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Abstract

Detecting internal defects in narrow and curved pipelines remains a significant challenge,
due to the difficulty of achieving reliable defect perception under low-light conditions
and generating collision-free motion trajectories. To address these challenges, this article
proposes an event-aware ES-YOLO framework, and develops a pipeline defect inspection
experimental environment that utilizes a hyper-redundant manipulator (HRM) to insert
an event camera into the pipeline in a collision-free manner for defect inspection. First, to
address the lack of datasets for event-based pipeline inspection, the ES-YOLO framework
is proposed. This framework converts RGB data into an event dataset, N-neudet, which is
subsequently used to train and evaluate the detection model. Concurrently, comparative
experiments are conducted on steel and acrylic pipelines under three different illumination
conditions. The experimental results demonstrate that, under low-light conditions, the
event-based detection model significantly outperforms the RGB detection model in defect
recognition rates for both types of pipelines. Second, a pipeline defect detection physical
system is developed, integrating a visual perception module based on the ES-YOLO frame-
work and a control module for the snake-like HRM. The system controls the HRM using a
combination of Nonlinear Model Predictive Control (NMPC) and the Serpentine Crawling
Algorithm (SCA), enabling the event camera to perform collision-free inspection within the
pipeline. Finally, extensive pipeline insertion experiments are conducted to validate the
feasibility and effectiveness of the proposed framework. The results demonstrate that the
framework can effectively identify steel pipeline defects in a 2 Lux low-light environment,
achieving a detection accuracy of 84%.

Keywords: bio-inspired event vision; ES-YOLO; deep learning with Event data; synthetic
event data; hyper-redundant manipulator; NMPC

1. Introduction

Pipelines typically present a narrow, complex, and poorly illuminated environment [1],
making manual inspection of pipeline defects a considerable challenge. This challenge
arises primarily from two factors. First, inadequate lighting conditions hinder sensors from
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clearly capturing the internal pipeline environment. Second, the narrow and curved geom-
etry of pipelines restricts the effectiveness of traditional manual inspection and remotely
operated robotic systems, which are not only inefficient and vulnerable to environmental
disturbances but also struggle to detect concealed defects. In recent years, with advance-
ments in sensor technologies and intelligent robotics, pipeline inspection has increasingly
evolved toward automation and intelligence.

Visual perception is widely applied in pipeline defect detection. Le et al. [2] devel-
oped an online multi-sensor inspection system for pipeline defect detection, employing
RGB fusion technology to precisely identify defects such as cracks, corrosion, and block-
ages. Nevertheless, the limitations of RGB cameras in low-light and high-dynamic-range
environments remain a significant challenge in complex pipeline inspections.

In recent years, event cameras, as bio-inspired visual sensors, have become increasingly
important in industrial inspection due to their advantages in dynamic range, temporal
resolution, low power consumption, and high sensitivity to low-light conditions [3]. This
makes event cameras particularly suited for low-light and high-contrast environments.
However, existing computer vision algorithms are not directly compatible with event
streams, posing challenges for the direct application of event cameras in data processing. In
addition, the data format of RGB and event streams differs significantly, and most existing
standard datasets are based on RGB images, with a lack of publicly available datasets
specifically designed for event data. This further restricts the application and development
of event cameras in specific fields. Recreating pipeline defect datasets suitable for event
cameras is not only time-consuming but also costly.

To address this issue, Henri Rebecq et al. [4] designed the event camera simulator ESIM.
Building on this, Daniel Gehrig et al. [3] introduced frame upsampling technology into this
framework, allowing models trained on synthetic event data to better generalize to real
event data. Although these methods offer potential for applying event cameras to pipeline
defect detection, whether the model can preserve the advantages of event cameras in low-
light conditions remains a critical issue. Furthermore, beyond visual perception, ensuring
that a pipeline inspection robot can navigate a collision-free trajectory for safe insertion
into the pipeline constitutes an additional significant challenge. Currently, pipeline robots
have been developed in various structures and configurations [5-7]. These technologies
offer significant advantages in improving detection accuracy and reducing labor costs.

Among them, snake-like hyper-redundant manipulators (HRMs), due to their high
flexibility, adaptability, and multiple degrees of freedom, can operate efficiently in complex
pipeline environments. However, a key challenge in their path planning lies in ensuring
that the end-effector reaches the target position while avoiding collisions between the ma-
nipulator and its surroundings. Although the high redundancy enhances the manipulator’s
reachability and spatial exploration capabilities, it also significantly increases the compu-
tational time and resource consumption of path planning [8,9]. The E-RRT* algorithm
proposed by Ji et al. [10] employed ellipses instead of traditional straight lines to connect
path nodes and optimized the sampling process, effectively addressing the path planning
problem for HRMs in confined spaces.

Due to their slender and flexible bodies, snakes efficiently explore narrow spaces,
making them a key inspiration for bionic design. Inspired by this, previous studies have
proposed modular snake-like structures to construct HRMs [11]. Furthermore, snake
locomotion exhibits a “head-following” characteristic, whereby body movements are
determined by the trajectory of the head. This mechanism can be applied to the motion
planning of snake-like robots: if the final configuration of the robot’s end-effector reaching
the target point is directly planned, this configuration can be regarded as the head trajectory,
and the body joints follow this trajectory. Zhu et al. [12] proposed a pipeline inspection
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method that combines Nonlinear Model Predictive Control (NMPC) with a Serpentine-
inspired Crawling Algorithm (SCA).

In summary, this article proposes and validates an innovative framework, ES-YOLO,
designed to address the core challenges of employing event cameras for defect detection in
narrow, low-light pipelines. To this end, we first present a practical method to systemati-
cally convert a public RGB dataset (NEU-DET) into event-based data, thereby creating a
novel dataset, N-neudet. This dataset is then utilized to train an efficient defect detection
model. Furthermore, the proposed perception framework is integrated with the motion
control system of a snake-like hyper-redundant manipulator, as illustrated in Figure 1. The
feasibility and practical effectiveness of the overall system are validated through physical
experiments conducted in pipelines of different materials and under extremely low-light
conditions. The main contributions of this article are as follows.

¢ To the best knowledge of the authors, this work presents the first system-level integra-
tion and validation of event-driven perception with an HRM for pipeline inspection,
thereby constructing and experimentally verifying a complete HRM-based defect
detection platform. The contribution goes beyond algorithmic testing under idealized
conditions by providing a holistic validation of the entire perception and motion
framework under real-world physical constraints. These results convincingly demon-
strate both the feasibility and the significant potential of this technical approach for
addressing complex industrial environments.

* An event-based defect dataset, termed N-neudet, is successfully constructed, with
its data synthesized from traditional RGB images using the ES-YOLO framework.
The practical utility of this dataset is rigorously validated through comprehensive
comparative experiments. A defect detection system trained on N-neudet exhibits
remarkable stability and accuracy, particularly under low-light conditions where
conventional RGB cameras proved ineffective. These results confirm the robustness of
the dataset and its suitability for event-based pipeline defect detection applications.

Event Camera

Figure 1. Schematic diagram of the model of an HRM equipped with an event camera.

2. Related Work
2.1. Trajectory Planning for HRM

Due to their high redundancy, HRMs can flexibly avoid obstacles and effectively access
narrow, curved spaces.

The nonlinear control of HRMs poses significant challenges due to their high degrees
of redundancy. Liu et al. [13] addressed this issue by proposing a novel control frame-
work based on a nonlinear observer, which transformed the system into an interconnected
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input-to-state stable (ISS) structure, thereby achieving asymptotic stability. Building upon
this, Liu et al. [14] employed the small-gain theorem to design distributed optimal con-
trollers that effectively resolved the output consensus problem in multi-agent nonlinear
systems. More recently, Jin [15] tackled the global asymptotic stability problem of feedback
optimization in nonlinear systems by integrating an enhanced gradient flow optimizer
with a nonlinear perturbation function. The proposed method was rigorously validated
using tools such as singular perturbation theory and input-to-state stability analysis.These
studies provide theoretical guidance and inspiration for the nonlinear control of HRMs.

Currently, prevalent path planning methods primarily include graph search-based
algorithms and sampling-based algorithms. Among these, the A* algorithm [16-18] and Di-
jkstra’s algorithm [9] were common representatives of graph search methods. Tang et al. [19]
enhanced the A* algorithm by incorporating the artificial potential field method, introduc-
ing new node search strategies, and integrating local path optimization. This approach
effectively reduced the number of search nodes, improved search efficiency, and simul-
taneously optimized the manipulator’s obstacle avoidance posture. Conversely, ref. [20]
proposed an extended Dijkstra’s algorithm that integrates Delaunay triangulation and plane
transformation techniques to optimize paths on complex surfaces, significantly enhancing
path planning accuracy in both single-robot and multi-robot tasks.

Ref. [12] proposed a pipeline inspection and detection method that integrates Nonlin-
ear Model Predictive Control (NMPC) with a Snake-inspired Heuristic Crawling Algorithm
(SCA). The method is divided into three stages: insertion, inspection, and exit. During the
insertion and withdrawal stages, the SCA—inspired by snake locomotion—is employed to
significantly reduce path planning time. In the inspection stage, NMPC is applied to ensure
efficient and collision-free configuration. Specifically, NMPC functions as a high-level
planner, generating a global, collision-free path configuration. In contrast, SCA operates as
a low-level controller, guiding the manipulator to accurately track the sequence of path
points generated by NMPC, thereby executing the physical insertion motion.

2.2. Deep Learning with Event Data

In the field of event cameras, significant efforts have been made to create datasets and
explore their applications, particularly in object detection.

For example, in [21], the authors used a Spiking Neural Network (SNN) to simulate
human eye saccadic movements, converting static image datasets into event data, thereby
creating semi-synthetic event-based versions of the MNIST and Caltech101 datasets. In [22],
the DVS-Gesture dataset, which includes 11 types of gestures, was used to achieve real-time
recognition of gesture data streamed by DVS. Additionally, Enrico Calabrese et al. [23]
created a 3D human pose dataset, and [24] created the active pixel vision sensors (DAVIS)
Driving Dataset (DDD17), the first driving recording dataset combining DVS and DAVIS.
Subsequently, ref. [25] proposed DSEC, a large-scale new dataset that includes data from
high-resolution event cameras, traditional cameras, LIDAR, and GPS, and provides dis-
parity ground truth, aimed at promoting and evaluating the development of event-based
stereo vision algorithms.

These datasets have laid the foundation for advancements in object detection using
event cameras. Cannici et al. [26] proposed two event camera-based object detection
models, YOLE and fcYOLE. Maqueda et al. [27] designed a CNN architecture adapted to
event camera outputs and proposed an event-frame representation method, successfully
predicting steering angles in autonomous driving using the DDD17 [24] dataset based on
event cameras. Subsequently, Alonso et al. [28] proposed the first semantic segmentation
baseline model for the DDD17 dataset. However, event-based deep learning algorithms
still lack support from large-scale event datasets.
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2.3. Synthetic Event Data

Currently, there are many event datasets [21-23] available for event-driven algorithms.
Rebecq et al. [29,30] made progress by using simulated event data to train a recurrent
neural network-based model, which succeeded in video reconstruction tasks, demonstrat-
ing the potential for expanding event-camera applications. Kaiser et al. [31] proposed a
simple event camera simulator that generates events based on image difference thresholds.
Refs. [32,33] introduced two event generation simulators. Daniel Gehrig et al. [3] enhanced
the event simulator ESIM [4] with frame interpolation technology, which can convert frame
data from traditional video sequences into asynchronous event streams. This method
allows for the reuse of existing datasets to generate event data and accurately simulates
the behavior of real event cameras, ensuring that synthetic data is suitable for training and
testing event algorithms.

3. Overall Workflow of the Pipeline Defect Detection Method

To evaluate a performance of the ES-YOLO framework in a real-world pipeline en-
vironment, a dedicated experimental platform for defect detection is developed. This
platform integrates two core components: first, a visual perception module equipped with
the ES-YOLO framework to address the challenge of detection in low-light environments;
second, a snake-like HRM motion control system based on NMPC and SCA algorithms to
achieve collision-free navigation within complex curved pipelines.

The experimental procedure is primarily divided into three steps.

e  Step 1: Model Construction. The ESIM model is employed to synthesize an event-
based dataset, designated N-neudet, from the public NEU-DET RGB dataset. This
synthesized dataset is then utilized to train a YOLOv8 model, culminating in the final
ES-YOLO framework.

e  Step 2: Data Collection. An event camera is mounted on the HRM. Guided by the
NMPC and SCA algorithms, the HRM first determines a collision-free trajectory and
is subsequently inserted into the pipeline to collect in situ data.

e  Step 3: Defect Detection and Evaluation. Upon completion of data acquisition, the
resulting dataset is fed into the ES-YOLO framework for defect detection, and the
performance is quantitatively evaluated.

The comprehensive experimental workflow is illustrated in Figure 2.

Step 2: Data Collection Event Camera

Pipline
Enter the pipeline

Collect|pipeline data

v

Input RGB data Output ' det 2L | Vo gvg | Detect Pipeline defect
NEU-DET |————> @ Event ’: DR : detection results

ES-YOLO

Step 1: Model Construction Step 3: Detect and Evaluation

Figure 2. Overall workflow of the pipeline defect detection method based on the ES-YOLO.
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4. Methodology of the ES-YOLO
4.1. Overview

The framework of ES-YOLO, which converts RGB datasets for event cameras, is
illustrated in Figure 3.

labels labels

images ESIM
RGB Dataset video Event Dataset
. ) sythetic event
every adaptive input " EST output
p > = & o s —
image upsampling & o (| T }{ ~
¥ !
g t ———
train
Event camera
Pipeline event dataset
detect — _
— = BackBone Neck

event frame
accumulation

Detection

Figure 3. ES-YOLO framework architecture. First, large-scale image datasets (NEU-DET) are con-
verted into synthetic event datasets (N-neudet) through the ESIM module; then, the generated event
data is passed to the YOLOv8 module for training.

ES-YOLO consists of the ESIM module and the YOLOv8s module. This section
introduces the ESIM module and the YOLOv8s module. First, the RGB dataset is upsampled
to convert it into a high-frequency dataset. Second, the ESIM module is used to synthesize
event dataset. Finally, the YOLOv8s model is trained using the N-neudet event dataset,
and defect detection is performed on actual pipelines.

4.2. ESIM Module

ESIM module is used to synthesize event data. Due to the lack of large event
datasets for defect detection, we need to convert RGB datasets into event datasets.
Equation (1) [3,34,35] describes the event generation model of an ideal sensor. The pixels
of an event camera are independent and continuously monitor the logarithmic brightness
signal at their corresponding positions L(u, t). When the change in logarithmic brightness
u=(x;, yl-)T at a pixel exceeds a certain threshold C over time t;, an event ¢; = (x;,y;, t;, p;)
is triggered.

AL((X:‘/}/:')T/ fz‘) = L((szyz')r, ti) - L((xiryi)T/ ti— Atz’) > piC (1)

In Equation (1), p; € {—1,1} represents the polarity of the event signal, which is the
indicator of the change in brightness. At represents the time since the last occurrence of
pixel u.

The image is processed through an offset function to transform the original image
into a low-frame-rate version. Although the ESIM event camera simulator can adaptively
render virtual scenes at any temporal resolution, the actual event camera operates on a
microsecond timescale. Therefore, we apply frame interpolation technology [36] to enable
frame reconstruction at any temporal resolution. Simultaneously, an adaptive upsampling
strategy [4] is employed to determine the number of intermediate frames to generate,
thus converting the low-frame-rate images into a high-frame-rate sequence. Finally, the
event synthesis module (ESIM) is used to convert the high-frame-rate image sequence into
event data.
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4.3. YOLOv8 Module

The event dataset generated by ESIM in Section 4.2 is then used as input for training
the defect detection model. As mentioned in [37], YOLO is the first model to treat the object
detection problem as a regression task. Released in 2023, YOLOVS [38] builds upon the
success of earlier versions such as YOLOVS5 [37], introducing advanced architectural designs
and training strategies, including anchor-free detection, to provide a unified framework
with improved accuracy for various computer vision tasks [39,40]. By integrating an anchor-
free design with attention mechanisms and dynamic convolution, the model not only
simplifies its architecture but also significantly enhances the detection of small objects—an
essential factor in many edge deployment scenarios. Given its excellent performance
in terms of accuracy, efficiency, and usability, this study adopts YOLOVS as the core
detection module.

4.4. Event Spike Tensor

The synthetic events are combined with the original NEU-DET labels to train the
YOLO module. Due to the sparsity of event signals and their non-uniform spatiotem-
poral distribution, pattern recognition algorithms typically aggregate event data into
grid-based representations. To address this, we use the general framework Event Spike
Tensor (EST) [41], which converts event streams into grid-based representations. Unlike
previous event representation methods, EST retains the four dimensions of event signals
and maps events of positive and negative polarities to two independent spatiotemporal
grids, thereby enhancing the model’s ability to represent event data.

5. Comparative Experiments Based on the NEU-DET Dataset

To validate the feasibility of the ES-YOLO framework for practical pipeline defect
detection, we conducted a series of experiments. These experiments involved synthesizing
event datasets, setting model training parameters, evaluating the model, and performing
practical defect detection. Finally, we compared the detection results of the event camera
with those of the RGB camera.

5.1. Dataset Generation

For the experiments, we selected the NEU-DET dataset [42], which contained six
typical surface defects of hot-rolled strip steel: Roll Scale (RS), Patches (Pa), Cracks (Cr),
Pitted Surface (PS), Inclusions (In), and Scratches (Sc). The dataset consisted of 1800 images,
with 300 samples per defect type, and included detailed annotations specifying both the
defect categories and their locations. After selecting the NEU-DET dataset, we processed it
through the ESIM module to generate a synthetic event-based defect dataset, which we
named N-neudet. This event dataset was subsequently used to train the YOLO-based
defect detection model, allowing for the evaluation of the model’s performance across
different defect categories. As a result, a total of 1800 event defect images were generated,
containing six different types of typical defects, with 300 samples for each defect type. The
conversion process from RGB images to event frames is illustrated in Figure 4.

To improve the recognition accuracy, this article employed a sliding window com-
bined with adaptive interpolation strategy. Specifically, a 512 x 512 Region of Interest
(ROI) window was defined on a 640 x 640 static RGB image and was synchronously
shifted in both horizontal and vertical directions with a stride of s = 1 pixel, resulting in
K= [%5512"‘ +1 = 129 sub-regions (with the final incomplete region discarded). Each
ROI sequence was synthesized into a 128-frame, 20 fps video, while its original label
boundaries were mapped to the local coordinate system. This transformation was given
by x' = x — Ax, where x represented the bounding box coordinates in the original image,
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Ax was the displacement vector of the ROI window’s origin, and x” was the resulting
coordinate vector in the local ROI frame. Subsequently, an adaptive frame interpolation
technique [36] was applied to upsample the video from 20 fps to 200 fps, producing a
high-frame-rate sequence. This sequence was then fed into the ESIM module to gener-
ate the corresponding event data. Compared to directly simulating events from the full
640 x 640 image, the proposed sliding window and adaptive interpolation approach signifi-
cantly increased the target event density, thereby enhancing the recognition accuracy of the
ES-YOLO framework.

RGE picture Event frame

event
representation

Scrat€hes

psampling
angmentation
parameters

adaptive
uj

video

Figure 4. Illustration of RGB dataset conversed into event dataset.

To simulate event generation, we used the open-source simulator ESIM [3]. Before
generating events, we needed to carefully select the contrast thresholds. We randomly
sampled the contrast thresholds for positive (Ctp) and negative (C,) events from a uni-
form distribution, U (Cymin, Ctmax). This random sampling method improved the domain
adaptability between simulated and real data, thereby enhancing the generalization of
simulated events to real events. In this experiment, we chose C;pin = 0.1 and C¢max = 0.5.
After the ESIM simulation, the final event stream was generated with an event density of
256 events/ms and a temporal resolution of 1.953 ms.

Finally, to match the synthesized event stream with the annotations based on the
YOLOvVS8 model, we converted the asynchronous and sparse event stream into a tensor
representation. We selected the Event Spike Tensor (EST) [41] because it performed well
in both high-level and low-level tasks. The EST method mapped positive and negative
polarity events into separate spatiotemporal grids, which were then stacked along the
channel dimension to form the final tensor representation of size H x W x C. In this
representation, H and W were the spatial resolution of the sensor, and C = 15 was a
hyperparameter which controls the number of temporal bins used to aggregate events.

5.2. Experimental Parameters

This experiment was implemented using the PyTorch framework. The ADAM opti-
mizer was used for training, with a learning rate set to 0.01. A total of 100 epochs were
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trained, with the momentum parameter set to 0.937, and a batch size of 64. The training
parameters used in the experiment are shown in Table 1.

Table 1. Training parameters.

Parameter LR Batch Image Monmentum Epoch

Value 0.01 64 640*640 0.937 100

5.3. Evaluation Metrics

In this experiment, we used multiple metrics to evaluate the model’s detection perfor-
mance, including precision (P), recall (R), and mean average precision (mAP).

Precision is defined as the ratio of the number of True Positive samples correctly
predicted by the model to the total number of samples predicted as positive by the model,
as shown in Equation (2).

TP
TP + FP

Recall is defined as the ratio of the number of True Positive samples correctly predicted

Precision =

2

by the model to the total number of actual True Positive samples, as shown in the following
Equation (3).

TP
TP +FN

mAP and AP are metrics used to evaluate multi-class classification problems. mAP is

Recall = 3)

the average of the AP values across all classes, while AP is calculated separately for each
class. The formulas are shown in Equations (4) and (5).

1

AP = /0 P(R)dR @)
S .

MAP — Zf—lsAP(] ) 5)

In the above formula, S represents the total number of classes, TP is True Positives,
FP is False Positives, and FN is False Negatives. P(R) is the precision-recall curve. These
metrics are important for evaluating the performance and adaptability of the model.

The False Negative Rate (FNR) is defined as the proportion of positive samples that the
model fails to detect. It reflects the model’s missed detection rate, as shown in Equation (6).

FN
TP +FN

In traditional classification tasks, the False Positive Rate (FPR), defined as the pro-

FNR = 1 — Recall 6)

portion of non-defective samples incorrectly classified as defective, is commonly used to
evaluate model performance. However, in the context of industrial defect inspection, this
metric may not provide a meaningful assessment of model reliability. To more effectively
capture the practical impact of false alarms in such scenarios, this study adopts the False
Discovery Rate (FDR) as a key evaluation metric. FDR is defined as the proportion of
false positives among all samples predicted as defective, thereby directly quantifying the
severity of the model’s false alarms. The formulation of FDR is presented in Equation (7).

FP

FDR = 75 Fp =

1 — Precision )
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5.4. Results
5.4.1. Training Visualization

Through the experiments described above, we obtained the ES-YOLO framework’s
experimental results on the N-neudet training set, as illustrated in Figure 5.
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Figure 5. Training result figures. (a) The bounding box loss (box_loss), which measures the error in
predicted object locations, shows a consistent downward trend, indicating that the model is effectively
learning to locate objects; (b) the classification loss (cls_loss), indicating the error in predicting the
correct object class, also steadily decreases as training progresses; (c) Distribution Focal Loss (dfl_loss),
another component for bounding box regression, follows a similar convergence pattern; (d) Key
evaluation metrics, showing the progression of precision, recall, and mean Average Precision (mAP),
all exhibit a clear upward trend, signifying significant performance improvement over time.

In Figure 5a, the train/box_loss exhibited a steady downward trend, indicating that
the model’s bounding box regression capability was gradually improved. The val/box_loss
also showed a similar downward trend, confirming the model’s strong generalization ability
on unseen data. In Figure 5b, both train/cls_loss and val/cls_loss decreased significantly,
signifying that the model was effectively learning to distinguish between different object
classes. The distribution focal loss, another component of bounding box regression, was
shown in Figure 5c. Its convergence on both sets further confirmed the stability of the
training process.

In Figure 5d, as the number of training epochs increased, the model’s precision
gradually improved. The mAP@0.5 (mean average precision at an IoU threshold of 0.5)
increased rapidly and stabilized, indicating a significant enhancement in the model’s overall
detection performance. Although the mAP@0.5:0.95 (mean average precision across loU
thresholds from 0.5 to 0.95) was lower than mAP@0.5, its upward trend was also evident,
further demonstrating the model’s robustness across different IoU thresholds.

Overall, the ES-YOLO framework exhibited good convergence during training, with
both training and validation losses showing a downward trend. Additionally, the model’s
precision and recall demonstrated significant improvement, highlighting the model’s
effectiveness in the defect detection task.

5.4.2. Validating Visualization

We selected a subset of images from the N-neudet event dataset as the validation set.
After 100 epochs of training, the model’s performance on the validation set is presented in
Table 2.
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Table 2. ES-YOLO validating results.

Class P R mAP@0.5 FNR FDR
All 0.952 0.657 0.801 0.343 0.048
Crazing 0.817 0.0714 0.238 0.9286 0.183
Inclusion 0.957 1 0.995 0 0.043
Patches 0.982 0.75 0.971 0.25 0.018
Pitted 1 0.62 0.876 0.38 0
Rolled 0.956 0.5 0.732 0.5 0.044
Scratches 0.998 1 0.995 0 0.002

The results showed that the model achieved a precision of 0.952, a recall of 0.657, and
an mAP@0.5 of 0.801 across all six categories, demonstrating good overall performance.
However, for the two defect types, Crazing and Rolled-in-scale, although the detection
precision exceeded 0.8, the recall rates were notably low. This phenomenon indicated that
the model struggled to accurately distinguish between these two specific defect types,
often leading to misclassifications. These findings highlighted certain limitations of event
cameras in fine-grained defect classification tasks.

The qualitative results of the validation set are illustrated in Figure 6. The bounding
boxes in Figure 6a represent the ground truth. Figure 6b illustrates the prediction results of
the validation set.

\‘A

(b)Prediction results

Figure 6. Visualization of validation set results. (a) represents the ground truth; (b) represents the
prediction results of the validation set.

Meanwhile, the original NEU-DET dataset was trained using the YOLOv8s model,
and detection results were obtained on the validation set. Table 3 presents a quantitative
comparison of the detection performance between models trained on the original NEU-DET
RGB dataset and the synthesized N-NEUDET event dataset. The evaluation was conducted
using the four key metrics of precision (P), recall (R), mAP@0.5, and inference time. The
results demonstrated that, on the validation set, the ES-YOLO model achieved substantially
higher detection accuracy on the event-based dataset compared to the RGB dataset, which
validated its effectiveness in defect identification.
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Table 3. Comparison of training results between RGB and event dataset.

Framework Dataset P R mAP@0.5 Inference Time
ES-YOLO N-neudet 0.952 0.657 0.801 79.167 ms
YOLO NEU-DET 0.84 0.637 0.773 69.444 ms

6. Performance Evaluation of ES-YOLO Under Different Illuminations

To validate the advantages of event cameras in defect detection, we conducted com-
parative experiments. Specifically, we used the Intel RealSense L515 RGB camera and
the DVXplorer Mini event camera to collect data from steel and acrylic pipelines. The
trained ES-YOLO framework was then applied for detection, and the results were analyzed
for comparison.

The geometric specifications and defect characteristics of the two pipeline types are
depicted in Figure 7. Figure 7a presents the steel pipeline, which was sourced from a
decommissioned industrial system and contained naturally occurring defects such as rust
patches, surface scratches, and pitting corrosion. In contrast, Figure 7b displays the acrylic
pipe, on which scratches were artificially created to simulate common damage, given its
material properties. In this experiment, we used the detection rate (D,) metric to evaluate
the performance of the ES-YOLO framework. The detection rate was defined as the ratio of
the number of defect samples successfully detected by the framework to the total number
of defect samples captured by the camera, as expressed in Equation (8).

Ds

D= ———
" Ds+ Dy

®)

where D; represents the number of defect samples successfully detected, and Dy represents
the number of defect samples not detected.

H=0.313m

H=0.35m

(b) Acrylic pipeline shape and defect display

Figure 7. Diagram showing the radius height of the experimental pipeline and its defects.

In the actual pipeline inspection experiment, we designed six comparative experiments
to evaluate the detection performance of event cameras and RGB cameras under the
same target defects and lighting conditions. First, three target defects were selected on
both steel and acrylic pipelines, with their specific locations marked as A, B, and C in
Figures 8 and 9. Then, we used an optical illuminance meter UT383 to measure the
brightness of the target points, where the illuminance of defects A, B, and C was 45 Lux,
13 Lux, and 2 Lux, respectively. Subsequently, both event and RGB cameras were used
to capture images of the target defects on both types of pipelines. A total of 50 images
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were collected for each target defect using the Intel RealSense L515 RGB camera and the
DVXplorer Mini event-based camera, respectively. The collected images were then fed into
the ES-YOLO framework for detection.

Figures 8 and 9 present the defect images collected from the steel and acrylic pipelines,
respectively. To facilitate a direct comparison of the performance between the two sensors,
these figures also include the corresponding detection results obtained from the RGB
camera and the event camera under three distinct lighting conditions. Notably, in the
low-light environment of 2 Lux, the RGB camera exhibited markedly inferior detection
performance compared to the event camera, with frequent occurrences of misclassifications
and even complete missed detections. The quantitative detection results for the steel and
acrylic pipelines are detailed in Table 4 and Table 5, respectively.

Table 4. Comparison results of event camera and RGB camera detection in steel pipes.

Target Defect A B C

Illuminance 45 Lux 13 Lux 2 Lux
Event camera D, 94% 90% 84%
RGB camera D, 66% 30% 10%

Table 5. Comparison results of event camera and RGB camera detection in acrylic pipes.

Target Defect A B C

Illuminance 45 Lux 13 Lux 2 Lux
Event camera D, 82% 76% 68%
RGB camera D, 34% 10% 0%

Steel pipeline defect display

RGB defect detection
results under
different illumination

45Lux 13Lux 2Lux

Event camera defect detection
results under
different illumination

i
o
7
0
i
K
<]

45Lux 13Lux 2Lux

Figure 8. Comparison experiment of different defects and illumination levels in steel pipes. Among
them, A, B, and C represent the target defects in the steel pipe. Both the event camera and RGB
camera can detect the defect at all three points (A, B, and C), where the illumination levels are 45 Lux,
13 Lux, and 2 Lux, respectively.
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Acrylic pipeline defect display

scratches 0.63

RGB defect detection
results under
different illumination

45Lux 13Lux 2Lux

Event camera defect detection [,

results under
different illumination

45T ux 13Lux 2Lux

Figure 9. Comparison experiment of different defects and illumination levels in acrylic pipes. Among
them, A, B, and C represent the target defects in the acrylic pipe. The illumination levels are 13 Lux
and 2 Lux when measured at points B and C, respectively. As a result, only the event camera
successfully detected the defects.

The experimental results showed that in the steel pipeline, the event camera success-
fully detected all target defects, achieving a detection rate of over 84%. In contrast, the
defect detection rate using RGB images under 2 Lux low-light conditions was only 10%,
which was significantly lower than the detection performance achieved with event-based
data. In the acrylic pipeline, the RGB camera detected defects only under 45 Lux and
13 Lux lighting conditions, with a maximum detection rate of 34%. In contrast, the event
camera accurately detected the target defects under all lighting conditions, with a detection
rate consistently above 60%. These results indicate that, compared to the RGB camera, the
event camera could effectively detect pipeline defects in low-light environments. However,
the detection rate of the RGB model for acrylic pipelines was significantly lower than
that for steel pipelines, primarily due to the traditional RGB models’ susceptibility to
interference caused by the optical properties of different materials. In contrast, the event
camera effectively alleviated the impact of material differences by capturing the dynamic
characteristics of defects. The results indicate that the ES-YOLO framework performed
better in cross-material detection.

In summary, under the low-light environments, the event camera consistently performed
better than the RGB camera, particularly in low-light and cross-material scenarios, which
made it more suitable for practical applications and provided a significant overall advantage.

7. Experimental Design for Pipeline Defect Detection via a Snake-like
HRM

7.1. Composition of the Pipeline Defect Detection System

To evaluate the performance of the ES-YOLO framework in real-world pipeline envi-
ronments, a pipeline defect detection experimental platform is constructed, comprising two
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main components. The first is a visual perception module based on the ES-YOLO frame-
work, designed to tackle detection challenges under low-light conditions. The second is a
modeling and control algorithm for the snake-like HRM, developed to enable collision-free
navigation within curved pipeline structures. The system consists of an HRM, a sliding rail,
a base, an event camera mounted on the end of the HRM, and a PC-based control system,
as illustrated in Figure 10.

Base Joint Joint assembly  Sliding rail
A

Event Camera (b)Acrylic pipeline

Figure 10. Schematic diagram of the pipeline defect detection system, where (a) represents the steel
pipeline and (b) corresponds to the acrylic pipeline.

A key design consideration is achieving a balance between mechanical strength and
maneuverability. The HRM adopts a “3 + 5” hierarchical configuration: three high-torque
XH540-W270-R motors connected by magnesium—aluminum alloy joints form the base
section, while five lightweight XH430-W270-R motors connected via resin connectors
comprise the end section. The sliding rail structure employs a ball screw drive system,
which consists primarily of a stepper motor, a lead screw, and a mounting base for the HRM.
The ball screw system offers a travel distance of 1.1 m and features high load capacity, and
stable stepping performance. The PC-based control system independently communicates
control commands to both the HRM and the sliding rail using the RS485 protocol, ensuring
reliable and synchronized motion control. Additionally, the DVXplorer Mini event camera
is mounted on the HRM's end-effector to capture pipeline defects throughout the insertion
process. Table 6 shows more details of the system specifications.

