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Entropy theory originated from the second law of thermodynamics, and its extension to
information theory became a versatile tool for modeling complex systems and associated problems.
Entropy has found applications in a wide range of problems in earth, environmental, and geographical
sciences. This special issue focuses on the applications of entropy theory in environmental and
water engineering.

Entropy is considered as a measure of uncertainty or the amount of information gained through
measurements of a random variable. Baran et al. [1] defined entropy as an invariant measure function
and extended the assessment of uncertainty. They stated that entropy did not mean an absolute
measure of information, but as a measure of the variation of information, which intends to help solve
information-related problems in hydrologic monitoring.

Based on the review of entropy modeling in water engineering by Singh [2], applications
of entropy theory can be classified into three groups: (1) statistical or empirical, (2) physical,
and (3) mixed. The first group focuses on probability determination and requires entropy maximization,
including frequency analysis, parameter estimation, network evaluation and design, spatial and inverse
spatial analysis, flow forecasting, and complexity analysis, and clustering. The second group involves
deriving physical relations either in time or in space, such as rainfall-runoff modeling, infiltration, soil
moisture, velocity distribution, and flow duration curve, among others. For instance, Zhang et al. [3]
showed how the entropy parameter derived from the entropy-based flow duration curve is linked to
the drainage area, impacted by reservoir operation, and possibly climate change. The third group is a
mixture of the above two and includes applications such as the reliability of water distribution systems.
Numerous examples of these can be found in the review article on the Tsallis entropy, by Singh et al. [4].

Applications in the first category are common in hydrology, and many studies in this special
issue belong to this category. Using the principle of maximum entropy (POME), the four-parameter
exponential gamma distribution, generalized gamma distribution, and generalized beta distribution
were derived for flood frequency analysis in [5-7]. Chen et al. [8] showed that entropy-based generalized
distributions can further be used for the analysis of extreme rainfall with Bayesian technique.

Keum et al. [9] reviewed applications of entropy in water monitoring network design,
including precipitation, streamflow and water level, water quality, soil moisture, and groundwater
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Entropy 2018, 20, 598

network. The network designed by Yeh et al. [10] showed how to optimize the rainfall network with
both radar and entropy. Santonastaso et al. [11] introduced flow entropy as a measure of network
redundancy and a proxy of reliability in optimal network design procedures, which can identify the
tradeoff between network cost and robustness. Besides water distribution networks, entropy was
used to develop an integrated optimization model for the spatial optimization of agricultural land use
based on crop suitability, spatial distribution of population density, and agricultural land use data [12].
Similar to optimization, entropy was also used to determine weights of evaluating indicators in a fuzzy
system [13,14] and can be applied in combined forecasting of rainfall [15].

Applications in this special issue have used several different entropy formulations, such as the
Shannon, Tsallis, Rényi, Burg, Kolmogorov, Kapur, configurational, and relative entropies, which can
be derived in time, space or frequency domain. The sample entropy was used to investigate streamflow
and water level complexity of the Poyang Lake over multiple time-scales [16]. The connection entropy
was applied to establish a water resources vulnerability framework [17]. The generalized space
g-entropy was employed for spatial scaling and complexity properties of Amazonian radar rainfall
fields [18]. The Kolmogorov complexity and the Shannon entropy were combined to evaluate the
randomness of turbulence [19]. Cheng et al. [20] employed several entropy measures, such as intensity
entropy, apportionment entropy, and marginal entropy to investigate spatial and temporal precipitation
variability. Defined in frequency or spectral power domain, entropy can be used for spectral analysis.
In this way, entropy can be used in time series analysis and forecasting and, hence, for characterizing
stochastic and periodic patterns [21].

Mutual information is a measure of mutual dependence between two variables and can be
determined from marginal and joint entropies. It is an efficient tool to investigate linear or
non-linear interactions, such as the relationship between vegetation pattern and hydro-meteorological
elements [22], the relationship between annual streamflow, extreme precipitation and ENSO
(El Nino-Southern Oscillation) [23], and the relationship between soil water content and its influencing
factors [24].

More recently, entropy-based concepts have been coupled with other theories, including copula,
wavelets, and ensemble filter, to study various issues associated with environmental and water
resources systems. Guo et al. [25] developed a coupled maximum entropy-copula method for
hydrologic risk analysis through deriving bivariate return periods, risk, reliability, and bivariate design
events, which shows that the maximum entropy theory is beneficial for improving the performance of
copulas. As a result, the distribution derived by the maximum entropy-copula model outperforms the
conventional distributions for the probabilistic modeling of floods and extreme precipitation events.
Foroozand et al. [26] combined entropy with ensemble filter method to evaluate model performance,
which can mitigate the computational cost of the bootstrap aggregating method. The entropy concept
was linked to the notion of elasticity to assess catchment resilience, which determined the changes in
mean annual runoff [27].

Other than the above probabilistic entropy, the classical thermodynamic entropy concept was
also visited in the special issue, by Koutsoyiannis [28], in the entropy production. Entropy production
was explored within stochastics in logarithmic time, related to model identification and empirical
fitting, which was applied to an extraordinarily long time series of turbulent velocity and showed how
a parsimonious stochastic model can be identified and fitted.

The above contributions to this special issue show the enormous scope and potential of entropy
theory in advancing research in the field of environmental and water engineering, including establishing
and explaining physical connections between theory and reality.

Acknowledgments: We express our thanks to the authors of the contributions of this special issue, and to the
journal Entropy and MDPI for their support during this work.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This study attempts to extend the prevailing definition of informational entropy,
where entropy relates to the amount of reduction of uncertainty or, indirectly, to the amount of
information gained through measurements of a random variable. The approach adopted herein
describes informational entropy not as an absolute measure of information, but as a measure of the
variation of information. This makes it possible to obtain a single value for informational entropy,
instead of several values that vary with the selection of the discretizing interval, when discrete
probabilities of hydrological events are estimated through relative class frequencies and discretizing
intervals. Furthermore, the present work introduces confidence limits for the informational entropy
function, which facilitates a comparison between the uncertainties of various hydrological processes
with different scales of magnitude and different probability structures. The work addresses
hydrologists and environmental engineers more than it does mathematicians and statisticians.
In particular, it is intended to help solve information-related problems in hydrological monitoring
design and assessment. This paper first considers the selection of probability distributions of best fit
to hydrological data, using generated synthetic time series. Next, it attempts to assess hydrometric
monitoring duration in a netwrok, this time using observed runoff data series. In both applications,
it focuses, basically, on the theoretical background for the extended definition of informational
entropy. The methodology is shown to give valid results in each case.

Keywords: uncertainty; information; informational entropy; variation of information; continuous
probability distribution functions; confidence intervals

1. Introduction

The concept of entropy has its origins in classical thermodynamics and is commonly known as
“thermodynamic entropy” in relation to the second law of thermodynamics. Such a non-probabilistic
definition of entropy has been used widely in physical sciences, including hydrology and water
resources. Typical examples on the use of “thermodynamic entropy” in water resources involve
problems associated with river morphology and river hydraulics [1,2].

Boltzmann's definition of entropy as a measure of disorder in a system was given in probabilistic
terms and constituted the basis for statistical thermodynamics [3-5]. Later, Shannon [6] followed up on
Boltzmann’s definition, claiming that the entropy concept could be used to measure disorder in systems
other than thermodynamic ones. Shannon’s entropy is what is known as “informational entropy”,
which measures uncertainty (or, indirectly, information) about random processes. As uncertainty
and information are the two most significant yet the least clarified problems in hydrology and water
resources, researchers were intrigued by the concept of informational entropy. Thus, it has found a
large number of diverse applications in water resources engineering.

Entropy 2017, 19, 634; d0i:10.3390/e19120634 5 www.mdpi.com/journal/entropy
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Within a general context, the entropy principle is used to assess uncertainties in hydrological
variables, models, model parameters, and water-resources systems. In particular, versatile uses of the
concept range from specific problems, such as the derivation of frequency distributions and parameter
estimation, to broader cases such as hydrometric data network design. The most distinctive feature of
entropy in these applications is that it provides a measure of uncertainty or information in quantitative
terms [7-19].

On the other hand, researchers have also noted some mathematical difficulties encountered in the
computation of various informational entropy measures. The major problem is the controversy
associated with the mathematical definition of entropy for continuous probability distribution
functions. In this case, the lack of a precise definition of informational entropy leads to further
mathematical difficulties and, thus, hinders the applicability the concept in hydrology. This problem
needs to be resolved so that the informational entropy concept can be set on an objective and reliable
theoretical basis and thereby achieve widespread use in the solution of water-resources problems
based on information and/or uncertainty.

Some researchers [20,21] attempted to revise the prevailing definition of informational entropy,
where entropy relates to the amount of reduction of uncertainty, or indirectly to the amount of
information gained through measurements of a random variable. The study presented extends on
the revised definition of Jaynes [20] and Guiasu [21] to describe informational entropy, not as an
absolute measure of information, but as a measure of the variation of information. The mathematical
formulation developed herein does not depend on the use of discretizing intervals when discrete
probabilities of hydrological events are estimated through relative class frequencies and discretizing
intervals. This makes it possible to obtain a single value for the variation of information instead of
several values that vary with the selection of the discretizing interval. Furthermore, the extended
definition introduces confidence limits for the entropy function, which facilitates a comparison between
the uncertainties of various hydrological processes with different scales of magnitude and different
probability structures.

It must be noted that the present work is intended for hydrologists and environmental engineers
more than for mathematicians and statisticians. In particular, entropy measures have been used to help
solve information-related problems in hydrological monitoring design and assessment. These problems
are manifold, ranging from the assessment of sampling frequencies (both temporal and spatial) and
station discontiuance to statistical analyses of observed data. For the latter, this paper considers
the selection of probability distributions of best fit to hydrological data. Hence, the informational
entropy concept is used here only in the temporal domain. To test another feature of entropy measures,
the present work also attempts to assess hydrometric monitoring duration in a gauging network,
this time using observed runoff data series. In both applications, the paper focuses, basically, on the
theoretical background for the extended definition of informational entropy, and the results are shown
to give valid results.

2. Mathematical Difficulties Associated with Informational Entropy Measures

Entropy is a measure of the degree of uncertainty of random hydrological processes. It is
also a quantitative measure of information contained in a series of data since the reduction of
uncertainty equals the same amount of gain in information [7,22]. Within the scope of Mathematical
Communication Theory, later known as Information Theory, Shannon [6] and later Jaynes [23] defined
informational entropy as the expectation of information or, conversely, as a measure of uncertainty. If S
is a system of events, E;, E, ... , E;;, and p(Ey) = p the probability of the k-th event recurring, then the

entropy of the system is:
n

H(S) ==Y prInp; 1)
k=1
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With,
n
Yope=1
k=1

Shannon’s entropy as given in Equation (1) is originally formulated for discrete variables and
always assumes positive values. Shannon extended this expression to the continuous case by simply
replacing the summation with an integral equation as:

oo
H(X) = = [ f(x)Inf(x)d @)

With,

flx)dx=1

For the random variable X € (—oo, +o0), and where H(X) is denoted as the marginal entropy of
X, i.e., the entropy of a univariate process. Equation (2) is not mathematically justified, as it is not
valid under the assumptions initially made in defining entropy for the discrete case. What researchers
proposed for solving this problem has been to approximate the discrete probabilities py by f(x)Ax,
where f(x) is the relative class frequency and Ax, the size of class intervals. Under these conditions,
the selection of Ax becomes a crucial problem, such that each specified class interval size gives
a different reference level of zero uncertainty with respect to which the computed entropies are
measured. In this case, various entropy measures become relative to the discretizing interval Ax and
change in value as Ax changes. The unfavorable result here is that the uncertainty of a random process
may assume different values at different selected values of Ax for the same variable and the same
probability distribution function. In certain cases, the entropy of a random variable even becomes
negative [16,17,22,24-27], a situation which contradicts Shannon'’s definition of entropy as the selection
of particular Ax values produces entropy measures varying within the interval (—co, +c0). On the
contrary, the theoretical background for the random variable X, H(X) defines the condition:

0<H(X)<InN ©)

where N is the number of events X assumes. The condition above indicates that the entropy
function has upper (In N) and lower (0 when X is deterministic) bounds, assuming positive values
in between [6,8,10-13,16,17,22,24-28]. The discrepancies encountered in practical applications of the
concept essentially result from the above errors in the definition of entropy for continuous variables.

Another significant problem is the selection of the probability distribution function to be used in
the definition of entropy, as in Equation (2). The current expression for continuous entropy produces
different values when different distribution functions are assumed for the same variable. In this case,
there is the need for a proper selection of the distribution function which best fits the process analyzed.
One may consider here a valid criterion in the form of confidence limits to assess the suitability of the
selected distribution function for entropy computations.

Further problems are encountered when the objective is to compare the uncertainties of two
or more random variables with widely varying means and thus with different scales of magnitude.
For instance, if entropy values are computed, using the same discretizing interval Ax, for two variables
with means of 100 units and 1 unit, respectively, the results become incomparable due to the improper
selection of the reference level of zero uncertainty for each variable. Such a problem again stems
from the inclusion of the discretizing interval Ax in the definition of entropy for continuous variables.
Comparison of uncertainties of different variables is an important aspect of entropy-based hydrometric
network design procedures, where the aforementioned problem leads to subjective evaluations of
information provided by the network [7,19].
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It follows from the above discussion that the main difficulty associated with the applicability
of the informational entropy concept in hydrology is the lack of a precise definition for the case
of the continuous variables. It is intended in this study to resolve this problem by extending the
revised approach proposed by Guiasu [21] so that the informational entropy can be set on an objective
and reliable theoretical basis in order to discard subjective assessments of information conveyed by
hydrological data or of the uncertainty of hydrological processes.

3. The Revised Definition of Informational Entropy for Continuous Variables

To solve the difficulties associated with the informational entropy measure in the continuous
case, some researchers have proposed the use of a function m(x) such that the marginal entropy of a
continuous variable X is expressed as:

_Zof(x)-ln { j; ((’;))} dx @)

“where m(x) is an ‘invariant measure’ function, proportional to the limiting density of discrete
points” [20]. The approach seemed to be statistically justified; however, it still remained uncertain
what the m(x) function might represent in reality. Jaynes [20] also discussed that it could be an a
priori probability distribution function, but there were then controversies over the choice of a priori
distribution such that the problem was unresolved [8].

In another study, Guiasu [21] referred to Shannon’s definition of the informational entropy for the
continuous case. He considered that the entropy {Hs} for the continuous variable X within an interval
[a, b] is:

~ [ £ flx-dx )
When the random variable assumes a uniform probability distribution function as:

1
b—a)"

Then the informational entropy Hg for the continuous case within this interval can be expressed as:

fx) =

€ [a,b] ©6)

Hs = In(b—a) %)

If the interval [, b] is discretized into N equal intervals, the variable follows a discrete uniform
distribution and its entropy {Hy} can be expressed as:

€ [a,b] ®)

When N goes to infinity, Hy will also approach infinity. In this case, Guiasu [21] claims that,
although Hg and Hy are similarly defined, Hs will not approach Hy when N—co. Accordingly,
Guiasu [21] proposed an expression similar to that of Jaynes [20] for informational entropy in the
continuous case as:

H(X/X*) = /f [ )} dx )

which he called as the variation of information. In Equation (9), X* represents a priori information
(i.e., information available before making observations on the variable X) and X is the a posteriori
information (i.e., information obtained by making observations). Similarly, m(x) is the a priori and f(x)
the a posteriori probability density function for the random variable X.

In previous studies by the authors [8,10-13], informational entropy has been defined as the
variation of information, which indirectly equals the amount of uncertainty reduced by making
observations. To develop such a definition, two measures of probability, p and g with (p and g € K),
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are considered in the probability space (€2, K). Here, g represents a priori probabilities (i.e., probabilities
prior to making observations). When a process is defined in such a probability space, the information
conveyed when the process assumes a finite value A {A € K} in the same probability space is:

The process defined in () can assume one of the finite and discrete events (A, ... , A;) € K; thus,
the entropy expression for any value A, can be written as:

H(p/q) = fln<ZEi:))>(n —1,..,N) (1)

The total information content of the probability space (), K) can be defined as the expected value
of the information content of its elementary events:

o =Erias (523

Similarly, the entropy H(X/X") of a random process X defined in the same probability space can

be defined as:
H(X/X") = Zp Xn): ln(q(( ))) (13)

where, H(X/X') is in the form of conditional entropy, i.e., the entropy of X conditioned on X*.
Here, the condition is represented by an a priori probability distribution function, which can be
described as the reference level against which the variation of information in the process can
be measured.

Let us assume that the a priori {g(x)} and a posteriori {p(x)} probability distribution functions of
the random variable X are known. If the ranges of possible values of the continuous variable X are
divided into N discrete and infinitesimally small intervals of width Ax, the entropy expression for this

continuous case can be given as:
X
H(X/X*) = /p ln< & )d (14)

The above expression describes the variation of information (or, indirectly, the uncertainty reduced
by making observations) to replace the absolute measure of information content given in Equation (2).
This definition is essentially in conformity with those given by Jaynes [20] and Guiasu [21] for
continuous variables. When the same infinitesimally small class interval Ax is used for the a priori and
a posteriori distribution functions, the term Ax drops out in the mathematical expression of marginal
entropy in the continuous case. Thus, this approach eliminates the problems pertaining to the use of
Ax discretizing class intervals involved in the previous definitions of informational entropy [8,10-13].

At this point, the most important issue is the selection of a priori distribution. In case the
process X is not observed at all, no information is available about it so that it is completely uncertain.
In probability terms, this implies the selection of the uniform distribution. In other words, when no
information exists about the variable X, the alternative events it may assume may be represented by
equal probabilities or simply by the uniform probability distribution function.

If the a priori {g(x)} is assumed to be uniform, and a posteriori {p(x)} distribution of X is assumed
to be normal, the informational entropy H(X/X") can be expressed as:

H(X/X*) =InV27 +Inc +%—ln(b—u) (15)
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By integrating Equation (14). The first three terms in this equation represent the marginal entropy
of X and the last term stands for the maximum entropy. Accordingly, the variation of information can
be expressed simply as:

H(X/X*) = H(X) — Hmax (16)

If the a posteriori distribution of X is assumed to be lognormal, the informational entropy
H (X/X*) becomes:
. 1
H(X/X*) =InV2r +Inoy, + py +§fln(b7u) 17)
with and py and 0y being the mean and standard deviation of y = Inx.

If the a posteriori distribution of X is assumed to be 2-parameter gamma distribution with
parameters « and f3,

= 1 e F s 18
f) BT Xhef x> (18)

The informational entropy H (X/X") becomes:
H(X/X") = In[B-T(@)] + 12/ — (& — 1)-®(a) — In(b — ) (19)

where, i, is the mean of the series, « the shape parameter, and j the scale parameter.

In the above, entropy as the variation of information measures the amount of uncertainty reduced
by making observations when the a posteriori distribution is estimated.

The maximum amount of information gained about the process X defined within the interval [a, b]
is Hmax. Thus, the expression in Equation (16) will assume negative values. However, since H(X/X*)
describes entropy as the variation of information, it is possible to consider the absolute value of
this measure.

When the a posteriori probability distribution function is correctly estimated, the information
gained about the random variable will increase as the number of observations increases.
Thus, when this number goes to infinity, the entropy H(X/X*) will approach zero. In practice, it is
not possible to obtain an infinite number of observations; rather, the availability of sufficient data is
important. By using the entropy measure H(X/X*), it possible to evaluate the fitness of a particular
distribution function to the random variable and to assess whether the available data convey sufficient
information about the process.

4. Mathematical Interpretation of the Revised Definition of Informational Entropy

4.1. The Distance between Two Continuous Distribution Functions as Defined by the Euclidian Metric

The approach used to obtain Equation (16) is essentially a means of measuring the distance
between the points in probability space, described by the a priori {g(x)} and a posteriori {p(x)}
distribution functions. The distance between these two functions can be determined by different
measures like the metric concept, which enables one to see whether the two functions coincide.

According to the Euclidian metric, the distance between p(x) and g(x) functions defined in the
same probability space (0, K) is:

1= [ p(x) - a0 (20)
If p(x) is the standard normal, and 4(x), the standard uniform distribution function, one obtains:

Bx) = o= \/1 + 22 2e)| el

By integrating Equation (20) to obtain the difference function @(x). The F(x) function in
Equation (21) represents the cumulative probabilities for the standard normal distribution. When the

10
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above difference function is equal to zero, p(x) and q(x), which are described as two points in the ((2, K)
probability space, will coincide at the same point. When the difference function assumes a minimum
value, this will indicate a point of transition between p(x) and g(x), where the two functions can be
expressed in terms of each other. The same point also refers to a minimum number of observations
required to produce information about the process X. When the difference function is described as
in Figure 1, the presence of such a minimum value can be observed. The difference function ®(x)
decreases until x = x9, where it passes through a minimum value. At point xy, the two functions
p(x) and g(x) approach each other until the distance between them is approximated by a constant C.
After this point, when x approaches infinity, the difference function gradually increases; and finally,
the difference between p(x) and g(x) approaches zero at infinity. One may define xg as the point where
the two probability functions can be used interchangeably with an optimum number of observations.

PR3]

Figure 1. The difference function as defined by the Euclidian metric.

The purpose of observing the random variable X is to obtain a realistic estimate of its population
parameters and to achieve reliable information about the process to allow for correct decisions in
planning. On the other hand, each observation entails a cost factor; therefore, planners are interested
in delineating how long the variable X has to be observed. Equation (16) is significant from this
point of view. By defining the variation of information as the reduction of uncertainty via sampling,
the point where no more increase or change in variation of information is obtained actually specifies
the time point when sampling can be stopped. This is a significant issue which may be employed in
considerations of gauging station discontinuance.

4.2. The Distance between Two Continuous Distribution Functions as Defined by Max-Norm

The max-norm can also be used to measure the distance between two functions defined in the
probability space and to assess whether these two functions approach each other. According to the
max-norm, the distance between two functions p(x) and q(x) is defined as:

A(p,m) = sup |p(x) —q(x)] (22)

—oo<x<+0o

11
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When p(x) is used to represent the standardized normal and g(x), the standardized uniform
distribution functions, the difference function {/(x)} will be:

h(x) = p(x) —q(x) (23)

It may be observed in Figure 2 that, the critical points of the difference function are at hy, 1,
and 71, so that the difference between the two functions {A(p, )} can be expressed as:

A(p,q) = max{ho, hy, ha} (24)

LT

Figure 2. Critical values of the difference function as defined by the max-norm.

o

Based on the half-range value “a” in Figure 2, the critical points hy, h1, and h; can be obtained as:

1 1
= o &
1 1 2
hy = ————e(~7/2) 26
'S Vi 20
Iy = —el-/2) 27)

V2m

The problem here is then to find the distance between the two functions as the half-range value
which minimizes A(p,q) of Equation (24). The critical half-range value “a” that satisfies this
supremum is:

"
a

a= Z\/Tn (28)

At the above critical half-range value “a”, which is obtained by the max-norm, it is possible to use
the two functions p(x) and q(x) interchangeably with an optimum number of observations.

When two points represented by the a posteriori and a priori distribution functions, p(x) and g(x),
respectively, in the same probability space approach each other, this indicates, in information terms,
an information increase about the random process analyzed. The case when the two points coincide
represents total information availability about the process. Likewise, when H(X/X") of Equation (16)
approaches zero in absolute terms, this indicates a gain of total information about the process X defined

12
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within the interval [a, b]. One obtains sufficient information about the process when the variation
information, as described by the Euclidian metric, approaches a constant value.

4.3. Asymptotic Properties of Shannon’s Entropy

Vapnik [29] analyzed and provided proofs for some asymptotic properties of Shannon’s entropy
of the set of events on the sample size N. He used these properties to prove the necessary and sufficient
conditions of uniform convergence of the frequencies of events to their probabilities.

In the work of Vapnik [23], it is shown that the sequence:

H(S)

—=, N=1,2, ... 2
N N=L2.., 29)

has a limit ¢, when N goes to infinity. The lemma:
H(S)

lim
N—oo

=c0<c<1, (30)

was proved by Vapnik [29] and was claimed to “repeat the proof of the analogous lemma in information
theory for Shannon’s entropy”. Vapnik [29] also proved that, for any N, the sequence of Equation (29)
is an upper bound for limit of Equation (30).

Vapnik [29] proved the above lemmas for Shannon’s entropy, based on the discrete case of
Equation (1). However, they are also valid for the continuous case as described by the Euclidian metric.
Thus, it is possible to restate, using Vapnik’s proofs, that the upper bound Hpax of Shannon’s entropy
will be reached as the number of observations increases to approach the range of the population
(N—00) and that the variation of information of Equation (16) approaches a constant value “c”.

In the next section, the derivation of the constant “c” is demonstrated for the case when the
a priori distribution function is assumed to be uniform and the a posteriori function to be normal.
These assumptions comply with the limits (0 < ¢ < 1) defined for the discrete case as in Equation (30).

5. Further Development of the Revised Definition of the Variation of Information

If the observed range [a, b] of the variable X is considered also as the population value of the
range, R, of the variable, the maximum information content of the variable may be described as:

Hmax = InR 31)

With;
R=b—aa<x<b (32)

When the a posteriori distribution of the variable is assumed to be normal, the marginal entropy
of X becomes:
H(X)=InV2r+Inc+1/2 (33)

If the variable is actually normally distributed and if a sufficient number of observations are
obtained, the entropy of Equation (16) will approach a value which can be considered to be within an
acceptable region. This is the case where one may infer that sufficient information has been gained
about the process.

When sufficient information is made available about X, it will be possible to make the best
estimates for the mean (y1), variance (), and the range (R) of X. For this purpose, the variable has to
be analyzed as an open series in the historic order. According to the approach used, the information
gained about the process will continuously increase as the number of observations increase. Similarly,
Hmax and H(X) will also increase, while H(X/X") will decrease. When the critical point is reached,
where the variable can be described by its population parameters, Hmax Will approach a constant value;
H(X) will also get closer to this value with H(X/X") approaching a constant value of “c” as in Figure 3.

13
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Figure 3. Maximum entropy {Hmax}, marginal entropy {H(X)} and entropy as the variation of
information {H(X/X")} versus the number of observations.
Determination on Confidence Limits for Entropy Defined by Variation of Information

The confidence limits (acceptable region) of entropy can be determined by using the a posteriori
probability distribution functions. If the normal {N(0,1)} probability density function is selected,
the maximum entropy for the standard normal variable z is;

Hmax(z) = InR,, (34)

with the range of z being,
R; =2a (35)

Here, the value a describes the half-range of the variable. Then, the maximum entropy for
variation x with N (p1,0) is;
Hmax(x) = In(R;0) (36)

If the critical half-range value is foreseen as:
a =4o, 37)

then the area under the normal curve may be approximated to be 1.
For the half-range value, replacing the appropriate values in Equation (16), one obtains the
acceptable entropy value for the normal probability density function as:

H(X/X*),, = 0.6605, (38)

using natural logarithms. When the entropy H(X/X") of the variable which is assumed to be normal
remains below the above value, one may decide that the normal probability density function is
acceptable and that a sufficient amount of information has been collected about the process.

If the a posteriori distribution function is selected as lognormal LN(yy, 0y), the variation of
information for the variable x can be determined as:

H(X/X*) = In[2Sinh(acy)] — Inoy — 1.4189 (39)

14
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Here, since lognormal values will be positive, one may consider 0 < x < co. Then the acceptable
value of H(X/X") for the lognormal distribution function will be;

H(X/X") = aoy — Inoy, — 1.4189 (40)

According to Equation (40), no single constant value exists to describe the confidence limit for
lognormal distribution. Even if the critical half-range is determined, the confidence limits will vary
according to the variance of the variable. However, if the variance of x is known, the confidence limits
can be computed.

6. Application

6.1. Application to Synthetic Series to Test the Fit of Probability-Distribution Functions

It is often difficult in practice to find long series of complete hydrological data. Thus, it is
preferred here to test the above methodology on synthetically generated data for the purposes of
evaluating the fit of different probability distribution functions. For this purpose, normal {N (y, 0)}
and lognormal {LN (py, 0y)} distributed time series are produced, using uniformly distributed series
derived by the Monte Carlo method. Ten-year time series are obtained with normal {N (y, 0)} and
lognormal {LN (py, oy)} distributions, respectively. Each series covered a period of (10 x 365) days
with cumulative data for each year as (i x 365; wherei=1, ..., N).

To test the methodology, N(8, 10) distributed 3650 synthetic data are divided into subgroups with
365 data in each. First, maximum informational entropy (Hmax) is determined, using Equation (31) and
the whole time series. Assuming that the a posteriori distribution is normal, marginal entropies (H(X))
and, finally, the informational entropy values (H(X/X*) are computed for the normal distribution using
Equation (15). Consecutive values of these entropy measures are computed first for 365 generated
data, next for 2 x 365 data, and for the last year 10 x 365 data. The confidence limits for the case of
a posteriori normal distribution is determined by Equation (38). Figure 4 shows the results of this
application. If a lognormal posteriori distribution is assumed for this series, which is actually normally
distributed, this assumption is rejected on the basis of the computed confidence limits for normal
distribution. Otherwise, the assumption is accepted. In Figure 4, the H(X/X*) values fall below the
confidence level determined for normal distribution so that the assumption of a posteriori lognormal
distribution is rejected.

1.4
1.2
1
0.8
%
x06 ¢
To04 — — — — — — —
)
E0.2
E 0
365 730 1095 1460 1825 2190 2555 2920 3285 3650
number of data
«=@=="H(XIX*) e=@m=N Conf.Limit e=@==Marginal Entropy Max. Entropy

Figure 4. Normal distributed synthetic series, by the assumption of a posteriori normal distributed
probability function (where; N Conf. Limit is the confidence limit for normal distribution).
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If the same application is repeated by using the confidence limit for lognormal distribution, as in
Figure 5, the assumption of a posterior lognormal distribution is rejected as the H(X/X*) values stay
above the confidence level determined for lognormal distribution.

3
)5 @ ° ° ° ° ° ° ° ° °

P ___ s D,

15
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Entropy, H(XIX*)

0.5

365 730 1095 1460 1825 2190 2555 2920 3285 3650
number of data

«=@=\arginal Entropy @— Max. Entropy ==@==|N Conf. Limit e=@m==H(XIX*)

Figure 5. Normal distributed synthetic series, by the assumption of a posteriori lognormal distributed
probability function (where; LN Conf. Limit is the limit of confidence for lognormal distribution).

Similar exercises may be run by generating lognormal distributed synthetic series and assuming
the posteriori distribution first as lognormal (Figure 6) and then as normal distribution (Figure 7).

Entropy, H(XIX*)
(9]
®
®
®

365 730 1095 1460 1825 2190 2555 2920 3285 3650
number of data

@ Max. Entropy e=@==Marginal Entropy e=@==H(XIX*)LN e=@==N Conf. Limit

Figure 6. Lognormal distributed synthetic series, by the assumption of a posteriori lognormal
distributed probability function (where; N Conf. Limit is the confidence limit for normal distribution).

The above exercises show that comparisons between assumptions of a posteriori normal and
lognormal distributions on the basis of entropy-based confidence limits for each distribution give
valid results by checking how the variation of information values behave with respect to the
confidence limits.
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Figure 7. Lognormal distributed synthetic series, by the assumption of a posteriori normal distributed
probability function (where; LN Conf. Limit is the limit of confidence for lognormal distribution).

6.2. Application to Runoff Data for Assessment of Sampling Duration

An important question regarding hydrometric data-monitoring networks is how long the
observations should be continued. Considering the “data rich, information poor” data networks of our
times, researchers and decisionmakers have wondered whether monitoring could be discontinued
at certain sites, as data observation is a cost and labor-consuming activity [30,31]. To date, none of
the approaches proposed for the problem of station discontinuance have found universal acceptance.
Entropy measures as described in this work may as well be employed when a monitoring activity
reaches an optimal point in time after which any new data does not produce new information.
This feature of entropy measures is shown in Figure 3, where the marginal entropy of the process H(X)
approaches the total uncertainty Hmax as the number of observations (N) increase. Finally, a point is
reached where Hpnax and H(X) coincide after a certain number of observations, which can be defined as
Nopt. After this point on, observed data do not produce new information, and thus monitoring can be
discontinued. Certainly, the probability distribution of best fit to observed series must be selected first
to evaluate this condition. This is an important feature of entropy measures as they can be used to infer
about station discontinuance, based also on the selection of the appropriate distribution functions.

To test the above aspect of the entropy concept, observed runoff data at two monitoring stations
(Kuskayasi and Akcil) in the Ceyhan river basin in Turkey are employed (Figure 8). The Ceyhan basin
has been subject to several investigations and projects for the development of water schemes; thus,
it is intended here to evaluate the monitoring activities in the basin in terms of entropy measures.
Although there are other gauging stations along the river, their data are not homogeneous due to
already-built hydraulic structures. Kuskayasi and Akcil are the two stations where natural flows are
observed, although their common observation periods cover only 8 years.

The observations at Kuskayasi were discontinued after 1980 and Akcil after 1989. Thus, for the
purposes of this application their common period between 1973 and 1980 is selected. Daily data for
the observation period of 8 years are used, where the mean daily runoff at Kuskayasi is 10.8 m3/s and
that at Akcil is 27.18 m3/s. The standard deviations are 11.77 m3/s and 22.48 m®/s, respectively.

Next, the fits of normal and lognormal distributions are tested at both stations again with the
entropy concept. This analysis is followed by the computation of marginal entropies (H(X), Hmax
and the variation of information H(X)/H*) for these two distribution functions. The computations
are carried out in a successive manner, using the first year’s 365 data, the second year’s 720, and so
on until the total number of 2920 data are reached. Certainly, Hmax changes with the total of data
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observed from the beginning of the observation period, assuming a ladder-like increase as in Figure 3,
where H* is used to represent Hmayx for the total observation period of 2920 daily data.
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Figure 8. Ceyhan river basin in the south of Turkey and selected monitoring sites (Kuskayasi and Akcil).

Figures 9 and 10 show figures similar to Figure 3 under the assumption of normal and lognormal
distributions fit to daily data for 8 years. Although both distributions seem to be sufficient, normal
distribution shows more distinctively how H(X) approaches the total entropy H*. It may seem unusual
for an upstream station with daily observations to reflect a normal distribution; yet this is physically
due to karstic contributions to runoff, which stabilize the flows.

Whether the normal or lognormal distributions are selected, it can be observed in Figures 9 and 10
that 2920 observations are not sufficient to reach H*. Although H(X) approaches H*, the optimal
number of observations is not yet reached with only 8 years of observations.

Results for the downstream Akcil station are shown in Figures 11 and 12. Here, again, normal
distribution appears to give a better fit to observed data. As can be observed especially in Figure 11,
H(X) closely approaches H* for 8 years of data. If observations could be continued after 8 years of
2920 data, most probably the optimum number of observations would be reached.
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Figure 9. Kuskayasi (1973-1980), by the assumption of a posteriori normal distribution function (where;
N Conf. Limit is the limit for normal distribution).
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Figure 10. Kuskayasi (1973-1980), by the assumption of a posteriori lognormal distribution function
(where; LN Conf. Limit is the limit of confidence for lognormal distribution).
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Figure 11. Akcil (1973-1980), by the assumption of a posteriori normal distribution function
(where; N Conf. Limit is the limit of confidence for normal distribution).
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Figure 12. Akcil (1973-1980), by the assumption of a posteriori lognormal distribution function
(where; LN Conf. Limit is the limit of confidence for lognormal distribution).

It is concluded on the basis of results obtained through the above application that, if sufficiently
long observed time series are available, the entropy principle can be effectively used to infer on an
important feature of hydrometric monitoring, i.e., sampling duration or station discontinuance.

7. Conclusions

The extension to the revised definition of informational entropy developed in this paper resolves
further major mathematical difficulties associated with the assessment of uncertainty, and indirectly
of information, contained in random variables. The description of informational entropy, not as an
absolute measure of information but as a measure of the variation of information, has the following
advantages:

- It eliminates the controversy associated with the mathematical definition of entropy for
continuous probability distribution functions. This makes it possible to obtain a single value
for the variation of information instead of several entropy values that vary with the selection of
the discretizing interval when, in the former definitions of entropy for continuous distribution
functions, discrete probabilities of hydrological events are estimated through relative class
frequencies and discretizing intervals.

- The extension to the revised definition introduces confidence limits for the entropy function,
which facilitates a comparison between the uncertainties of various hydrological processes with
different scales of magnitude and different probability structures.

- Following from the above two advantages, it is further possible through the use of the concept of
the variation of information to:

O determine the contribution of each observation to information conveyed by data;
O determine the probability distribution function which best fits the variable;
O make decisions on station discontinuance.

The present work focuses basically on the theoretical background for the extended definition of
informational entropy. The methodology is then tested via applications to synthetically generated data
and observed runoff data and is shown to give valid results. For real-case observed data, long duration
series with sufficient length and quality are needed. Currently, studies are being continued by the
authors on long series of runoff, precipitation and temperature data.

It follows from the above discussions that the use of the concept of variation of information and
of confidence limits makes it possible to:
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determine the contribution of each observation to information conveyed by data;
calculate the cost factors per information gained;

determine the probability distribution function which best fits the variable;

select the model which best describes the behavior of a random process;

compare the uncertainties of variables with different probability density functions;
make decisions on station discontinuance.

The above points are different problems to be solved by the concept of entropy, and further

extensions of the methodology are required to address each of them.
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Abstract: A flow duration curve (FDC) is widely used for predicting water supply, hydropower,
environmental flow, sediment load, and pollutant load. Among different methods of constructing an
FDC, the entropy-based method, developed recently, is appealing because of its several desirable
characteristics, such as simplicity, flexibility, and statistical basis. This method contains a parameter,
called entropy parameter M, which constitutes the basis for constructing the FDC. Since M is related
to the ratio of the average streamflow to the maximum streamflow which, in turn, is related to the
drainage area, it may be possible to determine M a priori and construct an FDC for ungauged basins.
This paper, therefore, analyzed the characteristics of M in both space and time using streamflow data
from 73 gauging stations in the Brazos River basin, Texas, USA. Results showed that the M values
were impacted by reservoir operation and possibly climate change. The values were fluctuating,
but relatively stable, after the operation of the reservoirs. Parameter M was found to change inversely
with the ratio of average streamflow to the maximum streamflow. When there was an extreme event,
there occurred a jump in the M value. Further, spatially, M had a larger value if the drainage area
was small.

Keywords: flow duration curve; Shannon entropy; entropy parameter; modeling; spatial and
dynamics characteristic

1. Introduction

A flow duration curve (FDC) is usually constructed empirically by plotting discharge against
the percentage of time the discharge is equaled or exceeded during the year. Discharge from a gauge
station can be daily, weekly, or monthly. The timescale of discharge depends on the use of FDC.
For example, weekly discharge may be adequate for water supply, daily discharge for hydropower,
and monthly discharge for sediment load and pollutant load [1,2]. Nonparametric methods use the
record of discharge for the whole period for constructing an FDC and make no probabilistic statements
about a given calendar or water year, because all the years of record are combined together into a
whole period, so a return period cannot be assigned.

The methods for predicting an FDC are either deterministic or stochastic. For a given year
of streamflow record at a station, an annual flow duration curve (AFDC) can be constructed [3,4].
With AFDCs of all the years at a given station, at each exceedance probability discharge percentiles
can be determined given a return period. This leads to a final FDC with probabilistic statements by
assigning return periods to individual AFDCs.

Singh [5] related dimensionless discharge with drainage area and constructed an exponential
form of FDC using a deterministic model. Vogel and Fennessey [4] used an AFDC to define
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recurrence intervals for FDCs. Cigizoglu and Bayazit [6] modeled FDCs by introducing stream
flow as a product of two variables, which represented the periodic and stochastic components.
Castellarin et al. [7] developed a five-parameter stochastic model which combined annual flow
distribution and standardized the daily flow distribution of the basin to simulate FDC and AFDC
percentiles for the whole period of record. All of these studies made a series of assumptions
because of statistical components, such as variables that are independent and identically distributed.
Singh et al. [8] introduced Shannon entropy theory for modeling FDC, where the entropy of discharge
or the probability density function (PDF) was used to express the uncertainty of flow. This method
needs no fitting for the whole period of discharge record and no assumption about daily flow.
This method contains an entropy parameter M which plays a fundamental role in the derivation of
FDC. The objective of this paper was, therefore, to further study the temporal and spatial characteristics
of the entropy parameter M in the entropy-based method and apply the method to 73 sites in Brazos
River basin, Texas, USA.

2. Materials and Methods

The derivation of the FDC and the study area are described in this section. For the dataset, codes,
and software information used in this paper, please see the Supplementary Materials. For the derivation
of the FDC, first, the entropy of discharge is introduced, then the constraints for the probability density
function (PDF) are determined. Second, entropy maximizing is conducted by using the method of
Lagrange multipliers and solved numerically. Third, the cumulative probability distribution function
(CDF) is embedded in the process and a relationship between the discharge and exceedance period
is derived.

2.1. Derivation of FDC

The derivation of FDC using Shannon entropy is detailed in Singh et al. [8]. For the sake of
completeness, a brief synopsis is given here. The Shannon entropy of discharge (Q) or f(Q) [H(Q)] can
be expressed as:

Q"!ﬂX
= [ Q@) &)

where Qi and Quqx are the minimum and maximum discharges, respectively, and f(Q) is the PDF of
Q. The objective is to derive f(Q) by maximizing H for which two constraints are defined as:

QHI/ZX
c1 :/Q " f(QdQ )
Qmax _
2= / Qf(Q)dQ =0 = Qu ®)

min

where Qy, is the mean discharge. Entropy maximizing is done using the method of Lagrange multipliers:

L= 7./%.( F(Q)Inf(Q)dQ — (Ao — 1) (/QW

» ™ f@ig-cn) - u( o Qf(Q)Q - CZ) @

Qmin

where L is the Lagrangian function, and Ay and A; are the unknown Lagrangian multipliers.
Differentiating Equation (4) with respect to f(Q) and equating the derivative to zero yield the PDF
of Qas:

f(Q) = exp(=Ao — Q) ®)

Substitution of Equation (5) in Equations (2) and (3) yields the solution for Ag and A;:

Ao = —InAy + In[exp(—A1Quin) — exp(—A1Qmax)] (6)
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_ i 7 Qminexp(_/\lQmin) - Qmuxexp(—)\lQmM) _ 7@ (7)
/\1 exp(f/\IQmin) - exp(*)\lQmax)

The entropy parameter M is defined as A1 Qyuax-
In order to construct an FDC, a relation between the CDF of Q and time needs to be hypothesized.
A possible form of CDF can be expressed as:

FQ)=1- a(%)h ®)

where a and b are coefficients, t is the number of days that discharge is being equaled or exceeded,
and T is the total number of days for a year. Parameters a and b can be estimated by empirical fitting
and it is hoped that they will be relatively stable.

Differentiating Equation (8) we obtain:

b
4F(Q) = £(Q)dQ = —ub(%) -1t ©)

Substituting Equation (5) into Equation (9), integrating from Q to Quqx, replacing the term exp(Ag)
from Equation (6) and replacing A1 Q;ax with M, the final FDC is obtained as:

Q _ 1 MQmin t b
O~ Mln{exp(M) - {exp(fM) fexp(fiQmax >}u<?> } (10)

Equation (10) contains Quax, and Q,,i, which are known from observations, and M which can be
calculated using Equation (7).

2.2. Study Area

The entropy parameter M was determined from observations and its space-time characteristics
were then investigated. It was also related to the drainage area. Then, FDC was constructed and its
reliability was assessed.

The study area was Brazos River basin (Figure 1) which extends from Eastern New Mexico to
Southeastern Texas, up to the Gulf of Mexico. The basin has a length of approximately 1219 km
and a width varying from about 133 km in the High Plains in the upper basin to a maximum of
210 km in the vicinity of the city of Waco, to about 19 km near the city of Richmond in the lower
basin. The basin drainage area is approximately 116,550 square kilometers, with about 111,370
square kilometers in Texas and the remainder in New Mexico [9]. There are 73 gauging stations with
discharge records 50 years long that were analyzed in this paper. Daily maximum, minimum and
mean discharges; and reservoir and gauge station information were collected from the USGS website
(https:/ /waterdata.usgs.gov/nwis).
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Figure 1. Brazos River basin.

3. Results and Discussion

3.1. Flow Duration Curve Estimation

The entropy parameter M is defined as A1 Q;uqx, Where A; can be obtained from Equation (7) by
numerical solution with the observed Quay, Quin and Q.

Using Equation (10) and the observed data, an FDC was constructed using the entropy parameter
M, as shown in Figure 2.

Data collection (USGS) &
Preprocessing

1‘ Data analyzation

Qmax: Qmin- Q. @ and
b for each year

14* Equation (6) v
Q, distribution, Qyy;;
M for each year and the e distribution, o

spatial and dynamics average a and b values
for one station

95% confidence interval of Qpq, and

| pardular vateryears | oy o B e

average a and b values for one
station

Average M value for
one station

A
Final observed and simulated FDC
with 95% confidence interval for a
particular water year in one station
using average M, a, b, predicted
Qmax and Qmin

Figure 2. Schematic of the FDC construction.
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First, the FDC of a specific year for a station was analyzed. Taking station 08093100 as an
example, for 2009, M, calculated from Equation (7), equaled 10.47. After constructing the FDC for
observations, parameters a and b were calculated using Equation (8) as a = 1.021 and b = 0.778.
Substituting M, Quax, Quin, 4, and b in Equation (10), we estimated the FDC. The correlation coefficient
(R?) between the observed and estimated FDCs was 0.969, which showed a good agreement, as shown
in Figures 3 and 4.

O Observation
0.9 O —— Simulation
0.8 [N

o7t o

06

F(Q)
o
(5

0.4 AN
03F .

021

[ed

0.1F

YT

Observation
Simulation | 7

Q (m¥/s)

Figure 4. FDC of station 08093100 in 2009.

