ET, and LST
as the major metrics, the multivariate integration index exhibited a 20% higher explained variance of
the global distributions of mammal, bird, and amphibian richness, compared to the univariate metrics.
However, the in situ biodiversity data were still insufficient. With improvements in the availability

294



Remote Sens. 2018, 10, 739

of these datasets, further studies can consider more factors and offer higher-accuracy metrics for the
assessment of global biodiversity.
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Abstract: This study analyzes the changes in drought patterns in China’s major crop-growing
areas over the past 60 years. The analysis was done using both weather station data and
Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) rainfall data to calculate
the Standardized Precipitation Index (SPI). The results showed that the occurrences of extreme
drought were the most serious in recent years in the Southwest China and Sichuan crop-growing
areas. The Yangtze River (MLRY) and South China crop-growing areas experienced extreme
droughts during 1960–1980, whereas the Northeast China and Huang–Huai–Hai crop-growing
areas experienced extreme droughts around 2003. The analysis showed that the SPIs calculated by
TRMM data at time scales of one, three, and six months were reliable for monitoring drought in
the study regions, but for 12 months, the SPIs calculated by gauge and TRMM data showed less
consistency. The analysis of the spatial distribution of droughts over the past 15 years using TMI
rainfall data revealed that more than 60% of the area experienced extreme drought in 2011 over the
MLRY region and in 1998 over the Huang–Huai–Hai region. The frequency of different intensity
droughts presented significant spatial heterogeneity in each crop-growing region.

Keywords: drought; SPI; TMI data; crop-growing regions

1. Introduction

Droughts caused by long-term shortages of precipitation are a global issue. Droughts generally
occur randomly, last for long periods of time, and impact large areas [1–3]. Compared to the
impacts of other natural disasters, the impacts of drought on agricultural production and food
safety are more significant [4]. Droughts have long been monitored and analyzed, and with the
evolving awareness of drought occurrences, drought monitoring methods are continuously improving.
These improvements are mainly reflected in the methodologies and data sources used. In the mid-1900s,
drought monitoring was primarily done through drought estimation using precipitation alone or
combined with other meteorological elements [5]. For example, Thornthwaite [6] proposed using
precipitation minus evapotranspiration as an index of drought, and Van et al. [7] proposed the concept
of agricultural drought days. After the mid-1900s, the monitoring of meteorological droughts was
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more actively studied. Palmer [8] corrected deficiencies in previous drought monitoring indices and
proposed the Palmer drought severity index in 1965. McKee et al. [9] proposed the Standardized
Precipitation Index (SPI) for drought monitoring in Colorado, USA. In addition, several drought
monitoring methods have been proposed and used in different areas, such as the meteorological
drought composite index (CI) proposed by the China Meteorological Administration [10] and the
Standardized Precipitation–Evapotranspiration Index (SPEI), which combines the features of the SPI
and the Palmer drought index [11,12].

Compared to remote sensing data, meteorological data from weather stations generally cover
longer periods of time and are more precise. Thus, meteorological drought monitoring methods
are more advantageous for analyzing the periodicities of drought. Meanwhile, remote sensing data
cover larger areas, are less constrained by geographic conditions, and thus are more suitable for
large-scale drought monitoring. At present, drought monitoring methods based on remote sensing
data, e.g., the Temperature Vegetation Drought Index (TVDI) [13,14], Vegetation Condition Index
(VCI) [15], and Microwave Integrated Drought index (MIDI) [16], are mainly focused on using
vegetation indices, land surface temperatures and microwave data. In addition, many methods
were also proposed to monitor agricultural drought. For example, Lessel et al. presented a method
based on quasi-climatological anomalies of remotely sensed data to monitor agricultural drought [17].
Tigkas et al. proposed an Effective Reconnaissance Drought Index (eRDI) to improve the ability to
assess agricultural drought [18]. Li et al. developed a new agricultural drought index based on the
Variable Infiltration Capacity (VIC) model coupled with an irrigation scheme and a reservoir module
to monitor drought [19].

With global climate change, China, whose per capita cultivated land is only 32% that of the
global average, has suffered severe droughts in recent decades [4,20]. The economic losses caused by
droughts far exceed those caused by other natural disasters. Several studies have revealed changes in
drought in China for different regions by using ground gauge data [4,21–27] and TRMM precipitation
products. For example, Hui et al. evaluated drought in the Jiangsu Province by using TRMM
3B43 data [28], and Zeng et al. used TRMM data to monitor drought in the Lancang River Basin [29].
In general, such studies mainly covered individual watersheds or plains and rarely aimed at researching
meteorological changes in drought across the major crop-growing areas. In this study, two data sources
were used, including weather station data with longer monitoring and recording histories and the
Tropical Rainfall Measuring Mission (TRMM) [30] Microwave Imager (TMI) precipitation data (3B43)
with a better spatial distribution. SPI was adopted to analyze the changes in drought in the major
crop-growing areas of China over the past 60 years using meteorological data, and the SPI calculated
using the TRMM 3B43 product for the years of 1998 to 2013 was validated by the meteorological data.
Finally, the spatial and temporal features of drought area were analyzed by the TRMM data in the
major crop-growing areas of China.

2. Study Area and Data

The National Regionalization of Priority Development Areas (access at: http://www.gov.cn/zwgk/
2011-06/08/content_1879180.htm) was released on 21 December 2010 by the State Council of China.
Based on the planning for China’s agricultural strategy given in this notice, the research area of this
study was selected, as shown in Figure 1. According to a previous study [31], major crop-growing
areas in different geographic locations were subject to the influences of various types of monsoons.
For example, Southwest China and the Sichuan area were mainly influenced by the combined effects
of the Southwest monsoons from the Indian Ocean and the summer monsoons from the Pacific Ocean.
Meanwhile, the South China area, the middle and lower reaches of the Yangtze River (MLRY),
the Huang–Huai–Hai area, and Northeast China were mainly influenced by summer monsoons
from the Pacific Ocean. Due to the different arrival times of the monsoons, the starting time of the
rainy seasons varies from south to north, as shown in Table 1.
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Figure 1. Study areas and meteorological station locations.

Table 1. Information on the study areas.

Crop-Growing Area Rainy Season
Annual Average

Precipitation (mm)
Major Crops

Northeast China July–September 500–750 Wheat, Corn, Rice
Huang–Huai–Hai July–September 400–800 Wheat, Corn, Rice

MLRY May–August 1000–1600 Rice, Wheat
South China March–September 1500–2000 Rice, Corn

Sichuan April–August 900–1200 Rice, Wheat
Southwest China May–October 1000–2000 Rice, Wheat

The data used in this study include weather station data and remote sensing rainfall data.
The weather station data were obtained from meteorological data sharing websites (access at:
http://data.cma.cn/). The daily data from 752 basic or standardized ground meteorological stations
were collected from 1951 to 2013. Since the observed precipitation data were not continuous at some
stations but the SPI computation requires complete data, the data were filtered using the following
rule: the data from any station with more than one day of data missing or containing abnormal
measurements were excluded. Hence, 64 stations in or near the research regions were obtained,
as shown in Figure 1. In addition, the daily precipitation values were merged to obtain the monthly
rainfall data to calculate the monthly SPI values.

The TRMM satellite was launched in 1997 for weather and climate research [32]. In 2014, it suffered
some battery issues and did not have enough propellant to support the required orbit altitude, so it
had to turn off the Visible and Infrared Scanner (VIRS) and slowly decayed in orbit while continuing
to collect data. The satellite stopped gathering data on 15 June 2015. This study used the TRMM 3B43
monthly precipitation data with a resolution of 0.25 degrees from 1998 to 2013 as the satellite gauged
data to explore a robust spatial characterization of drought.

3. Methodology

The SPI based on the best fit of the precipitation to a probability distribution was designed by
McKee et al. [9] for drought monitoring in Colorado, USA. SPI at different time scales can be used
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to monitor the impacts of decreased rainfall on different habitats [5]. Shorter time scales (one to
three months) can be used for drought monitoring and early warning signs, as well as drought severity
estimations. Time scales of six to 24 months can be used to monitor the impacts of decreased rainfall
on hydrology, reservoirs, and surface water. To analyze the periodicities and variations of droughts
over a long time period, the time span of the SPI should be set to six to 24 months.

Compared to PDSI [8] and SPEI [11], SPI only requires precipitation for its estimation to measure
droughts at different time scales, and it is less complex to calculate than others. However, the SPI
does not account for factors that influence evapotranspiration (e.g., soil types and temperature) [33].
Although it is plausible to consider additional variables in drought monitoring, the TRMM data were
used to monitor the drought, and there is no gauged temperature for the TRMM coverage region.
Hence, the simple SPI was selected in the study to monitor the changes in drought.

The SPIs for short timescales can monitor drought well, but these data are not suitable to trace the
potential impacts of long periods of dryness on agriculture and water supply [33]. However, the proper
characterization of agricultural drought depends on many factors, such as crop type and cultivation
period. Using the same SPI for different plant regions may cause different degrees of drought damage
for the crops. Hence, this study mainly analyzed the long-term change in drought among the plant
regions, and a timescale with a cumulative duration of 12 months was used to analyze the change in
drought in the main crop-growing areas of China.

The mean SPI calculated by Equation (1) can be used to evaluate general drought intensity when
the gauge points are almost evenly distributed spatially:

SPImean = ∑n
0 SPIi,t, (1)

where SPImean is the mean SPI, SPIi,t is the SPI at time t for site i, and n is the number of total
stations for the region. As shown in Figure 1, the gauge stations are almost evenly distributed in each
crop-growing region, hence Equation (1) was used to present the general drought intensity for each
crop-growing region.

The TRMM 3B43 data in the study regions were extracted, and the projection was converted to
the Albers projection to obtain the equation area for each pixel. The rainfall of pixels among each
region was extracted from the average monthly TRMM rainfall raster data from 1998 to 2013. In this
way, time series of the spatial rainfall distribution were obtained. Then, time scales of one, three, six,
and 12 months were used to calculate the SPI.

Dryness and wetness severity classifications according to the SPI values are listed in Table 2.

Table 2. Drought intensities according to SPI values.

SPI Value Drought Level

SPI ≥ 2.0 Extreme wet
1.5 ≤ SPI < 2.0 Very wet
1.0 ≤ SPI < 1.5 Moderate wet
−1.0 ≤ SPI < 1.0 Normal
−1.5 ≤ SPI < −1.0 Moderate drought
−2.0 ≤ SPI < −1.5 Severe drought

−2.0 ≤ SPI Extreme drought

4. Results

4.1. Drought Results by Using Gauge Data

The SPI at a time scale of 12 month was used here to analyze the changes in drought in the study
regions, as shown by the gray filled areas in Figures 2–4. The mean SPIs for each region calculated
by equation (1) are presented as the blue filled areas shown in Figures 2–4. As shown in Figure 2a,
the Northeast China crop-growing area experienced adequate precipitation before 1965, with rare
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drought occurrences. The end of the 1960s was a time of wet-to-dry transitions in the area, and then
a 20-year dry period occurred in the area and reached its peak at the end of the 1970s. The precipitation
increased in the 1980s, and the drought was alleviated to a certain extent. In 1990s, the droughts
and wet periods changed every three years. After 2000, the subsequent droughts lasted for 10 years,
and the intensity was more severe than the droughts of the 1970s. In 2010, the precipitation gradually
increased, and the droughts were alleviated slightly.

The Huang–Huai–Hai crop-growing area also had low occurrences of drought before 1964,
during which this area was moist, as shown in Figure 2b. At the beginning of 1965, the drought
intensified, reaching its peak at the end of the 1960s. The 1970s was a relatively moist stage, and after
this period, precipitation decreased and the drought intensified. The drought reached its peak at
the end of the 1980s and gradually lessened over the following 10 years. Entering the 21st century,
the drought situation intensified once again. However, the duration of this drought was less than those
of the droughts in the 1980s, and after 2010, the occurrences of drought gradually lessened.

 

 

Figure 2. The SPI values for 1951–2013 for (a) Northeast China and (b) Huang–Huai–Hai.

In the 1950s, the MLRY crop-growing area was relatively wet (Figure 3a). However, it was
extremely dry in the following 10 years, and the drought reached its peak in 1966. In the 1970s, the wet
periods and droughts changed over time spans of three years, and the drought intensified at the end
of the 1970s. This extreme drought was the driest period from 1951 to 2013. In the 1980s and 1990s,
the area was quite wet. In the 21st century, the intensity of drought in this region was enhanced. In the
year of 2004 and 2011, the area was impacted by an extreme drought.

Figure 3b indicates that the most intense drought in the past 60 years occurred during the 1950s to
1960s. At the end of the 1970s, the drought lessened slightly. The mid-1980s experienced relatively wet
periods. In the following 10 years, the drought intensified again and reached its peak at the beginning
of the 1990s. The lowest period of drought intensity occurred in the early 21st century. However,
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after 2003, the occurrences of drought became more frequent, and the area entered another relatively
dry period.

 

 

Figure 3. The SPI values for 1951–2013 for (a) MLRY and (b) South areas.

At the beginning of the 1950s, the Sichuan basin region experienced an extreme wet period, and at
the end of the 1950s, a short, mild arid period occurred in the basin. In the next twenty years, except
for the years around 1966 and 1970, this area experienced a wet period. At the end of the 1970s and at
the beginning of the 1980s, the drought was intensified over this region. During the 1980s and 1990s,
the drought gradually intensified and reached its peak in 1996. In the early 21st century, the drought
in the area was alleviated. However, the drought gradually intensified until approximately 2004,
when the most severe drought of the past 60 years occurred.

The variation of the drought in Southwest China was similar to that of the Sichuan basin,
as shown in Figure 4b. A low-intensity drought occurred around 1960, and in the following 20 years,
the occurrences of drought gradually decreased. Around 1980, this region experienced severe drought,
similar to that in 1960. In the 1990s and the beginning of the 21st century, the drought intensity
decreased, and this region experienced a wet period. However, after 2008, the drought intensified
again and the most extreme drought of the past 60 years occurred. Overall, the trends on drought
occurrences in the Sichuan area and Southwest China were similar around 1960 and 1980. After 2008,
the droughts in both areas intensified significantly.
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Figure 4. The SPI values for 1951–2013 for (a) Sichuan basin and (b) Southwest China.

4.2. Drought Results by Using TRMM Data

Although some spatial interpolations that use interpolation techniques (e.g., Inverse Distance
Weighted (IDW), Kriging etc. [34],) may help to infer drought conditions at large scales, they still face
high uncertainties [33]. For example, altitude differences in mountainous regions and the random
property of precipitation makes it very difficult to predict the correct values near in the adjacent areas.
Compared to ground station gauge rainfall data, the advantage of TRMM data is that TRMM data
provide better spatial coverage. On the other hand, as shown in Sections 3 and 5.1, the time span of
6 to 24 months can be used to analyze the periodicities and variations in the drought over a long time
period, and the SPI calculated by the TRMM data at s time scale of 12 months was not very accurate
for evaluating the change in drought and. Hence, the SPI at a time scale of 6 months was selected to
monitor drought in this section.

The frequencies of moderate, severe, and extreme drought are presented in Figure 5 to show
the spatial distribution of different intensities of drought. Figure 5 shows that there are significant
spatial differences in the probability of different intensity droughts among each crop-growing region.
The northeast region suffered less extreme droughts than other regions but a high frequency of
moderate droughts. The southeastern part of the Huang–Huai–Hai region suffered a high frequency
of extreme droughts, but the north Huang–Huai–Hai region presented a high frequency of moderate
and severe droughts. The north region of the MLRY region presented a high frequency of extreme
droughts, whereas the frequency of moderate droughts was high in the south MLRY region. For the
south region, the extreme droughts occurred less frequently in this region, but there was often a high
frequency of moderate droughts in this region. Both the Sichuan and southwest crop-growing regions
were less influenced by moderate droughts. The frequency of extreme droughts was quite high in the
east part of the southwest region and the northeastern part of the Sichuan region.
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Figure 5. Frequencies of moderate droughts, severe droughts and extreme droughts for different regions
from 1998 to 2013.

308



Remote Sens. 2018, 10, 171

In addition, the area percentages of the crop-growing regions under different drought intensities
are presented in Figure 6 to further analyze the drought changes in spatial and temporal scales.
In Figure 6, moderately dry regions are depicted in peach, severely dry regions are depicted in orange,
and extremely dry regions are depicted in red.

 

 

 

 

Figure 6. Cont.
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Figure 6. TRMM 3B43 for drought monitoring (SPI at time scale of six months) for different regions:
(a) Northeast; (b) Huang–Huai–Hai; (c) MLRY; (d) South; (e) Sichuan basin; and (f) Southwest.

Figure 6 shows that the driest period in terms of drought severity was 2003 for the northeast
region and that no severe drought occurred in this region from 1998 to 2010. In all, the area and
frequency of extreme droughts in this region were lower than other regions. For the Huang–Huai–Hai
region, the drought was severe from 1998 to 2002, but from 2003 to 2013, only a small percentage of
this region suffered drought. The MLRY region suffered extreme drought in 2011, and more than
60% of the area experienced extreme drought. At the end of 1998 and 2001, this region also experienced
extreme drought. The area and frequency of extreme drought in South China were quite low in 1998 to
2013, and this region experienced extreme drought in 2003, 2005, and 2011. The Sichuan basin suffered
extreme drought in 2001, 2006, and 2011, and the characteristics of droughts in this region were that
the percentage of severe drought accounted for a larger proportion than droughts of other intensities.
The Southwest region suffered quite a wet period before 2009, but this region suffered severe drought
after 2009. In all, the North of China (the Huang–Huai–Hai and the Northeast regions) experienced
severe drought from 1998 to 2003, whereas the MLRY, the South, the Southern, and the Sichuan regions
experienced severe drought around 2011.

5. Discussion

5.1. Reliability of Using the TRMM Data

Since satellite-derived data estimates precipitation indirectly and depends on the properties of
cloud tops and path-integrated hydrometeor content [34], the results of retrieval precipitation data
must be evaluated. The validation of TRMM data has been widely conducted, and the study performed
by Chen et al. [35] showed that the TRMM 3B43 achieved reasonable accuracy in most regions of China,
which includes the study regions of the study.

Another problem of using TRMM data to calculate SPI is that SPI calculations often require
more than 40 years of accumulated precipitation, but TRMM data only include rainfall for 15 years,
which is a short length of time to calculate the SPI. There is no comparison between the SPI values
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calculated by TRMM data and gauge data in the study regions. Hence, it is a prerequisite to evaluate
the reliability of using TRMM data to calculate the SPI before these data are used to monitor drought
in the crop-growing regions.

The monthly gauge data with long records from 1951 to 2013, monthly TRMM 3B43 data were
selected, and the TRMM data corresponding to the stations were extracted. The SPIs were calculated
at time scales of one, three, six, and twelve months for each station and TRMM extracted data. Then,
the SPIs for each station between 1998 and 2013 were selected to match the SPIs calculated by TRMM
extracted data, and a multiple linear regression fit was used to compare the two SPIs. In general,
the SPIs at time scales of one, three, and six months were significant with corresponding TRMM
extracted data (p < 0.01), but the SPIs at a time scale of twelve months were not significant. Figure 7
presents the detailed coefficient of determination R2 for difference regions.

 

 

Figure 7. Coefficient of determination R2 between two datasets for difference regions: (a) Northeast;
(b) Huang–Huai–Hai; (c) MLRY; (d) South; (e) Sichuan basin; (f) Southwest.

Figure 7 indicates that the correlations between the SPIs at time scales of 1, 3 months (station data
and TRMM data) are quite high, as most of the correlations are greater than 0.8. More specifically,
in addition to the Huang–Huai–Hai area, the other regions present high fitting coefficients, and the
coefficients of the South of China, e.g., South China, Sichuan basin, Southwest China, are higher
than those of North of China, e.g., the MLRY and Northeast. The reason for this may be due to
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the uncertainty of TRMM data to sense frozen precipitation in winter in the North of China [36].
For the SPIs at the time scale of 6 months, most of the coefficients of determination range from
0.3 to 0.5 for most regions. For the SPIs at the time scale of 12 months, the coefficients of determination
are predominantly low, and this may be due to the short measurement series. As a whole, the SPIs
calculated by using the TRMM data at time scales of 1, 3 and 6 months are reliable for monitoring
drought in the study regions.

5.2. Comparison between TRMM and Station Data

SPIs calculated at a time scale of 6 months by gauge data were selected, and are depicted as the
gray filled areas shown in Figure 8. The mean SPIs for each region calculated by Equation (1) are
presented as the blue filled areas. As can be seen in Figures 6–8, the changes in drought presented in
Figure 8 from year of 1998 to 2013 were similar to the changes monitored by TRMM data shown in
Figure 6. Most of the drought events detected by station gauge data were also detected by TRMM data;
this means the TRMM data provide not only the spatial coverage of the drought, but also accurate
drought intensities at specific time scale compared to station gauge data.