Table 6. Composition of the pipeline defect detection system.

Component Specifications
Three high-torque XH540-W270-R motors
Five lightweight XH430-W270-R motors

Stepper motor

HRM

The sliding rail  Lead screw

Base

Controller PC(Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz)
RS485 protocol to control HRM
RS485 protocol to control sliding rail

Protocol

Event camera =~ DVXplorer Mini

The overall workflow of the system is illustrated in Figure 11. First, a control algo-
rithm facilitates its collision-free insertion to accurately reach the target detection position.
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Subsequently, the event camera at the end of the HRM is used to collect internal data from
within the pipeline. Finally, the acquired data is processed using the ES-YOLO framework,
and defect detection results are produced.

.—( i |
| |

Base

a

IN_/

Colleet ES-YOLO Output defect

e dae | ESM | [ Yoro | 7

Sliding rail

ion results

pp

Event Camera

Pipeline

Figure 11. Schematic diagram of the pipeline defect detection experimental workflow.

7.2. The Model and Control Algorithm of the HRM

To enable collision-free defect inspection within narrow pipelines, this study employs
a motor-driven, 9-degree-of-freedom (DOF) hyper-redundant snake-like robotic arm. The
HRM consists of a base, a sliding rail, eight joints, and joint assemblies, with its detailed
configuration illustrated in Figure 12.

hig'\% o v
A :w///

~.

Figure 12. Mechanical structure design of HRM and sliding rail.

To characterize the motion properties of the HRM, this article establishes its kinematic
model based on forward kinematics and Denavit-Hartenberg (D-H) parameters. The
relevant D-H parameters are presented in Table 7. Based on this model, the homogeneous
transformation matrix | ;T(i = 1,2...n) between adjacent joints is derived, as shown
in Equation (9), where ‘s’ represents the sine function (sin), and ‘c” represents the cosine
function (cos).

cd; —sbica; sbisa;  a;ch;
; s, cbcx; —cB;sw; a;sb;
;71 T — 1 1 1 1 1 1 1 (9)
0 SK; Cu; di
0 0 0 1

By combining the transformation matrix T from the world coordinate system to
the base coordinate system and the homogeneous transformation matrix ;T from the
world coordinate system to the end-effector, the forward kinematics equation is obtained,
as shown in Equation (10). Here, g = [01, 65, ...,8,] denotes the configuration vector of
the HRM.

fkine(q) =T =T}T-- -7 |T (10)

Due to the high degree of redundancy in the HRM and the spatial constraints of
narrow pipeline environments, the control complexity of pipeline defect inspection tasks is
significantly increased. To ensure collision-free operation of the HRM during inspection,
efficient path planning is essential. However, due to kinematic constraints and the inherent
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complexity of the planning process, finding an optimal path often incurs substantial time
and computational costs, and requires precise control of each HRM joint to avoid collisions.
To balance planning efficiency and path quality, this article adopts an efficient strategy
that seeks a suboptimal HRM configuration to reduce computational cost. This strategy
is ultimately implemented by combining Nonlinear Model Predictive Control (NMPC)
with a Snake-inspired Crawling Algorithm (SCA) [12]. The obstacle avoidance strategy
for pipeline defect inspection includes two stages: insertion and inspection, as shown in
Figure 13. Experimental validation demonstrates that the minimum pipeline the HRM can
successfully traverse is a 90° curved pipe with an inner diameter of 8 cm and a length of
48 cm. This limit is jointly determined by the physical dimensions of the manipulator, the
pipeline radius, and the joint bending capability.

Table 7. D-H parameters of the snake manipulator.

Link i 0 (°) ai (%) a; (m) di (m)
i=1,3,5,7 0; —90° 0.1 0
i=24,68 0; 90° 0.1 0

( B\
M
NMPC Collision-f;ree SCA Insert (a)
L configuration )
| O N

NMEC In-pipeline TrajeCtory Inspect (b)

inspection

A 7

Figure 13. Flow chart of the pipeline inspection process: gq (initial horizontal configuration), g
(collision-free configuration).

7.3. Generalization Ability of NMPC

To achieve comprehensive data acquisition of the inner pipeline wall, the event camera
mounted on the HRM's end-effector performs a rotational scan along the pipeline cross-
section. This scanning trajectory is discretized into M;(i = 1, ...,m) key target points. To
ensure the HRM can safely and accurately reach each target point, the NMPC algorithm
is employed to pre-plan a corresponding collision-free configuration, g; € R", for every
target point before the manipulator enters the pipeline.

The optimization objective of this pose planning is to minimize the sum of the absolute
values of the joint angles and the sum of the changes in joint angles between adjacent
configurations. This objective helps prevent the HRM from moving to its joint limits and
avoids abrupt movements caused by local minima. The planning method for the collision-
free configuration of the i-th target point is shown in Equation (11), where 6;; represents
the j-th joint angle (j = 1, ..., n) of the i-th configuration; x; is the desired pose vector of
the i-th target point; 0y, 6,,, define the upper and lower limits of the HRM’'s joint angles;
and Dg,f. represents the minimum safe distance between the HRM and the pipeline.

n n
minimize Z 105 + ) 10ij — 0; 1]
j=1 j=1

lx; — pose(fkine(q;)) I, = 0 o
D, .<R-D
subject to pipe safe

0ij € (B, Oub)
Ay, < 16 — 0; 15| < Dby
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A solution from the NMPC is not always guaranteed due to multiple constraints,
including the desired pose of the HRM end-effector, pipeline curvature, radius, and the
safe distance Dg,fe. In the experiments, Dg,fe is set to 4 cm. This threshold accounts for
both the physical radius of the HRM links and potential positioning errors during actual
operation, thereby ensuring physical safety. Planning is considered to have failed under
two conditions.

To systematically evaluate the generalization ability of NMPC, this article conducts
a series of collision-free configuration simulations in MATLAB. The objective of NMPC is
to compute safe, collision-free configurations. For the HRM, configurations closer to the
pipeline centerline reduce the risk of collision with the wall and thereby improve safety.
Therefore, this simulation aims to calculate the maximum distance, Dp,x, that the HRM’s
configuration deviates from the centerline as it passes through pipelines of different curvatures.
The minimum pipeline radius for ensuring safe passage is then calculated by adding this
maximum deviation distance, Dmax, to a predefined safety threshold, Dg,¢., where curvature
is defined as the included angle of the sector forming the bent pipe section. The experiments
test three typical pipeline curvatures, including 45°, 90°, 135°. The total length of all simulated
pipelines is kept consistent, and their shapes are illustrated in Figure 14. Although the
simulation results cannot directly quantify the algorithm’s generalization ability, they provide
a qualitative evaluation of its adaptability under different geometric constraints. The specific
experimental results are detailed in Table 8.

Table 8. Minimum safe passage radius of the HRM for different pipeline curvatures.

Curvatures Dgafe  Dmax  Minimum Pipeline Radius for Safe Passage
45° 4cm 253 cm 6.53 cm
90° 4cm  3.72cm 7.72 cm
135° 4cm 513 cm 9.13 cm
AY
\

AN 1

AN 1

b 5 1

\\ 1

450+ 90° , 1352
s i e -——

Figure 14. Schematic diagram of single-bend pipe models with different curvatures, where the red
solid line represents the pipeline centerline.

The experimental results indicate that when the NMPC algorithm generates a collision-
free configuration for a specific target point, higher pipeline curvature requires a larger
radius to ensure safe passage. Specifically, for a pipeline with a 45° curvature, the minimum
passage radius required by the collision-free configuration planned by NMPC is 6.53 cm.
When the curvature is 90°, the minimum pipeline radius the HRM can pass through is
7.72 cm. For a high-curvature pipeline of 135° , the pipeline radius must be at least 9.13 cm
to ensure the HRM can perform the inspection safely. Figure 15 illustrates a successful
planning result for a pipeline with a radius of 10 cm and a curvature of 90°, along with the
corresponding collision-free configuration of the HRM.
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Figure 15. Simulation results for the collision-free inspection of the pipeline defect detection system.

8. Experimental Results for Pipeline Defect Detection via a Snake-like HRM

To validate the practicality and feasibility of the proposed pipeline defect detection
system, physical experiments were conducted on both steel and acrylic pipelines, as illustrated
in Figure 16. In each pipeline environment, the NMPC optimization algorithm was employed
to compute collision-free configurations and generate corresponding motion trajectories.

Figure 16. Experimental platform for pipeline defect detection based on an event camera. The setup
comprises the key components of the system, including a HRM, a movable base, a sliding rail, an
event-based camera, and the pipeline specimen under inspection.

The generation of the HRM'’s collision-free configurations was conducted through
MATLAB simulations. Detailed numerical results are presented in Table 9. The table
reports the maximum positioning error between the end-effector and the target defect.
These metrics are provided for both steel and acrylic pipeline environments. To visually
demonstrate the insertion process of the HRM, six consecutive visualization frames are
presented in Figure 17. During the pipeline insertion process, the illumination from the
pipe entrance to the darkest section ranged between 10 Lux and 50 Lux, corresponding
to a low-light environment. Owing to its high dynamic range and asynchronous sensing
mechanism, the event camera effectively responded to relative changes in brightness and
continuously output an event stream, thereby capturing defect details clearly from the
bright pipe entrance to the dim depths of the pipeline. Subsequently, the event camera was
inserted into the pipeline by the manipulator to collect data, and the detection results were
obtained through ES-YOLO analysis.

Table 9. Geometries of the two pipelines and experimental error results.

Pipe Type Radius Pipe Angle Maximum Error
Steel 8 cm 90° 1.542 cm
Acrylic 10 cm 90° 1.947 cm

Based on the aforementioned experiments, the detection results of the proposed
pipeline defect detection system are presented in Figures 18 and 19. The results indicate
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that the target defects were successfully detected by inputting the pipeline data, collected
by the event camera mounted on the HRM, into the ES-YOLO framework. These results
demonstrate that the bio-inspired vision-based system could effectively identify defects in
pipelines made of different materials.

e

Figure 17. The process of defect detection inside the pipeline using an event camera mounted on
the HRM. Six consecutive frames illustrate the collision-free insertion of the HRM into the pipeline.
The illuminance at the pipeline entrance is approximately 50 Lux. As the HRM advances deeper into
the pipeline, occlusion of the entrance light source by its arm and its own shadow causes the light to
diminish, with the minimum illuminance inside the pipeline dropping to approximately 10 Lux.

pitted_surface

&
pitted_surface 0.60

(a) Steel Pipe and Defect Display (b) Defect Detection Results

Figure 18. Steel pipe internal defect detection. (a) shows the shape and defects of the steel pipe;
(b) shows the detection results of the steel pipe.

Scratches

i i\ - Pipeline lines

(a) Acrylic Pipe and Defect Display (b) Defect Detection Results

Figure 19. Acrylic pipe internal defect detection. (a) shows the structure and defects of the acrylic pipe;
(b) shows the detection results of the acrylic pipe defects.

In summary, the experimental results demonstrate that the ES-YOLO framework exhibited
strong applicability in practical pipeline defect detection and possessed cross-material general-
ization capability, which validates the robustness and effectiveness of the proposed system.
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9. Discussion

In this study, the ES-YOLO framework successfully detects defects in both steel and
acrylic pipes, demonstrating that generating event data through simulation is an efficient
and feasible strategy to address dataset scarcity in specialized application domains. This
finding establishes a reproducible, data-driven paradigm that can be extended to other
industrial and scientific fields lacking native event datasets.

Comparative experiments with traditional RGB vision further highlight the advan-
tages of event cameras in low-light conditions. These results not only confirm their technical
feasibility but also open new avenues for robotic applications in visually degraded environ-
ments such as unlit pipelines, nighttime inspections, and settings with high-dynamic-range
illumination changes. Notably, the system achieves defect detection in near-total darkness,
a task that remains challenging for conventional RGB-based methods.

Moreover, the strong robustness exhibited across both steel and acrylic pipelines
warrants deeper investigation. We speculate that this cross-material generalization arises
from the intrinsic properties of the RGB-to-event conversion process, which primarily
encodes brightness changes rather than absolute color or texture information. By filtering
out material-dependent surface details while emphasizing geometric contours of defects,
this process enhances detection consistency across diverse environments—a property of
considerable practical significance for real-world inspection systems.

In this study, the HRM exhibits notable advantages in confined and complex en-
vironments that demand high precision and stability. It enables stable, high-precision,
non-contact data acquisition and offers a greater payload capacity for carrying advanced
sensor suites. Additionally, its energy consumption is significantly lower than that of UAVs.
However, the HRM is less suitable for large-scale environments, such as wide-diameter
pipelines or oil storage tanks, where UAVs and other mobile robots demonstrate clear
advantages. Notably, the ES-YOLO framework is highly portable and can be deployed
across various robotic platforms, including UAVs and ground-based mobile robots.

Ultimately, the HRM, UAV, or other robotic systems serve merely as carriers for executing
pipeline inspection tasks. Deploying the ES-YOLO framework on different platforms to
support diverse engineering applications presents broad prospects for practical deployment.

However, the current approach has a fundamental limitation: to leverage the mature
YOLOVS architecture, the asynchronous event stream must first be converted into discrete
event frames before being input into the ES-YOLO framework. While this conversion step
facilitates the application of advanced detection algorithms, it compromises the intrinsic
advantages of event cameras, such as microsecond-level temporal resolution and low la-
tency. Therefore, future research should prioritize overcoming this bottleneck by exploring
advanced algorithms capable of directly processing raw event streams. A particularly
promising direction is the use of Spiking Neural Networks (SNNs), whose event-driven
and asynchronous processing characteristics are inherently compatible with the data format
of event cameras, offering the potential for low-latency and low-power defect detection. In
addition, asynchronous convolutional networks and graph-based methods that operate
directly on event streams also warrant further investigation. Ultimately, the goal is to
deeply integrate these emerging technologies with the HRM detection system to enhance
the generalizability and practical utility of the entire framework.

10. Conclusions

This article proposed an ES-YOLO framework to enhance defect detection in low-light
pipeline environments, which leveraged an event camera based on bionic visual perception.
To address the issue of scarce event datasets, the RGB NEU-DET dataset was converted
into the N-neudet event-based dataset using the ESIM module. Subsequently, the pipeline
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defect detection model was trained on the generated event data via YOLOVSs. To verify the
accuracy of this framework in low-light environments, two sets of comparative experiments
were conducted to assess the defect detection performance of RGB cameras versus event
cameras within both steel and acrylic pipelines. The results showed that RGB cameras
fail to effectively identify defects, while event cameras demonstrated clear advantages
under low-light conditions. Furthermore, the pipeline defect detection system based on a
snake-like HRM was developed, and its feasibility and detection accuracy were validated
through physical experiments in realistic pipeline inspection scenarios.

Future work will focus on expanding the breadth and depth of application for the
proposed HRM-based detection method. To achieve real-time and efficient system oper-
ation, low-power models such as Spiking Neural Networks (SNNs) will be deployed on
embedded hardware to reduce inference time and improve energy efficiency. At the system
architecture level, migration to the ROS 2 framework will be explored to enhance modular-
ity, stability, and scalability. On the perception level, efforts will target key challenges such
as real-time 3D modeling and dynamic path planning in unknown environments—both
critical to improving system autonomy. To validate and improve the framework’s general-
izability, its application will be extended beyond pipeline interiors to encompass a broader
range of industrial geometries, including ventilation ducts, mining tunnels, and confined
industrial cavities. The ultimate goal is to develop an automated and intelligent inspection
system capable of adapting to diverse environments while maintaining high autonomy,
efficiency, and robustness for inspection tasks in various constrained spaces.
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The following abbreviations are used in this manuscript:

HRM Hyper-Redundant Manipulator
NMPC  Nonlinear Model Predictive Control
SCA Snake-inspired Crawling Algorithm
DOF Degrees Of Freedom

D-H Denavit-Hartenberg
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Abstract: Artificial antireflective nanostructured surfaces, inspired by moth eyes, effectively reduce
optical losses at interfaces, offering significant advantages in enhancing optical performance in
various optoelectronic applications, including solar cells, light-emitting diodes, and cameras. How-
ever, their limited flexibility and low surface hardness constrain their broader use. In this study,
we introduce a universal antireflective film by integrating nanostructures on both sides of a thin
polycarbonate film. One side was thinly coated with Al,Oj3 for its high hardness, enhancing surface
durability while maintaining flexibility. The opposite side was coated with SiO, to optimize antire-
flective properties, making the film suitable for diverse environments (i.e., air, water, and adhesives).
This dual-coating strategy resulted in a mechanically robust and flexible antireflective film with
superior optical properties in various conditions. We demonstrated the universal capabilities of
our antireflective film via optical simulations and experiments with the fabricated film in different

environments.

Keywords: antireflection; flexible film; robust film; multifunctional film; dual coating; electronic
application

1. Introduction

The reduction in optical losses at interfaces between materials with differing refractive
indices is critical for optimizing the optical performance of various optoelectronic fields,
such as light-emitting diodes, photovoltaic devices, image sensors, cameras, transparent
glasses, and energy-harvesting [1-11]. To address this issue, multilayer coatings have
traditionally been employed as a common method for producing antireflective surfaces.
These coatings are designed to minimize reflection by stacking multiple layers of materials
with varying refractive indices [12-14]. However, while effective, multilayer coatings often
face challenges related to thermal mismatch, material selection, and the complexity of
optical design [14].

In recent years, artificial nanostructured surfaces, inspired by the natural design of
moth eyes, cicada wings, and lotus leaves, have been developed with multifunctional nanos-
tructures, such as antireflection, bactericidal properties, and superhydrophobicity [15-18].
Notably, artificial antireflective structures (ARSs) suppress Fresnel reflection at the inter-
face by linearly changing the refractive index [19,20]. These antireflective nanostructured
surfaces have emerged as a promising alternative with geometrical optimizations. These
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nanostructures effectively minimize light reflection, enhance optical performance across
a wide range of wavelengths, and have a simple optical design [20]. Despite their advan-
tages, these nanostructured surfaces encounter significant limitations, particularly in terms
of flexibility, surface stability, and hardness [21-25]. Their limited mechanical robustness
restricts their use in more demanding environments, which hinders the broader applica-
tion of these antireflective surfaces in advanced optoelectronic technologies [9-11,26-30].
Overcoming these limitations is essential to fully exploit the potential of nanostructured
antireflective surfaces.

In this study, we developed a universal antireflective nanostructured polycarbonate
film (uni-ARS PC film) for flexibility with better robustness by integrating nanostructures
on both sides of a thin PC film. Our proposed uni-ARS PC film has the advantage of
reducing reflectance across various materials with different refractive indices, such as
air, water, and adhesive layers, all within a single design. To enhance surface durability
without compromising flexibility, one side of the film was thinly coated with aluminum
oxide (Al,O3), a material known for its high hardness. The opposite side was coated with
silicon dioxide (SiO,), which optimizes antireflective properties, making the film adaptable
to different environments, including air, water, and adhesive layers.

This uni-ARS PC film, utilizing a dual-coating strategy, resulted in a mechanically
robust and flexible antireflective film with superior optical properties across different
conditions. To validate our approach, we conducted comprehensive optical simulations
and performed measurements on the fabricated film in diverse environments (i.e., air, water,
and display). The results demonstrate that our design effectively addresses the mechanical
and optical limitations of artificial antireflective surfaces, offering a versatile solution that
is suitable for a wide range of applications.

2. Materials and Methods

For the fabrication of the dual-coated antireflective film, a hot-pressing process was
initially performed to implement ARS on a 250 um thick PC film (LEXANTMS8010, TEKRA,
New Berlin, WI, USA) using a nanostructured nickel master stamp (HT-AR-02A, Temicon,
Dortmund, Germany), which features a hexagonally arranged nanostructured pattern with
a period of 250 nm and a height of 300 nm. The PC film was imprinted using a hot-pressing
machine (QM900M, QMESYS, Uiwang-si, Republic of Korea) by pressing the film between
two master molds at elevated temperatures of up to 190 °C for 5 min, with a pressure of
5MPa fora 5 x 5 cm PC film. To ensure proper formation, cooling was then performed at
100 °C for 10 min before releasing the pressure.

Subsequently, Al,O3 was coated on the top side of the thin film using atomic layer
deposition (ALD, Atomic-Classic, CN1) at 60 °C. Trimethylaluminum (TMA) and H,O
were used as the precursor and reactant, respectively. The TMA pulse, N, purge, H,O
pulse, and N, purge cycle were repeated with a base pressure of 500 mTorr and a deposition
rate of approximately 0.4 nm/cycle. Finally, SiO, was then deposited on the bottom side of
the thin film using plasma-enhanced chemical vapor deposition (PECVD, Plasmalab 80+,
OXFORD) at 150 °C for 30 s under the following conditions: RF power of 20 W, N,O flow
of 800 sccm, and SiHy of 100 scem.

Optical performance was simulated using rigorous coupled-wave analysis (RCWA)
methods to predict reflectance across various refractive indices (air, water, and adhesive)
with commercial software (DiffractMod, Rsof t 2021, Synopsys, San Diego, CA, USA).
The optical simulations were conducted with hexagonally arranged nanostructures, with
a period of 250 nm and height in a visible wavelength. The simulations accounted for vary-
ing nanostructure heights, SiO;, and Al,O3 thicknesses for the coating layers to optimize
the film'’s antireflective properties. The optical performances of antireflective films were
evaluated by the UV /visible and NIR spectrophotometer (V-770, JASCO, Easton, MD, USA)
to measure total reflectance.

Mechanical robustness was evaluated through water contact angle (WCA) measure-
ments using a contact angle analyzer (Phoenix 300, SEO, Suwon-si, Republic of Korea)
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before and after wear resistance tests. The wear resistance tests included rubbing cycles
performed with a rubbing test machine (CT-RB1, Coretech, Incheon, Republic of Korea)
equipped with a rubber stick with a durometer A-type hardness of 88 under a 1 kg load.
The test films were mounted on a slide glass and positioned on a plate with a path length of
5 cm. After the wear resistance tests, both quantitative and qualitative evaluations were con-
ducted to assess damage to the samples. Scanning electron microscopy (SEM) images were
obtained using a Hitachi S-4700 SEM (Tokyo, Japan), while an X-ray photoelectron spec-
troscopy (XPS, NEXSA, Thermo Fisher Scientific, Waltham, MA, USA) was used to analyze
surface morphology and chemical composition changes following mechanical testing.

Bending tests were performed by subjecting the films to different radii of curvature to
assess crack formation and durability using a custom setup. The test films were secured
on both sides using holders to evaluate the compressive stress applied to the lower side.
The compressive stress on the test films was evaluated at radii of curvature of 5.5, 3.5, and
2.5 mm, respectively. Subsequently, surface damage for the bending region was examined
using SEM.

The refractive index profile was calculated using numerical software (MATLAB 2016a,
MathWorks, Natick, MA, USA). The average refractive index was determined by defining
a unit area and calculating the area ratio based on the structure height and coating thickness.
Each calculation was performed in 1 nm height increments, and a fixed refractive index
value was used to simplify the calculations.

3. Results
3.1. Design and Fabrication of Dual-Coated Antireflective Film

The dual-coated antireflective film was designed by integrating nanostructures on
both sides of a thin PC substrate. The film was engineered to address the limitations
of traditional antireflective coatings, particularly in terms of flexibility and mechanical
robustness. As illustrated in Figure 1a, the top side of the film was coated with a thin
layer of Al,O3 using ALD. This coating was selected for its high hardness and ability to
enhance surface durability, thereby protecting the underlying nanostructures from physical
damage during use [22]. The bottom side of the film was coated with SiO, via PECVD. The
SiO, layer was optimized to provide effective antireflective properties, making the film
adaptable to various environments, including air, water, and adhesive layers.

Figure 1b presents a schematic illustration comparing the wear resistance of nanos-
tructured PC films with and without an Al,O3 coating. SEM images show the surface
morphology of the films after 5 rubbing cycles, highlighting the impact of the Al,O3 coating
on wear resistance. The uncoated nanostructures exhibit significant structural degradation.
By contrast, the SEM images of the Al,O3-coated film reveal that the nanostructures remain
intact, indicating that the Al,O3 coating effectively preserves the structural stability of the
film during the rubbing test. This evaluation is crucial in ensuring that the mechanical
durability of the film is enhanced without sacrificing its optical properties.

To optimize the antireflective performance of the film, we conducted optical simu-
lations to determine the ideal thickness of the SiO, coating in relation to the refractive
indices of the adjacent layers. Figure 1c presents a reflectance contour plot illustrating the
relationship between SiO, thickness and the refractive index. The plot demonstrates that
a specific SiO, thickness can minimize light reflectance across various dynamic environ-
ments (e.g., air, water, and adhesive layers). By fine-tuning the SiO, thickness, the ARS
PC film achieves broad-spectrum antireflective properties that are effective in multiple
environments.

Additionally, the refractive index profiles, as shown in Figure 1d, were analyzed as
a function of a nanostructure height of 300 nm and SiO; coating thickness of 0, 25, and
50 nm. This analysis provided insights into how these parameters influence the antireflec-
tive performance of the designed film. The optimized refractive index profiles confirmed
that the dual-coated design offers superior optical performance, reducing reflectance to
minimal levels across different refractive indices.
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Refractive index (n)

Uni-ARS PC film

The mechanical robustness of the uni-ARS PC film was further validated through
bending tests. Figure le illustrates the schematic comparison of the flexibility between the
uni-ARS PC film and the flat film. SEM images show that the nanostructured PC film coated
with Al,O3 and flat PC films with the same coating were both subjected to the bending test.
The flat PC film exhibited significant cracks under mechanical stress, highlighting its limited
flexibility. In contrast, the nanostructured PC film remained undamaged, demonstrating
that the nanostructured design, combined with the Al,O3 coating, significantly enhanced
the film’s mechanical durability and flexibility.
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Figure 1. Universal design for antireflective PC film. (a) Schematic illustration of dual-coated antire-
flective film integrating nanostructures on both sides of a PC film. The top side is coated with Al,O3
to enhance surface hardness, while the bottom side is coated with SiO, to optimize antireflective prop-
erties in various environments, including air, water, and adhesive layers. (b) A schematic illustration
comparing the wear resistance with and without the Al,O3 coating. SEM images show the sur-
face morphology, demonstrating the improved durability provided by the coating. (c) A reflectance
contour plot showing the optical optimization between the SiO, thickness and refractive index,
highlighting the optimized SiO, thickness for various dynamic environments, such as air, water,
and adhesive layers. (d) Refractive index profiles, as a function of nanostructure height and SiO,
thickness ((a), dash box), illustrating how these parameters influence the antireflective performance
of the film. (e) A schematic illustration comparing the flexibility of the film with uni-ARS and flat
PC films. SEM images from bending tests of the uni-ARS PC film (top) and flat PC films with Al,O3
coating (bottom), indicating that the flat PC film exhibits cracks after the bending test, while the
uni-ARS PC film remains crack-free.

3.2. Optical Performance and Simulation of the Universal Antireflective Film

The optical performance of the dual-coated antireflective film was thoroughly investi-
gated through both simulations and experimental measurements to assess its effectiveness
across various environments with different refractive indices. Figure 2a illustrates the
schematic design used for optical simulations, where the PC film is integrated with nanos-
tructures and coated with SiO, and Al,O3. The period of the nanostructures was set to
250 nm to ensure sufficient transmittance in the visible wavelength range [3]. The SiO,
layer was specifically tailored to enhance the film’s compatibility with environments such
as air, water, and adhesive layer, which had a refractive index of 1.5. The thickness of the
Aly,O3 coating was optimized with reflectance and durability. To evaluate the antireflective
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capabilities of the film, we conducted optical simulations that show averaged reflectance
contour plots for visible wavelengths of 400-700 nm, as shown in Figure 2b. The results
clearly demonstrate that the film maintains a reflectance below 1% across all tested environ-
ments when the ARS height is set at 150 nm. This low reflectance is a critical feature that
ensures minimal optical losses, making the film suitable for various optical applications
where maintaining high transparency and minimal reflection is essential.

a b
Uni-ARS PC film 100
Al,Oq v . Adhesive
top RI1.5
W e E e RI15)
é 5 g
PC film with SWS p < 60
@
»
Aem: 250 pm Pim 8
p: 250 nm S 40
ES]
foe & 20
* hbc»t e
Air, water, adh. (Rl 1.5) sio, 0 y . . y . .
_ 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
SWS height, h,,. (nm) SWS height, h,,. (nm) SWS height, h,,. (nm)
¢ d e B Uni-ARS ~ —Uni-ARS -- B
Mtop 40 NM A, 300 N Miop 40 "M Ao 25 NM_H, 300 Nm_ p 250 nm % are ni- ni- are
— 8 Ao (NM) 6 !
IS
< -0 W L
S =0 25 < —_— —_— g — A [
5 06 < 4 Water 2 60
o 2 h &
© = — e ©
= g 10600 0004 hbolw g
o) 5o Uni-ARS PC fil °
€ 0.4 ¢ 2 s 9 30
2 e S
\'\
02 ol T ——
1 12 14 16 18 400 500 600 700 700 400
Refractive index (n) Wavelength (nm) Wavelength (nm) Averaged R (%)

Figure 2. Optical simulation for the universal antireflective PC film. (a) A schematic of the PC film
with a nanostructure for optical simulation, where the film is coated with SiO, for compatibility with
air, water, and adhesive environments (refractive index of 1.5). (b) Averaged reflectance contour
plots for the film in different environments (air, water, and adhesive), showing that the reflectance
is maintained below 1% across all cases with an SWS height (hp.) of 150 nm. (c) Detailed averaged
reflectance profiles as a function of the bottom SiO; thickness (hy,;) for various environments,
demonstrating consistent low reflectance across different refractive indices. (d) Schematic and
reflectance profiles illustrating how the structure optimizes the optical performance of the proposed
film. (e) Reflectance comparison as a function of the incident angle between flat and nanostructured
PC films, where the flat PC film shows significantly higher reflectance compared to the nanostructured
film. The right reflectance plot, according to the incident angle, confirms the consistent superior
antireflective performance of the nanostructured film in air, water, and adhesive environments.

Further analysis was conducted to understand how the thickness of the SiO; layer
(hpot) influences reflectance profiles across different environments. Figure 2¢ presents the
detailed averaged reflectance profiles for visible wavelengths as a function of the bottom
SiO, thickness. The results indicate that consistent low reflectance can be achieved across
a range of refractive indices by optimizing SiO, thickness. This consistency underscores
the designed film’s adaptability and effectiveness in diverse applications, from air-based
systems to underwater and adhesive layer environments.

To further optimize the optical performance, we examined how the structure of the
nanostructured film impacts reflectance, as depicted in Figure 2d. The schematic and
corresponding reflectance profiles illustrate the significance of fine-tuning the nanostruc-
ture height and SiO, thickness to achieve the best possible antireflective performance.
The optimized film structure demonstrates superior optical properties, ensuring that

29



Biomimetics 2024, 9, 644

the designed film effectively reduces reflectance across multiple environments without
compromising transparency.

Finally, Figure 2e compares the reflectance of flat and uni-ARS PC films as a function
of the incident angle. The results clearly show that the flat PC film exhibits significantly
higher reflectance, particularly at higher incident angles, which is undesirable in many
optical applications. In contrast, the nanostructured PC film maintains a low reflectance
even as the incident angle increases, confirming its superior antireflective performance.
The reflectance plot on the right side further confirms the film’s consistent performance in
both air and water environments, as well as when applied over adhesive layers, making it
highly versatile for a wide range of optical devices.

3.3. Fabrication and Optical Evaluation of the Dual-Coated Antireflective Film

The fabrication process of the dual-coated antireflective film was carefully designed
to ensure both the mechanical robustness and superior optical performance of the final
film. Figure 3a shows a schematic overview of the fabrication process. The PC film was
first imprinted with nanostructures on both sides using a hot-pressing technique, which
involved pressing the film between two pattern molds, with a period of 250 nm and
a height of 300 nm, at elevated temperatures of up to 190 °C for 5 min with a pressure of
5 MPa [31-33]. After imprinting, one side of the film was coated with Al,Os at a thickness
of 40 nm using ALD to enhance surface hardness and durability. The opposite side
was coated with SiO; with a thickness of 25 nm via PECVD, which was optimized for
antireflective performance across various environments. The surface morphology of the
nanostructured PC films was examined using SEM images before and after the coating
processes. Those of the double-sided ARS PC film displayed the nanostructured surfaces
before any coatings were applied, revealing well-defined and uniform nanostructures that
are crucial for achieving low reflectance. Those of the Al,O3 and SiO; coatings showed the
surfaces after coating, with Al;O3 on the front side and SiO, on the back side. The images
confirm that the Al,O3 and SiO; coatings preserved the well-defined shape of the pattern
mold after the coating processes, ensuring that the optical and mechanical properties of the
film were not degraded.