Second, the FDC was predicted for a particular hydrologic year using average values of M, a, and b
for one station. For station 08093100, 4, b, and M were calculated for each year and their histograms
were constructed, as shown in Figures 5 and 6, and then their average values were estimated for
the station. For the prediction of FDC, we needed to estimate Qyax, Qyin, and Q first by fitting the
gamma distribution to each data set, as shown in Figures 7-9. For return periods of 1.3-year, 1.4-year,
and 1.8-year, the estimated Quax, Qyin, and Q with 95% confidence intervals were calculated, as shown
in Table 1. The observed hydrologic years of 1.3-year, 1.4-year, and 1.8-year return periods were 2003,
2009, and 1994. The reason why we chose these years is that we wanted to focus on simulation for the
recent years using parameters for a station. In addition, it showed that not all the stations followed
good fitting, which is explained at the end of this section. Then, FDCs were predicted and compared
with observed FDCs. The R? values of the predicted and observed FDCs were 0.979, 0.969, and 0.960,
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respectively. Figures 10-12 show that 95% intervals covered most of the observed data. The same was
done for other stations in the basin.

Table 1. Quax , Quin, 4, b, and M for different water years for station 08093100.

Water Year Year Qmax Qmin LI Qmax LI Qmin UI Qmax UI Qmin a b M R?
1.3 2003 121.26 0.21 44.89 0.08 302.58 0.54 0.979
1.4 2009 169.09 0.3 68.16 0.12 395.75 0.7 1.02 089 9.88 0.969
1.8 1994 257.14 0.46 114.31 0.2 558.27 0.99 0.96

Note: LI means lower interval, Ul means upper interval, discharge unit is m3/s.

0.25

>

A

83
(=)
T

uenc
qeney,
= N
Q1
T

relative fre
o
—_
o
T

0.05 F

0.00

0975 099 1.005 1.02 1035 1.05 1.065
a

Figure 5. Relative frequency of parameter a at station 08093100.
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Figure 6. Relative frequency of parameter b at station 08093100.
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Figure 7. Gamma distribution fitting of the maximum discharge for station 08093100.
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Figure 8. Gamma distribution fitting of the mean discharge for station 08093100.
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Figure 9. Gamma distribution fitting of the minimum discharge for station 08093100.
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Figure 10. Estimation of FDC for 2003 using average M, 4, and b values of station 08093100.

250

—— Observation

Figure 12. Estimation of the FDC for year 1994 using average M, a, and b values of station 08093100.

It was observed that the predicted FDCs fit well at most of the stations when discharges were
relatively small, but were slightly poorer in the parts having large discharge values. Prediction for each
year showed that R? was not always good. Figure 13 showed a good fit for the relationship with the
ratio of Q and Qyuax. When Q/ Quuax > 0.10, R > 0.90. Further investigation could focus on making
adjustments for better FDC prediction.
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Figure 13. Relationship of R2 and Q/ Qmax for station 08093100.

3.2. Time Variability of M

The stream flow changes because of natural and anthropogenic factors, such as reservoir operation
and climate change. First, we mapped the locations of reservoirs in the basin and analyzed the impact
of reservoir on the time variability of M values. Reservoir locations, in part, are shown in Figure 14.
As an example, we picked three stations, 08093100, 08099500, and 08093360, which were downstream of
Whitney reservoir, Proctor reservoir, and Aquilla reservoir, respectively. The M values of these stations
are shown in Figure 15a—c. For station 08093100, before 1951, the M value fluctuated, while after
1951 it was relatively stable because of the impact of the Whitney reservoir operation. The mean
M value was 11.15 for the whole period, while the mean M value after 1951 was 9.88. It can be
seen that the reservoir operation had a 12.85% influence on the M values for this station. However,
our interest was in the period after 1951. Stations 08099500 and 08093360 had the same situation as did
station 08093100, that is, the M values were fluctuating before the reservoir operation, but were stable
thereafter. These stations were affected by the reservoirs by 189.15% and 43.82%, respectively. Similarly,
there were other reservoirs in the basin which had an impact on the stations downstream of the
reservoirs. For further analysis, we just chose record periods after the reservoir impact. After removing
the impact of reservoirs, it was observed that the M values were relatively stable with time. At some
stations, however, the M values jumped or fluctuated in some particular years.

Impact of Reservoirs Operation in M Values

[ Brazos Basin

[ Basinsin Texas
1 Reseoir_sites

—— River_within_basin

[0 Lake_wihin_basin
A Gauge station

I 40 Klometers
—_—

Figure 14. Locations of reservoirs and stations (middle part of the basin, the scalar applies to the
basin panel).
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Figure 15. (a) M dynamics at station 08093100; (b) M dynamics at station 08099500; and (c) M dynamics
at station 08093360.

Second, we determined the effect of climate change on the M values. M was defined as the
Lagrange multiplier A; times Q,qx, as expressed by Equation (6), which relates it to Quax, Quin,
and Q. Though Equation (6) is slightly complicated, it can be simplified by setting Q,,;, equal to zero,
which can usually be assumed to be near zero (it is true at most of the stations in the Brazos River
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basin). Then we found that M had an inverse relation with the ratio of Q and Q,ax, as shown in
figures plotting M and the ratio (Figures 16 and 17)
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Figure 16. Correlation between M values and the ratio of Q and Qyuqy at station 08089000.
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Figure 17. Powered relationship between M value and ratio of Q and Q4 at station 08089000.

Upon calculating M, the effect of climate change was determined. Studies on the impact of
climate change on river discharge show that different parts of the basin have different impacts [10,11].
Discharge in a river can increase or decrease due to the impact of climate change and so can the ratio
of Q and Qjax. Taking station 08089000 as an example, it can be seen from Figure 3 that the relation
between M and the ratio had a correlation coefficient of —0.74, indicating that a high ratio is usually
related to a low M value. At the same time, it was noticed that the M value had a dramatic jump in
1978 when Tropical Storm Amelia happened and caused a large storm in Texas [12]. It can be seen
from Figure 18 that, in 1978, where there was an impact of the storm, there was a jump in the M value.
This showed how M values reflected the change in flow characteristics related to the weather.
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M values in 1978 compared to the mean M value
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Figure 18. M values in 1978 compared to the mean M value.

The next step was to determine what other characteristics could be related to the M values,
because the final goal was to apply this method to ungauged basins.

3.3. Spatial Variability

After calculating the M values for 73 stations and considering the impact of reservoirs, the mean
M value was computed for each station. It was found that the M values ranged from 8.14 to 123.72.
The lowest value occurred at gauge 08116650, which is located in the downstream part of the basin,
and the highest value occurred at gauge 08086290, which is located in the middle-upper part of the
basin. It can be seen from the map that most of the area in the upstream part had higher M values,
higher than 55, the middle part had a range from 45 to 55, and the downstream areas had M less than
45. This showed a trend of decreasing M values from the upstream to the downstream part. It seems
that the M values changed spatially because the drainage area changed, as shown in Figure 19, where if
there was a small drainage area, then there was a large M value contour.

Spacial Characters of M Values in Brazos River Basin
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Figure 19. Spatial features of drainage areas and M values.
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Fuller [13] developed a relation between Q,;ax and Q as:

Qmaif Q _ 1.5A70‘3 (11)

where A is the drainage area (square kilometers). This relationship indicates that the ratio of Q and
Qumax would increase with an increase in the drainage basin size. Since M has an inverse relation with
the ratio of Q and Qyuux, M also has an inverse relation with basin size, which can be reflected by the
correlation coefficient —0.536 and the plot of M versus the drainage size (drainage area) in Figure 20.

05 y =-0.1121x? + 0.481x + 1.387
’ R?=0.80

0 L 1 1 1 »!

0 1 2 3 4 5
Log(drainage area)

Figure 20. Relationship between the drainage area and M values.

3.4. Test for Ungauged Stations

We used station 08098290, assuming it as an ungauged station to test for the reliability of applying
the function. First, following the schematic in Figure 2 and using the records from the station,
we obtained the M value as the true value. Second, we estimated the M value using Equation (12):

log(M) = —0.112[log(A)]* + 0.481 log(A) + 1.387 12)

where A is the drainage area in square kilometers. The M value derived from records of observed data
was 13.26. The M value simulated from the function was 14.23, which had a 7.31% difference. Third,
we used both M values to form an FDC, compared to the empirical FDC, respectively, and calculated
R2 for both sides. Using the calculated M value led to a mean R? =0.91, which ranged from 0.70 to 0.99,
and simulated M led to mean R? = 0.89 which ranged from 0.68 to 0.95 which had a 2.20% difference
with the calculated one. At last, we applied Equation (12) to all the stations in the basin and got
simulated M for all the stations. The mean R? = 0.86 for the basin ranged from 0.58 to 0.93, while the
calculated M from the records led to an R? = 0.88 and ranged from 0.61 to 0.95, which showed a
mean difference between the results from the calculated and simulated M of 2.32%. Those test results
indicated that the function can be applied to other ungauged stations.

4. Conclusions

This study analyzed in time and space the entropy parameter M which is basic to the
entropy-based method for constructing the flow duration curve. Upon analysis of 73 stations in
the basin, M ranged from 8.14 to 123.72, and was apparently impacted by anthropogenic and natural
factors. Temporal patterns changed because of reservoir operation and flow characteristics. At the
same time, M changed spatially with the drainage area. By analyzing the spatial and temporal
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characteristics of M, a relation between M and drainage area was developed, a log-based function
was fitted as y = —0.112x? + 0.388x + 1.567, which can be used in other basins. For most of the years,
the average M yielded a good agreement between predicted and observed FDCs, where the mean R?
was 0.92. Some years did not have good fit, especially in large discharge parts of the FDC; the reason
why this occurred should be studied further. The procedure of applying the entropy parameter M for
modeling the FDC can be extended to other basins. Further studies such as the adaptation to other
basins, and improvement for the goodness of fit should be investigated.

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/19/12/654/s1,
Section 1: Data Availability, Section 2: Code and Software.
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Abstract: Water engineering is an amalgam of engineering (e.g., hydraulics, hydrology, irrigation,
ecosystems, environment, water resources) and non-engineering (e.g., social, economic, political)
aspects that are needed for planning, designing and managing water systems. These aspects and the
associated issues have been dealt with in the literature using different techniques that are based on
different concepts and assumptions. A fundamental question that still remains is: Can we develop a
unifying theory for addressing these? The second law of thermodynamics permits us to develop a
theory that helps address these in a unified manner. This theory can be referred to as the entropy theory.
The thermodynamic entropy theory is analogous to the Shannon entropy or the information theory.
Perhaps, the most popular generalization of the Shannon entropy is the Tsallis entropy. The Tsallis
entropy has been applied to a wide spectrum of problems in water engineering. This paper provides
an overview of Tsallis entropy theory in water engineering. After some basic description of entropy
and Tsallis entropy, a review of its applications in water engineering is presented, based on three
types of problems: (1) problems requiring entropy maximization; (2) problems requiring coupling
Tsallis entropy theory with another theory; and (3) problems involving physical relations.

Keywords: entropy; water engineering; Tsallis entropy; principle of maximum entropy; Lagrangian
function; probability distribution function; flux concentration relation

1. Introduction

Water resources systems serve a multitude of human needs. They are needed for water supply,
water transfer, water diversion, irrigation, land reclamation, drainage, flood control, hydropower
generation, river training, navigation, coastal protection, pollution abatement, transportation and
recreation, among others. Many of the systems (e.g., channels, culverts, impoundments) have been
with us since the birth of human civilization. Some (e.g., spillways, small dams, levees) are several
centuries old, while some others (e.g., large dams, long-distance water transfer structures) are of more
recent origin. In the beginning, systems were designed more or less empirically. Then, engineering
and economics constituted the sole foundation of design. About fifty years ago, planning and design
of hydraulic structures went through a dramatic metamorphosis. These days, they are based on both
engineering and non-engineering aspects. Engineering aspects encompass planning, development,
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design, operation and management, while non-engineering aspects include environmental impact
assessment, socio-economic analysis, policy making and impact on society.

For designing water engineering systems (e.g., channels, levees, bridge piers, drainage structures,
dams, reservoirs, spillways), some key questions that need to be addressed relate to the following,
among others: peak discharge; velocity distribution; sediment yield, concentration and discharge;
pollutant load, concentration and transport; river bed profile, meandering and braiding; downstream
and at-a-point hydraulic geometry; flow depth, discharge and velocity routing; and seepage through
a dam. For water supply systems, the key questions are concerned with, among others: reliability;
loss of energy in the distribution system; and pipe sizes. In addition, pollutant concentration and
transport as well as pollution abatement are also now considered as essential components of water
resources system design. In a similar manner, because of increased public awareness, primarily
triggered by environmental movement, non-engineering aspects of hydraulic design, dubbed under
“socio-economic analyses,” play a critical role. Besides engineering feasibility and economic viability,
issues related to public health, political support, legal and judicial restrictions and social acceptability
determine, to a large extent, if the water resources project will go off the ground.

A survey of the water engineering literature shows that there are myriad techniques for
addressing questions pertaining to the design of water resources systems. The techniques range
from empirical to semi-empirical to physically-based ones. Empirical techniques are data-based;
examples are regression, time series analysis and other statistical methods. Semi-empirical methods,
also sometimes referred to as conceptual or systems-based techniques, employ mass conservation
and some empirical relationship or hypothesis; a good example is the unit hydrograph theory.
Physically-based methods employ the laws of conservation of mass, momentum and energy; an
example is the use of St. Venant’s equations for flow routing or Richards” equation for computing
infiltration. Strictly speaking, even physically-based methods also employ empirical parameters
and, thus, are not entirely “physically-based.” Indeed, all these three types of techniques employ
some physics through data or hypotheses or laws. Extensive details of these methods are already
well-documented in the literature [1-6]. A more recent and comprehensive account of these methods
and applications is also presented in [7].

Because of the large diversity of these techniques, based on different hypotheses and assumptions, it is
difficult to present the developments in any subject or field of interest in a unified and coherent manner.
This becomes particularly challenging when undertaking water resources system engineering design.
There are, of course, some theories that do apply to a wide variety of problems, such as kinematic wave
theory and diffusion wave theory [8,9]. These theories can be applied to solve a wide variety of problems
where the movement of water, sediment and/or pollutant is involved. However, many problems in water
engineering design require a statistical treatment. For addressing such problems, entropy theory can serve
as a unifying theory. During the past three decades, entropy theory has been applied to address a wide
spectrum of problems in water engineering, including rainfall-runoff [1,3,8], infiltration [2], soil moisture [2],
network design [10], velocity distributions [11-14], sediment concentration and discharge [15-17], hydraulic
geometry [18-22] and reliability [23], among others. For recent comprehensive accounts of entropy theory
applications in water and environmental engineering, see [24-26].

The origin of entropy theory is in the second law of thermodynamics. Koutsoyiannis [27] has
presented a nice account of the historical background of entropy. The most commonly used measure
of entropy is the Boltzmann-Gibbs-Shannon (BGS) entropy [28], which is often referred simply as the
Shannon entropy [29]. Tsallis [30] introduced a more general entropy function for complex systems,
which is now referred to as the Tsallis entropy. Tsallis entropy specializes in the Shannon entropy.
During the last two decades or so, Tsallis entropy theory has found many applications in water and
environmental engineering and there is certainly a great potential to extend the applications to a much
wider spectrum of water systems and associated problems.

This paper aims to provide a review of the applications of Tsallis entropy theory in water
engineering. It revisits the Tsallis entropy theory, presents a general methodology for application of
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the theory, shows how entropy theory couples statistical information with physical laws and how it
can be employed to derive useful physical constructs in time and/or space and provides a review of
physical applications of the Tsallis entropy theory in water engineering.

The rest of the paper is organized as follows. Section 2 reviews the Tsallis entropy theory.
Sections 3-6 review the applications of the Tsallis entropy theory in water engineering. Section 3
presents an overview of three types of problems in water engineering. Section 4 reviews problems
requiring entropy maximization. Section 5 reviews coupling entropy theory with another theory.
Section 6 reviews physical relations. Section 7 draws some conclusions.

2. Tsallis Entropy Theory

2.1. Definition of Entropy

The concept of entropy is closely linked with the concept of uncertainty, information, chaos,
disorder, surprise or complexity. Indeed, there are often different interpretations of entropy in different
fields [24-26,31-33]. For instance, in statistics, entropy is regarded as a measure of randomness,
objectivity or unbiasedness, dependence, or departure from the uniform distribution. In ecology, it
is a measure of diversity of species or lack of concentration. In water engineering, it is a measure of
information of uncertainty. In industrial engineering, it is a measure of complexity. In manufacturing,
it is a measure of interdependence. In management, it is a measure of similarity. In social sciences, it is
measure of equality. This may be illustrated as follows.

Consider a random variable X that takes on values x;,i = 1,2,..., N, that occur with
probabilities p;, i =1, 2, ..., N.If p; = 1 (the event is certain to occur), pi=0 (the event is certain not
to occur), i # §, then it can be said that there is no surprise about the occurrence or non-occurrence of
event X = x; and the occurrence or non-occurrence of this event provides no information. The system
that produces such an event has no complexity and is not chaotic or disorderly. On the other hand, if
an event x; occurs with very small probability p;, say 0.01, then our anticipation of event x; is highly
uncertain and if x; does indeed occur, then there will be a great deal of surprise about its occurrence.
The occurrence of this event provides a great deal of information and the system producing such
an event is complex, chaotic and disorderly. Intuitively, the information content of event x; or the
anticipatory uncertainty of x; prior to the observation decreases as the value of probability p(x;)
increases [24,26]. It may be noted that information is gained only if the variable takes on different
values. The value that occurs with a higher probability conveys less information and vice versa.

It is logical to deduce that if a system has more uncertainty, then more information will be needed
to characterize it and vice versa. That is, information reduces uncertainty, meaning that, for a system,
more information means less uncertainty. Uncertainty increases the need for more information; that
is, more uncertainty means more information is needed. Shannon [29] formulated entropy as the
expected value of the probabilities of values that a variable or event may take on. The information
gained is indirectly measured as the amount of reduction of uncertainty. Thus, entropy is defined as a
measure of disorder, chaos, uncertainty, surprise, or information.

From an informational perspective, the information gain from the occurrence of any event x;,
AH(x;), can be expressed as:

AH(x;) = —log p; 1)

Equation (1) says that the information gained is minus the logarithm of the inverse of the
probability of occurrence. For N events, the average or expected information gain, H;, is the weighted
average of Equation (1):

N
Hs = ZH(XI') = —Epilogpi (2)

i=1 i=1

39



Entropy 2017, 19, 641

Equation (2) is the Shannon entropy [29], also called informational entropy. Equation (1) shows
that the information gain is directly a function of probability and is, hence, called gain function.
Equation (1) can be generalized by expressing it as a power function, given by:

1 B N
Al(xi) = = (1—p" DY pi=1 ®)
iz

where Al(x;) is the gain in information from an event i which occurs with probability p; and m is
any real number. The gain function computed from Equation (3) for m = —1,0, 1 and 2, as shown in
Figure 1, decreases with an increase in the probability value regardless of the value of m. For increasing
value of m, the gain function diminishes for the same probability value. The gain function has a much
longer tail, showing very low values of gain as the probability increases.
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Figure 1. Gain function for m = —1,0, 1 and 2.

Analogous to Shannon entropy, the average or expected gain function for N events, Hy,, is the
weighted average of Equation (3), given by:

Hy, sz 1*]01"11 ——sz[l pi" )

where H,;, is designated as the Tsallis entropy or m-entropy [30], which is often referred to as the
non-extensive statistic, m-statistic, or Tsallis statistic. It can be shown that as m — 1, Tsallis entropy
converges to Shannon entropy. The quantity m is often referred to as the non-extensivity index, Tsallis
entropy index, or simply entropy index and its value can be positive or negative. Entropy index
m reflects the microscopic dynamics and the degree of nonlinearity of the system. Since almost all
real systems (e.g., water systems) are inherently nonlinear in nature, the Tsallis entropy has a clear
advantage when compared to the Shannon entropy. Tsallis [34] noted that super-extensivity, extensivity
and sub-extensivity occur when m <1, m = 1 and m > 1, respectively. Interestingly, if m > 0, m < 1
corresponds to the rare events (0 < m < 1) and m > 1 corresponds to frequent events [35,36], pointing
to the stretching or compressing of the entropy curve to lower or higher maximum entropy positions.

If random variable X is non-negative continuous with a probability density function (PDF), f(x),
then the Shannon entropy can be written as:

(=5}

Hy(X) = Hs(f) = = [ £(x)log f(x)dx ©

0
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Likewise, Tsallis entropy can be expressed as [37-39]:

H(X) = () = - [ {00 = [F0)]"pax =L (1= [ [f(x)]" pax ©
0 0

From now onwards, subscript m will be deleted and H,;, will be simply denoted by H.

A plot of H versus p for m = —1, —0.5, 0, 0.5, 1 and 2 is given in Figure 2. For m < 0, the Tsallis
entropy is concave; and for m > 0, it becomes convex. For m =0, H= (N — 1) for all p;'s. Form =1,
it converges to Shannon entropy. For all cases, the Tsallis entropy decreases as m increases.

2 -
1.8 |
16 A
14 | —— m=-1
1.2 4 —— m=-0.5
= 1 — =0
08 4 ’___._:(___\ - = m=05
0.6 4 ’/ ’»(—9(— _*~)‘ \\\ - m=1
-t X
0.4 1 ,,/X -1 T~ NN - m=2
X ¥ S XN
0.2 —///y AN
o # : : : : X
0 02 04 0.6 08 1
p

Figure 2. Plot of H for m = —1,-0.5,0,0.5, 1 and 2.

2.2. Properties of Tsallis Entropy

As mentioned earlier, the concept of entropy is closely linked with the concept of uncertainty,
information, chaos, disorder, surprise or complexity. Tsallis entropy has some interesting
properties [30,40] that are briefly summarized here.

(1) m-entropy: The m-surprise or m-unexpectedness is defined as log,(1/p;), where the logarithm
is the base m. Hence, the m-entropy can be defined as:

1
H= E[logm 7} @)
pi
which coincides with the Tsallis entropy:
_l=p!
H=E[ ] ] ®)

in which E is the expectation.

(2) Maximum value: Equation (4) attains an extreme value for all values of m when all p;’s are
equal, i.e., p; = 1/N. For m > 0, it attains a maximum value and for m < 0 it attains a minimum value.
The extremum of H becomes

Nmfl -1
H=" = 9
T ©)
(3) Concavity: For two probability distributions P = {p;,i=1,2,...,N} and

Q={gi,i=1,2,..., N} corresponding to a unique set of N possibilities, an intermediate probability
distribution G = {g;, i =1, 2, ..., N} can be defined for a real 4, such that 0 <a < 1, as:

gi=ap;+ (1 —a)g; (10)
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for all i’s. It can be shown that for m > 0,
H[G] > aH[P] + (1 —a)H[Q] (11)

and for m <0,
H[G) < aH[P] + (1~ a)H[Q) 12

Functional H(G) > 0if m > 0 and is, hence, concave; H(G) =0 if m = 0; and H(G) < 0if m <0 and
is, therefore, convex.

(4) Additivity: For two independent systems A and B with ensembles of configurational
possibilities EA = {1,2,..., N} with probability distribution pA = {p,-A, i=1,2,..., N}
and configurational possibilittes EP = {1,2,..., M} with probability distribution
pPE=1{p ]-B, j=1,2,..., M}, one can express the union of two systems A U B and their corresponding
ensembles of possibilities EAVB — {1 1),1,2),...,6G,7),...., (N, M)}. If p,-]-AUB represents the
corresponding probabilities, then, by virtue of independence, the joint probability will be equal to the
product of individual probabilities, i.e., p;jA“® = p;Ap;® or p;;(A+ B) = pi(A)pj(B), for all i and j.
One can write the entropy of the union of two systems A and B as:

H(A+ B) = H(A) + H(B) + (1 — m)H(A)H(B) (13)

Equation (13) describes the additivity property, which can be extended to any number of systems.
In all cases, H > 0 (non-negativity property). If systems A and B are correlated, then

N M
piiAB £ [Z% pii B [Z; pii Y (14)
i= j=

for all (i, j). One may define mutual information of the two systems or transinformation S as:

N M
T[(pyV8)] = HAYP[(p;;A8)] — HA[(; pij)] — HB[(; pij)l (15)
i= j=

Considering Equation (15), T(p;;) = 0 for all m, if A and B are independent and Equation (15)
will reduce to Equation (13). For correlated A and B, T(p;;) < 0 for m = 1 and T(p;j;) = 0 for m = 0.
For arbitrary values of m, it will be sensitive to p;;; it can take on negative or positive values for both
m <1 and m > 1 with no particular regularity and can exhibit more than one extremum.

(5) Composability: The entropy H(A + B) of a system comprised of two sub-systems A and B can
be computed from the entropies of sub-systems, H(A) and H(B) and the entropy index .

(6) Interacting sub-systems: Consider a set of N possibilities arbitrarily separated into two

Wy W,
sub-systems with W1 and W, possibilities, where W = Wy + W». Defining Py, = ) p;and Py, = }_ p},
i=1 j=1
w
Py, +Pw, =1= Y py, it can be shown that
k=1

H(Pw) = H(Pw,, Pw,) + Pw," H(p:|Pw, ) + PNZ’”H(p]-|PW2) (16)

where p;| Py, and Pj| Pw, are the conditional probabilities. Note that p;" > p; for m < 1and p;" < p; form>1.
Hence, m < 1 corresponds to rare events and m > 1 to frequent events [41]. This property can be extended
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R N;
to any number R of interacting sub-systems: W = ), W] Then, defining wj = Ypui=12 ..., Nj,
j=1 i=1
N
Y. w; = 1, Equation (16) can be generalized as:
=1

R
H({p:}) :H({wj})‘i‘Ziwij({ij}) 17)
=

Here, p; = w;.

2.3. Principle of Maximum Entropy

Quite often, some information may be known about the random variable X. Then, it seems logical
to choose a PDF of X that is consistent with the known information. Since there can be more than
one PDF that may satisfy this condition, Jaynes [42,43] formulated the principle of maximum entropy
(POME), which states that one should choose the distribution that has the highest entropy, subject
to the given information. This distribution will be the least-biased distribution. Furthermore, it is
equivalent to the minimum relative (cross) entropy condition when no prior is given, which is also
called as the Kullback-Leibler principle [44]. The implication here is that POME takes into account all
of the given information and, at the same time, avoids consideration of any information that is not
given. This is consistent with Laplace’s principle of insufficient reason (or principle of indifference),
according to which all outcomes of an experiment should be considered equally likely unless there
is information to the contrary. Therefore, POME enables entropy theory to achieve the probability
distribution of a given random variable.

The procedures for applications of POME entails the following steps [24,26]: (1) definition of
Tsallis entropy; (2) specification of constraints; (3) maximization of entropy, in accordance with POME,
using of the method of Lagrange multipliers; (4) derivation of the probability distribution in terms of
constraints; (5) determination of Lagrange multipliers; and (6) determination of the maximum entropy.
Since the definition of entropy has already been reviewed earlier, it will not be repeated here. The
remaining steps, (2)—(6), are briefly discussed here.

2.3.1. Specification of Constraints

For deriving the PDF of a random variable X using POME, appropriate constraints need to be
defined. Papalexiou and Koutsoyiannis [28] suggested three considerations for defining constraints:
(1) Simplicity and physical meaningfulness; (2) little variability in the future; and (3) definition in
terms of laws of physics—mass, momentum and energy conservation and constitutive laws—as far as
possible. For simplicity, constraints are often defined in terms of statistical moments and, fortunately,
the moments are related to the laws of physics.

Let C; denote the i-th constraint, i =0, 1, 2, ... , n, where n is the number of constraints. Let g,(x)
be an arbitrary function of X. Then, constraints C;, 7 =0, 1,2, ..., n, can be defined as:

b
Co= / Fla)dx =1 (18)

b
C = /gr(x)f(x) dx =E[g;/(x)] =g(x), r=1,2,...,n (19)

where go(x) =0; g,(x), ¥ =1,2, ..., n, represents some function of x and g, (x) is the expectation of g,(x).
Equation (18) states the total probability theorem that the PDF must satisfy. If » = 1 (first moment)
and g;(x) = x, then Equation (19) represents the mean X; likewise, for r = 2 (second moment) and
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go(x) = (x— Y)z, it denotes the variance (02) of X. The first moment corresponds to the conservation
of mass and the second moment to the conservation of momentum. Similarly, = 3 (third moment),
measuring skewness, corresponds to the conservation of energy. It is noticed that the order of moments
higher than 3 may be unreliable [45]. In water engineering, two or three constraints usually suffice.

2.3.2. Entropy Maximizing Using Lagrange Multipliers

Tsallis entropy, given by Equation (6), can be maximized, subject to constraints defined by
Equations (18) and (19), using the method of Lagrange multipliers [42,43]. Therefore, the Lagrangian
function L can be expressed as:

© - m—1 e M < -
L= [0t s o - L1 @11+ Ll s (0 - 56 o)
0 0 = 0

where A, i =0, 1, 2, ..., M, are the Lagrange multipliers. Note that —1/(m — 1) is added to the
zeroth Lagrange multiplier for algebraic simplification. Using the Euler-Lagrange calculus of variation,
differentiating Equation (20) with respect to f(x) and equating the derivative to zero, we obtain:

aL 1 m— 1 M
m:(’:m—mxﬂ 1+)‘0_m+i;mgi(ﬂ 1)

2.3.3. Determination of Probability Distribution

Equation (21) yields the least-biased probability distribution of X:

1
f) =[Ao+ ) Aigi(x)] 7 (22)
Integrating Equation (22), the cumulative distribution function F(x) is obtained as:
X M L
F(x) = [[ho+ Y digi(x)] 7 dx @3)
0 i=1
The properties of the probability distribution will depend on the value of m, Lagrange multipliers,

functions g;(x) and M.

2.3.4. Determination of the Lagrange Multipliers

Equation (22) contains M unknown Lagrange multipliers that can be determined with the use of
Equations (18) and (19). Substituting Equation (22) in Equations (18) and (19), the result is, respectively:

/[/\o + Y Aigi(x)] 7 Tdx =1 (24)
0 i=1
) M ; 7
[ai®)o+ LA 1dx = gi(x), i =1,2, ..., M 5)
0 i=1

Solution of Equations (24) and (25) yields the unknown Lagrange multipliers A;, i = 1,2, ..., M.
It may be noted from Equation (24) that Ay can be expressed as a function of other Lagrange multipliers
and, therefore, the unknown multipliers are A;, i =1, 2, ... , M. Except for simple cases, Equations (24)
and (25) do not have an analytical solution but can be solved numerically.
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2.3.5. Determination of Maximum Entropy

Substitution of Equation (24) in Equation (6) leads to the maximum Tsallis entropy:

1 7 M n
H= {1~ 0/ ot 3. Nii())7dx} (26)

Equation (26) shows that the entropy of the probability distribution of X depends only on the
specified constraints, since the Lagrange multipliers themselves can be expressed in terms of the
specified constraints.

3. Applications in Water Engineering: Overview

The problems that can be addressed using the Tsallis entropy theory can be classified into
three groups. The first group consists of problems that only require the maximization of the Tsallis
entropy, which can be accomplished using POME. Examples of such problems include frequency
analysis, parameter estimation, network evaluation and design, spatial and inverse spatial analysis,
geomorphologic analysis, grain size distribution analysis, flow forecasting, complexity analysis and
clustering [46-52].

The types of problems included in the second group require coupling with another theory, such
as the theory of stream power or theory of minimum energy dissipation rate. Examples of problems in
this group include hydraulic geometry [19,20] and evaporation [53]. Also included in this group are
problems wherein first relations between entropy and design variables are derived and then relations
between design variables and system characteristics are established. Examples include geomorphologic
relations for elevation, slope and fall; and evaluation of water distribution systems [54,55].

The third group includes problems that require deriving a physical relation either in time or
in space. This means, the domain of analysis requires a shift from the probability domain to a
real domain (space or time), which is accomplished by invoking a relation between the cumulative
probability distribution function and the design variable. Examples of such problems are infiltration
capacity, soil moisture movement in vadose zone, groundwater head distribution, velocity distribution,
rainfall-runoff relation, channel geometry, rating curve, flow-duration curve, erosion and sediment
yield, sediment concentration and discharge, debris flow, longitudinal river profile, hydraulic geometry,
channel cross-section shape and rating curve [19-22,56-61]. The objective in this class of problems is to
derive a relation of the design variable as a function of time or space.

These three kinds of problems are further detailed in the following sections, with examples from
water engineering.

4. Problems Requiring Entropy Maximization

Fundamental to solving problems that only require entropy maximization is the derivation of
probability distribution. A multitude of problems in water engineering involve essentially data analysis
for deriving either a probability distribution or computing entropy.

4.1. Frequency Distributions

The procedure for deriving a maximum entropy-based frequency distribution has been discussed
above. The procedure is illustrated here using only two constraints: mean (first moment) and second
moment. For any probability density function, f(x), of a random variable X, the total probability must
equal one, i.e.,

/f(x)dx =1 27)

0
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The first and second moments can be defined, respectively, as:

/xf(x)dx =E(x) =11 (28)
0

and -
/xzf(x)dx =E(?) = (29)
0

In order to obtain the least-biased f(x), subject to Equations (27)—(29), Equation (6) can be
maximized for m > 0 using the method of Lagrange multipliers. The Lagrange function L can be
written as:

}mfl

L= O/f(x)lv(x)ldx—)\o[o/f(x)dx—l] —Al[o/xf(x)dx—yl] —Az[o/xzf(x)dx—yz] (30)

m

Differentiating L with respect to f(x) and equating the derivative to zero, one obtains:

_ 1/(m—1)
£ = £+ B 4 px g 2027 an

Defining k = (1-m)/m [37] and a; = mA;, i = 0, 1, 2, Equation (31) can be written as:

—-1-1/k

flx)=0+ k)fl*l/k[l + k(o + agx + ax?)] (32)

Equation (32) is the entropy-based probability density function of power type.
The Lagrange multipliers, A;, i = 0, 1, 2 and, consequently, a; = mA;, i = 0, 1, 2, can be estimated
using Equations (27) to (29). For simplification, let A, be assumed as 0. Then, Equation (32) becomes:

f) = A+k) 7R+ k(ag + agx)) (33)

whose parameters a; = mA;, i = 0, 1, are estimated using Equations (27) and (28). Substituting
Equation (33) in Equation (27), one obtains:

= (1+K) R 4 k) T (34)
o 1 k
ag =1+ [ (1K) (35)
The other Lagrange multiplier can be determined by inserting Equation (33) in Equation (28) and
is given as:
(L4k) koo
— (1 +ka =a7x 36
k(l — %) ( 0) 1 (36)

By solving Equations (34) or (35) with (36), Lagrange multipliers «; and &g can be determined.
Inserting Equation (34) in Equation (33), one obtains

F(x) =1+ VR 4 kag) VR 4 k(1 +K) T VR + kag) T Ry (37)

Let
B=1(1+k)(1+kag)) " 1* (38)
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Using Equation (38), Equation (37) becomes

1. kxR

x)=-[1+ 39)
I ﬁ[ 3 ]
Equation (39) is a two-parameter generalized Pareto distribution.
Let 8 8

y:x+% = x:yf% (40)
Equation (39) then becomes

1 oy 11k
) = 2[5] (41)
T =5

Equation (41) is a two-parameter Pareto distribution. If k — 0, then Equation (41) leads to an
exponential distribution:

U

Koutsoyiannis [37,38] proposed a generalization, following which Equation (32) can be expressed as:
F6) = (140 T+ k(o a4 apaet)) T R (43)

where ¢; and ¢, are shape parameters. Equation (43) has four parameters: scale parameter a; and
shape parameters k and c; and c,. Note that «( is not a parameter, because it is a constant based on
the satisfaction of Equation (27). It is, however, not clear as to what led to the generalized form of
Equation (43). Koutsoyiannis [37] suggested that random variable X2 would have Beta Prime (also
referred to as Beta of the second kind) distribution [62]. Then, the distribution of X would be referred
to as the power-transformed Beta Prime (PBP). Koutsoyiannis [37] showed that Equation (43) can
specialize into several exponential and power-type probability distributions, such as PBP-L1 (k — 0),
gamma (k — 0, ¢; — 1), Weibull (k — 0, ¢ = ¢1), Pareto (c; = ¢; = 1), Beta Prime (¢; = 1), PBP-L2
(k — oo, kag — ko, kg — aq) and others.

4.2. Network Evaluation and Design

Hydrometric data are required for an efficient planning, design, development, operation and
management of water engineering systems. Many studies have applied the Shannon entropy theory to
assess and optimize data collection networks (e.g., water quality, rainfall, streamflow, hydrometric,
elevation, landscape, etc.) [63,64] but not the Tsallis entropy theory. The basic idea for developing a
methodology for data collection network design is that it must take into account the information of
each gaging station or potential gaging station in the network. A station with a higher information
content is given a higher priority over other stations that have lower information content but the
information content of a station must be tempered with the degree of use. That is, a station that is used
by one user might be given a lower priority than a station that has diverse uses.

A framework for network design or evaluation considers a range of factors, such as: (a) objectives
of sampling; (b) variables to be sampled; (c) locations of measurement stations; (d) frequency of
sampling; (e) duration of sampling; (f) uses and users of data; and (g) socio-economic considerations.
A network design has two modes: (1) number of gages and their locations (space evaluation); and (2)
time interval for measurement (time evaluation).

Let there be two stations A and B with ensembles of configurational possibilities
EA = {1, 2, ..., N} with probability distribution P4 = {p;, i =1, 2, ..., N} and configurational
possibilities EP = {1,2,..., M} with probability distribution P2 = {p;8, j=1,2,..., M}.
Then, the union of the two stations A U B and their corresponding ensembles of possibilities
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are EAYB = {(1,1), (1,2), ..., (i, j), ..., (N, M)}. If p;"VB represents the corresponding
probabilities, then the mutual information or transinformation S can be expressed as:

N M
T[(pi*V8)] = HAB[(p;i*8)] = HAI(Y pip)] — HEI(Y pij)] (44)
i-1 =

From Equation (44), T(p;;) = 0 for all m, if X and Y are independent. For correlated X and Y,
T(pij) <0 for m =1 and T(p;j) = 0 for m = 0. For arbitrary values of m, it will be sensitive to pj; it can
take on negative or positive values for both m < 1 and m > 1 with no particular regularity and can
exhibit more than one extremum.

4.3. Directional Information Transfer Index

By dividing by the marginal entropy, the mutual information T can be normalized [65] as:

T _ _ (H_HLosi) _ HLast
g b= H =1 H

(45)

where Hj o is the amount of information lost. The ratio of T by H is called the Directional Information
Transfer (DIT) index. Mogheir and Singh [66] called it as the Information Transfer Index (ITI). The DIT
varies from zero to unity and denotes the fraction of information transferred from one station to
another. A zero value of DIT corresponds to the case where sites are independent and, therefore, no
information is transmitted. A value of unity for DIT corresponds to the case where sites are fully
dependent and no information is lost. Since DITxy = T/H(X) is not the same as DITyx = T/H(Y), DIT
is not symmetrical. The term DITxy describes the fractional information inferred by station X about
station Y, whereas DITyx describes the fractional information inferred by station Y about station X.
Between two stations, the station with the higher DIT should be given higher priority because of its
greater capability in inferring (predicting) the information at other sites. The DIT can be applied for
regionalization of the network or watersheds.

4.4. Reliability of Water Distribution Networks

A water distribution system can be designed by minimizing head losses, costs, risks and
departures from specified values of water quantity, pressure and quality and also maximizing
reliability [67]. Thus, it becomes a multi-objective optimization problem. However, it is not uncommon
to formulate the design problem as a single-objective optimization problem, where the system capital
and operational costs are minimized and, at the same time, the laws of hydraulics are satisfied and
the targets of water quantity and pressure at demand nodes are met. Fundamental to either type of
optimization is reliability [68-70].

To develop a Tsallis entropy-based redundancy measure of the network with N nodes, where
the nodes may be considered to constitute sub-systems, the Tsallis entropy of a node j can now be
expressed in terms of W;; as:

) . 1) g g
S]':m[gwij_wij )]:m{g [aj—(aj) I} (46)

where 1 is the entropy index and is a real number and S; is an entropic measure of redundancy at node
j and is local redundancy. Maximizing S; would maximize redundancy of node j and is equivalent
to maximizing entropy at node j. The maximum value of S; is achieved when all W;s or g;;/Q;’s are
equal. This occurs when all g;;'s are equal. For the entire water distribution network, redundancy is a
function of redundancies S;’s of individual nodes in the network.

The overall network redundancy can be assessed in two ways. First, the network redundancy can
be assessed by the relative importance of a link to its node and its importance recognized by g/ Q;.
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In this case, the redundancy is maximized at each node. It may, however, be noted that the network
redundancy is not a sum of nodal redundancies. Second, the network redundancy can be assessed by
the relative importance of a link to the total flow and its importance recognized by ¢;;/Qo. Here, the
proposition is that the importance of a link relative to the local flow is not as important as it is to the
total flow. In this case too, the network redundancy is not a sum of nodal redundancies. In order to
acknowledge the relative importance of a link to the entire network, the nodal redundancy S;+ can be
expressed as:

_ 1 n(j) ‘h‘j ‘71’;’ m _ 1 Q]. n(j) q[j m
5]**7m_1i:l[@—(@) ]*r_l[@—;(@) ] (47)

It may be noted that S+, given by Equation (47), is similar to the S; given by Equation (46). In this
case too, the maximum value of S]v* will occur when the qij values are equal at the j-th node. It can also
be shown that the maximum network redundancy will be achieved when all the g;; values are equal.
It may, however, be noted that

n(j) n(j) om—1
q,] % qij
- — 1 - - 48
L (G (@)1 A - LG )
This is because,
n(j) n(j) aij
Y i =Qj#Qoand ), =L #1 49)
i=1 = Qo

Therefore, in the second approach, Equation (47) can be used in the spirit of Tsallis entropy or
considering it via partial Tsallis entropy [36].

The network redundancy for N nodes is a function of redundancies of individual nodes, Si’s,in
the network. However, it will not be a simple summation of these nodal redundancies, because of the
non-extensive property of the Tsallis entropy. For the first approach, it can be shown that the network
redundancy (with N nodes) can be expressed as:

2
Stu.oN=_ ¥ Sj+(1-m) ¥ SpSp+(1-m)" ¥ SpSpSpt...
1<j<N 1<j1<j2<N 1<j1<j2<j3<N
N-1
+(1—m) ) Z . Sjlsjz‘..SjN
1<j1<j2...<jN<N

(50)

In order to develop an appreciation for Equation (47), it will be instructive to expand Equation (47)
in terms of flow quantities. Equation (47) is just the sum of nodal redundancies.
For the second approach, the network redundancy (with N nodes: 1,2, ..., N) can be expressed as:

N N2
St one = (m—1)N 1]1315]'* U ég [Q1524 ... SN« + Q2514834 - .. Snx + - - ONS14524 - - - SN_14]

@y
oot BE010 . QN 1SNa + Q1 Qs QN 2SNt + o+ Q205 ON Q]

It can be seen that Equation (51) for network redundancy with the second approach is significantly
different from Equation (50) with the first approach.

5. Problems Requiring Coupling with another Theory

There are some problems where the entropy theory can only be part of the solution methodology
and needs to be coupled with another theory. Consider, for example, hydraulic geometry of a river
or channel, which is defined by the relations between discharge and each of hydraulic variables (e.g.,
flow width, depth, velocity under bankfull conditions) and each of geometric variables (e.g., bed
roughness, slope). Hydraulic geometry is of two types: (1) downstream; and (2) at-a-point. For either
type, the values of hydraulic and geometric variables are average annual values corresponding to
the equilibrium or stable condition of the river. At this condition, the river will try to spend the least
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amount of energy for transporting water and sediment. In response to the influx of water and sediment
coming from the watershed, the river will adjust these variables or characteristics in order to attain the
stable condition. This means, the river will spread the adjustment as equitably as the environment will
allow and will follow the theory of minimum energy dissipation rate. The equal rate of adjustment can
be described by the principle of maximum entropy (POME) that the river will follow. In this manner,
the theory of minimum energy dissipation rate and entropy theory are combined for determining the
hydraulic geometry of a river or designing a stable canal. The advantage of the entropy theory is that it
explicitly allows to incorporate the constraints imposed by the watershed and the design. For example,
if a river is leveed, then it cannot adjust its width and the adjustment will be shared by depth and
velocity. Likewise, if a canal is lined, it cannot adjust its width, slope and roughness and will have
to adjust its depth and velocity. In this manner, a whole hierarchy of hydraulic geometry relations
can be obtained, depending on the constraints imposed. The other existing theories do not allow this
flexibility. In what follows, some specific examples of problems requiring coupling entropy theory
with other theories are presented.

5.1. Hydraulic Geometry

Hydraulic geometry is defined by relations between discharge (Q) and each of channel width (B),
flow depth (d), flow velocity (V), slope (S) and roughness factor (say Manning’s 11). Hydraulic geometry
is either downstream hydraulic geometry or at-a-station hydraulic geometry [71]. Langbein [72] and
Yang et al. [73] reasoned that hydraulic geometry relations correspond to the equilibrium state of the
channel. In order to attain this state, the channel adjusts its hydraulic variables and the adjustment
is shared equally among these variables. In practice, the channel is seldom in equilibrium, meaning
that the adjustment among hydraulic variables will be unequal. This, then, suggests that there will
be a family of hydraulic geometry relations, depending on the adjustment of hydraulic variables
and the adjustment should explain the variability in the parameters of hydraulic geometry relations.
For downstream hydraulic geometry, Singh et al. [19,20] hypothesized that, for a given influx of
discharge from the watershed, the channel would minimize its stream power by adjusting three
controlling variables: depth, width and friction.

Coupling the theory of minimum energy dissipation rate with the principle of maximum entropy,
three possibilities can occur corresponding to the spatial rate of adjustment of friction, the spatial rate
of adjustment of width and the spatial rate of adjustment of flow depth. These possibilities then lead
to the formulation of, respectively, the proportion of the adjustment of stream power (SP) by friction,
the proportion of the adjustment of SP by channel width and the proportion of the adjustment of
SP by flow depth and, hence, to four sets of hydraulic geometry relations, as follows: (1) the spatial
change in SP is accomplished by an equal spatial adjustment between flow width B and resistance
expressed by Manning's ; (2) the spatial variation in SP is accomplished by an equal spatial adjustment
between flow depth and flow width; (3) the spatial variation in SP is accomplished by an equal spatial
adjustment between flow depth and resistance; and (4) the spatial variation in SP is accomplished by
an equal spatial adjustment between flow depth, flow width and resistance. These four possibilities
can occur in the same river in different reaches or in the same reach at different times, or in different
rivers at the same time or at different times.