 

 

Figure 8. Cont.
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Figure 8. Gauge data for drought monitoring (SPI at time scale of 6 month) for difference regions:
(a) Northeast, (b) Huang–Huai–Hai, (c) MLRY, (d) South, (e) Sichuan basin and (f) Southwest.

Droughts are climatic events caused by various factors. When the factors that influence
precipitation do not satisfy the requirements for precipitation in an area, climatic abnormities
occur, i.e., droughts or floods. In recent decades, the temperature across China has gradually
increased. The increases in temperature inevitably accelerate surface evapotranspiration. In addition,
industrialization in China is consuming more and more water resources. Thus, reasonable approaches
to coping with severe drought include constructing additional water conservation facilities in
areas with a high frequency of severe, extreme droughts and improving water use efficiency in
agricultural production.

6. Conclusions

In this study, weather station data with longer recording histories and TMI precipitation data
were used to calculate the SPI values for the major crop-growing areas of China. The analyses of
drought based on weather station data showed that the driest periods in the past 60 years were at
the end of the 1960s, the years around 1980 and the beginning of the 21st century in the Northeast
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and Huang–Huai–Hai areas; 1966 and 1980 for the MLRY region; and the middle of the 1950s for
South China. For the Sichuan basin and Southwest China areas, after 2005, these regions suffered the
most extreme drought in the past 60 years.

The validation based on station gauge rainfall data showed that the SPIs calculated using TRMM
data at time scales of one, three, and six months were reliable for monitoring drought in crop-growing
regions. The analyses of drought based on TMI data from 1989 to 2013 showed that the frequency of
different intensity droughts presented significant spatial heterogeneity in each crop-growing region.
The extreme droughts mainly occurred in the east part of the southwest region and the northeastern
part of the Sichuan region, whereas the north part of the MLRY region, the southeastern part of the
Huang–Huai–Hai region, and the Northeast region suffered less extreme drought than the other
regions. The droughts monitored by TRMM data were almost coincident with gauged data.
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Abstract: Integration of Landsat images and multisource data using spatial statistical analysis and
geographical detector models can reveal the individual and interactive influences of anthropogenic
activities and ecological factors on concentrations of atmospheric particulate matter less than
2.5 microns in diameter (PM2.5). This approach has been used in many studies to estimate biomass
and forest disturbance patterns and to monitor carbon sinks. However, the approach has rarely
been used to comprehensively analyze the individual and interactive influences of anthropogenic
factors (e.g., population density, impervious surface percentage) and ecological factors (e.g., canopy
density, stand age, and elevation) on PM2.5 concentrations. To do this, we used Landsat-8 images
and meteorological data to retrieve quantitative data on the concentrations of particulates (PM2.5),
then integrated a forest management planning inventory (FMPI), population density distribution
data, meteorological data, and topographic data in a Geographic Information System database,
and applied a spatial statistical analysis model to identify aggregated areas (hot spots and cold
spots) of particulates in the urban area of Jinjiang city, China. A geographical detector model
was used to analyze the individual and interactive influences of anthropogenic and ecological
factors on PM2.5 concentrations. We found that particulate concentration hot spots are mainly
distributed in urban centers and suburbs, while cold spots are mainly distributed in the suburbs
and exurban region. Elevation was the dominant individual factor affecting PM2.5 concentrations,
followed by dominant tree species and meteorological factors. A combination of human activities
(e.g., population density, impervious surface percentage) and multiple ecological factors caused
the dominant interactive effects, resulting in increased PM2.5 concentrations. Our study suggests
that human activities and multiple ecological factors effect PM2.5 concentrations both individually
and interactively. We conclude that in order to reveal the direct and indirect effects of human activities
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and multiple factors on PM2.5 concentrations in urban forests, quantification of fusion satellite data
and spatial statistical methods should be conducted in urban areas.

Keywords: multisource data fusion; aerosol retrieval; urban scale; vegetation dust-retention; multiple
ecological factors; geographical detector model

1. Introduction

As industrialization and urbanization have intensified, so has the concentration of fine particulates
in the atmosphere. These particulates, known as PM2.5 (aerodynamic diameters < 2.5 μm [1]),
originate from vehicle exhaust, coal-fired power plants, building construction (dust), and domestic
heating (coal). Fine particulates are not only detrimental to human health (respiratory problems, lung
disease, etc. [2,3]), but they also cause global atmospheric changes [4].

At present, most studies of PM2.5 focus on their sources and methods for monitoring them [5].
However, studies examining the degree to which urban forests trap particulates, combined with
data from forest management planning inventories (FMPI), remote sensing imagery, population
density, and impervious surface percentages, are rare. These types of environmental data could be
extremely helpful for managing urban forests and improving air quality [6]. Focusing on urban forests
is important because urban forests help protect human health and improve environmental quality
by improving air quality (e.g., forests absorb pollutants and reduce chemical reaction rates [7,8]).
Tiwary [9] has linked urban forests with human health effects. In one study of a 10 × 10 km grid in
London with a tree coverage of 25%, the urban forest was estimated to remove 900 t of PM10 annually,
which is the equivalent of preventing two deaths and two hospital admissions each year [10].

Most studies have investigated the effects of ecological factors (e.g., canopy density, leaf area
index (LAI), and Normalized Difference Vegetation Index (NDVI)) on PM2.5 concentrations at ground
level using a variety of instruments and statistical approaches. For instance, Jin [11] measured canopy
density and LAI with a laser dust monitor and applied a mixed-effect model to quantitatively analyze
the effect of particulates on vegetation. Similarly, Liu [12] used a TH-150C particulate sampler to
obtain PM2.5 concentrations in sample plots and applied a multiple regression model to analyze
the relationship between PM2.5 concentrations and NDVI and LAI. Although particle collectors can
accurately capture PM2.5 concentrations in real time, these instruments are expensive to operate.
Furthermore, because particle collectors require many sampling points to ensure accuracy, sampling is
extremely labor intensive [13]. In addition, these ground-based studies used remote sensing indices
and traditional statistical analyses, both of which have a number of limitations. First, single remote
sensing indices (e.g., NDVI, Enhanced Vegetation Index (EVI), and LAI) are indicators of physiognomic
parameters of vegetation, but cannot be used to quantify important site-specific parameters, such as
soil depth, stand age, canopy density, and dominant tree species. Second, past studies have not
considered that different tree species have significantly different PM-retaining capacities. Gao [14]
pointed out that forest type and tree species differ significantly in their settlement rate of particulates.
Finally, traditional statistical analyses only reveal the effects of single or multiple environmental factors
and remote sensing indices on PM2.5 concentrations, ignoring anthropogenic factors. Past studies
have also not considered whether multiple impact factors act individually or synergistically on PM2.5

concentrations [15].
Saebo [16] pointed out that in order to comprehensively understand the individual and interactive

influences of anthropogenic and ecological factors on PM2.5 concentrations, Landsat images and
multisource data must be integrated with a spatial statistical analysis that takes into account physical
parameters of vegetation and underlying surface features. Therefore, in this paper, we use Landsat-8
images and meteorological data to retrieve quantitative PM2.5 concentrations in an urban area.
To do this, we created a GIS database that integrated multisource data (including Landsat-8 images,
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FMPI, population density distribution data, topographic data, and meteorological data) in a spatial
statistical analysis model to identify specific areas of high concentration of PM2.5 (hot spots) and low
concentration (cold spots) in various parts of the urban environment. A geographical detector model
was used to analyze the independent and interactive influences of anthropogenic and ecological factors
on urban forest PM2.5 concentrations.

The goal of this study was to analyze the independent and interactive influences of various factors
on urban forest PM2.5 concentrations. The findings can be used to identify crucial impact factors of
PM2.5 concentrations, which is an important first step for policymakers when managing air pollution,
monitoring pollution, and estimating pollution exposure.

2. Materials and Methods

2.1. Overview

We approached this study in three steps. First, a GIS database was created that integrated
multiple types of data (including Landsat-8 images, FMPI, meteorological data, and population
density distribution data). Second, areas with abnormally high concentrations of PM2.5 (hot spots)
and abnormally low concentrations (cold spots) were identified using Global Moran’s I and Getis-Ord
Gi* algorithms [17,18]. The optimal threshold distance was calculated using an incremental spatial
autocorrelation module. Third, a geographical detector model was used to analyze the individual and
interactive influences of anthropogenic and ecological factors on urban forest PM2.5 concentrations
(these factors included human activities, topographic parameters, soil characteristics, meteorological
factors, and vegetation characteristics).

2.2. Developing a Multiple-Source Spatial Database

The data used to model PM2.5 concentrations consisted of five distinct datasets. The first, obtained
from the National Statistics Bureau, provided data on the population density distribution of Jinjiang,
which was mapped using kernel density. The second dataset was composed of spatially explicit
PM2.5 concentration data, which were retrieved from three Landsat-8 images and verified using
meteorological observation data. The three remote sensing images consisted of Row 119/Path
43 Landsat-8 images from 13 December 2014, 29 December 2014, and 14 January 2015, all acquired
during winter under clear atmospheric conditions at approximately 10:29 a.m., local time. The third
dataset comprised FMPI data obtained from the Jinjiang Forestry Bureau, which were collected
every 10 years. The accuracy of the FMPI data was evaluated using stratified systematic sampling.
The sampling accuracy of total stand volume was 90% and the reliability was 95% [19]. The FMPI of the
attribute database included three parts: (1) forest characteristics (patch area, stand age, canopy density,
and dominant tree species); (2) soil characteristics (soil depth, humus depth, and site index); and
(3) topography (elevation, slope degree, slope position, and slope direction). The fourth dataset was
meteorological data from the China Meteorological Forcing Dataset (doi:10.3972/westdc.0294.db) [20].
This dataset was produced by merging a variety of data sources. Its spatial resolution is 0.1 degree
and its temporal resolution is 3 h, and it can be used for hydrological modeling, land surface
modeling, land data assimilation, and other terrestrial modeling. The dataset included seven parts
(temperature, pressure, specific humidity, wind speed, downward shortwave radiation, downward
longwave radiation, and precipitation rate). Four meteorological factors were studied in our research:
temperature (TEM), pressure (PS), specific humidity (SH), and wind speed (WS). Our dataset can be
obtained at http://westdc.westgis.ac.cn/data/7a35329c-c53f-4267-aa07-e0037d913a21. The format
of our meteorological data is a network common data format file (NetCDF) and we used ArcGIS10.3
(ArcGIS10.3.1) to convert the NetCDF file to a TIFF file. The fifth dataset is meteorological observation
data obtained from the Jinjiang Meteorological Bureau. The PM2.5 spatial data and population density
data were raster-based, while the FMPI data were vector-based. The vector and raster data differed
in structure and form, so it was difficult to integrate these data. In order to solve the integration
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problem, we standardized the data by converting formats, transforming coordinates, and applying
geometric corrections. We used forest patch size as the basic spatial unit and then calculated average
population density and average PM2.5 concentrations for each patch using zonal, statistical tools.

2.3. Calculation of PM2.5 Concentrations

2.3.1. Satellite-Derived Aerosol Optical Depth (AOD)

We assumed that the land surface could be represented as a Lambert surface and that the
atmospheric level was uniform. Apparent reflectance (ρtoa) at the top of the atmosphere can be
expressed as [21]

ρtoa(θs, θv, φ) = ρ0(θs, θv, φ) + T(θs)·T(θv)· ρs(θs, θv, φ)

[1 − ρs(θs, θv, φ)·S] (1)

where θs is the solar zenith angle; θv is the satellite zenith angle; φ is the azimuth of the scattered
radiation from the solar beam; ρ0 is path radiance; ρs is the angular surface reflectance; S is the
atmospheric backscattering ratio; T(θs) is the normalized downward flux for zero surface reflectance;
and T(θv) represents upward total transmission into the satellite’s field of view. We downloaded
Landsat-8 data from the Geospatial Data Cloud (http://www.gscloud.cn) and then used ENVI5.3
software to preprocess the imagery. The pretreatment process mainly included masking, radiation
calibration, geometric correction, and calculating the apparent reflectance (ρtoa) of the atmosphere.
The mid-infrared (2.12 mm) channel is less sensitive to aerosol scattering (because the wavelengths
are larger than the size of most aerosol particles); however, the channels are sensitive to ground
surface characteristics [22] and the apparent reflectance of mid-infrared at the top of the atmosphere,
the angular surface reflectance of the red band, and the angular surface reflectance of the blue band
have a fixed function, this function was modified using a Dark Dense Vegetation (DDV) algorithm [23].
Next, we used the DDV algorithm to calculate the surface reflectance of the red and blue bands.
An aerosol lookup table (LUT) was constructed using the Second Simulation of the Satellite Signal
in the Solar Spectrum (6S) atmosphere transmission model for the blue and red bands [21]. Finally,
we obtained the atmospheric status of the computed reflectance which best matched the apparent
reflectance of the atmosphere and the corresponding AOD value [22].

2.3.2. Calculation of PM2.5 from AOD Data

AOD values indicate the accumulation of the extinction coefficient in the entire
atmospheric column. The PM2.5 concentrations only represent the near-surface “dry” aerosol
extinction coefficient. An estimate of PM2.5 concentrations from AOD data alone would produce
large uncertainties. Therefore, we had to account for changes in PM2.5 concentrations with elevation
and correct for relative humidity in order to reduce these uncertainties [24]. Vertical and humidity
corrections are needed to calculate PM2.5 concentrations in urban forests from AOD data. To do this,
the Height of Planetary Boundary Layer (HPBL) was incorporated into the vertical correction, while
the effects of hygroscopic growth were used to determine the humidity correction [25,26]. In this study,
AOD data were converted to a near-surface “dry” aerosol extinction coefficient and their correlation
relationships with ground PM2.5 concentrations [27,28]. The correlation between AOD and the surface
aerosol extinction coefficient was affected by the vertical distribution of aerosols, so we determined
the vertical correction for PM2.5 concentrations using horizontal visibility to calculate the surface
aerosol extinction coefficient. We also needed to correct for humidity because the meteorological
stations measured PM2.5 concentrations at a specific relative humidity, so we used relative humidity
data to calculate the “dry” aerosol extinction coefficient. Next, we performed module estimations.
Wang [29] found that it was possible to develop linear correlative models between a “dry” aerosol
extinction coefficient and PM2.5 concentration. We used the “dry” aerosol extinction coefficient and
PM2.5 concentrations collected in real time (at twelve ground monitoring sites) to establish models
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based on their correlation and estimate PM2.5 concentrations. Our results indicated that the Landsat
estimation of PM2.5 correlates with ground-based measurements on 13 December 2014, 29 December
2014, and 14 January 2015, with R2 = 0.68, 0.66, and 0.72, respectively (Figure 1). For additional details,
please see Supplementary Materials.

Figure 1. Correlation between kAOD,Dry and PM2.5 concentrations on 13 December 2014,
29 December 2014, and 14 January 2015 (both acquired from Environmental Protection of Jinjiang
kAOD,Dry represents the aerosol extinction coefficient in dry conditions).
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2.4. Spatial Statistical Analysis

We used Global Moran’s I spatial autocorrelation method to determine the value of the relationship
between a feature’s location and its attributes. We used the Getis-Ord Gi* spatial statistical method
to provide us with a set of weighted values and identify statistically significant hot spots and cold
spots on the ground. (Hot spots represent positions of statistically significant clustering of high
PM2.5 concentrations (p-value < 0.05) and cold spots represent positions of statistically significant
clustering of low PM2.5 concentrations (p-value < 0.05) [30]). Both Moran’s I and Getis-Ord Gi* have
been used in a variety of ways, such as for helping to predict urban development patterns, analyzing
pollution patterns, and examining traffic accident patterns [31,32]. We used the Moran’s I index to
first analyze the spatial autocorrelation of PM2.5. We then used the Getis-Ord Gi* index to identify
areas of aggregated PM2.5 (hot spots and cold spots). However, the Getis-Ord Gi* module demands
that optimal threshold distances (i.e., distances at which spatial processes that promote clustering
are most obvious) be supplied before it can analyze spatial data. Therefore, we used the incremental
spatial autocorrelation module to determine the optimal distance threshold for aggregated areas [33].
Measures of spatial autocorrelation for a range of distances and optimal distances establish a line
graph for those distances and their corresponding z-scores. Z-scores demonstrate the intensity of
spatial clustering. However, statistically significant peak z-scores reveal distances where the spatial
processes that promote clustering are most obvious. We used the incremental spatial autocorrelation
module to determine the optimal distance threshold by increasing the threshold distance from 500
to 7000 m at intervals of 500 m until it reached its maximum value (3500 m). Therefore, we defined
3500 m as the optimal distance threshold in our study.

2.5. Geographical Detector Model Description

The geographical detector is a statistical tool for detecting spatially stratified heterogeneity and
revealing the factors responsible for the heterogeneity [34]. In our study, we used a range of detectors
designed to assess ecological and anthropogenic factors associated with PM2.5 concentrations as
determined by spatial variance analysis (SVA). The fundamental idea of SVA is to measure the spatial
consistency of PM2.5 concentration distribution versus ecological factors (e.g., forest, soils, topography)
and anthropogenic factors (e.g., population density). The power of determinant (PD) of different
impact factors on PM2.5 concentration can be expressed using Equation (2):

PD = 1 − 1
N ∗ σ2

L

∑
i = 1

Ni ∗ σi
2. (2)

A detailed explanation of Equation (2) is as follows:

PD = q = 1 − ∑l
h = 1 ∑Nh

i = 1 (Yhi − Yh)
2

∑N
i = 1

(
Yi − Y

)2 = 1 − ∑l
h = 1 Nhσ2

h
Nσ2 =1 − SSW

SST
(3)

where the total sum of squares is

SST =
N

∑
i

(
Yi − Y

)2
= Nσ2 (4)

and the sum of squares within is

SSW =
l

∑
h = 1

Nh

∑
i
( Yhi − Yh)

2
=

l

∑
h = 1

Nhσ2
h (5)

321



Remote Sens. 2018, 10, 521

where PD is the power of determinant of impact factors on PM2.5 concentration; N is the number

of forest patches and is stratified into h = 1, . . . , 2, L strata; stratum h is composed of Nh units;
Yi and Yhi denote the value of unit i in the population and in stratum h, respectively; the stratum

mean is Yh = ( 1
Nh

)∑Nh
i = 1 Yhi; the stratum variance is σ2

h =
(

1
Nh

)
∑Nh

i (Yhi − Yh)
2; the population

mean is Y = ( 1
Nh

)∑N
i = 1 Yi; and the population variance of PM2.5 concentrations of the entire region

is σ2 =
(

1
Nh

)
∑Nh

i (Yi − Y)2. PD ∈ [0,1], where PD approaches 0, implies that the determinant
is completely unrelated to the PM2.5 concentrations. Where PD approaches 1, the determinant
completely controls PM2.5 concentration. PD has a corresponding p-value that can be used to evaluate
uncertainty [35]. For additional details, please see Supplementary Materials. Based on this idea,
we used geographical detector tools (factor detector and interaction detector) to detect various factors
that may influence PM2.5 concentrations, the degree of influence of each factor, and the interactions
between factors based on spatial analysis of variance [36]. The factor detector quantifies the impact of
ecological and anthropogenic factors on an observed spatial PM2.5 pattern. The interaction detector
probes whether two impact factors taken together enhance or weaken each other, or whether they
affect PM2.5 concentrations independently [37].

Enhance, nonlinear : PD(X1 ∩ X2 = X3) > PD(X1) + PD(X2), (6)

Independent : PD(X1 ∩ X2 = X3) = PD(X1) + PD(X2), (7)

Enhance, bi : PD(X1 ∩ X2 = X3) > Max(PD(X1), PD(X2), (8)

where X1, X2, and X3 represent the impact factors. PD(X1), PD(X2), and PD(X1 ∩ X2 = X3) are
the power of determinants of the impact factors on PM2.5 concentrations. Max(PD(X1), PD(X2))

represents the maximum value of PD(X1), PD(X2). So, the PD value of each impact factor and the
PD value of their interactions are used to quantitatively evaluate the relationships between potential
impacts and their determinants. The geographical detector models used in this study are freely
available from http://www.sssampling.org/Excel-geodetector/. According to the geographical
detector input rules, all independent variables should be discrete. Therefore, the rules in the
FMPI instruction manual and the natural breaks method were chosen as the classification method.
Multiple environmental factors and population density were applied as independent variables in the
geographical detector model. Specifically, PM2.5 concentration is the dependent variable. We used
geographical detector models to examine the individual and interactive effects of multiple ecological
and anthropogenic factors on urban forest PM2.5 concentrations.