Figure 3b presents the transmittance spectra measured in the air environment for
the fabricated Uni-ARS PC film, which corresponds to the fabrication process outlined in
Figure 3a. This clearly shows that the uni-ARS PC film exhibits enhanced transmittance
compared to the film without a SiO, coating. This improved transmittance is attributed to
a dual-coated nanostructured design, which minimizes reflection and allows for improved
light transmission across a visible wavelength. This optical improvement is crucial for
applications requiring minimal optical loss, making the uni-ARS PC film highly suitable for
applications in environments where high optical clarity and low reflectance are essential,
such as in displays, solar panels, and transparent electronic devices.

For qualitatively qualifying multi-environmental applications, the optical performance
of the dual-coated film was further evaluated under different environmental conditions.
Figure 3c presents photographs of the film tested in both air and water environments. When
exposed to a white light source, the dual-coated film effectively revealed the underlying
logo through the film, both in the air and when submerged in water. This demonstrates the
designed film’s ability to maintain high transparency and low reflectance across different
refractive indices, making it suitable for applications in dynamic environments.

Additionally, Figure 3d highlights the performance of the dual-coated film when
applied to a display panel. The film was placed over the display, and its performance was
assessed with the display both on and off. The photographs show that the film minimizes
reflection and glare, preserving the visibility of the display content under various lighting
conditions. When the display is on, the underlying text and images remain clear and
distinct, demonstrating that the film effectively reduces light reflection and enhances
visibility. The combination of these fabrication techniques and optical evaluations confirms
that the dual-coated antireflective film offers significant advantages for both durability and
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optical performance. The film’s ability to adapt to different environments, along with its
effectiveness at reducing reflectance, makes it a versatile solution for advanced electronic
and optical applications.

Hot plate (Top) Double-sided ARS PC film AlzOs Si0, Uni-ARS PC film

Moth-eye
v odale FU JD

MAANNAANANNAN
PECVD
Hot plate (Bottom) coating
b c . . . .
100 White light White light White light White light
Sample Sample
Air Water | Sample | ‘ Sample
Logo paper Logo paper \ Display (on) | | Display (off) |
Uni-ARS Bare Uni-ARS Bare

X 961 ‘
@ — Bare Glare-free
= —— Double ARS _ -~
E — W/ Al,O4 < O
2 — Uni-ARS
©
= 92 1

/’/"’"‘V :dj — )

@ f (6}
88 . . <
400 500 600 700

Wavelength (nm)

Figure 3. Fabrication and optical evaluation for universal film. (a) A schematic illustration of the
fabrication process for dual-coated nanostructured PC films. SEM images showing the surface
morphology of the nanostructured PC films on the front and back sides, corresponding to each
fabrication process. (b) Transmittance spectra measured in the air environment for the fabricated
film, corresponding to the process shown in Figure 3a, demonstrate that the uni-ARS PC film exhibits
enhanced transmittance. (c,d) (c) Photographs demonstrating the performance of the dual-coated film
under air and water conditions. The uni-ARS film under a white light source effectively exhibiting the
underlying logo through the film in air and water. (d) Photographs demonstrating the performance
of the dual-coated film on the display panel. The uni-ARS film placed over a display, showing the
difference between the display being on (bottom) and off (top). The uni-ARS film preserves visibility
by suppressing light reflection, effectively reducing glare in both display on and off conditions.

3.4. Mechanical Performance of the Dual-Coated Antireflective Film

To ensure that the dual-coated antireflective film not only excelled in optical perfor-
mance but also maintained mechanical integrity under various stress conditions, a series of
mechanical tests were conducted. These tests evaluated the film’s durability, particularly
its resistance to mechanical wear and deformation, which are critical factors for practical
applications in flexible electronic devices.

Figure 4a presents the results of the WCA measurements, which were used to assess
the hydrophobicity and surface integrity of the nanostructured PC films after repeated
mechanical stress. The top row shows the WCA measurements for nanostructured films
without the Al,O3 coating after 30 rubbing cycles. The reduction in WCA indicates a loss of
hydrophobicity and surface degradation due to mechanical stress. In contrast, the bottom
row shows WCA measurements for nanostructured films with the Al;O3 coating. Even
after 30 rubbing cycles, the coated film retained a high WCA, indicating that the Al,O3
coating effectively preserved the film’s hydrophobic properties and surface consistency
under mechanical stress.
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Figure 4. Mechanical performance of the Uni-ARS film. (a) A comparison of water contact angle
measurements for the nanostructured PC films over 30 rubbing tests without the Al,O3 coating (top
row) and with the Al,O3 coating (bottom row). (b) Graphs comparing the change in WCA for nanos-
tructured PC films as a function of rubbing cycles in Figure 4a, indicating that the nanostructured
film with the Al,O3 coating maintains its hydrophobic properties better than the nanostructured PC
film without Al,O3. To evaluate the stability and reliability of the results, error bars are shown for
three samples. (c) SEM images of the uni-ARS PC film after 30 and 60 rubbing cycles. The bottom plot
exhibits XPS data about Al2p according to the rubbing cycle, showing durability. (d) Photographs of
the bending test setup, showing the uni-ARS films under different radii of curvature (R = 5.5 mm,
3.5 mm, 2.5 mm) during the mechanical test. (e) SEM images comparing the uni-ARS PC film and flat
PC film with the Al,O3 coating after the bending test, revealing cracks on the flat PC film while the
uni-ARS PC film remained intact.

Figure 4b provides a graphical comparison of the change in WCA for both coated and
uncoated nanostructured PC films as a function of the number of rubbing cycles shown in
Figure 4a. The graph shows that while the WCA of the uncoated film decreases significantly
with increasing rubbing cycles, the coated film exhibits only a minimal decrease, further
confirming the protective role of the Al,O3 coating in maintaining the film’s hydrophobicity
and mechanical durability. Furthermore, to evaluate the stability and reliability of the
mechanical properties of the Al;O3 coatings, we measured the WCA for three samples with
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and without Al,O3 coatings, respectively. In all samples, the AlyO3-coated film consistently
showed a higher contact angle compared to the uncoated film for overall rubbing cycles.

The durability of the film’s nanostructures under mechanical stress was further exam-
ined using SEM imaging after 30 and 60 rubbing cycles, as shown in Figure 4c. The SEM
images demonstrate that the nanostructures remain largely undamaged after 30 cycles,
with only minor wear observed after 60 cycles. Additionally, XPS analysis of the Al2p peak
was conducted, with the results presented in the bottom plot of Figure 4c. The XPS data in-
dicate that the Al;O3 coating remained stable and effectively bonded to the nanostructured
surface even after multiple rubbing cycles, highlighting the coating’s durability.

To assess the film’s flexibility and resistance to cracking under deformation, bending
tests were conducted, as illustrated in Figure 4d. The photographs show the film being
stressed to different radii of curvature (R = 5.5 mm, 3.5 mm, and 2.5 mm) during the bending
tests. The results reveal that the dual-coated film can withstand significant bending without
visible damage or cracking, demonstrating its suitability for flexible electronic applications.

Finally, Figure 4e compares SEM images of the dual-coated nanostructured PC film
with Al,Oj to those of a flat PC film with the same coating after the bending test. The flat
PC film exhibits significant cracking, compromising its mechanical stability. In contrast,
the designed film remains free of cracks, highlighting the superior mechanical robust-
ness provided by the designed nanostructure and protective Al,O3 coating. This result
underscores the effectiveness of the dual-coating strategy in enhancing both the optical
and mechanical properties of the film, making it an ideal candidate for flexible, durable
antireflective applications.

4. Conclusions

Moth-eye-inspired artificial antireflective nanostructured surfaces are highly effective
at reducing optical losses at interfaces, offering significant benefits for enhancing opti-
cal performance in various optoelectronic applications. Despite these advantages, their
broader use is constrained by limited flexibility and low surface hardness. In this study, we
successfully developed a dual-coated antireflective film with multifunctional applications
of flexibility and robust mechanical and optical performance, making it suitable for multi-
environmental optoelectronic applications. By integrating nanostructures on both sides of
a thin PC film and applying Al,O3 and SiO, coatings, we achieved a uni-ARS PC film that
consistently reduced reflectance across various refractive indices while maintaining dura-
bility under mechanical stress (e.g., compressive strain, wear resistance). The experimental
results and simulations demonstrate that this advanced approach effectively addresses the
limitations of traditional antireflective surfaces, offering a versatile and durable solution
for advanced optical technologies.

Our uni-ARS PC film demonstrated remarkable performance, maintaining low re-
flectance across a range of refractive indices while also exhibiting superior mechanical
performance, particularly with better wear resistance in flexible electronic applications.
The robust and flexible nature of our film makes it an ideal candidate for use in flexible
displays, solar panels, and other optoelectronic devices where both durability and optical
clarity are paramount. Future research could explore a broader range of conditions and
configurations to further validate the universality of the film’s performance. In addition, fu-
ture studies could investigate alternative materials for the coating layers to further enhance
specific properties, such as hydrophobicity or thermal stability. Furthermore, scaling up
the fabrication process for industrial applications and testing the film’s performance under
more extreme environmental conditions would be valuable for advanced technologies.
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Abstract: This study presents a cutting-edge imaging technique for special unmanned vehicles
(UAVs) designed to enhance tunnel inspection capabilities. This technique integrates ghost imaging
inspired by the human visual system with lateral inhibition and variable resolution to improve
environmental perception in challenging conditions, such as poor lighting and dust. By emulating
the high-resolution foveal vision of the human eye, this method significantly enhances the efficiency
and quality of image reconstruction for fine targets within the region of interest (ROI). This method
utilizes non-uniform speckle patterns coupled with lateral inhibition to augment optical nonlinearity,
leading to superior image quality and contrast. Lateral inhibition effectively suppresses background
noise, thereby improving the imaging efficiency and substantially increasing the signal-to-noise ratio
(SNR) in noisy environments. Extensive indoor experiments and field tests in actual tunnel settings
validated the performance of this method. Variable-resolution sampling reduced the number of
samples required by 50%, enhancing the reconstruction efficiency without compromising image
quality. Field tests demonstrated the system’s ability to successfully image fine targets, such as
cables, under dim and dusty conditions, achieving SNRs from 13.5 dB at 10% sampling to 27.7 dB at
full sampling. The results underscore the potential of this technique for enhancing environmental
perception in special unmanned vehicles, especially in GPS-denied environments with poor lighting
and dust.

Keywords: single-pixel imaging; variable resolution; lateral inhibition; tunnel inspection; unmanned
vehicles

1. Introduction

In the realm of public safety and infrastructure maintenance, the deployment of special
unmanned vehicles (UAVs) has become increasingly vital, particularly in GPS-denied
environments such as tunnel inspection and bridge monitoring [1-3]. These operations,
which are essential for public safety, require frequent and accurate assessments to ensure
the integrity and safety of critical infrastructure. However, traditional imaging techniques
often struggle in complex environments characterized by poor lighting and the presence of
dust [1,4]. The constraints on the size and weight of imaging systems for unmanned vehicles
further exacerbate these challenges, demanding a novel approach to optical imaging that is
both compact and powerful [5].

Single-pixel imaging (SPI) has emerged as an innovative solution to these limitations,
offering structural simplicity, resolution independence, and high sensitivity [6-8]. This
technology is particularly adept at operating in low-light conditions, presenting a promising
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new path for enhancing the environmental perception capabilities of UAVs. To address
the challenges faced in tunnel inspection, we have partnered with the China Railway 12th
Bureau Group Company, Ltd., to develop an eye-inspired single-pixel imaging system with
lateral inhibition and variable resolution. This system is designed to significantly enhance
a vehicle’s environmental perception capabilities in challenging environments.

Our approach integrates variable-resolution imaging with lateral inhibition, aiming to
improve the efficiency and quality of the image reconstruction of fine targets in practical
applications. This technique mimics the human eye’s ability to concentrate high-resolution
vision only in the region of interest, offering significant advancement in the field of imaging
for unmanned vehicle navigation and inspection tasks. By emulating the high-resolution
foveal vision of the human eye, this method significantly enhances the efficiency and
quality of image reconstruction for fine targets within the region of interest (ROI). This
method utilizes non-uniform speckle patterns coupled with lateral inhibition to augment
optical nonlinearity, leading to superior image quality and contrast. Lateral inhibition
effectively suppresses background noise, thereby improving the imaging efficiency and
substantially increasing the signal-to-noise ratio (SNR) in noisy environments [2,9].

The concept of single-pixel imaging is not new; it has been explored extensively in the
field of quantum imaging and has recently transitioned to classical computational imag-
ing [6,10,11]. The unique advantage of GI lies in its ability to separate the detection of light
from the formation of an image, allowing the use of a single-pixel detector and enabling
high-speed, high-resolution imaging [12-14]. This is particularly beneficial in scenarios
where the imaging environment is hostile or where the target is moving rapidly [7,8,15].

In this study, we present a cutting-edge imaging technique that integrates single-
pixel imaging inspired by the human visual system with lateral inhibition and variable
resolution to improve environmental perception in challenging conditions, such as those
with poor lighting and dust. By emulating the high-resolution foveal vision of the human
eye, this method significantly enhances the efficiency and quality of image reconstruction
for fine targets within the region of interest (ROI). This method utilizes non-uniform speckle
patterns coupled with lateral inhibition to augment optical nonlinearity, leading to superior
image quality and contrast. Lateral inhibition effectively suppresses background noise,
thereby improving the imaging efficiency and substantially increasing the signal-to-noise
ratio (SNR) in noisy environments [2,9].

The structure of this paper is as follows: The subsequent section delves into the
principle of our eye-inspired GI, detailing the theoretical underpinnings and the innovative
aspects of our approach. We then describe the methods employed in our study, including
the experimental setup and the protocol for data acquisition and analysis. The results
section presents the findings from our indoor experiments and field tests, demonstrating
the performance of our method under controlled conditions and in real-world tunnel
scenarios. Finally, we conclude with a discussion of the implications of our results, the
potential applications of this technology, and the future directions of our research.

Through this work, we aim to contribute a reliable imaging solution that enhances
safety and efficiency in tunnel inspections and other applicable domains, marking a sig-
nificant advancement over traditional imaging techniques. Our research underscores the
potential of bio-inspired computational imaging to overcome the limitations of current
technologies and to meet the demanding requirements of special unmanned vehicles in
GPS-denied environments.

2. Methods
2.1. Principle

The principle of eye-inspired GI [16,17] is shown in Figure 1, in which the laser is
triggered by the main board and illuminates the target through a beam expander. The light
is then reflected from the target and modulated by the digital mirror device (DMD) [18,19].
The DMD is loaded with our pre-designed variable-resolution speckles. The square where
the target object is located is modulated by a variable-resolution speckle. A single-pixel
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detector receives light for modulation [20,21]. Finally, the target image is reconstructed
and displayed by performing a cross-correlation operation [22] between the light intensity
signals and the light field information modulated by the DMD.

_ single-pixel Variable resolution+ lateral
- G a detector - inhibition (proposed) :
Main ESm| e 3 :
board —> y £
Correlation }
& display Different pattern

comparation

Figure 1. The principle of eye-inspired GI.

From the principle above, the marketable difference of our method is the use of non-
uniform patterns combined with the feature of lateral inhibition. Therefore, the advantages
of the proposed method include the following: (1) Enhanced Image Quality: The non-
uniform speckle pattern increases the optical nonlinearity of the imaging system, which
aids in capturing more details and contrast during the imaging process, thereby enhancing
image quality. (2) Improved Imaging Efficiency: The lateral inhibition mechanism sup-
presses background noise and enhances the useful signal, thus improving the imaging
efficiency of the system. (3) Improved noise resistance: The lateral inhibition mechanism
helps reduce noise interference during the imaging process, particularly in complex or
noisy imaging environments; thus, it can significantly enhance the SNR of the imaging.

2.2. Variable-Resolution Projection Pattern

In this study, a new variable-resolution projection pattern is used to replace the
traditional fixed-resolution projection pattern. The design of this new pattern is inspired
by the non-uniform distribution pattern of receptors on the retina of the human eye, where
the projection area is divided into a high-resolution fovea region and a low-resolution
marginal region. In the fovea region, we use the standard uniform high-resolution Cartesian
sampling method, which avoids the oversampling problem that can occur when using
log-polar coordinates in the central region. In the edge region, we use the logarithmic
polar coordinate variable-resolution sampling technology, using the characteristics of this
coordinate system to compress the image properly. With this design, we successfully
simulated the imaging characteristics of the human eye, which provides a high-resolution
image in the central area of the field of view and a low-resolution image in the peripheral
area of the field of view.

The variable-resolution projection pattern consists of two parts, the foveal region and
the edge region, as shown in Figure 2. Figure 2a shows a detailed enlarged view of the
edge region; Figure 2b shows the entire variable-resolution projection pattern, including
the foveal region and the marginal region; Figure 2c specifically shows the foveal area;
Figure 2d shows the marginal region. In the fovea, high-resolution sampling is generated
using the traditional Cartesian coordinate system, which avoids the oversampling problem
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that occurs when using log-polar coordinates in the fovea. The edges are based on a
log-polar model that mimics the human eye. If r is used to represent the distance from the
pixel point to the center point, then the outer boundary of the foveal region, that is, the
ring with radius rq, belongs to the foveal region; and the part outside this ring is the edge
region.

Y}  Foveal region

AT,

%
A
4
¥y

g
42 Log(r) Marginal area
"4

Foveal region
(a) (b) (d) 7

Figure 2. Variable-resolution projection pattern structure diagram.

According to the difference between the polar diameter and the polar angle, the edge
region can be divided into P rings; each ring has Q pixels. In the human-simulated log-polar
model, let p and g represent the p-ring and QTH pixel, respectively; then, the variable-
resolution structure of the edge region can be calculated by the following equations:

rpr1 =11 - €F

e — 1+sin(7/Q)
1- s1r1(7T/Q)
=1 Sln(”/Q) 1
0, =q % =123...Q)
= log,(rp) = log r1 +p—1 (p=1,23...P)

where 7, represents the radius of the ring where the PTH ring pixel is located, 8, represents
the angle corresponding to the g pixel, and ¢ represents the growth coefficient between
the rings.

The steps to achieve the variable-resolution projection pattern are as follows: First, set
the radius of the foveal area r( as a reference. Then, according to the distance between each
pixel and the center point, the whole projection pattern is divided into the foveal region
and the variable-resolution edge region. In the foveal region, we divide it evenly into Py
pixels according to the conventional method. For the variable-resolution edge region, we
calculate the additional parameters required for generation according to specific constraints.
For example, if the constraint is the number of pixels per ring Q, then we calculate the
growth coefficient between rings ¢, the radius of each ring rp, and the number of rings P
based on this condition. Then, Formula (1) is used to generate P, pixels of the edge region.
Similarly, other required parameters can be calculated from the number of rings P. Finally,
a complete variable-resolution projection pattern is obtained by merging the foveal region
with the variable-resolution edge region.

2.3. The SPI with Variable Resolution and Lateral Inhibition

The core theoretical contribution of this method is the integration of variable resolution
and lateral inhibition into a single-pixel imaging model. The model mimics the foveated
vision of the human eye, where high-resolution imaging is reserved for the region of
interest, whereas the periphery is imaged at a lower resolution [23,24]. Meanwhile, lateral
inhibition is incorporated to enhance contrast and detail in the final image reconstruction.
The image reconstruction based on the SPI pattern model of variable resolution and lateral
inhibition includes six steps.
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Step 1: Variable resolution modulation function

Variable Resolution Concept: Variable resolution adjusts imaging detail based on the
importance of different areas within the field of view (FOV), with high resolution for the
region of interest (ROI) and lower resolution for the peripheral areas. The modulation
function M(x, y) is expressed as:

d*(x,y)
= exp|——=L 2
M(x,y) exp{ 202 } 2)
where d(x, y) is the distance from point (x, ) to the center of the FOV, and ¢ is a decay parameter
that controls the sharpness of the transition between high- and low-resolution areas.
Step 2: Modulation of the Speckle Pattern
Based on Step 1, the integration of the variable resolution P(x, y) is written as

P(x,y) = Po(x,y)-M(x,y) 3)

where Py(x, y) is the initial uniform speckle pattern and M(x, ) modulates this pattern
based on the variable resolution requirement, thereby enhancing the resolution of the ROL
Step 3: Application of Lateral Inhibition
We introduce the lateral inhibition function S(x, y), which is written as

if (x,y)isin the ROI
otherwise

() =1 @
where ¢ is a small positive number. This function is crucial for enhancing the contrast by
reducing the effect of the peripheral region.

Step 4: Generation of the Detected Beam

The intensity of the detected beam’s intensity D(x, y) after passing through the target
is given by

D(x,y) = [[ P(y) - I(x' = x, y —y)dx'dy (5)

where P(x/, i) is the modulated speckle pattern that considers both variable resolution and
lateral inhibition, and I(x" — x, ¥’ — y) is the intensity distribution of the target.

Step 5: Calculation of the second-order correlation function

The second-order correlation function G2(7) is used in the imaging process and is
written as

G2(1) = (les(DI(t+7)) (©)

This function measures the correlation between the reference beam and the detected
beam, which is influenced by the modulated speckle pattern.
Step 6: Image Reconstruction

I'(x,y) « ff G*(1)-[Po(x +x, ¥ +y)-M(x,y)-S(x,y)] x dx'dy’ )

The reconstructed image I'(x, y) is proportional to the integral of the product of the
second-order correlation function and the complex conjugate of the modulated speckle
pattern, which includes both variable-resolution and lateral inhibition effects.

From the above processes, by integrating the variable-resolution model more explicitly
into the derivation, we enhance the clarity of how different areas within the FOV are
treated based on their importance. This approach ensures that the ROl is imaged with a
higher resolution and contrast, while peripheral areas are adjusted to reduce noise and
interference, leading to a more effective single-pixel imaging technique.

According to the size of the region of interest and the region of non-interest, the
log-polar model can be used to generate the spatial variable-resolution sampling structure
with different position resolutions. By using the side suppression feature, the projection
pattern can be optimized based on the boundary and detail characteristics of the obtained
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imaging results. In traditional ghost imaging, random speckles or stripes based on image
transformation basis are used as projection patterns. However, the characteristics of the
current imaging scene are not considered, especially for the low-contrast scene which is
poorly imaged by the existing methods. The method proposed in this paper establishes
the connection between the scene information and the projection pattern by combining the
side suppression feature with the variable-resolution speckle and adaptively adjusts the
projection pattern according to the characteristics of the current scene, which can effectively
enhance the edge details and improve the contrast and image quality.

3. Experiments and Results

The experiments were designed to validate two critical aspects of the proposed method:
the compression of redundant data and the ability to capture clear images under actual
working conditions. To address these objectives, both indoor and field experiments were
conducted. The indoor experiments utilized discrete optical components to validate the
advantages of the compression of redundant data, whereas the field experiments were
conducted in real tunnel scenarios to mimic real-world operational challenges.

3.1. Experimental Setup

In the indoor experiments, as shown in Figure 3, we assembled a high-performance
system that corresponded to the components diagrammatically represented in the provided
image. The heart of our setup was a pulse laser () from the DSS 1064 series of the CryLas
laser system, selected for its stability and precision to ensure reliable light emission. This
was complemented by a Vialux V7001 DMD (), chosen for its 1024 x 768 resolution
and 22 kHz micromirror flip rate, to generate and modulate speckle patterns. The DMD
was securely mounted adjacent to the pulse laser, with light-shielding tape applied to
prevent stray light interference. Our transmission optical component (3)) consisted of
a series of precision optical elements, such as lenses and beam shapers that direct and
focus the speckle pattern onto the detection target (@) [25,26]. The targets, including
triangular, circular, and square shapes, were fabricated using 3D printing technology to
construct a 3D scene for imaging, simulating potential tunnel-inspection scenarios. The light
reflected from the targets was directed to two single-pixel photodiodes ((®) [16,27] via a
beam splitter ((®). The photodiode (Thorlabs” PDA36E, Sorebo Optoelectronic Technology
Shanghai, China), recognized for its high sensitivity and wide bandwidth, effectively
captured the nuances of the light signals. All these components were mounted on custom
3D-printed bases to ensure accurate alignment. To manage the overall timing of the
system, which is crucial for measuring the time intervals of the reflected light signals and
facilitating the reconstruction of single-pixel images, we employed a field-programmable
gate array (FPGA)-based time-to-digital converter (TDC) system. A data acquisition card
(GaGe CSE22G8) was used to collect and digitize the analog signals from the photodiodes,
which were then transferred to a computer for further processing and analysis. This
comprehensive setup, with its carefully selected and integrated components, allowed us to
effectively evaluate the variable-resolution imaging technique under controlled conditions,
demonstrating its potential to enhance image quality, especially in capturing fine details
within the ROL

In the indoor experiments, we utilized a setup that included geometric targets, such
as a triangular prism with a 10 cm side length, a circular disc with a 10 cm diameter, and a
square prism with a 10 cm side length. These targets were strategically positioned 60 cm
from the light source.

In the field experiments, we aimed to address the practical challenges of tunnel
inspection by collaborating with the China Railway Twelve Bureau to develop a specialized
integrated land and air inspection robot. The robot was designed to navigate and inspect
the interior walls of tunnels according to pre-planned paths and to transmit the collected
inspection data to a terminal for analysis by professionals. Given that the tunnels under
inspection are not in their final state, the robot operates in harsh environments characterized
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by GPS signal blockage, dim lighting, and complex obstacles on the tunnel walls. These
conditions make it difficult for the robot to avoid obstacles; the typical obstacles include
wires, cables, and angle irons. In the experiments, we selected a cable of 0.5 cm as the
target. While existing 3D imaging LiDAR can map the interior of a tunnel and roughly
locate larger obstacles, it struggles to accurately image small, fine details; such imaging
is crucial for precise localization. Additionally, the size, weight, and power consumption
of current LiDAR systems make it challenging to integrate them directly into special
unmanned vehicles. We focused on field experiments that imaged fine targets under actual
working conditions to guide and enhance the environmental perception capabilities of
special unmanned vehicles.

GaGe CSE22G8

7.

Thorlabs PDA3GE

(b)

Figure 3. Indoor experimental setup. (a) The structure of the experiment; (b) the main components
used in the indoor experiments.

Taking into account the actual working environment, the typical walking distance of
the UAVs from the beginning to the detection is 100 m, as shown in Figure 4. The arch
height of the railway tunnel in China is different according to the actual situation; for
example, the height from the rail surface to the arch of the railway tunnel of the Guiguan
Line is 8.68 m. Meanwhile, according to the Design Code for High-Speed Railway Tunnels,
it is required to be no less than 8 m, and 10 m is taken for the calculation. Therefore, the
covering distance of the system prototype should be no less than 100.5 m. In order to
complete the laboratory experiment, the system was integrated, as shown in Figure 3a, and
the system test environment is shown in Figure 3b.
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Figure 4. Schematic diagram of the working distance of the inner wall of the robot tunnel. (a) Working
distance diagram; (b) range of coverage.
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We carried out an infield experiment, in which the experimental equipment was placed
inside the house; the specific location and system prototype are shown in Figure 5a,b. Two
cables were placed 100 m away from the system; the test environment is shown in Figure 5c.
The diameter of the cable was 0.5 cm, as shown in Figure 5d.

(d)

Figure 5. Setup of the infield experiment. (a) The location of the laboratory equipment; (b) enlarged
view of the experimental setup; (c) the environment of the target object; (d) target object.

The prototype, as depicted in Figure 6c, integrates a 120 mm aperture catadioptric
telescope for long-range single-pixel imaging of 100 m, enhancing the ability to detect small
targets at a distance. Given the harsh conditions in a tunnel, such as dim lighting and
the presence of dust, traditional imaging methods struggle to produce clear images. As
shown in Figure 6b, even with a mobile phone flash at approximately 5 m, the visibility is
significantly limited, and without illumination, as seen in Figure 6d, the cables are nearly
indistinguishable to the naked eye. The core components of the rest of the system, including
the pulse laser, DMD, and single-pixel detectors, are consistent with those used in our
indoor experiments, ensuring a reliable baseline for comparison.

The object of cable
under 1llumination

The object of cable
without illumination

Figure 6. Field experimental setup. (a) Specialized robot under working conditions. (b,d) are the
target of cable under illumination and without illumination. (c) The prototype is displaced at the
tunnel entrance.
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3.2. Results and Discussion

Our experiments aimed to validate the performance of the proposed eye-inspired
variable-resolution single-pixel imaging technique under controlled indoor conditions and
real-world field scenarios.

3.2.1. Data Compression Performance Verification (Indoor Experiments)

To compare the imaging effects, we used three basic geometric shapes: an equilateral
triangle, a circle, and a square, each with a side length or diameter of 10 cm, placed at
intervals of 8 cm and 14 cm from each other. The triangle was positioned 60 cm from the
light source, covering the entire FOV, which was defined as the region of interest (ROI).
We captured data with 2500 samples; the imaging results are shown in Figure 7, where
(a) represents the reconstructed intensity maps at different distances, (b) shows the distance
maps in different colors, and (c) presents a three-dimensional view.

(a) ()

Figure 7. Traditional uniform-resolution random speckle 3D imaging results. (a) Reconstructed
intensity map, (b) reconstructed distance map, and (c) 3D view.

Compared to the traditional uniform random speckle pattern reconstruction methods,
our experiment applied a variable-resolution sampling technique, reducing the number
of samples by half. This improvement demonstrates an increase in the reconstruction
efficiency while maintaining the image quality, highlighting the potential of optimizing
the reconstruction process in GI technology by adjusting the sampling strategy. When the
distance between the triangular target and light source was increased to 100 cm, occupying
only a part of the imaging FOV, we optimized the imaging effect by selecting the central
area of the FOV as the ROI. By mimicking the retinal structure of the human eye, we
generated a high-resolution speckle pattern in this area. The central area, with a radius
of 42 pixels, was surrounded by five concentric circular rings, each containing 72 pixels,
totaling 4432 pixels. The central region was filled with variable-resolution speckles, similar
to the human eye, while the peripheral area was filled with random speckles. Even when
the sample number was reduced to 1500, which was only 0.1 of the traditional uniform
speckle sampling rates, the reconstructed image still achieved good quality, as shown in
Figure 8. This result confirms that with an optimized speckle pattern, clear imaging results
can still be obtained even at a reduced sampling ratio, thereby effectively verifying the
characteristic of variable resolution in compressing redundant data.
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Figure 8. Three-dimensional imaging results using eye-inspired variable-resolution speckle method.
(a) Reconstructed intensity map, (b) reconstructed distance map, and (c) 3D view.

3.2.2. Fine Target Imaging Capability Verification

Two cables were placed 100 m away from the system to image them, and the recon-
struction quality was compared under different association times, as shown in Figure 9,
which shows the system imaging SNR with the system sampling rate ranging from 10% to
100%. It can be seen from the figure that even if the sampling rate is reduced to 10%, the
resulting image is still able to maintain a signal-to-noise ratio of up to 35 dB. This shows
that even under the condition of a low sampling rate, the system constructed in this paper
can still obtain high-quality images, so as to support the UAVs and help them to more
accurately perceive the environment and avoid obstacles.
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Figure 9. SNRs under different sampling ratios. The sampling ratios from (D to &) were 10, 30, 50, 70,
and 100%, respectively.

After verifying the feasibility of the system prototype at the simulated site, the system
prototype was deployed to the actual application environment, and the site was selected as
a section of closed tunnel in Xiongqin (Xiongan to Qinzhou), as shown in Figure 10. The
goal is still to image the wire 100 m away from the system prototype; the diameter of the
wire is 0.5 cm. The difference is that the tunnel environment is relatively dim, and because
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it is still in the construction stage, there is still a lot of dust inside, such test conditions
are designed to simulate the challenges that may be encountered in practical applications,
focusing on the imaging ability of small targets at a distance. Thus, the imaging advantage
of this system in a complex environment is demonstrated.

S

Figure 10. A section of closed tunnel in Xionggin (Xiongan to Qinzhou).

From the experimental environment, it can also be seen that the bad environmental
conditions put forward higher requirements for imaging technology. Factors such as
lighting and dust in real application scenarios have a significant negative impact on image
quality compared to simulation scenarios. In such an environment, it is often difficult
for conventional imaging techniques to capture clear and accurate images, resulting in a
limited ability to identify and analyze distant targets, as shown in Figure 6b,d.

As emphasized in the experimental preparation, traditional imaging methods struggle
to discern the cable targets. Under the same test conditions, our prototype successfully
imaged distant wires, demonstrating the ability to maintain a high imaging quality in
environments that are both dimly lit and have poor clarity, as shown in Figure 11. The
corresponding imaging results at sampling ratios of 10%, 30%, 50%, 70%, and 100% are
presented, with quantitative results showing SNR ratios of 13.5 dB, 16.1 dB, 19.6 dB,
24.2 dB, and 27.7 dB, respectively. This experiment revealed that under low-light and dusty
conditions, our method is more conducive to capturing images of fine targets.