The hydraulic geometry relations are expressed as:

B=aQ" d=cQf, V=kQ", n=NQF, S =sQV (52)

where g, ¢, k, N and s are parameters; and b, f, m, p and y are exponents. Values of these exponents
and parameters depend upon the possibility under consideration and the entropy theory permits
explicit expressions for the exponents and parameters. Singh et al. [19,20] showed that most of the
downstream hydraulic geometry relations reported in the literature can be derived as special cases of
the entropy-based equations.
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For at-a-station hydraulic geometry, when discharge changes, a river cross-section can adjust
its width, depth, velocity, roughness and slope or a combination thereof. Singh and Zhang [21,22]
reasoned that the channel cross-section will adjust or minimize its SP by adjusting these four variables:
(1) Pg can be interpreted as the proportion of the temporal change of SP due to the temporal rate of
adjustment of width; (2) P, as the proportion of the temporal change of SP due to the temporal rate
of adjustment of depth; (3) P, as the proportion of the temporal change of SP due to the temporal
rate of adjustment of friction; and (4) Ps as the proportion of the temporal change of SP due to the
temporal rate of adjustment of slope. These cases involve probabilities of four variables, meaning that
any adjustment in hydraulic variables in combinations of two, three or four may occur. These give rise
to different configurations of adjustment that do indeed occur in nature [74]. Thus, the equality among
four probabilities yields 11 possibilities and, hence, leads to 11 sets of equations: (1) Pp = Py;; (2) Pp = Py;
() Pp = Ps; (4) Py = Pa; (5) Py = Ps; (6) Po = Ps; (7) Pg = Py = Po; (8) Pg = Po = Ps; (9) Pp =Py = Ps;
(10) Py, = Py = Ps; and (11) Pg = Pj, = P, = Ps. It should be noted that all eleven possibilities can occur
in the same river cross-section at different times, or in different river cross-sections at the same time
or at different times. Williams [75] explored 11 cases, which are similar to the above 11 possibilities.
The resulting hydraulic geometry relations are of the same form as Equation (52) but expression for
exponents and parameters therein are different.

5.2. Evaporation

Evaporation is a process by which liquid water is converted into water vapor. The process of
evaporation entails four elements [76]: (1) supply of energy; (2) supply of water; (3) tendency of
liquid water molecules to escape; and (4) turbulent transport. The source of energy that is needed
for evaporation to occur from land surfaces is solar radiation, which can be defined by radiative
flux. The supply of water can be from precipitation or irrigation, determining soil wetness, which is
characterized by soil moisture. Fugacity refers to the tendency of water molecules to escape and is
expressed by the saturated vapor pressure at the liquid-vapor interface. The turbulent transport of
water vapor and heat is determined by wind speed and thermal instability of the surface layer and
is defined by turbulent sensible heat flux into the atmosphere. Wang et al. [76] argued that, under
thermodynamic equilibrium, thermal and hydrologic states of the land surface resulting from the
interaction between land and atmospheric processes tend to maximize evaporation.

For a given radiative energy flux, the rate of evaporation depends on the combination of surface
soil moisture, surface soil temperature and sensible heat flux, as well as the dynamic feedbacks
among them at the land surface. There can be many combinations of ground and sensible heat fluxes,
evaporation rate and net radiation that can satisfy the energy balance. Wang et al. [76] hypothesized
that the preferred combination is the one that maximizes evaporation. Denoting the rate of evaporation
by E, surface soil moisture by w, surface soil temperature by T, sensible heat flux into the atmosphere
by H, ground heat flux by G and net radiative by R, at the surface, maximizing evaporation, subject to
the energy balance, the result is:

E =max|[E(w, T,H;R)|E+ H+ G = Ry] (53)

for all combinations of independent variables w, T and H. Wang et al. [76] investigated three
cases: (1) R = R, — G, representing the turbulent energy budget, as described by the Bowen ratio;
(2) R = Ry, corresponding to the partitioning of the net radiation into latent, sensible and ground
heat fluxes; and (3) R = R;, representing the budget of all surface energy fluxes. These cases express
land-atmosphere interactions.

6. Problems Involving Physical Relations

In water engineering, we often need to determine physical relationships, such as infiltration
rate as a function of time, runoff or discharge as a function of time, soil moisture as a function of
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depth from the soil surface, velocity as a function of flow depth measured from the bottom, sediment
concentration as a function of flow depth and sediment discharge as a function of time. For deriving
physical relationships, the probability domain and the physical domain need to be concatenated and
this can be done by hypothesizing the cumulative distribution function (CDF) of a design (dependent)
variable (e.g., flux, say discharge) in terms of independent (concentration) variable (e.g., stage of flow).

6.1. Hypotheses on Cumulative Probability Distribution Function

Different types of hypotheses have been formulated when applying entropy theory to derive
relationships for design variables. Examples of a linear hypothesis include velocity distribution as a
function of flow depth, wind velocity as a function of height, sediment concentration profile along
the flow depth, rating curve and groundwater discharge along the horizontal direction of flow. It is
noted that the CDF should have a one-to-one relation with the design variable (i.e., random variable)
of interest and its value should only be between 0 and 1; 0 for the minimum value of the random
variable and 1 for the maximum value. For deriving a two-dimensional velocity (i) distribution, Cui
and Singh [77] hypothesized a general form of the CDF as:

x 2 b NG

Fu)=1[1- (E) ] (5) forall (x, y) on I(u) (54)
in which y is the vertical dimension, x is the transverse direction, 2 and b are shape parameters and
B and D act as scale parameters or normalizing quantities. The CDF given by Equation (54) has a
one-to-one relationship with the velocity value u; in other words, the CDF is unique on each isovel I(u)
and has a value of 0 at I(0) and 1 at I(imax). Also, CDFisOatx=Bory=0andislatx=0andy=D

(Figure 3). It is continuous and differentiable in both x and y.

PSR o
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Figure 3. CDF of 2-D velocity distribution with 2 = 0.5, b = 0.2 in the idealized cross-section.

The two-dimensional (2-D) velocity distribution can also be expressed by transforming the
Cartesian coordinates [vertical (y) and transverse (x)] into curvilinear s-r coordinate system in which r
has a unique, one-to-one relation with a value of velocity and s (coordinate) curves are their orthogonal
trajectories [56]. Then, the CDF of velocity in a channel cross section can be expressed as:

r—ro

F(u) = (55)

"max — 10

where 7 is a coordinate between r( and 7,4y and corresponds to y.
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For the one-dimensional (1-D) form of Equation (54) with b = 0, it is seen from Equation (54) that
the CDF will remain between 0 and 1 when 0 < x < Band 0 <y < D. Thus, the CDF for 1-D velocity
distribution can be simplified as:

F(u) = (%)a forall (y) on I(u) (56)

This equation implies that the shape parameter a is critical. If 2 = 1, then

F(u)::(%%)foraﬂ(y)onl(u) 7)

In cases where the design variable is maximum at y = 0 and minimum at maximum y (i.e., y = D), as is
the case for suspended sediment concentration, it is distributed from a maximum value at the channel
bed and decreases towards the water surface. Hence, the CDF should be assumed in a way so that it is
1 at the channel bed (y = 0) and 0 at the water surface (y = D). The CDF of sediment concentration can
then be expressed as:

Fe) =1- (%) (58)

It is seen from Equation (58) that F(c) will be between 0 and 1if 0 <y < D.

6.2. One-Dimensional Velocity Distribution

Velocity distribution is needed for determining flow discharge, scour around bridge piers, erosion
and sediment transport, pollutant transport, energy and momentum distribution coefficients, hydraulic
geometry, watershed runoff and river behavior. Velocity distributions have been derived using
experimental, hydrodynamic, or entropy methods. Shannon entropy has been applied to derive
one- and two-dimensional velocity distributions [26]. Singh and Luo [11,78] and Luo and Singh [12]
employed Tsallis entropy to derive the 1-D velocity distribution. The Tsallis entropy-based velocity
distribution has been shown to have an advantage over the Shannon entropy-based distribution.
However, in these entropy-based velocity distributions, the CDF has been assumed to be linear,
meaning the velocity is equally likely along the vertical from the channel bed to the water surface.
This assumption is fundamental to the derivation of velocity distributions but has not been adequately
scrutinized. Further, this assumption is weak and may partly explain the reason why these velocity
distributions do not accurately describe the velocity near the channel bed.

For deriving 1-D velocity distribution, the constraint equation is derived using the continuity
equation such that g1 (1) = u and limits of integration are 0 and up (maximum velocity at the surface or
flow depth D). The entropy theory then yields the probability density function of velocity u:

f = |2

- (As + Alu)} m (59)

where A, = ﬁ + Ap.
Following Cui and Singh [77], the CDF of u can be hypothesized as Equation (56). Then, a general
velocity distribution based on the Tsallis entropy theory [14] is obtained as:

w27 @

Equation (60) can be simplified by defining a dimensionless parameter G as:

A lm
/\1 )\1771—1

u =

Al“max

_ 61
Alumax + Ay ( )
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Parameter G can be regarded as an index of the velocity distribution uniformity. Equation (60)
can be cast as:

L —é<1 — (-G + (1-(1-G)"1) (D)a)m"’l> (62)

umax

Equation (62) shows that for a given m value, the velocity distribution can be obtained with only
two parameters: a2 and G. A bigger G value tends to slow the growth of the velocity from the channel
bed to the water surface, while the parameter 4 has an opposite effect. A lower value of G tends
to linearize the velocity distribution and a higher value non-linearize. The opposite is the case for
exponent a. The velocity distribution is more sensitive to a than to G.

6.3. Two-Dimensional Velocity Distribution

For two-dimensional (2-D) velocity distribution, Chiu [56] proposed a transformation that converts
the Cartesian coordinates [vertical (y) and transverse (z)] into curvilinear s-r coordinate system, in which
r has a unique, one-to-one relation with a value of velocity and s (coordinate) curves are orthogonal
trajectories to r. Following the coordinate system of Chiu [56], Luo and Singh [12] employed the Tsallis
entropy. Then, expressing the CDF of velocity in a channel cross section by Equation (57), the velocity
distribution becomes

" m—1
,oom 1 r—ro m—1 =
u= (M1)/\]{<A1rmaxr0> + {( p” ))\*} } N (63)

Defining entropy parameter M = Aju2,,, the dimensionless velocity distribution can be
expressed as:

= 64
Umax M (64)

u Z{M( r—rop (4_M)2r4—M

Tmax — rO) + 16 2M

The Tsallis entropy-based approach of Luo and Singh [12] was either superior or comparable
to Chiu’s distribution for the data sets used therein for testing. However, due to the complexity of
the coordinate system and a large number of parameters used, the application of these methods may
be limited. Later, using normal x-y coordinate system, Cui and Singh [13] obtained the 2-D velocity
distribution equation as:

m=1

A1 om m—1 wtr] "
u= _)Tl + /Tlﬁ |:/\1F(”) + (T/\*) ] (65)

where the CDEF, F(u), is defined as Equation (54). As defined in the case of one-dimensional velocity
distribution, the dimensionless entropy parameter G is also used here as:

Alumax

= 66
MUmax + Ak ( )

Parameter G is found to be related to the ratio of mean and maximum velocity and a quadratic
relation is obtained by computing from observed mean and maximum velocity values as [13]:

u

= ¥(G) = 0.554G2 — 0.077G + 0.568 (67)

Umax
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Now, with the use of Equation (67), the general velocity distribution Equation (65) can be cast as:

u :1—l<1— [(1—G)%+<1—(1—G)%>F(u)] "’,;1> .

Umax G

Equation (68) is the general 2-D velocity distribution equation in terms of parameter G and
maximum velocity.

6.4. Suspended Sediment Concentration

The sediment concentration distribution can also be derived using Tsallis entropy. For deriving
the one-dimensional sediment concentration distribution, the constraint equation is derived using the
mean concentration, such that g;(c) = ¢ and limits of integration are 2 = ¢y (maximum concentration at
the bed surface or flow depth D = 0) and b = 0 at the water surface, as [16]:

1

m—1

fO = "o+ ma)| " (©9)

where A, = -1 + Ag. Equation (69) is the least-biased entropy-based probability density function of
sediment concentration, which is fundamental to determining the sediment concentration distribution.
The dimensionless sediment concentration can then be obtained as:

é -1 7%(1 _ {(1 — N)#T 4 [1 -1 7N)n31}1—"(c)}m’;1> (70)

where N is a dimensionless parameter as a function of maximum concentration and the Lagrange
multipliers expressed as:
Aico
— 71
Aqco + As @D
By plotting the empirical observations of the mean over the maximum concentration values and
corresponding N values, the implicit function can be regressed as a quadratic polynomial as:

= 0.176 + 0.5083N — 0.1561N?2 72)

S|l

with a coefficient of determination as 0.99. Thus, N can be used for deriving sediment concentration
distribution instead of solving nonlinear equations for A; and A..

6.5. Sediment Discharge

The suspended sediment discharge can be computed simultaneously by integrating sediment
concentration and velocity over the cross-section where the velocity distribution and sediment
concentration can be obtained empirically as well as using the Tsallis entropy theory. That is, suspended
sediment discharge can be derived using different combinations of entropy-based and empirical
methods for velocity and sediment concentration distributions. Thus, the suspended sediment
discharge can be computed with the use of entropy in three ways: (1) velocity distribution by a standard
formula and concentration distribution by an entropy-based equation; (2) velocity distribution by
an entropy-based equation and concentration distribution by a standard formula; and (3) velocity
distribution and concentration distribution both by entropy-based equations. In the discussion that
follows, only the combination where both are derived using Tsallis entropy is considered.
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The Tsallis entropy-based velocity distribution [13], given by Equation (68) and sediment
concentration [16], given by Equation (70), are integrated from bottom of the channel to the water
surface to obtain the suspended sediment discharge, as:

= D[1— 1 (1— 1405InN)F(c) — 051 N2/3>]
qsfumaxcog‘ N (( Sln c 5InN) 73

[1- 40— (14051 G)F(u) — 0510 G)* | dy

To get an explicit solution of Equation (73) is difficult; however, it can be simplified with the use
of mean values. The first term in the integration can be replaced by mean sediment concentration and
the second term can be replaced by mean velocity, such that Equation (73) reduces to

Gs = Ditmaxco(0.554G? — 0.777G + 0.568) (0.554N* — 0.777N + 0.568) (74)

which provides a simple method to compute sediment discharge. Entropy parameters G and N are
fixed for each channel cross-section [17]. Thus, once the entropy parameters have been obtained
for some known cross-section, with observed maximum velocity and sediment concentration, the
sediment discharge can be obtained with ease.

6.6. Flow-Duration Curve

The flow-duration curve (FDC) is used for predicting the distribution of future flows, forecasting
of future recurrence frequencies, determining low-flow thresholds for defining droughts, generating
hydropower, constructing load-duration curves, determining power-duration curves and comparing
watersheds. For deriving an FDC, it is assumed that temporally-averaged discharge Q is a random
variable, varying from a minimum value Q,,;, to a maximum value Q,;,x, with a probability density
function (PDF) denoted as f(Q). The time interval for which the discharge is averaged depends on the
purpose of constructing an FDC but it is often taken as one day. Considering g;(x) = mean Q = Qyean,
the PDF of Q can be derived as [79]:

1

f(Q)=[’"—_1( ! fAOfAlQ)}"H 75)

m m—1

It is interesting to note that at Q = 0, f(Q) becomes {[(m —1)/m][(1/(m —1)) — AO]}l/(m*l).
Similar to velocity distribution, a dimensionless parameter M can be defined as:

M= )‘] Qmax

= a=max 76
AlQmax — Ay ( )

It was found [79] that M is linearly related to the ratio between the mean flow and the maximum
flow, which, using regression, can be written as:

M = 2246 — 4891 -2 (77)
Qmax
with the squared correlation coefficient of 0.9972. The FDC can be expressed as:
m 1 m—1
o =13~ = {~ ()" TG T TRQ) +1 o
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7. Conclusions

A survey of the literature shows that the Tsallis entropy theory has great potential to address
a wide range of problems in water engineering and in many other fields, as reviewed in this paper;
see also [80-85] for some more recent studies. As generalization of the Shannon entropy, the Tsallis
entropy can be applied in generalized equilibrium and statics in physics. The advantage of using
the theory is that it can combine statistical information with physical laws, permits deriving physical
relations as functions of time or space and derives probability distributions in terms of the specified
constraints. However, analysis using the Tsallis entropy theory becomes complicated when one or
two constraints are involved and it is more difficult to obtain the analytical expressions. Besides,
the m-statistic must be carefully chosen when applying the Tsallis entropy, since it sometimes
involves complex operations. Although entropy is a thermodynamic quantity, development of the
thermodynamic basis of entropy-based relations has not been accomplished yet. Until now, the
Tsallis entropy has been applied to determine frequency distributions, network evaluation, hydraulic
geometry, evaporation, velocity distribution, sediment concentration distribution, flow duration curves
and several other problems, as reviewed above. The outcomes are certainly encouraging. Until now,
as we have reviewed in this paper, the Tsallis entropy theory has been applied in water engineering
particularly with the principle of maximum entropy (POME). There is, however, also potential to
combine the Tsallis entropy with the minimum relative (cross) entropy, for the condition that prior
assumptions can be made. There is no question that the Tsallis entropy theory has a much greater
potential to study a wide spectrum of problems in water engineering. It is hoped that this review will
stimulate further interest in this fascinating field.
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Notation

B channel width

c sediment concentration

Cr constraint

D water depth

E evaporation

f(x) probability density function

G ground heat flux

H entropy

Al(x;) gain in information
k=1—m)/m

m Tsallis entropy index

n Manning's n

N natural number representative
pi probability

Q flow

s sediment discharge

R net radiative

S; entropic measure of redundancy
u velocity
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X transverse direction

v vertical dimension

o2 variance

Ay Langrange multiplier

1y first moment

W second moment

w surface soil moisture
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Abstract: Two methods based on the principle of maximum entropy (POME), the ordinary entropy
method (ENT) and the parameter space expansion method (PSEM), are developed for estimating
the parameters of a four-parameter exponential gamma distribution. Using six data sets for annual
precipitation at the Weihe River basin in China, the PSEM was applied for estimating parameters
for the four-parameter exponential gamma distribution and was compared to the methods of
moments (MOM) and of maximum likelihood estimation (MLE). It is shown that PSEM enables the
four-parameter exponential distribution to fit the data well, and can further improve the estimation.

Keywords: four-parameter exponential gamma distribution; principle of maximum entropy;
precipitation frequency analysis; methods of moments; maximum likelihood estimation

1. Introduction

Hydrological frequency analysis is a statistical prediction method that consists of studying
past events that are characteristic of a particular hydrological process in order to determine the
probabilities of the occurrence of these events in the future [1,2]. It is widely used for planning,
design, and management of water resource systems. The probability distributions containing four or
more parameters may exhibit some useful properties [3]: (1) versatility and (2) ability to represent
data from mixed populations. Among these distributions, some popular distributions are Wakeby,
two-component lognormal, two-component extreme value distributions, and the four-parameter
kappa distribution. Since the pioneering stream flow records frequency analysis of Herschel and
Freeman during the period from 1880 to 1890, hydrological frequency analysis has undergone extensive
further development. There are a multitude of methods for estimating parameters of hydrologic
frequency distributions. Some of the popular methods include [3,4]: (1) the method of moments; (2)
the method of probability weighted moments; (3) the method of mixed moments; (4) L-moments; (5)
the maximum likelihood estimation; (6) the least square method; and (7) the entropy-based parameter
estimation method.

Among the above parameter estimation methods, entropy, which is a measure of uncertainty of
random variables, has attracted much attention and has been used for a variety of applications
in hydrology [5-23]. For example, an entropy-based derivation of daily rainfall probability
distribution [24], the Burrr XII-Singh-Maddala (BSM) distribution function derived from the maximum
entropy principle using the Boltzmann-Shannon entropy with some constraints [25]. “Entropy-Based
Parameter Estimation in Hydrology” is the first book focusing on parameter estimation using entropy
for a number of distributions frequently used in hydrology [3], including the uniform distribution,
exponential distribution, normal distribution, two-parameter lognormal distribution, three-parameter
lognormal distribution, extreme value type I distribution, log-extreme value type I distribution,
extreme value type III distribution, generalized extreme value distribution, Weibull distribution,
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gamma distribution, Pearson type III distribution, log-Pearson type III distribution, beta distribution,
two-parameter log-logistic distribution, three-parameter log-logistic distribution, two-parameter
Pareto distribution, two-parameter generalized Pareto distribution, three-parameter generalized Pareto
distribution and two-component extreme value distribution. Recently, two entropy-based methods,
called the ordinary entropy method (ENT) and the parameter space expansion method (PSEM)), that
are both based on the principle of maximum entropy (POME) have been applied for estimating the
parameters of the extended Burr XII distribution and the four-parameter kappa distribution [5,16]. The
results of the estimation show that the entropy method enables these two distributions to fit the data
better than the other estimation methods. In the above method of entropy-based parameter estimation
of a distribution, the distribution parameters are expressed in terms of the given constraints, and then
the method can provide a way to derive the distribution from the specified constraints. The general
procedure for the ENT for a hydrologic frequency distribution involves the following steps [3]: (1)
define the given information in terms of the constraints; (2) maximize the entropy subject to the given
information; and (3) relate the parameters to the given information. The PSEM employs an enlarged
parameter space and maximizes the entropy subject to the parameters and the Lagrange multipliers [3].
The parameters of the distribution can be estimated by the maximization of the entropy function.

The Pearson III distribution is recommended as a standard distribution to fit hydrological data
in China. In addition, generalized Pareto distribution (GPD), generalized extreme value (GEV) and
three-parameter Burr type XII distribution also have been applied flood frequency analysis [26].

Inspired in large part by the two-parameter gamma distribution, a four-parameter exponential
gamma distribution has been developed to apply in many areas, such as wind and flood frequency in
Yellow River basin, Yangtse River basin, Aumer Basin and Liaohe River basin of China [4]. Depending
on the parameter values, the four-parameter exponential gamma distribution can be turned into
a Pearson type III distribution, Weibull distribution, Maxwell distribution, Kritsky and Menkel
distribution, Chi-square distribution, Poisson distribution, half-normal distribution and half-Laplace
distribution. The properties of the four-parameter exponential gamma and relations between this
distribution and other distributions have been investigated [4]. These investigations suggest that
the four-parameter exponential gamma distribution may have a potential in hydrology. Despite the
advances mentioned above, the entropy-based parameter estimation for the four-parameter exponential
gamma distribution has received comparatively little attention from the hydrologic community.

The objective of this paper is to apply two entropy-based methods that both use the POME for
the estimation of the parameters of the four-parameter exponential gamma distribution; compute the
annual precipitation quantiles using this distribution for different return periods; and compare these
parameters with those estimated when the methods of moments (MOM) and maximum likelihood
estimation (MLE) were employed for parameter estimation.

2. Four-Parameter Exponential Gamma Distribution

2.1. Probability Density Function and Cumulative Distribution Function

The probability density function (PDF) of the four-parameter exponential gamma distribution
can be expressed as [4]:

flx) = blfa(tx) (x—8)F e PO 5 < x < o0 @

where « B, 6 and b are, respectively, the shape, scale, location and transformation parameter.
Depending on the values of the four parameters « , § and b, Equation (1) turns into the following
special cases:
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(1) If b = 1, then Equation (1) becomes the Pearson type III distribution:

F(3) = gy (x =9 e @

If 6§ = 0, Equation (2) becomes a gamma distribution:

B «1,-p
_ a—1_—PBx
fl) = g te ®
2 Ifé6=0,b= %, a=2Landp = %, then Equation (1) reduces to the Weibull distribution:
m 1 (e s\m
fx) = =) emal) 4)

B3)Ifs =00 = %, o = % and B = %, then Equation (1) becomes the three-parameter
Weibull distribution: " .

= — e T 5

4T (E) o

(4)If § = 0and B = %, then Equation (1) reduces to the Kritsky and Menkel distribution:
ab

S il
f(x) T )xb (6)

G)Ifé=0,b=1,a=75and = %, then Equation (1) becomes the Chi-square distribution:

1 n X
f(x)= ﬁxrle_j 7)
22T (%)

6)If6=0,b=1a =k+1and g =1, then Equation (1) reduces to the Poisson distribution
f) =T ®

NHlfd=a,b=a= % and g = then Equation (1) becomes the half-normal distribution:

20-2 ’

2 efﬁ(xfa)z )

®)Ifé6=0,b= %, w= % and g = a%, then Equation (1) becomes the half-normal distribution:

fl) = o= (10)

9 Ifb=1,a=1and B = %, then Equation (1) reduces to the half-Laplace distribution:

fx) = 5T an

The cumulative distribution function (CDF) of the four-parameter exponential gamma distribution
can be expressed as:

o « 1
P=F(X<x,) = /f / s <O 1=Bl=0)b gy (12)
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Lett = B(x — 5)%, then x = + ﬁtb, x—0= ﬁtb and dx = %tb‘ldt. Substitution of the above
quantities in Equation (12) yields [4]:

_ 1 a—1,—t
P=| Wt etdt (13)

1
where t, = B(x, — 6)? and can be determined by the incomplete gamma function.

2.2. Quantile Corresponding to the Probability of Exceedance

The quantile corresponding to the probability of exceedance p, xp, is obtained by Equation (14) or
Equation (15):

1
xp =0+ ﬁt; (14)
xp =X(14+@,Cy) (15)

here, ¥ and C, are the mean and coefficient of the variation of a sample, respectively, and @, is the
frequency factor corresponding to x,. Given the expectation and variance of the population, the
frequency factorr ®,, is given by [4]:
Xp— 1y T (a) —T(a +b)
b=
Vi VT ()T (& +2b) — (2 +b)

D, = (16)

where ', and p» are the expectation and variance of the population.

If b = 10, the frequency factors of the four-parameter exponential gamma distribution, ®,, are
very close to that of the log-normal distribution (Table 1). If Cs = 1.1395, the ®,, values are very close
to that of the Gumbel distribution (Table 2).

Table 1. Frequency factors of the four-parameter exponential gamma distribution and log-normal
distribution (b = 10).

P (%
Cs  Distribution )
0.01 0.1 1 5 20 50 90 99
02 Four-parameter exponential gamma  4.17 3.39 2.47 170 0830 —0.033 —126 —2.18
’ log-normal 417 339 247 170 0.830 —0.033 —-1.26 -—218
20 Four-parameter exponential gamma  9.44 6.23 3.53 190 0.614 —0.240 —0.963 —1.26
’ log-normal 9.51 624 352 189 0.614 —0.240 —0.967 —1.28

Table 2. Frequency factors of the four-parameter exponential gamma distribution and Gumbel
distribution under C; = 1.1395.

P 0/0
Distribution )
0.01 0.1 1 5 20 50 90 99
Four-parameter exponential gamma 6.80 4.92 3.12 1.87 0.728 —0.166 —1.10 —1.61
log-normal 6.80 4.94 3.14 1.87 0.728 —0.164 —1.10 —1.64

2.3. Cumulants and Moments

The first three cumulants of the four-parameter exponential gamma distribution are expressed
as [4]:

_ b+ a)
ky =0+ B 17)
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T(a)T(a +2b) — T2(a +b)

S o
i T2(a)T (& +3b) — 3T ()T (a 4 b)T(a + 2b) 4 2T% (& + b) 19)
i T ()

Using the relations between moments and cumulants and Equations (17)-(19), the expression for
the first four moments of the four-parameter exponential gamma distribution are given below:

_ _ T'(a+b)
v =EX)=0d+ BT() (20)
 T(a+2b) T(a+b) o
T g e ey
 T(a+3b) T2b+a) _,T(b+a) 4
% = ) +36 ST () +36 BT () +6 (22)
= T(a+4b) +4§I“(zx+3h) +652F(zx+2b) +4§3T(vc+b) Y 23)

-~ BUT(w) BT (w) BT (w) BT (a)
In next sections, we use two methods of parameter estimation, ENT and PSEM, to derive the
parameters estimation expression of the four-parameter exponential gamma distribution.

3. Ordinary Entropy Method

For ENT, three steps are involved in the estimation of the parameters of a probability distribution:
(1) specification of appropriate constraints, (2) derivation of the entropy function of the distribution,
and (3) derivation of the relations between parameters and constraints [3,16].

3.1. Specification of Constraints

Taking the natural logarithm of Equation (1), we obtain:
« 1
Inf(x) =alnf—Inb—InT(a)+ <E - 1) In(x —0) — B(x —6)7? (24)
Multiplying Equation (24) by [-f(x)] and integrating from ¢ to co, we obtain the entropy function:

S = —/;of(x)lnf(x)dx =—alnp+Inb+InT(a)— (% — 1)E[In(x—(5)] +ﬁ~E{(x—5)%] (25)

To maximize S in Equation (25), the following constraints for Equation (25) should be satisfied

/;of(x)dx -1 (26)
/;°1n(x75)f(x)dx — Efln(x — 6)] (27)
'Lmln(xfé)%f(x)dx = E[In(x~ )} (28)
[ a0 pax = B - o)t 29)

3.2. Construction of Partition Function and Zeroth Lagrange Multiplier

The least-biased pdf, f(x), consistent with Equations (26) to (29) and corresponding to the POME
takes the form:
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f(x) = exp[~Ao = MIn(x = 8) — A In(x — 8)F — As(x — 5)%] (30)

where Ag, A1, A2 and A3 are Lagrange multipliers. Substitution of Equation (30) in Equation (26) yields:
/;o exp[~A0 — MIn(x — 8) ~ AaIn(x — 8)} — As(x — 8)}|dx =1 (31)

The argument of the exponential function on the left side of Equation (31) has two parts: zeroth

Lagrange multiplier without the random variable and four Lagrange multipliers with the random
variable. The zeroth Lagrange multiplier part is separated out and is expressed as:

exp(Ao) = /:° exp[ A In(x —8) — Aaln(x — 8)} — As(x — )} ] dx (32)

b
To calculate the above integral, let y = As(x — 6)%, then x = (A%) +9, dx = %ybildy.
3

Substituting the above quantities in Equation (32), we obtain:

o (y ) MHR) b b1
exp(do) = Jo (g) rexp(—y)ypy T dy

b - — — b
_ Ab,(MlJﬂ\z) ‘ Ooo yb (bA1+A2)—1 | e ydy = /\h—(b,’\1+}\2) F[b — (b)\l + /\2)]
3 3

(33)

Taking the logarithm of Equation (33) results in the zeroth Lagrange Ay multiplier as a function of
Lagrange multipliers A1, A; and A3, with the expression given as:

Ao =1Inb—[b— (bA; + A2)]InAs + InT[b — (bA; + A3)] (34)

=

Ao =1In /;° exp A1 In(x —8) — AaIn(x — 8)F — As(x —8)} |dx (35)

3.3. Relation between Lagrange Multiplier and Constraints

Differentiating Equation (35) with A1, A, and A3, we obtain the derivatives of Ay with respect to
A1, Az and A3, the detailed derivations are given in Appendix B:

%‘; = —E[In(x — 6)] (36)
% - —E[ln(x - 5)%] 37)
%2 . —E[(x—5)%] (38)
Furthermore, we can write:
Te = efw-ol] - {e[e-at]) )

Additionally, differentiating Equation (34) with A1, A, and A3, we obtain:

Ao

v bInAz — by[b — (bA1 + A2)] (40)
A
0 = A =yl — (b + 1) )

67



Entropy 2017,19,189

Mo b—(bA+ 1)

Ay A3 (42)
%: bf(bi\é+/\2) 43)

Equating Equations (36) and (40), we obtain:
— E[In(x —6)] =bInAz — byp[b — (bA1 + Ap)] (44)

Equating Equations (37) and (41), we obtain:
— E[In(x - 8)F] =InAs — ¢[b - (bA1 +12)] 45)

Equating Equations (38) and (42), we obtain:
—E[x-o)}] = 771"(1’2”‘2) (46)

Equating Equations (39) and (43), we obtain:
O e N e e )

3.4. Relation between Lagrange Multiplier and Parameters
Introduction of Equation (34) in Equation (30) produces:
f(x) = exp{—Inb+ [b— (bA1 +A2)] InAs — InT[b — (bA1 + A2)] — Ay In(x — &) — Aa In(x — 8)F — As(x — &)F }
—exp(Inb1) -exp {111 Aé*“’“*"ﬂ . exp{ln m}
explin(x - 8) ] -exp [ln(x - 5)*%} oxp[-Aa(x - o)t 48)
=AM (- 5T exp [7)‘3(;{ - 5)%]
- % B AN
a comparison of Equation (48) with Equation (1) shows that:

A3=p (49)
bAi+Ady=b—ua (50)

3.5. Relation between Parameters and Constraints

The four-parameter exponential gamma distribution has four parameters &, 8, 6 and b that are
related to the Lagrange multipliers by Equations (49) and (50). In turn, these parameters are related to
the known constrains by Equations (44)—(47). Eliminating the Lagrange multipliers among these four
sets of Equations, we can obtain the following Equations:

bInp —bip(a) + E[In(x —5)] =0
Ing — (a) +E[ln(x7(5)%] -0
E[x-)t] -8 =0 41)

E[(x—a)%]z— {E[(x—é)ﬂ}z—é =0
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4. Parameter Space Expansion Method

4.1. Specification of Constraints

Following reference [3], the constraints consistent with the POME method and appropriate for
the four-parameter exponential gamma distribution are specified by Equations (26), (27) and (29).

4.2. Construction of Zeroth Lagrange Multiplier

The least-biased pdf corresponding to POME and consistent with Equations (26), (27) and (29)

takes the form: )
flx) = exp[—)\o —AIn(x —9) —Az(x—(S)?] (52)

where Ay, A and A, are Lagrange multipliers. Substitution of Equation (52) into Equation (26) yields
/5 exp[—o — M In(x — 8) = Ap(x — 6)F |dx = 1 (53)
o0 _a 1
exp(Ag) = / (x—0)"" exp[f)xz(x - 5)b]dx (54)
Jé

b
Lety = Aa(x — 5)%, then x = (A%) +6,dx = %ybildy, Substituting the above quantities in
2

Equation (54) and changing the limits of integration, we obtain:

o —bM _
exp(ho) = Ji7 (1) - exp(—y) vty

b e , (55)
= Wfo yrthelevdy = Wf(b —bAq)
2 2
This yields the zeroth Lagrange multiplier:
A =Inb— (b—bA)InAy +InT (b —bAq) (56)
4.3. Derivation of Entropy Function
Introduction of Equation (56) into Equation (52) yields:
f(x) = exp[~Inb+ (b= bAr) InAs — InT(b = bAy) — Ay In(x — 8) — Aa(x — 6)
(7)
/\bfb/\l _ 1
= wrgpy (x — 8) M exp|—Aa(x — 6)? ]
a comparison of Equation (57) with Equation (1) shows that:
o
M=1- 3 (58)
A =B (59)
taking the logarithm of Equation (57) yields:
Inf(x)=(b—bA)InAy —Inb—InT(b—bAy) — ApIn(x — 6) — Aa(x — (5)% (60)

then, making use of Equation (60), the entropy function can be written as:
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§=—[5 f(x)Inf(x)dx
=I5 [—(b—bAl)mA2+1nb+1nr(b—bA1)+A11n(x—5)+A2(x—(s)%]f(x)dx 61)
—(b—bM)In Az +Inb+InT(b—bAr) + ME[In(x — 8)] + AE[(x — )}

4.4. Relation between Parameters and Constraints

Taking partial derivatives of (61) with respect to b, J, A1, and Ay, and equating each derivative to
zero yields:

;Tsl =0=>blnAy —by(b—bA;) + E[In(x — 8)] (62)
;Tszzo:fb;f)‘l +E[(x-0)}] 63)
3%:0:_(1_Al)lnAz+%+(1_;\1).¢(b—b/\1)—Q—ZE{( (5)1171n(x—<5)] (64)
g% —0= 4@(%) - %E[( —8)b] (65)

Introduction of Equations (58)—(59) into Equations (62)—(65) and recalling Equations (62)—(65)
yields, respectively:
bInp —by(a) + E[ln(x — )] =0
%—E[(x—&)P]:O 1
~$np+}+ g (@) - HE[(x— o) In(x—6)] =0
-1
(5 -DE(5) - BE[(x=9)7 "] =0

The expectations of Equation (66) are replaced by their sample estimates, and the simplification of
Equation (66) leads to:

(66)

(67)

Equations (51) has the second moments and results in some biases. Therefore, Equation (67)
should be used for the estimation of the parameters.

5. Two Other Parameter Estimation Methods

Two other methods of parameter estimation frequently used in hydrology are the method of
moments (MOM) and the MLE method.

5.1. Method of Moments

The four-parameter exponential gamma distribution has four parameters «, 8, 6 and b.Therefore,
four moments are needed for the parameters estimation. The detailed derivation of the four moments
is presented in Appendix A:
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_ T(a)T(a+2b)—T2(a+b)
BT (a)
E{ /517 a b)
(68)
W ﬁb?(—b)) + (5
E[(x

[ J~
o

For a sample, x = {x1,x2,-- -, X}, the estimation equations become:

n 2
%ig(xi _ Y)Z _ l"(ac)r(ﬁ(;;bzrl?z)(a]; (a+b)
19 (1 _ Br(a=b)
"L ((xi"? R (69)
— _ T(a+tb
= pr@ 0

Y.
1=
—~
2

I
>,
=
=
Il
=R

n
_1
where 1 is the sample size; x = ‘Z X;.

5.2. Method of Maximum Likelihood Estimation

For the MLE method, the log-likelihood function L for a sample x = {xy,x,- - - , X, } is given by:

(-0t (70)

=
=

n
InL=nalnf—nlnb—nInT(a bZln(x, )= Y In(x; —
i=1

i=1

The MLE's of parameters &, B, 6 and b are taken to be the values that yield the maximum of
In L. Differentiating Equation (70) partially with respect to each parameter and equating each partial
derivative to zero produces:

n L (71)
%_ Y(xi—6)P =0

i=1
—%—lf—zi)z:lln(x,—é)—&-bﬁzig[(xz—(5)?1( —5)] 0

These are the parameter estimation Equations, and the obtained results are the same as those of
the PSEM method.

6. Evaluation and Comparison of Parameter Estimation Methods

The PSEM as presented in this paper is used for six annual precipitation data sets observed from
1959 to 2008 without any missing records at the Weihe River basin of China. All data are obtained from
the National Climate of China Meteorological Administration and are complete. The characteristics
of these data are summarized in Table 3. Obviously, all annual precipitation records have very low
first-order serial correlation coefficients, p. Using Anderson's test of independence, the results have
shown that these gauge data have an independent structure at 90% confidence levels. Hence, they are
suitable for the application of meteorological frequency analysis.
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Table 3. Characteristics of data used for parameter estimation.

Standard Coefficient of

Site Name Mean e e Skewness Kurtosis First-Order Serial
Deviation Variation . . .
Correlation Coefficient

Xi'an 571.9 126.9575 0.2220 0.2938 3.1935 —0.11399
Zhouzhi 635.2 158.7627 0.2499 0.6613 3.6873 0.16198
Lantian 713.7 150.0908 0.2103 0.2787 3.1394 0.02126
Huxian 633.8 147.5611 0.2328 0.3582 3.1987 0.05029
Lintong 579.5 129.2021 0.2230 0.6108 3.5747 0.04745
Wugong 606.7 158.2829 0.2609 0.5710 3.0826 0.09791

None of the above-discussed three methods yielded explicit solutions for the estimation
of parameters of the four-parameter exponential gamma distribution. The parameter
estimation Equations were therefore solved for a, B, 6 and b by the four-dimensional
Levenberg-Marquardt method.

F] =0
Equations (67)—(68) and (71) can be simplified as the form of 11::2 - 8 . Then, according to the
=
F,=0

above procedures the Matlab (Version R2007b) computer codes were developed and used to calculate
the parameters. To verify the validities of parameters, the left side functions F;, F,, F3 and F; in
Equations (67)-(68) and (71) are listed Table 4. It is seen that these compute quantities are close to zero,
indicating satisfactory performance of the four dimensional Levenberg-Marquardt algorithm.

Table 4. The left side functions F;, F,, F3 and F4 in Equations (67)—(68) and (71).

Site Name Methods F F F; Fy

PSEM 0.00581 0.00350 0.00000 —0.08445

Xi'an MLE 0.00581 0.00350 0.00000 —0.08445
MOM 0.00842 —0.00000 0.00000 0.07950

PSEM 0.00144 0.00174 0.00000 —0.01937

Zhouzhi MLE 0.00144 0.00174 0.00000 —0.01937
MOM 0.01241 —0.00007 0.00000 0.02139

PSEM 0.00244 0.00206 0.00000 —0.07525

Lantian MLE 0.00244 0.00206 0.00000 —0.07525
MOM 0.00493 —0.00000 0.00000 0.01965

PSEM 0.00242 0.00199 0.00000 —0.05926

Huxian MLE 0.00242 0.00199 0.00000 —0.05926
MOM 0.00533 —0.00006 0.00000 0.08050

PSEM 0.00086 0.00107 0.00000 —0.08474

Lintong MLE 0.00086 0.00107 0.00000 —0.08474
MOM 0.03094 —0.00002 0.00000 0.02216
PSEM —0.00047 —0.00132 0.00000 0.00726
Wugong MLE —0.00047 —0.00132 0.00000 0.00726
MOM 0.00285 —0.00001 0.00000 0.00850

The values of the distribution parameters are given in Table 5. The results of PSEM and MLE are
the same. To evaluate and compare the performance of the three methods, the relative error (RERR)
was employed that can be defined as:

s — x,\ 2
REER = 12<u> 72)
i3 Xoi



Entropy 2017,19,189

where x(; and x,; are the observed and predicted values of a given (i-th) quantile, respectively, and n is
the sample size. The RERR values are summarized in Table 5.

Table 5. Parameter values estimated by the three methods.

Site Name Methods P & B b RERR
PSEM 0.01000 88.34381 4.42388 2.11605 0.00127
Xi’an MLE 0.01000 88.34381 4.42388 2.11605 0.00127
MOM 7.20138 62.88730 1.79612 1.77889 0.00131

PSEM 0.01000 79.70604 4.26549 2.19876 0.00189

Zhouzhi MLE 0.01000 79.70604 4.26549 2.19876 0.00189
MOM 210.63187 27.69157 1.27634 1.95521 0.00274

PSEM 0.01000 94.39458 3.88381 2.05573 0.00128

Lantian MLE 0.01000 94.39458 3.88381 2.05573 0.00128
MOM 68.28209 60.56026 1.69273 1.80523 0.00136

PSEM 0.01000 84.61866 4.25523 2.15294 0.00119

Huxian MLE 0.01000 84.61866 4.25523 2.15294 0.00119
MOM 212.47184 30.39572 1.33086 1.92191 0.00213

PSEM 0.01000 90.81538 4.35225 2.08997 0.00129

Lintong MLE 0.01000 90.81538 4.35225 2.08997 0.00129
MOM 162.17872 36.92153 1.48868 1.87230 0.00161

PSEM 0.01000 75.75303 4.39321 2.24406 0.00158

Wugong MLE 0.01000 75.75303 4.39321 2.24406 0.00158
MOM 114.20629 35.23074 1.35950 1.89735 0.00183

Examination of the data in Table 5 shows that the parameters estimated using PSEM and MLE are
comparable to MOM in terms of RERR and it is thus difficult to distinguish them from one another.
However, PSEM and MLE yield the best parameter estimates. Thus, the parameters estimated by
PSEM should be employed as the ones of four-parameter exponential gamma distribution in case
study sites.

To measure the agreement between a theoretical probability distribution and an empirical
distribution for the samples, Kolmogorov-Smirnov (K-S) test D;, was used to assess the goodness-of-fit.

Let xq < xp < -+ < x,, be order statistics for a sample size n whose population is defined by a
continuous cumulative distribution function F(x) and Fy(x;) be a specified distribution that contains a
set of parameters 0 (8 is estimated value from a sample size 7). For an annual precipitation series, the
null hypothesis Hy that the true distribution was Fy with parameters 8 was tested. K-S test D;, can be
expressed as:

Dy, = max (&;) (73)

5; = max %— FO(Xj;é),FO(x,‘;é) _izt

. 74)

The sample values of K-S test statistic D,;, are shown in Table 6. The critical value D;; of the
four-parameter exponential gamma distribution (at the significance level a = 0.05, for sample size 1) is
0.18654. From Table 6 it can be seen that the statistics of observed annual precipitation are all less than
their corresponding critical values, respectively. Therefore, it is concluded that annual precipitation
series are all accepted by the K-S test.
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Table 6. Sample values of K-S test statistic D), of case study sites.

Site Name D, Site Name D,
Xi’an 0.07764 Huxian 0.07268
Zhouzhi 0.07290 Lintong 0.07755
Lantian 0.04485 Wugong 0.10037

7. Conclusions

Hydrologic frequency analysis, in spite of having developed a great number of distribution
models and parameter estimation methods for reliable parameters and quantiles estimates, comes up
against practical difficulties imposed by the short sample ranges. The Pearson Type III distribution
is recommended as a standard distribution in hydrological frequency analysis in China. A large
number of studies have shown that fitting small and large return period segments of Pearson Type
III distribution is affected by its skewness value. Different studies employing the same parameter
estimation methods may obtain different results. The use of four-parameter exponential gamma
distribution has emerged as an attempt to reduce the estimate errors of small and large return period
segments. The advantage of the proposed entropy method is that the first moments are made about
the calculation of the distribution parameters, instead of variance, skewness and kurtosis. The results
of the case estimates show that the entropy method enables the four-parameter exponential gamma
distribution to fit the data well. The entropy-based parameter estimation also provides a new way to
estimate parameters of the four-parameter exponential gamma distribution. The disadvantage of the
method is that it will be computationally cumbersome because four parameters are involved. However,
this should not be an insurmountable difficultly, given the currently available numerical tools and
computer progress. Also, there are significant differences between among the MOM, PSEM and MLE
estimates. Such large differences may be caused by the system of non-linear equations of parameter
estimation involving the second central moment of the variable for the MOM, first moments for PSEM
and MLE. In addition, the confidence intervals of quantiles for the four-parameter exponential gamma
distribution deserve thorough investigation.