3. Results

3.1. Spatial Distribution Pattern of Urban Forest PM2.5 Concentrations

The spatial distributions of PM2.5 concentrations on 13 and 29 December 2014 and 14 January 2015
showed significant spatial clustering (Global Moran’s I = 0.192, z-score = 63.412 on 13 December 2014;
Global Moran’s I = 0.336, z-score = 110.860 on 29 December 2014; Global Moran’s I = 0.185,
z-score = 95.761 on 14 January 2015) (Table 1). The aggregated areas (hot spots and cold spots) of
PM2.5 identified by Getis-Ord Gi* showed that PM2.5 hot spots were concentrated in urban centers and
suburbs (n = 1917 on 13 December 2014; n = 2283 on 29 December 2014; n = 1887 on 14 January 2015) and
cold spots were mainly distributed in the suburbs and exurban regions (n = 1082 on 13 December 2014;
n = 1212 on 29 December 2014; n = 1337 on 14 January 2015) (Figure 2).
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Table 1. The global spatial autocorrelation statistics (Moran’s I) of PM2.5 concentrations on 13 December
2014, 29 December 2014, and 14 January 2015.

Time 13 December 2014 29 December 2014 14 January 2015

Moran’s I Index 0.192 ** 0.336 ** 0.185 **
z-score 63.412 110.860 95.761
Pattern Clustered Clustered Clustered

Note: p < 0.001 in all regions in 2014 and 2015; ** represents significant values.

3.2. Population Density and Stand Structure

The human population density of Jinjiang was 1530 people km−2 and the density distribution
demonstrated a significant spatial autocorrelation (Moran’s I = 0.642, z-score = 269.293) in 2014
(Figure 3). The Getis-Ord Gi* statistics revealed that the spatial distributions of the population and
PM2.5 concentrations were similar in the northwest and on the central coast, but were different in the
south. According to the FMPI data, the total area of forest in the study region was 9565.68 ha, average
canopy density was 0.393, and average tree age was 20.123 ± 5.857 years. The dominant tree species in
the urban forests were Casuarina pusilla, Acacia crassicapa, Eucalyptus robusta Smith, Acacia confusa Merr,
Cunninghamia lanceolate, and Pinus massoniana.

Figure 3. The spatial distribution of population density in 2014 (mapped using kernel density in Arc
GIS 10.3).
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3.3. Influences of Anthropogenic and Ecological Factors on Urban Forest PM2.5 Concentrations

We compared the locations of PM2.5 hot and cold spots on three dates. Our results showed
that elevation (a topographic factor), dominant tree species (a forest characteristic factor), and wind
speed (a meteorological factor) were the main factors related to urban forest PM2.5 concentrations.
These three factors influenced the model more than population density (Figure 4, Table 2). In addition,
the interaction between elevation and dominant tree species showed enhancement as did the interaction
between elevation and impervious surface percentage. Dominant tree species and population density
showed enhancement as did dominant tree species and impervious surface percentage. The influence
of ecological factors on the model differed among the three dates. For example, on 13 December 2014,
the main influential factors were dominant tree species (PD = 0.044), wind speed (PD = 0.038), and
elevation (PD = 0.030). On 29 December 2014, the main influential factors were elevation (PD = 0.108),
wind speed (PD = 0.107), and dominant tree species (PD = 0.103). On 14 January 2015, the main
influential factors were elevation (PD = 0.077), dominant tree species (PD = 0.075), and forest patch
area (PD = 0.063). Compared with the independent effect of population density, the interactive
effect was significant. Although the independent effect of population density was weak, we cannot
simply assume that population density was not crucial. Spatial heterogeneity is complex in urban
environments and human activities have a significant impact on urban ecosystems. The interactive
effect could be more than the sum of the independent effects of any two factors. For example, the
interactive effect of dominant tree species and population density (0.154) is greater than the sum of the
individual effects of dominant tree species and population density (0.071). With the acceleration of
urbanization, the interactive effects of population density, impervious surface percentage, and other
factors could result in increased air pollution (Figure 5). The datasets in this study were limited by
the availability of remote sensing image archives and the cloud-prone climate in southern China,
which allowed us to select only three qualified scenes (i.e., 13 December 2014, 29 December 2014, and
14 January 2015) under relatively clear and stable atmospheric conditions.

Table 2. The power of determinant (PD) of forest attributes, soil, topography, meteorological factors,
and population on PM2.5 concentrations on three different days.

Factors Factor Composition 13 December 2014 29 December 2014 14 January 2015

Forest Characteristics

PA 0.013 0.063 0.063
DS 0.044 0.109 0.078
CD 0.016 0.019 0.009
SA 0.004 0.010 0.008

Soil
SI 0.005 0.011 0.006
SD 0.001 0.017 0.019
HD 0.001 0.001 0.001

Topography

ELE 0.030 0.117 0.086
SDe 0.029 0.077 0.058
SPo 0.018 0.061 0.050
SDi 0.011 0.018 0.020

Human Activity PopD 0.029 0.042 0.029
ISP 0.024 0.044 0.035

Meteorological factors

TEM 0.012 0.100 0.057
SH 0.028 0.107 0.057
PS 0.038 0.093 0.049
WS 0.038 0.107 0.057
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Figure 4. The power of determinants of different impact factors (forest, soils, topography,
meteorological factors, and population) on PM2.5 concentrations in Jinjiang. (PA = patch area,
DS = dominant species, CD = canopy density, SA = stand age, SI = site index, SD = soil depth,
HD = humus depth, ELE = elevation, SDe = degree of slope, SPo = slope of position, SDi = slope aspect,
PopD = population density, ISP = impervious surface percentage, TEM = temperature, SH = specific
humidity, PS = pressure, WS = wind speed), p-values < 0.1 for all factors.

Figure 5. Scores for the interactive effects of impact factors sensitivity rankings at the three
periods studied calculated based on simulations using multisource data ((A) 13 December 2014;
(B) 29 December 2014; (C) 14 January 2015).

4. Discussion

4.1. Significance

Integration of Landsat images and multisource data using spatial statistical analysis and a
geographical detector model can reveal the individual and interactive influences of anthropogenic
and ecological factors on PM2.5 concentrations. The results of this study emphasize the importance
of human activities and ecological factors in determining PM2.5 concentrations and the different
strengths of these factors. Our study provides a more comprehensive analysis of human and ecological
influencing factors through the use of remote sensing data, statistical analysis, and monitoring data at
an urban scale.

326



Remote Sens. 2018, 10, 521

4.2. Individual Functions

The ecological factors of elevation, dominant tree species, and meteorological factors significantly
influenced particulate concentrations in urban areas. Many studies have shown that, at small spatial
scales, elevation affects particulate concentrations by influencing air flow, pressure, temperature,
and precipitation [38,39]. There are several possible explanations for this finding: (1) Particulates are
more buoyant in the air at low elevation (over time, PM2.5 at high elevations will sink down to low
elevations, adding to the concentration of PM2.5 at the lower elevation); (2) Each 100 m increase in
elevation coincides with a 0.6 ◦C drop in temperature, which affects particulate concentrations [40].
At higher elevations, the ground absorbs more radiation from the sun, which warms air near the ground
and causes it to rise, creating convection currents in the upper atmosphere. This meteorological process
encourages the proliferation of atmospheric pollutants (including particulates); (3) As atmospheric
pressure decreases with increasing elevation [41,42], air volume expands and the atmosphere becomes
less stable, thus leading to a widespread diffusion of air pollutants.

Tree species composition significantly affected particulate concentrations, presumably because
the dust-removing ability of plants differs significantly by species [43,44]. The variations in particulate
retention among tree species in this study were consistent with those found by Liu [12] and
Yang [45] and may be explained by variations in morphological characteristics that enable plants
to trap particulates (e.g., canopy structure, leaf density, leaf surface roughness, and wax) [16].
The three-dimensional structure of tree canopies encourages turbulent air movement and the
more complex the canopy structure, the more particulates are deposited onto leaf surfaces [46].
Conifers retain more particulates than broadleaf trees because of their smaller, more densely packed
leaves and more complex stem arrangements [47]. Rough leaf surfaces are also more effective than
smooth leaf surfaces in accumulating particulates [48].

Wind speed is also an important factor affecting the diffusion of PM2.5 concentrations.
In general, higher wind speeds contribute to PM2.5 diffusion. Under zero wind speed conditions,
PM2.5 particulates aggregated at the surface layer [49].

4.3. Interactive Functions

Our study found that human activities significantly enhanced the effects of ecological factors on
PM2.5 concentrations. This suggests that human activities might be the dominant factor affecting PM2.5

concentrations in Jinjiang, China, which is consistent with previous research [50]. Of the anthropogenic
factors, we found that population density was most responsible for enhancing the effects of elevation
and dominant tree species on PM2.5 concentrations. The increase in population density caused by
increased residential areas and increased impervious surface percentage could significantly increase the
PM2.5 concentrations in central urban areas [51]. Populations and industries tend to settle and build at
low elevations. The resulting heavy human and industrial activity could therefore significantly increase
PM2.5 concentrations in central urban areas [52]. The interactive effects between impervious surface
percentage and other factors were similar to those just described for population density. These findings
show that the combined influences of anthropogenic activities and multiple ecological factors on PM2.5

concentrations should be considered when developing pollution monitoring and control strategies in
Jinjiang, China. Previous studies used multivariate statistics to study the individual impacts of multiple
ecological factors (such as tree species composition, NDVI, etc.) on PM2.5 concentrations [53,54].
However, these studies ignored the interactions of these factors. Furthermore, multivariate statistical
analyses have not considered the spatial heterogeneity of PM2.5 concentrations and have only focused
on nonspatial features and attributes. Thus, we used geographical detector models to examine the
individual and interactive influences of anthropogenic and ecological factors. This approach assesses
the multiple ecological and anthropogenic factors associated with PM2.5 concentrations by means of
spatial variance analysis (SVA).
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4.4. Limitations and Advantages of the Study

There are several limitations of the present study. First, the correlation between AOD and
particulates was complex. We found that it varied at different temporal and spatial scales. In the
future, we need to improve our understanding of the chemical properties of AOD and particulates to
improve the model’s accuracy. Second, because the urban ecosystem is complex and factors that affect
pollution in cities differ spatially, we need to identify functional areas (e.g., clean areas, traffic areas,
industrial areas) and study the different dust-retention mechanisms within them. Third, because of
data limitations, the anthropogenic factors included only population density and impervious surface
percentage, which cannot comprehensively express the characteristics of human activities. Fourth,
future research should focus on integrating longer time series of remote sensing images to more
accurately delineate the interactions between multiple ecological factors and their effects on urban
forest PM2.5 concentrations, while also using remote sensing data fusion methods to achieve high
temporal and spatial resolution simultaneously at the city scale. Finally, the process of comparing
quantitative impact factors with qualitative impact factors is subjective, because arbitrary methods of
discretization (e.g., standard deviation, equal interval, Jenks, and quantile) may not characterize the
actual associations between impact factors and PM2.5 concentrations [55–57].

Despite these limitations, this study has several advantages. First, we integrated detailed
datasets (including FMPI, Landsat-8 images, population density distribution data, topographic data,
and meteorological data). Second, we analyzed the spatial distribution of PM2.5 concentrations and
described their spatial heterogeneity. Finally, we revealed the individual and interactive influences of
anthropogenic and ecological factors on PM2.5 concentrations, which improves our understanding of
PM2.5 pollution distribution patterns in Jinjiang, China.

5. Conclusions

At present, most studies of PM2.5 concentrations are conducted at large spatial scales, have a
broad research scope, and use remote sensing images with coarse image resolution. Here, we focus
on urban ecosystems, using a case study to create a methodology for quantifying the interactions
between human activities and multiple ecological factors at an urban scale. Our method reveals
the individual and interactive influences of these factors on PM2.5 concentrations by integrating
field surveys with satellite-derived PM2.5 data and population density data. We used a spatial
statistical analysis model to identify aggregated areas (hot spots and cold spots) of particulates in
an urban environment. A geographic detector model was used to quantify the impact of ecological
and anthropogenic factors on observed spatial PM2.5 patterns and to probe whether two impact
factors enhance, weaken, or remain independent of each other when considering their combined
impacts on PM2.5 concentrations. FMPI can provide vegetation attribute information (e.g., forest, soil,
topography, and other attribute information) and model input parameters. Spatial statistics describe
the spatial heterogeneity of particulate concentrations. We found that fine particulate concentration
hot spots are mainly distributed in urban centers and suburbs, while cold spots are mainly distributed
in the suburbs and exurban regions. Elevation was the dominant individual factor affecting PM2.5

concentrations, followed by dominant tree species and meteorological factors. In terms of interactive
effects, the combination of human activities (e.g., population density, impervious surface percentage)
and multiple ecological factors led to the largest increases in PM2.5 concentrations in our study area.
In conclusion, in order to reveal the direct and indirect effects of human activities and multiple factors
on PM2.5 concentrations in urban forests, quantification of fusion satellite data and spatial statistical
methods should be conducted in urban areas. These findings extend our understanding of the factors
influencing the spatial distribution of PM2.5 concentrations and may help guide efforts to manage air
pollution, monitor pollution, and estimate pollution exposure.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/4/521/s1,
This section describes in detail the calculation of PM2.5 concentrations and Geographical detector model.
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Abstract: Land surface shortwave broadband albedo is a key parameter in general circulation
models and surface energy budget models. Multispectral satellite data are typically used to generate
broadband albedo products in a three-step process: atmospheric correction, for converting the
top-of-atmosphere observations to surface directional reflectance; angular modeling, for converting
the surface directional reflectance to spectral albedo of each individual band; and finally,
narrowband-to-broadband conversion, for transforming the spectral albedos to broadband albedos.
Spectroradiometers can be used for validating surface directional reflectance products and
pyranometers or broadband albedometers, for validating broadband albedo products, but spectral
albedo products are rarely validated using ground measurements. In this study, we designed a new
type of albedometer that can measure spectral albedos. It consists of multiple interference filters
and a silicon detector, for measuring irradiance from 400–1100 nm. The linearity of the sensors is
99%, and the designed albedometer exhibits consistency up to 0.993, with a widely-used commercial
instrument. A field experiment for measuring spectral albedo of grassland using this new albedometer
was conducted in Yudaokou, China and the measurements are used for validating the MODerate
Resolution Imaging Spectroradiometer (MODIS) spectral albedos. The results show that the biases
of the MODIS spectral albedos of the first four bands are −0.0094, 0.0065, 0.0159, and −0.0001,
respectively. This new instrument provides an effective technique for validating spectral albedos
of any satellite sensor in this spectral range, which is critical for improving satellite broadband
albedo products.

Keywords: spectral; albedometer; interference filter; photoelectric detector; validation

1. Introduction

The land surface albedo is a key input parameter required in current general circulation
models. It is relevant to radiation balance, atmospheric dynamics, and climate characteristics [1].
Accurate surface albedo estimates are a prerequisite for the accurate retrieval of other surface
parameters [2–4]; an absolute accuracy of 0.02–0.05 is required for any effective climate modeling
study [1]. Satellite remote sensing is the only feasible means to obtain reliable and accurate estimates
of the global surface albedo [5,6]. An array of remote sensing surface albedo products exists [7–11];
the precise validation of these products is important because their accuracy is critical to the scientific
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community for various applications. Any feedback from the process of validation can also help
improve the design, implementation, and very generation of these products [12].

The basic validation of remote sensing albedo products is primarily centered on the broadband
products, which are compared directly against field measurements, using a combination of
pyranometers or albedometers [2,13,14]. Consider the MODerate Resolution Imaging Spectroradiometer
(MODIS) albedo product (MCD43) as an example—it includes three visible bands (460, 555, and 659 nm),
four near-infrared bands (865, 1240, 1640, and 2130 nm), and three broadband albedos (visible,
near-infrared, and shortwave). The broadband albedo products are linear combinations of the spectral
albedos [15–17]. Most MODIS albedo product validation work involves comparing the three broadband
albedos with field measurements, using broadband pyranometers and albedometers, but the spectral
albedos are seldom validated. The band integration and band inconsistencies also create erroneous
disparities between the remote sensing albedo products and field instruments, which are generally not
taken into consideration, though they inevitably result in errors in the accuracy assessment.

In fact, in addition to broadband albedo products, spectral albedo products are also important for
land energy budget research. There are many advantages to spectral albedo products, compared to
broadband albedo products—they represent a more fine-tuned understanding of the land surface,
for example, and they include more spectral information [18]. When they are retrieved directly
from spectral observations, using a Bidirectional Reflectance Distribution Function (BRDF) model,
the retrieval model can be accurately assessed by evaluating the spectral albedo product accuracy.
Spectral albedos are also critical for the retrieval of other land surface parameters. Cheng and Liang [19]
used the MODIS spectral albedo product to estimate thermal-infrared emissivity, where the accuracy
of the spectral albedo is critical to the final estimation. Picard, Libois [18] also used spectral albedo
measurements to accurately estimate a near-surface snow specific surface area.

However, the scarcity (or absence) of spectral albedometers means that spectral albedo products
have not yet been effectively validated. In recent years, researchers have sought various methods
to remedy this. Wuttke, Seckmeyer [20] used a scanning spectroradiometer with a shaped Teflon
diffuser to conduct spectral albedo measurements, in order to describe Antarctic radiation conditions.
Wright, Bergin [21] compared independent MODIS spectral to high resolution spectral measurements
in Greenland with an Analytical Spectral Device (ASD) Fieldspec Pro spectroradiometer, using ASD
Remote Cosine Receptor (RCR) foreoptics. Similar measurements were gathered in Antarctica [22–24].
The use of spectroradiometers with the Cosine Receptor allows scientists to obtain accurate narrow
band albedos; however, this is time- and labor-consuming and does not yield the time series
observations which are vital for long-term climate change research. Spectrometers can also be used to
measure spectral albedo, by integration over the BRF. They may even more accurate than measuring
with albedometers, but apply only to smaller areas.

To this effect, there is urgent demand for a new instrument, which can directly observe spectral
albedo in supplying time series observations. Our goal in conducting the present study was to design
and validate the performance of a set of automatic spectral albedometers. In the pursuit of this
goal, we also established a novel method to directly obtain spectral albedo time series measurements.
We used a customized interference filter and silicon detector to realize the spectral albedo detection of
MODIS’s visible bands (460, 555, and 659 nm) and near-infrared band (865 nm). The system design and
materials used are introduced in Section 2, and the experiments performed indoors and on a grassland
site in Yudaokou, China, are discussed in Section 3. Section 4 reports our results, and Section 5 provides
concluding remarks.

2. Spectral Albedometer Design

2.1. Theoretical Foundation

The broadband land surface albedo is the ratio of the amount of radiation traveling upwards
and downwards from the Earth’s surface [1]. It serves as an indicator of the energy capacity for
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surface reflection over the entire shortwave spectral range. In contrast, the spectral albedo depicts
the capacity for reflection of the land surface over a smaller, specific spectral range [25]. To obtain the
latter, it is necessary to measure the upward and downward irradiance over the desired spectral range.
According to the definition of the surface albedo, the spectral albedo is obtained by Equation (1)

ρλ =
I↑λ

I↓λ
(1)

where λ is a typical spectra, from wavelength λ1 to λ1; I↓λ and I↑λ are the hemispherical incidence and
exitance in the λ band, which are functions of radiation energy and the spectral response of the sensors.

Iλ =
∫ λ2

λ1

fi × Iidλi (2)

where Iλ is the incident irradiance of the sensor and fi is the spectral response function. We designed a
MODIS-corresponding spectral albedometer in this study, so is the spectral response function of the
MODIS bands.

2.2. Spectral Albedometer Design

Two sensors were included in each spectral albedometer: one upwards and one downwards.
The upwards sensor was used to measure downwelling radiation (I↓λ in Equation (1)), and the
downwards sensor was used to measure the upwelling radiation (I↑λ in Equation (1)). The spectral
albedometer structure is shown in Figure 1. The spectral albedometer for each band consists of a shell,
mounting stem, two domes, and two sensors.

 

Figure 1. Spectral albedometer structure. For each band, upwards and downwards sensors are
mounted back-to-back, to receive downwards and upwards radiation, respectively.

The upwards and downwards sensors are the same for each albedometer; each is composed of a
cosine corrector, filter, photoelectric detector, and signal output port (Figure 2).

335



Remote Sens. 2018, 10, 101

Fixed device

Output cable  

Figure 2. Sensor design. The first layer is a Teflon TM diffuser, the second is an interference filter,
the third is a silicon photoelectric detector. Two sensors are included in each band’s albedometer:
one for I↓ and one for I↑.

2.2.1. Dome and Cosine Corrector

A customized quartz glass dome was designed, according to the sensor’s size and installed,
to protect the probe against intrusions from the external environment. The dome was fixed to the
up and down surfaces of the sensor with O-rings to ensure it was waterproof and easy to replace.
The dome mainly serves to isolate the radiometer from long wave radiation [26]. Here, all sensors
take into account only the MODIS bands with wavelengths <1100 nm, so the glass cover in our design
mainly protects the sensor [20].