35

0 . L . . | . . .
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Figure 11. SNRs under different sampling ratios. The sampling ratios from (@ to 5) were 10, 30, 50,
70, and 100%, respectively.
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By comparing the imaging results under different sampling ratios, we found that
under low sampling ratio conditions, single-pixel imaging technology combined with
variable-resolution sampling and lateral inhibition characteristics could provide higher
SNR ratios and clearer images. For instance, in an actual tunnel environment, the imaging
result at a 10% sampling ratio had an SNR ratio of 13.5 dB, whereas the result at a 100%
sampling ratio had a ratio of 27.7 dB. The experiments demonstrated that, even under
the dim conditions inside the tunnel, the prototype system could successfully reconstruct
recognizable images, which is crucial for guiding robots to avoid obstacles. This capability
not only verified the robustness of the system but also showed its good environmental
adaptability in maintaining relatively clear imaging under extreme conditions.

4. Conclusions and Future Works

The experimental results validated the effectiveness of our proposed eye-inspired
variable-resolution single-pixel imaging technique for enhancing the environmental percep-
tion in special unmanned vehicles (UAVs). This innovative approach, tested extensively in
both controlled indoor settings and real-world tunnel scenarios, demonstrated its potential
for practical applications. In particular, in GPS-denied tunnel environments with dim
lighting and dust, the technique showed a significant improvement in the efficiency and
quality of image reconstruction for fine targets. The integration of lateral inhibition was
also successful in reducing noise and artifacts, resulting in cleaner image reconstruction.

In future work, the primary focus will be on conducting more comprehensive field
tests to confirm the robustness of the system under diverse environmental conditions.
There is a clear need to develop advanced image-processing algorithms to achieve real-time
imaging capabilities and to integrate this imaging system with autonomous robots or
unmanned aerial vehicles (UAVs) for automated inspection tasks. Aligning technology
with industry standards and regulatory requirements is also a priority for expediting
commercial deployment. Our goal is to develop this technology into a reliable tool that
can improve safety and efficiency in tunnel inspection and other applicable areas. By
providing clearer and more accurate images than traditional imaging techniques, we hope
to help inspectors spot potential problems faster so they can take preventive measures to
avoid possible accidents and delays.” This will mark an important advance in imaging
technology, providing more efficient and safer solutions for a variety of inspection and
monitoring tasks.
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Abstract: Numerous efforts have been invested in previous algorithms to expose and
enhance blood vessel (BV) visibility derived from clinical coronary angiography (CAG)
procedures, such as noise reduction, segmentation, and background subtraction. Yet, the
visibility of the BVs and their luminal content, particularly the small ones, is still limited.
We propose a novel visibility enhancement algorithm, whose main body is inspired by
a line completion mechanism of the visual system, i.e., lateral interactions. It facilitates
the enhancement of the BVs along with simultaneous noise reduction. In addition, we
developed a specific algorithm component that allows better visibility of small BVs and the
various CAG tools utilized during the procedure. It is accomplished by enhancing the BVs’
fine resolutions, located in the coarse resolutions at the BV zone. The visibility of the most
significant clinical features during the CAG procedure was evaluated and qualitatively
compared by the consensus of two cardiologists (MM and JE) to the algorithm’s results.
These included the visibility of the whole frame, the coronary BVs as well as the small ones,
the main obstructive lesions within the BVs, and the various angiography interventional
tools utilized during the procedure. The algorithm succeeded in producing better visibility
of all these features, even under low-contrast or low-radiation conditions. Despite its major
advantages, the algorithm also caused the appearance of disturbing vertebral and bony
artifacts, which could somewhat lower diagnostic accuracy. Yet, viewing the processed
images from multiple angles and not just from a single one and evaluating the cine mode
usually overcomes this drawback. Thus, our novel algorithm potentially leads to a better
clinical diagnosis, improved procedural capabilities, and a successful outcome.
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1. Introduction

Coronary artery disease (CAD) is a major global cause of death [1], caused by
atherosclerotic plaque buildup. It may cause gradual narrowing of the inner side of
arteries over time or abrupt rupture and clotting that end up with partial or total blockage
of the blood flow. The current gold standard for the detection and invasive treatment of
CAD is conventional X-ray CAG [2]. A contrast agent is injected during the acquisition of
CAG to improve the visibility of the BV and their blood flow. A CAG unavoidably exposes
the patients to a limited controlled dose of harmful X-ray radiation and toxic contrast
agents [3].
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The capabilities to enhance CAG visibility post-acquisition are based on computational
methods that modify brightness, contrast, and background by various algorithms. The
quality of CAG images still suffers from low contrast (mainly due to dye clearance and
low-radiation fluoroscopy runs), non-uniform illumination issues, and the presence of
other body organs, which makes the diagnosis and medical interventional procedures
a challenging task. A comprehensive algorithm that can simultaneously enhance the
visibility of all image components, without losing details and even revealing important
clinical information, is therefore, clearly needed.

Improved CAG visibility has the potential to help also in selecting the required
equipment for the catheterization procedure. It supports smooth and faster navigation
with the various catheters, especially with the thin wire inserted into the coronary blood
vessel (CBV), which is commonly used during invasive treatment. This allows accurate
deployment of balloons and stents over it, precisely at the right locations. A successful
procedure includes many additional tools and elements, which are all dependent on
visibility, such as placing the tip of the catheter at the proper angle in the orifice of the
vessel, avoiding damage to the delicate endothelial tissue when the dye is injected at high
pressure, or when entering and navigating with the tip of the wire inside the vessel and
later deploying a stent over it. An additional advantage is avoiding unnecessary invasive
treatment when identifying good flow through collaterals that bypass the obstructive lesion
or that originate from other CBVs and supply sufficient blood to the same viable myocardial
territory. Previous algorithms did not relate to this type of CAG enhancement and visibility.

Over the years, numerous studies have been developed for the segmentation and
enhancement of BVs applied to different anatomical areas and imaging modalities [4,5].
These classical algorithms dealt mainly with these challenges through second derivative
algorithms (i.e., Hessian algorithms) [6] and other algorithms that tried to improve the
dynamic range of the image in order to solve illumination problems, such as contrast
limited adaptive histogram equalization (CLAHE) [7,8], And additional study suggested
morphological filters [9].

Hessian-based methods have commonly been applied for the purposes of blood
vessel segmentation and enhancement in CAG images [10-13]. Although these studies
obtained good segmentation of the main coronary arteries, only a small repertoire of the
successful segmentation of small BVs was obtained. Moreover, these Hessian derivative
algorithms also caused enhanced noise in the image [14]. Truc and his colleagues (2009)
tried to reduce the noise by using a Hessian algorithm and applying wedge filters, as
preprocessing components.

Some of these publications added additional factors that enhance and improve the
blood vessel’s appearance, such as adding the G-L differential kernel [15], which yielded
better results than, for example, the classical CLAHE algorithm. Results of CLAHE algo-
rithms have appeared many times with exaggerated results and with additional noise [16].

Few computational algorithms have been developed to reduce the amount of toxic X-
ray radiation and contrast agent dose while minimizing image quality degradation [1,17,18].
For enhancing the visibility at low doses, different methods have been used, such as
decreasing the noise through principal component analysis (PCA) [17], adding the isolated
vessel layer to the low-dose image [18], and using a convolutional neural network (CNN)
algorithm [1]. Exposure of additional BVs under the condition of low contrast was shown
by using fractional differential kernels [19] and additional classical methods, such as
Hessian-based methods [15] or lateral inhibition-based models.

Due to the substantial research efforts dedicated to improving CAG image quality
issues at standard radiation, our study mainly refers to the most recent and relevant studies.
Those studies have been developed in order to overcome several image visibility drawbacks,
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such as non-uniform illumination, artifacts and noise, low contrast, and interference of
vertebral objects [15,18,20,21].

A group of other recent studies challenged the efficient segmentation of BVs through
background subtraction algorithms. These studies aimed to isolate the BVs, in still or in
video images, from the bony “artifacts” of the spinal cord and additional organs. The
purpose of this approach is to allow the observation of BVs without “disturbing” vertebral
bodies, such as bones and the spinal cord. These studies computationally separate the
CAG image into two [20,22] and sometimes three different layers [18,21], namely, vessels,
breathing, and background (spine and hard tissues) layers. Since the spatial information by
itself cannot separate efficiently the three layers, most of the subtraction operations used
mutual information of spatial and temporal aspects. Most of these algorithms utilized the
known Robust Principal Component Analysis (RPCA) method [18,20,21]. Such a method
enables the separation of the image into a matrix that is decomposed into a low-rank
and sparse matrix, which represents the background and vessel layers. These subtraction
studies [18,20,21] succeeded in separating the background from the BV image, but none of
them included the small BVs in their BV layer.

In recent years, CNNs have become a common method for coronary blood vessel
segmentation [8,23-26]. Most of the studies on this topic did not include exposure of
small blood vessels in their ground-truth image [8,23,26], and therefore, their segmentation
results did not reveal exposure of small blood vessels. Only more recent papers, from
2021 [24,25], presented ground-truth images that supplied a larger repertoire of blood
vessels, including the small blood vessels, to the U-net and Random Forests Classifier
algorithms. Their results yielded better performance than the previous algorithms, but still,
the visibility of small blood vessels was limited [25].

Although many studies and computational methods addressed the CAG image quality
issues, it seems that solutions for the clear appearance of small blood vessels and visibility
of the content inside the large blood vessels with their relevant catheterization apparatus
are still required. Revealing these details and objects can be critical in allowing an efficient
diagnosis. We present here a single algorithm that addresses both the visibility of BVs and
the catheterization tools. It simultaneously reduces noise and illumination artifacts and
can also enhance the visibility of BVs under the conditions of a low-contrast agent dose
and reduced radiation. The algorithm is based on a new biologically inspired mechanism
and a computational model (lateral facilitation) [27,28].

2. Proposed Algorithm
2.1. Rational of the Algorithm

In this study, we developed and applied different algorithm components for enhancing
the visibility of CBVs and the various tools utilized during the CAG procedure. For this
purpose, we first used a preliminary stage aimed at enhancing the visibility of the relevant
region of interest (ROI) in the images, namely, the CBVs. For a successful diagnosis,
cardiologists need to properly evaluate the whole CBV system, including the small vessels,
and identify all significant obstructive lesions. Enhancing the visibility of the catheterization
tools within the blood vessels is also important for successful invasive procedures. The
algorithm was developed to overcome quantum noise, artifacts, non-uniform illuminations,
and low contrast due to a low-radiation and/or low-contrast agent dose, which can all
substantially decrease visibility.

The suggested algorithm is based on Multiscale Gabor filters having different orienta-
tions and scales (similar to what occurred with the different BVs). The main contribution
of the algorithm to the BV enhancement is inspired by a visual system mechanism and its
model [27]. This mechanism is known as lateral facilitation or lateral interactions, while
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the mechanism of contour integration is also included in the suggested model [27-29].
(2) The model suggests an additive facilitation sub-threshold signal, which is added to
an area outside the classical receptive field but that is induced at the optimal relevant
orientation of the classical receptive field. This sub-threshold response may be enhanced to
become suprathreshold by the additive signal of the neighboring receptive fields (RFs) (in
the case that a similar orientation preference is shared between the two adjacent receptive
fields). The possibility that the additive signal will cause a super-threshold response and
fulfill contour integration can be regarded as determined by an educated guess signal (ad-
ditive signal). The line and texture completion of the blood vessels enables us to enhance
their structure at the expense of part of the noise in an image.

2.2. Querview

Our algorithm for blood vessel visibility enhancement is based on several building
blocks, which are summarized in the schematic diagram of Figure 1. Each component is
represented by a different background color.
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Figure 1. The schematic building block of the main components of the VIAEVCA algorithm. Each
colored block represents a different algorithm component (with reference to the appropriate equation
numbers in the model). The same code of block colors is given for the different algorithm compo-
nents and will be used for the rest of the schematic building blocks presented along the algorithm
components description below.

The algorithm’s first stage (Figure 1A, green block) performs Gabor filtering in sev-
eral orientations and scales, which is similar to what is performed with the simple cells’
receptive fields of the visual system. The second stage (Figure 1B, pink block) performs
the line completion algorithm, which is based on computational models aimed to supply
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mechanisms and models to visual phenomena, such as lateral facilitation, and collinear
interaction stages. The third stage (Figure 1C yellow block) performs the extraction of the
blood vessel’s region of interest (ROI). Then, in the fourth stage (Figure 1D cyan block),
the ROI result is used to extract the blood vessels from the image of the line completion
results (Figure 1E pink block). The resulting image contains the blood vessel edges’ texture
(which has been obtained from the line completion) but only at the zone of the blood vessel
locations (BV ROI). The purple block represents blood vessel visibility enhancement after
the integration of the blood vessel edge texture with the original image (DC of the image).
The algorithm results (purple block) have been presented to the cardiologists for estimation
and feedback. The additional stage of algorithm corrections, according to the cardiologists’
feedback, is the final estimations, which are presented in the Section 5.

2.3. Orientation and Scale Filtering (Gabor)

The first stage of the algorithm is intended to extract edges, which are built from
different scales (j) and different orientations (). The edge image, s(x, y, , ), is obtained
through the convolution of Gabor kernels G (x,y), Equation (2), while using a Gaussian
Image Pyramid deconstruction of the input image I(x,y), which is built from different
scale images, I/(x,y). The edge image, thus, is built of edges with different orientations and
different spatial resolutions. Equation (1) represents the calculation of the Gabor kernels at
different orientations:

1 _ G=x)?+-u0)

Golw) = e ecos( S m)ecos(d) + r—yo)sin(@)) )

where the frequency (%) and the orientation (6) of the spatial filter are determined by the
frequency and orientation at each spatial location (x,y). ¢ is the standard deviation of
the Gaussian envelope. (xo, o) is the spatial location of the center of the Gabor filter. g is
chosen as the normalization factor.

To estimate the orientation feature of images’ edges (stimulus), we first convolved the
Gabor kernel at different orientation values:

ZZU(m,ﬂ)'Ge(x—m/y—”) x,y at RFs center
s(x,y,j,0) =4 nm 2
0 oW

where I/(x,y) is a Gaussian Image Pyramid deconstruction of I(x,y), and j represents the
spatial scale.

After the edge (sparse) image s(x, y, j, 0) is obtained, we determine the optimal edge
orientation at each location (x, ), separately for each scale (j). Therefore, in Equation (3)
S(x,y,j), Figure 2C is chosen as the strongest convolution response (Equation (2)).

S(x,y,j) = argeg[loago](S(x/ v,7,9)) 3)

Due to the Gabor structure, which contains positive and negative areas, the optimal
orientation edge image S(x, y, j) contains both the strongest response in the positive and
the negative value ranges. These two maximum responses are considered separately, as
shown in Equations (4) and (5).

cp(x,y,j) = max(S(x,y,j) ,0) @

en (%, j)= max(=5(x,y,j) , 0) ®)

where cp and cy represent the largest positive and negative responses, respectively.
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Figure 2. Schematic block diagram of the initial part of the algorithm that computes the different
Gabor receptive fields of orientations and spatial resolutions. (A) Direclioral Gabor Filters. (B) The
optimal orientation and scale filters are then computed. (C) The negative and positive components
are separated. The small plots on the right and left sides illustrate the mathematical operations.
(D) The Naka-Rushton operation.

For the sake of simplicity, from this point and further on, all the equations refer to P
and N values as one group, although the computations are independent. The positive and
negative components, until the components are separated, are recombined at the final stage
of the algorithm. ¢(x, y, j) is, therefore, used to represent both cp(x, vy, ) and cn(x,y, j).

To decrease the amount of noise in the image, all intensity responses below 5% are
considered here as noise (Equation (6)). The threshold, thr, is consequently calculated as
the 5% percentile, across all the maxima response values and across all the spatial locations
in the edge image c(x, y, j). Equation (6) is shown below.

c(x,y,j) = (e(x,y,j) > thr) -c(x,y,]) (6)

where
thr = £max|c(x,y,j)|-0.95 (7)

Following the lateral facilitation model [27], we applied the Naka—Rushton Equation
Rrre(x,y) j (Equation (8)), Figure 2D, which was suggested as a response to the V1 simple
cell’s responses to the edge images c(x,y, j). This operation enables us to enhance the gain
response in reference to a specific stimulus intensity range.

. c(xy,j)"
Rre(c(x,y,))); = Mq 8)
Y NR

where Rrr(x,vy) j is the Naka—Rushton response of a cRF cell at location (x, ) and scale j.
For the sake of simplicity, the NR parameters n and oy are considered as constants.

2.4. Line Completion Algorithm

Figure 3 shows the schematic diagram of the line completion algorithm’s component.
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Figure 3. Schematic diagram of the line completion algorithm’s component. (A) represents the
additive signal, which refers to the extra-classical receptive field area that is located collinearly to
the receptive field (the blue arrows). (B) illustrates the case that lateral facilitation is fulfilled when
the additive signals of collinear responses (grey arrows) are overlapped (orange arrows). The green
half-circle represents the weight function for the directional facilitation between adjacent receptive
fields, through a Gaussian profile; see text. (C) illustrates the threshold response that was determined
by the percentile response (blue Gaussian, left).

3. Lateral Facilitation
3.1. Additive Signal

Following the rationale of the algorithm (Section 2.1), the algorithm is presented in
terms of the model of line completion, i.e., lateral facilitation [27]. An additive signal
(AdS) is added beyond the response to the classically relevant receptive field (RF), as
an educated guess response (Equation (15)). It is taken, therefore, as a sub-threshold
response that is added to the RF optimal response, which has been yielded from the
preferred appropriate orientation receptive field. Consequently, this response is calculated
as a sub-threshold signal, which is spatially located along its relevant RF. It becomes
suprathreshold only when there is an “agreement” with the neuronal mechanism of lateral
interaction [28,29]. For the sake of simplicity, we present first the additive signal spatial
decay profile, which is built from Gaussian functions (Equations (9)—(12)), and then the
induced additive signal response, while also including its intensity profile and not only its
spatial profile (Equation (13)); see Figure 2C.

Since the additive signal, AdS (Equation (9)), is added collinearly, it is expressed as a
Gaussian mask located along the RF orientation, x-axis, which indicates the collinearity
to the core of the receptive field. This additive signal, Ads, is added to the maximum
responses of orientation and resolutions, s(x, y), as sub-threshold signals.

/

-)) )

=

Q

AdS(x;,y;,0) = %e(f%(
X

where x’ is the collinear axis, § is the orientation of the optimal receptive field, and oy
is defined as the designated number of pixels needed for line completion along the
6 orientation.
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To enable flexibility in the connectivity between collinearity additive signals, which is
supposed to perform an efficient line completion, the model suggests a second axis Gaussian,
Y/, (perpendicular to the RF length—x’ axis), as a weighted function (WF) (Equation (11)).
This component enables additivity between a neighbor’s RF with also only similar orientations.

/!

A _1
WEF(x;,y;,0 ) = %e( 2y)) (10)
Y

‘<

where ¢, is the weight function of the decay of the degree of the additive signal collinearity.
The final additive signal profile (AdSy) is presented by a two-dimensional Gaussian
function (Equation (12)).

A A " 1 1y
Ade (xi/yirg ) = AdS (xiryire ) X WF(xl'/yi/G ) = E( Z(Ux+0y)) (11)
20x0y
where x' = x;cos(0) + y;sin(8), y' = y;cos(8) — x;sin(9).
The additive signal, which includes its intensity and spatial profile is presented
as follows:

a-R%F(c(xi,yi))]-le X Ade(xi,y,», 9) dl > TRE

. 12
0 d'" < rrp (12

RFpase,j(Xi,yi) = f(di/ RFi(xi,y,')e,]-) - {

where R (c(x;,y;)) jp is the cRF response of the inducing RF. d' is the distance from the
center of the inducing RF to the edge of the receptive field and the distance of the additive
signal, which includes the regions outside of the classical receptive field in the preferred
orientation. rrr is the distance between the center of the receptive field to its edges. a
represents the strength of the induced LF (lateral facilitation).

3.2. Collinear Interactions

This stage of the model examines the possibility of the lateral facilitation operation at
each image location; see Figure 2C. In other words, the model examines whether the sub-
threshold additive signal, RF4 s 0, (xi, ;) (Equation (13)), at each specific RF, is changed to
be super-threshold, in dependence on the responses at the neighborhood of the collinear
neighborhood regions, RFZ%'% )grj(xw.,yﬂ.). The model, therefore, examines whether
there are collinear matching flankers that can overlap with their additive signals and,
consequently, cause a super-threshold response. This additive signal interaction, thus, can

fulfill the condition for the lateral facilitation operation (Equation (14)).

RFLF(Xita,Yiva)o; = RFhasg(Xi vi) + RFjgsq (Xita, Yisa) (13)

where RF4 s is the receptive field additive signal at a specific location, while i and k are
the indexes that present two different neighboring receptive fields, RF44s.

Until this stage, we considered only the facilitation obtained from the responses of
adjacent collinear receptive fields, Equation (14). The model should also consider a possible
response, Rrr, in case there is a stimulus located in the region of the overlapping summated
receptive field with their additive signals, RF;r. (The above consideration agrees with
many experimental studies that have been completed on lateral facilitation and lateral
integration (i.e., ref. [24])).
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The lateral facilitation procedure, Equation (15), includes possible summation from all
the receptive fields with their overlapping additive signals, along with the RgF, located in
the summation spatial area; see above.

LE(x,y)g,; = Rre(x,y) + Y. RFiP(xi+ArVi+A)e,]' (14)

where LF(x, y)e,j represents the sum of the lateral facilitation signals at each RF location
(x, ), along with Rgp(x, y); see Equation (9). Note that there is an additional stage of the
threshold; see Equations (16) and (17).

The same logic of fulfilling the lateral facilitation is included for the whole image at
all locations, through the summation presented in Equation (16). LF(x, y)G,j presents the
last stage of the lateral facilitation procedure, for the whole image, but before an additional
stage of thresholding, as presented in Equations (17) and (18).

LE(x,y)g; = co,j(x,y) + Y. RFiP(xiJrA/yHA)e,j (15)

where LF(x, 3/)9,]‘ represents the sum of the lateral facilitation signals at each RF location
(x, y), along a similar orientation 6 and scale j. cg(x,y) represents the cRF response at
location (x, v).

Following the previous section that described lateral facilitation, LF(x, y)G,j’ which
is fulfilled only in the case that there is overlapping between adjacent additive signals
of adjacent receptive fields, an additional threshold level, the thrj stage, has been added,
LF_thr(x,y)grj;
percentile measure; see Equation (18). The aim of the thresholding stage, Equation (17),

see Equation (17). The level of the threshold is determined according to

is to suppress LF responses, which are too low. This stage allows the algorithm a further
reduction of the enhanced noises.

LF_thr(x,y),; = max(o, LF(x,y)glj) H(LF(x,y)y ; — thr)) (16)
where H is a soft-threshold function.

thr; = P]%%(LF(x,y)erj) (17)

where Pj,j is the ;% percentile of the lateral facilitation response values, LF (x,y)glj, in
Equation (18), across the whole image. 7y is the percentile constant per scale ;.

The algorithm components have been calculated separately for each response feature:
polarities (P, N), orientations (6), and scales (j) (see above). The following stages describe
how the different components are combined to have final lateral facilitation responses
while including all their features. The integration of the different components has been
described separately for each algorithm'’s feature.

Polarities: The simulations have been treated separately for the positive and negative
responses (Section 2.3; Equations (4) and (5)). However, our model omits writing each
component twice, for the sake of simplicity in the previous sections.

We first start with two LF polarities, the negative LF_thr(x, y)N 9 and positive

LF_thr(x,y)Pelj.

LF_thr(x,y)Oelj = LF_thr(x,y)pg,]- - LF_thr(x,y)Nelj (18)
Orientations: In the following stage, the algorithm sums up all the responses of the

optimal orientations, which have been found for each Gabor Orientation, LF_thr(x, y)oe/]«
(Equation (2)).
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During this summation process, we would like to also gain noise reduction, and
therefore, we enhance the larger responses and suppress the smaller responses, by raising
LF_thr(x,y)og,]- over the power of an integer m1 > 1. To maintain the response sign
(positive or negative response) of T}, the calculation is separated into sign and absolute
value components, in the following manner:

7 - ; [(‘LF_thr(x, y)oﬂ,j))ml sign (LF_thr(x, y)ogl]‘>:| (19)

To maintain the original LF intensity values range, while preserving the values signs
and the enhanced contrasts, the algorithm applies an inverse operation to Equation (20):

1/ = sign(T;)- /1] 0)

Scales: Equations (22) and (23) describe the operation of combining the collapsed
scales. This is completed similarly as is completed for the recombination of the different
orientations (Equations (20) and (21)). However, in this case, we had to consider the
different scale image sizes. Before the scale recombination, each Tj’ (Equation (21)) is
interpolated back into the size of the original image scale (see Section 4). The resized set of
Tj’ responses are notated as T;".

m2
1 .
T=) <Tj|Tf” ) sign (1) 1)
]

where m2 is constant (m2 > 1), andrj is a scale-dependent constant, which is defined per
each scale.

Tg = y-sign(T)- /|| (22)

where 7y is a normalization constant.

3.3. BV ROI

The extraction stage of the region of interest (BV ROI) of the BV is designed to extract
the locations of BVs, the catheterization apparatus, and the contrast agent (Figure 4). It is
completed, thus, also to locate and enhance the catheterization apparatus, only at these
spatial BV areas. The ROI estimate image is computed for each scale (j) separately, at the
first stage (Figure 4A). The ROI estimate is a binary image, while the white pixels represent
the RO, and the black pixels represent the background. The binary image is calculated
according to the compound’s signal intensity values T;'(x,y) (Equation (23)), through
the following stages. First, the histogram of each compound signal scale is computed,
while each bin represents the probability of the range of intensity values of the compound
responses Tj/(x,y). The intensity threshold is calculated according to Otsu’s method. Otsu’s
method chooses a threshold that minimizes the intra-class variance of the threshold black
and white pixels, and therefore, provides a simple and compatible threshold measure that is
appropriate for determining an estimate that is based on intensity responses. Equation (24)
applies Otsu’s threshold to create the binary image.

L if Ti(x,y) > pr())

23
0 else @3)

wb (x,y,]) = {

where pi7(j) is the Otsu threshold found for T]’
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Figure 4. Schematic diagram of the blood vessel ROI detection, through three main stages.
(A) illustrates the acquired binary ROI estimate (3), through the application of Otsu’s threshold
method on the LF(j) “image” (1-2) (left blue histogram). (B) represents the calculations of closing and
connected operations. (C) represents the integration of the different response scales to compose the
overall blood vessel’s ROI (2).

The white pixels (wb (x,y,j) = 1) represent the spatial locations (x, y) of the BV ROI
at the estimated image (Equation (24)), at each scale (j).

The additional ROI stage (Figure 4B), Equations (25) and (26), enables smooth conti-
nuity of the ROI region while selecting the major components in the image. The rationale
of this stage is based on preserving the continuity of the physical BV tree, which could
have been disrupted during the acquisition of the 2D CAG. Additional factors can interfere
with achieving a non-ideal video image, which is needed for an optimal diagnosis. These
factors are as follows: 1. Those that originate from deficient image quality due to limited
X-ray or contrast agent doses, quantum noise, screening angle, non-uniform illumination,
obstructions by different body organs, etc. 2. Disruptions that could have occurred from
the threshold holding stages, at an earlier algorithm stage (Equation (24)). This threshold
stage generates merely an estimate of the ROI; therefore, it may lead to some ROI areas
that do not cross the threshold. This can lead to irregularities in the BV’s structure, such as
black holes or gaps in the binary images. Thus, a selection operation such as morphological
closing (Equations (25) and (26)) seems appropriate. (It is worth noting that the usage of
morphological closing on the binary image cannot create irrelevant or new information,
since this image will only be used for ROI extraction).

The dilation operation of wb (x,y, j) is obtained from the following;:

Whyitatea (X,Y,]) = Utewb(x, Y, ]), (24)

where B is a binary structuring element and wb(x, y, j), is the translation of wb by t. The
closing operation of wb (x,y, j) is obtained from the following:

Wbclosed (x/]//j) = mtEBWbalilated (x/]//]jft (25)

where B is a binary structuring element with a radius r;, and wbgjjareq (¥,Y,7)_, is the
translation of wbyjjapes (x,y,]) by —t.

The two preceding stages, the ROI estimate creation (Equation (24); Figure 4A) and
the morphological closing (Equation (26); Figure 4B1)), which yielded a binary continuous
BV tree, enabled us to use the connected-component labeling (CCL) algorithm, separately
for each scale. This capacity of the CCL (Figure 4B2) to enhance the ROI was enabled

59



Biomimetics 2025, 10, 18

after the creation of the largest connected tree, whjoseq (¥, Y, j) (Equations (24)—(26)). The
final stage of the CCL algorithm accounts for only the largest components in the image,
Wheiosed (X, Y, ]), which are represented by wb.. (x,y, j).

Up to this stage, each ROI candidate (Equations (24)—(26)) was considered separately
for each image scale, whereas the final ROI must include all the scales. The final stage of
the ROI BV algorithm (Figure 4C), consequently, provides weighs function information
(Figure 4C1; Equations (27) and (28)) from the different binary image scales wb.. (x, v, ), to
enable the integration of various BV scales in a later stage (Figure 4C2, Equation (29)).

The main purpose of this part of the algorithm, as mentioned above, is to enhance the
information inside the large BV that might contain information on additional smaller BVs,
or on the catheterization tools. To perform this enhancement, we reorganize the histogram
of the scale j partitions into new scale groups k, through different sizes of the interval (bins)
and their degree of overlapping (bins” width in the histogram). This partition is completed
by smoothing the median values of the intervals of the samples (bins) of the histogram
sizes of the different BV scales (Methods 3.4). The scale medians L (Equations (27) and (28))
have been chosen as the interval width of the number of image scales that are included in
this interval. While k(7) is intended to determine the degree of overlap between the bins,
it is expressed through the initiation of each propagated interval; see Equation (27). The
information of the different binary images of the scale information is, therefore, expected
to be reorganized into better new partitions, which will follow the flexible size of the BV
along their different locations.

ab\k(x,y) = Med(wbee (x,y,k(i)), wbee (x,y,k(i) +1),...wbee (x,y,k(i) +L)) (26)

where L is the width of the median interval,andi =1: N — L.
The median is calculated as follows:

(S
Med (X) = {(X[Lzl];X[Lm if Lisodd 7

X is defined as the ordered list of values in the dataset, and L is the number of values
in the dataset.

After the model’s stage that suggested how to reorganize the different image scales,
through the new intervals, WB(x, y), Equation (29) shows how the different scale binary
images ab\k(x, y) are summed into a single multiscale ROI image (Figure 4C2).

N —_—
WB(x,y) = kZ; wby(x,y) (28)
—1

where N is the number of wby (x, ) binary images.

Since WB(x,y), Equation (28), reflects the summation of the values of the different
scales from each location, this summation can obtain a response, which is beyond the value
one at specific locations. This is derived from obtaining agreement of the same value from
more than one scale. The significance of such results reflects a possibility that some BVs,
at specific locations, are shared by more than a single scale. However, the response of
WB(x,y) should yield a binary image and, therefore, should yield only a response of zero
or one. In order to overcome this issue, we chose to use a criterion that yields a response
that acknowledges what will be the value at a specific location under the below conditions;
see Equation (29). The criterion can be taken as the summed value T (Methods), which
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reflects a chosen WB(x, y) that will determine if WB(x, ) will be finally determined as one
or zero.
1if WB(x,y) > 7

29
0 otherwise 29)

WB(x, y) = {
where 7 is the intensity threshold that will end up with final values for V/VT?(x, y), which
will determine the ROI image WB(x,v).

3.4. BV Texture

The output of the enhanced edges, T, (the line completion responses) in the image
Tg (Figure 3C, Equation (23)) can be referred, in this stage of the algorithm, only to the
labeled ROI (Figure 4C2, Equation (30)). Therefore, V/\/E(x, y) (Equation (30) and Figure 5)
is calculated to delineate the spatial location in which the line completion Tg is applied.

wa = V\/I\B(X, y) X TE (30)
BV Edge - Texture o
- Equation 30 W
BV ROI J LF Response W

WB (%) Tg
WEB(x.y) = Eb. whi(x.y) Tg=v-siga(m- =Y

34

Figure 5. The flow chart illustrates the multiplication of the extracted ROI (left binary image) with
the multiscale LF response. The right illustration demonstrates receptive fields with their summated
additive signal (orange arrows). The figures represent the extracted ROI (left upper image) and the
resulting blood vessel multiscale. edges (bottom image).

3.5. BV Visibility Enhancement

The BV edge image, Ty, contains the enhanced edges within the relevant ROI's
locations, but this image is not contained in the diverse DC details, which are not at the
edges, such as in the input image I(x, y). Before performing the integration of the edge
image T,;, with the original image, we need to deal with the separation of the positive Tp
and negative Ty values of the edge image T, (Equation (32)). The integration operation is
completed also to enable an appropriate correction of the dynamic range of the final image
Ig(x,y) (Equation (33); [27]).

The separation of the blood vessels’ edge image T}, into positive Tp and negative Ty
responses is shown below:

Tp = max(0, Tyyp), Tn = max(0, —Tyyp) (31)

where Tp and Ty represents the absolute values of the positive and negative responses
through the maximum operation.