In summary, the following conclusions can be drawn from the present study: (1) for parameter
estimation, PSEM yields the same results as MLE, whereas MOM performs with the highest bias;
(2) PSEM is comparable to the MOM,; (3) the four-parameter exponential gamma distribution fits
the observed annual precipitation data well; (4) the quantile discharge values estimated by the three
methods are close to each other; (5) the four-parameter exponential gamma distribution is a versatile
distribution and results in nine different distributions, depending on its parameter values.
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Appendix A. First Four Original Moments and Central Moments

Consider that the first original moments of the four-parameter exponential gamma distribution
are 'y, #'y, W'y and §'y, respectively; pp, 3, jig are the second, third and fourth central moments,
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respectively;C, is coefficient of variation; C; is coefficient of skewness; C, is coefficient of kurtosis.

A detailed derivation of the above moments is given below:
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Furthermore, we can write:
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Abstract: Flood frequency analysis (FFA) is needed for the design of water engineering and hydraulic
structures. The choice of an appropriate frequency distribution is one of the most important issues in
FFA. A key problem in FFA is that no single distribution has been accepted as a global standard. The
common practice is to try some candidate distributions and select the one best fitting the data, based
on a goodness of fit criterion. However, this practice entails much calculation. Sometimes generalized
distributions, which can specialize into several simpler distributions, are fitted, for they may provide
a better fit to data. Therefore, the generalized gamma (GG) distribution was employed for FFA in
this study. The principle of maximum entropy (POME) was used to estimate GG parameters. Monte
Carlo simulation was carried out to evaluate the performance of the GG distribution and to compare
with widely used distributions. Finally, the T-year design flood was calculated using the GG and
compared with that with other distributions. Results show that the GG distribution is either superior
or comparable to other distributions.

Keywords: flood frequency analysis; generalized gamma (GG) distribution; principle of maximum
entropy (POME)

1. Introduction

Flood frequency analysis (FFA) is needed for the design of water engineering and hydraulic
structures. The sizing of bridges, culverts and other facilities; the design capacities of levees, spillways
and other control structures; and reservoir operation or management all depend upon the estimated
magnitude of various design flood values [1-3]. In FFA, flow data, such as the annual maximum data,
are fitted using a theoretical frequency distribution, which is usually selected from a set of candidate
distributions [4]. For example, the Pearson type three distribution (P3) has been recommended
in China [5]. In the US, since 1967 the Log-Pearson type 3 distribution (LP3) has been the official
distribution for all catchments which are fitted for planning and insurance purposes [6]. The UK has
endorsed the GEV distribution [7,8] for FFA.

The choice of the appropriate model is one of the most important issues for FFA. The method
commonly practiced is to try different distributions for the data at hand and choose the best fitted
distribution using some particular goodness-of-fit measure [9]. One of the disadvantages of this
method is that too many different distributions need to be tried and the selected distribution may
be the best based on one goodness of fit criterion, but not based on another criterion. In order to
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overcome this disadvantage, some generalized frequency distributions have been recently used for
FFA. The generalized gamma (GG) distribution is discussed in this study. It is a generalization of the
two-parameter gamma distribution. The GG distribution includes as special cases the exponential
distribution, the two-parameter gamma distribution, and the Weibull distribution, which provide
sufficient flexibility to fit a large variety of data sets.

After deciding the distribution, the second issues is to estimate the parameters associated with the
GG distribution. The popular techniques for parameter estimation include the methods of maximum
likelihood (ML) [7], moments (MM) [10] and L-moments [11]. In addition, entropy theory can be used
to derive more generalized distributions using different constraints [12]. The theory involves entropy
maximizing in accord with the principle of maximum entropy (POME), in which the distribution
parameter are determined, given the observed data and a set of constraints. Singh [12] indicated that
the entropy method was reasonable and efficient for parameter estimation.

The objective of this study was therefore to propose an entropy based generalized gamma
distribution for flood frequency analysis. The GG distribution parameters were estimated using POME.
The GG distribution was tested using observed data sets. Also, Monte Carlo simulation was carried
out to evaluate the predictive ability of the GG distribution and it was compared with some widely
accepted distributions. Finally, the T-year design flood values were calculated and compared based on
different FFA distributions.

2. Methodology

2.1. Generalized Gamma Distribution

Let X be a random variable and x be its specific value. The probability density function (PDF) of
the generalized gamma (GG) distribution can be expressed as:

fx) = ﬁrrfﬂ)(%f"*” exp(~(3)") 1)

where I'(e) is the gamma function, and ry, #; are the shape parameters, and f is the scale parameter.

2.2. Estimation of Parameters of GB2 Distribution by POME

The GG distribution parameters were determined using the principle of maximum entropy
(POME). The POME method involves the following steps: (1) specification of constraints;
(2) maximization of entropy using the method of Lagrange multipliers; (3) derivation of the relation
between Lagrange multipliers and constraints; (4) derivation of the relation between Lagrange
multipliers and distribution parameters; and (5) derivation of the relation between distribution
parameters and constraints. A flow chart showing the estimation procedure is shown in Figure 1.

Principle of maximum
entropy

Relation between LM and
constrains

Relation between parameters
and constrains

E ions of f(x) using
POME methord

Relation between LM and
distribution parameters

GG distribution

Figure 1. Flow chart of POME method for parameter estimation.
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2.2.1. Specification of Constraints

Flood discharge is considered as a random variable X, which ranges from 0 to infinity. Its
probability distribution function (PDF) and cumulative distribution function (CDF) are denoted as f(x)
and F(x), respectively, where x is a specific value of X. Since constraints encode the information that
can be given for the random variable, following Singh [12], the constraints for the GG distribution can
be expressed as:

/f(x)dx =1 (2a)
0
/f(x) Inxdx = E(Inx) (2b)
0
/f(x)qux = E(x7) (20)
0

The first constraint is the total probability law, the second constraint is the mean of log values or
the geometric mean, and the third constraint is the mean of values raised to a power g or log of scaled
values raised to a power and then shifted by unity.

2.2.2. Maximization of Entropy Using the Method of Lagrange Multipliers
The Shannon entropy of X, H(X), can be expressed as [13]:

(=5}

H(X) = = [ £(x)log f(x)dx @

0

The f(x) can be obtained by maximizing the Shannon entropy subject to given constraints in
accord with the principle of maximum entropy (POME). Following Singh [14,15], maximization of
Equation (3), subject to Equation (2a) to (2c), using the method of Lagrange multipliers leads to:

f(x) = exp(=A0 — Ay In(x) — A2x7) “)
where Ay, A1, A are the Lagrange multipliers that are not known.

2.2.3. Relation between Lagrange multipliers and parameters

Substitution of Equation (4) in Equation (2a) yields:

/f / exp(—Ag — AqIn(x) — Apx?)dx = 1 5)
0 0
Equation (5) can be expressed as:
exp(Ag) / x exp —AxT)dx (6)
0

S

1_
Let t = Ayx9. Then x = (Aiz) and dx = T(Aiz) 77 'dt. Then Equation (6) can be expressed as:

(o) 11 2 w1 S R ,
(= 1 —fdt = —(—
vt = [16) (-t = )T "
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Substitution of Equation (7) in Equation (4) yields:

A+l

gz 7

f(x) = exp(—Ag — A1 In(x) — AaxT) = mx(ﬂ\l) exp(—Azx7) ®)
q
Let % = %, and A, = (%)YZ, Then, r, = g, and 1 = —A1 + 1. Equation (8) can now be
written as:
(3"

r2(g (1) 1.2, rp o x (n-1) X\ "2
X) = —Fx"1"Vexp(—(5) ¥?)=-—-5~(5 exp(—(5 )

0 = i PI~(p) ¥ = ey (p) T e

Equation (9) is the same as the generalized gamma distribution given by Equation (1). Hence, the
relation between Lagrange multipliers and distribution parameters are given by:

qg=r2
/\1 =1- 1 (10)
Ay = ‘3—72

2.2.4. Relation between Lagrange Multipliers and Constraints

Since the Lagrange multiplier A can be expressed by Equations (6) and (7), the set of equations
can be used to obtain Ag:

Ao = ln( exp(—A1In(x) — AxxT)dx) (11a)

0\8

,/\1

Ao=—Ing+ At In(A,) +1nF(1

) (11b)

Differentiation of Equation (11a) with respect to A1 and A, yields:

o
JInxexp(—AqIn(x)—Ax7)dx
0

]
=
S

=2 = —E(Inx)
= [ exp(—Aq In(x)—Axx7)dx
o’ (12)
[ xTexp(—Aq In(x)—Axx7)dx
== = —E(x)
2 [ exp(—Aq In(x)—Axx7)dx
0
Defining b = 1})‘ 1, and differentiating Equation (11b) with respect to A1 and A, we obtain:
o0 =1, — TonZ0 — 1inp, — Lo(b)
3 ab p(b
{ﬁﬂA s 13)
P v Bl Py

where ¢(e)is a digamma function.
Based on Equations (12) and (13), the relation between Lagrange multipliers and constraints can
be expressed as:

YV
= >

{A_;mh;ww—ﬂmﬂ (14)
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Since there are three parameters, Equations (13) and (14) are not sufficient for calculating all the
parameters, and one additional equation is therefore needed which is given as:

%A 1
827)\(1) = ?(p’(b) = var(Inx) (15)

2.2.5. Relation between Parameters and Constraints

Based on the relation between parameters and constraints and between parameters and Lagrange
multipliers, the relation between parameters and constraints can be expressed as:

Lin(p2) — Lo(2) = ~E(Inx)
B2k = E(x) (16)
L¢/(2) = var(Inx)

where @(e) is the digamma function; ¢(e) is the tri-gamma function. For a given data set X, the E(Inx)
and var(Inx) can be calculated directly. There are three parameters and three equations in Equation
(16). Therefore, this set of nonlinear functions can be solved by the widely used Newton iteration
method (Deuflhard, [16]) for parameter estimation. The initial value of the three parameters are set to
(1,1, 1). After multiple iterations, the optimal parameters can be obtained.

3. The Descriptive Ability of GG Distribution

Annual maximum (AM) flood peak data from 10 gauging stations, namely sites 1 to 10, were
selected (Table 1). These ten stations are selected due to their diversity of statistical properties and
climate types (arid, semi-arid and humid).

Table 1. Statistics of annual maximum flood data series for 10 sites.

Site No. Gauging Station Period Cy Cs Ck
1 Rogue River at Raygold near Central Point, US 1906-2001 0.67 1.94 5.66
2 Quinault River at Quinault Lake, US 1912-2001 0.40 0.52 —0.6
3 Eel R A Scotla, US 1911-2001 0.51 0.61 —0.44
4 White River Near Meeker, US 1910-2001 0.34 0.65 0.77
5 Yellowstone River at Corwin Springs, US 1890-2001 0.30 0.66 0.59
6 Genesee River at Portageville, US 1909-2001 0.48 2.93 15.67
7 White River Near Meeker, US 1910-2001 0.34 0.65 0.77
8 Brokenstraw Creek at Younsville, US 1910-2001 0.33 0.75 0.65
9 Danjiangkou reservior at Danjiangkou, China 1929-2014 0.56 0.95 1.57
10 Geheyan reservior at Changyang, China 1951-2005 0.42 1.34 3.34

Besides AM series, partial-duration series can be also employed for the POME method. In this
study, the AM series was considered since it is more widely used. The GG distribution was employed
to fit the AM series of the 10 sites. The distribution parameters were estimated using Equations (16).
The fitted GG distribution and the empirical frequency distribution of the AM series from sites 1, 5, 6
and 8 are shown in Figures 2-5. These four sites are selected because sites 5 and 8 have low skews,
site 1 has moderate skew and site 6 has high skew, the cumulative distributions and histograms of
AM series fitted by GG distribution for these sites can be representative. The line represents the fitted
distribution and point represents the empirical frequencies of observations. Results show that the GG
distribution fitted the empirical data well. Histograms of the AM flood peak series fitted by the GG
distribution for the four sites are also shown in Figures 2-5 which also show that the GG distribution
fitted the empirical histograms well. The skewness coefficient of AM series of sites 1, 5, 6 and 8 was
1.94, 0.66, 2.93 and 0.75, respectively, which showed that the GG distribution described both low and
high skewed data well.
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Figure 2. Cumulative distribution and histogram of AM flood peak series fitted by the GG distribution
for site 1.
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Figure 3. Cumulative distribution and histogram of AM flood peak series fitted by the GG distribution
for site 5.
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Figure 4. Cumulative distribution and histogram of AM flood peak series fitted by GG-POME model
for site 6.
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Figure 5. Cumulative distribution and histogram of AM flood peak series fitted by the GG distribution
for site 8.

Several distributions, including normal (NM), exponential (EXP), generalized logistic (GLO),
gamma (GM), generalized Pareto (GPA), Gumbel (GB), Weibull (WB), P3, GEV and LP3 distributions,
in which the parameters of EXP, GLO, GM, GPA, GB, WB, P3, GEV distributions were estimated by the
L-moment method (LM) [11,17], while the parameters of NM and LP3 distributions were estimated
by MM [18,19]. These FFA models were also fitted to the AM series for the 10 sites and the values of
RMSE and AIC were computed for each model using Equations (17) and (18) and listed in Table 2.

£ (P - P(z‘))z

i=1

RMSE = 17)

n

AIC = n(ln(}qiil (f)(i) p(i)>2>> + 2K (18)

where 1 denotes the sample size, K is the number of parameters of the distribution, 1/; is the theoretical
non-exceedance probability calculated by the distribution, and P is the empirical non-exceedance
probability. Root mean square error (RMSE) is a frequently used measure of the differences between
values (sample and population values) predicted by a model or an estimator and the values actually
observed. The smaller RMSE values represent the better performance of the model. The Akaike
information criterion (AIC) is a measure of the relative quality of statistical models for a given set of
data. It also includes a penalty that is an increasing function of the number of estimated parameters.
Given a set of candidate models for the data, the preferred model is the one with the minimum
AIC value.

Table 2 illustrates that for sites 1, 2, 4, 5, 8, 9 and 10, the GG distribution had the smallest RMSE
values, which means the GG distribution fitted the observed AM data best. In addition, the GG
distribution had the smallest AIC values for sites 2, 5, 8, and 10. Table 2 also indicates that the average
RMSE and AIC values of GG distribution are the smallest among all the compared distributions. Thus,
the GG distribution performs better than other distributions.
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Table 2 also shows that the GG, P3, GEV, LP3 distributions gave quite similar performances for
most of the selected sites. However, it was observed that the GG distribution performed better at
several sites. For site 2, the RMSE values for the GG, P3, and GEV distributions were 0.028, 0.033 and
0.034, respectively. The AIC values were —417.67, —351.64 and —347.79, respectively. Thus, the GG
distribution performed much better than the P3 and GEV distributions for site 2. Compared with the
LP3 distribution, the GG distribution was more appropriate for sites 5 and 7. For site 5, the RMSE
and AIC values for the LP3 distribution (GG distribution) were 0.016(0.013) and —559.41 (—578.63),
respectively. For site 7, the RMSE and AIC values for the LP3 distribution (GG distribution) were
0.019(0.016) and —545.85 (—571.71), respectively. Thus, the GG distribution outperformed the LP3
distribution for those two sites. The above discussions shows that the GG distribution is either superior
or comparable to the commonly used distributions.

The maximum likelihood (ML) method was also employed for GG distribution and compared
with the proposed GG-POME model for site 5 (low skew) and site 6 (high skew). Figure 6 gives
comparisons of their probability density functions and indicates that the GG-POME model gives a
better performance. The RMSE and AIC values of GG-ML model for sites 5 and 6 were also calculated.
The RMSE and AIC values for the GG-ML (GG-POME) model are 0.023 (0.013) and —497.54 (—578.63),
respectively for site 5. And the RMSE and AIC values for the GG-ML (GG-POME) model are 0.032
(0.024) and —379.24 (—427.53), respectively for site 6. Therefore it may imply that GG-POME model
outperforms GG-ML model.

Site 5

| J 0-, 1

0 74 6 8 10 ¢ 3 1015 20
Peak ﬂ0\v(10‘m3/s) Peak ﬂow(lO“mj/s)

Figure 6. Comparisons of probability density functions of GG-POME and GG-ML models for sites 5
and 6.

4. Monte Carlo Simulation

The predictive ability of the GG distribution was evaluated using Monte Carlo simulation and
compared with that of the P3, GEV, and LP3 distributions. To test how well a candidate distribution
estimated the magnitude-return period relationship, a parent distribution which was not identical
to any of the candidate distributions was chosen. Cunnane [20] recommended that such a parent
distribution should be a Wakeby distribution with certain parameters. In this study, three kinds of data
sets were generated from the Wakeby distribution with parameters as shown in Table 3. The Wakeby
distribution has quantile function given as [21]:

WP =g g (1-0-B) - Fa-(1-F") 19

where F is the uniform (0, 1) variate; and ¢, «, B, 7y, 6 are the parameters.
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Table 3. Monte Carlo simulation data sets generated from the Wakeby distribution.

4 « B Y B} Cy Cs
Case 1 304 114.2 11.3 19.2 —0.5 0.2 0.16
Case 2 154 308.8 10.25 38.5 —-0.3 0.36 0.48
Case 3 23.5 198.6 3.7 109.2 —-0.2 0.55 0.95

Then, the real quantile value Qr was computed. S = 1000 samples with size n (n = 20, 50, 100)
were generated from each Wakeby distribution and fitted by the four distributions to estimate the
events of T = 10, 100 and 1000-year return periods. Table 4 lists the RB and RRMSE values computed
by each distribution using Equations (20) and (21):

13 (Qr); —Qr
RB = 51; or (20)
1 & (Qr);-0
_ T)i— XTy2
RRMSE 5 1;( or ) (21)

A A
where Qr is a given parent quantile, (Qr); ... (Qr)g are the estimators for the samples generated
from the Wakeby distribution, and S is the number of Monte Carlo trials. The relative bias (RB) and
the relative root mean square errors (RRMSE) were used to evaluate the accuracy and efficiency of a

candidate model, respectively.

Table 4. Calculated RB and RRMSE values for different FFA distributions.

GG-POME P3-LM GEV-LM LP3-MM
RB RRMSE  RB RRMSE  RB RRMSE  RB RRMSE
T=10 -1.71 4.54 -1.21 3.64 —0.87 3.78 —0.89 4.07
n=20 T =100 6.11 7.95 4.6 9.26 4.89 9.31 2.56 8.84
T =1000 2.02 6.46 2.29 9.08 511 10.84 4.15 10.03
T=10 -1.32 2.73 —0.87 2.45 —0.75 243 —0.81 2.48
Casel n=50 T =100 5.53 6.5 4.38 6.28 6.12 8.02 425 6.77
T =1000 1.85 49 0.02 6.73 2.87 8.1 0.65 7.31
T=10 —1.06 1.82 —1.05 1.86 —0.72 1.84 —0.71 1.82
n =100 T =100 6.02 6.55 4.97 5.72 547 6.34 4.74 5.82
T =1000 1.46 3.42 0.21 429 2.93 6.03 0.55 5.46
T=10 —2.65 9.78 —0.82 9.78 —0.58 9.34 —0.35 14.78
n=20 T =100 1.93 10.23 2.25 16.85 3.64 19.23 5.97 39.86
T =1000 3.59 14.18 8.69 24.29 16.48 34.45 11.62 44.85
T=10 —1.93 8.44 —1.57 6.76 -1.76 6.21 —1.26 6.63
Case2 n=50 T =100 1.66 7.55 1.76 10.27 1.37 10.74 —1.67 12.54
T =1000 3.27 10.33 8.64 16.46 6.67 18.96 432 21.43
T=10 —1.21 5.86 —1.18 473 —0.58 4.34 —0.86 4.52
n =100 T =100 1.94 5.87 1.37 6.24 0.87 7.52 —1.24 7.88
T =1000 422 8.4 9.49 12.78 8.72 16.35 0.29 13.51
T=10 —0.42 11.46 —0.58 13.43 —2.34 12.57 2.64 14.79
n=20 T =100 51 14 7.86 21.95 8.54 23.35 4.96 31.38
T =1000 17.67 28.16 13.57 29.87 21.82 42.72 26.58 57.28
T=10 -0.41 8.78 0.86 7.96 —1.25 7.38 1.78 8.67
Case3 n=50 T =100 6.34 12.38 4.62 13.94 6.44 15.86 441 16.34
T =1000 16.86 22.85 14.53 24.63 21.02 33.68 8.29 27.32
T=10 —0.42 5.72 —0.87 5.87 —1.15 5.46 0.26 5.74
n =100 T =100 6.37 8.54 475 8.98 6.65 11.87 3.54 12.64
T =1000 17.52 19.32 15.67 19.78 17.98 23.92 7.66 20.67
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From Table 4, generally for all distributions and for all cases, it was observed that the RB and
RRMSE values increased with the return period T. For a small return period (T = 10), the selected four
distributions exhibited very similar behaviors regardless of the sample size. For moderate and large
return periods (T = 100 and 1000), notable differences of RB and RRMSE values were observed. Thus, in
the latter discussion, we would mainly focus on moderate and high return period quantile estimators.

For case 1 (Cy = 0.2, Cs = 0.16), it was observed that the GG and P3 distributions were superior
to the GEV and LP3 distributions. When the sample size equaled 100 or 50, the P3 distribution
quantile estimators had the smallest RB values for both moderate and large return periods (T = 100 and
1000). But the GG distribution quantile estimators had smaller RRMSE values for T = 1000 than other
distributions. For a small sample size (1 = 20), the GG distribution had the smallest RB and RRMSE
values for both moderate and large return periods (T = 100 and 1000). For T = 1000, the RRMSE values
of the GG, P3, GEV and LP3 distributions were 6.46, 9.08, 10.84 and 10.03, respectively. Apparently, the
GG distribution performed much better when the sample size was small. This indicates that the GG
distribution was more robust. Thus, for case 1, the P3 distribution was preferable when the sample
size was large than 50, while the GG distribution was more appropriate when sample size did not
exceed 50.

For case 2 (C, = 0.36, Cs = 0.48), results indicated that for sample size n = 50 and #n = 100, the
GEYV distribution quantile estimators had the smallest RB values for T = 100 and the LP3 distribution
quantile estimators had the smallest RB values for T = 1000. However, their RRMSE values were quite
large and increased significantly when the sample sizes decreased. For T = 1000, when the sample
size decreased from 100 to 20, the RRMSE values of the GEV distribution rose from 16.35 to 34.45, and
the RRMSE values of the LP3 distribution rose from 13.51 to 44.85. While the RRMSE values of the
GG distribution rose slightly from 4.8 to 14.18. This was due to the poor accuracy of the GEV and LP3
distributions parameter estimators which had high variance for small sample sizes. In this case, the
GG distribution performed significantly better than the other three distributions. Its RB values were
quite small, and its RRMSE values were the smallest for all sample sizes and return periods. This was
a good indication of the robustness of the GG distribution for this case.

For case 3 (Cy = 0.55, Cs = 0.97), all distribution quantile estimators had quite large RB and RRMSE
values. For n =50 and n = 100, RB and RRMSE of the GEV distribution were the highest, which
amounted to 21.02 and 33.68, respectively, for n = 50, T = 1000, while the GG distribution yielded 16.86
and 22.85, respectively. Also for n = 50 and n = 100, the LP3 distribution quantile estimators had the
smallest RB values for both T = 100 and T = 1000, and the other three distributions had similar RB
values. But the LP3 distribution gave the worst performance for small sample sizes (1 = 20). Its RB and
RRMSE values were 26.58 and 57.28, respectively, for T = 1000, whereas the GG distribution yielded
17.67 and 28.16, respectively. In this case, the RB values of the GG distribution were comparable to the
P3 and GEV distributions, and were a little larger than the LP3 distribution for n = 50 and n = 100, the
RRMSE values of the GG distribution were the smallest for both moderate and large return periods
(T =100 and 1000) regardless of the sample size. Also, when the sample size decreased from 100 to
20, the RB and RRMSE values of the GG distribution rose from 17.52 and 19.32 to 17.67 and 28.16,
respectively. This might imply that the distribution was less affected by sample size. Thus, the GG
distribution was superior to other distributions for this case. Therefore, the predictive ability of the
GG distribution was found to be comparable or superior to that of the other distributions, and it was
more robust since it was less affected by sample size, and therefore, estimated the magnitude-return
period relationships better.

5. T-Year Design Flood Calculation

The Danjiangkou reservoir lies in the upper Hanjiang basin and is the source of water for the
Middle Route Project under the South-to-North Water Transfer Scheme in China [22]. The Geheyan
reservoir, with a volume of 3.12 billion m?, plays an important role in management of Qingjiang
River [23]. Flood frequency analysis for these two sites was therefore considered in this study. The
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T-year design flood calculated by different FFA distributions at Danjiangkou Reservoir and Geheyan
Reservoir are listed in Table 5. Figures 7 and 8 compare frequency curves of different distributions at
these two reservoir sites.

Table 5 indicates that design flood for small return periods was similar for these four distributions.
However, significant differences were observed for large return periods. The 1000-year design
flood calculated by the GG and LP3 distributions at Danjiangkou Reservoir were 55,234 m3/s and
48,822 m3/s, respectively. And the 1000-year design flood calculated by the GEV and LP3 distributions
at Geheyan Reservoir were 15,746 m3/s and 13,877 m3/s, respectively.

Figure 7 indicates that the GG, P3, and GEV distributions had quite similar flood quantile
estimators for large return periods at Danjiangkou Reservoir. However, the 1000-year design flood
calculated by the LP3 distribution was smaller than by the other three distributions. Figure 8 indicates
that the 1000-year design flood calculated by the GEV distribution at Geheyan Reservoir was the
largest, and was the smallest for the LP3 distribution.

Table 5. Comparison of T-year design floods calculated by different FFA distributions at Danjiangkou
and Geheyan sites.

Return Period (Year)

Site Model
1000 500 100 50 10
GG-POME 55,234 51,432 42,204 38,803 27,398
Danjiangkou P3-LM 53,838 50,202 41,407 37411 27,311
(m3/s) GEV-LM 55369 51,490 42,054 37,785 27,217

LP3-MM 48,822 46,561 40,261 36,999 27,692

GG-POME 13,992 13,745 11,186 10277 7957

Geheyan P3-LM 14,896 13941 11,648 10616 8039
(m3/s) GEV-LM 15746 14594 11,910 10,746 7991
LP3-MM 13877 13,099 11,171 10276 7963
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Figure 7. Frequency curves of different FFA distributions at Danjiangkou Reservoir.
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Figure 8. Frequency curves of different FFA distributions at Geheyan Reservoir.

The design flood calculated by the GG distribution was quite close to that by the LP3 distribution.
Besides, the P3 distribution has been adopted in China as a uniform procedure for FFA [24,25]. Table 2
shows that RMSE and AIC values for the P3 distribution at Danjiangkou Reservoir were 0.023 and
—419.04, respectively, and the GG distribution yielded 0.021 and —421.51, respectively. The RMSE
and AIC values for the P3 distribution at Geheyan Reservoir were 0.027 and —249.79, respectively,
and the GG distribution yielded 0.023 and —269.84, respectively. Thus, the performance of the GG
distribution was better than that of the P3 distribution. Therefore, the design flood estimated by the
GG distribution would be preferable in practice.

6. Conclusions

In this study, the GG distribution with parameters estimated by POME was applied for FFA.
Ten gauging stations were selected as a case study to test the GG distribution. Frequency estimates
from the GG distribution were also compared with those of commonly used distributions. A Monte
Carlo simulation study was carried out to evaluate the predictive ability of the GG distribution
and compare it with other distributions. In addition, some characteristics of frequency curves at
Danjiangkou Reservoir and Geheyan Reservoir were evaluated. The following conclusions are drawn
from this study:

(1) The GG distribution is appealing for FFA. The cumulative distributions and histograms show
that the GG distribution can fit both low and high skewed data well.

(2) The parameters estimated by POME are found reasonable. Both the marginal distributions and
histograms indicates that the GG distribution with so estimated parameters can successfully be
fitted to empirical values.

(38)  The performance of the GG distribution is comparable or superior to that of the other distributions.
Results illustrate that for sites 1, 2,4, 5, 8,9 and 10, the GG distribution has the smallest RMSE
values. In addition, the GG distribution has the smallest AIC values for sites 2, 5, 8, and 10. Thus,
the GG distribution is preferred to other distributions for those sites. Furthermore, the GG, P3,
GEV, and LP3 distributions give similar performance for most of the selected sites. However, the
GG distribution fits better than them for a few sites.
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The predictive ability of the GG distribution is found to be comparable or superior to widely
accepted distributions. The GG distribution performs significantly better than the other three
distributions when sample sizes are small. Thus it is less effected by sample size and is
more robust.
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Abstract: Estimation of flood magnitude for a given recurrence interval T (T-year flood) at a specific
location is needed for design of hydraulic and civil infrastructure facilities. A key step in the
estimation or flood frequency analysis (FFA) is the selection of a suitable distribution. More than
one distribution is often found to be adequate for FFA on a given watershed and choosing the best
one is often less than objective. In this study, the generalized beta distribution of the second kind
(GB2) was introduced for FFA. The principle of maximum entropy (POME) method was proposed to
estimate the GB2 parameters. The performance of GB2 distribution was evaluated using flood data
from gauging stations on the Colorado River, USA. Frequency estimates from the GB2 distribution
were also compared with those of commonly used distributions. Also, the evolution of frequency
distribution along the stream from upstream to downstream was investigated. It concludes that the
GB2 is appealing for FFA, since it has four parameters and includes some well-known distributions.
Results of case study demonstrate that the parameters estimated by POME method are found
reasonable. According to the RMSD and AIC values, the performance of the GB2 distribution is
better than that of the widely used distributions in hydrology. When using different distributions
for FFA, significant different design flood values are obtained. For a given return period, the design
flood value of the downstream gauging stations is larger than that of the upstream gauging station.
In addition, there is an evolution of distribution. Along the Yampa River, the distribution for FFA
changes from the four-parameter GB2 distribution to the three-parameter Burr XII distribution.

Keywords: entropy theory; principle of maximum entropy (POME); GB2 distribution; flood
frequency analysis

1. Introduction

Estimation of flood magnitude for a given recurrence interval T (T-year flood) at a given location
is essential for the design of hydraulic and civil infrastructure facilities, such as dams, spillways,
levees, urban drainage, culverts, road embankments, and parking lots. A key step in flood frequency
estimation or analysis (FFA) is the selection of a suitable frequency distribution [1]. Commonly
used distributions for flood frequency analysis include Gumbel, gamma, generalized extreme value
(GEV), Pearson type III (P-1II), log-Pearson type III (LP-III), Weibull, and log-normal (LN). Some of
these distributions have been adopted in different countries. For example, the P-III distribution has
been adopted in China and Australia as a standard method for hydrologic frequency analysis [2—4].
The LP-III distribution has been adopted in the United States and the GEV distribution in Europe.

Mielke and Johnson investigated the use of two special cases of the generalized beta distribution
of the second kind, namely gamma and log normal distributions, for flood frequency analysis [5].
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Wilks investigated the performance of eight three-parameter probability distributions for precipitation
extremes using annual and partial duration data from stations in the northeastern and southeastern
United States [6]. He found that the beta-k distribution best described the extreme right tail of annual
extreme series, and the beta-P distribution was best for the partial duration data.

Recently, some generalized frequency distributions have been used for hydrologic frequency
analysis. For example, Perreault et al. presented a family of distributions, named Halphen distributions,
for frequency analysis of hydrometeorological extremes [7]. Papalexiou and Koutsoyiannis used the
generalized gamma distribution and generalized beta distribution of the second kind (GB2) for
rainfall frequency analysis across the world and showed that these distributions were appropriate
for worldwide rainfall data [8]. The greatest advantage of these generalized distributions is that
they provide sufficient flexibility to fit a large variety of data sets, which facilitates the selection and
comparison of different distributions. For instance, the GB2 distribution includes the exponential,
Weibull, and gamma distributions as special cases. Since the GB2 distribution has four parameters,
logically it should perform better than 3-parameter distributions, such as GEV, P-III, LP-III or LN-III.
Papalexiou and Koutsoyiannis concluded that the GB2 distribution was a suitable model for rainfall
frequency analysis because of its ability to describe both J-shaped and bell-shaped data [8]. The other
advantages of the GB2 distribution can be summarized as: (1) the GB2 distribution can model positive
or negative skewness which is an advantage over distributions, such as lognormal, with only positive
skew; (2) it can jointly estimate both location and shape parameters, while many other distributions,
such as exponential, logistic, normal, etc., usually focus on location only; and (3) it can better capture
the long right or left tail. Because of these advantages, the GB2 distribution was employed in this study.

The second step in flood frequency analysis is to estimate parameters of the selected distribution.
There are several standard parameter estimation methods, such as moments, maximum likelihood,
L-moments, probability weighted moments, and least square. Among these methods, the maximum
likelihood (ML) and L-moment methods are widely used in hydrology. In addition, the principle of
maximum entropy (POME) has been applied to parameter estimation [9,10]. Singh and Guo indicated
that POME method was comparable to ML and L-moment methods, and for certain situations, POME
method was superior to these two methods [11]. Therefore, the POME method was considered in this
study for parameter estimation.

Another aspect of FFA that is of interest is how the flood frequency distribution evolves from
upstream to downstream along a river. The drainage area along the river increases from upstream to
downstream. It is interesting to investigate if the same frequency distribution applies at all gauging
stations along the stream.

The objective of this study therefore is to employ the GB2 distribution for flood frequency
analysis (FFA). The specific objectives are to: (1) estimate the GB2 distribution parameters using the
principle of maximum entropy; (2) evaluate the performance of the GB2 distribution and compare it
with commonly used distributions in hydrology; (3) select the best distribution; and (4) discuss the
evolution of frequency distribution and its parameters along the river.

2. GB2 Distribution

The generalized beta distribution of the second kind, denoted as GB2, is a four-parameter
distribution and can be expressed as:

3 E)fﬂrl(1+ (f r3 —(ra+r1)
BB(ri,r2) B p

where B(-) is the beta function; B is the scale parameter, § > 0; and r{ > 0, 7, > 0, and r3 > 0 are
the shape parameters. Parameter r3 represents the overall shape; parameter r; governs the left
tail; parameter r, controls the right tail; and p is a scale parameter and depends on the unit of
measurement. These parameters allow the distribution to be able to fit data having very different
histogram shapes. It can simulate both the J-shaped and bell-shaped distributions. Parameters r; and

flx) = ( 1)
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15 together determine the skewness of the distribution. The general shapes of GB2 probability density
distribution were shown in Figure 1.
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Figure 1. Shapes of PDF of GB2 distribution.

When analyzing extreme rainfall, Papalexiou and Koutsoyiannis showed that the GB2 distribution
is a very flexible four-parameter distribution [8]. By fixing certain parameters, the GB2 distribution can
yield some well-known distributions, such as the beta distribution of the second kind (B2), the Burr
type XII, generalized gamma (GG), and so on. These distributions can be treated as special or limiting
cases of the GB2 distribution, as shown in Figure 2. Some of these special cases have been applied in
hydrological frequency analysis. For example, Shao et al. employed the Burr type XII distribution for
flood frequency analysis [2].
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Figure 2. The GB2 distribution and its special cases (where BR12 means the Burr XII distribution; BR3
means the Burr III distribution; B2 means the beta distribution of second kind; Fisk means log-logistic
distribution; L means the Lomax distribution; IL. means inverse Lomax distribution; GA distribution
means the gamma distribution; GN means the generalized normal distribution; W means the Weibull
distribution and EXP means the exponential distribution).
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3. Estimation of Parameters of GB2 Distribution by POME Method

The GB2 distribution parameters were determined using the principle of maximum entropy
(POME). The POME method involves the following steps: (1) specification of constraints;
(2) maximization of entropy using the method of Lagrange multipliers; (3) derivation of the relation
between Lagrange multipliers and constraints; (4) derivation of the relation between Lagrange
multipliers and distribution parameters; and (5) derivation of the relation between distribution
parameters and constraints. These steps are discussed in Appendix A. Here only steps (1) and
(5) are outlined.

Flood discharge is considered as a random variable X, which ranges from 0 to infinite.
Its probability distribution function (PDF) and cumulative distribution function (CDF) are denoted as
f(x) and F(x) respectively, where x is a specific value of X. Since constraints encode the information that
can be given for the random variable, following Singh (1998), the constraints for the GB2 distribution

can be expressed as:
o0

/f(x)dx =1 (2a)
0
/ f(x)Inxdx = E(Inx) (2b)
0
[ £+ ()" )ax = En1+(5)°) )
0

The first constraint is the total probability law, the second constraint is the mean of log values or
the geometric mean, and the third constraint is the mean of log of scaled values raised to a power and
then shifted by unity.

Following the derivation in Appendix A, the relation between parameters and constraints can be
expressed as:

~Inf— Lo(r) + Lo(r2) = ~E(Inx)

Brg(r2) — Brog(n +r2) = —E(B™ In(1 + (3)))
—Inp+ ,%247/(”1) + ra%(p’(rz) = var(Inx)

9'(r2) = ¢/(r1 +12) = var(In(1+ (3)™))

©)

where ¢(.) is the digamma function; and ¢'(.) is the trigamma function. Detailed information for
deriving these relationships can be found in Appendix A.

4. Flood Frequency Analysis

For FFA, three problems were addressed. First, the GB2 distribution was tested using observed
flood data, and was compared with commonly used distributions in hydrology. Second, a method
for selecting the best distribution was discussed. Third, flood frequency analysis was carried out at
several gauging stations from upstream to downstream, and the evolution of frequency distribution
along the stream was investigated.

4.1. Flood Data

Flood data from eight gauging stations on the Colorado River and its tributaries, as shown in
Figure 3, were considered to test the performance of the GB2 distribution and discuss the evolution of
frequency distribution along the river. The Colorado River is the principal river of the Southwestern
United States and northwest Mexico. It rises in the central Rocky Mountains, flows generally southwest
across the Colorado Plateau and through the Grand Canyon. The basin boundary consists of mountains
that are 13,000 to 14,000 feet (3962.4 m to 4267.2 m) high in Wyoming, Colorado, and Utah; and the
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boundary drops to elevations of less than 1000 feet (304.8 m) at Hoover Dam. The northern part of the
river basin in Colorado and Wyoming is a mountainous plateau that ranges from 5000 to 8000 feet
(1524 m to 2438 m) in elevation, which encompasses deep canyons, rolling valleys, and intersecting
mountain ranges. The central and southern portions of the basin in eastern Utah, northwestern New
Mexico, and northern Arizona consist of rugged mountain ranges interspersed with rolling plateaus
and broad valleys. In general, the mountains in the southern part of the basin are much lower than
those in the northern part. Of the eight gauging stations considered in this study, gauging stations or
sites 1, 2 and 3 are on the Yampa River which is a secondary tributary of the Colorado River. Sites 4,
5, 6,7 and 8 are on the mainstream of the Colorado River. Site 8 is near the location of the Hoover
Dam. The data of these gauging stations is directly downloaded from USGS (United States Geological
Survey) website. The characteristics of flow data of these gauging stations, including length of the
data, mean, standard deviation, skewness, and kurtosis, were calculated, as shown in Table 1. Since
there is a dam, named Glenn Canyon, regulating the river flow past Lees Ferry (shown in Figure 3),
the characteristics of the flow at the Hoover dam (site 8) are quite different from those at sites 4, 5, 6
and 7 upstream. It can be seen from Table 1 that for sites 1 to 7 the mean values increase from upstream
to downstream, as more rainfall or water flows into the river. Since the standard deviation is related
to the flood magnitude, it also increases with the mean value. For site 8, considering the impact of
reservoir operation, some streamflow was stored in the reservoir, which leads that the streamflow at
site 8 is reduced. The skewness is positive for all gauging stations, indicating that the right tail is longer
or fatter than the left side and the mass of distribution is concentrated on the left side. Kurtosis is a
measure of the peakedness of the probability distribution. The skewness and kurtosis values in the
mainstream are generally lower than those in the tributaries.

i Green Riv
1 (Below Stagecoach Reservoir) o

2 (Steamboat Springs)
3 (MNear Mavbell)

4 (Mear Dotesro)

5 (Near Cameo)

6 (Near Colorado-Utah)
7 (Near Ciseo) S R o River
8 (Hoover Dam)

Figure 3. Locations of gauging stations on the Colorado River.
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Table 1. Characteristics of the gauging stations used in the study.

Drainage Area Length ~ Mean Value  Standard

River No. Gaging Station (Square Miles) of Data (/s) Deviation Skewness  Kurtosis
v. 1 Below Stagecoach Reservoir 228 1957-2014 315 189 0.91 3.49
R 2 Steamboat Springs 567 1904-2013 3630 1115 026 294
1ver 3 Near Maybell 3383 1904-2013 10,419 3657 0.90 488
4 Near Dotsero 4390 1941-2013 9870 4450 0.39 259
Colorado 5 Near Cameo 7986 1934-2013 19,049 7687 0.26 2.68
%P‘a ° 6 Near Colorado-Utah 17,847 1951-2013 26,714 13,936 0.84 353
1ver 7 Near Cisco 24,100 1884-2013 34,329 16,520 0.36 231
8 Hoover Dam 171,700 1934-2013 26,131 6831 137 5.83

4.2. Performance Measures

For evaluating the performance of the GB2 distribution, two measures were employed: (1) the
root mean square deviation (RMSD); and (2) the Akaike information criterion (AIC). These methods
assess the fitted distribution at a site by summarizing the deviations between observed discharges and
computed discharges.

A frequently used method for assessing the goodness-of-fit of a function is the RMSD [12].
This method was used by NERC (1975) for ranking candidate distributions [13]. RMSD can be
expressed as:

1 n
RMSD = 72
i3

(M) @

Qemp (i)

where 7 is the sample size; Qy, is the computed discharge at the i plotting position. Qe denotes
the observed i smallest discharge. The value of RMSD is from 0 to 1. The samller is, the better the
distribution fits.

AIC is a measure of the relative quality of statistical models for a given set of data. It also includes
a penalty that is an increasing function of the number of estimated parameters. The AIC value was
calculated as [14]:

AIC = n(In (MSE)) + 2 K ®)

where K is the number of parameters of the distribution, and MSE was calculated by

1 . 12
MSE = 3" (Quieli) — Qe (1)) ©)
i=1
Given a set of candidate models for the data, the preferred model is the one with the minimum
AIC value.

4.3. Evaluation of GB2 Distribution

Annual maximum flood peak data from four gauging stations, namely sites 2, 6, 7 and 8 in
Figure 3, were selected. The empirical frequencies were calculated first. The purpose of defining the
empirical distribution is to compare it with selected theoretical distributions in order to verify whether
they fit sample data.

Many plotting positions are proposed, most of which can be expressed in general form:

i—a

p=—1""_
" n+1-2a

@)
where a is a constant having values from 0 to 0.5 in different formula, 0.5 for Hazen’s formula, 0.3 for

Chegadayev’s formula, zero for Weibull’s formula, 3/8 for Blom’s formula, 1/3 for Tukey’s formula,
and 0.44 for Gringorten’s formula.
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Among these formulars, Gringorten’s formular is recoganized by lots of researchers, especially
for GEV, gumbel, exponential, Generalized pareto distributions which have been widely used for flood
frequency analysis [15-20]. The Gringorten formula is also used for GB2 distribution. For normal,
generalized normal and Gamma distributions, the Blom’s formula is recommended [21,22]. For Pearson
type 3 and log Pearson type 3 distributions, Weibull’s formula is recommended [18,21]. The GB2
distribution was employed to fit the annual maximum (AM) series of the four sites. The distribution
parameters were estimated using Equation (3) and given in Table 2. The fitted GB2 distributions and
empirical frequency of each AM series are shown in Figure 4. In the left of Figure 4, the line represents
the fitted distribution and circle the empirical frequencies of observations. Results show that the
marginal distributions fit the empirical data well. Histograms of AM flood peak series fitted by the
GB2 distribution for the gauging stations on the Colorado River are shown in the right section of
Figure 4. It also indicates that the GB2 distribution can successfully be fitted to empirical histograms.

Several distributions, including normal, exponential, gamma, Gumbel, generalized normal,
pearson type III, log Pearson type III, generalized Pareto, and generalized extreme-value that are
commonly used in hydrology, were fitted to the AM series at this site. The L-moment method was
used to estimate the parameters of these distributions.

Table 2. Parameters of the GB2 distribution for the gauging stations along the Colorado River.

Number Location r1 23 73 B
4 Near Dotsero 1.58 60.30 1.75 85.11
5 Near Cameo 1.12 77.57 2.53 112.93
6 Near Colorado-Utah 3.94 83.08 0.94 69.05
7 Near Cisco 2.73 76.82 1.07 80.90
8 Hoover Dam 10.59 434.72 1.31 43.62
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Figure 4. Cont.
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Figure 4. Marginal distributions and histograms of AM flood peak series fitted by the GB2 distribution
for the gauging stations on the Colorado River. (a) Steamboat springs; (b) Near Colorado-Utah; (c)
Near Cisco; (d) Hoover Dam.

Singh and Guo compared the POME method with the L-moment method, and indicated that the
two methods are comparable [11,23,24]. Therefore no matter what method is used, it has little influence
on the value of the T-year design discharge. The Kolmogorov-Smirnov test was used here to compare
a sample with a reference probability distribution. The p-value was calculated and given in Table 3
as well. The higher or more close to 1 the p-value is the more similar the theoretical and empirical
distributions are. It is indicated from Table 3 that the p-value of GB2 distribution is 1 or close to 1,
which demonstrates that the GB2 distribution fit the data better. Table 3 also listed the RMSD and AIC
values computed for the fitted GB2 distribution using Equations (4)-(7). The smaller the RMSD and
AIC values are, the better the distribution fits. For the site streamboat springs, the GB2 and generalized
normal distributions have the smallest RMSD values, which is equal to 0.025. For the site Near Cisco,
the GB2 has the smallest RMSE values, which is equal to 0.061. For the site Near Colorado-Utah,
the GB2 and gamma distributions have the smallest RMSE value. For the site Hoover dam, the GB2
distribution has the smallest RMSE value. Since the GB2 distribution have more parameters, the AIC
values of GB2 distribution are larger than those of generalized normal, Gamma and GEV distributions.
Thus, generally GB2 distribution gives a getter fit.
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In order to compare the POME with the current used method, the maximum likelihood (ML)
method was also employed for the parameter estimation of GB2 distribution. Taking the site Near
Colorada-Utah for an example, the estimated parameters by POME and ML method are given in
Table 4. The p-value, RMSE and AIC values are also given in Table 4. It is indicated that the parameters
obtained by the two method are more or less the same. And the RMSE and AIC values based on the
POME method are smaller.