The accuracy of the radiation detection sensor is affected by many factors, including the incidence
angle, equipment temperature, equipment installation inclination, proportion of direct light, and degree
of linearity in the sensor’s response [27]. We used polytetrafluoroethylene (TeflonTM) as a cosine
corrector, to minimize the effects of incidence angle on observation accuracy. Its optical properties
remain constant over a wide range of wavelengths, from UV up to near-infrared, and it is widely
used for radiation sensor cosine correction [28–30]. Light transmitted through the diffuser radiates,
according to Lambert’s cosine law. The cosine corrector, which has a thickness of 5 mm and diameter
of 14 mm, was manufactured at the photoelectric instrument factory of Beijing Normal University.
The designed thickness was tested to ensure it had the optimal cosine response [30].

2.2.2. Interference Filter

We used an interference filter, customized to the MODIS band spectral response function,
to guarantee the consistency in the detected wavelength range. This allowed us to obtain the upwards
and downwards incident radiation in the same range as the MODIS band, and thus obtain the spectral
albedo using Equation (1). The interference filter is a high-precision band-pass filter, commonly
included in optical sensors [31,32]. It is possible to obtain the maximum transmittance of light in
the required spectral bands by using the interference effect of dielectric and metallic multi-layers,
while light beyond the band range is totally blocked. We used the first four bands of MODIS as
an example and designed the interference filter according to the MODIS band by setting the filter
transmittance to be identical to the MODIS spectral response function value. The central wavelength
and full width at half maximum (FWHM) of the first four MODIS bands is provided in Table 1.

Table 1. Band information of first four MODerate Resolution Imaging Spectroradiometer (MODIS) bands.

Band 1 Band 2 Band 3 Band 4

Central wavelength (nm) 645 858.5 469 555
Full width at half maximum (FWHM) (nm) 50 35 20 20
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2.2.3. Silicon Photoelectric Detector

Incident light passing through the interference filters was detected with a silicon photoelectric
detector, installed directly behind the filter, which was then converted into a current signal
that was proportional to the incident irradiance (W/m2). The silicon photoelectric detector has
high sensitivity, a wide spectral response, and strong stability; it is widely used in optical
instrumentation [27,33]. The 2DU10 photoelectric detector was purchased from Shenzhen Jeking
Micro Electronic Technology Co., Ltd., (Shenzhen, China) and has a very large sensitivity area of
100 mm2 and a high photo-responsivity of 0.55 A/W; its operating temperature range is also very
wide, from −20 to +60 ◦C, and it can measure radiation in a wavelength range from 320 to 1100 nm.
The proposed spectral albedometer design is shown in Figure 3.

The output signal of the photoelectric detector is a current, which is directly proportional to the
incident radiance determined by the sensitivity area and photo responsivity. Thus, for a downward
radiance of 1000 W/m2, the output current is:

I0 = 1000 W/m2 × 100 mm2 × 0.55 A/W = 0.055 A (3)

We used a two-stage amplifying circuit to preserve the accuracy of the output signal. The output
current was first amplified with a high precision amplifier (ICL7650SCPDZ) manufactured by Intersil
Americas incorporated company (Milpitas, CA, USA). A 1.5 KΩ resistor was connected to the
ICL7650SCPDZ amplifier to reduce the DC error, and a 1000 pf capacitor was connected parallel to the
resistor as a filter condenser to stabilize the signal. The second-stage amplifier is a wide bandwidth
single Junction Field-effect Transistor (JFET) operational amplifier (LF351) manufactured by Fairchild
Semiconductor Corporation (Phoenix, AZ, USA), which we connected in its typical configuration.
We used an isolation transmitter (ISO-U8-P3-O4) purchased from Anfu century electronics limited
company (Shenzhen, China) to detect the sensor’s signal transceiver and collected the output with a
data logger. For ease of operation, we installed the amplifying circuit alongside the data logger and
data transfer system with a single power supply. The amplifying circuit in this design is operational,
but not unique. The data, as-collected, were transferred back to a local computer, via the General
Packet Radio Service (GPRS) network.

 

Figure 3. Developed spectral albedometer for one band.

3. Results

3.1. Interference Filter Transmittance

To ensure that the radiation obtained by the sensor is comparable to that measured by the MODIS
sensor, the interference filters must have transmittance equal to the MODIS band spectral response
function value. Filter transmittance characterization was carried out at the State Key Laboratory of
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Remote Sensing Science, Beijing Normal University. The field spectroradiometer SVC-HR1024 came
from the Spectra Vista Corporation (New York, NY, USA) and the LI-COR1800 integrating sphere
came from LI-COR (Lincoln, NE, USA). The spectral resolution of SVC-HR1024 exceeds 3.5 nm in the
300–1000 nm range, which can satisfactorily describe the spectral variation characteristics of surface
features. The integrating sphere was equipped with a standard halogen lamp. To measure the filter
transmittance, first, source light was injected directly into the integrating sphere and measured. Next,
the filter was carefully placed onto a sample stage in the integrating sphere using clean tweezers and
light was shined into the integrating sphere through the filter. We then measured the intensity of the
transmitted light and calculated the filter transmittance, according to Equation (4):

Tλ =
Itλ
Iλ

(4)

where T is the filter transmittance; I and It are the direct light intensity and light intensity through the
filter, respectively (i.e., the digital number values in the experiment), and λ is the band wavelength.

The band consistency of the proposed albedometer with the MODIS sensors is the premise
of the direct validation of the spectral albedo product. Figure 4 shows a comparison of the filter
transmittance and MODIS band response function value for each band. As shown in Figure 4,
the customized interference filter transmittance has close consistency with the MODIS band response
function. Table 2 shows the key indicators of center wavelength and FWHM of the customized
interference. In comparison to the values shown in Table 1, the customized interference filter has
the same center wavelength of each band as the MODIS band, and the FWHMs are nearly the same;
deviations range from 1–5 nm, which is about 5.0–10.0% of the FWHM.
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Figure 4. Customized interference filter transmittance versus MODIS band response functions. The top
figure of each column is the transmittance of the customized interference filter; the bottom figure is the
spectral response function of the MODIS band.

Table 2. Characteristics of the customized interference filter.

Band 1 Band 2 Band 3 Band 4

Central wavelength (nm) 645 858.5 469 555
FWHM (nm) 45 38 22 21

3.2. Calibration

Theoretically, it is only necessary to ensure the consistency of the upwards and downwards
sensors to obtain an accurate albedo measurement. That is, it is only necessary to make relative
radiometric calibrations of the sensor. In this study, we carried out absolute calibrations of the sensor,
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in order to verify the spectral net radiation measurement at the same time: (1) we ensured the upward
and downward sensors were consistent with each other; and (2) we obtained the absolute radiation and
net radiation corresponding to each band. The sensors were subjected to absolute radiation calibration
at the photoelectric instrument factory in Beijing Normal University, where the light source system
and standard radiometer used for calibration were a standard source transferred from the National
Institute of Metrology (NIM).

A standard radiometer is often used as a reference for general broadband radiometer calibration.
First, we put the standard radiometer under standard light and read the standard radiometer value (E0),
then we removed the standard radiometer and put the detector to be calibrated at the same position.
The distance between the detector and the standard light source was kept identical to the standard
radiometer and light source. We recorded the current readings (I1) of the detector sensor to be
calibrated, then turned the downward detector upwards and recorded the current readings (I2) of
the other side of the detector sensor to be calibrated with the same method. We changed the light
intensity several times and obtained the corresponding readings of the standard radiometer and the
to-be-calibrated sensors (E0i, I1i, I2i). We obtained the calibration coefficients of both sensors by
respectively fitting E0i, I1i and E0i, I2i.

A large disparity emerged in the band response range between the standard radiometer and the
spectral albedometer when calibrating the spectral albedometer, so we used a spectral radiometer to
calibrate the spectral albedometer instead of a broadband standard radiometer. The RAYSPHERE
spectrum radiation meter (American Ocean Optics Company, Dunedin, FL, USA) can measure
350–1100 nm spectral irradiance with 1.9 nm spectral resolution. The total irradiance of a given
band can be calculated using Equation (2), according to the band response functions of the sensors to
be calibrated. The correction coefficient of the upwards and downwards sensors were obtained via
the same stepwise process as the broadband sensor calibration. The calibration results are shown in
Figure 5.

 

Figure 5. Spectral albedometer calibration. (a) Incident light is first measured by the spectral
albedometer and the radiation of each band is integrated; (b) Incident light is then measured by
the spectral albedometer sensor. The upward and downward sensors are calibrated independently.

The linearity of a given sensor is a key specification of the instrument. We calibrated a total of
80 sensors to quantify the linearity of the selected sensors with five different light intensities: 0, 250,
500, 750, and 1000 W/m2 for the broadband range (300–1100 nm). The spectral light intensities of each
band were measured with the RAYSPHERE spectrum radiation meter, described above, and integrated
using Equation (2). The worst-fitting line of the sensor, corresponding to MODIS band 1, is shown in
Figure 6.

The sensor’s reading had a very close linear correlation with the incoming light intensity.
The coefficient of determination (R2) was calculated to be 0.9996, which indicates that the linearity of
the sensor is very good. We used the non-linear error (Equation (5)) to quantify the linearity of all
the sensors:

δ =
Δmax

I2 − I1
(5)
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where δ is the nonlinearity of the sensor (non-dimensional), Δmax is the maximum deviation between
the actual response curve and the fitting line, and I1 and I2 are the maximum and minimum response
values, respectively.
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Figure 6. Calibration result of the worst-fitting sensor in the total of 80 calibrated sensors,
with coefficient of determination of 0.9996.

Again, we calibrated 80 sensors in total. Figure 7 shows a nonlinearity histogram of the sensor
calibration results, where more than 40% of the sensors are absolutely linear and 78% of the sensors
have a linearity better than 99.9% (non-linear error less than 0.001). All of the sensors have linearity
exceeding 99%, which fully satisfies the detection requirements.
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Figure 7. Non-linear error histogram of 80 calibrated sensors. More than 40% of the sensors are
absolutely linear, with a non-linear error of 0; all sensors’ non-linear error is below 0.01.

Figure 8 shows the coefficients of determination of the linear fitting of the calibration results,
which exceed 0.999 for all of the sensors we tested.
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Figure 8. Coefficients of determination of linear fitting results.
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3.3. Comparison with Commercial Instrument

The designed albedometer was then compared with the widely-used commercial instrument
CNR4 net radiometer from Kipp & Zonen, Delft, The Netherlands [34]. The CNR4 net radiometer
consists of two pyranometers for measuring downward and upward solar shortwave radiation,
and two pyrgeometers for measuring upward and downward thermal longwave radiation.
The designed albedometer was mounted alongside the CNR4 radiometer at the same height.
Downward radiation was collected from 6:00 hr to 16:00 hr on 19 June 2014. Figure 9 shows
a comparison of band radiation against the CNR4 pyranometers’ measurements. The spectral
albedometer measurement has close consistency with the CNR4 measurement, with coefficients
of determination of 0.9966 for the 465 nm sensor, 0.9979 for the 550 nm sensor, 0.9984 for the 650 nm
sensor, and 0.993 for the 860 nm sensor, respectively.
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Figure 9. Spectral albedometer compared with CNR4 radiometer.

3.4. MODIS Spectral Albedo Product Validation

After the spectral albedometers were absolutely calibrated, we conducted a series of field
experiments in Yudaokou, Hebei, China (42.24◦N, 117.07◦E). The land cover type at the study area is
entirely grassland. Spectral albedometers were set up atop a 20-m tower and covered an area of about
150 × 150 m (Figure 10). The surface is uniform, so we took the tower observations as the true ground
measurement values of a MODIS 500 × 500 m image element, to directly validate the MODIS spectral
albedo products.

 

Figure 10. Field observation of the designed spectral albedometer. The left side shows the tower
location from Google Earth on 30 April 2013. The site is homogeneous grassland, except for a road
passing through the area. The right figure is the 20-m tower. The designed spectral albedometers are
mounted atop the tower.
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Field measurements were performed from October 2014, to May 2015. The continuous upwards
and downwards spectral radiation intensities of the grassland were recorded and the spectral
albedo was calculated with Equation (1) for each band. The standard 500-m gridded MODIS V006
BRDF/albedo product (MCD43A3) was then validated using the field observations. Black sky albedo
and white sky albedo were generated by integrating the BRDF calculated from the three retrieved
parameters [3,7,35,36]. Blue sky albedo, which encompasses both diffuse and direct radiation, was
calculated, as follows [37]:

ablue−sky(θi) = SKYL(θi)× awhite−sky + (1 − SKYL(θi))× ablack−sky(θi) (6)

where SKYL is the proportion of diffuse irradiation at a certain solar zenith angle, θi [35]. The optical
depth of the study area was extracted from the MODIS aerosol product (MOD08) [38], and SKYL was
calculated with the Look Up Table (LUT), according to Remer, Tanre [39], with the optical depth of the
area at 0.55 micron from MOD08 and the solar zenith angle calculated based on the site location and
observation time.

The spectral albedo time series was directly compared against the MODIS spectral band albedo
products, to validate the remote sensing spectral albedo products. Considering the homogeneity of
the landscape, the field observations were compared directly with the 500 m MODIS albedo product
(MCD43A3).

Figure 11 shows the direct validation of the MODIS spectral albedo product with the spectral
albedometer measurements. The MODIS albedo product is a combination of a 16-day observation,
with weight as a function of the quality; the observation coverage and temporal distance from the
day of interest represents the daily value at noon [36]. The spectral albedometer measurements,
from 11:45 hr to 12:15 hr of each day were averaged to generate the daily noon value.

Figure 11 shows where the MODIS spectral albedo was in close accordance with our field
observations during snow-free periods; the MODIS product is highly continuous and stable.
During snowy periods, there is some missing data in the MODIS product, due to retrieval failure
(Figure 11), i.e., a failure to capture snow events, such as on day of year (DOY) 92, 2015. There were
also some missing data in the field observations in late 2014, due to a low battery in the data transfer
system. The statistical results of the direct comparison of the MODIS spectral albedo and spectral
albedometer measurements during snow-free periods are listed in Table 3.
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Table 3. Statistical results of direct comparison of MODIS spectral albedo and spectral
albedometer measurements.

RMSE BIAS

Band 1 0.019 −0.0094
band 2 0.0368 0.0065
band 3 0.0317 0.0159
band 4 0.0244 −0.0001

Table 3 shows where the accuracy of the MODIS spectral albedo products at our experimental
site is relatively high. Compared to the field measurements, the root mean square errors (RMSE)
of the four bands are 0.019, 0.0368, 0.0317, and 0.0244 and the biases are −0.0094, 0.0065, 0.0159,
and −0.0001, respectively.

4. Discussion

Calleja, Recondo [40] found that inaccuracy in the MODIS albedo product is partly due to narrow
to broadband conversion. Thus, assessing the remote sensing spectral albedo product is the best
way to verify the retrieval algorithm. The designed spectral albedometer provides a novel approach
for obtaining field time series observations, which are critical for remote sensing spectral albedo
product validation.

4.1. Errors Induced by the Spectral Albedometer Design

There are some error sources in the spectral albedometer design discussed here. The first is a
discrepancy between the customized interference transmittance and the MODIS spectral response
function. The deviations in FWHM range from 1–5 nm, which induce about 5.0–10.0% of the
observation error. The MODIS spectral response also has a considerably different ‘top’ than the
customized filter shown in Figure 4, which means that the weighted spectral average of the ground
hyperspectral image could conceivably be different between the two systems and thus introduce error.
Though accurate calibration can reduce some error, it is impossible to remove all of it.

The second source of error may have been induced by albedometer body temperature.
The silicon photoelectric detector is temperature-dependent [41]: the output increases as the device’s
temperature goes up. The general means of accurate observation is temperature control [30]. In our
design, the upward and downward radiation is divided, to yield a spectral albedo for each band.
The temperature dependence is reduced when the division is performed, so no temperature control
system needs to be added to the system.

4.2. Land Surface Homogeneity

Field observation was conducted at a Yudaokou grassland site and directly compared with the
remote sensing product, under the assumption that the land surface was sufficiently homogeneous.
In actuality, land surface homogeneity varies with time. We analyzed the land surface homogeniety
of the research area with a Landsat 8 OLI data-derived albedo [42], according to the literature [3,43],
during dormant and growing seasons. The fitted sill values were both less than 0.001 [44],
which indicates that the land surface is indeed homogeneous enough for direct comparison.

4.3. Capability of Simultaneous Multi-Parameter Observation

We designed and tested albetometers for four bands in this study. It is possible to obtain different
band combinations using different filters, such as visible band (400–700 nm) radiation detection.
By mounting one albedometer under canopy and one over canopy, the visible band albedo and
Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) can be simultaneously obtained,

344



Remote Sens. 2018, 10, 101

fairly easily. The multi-parameter combined observation has significant value in regards to its efficiency
and physically-consistent parameter estimations.

5. Conclusions

In this study, we designed a measuring system that allowed us to accurately obtain spectral
albedos corresponding to satellite sensors. Our design effectively avoids errors associated with
traditional broadband surface albedo product verification due to wavelength conversion and band
mismatch; it also mitigates the defects in spectroradiometer measurements, which are labor- and
time-consuming to gather and are difficult to use when conducting regional-scale time-series
observations. We conducted a series of experiments in the Yudaokou grasslands to demonstrate
that the proposed device can feasibly and effectively provide spectral albedo time series observations.
Other important characteristics of the proposed device can be summarized as follows.

• Strong linear response of the sensor: The sensor utilizes an interference filter equipped with
sophisticated technology to gather incident radiation measurements over specific wavelength
ranges. We used a highly sensitive photoelectric detector in our design which is simple and
reliable, with a >99% linear response that fully satisfies the requirements for precise albedo
detection, with an absolute accuracy of 0.02–0.05 [1].

• Flexibility in the sensor design: We ran a successful spectral albedo test using the MODIS band
set as an example. Our design can be easily extended to other satellite sensors and other bands.
A wide range of photodetectors can also be used for the direct measurement of broadband surface
albedos with multi-band combinations.

• Applicability to multi-point observation layouts: Compared to other currently available
radiometers, the materials necessary for our design are relatively inexpensive. To this effect,
our sensor can realize multi-point layouts in a given heterogeneous area to resolve issues with
single-point observations in representing remote sensing pixel values.

We designed our sensor to apply to spectral albedos over the 400–1000 nm range, but not the
broadband shortwave range (300–2800 nm), as the silicon-sensitive photoelectric detector cannot
detect incident light with wavelengths >1100 nm. The broadband albedo is significant in regards to
scientific use [6], so it is necessary to design additional spectral albedometers that can operate at ranges
between 1100 and 2800 nm. The thermopile detector is often applied to broadband radiation detection,
which may be useful in this regard [45,46]. We will focus on the design and performance of the spectral
albedometer design at wavelengths greater than 1100 nm, and will continue to carry out observation
experiments tailored to heterogeneous surfaces.
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Abstract: Spatiotemporally representative Elementary Sampling Units (ESUs) are required for
capturing the temporal variations in surface spatial heterogeneity through field measurements.
Since inaccessibility often coexists with heterogeneity, a cost-efficient sampling design is mandatory.
We proposed a sampling strategy to generate spatiotemporally representative and cost-efficient
ESUs based on the conditioned Latin hypercube sampling scheme. The proposed strategy was
constrained by multi-temporal Normalized Difference Vegetation Index (NDVI) imagery, and the
ESUs were limited within a sampling feasible region established based on accessibility criteria.
A novel criterion based on the Overlapping Area (OA) between the NDVI frequency distribution
histogram from the sampled ESUs and that from the entire study area was used to assess the
sampling efficiency. A case study in Wanglang National Nature Reserve in China showed that the
proposed strategy improves the spatiotemporally representativeness of sampling (mean annual
OA = 74.7%) compared to the single-temporally constrained (OA = 68.7%) and the random sampling
(OA = 63.1%) strategies. The introduction of the feasible region constraint significantly reduces in-situ
labour-intensive characterization necessities at expenses of about 9% loss in the spatiotemporal
representativeness of the sampling. Our study will support the validation activities in Wanglang
experimental site providing a benchmark for locating the nodes of automatic observation systems
(e.g., LAINet) which need a spatially distributed and temporally fixed sampling design.

Keywords: spatiotemporal representative; cost-efficient, sampling design; heterogeneity; validation

1. Introduction

Accurate spatiotemporal characterization of land surface heterogeneity [1–3] is essential for
remote sensing [4] and the land surface [5] modeling. The assumption of surface spatial homogeneity
within the Elementary Modeling Unit (EMU) (e.g., a pixel for a remote sensing image or a grid for
a land surface model) induces scaling errors [6,7]. This is especially the case for coarse spatial
resolution EMU and satellite land surface products with resolutions ranging from 500 m [8] to
5 km [9]. The magnitude of the scaling error is determined by the nonlinearity of the process to be
modeled and the surface heterogeneity within the EMU which is often ignored [10,11]. Quantifying the
sub-pixel/-grid heterogeneity is the prerequisite for the parameterization, calibration and validation
of the remote sensing and the land surface process models [1,12].