The following stage, consequently, is the integration of the texture image of both
the positive, Tp, and negative, Ty, blood vessel responses (Equation (32); Figure 6), with
the input image I(x,y) (Equation (33)), Figure 6. The weight function of each of the
components, the original image, and the edges, can be determined by factor «. In order
to improve the dynamic range image, we need to have a similar range of values for the
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positive and the negative components of the image, and this is achieved through the {3
factor, as shown in Equation (33). This {3 factor is intended to enable the balance of the
bright and dark zones, for the Ig(X, y) response.

™ T

(xy) = I(x,y) + o x (32)
where each polarity component is balanced by factor 3. «, 3 are positive constants. The
aim of the division factors is to suppress the positive or negative responses that are near
the zero clipping, respectively.

BV Visibility Enhancement
Equations 31-32

BV Edge
Texture

+ »
Figure 6. Schematic diagram of the last stage of the algorithm that integrates the edge image (upper left

image) and the input image (bottom left image) into an enhanced visibility image (right image). An
additional stage is performed, which is related to the dynamic range.

4. Methods
4.1. Dataset

Our clinical dataset consists of coronary cine-angiograms acquired during 3 different
routine interventional catheterization procedures performed on 3 different patients in a
single medical center. Altogether, 62 different runs were acquired, with an average of
40 frames per run. The overall number of coronary angiogram frames in the dataset is
2500, and the resolution of each image is 1024 x 1024 pixels, with 1024 grey levels per pixel.
Our implementation and testing were performed in a MATLAB environment, using an
Intel® Core™ i9 2.3 GHz CPU laptop with 16 GB of main memory. The average processing
time is 1.9 £ 0.05 s per frame.

4.2. Model Parameters
4.2.1. Orientation and Scale Filtering (Gabor)

The Gabor filter (Equation (1)) parameters are 0 = 8, A = 12.

Instead of using multiple Gabor filter sizes, the algorithm uses a fixed Gabor filter
size, while deconstructing the input image into multiple scales, as is commonly used in
Gaussian Image Pyramid deconstruction. The chosen number of scales is 8, and the number
of Gabor filter orientations is 8. The chosen orientation angles, 6, are as follows: 0°-360°
(Equation (1)).

Downscaling and upscaling of the images were completed by using the Lanczos
resampling method. This method approximates the theoretically optimal reconstruction
filtering for band-limited signals, which uses the Sinc filter. We used it for its anti-aliasing
and preservation of sharp edge properties, which are important for maintaining the quality
of the images, along the different algorithm stages.

The parameters used for the Naka-Rushton function (Equation (8)) is o3z = 0.1, n = 2.
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The parameter used for the orientation recombination of the different imagesis m1l =1
(Equations (20) and (21)). The parameters used for the scale recombination of different
images are m2 = 2 and vy = 1/8 (Equations (22) and (23)).

4.2.2. Line Completion Algorithm

The values of oy, 0y (Equations (10)-(12)) represent the magnitude of the additive
signal. Equation (10)’s decay in the collinear axis and its orthogonal weight function of the
signal, Equation (11), are defined separately for each scale (Table 1). The percentile used for
the threshold of the line completion, 7; (Equation (18)), is also detailed in Table 1.

Table 1. Algorithm parameters per scale.

Resolution Index (5) Oxj Ty, v [%] 1j (pixels)
1 0.05 0.05 99 0
2 0.05 0.05 80 2
3 0.06 0.06 97 3
4 0.07 0.07 97 4
5 0.07 0.07 96 5
6 0.07 0.07 96 5
7 0.1 0.1 96 5
8 0.1 0.1 96 6

Part of the algorithm’s parameters has a different set of values per scale (j). These parameters are presented in
Table 1. The background color has been added for identification the used resolutions for small vessels inside the
cardinal vessels.

4.2.3. BV ROIL

The structuring element disk radius, r; (pixels), is used for the closing procedure
(Equations (25) and (26)) as detailed in Table 1. The width of the median filter is L = 3; see
Equations (27) and (28). The resulting number of median-filtered scales, wby(x,y), is 6.

4.2.4. BV Texture

The parameters used for integrating the enhanced structure signal and the original
image are o« = 0.4 and 3 = 4 (Equation (32)).

4.3. Cardiologists” Evaluation of the Algorithm Results

All images were assessed by the consensus of 2 experienced interventional cardiolo-
gists (authors of our paper). First, viewing Diacom format cine runs of clinical coronary
angiograms and choosing from each run (15 frames/s), we acquired, from standard routine
angles, a single frame that best demonstrates the most significant clinical procedural details.
These included general visibility of the whole frame, the CBVs, especially the small ones,
the lesions within the BVs, and the various angiography interventional tools. Next, each
cine run and each single chosen frame (“raw” image), as above, were visually compared,
first with the same image after further manual correction for optimal visibility (modifying
brightness and contrast) and, finally, with the improved results and the post-processing
results of the novel algorithm.

5. Results

The algorithm results are presented according to the clinical implications. The figures
in the current paper represent a partial sample from the overall results, which were selected
by the cardiologists, mainly due to their diagnostic significance.
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5.1. Overall Visibility Enhancement

Figure 7 demonstrates the overall improvement in the visibility of the BVs in the
images derived from two different CAGs, from two patients. The result images show that
the overall visibility of the BVs is enhanced with enhanced appearance. It can be seen at a
naive glance that the algorithm improved the dynamic range of the images, and therefore,
the illumination and brightness of the images are more suitable for observing the structure
and the richness of the vascular tree. The cardiologists who assessed the algorithm results
considered the general visibility of all the CBVs as improved, with special emphasis on

the better visibility of the small BVs, the collaterals, and the overlapping side branches
(Figure 8).

oy

(b1) (b2)

Figure 7. Two examples of VIAEVCA results (a2,b2), which represent the better overall appearance of
an angiogram with a better view of the BVs, including of the small ones. Original (“raw”) images are
shown on the left column and the algorithm results on the right column. This mode of presentation
of the image results refers to all the figures in this study. (al,b1) are the original images before the
algorithm’s applications.

64



Biomimetics 2025, 10, 18

(al) (a2)

o 02

(c1) (c2)

Figure 8. The VIAEVCA succeeds in increasing the visibility of the interior content of the BVs while
revealing important clinical details. (a2) The upper long arrow indicates the exposure of the catheter
tip, while the upper short arrow indicates exposure of the inner lumen of the left main coronary
artery. The spine artifacts are exposed and are indicated by the thick left arrows. (b2) The BV shows
overlapping vessels and lesions (see text); see the long arrows. (c2) Two dissections of the right
coronary artery (long arrows) are exposed. The wire is also more visible (short arrow) with the results
image. (al,b1,c1) are the original images before the algorithm’s applications.
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5.2. Blood Vessel Interiors

One of the goals of our algorithm was to enable observing the BV’s interior content
and expose important clinical details, such as the catheter tip, catheterization apparatus,
and inflections. Figure 8 (right column) demonstrates the exposure of the interior part of
the major CBV, as represented by the long arrows. The cardiologists assessed the better
visibility of the content within the lumen (the interior of the vessel) of the large BV, which
enabled somewhat better identification of overlapping vessels (versus similar-looking
luminal lesions) (Figure 8b, long arrows), coronary artery dissections (Figure 8c, long
arrows), various interventional tools such as the tip of a diagnostic catheter (Figure 8a, long
arrow), wires (Figure 8c, short arrow; Figure 9c, left arrow), balloons (Figure 10b,c long
arrow), and stents (Figure 9a, long arrows; Figure 10a, long arrows).

(al)

(b1) (b2)

Figure 9. The VIAEVCA enables the better appearance of the small and clinically important blood
vessels. (a2) The right arrows show better visibility of the small BVs, which split and climb upwards.
Their diagnostic significance is described in the text. The left arrows show the two stents. (b2) The
arrows show the exposed right coronary artery (see text for clinical significance). (a1,b1) are the
original images before the algorithm’s applications.

66



Biomimetics 2025, 10, 18

(al) (a2)

(b1) (b2)

(c1) (c2)

Figure 10. The VIAEVCA succeeds in exposing clinically significant knowledge, even at low-contrast
agent (a,b) and low-radiation scenarios (c). (al) shows a low-contrast agent image (due to dye
clearance). (a2) The VIAEVCA succeeds in enhancing the visibility of both the stents (left long arrows)
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and the small blood vessels (right short arrows). (b1) shows an image before contrast agent injection.
(b2) The VIAEVCA succeeds in showing the wire inside the diagnostic catheter (left long arrow) and
inside the CBV with the inflated balloon (right long arrow). Bony artifacts (thick and short arrows)
are exposed in the region of the spine along with accentuation of edges of spinal bone structures.
(c1) shows a low-radiation image (1/13 reduced radiation). (¢2) The stent with its proximal and distal
metal markings (short arrows); the wire that passes through it (long arrow) is better exposed.

5.3. Small Blood Vessels

A successful diagnosis by cardiologists requires proper observation of most of the
blood vessels, including the small ones (Introduction). Figure 9 and additional figures,
such as Figures 7 and 10a, demonstrate the exposure of a single or a net of small BVs with
deficient exposure in the original image. Figure 9 demonstrates the ability of the algorithm
to enhance the visibility of small BVs, which is of special clinical importance. The better
exposure of a net of small BVs that feeds the interventricular septum (Figure 9a2, right
arrows) can indicate a successful intervention in the right coronary artery stenting and
replenishment of blood supply (Figure 9b2, left arrows). An enhanced small BV can be seen
in Figure 9b2, where a collateral from the left to the right coronary artery is demonstrated.
This helps to diagnose, from left system imaging, a proximal obstruction of the right CBV,
since this collateral is not usually seen where the right CBV has good blood supply.

5.4. Low-Contrast Agent, Low-Radiation, and No Contrast Agent

We also tested angiography images with low radiation and low contrast, with the
same algorithm that has the same set of parameters, which was used for the whole set of
CAG images.

Our dataset lacks true low-contrast angiography procedures. Yet, we identified low-
dose conditions where the injected contrast agent barely arrives at its specific locations or
where the contrast agent starts to wash out and is partially cleared from the BVs. Thus, for
this purpose, we used timed CAG images where the contrast agent is diluted in the BVs.

Figure 10 represents several examples from our dataset that can be regarded as ac-
quired at low radiation (Figure 10c), at low contrast (due to dye clearance, Figure 10a),
and in the absence of a contrast agent. The last group of images was acquired before the
contrast agent injection (Figure 10b). Figure 10al presents an example of an image acquired
during the clearance of the dye from the proximal part of a large CBV. VIAEVCAs enabled
improved visibility of the major CBV content and the stents (Figure 10a2, long arrows). The
algorithm also succeeded in enhancing the visibility of the small CBVs, although the dye
started to be cleared distally at this stage.

Figure 10b refers to the CAG condition where the contrast agent was not yet injected
into the BVs, and therefore, only the catheterization tools are exposed. The algorithm better
exposed the wire in the internal side of the diagnostic catheter (left arrow) and inside the
CBYV and the attached balloon (perpendicular arrow). In this image, the artifacts of the
bony structure are also exposed (thick and short arrows.)

The reduction in radiation to 1/13 per image (attempting to reduce tissue damage for
the documentation of stent deployment) did not impair the advantage of the algorithm
to enhance visibility (Figure 10c2), compared to the natural camera image (Figure 10c1)
or even manually processing the same image in an optimal manner. Note also that the
algorithm partially performs a compounding compression and expands the dynamic range
of the image. This is expressed by the exposure of the image information in the too-dark
and too-bright regions (this can be seen across all images).
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Notably, although the algorithm succeeded in improving many aspects of the CAG
images, it also enhances the appearance of disturbing vertebral and bony artifacts, which
can appear as small blood vessels and may lower diagnostic accuracy, especially while
viewing only still images (Figures 8a2 and 9a2). However, viewing the images from other
camera angles and in the cine mode, which allows the evaluation of flow within the CBVs,
mostly helped to clinically differentiate between those artifacts and true small vessels
(Figure 10a2).

6. Discussion

Our novel algorithm has been inspired by the visual system mechanism for contour
integration and lateral facilitation [27,29]. It succeeds in overcoming several critical CAG
appearance and visibility challenges, such as small BVs, catheterization tools, and visibility
under low-radiation and/or low-contrast agent conditions. The enhanced CAG visibil-
ity (Figures 7-10) led to improved images for better identification and classification of
obstructive lesions, collateral blood vessels, the evaluation of flow, tissue perfusion, and
catheterization tools. The algorithm also revealed an exposure of unwanted details of bony
structures, which may interfere with the diagnosis of the small BVs. This drawback is
expressed mainly while viewing still images acquired from limited angles but much less in
the cine mode and at multiple angles.

The enhanced CAG visibility suggests a better decision-making process by the expert
cardiologist before, during, and after the procedure. These achievements have been ob-
tained with a single compound algorithm, which also succeeds in significantly enhancing
images even with a low-dose contrast agent or low radiation, while simultaneously reduc-
ing noise and illumination problems. The advantages of the algorithm’s performance are
compared to the general and topic results of previous studies.

Small blood vessels: Several recent studies related directly to the issue of revealing small
BVs [2,8,14]. Some previous studies related to the issue of small BVs as only a side effect
of generally enhancing the image, through different methods, such as de-noising [9,15,19].
The noise reduction succeeded in enhancing the appearance of BVs, but it appears that the
exposure of small BVs was not salient [9,15,19].

Two of the more recent segmentation studies applied a deep learning U-net [14] and
decision tree [8] and succeeded in obtaining better results in reference to small BVs. This
was achieved by cardiologists manually delineating this type of BV for the training dataset.
Still, the visual impression of the small BV segmentation was considered insufficient [8,14].

It appears that the VIAEVCA exposure succeeded in revealing a larger repertoire of
small BVs (Figures 7, 9a2, and 10a), along with bony artifacts, which, however, can be
partially overcome, as described above. These artifacts are indeed prevented when a routine
segmentation operation is performed. Nevertheless, our algorithm’s enhanced visibility
provides a much better ability to observe the small BVs, an important diagnostic advantage.
The common goal of a successful invasive procedure is usually the restoration of flow in
the obstructed CBYV, especially under emergency circumstances such as acute myocardial
infarction (AMI) or acute coronary syndrome (ACS). Yet, sometimes, despite epicardial
patency after opening the artery, the restoration of good flow and myocardial perfusion is
absent. This no-flow phenomenon has significant clinical importance for treatment and
prognosis, but the current methods to clinically assess it (measuring or scoring flow and
“myocardial blush”) are limited, time-consuming, or expensive.

Future research may show a correlation between this no-flow phenomenon and the
disappearance of small vessels, which were visible before the invasive intervention only
by using the algorithm. Also, cardiac diseases such as syndrome X or metabolic cardiac
syndrome, which are defined by typical anginal pain with myocardial ischemia but normal
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patent coronary arteries, may eventually show abnormal small vessel disease, detectible
due to the enhanced visibility offered by the current novel algorithm. We could not find
other algorithms that relate to these pathological issues.

Since previous algorithms [24,25] produced segmentation of the BVs, they could
provide a quantitative measure for accuracy performance (in comparison to the manual
cardiologist segmentation). One study [24] arrived at a 95% accuracy performance, based on
seven images, which were examined. Ref. [14] used a larger dataset consisting of 48 images
and arrived at a DICE performance of 76%. Our structure enhancement algorithm results
cannot be compared quantitatively to the segmentation results since our algorithm does
not produce BV segmentation. In fact, even the high DICE or accuracy performance, as
above, does not necessarily reflect the results related to small BVs, since the area that they
occupy in the image is relatively small. Additionally, the above studies [24,25] based their
results on single images instead of cine images, which are commonly used in diagnostic
CAGs. Our algorithm enabled clinical assessments based on consecutive images and the
cine mode of the images, which can also reduce the effect of distractions caused by the
bony artifacts.

Several groups presented algorithm results using the CNR measure. Lee and his col-
leagues [17] showed an 81% CNR improvement over the low-dose images (acquired using
2% of the radiation used in normal CAGs). They arrived at a higher CNR measure than
our results, a 60.71% CNR improvement. They achieved a higher CNR score probably due
to the noise reduction that better smoothed the background image but did not necessarily
expose a larger number of small BVs (their images do not show a trend of a higher number
of small BVs).

Studies that performed segmentation by background subtraction [18,20-22] yielded
much better CNR results (~200% CNR improvement over the original) than studies that
performed enhancement of visibility, as ours. This was achieved by the isolation of the
BV image from the background and the obtained separation from other organs, such as
the spinal cord, and probably, due to the fact that different organ components have dif-
ferent spatial-temporal subtraction properties [18,20-22]. The price for such sophisticated
algorithms was the algorithms’ complexity and performance durations. In any case, it
is expected that the segmentation operation will lead to a criterion with a much higher
CNR measure, which may not necessarily reflect all clinical demands and cannot really be
compared to our visibility measure.

We further ask whether the measure of CNR, which reflects different average intensity
values in a specific region in the BV in comparison to the background, is, indeed, an
efficient measure for better visibility of the BV. It could be a type of legitimate measure
if the only need would be to enhance the visibility of the major BV, but by increasing the
visibility, we would like to achieve an additional two measure goals. One of them is to
enhance the visibility of small BVs, for increasing diagnostic abilities (Section 4.3). This goal
was reported by just one of the background reduction studies (Thuy et al., 2021 [25]). The
second goal is to increase the visibility of the BV content, such as the CAG tools and plaques,
enabling improved procedures. This BV exposure was probably derived from increasing
the visibility of the texture inside the BV region (i.e., increasing the variance values) and not
simply increasing the intensity values, as utilized by segmentation operations. Therefore,
a common CNR improvement cannot be reflected by such a required property of the
background subtraction results and their CNR-obtained measures. Nevertheless, future
studies may combine these methods to enhance BVs in addition to improving visibility
inside vessels using various CAG tools.

It has been reported by one background reduction study that, despite these algorithms’
impressive results, the exposure of small BVs is still lacking [20], and also, the visibility of
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the catheterization tools inside the BVs is missing. Furthermore, these methods can lead to
a condition where the small BVs can be fragmented into different layers (background and
foreground, for example), due to matrix decomposition [20]. These authors suggested the
application of Gabor wavelets to enable the enhancement of the tiny blood vessels [30] but
did not test this possibility. Our algorithm can be used as a type of preprocessing for image
enhancement and might be more beneficial than a Gabor wavelet (ref), due to its ability to
perform line completion while decreasing the noise level.

Low Dose: A comparison of our algorithm results on low-dose conditions (low-
radiation and low-contrast agents) is not sufficiently accessible, since there is only one
paper [17] that provided algorithm results regarding low radiation at the CAG images. An
additional two papers, which improved the visibility of the BVs in conditions mimicking
low-dose radiation [1] and a low-contrast agent [18], showed an improved image with
somewhat better visibility of the BVs.

To evaluate our algorithm results on the low-radiation images, we used images taken
from a fluoroscopy run (used for the documentation of stent deployment), which routinely
utilize only 1/13 of the radiation dose, relative to CAG images (Figure 10b2). The expert
cardiologists assessed the algorithm results, which succeeded in enhancing the visibility
of the procedural tools, such as the catheter tip, the wire, the balloon, and the stent edge
markings (Figures 8-10). None of the previous studies showed such an ability to obtain
visibility of the inner BV tools, neither under normal radiation and contrast agent doses nor
at low-radiation or low-contrast agent conditions. We, therefore, propose our algorithm,
which shows a potential usage of a CAG based on a low-radiation or low-contrast medium,
which is less medically harmful. Future clinical studies using the algorithm are expected to
validate the method and enable longer procedures, as needed, especially for more patients
susceptible to damage, such as patients with renal dysfunction.

Inner blood vessel visibility: In the literature, there is a reference to catheter visibility
and detection, but only outside the BVs [11], with no reference related to enhanced visibility
of the catheterization tools in general. More specifically, previous algorithms that performed
different algorithms for contrast enhancement, such as by fractional differential kernels [15]
or Hessian matrices [19], did not refer to those tools.

We also tested whether an algorithm that has the potential to expose the dynamic
range of specific areas in the image, such as the CLAHE algorithm (Matlab), has the
potential to expose the catheter tools in the CBVs. We found some BV enhancement, but
with significantly reduced visibility of the tools than our algorithm presents.

The VIAEVCA algorithm is probably the first to enable distinct enhanced visibility of
the CAG procedural tools inside the major BVs. This achievement was obtained through
an innovative approach to object enhancement utilizing the lateral facilitation mechanism
component and additional computations regarding BV texture. Since our study, in its
present form, does not perform segmentation or subtraction operations, it cannot com-
pete with published background subtraction results and their CNR-obtained measures.
Nevertheless, future studies may combine these methods to enhance BVs in addition to
improving visibility inside the vessels using various CAG tools.

7. Conclusions

The present study presents a novel algorithm for enhancing BV visibility from routine
angiography video images.

Original algorithm: (a) This algorithm was inspired by an educated guess mechanism
suggested for the visual phenomenon of lateral facilitation. It causes line and texture
completion imitating our visual perception and is expressed by the lateral facilitation
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phenomenon. (b) The novelty of the algorithm is also expressed by incorporating partial
noise reduction simultaneously with line completion, as part of strengthening the structure.

Algorithm achievements: (a) This algorithm enhanced the visibility of the BVs, in-
cluding the small BVs. (b) This is the first algorithm that demonstrates enhanced visi-
bility of major BV luminal content, including CAG procedural tools and plaque lesions.
(c) Through the algorithm adaptivity, it also succeeds in enhancing BV signals at low doses
of contrast agents and radiation, with the same set of parameters. These achievements con-
tribute together to support the clinician in making an accurate diagnosis, better procedural
performance, and improved patient outcomes.
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Abstract: Stereo-orientation selectivity is a fundamental neural mechanism in the brain
that plays a crucial role in perception. However, due to the recognition process of high-
dimensional spatial information commonly occurring in high-order cortex, we still know
little about the mechanisms underlying stereo-orientation selectivity and lack a modeling
strategy. A classical explanation for the mechanism of two-dimensional orientation selec-
tivity within the primary visual cortex is based on the Hubel-Wiesel model, a cascading
neural connection structure. The local-to-global information aggregation thought within
the Hubel-Wiesel model not only contributed to neurophysiology but also inspired the
development of computer vision fields. In this paper, we provide a clear and efficient
conceptual understanding of stereo-orientation selectivity and propose a quantitative ex-
planation for its generation based on the thought of local-to-global information aggregation
within the Hubel-Wiesel model and develop an artificial visual system (AVS) for stereo-
orientation recognition. Our approach involves modeling depth selective cells to receive
depth information, simple stereo-orientation selective cells for combining distinct depth
information inputs to generate various local stereo-orientation selectivity, and complex
stereo-orientation selective cells responsible for integrating the same local information
to generate global stereo-orientation selectivity. Simulation results demonstrate that our
AVS is effective in stereo-orientation recognition and robust against spatial noise jitters.
AVS achieved an overall over 90% accuracy on noise data in orientation recognition tasks,
significantly outperforming deep models. In addition, the AVS contributes to enhancing
deep models’ performance, robustness, and stability in 3D object recognition tasks. Notably,
AVS enhanced the TransNeXt model in improving its overall performance from 73.1% to
97.2% on the 3D-MNIST dataset and from 56.1% to 86.4% on the 3D-Fashion-MNIST dataset.
Our explanation for the generation of stereo-orientation selectivity offers a reliable, explain-
able, and robust approach for extracting spatial features and provides a straightforward
modeling method for neural computation research.

Keywords: stereo-orientation selectivity; Hubel-Wiesel model; artificial visual system

1. Introduction

Human visual perception of the external environment relies on various fundamental
feature recognition processes, including motion, color, and orientation [1,2]. These primary
visual feature extractions predominantly occur in the primary visual cortex and are subse-
quently integrated into the higher-level cortex for abstract feature recognition [3,4]. Among

Biomimetics 2025, 10, 38 https://doi.org/10.3390 /biomimetics10010038
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these fundamental visual features, orientation feature response plays a crucial role in object
edge detection, texture analysis, and shape recognition [5,6]. The neural mechanism of
selective response to stimuli with preferred orientation is referred to as orientation selectiv-
ity [7]. Given this neuron property, many researchers conducted neural modeling based
on orientation selectivity and inspired the development of artificial visual systems toward
two-dimensional vision tasks [8-10]. As autonomous driving and robotics continue to ad-
vance, there is an increasing demand for processing three-dimensional spatial information
inputs [11,12]. Therefore, investigating and modeling the neural mechanisms of spatial in-
formation recognition is beneficial for implementing robust information processing systems
and advancing computational neuroscience.

The most remarkable study on orientation selectivity was conducted by Hubel and
Wiesel, who observed several types of cortical neurons in the mammalian primary visual
cortex exhibiting selective responses to visual stimuli [13,14]. They employed the terms
V1 simple cells and complex cells to describe two typical neuron types with orientation
selectivity [15,16]. Simple cells have relatively small receptive fields and show a preference
for specific stimulus patterns [14]. These cells are vigorously activated only by stimuli
with a particular orientation within their receptive field, while they exhibit no or weaker
responses to other orientations [15]. On the other hand, complex cells also demonstrate
selectivity towards stimulus orientation but possess larger receptive fields [15]. Unlike
simple cells, complex cells maintain their response when preferred orientation stimuli move
within their receptive field [14]. Hubel and Wiesel suggested that the generation of orienta-
tion selectivity originates from the hierarchical structure between LGN (lateral geniculate
nucleus) and V1 (primary visual cortex) [17,18]. Specifically, V1 simple cells receive inputs
from multiple LGN cells whose spatially close receptive fields are organized in a specific
orientation pattern [3,19]. This arrangement leads to the development of corresponding
orientation selectivity in simple cells. The complex cell is connected with those simple cells
with spatially close receptive fields that share the same preferred orientation, resulting
in a larger receptive field for complex cell responses while maintaining their selectivity
to preferred stimuli orientations [17,20]. This explanation for the generation structure of
orientation selectivity is commonly referred to as the Hubel-Wiesel model, which is exten-
sively utilized in artificial visual system modeling [3,8-10,21]. The Hubel-Wiesel model
is a concise and generalized concept that explains the feature extraction and aggregation
process within the brain. Its thought of cascade connection and local-to-glocal informa-
tion aggregation propelled the development of computational neuroscience [3,22-26] and
computer vision [9,10,27-30].

The recognition of 3D information primarily occurs in the high-level visual cortical
area [3,31,32]. Within these higher-order cortical areas, numerous neurons exhibit sensitivity
to various 3D information, such as spatial depth, shape, curvature, surface characteristics,
3D fragments, and disparity [33—40]. While some researchers have reported that certain
V4 neurons display stereo-orientation tuning without additional depth cues, it is more
commonly observed that a substantial number of neurons exhibit cooperative responses to
distinct spatial information [35,39,41]. The complexity associated with spatial information
poses challenges in modeling spatial feature selectivity. However, it is worth noting that,
similar to the generation process of two-dimensional orientation selectivity described in the
Hubel-Wiesel model, the feature selectivity for spatial information in high-order cortical
neurons also arises from the convergence of low-level simple features [8,19,42—46]. This
cascading property offers a potential method for quantitatively reconstructing the neural
mechanism of spatial feature selectivity [46—48].

Current research on stereo-orientation selectivity still focuses on discovering and
observing the neuron activation or simulating the neuron activation and neural circuit
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connection [46,49-52]. There are limited attempts to develop a concise modeling scheme
and further explore its application in stereo-orientation recognition. In addition, prior
orientation recognition-related work mainly focuses on two-dimensional orientation, and
detection techs include deep learning methods and traditional feature-matching meth-
ods [53-59]. Traditional techniques commonly have high computational complexity and
poor adaptability to complex scenes [60]. Accordingly, the deep learning method is grad-
ually being widely employed for object orientation detection tasks. The deep learning
methods could obtain good performance after training with large amounts of data but
require high computing resources and also lack robustness to adverse environmental
conditions [30].

Enhancing the performance of systems in adverse environmental conditions is also a
significant research topic [26,61,62]. Techniques for this issue include image preprocessing
and enhancement [62-65], domain adaptation and transfer learning [66,67], adversarial
training and self-supervised learning [68,69], and multimodal fusion [70,71]. In addition,
biomimetic approaches also demonstrate significant potential in improving system perfor-
mance [72,73]. For instance, brain cognitive computing can be employed to optimize the
prediction of the flow state of the rectifier [74], using the Kolmogorov-Arnold network to
predictive model electrohydrodynamic pumping (a biomimetic system) with interpretabil-
ity [75], and biological visual mechanism can be applied to construct robust and explainable
bio-inspired networks [76]. Especially in the image recognition task, introducing the biolog-
ical visual mechanism into the construction of deep neural networks is also demonstrated as
an efficient method to improve deep models’ robustness and overall performance [30,76,77].
However, most bio-inspired neural networks concentrated on two-dimensional vision and
image task, there is a lack of application and innovation in three-dimensional tasks. On one
hand, spatial information differs from image information, and traditional Gabor filter-based
methods are unsuitable for 3D tasks. On the other hand, we still know little about the
recognition mechanism of spatial information within high-order visual cortical layers.

To extend the application of feature selectivity neuron properties to three-dimensional
tasks, we propose a concise but efficient modeling strategy for stereo-orientation selectivity
based on local-to-global information aggregation within the cascade Hubel-Wiesel model and
develop an artificial visual system (AVS) for three-dimensional recognition tasks. We suggest
initially employing depth selective cells to extract diverse depth information. Subsequently,
the various depth information extracted by depth selective cells is combined in simple stereo-
orientation selective cells to generate different local stereo-orientation selectivity. Lastly, the
outputs from the simple stereo-orientation selective cells with identical stereo-orientation
selectivity are integrated into a complex stereo-orientation selective cell, resulting in global
stereo-orientation selectivity. Extensive simulation results demonstrate that our proposed
mechanism of stereo-orientation selectivity is reliable, while the AVS based on this mechanism
proves effective and stable in recognizing orientation information. Furthermore, compared
to extensive deep neural network methods, our AVS exhibits considerable superiority in
robustness against spatial noise jitters. The contributions of this paper are:

*  We proposed a straightforward and concise modeling strategy for the generation of
stereo-orientation selectivity and developed an AVS for stereo-orientation selectivity.

e  The AVSis demonstrated with robustness, superiority, and efficiency in object oreinta-
tion detection tasks compared with deep models.

* Implementing AVS connected with deep models helps enhance deep models’s perfor-
mance, robustness, and stability in 3D object classification tasks.

®  Our work provides a robust spatial feature pre-extraction method for 3D object recog-
nition tasks and a potential explanation of how the brain perceives and encodes
stereo-orientation information.
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2. Methods

In this section, we introduce the mechanism of stereo-orientation selectivity and details
of the artificial visual system (AVS) for stereo-orientation recognition. Firstly, we provide
explanations regarding the generation of stereo-orientation selectivity based on the Hubel-
Wiesel model. Subsequently, we give the modeling method of simple cells and complex
cells. Lastly, we describe the implementation process of AVS.

2.1. Hubel-Wiesel Model and Stereo-Orientation Selectivity

The Hubel-Wiesel model describes the primary visual pathway as a cascade structure
to explain the generation of orientation selectivity. Figure 1 illustrates the structure of
the Hubel-Wiesel model. This model exhibits a hierarchical cascade architecture, wherein
simple cells process local orientation information while complex cells integrate outputs
from simple cells to encode more complex features. Specifically, the simple cell receives
input from the LGN cells, whose receptive fields are arranged in a specific way that makes
the simple cell sensitive to stimuli with specific orientations. Complex cell integrates
inputs from multiple simple cells within an extensive receptive field to generate global
orientation selectivity.

Simple cells

Complex cell Receptive field of a complex cell

Figure 1. The hierarchical cascade structure of the Hubel-Wiesel model.

Previous studies have indicated that spatial features such as shape and curvature
are derived from the integration of distinct depth information [78-80]. Drawing inspira-
tion from the hierarchical cascade structure of the Hubel-Wiesel model, which emphasizes
sequential processing and information integration, we propose an explanation for the gener-
ation of stereo-orientation selectivity. We suggest integrating multiple depth cues arranged
in a specific spatial configuration to obtain stereo-orientation perception. Specifically, we
initially employ depth selective cells to extract various positional information related to
depth. Subsequently, each type of simple stereo-orientation selective cell receives inputs
from several depth selective cells whose extracted depth information can be organized into
a specific orientation within local space, thereby generating local stereo-orientation selectiv-
ity. Lastly, all simple stereo-orientation selective cells with the same orientation preference
output to a complex stereo-orientation selective cell, resulting in the generation of global
orientation selectivity. The conceptually neural connection underlying stereo-orientation
selectivity is presented in Figure 2.
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= -— - . . S
= = Complex stereo-orientation g

it selective cell

Simple stereo-orientation

i selective cell
Depth selective cell

Figure 2. The conceptually neural connections of stereo-orientation selectivity.

2.2. Simple Stereo-Orientation Selective Cell

Local orientation selectivity is generated by simple stereo-orientation selective cells
through the integration of specific depth information within a defined local space, which
is extracted by depth selective cells. To quantify the computation of stereo-orientation
selectivity, a fixed-scale local space with dimensions of 3 x 3 x 3 is designed, allowing for
the definition of 13 specific stereo-orientations within each local space. Figure 3 illustrates
an instance of the information processing flow for local stereo-orientation information.

vi e 4 Depth information mapping

———————4 Neural connetion

Simple stereo-orientation
selective cells

Local spatial :
information V23 ﬁ ---------- Depth selective cells

Depth information

Figure 3. The information processing flow for local stereo-orientation information.