Table 4. Parameters estimated by POME and ML methods for site Near Colorada-Utah.

Methods 1 53 3 B p-Value RMSE AIC
POME 2.14 24.78 1.40 157.18 1 0.0169  —357.76
ML 2.26 30.85 1.35 158.55 1 0.0170  —357.80

4.4. Flood Frequency Analysis

The Hoover dam is a multi-purpose dam, serving the needs of flood control, irrigation, water
supply, and hydropower generation. Therefore, it was desired to determine the most appropriate
distribution for FFA at the dam site. The T-year design flood at Hoover dam was calculated using each
distribution, as given in Table 5, and it can be seen that different distributions yielded significantly
different values. For example, the 1000-year design flood values calculated by the GB2 and gamma
distributions were 76,702 and 50,485 ft3 /s, respectively. The RMSD and AIC values for GB2 distribution
(Gamma distribution) were 0.036 (0.057) and 1098.8 (1192.9), respectively, which indicates that the
performance of GB2 distribution is much better than that of the gamma distribution. It concludes that
if the gamma distribution were used, the design flood would be underestimated and potential flood
risk would be higher.

Table 5. Comparison of T-year design flood discharges (10° ft3/s) calculated by different distributions
for the Hoover dam site.

Number Return Period 1000 500 100 50 10
1 GB2 76.702 67.914 51.198 34.138 30.125
2 Normal 45.800 44451 40.938 34.288 31.488
3 Exponential 68.561 63.583 52.024 35.486 30.508
4 Gamma 50.485 48.424 43.314 34.613 31.320
5 Gumbel 58.926 55.332 46.973 34.799 30.912
6 Generalized normal 50.513 49.271 45.325 35.732 31.485
7 Pearson type IIL 60.025 56.451 47.985 35.145 30.926
8 Log Pearson type Il 69.568 64.494 52.713 35.639 31.858
9 Generalized Pareto 64.809 59.870 49.084 34.893 30.695

—_
o

GEV 57.809 54.766 47.324 35.270 31.072

4.5. Change in Flood Frequency Distribution with Change in Drainage Area

The GB2 distribution was applied for FFA along the main stem of the Colorado River.
Four gauging stations (sites 4, 5, 6 and 7) from upstream to downstream were used, as shown in
Figure 3 and Table 6. These gauging stations were selected, because all these stations are on the
mainstream and no dam has been built on this reach. The drainage area and statistical characteristics
(including mean, skewness and kurtosis of the annual maximum data) of these stations were calculated,
as given in Table 1. The T-year design flood of these gauging stations was calculated, as shown in
Figure 5, in which the x-axis represents the return periods and the y-axis represents the design flood
values. Figure 5 shows that for a given return period, the design flood value of the downstream
gauging stations is larger than that of the upstream gauging stations. The increasing rates of drainage
area and T-year design flood values between the adjacent gauging stations were computed, as given
in Table 6, which indicates that the percentage increase of the drainage area was nearly the same as
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that of the design flood values. For instance, with the increase of drainage area up to 45% from the
gauging station near Dotsero to that near Cameo, the flood value increased by 43% on average. It is
also seen that from upstream to downstream, when the drainage area increased by 45%, 55% and
26%, the flood value increased by 43%, 42%, and 16%, respectively. It seems that in a mountainous
watershed, the upstream the reach is, the greater the impact the drainage area has on flood. This may
be because that the runoff coefficient is generally larger in the steep area.

300
d
& 250
S 200 94.97 .54
§ 150 81.01 |
cg) 100 973 56.87 o 83.44 89,75
z 50 3121 45.29 510
2 3 38 16

10 50 100 500 1000

Return periods (years)
mDotsero  mCameo uC-U Cisco

Figure 5. Flood values along the mainstream of the upper Colorado River.

Table 6. Statistical characteristics of the four gauging stations, the increasing rate of drainage area and
flood discharge between adjacent gauging stations.

. Drainage Area Increase in Increase in in Flood Value (%)
Number Locations (Square Miles) Drainage Area (%) 1000 500 100 50 10 Mean
4 Near Dotsero 11370 45 40 41 42 47 46 43
5 Near Cameo 20683 55 50 48 44 32 35 42
6 Near Colorado-Utah 46228 26 11 12 15 2220 16
7 Near Cisco 62419

4.6. Evolution of Frequency Distribution along Stream

In order to determine the evolution of frequency distribution and its parameters along the river,
data from the Yampa River were applied, because this river is taken as one of the west’s last wild rivers
and has only a few small dams and diversions. The Yampa River with a length of 402 km, located in
northwestern Colorado, is a tributary of Green River and a secondary tributary of the Colorado River.
Data from three gauging stations along this river, designated as sites 1, 2 and 3 in Figure 6, were used.
The GB2 distribution was used to fit the AM series of each of the three gauging stations, as shown
in Table 7. It can be seen that shape parameters r1 and r, decreased along the river. The value of r{
became close to be 1. When r; equals 1, the GB2 distribution becomes the Burr XII distribution [25].
This distribution has been shown to reasonably fit the income distribution data [20,26,27] and has
recently been used in hydrology [2,28]. The PDF of Burr XII distribution can be written as:

73 x Ixrz—1 x 13 —(r2+1) 7370

f(x)=m(g) (1+(b = (h)

ENE 1(1 . (%)m) (r2+1) @®
where b is the scale parameter. The Burr XII distribution was also used to fit the data at the gauging
station near Maybell of Yampa River. The estimated parameters of Burr XII distribution were: r, = 1.94,
r3 =4.19, and b = 12.33. The fitting results of the GB2 and Burr distributions for the gauging station
near Maybell are shown in Figure 7. For the gauging station near Maybell, parameters of the GB2
distribution estimated by POME method are nearly as the same as the parameters of the Burr XII
distribution estimated by MLE method. Thus, Burr XII distribution instead of GB2 distribution can be
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used for FFA at that station. In other words, the distribution for FFA changes from the four-parameter
GB2 distribution to the three-parameter Burr XII distribution along the Yampa River. There is an
evolution of distribution along this river. From Equation (1), the value of scale parameter 8 increases
with the mean value, because more water flows into the stream. Parameters r1 and r, govern the left
and right tails, respectively. The smaller the value of 1, the fatter the left tail is; and the smaller the
value of ry, the fatter the right tail is. It can be seen from Table 7 that both r; and r, decrease along the
stream, which demonstrates that both the left and right tails become fatter, and the PDF values become
larger in these areas and lower in the central area.

3.00
2.50
2.00

Flood peak flow (103 ft;/s)

e
T eeeeeeed mmme

Figure 6. Evaluations of PDF of sites along the Yampa River.

1O g 0.15 g
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Figure 7. Marginal distribution and histograms of AM flood peak series fitted by the GB2 and Burr XII
distributions for the gauging station near Maybell on the Yampa River.

Table 7. Parameters of the GB2 distribution for four gauging stations along the Yampa River.

Number Location 1 123 3 B
1 Below stagecoach 17.44 15.25 055 2.10
Reservoir
2 Steamboat springs 1.20 5.49 3.59 5.81
3 Near Maybell 1.14 2.07 3.92 12.11
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5. Conclusions

The GB2 provides sulfficient flexibility to fit a large variety of data sets. Papalexiou and
Koutsoyiannis introduced this distribution in hydrology and used it for rainfall frequency analysis [8].
In this study, the generalized beta distribution of the second kind (GB2) is introduced for FFA for the
first time. The POME method was proposed to estimate the parameters of GB2 distribution. Equations
of POME method was deduced by ourselves and given in Appendix A. The Colorado River basin was
selected as a case study to test the performance of GB2 distribution. Frequency estimates from the GB2
distribution were also compared with those of commonly used distributions in hydrology. In addition,
some characteristics of FFA in mountainous areas are discussed. The conclusions can be summarized
as follows:

(1) Results demonstrate that the GB2 is appealing for FFA, since it has four parameters which allows
the distribution to be able to fit data having very different histogram shapes, such as the J-shaped
and bell-shaped distributions. And by fixing certain parameters, the GB2 distribution can yield
some well-known distributions, such as the beta distribution of the second kind (B2), the Burr
type XII, generalized gamma (GG), and so on.

(2) The parameters estimated by POME method are found reasonable. Both the marginal
distributions and histograms indicates that the GB2 distribution can successfully be fitted to
empirical values using the POME method.

(3) The performance of the GB2 distribution is better than that of the widely used distributions
in hydrology. For the site streamboat springs, the GB2 and generalized normal distributions
have the smallest RMSD values. For the site Near Cisco, the GB2 has the smallest RMSE values.
For the site Near Colorado-Utah, the GB2 and gamma distributions have the smallest RMSE
value. For the site Hoover dam, the GB2 distribution has the smallest RMSE value. Since the GB2
distribution have more parameters, the AIC values of GB2 distribution are larger than those of
generalized normal, Gamma and GEV distributions. Thus, generally GB2 distribution gives a
getter fit.

(4) When using different distributions for FFA, significant different design flood values are obtained.
It concludes that if the wrong distribution were used, the design flood would be underestimated
and potential flood risk would be higher.

(5) The design flood value increase with the drainage area. For a given return period, the design
flood value of the downstream gauging stations is larger than that of the upstream gauging
stations. In this study, the percentage increase of the drainage area was nearly the same as that
of the design flood values. It seems that in a mountainous watershed, the upstream the reach
is, the greater the impact the drainage area has on flood. This may be because that the runoff
coefficient is generally larger in the steep area.

(6) There is an evolution of distribution along this river. Along the Yampa River, the distribution
for FFA changes from the four-parameter GB2 distribution to the three-parameter Burr XII
distribution. And both r; and r, decrease along the stream, which demonstrates that both the left
and right tails become fatter, and the PDF values become larger in these areas and lower in the
central area, which means that when the drainage area become larger, the flood magnitudes has a
more significant variation.
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Appendix A. Estimation of Parameters of GB2 Distribution

The GB2 distribution parameters can be estimated by maximizing the Shannon entropy H(X)
which, for a random variable X, can be expressed as:

H(X) = - [ f(x)log f(x)dx (A1)
0
where f(x) is the probability density function (PDF). The principle of maximum entropy (POME)
indicates that the most appropriate PDF is the one that maximizes the value of entropy, given available
data and a set of known constraints [29].
Specification of Constraints: Following Singh, the constraints for the GB2 distribution can be
expressed as

/f(x)dx =1 (A2a)
0
/ (%) Inxdx = E(Inx) (A2b)
b
/'f(x) In(1 + (%)rs)dx = E(In(1+ (%)73)) (A2c)
0

Method of Lagrange Multipliers for Maximizing Entropy: In the search for an appropriate probability
distribution for a given random variable, entropy should be maximized. In other words, the best fitted
distribution is the one with the highest entropy. The method of Lagrange multipliers was used to
obtain the appropriate probability distribution with the maximum entropy. Finally, the form of this
distribution is given as:

' X3
f(x) = exp(=A0 = A1 In(x) */\zln(1+(3) ) (A3a)
in which Ag, Aj,and A’; are the Lagrange multipliers. Let p = f7'3. Then, Equation (A3a) can be
written as

f(x) = exp(=Ag — A In(x) — A5 In(1 + px"®)) (A3b)

Let A} = % and g = r3. Papalexiou and Koutsoyiannis defined the entropy-based PDF as:

f(x) =exp(—Ag — A1 In(x) — %ln(l + px1)) (A4)

Substitution of Equation (A4) in Equation (A2a) yields:

/.f(x)dx - / exp(—Ao — A1 In(x) — 2 In(1 + px?))dx = 1 (A5)
0 0 P
From Equation (A5):

exp(Ag) exp(—A1Inx — Ay In(1 + px7) /p)dx
exp(—ApInx) exp(—%ln(l + px7))dx (A6)

x(=M) (1+ px‘?)(f%)dx

Il
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1 1_
Lett = px. Then x = (é)ﬁ, and dx = #(é)ﬁ 'dt. Thus, Equation (A6) can be expressed as:

Ay
x(’Al)(l + px‘?)“?)dx

exp(Ag)

M A
RACEDR
M-1 -

il A1
T (L4+4) 7 e dt

(éﬁ’ldt (A7)

—
=
Ek

Il

==
=

Thent = L and df =

Lety = 7

+ dy.

— y>2
Since y(0) = 0 and y(oo)

exp(Ag) =

1

J

0

1

J

01 1 \
e i,] 2

zof%p q (1z7y) q (1%) P dy (A8)

1

J

0

1

q

The Lagrange multiplier A( can be calculated from Equation (A8) as:

A1 1-M -\ A A
Ao=—Ing+ 1" In(p)+InT(—L ; D fInr(——2 4 pz) InT( pz) (A9)
From Equation (A4), the other equation for calculating A¢ can be defined as:
) )Lz .
Ao :ln(/exp(—/\l Inx — —=In(1+ px"3))dx) (A10)
5 p
Relation between Lagrange multipliers and constraints: Defining a’ = % and V' = — l;Al + %2,
differentiate Equation (A9) with respect to A1 and A;:
g _ lnp dlnT(a') 3 dInT(t') oy’  dInT(a+b') d(a+b’)
M — g T aAl TR0 o T A o (Al1a)
_ lnP b
=L = po@) + fo(b")
9dg _ oInT(t') gy’ _ 9InT(a'+b') (a’+b')
Ay o) aAZ o+ (A11b)
= 5ot) — jo(d +V)
where ¢(.) is a digamma function. Differentiate Equation (A10) with respect to A and Aj:
a JInxexp(—A;Inx — %ln(1+px”’))dx
0_ 0 —_
- = —E(Inx) (A12a)

Jexp(=AInx — % In(1+ px7))dx
0
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[ xTexp(—ApInx — 22 1In(1 + px?))dx
Ao 0 P

Ay In(1+ px7)
Ny

N = —E( ) (A12b)
Jexp(=AInx — /\—;ln(l-i-pxq))dx P
0

Based on Equations (A11) and (A12), the relation between Lagrange multipliers and constraints
can be expressed as:

% _ ;?(”) " égg(b) — _E(Inx) (A13a)
1 1 In(1 + p7)
Zo(b) — = b)= —E(———~~ A13b
p(P() pqv(u+ ) ( P ) (A13b)

Since there are four parameters, Equations (A13a) and (A13b) are not sufficient for calculating
parameters, and two additional equations are needed that are given as:

Pho _ 1 n L

m = q—zga (a') + $4) (V') = var(Inx) (Al4a)
82)\0 x.\1
1, = ¢/'(r2) — ¢'(r1 +12) = var(In(1 + (B) ) (A14b)

Relation between Lagrange multipliers and parameters: Substituting Equation (A8) in Equation (A4),

it is known that: "

f(x):1L1 1-A 1-A A
1 Mo 1AM A
qqu(q’ q+p)

Equation (A15) is the GB2 distribution. Comparing Equation (1) with Equation (A15),
the following equations can be obtained:

_t
»

xM(1 4 pxd) (A15)

Alil—}’lq

Ap = p(rp + =M

2= p(2+ 5) (Al6)
p=(p)

qg=7s

Relation between parameters and constraints: Based on the relation between parameters and
constraints, and parameters and Lagrange multipliers, the relation between parameters and constraints
can be expressed as:

—Ing - Lo(r)+ Le(r2) = —E(Inx)

BRo(r2) — Bo(r1 +12) = —E(B™ In(1+ (5)"™))
—Ing+ ,%z?'("l) + #(p’(rz) = var(lnx)

¢'(r2) — ¢'(r1 +12) = var(In(1+ (§)™))

(A17)
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Abstract: Frequency analysis of hydrometeorological extremes plays an important role in the design
of hydraulic structures. A multitude of distributions have been employed for hydrological frequency
analysis, and more than one distribution is often found to be adequate for frequency analysis.
The current method for selecting the best fitted distributions are not so objective. Using different kinds
of constraints, entropy theory was employed in this study to derive five generalized distributions for
frequency analysis. These distributions are the generalized gamma (GG) distribution, generalized
beta distribution of the second kind (GB2), Halphen type A distribution (Hal-A), Halphen type B
distribution (Hal-B), and Halphen type inverse B (Hal-IB) distribution. The Bayesian technique was
employed to objectively select the optimal distribution. The method of selection was tested using
simulation as well as using extreme daily and hourly rainfall data from the Mississippi. The results
showed that the Bayesian technique was able to select the best fitted distribution, thus providing a
new way for model selection for frequency analysis of hydrometeorological extremes.

Keywords: entropy theory; frequency analysis; hydrometeorological extremes; Bayesian technique; rainfall

1. Introduction

Frequency analysis of hydrometeorological extremes plays an important role in the design of
structures, such as dams, bridges, culverts, levees, highways, sewage disposal plants, waterworks,
and industrial buildings [1-5]. From a frequency analysis, the probability of an extreme event can be
estimated, and the value of a T-year design event (e.g., rainfall or flood) can be calculated. One of the
objectives of frequency analysis of hydrometeorological extremes therefore is to establish a relationship
between a flood or rainfall magnitude and its recurrence interval or return period.

A multitude of distributions have been employed for frequency analysis of hydrometeorological
extremes. For example, the Pearson Type three (P-III) distribution is recommended in China; the Log-Pearson
type three (LPT 3) is used in the U.S and Australia; and generalized extreme value (GEV) distribution
is usually employed in Europe. Frequency analysis of hydrometeorological extremes at a given site or
location is usually performed based on an appropriate probability distribution, which is selected on the
basis of statistical tests for extreme hydrometeorological data [6]. However, no single distribution has
gained global acceptance [7,8]. The traditional method is to try a variety of distributions and choose
the best fitted distribution based on a particular mathematical norm, such as a least square error or a
likelihood norm [9]. The disadvantages of this method of choosing are that it is laborious because too
many different distributions need to be tried and empirical choices of candidate distributions make the
results subjective [9-11]. In order to overcome these disadvantages, the generalized distributions have
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recently gained a lot of attention because they have been shown to be an effective tool for frequency
analysis of hydrometeorological extremes. The greatest advantage of these generalized distributions is
that they provide sulfficient flexibility to fit a large variety of data sets, which facilitates the selection and
comparison of different distributions. For example, Papalexiou and Koutsoyiannis [9] concluded that
the generalized beta distribution of the second kind (GB2), which includes commonly used exponential,
Weibull, and gamma distributions as special cases, was a suitable model for rainfall frequency analysis
because of its ability to describe both J-shaped and bell-shaped data. Chen et al. [10] and Chen and
Singh [11] also used the generalized gamma (GG) and GB2 distributions for hydrological frequency
analysis, respectively. The results demonstrated that these two distributions could fit hydrometeorological
data well. The generalized distributions can be derived using entropy theory by specifying appropriate
constraints. The theory also provides a way for efficient parameter estimation [12].

Selection of the most appropriate distribution is of fundamental importance in hydrometeorological
frequency analysis, since a wrong choice could lead to significant error and bias in design flood or rainfall
estimates, particularly for higher return periods, leading to either under- or over-estimation, which may
have serious implications in practice [13].

A distribution is often selected on the basis of statistical tests or by graphical methods [14]. Selection
criteria based on the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC),
and the Anderson-Darling Criterion (ADC) are widely used in hydrology [4,15]. Laio et al. [16]
presented an objective model selection criterion based on the AIC, the Bayesian Information
Criterion (BIC), and the Anderson-Darling Criterion (ADC). Using a rigorous numerical framework,
they found that the ability of these criteria to recognize the correct parent distribution from the available
data varied from case to case, and these were more effective for two parameter distributions [13]. In this
study, a more objective method based on a Bayesian technique is introduced to select the distribution
with more parameters for frequency analysis of hydrometeorological extremes.

Bayesian method has been widely used for hydrological analysis, such as model selection and
hydrological uncertainty analysis. Duan et al. [17] used Bayesian model averaging for multi-model
ensemble hydrologic prediction. Hsu et al. [18] used a sequential Bayesian approach for hydrologic
model selection and prediction. Najafi et al. [19] used Bayesian Model Averaging method to assess the
uncertainties of hydrologic model selection. Robertson and Wang [20] introduced a predictor selection
method for the Bayesian joint probability modeling approach to seasonal streamflow forecasting at
multiple sites. In addition, Bayesian model method was also used for model uncertainty analysis [21,22].

The objective of this study is therefore to present a more objective method based on a
Bayesian technique to select the most appropriate generalized distribution for frequency analysis of
hydrometeorological extremes. The entropy theory was employed to derive generalized distributions
for hydrometeorological extremes and estimate their parameters based on the principle of maximum
entropy. A simulation test was carried out to evaluate the performance of the proposed Bayesian
model selection technique. The proposed method was then tested using annual maximum hourly and
daily precipitation data from Mississippi.

2. Entropy Theory

Since the entropy theory was used for the derivation of these generalized distributions and
estimation of their parameters, in this section, the entropy theory combined with the principle of
maximum entropy (POME) method is introduced.

The entropy, defined by Shannon in 1848, can be expressed by

=5}

H(X) = = [ f(x)log f(x)dx M

0
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where f(x) is the probability density function (PDF) of X. f(x) can be derived by maximizing the entropy
subject to given constraints, which can be expressed by

max H(X) (2a)
st [ f(x)dx=1; (2b)
/
/g,.(x)f(x)dx =G (i=1 ..., m) (20)
0

Employing the method of Lagrange multipliers, the PDF of X from Equations (1) and (2) can be
derived as

f(x) = exp(—Ao — Mg1(x) — Aaga(x) — ... — Awgm(x)) ®)

where m is the number of constraints; and Ay, ..., A, are the Lagrange multipliers. According to (2b),
Ap can be defined as

exp(—A191(x) —Aaga(x) — ... — Apgm(x))dx. 4)

\8

exp(Ag) = ‘

(=1

When different constraints are used, different PDFs can be obtained. According to the POME
theory, all of the generalized distributions discussed in the following can be written in the form
of Equation (3).

3. Generalized Distributions

Five generalized distributions, namely the GG distribution, the GB2 distribution, and three
Halphen family distributions, were used in this study. The principle of maximum entropy (POME)
method was used for parameter estimation, and it involves the following steps: (1) specification of
constraints and maximization of entropy using the method of Lagrange multipliers; (2) derivation of the
relation between Lagrange multipliers and constraints; (3) derivation of the relation between Lagrange
multipliers and distribution parameters; and (4) derivation of the relation between distribution
parameters and constraints. Detailed information on obtaining the equations for parameter estimation
of those generalized distributions is given in [10,11,23]. In this paper, we mainly focus on model
selection based on the Bayesian method.

3.1. Generalized Gamma Distribution

The probability density function of the GG distribution is given by

o x . (n-1) x."2
flx) = () exp(—(3) ) (5a)
BT(Z) B P8
where I'(-) is the gamma function; 1 and r; are the shape parameters, 1 > 0, 7 > 0; and beta is the scale
parameter, > 0.
For deriving Equation (5a) from the entropy theory, the following constraints are specified:

(=5}

/ Fa)dr =1 (5b)

0
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/f(x) Inxdx = E(In X) (5¢)
0
/f(x)x”’dx = E(X9). (5d)
0

The probability density function (PDF) of the GG distribution can then be expressed as [10]:
f(x) = exp(=Ao — A1 In(x) — Axx7) ©6)

where Ag, A1, and A, are the Lagrange multipliers, and g is the parameter g4 = r, [10].
The relations between Lagrange multipliers and parameters can be summarized as

q=T72
M=1—-r . (7)
Ay = ‘3—72

The equations for parameter estimation based on the POME method can be given as [10]

s In(B") = L9(3) = ~E(InX)

B2 5 = —E(In(X"2)) ®)
rz%q)’(%) = var(In X)

where ¢ () is the digamma function; and ¢’(-) is the tri-gamma function.

As seen in Equation (8), there are three unknown parameters, 11, 17, and B, in the three equations,
and the variable X represents the observed hydrometeorological extreme series, which have been
known before. By solving this equation set, the parameter of the GG distribution can be determined.
The estimation procedures for other distributions are the same as those for the GG distribution.

3.2. Generalized Beta Distribution of the Second Kind
The PDF of the GB2 distribution is given by

73 x . rr3—1 x 13 —(r2+r)

flx) = bB( ) 1+@G)) (%a)

r, 7'2) b
where B(-) is the beta function; and 7y, 12, and r3 are the shape parameters, r; >0, rp > 0 and r3 > 0;
and b is the scale parameter, b > 0.
For deriving Equation (9a) from the entropy theory, the following constraints are specified:

/' Fa)dx =1 (9b)
0
/f(x) Inxdx = E(In X) (9¢c)
0
/f(x) In (14 px¥)Pdx = E(In (1 + pX7)'/7). (9d)
0

According the maximum entropy theory, the PDF of the GB2 distribution can be expressed as [11]

F(x) = exp(—Ag — A In(x) = Az In (1 + px7)'/?) (10)
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where p and g are two parameters, which are also related to the parameters of the GB2 distribution,
T
p= (%) °,and q = r3.
The relations between Lagrange multipliers and parameters can be summarized as

/\1:1—r1q

Ay = p(ra+ M)

2T (11)
P*(B)

q=r3

The equations for parameter estimation based on the POME method can be given as [11]

—Inp—Lo(r) + 5¢(r2) = —E(InX)
¢(r2) — @(r +12) = —E(In(1+ (5)"))

12
rsiz(p’(rl) + ra%(p’(rz) =var(InX) (12)
¢'(r2) = ¢/ (r1 +12) = var(In(1 + (§)"))
3.3. Halphen Type A (Hal-A) Distribution
The PDF of the Hal-A distribution is given as
ol lexpea(E 4™
flx) = 2vaU(2W)x exp| oc(m + x)] x>0 (13a)

where Ky(+) is the modified Bessel function of the second kind of order v, v € R; and m and « are
parameters, m >0 and « > 0.
For deriving Equation (13a) from the entropy theory, the following constraints are specified:

/ Fa)dr =1 (13b)
0
/ﬂﬂmmX:me) (130)
0
/ xf(x)dx = E(X) (13d)
0
/%f(x)dx - E(%)‘ (13¢)
0

From the entropy theory, the PDF of the Halphen type A distribution can be expressed as [23]
f(x) =exp(f)\07/\1 11’1.7(*)\2){*/\3%) x>0 (14)

where A3 is also the Lagrange multiplier.
The relations between Lagrange multipliers and parameters can be summarized as

/\1:1—0
Ay = . (15)
A3z = ma
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The equations for parameter estimation based on the POME method can be given as

Inm 4 s 980 — E(In )

7’"’21@&2"‘ E(X) : (16)
Ky-1(2a) 1(20) (l)

mKy(2a) X

3.4. Halphen Type B (Hal-B) Distribution
The PDF of the Hal-B distribution can be given as

2 201 x .2 m
flx) = va(lx)x v exp[—(%) + a(;)} x>0 (17a)
where ef, (+) is the exponential factorial function, defined as ef, (¢) = 2 f x2Lexp[—x? + ax]dx (x> 0),

m > 0 are scale parameters, and v > 0 and « € R are shape parameters
For deriving Equation (17a) from the entropy theory, the following constraints are specified:

(=5}

/ Fa)dx =1 (17b)
0
/f(x) Inxdx = E(In X) (17¢)
0
[ fxdx = EC) (17d)
0
/xf(x)dx = E(X). (17e)

0
From the entropy theory, the PDF of the Halphen type B distribution can be expressed as [23]

f(x) =exp(=Ag — Ay Inx — Apx? — Azx) x> 0. (18)

The relations between Lagrange multipliers and parameters can be summarized as

A =1-2v
M=l (19)
Ag=—2&

The equations for parameter estimation based on the POME method can be given as

Inm + 52 aef”(“):E(lnX)

) 2¢fy(a)  dv
i = EOO) (20)
mhaw

Efv(“) - ( )
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3.5. Halphen Type Inverse B (Hal-IB) Distribution
The PDF of the Hal-IB distribution can be given as

2 —20—1 m.,2 m
f(x) = m*zvefv(/x)x ! exp[f(;) +"‘(;)] x>0 (21a)
where m > 0 is a scale parameter, and & € % and v > 0 are shape parameters.

For deriving Equation (21a) from the entropy theory, the following constraints are specified:

/ Fa)dx =1 (21b)
0
/ (%) Inxdx = E(InX) (210)
0
71 1
0/ —f(x)dx = E(35) (21d)
%f(x)dx - E(%)‘ (21e)

From the entropy theory, the PDF of the Halphen type inverse B can be expressed as [23]
1 1
f(x) =exp(f/\of)\11nxf)\2? *)\3;) x> 0. (22)

The relations between Lagrange multipliers and parameters can be summarized as

AM=2v+1
)Lz = mz . (23)
A3 = —mau

The equations for parameter estimation based on the POME method can be given as

Inm— 21— aefavv(“) = E(InX)

fo) B 1
mZvle;‘]v(a) - E(ﬁ) . (24)
e‘fw%("é) _ (1
mefo(a) (Y)

4. Model Selection Based on the Bayesian Technique

First, the five generalized distributions given above were used to fit a given data set D, and the
equation sets derived by the POME method were applied for estimating their parameters. Second,
the Bayesian technique introduced as follows was used to select the most appropriate distribution
from the set of distributions for the data set D. In this study, the data D can be simulated data and
observed data.

Let I be the background information. The posterior probabilities over a set of distributions can be
expressed as
P(M;|I) - P(D|M;, I)

P(DII)

where P(M;|D, I) is the posterior probability of distribution or model M; and indicates the probability
of this distribution to be true given the data series D and background information I. The largest

P(M;|D, 1) =

(25)
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approximate posterior probability among all of the distributions should be chosen as the most
appropriate distribution. P(M;|I) is the prior model probability of distribution M;; P(D|M;, I) is
the probabilistic evidence or integrated likelihood of data D conditional on model M;. P(D|I) is a
normalization constant and is calculated using the sum and product rules of probability theory as

P(DII) = iP(Mz‘“)P(D‘Mz‘/I) (26)
i=1

where N is the number of distributions that are used for the frequency analysis.

To obtain the posterior probability, one needs to calculate the probabilistic evidence P(D|M;, I),
which can be obtained by integrating a joint distribution P(A, D|M;, I ) with respect to vector A, and can
be expressed as

+00
P(D|M; 1) = /P()\,D|Ml»,l)d)\ 27)
since
P(A,D|M, 1) = P(\|M;, 1)P(D|A, M;, ) (28)

where P(A|M;, I') is the prior PDF for the Lagrangian multipliers given distribution M; and background
information I. Equation (27) can be obtained as

+oo
P(D|M;,T) = / P(A|M;, I)P(D|A, M;, 1)dA = E[P(D|A, M;, 1)] (29)

—o0

where P(D|A, M;, I) is the likelihood function of the data in terms of the set of Lagrangian multipliers,
and can be expressed by

P(DA, M;, 1) = ﬁf(Dk\?\,Mi,I) (30)
k=1

where 7 is the sample size, and D; denotes a specific value in data set D. For a given sample size D,
model M; and background information I, P(D|A, M;, I) can be calculated by the multiplication of all
PDF values of Dy.

The multivariate Gaussian distribution was selected as the prior distribution for the Lagrangian
multiplier vector A. The mean value of Lagrangian multipliers was the estimated A. The covariance
matrix ¥ was calculated based on the Hessian matrix H, £ = H~!. The equation for calculating the
Hessian matrix can be expressed as

[ 927 927y A ]
A2 OAOA, T OA0Am
g 92Ag A
20\, A2 o 90,
H = . . PN . . (31)
g 92)g A
L 0AwdAy  9AwdAy A2,

From Equation (29), P(D|M;, I) can be obtained by integration. Since the integration in Equation (29)
is often a complex and high-dimensional function in Bayesian statistics, the quantity P(D|M;, I) was
calculated based on the calculation of E[P(D|A, M;, I)].

A Markov Chain Monte Carlo (MCMC) method was used in this study to calculate P(D|M;, )
and the posterior distribution of each distribution. The idea of MCMC sampling was first introduced
by [24]. Since the target distribution is very complex, we cannot sample from it directly. The indirect
method for obtaining samples from the target distribution is to construct an Markov chain with state
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space E, and whose stationary (or invariant) distribution is 7i(-), as discussed in [25]. Then, if we run
the chain for sufficiently long, simulated values from the chain can be treated as a dependent sample
from the target distribution. Using the MCMC simulation, pairs of Lagrangian multipliers A were
drawn from the joint distribution P(A, D|M;, I). The quantity P(D|M;, I ) was finally calculated based
on the calculation of E[P(D|A, M;, I)].

In the following, simulated data and real-world data were used for testing the proposed method.
The flow chart can be found in Figure 1.

Pre-defined distribution: simulated data set D

Candidate distributions

} I
| |

|
! M P(M)  P(DIM) | |
i POME Bayesian |
! method M, Technique i
| Data set D > > i
i Parameter . Model |
; estimation . selection |
| My |
i P(M{|D) i
| |
| |

Case study: daily and hourly data set D

Figure 1. Flowchart of the whole paper. POME: principle of maximum entropy.

5. Performance Evaluation

Before using the proposed method in a practical application, a simulation test was carried out to
evaluate the performance of the proposed Bayesian technique for model selection. The simulation test
involves the following steps.

First, a distribution with given parameters was pre-defined.

Second, simulated datasets D were randomly drawn from the pre-defined distributions.

Third, the Gaussian, lognormal, Gamma, and Weibull distributions were used to fit the data set D,
and the POME method was applied for parameter estimation.

Fourth, the proposed Bayesian technique was applied for model selection, and the best fitted
distributions with the highest posterior probabilities were determined. The results were compared
with the pre-defined distributions.

Fifth, the Bayesian model selection technique was compared with commonly used methods in
hydrology, such as the root mean square error of the empirical and theoretical probabilities and the
AIC criterion.

According to the steps mentioned above, this test focuses on the evaluation of the reliability of
the Bayesian model selection for different distributions and data sample sizes. In order to show the
performance of the proposed method, some simple and widely used distributions were considered,
including the Gaussian, lognormal, Gamma, and Weibull distributions, which involve the Gaussian
and non-Gaussian cases. The parameters used for the simulation are given in Table 1. Simulated
datasets were randomly drawn from the pre-defined distributions given in Table 1 with sample sizes
of 40, 80, 120, 160, 200, and 240. The proposed Bayesian technique was then applied to determine the
best fitted distributions for each dataset. The multivariate Gaussian distribution was used for the prior
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distribution, in which the mean values are the estimated Lagrangian multiplier, and the covariance
matrix ¥ was calculated based on the Hessian matrix H, ¥ = H~!. Usually, the estimated parameters
were around the true values, so the Gaussian distribution was used. Additionally, the Hessian matrix
was calculated to represent the covariance matrix. It is not straightforward to try other distributions,
since it is a multivariate problem for which the multivariate Gaussian distribution is widely used.

Table 1. Parameters of different distributions for simulation test.

Number Distribution Probability Density Function (PDF) Parameters
i _ 1 (X*}i)z n= 10,
1 Gaussian f(x) = oo exp(— B0 Lol
1 1 2
—5z (Inx — , 0 -
2 Lognormal fxip,o) = { 6/2?7% ZXP[ 5oz (Inx = )], x> K=2
3 Gamma flx; pa) = £oxv=1e=Bx, x> 0 a =10,
7 Pr T(w) ’ ‘B -1

The simulation results are shown in Figure 2, which indicate that when the data was sampled
from the Gaussian distribution, for all of the sample size, the posterior probabilities of the Gaussian
distribution were the highest. For the other tests, namely the lognormal distribution and the gamma
distribution as the pre-defined distributions, respectively, the highest posterior probabilities for
all of the sample size were the lognormal distribution and gamma distribution as well. Therefore,
the proposed Bayesian technique can select the best fitted distribution even for a small sample size
(sample size = 40).
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Figure 2. Cont.
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Figure 2. The posterior probabilities of the simulation tests with the Gaussian distribution, Lognormal
distribution, and Gamma distribution as the pre-defined distributions, respectively.

The proposed method was compared with the traditional root mean square error (RMSE) and
AIC values, which are also used to select the most appropriate distribution. The results are given
in Tables 2 and 3, in which the best fitted distributions with the smallest RMSE and AIC values are
in bold. According to the smallest RMSE and AIC values, the correct distribution cannot always
be selected. Take the Gaussian distribution as an example. When the sample size was 40, 80, 120,
and 160, the best fitted distribution was, respectively, gamma, Weibull, Weibull, and Weibull. When
the sample size became larger, greater than 160, the Gaussian distribution was detected as the correct
distribution. The RMSE and AIC values of different distributions did not show significantly different
results. In other words, the differences in the RMSE and AIC values among those distributions were not
large. In Table 3, generally the AIC and RMSE values can show the best fitted distribution. However,
in some cases the RMSE and AIC values of different distributions were nearly the same, such as the
sample size equaling 160 and 200 in Table 3.

According to the performance test, the Bayesian technique can obtain the correct distribution at
any time no matter what the sample size is. On the contrary, the traditional RMSE and AIC do not
always work effectively. The RMSE and AIC for the data fitted using different distributions do not
shown large differences. Therefore, the proposed method can provide an effective way for model
selection in hydrological frequency analysis.

Table 2. The root mean square error (RMSE) and Akaike Information Criterion (AIC) values for the
simulation test, in which the pre-defined distribution is the Gaussian distribution.

Distributions Criteria 40 80 120 160 200 240
Gaussi RMSE 0.03 0.0175 0.0247 0.0243 0.0118 0.0115
aussian AIC —169.07  —44378  —57756  —792.76 —1244.68 —1482.07
loenormal RMSE 0.0385 0.044 0.025 0.05 0.057 0.0437
5 AIC —155.12  —279.77  —55839  —525.84 —683.75 —913.47

G RMSE 0.0239 0.0293 0.0161 0.0377 0.0367 0.026
amma AIC —177.05 —3325793 —642.25 —607.66 —801.37 —1116.59
Weibull RMSE 0.03 0.0168 0.016 0.0168 0.017 0.0118
eibu AIC —167.34  —4413  —66123 —858.42 —108221 —1457.45
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Table 3. The RMSE and AIC values for the simulation test, in which the pre-defined distribution is the
Gamma distribution.

Distributions  Criteria 40 80 120 160 200 240

Coussi RMSE 0.0409 0.0317 0.33 0.0333 0.0318 0.033
aussian AIC —15298  —372.77  —50991  —6935  —879.39  —1030.29
lognormal RMSE 0.0217 0.0161 0.0211 0.0098 0.0158 0.0179
& AIC —185.92 —437.1 —582.86 —101823 —1094.31 —1311.04

. RMSE 0.0229 0.0141 0.0169 0.0108 0.0124 0.0126
amma AIC —189.06  —4864  —632.77 —1026.04 —1191.77 —14218
Weibull RMSE 0.042 0.0398 0.0314 0.036 0.0344 0.0332
eibu AIC —15055  —37395  —52374 —67299 —853.67 —1053.41

6. Case Study

Rainfall data for many different timescales were investigated. The timescales of these rainfall
dates in the Mississippi River basin ranged from hourly to yearly. The annual maximum daily and
hourly series were extracted for frequency analysis, and detailed information of daily and hourly data
is shown in Table 4, in which the length of data, the mean value, standard deviation, and the minimum
and maximum values are shown. The daily and hourly rainfall histograms for each gauging station
are given in Figure 3.
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Figure 3. Daily and Hourly rainfall histograms for each gauging station.
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Table 4. Detailed information of daily and hourly annual maximum rainfall series.

Times Gauging Station Number Length of Data Mean Values SD Max  Min
Canton gauging 221389 1893-2012 3.6 1.1 6.8 1.65
Brookhaven City, MS 221094 1894-2014 4.14 1.44 8.08 1.85
Daily  Crvstal Spgs Exp Stn, MS 222094 1893-1954, 1985-2014 4 14 9.04 2.02
Forest, MS 223107 1930-2012 4.02 1.66 11.75 2
Louisville, MS 225247 1895-2014 3.65 1.28 7.47 1.7
Arkabutla dam 220237 1949-2001 1.57 0.46 3.12 0.88
Enid dam MS 222773 1949-2012 1.62 0.59 4 0.2
Hourly  Saucier experimental =70, 1955-2013 2.23 07 513 12
forest MS
Aberdeen MS 220021 1952-2011 1.55 0.62 3.8 0.7
Calhoun city MS 221314 1948-2009 1.6 0.57 3.88 0.8

The five generalized distributions were used to fit the data set, and the entropy method was
used to estimate the parameters of these distributions, as given in Table 5 (for daily data) and Table 6
(for hourly data). A full Newton method was used to find the solution of the non-linear equation sets
derived before. The “nleqslv” package in R language was used to solve the equation set. The initial
value was set as 1 for all potential parameters. The proposed Bayesian technique was used to select the
most appropriate distribution for rainfall frequency analysis. The multivariate Gaussian distribution
was used for the prior distribution, in which the mean values are the estimated Lagrangian multiplier,
and the covariance matrix  was calculated based on the Hessian matrix H, & = H!. The posterior
probabilities are also in Table 5 (for daily data) and Table 6 (for hourly data). The RMSE, AIC, and BIC
were also calculated as given in Tables 5 and 6. Both the AIC and BIC indexes are based on the
likelihood values, and a penalty term was introduced for the number of parameters in the model.
However, the differences between them are that the penalty term is larger in BIC than in AIC. In this
study;, it is seen from Tables 5 and 6 that the selected model by the two methods is the same. Therefore,
only the results given by AIC are discussed hereafter. The results indicate that for some of the cases,
the selected model based on the three criteria are the same, e.g., gauging stations 225247, 220237,
227840, 220021, and 221314. For some of the stations, the results given by the three methods were
not coincident. However, for these cases, the distribution with the lowest AIC value usually had the
second-highest posterior probability. Take the gauging station 221094 in Table 5 for example. The AIC
and RMSE criteria suggested that the GB2 distribution was the best, for which the posterior probability
was 0.34, smaller than the highest one 0.58 (Hal-A). According to the simulation test in Section 4,
the performance of the proposed method was better than the traditional AIC and RMSE values. The
Bayesian method amplified the differences among the generalized distributions. In order to further
compare the performance of these models, the theoretical and empirical exceedance probabilities of
the daily rainfall data for the gauging station 223107 are shown in Figure 4a.

According to the results given in Table 5, the best fitted distribution for the gauging station 223107
recommended by the RMSE, AIC, and Bayesian methods, was GB2, Hal-A, and Hal-IB, respectively.
As shown in Figure 4a, if the Hal-A distribution was used, the design values for large return periods
would be underestimated. The fitting curves of the GB2 and Hal-IB distributions were nearly the same.
Thus, the distribution Hal-A recommended by the AIC is not appropriate, and compared with GB2,
the Hal-IB with less parameters and higher posterior probability was chosen finally.

The theoretical and empirical exceedance probabilities of the hourly rainfall data for the gauging
station 222773 are shown in Figure 4b. According to the results given in Table 6, the best fitted
distribution for the gauging station 222773 recommended by the RMSE, AIC and Bayesian methods
was GG, Hal-B, and GB2, respectively. As shown in Figure 4b, if the GG and Hal-B distributions
were used, the design values for large return periods would be underestimated.
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Table 5. Parameters, RMSE, AIC, and posterior probabilities for daily data calculated by five

generalized distributions.

Number Distribution Paral Para2 Para3 Parad RMSE AIC BIC POSteI..lf’r.
Probabilities
GG 13.251 0.8397 0.1335 0.0205 —613.05 —604.76 0.02
Gb2 0.9955 1.5808 34.95 16.84 0.0195  —605.68 —597.39 0.08
221389 Hal-A 5.235 3.431 0.0327 0.0183 —624.56 —616.27 0.14
Hal-B —20.927 7.363 5.381 0.0237  —593.21 —584.93 0.02
Hal-IB —9.103 2.855 4.776 0.0233 —544.21 53592 0.74
GG 13.308 0.684 0.0527 0.0362 —482.72  —477.32 0.08
Gb2 1.678 2.203 11.994 4.894 0.0203 —607.37 —601.98 0.34
221094 Hal-A 3.507 7.812 —5.534 0.0229  —584.34 —578.95 0.58
Hal-B —20.918 8.0322 5.6835 0.0557 —409.26  —410.15 0.00
Hal-IB —10.755 2319 3.699 0.0525  —539.94 —531.55 0.00
GG 14.855 0.628 0.0255 0.0307 —412.5 —404.94 0.04
Gb2 1.3803 1.38 24.977 6.573 0.0213 —462.61 —455.04 0.20
222094 Hal-A 2.5669 12.3193  —7.9616 0.021 —466.21 —458.64 0.32
Hal-B —12.2589  7.581 3.5971 0.04 —385.6  —378.04 0.01
Hal-IB —9.546 2.2708 4.2153 0.0218 —464.18 —456.61 0.44
GG 13.5999 0.5606 0.0131 0.0294 —409.36  —402.11 0.00
Gb2 2.199 1.837 9.931 2.4389 0.0164 —466.07 —458.81 0.08
223107 Hal-A 0.977 30.104 —8.194 0.0168 —479.18 —471.93 0.21
Hal-B —27.5605 14.5778 3.8889 0.0406 —362.58 —355.33 0.00
Hal-IB —3.8918  3.7076 3.2608 0.0165  —457.91 —450.65 0.71
GG 13.596 0.6657 0.0384 0.0437  —433.23 —424.86 0.00
Gb2 1.822 1.156 23.62 3.641 0.02456  —565.73 —557.36 0.00
225247 Hal-A 2.0554 14.775 —8.756 0.0287 —533.57 —525.21 0.04
Hal-B —46.515 14.128 6.0834 0.0653 —363.04 —354.68 0.00
Hal-IB —3.361 3.938 3.602 0.0232 —575.37 —567.01 0.96

Table 6. Parameters, RMSE, AIC, and posterior probabilities for hourly data calculated by five
generalized distributions.