Spatiotemporal representative field measurements are required to reproduce the surface
heterogeneity within a coarse spatial resolution EMU and to support validation of satellite surface
products. However, labour-intensive field measurement collection is usually limited by budget and
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time constraints. In this sense, the design of efficient sampling strategies preserving the statistics of the
population [13–15] within an affordable cost is urgently needed.

The Land Product Validation (LPV of the Committee Earth Observing Satellites’ Working Group
on Calibration and Validation (CEOS WGCV) recommended a two-stage nested sampling framework
to account for the multi-scale nature of the heterogeneity [16]. Fine spatial resolution satellite imagery
(about 30 m) are used as a bridge to upscale field measurements to the EMU scale. One of the key points
in this framework is the introduction of Elementary Sampling Unit (ESUs) that has approximately the
same size as the fine resolution image pixel. Another key point in this framework is the establishment
of a transfer function to relate the field measurements over the ESUs with the fine resolution image
data. This transfer function can then be used to generate a fine resolution reference map which serves
as the benchmark to characterize the surface heterogeneity within the EMU’s coarse spatial resolution.
The two-stage nested sampling refers to the sampling of field measurements within the ESU and the
sampling of ESUs within the EMU [17]. At ESU scale, square, cross or transect sampling schemes
are recommended depending on the measuring instrument and the characteristics of the surface [17].
The sampling scheme at the EMU scale is still far from mature.

The most commonly used sampling strategies at the EMU scale can be categorized into random,
systematic, and stratified sampling [18]. Recent researches have increasingly relied on the stratified
sampling based on a priori information. Stratified sampling strategies firstly select auxiliary variables
which can be easily generated from remote sensing observations (vegetation indices, generally) to
represent the target variables (e.g., leaf area index, fractional vegetation cover and chlorophyll content),
then subdivide each auxiliary variable into several strata, and finally sample the plots randomly
within each stratum. Stratified sampling strategies are assumed to be capable of optimally capturing
the variability across the site extent [13,19–21]. The conditioned Latin hypercube (CLH) sampling
is among the most appealing stratified sampling strategies [22]. CLH was proposed in the context
of digital soil mapping, but has been used in many other fields because of its representativeness
and extensibility [22–24]. Recently, Zeng et al. [25] and Yin et al. [14] introduced this method to the
ESU sampling.

Existing researches on field sampling design generally focused on capturing the landscape spatial
heterogeneity by distributing the ESUs across the entire study area [16,18–21]. Two key issues, which
are the main scientific questions addressed in this paper, were often ignored in traditional ESU
sampling schemes: First, the spatial heterogeneity changes over time. Second, some parts of the study
area may be inaccessible because of the rugged terrain, lack of roads or barrier of river. Addressing the
temporal dynamics of the surface spatial [26,27] is key for the development of the near-surface
remote sensing technologies which can provide long-term measurements automatically [28–30].
Zeng et al. [25] employed multi-temporal vegetation index maps as a priori information to constrain
the sampling process and generate spatiotemporally representative ESUs. However, the accessibility
of the sampling plots was neglected in this scheme [25] which may be critical in traffic inconvenient
regions. In fact, the cost limitation in field campaign was already considered by few previous studies.
Yin et al. [14] incorporated a cost-objective function to traditional CLH to define a cost-efficient
sampling design. However, some inaccessible ESUs may remain in this sampling scheme, which
is based on a global minimization of the cost-objective function. In addition, the temporal
variation of the spatial heterogeneity was not considered. To summarize, the spatiotemporally
heterogeneity and cost limitation were separately accounted for by [14] and [25], respectively.
However, an integrated approach for defining an optimal sampling design capturing the land surface
spatiotemporally heterogeneity in a cost-efficient way is still urgently needed. This sampling design is
especially important for mountainous areas which are characterized both by extreme heterogeneity
and inaccessibility.

The Wanglang Integrated Observation and Experiment Station for Mountain Ecological Remote
Sensing was recently established in the Wanglang Nature Reserve, one of China’s first nature reserves
established to protect the giant panda in 1965. Temporally continuous field measurements of
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biophysical variables (including leaf area index, fractional vegetation cover, fraction of absorbed
photosynthetically active radiation) are planned to be implemented in 2018 to support the
parameterization, calibration and validation of the remote sensing and the land surface process
models. Establishing an optimized sampling design to generate spatiotemporally representative and
cost-efficient ESUs is the prerequisite for the planned measurements in Wanglang experimental site
and the main objective of this paper.

2. Study Site

The Wanglang Nature Reserve (Figure 1) is located in the Hengduan Mountains, a global
biodiversity hotspot. The reserve covers approximately 320 km2 with altitudes ranging between
2000 and 5000 m (Figure 1c). It receives 862.5 mm of rainfall annually, with the lowest mean air
temperature of −6.1 ◦C in January, and the highest at 12.7 ◦C in July [31]. The major vegetation types
include deciduous forest, conifer-deciduous mixed forest, and conifer forest. The transportation is
inconvenient with the roads built along rivers (Figure 1b). Most of the parts in the reserve are difficult
or even impossible to visit.

Based on the reserve, the Wanglang Integrated Observation and Experiment Station for Mountain
Ecological Remote Sensing was established in 2017. One of the scientific objective of this station is
to implement temporally continuous validation for existing remote sensing products. To complete
this objective, temporally continuous field measurements are planned to be implemented in 2018.
Wireless sensor network system, which needs the support of permanent ESUs [25], is an efficient
means to collect these temporally continuous field measurements [28,30].

 

Figure 1. (a) Map of China with the location of Wanglang experimental site. (b) A Landsat 8 Operational
Land Imager (OLI) image and (c) an elevation map of the study area. The roads and the feasible
accessible region are shown.

3. Materials and Methods

3.1. Auxiliary Satellite Imagery

We used Normalized Difference Vegetation Index (NDVI) [32] as the auxiliary variable to represent
the target biophysical properties. NDVI has been demonstrated to show a strong correlation with many
biophysical variables including leaf area index (LAI) [11,33], fraction of absorbed photosynthetically
active radiation (FAPAR) [34,35], and fraction of vegetation cover (FVC) [36,37]. In addition, the NDVI
reduces the sensitive to topographic effects due to its ratio formulation [38,39].

NDVI maps of the study area were here computed from Landsat top of canopy reflectance data in
the near infrared and red bands. Landsat data were downloaded from the United States Geological
Survey (USGS) EarthExplorer (https://earthexplorer.usgs.gov/) [40]. The Landsat reflectance data
were atmospherically corrected using the Second Simulation of the Satellite Signal in the Solar
Spectrum-Vector (6SV) model [41].
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To capture the seasonal variations of the vegetation, we collected five scenes of images spanning
nearly the whole growing season peak in our study area: Day of Year (DOY) 152, 197, 240, 261,
296. Because of the cloud contamination, no single year can provide cloud-free images covering the
whole growing season peak. The five selected scenes were from different years and sensors (Table 1).
This treatment neglected the inter-annual variation of vegetation and the difference in spectral response
function between Landsat 8/OLI and Landsat 5/TM.

Table 1. Overview of Landsat data (path: 130, row: 37) used in this study.

DOY Year Satellite/Sensor

152 2014 Landsat 8/OLI
197 2013 Landsat 8/OLI
240 2011 Landsat 5/TM
261 2007 Landsat 5/TM
296 2014 Landsat 8/OLI

3.2. Definition of the Sampling Feasible Region

The study area is characterized by inaccessibility because of the rugged terrain, lack of roads
and barrier of river. Therefore, we should consider the cost limitation when determining the spatial
distribution of the ESUs. Different from Silva et al. [24] and Yin et al. [14], who calculated the visiting
cost for each pixel and incorporated a cost-objective function to constrain the sampling process,
in this paper, we first established the feasible region for the ESU sampling within an affordable cost.
The establishment of feasible region avoid the generation of unaffordable ESUs located in inaccessible
regions, which is a potential problem of the methods of Silva et al. [24] and Yin et al. [14].

The feasible region (Figure 1) is defined according to two practical criteria:

I. The distance between the ESUs and the roads should be less than 1000 m.
II. The ESUs and the roads should be on the same side of the rivers.

The criterion I considers the influence of the rugged terrain and lack of roads. Note that the
distance threshold of 1000 m was set according to expert experiences, and it directly influence the cost
and the spatiotemporal representativeness of the sampled ESUs. The criterion II considers the block of
rivers. The roads in our study area are often built along the rivers, so the ESUs and the roads should
be on the same side of the rivers to avoid crossing rivers.

3.3. Multi-Temporal Constraint Sampling Based on the Conditioned Latin Hypercube (CLH)

The proposed sampling scheme aims to obtain representative samples and reproduce the
probability distribution functions of the five NDVI maps (Table 1) using n spatially-distributed
and temporally-fixed ESUs. It is based on the CLH sampling procedure [22] and iteratively selects
samples from the NDVI maps by using a stratified random sampling scheme based on the cumulative
distributions of NDVI. CLH is implemented by the following steps:

I. Divide the probability distributions of NDVI for the five dates into n equiprobable strata.
II. Randomly pick one sample (ESU) per stratum. The location of the ESUs is constrained within the

feasible region (Figure 1).
III. The objective function is defined as follows:

O =
k

∑
j=1

n

∑
i=1

∣∣ηij − 1
∣∣

n
(1)

where n is the number of ESUs, k is the number of NDVI maps (k = 5, in this study), ηij is the times that
a stratum i on date j is sampled.
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IV. Perform an annealing schedule [42] to minimize the objective function. To avoid being trapped in
a local optimum, the simulated annealing algorithm accepts some of the changes that worsen the
objective function, and the probability of accepting a worse sample is given by:

p = exp(−ΔO/T) (2)

where ΔO is the change in the objective function and T is a control parameter for optimizing
the global minimization of the objective function O. For each T value (between 0 and 1) there
is a corresponding probability p to get out of a local minimum in the minimization procedure.
The greater of T, the higher probability to get out of a local minimum, but with more computation
time, and vice versa. We fixed the initial value of T to 1 and it was decreased by a factor 0.95
during each iteration.

V. Perform the replacement of an ESU in the selected sample with an ESU outside the current
sample. The replacement can be random or systematic, according to a probability of F.
Specifically, generate a random number rand, if rand < F, pick a ESU randomly from currently
generated sample (random replacement) and swap it with a random ESU outside the current
sample. Otherwise, remove the ESU from current sample which has the largest overall objective
function value (systematic replacement), and replace it with a random ESU outside the current
sample. The value of F was fixed to 0.5 using a trial-and-error approach.

VI. Repeat steps III–V a number of 5000 iterations to converge to the final solution.

3.4. Evaluation Approach

Similar to the VALERI’s sampling protocol [17], the size of the ESUs corresponds to the size
of the pixel of the high spatial resolution satellite data, i.e., the 30 m of Landsat data in our case.
The NDVI values for each ESU and for the different dates were extracted from the five Landsat NDVI
maps (Table 1). To quantitatively evaluate the capacity of the multi-temporally constrained (MC)
sampling strategy for reproducing the NDVI values across the study area and for the different dates,
we computed the Overlapping Area (OA) between the NDVI frequency distribution histogram from
the ESUs (denoted by Fs) and that from the entire study area (denoted by Fp) considering the NDVI
values of all the different dates. The OA can be formulated as [43],

OA =
AreaFp∩Fs

AreaFp

(3)

The numerator denotes the overlapping area of Fs and Fp, and the denominator represents the
area of Fp.

R2 and root mean square error (RMSE) between the mean NDVI values from the ESUs and the
average values for the entire study area for each date were also computed to quantify if resulting ESUs
can preserve the average state of the study area.

The proposed multi-temporally constrained (MC) sampling was compared with two alternative
sampling schemes: the single-temporally constrained (SC) sampling that uses only one NDVI map
(DOY 197) to construct the objective function (Equation (1)) and the random sampling (RS) without
addition constraints. Similarly to MC, the distribution of samples for the SC and RS schemes
were limited to the feasible region. Finally, a multi-temporally constrained sampling with ESUs
located across the entire study area (MCE) was used for evaluating the theoretical impact in terms of
spatiotemporal representativeness of introducing a feasible region for the cost limitation. Note however
that the MCE sampling design is unaffordable in the practice due to the inaccessibility of some of
the ESUs.
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4. Results

4.1. Influence of the Number of Elementary Sampling Units in the Spatiotemporal Representativeness

To determine the minimum number of ESUs required to capture the spatiotemporal heterogeneity
of the study area, we analyzed the variations of the mean OA of the five dates as a function of the
number of ESUs (Figure 2). The OA increases with the number of ESUs indicating, as expected, that the
spatiotemporal heterogeneity of the study area can be better represented with a higher number of
ESUs. The OA can be well fitted (R2 = 0.99) by an exponential function:

OA = 0.74 − 0.37exp(−0.11n) (4)

where n is the number of ESUs. For low n values, the OA increased rapidly with n. For high n values,
the OA reaches an asymptotic value of 0.74. For n = 20 samples, 70% of the heterogeneity of the study
area is well represented. This cut-off point of n = 20 was fixed as the minimum required number
of ESUs.

Note that about 25% of the spatiotemporal heterogeneity cannot be represented by the MC
sampling scheme (Figure 2). This may be partially explained because the samples were located in
a feasible region significantly smaller than the entire study area and may not completely cover all the
range of vegetation conditions (Figure 3).

Figure 3 shows the spatial distribution of the 20 selected ESUs by the multi-temporal and cost
constrained sampling strategy within the pre-defined sampling feasible region.

 
Figure 2. Overlapping area (OA) of the NDVI histogram distributions for the sampled and entire study
area as a function of the number of Elementary Sampling Units (ESU).

354



Remote Sens. 2017, 9, 1217

 
Figure 3. The spatial distribution of the 20 elementary sampling units for the multi-temporal
constrained sampling design in the feasible region.

4.2. Performance Evaluation: Comparison with Alternative Sampling Designs

Figure 4 shows the NDVI frequency distribution histograms of the 20 selected ESUs for the
four sampling strategies: random sampling (RS), single-temporally constrained sampling (SC),
and multi-temporally constrained sampling both in the feasible region (MC) and in the entire study
area without the sampling feasible constraint (MCE).

The MCE sampling strategy performed the best and reconstructed the NDVI frequency
distribution histograms of the entire study area for the different dates more accurately than the
feasible region constrained sampling designs. The introduction of sampling feasible region slightly
degreased the spatiotemporal representativeness of sampling but, in general, the three methods
RS, SC and MC applied for the feasible region can all preserve the overall shapes of the frequency
distribution histograms of the entire study area (red lines in Figure 4), with the MC performing the
best. On DOY 152, RS under-sampled the interval 0.4–0.65 and over-sampled the NDVI interval
0.8–0.85. On DOY 261, RS and SC both under-sampled the NDVI intervals less than 0.6. On DOY 197,
all methods significantly over-sampled high NDVI values for the range 0.85–0.9.

The comparison of the OA for the four sampling strategies (Table 2) showed that MCE performed
the best during the whole study period (OA = 83.5%) followed by MC (OA = 74.7%). RS performed
the worst (OA = 63.1%) because it exploited no a priori information. The efficiency of SC was
between RS and MC (OA = 68.7%), but it improved the spatiotemporal representativeness for DOY
197 (OA = 75.9%) because this specific date was used to constrain the SC sampling procedure.
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Figure 4. NDVI frequency distribution histograms of 20 selected elementary sampling units for the
four sampling strategies (from top to bottom): random sampling (RS), single-temporally constrained
sampling (SC), and multi-temporally constrained sampling (MC) in the feasible region (MC) and in the
entire study area without the sampling feasible constraint (MCE). The red lines represent the NDVI
frequency distribution histograms of the entire study area.

Table 2. Overlapping area (OA, %) for random sampling (RS), single-temporally constrained sampling
(SC), and multi-temporally constrained sampling applied to the feasible region (MC) and to the entire
study area (MCE).

DOY RS SC MC MCE

152 50.3 64.2 72.2 85.8
197 72.0 75.9 71.3 82.3
240 62.2 70.7 74.1 83.2
261 63.2 67.8 82.9 84.0
296 68.0 65.0 72.8 82.0

Annual mean 63.1 68.7 74.7 83.5

The scatterplots between the average of sampled NDVI and the average NDVI calculated from the
whole study area were also analyzed (Figure 5). The MCE method was the most accurate (RMSE < 0.01)
for NDVI sampling (R2 = 0.99). The three sampling strategies constrained to the feasible region all
overestimated the regional means. The feasible region is located in the lowland areas which generally
have better hydrologic and thermal conditions than highland areas for vegetation growth. Compared
to the RS and SC, MC sampling significantly alleviated the overestimation phenomenon.

The reduction of standard deviation from the ESUs compared to that from the entire study area
indicates the information loss on spatiotemporal heterogeneity [12]. Figure 5 shows that the RS had
the smallest standard deviation for each DOY, followed by SC and MC. MCE and MC show similar
variability in terms of the standard deviation. This demonstrates the efficiency of CLH strategy for
defining spatiotemporal representativeness sampling schemes.
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Figure 5. Scatterplots between the average sampled NDVI and the average true NDVI values for
the entire study area and for the five different dates. (a) Random sampling in the feasible region.
(b) Single-temporally constrained sampling in the feasible region. (c) Multi-temporally constrained
sampling in the feasible region. (d) Multi-temporally constrained sampling in the entire region. The bars
indicate the standard deviations.

5. Discussion

This study proposed a novel sampling strategy to generate spatiotemporally representative
and cost-efficient ESUs. Comparing to existing study about ESU sampling methods [14,20,25],
our method can make an appropriate compromise between spatiotemporal representativeness and
implementation cost, so it is particularly useful for heterogenous and traffic-inconvenient regions,
e.g., mountainous regions.

The multi-temporal constrained sampling was demonstrated to better capture the spatiotemporal
surface heterogeneity compared to random or single-temporal constrained methods. The introduction
of the feasible region (Figure 1) reduced about 9% the spatiotemporal representativeness of the
multi-temporal constrained sampling based on CLH (compare MC and MCE in Figure 4 and Table 2).
The feasible region is located in lowland areas with high NDVI values and may not completely
represent all the range of conditions of vegetation in the entire mountainous region, which is
characterized by a vertical negative gradient in NDVI (Figure 5). However, the feasible region was
established based on accessibility criteria and the spatial distribution of the available roads in the
study area. The loss of information of the feasible constrained sampling (MC) is compensated by the
significant reduction of the implementation cost.

A sensitivity analysis showed that 20 ESUs can reproduce 70% of heterogeneity of the study area.
The distribution of the 20 selected ESUs within the pre-defined feasible region showed some spatial
aggregation (Figure 3). This phenomenon was often criticized for information redundancy because
of the spatial autocorrelation of the biophysical condition [44]. Although this aggregation of ESUs
could be easily removed by introducing additional objective function in geographic space [14,21,25],
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the cluster of the ESUs would allow reducing the implementation cost of the field campaigns which is
one of the key concerns of the present study.

A spatially-distributed and temporally-fixed strategy for the ESU sampling was adopted in
this study. Alternatively, a temporally independent strategy could be adopted for defining the ESU
sampling for multi-temporal field campaigns, i.e., different date uses different spatial distribution of
ESUs. The temporally independent manner may show better capacity to capture the temporal variation
of spatial heterogeneity. However, the temporally-fixed manner can provide additional information
of the temporal variation of vegetation at each ESU. The temporally-fixed strategy was here selected
because it allows locating the nodes of the wireless sensor network systems that will support the
validation activities in Wanglang experimental site [19,25,28].

To consider the rugged terrain, lack of roads and the block of rivers, we restricted the ESUs
within the sampling feasible region. Currently, the feasible region was established in a semi-empirical
manner based on our expert knowledge. Some more sophisticate algorithms (e.g., three-dimensional
terrain modeling, 3D analyzing and the shortest path algorithm) would enhance the rationality in the
definition of the feasible region.

In this study, NDVI was chosen to represent the biophysical properties of the study area.
One reason to select NDVI is because of its strong correlation with many biophysical variables.
Although other vegetation indices such as the soil adjusted vegetation index [45], the enhanced
vegetation index [46], the normalized difference water index [47] or the normalized canopy index [48]
were also recommended in some specified applications, they were often criticized for their vulnerability
to topographic effects [39]. Figure 6 showed the density scatterplots between the NDVI and the cosine
of the local solar incidence (cos(i)) in our study area, which is the most widely used quantitative
evaluation method for topographic effects [49]. It can be seen that NDVI was nearly independent from
cos(i) with R2 between them ranging from 0.0002 to 0.0194. NDVI was then selected as the auxiliary
variable for our sampling procedure due to its correlation with many biophysical variables and its
reduced sensibility to topographic effects.

 

Figure 6. Density scatterplots between the NDVI and the cosine of the local solar incidence angle
(cos(i)) in Wanglang study area for the different acquisition dates.

The topography is well recognized to influence the vegetation biophysical properties [50,51].
Topographical factors (e.g., slope) were introduced as auxiliary variables in our previous study [14].
However, the NDVI relates to biophysical properties more explicitly. The exclusion of topography
would not limit the representativeness of the sampled ESU considering the low sensibility of NDVI to
topographic effects for the study area and considered period.