The depth selective cells do not directly accept the spatial information and are com-
monly reported as existing in high-order cortical layers [44,81-83]. There are multiple
middle stages before depth selective cells respond to preferred depth information. How-
ever, the presence of depth information will truly activate specific depth selective cells,
establishing a definitive causal relationship [3,82,83]. Therefore, the recognition process
of spatial depth information can be directly simplified by mapping the voxel value of
spatial elements at specific positions within a local space as direct inputs to depth selective
cells. Within a local voxel space sized as 3 x 3 x 3, 27 spatial elements can be identified
and denoted from v; to vp7. Accordingly, the activation d of a depth selective cell can be
quantitatively defined as follows:

1 , if spatial element existed;

)

d= Oindex » Vindex = .
0 , otherwise.

Vindex denotes the voxel value (0 or 1) of a specific spatial element.
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The simple stereo-orientation selective cells receive inputs from three specific depth
selective cells, which provide corresponding depth information that can be combined
to form a local stereo-orientation feature. As illustrated in Figure 3, the three depth
selective cells extract distinct depth information, which collectively contributes to a vertical
orientation feature. Subsequently, the simple stereo-orientation selective cell integrates
these inputs and exhibits selectivity towards vertical orientation. We employed the Sigmoid
function to model simple cell activation, a widely employed technique in the field of neural
modeling [84-86]. The activation value s of a simple stereo-orientation selective cell is
defined by the following formula:

1
STl e krdi0)’ (2)

where k denotes the response sensitivity of the cell, default as 10*. d; represents the inputs
of each depth selective cell, and 6 is the activation threshold, set to 2.5. We designed
13 distinct types of simple stereo-orientation selective cells, each corresponding to a specific
local stereo-orientation defined within a local space. With the exception of the vertical
orientation illustrated in Figure 3, the remaining 12 types of local stereo-orientation are
depicted in Figure 4.

Figure 4. The remaining 12 types of stereo-orientation and their element indices within a local space.

2.3. Complex Stereo-Orientation Selective Cell

Based on our explanation for the mechanism of stereo-orientation selectivity, the
complex stereo-orientation selective cells are responsible for the integration of local stereo
information extracted by simple stereo-orientation selective cells. The connection pattern
between simple and complex stereo-orientation selective cells is illustrated in Figure 5. We
define the response rule of complex stereo-orientation selective cells as follows:

N
€= Zsi 7 (3)
i=1

where c denotes the activation value of complex stereo-orientation selective cell, and N
represents the total number of simple stereo-orientation selective cells. s; denotes the inputs
of each simple stereo-orientation selective cell.

2.4. Artificial Visual System for Stereo-Orientation Recognition

We consider that spatial information is organized in a similar way as image infor-
mation. The global feature is the combination and connection of local feature fragments,
and each fragment can be continually separated into multiple dependent spatial elements.
Inversely, we can extract all local feature fragments by recognizing specific spatial elements
and subsequently obtain the global features. Based on such thought of local-to-global infor-
mation aggregation, we implemented an artificial visual system (AVS) for stereo-orientation
recognition tasks. The overall process flow of AVS for object orientation recognition is
depicted in Figure 6. For the object, we propose first taking each element of the object
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as the central point to segment out multiple local spaces. Subsequently, we employ a
group of simple stereo-orientation selective cells consisting of 13 types that correspond to
the defined local stereo-orientations within each local space to recognize the local stereo-
orientation. Finally, these simple stereo-orientation selective cells are connected to complex
stereo-orientation selective cells with identical stereo-orientation selectivity. The complex
stereo-orientation selective cells integrate inputs from each cell group and serve as the
output of AVS. The complex stereo-orientation selective cell with the greatest activation
value indicates global object stereo-orientation.

S1

S

OUTPUT

Complex stereo-orientation
selective cell

SN (1

Simple stereo-orientation
selective cells

Figure 5. The connection pattern between simple and complex stereo-orientation selective cell.
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3. Simulations and Results

3.1. Implementation Details

We mainly conducted three experiments based on the artificial visual system (AVS):

Physiological visual simulation, stereo-orientation recognition, and 3D object classifica-

tion. In this subsection, we give the implementation details of all experiments, including

platform, implemented codes, evaluation criteria, and datasets.

Physiological visual simulation:

Research question Validating the orientation selectivity of AVS

Dataset 1 A grating dataset comprises 1600 frames, including 800 frames featuring
gratings with four specific orientations and eight orthogonal moving directions, and
800 frames of blank data. Each 100 frames of drift motion was followed by 100 frames
of static blank window simulating the resting duration after drifting.

Dataset 2 A random dot dataset comprised 1300 3D data, and each consisted of
300 randomly positioned dots. Based on the original random dot dataset, randomly
select several dots and perform specific forward motion and reverse motion to generate
local orientation information. Through this process, five additional random dot
datasets with local orientation fragments (number of moving dots: 1, 2, 3, 4, 5) were
generated.

Evaluation criteria The response intensity of complex stereo-orientation selective cells
during grating drifting.

Stereo-orientation recognition

Research question Validating the effectiveness of AVS in stereo-orientation information
extraction and the superiority compared with deep models.

Dataset An artificial object orientation dataset consists of various objects with specific
orientations and scales (line segment or bar). Multiple noise test sets with varying
intensities of background noise. Training set size: 15,600; Validation set size: 5200; Test
set size: 5200.

Evaluation criteria Detection accuracy on clean and noise stereo-orientation data.

3D object classification

Research question Validating the effectiveness of AVS in enhancing deep model’s
robustness against noise.

Dataset 3D-MNIST and 3D-Fashion-MNIST datasets derived from the original
MNIST [10] and Fashion-MNIST image dataset [87].

Evaluation criteria Detection accuracy on clean and noise 3D object datasets and the
standard deviation of repeated simulations.

Abaltion study

Research question Validating the contribution of each component in AVS to deep
model performance enhancement.

Dataset 3D-MNIST datasets.

Evaluation criteria Detection accuracy of the deep model with different feature selec-
tion methods on clean 3D object datasets.

All experiments were implemented on the Apple M1 Max chips (Apple Inc., Cupertino,

CA, USA) and NVIDIA GeForce RTX 3090 hardware environment (NVIDIA Corporation,
Santa Clara, CA, USA). Implementation code related to this paper is available from the

corresponding author upon request.
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3.2. Physiological Visual Simulation

In the field of orientation selectivity research, drift gratings are commonly employed to
stimulate visual neurons and record their responses, thereby determining their orientation
selectivity. Similarly, we utilized drift gratings to initially validate the orientation selectivity
of the artificial visual system (AVS) in our study. Figure 7 illustrates one frame of the drift
grating data.

We employed AVS to detect the global orientation (0°, 45°, 90°, or 135°) within each
frame of drift grating data and recorded the responses of complex stereo-orientation
selective cells. The normalized activation outputs of four corresponding complex stereo-
orientation selective cells are presented in Figure 8. As expected, for each specific orien-
tation of the drift grating data, the respective selective cells exhibited vigorous activation
throughout the entire motion period, while remaining in a resting state for non-preferred
orientation. The simulation records are consistent with the previous results of physiolog-

ical research [13,19,88] and initially demonstrate the feasibility of AVS in object orienta-

)

tion recognition.

%N

Figure 7. One frame of drift grating stimuli data.

H o F % #H X F %

7

UO0I}BAI)IE PIZI[IOWON

ASION),

Complex stereo-orientation selective cells

0 Frame 1600

Figure 8. Activation records of complex stereo-orientation selective cells(0°, 45°, 90°, and 135°). The
white area represents the rest state of stimuli, the gray area represents the moving state of stimuli,
and the blue color denotes the neuron activation.
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Moreover, the random dot pattern is also widely utilized for validating neuron acti-
vation in the field of stereovision research [89]. A random dot pattern consists of a large
number of points that are spatially randomly distributed without any clear features. This
allows the study of neuron responses to be as free from other cues as possible, thus enabling
a pure investigation of the visual system’s response to specific attributes. In this research,
we select several dots in each 3D random dot data to perform specific forward and reverse
motions and generate local stereo-orientation information for each data, as illustrated in
Figure 9. Subsequently, we evaluated the AVS’s sensitivity to oreintation information
fragments within a large amount of random dots.

Summarized the detection accuracy of AVS on random dots datasets with different
numbers of moving dots and illustrated in Figure 10. When the number of moving dots
is zero, there is no orientation information, and the accuracy rate of AVS is 8.8%. No-
tably, even a single moving dot can provide effective orientation information for AVS
(with 75.5% accuracy), and when the number of moving dots increased to three, AVS
could achieve almost perfect performance. The results on the random dot pattern demon-
strated that AVS is effective and robust in extracting orientation features under complex
information disturbance.

:S; |

< ﬁ - Dot moving i

Before moving After moving

Figure 9. The generation process of oreintation information in random dots.
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Figure 10. Acuuracy curve of AVS across different random dot datasets.

3.3. Stereo-Orientation Recognition

The effectiveness and robustness of AVS in stereo-orientation recognition are evaluated
on the artificial object orientation datasets. Figure 11 presents several instances of both
clean data and noise data.
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The robustness of AVS against spatial noise jitter is evaluated using these noise test
sets. We also employed multiple deep neural network models for object orientation recog-
nition tasks. The voxel-based models were pre-loaded with ImageNet-based pre-trained
parameters, and the point cloud-based models were trained without pre-trained parameters
(see Table Al in Appendix A for more details of training settings). The performances of
various models are presented in Table 1.

Accuracy under Different Noise Intensities In the orientation detection task, all
deep models exhibited good performance on clean data. The TransNeXt and PointMLP
models even realized 100% accuracy. However, these deep models performed poorly under
noise disturbance, and the accuracy dropped significantly as noise intensity increased. In
contrast, AVS not only achieved perfect performance on clean data (100% accuracy), but it
also demonstrated remarkable robustness to noise. AVS maintains 92.73% accuracy even at
5% intensity of noise.

Figure 11. Instances of clean data and noise data.

Table 1. Detection accuracy on object orientation datasets.

Noise Intensity

Method #Prams. FLOPs
0% 1% 2% 3% 4% 5%

ConvNeXt [90] 99.96% 34.83% 26.52% 23.58% 21.65% 21.10% 87.61 M 3890 M
UniRepLKNet [91] 99.04% 19.90% 17.54% 15.98% 16.29% 14.60% 62.35 M 60 M

SwinV2 [92] 95.25% 23.08% 20.94% 20.27% 19.88% 19.34% 49.02 M 210 M
TransNeXt [93] 100% 36.71% 34.71% 30.92% 28.63% 25.63% 12.44 M 2630 M
PointNet [94] 99.85% 7.62% 7.69% 7.69% 7.69% 7.69% 3.46 M 230 M
PointMLP [95] 100% 8.25% 7.58% 7.58% 7.65% 7.67% 13.23 M 7890 M
AVS 100% 99.71% 98.31% 96.98% 94.98% 92.73% 353 9.48 M

Model Complexity ConvNeXt and UniRepLKNet models possess the most parameters
but did not attain an expected model performance. And despite the PointMLP model’s
highest FLOPs of 7890 M, its robustness to noise was virtually none. In contrast, AVS
achieved excellent performance with only 353 parameters and FLOPs of 9.48 M.

In short, deep models require high computing resources but perform poorly on noise
data, while the AVS achieves the optimal performance with the lowest computational cost.
AVS is feasible, efficient, and robust in stereo-orientation information extraction.
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3.4. 3D Object Classification

We further extended the application of AVS for 3D object classification tasks. The
implemented artificial visual system (AVS) based on the mechanism of stereo-orientation
selectivity demonstrates high efficiency and remarkable robustness in orientation recog-
nition tasks. Figure 12 illustrates the visualization of information processing within AVS.
The stereo-orientation selective cells exclusively respond to the specific spatial orientation
information, thereby the spatial elements like noise or some object elements without local
orientation information would not elicit neuron responses. In contrast, deep neural network
models consider all spatial information and allocate additional attention to spatial elements
without stereo-orientation information, resulting in a significant decline in performance.

AVS

LLETR

Spatial element without
stereo-orientation information

Y

Stereo-orientation Spat.ial el¢mept with .
extraction . stereo-orientation information

Figure 12. The visualization of information processing within AVS.

Similar to our explanation that specific spatial depth information can be organized
into a specific stereo-orientation feature, we suggest that complex spatial features are the
composition of multiple specific local stereo-orientation information. As illustrated in
Figure 13, the digital number ‘4’ can be exactly segmented into eight local stereo-orientation
features. Considering the efficiency and robustness of AVS in extracting spatial features,
we propose employing AVS as a pre-processing method in 3D object recognition tasks as a
potential way to enhance the performance of deep neural network models.
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Figure 13. The digital number 4" and its composition of stereo-orientation information.
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Spatial inforamtion Orientation information

Based on AVS, we initially classify each spatial element as either positive or negative
according to the presence or absence of local stereo-orientation information within the local
space expanded from each element. The elements identified with orientation information
are considered positive, while those without are classified as negative. The details of the
separation process for a spatial element in a local space are described in Algorithm 1.
Subsequently, we separate the negative and positive information and finally utilize the
positive information as input for deep neural network models.

Algorithm 1 AVS for feature selection

Require: A spatial element p, local voxel array voxel
Ensure: 1 if orientation detected in voxels, otherwise 0
1: Initialize: 13 types of local stereo-orientation selective cell;
outs_arr < [0,0,...,0] #length: 13
0 < 10*  # cell response sensitivity
k <= 2.5 # cell activation threshold
activation <— 0  # initial cell activation value
fori =0to 12 do
cell; < orientation selective cell ~ # create corresponding instance of cell class
activation < cell;(6,k,voxel)  # cell activation computation
outs_arr[i] <— activation #cell activation value: 1 or 0
end for
. if Y12 outs_arr[i] > 0 then
return 1  #positive information, preserve spatial element p
else
return 0 #negative information, discard spatial element p
end if

e S e S S G O
U S el =

The separation of effective and negative information from original spatial information
is illustrated in Figure 14.

FE
%
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Figure 14. The separation of effective and negative information from original spatial information.

The reliability of AVS in recognizing effective object information and enhancing
the deep model’s stability and robustness is evaluated on 3D-MNIST and 3D-Fashion-
MNIST datasets. TransNeXt and PointMLP, the two models performed well on orientation
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detection task, were employed as the baseline, and AVS-TransNeXt and AVS-PointMLP
were implemented as comparisons to evaluate AVS’s impact on deep model performance
and robustness against noise. The models were trained on clean data and evaluated on
both clean and noise test sets. The experiments were repeated 3 times under different
random seed situations (see Table A2 in Appendix A for more details of training settings).
The summarized results are presented in Tables 2 and 3.

Table 2. Detection accuracy of TransNeXt on 3D-MNIST and 3D-Fashion-MNIST datasets.

Clean Noise Overall
Dataset Method [%] (%] [%]
MNIST TransNext 97.6 + 0.1 68.3 - 16.3 73.1 £13.6
AVS-TransNext 975+ 0.2 97.2 + 0.2 97.2 + 0.2
. TransNext 85.5 + 0.4 50.2 + 10.6 56.1 + 8.9
Fashion-MNIST o TiansNext 857 + 0.5 84.4 + 0.8 84.6 + 0.8

Table 3. Detection accuracy of PointMLP on 3D-MNIST and 3D-Fashion-MNIST datasets.

Clean Noise Overall
Dataset Method [%] [%] [%]
MNIST PointMLP 87.8+1.3 12.6 £ 0.7 25.1 + 0.7
AVS-PointMLP 91.0 - 0.4 85.9 £ 1.0 85.7 £ 0.9
. PointMLP 73.7 £ 1.0 13.8 £1.2 23.8 +1.1
Fashion-MNIST o poineMILP  75.9 + 0.1 75.5 £ 0.3 75.6 + 0.3

Results analysis:

¢  TransNeXt model performed well on clean data but with very poor stability to noise
data. The results on noise data (68.3% =+ 16.3 and 50.2% = 10.6) exhibited large
performance fluctuation. It is worth noting that anomalous situations occurred in
different random seed settings, indicating that TransNeXt is sensitive to the initial
parameters and susceptible to noise.

*  AVS-TransNeXt model’s performance on clean data is similar to the original TransNeXt.
Concurrently, AVS-TransNeXt achieved remarkable noise robustness with small per-
formance fluctuation (97.2% =+ 0.2 and 84.4% =+ 0.8).

¢ PointMLP model showed sensitivity and poor stability to noise data. Consequently,
its performance was severely compromised, resulting in an accuracy of approximately
12% in 10-classification tasks.

e AVS-PointMLP model demonstrated 2% improved accuracy on clean data compared
to the original PointMLP and significant improvement in accuracy and stability on
noise data (85.9% =+ 1.0 and 75.5% =+ 0.3).

In summary, AVS significantly enhanced the baseline models” robustness and stability
on noise data without performance degradation on clean data. AVS is demonstrated as an
efficient feature preprocessing system that helps enhance the overall performance of deep
models in 3D recognition tasks with minimal computation cost.

3.5. Ablation Study

To investigate the contribution of each component in AVS to deep model performance
enhancement, we conducted an ablation study. When AVS was employed to enhance deep
models” performance, the complex stereo-orientation selective cells were removed, and
the depth selective cells were only responsible for accepting inputs. Accordingly, only the
simple stereo-orientation selective cells performed computation in the information separa-
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tion process. We can modify the separation rules by employing different combinations of
simple stereo-orientation selective cells. We evaluated the impacts of different information
separation rules based on local stereo-orientation on model performance. Based on the
original separation rule, we defined three types of separation rules for positive information:
multi-orientation, spatial elements with multiple types of local orientation information but
not all; all orientation, the spatial elements with all types of local orientation information;
single orientation, spatial elements with only one type of local orientation information.
PointNet was employed as the baseline model. Employing the AVS with different separa-
tion rules to enhance the baseline model’s performance and record the results as illustrated
in Figure 15.

Because different types of information separation rules decided the amount of in-
formation extracted from original data, the three methods made different contributions
to model performance enhancement. The 'single orientation” method demonstrated the
most significant improvement in model performance, indicating that this method extracted
more object features. And when considering all oreintation information states in local
space, AVS could significantly improve the model’s performance, suggesting that all simple
stereo-orientation selective cells in AVS made a contribution.

100%

920% | Contribution
AVS
80% |-

Accuracy

PointNet

60% |

Multi orientation @ 4 X X v AVS X v

All orientations

Single orientation % X X 4 v

Figure 15. Ablation study on the feature selection process based on local stereo-orientation.

4. Discussion

Following the thought of local-to-global information aggregation in the Hubel-Wiesel
model, we proposed a cascade system to quantitatively explain the generation mechanism
of stereo-orientation selectivity and further innovatively developed an artificial visual
system for object stereo-orientation selection. Based on the results of physiological visual
simulation and object stereo-orientation detection, the proposed mechanism is feasible and
effective. The AVS exhibited superiority on orientation extraction tasks compared with
deep models. Despite their remarkable learning capability, deep models can learn enough
knowledge to complete the detection task with clean data, but they were also affected by
other potential spatial features, leading to weak attention to noise. The results demonstrate
the weakness of deep models in robustness, which exhibits the gaps between the deep
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model and the real brain. The extended application of AVS in 3D object classification
demonstrated that it can contribute to removing such a gap. After separating the spatial
information into effective information (save) and negative information (discard) by AVS,
the deep model significantly improved the robustness and stability.

It is noteworthy that the deep models employed for 3D object recognition tasks com-
monly involve a sampling process [96] like random sampling and farthest point sampling
(FPS), which often sampling affects model performance. However, conventional sampling
methods fail to eliminate the inclusion of noise information during the process. In voxel
space, spatial elements of a 3D object are generally clustered together and have a higher
probability of forming specific local stereo-orientation fragments, while background noise
remains dissociated and independent. Therefore, we can address this issue by employing
the AVS to separate noise information and object information. The spatial elements with
local stereo-orientation information are identified as effective object information, while
the spatial elements without local stereo-orientation information are noise and discarded.
Figure 16 illustrates the point sampling effects with and without AVS processing. Notably,
under noise situations, the random sampling and FPS methods sampled noise and object in-
formation simultaneously, leading to the model performance degradation in the subsequent
learning phase. This is because the sampling methods are based on random selection or
point coordinates. Consequently, the noise and object information have the same sampling
probability under these sampling rules. After incorporating AVS processing, both sampling
methods could obtain ideal sampling results, and all noise information was eliminated.
Therefore, deep model performance enhancements described above benefit from the AVS
completing the noise filtering to reduce the probability of sampling negative information.

We need to state that the current separation rule between negative and effective infor-
mation remains incomplete. The variations in local stereo-orientation information content
also decide the significance of spatial elements for the object recognition process. Further-
more, although AVS processing can effectively eliminate noise information, the subsequent
sampling process still includes part of the stochastic process, and object information may
be omitted. We can improve the feature extraction ability of AVS through flowing aspects:

¢ Incorporating the color perception mechanism into AVS to improve performance and
generalizability in more complex scenes.

¢ Introducing a deep learning method to refine the information separation process and
reduce information loss due to human design.

¢  Extending the application of AVS as a feature-based sampling method to avoid infor-
mation loss during a stochastic process.

In future research, the enhanced AVS is anticipated to be utilized in medical image
analysis, geological modeling, robotic vision, and industrial inspection. Furthermore, its fu-
sion performance with other modalities, such as LIDAR and RGB images, will be explored.

89



Biomimetics 2025, 10, 38

Orientation Number Trouser

Original noise data

Noise data
after random sampling
(1024)

Noise data
after FPS
(1024)

Noise data
after AVS and
Random sampling

Noise data
after AVS and FPS

Figure 16. The point sampling effects with and without AVS processing.

5. Conclusions

In this paper, we innovatively explained the neural mechanism underlying stereo-
orientation selectivity based on the Hubel-Wiesel Model, wherein the generation of stereo-
orientation selectivity originates from the convergence and integration of multiple specific
depth cues. We further developed an artificial visual system (AVS) for stereo-orientation
recognition, comprising simple stereo-orientation selective cells that extract local spatial
information and complex stereo-orientation selective cells responsible for integrating local
orientation information to exhibit global selectivity. Simulation results demonstrate the
effectiveness of AVS in feature extraction while maintaining robustness against spatial noise.
Furthermore, we initially explore the integration of AVS with deep neural network models
in 3D recognition tasks, which leads to significant enhancements in model robustness,
performance, and stability. In conclusion, our research provides a reliable approach for
feature extraction 3D object recognition tasks and helps explain how depth information is
processed and integrated within the visual system to enable stereo vision.
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Appendix A. Implementation Details of Deep Models

Table A1. Training settings for deep models on stereo-orientation recognition tasks.

TransNeXt-

(Pre-)Training Config Cor;;l:eeXt- UniReIELKNet- SwinV2-S Micro PointNet PointMLP
loss function cross entropy  cross entropy  cross entropy  cross entropy  cross entropy  cross entropy
optimizer AdamW AdamW AdamW AdamW AdamW AdamW
base learning rate 1x107% 1x1073 1x1074 1x1074 1x1074 1x1074
weight decay 1x1074 1x 1074 1x 1074 1x 1074 1x 1074 1x 1074
batch size 32 32 32 32 32 32
training epochs 30 30 30 10 30 10
g eschedule  GPTEMSL Groenisl ool opoel o i
number of sampling points - - - - 512 (random) 512 (FPS)
random seed 42 42 42 42 42 42

Table A2. Training settings for TransNeXt, PointMLP, and PointNet on 3D object classification tasks.

(Pre-)Training Config TransNeXt-Micro PointMLP PointNet
loss function cross entropy cross entropy cross entropy
optimizer AdamW AdamW AdamW
base learning rate 1x107° 1x 1074 1x 1074
weight decay 1x107* 1x107* 1x107*
batch size 32 32 256
training epochs 10 10 30
learning rate schedule exponential decay (0.8) exponential decay (0.8) exponential decay (0.8)
number of sampling points - 1024 (FPS) 1024 (FPS)
random seeds [7,8,42] [7,8,42] [7,8,42]
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Abstract: In this work, an adaptive robust control method based on Radial Basis Function
Neural Network (RBENN) is proposed. Inspired by the local response characteristics of
biological neurons, this method can reduce the influence of nonlinear errors and unknown
perturbations in the extreme working conditions of the aircraft, such as high dynamics
and strong vibration, so as to achieve high tracking accuracy. In this method, the dynamic
model of the nonlinear error of the fiber optic gyroscope is proposed, and then the unknown
external interference observer is designed for the system to realize the estimation of the
unknown disturbances. The controller design method combines the design of the adaptive
law outside the finite approximation domain of the achievable condition design of the slid-
ing mode surface, and adjusts the controller parameters online according to the conditions
satisfied by the real-time error state, breaking through the limitation of the finite approxi-
mation domain of the traditional neural network. In the finite approximation domain, an
online adaptive controller is constructed by using the universal approximation ability of
RBENN, so as to enhance the robustness to nonlinear errors and external disturbances. By
designing the output constraint mechanism, the dynamic stability of the system is further
guaranteed under the constraints, and finally its effectiveness is verified by simulation
analysis, which provides a new solution for high-precision inertial navigation.

Keywords: fiber optic gyroscope; neural network; adaptive control; output constraints

1. Introduction

The optical fiber gyroscope (FOG) is an interferometric angular rate sensor based
on the Sagnac effect, constructed from a ring of optical fibers. When the optical fiber
ring rotates around its normal, two coherent light beams traveling in opposite directions
within the ring will produce a phase difference proportional to the angular rotational
rate. By detecting changes in the interference intensity caused by this phase difference,
the angular rate can be measured. The FOG is the second generation of optical gyroscope
after laser gyroscope, which has become the core device of high-precision navigation
system for various aircraft because of its advantages of fast start-up, high precision, high
bandwidth, all-solid-state, and strong environmental adaptability, and has been widely
used in sea, land, air, space and other fields [1-5], and its performance directly affects
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the navigation accuracy of aircraft. High-precision FOGs typically adopt a fully digital
closed-loop processing scheme, using Y-waveguide integrated optical phase modulators
as core components (multifunction integrated optic circuit, MIOC), and introducing a
feedback control loop to compensate in real time for the phase difference caused by rotation
around zero using the Y-waveguide, thereby forming a closed-loop control system. This
scheme can significantly improve the dynamic range and nonlinearity of the scale factor of
the fiber optic gyroscope. The closed-loop fiber optic gyroscope relies on the performance
of the control system to stably track the input angular velocity, and the performance of
the control system directly affects the dynamic output accuracy of the FOG. However,
with the rapid development of aviation and aerospace technology, the emergence of new
aircraft such as super-aircraft and the continuous improvement of the flight ability of the
aircraft, the FOG will work in a long-term extreme dynamic environment accompanied
by high dynamics, strong vibration and impact, and the fiber optic gyroscope will be
subject to nonlinear errors and disturbance interference, and the tracking performance of
its closed-loop control system will be greatly limited, resulting in the aggravation of the
dynamic output error of the FOG, which directly affects the inertial navigation error and
causes catastrophic consequences.

In order to improve the closed-loop control performance of FOGs in harsh flight
environments, all parties have made this effort. In [6], a high-precision real-time detection
and closed-loop control method of FOG loop gain was proposed, and the closed-loop
automatic control loop of the gain was used to achieve the stable maintenance of the loop
gain at the preset reference optimal value. In order to eliminate the steady-state error and
appropriately increase the system bandwidth in [7], the proposed digital controller adds a
proportional link to the original integration link to improve the dynamic characteristics of
the FOG. In [8], in order to eliminate the steady-state error, an integral link and a moving
average filter are added to the digital controller, and a proportional integral derivative (PID)
control algorithm is introduced to improve the system dynamics. The research in the above
literature shows that the traditional PID controller has achieved certain improvements in
eliminating steady-state errors, suppressing deviation changes, and improving response
speed. However, in the process of FOG, the vibration or other interference factors of the
instrument will cause the characteristic parameters or results of the FOG to change, and the
control strategy of using the fixed parameters of the traditional PID controller often leads
to poor control effect. Therefore, in order to cope with the special environmental changes,
many scholars have adopted fuzzy logic control to further optimize and improve the
parameters of the PID controller to improve the stability and robustness of the controller,
so as to better meet the control needs of the gyroscope in the process of operation and
ensure the stability and reliability of the control effect, as described in. A novel F-PID
composite controller combined with fuzzy control was proposed in [8]. The deviation
value of input and output and the change rate of deviation are input language variables,
and the parameters of PID are output language variables, so as to realize online adjustment
of PID parameters and improve the static and dynamic characteristics of FOGs. However,
the number of fuzzy rules involved in the design of the controller is large, and the design
of the fuzzy rules and membership function is entirely based on experience, so the design
of the controller is relatively difficult. In [9], the improved BP neural network was used to
adjust and optimize the parameters of the common PID, and the influence of the previous
output value of the PID on the output value of the PID was suppressed through active
series correction, which solved the problems of local extreme value and slow convergence
speed of the BP neural network. In [10], the improved gray wolf algorithm is used to
tune the traditional PID parameters, and the Euclidean distance rate of change is used
to dynamically adjust the convergence factor to balance the global search ability of the
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algorithm. The dynamic adaptive weight factor is introduced to improve the optimization
speed and accuracy of the algorithm. Although the controller in Refs. [8-10] can achieve
the desired control effect, the optimization process is complex, computationally intensive,
and time-consuming. In [11], a fuzzy PID controller based on the gravitational search
algorithm is used to realize the closed-loop control of FOG, which has advantages in
dynamic performance optimization, but the algorithm is optimized globally through the
gravitational search algorithm, but its parameter adjustment requires multiple trial and
error, and after coupling with the parameters of fuzzy PID, the overall optimization process
takes a long time, which limits its practicability. In [12,13], a hybrid control system is
designed by combining the advantages of fuzzy logic system and neural network, but due
to its high interpretability and learning ability, the computational complexity is high, which
leads to an increase in the amount of online computation, and it is difficult to use it in a
system with high real-time performance.

In recent years, with the maturity of artificial neural network technology, Radial Basis
Function Neural Network (RBFNN) is a kind of feedforward neural network based on
local approximation theory, which has attracted great attention from researchers in various
fields due to its simple structure, strong nonlinear mapping ability and fast learning speed.
In [14], RBENN was used to compensate for the bias error of the laser gyroscope, and the
approximation effect of the RBFNN algorithm on the nonlinear error model was verified,
and the improved RBFNN algorithm had the best performance. In [15-19], the RBFNN
dynamic identification of the dynamic characteristics of MEMS gyroscopes and the approx-
imation of external disturbance are used to ensure that the control system can reach the
sliding surface from any initial state and converge to the equilibrium point in a limited
time by introducing a sliding mode controller, reducing the number of parameters and
avoiding the problem of parameter expansion. Finally, the simulation results show that in
the presence of model uncertainty and external interference, RBFNN optimization control
can reduce the input flutter and improve the timeliness and effectiveness of tracking.

The design inspiration comes from the local receptive fields and global information
integration mechanisms in biological neural systems, which are inherently consistent with
the multi-channel parallel processing characteristics of insect compound eyes in biologically
inspired visual systems [20-22]. This simulates the ability of biological neurons to locally
approximate nonlinear disturbances, achieving autonomous parameter optimization of
the FOG in high-dynamic environments and carries out the simulation verification of the
related control algorithms, so that the FOG control system can quickly realize high-precision
closed-loop control under nonlinear error and uncertain disturbances.

2. Control System Model of FOG

The structure of the digital closed-loop FOG is shown in Figure 1. The optical sec-
tion includes the light source, coupler, phase modulator, optical fiber loop, and pho-
todetector, while the electrical section comprises a preamplifier, analog-to-digital con-
verter (ADC), logic processor, digital-to-analog converter (DAC), and its output buffer
amplifier, among others. The light source, coupler, phase modulator, and optical fiber
loop form the Sagnac interferometer. When the fiber optic loop rotates, a non-reciprocal
phase shift is generated between the counterpropagating light waves in the interferometer.
The phase shift @ is proportional to the angular velocity (), with the scale factor given by
Ks ==~ 2pi%, where L is the length of the optical fiber loop, D is the average diameter of
the fiber loop, A is the average wavelength of the light source, and c is the speed of light in
a vacuum.
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Figure 1. Structure diagram of the FOG System.

In the digital closed-loop FOG, The light emitted from the light source is split into two
beams traveling in opposite directions after passing through the coupler and Y waveguide.
The Y waveguide integrates beam-splitting, polarization, and phase modulation functions,
and is therefore also known as a multifunction integrated optic circuit (MIOC). These
two beams propagate in clockwise and counterclockwise directions within the fiber ring
and interfere at the beam-splitting port of the Y waveguide. The spatial rotation angular
velocity induces a phase difference between the two beams, which leads to changes in the
interference light intensity. This interference signal is then output through the coupler to
the photodetector. By processing the detected light intensity signal, the corresponding
angular velocity can be extracted. To ensure stable operation of the fiber optic gyroscope
at the optimal response point and to improve the linearity of the scale factor and the anti-
interference capability, a closed-loop feedback mechanism is implemented. Leveraging the
phase modulation functionality of the MIOC, a compensating phase is applied in real time
to cancel out the phase shift caused by rotation, thereby stabilizing the operating point at
a zero differential phase state and enabling precise computation of the angular velocity
based on the feedback signal. This achieves high linearity and low noise in angular rate
measurement. Moreover, to maintain accuracy, the feedback loop must operate within its
linear range. If the phase difference exceeds 27t, nonlinear errors may occur due to the
system’s inability to accurately track the actual phase change. To address this, periodic 27t-
resetting is employed to keep the feedback signal within the linear region, thus enhancing
both the accuracy and stability of the measurement.