Number Distribution Paral Para2 Para3 Parad RMSE AIC BIC Posml:‘?‘:
Probabilities
GG —19.179 0.6794 0.0284 0.048  —187.74 —181.83 0.20
GB2 2.963 2.5391 6.8892 24497  0.0308 —233.74 —227.83 0.57
220237 Hal-A 3.0259 15.972 —12.521 0.0344  —21546  —209.55 0.08
Hal-B —27.458 8.384 6.6655 0.0523  —178.6  —172.69 0.10
Hal-1B —7.185 4.2898 5.7116 0.0312  —222.62 —216.72 0.06
GG 4.169 1.858 1.656 0.0318  —291.31 —284.83 0.13
GB2 45 3.221 0775 2153  0.0337 —291.92 —285.44 0.70
222773 Hal-A 536 x 1072 190 x 1072 6.8204 0.0333 27418 —267.70 0.05
Hal-B 1.3105 1.6132 1.5702 0.0338  —292.69 —286.21 0.12
Hal-IB —50.5719 0.1565 3.0044 0.0419  —23143 —224.95 0.00
GG 17.0415 0.6977 0.0225 0.0473  —266.6  —260.37 0.05
GB2 2,013 1.2966 117277  4.6042  0.0266  —275.55 —266.32 0.84
227840 Hal-A 2.7995 8.6585 —11.0919 0.0271  —274.68 —268.45 0.00
Hal-B —23.6777 4.7218 5.8388 0.0422  —24955 —243.32 0.11
Hal-1B —10.601 1.865 5.7014 0.0316  —264.11 —257.88 0.00
GG 11.875 0.65 0.0173 0.0582  —189.32 —183.04 0.10
GB2 4.1081 0.9324 37284 09621  0.0468 —221.54 —212.26 0.33
220021 Hal-A 1.1704 10.6076 —8.8785 0.0532  —217.75 21147 0.15
Hal-B —~30.3037 5.6947 4203 00761  —181.74 —175.42 0.00
Hal-IB 0.7828 2.248 2.3074 0.0455 ~ —2284 —222.12 0.42
GG 14.1465 0.6738 0.0171 0.0405  —281.77 —275.39 0.00
GB2 1.5734 0.3406 449999 4516 00318  —293.19 —286.81 0.05
221314 Hal-A 1.7786 7.979 —9.475 0.0266 —316.06 —309.68 0.11
Hal-B —27.792 4.9387 4.622 0.0432  —263.62 —257.24 0.00
Hal-1B —6.217 1.438 4185 0.0249  —309.73 —303.35 0.84
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Figure 4. Theoretical and empirical exceedance probabilities of the annual maximum rainfall data at
the stations 223107 and 222773.

In order to compare the fitting results more comprehensively, the Q-Q plot, P-P plot, and S-P
plot were represented for the daily rainfall data from the gauging station 223107 as shown in
Figure 5. It can be seen from Figure 5a that the fitting results of GB2 and Hal-IB are nearly the
same. When the GG, Hal-A, and Hal-B distributions were used, the design rainfall for a large quantile
would be underestimated, since the theoretical rainfall values calculated by the GG, Hal-A, and Hal-B
distributions are significantly lower than the observed ones. For the P-P and S-P plots, the differences
for large probability are not so obvious, and the plots in Figure 5b,c are well-distributed compared
with the Q-Q plot. In Figure 5b, it is easily observed that the Hal-B distribution fits the worst, and the
empirical probabilities in the middle part are significantly larger than the theoretical ones. S-P plots
remove the impact of variance on the plot, and it is seen that the plots in the S-P figure are much more
concentrated than those in the P-P figure.
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Furthermore, in the U.S., the Log-Pearson three (LP3) distribution has been recommended for

hydrological frequency analysis [26,27]. In order to compare the five generalized distributions with
the commonly used LP3 distribution, the six distributions were considered and the proposed Bayesian
method was used to select the best fitted one. The results are given in Table 7.

Table 7. Parameters, RMSE, AIC, and poster probabilities for 223107 daily data calculated by five
generalized distributions and the Log-Pearson three (LP3) distribution.

Distributions Paral Para2 Para3 Para4 RMSE AIC BIC Posterior Probabilities
GG 13.60 0.56 0.013 0.0294  —406.36 —402.11 0.002
GB2 2.20 1.84 9.93 2.44 0.0164  —463.07 —460.81 0.071
Hal-A 0.98 30.10 —8.19 0.0168 —476.18 —471.93 0.197
Hal-B —2756  14.58 3.89 0.0406  —359.58 —355.33 0.0003
Hal-IB —3.89 3.70 3.26 0.0165  —45491 —450.77 0.674
LP3 14.29 0.09 —0.03 0.0167  —448.65 —444.39 0.056

7. Conclusions and Discussion

The paper proposes a model selection approach based on a Bayesian technique to choose the

best fitted distribution for hydrological frequency analysis. Five generalized distributions, including
GG, GB2, Hal-A, Hal-B, and Hal-IB, which are also widely used in hydrology, were considered.
The entropy-based method was used to express these distributions and the POME method was
applied for parameter estimation. A simulation test was carried out to evaluate the performance of
the proposed Bayesian method. Daily rainfall data from five stations and hourly rainfall data from
another five stations from the Mississippi basin were selected as case studies. The main conclusions
are summarized as follows.

)

@

®)

@)

®)

The entropy-based five generalized distributions are given, and their corresponding equation
sets for parameter estimation are introduced. The results of simulation test and case study show
that the POME method can provide an effective way for parameter estimation.

Results of the simulation test demonstrate that the Bayesian technique can choose the most
suitable distribution. Compared with the commonly used RMSE and AIC values, the proposed
method gives a better performance.

Results of the case study indicate that when using different criteria for model selection, the results
are not always the same. For some of the cases, the three criteria choose the same distribution.
For others, the results are slightly different. Since choosing the probable distribution for hydraulic
design is very significant, especially for extreme magnitudes, the distribution should be selected
carefully. According to the posterior probabilities calculated by the proposed method for daily
and hourly data from 10 gauging stations, generally the Hal-IB distributions give better fits for
daily data and GB2 distributions give better fits for hourly data.

According to the results of the simulation test and case studies, the Bayesian model selection
technique can give a more reliable result than the traditional RMSE and AIC values.
Thus, the proposed method provides an effective way for model selection for hydrological
frequency analysis.

The significant contribution of this paper is that compared with the traditional method,
the proposed method is based on entropy theory, and the posterior probabilities were calculated
based on the generation of Lagrange multipliers. In addition, the five generalized distributions
were involved in this paper, since previous research mainly focus on the commonly used
distribution or standard distributions.

This contribution of this paper mainly concentrates on univariate hydrometeorological frequency

analysis. Recently, multivariate hydrological analysis has also surged up, such as [2,4,28-31]. However,

univariate frequency analysis is the basis of multivariate frequency analysis, which can provide the
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marginal distributions for joint distribution. Thus, before establishing the multivariate distributions,
the univariate distribution should be built rationally and appropriately first.

In addition, in the common hydrological frequency analysis, the hydrological data set is assumed to
be independent and identically distributed [1]. Since there are influences of climate change and human
activities on streamflow, it is possible that the mean value or the variation of the whole series would be
changed. In other words, the data set is non-stationary. Non-stationary hydrological frequency analysis is
also another hot and difficult topic in hydrology recently. In this paper, we mainly focus on the stationary
frequency analyses of hydrometeorological extremes. Non-stationary hydrological frequency analysis
will be discussed in future research.

Although this paper discussed the model selection method based on the five generalized
distributions, the traditional commonly used distribution, the LP3 distribution, is still an effective tool
for frequency analysis and can be used for design rainfall or flood calculation.
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Abstract: Having reliable water monitoring networks is an essential component of water resources
and environmental management. A standardized process for the design of water monitoring
networks does not exist with the exception of the World Meteorological Organization (WMO) general
guidelines about the minimum network density. While one of the major challenges in the design of
optimal hydrometric networks has been establishing design objectives, information theory has been
successfully adopted to network design problems by providing measures of the information content
that can be deliverable from a station or a network. This review firstly summarizes the common
entropy terms that have been used in water monitoring network designs. Then, this paper deals
with the recent applications of the entropy concept for water monitoring network designs, which
are categorized into (1) precipitation; (2) streamflow and water level; (3) water quality; and (4) soil
moisture and groundwater networks. The integrated design method for multivariate monitoring
networks is also covered. Despite several issues, entropy theory has been well suited to water
monitoring network design. However, further work is still required to provide design standards and
guidelines for operational use.

Keywords: entropy; water monitoring; network design; hydrometric network; information theory;
entropy applications

1. Introduction

Water monitoring networks account for all aspects of the water-related measurement system
including precipitation, streamflow, water quality, groundwater, soil moisture, etc. [1-3]. Adequate
water monitoring networks and quality data from them comprise one of the first and primary steps
towards efficient water resource management. The basic principles of water monitoring network
design have simply been a number of monitoring stations, locations of the stations and data period
or sampling frequency [4,5]. Recent technological advances have allowed gradual transitions from
manual sampling to the automated observations, while some water quality parameters still require
field and/or lab analyses of water or other environmental samples. One may expect that the more
data we collect, the more water resource problems are solved efficiently. However, this is not always
true because irrelevant, inadequate or inefficient data in the wrong location or at the wrong time can
inhibit the quality of a dataset [1,6,7]. More seriously, the decline of water monitoring networks has
been a general trend due to financial limitations and changes of monitoring priority [8-10]. Therefore,
determining the adequate number of monitoring stations and their locations has become critical to
network design. However, a standardized methodology for a proper water monitoring network design
process has not been drawn yet due to the practical and socioeconomic complexity in diverse design
cases [1,11].
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The existing reviews have investigated the broad range of the water monitoring network
design methodologies, such as statistical analysis, spatial interpolation, application of information
theory, optimization techniques, physiographic analysis, user survey or expert recommendations
and combinations of multiple methods [4,6,10-15]. A prior comprehensive review by Mishra
and Coulibaly [10] reviewed evidence of declining hydrometric network density, highlighted the
importance of quality data from well-designed networks and considered a range of approaches by
which networks were designed. They also compared statistical, spatial interpolation, physiographic,
sampling-driven and entropy-based approaches to hydrometric network design. Mishra and
Coulibaly [10] were able to draw several conclusions about the importance of high quality hydrometric
data for water resource management that remain valid. They also concluded that one of the most
promising approaches for network design was the application of entropy methods highlighting
early studies using the principle of maximum entropy and information transfer. Therefore, this
review focuses on the recent studies that have applied information theory. Information theory was
initially developed by Shannon in 1948 [16] to measure the information content in a dataset and
has been applied to solve water resource problems. Recently, its applications extended to water
monitoring network design by adopting the concept that the entropy would be able to explain the
inherent information content in a monitoring station or a monitoring network. The basic objective has
naturally been to have the maximum amount of information. In other entropy approaches, stations
in a monitoring network would have the least sharable or common information, which is called
transinformation. To achieve this, the stations should be as independent from each other as possible.

The scope of this paper includes water monitoring network design and evaluation studies that (1)
applied entropy theory in the design process and (2) were published after the existing comprehensive
review by Mishra and Coulibaly in 2009 [10]. To the best of our knowledge, no review exists that has
focused on entropy applications to water monitoring network design previous to the 2009 study by
Mishra and Coulibaly [10]. However, there has been considerable progress in the application of entropy
theory to monitoring network design following the previous review, including new entropy-based
measures, optimization techniques and approaches to estimating information content at ungauged
stations. Therefore, a need was identified to consolidate knowledge and recent advances on the subject.
For publications prior to 2010, the reader is referred to Mishra and Coulibaly [10]. This review firstly
describes entropy concepts and various terms that are typically used in network design. The previous
studies are then summarized by categorizing the type of networks; i.e., precipitation, streamflow and
water level, soil moisture and groundwater and water quality monitoring networks. The integrated
design method for multiple types of networks is also reviewed. We define some terminology hereafter
to ensure a common understanding for the readers.

The term network evaluation is used when the network quality is assessed without changing any
station, while network design is a general term that suggests some changes in stations. Specifically,
network design includes network reduction, network expansion and network redesign. Network
reduction is applied where some monitoring stations should be removed from the network. On the
other hand, if financial flexibility meets the monitoring needs, further stations can be added to the
existing network, called network expansion. Network redesign refers to rearranging stations without
changing the number of stations. The term optimal network is to be used only if the network consists
of optimal locations of stations that are identified by the actual use of an optimization technique.

2. Definitions of Entropy Terms as Applied to Water Monitoring Networks

2.1. Entropy Concept

In thermodynamics, entropy has been understood as a measure of disorder or randomness of
a system. Shannon [16] extended the entropy concept to information theory by recognizing that
uncertainty in a system will be decreased when information is added to the system. Therefore, the
term entropy in information theory introduced by Shannon [16] in 1948 describes the amount of
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information content in a random variable. The likelihood of an event is typically given by probability
p. If a probability of an event is very high, such as 0.9999 or one, one will not be surprised, but can
certainly anticipate the outcome. On the other hand, any low probability event is highly uncertain,
so that a considerable amount of information can be given if this happens. Hence, the information
from an event that occurred is inversely related to its probability, 1/ p [17]. Suppose that there are two
independent events A and B with their probabilities p4 and pp, respectively. The probability of the
joint occurrence of the events A and B can be p4 pp, and the information gained by the joint event
isthen 1/ (pa pg). However, the sum of information from each individual event is not equal to the
information from the joint event, that is:
1 1 1

— (1)
PA PB A PB

The only transition that will make both sides of Equation (1) be equal is the logarithm [17-19],
which can be written as:

1 1 1
log zlog—+logﬁ: —logpa —logpg ()

Likewise, Tribus [20] showed that the uncertainty of an event with probability p is —log p, which
became a basis of the Shannon entropy, which is further described hereafter.

2.2. Marginal Entropy

When information is provided in a system, one can expect that the uncertainty of the system
would be reduced; therefore, the amount of information that was given to a system by knowing a
variable is called marginal entropy. If a random variable X is expected to have N outcomes with a
probability distribution P = {p1, p2,-- -, pn}, the (weighted) average information provided by the N
joint events is given by:

N N
H(X) = —pilogp1 — palogpa —--- —pylogpy = — Y _pilogpi, Y pi=1,p >0 (3)
i=1 i=1

where H(X) is the marginal entropy of a random variable X. Any base of the logarithm can be used
in Equation (3), the choice depending on the problem given. In binary questions (i.e., yes or no
questions), the base of two should be used, and the corresponding unit of entropy is bit. Similarly,
unit trit for base 3, unit nat for base e and unit decibels or decit for base 10 are some example units of
information. Recall that this review covers entropy applications for hydrometric network design, and
the expected answer of the design process can be either “use/include/install the station” and “do not
use/include/install the station” for the network to be optimal. Therefore, the logarithm in Shannon
entropy calculation for hydrometric network design is most appropriate with a base of two. Then, the
H(X) value from Equation (3) will be understood as the information contents of a station X that can be
delivered if installed.

If a variable K has a known value, the probability of an event will be one, while all the other
alternative probabilities are zero. The information content in the variable K, H(K), will be zero from
Equation (3) representing that there is no uncertainty or a certain outcome. On the other hand, if a
variable U has a uniform distribution (i.e., probability of each event is equal, 1/N), the entropy of the
variable U will be:

H(U) =1log N 4)

The value of Equation (4) is often called as maximum entropy or saturated entropy. These two
entropies, H(K) and H(U), define the minimum and maximum boundaries of entropy values, that is:

0 < H(X) <logN (5)
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2.3. Multivariate Joint Entropy

While the marginal entropy described in Section 2.2 explains a univariate entropy, one can imagine
how to calculate entropy values in a bivariate or a multivariate case. The total information contents
from N variables can be calculated by using joint probability instead of univariate probability in
Equation (3), given by:

ny 1y

H(X1, Xz,---, -y Z Z P(X1i X0y, s XNy ) 108, P (X1,iy, X0,y -+ s XNiy) ()

i1=1ip= in=1

where H(Xy, Xp,---, Xy) is the joint entropy of N variables, p(xl,,-l,xz/iz, cee ,xN,,'N) is the joint
probability of N variables and 7y, 1y, - -, ny are the numbers of class intervals of corresponding
variable distributions [21]. If all variables are stochastically independent, the joint entropy from
Equation (6) will be equal to the sum of marginal entropies, which becomes the maximum value of
joint entropy. Therefore, the joint entropy is bounded by [21]:

0< H(Xy, Xa,-++, ZH ) < Nlog, N @)

2.4. Conditional Entropy

Conditional entropy explains a measure of information content of one variable that is not
deliverable by other variables. If two random variables, A and B, are correlated, providing information
from one variable may clear some uncertainty that the other variable has. In the case of no correlation
between variables, the conditional entropy is equal to marginal entropy. That is:

H(A|B) = H(A,B) — H(B) < H(A) ®)

where H(A|B) is conditional entropy of the variable A when the information contents of the variable
B is given. One can rewrite Equation (8) as:

H(A,B) = H(A|B) + H(B) = H(B|A) + H(A) ©)

Furthermore, conditional entropy can be also presented mathematically using joint and
conditional probabilities and Bayes theorem as:

Ny Np Nu Np p(a; b))
H(A|B) = Z Z a;,b;) log p(a;|b;) = =3 Y p(a;, b)) log (10)
i-1j=1 i=1j=1 p(by)

2.5. Transinformation

The two variables, A and B, described in Section 2.4 will have some common or shared information,
which is called transinformation or mutual information, because they are correlated.

T(A,B) = H(A) — H(A|B) = H(B) — H(B|A) = T(B, A) 11)

where T(A, B) is transinformation between the variables A and B. The larger the transinformation is, the
higher those variables depend on each other. In other words, the transinformation indicates how much
information content is transferrable from other variables. Similar to Equation (10), transinformation
shall be written as [19]:

Na Np

T(A,B)=Y_Y p(a;b;)log plai?

i=1j=1

_ Na N . p(ai, b))
7,;; ot %8 pan)p (b)) 2
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Transinformation is typically used for measuring mutual information between two variables or
two groups of variables as the generalized form for multivariate transinformation is given as:

T[(X1, X2, Xi); (Xgy1s Xiwa, o, Xn)]

13
“H(Xs, X, ) Xe) — HI(Xt) Xor -+ X0 (Xesns Xesz o0 Xa)] OO

2.6. Total Correlation

While transinformation and mutual information have the same definition, total correlation is
not equivalent to them as the total correlation is a simple estimate that defines the amount of shared
information typically of multiple variables. Simply, the total correlation is defined by the difference
between the sum of marginal entropy of N variables and their joint entropy [22,23], which is given as:

-

I
_

C(Xy, Xo,-++, Xn) = )_H(X;) — H(X1, X2, , XN) (14)

1

If N = 2 in Equation (14), the total correlation will be equal to the transinformation or mutual
information. However, the transinformation is only meaningful to two random variables as shown
in Equations (11) to (13); therefore, the total correlation and the transinformation values would be
different if N > 2.

2.7. Other Entropy Terms

The entropy terms described above (i.e., marginal entropy, joint entropy, conditional entropy,
transinformation and total correlation) are the basic measures that have been typically used in entropy
applications to water monitoring network design. While many studies developed specific approaches
and applied for case studies using the basic entropy terms, some have extended the terms beyond them
by deriving from or combining the basic measures. The detailed descriptions of the extended entropy
terms are not included in this review, but briefly explained when needed in Section 3. Interested
readers may refer to the original references.

3. Applications of Entropy to Water Monitoring Network Design

This section summarizes the recent applications of entropy theory to design water monitoring
networks. The review was categorized by the types of networks, such as precipitation, streamflow or
water level, soil moisture or groundwater and water quality networks. Then later, a hybrid design
method for multivariate water monitoring networks was discussed. Table 1 presents brief summaries
including network types, methods and key findings of the selected research articles that applied
entropy theory for designing the water monitoring network and were published in 2010 or after to
cover the most recent contributions since the existing review [10].
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3.1. Precipitation Networks

The design of a representative precipitation monitoring network is an important and still
challenging task for which an entropy approach is well suited. High quality precipitation information is
necessary for streamflow and flood forecasting, surface water management, agricultural management,
climate process understanding and many other applications. However, precipitation is well known to
be highly variable in both space and time [59] and often statistically represented by highly skewed
distributions [60] making the application of parametric analysis methods difficult. These challenges
also extend to entropy-based approaches for precipitation monitoring. For example, the marginal
entropy has been found to be well correlated with total precipitation in northern Brazil because the
probability distribution in regions with higher rainfall tended to be more uniform and less skewed [61].
In contrast, Mishra et al. [59] found that the marginal disorder index (MDI), which is the ratio of
observed entropy to the maximum possible entropy at a given site, was inversely related to mean
annual rainfall in the U.S. state of Texas, where MDI was found to vary seasonally. Brunsell [30]
studied the entropy from monitoring stations across the United States where little correlation was
found between precipitation and marginal entropy with the exception of a breakpoint in entropy at
—95° Jongitude corresponding to high temporal variability precipitation patterns. It has also been
noted by several studies that the temporal sampling of precipitation is an important consideration
for calculating entropy and for designing precipitation networks [54,59]. At finer timescales (hourly
to daily), precipitation is highly variable resulting in higher overall entropy, whereas longer time
periods (monthly to annual) have less variability resulting in lower marginal entropy [30,52,59].
The dependence on spatial and temporal scales has also been identified in a network design application.
Wei et al. [54] prioritized potential stations in Central Taiwan to maximize the joint entropy of the
network at hourly, monthly and annual temporal scales, as well as 1-, 3- and 5-km spatial scales.
They found that priority stations changed with both spatial and temporal scales, where changes
in temporal scales resulted in more significant changes in station priority than spatial-rescaling.
The decrease in entropy at longer timescales also had an impact on station density where fewer
stations were required to reach a stable joint entropy value for longer time scales [54]. These findings
demonstrate the important first consideration of network objectives when determining the spatial and
temporal sampling used to calculate entropy. However, the research on this topic is still limited, and
more work is needed to provide robust guidance on sampling strategies.

Several approaches have been proposed to design or redesign a precipitation monitoring network
using one or more entropic measures. Many of these approaches are initialized by building a network
around a central station usually selected as the station with the highest marginal entropy [43,62-64].
In urban Rome, Ridolfi et al. [62] selected stations for the precipitation network by sequentially finding
the next station that minimized the conditional entropy of the network and adding that station to the
network. A similar approach was taken by Yeh et al. [63] to expand a precipitation network in Taiwan.
Hourly rainfall data were normalized with a Box-Cox transform and kriging used to interpolate rainfall
to candidate grid cells. The joint entropy of the network was calculated using an analytic equation
for joint entropy valid for normal data [65], and stations were added sequentially that had the lowest
conditional entropy with the rest of the network. The final number of stations needed by the network
was accepted when 95% of the network information was captured [63]. Awadallah [64] applied
multiple entropy measures sequentially to add stations to a precipitation network. The first new
stations were selected as those with the highest entropy. The second station was chosen to minimize
the mutual information and the third as the station that maximized conditional entropy.

The aforementioned approaches all sequentially add single stations to a monitoring network
based on a single criterion. Mahmoudi-Meimand et al. [43] presented a methodology to add stations
to a network based on a multi-variate cost function. Precipitation data were spatially interpolated
from existing stations using the kriging approach where the kriging error associated with the rainfall
estimation is calculated as the kriging error variance. Their method selected the station that maximized
transinformation entropy and minimized error variance using a weighted average of both measures as
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an objective [43]. This approach balanced the information content in the network with the errors in the
interpolation method. Xu et al. [57] used a multi-objective approach to simultaneously select a subset
of stations that minimized the sum of pairwise mutual information, minimized bias and maximized
Nash-Sutcliffe efficiency. Solutions were generated via Monte Carlo sampling, and network solutions
falling along the Pareto front were found as compromise solutions. Coulibaly and Keum [66] and
Samuel and Coulibaly [67] also used a multi-objective approach to add stations to snow monitoring
networks in Canada. Their approach used a genetic algorithm to find networks that maximized the
joint entropy and minimized the total correlation of the network to form a Pareto front of optimal
network designs, some of which also included network cost in the optimization [35,67].

A challenge to an entropy-based approach to adding stations to a precipitation network is the
requirement to have data available for candidate points. For precipitation, this can be challenging
because data at shorter time scales in particular are well known to be non-normal. Most studies use
the kriging approach for interpolation [43,63,64] and address the need for normally distributed data
using a Box-Cox transform. Samuel and Coulibaly [67] addressed the interpolation problem by using
the external data from the Snow Data Assimilation System (SNODAS) for candidate stations. Su and
You [52] presented a unique approach to adding stations that maximized the information content of the
network. In most literature cases, entropic measures at ungauged sites are determined by interpolating
observations of precipitation across a watershed. Su and You [52] calculated the transinformation
between neighbouring stations to develop a 2D transinformation-distance relationship. In contrast
to transferring data to ungauged stations, this approach transferred transinformation to ungauged
stations and selected a site with the maximum transinformation. This approach should be further
tested and contrasted with the data transfer approach.

As previously stated, precipitation data are of critical importance for a variety of applications.
Despite this, few studies have explored the impact of precipitation networks designed with an entropy
approach for actual water resource applications. Applications found in the literature have taken the
reasonable approach of using entropy to reduce network density for comparison to a network that
included all stations. In Portugal, Santos et al. [50] compared artificial neural networks, K-means
clustering and mutual information (MI) criteria for reducing the density of a precipitation network for
drought monitoring at different time scales. They found the best performing reduction method was
case dependent depending on the region and time scale applied, but noted that all methods performed
well. They also found that all subset networks could reliably reproduce the spatial precipitation
pattern. Xu et al. [57] used the multi-objective approach previously described to select a subset of
precipitation stations from a dense network in the Xiangjiang River Basin in China. Rainfall from the
subset networks was used to force the lumped Xinanjiang hydrological model [68] and the distributed
SWAT hydrological model [69]. The author’s found that lumped model performance became stable
with a subset of 20 to 25 stations, whereas the distributed model's performance continued to increase
as more stations were added to the network [57]. These analyses are important to demonstrate
the utility of precipitation networks and the advantages of entropy-based approaches in designing
precipitation networks.

3.2. Streamflow and Water Level Networks

Water quantity monitoring, such as streamflow rates and water level, is one of the essential
tasks for water management to prevent damage to nature and human beings from flooding.
A successful floodplain management or flood forecasting and warning system can be feasible through
expert forecasters who implement well-calibrated models and reliable tools using quality data [70].
The design of water quantity monitoring network has been well implemented because of not only the
good performance of entropy-based methods, but also the unaffectedness by the zero effect, which
is caused by discontinuity of probability density function due to zero values in data, except for the
ephemeral or intermittent streams. To deal with the zero effect in entropy calculations, Chapman [71]
and Gong et al. [60] separated the marginal entropy Equation (3) to nonzero terms and zero values,
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which are certain. While Gong et al. [60] summarized the possible issues in entropy calculations from
hydrologic data as effects due to zero values, histogram binning including skewness consideration and
measurement errors, some studies noticed that the length and the location of time window also affect
entropy calculations and the corresponding network design. Fahle et al. [31] observed the temporal
variability of station rankings by shifting the time window for the design of water level network of a
ditch system in Germany. Mishra and Coulibaly [47] also found the dependency of the seasonality on
the efficiency of hydrometric networks. Stosic et al. [51] found an inverse relationship between the
network density and sampling time interval as the larger number of monitoring stations is required if
the time interval is shorter and vice versa. Keum and Coulibaly [34] analyzed the temporal changes of
entropy measures and optimal networks by applying daily time series for streamflow network design.
They found that the information gain of a monitoring network is not significant when the length of
time series is longer than 10 years, and the total correlation tends to stabilize within five years of data.
The optimal networks using the data lengths of 5, 10, 15 and 20 years also show that there are no
significant differences in the results from 10 years or longer while the optimal network using five
years of data was evidently different from others. Werstuck and Coulibaly [56] analyzed scaling effects
by considering two study areas. Specifically, one study area is a small watershed, which is a part of
another study area. After applying the transinformation analysis and the multi-objective optimization,
they concluded that the optimal networks tend to be affected by scaling while transinformation index
does not.

Mishra and Coulibaly [46] evaluated the effects of the class intervals and the infilling missing
data by applying the linear regression method to daily time series and concluded that the station
rankings based on the transinformation values were not significantly changed. Li et al. [41] also
investigated the changes of station rankings based on the maximum information minimum redundancy
(MIMR) approach and obtained the similar conclusion. However, Fahle et al. [31] and Keum and
Coulibaly [35] drew the opposite opinion that station rankings can be affected by the binning method
that defines the class intervals. The conflict comes from the selection of the binning methods compared.
The former group applied different parameters to a single binning method, the mathematical floor
function. However, the latter group compared other binning methods with the floor function.
Considering that Alfonso et al. [25] found that the design solutions were not common in some cases
from the sensitivity analysis of the parameter of the mathematical floor function, it is not recommended
to use a specific binning method without any consideration.

As discussed in the review of precipitation networks in Section 3.1, network redesign and network
expansion require data at candidate locations, which are ungauged. Alfonso et al. [27] applied a
one-dimensional hydrodynamic model to generate the discharge time series. The model estimated
discharge at each segment, which divides rivers with approximately 200 m increments longitudinally.
The use of hydrodynamic model enabled to determine the critical monitoring locations in the main
stream and its tributaries. On the other hand, Samuel et al. [49] combined regionalization techniques
with entropy calculation in order to estimate the discharge at candidate locations. They compared the
performance of various regionalization methods including not only a conceptual hydrologic model, but
also spatial proximity, physical similarity and their combinations with drainage area ratio. Based on the
performance statistics by applying multiple basins, inverse distance weighting coupled with drainage
area ratio performed the best, and this conclusion has been adopted in several studies [34,35,37,55].

Some studies have extended the entropy applications for the streamflow monitoring network
design. Stosic et al. [51] proposed the concept of permutation entropy, which is able to differentiate
based on the order of sequential observations, as well as the histogram frequency in basic Shannon
entropy measures. Even though histograms from two different observations are the same, the
permutation entropy value tends to be higher if there are more variations between time steps. However,
the network design studies using the permutation entropy are still limited. On the other hand,
Leach et al. [37] applied additional features to the network design. While the common objectives in
water monitoring network design using an optimization technique are to maximize the information
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and to minimize the redundancy in the network, they additionally considered the physical properties
of watersheds, such as the streamflow signatures [72,73] and the indicators of hydrologic alterations
(IHAs) [74,75]. After the comparison of the optimal streamflow monitoring networks with and without
considerations of the streamflow signatures and IHAs, it was concluded that inclusion of basin physical
characteristics yielded a better coverage of the selected locations of the optimal networks.

3.3. Soil Moisture and Groundwater Networks

Soil moisture is a critical water variable as the interface between the atmosphere and subsurface.
Unfortunately, the monitoring of soil moisture is very sparse compared to its spatial variability.
To design an optimum network for monitoring soil moisture in the Great Lakes Basin, Kornelsen and
Coulibaly [36] proposed using data from the Soil Moisture and Ocean Salinity (SMOS) satellite [76] to
design a soil moisture monitoring network using the DEMO algorithm of Samuel et al. [49]. Grid cells
were selected to add monitoring stations that optimally maximized joint entropy while minimizing
total correlation using only the satellite data. The ascending and descending overpasses were found to
contain different information, and the spatial distribution of a network designed with both overpasses
was found to contain complimentary features from both datasets [36].

Groundwater monitoring allows for a better understanding of the hydrogeology in an area. This is
achieved through groundwater quality and quantity monitoring. Groundwater quality monitoring
is used to detect contaminant plumes or for long-term monitoring (LTM) of post remediation effects,
and groundwater quantity monitoring is used to determine available water for drinking, irrigation
and industry. However, monitoring groundwater is inherently difficult due to physical barriers
between observers and the water. Through the understanding of subsurface flow physics and with
flow and contaminant transport models such as MODFLOW, MODPATH and MT3D [77-79], we
can simulate the behaviour of groundwater. Unfortunately, our simulations are not always accurate,
and the models require real-world observations to be calibrated and validated. Due to constraints
such as accessibility and financial cost, it is not feasible to monitor at every possible location in
an area of interest. It is instead ideal for an optimal monitoring network to be designed to allow
for the best placement of monitoring stations and to determine the ideal measurement frequencies.
The merit of using information theory entropy has been shown in several cases of groundwater
network design [31-33,38,44,48,53,58].

Various methods that utilize information theory entropy have been developed for use in designing
optimal groundwater monitoring networks. These include the use of entropy measures in both single
and multi-objective optimization problems and are used in network reduction [32,33], expansion [38,58]
and redesign [44], as well as have been used to highlight vulnerable areas in an area that should be
monitored [53]. In identifying vulnerable areas in the Victoria County Groundwater Conservation
District (VCGCD) in Texas, USA, Uddameri and Andruss [53] developed a monitoring priority index
(MPI) based on a weighted stakeholder preference to highlight the areas of interest. They compared
kriging standard deviation and marginal entropy as metrics to characterize groundwater variability
and found entropy to be the more conservative metric.

In areas where there is excessive monitoring, Mondal and Singh [48] showed the information
transfer index (ITI), the quotient of joint entropy and transinformation, could be used to evaluate the
existing monitoring network. Through this evaluation, redundant monitoring stations (wells) could
be identified and removed from the groundwater monitoring network. It may also be the case that
the existing groundwater monitoring network is not adequate and additional monitoring stations
are needed. Yakirevich et al. [58] developed a method that utilizes minimum cross entropy (MCE) to
sequentially add monitoring stations to a network. MCE was used as a metric to quantify the difference
between two variants of a Hydrus-3D model [80], and the monitoring stations were added to the
network where the difference between models was largest. A multi-objective approach for adding
monitoring stations to a groundwater monitoring network was applied by Leach et al. [38], which
utilized two entropy measures, total correlation and joint entropy and a metric used to quantify the
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spatial distribution of annual recharge; the results of which were used to develop maps that highlight
areas in which additional monitoring stations should be added. The majority of network design
experiments look at the entire available time series when calculating entropy measures; however,
Fahle et al. [31] showed that using a combination of MIMR and subsets of the data series could be
more ideal. The subsets were used to represent the intra-annual variability of groundwater levels.
This method identified locations which were consistently important through each subset and found
that monitoring stations showed similarities during wet periods and uniqueness during dry periods.
Fahle et al. [31] also suggest that a consequence of using subsets of data allows for the design of a
network, which can be focused on floods or droughts.

One issue that can arise with entropy-based methods is the need for lengthy data series to produce
accurate measures of entropy. Unfortunately, the area of interest for new monitoring stations will not
have available data for all possible locations. To work around this limitation transinformation-distance
(T-D) curves have been applied in the design of optimal groundwater monitoring networks [44,81].
In these studies, T-D curves were developed for sub areas within the desired study area based in
different clustering methods. Additionally, Masoumi and Kerachian [44] showed that this method
could be applied temporally as transinformation-time curves which could then be used to optimize the
temporal sampling frequency of the stations. It should be noted that both previously mentioned studies
were applied in the same study area using slightly different methods for clustering monitoring stations,
and both produced different groundwater monitoring networks that could be considered optimal.
This highlights an issue with optimal monitoring network design in that it can be subjective and does
not have a singular solution. A comparison of Hosseini and Kerachian [32,33] also illustrates this
issue, where through the use of different entropy measures, marginal entropy and Bayesian maximum
entropy and optimization techniques, one experiment found the optimal monitoring network included
42 monitoring stations while the other only included 33 stations.

3.4. Water Quality Networks

The importance of water quality monitoring networks is their ability to assist in identifying those
parameters that exceed water quality standards. Several water quality monitoring strategies, including
two methods that utilized entropy measures [42,45], were recently reviewed by Behmel et al. [15].
This review found that identifying a single approach to water quality monitoring network design
would be virtually impossible. Despite this, various applications of the transinformation-distance
curve methods have shown promise in the optimal redesign and reduction of water quality monitoring
networks [29,42,45]. Lee [39] found that by maximizing the multivariate transinformation between
chosen and unchosen stations, using the storm water management model to simulate the total
suspended solids and a GA for optimization, an optimal water quality network could be designed
for a sewer system. Banik et al. [82] compared information theory, detection time and reliability
measures for the design of a sewer system monitoring network through both single and multi-objective
optimization approaches. It was shown that for a small monitoring network, the methods had similar
performances, while the single objective detection time-based method had slightly better performance
when the number of monitoring station is larger. Alameddine et al. [24] used exceedance probabilities
to determine violation entropy of dissolved oxygen and chlorophyll-a in the Neuse River estuary.
Along with violation entropy, the total system entropy was used as a measure to identify areas of
importance of monitoring. A multi-objective optimization scheme based on expert assigned weights
was used to develop a compromise solution from the three entropy measures. Ultimately, the method
allowed for the identification of high uncertainty areas, which would benefit from future water
quality monitoring. Data availability is an issue when using entropy methods, particularly when
attempting to use them in the design of a monitoring network in an ungauged basin. To address this,
Lee et al. [40] developed a method that uses a measure analogous to marginal entropy. This method
uses characteristics of the basin such as the length and number of reaches in the river network as part
of the cost function, which is then optimized using a combined GA and filtering algorithm. This was
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shown to be a computationally-efficient method for use in optimal network design of an ungauged
river basin.

3.5. Integrated Network Design

To the best of our knowledge, almost all of the previous studies about water monitoring network
design have focused on a specific network type (i.e., considering a single hydrologic variable in each
study) as reviewed in the previous sections. However, considering that hydrologic processes are
interconnected in a water cycle, there are causes and effects between hydrologic variables. For instance,
if a noticeable amount of precipitation occurs, streamflow or groundwater level is likely increased;
hence, the information content of a variable may affect that of other variables. Keum and Coulibaly [35]
developed a multivariate network design method by taking conditional entropy as the measure of
information that is independent to a given variable. In their study, the method designed precipitation
and streamflow monitoring networks simultaneously. Specifically, the method followed the traditional
multi-objective approach that maximizes joint entropy and minimizes total correlation, but added
another objective that maximizes conditional entropy of streamflow network given precipitation
network to mimic the direction of the water cycle as streamflow may fluctuate due to precipitation.
After comparing the integrated design with the single-variable design, their results showed that the
effectiveness of network integration mostly came from reducing the number of additional precipitation
stations. It was also found that the integrated network design approach allows adding a precipitation
station at a location that will benefit the stream gauge network.

4. Conclusions and Recommendations

It is evident that successful water management cannot be achieved without proper water
monitoring networks. Although there has been much progress in network design methods and
applications, a standardized design methodology has not yet emerged. After the pioneering invention
of information theory in the 1940s, entropy concepts have been applied in various applications with
recent efforts on network design problems. The unique benefit of this approach is that a water
monitoring network can be evaluated or designed based on the information the network monitors,
which is in contrast to the set station densities proposed by WMO guidelines; the advantage of the
former being that a network could be better tailored to specific applications or optimized to provide
the most gain at densities lower than those suggested in WMO guidelines. In addition, when combined
with multi-objective optimization techniques, users’ specific criteria can be included in the optimal
network design process.

This manuscript provides a comprehensive review of the recent research attainments and their
applications in entropy-based water monitoring network design. The literature has demonstrated the
use of various information theory measures and adaptations thereof for use in network design with
an emerging consensus that the goal of these network design methods is to select the stations that
provide the most information to the monitoring network while simultaneously being independent
of each other. Through rigorous testing, information theory has proven to be a robust tool to use
when evaluating and designing an optimal water monitoring network. However, when it comes to
evaluating the optimal design, there are still issues that need to be addressed.

The first is that an optimal monitoring network design can be found based on specified design
criteria; however, the practical application of the new optimal monitoring network is rarely evaluated
in a hydrologic or other model [11,57]. This type of numerical experiment is an important requirement
to evaluate the utility of a network rather than just identifying its optimality or information content.
Further, it is an important exercise to identify the benefits of entropy-based network designs in order
to convince decision makers of the importance of adopting entropy approaches.

Another issue with the optimal network is that it can be subjective, based on choices made
in the calculation of entropy and the design method chosen, especially when additional objective
functions are considered in the design. This extends to the method selected for finding the optimal
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monitoring network, whether it is found using an iterative method where one station is added at
a time or a collection of stations is added all at once. Research has also shown that data length,
catchment scale and ordering can influence the design of an optimal network [31,34,51]. Finally, when
using discrete entropy, the binning method has been shown to influence the final network design [35].
The influence of binning on entropy calculation has received greater attention in other geophysical
network design applications [83-85], and similar consideration should be given in the field of water
resources, particularly owing to the unique and difficult nature of water variables (e.g., streamflow,
precipitation) spatial and temporal distribution [30,60]. Thus, explicit consideration is needed when
choosing the bins based on the intended application of the monitoring network and further research
to provide guidance specific to water monitoring networks. Therefore, despite the possibility of
finding an optimal network design in a formal sense, the subjectivity induced by the designer’s
choices, and the lack of standardized design methods, must be recognized. Future research should
focus on comparative studies among multiple entropy design methods, discretization approaches and
data characteristics. The current literature provides many novel entropy design approaches and the
evolution of concepts, but rigorous comparisons are critical to provide generic guidelines for network
design. Despite the potential sources of subjectivity identified, entropy methods remain one of the
most objective approaches for network design.

In particular, more work is needed on spatial and temporal scaling of data for entropy calculation
to provide robust guidance to decision makers. Many new methods and optimization techniques
have been reviewed herein, but few examples were found in the literature that explored the data
characteristics used in those techniques. Further research is required to provide guidance on the proper
length of data in water monitoring network design [34], the sampling frequency of the data [54] and the
spatial scale at which information should be measured for various monitoring network applications.

The aforementioned issues are considered crucial gaps that need to be filled to enable practical
recommendations or guidelines for a widespread adoption of entropy approaches for designing
optimal water monitoring networks. In addition, the comparative studies of entropy-based methods
reviewed herein should be robustly compared to network design methods from other disciplines,
such as geostatistics, to identify areas of equivalence and disparity [10]. Considerable advances
have occurred over the past decade as reviewed herein, and measures derived from Shannon’s base
equation [16] have reached a high level of maturity for the task of network design. We challenge
the research community to put a similar creativity into the joint consideration of the nexus of data
characteristics, network design and applications, all of which are intricately linked.
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Abstract: In this study, a method combining radar and entropy was proposed to design a rainfall
network. Owing to the shortage of rain gauges in mountain areas, weather radars are used to measure
rainfall over catchments. The major advantage of radar is that it is possible to observe rainfall widely
in a short time. However, the rainfall data obtained by radar do not necessarily correspond to that
observed by ground-based rain gauges. The in-situ rainfall data from telemetering rain gauges were
used to calibrate a radar system. Therefore, the rainfall intensity; as well as its distribution over the
catchment can be obtained using radar. Once the rainfall data of past years at the desired locations
over the catchment were generated, the entropy based on probability was applied to optimize the
rainfall network. This method is applicable in remote and mountain areas. Its most important
utility is to construct an optimal rainfall network in an ungauged catchment. The design of a rainfall
network in the catchment of the Feitsui Reservoir was used to illustrate the various steps as well as
the reliability of the method.

Keywords: entropy; information transfer; optimization; radar; rainfall network

1. Introduction

Rainfall data form the fundamental basis for hydraulic and hydrological engineering. Adequate
and long-term rainfall data are essential in planning and management of water resources.
The definition of rainfall is any product of atmospheric water that reaches the surface of Earth in the
form of droplets of water [1]. Thus, rain gauges are the gold standard of precipitation measurement [2].
They are the principal source of rainfall data for rainfall network design. However, accurate and
reliable rainfall data of catchments depend on well-designed rainfall networks. Ideally, a higher
number of rainfall gauges in a catchment provides a clearer picture of the aerial distribution of the
rainfall. Usually, network density and rainfall gauge distribution depend on the particular application.
Many factors may affect the number and locations of rain gauges. However, there is no definite rule
for constructing a rainfall network. The actual density of a rainfall network is significantly poorer
than the values recommended by the World Meteorological Organization (WMO) [3]. Therefore,
various methods have been used in the past to investigate the density of rainfall networks and the
optimization of these networks. The WMO recommends certain densities of rain gauge stations for
different types of catchments. In flat regions of temperate zones, 500 km? per station is recommended.
For small mountainous islands with irregular precipitation, 25 km? per station is recommended [3].
Langbein [4] suggested that the densities of rain gauge stations are usually proportional to population
density. The use of statistical characteristics is generally desirable in the design of rainfall networks;
Rodriguez-Iturbe and Mejia [5] used a random process technique to develop design curves for
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estimating the mean of a rainfall event. Shih [6] introduced various steps based on a covariance
factor among rain gauge stations to design a rainfall network. Patra [1] applied the coefficient of
variance and allowable percentage of error to estimate the optimal number of rain gauge stations.
Basalirwa et al. [7] attempted to design a minimum rainfall network by using principal component
analysis. Likewise, geostatistics is frequently used in the design of rainfall networks. Kassim and
Kottegoda [8] prioritized rain gauges with respect to their contribution in error reduction in the
network through comparative Kriging methods. Chen et al. [9] developed a method by using Kriging
and entropy that can determine the optimum number and spatial distribution of rain gauge stations in
a catchment. Chebbi et al. [10] proposed an algorithm composed of a geostatistical variance-reduction
method and simulated annealing to expand the existing rainfall network. Ridolfi et al. [11] introduce
an entropy approach for evaluating the maximum information content achievable by an urban rainfall
network. Shaghaghian and Abedini [12] selected an optimal subset of stations in the network by
using Kriging, factor analysis, and clustering techniques to achieve the optimum rainfall network.
Chebbi et al. [13] identified the optimal network using an intensity-duration-frequency curve and a
variance-reduction method. Related works based on entropy since Krstanovic and Singh [14] is widen
and undergoing [15-18]. Wei et al. [19] introduced entropy to evaluate the effect of spatiotemporal
scaling on rainfall network design.