The use of NDVI data from different sensor and years may introduce uncertainties in the
sampling procedure. However, our study area is a natural reserve where the anthropogenic activities
(e.g., logging and mining) are very limited and, consequently, induced rapid changes in biophysical
properties are not expected. Moreover, the study area is dominated by primeval forest with mean
age around 200 years and significant inter-annual variations in vegetation are not expected for the
period of the satellite acquisitions (Table 1). In our conditions, the NDVI data from different years is
expected to successfully represent the seasonal variations in surface heterogeneity. In addition, it was
demonstrated in a few studies that the Landsat data record shows satisfactory consistency, and can be
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safely used together for time series analysis [52,53]. Therefore, the combined use of Landsat 8/OLI
and Landsat 5/TM is also acceptable in the sampling procedure. An alternative to capture the seasonal
variations is the combination of Landsat 8 with Sentinel-2 images. However, the persistent cloud cover
during the monsoon (from July to September) hampers the collection of clear Sentinel-2 images in
our study area. Moreover, cross-calibration coefficients between Landsat 8 with Sentinel-2 retrieved
from pseudo-invariant sites [54] may be not suitable for mountainous areas. The footprints of sensor
observations vary considerably in size and center locations over time, which hamper the establishment
of robust cross-calibration coefficients [55]. This also prevents the normalization between Landsat
8/OLI and Landsat 5/TM data over reference targets.

According to the protocols established by the LPV subgroup [16] and the VALERI project [17], each
ESU corresponds to a pixel of the auxiliary high spatial resolution satellite data. In this study, the size of
each ESU is 30 m × 30 m corresponding to the spatial resolution of the OLI images. As recommended
by the two-stage nested sampling framework [16], a sampling procedure would also be implement
within each ESU by distributing the individual field measurements in squares, crosses or transects [17].
The specified sampling design within each ESU is out of the scope of this study.

Because of the lack of in-situ measurements, the sampling strategies were evaluated through
the comparison of the sampled and true NDVI frequency distributions. The sampling strategies will
be further evaluated using the in-situ measurements that will be collected in the Wanglang field
campaigns planned for the year 2018.

6. Conclusions

We proposed a sampling strategy to generate spatiotemporally representative and cost-efficient
ESUs based on the conditioned Latin hypercube methodology. The proposed sampling strategy was
constrained by multi-temporal NDVI, and the ESUs were limited within a feasible region established
based on accessibility criteria. A case study in Wanglang National Nature Reserve in China showed
that the proposed strategy can obtain more spatiotemporally representative ESUs (mean annual
Overlapping Area, OA = 74.7%), compared to the single-temporally constrained (OA = 68.7%) and
random sampling (OA = 63.1%) strategies. The minimum number of required ESUs was fixed to
twenty as a compromise between the spatiotemporal representativeness and the implementation cost.
The introduction of the feasible region constraint ensures an affordable cost for the field campaigns
at expenses of a degradation of about 9% in the spatiotemporal representativeness of the sampling.
The sampling design here proposed will support validation activities in Wanglang experimental site
providing a benchmark of spatially distributed and temporally fixed ESUs for locating the nodes of
wireless sensor network systems for the acquisition of temporally continuous field measurements.
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Abstract: Many studies have been focusing on reconstructing the branch skeleton of a
three-dimensional (3D) tree structure that is based on photos or point clouds scanned by a terrestrial
laser scanner (TLS), but leaves, as the important component of a tree, are often ignored or simplified
because of their complexity. Therefore, we develop a voxel-based method to add leaves to a
reconstructed 3D branches structure based on TLS point clouds. The location and size of each
leaf depend on the spatial distribution and density of leaves points in the voxel. We reconstruct a
small 3D scene with four realistic 3D trees and a virtual tree (including trunk, branches, and leaves),
and validate the structure of each tree through the directional gap fractions calculated based on
simulated point clouds of this reconstructed scene by the ray-tracing algorithm. The results show
good coherence with those from measured point clouds data. The relative errors of the directional
gap fractions are no more than 4.1%, though the method is limited by the effects of point occlusion.
Therefore, this method is shown to give satisfactory consistency both visually and in the quantitative
evaluation of the 3D structure.

Keywords: LiDAR; point cloud; leaf; gap fraction; 3D reconstruction

1. Introduction

The three-dimensional (3D) structure of trees, including trunk, branch, and foliage elements,
is important and fundamental data for the study of forest management [1], forest ecosystems [2],
and vegetation radiative transfer models [3,4].

The development of quantitative remote sensing has led to a greater focus on the real structure
of ground objects, especially the vegetation structures in various radiative transfer models. Early
one-dimensional (1D) radiative transfer (RT) models, such as SAIL [5] and Suits [6], were developed
based on K-M theory [7], and assumed horizontally homogeneous canopies, an approach that ignored
the 3D structural characteristics of the canopies. Later, Li et al. [8,9] developed geometric-optical (GO)
models that simplified the crown structures to a spheroid for a broadleaf tree or a cone for a coniferous
tree to capture the 3D characteristics of forests on a coarse scale. Thereafter, a four-scale bidirectional
reflectance model took into account the influence of non-uniform distributions (such as clumping
effect) of branches and shoots in a conifer forest, or the “leaves” in the crowns of a broadleaf forest
on the bidirectional reflectance distribution function (BRDF) [10]. Meanwhile computer simulation
models were developed based on explicit 3D virtual canopy scenes to simulate the canopy reflectance
by using ray-tracing or radiosity theory [11–15].
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Compared to the RT and GO models, computer simulation models take advantage of computer
graphics algorithms to eliminate many hypotheses and statistical rules of canopy structure and, as a
result, improve the simulation accuracy greatly. However, explicit 3D structural canopy scenes are often
required as fundamental input parameters and are complex and difficult to be constructed. Therefore,
some computer simulation models use simplified 3D canopy structures. For example, the scenes that
are used in the DART model [16] comprise many small voxels with statistical foliage properties rather
than a detailed leaf and branch structure. Huang et al. [17] simplified the detail structures of individual
tree crowns to some porous thin objects in the RAPID model, which can simplify the representation
of canopy structures and decrease the computing time. All of these simplifications assumed that the
statistical canopy structure would provide the same scattering behavior as the explicit 3D situation.
However, Disney et al. [18] had point out that simplified canopy scenes may cause an inherent loss
of information. Widlowski et al. [19] found that architectural simplifications may have an impact on
the fidelity of simulated satellite observations at the bottom of the atmosphere for a variety of spatial
resolutions, spectral bands, and viewing and illumination geometries.

For these reasons, the simple statistical parameters for crown structure (such as LAI-leaf area
index, LAD-leaf angle distribution) have been unable to satisfy the requirements of quantitative remote
sensing research. The latest simulation from the Radiative Transfer Model Intercomparision Initiative
(RAMI-http://rami-benchmark.jrc.ec.europa.eu/HTML/) increased the number of actual structural
canopy scenes. This reflects the trend toward the development of remote sensing for vegetation.
However, it is still difficult to acquire accurate 3D geometry and topology information for a real tree
due to the complexity of the tree structure.

The development of terrestrial laser scanner (TLS) technology enables the use of point clouds that
were scanned from trees to estimate the structural parameters for single trees or forests, including LAI,
LAD [20], and leaf area density [21]. Additionally, point clouds are also used to reconstruct 3D trees.
Most studies pay more attention to the reconstruction of branch skeletons [22–24]. An overview of this
area can be found in a review from Huang et al. [25].

Only a few methods reconstructed a whole tree by adding leaves or needles to the reconstructed
branches. For example, Xu et al. [26] assumed that the leaf density in a real tree was uniform
and determined leaf locations using the number of feasible skeleton nodes that existed within a
certain distance. This method requires that even small branches be reconstructed with high accuracy.
Livny et al. [23] created leaves next to each leaf node in the branch-structure graph (BSG) and generated
a random number between 20 and 50 leaves that were randomly placed within a sphere that was
centered on the leaf node. They then added textures to the reconstructed geometry to enhance visual
appeal. Côté et al. [27] added foliage to reconstruct conifer trees by repeatedly testing the radiation,
reflectance characteristics, and gap fraction of canopy. Their method can reconstruct 3D trees with
structural and radiative consistency.

These methods of adding leaves have not made full use of the spatial information obtained from
foliage point cloud distributions. In this study, an easy method for reconstructing realistic 3D trees
(including trunk, branches, and leaves) is developed. This method is based on aligned point clouds
that were scanned from multiple sites and combined information regarding the spatial distribution of
points with retrieved structural parameters. The reconstructed trees can meet the basic demands of
computer simulation models and maintain a directional gap fraction that is consistent with that of the
real ones.

2. Experiment and Datasets

2.1. Study Area

The experimental field located in an open and flat prairie in Chengde city, Hebei Province, China
(42◦14’28.7”N, 117◦04’57.29”E) is covered by the dominant grassland and scattered bushes and trees
under the typical continental monsoon climate with an average annual temperature of −1.4 ◦C.
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Four broadleaf, deciduous elm trees (Ulmaceae) with 6.0–7.5 m height and 15–25 cm diameters
at breast (DBH) showed in the field center that was accompanied by approximately 3 cm understory
sparse grasses. They had green leaves and a rough, dark, greyish-brown bark in summer. Some leaves
were harvested and scanned with a laser scanner, and the average and maximum single-leaf areas
were approximately 12 cm2 and 20 cm2, respectively.

2.2. Data Acquisition

2.2.1. Point Clouds of TLS

The experimental field was scanned by a TLS system, which included a laser scanner (Riegl
VZ-1000 http://www.riegl.com) and a high-quality digital camera (Nikon D300s, Nikon Inc., Tokyo,
Japan), on the 25 July 2014. The digital camera and the laser scanner were mounted together on one
tripod with a pan-and-tilt platform, and a series of high-resolution color digital photographs and their
accompanying point clouds were collected synchronously.

The scanning angular step was set to 0.03◦ and the laser scanner height was about 1 m above the
ground. Six groups of point clouds were scanned from six sites around the field (Figure 1). All of the
point cloud data were exported as ASCII files using the RiSCAN PRO software (http://www.riegl.com),
a companion software package for the RIEGL Terrestrial 3D Laser Scanner Systems. The items in the
file recorded each returned point’s location (XYZ coordination), distance (range [m]), beam direction
(zenith and azimuth angle), reflectance (intensity), etc.

Figure 1. Relative positions of the four trees (No. 1, 2, 3, and 4) and six scanning sites (orange points),
as seen from above. The outlines of the trees were drawn by projecting the scanned points in nadir.

2.2.2. UAV Photographs

A six-rotor unmanned aerial vehicle (UAV) carried on a small, color digital camera was used to
take RGB photographs (1024 pixel * 1024 pixel) of the experimental field from multiple view directions.
The flight height of the UAV was approximately 50 m. One clear photograph taken in nadir was used
in this study.
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2.3. Point Cloud Data Processing

2.3.1. Elimination of Noisy Points.

Generally, there are noise points in the point cloud data due to the environment and the scanner
itself, which can affect the accuracy of the retrieved canopy structural parameters and the 3D tree
reconstruction. For example, ghost points occur when the laser beam hits the edge of an object. Two
or more returned points will be recorded by the scanner, but with the wrong distance or intensity
information. Therefore, a pre-processing step was included to eliminate ghost points.

We assume that each laser pulse will be reflected once it hits an object. Later returned signals with
the same or similar beam directions are taken as ghost points, and should be deleted. First, all points
are grouped into many small rectangular pyramids based on the range of zenith and azimuth angles
within the width of a scanning angular step (δ). For example, the ith rectangular pyramid has the
zenith range [θi − δ/2, θi + δ/2) and azimuth range [ϕi − δ/2, ϕi + δ/2). Where θi and ϕi are the zenith
and azimuth of the ith scanning beam. The first data point in the pyramid is kept, but the others
are deleted.

2.3.2. Classification

Point clouds can be classified using geometric information [28] or intensities [29]. In this study,
all the point cloud data are classified into trunk/branch points and leaf points based on the digital
photographs taken synchronously.

First, the high-resolution digital photographs are classified into leaves, trunk/branches, ground,
and sky by the supervised classification method (maximum likelihood method supplied by the ENVI
software). Only four classes of ROIs (region of interest), including leaves, trunk/branches, soil, and sky,
are chosen manually as the training data. Therefore, parts of the ground covered with a few grasses
are incorrectly classified as leaves, but these will be eliminated based on the position property of the
points. Second, the photograph is registered with the point clouds using an inherent geometrical
constraint [30,31]. Actually, the photos and points were obtained synchronously by the TLS system,
therefore the registration parameters can be computed much more easily and accurately. Each point
is assigned the property of leaf or branch based on the classification images. Finally, points are
extracted based on the spatial scope of the tree, including leaf, trunk/branch, and soil. Soil and
some misclassified leaf points on the ground are excluded according to elevation in the z direction.
The height threshold z is set as 0.1 m based on the spatial characteristics of points. Then, all points
with leaf and trunk/branch properties are extracted, separately.

2.3.3. Registration

A general process is carried out to register multi-station point clouds in a common coordinate
system based on the RiSCAN PRO software.

It is difficult to find any natural tie points and control points in the field, so dozens of artificial
spherical reflectors were pasted on the trunks or branches of the trees in the experimental field before
scanning, and we made sure that no less than four reflectors can be “seen” in two neighboring scans.
These reflectors can be automatically extracted from the point clouds based on their high reflectance.
The same reflectors that were detected from multi-station scanned point clouds are identified as
homonymy points and are registered with minimal errors. Transformation matrices are obtained for
the point clouds that are based on the corresponding point pairs for the reflectors, which can be used
to register the point clouds.

In this experiment, six-station scans are distributed in a ring around the experimental field, so a
mode provided in the software called “Close gaps in ringed scan positions” is used to register multiple
scans from a ring of positions simultaneously, which can minimize the cumulative error inherent in
multiple registrations. The error of registration in all scans is less than 0.02 m.
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2.3.4. Terrain

The terrain is also an important part in a 3D scene and it can be fitted to some complex curves,
such as a surface or Triangulated Irregular Network (TIN) model [32,33]. In this study, because the
field is flat in the field, all of the ground points are fitted to a plane function. Some of the grasses on
the ground are ignored, and a flat terrain is composed of many triangle facets.

2.3.5. Leaf Area Retrieval

The modified gap fraction model integrating the path length distribution that was developed by
Xie et al. [34] is applied to retrieve the leaf area of single trees based on single-site leaf-point cloud data.
Leaf area (LA) is defined as total single-side leaf area of a single tree with the unit of square meters (m2).
Compared with the definition of LAI, total single-side leaf area per unit ground horizontal surface
area (m2/ m2), LA is more suitable for quantifying the leaf area of single trees.

There are four single trees in the study area. In consideration of the effect of occlusion between
crowns, only three groups of points for each tree are used to retrieve LAs (Table 1). They are scanned
from three sites that covered the whole tree without any mask from the other trees. Because of
the uneven distribution of leaves in the canopy and the effect of point noise (arose by sensors or
environment, such as wind, etc.), it can be seen that the LAs of each tree retrieved based on the points
from different scans are different. Therefore, LAs that were retrieved from different scans are averaged
to decrease the effect of retrieval bias and the unevenness of crowns.

Table 1. The retrieval leaf areas and scanner sites for each tree.

Tree ID Averaged LA (m2) Site ID Retrieval LA (m2)

No.1 71.236

Site 1 71.910

Site 3 71.350

Site 6 70.449

No.2 75.895

Site 1 80.548

Site 4 80.663

Site 5 66.474

No.3 65.546

Site 1 62.394

Site 2 71.946

Site 4 64.298

No.4 48.075

Site 1 47.825

Site 2 49.041

Site 5 47.359

2.4. Virtual Tree

Some differences may arise in a real 3D scene due to data acquisition, such as the noise in the
point clouds that arose from the TLS device and its environment during the measurement. There are
also errors arose from the data processing, such as the retrieved LA of each tree and point classification
and registration. To overcome these issues, a 3D virtual tree is generated and its LA can be calculated
accurately. Accordingly, point clouds are simulated without noise.

2.4.1. 3D Virtual Tree

A 3D virtual tree with photorealistic structures is generated using OnyxTREE© software
(http://www.onyxtree.com), a dedicated procedural creator and modeler of 3D broadleaf trees, shrubs,
and bushes. Leaves, trunks, and branches in the crown are generated and arranged based on the
plant growth rules and parametric topology structures. The components of 3D trees, including leaves,
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trunks, and branches, are all composed of triangular patches. The software had been used to simulate
the structure of deciduous broadleaf canopies for simulation of various remote sensing signals [35].
According to the definition of LA, it can be calculated accurately using these triangular patches.
LAD is another important canopy structural parameter, which describes the statistical distribution
of the angular orientation of the leaves in the vegetation. In this study, we pay more attention to the
orientation of each leaf normal (zenith and azimuth angles), instead of the mathematical description of
total leaves angles.

In this case, the height of the virtually generated 3D tree is 8.53 m and its total leaf area is 20.32 m2.
The average area of a single leaf is about 15 cm2.

2.4.2. Simulation of Point Clouds

Four groups of point clouds are simulated around the virtual tree based on the ray-tracing
algorithm [36]. The sensor height is set to 1.5 m above the ground and the horizon distance for the tree
was 6 m. The scanning angle step is 0.03◦.

Each simulated point is added property information (branch or leaf) in the end of the line in the
file based on the intersected position of the beam and the virtual tree, which can help to classify the
point clouds into two classes (branch- and leaf-point) accurately.

3. Methodology

Branches and leaves are the main components of trees, and can be reconstructed based on the
classified branch- and leaf-point clouds. To reduce the effect of point cloud occlusion, the aligned point
clouds from multiple scans are used here.

3.1. Reconstruction of Branches

Branch structures of single trees are constructed from the branch-point clouds using a
structure-aware global optimization (SAGO) method [24]. This method obtains the tree skeleton
from a minimum distance spanning tree and then defines the stretching directions for the branches on
the skeleton to recover those missing or partly occluded points.

However, most of the small terminal branches with growing leaves cannot be reconstructed
correctly, because the branch points are thoroughly occluded by leaves, or they cannot be classified
accurately due to the low spatial resolution of the photographs. Some of the misclassified branch
points may be marked as leaf type and later used in the process of adding leaves, which can maintain
consistency between the reconstructed tree gap fraction and the real one.

3.2. Adding Leaves

Generally, there are a large number and variety of leaves in the crown, and their distribution
is very complex. Therefore, it is difficult to accurately recover all of the information for each leaf,
including its position, orientation, and size. We assume that the spatial distribution of leaf-point
density can reflect the distribution of leaf characteristics in the crown.

3.2.1. Leaf Structure Model

A leaf is simplified to a quadrilateral, which is composed of a right triangle and an equilateral
triangle. It is set based on the ratio of the length and width of a clipped leaf measured in the field
(Figure 2a). This kind of leaf shape is also used by the generated virtual tree in this study. Its initial
four vertex coordinates in the plane of XOY can be expressed as a four-order matrix P [37], with a
normal N(0, 0, 1).
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P = [A B C D] =

⎡
⎢⎢⎢⎣

0 r
(

1 +
√

3
)
∗ r r

0 −r 0 r
0 0 0 0
1 1 1 1

⎤
⎥⎥⎥⎦. (1)

  
(a) (b) 

Figure 2. Diagram of leaf geometry (a) and its transform (b).

The lowest row represents homogeneous term in order to be convenient to transfer this polygon
leaf in the space. In Equation (1), r is a leaf shape parameter that controls the size of a leaf. The area of
a leaf can be calculated as

LAi =
(

1 +
√

3
)

r2. (2)

The leaf can then be rotated and translated to the right place in the tree crown by multiplying P
with rotation and translation matrices [37], as shown in Figure 2b.

3.2.2. Cell division and Leaf Placement

Segmenting the canopy into cubic volumes/voxels based on point clouds can provide a convenient
mean of describing the spatial distribution of foliage area in the tree crown [38] and of estimating
the leaf area density [21], LAI and LAD [20], etc. Béland et al. [38] investigated the optimal voxel
dimensions for estimating the spatial distribution of leaf area density within the crown. They found
that the optimal voxel size is a function of leaf size, branching structure, and the predominance of
occlusion effects, which provides important guiding principles for the use of voxel volume in the
segmentation of point clouds.