The modulation phase generated by the Y-waveguide compensates for the phase
induced by the Sagnac effect. Considering interference factors such as the nonlinear
modulation effects of the Y-waveguide, the control model of the digital closed-loop FOG is
given as follows:

¢F + ki cos(¢ps — ¢p)Pr + kasin(ps — ¢pF) + D(t) +u =0 (1)
Yy =9¢r
where ¢r = [¢p1,¢P2,¢F3]T represents the system state, ¢r1, ¢r2, ¢r3 denote the lo-
cation on XYZ axis, respectively, ¢s = [¢s1, P52, $s3]7 denotes XYZ axis, respectively,

ki = diag{ki1, k12, k13}, ko = diag{kay, koo, ko3 }, kij the known signal vector of the system
(withi=1,2andj=1,2,3), D(t) = [Dy(t), D2(t), D3(t)]T represents the unknown external
]T

disturbance, and u is the controller to be designed. ¥ = ¢r = [y1,2,y3]" represents the

system output. The system (1) satisfies the following conditions:
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Assumption 1. The external disturbance D;(t), is assumed to be unknown but bounded, satisfying
the condition, |D;(t)| < D;, where jj; is a known positive constant.

Assumption 2. The desired trajectory yg = (Y1, Yao, Yaz) | is bounded and needs to be tracked by
the location of the FOG system (1). This implies that the desired trajectory satisfies the condition
il < Ygj, where ij4; is a known positive constant.

Remark 1. The disturbances and trajectories considered in this paper are indeed bounded. While
unbounded disturbances pose a significant challenge due to the severe shocks they may introduce,
which could potentially render the control ineffective, it is important to note that even in such cases,
the functions remain bounded within a defined finite domain. This ensures that the system behavior
can still be analyzed and controlled within practical limits.

The above analysis indicates that under 27-reset conditions, the modulation state
lacks symmetry, resulting in strong coupling between the primary and secondary closed-
loop controls in the digital closed-loop FOG. The symmetry of the modulation state is the
fundamental condition for decoupling the primary closed-loop control and the secondary
closed-loop control in the digital closed-loop FOG.

Design of the RBFNN Controller

The basic structure schematic diagram of the RBFNN controller is shown in Figure 2.

{ X1 =X = ¢r @

Xo =X = 451: = —ky COS(qu — X1)xZ — ko sin(gbs — x1) —Uu— D(t)

where the state vector is x1 = [x11, 12, x13]7, X2 = [x21, %22, %23] 7, a1 < x11 < hap, By <
x13 < hep, B, hao, By, By, het, and b denote the bounded values. u is the controller signal

in Figure 2 that will be designed.

Actual ( i ( Controlled
[outputy} kaccused object) e j

Carameter Update (Gradient Descen?
Supervised Learning)

Figure 2. Structural schematic diagram of the RBFNN controller.

In Figure 2, the core parts of the RBFNN controller are the input layer, the controlled
layer and the output layer; The controlled object module receives the controlled object
u and outputs t parameters of the actual response signal y; In the parameter adjustment
module, it adjusts the weights and basis function RBFNN based on error back propagation.

In this paper, let the signal y; = [y41, Y, ya3]T represent the desired signal, that is
tracked by the position of state vector x1 u; = x1 — Y4, g2 = X2 — B1 = [po1, H22, y23]T,
where B is the virtual controller to be designed. Then, it has ji; = %7 — 4, Take the
Lyapunov function as:

2 2 2
! %4—%1055%—1-1105;% (©)]

11 m—Hp 2 has — 13
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The derivative of function (3) is:

Vi, = dubu | paokn o #si3
! Wi—pyy o Bg—un, o hi—p

— Hi11 Hi2 Hi13 o
[h,%—pt%l’ -1, hg_%](ﬂz +B1—Ya)

(4)

Thus, the virtual controller can be designed as f1 = y; — rp1, where r = diag{ry,rp, 13} 1
denote positive real constant, so it obtains:

Vi = g oy oy
ha—piy  My—pp he—pis (5)
11421 H12H22 H13M23
MR T
Because jip = %5 — f1 = —ky cos(¢s — x1)x2 — ko sin(¢ps — x1) — u — D(t) — By, select-
ing the following Lyapunov function:
1 7
Va=Vitomie (6)
Vz = Vl + ]’lg[_kl COS((PS — xl)X2 — ko sin((/)s — X]) —u— D(t) — ﬁl] (7)
Design the interference observer:
D = P(t) + h(p2) 2 8)
P(t) = h(pz)[kq cos(ps — x1)x2 + ko sin(ps — x1) + u+ D + B1] 9)

where P(t) = [Pi(t),P2(t), Ps(t)]T, h(pp) = diag{hi(p2), ha(p2), hs(p2)}. Because
D = D — D, then it has:
D=D-D=P(t)+h(u)jia— D
= h(p2)[k1 cos(¢ps — x1)x2 + ko sin(¢s — x1) +u+ D + p]

) ) 10
+h(ﬂ2)[*k1 COS(gbs — xl)xz — ko Sil‘l(gbs — x1) —Uu— D(t) — 181] —D (19)
= h(p2)D - D
From (10), it knows
fip = —kq cos(¢ps — x1)x2 — kp sin(¢ps — x7) fu*f)*ﬁ& (11)

Let the nonlinear function be —kq cos(¢s — x1)x2 — kp sin(¢s — x1) — p1 = A At this
point, the observers in Equations (8) and (9) contain unknown nonlinear terms, which
cannot be directly applied. Therefore, it is necessary to redesign the observer based on
the Radial Basis Function Neural Network (RBFNN). This paper considers the design of
observers and controllers under two scenarios: when the states yi; are outside the RBFNN
universal approximation domain and when they are within the approximation domain.

Theorem 1. Under the conditions of Assumptions 1 and 2, for system (1), with the controller
u = O3, disturbance observer (12), and adaptive laws (13) and (14), the extended state vector
z= [puy,p,07, ", W will reach the sliding surface s1, s

D =P(t)+h(u2)pa, P(t) =h(u2)[A+u+ D] (12)
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The following form of adaptive law is designed:

5 2L+ 1z[l = llp2ll > alpl 13
- 1 5(L+ E), 1zl = alof > [|p2]l

@

A . A

9;=0, &=0, W;=01xn (14)

here & — _ lmallpl | ol \sz\ |13 |Pl23| A+ D).
where & = fpi= + =i + 212, + [[p2]|(A + [ DJ)

Proof. Case 1: From the state vector z = [ul,p, 87, €T, W]-T]T, itis evident ||z|| > ||u2|| that
when ||z|| > ||p2|| > «|p] satisfies the given condition, the sliding surface can be chosen in
the following form:
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Using open-loop control u = O34, the following conclusions are valid:

B 2 o2 rau2
V< 51{— 1Pl112 _ zzﬂlzz _ h23V13 + ,}411}121 =+ Vu#zzz + }‘13}423 + pul [A D]}
1 b H12 2—is 5 —

—a%0p + 9yt Tig B0+ 0y D g8+ x zj:1 WjTW]- + rl;l Y D,D;}

< 1 - \Vzl\ |#12]- |I422| 113 [p23] A+lD (17)
S{\h 3] T [12—112,| + 2112, + 2l (A +1DJ)

x pp+71] 2] 11919 +51] 2] 18]8]—1-)(1] 2] 1WTW+ Z] 1DD}

~ —SlL

From conclusion (17), it can be inferred that the extended state z will reach the sliding
surface s; within finite time.

Case 2: When ||z|| > a|p| > ||p2]|, satisfies the given condition, the sliding surface is
designed as:

1 1 1
sp=Vi+ zx 2+ O+ o —8 + — W W+ - —D? (18)
! o 2”2” ]; 271] 25,7 " o 21 )

Order V = 152, there is:
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Under open-loop control # = O3, the following conclusion holds:

102



Biomimetics 2025, 10, 372

. 2 2 2 A
V < g, f— 1k Tofyp _ T3Mis + }111}121 + leﬂzz + Mk o T(A—D
- 2{ h%*Vn hifﬂ%z h%*ﬂ%g h%— P‘ hg*?‘% 2 ( )}

)+ v 3.9 “1y3 & -1 1v3 A
+a?0p + 71]‘ Zj*l 99+ 0y Loy gié; + Zj:1 W].TWj +7; Ly DjD;

< o {lrallanl o [rollu2l | |3l 4] A D )
< sy (bl gl | bl 1 ) + D)} 20)
200 + v+ - 5.4 -1y3  WwTnR ~-1v3 A7
+a pp—f—'ylj Z] 119]19]""51]‘ ijlsjs]-—i—xlj Lia Wi Wi+t Ly D;D;}
S —SzL

Similarly, conclusion (20) ensures that the state z will reach the sliding surface s, within
finite time. When the extended state vector z lies within the finite approximation domain
of the RBFNN, i.e., when the conditions ||| < ||z|| < «|p| are satisfied, the disturbance
observer, controller, and adaptive laws are designed in the following form. The disturbance
observer is designed to:

. . A X
D = P(t) + h(p2)p2, P(t) :h(ﬂz)[u—D—QD(;)] (21)
Controller is designed as
H11M21  M12M22  P13H23 T X, = A
= [ , , " +®(=) +kpa—D (22)
—uty hy — iy W2 — i, P

where k = diag{ky, k, k3 }, k; is the positive real number. And the adaptive law is designed

as follows: 5
= —gp—oa® ) (djlp — 1| + a¢j)sign(p) (23)

j=1
8 = =18 + 750%|p| - [0 — 1 (24)
= —/\]'@]' + (52]'06‘p| (25)

5 X 7
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. 1, p>0 s
where sign(p) = ) <o parameters ¢, 0, Tj, Aj, 11, 72j, 62j, X2j are some positive
-4 P =
constants that are given by the user. Based on (21)—(26), the following Theorem 2 is ob-
tained. O

Theorem 2. Under the conditions of Assumptions 1 and 2, for system (1), with the disturbance
observer (21), controller (22), and adaptive laws (23)—(26), the output of system (1) can track the
desired signal, and all signals in the closed-loop system are uniformly ultimately bounded. Proof:
When ||uz|| < ||z|| < alp] is true, take

1 1 S R A
Va=Vo+ p+2 B+Y s—E+Y 5 —WW+) -—DF (27
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The differential result is obtained as:
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In Formula (31), p3 = diag{y3,, 43, u35}. Because the following inequalities hold
T~ A T - T
— L8 = -8 - 19]19] < ——192 67 (32)
V2 72j Y2j 270 ) 27y
Aj Aj Aj Aj Aj
Jgp. — 12 "Tsgeo <"1 g2 33
oy ] 52/‘81 52]8 & = 252]8 + 252/8 (33)
_ i TW; = _ 0 WIW; — A WIW; < _ WIW; + I WIW;. (34)
X2j X2j X2j 2X2; 2X2j
With inequalities (28)—(30), it can be obtained as
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Then (31) is equivalent to:
V3 < —wVs+0

Multiply e“! on the both sides of the Equation (32) and integrate in the interval [0, ] to get
(38)

0< Va(t) < [V3(0) = )™ + =
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From (33), it can be concluded that V (t) is bounded. Therefore, the tracking error y1, signals
1ip, observer error D, adaptive parameters p, parameter estimates 6, £ and the estimated
RBFNN weight vector, W; can converge to a compact set, Q = [V3(0) — Z]e”“! + £ can
converge to a compact set.

Remark 2. To obtain higher approximation accuracy, it is typical to utilize a large number of
neurons in RBFNN control design. Nevertheless, the approximation accuracy (25) can be fine-tuned
by the parameter (23), which removes the requirement for a large number of neurons in RBFNN.

3. Simulation Verification of RBFNN-Based Adaptive Robust Control

Consider the desired tracking trajectory defined by the following continuous functions
along the XY Z-axis, where all three functions are smooth and differentiable.

Ya = [Va1, Vao, vas]T = [~0.5cos(7tt), 0.3 — 0.05 cos(7tt), 0.35 sin(7tt) cos(0.5¢)] T

Three kinds of external disturbance are considered in the simulation.
The initial values in the FOG are given as Table 1.

Table 1. Initial values in the fiber optic gyro control system.

Parameter Value Parameter Value Parameter Value
¢r1 —04 ¢r2 0.22 ¢r3 —0.15
$s1 -7 $s2 T ¢s3 —0.57
k11 3 k12 3 k13 3
ko 10 ka» 10 ko3 10

w 100 L 10 ha 5
hp1 -2 hyo -3 ha -1
7 100 T 200 7 300
p1(0) 0.6 02(0) 0.9 p3(0) 0.3
Y21 0.001 Y22 0.002 Y21 0.003
1 3 03 3 3 3
511 0.002 b2 0.004 b3 0.006
k1 100 ko 200 ks 300
M 250 Ay 350 A3 450
z 20 o 10 0(0) 0.1
81(0) 06 8,(0) 0.9 85(0) 0.3
€1 (0) 0.5 ) (0) 0.7 €3 (0) 0.4

Simulation 1: When the external disturbance is D = [Dj, D,, D3]T = [2cos(3t),
25sin(5t),2sin(5¢)]T, where each function are is smooth and differentiable.

In Figure 2, the output of the FOG control system (1) effectively tracks the desired
reference signal, and the time response of the tracking error is shown in Figure 3. The sim-
ulation results indicate that the tracking error converges. The actual disturbance of the
system and the simulation results of the disturbance observer are shown in Figure 4,
while the time response of the observation error is presented in Figure 5. These results
demonstrate that the disturbance observer designed in this study achieves high-precision
observation. The corresponding controller and the parameter adaptation laws are shown
in Figures 6-9. Figure 6 illustrates that the overall time-varying trend of the controller
remains stable. Figure 7 shows the time response of the virtual controller. Figure 8 depicts
the time response of the adaptive parameters within the controller. The variation of the
Lipschitz adaptive parameters in Figure 8 indicates the existence of a series of suitable
small constants. In Figure 9, the nonzero parameters within the controller can automatically
adjust online and reach appropriate values, thereby satisfying the optimal approximation
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performance of the RBFNN. The approximation accuracy of the RBENN can automatically
adjust and asymptotically approach zero. These simulation results demonstrate that the
RBENN adaptive controller designed in this study effectively achieves the desired system
tracking and high-precision tracking and observation of unknown external disturbances.

i i i !
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Time (s)
) e e e e e e e e e 2 2 2t 2 2 2 2 e e
—— -y
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————— o
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Figure 3. Time response of position tracking error.
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Figure 4. Time response of position tracking error.
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Figure 5. Time response of actual disturbance and disturbance observer error.
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Figure 6. Time response of actual disturbance and disturbance observer error.
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Figure 7. Time response of actual disturbance and disturbance observer error.
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Figure 8. Time response of the controller B.
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Figure 9. Time response of adaptive parameters.

Simulation 2: When the external disturbance is D = [Dy, D,, D3]" a step response as
shown in Table 2, where the three external disturbances along the XY Z-axis are modeled
as non-differentiable piecewise functions, commonly named as square wave interference,
the simulation results are presented in Figures 10 and 11:

Table 2. Disturbance values produced in time 0 to 10.

Time (Second) 0<t<2 2<t<4 4<t<6 6<t<8 8<t<10

D1 —20 20 —-20 20 —20
Dy —20 20 —20 20 —20
Ds —20 20 —20 20 —20
100 F
80 p
60 |
=]
© aof
20
0 1 1 1 L 1L 1 1 1 1 ]
0 1 2 3 4 5 6 7 8 9 10
Time (s)

—— 1WA
— s
W

2 3 4 5 6 7 8 9 10
Time (s)

Figure 10. Time response of adaptation in the controller.

The simulation results in Figure 10 illustrate the comparison between the designed
disturbance observer and the actual disturbance under step responses occurring at different
time intervals. It can be known from Figure 9 that the time response of the observer
designed in this paper is almost the same as that in the actual interference situation.
Since the time response in the actual situation is also affected by other factors, such as
environmental temperature, etc., a certain delay will occur in the system when converting
between high and low levels. However, in the stable state, the observer designed in this
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paper is consistent with the time response characteristics of the actual situation. Therefore,
it will not have an impact on the performance of the system. Figure 11 presents the time
response of the error between the actual step disturbance and the observed step disturbance.
It is obvious that the error between the actual step response and the observed step response
time is consistent. It can therefore be concluded that the designed disturbance observer
achieves effective observation of external disturbances even when the disturbances take
the form of step signals.

20 - i

o A
=—A;
g 0
P, . ! . ‘ =i ’
1 2 3 4 5 6 7 8 9 10
Time (s)
20 r |
I A
g2 0f A2
o
I
204 . ] L
0 1 2 3 4 5 6 7 8 9 10
Time (s)
20 - - ,
[ -
2 0F —_—A
o
I
20k . 1 L
0 1 2 3 4 5 6 7 8 9 10

Time (s)

Figure 11. Step time response and time response of the observer.

Simulation 3: When the external disturbance is D = [Dy, D5, D3]". In this case, each
function includes a ramp signal as described below, where the magnitude of the ramp
signal increases linearly over time.

3,  0<t<2
3t—2, 2<t<4
Dj={3t—4, 4<t<6
3t—6, 6<t<8
3-8, 8<t<10

Figures 12 and 13 shows the simulation results; Figure 14 shows error time response
of slope and observer:

In Figure 12, the time response of the observer aligns with the external disturbance
when the disturbance takes the form of a ramp signal. Figure 13 shows that the time
response of the error between the ramp disturbance and the observer converges to zero.

From the simulation results of three different types of external disturbances, it can
be concluded that the proposed design method enables the output of the FOG system (1)
to effectively track the desired reference signal. Moreover, the external disturbances can
be effectively observed through the designed observer. The unknown dynamic model
within the system can be effectively approximated using the designed RBFNN, with the
approximation accuracy being adaptively regulated through the controller parameters,
significantly improving the approximation precision. Furthermore, all signals in the closed-
loop system are ensured to achieve uniform ultimate boundedness.
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Figure 12. Time response of the error between step response and observer.
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Figure 13. Time response of slope and observer.
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Figure 14. Error time response of slope and observer.

Remark 3. In the first simulation, a smooth and differentiable desired trajectory along the XYZ-
axis. The results show that the system can achieve accurate tracking performance, and the distur-
bance observer error converges to zero. In the second simulation, a step-like external disturbance,
which is non-differentiable at the inflection point due to its piecewise nature. This represents a
different class of disturbance compared to the first case. Finally, in the third simulation, a piecewise
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increasing function as the external disturbance, which presents a more complex and challenging
scenario than the previous two cases. Despite these varying levels of complexity such as increasing,
the simulation results consistently demonstrate good tracking performance, and the disturbance
observer effectively estimates and compensates for the unknown external disturbances.

Remark 4. This study models the dynamical equation of the Digital closed-loop FOG, differing
from other models that linearize the nonlinear terms. In this work, the RBFNNs to approximate
the unknown nonlinear terms. Therefore, comparisons with other methods for same class of Digital
closed-loop FOG is the main research work in future. because of the unique model of the digital
closed-loop FOG.

Remark 5. The main focus of this work is on the design of RBFNN adaptive control theory for
FOG. Experimental testing is a key task due to more complex factors such as hardware and others, it
is our main work in future research.

4. Conclusions

A new RBFNN-based adaptive robust control technique is proposed for high-precision
angular position and velocity tracking of FOG under large dynamic unknown external
disturbances. The designed controller not only relaxes the limitations imposed by the finite
domain of the RBFNN but also enables online adjustment based on the desired control accu-
racy. Compared to the simulation results under the different unknown external disturbance,
the RBFNN-based adaptive robust control technique demonstrates the ability to achieve
high-precision tracking and effective disturbance observation in the presence of unknown
external disturbances. Indeed, there are numerous complex factors that can influence the
system, such as hardware implementation, unbounded disturbances, and integration with
multi-sensor systems. These various elements pose challenges in practical applications.
The research conducted can provide significant importance for enhancing the performance
of high-dynamic FOG-based strapdown inertial navigation systems.
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Abstract

To address challenges of background interference and limited multi-scale feature extraction
in infrared small target detection, this paper proposes a YOLO-HVS detection algorithm
inspired by the human visual system. Based on YOLOVS, we design a multi-scale spatially
enhanced attention module (MultiSEAM) using multi-branch depth-separable convolution
to suppress background noise and enhance occluded targets, integrating local details and
global context. Meanwhile, the C2f_DWR (dilation-wise residual) module with regional-
semantic dual residual structure is designed to significantly improve the efficiency of
capturing multi-scale contextual information by expanding convolution and two-step
feature extraction mechanism. We construct the DroneRoad Vehicles dataset containing
1028 infrared images captured at 70-300 m, covering complex occlusion and multi-scale
targets. Experiments show that YOLO-HVS achieves mAP50 of 83.4% and 97.8% on the
public dataset DroneVehicle and the self-built dataset, respectively, which is an improve-
ment of 1.1% and 0.7% over the baseline YOLOVS, and the number of model parameters
only increases by 2.3 M, and the increase of GFLOPs is controlled at 0.1 G. The experimental
results demonstrate that the proposed approach exhibits enhanced robustness in detecting
targets under severe occlusion and low SNR conditions, while enabling efficient real-time
infrared small target detection.

Keywords: infrared small target detection; human visual system; YOLOVS; attention
mechanism

1. Introduction

Infrared small target detection (IRSTD) utilizes thermal radiation discrepancies be-
tween targets and their backgrounds in infrared imaging to identify and track objects of
interest. Due to its strong penetration, good concealment, strong anti-jamming ability,
and independence of light conditions, it has found extensive applications across multiple
domains, including military operations, surveillance systems, early warning mechanisms,
precision targeting, and maritime reconnaissance [1,2]. Compared with ordinary visible
targets, infrared weak target imaging distance is long, resulting in the target pixels ac-
counting for a small proportion of the pixels of the entire image and the lack of obvious
texture, shape, and structure features [3,4]. Secondly, the energy of infrared radiation
decays significantly with the increase of distance, which makes the infrared weak targets
easily submerged in the background clutter and noise. The detection of infrared small
targets remains technically challenging in contemporary research due to the extremely
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low pixel values of the small targets, their extremely low contrast, and the extremely close
proximity of the small targets. In addition, real-time target output is required in many
application scenarios, so detection algorithms with fast detection speed and a low number
of model parameters are more popular [5].

With the development of deep convolutional neural networks, the performance of
infrared small target detectors has been significantly enhanced. Many high-performance in-
frared small target detection algorithms based on deep learning have been put forward [6,7].
In general, these algorithms can be categorized into two branches. One branch of deep
learning-based infrared small target detection algorithms employs a two-stage neural
network as both a feature extractor and classifier, enabling the detection of infrared small
targets from coarse to fine scales. Although the two-stage detector has achieved great
success, it also suffers from disadvantages such as difficulty in training and slow detection
speed [8]. Another branch is single-stage detection algorithms, which improve the detection
speed by performing classification and regression directly on the feature map. Representa-
tives of single-stage detection algorithms, such as YOLO [9,10], reduce the computational
complexity by simplifying the detection process, thus significantly increasing the detection
speed while maintaining higher accuracy [11,12].

Although deep convolutional networks significantly improve IR small target detection,
detecting IR small targets with large variations in scale, occlusion, appearance, and illumi-
nation in real-world scenes is still a great challenge. Recent studies in infrared small target
detection have incorporated functional characteristics inspired by the human visual system
(HVS) to improve detection performance, encompassing size adaptation dynamics, contrast
perception mechanisms, and attentional modulation processes. These introductions notably
improve key detection capabilities, ranging from identification accuracy to computational
efficiency [13-15]. As exemplified by the attention mechanism, its design originates from
the human visual system’s selective attention in information processing: humans tend
to prioritize task-relevant information when dealing with abundant data [16]. In deep
learning, the attention mechanism enhances model performance by dynamically allocating
higher weights to salient input features while suppressing less relevant ones, moving
beyond uniform treatment of all inputs. Ref. [17] repaired the Null Convolutional Block
Attention Module (DILATED CBAM) to YOLOv4's backbone network, CSPDarknet53,
to augment the small targets and make key features distinguishable. Ref. [18] proposed
a dilated convolution-based weighted feature pyramid network (DWFPN). The DWFPN
assigns fusion weights to multi-level features via an attention mechanism, facilitating
high-quality information interaction while preventing the loss of small target features and
critical information during network deepening.

Although a range of techniques have been utilized for studying infrared small target
detection from different angles, the existing research still faces inherent constraints that
need to be addressed [19]. On the one hand, the interference of background information
is an important issue during IR small target detection. In operational scenarios, targets
are commonly overshadowed by environmental noise—including vegetation, shadows,
and other surface features [20]. Background interference significantly degrades detection
performance by introducing false positives (misclassifying negative samples as targets),
thereby compromising model accuracy. Furthermore, existing advanced methods struggle
with multi-scale target extraction due to the substantial size variations typical of infrared
small targets, leading to unreliable detection across different scales [21,22].

Aiming to resolve the identified limitations, this research proposes a target detection
algorithm termed YOLO-HVS based on YOLOv8 and HVS. Firstly, for the purpose of
reducing the impact of non-relevant information obscuring small IR targets in the detection
process, the MultiSEAM (Multi-scaled Spatially Enhanced Attention Module) attention
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mechanism is introduced. Secondly, in order to expand the sensing field to extract rich
multi-scale contextual information, C2f DWR is designed to replace the C2f module in
YOLOVS. This paper makes the following main contributions:

(1) This study constructs a multi-scenario infrared vehicle dataset containing occluded
and multi-scale targets. We propose YOLO-HVS to enhance small vehicle detection, vali-
dated on both DroneVehicle and our DroneRoad Vehicles datasets.

(2) To address IR small target occlusion, we integrate MultiSEAM into YOLOVS. This
attention mechanism enhances unoccluded features through multi-branch depth-wise
convolutions, capturing both local details and global context for robust detection.

(3) To enhance multi-scale context extraction, we propose the C2f_DWR module (C2f
with dilation-wise residual) as a replacement for YOLOv8's original C2f. This dual-residual
structure splits feature extraction into regional and semantic pathways, simplifying multi-
scale mapping while improving detection efficiency across varying target scales.

2. Datasets

The two datasets used for the experiments in this paper are now described.

2.1. Public Dataset-DroneVehicle

The DroneVehicle dataset [23], a comprehensive collection of aerial vehicle images
captured by UAVs and publicly released by Tianjin University, serves as a critical bench-
mark for advancing computer vision research in unmanned aerial systems. The dataset
covers rich RGB and infrared image resources for vehicle detection and counting tasks
and covers diverse scenes from day to night. Given that the research focus of this paper
lies in the domain of infrared small targets, only the infrared images within the dataset are
employed as research objects.

In the experimental design, we strictly adhere to the public dataset partitioning
strategy and partition the dataset into a training set and a validation set. Specifically,
the training set is composed of 17,990 images, while the validation set includes 1469 images.
The dataset encompasses five primary classes: car, truck, bus, van, and freight car. These
classes cover typical vehicle types in UAV aerial photography scenarios, offering abundant
sample support for infrared small target detection tasks.

2.2. Our Dataset-DroneRoadVehicles

It is observed that the vehicle targets within the DroneVehicle dataset exhibit relatively
uniform sizes, which may be due to the relatively fixed flight altitude of the UAVs during
the filming process. However, in practical applications, the flight altitude of the UAV often
varies depending on the mission requirements, and this single-view shooting condition
may be difficult to generalize in real-world scenarios [24]. To validate the versatility and
stability of the proposed approach across varied environmental conditions, a novel dataset
named DroneRoadVehicles was developed. This dataset spans an altitude range of 70 m to
300 m by capturing images at distinct flight heights, thereby encompassing large, medium,
and small vehicle targets with diverse size distributions. Such a design not only augments
dataset diversity but also furnishes more challenging samples for infrared small target
detection tasks, enabling the validation of the method’s effectiveness and generalizability
in complex scenarios.

The data collection device employed is the DJI MAVIC2 Enterprise Advanced, with its
thermal and visible camera specifications fundamentally outlined in Table 1.
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Table 1. Camera basic parameters.

Indicators Thermal Camera Visual Camera
Spectral Band (8-14) pm (0.38-0.7) pm
Resolution 640 x 512 3840 x 2160/1920 x 1080
Uncooled VOx
Sensors Microbolometer 1/2CMOs

During infrared vehicle data acquisition, significant efforts were made to account for
real-world environmental interference. The collected data span multiple diurnal cycles
(daytime to nighttime) and diverse meteorological conditions (e.g., clear skies and fog),
ensuring comprehensive environmental coverage. Furthermore, the dataset incorporates
a wide range of practical scenarios, including but not limited to expressways, parking
facilities, commercial centers, and urban crossroads. This design ensures that the dataset
is diverse in terms of scenarios and environments, thus providing strong support for
validating the adaptability and robustness of various types of network models under
complex conditions.

The DroneRoadVehicles dataset contains 1028 aligned infrared-visible image pairs,
divided into training (80%), validation (10%), and test sets (10%) following a standardized
data split protocol. As illustrated in Figure 1, representative samples demonstrate multi-
modal scene coverage, where visible-spectrum images (top row) are precisely registered
with their thermal infrared equivalents (bottom row) across varied environments. Figure 2
presents UAV-captured images at varying flight altitudes, further highlighting the dataset’s
target size diversity. As illustrated in Figure 3, the dataset’s primary categories encompass
cars, trucks, and buses. The diversity of scenes and environments within this dataset
facilitates the testing of infrared vehicle target detection and tracking tasks.

(a) Urban highway (sunny day) (b) Parking (night) (c) Crossroad

Figure 1. Multi-scene examples of our DroneRoad Vehicles dataset.
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(a) Lower flight altitud; (b) Medium flight altitude (c) Higher flight altitude

Figure 2. Comparison of drones at different flight altitudes.

(a) Car (b) Truck
Figure 3. Target vehicle categories in the DroneRoad Vehicles dataset.

3. Methods
3.1. YOLO-HVS

YOLO-HVS represents an enhanced detection architecture built upon YOLOVS, specif-
ically tailored for infrared small object detection tasks [25]. The overall framework is
visualized in Figure 4. During the optimization of the baseline YOLOVS, the following
critical strategies were implemented:

(a) Backbone

0 e — : Direct connection

Figure 4. Overall network architecture of YOLO-HVS.

First, three MultiSEAM attention mechanisms are introduced at the end of Neck. This
mechanism effectively addresses the issue of inaccurate localization arising from target
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feature loss due to obstruction by surrounding objects. The attention module is designed
to enhance target feature learning; meanwhile, it improves feature map resolution, thereby
boosting detection precision for small infrared targets.

Second, we innovatively adopt C2f_DWR to replace the original C2f in YOLOVS.
This improvement effectively expands the receptive field and significantly reduces the
difficulty of mapping multi-scale contextual information. The expanded receptive field en-
ables the model to integrate contextual information across broader spatial regions, thereby
improving its ability to analyze target-environment interactions. Simultaneously, easing
the challenge of extracting multi-scale contextual information enables the model to han-
dle targets across diverse scales more adeptly. This optimization significantly improves
the model’s capacity to detect targets across varying scales, allowing for more precise
localization and identification of small infrared targets across various scales.

3.2. MultiSEAM Attention Mechanism

In target detection, it often occurs that the target is occluded by other objects, which
can lead to the disappearance of features, thus leading to inaccurate localization, and at
the same time, taking into account the characteristics of infrared small target detection,
we innovatively introduced a multi-branching SEAM (Self-Ensembling Attention Mecha-
nism), known as MultiSEAM [26]. As shown in Figure 5 for the schematic diagram of the
MultiSEAM Attention Mechanism.

.| CSMM
"| Patch=6
v
CSMM Average gl Channel
lnpﬂ—b _~ ] Sum [—>| 8¢ | 3! Connection —»| —» Output
Patch=7 Pooling exp
Network
7}
| CSMM
”| Patch=8
N
N
Patch GELU+ Depthwise GELU+ Pointwise
Embedding BatchNorm Convolution BatchNorm pad Convolution
I o

Figure 5. The MultiSEAM architecture (top) and its Channel-Spatial Mixing Module (CSMM, down).