Two major scientific problems need to be addressed in studies on rainfall networks: the first
problem is the number of rain gauge stations required to provide adequate representation of a
catchment’s rainfall characteristics, and the second problem is that the positioning of these rain gauge
stations. These two issues are essential to the optimal network design and addressed by previous
studies in river points [20], water level networks in polders [21,22], cross-section spacing for river
modeling [23], groundwater quality monitoring [24,25], monitoring network design [26,27], and the
homogeneity of the study region, also discussed by new clustering method based on entropy [28].
As these are interrelated problems, they need to be considered in conjunction during the design
of rainfall networks. In this work, the data of Project Quantitative Precipitation Estimation and
Segregation Using Multiple Sensors (QPESUMS) were used to estimate the spatial distribution of
rainfall, whereas entropy was used to evaluate the uncertainty of each rain gauge station and to
determine how the uncertainty and spatial distribution of rainfall interact with each other. For this
purpose, a comprehensive evaluation of the Feitsui Reservoir’s rain gauge station locations and
distribution were performed using a three-step procedure: the first step was to use the currently
available rainfall data to calibrate the radar parameters of the QPESUMS. The second step was to apply
the radar to estimate the rainfall data of the candidate rain gauge stations. The third step was to use
information entropy to determine the priority of the candidate rain gauge stations and to estimate the
minimum required number of rain gauge stations. By combining the use of the radar of the QPESUMS
and information entropy, we can determine the locations where new stations should be set up and the
number of rain gauge stations required for a rainfall network. Therefore, during the determination of
rain gauge station locations using this method, new rain gauge stations will be suggested if a rainfall
network has fewer stations than the saturation number determined by our method, to provide an
adequate quantity of catchment rainfall data. Conversely, if a rainfall network has a higher number of
rain gauge stations than the saturation number, the rainfall data provided by the excess rain gauge
stations will be limited, thus the removal of rain gauge stations would be suggested to improve the
cost efficiency of hydrological information systems.

In this study, the Feitsui Reservoir’s catchment was used to demonstrate how the proposed
method can be used to construct an optimal rainfall network. As global climate change may have
altered the hydrological characteristics of the Feitsui Reservoir’s catchment, long-term hydrological
data was used to assess whether an adjustment was needed for the rain gauge stations in this area,
so that rain gauge stations may be added to ensure the operational safety of the reservoir. For this
purpose, the measured rainfall data of the rain gauge stations were used to calibrate the parameters of
the weather radar in this area, which was subsequently used to estimate the spatial distribution of
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rainfall in the reservoir catchment and the historical rainfall data of the candidate stations. In addition,
the information transfer theories of information entropy were used to derive the importance of each
candidate station and to construct an optimal rainfall network for the catchment after information
was accumulated up to a specified saturation level. Finally, suggestions were provided on the
appropriateness of rain gauge station additions.

2. Methodology

2.1. Radar Estimation of Rainfall

Radar was recognized for the measurement of precipitation in the late 1940s. An equation that
relates the intensity of rainfall with radar echo factors was constructed after the Second World War,
which gave birth to studies on the application of radar in the observation of rainfall. Radar observation
is based on the scattering and reflection of high-power electromagnetic waves (emitted by radar
antennas towards the atmosphere) when they encounter droplets of water or ice in clouds or raindrops.
The energy of the reflected electromagnetic waves received by the radar antennas may then be used to
estimate the quantity of rainfall.

The operation of radars is based on the Doppler effect, and radar is mainly used in meteorology
to measure rainfall and track storms. Radars operate by performing 360° scans at different elevation
angles (from the highest to lowest elevation angles), and the observation of precipitation may then
be performed using the Doppler principle. As the topography of Taiwan is highly complex and
mountainous, radar scans at low elevation angles are often blocked by mountains. The current solution
for circumventing this issue is to use radar echo data from higher elevations to replace the data
of topographically obstructed regions, i.e., by selecting echo factors with the lowest (unobstructed)

elevation angle for an obstructed region, as shown in Figure 1.

bezm blockage rzte > §0%
height relative to ground <50m

‘bazm blockaze rate < 60%
‘height ralative to ground > 50m|

g
ﬁ _ ~ [bezm blockzze rate < 60%
o'

o [height r2lative to ground < 50m

Figure 1. Schematic diagram of radar echoes with elevation (Zhang, 2006). When the beam blockage of
a pulse volume’s echo factor exceeds 60%, or if the central point of a pulse volume is less than 50 m
above ground, its data is then replaced by the echo factor of the next (higher) elevation angle.

The basic meteorological radar equation for the quantification of rainfall is

7'[3 P[gzeh 2
P = o0 A272 kw72 )

In this equation, P, is the power of the echoes received by the radar antenna, P is the transmission
power of the radar antenna, g is the radar antenna’s gain, 6 is the beam width, / is the spatial pulse
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length, k;, is the dielectric constant of the medium, ry is the distance from the radar to the area of
precipitation, and Z is the radar reflectivity factor.

When the raindrops are very small in diameter and homogeneously distributed in space, the radar
reflectivity factor and the raindrop diameter within a unit volume of the radar beam are proportionally
related by a power of 6. Hence, the echo factor (the value of Z) may be expressed as

_ L ype T o
Z= AV;D,. - h/D N(D)dD )

In this equation, AV is the unit volume, D is the diameter of the raindrops, N(D) is the raindrop
diameter distribution function for a diameter, D (i.e., the raindrop density). The raindrop diameter
distribution proposed by Marshall & Palmer [29] is

N(D) = Noe AP ®)

Here, Ny is a constant, and A is the rainfall rate function. Therefore, the function for the total
number of raindrops may be expressed as

Nia = [ D'N(D)dD @
0

The rainfall intensity (R) (mm/h) of the rainfall rate is the total rainfall on each unit of surface
area per unit time. Hence, the relationship between rainfall intensity and raindrop diameter is

R= %aw/ D3N(D)(W; — W)dD 5)
0

In this equation, o, is the density of liquid water, W; is the terminal velocity of the raindrops,
and W is the flow rate of ascending airflows.

Equations (2) and (5) demonstrate that Z and R are both related to the raindrop density function;
according to statistical analyses of the observed rainfall intensity and rainfall density data, the empirical
function that relates rainfall intensity to the radar echo wave is

Z=aR? (6)

In this equation, 2 and b are parameters that may be derived from regression analysis with the
rainfall data collected on the ground. In this study a and b are 32.5 and 1.65, respectively [30].

2.2. Information Transfer by Using Entropy

In 1948, Shannon proposed the probability-based concept of information entropy, which is quite
different from thermodynamic entropy [31].

H(x) = =} p(xi) Inp(xi) )
1
In this equation, H(x) is the entropy value. x represents an event, and p(x) represents the probability
of this event.
The data acquired by the rain gauge stations of a rainfall network may overlap with each other. If
we treat the data of two rain gauge stations as two variables, x and y, the joint probability of x and y,
pij, may then be expressed as

pij = p(x = %,y = ) 8)
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The total information content may be deduced from the joint entropy, which is
“ELriin(p,) ©)
i

Equation (9) represents the uncertainty between two rain gauge stations. Like the characteristics
of the joint probability distribution, the sum of the marginal entropies of x and y should be larger than,
or equal to, the joint probability

H(x,y) < H(x) + H(y) (10)

Similarly, the joint probability of three rain gauge stations (x, y, and z) is
H(x,y,z) ZZZPZ]k h'lp,/k (1)

In this equation, pjj is the joint probability between rain gauge stations x, y and z.

When a rainfall signal is measured by station x, the residual uncertainty of station y may be
expressed by the conditional entropy. The conditional probability for an event occurring at x when an
event has occurred at y may be expressed as

-
p(xly) = pyj = -L (12)
Pj

Hence,
H(x,y) :_Z,Z,pifln(Pif)
fZZp(xly) () In(p(xly)p(y))
fZZp(XIy) () In(p(x|y)) +In(p(y))]
:—§P( );p(xly) n(p(xly) )j:p(y)ln(p(y))gp(xly)

13)

vv

The first term of Equation (13) is the conditional entropy, H(x | y), while the second term is the
conditional probability; therefore, YY" p(x|y) = 1 becomes the entropy value of .Y} p(x|y) = 1.
ij ij

Equation (12) may then be written as

H(x,y) = H(x|y) + H(y) (14)
and
pij = p(x|y)p(y) = p(ylx)p(x) (15)
Therefore,
H(x,y) = H(y|x) + H(x) (16)

It may be inferred from Equations (13) and (16) that

H(xly) < H(x) (17)

Furthermore, the conditional entropy may be inferred from the equation below

LY pilnp, (18)
] 1

156



Entropy 2017, 19, 553

In the conditional entropy of a single rain gauge station, there will be no uncertainty. Hence, the
conditional entropy of a single station is

H(x|x) =0 (19)

The calculation of transferable information may be used to determine whether two rain gauge
stations will possess shared or redundant information, which would allow the rainfall at Station y to
be deduced from the data of Station x. The equation for calculating the transferable information is

T(x,y) = H(y)— H(ylx)
= H(x) — H(x|y) (20)
= H(x) +H(y) — H(x,y)

or
T(x,y) =)_) pijn P 1)
T PiPh
The importance of each rain gauge station in a rainfall network is described by its entropy value,
and the priority of the rain gauge stations may be displayed by sorting the stations by entropy. The rain
gauge station that has the largest entropy value will have the highest uncertainties, and it should be
the first station selected for entry into the rainfall network. After the first rain gauge station has been
determined, the rain gauge stations with the lowest quantity of redundant information should be
systematically added to the rainfall network one after another, to reduce the uncertainty of the system.
Hence, the criterion for determining the second most important rain gauge station for addition to the
rainfall network is
Min{H(x1) — H(x1|x2)} (22)

This selects for the station with the highest H(x | x) value. The selection criterion for the j-th
most important rain gauge station is then

Min{H(xl,xQ, e ,X]',l) — H[(xl,xz, s ,x/-,1|x]v)} } (23)

The stations with the highest value of H [(xl, Xo, e, Xjq !xj)] may then be selected from the
calculations. This yields a ranking of all of the rain gauge stations in a rainfall network by the
redundancy of their data, and the station with the highest redundancy will be the last station to be
added to the network.

The ranking of rain gauge stations by importance derived from their entropy values may be used
as an ordering for the removal of stations, and the increase in uncertainty may be used as a criterion
for determining the removal of a station. After a certain number of stations have been added to the
network, the value of H[(x1,x2,- -+ ,xj_1]xj)] will no longer increase or change significantly, and
the information provided by further additions will be limited. Hence, an exponential model may be
defined using the number of rain gauge stations and the value of H[(x1,x2, -+, Xj_1 |xj)] to find the
critical quantity of information and the required number of rain gauge stations, as shown below

H(n) :w{l—exp<%n>} (24)

where w and c are to-be-determined parameters.

If the number of rain gauge stations in a rainfall network is larger than the required number of
stations, then the stations that rank lower than the required number may then be removed. Conversely,
if the number of rain gauge stations in a rainfall network is lower than the required number of stations,
more stations then need to be added.

The ranking of rain gauge stations by importance based on their entropy values may be used as
an ordering for the removal of stations. The maximization of entropy is the objective of each station
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selection stage. The addition of each station should increase the joint entropy, but after a certain
number of stations have been added to the network, it may be observed that the entropy value, H(n)
no longer increases or changes significantly, and converges to a fixed value instead. This indicates
that all further additions to the system will only be able to provide a limited quantity of information.
The index model of this study was used to plot the relationship between H [(xl,xz, C L Xj |x]-)]
and the number of rain gauge stations, to find the critical quantity of information and the number of
required stations. Here, we define a k;; coefficient, which represents the ratio between the entropy
value of the m-th station added to the system and the total entropy of the study area. Hence, k;, may
be used to represent the quantity of information provided by the m-th station added to the network.
Suppose that the study area has n measurement stations; after the base station has been selected,
each subsequent addition is performed with the objective of maximizing entropy. The definition of k,

is then
H(x1,%2,...,%m)

H(xI/XZ/-‘-/xmwn/xn—l/xn)

and kl,kz, Ce ,km, Ce ,kn_l, kn <1.

When determining the number of rain gauge stations for an area, a threshold value, k;, also needs
to be determined. When k;; > kj,, the number of rain gauge stations for a study area may then be
obtained. The determination of the threshold value may be determined by the increase in efficacy, as
revealed by the increase in k;;. The threshold is usually defined as k;; = 0.95, i.e., 95% of the information
content. If the number of rain gauge stations in a rainfall network is larger than the required number
of stations, the stations that rank lower than the required number may then be removed. Conversely, if
the number of rain gauge stations in a rainfall network is smaller than the required number of stations,
more stations then need to be added.

km =

,m<n (25)

3. Study Area and Data Description

The Feitsui Reservoir is located southeast of Taipei. The main river of the Feitsui Reservoir’s
catchment is approximately 50 km long, with a drainage area of about 303 km? (Figure 2). The dendritic
drainage system of this catchment includes four tributaries (the Daiyuku Creek, the Jingualiao Creek,
the Houkengzi Creek, and the Huoshaozhang Creek) joined together into the main river, the Beishi
River. The source of the Beishi River lies in the western slope at the northern end of the Xueshan
Range, and it flows into Pinglin before feeding into the Daiyuku Creek and Jingualiao Creek. After this
point, the Beishi River broadens and slows before it flows westward into the Feitsui Reservoir.

Taiwan Strait

~ Beishi River

Taiwan

=, Daiyuku Creek
e

. Jingualiao
oukengzi Cpreak - |

A Rain gauge
Figure 2. The Feitsui Reservoir’s catchment and the locations of the rain gauge stations.

The Feitsui Reservoir catchment is within the subtropical climate zone. Cold and wet northeasterly
monsoons prevail in winter, and the cold Arctic air will invade southwards from time to time. Cold
snaps, low clouds and drizzles thus have a high probability of occurrence in winter. The southwesterly
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monsoons in summer have a minimal impact on this region, due to the obstruction of the Xueshan
range. However, local showers often occur in the afternoon since solar radiation on the river valleys
and hillsides has a significant impact on local convection. During the transition between summer and
autumn, typhoons will bring about warm and highly humid airflows, and extremely heavy and intense
rainfalls. The temporal and spatial distributions of rainfall were already taken into consideration
during the initial design of the current rain gauge stations. For this reason, the Taipei Feitsui Reservoir
Administration has established an integrated weather station for the Feitsui Reservoir in one location,
and rain gauge stations in five locations, as shown in Figure 2.

The maximum, minimum and standard deviation of the monthly rainfall in the watershed are shown
in Table 1. The rainy season is from August to November, and the variance in mean monthly rainfall often
exceeds 100 mm. The rainfall tends to fluctuate from year to year; the annual rainfall ranges between 2520
and 5740 mm, and the mean annual rainfall is approximately 3760 mm. From August to October, this
area is impacted by typhoons and storms that frequently bring about heavy rainfall, whereas the rainfall
frequency peaks in the period between October and January, due to the impacts of the northeasterly
monsoon. During 2006-2015, at least 30 typhoons invaded Taiwan. The rainfall data during 2006 and
2015, including the heavy rain coming with the typhoons, is used for this study.

Table 1. The maximum, minimum and standard deviation of the monthly rainfall of six rain gauges in
Feitsui Reservoir’s catchment.

Station Taiping Sirsangoo Pingling Feitsui Geochungan Beefu
Grid number 19 61 66 102 129 157
Maximum (mm /M) 2668.5 1723.0 2113.5 1902.0 1925.5 2330.0
Minimum (mm/M) 0.5 0.0 12.0 43.0 26.5 0.0
Mean (mm/M) 449.3 282.3 294.7 299.0 302.5 333.2
Std. Dev. (mm/M) 358.1 218.4 263.0 234.1 234.4 234.4

The weather radar station was installed by the Central Weather Bureau of Taiwan to provide real-time
severe weather information. It is located around the most northeastern Taiwan. The radar was tested
in July 1996, however it was destroyed by a typhoon in August 1996. The radar was repaired in 1998,
and the data acquisition system was upgraded in 2006. In order to make the data consistent, only the data
after 2006 is used in this study. The radar has a wavelength of 10 cm, a spatial resolution of 1.3 x 1.3 km?,
and makes rainfall observations once every 10 min. Therefore, the catchment of the Feitsui Reservoir may
be divided into 217 grids according to the radar’s spatial resolution, with the center of each grid being
the location of a candidate rain gauge station, as shown in Figure 3. The 19th, 61st, 66th, 102nd, 129th,
and 157th grids in Figure 3 correspond to the locations of the six currently existing rain gauge stations.

Figure 3. The positions and numbering of the candidate rain gauges in the Feitsui Reservoir’s catchment.
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Prior to this study, it has not been assessed whether increases in the number of rain gauge stations
are necessary in light of alterations to the spatial and temporal distribution of rainfall induced by
global climate changes, to ensure that the rainfall data being acquired is sufficient for the smooth
operation of the reservoir. To address this shortfall, the mean monthly rainfall data from January 2006
up to December 2015 (120 months in total) was used to evaluate the efficacy of the current rainfall
network. Figure 4 illustrates the monthly rainfall map of the Feitsui Reservoir’s catchment from 2006
to 2015. Heavy rainfalls always occur in summer due to the arrival of typhoons, while the Meiyu
front brings rain in spring, and the northeasterly monsoon also brings rain in winter, thus resulting in
rainfall over long periods of the year. The minimum in rainfall usually occurs in autumn. The Feitsui
Reservoir provides the water supply and usually operates a regulation line for 10-days. According to
this, the rainfall temporal period for six-month/year seems too long for the reservoir operation and
the analysis, hourly data may contribute to the flood control, while the month scale is reasonable for
reservoir operation and also reflecting the variation during dry and wet seasons.
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Figure 4. The monthly rainfall in the Feitsui Reservoir’s catchment from 2006 to 2015.

4. Results and Discussion

As rainfall network evaluations will require considerations on the long-term temporal and
spatial distributions of rainfall, the monthly rainfall data was selected for data analysis in this work.
The arithmetic mean was used to estimate the mean rainfall of the catchment to minimize the impact
of the spatial distribution of rainfall, and because the six currently existing rain gauge stations are
spatially distributed in a uniform manner.

To estimate the rainfall data of the candidate rain gauge stations for the evaluation of the rainfall
network, the observed mean monthly rainfall of the catchment was derived from the rainfall data of
the six currently existing rain gauge stations, while the radar of QPESUMS was used to estimate the
monthly rainfall at these six locations to obtain the radar-derived mean monthly rainfall. A linear
regression was then used to probe the relationship between these quantities. Figure 5 displays the
relationship between the rainfalls measured by the six currently existing rain gauge stations and
the rainfalls estimated using the radar system. The horizontal axis (Rgp) indicates the monthly
rainfall observed by the radar, while the vertical axis (Rg) represents the mean monthly rainfall of the
catchment measured by the rain gauge stations. It was found that these quantities were related by
Rg = 1.1Rgp + 36.13, with a correlation coefficient of 0.87. Since the correlation is quite strong, this
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equation and the radar’s rainfall data may then be used to estimate the mean monthly rainfalls of all
the candidate rain gauge stations in the 211 grids of the catchment, over the last 20 years.
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Figure 5. The relationship between the measured mean monthly rainfall and the estimated mean
monthly rainfall.

In the study area, stations were selected according to transferable information calculations and
joint entropy-based ordering. Hence, the entropy values of the selected stations in the study area
were calculated using joint entropy and transferable information, and the stations were then ordered
by sorting the calculated values. The ranking of rain gauge stations by importance based on their
entropy values may be used as an ordering for the removal of stations. The maximization of entropy is
the objective of each station selection stage. Each station addition should increase the joint entropy,
but after the number of added stations has reached a certain value, it may be observed that the entropy
value, H(n), no longer increases or changes significantly, and converges to a fixed value; this indicates
that all further additions to the system will only provide a limited quantity of information.

The study area has 217 grids. The grids corresponding to the six currently existing stations were
selected as necessary locations for the reservoir’s operation, while the remaining grids were added one
after another, based on the principle of entropy maximization. A threshold value is usually defined to
determine the number of stations required by some area. In this case, the threshold, kj,, was defined as
0.95, which corresponds to a threshold value of 95%. By doing so, almost all of the rainfall information
of a region can be acquired using only a few rain gauge stations. Hence, when k;; > kj,, the number
of stations that need to be added to the study area and the location of these stations may then be
obtained. The relationship between the entropy value and the optimal number of stations is illustrated
in Figure 6; an index function was used in this work (as shown in Equation (24)) to obtain an estimate
for the optimal number of stations.
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Figure 6. The relationship between joint entropy value and the optimal number of stations; all of the
grids and the first 12 grids within the graph.

The grids labeled 1-6 in Figure 7 correspond to the locations of the six currently existing rain
gauge stations in the catchment. The entropy value of these six stations is already ~94%, which
indicates that these stations are sufficient for normal operation of the water reservoir. Nonetheless,
if an improvement in the completeness of the data is desired, the addition of a station at Grid 7 will
increase k;, from 0.938 to 0.958, which is larger than the k;, = 0.95 threshold. Therefore, we propose
that one more rain gauge station should be added to the study area, in addition to the pre-existing rain
gauge stations. The location of this station is indicated by Grid 7 in Figure 7, and it is located at the
boundary of the catchment in the southeastern part of the study area.
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Figure 7. The position of the recommended rain gauge station (the bold grid) for addition to the rainfall
network; Blue grids 1 to 6 are the existed rainfall stations.
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5. Conclusions

In this study, surface and radar rainfall data were employed in unison to estimate the rainfall data
of the candidate rain gauge sites, and information entropy was used to evaluate the information content
and uncertainty of each rain gauge station. An optimal rainfall network may then be constructed
by combining these methods. Unlike previous estimations of rainfall based on the Kriging method,
the rainfall data obtained using radar is an actual measurement, whereas rainfalls estimated using
statistical methods are at best, estimated values, which may not accurately reflect on the temporal and
spatial distributions of rainfall in a catchment. Previously, it was impossible to obtain an exact answer
for the location of rain gauge stations and the minimum required number of stations; with information
entropy, it is now possible to simultaneously obtain an answer for both of these questions. This method
will provide an important basis for the management of watersheds and the establishment of rain
gauge stations. Furthermore, this method may also be used to assess the sufficiency of the rainfall
data provided by currently existing rain gauge stations. More stations need to be added to a rainfall
network if the data is insufficient, whereas stations need to be removed if the redundancy in data is
too high. It is hoped that this method will be used to evaluate or adjust currently existing rainfall
networks in the catchment.

To identify and test the robustness of this method of rainfall network design in catchments,
the rainfall network at the Feitsui Reservoir’s catchment was evaluated to highlight the applicability
and reliability of our method. A grid was defined every 1.3 km in the study area, and actual radar data
was used to reconstruct the historical rainfall data of these grids. Information entropy was then used
to evaluate the spatial information content and the uncertainty of the information, and the estimated
entropy values were used to add stations to the network one after another. It was shown that seven
stations is the optimal number of rain gauge stations for the selected study area, as this is the number
of stations required to obtain 95% of the study area’s rainfall information, additional manpower and
resources for initial establishing and maintaining more stations can be saved.
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Abstract: Robustness of water distribution networks is related to their connectivity and topological
structure, which also affect their reliability. Flow entropy, based on Shannon’s informational entropy,
has been proposed as a measure of network redundancy and adopted as a proxy of reliability in
optimal network design procedures. In this paper, the scaling properties of flow entropy of water
distribution networks with their size and other topological metrics are studied. To such aim, flow
entropy, maximum flow entropy, link density and average path length have been evaluated for a set
of 22 networks, both real and synthetic, with different size and topology. The obtained results led to
identify suitable scaling laws of flow entropy and maximum flow entropy with water distribution
network size, in the form of power-laws. The obtained relationships allow comparing the flow
entropy of water distribution networks with different size, and provide an easy tool to define the
maximum achievable entropy of a specific water distribution network. An example of application
of the obtained relationships to the design of a water distribution network is provided, showing
how, with a constrained multi-objective optimization procedure, a tradeoff between network cost
and robustness is easily identified.

Keywords: scaling laws; power laws; water distribution networks; robustness; flow entropy

1. Introduction

The topology of water distribution networks (WDN) is being deeply studied with respect to
its relationship with their robustness, i.e., their capability of effectively delivering the demanded
flows to the users with the required pressure under unfavorable operating conditions [1]. In fact,
evaluating the performance of a WDN requires the complex calibration of a hydraulic model of the
network, and often a number of time-consuming simulations. Hence, establishing relationships,
linking topological metrics of a WDN, easily achievable from the mere knowledge of the network
layout, with its hydraulic behavior, would represent a powerful tool for the design, rehabilitation and
management of WDN. In this respect, aiming at quantitative comparison of different network layouts,
it is important to understand how topological metrics change with the size of the considered network.

In fact, the size variation of a system can cause changes in the order of predominance of physical
phenomena; this is called scaling effect, and the laws that govern such an effect are called scaling laws.
The scaling laws are relationships linking any parameter associated with an object (or system) with
its length scale [2]. They constitute a very useful tool to predict the behavior and the properties of
a large system by experimenting on a small-sized scale model, since the characteristics of a system
can be expressed through various parameters in such a way that any change in size (i.e., scale) does
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not affect the magnitudes of these quantities. Scaling laws represent useful tools for understanding
the interplay among various physical phenomena and geometric characteristics of complex systems,
and often it happens that simple scaling laws can provide clues to some fundamental aspects of
the system. In many fields, scaling laws have been identified. For example, scaling laws have been
experimentally determined over a huge range of scales in probability distributions describing river
basin morphology [3], whose geometrical description is of great importance for a deeper understanding
of how some related natural events occur. The existence of a scaling law relating point precipitation
depth records to duration has been known for at least 60 years through published tabulations of data
and the associated graphs [4,5], even if there is no explanation of the mechanism underlying this
remarkably robust relationship, making it even more tantalizing [6]. Scaling laws have been also
identified in fluid mechanics, to describe turbulent energy distribution across scales [7,8], and in
meteorology, to describe scaling of clouds [9], atmospheric variability [10], and fluctuations of Arctic
sea ice [11]. In the field of network topology, it has been found that many real networks exhibit
power-law shaped node degree distribution, where the degree is the number of connected links to
each node. Such networks have been named scale-free networks [12], because power-laws have the
property of retaining the same functional form at all scales. These networks result in the simultaneous
presence of a few nodes (the hubs) linked to many other nodes, and a large number of poorly connected
elements [13]. The World Wide Web (WWW) is one of the most famous scale-free networks. It is
formed by the hyperlinks between different Web pages, and, with more than 108 nodes, it is the largest
network ever studied.

Differently, water distribution networks (WDN) do not present hubs, as each node is connected
only to a few nodes located in its immediate surroundings. The connections between nodes in a WDN
ensure multiple possible flow paths, so to cope with abnormal working conditions, such as unexpected
water requests by the users and failure of some elements [14]. In this respect, several topological
metrics aimed at quantifying WDN connectivity have been proposed as proxies for network robustness
and reliability [15].

Reliability, in a WDN, can be defined as the probability of the system being capable of supplying
the water demands both under normal and abnormal conditions [16,17]. The assessment of reliability
is influenced by many factors: spatial and temporal demand distribution, possible failure of one or
more components, pressure-flow relationship, connectivity of the network, etc. Therefore, there is
not an established measure of WDN reliability, and a review of different methods to evaluate it can
be found in [18]. Reliability measures are categorized into three groups: topological, hydraulic and
entropic. Topological reliability is based on the probability of node connectivity/reachability [19];
hydraulic reliability is focused on the probability of delivering design water demands, (e.g., [17]);
and the last category adopts the informational entropy as a surrogate of the reliability [18].

The concept of informational entropy [20] has been widely applied in hydraulics and hydrology
(i.e., to estimate velocity distribution in open channels, suspended sediment concentration profile,
suspended sediment discharge, or precipitation variability, moisture profiles, etc.) [21]. In the field
of WDN, Shannon'’s entropy has been proposed as a measure of connectivity and so as a proxy for
reliability [22].

The adoption of entropy as a surrogate for network reliability was investigated by several
authors [23-26]. The basic idea is that entropy is a measure of the uniformity of pipe flow rate [27],
thus it is related to looped network redundancy, which makes it potentially more capable of facing
unfavorable working conditions, such as concentrated peaks of demand or failure of pipes (e.g., [1]).
Hence, redundancy increases network robustness, and so, indirectly, its reliability.

Hence, many studies [28-30] have proposed multi-objective optimization for water distribution
network design or rehabilitation based on minimizing costs for construction, operation, and
maintenance, coupled with the maximization of the entropy as a measure of robustness.

Traditionally, the robustness of water distribution networks was assured by means of densely looped
layouts, so to provide alternative paths for each demand node [31]. More recently, Di Nardo et al. [32]
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have studied the topological redundancy of a water supply network, with regard to pipe failures,
applying the complex network theory [33,34]. In fact, many water supply systems consisting of up to
tens of thousands nodes and hundreds of looped paths can be considered as complex networks [13].
Thus, it is possible to compute topological metrics [32,35-37] to analyze the robustness of a water
distribution network.

Recently, comparisons between entropy and other indirect measures of robustness [1,26,38—40]
such as resilience index [41], network resilience [42] and Surplus Power Factor [43] have been proposed,
but the obtained results are contradictory. According to some authors [26,38,39], informational entropy
is a good measure of network robustness. Conversely, other studies indicate that the resilience index
estimates better the network hydraulic performance than entropy in the case of pipe failures [1] and
for multi-objective design optimization [40].

The advantage of using informational entropy to evaluate network robustness is that only pipe
flows and topology are required for its computation [39], while the main drawback is that there is not a
reference value of entropy allowing for defining an acceptable level of robustness for a given WDN, nor
to compare different WDN layouts. In this respect, the definition of scaling laws of flow entropy with
the topological dimension of the network could be useful for WDN design and rehabilitation purposes.

This work investigates the possible relationship between topological metrics, borrowed from
complex network theory, and flow entropy, through the analysis of the values that they assume for
several WDNS, both real and synthetic. In particular, for each network, five of the coarsest topological
characteristics of a network, the number of nodes 7 and links 1, the average node degree k, the link
density g and the average path length APL have been calculated. The results show that the flow
entropy of a WDN is strongly linked to its size and topology, and that it can be expressed as a function
of topological metrics. Furthermore, the maximum achievable flow entropy value has been calculated
for each WDN. Scaling-laws of flow entropy with the size of the networks have been identified.
Two examples of the application of the obtained results to the design of WDNSs are finally provided.

2. Methods

The study of WDN using innovative topological metrics, borrowed from the theory of
complex networks [13], already led to interesting results for the analysis of water network
vulnerability [32,35,44], as well as for water network partitioning [45,46]. In the following sections,
the topological and entropy metrics used in this paper are briefly described, and finally the deviation
of actual entropy from maximum entropy is introduced as a possible measure of network robustness.

2.1. Topological Metrics

The average node degree, k, represents the mean number of links concurring in the nodes of the
network, and is given by:

k:7 1)

in which 7 is the number of nodes and m the number of links of the network.

The link density, g, expresses the ratio between the total number of network edges and the number
of edges of a globally coupled network with the same number of nodes, thus providinga measure of
network redundancy:

. 2m
1= (n—1)

The average path length, APL [33], is the average number of steps along the shortest paths

between all possible pairs of nodes in the network:
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where o(s,t) is the number of edges along the shortest path connecting node s to node t (when there is
no path between a pair of nodes, the path length is assumed to be infinite) [47]. A short average path
length indicates a more interconnected network, while a long one indicates greater overall topological
distances between nodes. Consequently, a network with a large APL value may be considered more
fragmented [48].

2.2. Entropic Metrics

The Shannon’s information entropy [49] is a statistical measure of the amount of uncertainty
associated with the probability distribution of any discrete random variable, defined as follows:

I
=Y. pelnpy, (4)
k=1

where E is the entropy, py is the probability, and [ is the number of values that the variable can assume.
Tanyimboh and Templeman [28], with the use of the conditional entropy formula of [50], considered
all the possible flow paths from sources to demand nodes, and introduced the flow entropy S of a
water distribution system by defining the probability of the water to flow along the k-th path as the
ratio between the flow rate reaching the end node of the path and the total delivered flow rate [42].
The following recursive formula [24] allows the calculation of S, which is regarded as a measure of
pipe flow rates uniformity:

2911 <@>_1%T[%1n<‘fj)+; ?m(?)} )

] JiEN; 7] ]

On the right hand side of Equation (5), the first term is the entropy of supply nodes and the
second is the entropy of demand nodes; NS is the number of supply nodes; T is the total supplied flow
rate; NN is the number of demand nodes; Q; represents the inflow at the i-th source node; Tj is the
total flow rate reaching the j-th demand node; Q; is the water demand at the j-th demand node; g;; is
the flow rate in the pipe connecting node j with surrounding node i; and Nj is the number of pipes
carrying water from the j-th demand node towards other surrounding nodes.

The data required to assess the flow entropy are the topological layout, the water supply and the
demand at all nodes, and the flow direction along each pipe. To this purpose, the hydraulic simulation
of the network, carried out with the solver EPANET 2 [51], provides the flow rate and direction along
each pipe.

2.3. Maximum Entropy and Network Robustness

The maximization of Equation (3) can be used to compute the maximum value of the flow entropy,
MS, and in this case only the source flow rates, the water demands at nodes and the flow directions
along the links are required. Specifically, MS is here computed here by means of a non-iterative
procedure for multi-source networks, proposed in [52]. The entropy deficit, i.e., the deviation between
the flow entropy S and the corresponding values of MS, given by Equation (5), is assumed to be
representative of how much a network is robust, based on the idea that networks, designed to supply
maximum entropy flows, would be the most robust for a given source pressure excess compared to the
design pressure at nodes [23].

AS=1- ©)

168



Entropy 2018, 20, 95

3. Results and Discussions

Topological metrics and flow entropy metrics were computed for a set of 22 WDNSs, both real
and synthetic. The maximum entropy MS of each network was calculated adopting the same flow
directions along the pipes as for the calculation of flow entropy S (i.e., the directions provided by the
hydraulic simulation of the network for the actual set of pipe sizes). Therefore, the obtained MS cannot
be considered as the maximum possible values of flow entropy, as a different choice of flow directions
could lead to a higher value of MS. However, as the flow directions are mainly dictated by the position
of sources and demand nodes, and by the assumed water demand at nodes, it is expected that flow
directions would be only slightly (and locally) affected by changes in the size of some of the pipes.
In Table 1, the computed values of the metrics are reported for all the considered networks.

Table 1. Topological metrics: number of nodes (1) and links (), density (q), average path length (APL),
flow entropy (S) and maximum flow entropy (MS), for all WDN (* denotes synthetic networks).

Network n m q APL S MS AS
Two Loop * [53] 7 8 0.5333 1.90 2063 229 0.101
Two Reservoirs * [54] 12 17 0.3778 2.59 2.829 3.008 0.059
Anytown * [55] 25 43 0.1861 294 4172 5048 0.174
GoYang * [56] 23 30 0.1299 375 3113 3.658 0.149
Blacksburg * [57] 32 35 0.0805 4.37 3.358 3473 0.033
Hanoi * [58] 32 34 0.0731 531 3.384 3.395 0.003
BakRyan * [59] 36 58 0.0975 4.30 3243 3709 0.126
Fossolo [60] 37 58 0.0921 3.67 3.677 4441 0.172
Pescara [60] 72 99 0.0435  8.69  4.273 4572 0.065
BWSN2008-1 * [61] 127 168 0.0213 1015 3.939 5567 0.292
Skiathos [62] 176 189 0.0124 11.52 5551 6.196 0.104
Parete [1] 184 282 0.0171 8.80 6.561 9.331 0.297
Villaricca [1] 199 249 0.0130 11.29 5206 5497 0.053
Monteruscello [63] 206 231 0.0110 20.24 5211 5385 0.032
Modena [60] 272 317 0.0089  14.04 5436 5764 0.057
Celaya [64] 338 477 0.0086  11.81 6.8 7734  0.121
Balerma Irrigation [65] 448 454 0.0046  23.89 6.091 6.489 0.061
Castellammare 1231 1290 0.0017 3225 7.583 8.094 0.063
Matamoros [66] 1293 1651  0.0020 27.76 9.896 13.325 0.257
Wolf Cordera Ranch [67] 1786 1985 0.0013 2594 7905 9.865 0.199
Exnet * [68] 1893 2465  0.0014 20.60 10.466 12.882 0.188

San Luis Rio Colorado [66] 1908 2681 0.0015 28.86 8.097 9.443 0.143

The set of networks used as case study includes water distribution networks with very different
characteristics, as indicated by the very different values assumed by the metrics:

e dimension: the smallest network has a number of nodes n = 6 (Two Loop), while the largest has
n = 1890 (Exnet);

e layout: looped networks as well as branched ones are included, i.e., Balerma Irrigation can be
considered a tree-network, while networks such as Parete and Sector Centro Real are very looped;
compact and elongated networks are included, with low values of APL coupled with high values
of density being representative of compact network layouts;

e  robustness: the set of networks includes systems with very small deviation of actual entropyfrom
maximum entropy, like Hanoi and Modena (the entropy deviation AS is equal to 0.0032 and 0.0616,
respectively), and networks with high deviation of entropy, like Parete and BWSN2008-1(entropy
deviations of 0.297 and 0.292, respectively).

These differences indicate that the adopted set is suitable to analyze the entropy metrics from a
topological point of view in a general sense.

Figure 1 shows the scatter plots of the values of S vs. various topological metrics, and the best
fitting power—law equations. The diagrams show that an increasing trend exists in the relationship
between flow entropy and number of nodes (Figure 1a), and between flow entropy and number of
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links (Figure 1b), as well as a decreasing trend for the relationship between flow entropy and link
density (Figure 1c). Although in Figure 1d a positive trend of flow entropy vs. average path length is
also observable, it is less clearly defined than the previous ones.

The scatter plots of MS vs. the same topological metrics, reported in Figure 2, confirm similar
trends as in Figure 1. Specifically, a clear increasing relation of MS with the number of links (Figure 2b)
can be noted, while Figure 2d shows a weak relation between MS and APL. The determination
coefficients, R?, of S (Figure 1) are slightly greater than the ones computed for the MS (Figure 2).
Anyway, both S and MS are clearly related to network topology.

It is worth to noting that, although APL is considered a proxy of the topological robustness of a
network [32] and the entropy has been proposed as a surrogate of network reliability, the relationships
between S and APL, as well as between MS and APL, are less consistent than expected.

The best fitting relationships are the power-laws linking S and MS with the number of pipes
m, as indicated by R? = 0.94 for the flow entropy and R? = 0.90 for the maximum flow entropy
(Figures 1b and 2b, respectively). The clear dependence of MS and S on m, indicating that flow
entropy is related to the size of the network, suggested to investigate the ratios S/m and MS/m to
characterize the redundancy of a network regardless of its dimension.
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Figure 1. Scatter plots and best fitting power-laws of: (a) entropy vs. number of nodes; (b) entropy vs.
number of pipes; (c) entropy vs. link density; (d) entropy vs. network average path length.
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Figure 2. Scatter plots and best fitting power—laws of: (a) maximum entropy vs. number of nodes;
(b) maximum entropy vs. number of pipes; (¢) maximum entropy vs. link density; (d) maximum
entropy vs. network average path length.

The scatter plots of S/m vs. n and MS/m vs. n, and the coefficients of determination of the
relevant best fitting power—laws, are reported in Figure 3. A distinct trend is clearly visible for both the
flow entropy measures, as indicated by R? = 0.99 for both the relationships. The obtained best fitting
power-law equations are:

S =1.05m x n~07* ?)

MS = 1.12m x n~ 972 8)

Looking at Equation (4), and keeping in mind the adopted definition of the probability of the
water flowing along a path from a source node to a demand node, it becomes clear that the maximum
theoretical flow entropy (i.e., all flow paths sharing the same probability) should scale with In#. In fact,
the number of possible paths in a network scales with the number of nodes (e.g., in a network with a
single source, the total number of flow paths to all nodes equals the number of links m = n+1—1,
I being the number of loops). Therefore, it is expected that

MS N —anln% _Inn

n
m n n (9)

The curve of Equation (9), also plotted in Figure 3, is not far from the scaling behavior exhibited
by the maximum entropy of the considered WDNSs. The observed difference can be ascribed to the fact
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that water flows must obey the flow balance equations at nodes, so that equal probabilities of all the
flow paths are not physically possible.
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Figure 3. Scatter plots and best-fitting power law equations: (a) S/m vs. number of nodes; (b) MS/m
vs. number of nodes. The dashed lines represent the expected scaling of flow entropy for a network
with equiprobable flow paths.

It looks clear how both actual and maximum flow entropy strictly depend on network size and
topology. The very good alignment of the values of S of WDNSs designed with different criteria along a
single power-law can be seen as an indirect confirmation of its suitability as a measure of network
robustness. In fact, regardless of the criteria adopted for the design of pipe diameters, the smaller
the hydraulic resistance of pipes (i.e., larger diameter and shorter length), the higher the flows that
spontaneously tend to develop through them. The flow distribution along pipes, and so the flow
entropy of the network, is thus determined by the hydraulic laws governing energy dissipation along
pipes, which lead to the delivery of the demand at nodes with the minimum dissipated power [41]
and, at the same time, set limits to the “disorder” of flow distribution.

The small scatter of the points from the curve of Equation (8), comparable to that of Equation (7),
is likely due to the imperfect calculation of MS, as already discussed in the previous section, due to the
a priori assumption of flow directions along pipes. However, as expected, the obtained trend seems
not to be significantly affected by such an issue.

Equations (7) and (8) shed some light on the link between flow entropy and topology of a
WDN. In fact, introducing the relationship m = n + [ — 1, it is possible to compare the flow entropy
of networks with different size and different number of loops. In example, Figure 4 shows the
dependence of MS on n and | according to Equation (8). It looks clear that the more looped the
network is, the higher is its entropy, thus confirming that flow entropy is a suitable measure of WDN
redundancy. On the same graph, the curves representing the maximum flow entropy of WDNs with
average node degree k = 2 and k = 4 are also plotted, delimiting the part of the plane to which WDNs
belong. In fact, owing to the physical constraints of pipe connections at nodes, the average node degree
of most WDNs falls between such values, as confirmed by the positions of the dots representing the
22 considered networks.

The obtained relationships indicate that, thanks to the high values of the coefficients of
determination, it is possible to assess the maximum achievable flow entropy of a network starting
from mere basic topological information such as the numbers of links and nodes.

In particular, Equation (8) provides a simple way to compute MS, without the need of a
preliminary determination of flow pipe orientations, which can be easily implemented in the design of
water supply networks aiming at taking into account the positive effect of redundancy on network
robustness [39].
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It is worth highlighting that the obtained relationships (7) and (8) have been derived for very
different WDNSs, both real and synthetic, from different countries, with quite different topological and
hydraulic characteristics. Nonetheless, they show a clear scaling behavior in the form of power-laws,
indicating that the values of the informational flow entropy are strongly related to some intrinsic
and scale-invariant topological characteristic of WDNs, which likely reflects the spatial embedding of
these networks, limiting their topological “disorder” (e.g., the degree connectivity of WDNs assumes a
nearly constant value as the size of the network increases [32]).
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Figure 4. Scaling of maximum flow entropy with number of nodes, for networks with various numbers
of loops I. The dashed lines represent maximum flow entropy of networks with fixed average node
degree k = 2 and k = 4. The dots represent the considered set of 22 WDNs.

4. Examples of Application

In this section, practical examples are given of how the maximum flow entropy value MS,
computed by Equation (8), can be used for WDN design or rehabilitation. Starting from the value
of maximum entropy, estimated only by means of topological information, the design of the water
supply network can be carried out by means of a multi-objective optimization procedure, based on
the minimization of entropy deviation and pipe costs, in compliance with hydraulic constraints (i.e.,
the required minimum pressure at demand nodes). Specifically, the optimization problem consists of
defining the optimal choice of the diameters of all pipes in the network, by minimizing the following
multi-objective function (MOF):

MOF = {AS; c=cry, L]-D]‘?} )

j=1
constraint : h; > hji=1,,n

In Equation (10), the first component of MOF, AS, represents the deviation of flow entropy,
calculated with Equation (5), from the maximum flow entropy, estimated by means of Equation (8) as
a function of n and m; the second component C represents the total cost of the pipes of the network
(Cr is the unit cost of pipes; L]- and Dj are the length and the diameter of the j-th pipe, respectively;
B is a coefficient expressing the dependence of the cost of a pipe on its diameter, for which the value
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B = 1.5 has been proposed [69]); h; and &; are, respectively, the actual and the design pressure heights
at the i-th node of the network.

The application of the proposed WDN design optimization procedure, summarized by
Equation (10), has been carried out for the real water supply networks of Fossolo [60], a neighborhood
of the city of Bologna (Italy), and of the town of Skiathos (Greece) [62]. The first network consists of
36 nodes and 58 polyethylene pipes, and the design pressure was assumed equal to /1 = 30 m at all
nodes. The second network, made with cast iron pipes, has n = 175 and m = 189, with h=22m.
In Figure 5, the sketches of the WDN of Fossolo and Skiathos are reported.

(a) (b)

Figure 5. Layouts of the water distribution networks for which the multi-objective optimal design
procedure based on maximum flow entropy has been applied: (a) Fossolo; (b) Skiathos.

The minimization of MOF was carried out by a heuristic optimization method based on a Genetic
Algorithm (GA), a minimum search technique based on mimicking the process of natural selection in
the evolution of species [70]. Such an evolutionary algorithm allows for easily introducing constraints
on the unknown parameters, at the same time avoiding local minima by introducing random variations
to parameter vectors. The GA parameters are the following: each individual of the population is a
sequence of chromosomes corresponding to the diameters of all the pipes of the network, which can
assume only the values of the existing commercial pipes reported in Table 2. The number of GA
generations, the size of the population and the crossover percentage were set to 100, 100 individuals
and 0.8, respectively.

The application of the proposed network design procedure led to the definition of the Pareto
frontsreported in Figure 6, which represent, in the plane (C, S), the set of all the optimal solutions
obtained by minimizing AS and the total pipe cost, in compliance with the hydraulic constraints of
Equation (10). In addition, the red dots in Figure 6 represent the entropy deviation and the total
pipe cost of the original network layouts. Without limiting the general validity of the obtained
results, the unit cost of pipes has been assumed C/ = 1. The obtained Pareto fronts show that the
smallest values of AS correspond to the highest values of total pipe cost, as the more a network is
robust, the more investment is needed for its realization (e.g., [71]). For the network of Fossolo,
the minimum value of AS = 0.0004, corresponding to a flow entropy S = 4.66, implies an increase
of pipe cost, compared with the original layout, of about 58%. However, a flow entropy S = 4.55
can be obtained with an increase of cost smaller than 25%, which represents a good tradeoff between
reliability improvement and cost increase. For the case of Skiathos, instead, it is worth noting that
nearly the maximum flow entropy S = 6.72 can be achieved without any increment of overall pipe
cost compared to the existing network.
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Table 2. Pipe diameters of the networks of Fossolo (polyethylene pipes) and Skiathos (cast iron pipes).