In accordance with the research of Béland et al. [38], voxel size is set to 10 cm in this case,
which is based on the averaged LA of each tree (Table 1) and branching structure is measured in the
field. Assuming that the spatial distribution of leaf areas agrees with the aligned point-cloud density,
each leaf point in the crown corresponds to a finite area of leaf LA/NUM, where NUM is the number
of total leaf points. Therefore, based on the number of points in each voxel (numi), the area of one
leaf in the voxel can be determined using LAi = numi × LA/NUM. If the leaf area in the voxel LAi is
larger than the maximum leaf area (20 cm2), it would be separated into a standard leaf with an area of
12 cm2 and a smaller leaf. The leaf shape parameter for each leaf, r, can be calculated using:

r =
[

LAi/
(

1 +
√

3
)]1/2

, (3)

where LAi is the leaf area in the voxel or the leaf area after division.
Leaf orientation in the voxel is also an important structural parameter. Generally, LAD can be

measured in the field or estimated from point clouds using voxels [21]. To simply the procedure of
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the reconstruction and decrease the needed parameters, an averaged normal direction of all the leaf
points in the voxel is used as the normal direction of the added leaf. Where the normal direction for
each point is calculated based on the spatial distribution of neighbor points using the CloudCompare
software (http://www.danielgm.net/cc/release/).

Leaves are placed in the appropriate cube by rotation and translation, according to their orientation
and size. After the process of adding leaves is applied to all of the voxels in the scene, 3D trees with
leaves are reconstructed.

3.3. Assemble 3D Scene

All single trees and terrain are reconstructed and assembled. In order to match the locations of
the reconstructed trees with the real ones, the reconstructed trees are projected onto the plane to obtain
the outlines of trees, and the aligned point clouds are used to outline the four trees (Figure 1). Then,
the outlines from the reconstructed trees can be registered with the outlines from the real trees. In this
study, the flat terrain is applied. Therefore, all reconstructed trees can be translated in the correct
position of the terrain directly, and then the 3D scene is completed.

4. Results and Discussion

4.1. Reconstruction of 3D Scene

4.1.1. Real Scene of the Study Area

The 3D scene of the study area is composed of four single trees and flat ground. In consideration of
the effect of occlusion between crowns, only three groups of points for each tree are used to reconstruct
each single tree. First, the three sites scans for each tree in Table 1 are aligned, and then the averaged
LA for the tree (Table 1) is applied to add leaves and to reconstruct the tree. At last, 3D scene that is
similar to the real one is assembled by combining the reconstructed trees on a flat terrain.

A color photograph is simulated based on the reconstructed 3D scene using the physically based
ray tracing (PBRT) algorithm [39] (Figure 3a). When compared with the corresponding photograph
taken from UAV (Figure 3b), the structures are visually similar.

 
(a) 

 
(b) 

Figure 3. Comparison of simulated and real photos: (a) Simulated photograph based on the
reconstructed scene; and, (b) Real photograph taken from unmanned aerial vehicle (UAV).
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4.1.2. Virtual Tree

A 3D tree is reconstructed based on the simulated points (Figure 4c). Its leaf area is 20.50 m2 and
the relative error of the leaf areas between the reconstructed and the original virtual tree is less than
0.9%. It looks similar to the original tree, including the spatial distribution of leaves.

 
(a) 

 
(b) (c) 

Figure 4. (a) A virtual tree generated with OnyxTREE software; (b) The simulated point clouds based
on the virtual tree (Blue points represent trunks/branches and red points represent leaves); and, (c) The
reconstructed 3D tree.

4.2. Validation

Quantitative validation of the structural characteristics of a rebuilt scene is not a trivial task [27].
The reconstructed scene should not only represent a good visual effect, but it must be structurally
consistent with the real canopy. The directional gap fraction is used as an important standard to
quantitatively evaluate the geometric accuracy of reconstructed 3D scenes or the 3D structures of trees.

4.2.1. Validation with the Real Scene

Point clouds are simulated based on the reconstructed 3D scene using the ray tracing
algorithm [36]. The parameters are set according to the configuration in the field, including scanning
position, scanning steps, beam diversity, etc. The measured and simulated point clouds are compared
and are shown in Figure 5. It can be seen that they have good similarities in color and structure
(the same color represents the same distance).

The directional gap fraction with a zenith angle slices Pgap(θ) can be expressed as the ratio of
the number of laser beams sent into the slice Pi

send and the number of intercepted laser beams Pi
receive.

The sending number is dependent on both the azimuth and zenith range in each slice, as well as
the scanning step, and so the intercepted number can be calculated by counting the number of TLS
points [40]. Therefore, the gap fraction can be expressed as follows:

Pgap(θi) = (Pi
send − Pi

receive)/Pi
send i = 1 · · ·N, (4)

where N is the number of the zenith slices, and θ is a middle zenith direction of the layer.
The directional gap fractions for six-site point clouds are calculated based on the measured

and simulated data, respectively, and compared in Figure 6. The two groups of directional gap
fractions have similar tendencies: they are large in the upper and lower parts and small in the middle,
which agree well with the characteristics of the vertical distribution of foliage in the crown. Because the
distribution of branches and leaves are not uniform in all crowns, the gap fractions in some directions
increase suddenly, such as at 70◦ for site 3 and 4, and at 75◦ for site 6 (Figure 6).
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(a)  (b)  

Figure 5. Comparison of the measured (a) and simulated (b) point clouds for one scan. The different
colors represent the distances from scanner to objects. The red and blue circles highlight the difference
between the measured and simulated point clouds.

Figure 6. Comparison of the directional gap fractions from measured and simulated points for each
site scan (zenith angle interval: 2.5◦).

In general, all of the directional gap fractions from the reconstructed scene are in good agreement
with those from the real one (Figure 7a). A high correlation coefficient (R2 = 0.912) and a low root
mean square error (RMSE = 0.065) between the directional gap fractions that were calculated based on
the simulated and measured points quantitatively prove that the method is valid for reconstructing
structurally coherent 3D trees.
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(a) (b) 

Figure 7. Relationship between the directional gap fractions of measured and simulated points (a) and
the distribution of their errors (b).

Although the directional gap fraction is a popular standard to assess the canopy structure,
it is affected by the parameters, such as azimuth ranges. It can be seen that there are still a little
discrepancies of gap fractions between real and reconstructed trees, as shown in Figure 5. We found
that the reason is from the difference of the scanning azimuth ranges in the same slices detected from
the simulated and measured points. Generally, the voxel nearby the edge of the crown can reach out of
its range, and the added leaves in these voxels often be placed in the centers of the voxels, so that the
reconstructed crown is often a little wider than the real one. Accordingly, the azimuthal range of point
clouds simulated based on the reconstructed tree is often bigger than the real one. To eliminate the
influence of edge effect on the emitted beam numbers, the slicing point density is used to evaluate the
structural accuracy of a reconstructed scene.

The slicing point density (PD) with the height is calculated based on all of the aligned points [41].

PD(Hi) = numi/NUM (5)

Here, numi is the number of points in the ith layer with height [Hi, Hi + ΔH]; ΔH is the height
interval; and, NUM is the total number of points intercepted by the tree.

In this study, we pay more attention to the effect of the reconstructed leaf, so the leaf-point
density in each slice is calculated based on the separated leaf points. The horizontally slicing leaf-point
densities based on the measured and simulated data are compared in Figure 8, and the vertical
distribution of leaf-point densities from all four trees agree well.

373



Remote Sens. 2018, 10, 686

Figure 8. Comparison of the sliced leaf-point densities for each tree (No. 1–4), calculated based on
measured and simulated point clouds (interval height: 0.2 m).

4.2.2. Validation with the Virtual Tree

Because the 3D virtual tree in Figure 4c is reconstructed based on the simulated points, to improve
the reliability of validation, we do not compare the gap fraction or point density calculated with the
simulated points from the virtual tree and the reconstructed tree. In this study, some black-and-white
images are simulated based on the original and reconstructed trees. These images are built by parallel
projecting all triangle facets of the original or reconstructed tree along one view direction to a white
plane with a high resolution. The pixel covered by the projected facet (>50%) is black. Then, a gap
fraction can be calculated from this image using the pixel ratio (a ratio of the white pixel numbers to
the total number of pixels in the image).

The black-and-white images are simulated from several directions, including eight azimuth
angles (0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦) and five zenith angles (45◦, 63◦, 76◦, 90◦, 162◦).
Images with the zenith directions of (45◦, 63◦, 76◦, 90◦) are projected from bottom to top, and the
image with 162◦ zenith direction is projected from top to bottom. Then, the relative error of the
directional gap fractions obtained using the simulated images from the original and reconstructed
trees are shown in Figure 9. The relative errors of the directional gap fractions are not more than 4.1%,
which strongly supports the feasibility of our reconstruction method. The relative errors for different
azimuth directions have no apparent difference because the structure of the generated virtual tree is
basically azimuthally symmetrical.
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Figure 9. Relative errors of the gap fractions from the black-and-white images with different view
directions simulated based on the original virtual tree and the reconstructed one.

5. Discussion

5.1. Completeness and Accuracy of the Reconstructed Tree

By applying our method to a real scene and a virtual tree, the reconstructed results show pretty
well visual effects. However, after quantitatively comparing the directional gap fractions and point
densities of the original and reconstructed ones, it is found that the occlusion and density distribution
of points will affect the completeness and accuracy of the reconstructed tree.

As is known to all, the occlusion issue is inevitable for TLS to scan canopies. Although aligned
multi-site scanned points can partly cover the shortage, the issue still cannot be solved completely
for some dense crowns. For example, there are some small differences in Figure 5, highlighted using
circles. One reason is that the scanner positions that were used in the simulation do not coincide with
the one in the field. Therefore, some points occluded in the measured data (circle in Figure 5a) can be
scanned in the simulation ones (Figure 5b).

Additionally, it can be seen from Figure 9 that the directional gap fractions are underestimated in
the bottom-to-top zenith directions (45◦, 63◦, 76◦, 90◦), but overestimated in the top-to-bottom zenith
direction (162◦). The major reason for this difference is the effect of point cloud occlusion. Because
the TLS device is often used on the ground with a bottom-to-up scanning style, the upper crowns are
inevitably occluded and only a few points from the upper parts of the tree can be obtained. Another
reason is that the point density distribution is not uniform: the point density is larger in the lower part
of the tree but is smaller than normal in the upper part of the tree. Because the tree reconstruction
depends entirely on the spatial distribution of points, more leaves are added to the lower crown.
This means that the relative errors for directional gap fractions that are close to the vertical directions
(such as 45◦ and 162◦, in this case) will be enlarged.

A feasible method for addressing these issues would be to add some supplementary data, such as
Airborne Laser Radar (ALS) data, which can make up for the TLS points missing from the upper
crowns [31,42].

5.2. Sensitivity of the Leaf Shape

The leaf shape is various in the real world. It can be represented as some simple shapes. In this
study, we use a quadrilateral, simplified based on the measured structure to reconstruct the trees.
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Similarly, the leaf can also be simplified as other shapes, such as a square or a rhombus (Figure 10).
Then, the initial four vertex coordinates can be expressed as

P = [A B C D] =

⎡
⎢⎢⎢⎣

0 r 2r r
0 −r 0 r
0 0 0 0
1 1 1 1

⎤
⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎣

0 4r 8r 4r
0 −1.5r 0 1.5r
0 0 0 0
1 1 1 1

⎤
⎥⎥⎥⎦ (1)

  
(a) (b) 

Figure 10. Diagram of leaf shape: (a) Square, (b) Rhombus.

The leaf area can be calculated as

LAi = 4r2 and LAi = 24r2 (2)

Then, the leaf shape parameter, r, can be obtained by r =
√

LAi/4 and r =
√

LAi/24.
The virtual trees (Figure 4a) are reconstructed using the new leaf shapes, respectively (Figure 11).

All reconstructed trees with different leaf shapes look similar.

 
(a) (b) (c) (d) 

Figure 11. Comparison of the reconstructed trees using the different leaf shapes, including (a) rhombus,
(b) square and (c) typical quadrilateral, with (d) the original virtual tree.
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Then point clouds of these three reconstructed virtual trees (Figure 11a–c) are simulated based on
the same parameters (the sensor height, scanning distance and step). The slicing point density of each
set of point clouds is calculated and compared in Figure 12.
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Figure 12. Comparison of point densities based on the simulated point clouds of the reconstructed
trees with different leaf shapes and the original virtual tree (interval height: 0.2m).

These point densities agree well with the original ones. Specially, the point densities from the
reconstructed trees are closer than that from the original virtual tree. RMSEs of the vertical point
densities between the reconstructed trees and the original one are 1.10% (square leaf shape), 1.13%
(rhombus leaf shape), and 0.88% (quadrilateral leaf shape), separately. The reconstructed tree with
the typical leaf shape (quadrilateral) shows better similarity with the original one. When comparing
within these reconstructed trees, RMSEs of the point densities are no more than 0.4%. It means that the
reconstructed trees are more similar to each other.

Overall, our method is not sensitive to the leaf shape.

6. Conclusions

Based on TLS point cloud data, we developed the method for reconstructing entire 3D trees in
this study. This method can effectively add leaves that are based on voxels and is insensitive to the
leaf shape. Its performance is evaluated over a reconstructed small 3D scene and a virtual tree using
the directional gap fraction and point density distribution, and it shows good consistency in leaf area
and directional gap fraction of crowns when compared with the point cloud from the original ones.
The relative errors of the gap fractions (the virtual tree) are less than 4.1%.

While analyzing the directional gap fraction that is based on a virtual 3D tree, it is found that
the reconstructed 3D trees are influenced by the effect of point cloud occlusion because the method
is completely dependent on the spatial distribution of points. Though this method may slightly
underestimate the leaf area for the upper crowns, and overestimate for the lower crowns, it is still
feasible and has the potential to contribute the quantitative remote sensing in canopy radiative
transfer models.

Several factors that impact the reconstruction of trees and some future possible improvements
are summarized, including the quality of point clouds, the point classification, and LA retrieval
accuracy. First, the quality of point clouds is critical, and factors, such as occlusion and ghost points,
greatly complicate the data preprocessing and decrease the structural accuracy of reconstructed trees.
In the future, it will be necessary to study how TLS data can be combined with supplementary
data (such as ALS-aircraft laser scanner data or UAV data) to reconstruct 3D trees and reduce the
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effect of occlusions. Another option would be to apply the growing rules of plants to overcome the
disadvantages of point clouds. Second, point classification accuracy is dependent of the quality of
photographs, the classification algorithm and the registration between points and photographs. Bad
classification results not only affect the LA retrieval, but also decrease the accuracy of reconstructed
branches and leaves. Dual-wavelength [43] or multiple spectra laser sensors can help to improve the
classification accuracy and to simplify the classifying process. Third, the LA of a real tree is determined
using a retrieved value, and its accuracy will directly affect the reconstructed tree structure. Therefore,
it is necessary to improve the retrieval algorithm for LA in the future.

In summary, the method that is presented for reconstructing 3D trees shows its potential in
reconstructing complex forest scene and in evaluating the parameters of land surface ecosystem.
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Abstract: The academician Xiaowen Li devoted much of his life to pursuing fundamental research
in remote sensing. A pioneer in the geometric-optical modeling of vegetation canopies, his work is
held in high regard by the international remote sensing community. He codeveloped the Li–Strahler
geometric-optic model, and this paper was selected by a member of the International Society for
Optical Engineering (SPIE) milestone series. As a chief scientist, Xiaowen Li led a scientific team that
made outstanding advances in bidirectional reflectance distribution modeling, directional thermal
emission modeling, comprehensive experiments, and the understanding of spatial and temporal
scale effects in remote sensing information, and of quantitative inversions utilizing remote sensing
data. In addition to his broad research activities, he was noted for his humility and his dedication in
making science more accessible for the general public. Here, the life and academic contributions of
Xiaowen Li to the field of quantitative remote sensing science are briefly reviewed.

Keywords: geometric-optical model; thermal radiation directionality; quantitative remote sensing
inversion; scale effects; comprehensive field experiment

1. Introduction

Remote sensing is an essential tool in ensuring the successful implementation of strategies for
the sustainable development of nature and society. High-precision remote sensing models, parameter
inversion, and the validation of remote sensing products are among the important frontier scientific
issues [1]. A pioneer in the geometric-optical modeling of vegetation, the late Xiaowen Li, working
with his mentor Prof Alan Strahler and numerous colleagues, developed a series of geometric-optical
models for vegetation canopies and hybrid models of geometric optical-radiative transfer that are
widely used in operational remote sensing algorithms for the retrieval of global surface albedo
products. As a chief scientist, he led several research efforts that focused on quantitative remote
sensing modeling, inversion, and the applications of retrieved data. His outstanding achievements
include contributions to bidirectional reflectance distribution modeling, directional thermal emission
modeling, an understanding of the effects of different spatial and temporal scales in remote sensing
data, the development of the theory underlying quantitative inversion theory using prior knowledge,
and the completion of comprehensive field experiments in remote sensing. Xiaowen Li was not only
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an outstanding scientist inthe field of remote sensing and geography, but was also an eminent writer of
popular science. He was known as a teacher, researcher, scholar, and mentor who was always ready to
help others. Herein is a brief summary of his life and his major contributions to remote sensing science.

2. Biography of Xiaowen Li

Xiaowen Li (Figure 1) graduated from the Chengdu Telecommunication Engineering Institute
(now the University of Electronic Science and Technology of China, UESTC) in 1968 and was admitted
to graduate studies at the Institute of Geography, Chinese Academy of Sciences, in 1978. In 1979,
supported by government grants for study abroad programs, he enrolled at the University of California,
Santa Barbara, and earned a Master of Science degree in geography in 1981, another Master of Science
degree in electronics and computer engineering in 1985, and a doctoral degree in geography in 1985
while under the mentorship of Alan Strahler.

In 1986, he joined Prof. Strahler at the Department of Geography, Boston University (BU), as a
researcher and research professor. For over a decade at BU, he served on numerous doctoral committees
and published some of his seminal work on geometric optics. During this period, Xiaowen Li regularly
traveled to China, holding positions as an associate researcher at the Institute of Remote Sensing
Applications, Chinese Academy of Sciences, and as a researcher at the Key Laboratory of Remote
Sensing Information Science of the Chinese Academy of Sciences. Beginning in 1999, he became a
senior faculty member at Beijing Normal University, where he founded the Research Center for Remote
Sensing and Geographic Information Systems (GIS). His eminence was recognized by the Ministry of
Education and he was made a Distinguished Professor of the Chang Jiang Scholars Program. In 2001,
he was elected as an Academician to the Chinese Academy of Sciences. From 2002–2007, he was the
director of the Institute of Remote Sensing Applications of the Chinese Academy of Sciences. In 2003,
he facilitated cooperative efforts between the Key Laboratory of Remote Sensing Information Science
of the Chinese Academy of Sciences and the Research Center for Remote Sensing and Geographic
Information System of Beijing Normal University, establishing the State Key Laboratory of Remote
Sensing Science, and in 2005, he founded an innovation team for the Ministry of Education. A devoted
alumnus of UESTC, he actively promoted its development in geoscience by founding the Institute of
Land Surface Space Information Research in 2004 and serving as its director. In 2012, he became the
first dean of the School of Resources and Environment at UESTC.

Xiaowen Li was enthusiastic about making science more accessible to the public. On 29 July 2007,
he created his blog on ScienceNet.cn. He called himself “Huang Laoxie”, a fictional character in the
Legends of the Condor Heroes authored by Jin Yong, a renowned Chinese martial arts novelist whom
he admired. Under the cyber-name of “Lix”, Xiaowen Li authored almost 2000 articles covering a wide
range of areas, including popular science, hot-button issues in science, and comments on scientific
programs, as well as views on social issues and current affairs. He divided his blog into six categories:
Daily LifeBits & Pieces, A Look at History, Make ScienceNet Widely Known, Letters from Abroad,
Explanatory Notes of Lectures, and Quirky Ideas. Through these channels, he exchanged views
with netizens of ScienceNet. He showed great care and attention to young researchers and actively
participated in various activities organized by ScienceNet [2].

In 2014, he delivered a lecture at the University of Chinese Academy of Sciences, where he was
bestowed the nickname of the “Cloth Shoes Academician” because of his unpretentious look—cloth
shoes and simple clothes. He sent a clear message that scientists should be dedicated to their own
work with no interest in seeking fame and fortune. This view was highly praised by his fellow netizens
in particular. Following his death in 2015, numerous netizens on ScienceNet wrote memorial blogs
expressing their condolences and reverence for him [3].
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Figure 1. Academician Xiaowen Li.

3. Geometric-Optical Bidirectional Reflectance Modeling of Vegetation Canopies

Because of the three-dimensional structure of vegetation, anisotropic canopy reflectance in
remote sensing observations is characterized by the bidirectional reflectance distribution function
(BRDF) [4]. Multi-angle remote sensing plays an important role in the development of algorithms for
the retrieval of various surface biophysical parameters that are influenced by reflectance anisotropy.
Although radiative transfer theory was introduced into the field of land surface remote sensing
in the 1960s, the basic assumption that underlies it—of volumetric scattering into and within a
horizontally homogeneous medium—had greatly limited its scope of application. During his study in
the United States, Xiaowen Li took part in numerous National Aeronautics and Space Administration
(NASA) projects which greatly contributed to the generation of the Moderate Resolution Imaging
Spectroradiometer (MODIS) albedo products [5]. He also conducted in-depth field and theoretical
research on the geometric-optical bidirectional reflectance modeling of vegetation. He believed
that at the remote sensing pixel scale, the key to the directional reflectance of vegetation lay in its
surface structure.