The core design of the MultiSEAM module is shown in Figure 5, which demonstrates a
multi-branch parallel architecture consisting of three CSMMs (Contextual Spatial-Channel
Modeling Module) of different sizes (patch = 6/7/8) on the top side. In the feature
processing flow, the input image is first segmented into multi-scale local regions (6 x 6, 7 x
7,and 8 x 8), which are mapped to a high-dimensional space by a Patch Embedding layer
with shared weights to generate the initial feature representation. Each CSMM module
models joint spatial-channel correlations through a two-stage operation. (1) Depthwise
convolution is when the spatial features of each channel are extracted independently
using depthwise convolution [27], which captures the local context information using a
3 x 3 convolution kernel and enhances the nonlinear representation through the GELU
activation function with BatchNorm. (2) Channel interaction is when the spatial features of
each channel are extracted independently using depthwise convolution; expression ability.
(3) Channel interaction enhancement: To avoid the problem of weakening inter-channel
relationships caused by deep convolution, pointwise convolution (1 x 1 convolution) is
introduced to dynamically fuse cross-channel information and reconstruct the channel
dependency. Further, the contextual correlation between occluded and visible regions is
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explicitly modeled by global channel feature fusion of multi-branch outputs through a two-
layer fully connected network. Finally, the channel-wise exponential scaling (ES) features
are multiplied element-by-element with the original input features to achieve feature
compensation and semantic enhancement of occluded targets. This design significantly
improves target recognizability in complex occlusion scenarios through multi-granularity
local sensing and channel-wise adaptive feature selection mechanism.

Targeting the key challenges of minute target dimensions, low signal-to-noise ratio,
and background clutter interference in infrared small target detection, MultiSEAM delivers
performance advancements through multi-scale context fusion and channel attention co-
optimization. In the spatial dimension, CSMM branches of different sizes focus on local
details (e.g., patch = 6 to capture edge texture) and global context (e.g., patch = 8 to model
long-range dependency) to form complementary multi-scale feature representations; in
the channel dimension, the feature recalibration mechanism based on the attention weight
(exponential expansion after Sigmoid activation) suppresses the background thermal noise
channel and, at the same time, reinforces the key channel response related to the target.
This feature enables robust detection performance in low illumination and strong occlusion
infrared scenes, providing an efficient solution for real-time detection of small targets in
complex environments.

3.3. C2f_ DWR

Many recent methods have designed specialized backbones for real-time target detec-
tion tasks, of which the design of the receptive field is an important part [28,29]. Generally,
these approaches seek a wide receptive field to acquire more contextual information,
thereby enhancing feature representation. However, in practice, this may lead to inefficient
feature extraction. Determining the appropriate size of the receptive field is crucial for
improving the efficiency of feature extraction, and the requirement of the receptive field
size varies at different stages of the network. With the enhancement of feature semantic
representation, larger receptive fields are demanded at higher network stages, particularly
for infrared small target detection. This study introduces novel improvements to the core
modules of the YOLOv8 network, aiming to efficiently acquire multi-scale contextual infor-
mation in infrared small target detection tasks. As the critical feature extraction component
in target detection networks, the original C2f module realizes cross-layer feature fusion
through a cascaded bottleneck structure, but its fixed-size 3 x 3 standard convolution has
limitations in multi-scale feature extraction in complex contexts. Therefore, our method
adopts DWR (dilation-wise residual) instead of bottleneck to compose C2f DWR for IR
small target detection.

As depicted in Figure 6, the DWR module employs an innovative dual-phase fea-
ture extraction strategy to resolve the critical challenge of receptive field expansion while
preserving computational efficiency for real-time detection tasks. This design enables
comprehensive contextual feature integration without compromising inference speed.
This approach decomposes traditional single-step multi-scale feature extraction into two
sequential processes: region residualization and semantic residualization. First, region
residualization involves generating compact feature maps with distinct regional represen-
tations through 3 x 3 convolution integrated with batch normalization (BN) and ReLU
activation, which establishes the foundation for morphological filtering in the subsequent
step. Subsequent semantic residualization refers to semantically based morphological
filtering using a depth-separable convolution of a single desired receptive field for each
region feature map, avoiding unnecessary redundant receptive fields. This module em-
ploys a two-phase residual feature extraction approach (regional residualization-semantic
residualization) to effectively enhance the efficiency of multi-scale information acquisition.
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Figure 6. The network structure of the DWR module, where Conv represents convolution, DConv
signifies depthwise convolution, D-n denotes dilated convolution with a dilation rate of n, and the
circled ‘+” indicates an addition operation.

4. Experiments and Results

This section first introduces the evaluation metrics and implementation details.
To demonstrate the superiority of our approach, we then conduct comparative evaluations
on both the DroneVehicle and DroneRoadVehicles benchmarks. Finally, extensive ablation
studies validate the individual contributions of the MultiSEAM and C2f DWR modules.

4.1. Evaluation Metrics

Target detection algorithms employ multiple evaluation metrics that assess algorithm
performance from diverse perspectives. The evaluation employs five key metrics: detection
accuracy (precision, recall), overall performance (mean average precision), and computa-
tional efficiency (model parameters, FLOPs).

4.1.1. Precision and Recall

The confusion matrix, a tabular format for evaluating classification model
performance [30], compares model predictions against true labels and categorizes them
into four scenarios: true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN). As demonstrated in Table 2, the matrix rows denote actual categories, while
columns represent predicted categories.
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Table 2. Confusion matrix.

Actual/Predicted Positive Negative
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Precision quantifies the model’s ability to correctly identify positive instances, mea-
sured as the ratio of true positives (TP) to all predicted positives (TP + FP). In object
detection, a prediction is considered valid only when the detected bounding box meets
specific overlap criteria (e.g., IoU threshold) with the ground-truth annotation. The mathe-
matical formulation is given by Equation (1).

TP
~ TP+ FP
Recall measures the model’s coverage of positive instances, calculated as the ratio of
true positives (TP) to all actual positives (TP + FN). For object detection, a ground-truth
bounding box is considered successfully recalled if it matches with any predicted box
meeting the predefined Intersection-over-Union (IoU) criterion. The formal definition is
provided in Equation (2).

P )

TP
R= 77—
TP +FN

The F1 score, defined as the harmonic mean of precision and recall, provides a balanced

@

assessment of classification performance by equally weighting both Type I (false positives)
and Type II (false negatives) errors. The calculation formula is provided in (3). Typically
ranging between 0 and 1, the F1 score signifies an ideal classifier at 1 and the poorest
performance at 0. This metric is especially valuable in scenarios involving imbalanced
categories, as it accounts for both false positives and false negatives rather than relying
solely on accuracy. In many cases, a trade-off often exists between precision and recall,
and the F1 score aids in identifying an optimal balance where the classifier demonstrates
robust performance across both metrics.

_2><R><P

F1 =
R+P ®)

4.1.2. mAP50 and mAP50-95

Average precision (AP) and its extension, mean average precision (MAP), constitute
fundamental performance measures for object detection and semantic segmentation tasks,
providing rigorous quantification of localization accuracy across all relevant object cat-
egories. Average precision (AP) serves as a fundamental performance metric in object
detection, obtained by integrating precision values across all recall levels for individual
object categories. This evaluation is conducted through the precision-recall (PR) curve anal-
ysis, where precision measurements are systematically recorded at incrementally varying
recall thresholds. The definitive AP score is subsequently derived by computing the total
area beneath this PR curve (commonly termed AUC-PR to distinguish it from ROC curve
analysis), with this integration process effectively consolidating both detection accuracy
and completeness into a single quantitative measure. The specific formula is

1
AP:/0 p(r)dr 4

where p(r) denotes the precision at recall level r.
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The mean average precision (mAP) serves as the primary evaluation metric by com-
puting the arithmetic mean of category-wise AP values, thereby offering a holistic measure
of model performance across all target classes. This aggregated metric is mathematically
expressed in Equation (5).

18 1
mAP:ng/O p(r)dr (5)

4.1.3. Parameters and GFLOPs

Beyond task-specific performance metrics (e.g., accuracy), model efficiency metrics
like parameter count and operational complexity must also be considered. The parameter
count, denoting the number of model parameters, reflects the memory required for storage;
operational complexity is typically measured in FLOPs (floating point operations), charac-
terizing the computational resources needed for model inference. It is noted that FLOPs
refer to the count of floating-point operations, commonly quantified in GFLOPs (10°).

4.2. Experimental Setup

We use YOLOVS as our baseline, and the method is implemented in PyTorch 1.12 using
a GPU that is an NVIDIA GeForce RTX 3080Ti. In the experiments, the batch size is set to
8, and the training optimization algorithm is Stochastic Gradient Descent (SGD) with an
initial learning rate of 0.01 and momentum and weight decay of 0.9 and 0.0005, respectively.

4.3. Comparison Experiments

To validate the efficacy of YOLO-HVS in infrared small target detection under complex
conditions, we conduct comparative experiments on two datasets: the public DroneVehicle
dataset and our self-built DroneRoad Vehicles dataset (containing 1028 long-range infrared
images with occlusions). Four methods are evaluated: Faster R-CNN [31], YOLOVS,
YOLOvV11 [32], and our YOLO-HVS with MultiSEAM and C2f_DWR modules.

As shown in Table 3 (DroneVehicle dataset), YOLO-HVS achieves state-of-the-art
performance with 83.4% mAP50 (1.1% higher than YOLOvVS8) and 62.5% mAP50-95, while
maintaining real-time efficiency (41 FPS). Notably, the proposed MultiSEAM effectively
suppresses background interference, reflected in the highest recall (0.787) and F1-score
(0.797). Although YOLOV11 achieves lower computational costs (6.3 GFLOPs), its accuracy
(82.8% mAP50) is inferior to our method, demonstrating the superiority of our multi-scale
feature fusion strategy.

On the DroneRoadVehicles dataset (Table 4), YOLO-HVS further validates its robust-
ness in occlusion scenarios, reaching 97.8% mAPS50 (0.7% improvement over YOLOVS)
and 64% mAP50-95. The C2f DWR module’s dilation-wise residual structure enhances
multi-scale target detection, as evidenced by the highest recall (0.962) despite complex
backgrounds. Visualization results confirm that YOLO-HVS outperforms competitors in
low signal-to-noise ratio scenarios.

Table 3. Comparative Experiments on DroneVehicle Dataset.

Method P R F1 mAP50 mAP50-95 GFLOPs Params (M) FPS
Faster R-CNN 0.73 0.59 0.653 0.674 - 207 41 -
YOLOvVS 0.804 0.778 0.791 0.823 0.616 8.1 3.1 26
YOLOv11 0.809 0.782 0.79 0.828 0.622 6.3 2.6 50
Ours 0.807 0.787 0.797 0.834 0.625 8.2 54 41
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Table 4. Performance Comparison on DroneRoadVehicles Dataset.

Method P R F1 mAP50 mAP50-95
Faster R-CNN 0.887 0.78 0.83 0.823 -
YOLOvS 0.931 0.96 0.945 0.971 0.63
YOLOv11 0.933 0.957 0.945 0.975 0.638
Ours 0.926 0.962 0.944 0.978 0.64

4.4. Ablation Experiments

The proposed framework integrates two key components for infrared small target
detection: (1) the MultiSEAM attention mechanism for cross-scale feature enhancement
and (2) the C2f_DWR module for dynamic receptive field adaptation. Systematic ablation
studies (Table 5) quantitatively demonstrate their individual contributions to detection
performance improvement.

As demonstrated in Table 5, on the DroneVehicle dataset, MultiSEAM and C2f_DWR
improve mAP50 by 0.4% (from 0.823 to 0.827) and 0.2% (from 0.823 to 0.825), respectively,
compared to baseline YOLOVS8. The mAP50-95 metric shows corresponding improvements
of 0.3% (0.616—0.619) and 0.2% (0.616—0.618). Our proposed method achieves more
significant enhancements on the custom dataset (ours) with combined modules delivering
0.7% mAPS50 improvement (0.971—0.978).

Notably, the C2f_DWR module demonstrates dual benefits—while improving detec-
tion accuracy, it reduces computational complexity by 3.7% in GFLOPs (8.1—7.8) and model
parameters by 9.7% (3.1 M—2.8 M), confirming its lightweight characteristics. This enables
our model to maintain baseline efficiency while achieving superior detection performance.

Table 5. MultiSEAM and C2f_DWR ablation experiments.

Dataset MultiSEAM C2f DWR mAP50 mAP50-95 GFLOPs Params (M)
0.823 0.616 8.1 3.1
. v 0.827 0.619 8.6 5.6
DroneVehicle v 0.825 0.618 7.8 2.8
v v 0.834 0.625 8.2 5.4
0.971 0.630 8.1 3.1
. v 0.974 0.639 8.6 5.6
DroneRoadVehicles v 0.972 0.642 78 2.8
v v 0.978 0.640 8.2 5.4

4.5. Visualization of Results Analysis

To qualitatively evaluate the performance superiority of our approach in detecting
infrared small targets under challenging conditions—particularly for multi-scale objects
amidst complex background clutter—we conducted visual comparisons using representa-
tive samples from the DroneRoadVehicles test set. As demonstrated in Figures 7-9, each
case study presents: (a) the original infrared input, (b) detection outputs from the YOLOv8
baseline, and (c) predictions generated by our YOLO-HVS framework.

First, in the scenario shown in Figure 7, the core challenge lies in effectively detecting
a small-scale vehicle target that is heavily interfered with by road thermal radiation noise
and tree trunks (as indicated by the green bounding box in the original Figure 7a). The base-
line model YOLOVS (Figure 7b) failed to identify this target, exhibiting significant false
negatives. This reflects the limitations of the original model in handling small targets and
suppressing complex background noise. In contrast, our method (Figure 7c) successfully
detected the target. This significant improvement is clearly attributed to the integrated
MultiSEAM attention mechanism. This module can adaptively focus on critical small target
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regions, enhancing the model’s ability to extract and distinguish weak target features in
information-sparse and noise-intensive scenes, effectively addressing the issue of small
target false negatives.

Furthermore, we examined the model’s performance in detecting standard-sized
targets and its confidence output. Figure 8 shows a scene containing clearly visible vehicle
targets. Both YOLOVS (Figure 8b) and our method (Figure 8c) successfully detected these
targets, indicating that both methods possess foundational capabilities in identifying and
locating standard-sized targets. However, a detailed comparison reveals a key difference:
our method’s detection results are generally accompanied by significantly higher confidence
levels. As shown in Figure 8c, the confidence values of the vehicle detection boxes are
notably and consistently higher than those of YOLOVS in Figure 8b. This strongly suggests
that the C2f_DWR module not only optimizes feature extraction efficiency (as demonstrated
by the lightweight characteristics proven in the ablation experiments mentioned earlier),
but more importantly, it generates more robust and discriminative feature representations.
This enhanced feature representation directly translates into higher prediction confidence
for the detector, improving the certainty of the model’s output results, which is crucial for
subsequent application scenarios (such as early warning and tracking).

Finally, to validate the model’s generalization ability and consistent improvement for
typical target categories, Figure 9 focuses on analyzing a truck detection scenario. As a
target with distinct size and appearance features within the vehicle category, the detection
results for the truck further validate the model’s applicability. Both YOLOvS (Figure 9b)
and the proposed method (Figure 9c) successfully detected the truck target. Building on the
observations from the previous scenario, the confidence scores of the detection bounding
boxes output by this method are again significantly higher than those of the baseline model.
This case not only reinforces the conclusion of improved confidence scores on another target
category but also demonstrates that the combination of the MultiSEAM and C2f_ DWR
modules has universally enhanced the model’s overall feature extraction capabilities and
confidence discrimination, rather than being effective only on specific target types.

Quantitative analysis (see Table 4) further supports the aforementioned visualiza-
tion conclusions: on a specific test subset that specifically reflects complex background
interference, YOLO-HVS improves the key metric mAP50-95 from 0.63 to 0.64 compared
to the baseline YOLOvS8. Combining visualization and quantitative results, YOLO-HVS
enhances small object detection capabilities by integrating the MultiSEAM module and by
utilizing the C2f_DWR module to optimize feature extraction and confidence generation,
significantly improving the accuracy and reliability of infrared small target detection under
complex background noise and multi-scale targets. This is of great value for enhancing the
perception robustness and decision confidence of unmanned aerial vehicle (UAV) nighttime

road monitoring systems in practical applications.

(a) Origin image (b) YOLOVS (c) Ours

Figure 7. Comparison of small-scale car target detection.

124



Biomimetics 2025, 10, 451

(a) Original image (b) YOLOVS

Figure 8. Comparison of standard-scale car target detection.
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(a) Original image (b) YOLOVS

Figure 9. Truck target detection comparison.

5. Conclusions

This paper presents YOLO-HVS, an enhanced YOLOv8-based algorithm specifically
designed to address the problems of background interference and multi-scale feature extrac-
tion in infrared small target detection. By integrating the attention mechanism of the human
visual system and the multi-scale perceptual characteristics, we innovatively designed the
MultiSEAM attention module and the C2f DWR feature extraction module. MultiSEAM
significantly improves the target recognition ability in complex occlusion scenes by joint
modeling of multi-scale spatial channels, while the C2f_DWR module effectively enlarges
the range of the sensory field by the region-semantic dual residual structure. MultiSEAM
significantly improves the target recognition ability in complex occlusion scenes through
joint modeling of granularity spatial channels, while the C2f_ DWR module effectively
enlarges the perceptual field range through the region-semantic dual residual structure,
realizing the efficient extraction of multi-scale features. The constructed DroneRoad Vehicles
dataset covers UAV multi-height shooting scenarios, which provides important data sup-
port for infrared small target detection research. Comparison experiments on DroneVehicle
and self-constructed datasets show that the proposed method improves the mAP50-95
metrics by 0.9% and 1.0%, respectively, while keeping the model lightweight (parametric
count of 7.6M, GFLOPs of 10.8), and ablation experiments further validate the effectiveness
of the modules. Future work will explore the dynamic sensory field adjustment mechanism
to further enhance the adaptability of the algorithm in extreme scale change scenarios.
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Abstract

In this work, we present a new partially coherent adjustable anomalous vortex laser
beam (PCAAVLB) and introduce it into turbulent biological tissue. The equation of such
PCAAVLB in turbulent biological tissue is obtained. By numerical analysis, the evolution
of the intensity of such PCAAVLB in turbulent biological tissue is analyzed. It is found that
the PCAAVLB in biological tissue can lose its ring shape and become a Gaussian beam,
and a PCAAVLB with smaller topological charge M or coherence length ¢ will evolve
into a Gaussian profile faster. The PCAAVLB in turbulent biological tissue with a smaller
small-length-scale factor [y or larger fractal dimension D will evolve into a Gaussian profile
faster and have a larger intensity as z increases. The results may have potential applications
in sensing under biological tissue environments and laser imaging in biology.

Keywords: laser; interdisciplinary research; intensity; biological tissue

1. Introduction

The properties of tissue affect the application of lasers in medicine, and the opti-
cal properties of tissue have been investigated [1]. To explore the applications of lasers
in biological tissues, the influences of tissue turbulence on optical waves have attracted
attention [2], as have the properties (intensity and beam spread et al.) of light in biolog-
ical tissues. In addition, the intensity of various lasers in turbulent biological tissue has
been studied, such as the hollow Gaussian beam [3], partially coherent beam [4], vortex
beam [5], Hermite—Gaussian correlated beam [6], rectangular multi-Gaussian beam [7], and
Gaussian-Schell model vortex beam [8]. The coherence properties of laser in tissue are still
analyzed [9]. Moreover, the coupling efficiency to fiber [10] and adaptive optics correction
in tissues [11] are also investigated. From the above references, one sees that different types
of laser beams may have potential applications in tissues.

A vortex is a signature of natural systems and is observed in fluids, smoke rings, and
tornados [12]. The high speed of the peregrine falcon can be enhanced by the vortices
emanating from the frontal and dorsal regions [13]. The trailing-edge vortices have been
found in the flight of mosquitoes [14]. Moreover, the vortex has also been introduced
into the light, and the double vortex beams have also been investigated [15,16]. The

Biomimetics 2025, 10, 461 https://doi.org/10.3390/biomimetics10070461
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intensity pattern of a laser usually has a Gaussian profile. However, the intensity pattern
of light can be modulated, and an anomalous hollow beam can show a unique intensity
profile [17]. And the propagation of such AHB has been studied [18-20]. Such an AHB
has also been extended into a partially coherent beam [21-23]. Recently, a new adjustable
anomalous vortex beam (AAVB) has been introduced [24]; the properties of such AAVB
can be modulated by adjustable parameters. It will be interesting if this adjustable beam is
introduced into biological tissue.

The vortex in nature [12], birds [13] and mosquitoes [14], shows unique properties.
In this work, the AAVB is extended into a partially coherent beam, and a new partially
coherent adjustable anomalous vortex laser beam (PCAAVLB), which can be modulated by
the adjustable parameters, is introduced. The intensity of the PCAAVLB can be controlled
by adjustable parameters, while the intensity of the multi-Gaussian correlated AHB has
the ring symmetry in Reference [23]. This PCAAVLB is introduced into the tissues, and
the intensity equation of such PCAAVLB in turbulent biological tissue is derived. Based
on the derived equations, the effects of turbulent biological tissue on the intensity of such
PCAAVLB are analyzed.

2. Propagation of PCAAVLB in Turbulent Biological Tissue
When the PCAAVLB propagates along the z-axis, the intensity of PCAAVLB in turbu-
lent biological tissue is described by the Huygens—Fresnel integral as follows [3-8]:

k2
I(p,z) = m[ drydr,Wo(rq, 12)

X exp —%(p—r1)z+%(p—rz)2 (exp[p(r1, p) + ¢*(r2, p)])

)

where I(p, z) represents the intensity; Wy (ry, 12) is the cross spectral density (CSD) of laser
atz = 0; k = 27t/ A is the wavenumber with A is the wavelength in vacuum; r = (x,y) and
p = (px, py) are position vectors at z = 0 and z, respectively; i is imaginary unit; ¢ (r, p) is
the phase perturbation of biological tissue.

@

(1= x2)* + (1 — mzl
Az

(exp[p(r1, p) + ¢ (r2, p)]) = exp [—

The A is the coherence length of a spherical wave in turbulent biological tissue and
which can be written as follows [10]:

-1/2
m'/2k2Sz D 7 13
A= [3 X 2(7D)/21Cr(2> U\26 8In(2)12 ®)

where S denotes the strength coefficient of biological tissues; D denotes the fractal dimen-
sion; I denotes the characteristic length of heterogeneity; [y denotes small length-scale
factor; I'(-) denotes the gamma function; U(-) denotes the confluent hypergeometric func-
tion of the second kind.

The electric field of AAVB at z = 0 is written as follows [24,25]:

2 2 2P Y
E(r,0) = (‘“ + w2 + CwazI> exp <_w§ Tl (x +iy) (4)

where w, and w, are the beam width of the Gaussian part; M is a topological charge; and a,
cx, and ¢y are adjustable parameters.
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Considering the coherence theory [26], the CSD of a PCAAVLB is written as follows:

X

2
Wo(rl,r2)=< a+cxly +cyyly)exp<—’;}2 yly)(x1+zy1)

x( a+cxy +cj 2)exp<’;f22 yz)(xz+zy2) ()
RV
X exp _(xlzaﬁéz) _ (ylzagz) ]

where 0y and 0y are the coherence length along x-axis and y-axis. The intensity of PCAAVLB
can be modulated by the adjustable parameters in Equation (5), and this beam is newly
introduced, which is different from the multi-Gaussian correlated partially coherent anoma-

lous hollow beam in Reference [23].
We next consider the following equations [27]:

M M'z _
(x+iy)™ Z i M=yt ©6)

/_t:oxnexp( px +2qx)dx—n'exp< )( > [Zl'n—ZZ <4q) (7)

By substituting Equation (5) into Equation (1), the intensity of such PCAAVLB in

turbulent biological tissue is derived as follows:
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By using Equations (8)—(20), the evolution of intensity of PCAAVLB in turbulent
biological tissue can be obtained.

3. Results and Analyses

In this section, the intensity of a PCAAVLB in turbulent biological tissue is analyzed
based on the numerical simulations. In the numerical simulation, the following parameter
are chosen, such as A = 0.8 um, woy = woy = 20 um, 0y = 0y = 0 = 5pm, M = 1,
$=10"%1, =10 um,ly = 1 um, and D = 4.

First, the intensity of a PCAAVLB witha = 2, ¢y = ¢, = 8, and 0y = 0y = 5 um in
free space (A = inf) is illustrated in Figure 1. The intensity of this PCAAVLB in free space
shows a ring profile at z = 20 um (Figure 1a). As z increases, the hollow width of ring
shape of such a PCAAVLB will gradually lessen (Figure 1b) and disappear (Figure 1c).
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At last, the intensity of this PCAAVLB will become a spot pattern with a Gaussian-like
profile (Figure 1d). Then the adjustable parameters change. Figure 2 shows the intensity of
a PCAAVLB witha = 1, c; = 2, and ¢, = 8 in free space. When c, # c,, the intensity of
this PCAAVLB can show the two-spot pattern at z = 20 um (Figure 2a). The PCAAVLB
with ¢y = ¢y has the ring profile (Figure 1a). As z increases, the two-spot pattern of this
PCAAVLB will overlap (Figure 2b,c). Lastly, the intensity of this PCAAVLB can become an
elliptical profile (Figure 2d) when cy > ¢y; the intensity of PCAAVLB witha = 1, ¢, = 8,and
¢y = 2 in free space is shown in Figure 3. The intensity of such a PCAAVLB will have two
spots along x-axis (Figure 3a), while the PCAAVLB with ¢, < ¢, shows two spots along the
y-axis (Figure 2a). And this PCAAVLB will evolve into an elliptical beam along the x-axis
(Figure 3b). Therefore, the intensity of such PCAAVLB can be controlled by adjustable
parameters and the circular or elliptical intensity shape can be obtained by setting the
different parameters.
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Figure 1. The normalized intensity of a PCAAVLB witha = 2, ¢y = ¢, = 8 in free space: (a) z = 20 um,
(b) z =300 um, (c) z =500 um, and (d) z = 1000 um.

Next, the intensity of such PCAAVLB in turbulent biological tissue is studied. Figure 4
illustrates the intensity of a PCAAVLB with a = 2 and ¢, = ¢, = 8 in turbulent biological
tissue. Intensity shape of this PCAAVLB in turbulent biological tissue at z = 20 pm retains
its ring shape (Figure 4a), and the hollow center will gradually disappear at z = 150 um
(Figure 4b), while the PCAAVLB with 6 =5 pum in free space at z = 300 pm just has the ring
shape (Figure 1a). Therefore, the biological tissue will accelerate the speed of the PCAAVLB
ring shape loss. As z increases, this PCAAVLB in turbulent biological tissue will show a
Gaussian-like shape (Figure 4c), and the spot of intensity will spread farther (Figure 4d).
When ¢, # ¢y, the intensity of PCAAVLB with ¢y < ¢, in turbulent biological tissue becomes
an elliptical profile with the long axis along the y-axis at z = 300 um (Figure 5a), while the
same PCAAVLB in free space will evolve into a two-spot pattern (Figure 2c). In addition,
the intensity of PCAAVLB with ¢ > ¢, in turbulent biological tissue will evolve into an
elliptical Gaussian profile with the long axis along the x-axis at z = 300 pm (Figure 5b).
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From Figures 4 and 5, one concludes that the PCAAVLB in turbulent biological tissue will
evolve into one spot pattern faster as z increases.
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Figure 2. The normalized intensity of a PCAAVLB with a = 1, cx = 2, and ¢y = 8 in free space: (a) z =
20 um, (b) z =300 um, (c) z =500 um, and (d) z = 1000 um.
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Figure 3. The normalized intensity of a PCAAVLB with a = 1 and ¢y = 8, and ¢y =2in free space:
(a) z =300 um, and (b) z = 1000 um.
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To see the beam parameters on the intensity of a PCAAVLB in turbulent biological tis-
sue, Figure 6 shows the intensity I(7,z) / Imax(r, 0) of a PCAAVLB witha = —4, ¢, = ¢, =8,
and M = 2 in biological tissue for the different o. The intensity of PCAAVLBs with the
different ¢ in turbulent biological tissue has the same profile at z = 20 pm (Figure 6a). As z
increases, such PCAAVLB with smaller ¢ in turbulent biological tissue will first lose the ring
profile (Figure 6a) and gradually become a Gaussian-like profile (Figure 6¢). As z increases
further, such PCAAVLBs with the different ¢ can all have Gaussian-like patterns, such
PCAAVLBs with smaller o will have a larger width, and the intensity of PCAAVLB with
smaller o will decrease faster (Figure 6d). Thus, the speed of evolution can be controlled by
o, and the PCAAVLBs with a smaller o will evolve into a Gaussian shape faster and have a
smaller intensity.
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Figure 4. The normalized intensity of a PCAAVLB with a = 2 and c; = ¢, = 8 in biological tissue for
the different 6: (a) z = 20 um, (b) z = 150 um, (c) z = 300 um, and (d) z = 500 wm.
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Figure 5. Cross sections of a PCAAVLB with a4 = —2 and ¢y = ¢, = 8 in biological tissue at
z=300 pm: (a)a=1,cy=2,and ¢, =8;(b)a=1,cx=8,and ¢, = 2.

The intensity I(7, z) / Imax(7,0) of a PCAAVLB witha = —4, ¢y = ¢, = 8,and ¢ = 2 um
in turbulent biological tissue for the different M is illustrated in Figure 7. The PCAAVLB
with a larger M has a bigger width at z = 100 um (Figure 7a). As z increases, the PCAAVLB
with a smaller M in turbulent biological tissue will first lose its ring profile, while the
intensity of the PCAAVLB with a larger M will have a lower intensity (Figure 7b). As
z increases further, the PCAAVLB with a different M can gradually become a Gaussian
profile (Figure 7c), and such a PCAAVLB with a smaller M in turbulent biological tissue
will have a larger intensity although all PCAAVLBs have the Gaussian profile (Figure 7d).
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Figure 6. Cross sections of intensity of a PCAAVLB with 2 = —4 and ¢y = ¢, = 8 in biological tissue
for the different ¢: (a) z = 20 um, (b) z = 100 um, (c) z = 300 um, and (d) z = 1000 um.
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Figure 7. Cross sections of intensity of a PCAAVLB with 2 = —4 and ¢y = ¢, = 8 in biological tissue
for the different M: (a) z = 100 um, (b) z = 200 um, (c) z = 300 um, and (d) z = 500 um.

The influences of parameters of turbulent biological tissue on the intensity of
PCAAVLB are shown in Figures 8 and 9. The intensity I(7,z)/ Imax(*,0) of a PCAAVLB
witha = —4, ¢y = ¢, = 8, and ¢ = 2 um in turbulent biological tissue for the different D
is illustrated in Figure 8. The intensity profile of such a PCAAVLB in turbulent biological
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tissue with different D remains the ring profile at z = 100 um (Figure 8a). As z increases,
such PCAAVLB in a turbulent biological tissue with a larger D will first lose its ring shape
(Figure 8b), evolve into a Gaussian profile, and the beam in a turbulent biological tissue
with a larger D will have a larger intensity. (Figure 8c). The PCAAVLB in a turbulent
biological tissue with a larger D will have a larger spot at z = 500 um and remain the larger
intensity (Figure 8d).

Figure 9 shows the intensity I(7, z) / Imax(7,0) of a PCAAVLBwitha = —4,c, = ¢, = 8§,
and ¢ = 2 um in turbulent biological tissue for different /y. The intensity profile of such
a PCAAVLB in turbulent biological tissue with different [y remains almost similar at
z =100 x3BCm (Figure 9a). As z increases, the PCAAVLB in turbulent biological tissue for
the different [y will have similar evolution properties (Figure 9b,c). At last, the PCAAVLB
in turbulent biological tissue with different [y will have a similar spot and the beam with
larger Iy will have a larger intensity. Therefore, one can conclude that the PCAAVLB in
turbulent biological tissue with a larger D or a smaller [y will evolve from a ring profile
into a Gaussian-like profile faster, and such a PCAAVLB in turbulent biological tissue with
a larger D or a smaller [y will have a larger intensity.
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Figure 8. Cross sections of intensity of a PCAAVLB with 2 = —4 and ¢y = ¢, = 8 in biological tissue
for the different D: (a) z = 100 um, (b) z = 200 pm, (c) z = 300 um, and (d) z = 500 um.
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Figure 9. Cross sections of intensity of a PCAAVLB with 2 = —4 and ¢y = ¢, = 8 in biological tissue
for the different ly: (a) z = 100 um, (b) z =200 um, (c) z = 300 um, and (d) z = 500 um.

4. Conclusions

Vortices are ubiquitous in nature, such as in fluids, smoke rings, and tornados, and
vortices have also been observed in light. In this work, a new beam carried vortex, which
is named PCAAVLB, is introduced, and the intensity of such PCAAVLB in turbulent
biological tissue is derived. The intensity shape of such PCAAVLB in free space can have
the ring shape or a two-spot pattern, and the intensity profile is controlled by adjustable
initial parameters. The intensity of such a PCAAVLB can gradually evolve into a Gaussian-
like profile. And the intensity of such a PCAAVLB with a smaller M or ¢ in turbulent
biological tissue will lose its ring shape faster, and the intensity profile of such a PCAAVLB
with smaller ¢ in turbulent biological tissue will have a larger spot, while the PCAAVLB
with different M in turbulent biological tissue has almost the same intensity profile at a
larger distance. In addition, the PCAAVLB in turbulent biological tissue with larger D
or smaller [y will evolve from a ring profile into a Gaussian-like profile faster and have
a larger intensity. The obtained results may have potential applications in laser sensing
under biological tissue environments and laser imaging in biology.
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