The Li–Strahler geometric-optical (GO) model [6] was created by defining the geometric structure
of tree crowns, individually and in stands, to describe the radiative interaction of vegetation surfaces.
This model successfully described the anisotropic reflectance characteristics of vegetation surfaces.
The paper describing the GO model was selected for the milestone series by the International Society
for Optical Engineering (SPIE) because of the model’s ability to capture the angular and spatial
variabilities of reflectance using simple geometries defined by canopy architecture 6.

An early mathematical model of the reflectance of a discontinuous forest canopy was proposed
that treated trees as randomly distributed green cones on a contrasting background [7]. It was derived
directly from the canopy scale, rather than on the scale of crop leaves and stems as defined by earlier
efforts such as the Egbert model [8]. Inversion of this model allowed the direct calculation of the
height and spacing of trees from remotely sensed reflectance values. Subsequently, this application of
GO modelling methodology was adopted by Li and Strahler [6,9] for remote sensing image analysis.
The models initially used cone geometry to simplify conifer tree crowns; however, the models were
sufficiently general and robust for application to other geometric shapes and mixtures of simple shapes.
The models simulated the angular distribution patterns of reflected solar radiance from forests and
explained the major portions of the variance in a remotely sensed image of a forest stand.

Li et al. [10] further modeled the tree crown as an ellipsoid, which simplified the geometric
projection and complexity of computation of the vegetation canopy. Furthermore, by taking into
account mutual shadowing and the shadow overlap between incident and reflected directions, he
developed the geometric-optical mutual shadowing model (GOMS). This work led to the derivation of
several geometric-optical scattering kernels [11] and the development of the operational algorithm of
the MODIS BRDF/Albedo [5]. This product has been widely utilized, especially in modeling terrestrial
carbon and energy cycle dynamics and in characterizing the functioning of various ecosystems.
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The GOMS model has been further refined in order to describe the directional reflectance signatures of
mountainous areas [12,13] and to contribute to the inversion of forest structure parameters such as the
leaf area index (LAI) [14].

Li’s recognition that the geometry of individual plants and their spacing is essential to the
modeling of the gap frequency, which in turn is a key element in modeling the response of plant
canopies to radiation, represented a major breakthrough in canopy remote sensing. Thus, Li et al. [15]
proposed a method of modeling the probability of gaps occurring in a discontinuous vegetation canopy.
This provides a quantitative understanding of how the gap probability of a generally discontinuous
canopy differs from that of a generally continuous canopy. It also demonstrated that it was crucial to
link geometrical optics with radiative transfer theory and led to the foundation of the later geometric
optical radiative transfer (GORT) model [16], which described the effects of three-dimensional canopy
structure on the radiation environment and allowed for the characterization of the heterogeneous
radiation environment of natural vegetation at the forest stand scale. The GORT model treats vegetation
canopies as assemblages of randomly distributed tree crowns that are ellipsoidal in shape, wherein
the tree crowns are filled with leaves that absorb and scatter radiation passing through the crown.
Principles of radiative transfer are used in describing the multiple scattering of leaves inside the crowns
and the multiple scattering among crowns and the ground surface. The GORT model was extended
to include the vertical probability distribution profile of the canopy, greatly improving the remote
sensing inversion of forest structure parameters [17,18].

4. Thermal Infrared Emission Directionality Modeling

Research on the directional signatures of thermal infrared emission remote sensing has been
relatively less developed compared to that of visible and near-infrared remote sensing. Li et al. [19]
noted that when the accuracy required of land surface temperature retrieval from thermal remote
sensing is not high, the concept of composite emissivity or equivalent emissivity could be employed
by researchers, and the ambiguity in the definition of emissivity may be reasonable. Otherwise, the
applicability of Planck’s Law at the pixel scale must be taken into account when remote sensing errors
of land surface temperature of less than 1K are needed.

The pixel size in thermal infrared remote sensing is typically tens of meters to several kilometers.
When large areas of water, desert, snow, and lush grass land are taken into consideration, the problem
of mixed pixels is impossible to avoid. As for the effects of scale in Planck’s Law, Li et al. [20] noted
that under non-isothermal conditions, Planck’s Law is not applicable to the equivalent emissivity;
otherwise, the average pixel temperature will change abnormally with wavelength and viewing
angle. Li was convinced that the definition of effective or equivalent emissivity at non-isothermal
surface temperature was fundamental in exploring the directional mechanism of surface thermal
emission [21]. Based on both multiple scattering and the temperature differences in the system, he
proposed the concept of an apparent emissivity increment and then introduced a non-isothermal
surface emissivity model, which combined multiple scattering and non-isothermal conditions for the
first time [19,21]. Li et al. [22] demonstrated that the apparent emissivity increment is caused by two
factors: the temperature differences of mixed pixels and the multiple scattering of three-dimensional
(3D) structures captured in the pixels. Without a loss in generality, the equivalent emissivity of
non-isothermal surface pixels can then be defined as the emissivity under the same temperature
assumption of pixels, plus the apparent emissivity increment due to temperature differences under
particular conditions (such as the materials, structures, and temperature distributions).The introduction
of this increment term clearly explains the reason why the radiation of non-isothermal surface pixels
is different from those of isothermal ones. It retains the universality of Planck’s Law, while also
maintaining the independence of material emissivity. The apparent increment in emissivity due to
temperature differences is then used to cope with the spectral and directional variations of thermal
radiation caused by non-isothermal surfaces.
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Li et al. [20] investigated the effects of scale for Planck’s Law on non-isothermal blackbody
surface and proposed a scale correction formula for real-surface thermal radiation [23]. Subsequently,
Liu et al. [24] extracted the directional signatures of thermal infrared radiation of typical ground objects
on the basis of experimental observations from an airborne camera. Chen et al. [25] and Yan et al. [26]
made substantial improvements to the thermal radiation model to accommodate crown row structure.
By considering crop gap probability both in the direction of sunlight and of the observation, they
developed the bidirectional gap probability thermal radiation model, based on the model of discrete
vegetation gap probability [15], and the cross-correlation probability of continuous vegetation, which
has been demonstrated to better explain vegetation hotspots [25,26]. Recent research on the directional
mechanism of thermal infrared radiation and the thermal infrared radiation directionality model on
heterogeneous surfaces holds great promise [27].

5. Quantitative Remote Sensing Inversion Theory

The accumulation of multi-angle remote sensing data creates an opportunity for researchers to
retrieve various biophysical parameters of the land surface through the inversion of bidirectional
reflectance models. However, the implementation of quantitative methods in remote sensing remains
difficult. Some theoretical guidance must to be obtained from the perspective of information theory,
and a great deal of research has been focused on the operational practice of inversions [28–30].

In general, it is extremely difficult to obtain sufficiently distributed multi-angle data from single
orbital overpasses of one of the modern operational satellites. Furthermore, such overpasses are rarely
coincident with the main solar principal plane [31] and in the vicinity of the hotspot [32]. Even when
sequential overpasses are utilized to improve multi-angle sampling, it is difficult to accurately estimate
these information-rich attributes of the surface anisotropy [9]. It is worth noting that the accuracy of
hotspot reflection often determines the precision of ground clumping parameter inversions [33,34].
In addition, even when orbital mechanics cooperate, the effects of clouds and aerosols make the
acquisition of sufficient multi-angle data difficult [29,35,36].

Therefore, in order to solve these practical problems in remote sensing inversion, Xiaowen Li and a
close colleague, Jindi Wang, proposed a fusion scheme involving multi-angle and multispectral remote
sensing information [37]. For quantitative remote sensing inversion, Li et al. [38] and Gao et al. [39]
summarized a data-enabled decision-making process to meet an inversion target, and implemented a
multistage inversion strategy, featuring the division of the dataset and parameter set, based on the
parameter uncertainty and its sensitivity matrix. In response to these theoretical problems in remote
sensing inversion, Li et al. [30] further summarized the major difficulties in this field, and noted the
importance of introducing prior knowledge and its role in infinite-solution inversion. According to
the concept of a “hard boundary” applied to prior knowledge, the “soft boundary” of parameters is
constructed by the average expectations and uncertainties of parameters. This theoretically provided
a method of introducing prior knowledge into the task of remote sensing inversion, enriching the
inversion scheme with accumulated knowledge and enabling the reasonable and effective use of
limited remote sensing information. Xiaowen Li believed that it is extremely important to measure
the uncertainty of inversion parameters for any remote sensing inversion scheme, and explained
that such uncertainty depends not only on the confidence in the prior knowledge, but also on the
amount of available inversion data. He also explored the applicability of such a model, the influence
of signal noise in the data, ways of acquiring appropriate prior knowledge, and the sensitivity of
to-be-inverted parameters of the model to the data. Based on a form of joint probability distribution of
data space and parameter space, he outlined an idea for describing this overall uncertainty, which has
facilitated next-stage inversion strategies based on the stage inversion results and the uncertainty of
inversion parameters.

Li et al. [40] proposed a new method of accumulating prior knowledge for BRDF retrieval.
Using the example of a kernel-driven model inversion, prior knowledge was applied to the inversion
of the surface spectral albedo based on Bayesian theory so as to improve the inversion robustness and
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its accuracy in the case of limited direct acquisition. By employing this prior knowledge, Gao et al. [41]
used information inversion theory and proposed a “minimum variance” inversion principle by
considering the errors of factors derived from models and measurements, in order to address problems
of unstable inversion results when small samples were selected for the kernel-driven model inversion
based only on the least squares method.

Yan et al. [42] noted that the relative positional relationship of the vegetation reflection spectrum
curve can be used as prior knowledge in vegetation structure inversion. In the same year, they
analyzed the applicability of existing constrained optimization methods in remote sensing inversion
and proposed the concept of a penalty matrix from two perspectives [43]: an increase in inversion speed
and a reduction of the ill-posed characteristics of the optimization method. Qin et al. [44] introduced
the ensemble Kalman filter to achieve the inversion of surface parameters, which obtained effective
inversion results while providing the posterior distribution of prior knowledge. Wang et al. [45]
proposed a complete regularization theory for ill-posed inversions of surface parameters based on a
regularization strategy. Zhao et al. [46] studied the role of regularization parameters in determining
linear regularization inversion, and proposed a regularization parameter determination method based
on the maximization reduction of Shannon entropy. Zhao et al. [47] also developed a quantitative
method of determining the regularization parameter (the prior information ratio) in an iterative process
for nonlinear, ill-posed problems, which was based on information utilization in the inversion process
expressed by the Shannon’s entropy reduction method.

Inversion is the essential characteristic of quantitative remote sensing [48]. How to quantitatively
estimate the biophysical parameters of land surfaces with limited remotely sensed observation of the
surface and under unfavorable observation sensing conditions is the primary task of quantitative
remote sensing. Therefore, the application of prior knowledge to the inversion process can provide
important and necessary step information. Quoting Confucius, Xiaowen Li stated [35]: “When you
know a thing, to hold that you know it; and when you do not know a thing, to allow that you
do not know it—this is knowledge.” Based on multiyear data derived through satellite, airborne,
and ground-based experiments, prior knowledge of ground objects can be accumulated to provide
important support for remote sensing inversions.

6. Spatiotemporal Scale Effects in Remote Sensing Data

One of the essential problems in remote sensing research is related to scale: Do the laws of
physics and the principles at the pixel scale need to be corrected, and if so, how? The Li–Strahler
geometric-optical model explains non-Lambertian signatures on the pixel scale by using the
four-component variance in different directions, based on the Lambertian assumption of crown
and above-ground surfaces [5]. This model emphasizes that the Lambertian condition may prevail
within the pixel, while non-Lambertian signatures will exist at the pixel scale overall.

In order to clarify the generality of scale effects in remote sensing science, Li et al. [19,23] described
the effects of scale caused by the three-dimensional structure inside a pixel by using a cross-valley
example, which imagines a remote sensing pixel at the top of a 90◦ north–south valley, containing both
east- and west-facing slopes, and with both the sun and the sensor in the vertical plane of the valley.
Although both the slope surfaces are Lambertian in reflectance, the surface reflection of the entire pixel
no longer has a Lambertian property as a whole.

Xiaowen Li believed that many laws and principles of physics have been generalized, and deduced
under specific experimental conditions. Therefore, they may only be applicable in homogeneous media
or surfaces [23]. Given the complexity of terrestrial surfaces at the pixel scale of remote sensing, these
laws and principles may not be still applicable to this scale; and if not, how might they be corrected?
This remains a fundamental challenge that quantitative remote sensing must confront. An example
of a scale-dependent physical law is Beer’s Law. While Beer’s Law works well in the atmosphere
and in the oceans, there is a clear scale problem when it is applied to vegetation [49,50]; especially
when the pixel spatial resolution is coarser than that of plant structures, Beer’s Law must be scaled
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up [5]. Taking another example, the reciprocity principle is the cornerstone of radiative transfer theory.
Xiaowen Li and Zhengming Wan demonstrated that the thermodynamic proof of Siegel and Howell
was incorrect [51]. Snyder also proposed light reversal proof of the reciprocity principle, attempting
to strictly extend the principle to the pixel scale [52]. Li et al. [20] noted that light reversal is in
conflict with the law of the conservation of energy when homogeneous illumination produces spatially
inhomogeneous reflections due to multiple scattering on the pixel.

The key issue of scale restricts the development of quantitative remote sensing. Li et al. [23]
explained the change of quantity connotation, the change of quantity nature, and the applicability of
physical laws at different scales through the geometric-optical model. He made preliminary efforts
in establishing a scale-related and quantitative theoretical system for remote sensing, explaining the
spatiotemporal scale effects of variable surface elements from point to surface, and studying the scaling
model and information conversion model, all of which represent substantial progress [21].

The second issue in quantitative remote sensing is scale transfer. Xiaowen Li summarized the main
problems of globally oriented quantitative remote sensing research as follows [53]: (1) The quantitative
remote sensing products generated at different resolutions and from different remote sensing data
are inconsistent with each other and with most traditional point observations. (2) Although remote
sensing finds increasingly wide application, it is difficult to meet different spatiotemporal resolution
and span requirements of users of different remote sensing products. This leads to: (a) Compared with
the ability of remote sensing satellites to acquire data, the automation and quantification of remote
sensing data and even the ability to understand remote sensing data and its effective use are far from
sufficient. (b) Quantitative remote sensing research is not systematic and universally applicable as
researchers often do their own work without interacting with their colleagues. Such fragmentation
makes it difficult to make systematic and major achievements.

Xiaowen Li believed that the key to solve the afore mentioned problems relied on reliable,
convenient, and self-consistent scale transfer. He further clarified that the scientific task of remote
sensing is to achieve an understanding and transformation between the given spatiotemporal scale
of high technology and that of geoscience applications. The remote sensing scale is physical and
geometric in nature. Its physical nature can be interpreted as the phenomenon that shows differences
in geophysical properties inverted from the remote sensing data of different resolutions. Its geometric
nature presents different geometric signatures (e.g., the extent of cultivated land area) measured
by pixels of different sizes, which is solved by surface descriptions, such as fractal dimensions and
interdisciplinary geosciences. The accuracy of remote sensing inversion is determined by the physical
nature of the remote sensing scale, making it a unique scale issue inherent to remote sensing itself.

Xiaowen Li tried to put forward a basic concept of a remote sensing trend surface in order to
solve the physical scale effects and develop a framework for remote sensing geoscience cognition [54].
By drawing inspiration from the idea of a trend surface in geography, the remote sensing trend
surface recognizes the uniqueness of the remote sensing scale issue and aims to construct a set of
prior knowledge data with high spatiotemporal resolution without scale error. The trend is then
obtained by summarizing and understanding various data, products, and models through geoscience,
and remote sensing principles and methods. Therefore, the remote sensing trend surface gives
priority to the construction, utilization, and accumulation of prior knowledge, while emphasizing
interdisciplinary research within the geosciences. These efforts are conducive to solving the scaling
issue in remote sensing.

7. Quantitative Remote Sensing Experiments

Remote sensing experiments can provide satellite, airborne, and ground observation data for
the construction of remote sensing models suitable for ecological environmental applications, the
evaluation of inversion algorithms, scale transfer mechanism analysis, and calibration and product
validation. Xiaowen Li attached great importance to the role of remote sensing experiments in
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quantitative remote sensing research and repeatedly emphasized that “researchers must bear models
in mind before an experiment is conducted”.

For example, during the process of constructing the geometric-optical model, Li’s core research
achievement, the importance of observations stands out. After years of accumulating observation
data and conducting scientific analyses, Xiaowen Li and Alan Strahler developed a series of
geometric-optical models. Therefore, it can be concluded that remote sensing research should always
undergo two crucial phases: first, gaining an objective understanding of the real world through
observation, and then constructing models using appropriate mathematical and physical methods.

For the third phase of remote sensing research, namely the evaluation of models, observations
are also indispensable. In the early 1990s, Xiaowen Li and his team collaborated with the Changchun
Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences to establish an indoor
bidirectional reflectance observation laboratory at the Jingyuetan Experimental Station of Changchun,
China. Dedicated to studying the distribution signatures of discontinuous canopy reflectance
and its relationship with canopy geometry, their joint efforts also enabled the first international
multi-angle remote sensing seminar to be held in Beijing. From May to October of 1995 and in
August of 1996, Xiaowen Li and his team designed a simultaneous airborne and ground-based
measurements experiment at the apple orchards of Xishatun Village, Changping District, Beijing,
in China. The observation data were then used to validate the GOMS and GORT models [9,16].
The accumulation of sufficient multi-angle remote sensing data created numerous possibilities for
scientists to retrieve various biophysical parameters of land surfaces through the use of bidirectional
reflectance models [55].

Xiaowen Li and colleagues paid great attention to the role of quantitative remote sensing
experiments. In China, Li was involved in organizing a series of simultaneous airborne, satellite-borne,
and ground-based remote sensing experiments at places such as the Shunyi district of Beijing and
the Poyang Lake Basin in Jiangxi Province [56], accumulating substantial and valuable data for
the development of remote sensing models and the evaluation of algorithms. To further combine
quantitative remote sensing with other disciplines, such as ecohydrology, two-phase experiments
of the Heihe River Basin were conducted. By employing ground-based and airborne platforms, as
well as active and passive remote sensing instruments, the researchers made a number of findings
during this comprehensive experiment. Furthermore, they created a platform for theoretical validation,
established scientific data sets, and enhanced quantitative remote sensing research and its applications
in ecohydrology through information sharing [57,58].

8. Conclusions

Remote sensing radiative transfer modeling, quantitative inversion, spatiotemporal scale effects
in remote sensing data, comprehensive field experiments, and product validation lie at the forefront of
remote sensing science. Among the most important and lasting contributions Xiaowen Li made to the
field are:

(1) The construction of a series of geometric-optical models and hybrid models of geometric optical
and radiative transfer, which led to kernel-driven bidirectional reflectance models and the
foundations of global bidirectional reflectance distribution functions and albedo products.

(2) The definition of thermal infrared emissivity for inhomogeneous surfaces by the establishment
of a conceptual model of thermal infrared radiation directivity for inhomogeneous surfaces,
the development of an airborne multi-angle multispectral imaging system, and work in new
fields of study and ways of examining thermal infrared radiation directionality mechanisms and
multi-angle thermal infrared remote sensing.

(3) Noting the importance of prior knowledge and its role in inversion; then, developing the theory
and method of quantitative remote sensing inversion based on prior knowledge, proposing a
multi-stage inversion strategy featuring the division of datasets and parameter sets (based on

388



Remote Sens. 2018, 10, 1764

parameter uncertainty and sensitivity matrices), and presiding over the development of the
spectrum knowledge database of China for typical ground objects.

(4) Promoting research into the effects of scale and scale transfer in remote sensing, inducing the
spatiotemporal scale issue of quantitative remote sensing and focusing on two aspects: the
scale and scale transfer of remote sensing physical models, and the establishment of a universal
theoretical framework for remote sensing scale transfer.

(5) Organizing and conducting comprehensive experiments of quantitative remote sensing in the
Shunyi district of Beijing and Poyang Lake of Jiangxi, as well as comprehensive experiments in the
ecohydrology of the Heihe River Basin. All of these efforts have resulted in substantial amounts
of valuable data for the development of remote sensing models and algorithm evaluation and
have fostered the further development of remote sensing science in ecohydrology.

The quantification of remote sensing applications is an important component of science and
technology and will continue to play an increasingly important role in the study of Earth system science
and global change. The contributions and achievements of Xiaowen Li and his fellow researchers in
remote sensing mechanism modeling, quantitative inversion, the development of an understanding of
the effects of different SPATIOTEMPORAL scales in remote sensing data, the design of remote sensing
experiments, and product validation have all strengthened and deepened our understanding of remote
sensing and its application to the global sustainable development of humankind.
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