FossoloDN (mm) SkiathosDN (mm)
16.00 73.60 40.00 125.00
20.40 90.00 50.00 140.00
26.00 102.20 63.00 150.00
32.60 147.20 75.00 160.00
40.80 184.00 80.00 225.00
51.40 204.6 90.00
61.40 229.2 110.00
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Figure 6. Pareto fronts of the proposed multi-objective optimal network design procedure (flow entropy
and total cost of network pipes): (a) Fossolo; (b) Skiathos. The red dots correspond to network layouts
before optimization.

5. Conclusions

The study investigates the scaling-law of informational flow entropy of water distribution
networks, often assumed as a surrogate of network robustness, with their topological size. To such
aim, the relationships between informational flow entropy, S, maximum informational flow entropy,
MS, and some suitable topological metrics (namely, number of nodes, n; number of links, m; network
link density, g; network average path length, APL) are investigated for a set of 22 networks, both real
and synthetic, with different characteristics.

A clear dependence of flow entropy on topological metrics is observed, and, in particular,
power-law relationships, strongly linking S/m and MS/m to the number of nodes of the network (i.e.,
R? =0.99), are identified. The obtained scaling laws result in being close to the expected scaling of flow
entropy in networks with equiprobable flow paths (i.e., the same flow carried to the end of any flow
path connecting sources to demand nodes), although the actual flow paths cannot be equiprobable,
as they must obey flow balance equations at nodes. Such a scale-invariant behavior, testified by the
power-laws, probably reflects the peculiar topological feature of water distribution networks, in which
each node is connected only to a few immediately surrounding nodes, thus limiting the topological
“disorder” of the network, i.e., the number of possible flow paths from each node.

The obtained power-laws, providing an easy estimate of actual and maximum flow entropy of a
network, allow to quantify the entropy deficit of a network, i.e., the distance of the flow entropy of a
network of given topology from its maximum achievable flow entropy, which can be used in network
design and rehabilitation as a measure of network robustness. In this respect, examples of application
to multi-objective design of real water distribution networks show how optimal solutions in terms of
pipe cost and overall network robustness are easily identified.
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Abstract: An integrated optimization model was developed for the spatial distribution of agricultural
crops in order to efficiently utilize agricultural water and land resources simultaneously. The model
is based on the spatial distribution of crop suitability, spatial distribution of population density,
and agricultural land use data. Multi-source remote sensing data are combined with constraints
of optimal crop area, which are obtained from agricultural cropping pattern optimization model.
Using the middle reaches of the Heihe River basin as an example, the spatial distribution of maize
and wheat were optimized by minimizing cross-entropy between crop distribution probabilities
and desired but unknown distribution probabilities. Results showed that the area of maize should
increase and the area of wheat should decrease in the study area compared with the situation in
2013. The comprehensive suitable area distribution of maize is approximately in accordance with
the distribution in the present situation; however, the comprehensive suitable area distribution of
wheat is not consistent with the distribution in the present situation. Through optimization, the high
proportion of maize and wheat area was more concentrated than before. The maize area with more
than 80% allocation concentrates on the south of the study area, and the wheat area with more than
30% allocation concentrates on the central part of the study area. The outcome of this study provides
a scientific basis for farmers to select crops that are suitable in a particular area.

Keywords: cross-entropy minimization; land suitability evaluation; spatial optimization

1. Introduction

Scarcity of agricultural water and land resources is becoming severe due to the growing population
and continued economic development, and has become a critical issue in formulating sustainable
developmental policies [1-3]. Therefore, appropriate and efficient allocation of agricultural water and
land resources has become necessary in regional agricultural sustainable development [4]. Agricultural
land use allocation is the core issue of agricultural land and water resource allocation optimization [5,6].
Not only can it guide decision makers in assessing land demand for different crop types, but it can
also identify the optimum land spatial unit with characteristics that are related to their geographical
locations for each crop type [7-9], as well as simultaneously seeking the best land use layout [10,11].

The process of agricultural land-use allocation would be undertaken in three main stages:
(i) demand assessment; (ii) agricultural land suitability evaluation; and (iii) spatial distribution of crop
types [7].

To assess the agricultural land suitability of crops, the required environmental and socio-economic
conditions are considered [12]. The Food and Agricultural Organization (FAO) developed crop-specific
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maps of crop suitability classes using the spatial data on soil, topography, features, and crop
characteristics [13]. Many studies have developed methods for land suitability allocation based
on the FAO framework. In these methods, input attributes and suitability indices were classified
into different classes, and weights were assigned to the attributes, depending on their relative
importance [5,14-17]. However, the main shortcoming of FAO-based methods is that their crop
suitability data are usually available at a 5 min (approximately 9 km x 9 km at the equator) grid and
such resolution is too coarse to satisfy the research demand at the irrigation district scale. Furthermore,
when evaluating land suitability, very few studies have taken into account the actual distribution of
various crops. For example, You and Wood [18] improved the pre-allocation by providing the existing
crop distribution maps. To a significant extent, land suitability are determined by biophysical and
soil conditions, such as organic matter, total nitrogen, total phosphorus. When the observed data of
these attributes cannot be completely covered on the entire region, the actual distribution of crops can
provide the supplement of crop distribution information. Using the research findings of Peng [19],
an integrated model combined with multi-source remote sensing data was developed to generate
maps of spatial distribution with 1 km x 1 km resolution suitable for crop planting.

The main objective of agricultural land use allocation is the spatial allocation of crop types to
different spatial units having characteristics related to their geographical locations, for the purpose of
seeking the best land use layout [11]. There is extensive literature on various methods of optimization
for agricultural cropping patterns, such as linear programming [20], non-linear programming [21],
multi-objective programming [22], fuzzy programming [23,24], and stochastic optimization [25].
However, these methods have ignored the effective unification of quantity and space, and have
merely focused on the quantity optimization. In other words, these models can provide an optimal
cropping pattern but cannot analyze the optimal spatial distribution of crops, which has an important
guiding significance in actual production work.

Since numerous variables are involved in spatial optimization, conventional mathematical
models are deemed unfit to determine the optimal solution within an acceptable timeframe [12].
Various heuristic algorithms for land-use spatial optimization have also been developed,
including particle swarm algorithms [26,27], colony algorithms [28], and genetic algorithms [11,29].
Although these algorithms have a significant global optimization capability, they involve complex
patch coding, resulting in programming difficulties. Other methods adopted cellular automation
models, based on land-use conversion rules for local areas, to generate land-use patterns under
different conditions using a bottom-up approach [12,29,30]. However, cellular automaton is restricted
by neighborhood rules, and cannot search across space. In this study, spatial crop optimization
is defined in the framework of minimum cross entropy. The principle of minimum cross-entropy
(POMCE) was formulated by Kullback and Leibler [31] and is detailed by Kullback [32]. The cross
entropy can measure the variation between different information contents, which seems an ideal
approach to resolve the spatial allocation problem [33]. However, the cross entropy method has usually
been applied in determining spatial-temporal changes of land use and applied a meso-scale model
for the spatial disaggregation of crop production [34-36], but has rarely been coupled with spatial
optimization modeling [18]. For example, You and Wood [37] described an entropy-based approach to
conduct a spatially disaggregated assessment of the distribution of crop production. Considering the
difficulty in coupling spatial variables with non-spatial variables, a loosely coupled model, based on
minimum cross entropy and nonlinear optimization, is constructed in this study. The crop spatial
allocation can be performed by determining the minimum cross entropy between the prior distribution
and the desired distribution. The prior distribution produces crop-related and environment-related
information obtained from integrated multi-source analysis in agricultural land suitability.

This study develops an integrated optimization model for the spatial distribution of agricultural
cropping. The model is based on the spatial distribution of crop suitability, spatial distribution of
population density, and agricultural land use data. It combines multi-source remote sensing data
with constraints of optimal crop areas, which are obtained from an agricultural cropping pattern
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optimization model. Minimization of cross-entropy is applied to build the model. The model determines
the suitable planting region for a specified crop well.

2. Materials and Methods

2.1. Study Area

The study area is the middle reaches of the Heihe River basin (98°30'-101° E, 38°30'-40° N),
lying in an arid region of Gansu Provence, northwest of China, and covers an area of 11,427 km?.
The Heihe River basin is the second largest inland river basin in China. In this region, crop production
mainly depends on agricultural irrigation, because the mean annual precipitation and evaporation are
about 117 mm and 1065 mm, respectively. Water consumption from agricultural irrigation accounts
for approximately 90% of the total water consumption in this region [38]. Therefore, the optimal
distribution of limited irrigation water and land resources is a key factor for agricultural development
and sustainability [4,39]. The study area presents a higher terrain in the southeast and low in the
northwest, and the elevation is between 1235 m and 3634 m. there is heterogeneity of biophysical
and soil condition in this region. The content of organic matter and nitrogen is higher in the southern
part than in the northern part [19]. The middle reaches of Heihe River basin is a commodity grain
production base, which is made up of 17 irrigation districts (as shown in Figure 1). The main crops in
this region are maize, potato, seed maize, cotton, oil crops, and vegetable. Therefore, planting crops
in a suitable region, as well as integration between the quantity structure optimization and spatial
allocation optimization, are of primary importance to agricultural production management [40].

‘)9"]0'!2 99°_'.50'E 1 00‘°0' E I00°I30‘E

40°0'N

F39°30'N

r39°0'N

Gansu Provence

T T T T —38°30'N

Figure 1. Location of study area in China.

The letters in the figure represent the names of irrigation districts. LC is for Luocheng irrigation
district, LB is for Liuba irrigation district, YL is for Youlian irrigation district, XB is for Xinba irrigation
district, HYZ is for Hongyazi irrigation district, PC is for Pingchuan irrigation district, LQ is for
Liaoquan irrigation district, LYH is for Liyuanhe irrigation district, BQ is for Banqiao irrigation district,
YN is for Yanuan irrigation district, SH is for Shahe irrigation district, X] is for Xijun irrigation district,
YK is for Yingke irrigation district, DM is for Daman irrigation district, SS is for Shangsan irrigation
district, HZ is for Huazhai irrigation district, and AY is for Anyang irrigation district.
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2.2. Methods and Data

Figure 2 shows an overview of the integrated agricultural cropping spatial distribution
optimization model. This model is based on minimizing cross-entropy, re-aggregating administrative
statistics data, and multi-source remote sensing information data, such as spatial distribution of
crop suitability, spatial distribution of population density, and agricultural land use data in a
logical framework.

/ Yﬂﬁ

=Barley Population density/km” : m )
=Wheat 0 e Y 'ﬁ
=Maize =0 -100 -'C@(‘_ 3
=Alfalfa ; =100 - 500 2
=Cotton e =500 - 3,000
=Others t.;y =3,000- 22,709 g

(a) Crops planting suitability (b) Agricultural land use

evaluation (¢) Gridded population data

Rules

®The crop area allocated in each

pixel is less than suitable area
of the pixel

® The sum of crop area in each

pixel is less than the pixel area

(d) Optimal crop area
eMaximum net benefit per

Probability of crop allocation in
each pixel

unit of irrigation water

Figure 2. Overview of integrated agricultural cropping spatial distribution optimization model.

2.2.1. Evaluation of Crop Planting Suitability

The evaluation of crop planting suitability is important for agricultural land use allocation.
It provides the essential data for the optimization of crop spatial framework in order to realize
reasonable utilization of land resources as well as providing references for the scientific management
and sustainable utilization of cultivated land resources.

The suitability of crop cultivation in this study is referenced from Peng [19]. Based on the ecological
niche fitness theory, Peng [19] selected climatic and environment factors (rainfall, temperature, ETy),
soil characteristics (organic matter, total nitrogen, total phosphorus, total potassium, pH, bulk density),
and geographical factors (terrain elevation, slope and aspect). These factors are closely related to crop
growth and are used for evaluating the ecological niche and crop planting suitability. Figure 3 shows
the spatial distribution of crop planting suitability index. Owing to the limitation of data collection,
Peng’s [19] study on the maize and wheat planting suitability was employed.
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Figure 3. Spatial distribution of crop planting suitability index [19].

2.2.2. Agricultural Land Use

The Heihe River basin land use and land cover data set (HiIWATER: Land cover map of Heihe
River basin) were obtained from the Cold and Arid Regions Sciences Data Center (http://westdc.
westgis.ac.cn/) which provided the 2011-2015 monthly data covering the type of surface. The data set
is based on China’s domestic satellite H] /CCD data which has a high temporal and spatial resolution
(30 M) [41,42]. This data set increases the classification of cultivated crops, including barley, wheat,
maize, alfalfa, cotton and others, and can provide the current crop spatial distribution to determine the
crop suitable distribution area.

2.2.3. Gridded Population Data

The spatial distribution of population density data is from the gridded population data of the
Heihe River basin and provides the spatial distribution of population density in a 1km x 1km
grid. The data set is given by the Cold and Arid Regions Sciences Data Center at Lanzhou
(http:/ /westdc.westgis.ac.cn) [40].

2.2.4. Optimization Model of Agricultural Cropping Pattern

To realize the appropriate allocation and efficient use of agricultural water and land resources and
provide the primary input data for spatial allocation, the optimization model for agricultural cropping
pattern is established with the objective of maximum agricultural net benefit per unit of irrigation
water under certain agricultural water resources. The planting area of crops in an irrigation district is a
decision variable for the model. Crops considered include maize, wheat, potato, maize seed, cotton, oil
crop, and vegetable, while the basic data of 2013 used in the model are crop yield, crop prices, cost,
agricultural irrigation quota and water availability. This model references the results of the project
supported by National Natural Science Fund in China (91,425,302).

(1) Objective function

The agricultural cropping pattern optimization model can be written as follows, the variables
x;j is expected area of crop j in irrigation district i (ha); and the objective of optimization model is the
maximum agricultural net benefit per unit of irrigation water:

17 7 7 7
maxf =Y Y ((yijoi — cij) - x5 /ET;j) /Y Y xji M
=121 P
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where f is the net benefit per unit of irrigation water (RMB/ m3) ;i(i=1,2,...,n)isirrigation district
identifier, of which there are 17 within the study area; j (j =1, 2, ..., 7) is the crop type identifier,
of which 7 main types are considered in this model (maize, wheat, potato, maize seed, cotton, oil crops,
and vegetable); vj; is the price of crop j in the irrigation district i (RMB/kg); y;; is the yield of crop j in
the irrigation district i (kg/ha); c;; is the cost of crop j in the irrigation district i (RMB/ha); ETj; is the
net irrigation quota of crop j in the irrigation district i (m3/ha).

(2) Constraints

The irrigation water of irrigation district 7 should be less than the available water supply:

7
2 mixij <Q; 2

-

where m;; is the gross irrigation quota of crop j in the irrigation district i (m3/ha); Q; is the available
water supply in the irrigation district i (m?).
The irrigation area of irrigation district i would be less than the effective irrigation area X; (ha):

3

7
Z ©)
The agriculture product would be to meet the local demand:
n 4
ZZyU%>KPFN (4)

Il
o
I’
—-

j

where P is the population in the study area; FN is the per person grain demand, 135 kg/per; and VN is
the per person vegetable demand, 140 kg/per; K is demand coefficient, when the agriculture product

meet the local demand, K = 1.
n

i=1j=9
non-negative constraint:
x,‘j >0 (6)

2.2.5. Spatial Distribution Optimization Model Based on Cross Entropy

Shannon (1948) introduced information entropy to measure the uncertainty of the expected
information. He defined entropy H(p) as a weighted sum of the information [34]. The entropy of a
random variable with probability distribution P (py, py, . . . , px) can be expressed using Equation (7) [43]

k
-y pilnp; %)
i=1

Jaynes (1957) proposed the maximum entropy principle in statistical inference: the least
informative probability distribution P (p1, p2, ..., px) can be found by maximizing the entropy
H(p) [44]. In Equation (7), the solutions are: p; =1/n,i=1,2,... ,n, H(p) = In n [34,35].

The cross-entropy formulation is based on the Shannon Entropy theory [36]. Cross-entropy was
formulated by Kullback and Leibler [31] and is detailed by Kullback [32]. It measures the divergence
between the prior distribution and the desired distribution. The principle of minimum cross entropy
(POMCE), also referred to as the principle of minimum discrimination information, is obtained by
minimizing cross-entropy with respect to the given prior distribution, subject to given constraints [33].
POMCE can be expressed as
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k pi
IXRQ):Ejmm<j> ®)
i=1 1

where D is the cross-entropy or the discrimination information and the objective is to minimize D.
P (p1,p2, - .., pk) is the desired distribution, Q = (41, g2, - . . , qx) is prior distribution chosen based on
all the given information, but does not satisfy the prescribed constraints [45-47].

In this study, we considered a comprehensive crop suitable distribution based on the integrated
multi-source data analysis as prior knowledge in the POMCE. Let g;; represent the suitable cultivated
land area shares of crop j on pixel i. Therefore,

o Suitable;; o)
95 = ¥ Suitable;
1

Based on the spatial distribution of crop suitability, spatial distribution of population density,
and agricultural land use data, the spatial distribution optimization model based on cross entropy,
subject to the constraints of optimal crop area obtained from agricultural cropping pattern optimization
model, is used to determine the optimal spatial distribution of crops.

The objective of crop spatial distribution optimization is to minimize cross-entropy of
comprehensive crop distribution probability and desired distribution probability, subject to area
constraint on the pixel scale and other related limitations.

The spatial distribution optimization model, based on cross entropy, can be written as follows,
variables p;; represent the desired area shares of crop j on pixel i:

n;inD (Pij, i) = min (Z pijInpij— Y pijn ‘h‘j) (10)
i 7 7
subject to the following constraints:
Ypj=1 0<p;j<1 (11)
i

making sure the allocated area of crop j on pixel i would be less than suitable cultivated land area of
crop j on pixel i:
Area; X pjj < Suitable;; (12)

making sure the allocated area on pixel i would be less than the arable land area on pixel i:

ZAT@H,‘]' X pij < Available; (13)
i

wherei=1,2,3, ..., represents the pixel identifier within the study area; j = 1, 2, represents the crop
identifier within the study area; g;; represent the suitable area shares of crop j on pixel i; Available;
represent the arable land area on pixel i; Suitable;; represent the suitable cultivated land area of crop j on
pixel ; and Ares; represent the optimal crop areas, which are obtained from the agricultural cropping
pattern optimization model.

3. Results and Discussion

3.1. Crop Demand Assessment

Based on limited data on crop planting suitability, this study focuses only on the spatial allocation
of two crops, maize and wheat. Thus, in this section, the maize and wheat demands in the middle
reaches of Heihe River basin are analyzed.
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As shown in Table 1, seed maize controls the priority of water allocation, due to its higher unit net
irrigation benefit and lower water requirement in these irrigation districts compared with other crops.
Compared with the actual situation in 2013, the proportion of the total planting areas of corn and
wheat through optimization all accounts for about 87%. However, the area of maize should increase,
and the area of wheat should decrease in a region-wide range.

Table 1. Comparison of crop structure between present and optimal allocation (ha).

Maize  Wheat Potato  Seed Maize Cotton  Oil Crops Vegetable Sum

Actual situation 19,680 14,241 794 75,252 3573 1116 11,258 125,915
Optimization 14,111 12,818 725 82,785 4174 990 10,375 125,977

Table 2 compares maize and wheat areas between present and optimal allocations in different
irrigation districts. Comparing the actual crop structure, results revealed that except for the X]J, SS,
PC, SH, YL, LC, XB irrigation districts, the maize area in the remaining irrigation districts increased,
especially in DM and YK. The change was apparent with 2809 and 2057 ha increases, respectively,
while the maize area in YL decreased by 2128 ha. However, DM, YK, PC, BQ, LYH and LC would
be more favorable to wheat because of lower water requirement, while in other irrigation districts,
the area of wheat decreased. For example, it would reduce to 504 ha and 436 ha in LQ and HYZ
district, respectively.

Table 2. Comparison of maize and wheat area between present and optimal allocations in different
irrigation district (ha).

Maize Wheat
Irrigation Districts
Actual Situation Optimization Actual Situation Optimization
DM 11,805 14,614 160 167
YK 15,049 17,106 1053 1067
XJ 17,598 17,567 579 400
SS 6474 6421 87 78
AY 13 18 561 545
HZ 0 30 353 199
PC 3013 3000 1180 1268
LQ 2367 2433 1253 749
BQ 3900 3931 167 204
YN 2113 2331 947 679
SH 2873 2210 1007 924
LYH 10,220 10,433 3707 3850
YL 14,540 12,412 867 800
LB 1880 1882 56 52
LC 1400 1303 13 73
XB 1593 1080 640 585
HYZ 93 125 1613 1177
Sum 94,932 96,896 14,241 12,817

3.2. Crop Comprehensive Suitable Area Distribution

Using the ArcGIS platform, the whole research area was divided into 9041 1 km x 1 km grids.
According to crop planting suitability evaluation, different colors were selected to represent different
crop suitability indices, and grids were filled to generate the spatial distribution map of crop planting
suitability index.

In light of the spatial distribution of maize and wheat planting suitability obtained above,
combined with the spatial distribution of population density and agricultural land use data, the crop
comprehensive suitable area distribution can be determined according to the following principles.
Figure 4 shows an overview of this process.
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Figure 4. Overview of comprehensive suitable planting spatial distribution.

Principle 1: Preferentially assigning crops to the area with high suitability. First, rank crop planting
suitability index (part a in Figure 4) in descending order, then contrast the area corresponding to the
crop planting suitability index with the optimized area needed to be allocated, when the former is
just larger than the latter, select the corresponding suitability index as a threshold of crops planting
suitability index.

For example, Table 3 shows the maize planting suitability index and its corresponding area.
When the index is greater than or equal to 0.83, its area is 103,337 ha, which is large enough to allocate
the expected area of 96,896 ha obtained from the optimal model. Similarly, Table 4 shows that when
the wheat planting suitability index is greater than or equal to 0.83, the area is 20,315 ha which can
allocate the expected area of 12,817 ha. As a result, we can distinguish the unsuitable planting area
(part b in Figure 4) and the suitable planting area (part ¢ in Figure 4).

Table 3. Area of maize planting suitability index.

Maize Planting
Suitability Index

Area (ha) 11,295 8242 7006 11,579 30,977 22,851 8899 2486 103,337

0.83-0.84 0.84-0.85 0.85-0.86 0.86-0.87 0.87-0.88 0.88-0.89 0.89-0.9 0.9-0.92 Sum

Table 4. Area of wheat planting suitability index.

Wheat Planting Suitability Index 0.88-0.89  0.89-0.90 Sum
Area (ha) 16,942 3373 20,315

Principle 2: The evaluation of crop planting suitability index is based on fixed-point sampling,
and owing to the limitation of field investigation, there is inevitably some missing information on
crop spatial distribution. In order to make up for this deficiency, the current crop planting spatial
distribution (part d in Figure 4) is taken into account. Taking part b away from part d, the remaining
area (part e in Figure 4) can be considered a supplement of crop distribution information.

Principle 3: According to [18], when the population density exceeds 500 people/km?, it would be
unsuitable for crop growing area. The land would be urban with little agriculture. Combined with the
spatial distribution of population density, the region with population density over 500 people/ km?
(part f in Figure 4) is deducted from the suitable planting area.

Figures 5 and 6 show the formation process of maize and wheat comprehensive suitable planting
spatial distribution.
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Figure 5. Development of maize comprehensive suitable planting spatial distribution.
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Figure 6. Development of wheat comprehensive suitable planting spatial distribution.

Results show that the maize comprehensive suitable planting spatial distribution is consistent
with the current maize planting spatial distribution. The suitable area mainly focuses on the east of
the YL irrigation district, the north of the LYH irrigation district, and most areas of the XJ, YK, DM
irrigation districts. However, there are fewer areas suitable for growing maize in HYZ, HZ, and LQ.

In YK and DM irrigation district, the suitable area for planting maize is larger than the current
area; therefore, an increase in the maize area is suggested in these districts. On the contrary, in YL, X]
and XB irrigation district, the maize area should be reduced because the suitable area is smaller than
the current planting area.

Results show that the wheat comprehensive suitable planting spatial distribution has exhibited its
obvious characteristics and the regular difference from the current wheat planting spatial distribution.
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For example, the planting areas of wheat are relatively centralized in the HZ and AY irrigation districts
and evenly distributed in other regions under the existing circumstances. However, the suitable areas
for planting wheat are mainly concentrated in the YK, DM and SS irrigation district.

In the LQ, YN and HYZ irrigation districts, the suitable area for planting wheat is smaller than
current area; therefore, a reduced area of wheat is suggested in these districts. However, in the BQ, YK,
DM and SS irrigation districts, the maize area should be increased, for the suitable area is larger than
current planting area.

3.3. Comparison of Crop Area Spatial Distribution between Present and Optimal Allocations

Comparison of maize area spatial distribution between present and optimal allocations is shown
in Figure 7. Results show that after optimization, it tends to centralize grids, and the proportion of
maize area in each grid is greater than 80% in the south of study area. This mainly focuses on the SS
irrigation district, as the suitable area for planting maize in SS irrigation approaches the optimized
area needed to be allocated.

[ <10%
[010% - 25%
[ 25% - 50%
B 50% - 75%
I 75% - 80%
> 80%

(a) present allocation (b) optimal allocation

Figure 7. Comparison of maize area spatial distribution between present and optimal allocations.

The number of grids with higher proportion, including the proportion greater than 80% and
between 75% and 80% is less than the actual situation, mainly owing to the deduction of unsuitable
area for planting maize according to the principles in Section 3.1.

Meanwhile, the optimal spatial distribution shows more centralization than before optimization,
because of the number of grids with a proportion of 50-75% increase, while the amount of grids with a
proportion of 10-20% and less than a 10% decrease.

Figure 8 shows a comparison of wheat area spatial distribution between present and optimal
allocations. Similarly, it indicates that grids with a high proportion of wheat area in each grid are more
concentrated than in the actual situation, mainly distributed in LYH, LQ and SH irrigation districts.
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Figure 8. Comparison of wheat area spatial distribution between present and optimal allocations.

Compared with the maize proportion in each grid, the wheat proportion is lower, owing to
less optimal wheat area and the decentralization of wheat comprehensive suitable planting spatial
distribution. The number of grids with proportion greater than 30% decreases, while the amount of
grids with proportion less than 10% and between 10% and 30% increases after spatial optimization.

In the south of the study area (AY and HZ irrigation district), based on the comparison of crop
area spatial distribution between present and optimal allocations, the wheat area was more overloaded
than its area suitable to plant in the actual situation. Therefore, it is suggested that the wheat area
should be reduced in these two districts.

The optimization of crop spatial distribution, which is based on crop planting suitability
evaluation and agricultural cropping pattern optimization, can improve the efficient utilization of
agricultural water and land resources. The study ensures that crops are planted in suitable areas to
provide the agricultural planting results of specialization and visualization.

4. Conclusions

In this study, an integrated agricultural cropping spatial distribution optimization is achieved
at the irrigation district scale, based on the combination of multi-source remote sensing information
data with optimal crop area. Minimizing cross-entropy was applied to build the model. This study
considers the maize and wheat comprehensive suitable area distribution in the middle reaches of Heihe
River basin and maize and wheat spatial distribution optimization is obtained. The high proportion
of maize and wheat areas is more concentrated than before optimization. The integrated model
contributed a new idea to cropping pattern spatial optimization. An optimizing approach based on
cross-entropy minimization can lead to the efficient allocation of water resources and appropriate crop
spatial distribution simultaneously. This study can ensure that crops are planted in a suitable region
and provide a scientific basis for farmers to make crop selection decisions, which has an important
guiding significance in the actual production work. However, due to the limitations of data on the
planting suitability evaluation of other crops, only the main crops (maize and wheat) were studied.
Further studies are therefore recommended using more crops.
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Abstract: Event-based runoff-pollutant relationships have been the key for water quality
management, but the scarcity of measured data results in poor model performance, especially
for multiple rainfall events. In this study, a new framework was proposed for event-based non-point
source (NPS) prediction and evaluation. The artificial neural network (ANN) was used to extend the
runoff-pollutant relationship from complete data events to other data-scarce events. The interpolation
method was then used to solve the problem of tail deviation in the simulated pollutographs.
In addition, the entropy method was utilized to train the ANN for comprehensive evaluations.
A case study was performed in the Three Gorges Reservoir Region, China. Results showed that the
ANN performed well in the NPS simulation, especially for light rainfall events, and the phosphorus
predictions were always more accurate than the nitrogen predictions under scarce data conditions.
In addition, peak pollutant data scarcity had a significant impact on the model performance.
Furthermore, these traditional indicators would lead to certain information loss during the model
evaluation, but the entropy weighting method could provide a more accurate model evaluation.
These results would be valuable for monitoring schemes and the quantitation of event-based NPS
pollution, especially in data-poor catchments.

Keywords: non-point source pollution; ANN; entropy weighting method; data-scarce; multi-events

1. Introduction

Non-point source (NPS) pollution has resulted in the deterioration of water bodies and has become
a major environmental threat among most counties [1,2]. The quantification of the rainfall-runoff
process and the resulting NPS pollutants is essential for developing mitigation strategies, which are
the basis for watershed management [3]. The rainfall process is the major driving force for NPS, thus
rainfall-runoff-pollutant (R-R-P) relationships have become the focus of watershed research [4,5]. Many
studies have been conducted in the fields of rainfall-runoff relationships but have rarely involved the
runoff-pollutant relationship, especially for the event-based estimation of NPS loads [6-8].

The NPS processes can be expressed from the event-step to long-term steps. Event-based NPS
exports and the resulting change in water quality can provide detailed features of the NPS, which is
more appropriate for the design of storm-based management practices [9]. Models are developed to
construct the runoff-pollutant relationship, and the discrepancies of the collected measured data in
different rainfall patterns would have a considerable influence on the model construction. Identifying
the correlation among the series of rainfall, runoff and pollutant loads for multiple rainfall events is
inevitable for NPS model construction. Although many models are well suited for offline water quality
analyses, Soil and Water Assessment Tool (SWAT) is more representative than any other models [10].
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However, owing to limited human resources, data scarcity has become one of the key barriers to
establish the R-R-P relationship, especially for event-based process [11,12]. Thus, the application of
watershed models such as SWAT for assessing NPS pollution is also limited by temporal resolution
which ranges from annual to sub-hourly averages. The SWAT model usually operates continuously
at a daily time step, which ensures that the long-term impacts of NPS can be quantified. Sub-daily
calculations of runoff, erosion, and sediment transport are also available in new version of SWAT
by sub-daily rainfall input and Green and Ampt method, though few attempts have reached to that
higher temporal resolution. In the future, we would develop other more appropriate models to
solve this problem. Currently, acceptable rainfall and streamflow data sets are more readily available,
especially because of the recent development of data centers and satellite data observations. However,
hourly or sub-hourly flow data for high-frequency time series are still limited, especially with respect
to event-based hydrological studies for data-poor regions [7]. Water quality records, which are
based on periodic monitoring by human resources, are thus even scarcer. Therefore, data scarcity
for NPS predictions is unavoidable for multiple-rainfall event simulations. Typically, we collected
samples during multiple rainfall events in the monitoring process but discarded some of events from
further analysis, especially for light rainfall, for which only a few data points exist. This treatment of
incomplete data would result in the loss of information, especially for multiple rainfall events among
data-scarce regions.

Currently, statistical models have been widely used to estimate rainfall-runoff relationships for
its ease of application without considering a large amount of delicate formulas and parameters [13].
For example, unit hydrographs (UH), as one of the most famous methods, is used to estimate a
direct runoff hydrograph of a given rainfall duration. Meanwhile, statistical models are used to
simulate pollutant loads based on the established runoff-pollutant relationship. For example, Park
and Engel [14] developed Load Estimator (LOADEST) to predict pollutant concentration (or load) on
days when flow data were measured, and the results showed that absolute values of errors in the
annual sediment load estimation decreased from 39.7% to 10.8%. Meanwhile, most of the findings
demonstrate that the LOADEST model could provide more accurate results and may be useful for
simulating runoff-pollutant processes [15-17]. However, the LOADEST model has strict requirements
on the number of data points, which should include continuous flow data and dispersed water quality
data, and its calibration process is relatively complicated.

Owing to the limited measured data, the black-box model might be a substitution to construct the
logical relationships between runoff and pollutant loads for multiple-events processes. The artificial
neural network (ANN) with the characteristics of self-learning and adaptability has become the most
commonly used tool in environmental prediction, and it is also available for poor-data regions. This
method is applicable to simulate the imaginal thinking of the human brain, for which the most
prominent characteristic is the parallel processing of information and distributed storage. As an
example, Melesse et al. [18] used the ANNto estimate suspended sediment loads for three major rivers.
The results showed that daily predictions were better than weekly predictions. Therefore, it can be seen
that ANN models have flexible structures that allow multi-input and multi-output modeling. This is
particularly important in streamflow forecasting where inflows at multiple locations are considered
within a given catchment [19]. Though the application of ANN in the field of load production has
proliferated in recent years, the impact of data scarcity on its prediction capabilities during different
rainfall patterns still creates limitations [20].

Simulation evaluation is the most important step for the setup of statistical models [21].
In traditional applications, the model evaluation is usually performed using a single regression
goodness-of-fit indicator, the most common of which is the point-to-point pairs (a series of single
data pairs) of the predicted and measured data. However, this might lead to the loss of specific
information, resulting in dubitable simulation results. In this case, a joint evaluation should be a
substitute for the traditional single indicator. With the high precision and objectivity, the entropy
regulates the uncertainty of different criteria from different perspectives [22]. Compared with the
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traditional single indicators, it can combine different indicators to evaluate the discrepancy between
causes comprehensively. For instance, Khosravi et al. [23] sought to map the flooding susceptibility
using different bivariate methods, including Shannon’s entropy, the statistical index and the weighting
factor. Yuan et al. [24] developed an entropy method to find the weight sum of the information entropy
maximum to allocate the reduction of pollutants for the main seven valleys in China. The entropy
weighting method may be an efficient way to evaluate the regulation of the simulation results and
to balance the strengths and weaknesses of the results. However, these studies do not provide much
attention to event-based NPS predictions, especially for data-scarce catchments.

This study surveys the motivation for a methodology of action, looks at the difficulties posed
by data scarcity and outlines the need for the development of possibility methods to cope with data
scarcity in multiple rainfall events. The objectives of this work are: (1) to identify the impacts of
different rainfall patterns on the model construction using a complete data series; (2) to simulate the
scarce pollutant data in other data-scarce rainfall events; and (3) to test the application of the entropy
weighting method for the evaluation of ANN.

2. Materials and Methods

A prediction-evaluation framework is proposed for the NPS prediction for data-scarce catchments,
the flow chart of methods is shown in Figure 1. The ANN is proposed to simulate the missing data
points during multiple-events, and the entropy weighting method is used as a comprehensive indicator
to construct the model. As a necessary supplement, the interpolation method is used for tail correction
during multiple rainfall events. Data-scarce rainfall events denote the absence of data, especially
for measured flow and water quality, in a given period of time due to human mistakes during
high-resolution monitoring process. Instead, complete rainfall events are defined if there are no
measured flow and water quality data scarcity. The demonstration of traditional indicators is shown
in Section 2.2.

BPANNs

Input data of five data-searce
rainfull events

@

Modify weight and Ascertain the initialization

threshold parameters
Yes
Network simulation
Measured values and simulated
values output
L4

Entropy weighting Calculate three traditional
method indicators: Deviation, S, d

¥

‘Comparison of simulated and
measured pollutographs

Tomprehensive indicator K s
caleulated by Entropy weighting
method

‘ Tail correction ‘
i
Obtain more consistent
pollutographs
Tail correction
End

Figure 1. The methods presented in a flow chart.

Results analysis with complete
and scarce rainfall events
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2.1. The Description of the ANN

The back propagation algorithm is a supervised learning method based on the commonly used
steepest descent method to minimize global errors [25], while it is also the multilayer feedforward
network based on the error back propagation algorithm [2,26]. It accumulates an abundant mapping
relation of the input-output pattern and does not need to reveal mathematical equations to describe
the mapping relation before calculation. The ANN may be an efficient method to adjust the weights
and thresholds through back propagation to minimize the sum of the squared errors. As shown in
Figure 2, the topological structure of the ANN consists of an input layer, a hidden layer and an output
layer [27].

The learning mechanism of the ANN is shown in Figure 2, where x; is the input signal and w; is
the weight coefficient. The outside input samples x1, x, ... , X, are accepted into the input layer, and
the network weight coefficients are adjusted during training. The discrete values, 0 and 1, are selected
as the input sampling signals. By comparing the network output signals and the expected output
signals to generate the error signals, the weight coefficients of the learning system can be rectified based
through iterative adjustments to minimize the errors until reaching an acceptable range [28]. In this
process, the expected output signals are regarded as the teacher signals, which are compared with
the actual output, and the errors produced are applied to rectify the weight coefficients. At the point
when the actual output values and expected values are nearly the same, the process is concluded [26].
Finally, the results are produced through and equation of U based on the weight coefficients and are
exported by the output layers. In the ANN training process, three prime criteria can be summarized:
the error surface gradient can converge rapidly, the mean squared error is below the error of the preset
level, and the correlation coefficient of the training results is more than 0.9, indicating that training
results are an improvement [29]. This section briefly surveys the measurement for methodology, while
the ANN should be judged for whether each indicator can or cannot reach the given standards.

In this study, multiple rainfall events are used as the input conditions. Multiple rainfall events
are divided into either the training process or the simulation process based on the data conditions.
To establish the black-box model, data of three complete rainfall events are first input into the layer,
including light, moderate, and heavy rainfall patterns. The training results also indicate that the ANN
is applicable for various rainfall patterns. In the simulation process, the flow data for all the rainfall
and water quality information for the data-complete rainfall events for the same rainfall pattern are
regarded as the input layer. The hidden layer contains the water quality data for the data-scarce rainfall
events which correspond to all the flow and water quality data in the input layer. To obtain the output
layer, the training layer feedbacks the results into the prediction interval. Finally, the output layer is
simulated using the input data of the input layer.

Comparison

Expected output

Figure 2. The learning mechanism of the artificial neural network (ANN).

2.2. The Description of the Entropy Weighting Method

Three commonly used indicators, the mean relative error (d), the standard deviation of the
relative error (S), and the load deviation percentage (deviation), are selected to evaluate the simulation
results [30,31]. The formulas are shown as followed:
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z?rig[n _0:
deviation = —— 1 % 100% (1)
O(Jrlgm
1
(2)
3)

where O; is the set of measured data, P; is the set of predicted data, and O,”8" denotes the total loads
of the original conditions, and is the mean value of the measured data.

Each of the three indicators represents the credibility of the measurements based on the
discrepancy between the measured and simulated values. Lower indicator values indicate that
the fitting between the simulated and measured data is improved, and the model is considered to have
a satisfactory performance. However, single indicators have limitation on amount of information loss.
Therefore, these indicators are handled with the entropy weighting method for a more comprehensive
assessment of the ANN. Based on the fundamental principles of information theory, information is
a measurement of the degree of order for a given system, and the entropy is a measurement of the
degree of disorder [32]. The entropy weighting method serves as a mathematic method and considers
the information provided by each factor [33]. Information entropy is negatively associated with the
increase in information provided by different indicators, and a smaller information entropy result
in higher weights for each single indicator. As an objective and comprehensive method, the entropy
weighting method considers the advantages of every indicator and makes a synthetic evaluation.
This principle is as follows:

Firstly, an n x m origin data matrix is established according to the selected evaluation indicators:

X11 o X
X=1| 1 " 4

X1 oo Xum A

where m denotes the evaluation indicator, and individual rows represent different evaluation objects.
Therefore, matrix X is known.
A second, positive matrix should be established with a transformation following same trend.
The transformed matrix is
yu - Yin
Y=| : - (5)

Yn1l - Ynum nxm

Matrix Y is normalized, and the ratio of each column vector y;; and the sum of all elements in this
matrix should be normalized. The formulas for these calculations are:

Yij

Zij = Y Y

(j=1,2, ..., m) (6)

where Zjj are the elements of the normalized matrix.
The operational formula in the process of generating the entropy weights of the evaluation
indicators is

n
H(xj) = fk;zijlnz,-j(]' =1,2,...,m 7)
iz
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where k is a normalizing constant, k = 1/Inn, and Z;; is the j-th the probability of the element of
the i-th evaluation unit. Entropy values of the evaluation indicators should be transformed into the
weighted values:

1 H(x))

oy
m— ]’-”:]H(xj)

wj = =1,2,...,m, (8)
where 0 < w; < 1 and Z]’-"le]- = 1 are the acquired weighted values. Finally, the comprehensive
weighting values for each evaluation indicator should be ensured. The weighted values of each
indicator are multiplied with the corresponding indicators and summed. The evaluation model is

m
U=Y wiz(j=1,2, ..., n) )
j=1

where U represents the comprehensive evaluation function of the entropy weights for each evaluation
indicator. This function reflects the comprehensive characteristics of the evaluation objective, which
avoids limiting these indicators [34].

The principle of the entropy weighting method is that information for each evaluation unit will
be qualified and synthesized, while every factor is weighted to simplify the evaluation process [35].
Therefore, the weight values can be ascertained with the entropy weighting method, and we choose

the deviation, d, and S as the evaluation indicators.

2.3. Method for Tail Correction

Statistical models would result in tail deviation problems if data scarcity exists in this study. This
problem addressed through data interpolation for the tail deviation. Therefore, linear interpolation,
as a common-used method, is used to obtain the missing values of the other data points. Two values of
the function f(x) are used to reduce the errors in the tail of the pollutographs. This approach is relatively
straightforward and is used widely in the field of mathematics or computer graphics. The error of the
approximate method can be defined as follows:

Rr = f(x) =p(x) (10)
where p represents the linear interpolated polynomial:

ENESIEOM

p(x) = f(xo) + — —Xp) (11)
X1 X0

As a result of Rolle’s theorem, if f(x) has two continuous derivatives, the error range is

2
7(9(179(0) max ‘f’(x)‘ (12)

Ry| <
‘ T|_ 8 xo<x<xy

As shown in Formula (12), the approximate error of the linear interpolation increases with the
function curvature.

3. Case Study

3.1. Study Areas

As shown in Figure 3, the Zhangjiachong catchment, which is a representative area in the Three
Gorges Reservoir Region (TGRR), is selected as a case study [36]. It covers a drainage area of 1.62 km?,
and the landscape is primarily mountainous, with an elevation between 148 m and 530 m above the
Yellow Sea level. Agriculture and forests cover the majority of the total area. The main local crops are
tea, corn, oil seed rape, and chestnuts [37]. The background values of nitrogen and phosphorus are
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higher because the fertilizer usage is relatively high, resulting in a high risk of nutrient loss into nearby
streams [38].

The average annual temperature is approximately 18 °C, and the average annual precipitation
is approximately 1439 m, 80% of which occurs from May to August. Thus, soil erosion frequently
occurs during wet seasons, and results in an increase in the pollutant loads with increased runoff.
We consider that the variation of rainfall might impact the model accuracy. Therefore, identifying
the classification of rainfall patterns should be determined before any simulations. According to
the investigation results of existing rainfall data, rainfall patterns are divided into light, moderate,
and heavy events. Meanwhile, based on our monitoring data, a majority of rainfall events in the
Zhangjiachong catchment are considered moderate events, while heavy events are rare.

5

Zhangjiachong catchment

(

N

7 A
7
L
TR

Three Gorges|Region

0 150 300 600 900

1,200
Meters

Figure 3. The location of the Zhangjiachong catchment.

3.2. Field Monitoring and Data Record

In this study, field monitoring data were collected from 1 January 2013 to 31 December 2014 and
the rainfall, streamflow and pollutant data during eight rainfall events were recorded. The data used
in this study represent three complete rainfall events, which include light, middle, and heavy rainfall
(21 April 2014, 24 July 2014, and 5 August 2014), and five other data-scarce events (15 April 2014,
23 August 2014, 20 July 2014, 5 July 2013, and 28 August 2013). Data-scarce rainfall events denote
the absence of data, especially for measured flow and water quality, in a given period of time due
to human mistakes during high-resolution monitoring process. Instead, complete rainfall events are
defined if there are no measured flow and water quality data scarcity. The equations with explicit
parameters are constructed through a training process with complete data of the three complete rainfall
events, and the constructed ANN is used to predict the missing NPS data in the other five data-scarce
rainfall events. The output layer includes pollutant load data for five data-scarce rainfall events.

The weather station (Skye Lynx Standard) provided continuous records for climate data and a
float-operator sensor (WGZ-1) was located at the catchment outlet, where high-frequency sampling
was recorded in approximately 15 min steps. Base flows were measured before the runoff started,
and water samples were collected every 15 min in the first hour after runoff began and every 30 min
over the following two hours. After water levels had stabilized, water samples were collected once
every hour until the end of the event. All water samples were placed in pre-cleaned glass jars with
aluminumfoil liners along the lids and stored at —20 °C during transportation to the laboratory for
processing and analysis. Specifically, the total nitrogen of NPS (NPS-TN) levels were measured via
Alkaline persulfate oxidation-UV spectrophoto metric with the detection limitation from 0.05 mg/L
to 4.0 mg/L, while the total phosphorus of NPS (NPS-TP) levels in the samples were measured via
Potassium persulfate oxidation-molybdenum blue colorimetric methods. The main instrument is
ultraviolet spectrophotometer. Finally, the recorded rainfall, flow and pollutant levels were used for
the following analysis.
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However, flow and water quality data were limited because of the use of flow instruments
via manual collection. Rainfall levels were recorded to divide the rainfall into light, moderate, and
heavy events. The rainfall levels for 21 April 2014, 24 July 2014, and 5 August 2014 are 1.308 mm/h,
3.000 mm/h, and 6.054 mm/h, respectively. The flow data were replenished with unit hydrographs
as the basis for the ANN. In addition, this catchment is dominated by agriculture, so fertilizer use
results in deteriorated water quality. Therefore, the NPS-TN and NPS-TP are selected as the evaluation
indicators. All the data for the three complete rainfall events and five typical data-scarce rainfall events
are shown in Tables 1 and 2, respectively, including the rainfall intensity, flow data, and the pollutant
concentration of the NPS-TN and NPS-TP. As shown in Table 1, complete data are used as the input
of the ANN and represent the impacts of the rainfall patterns on the model applicability. As shown
in Table 2, data scarcity of the five random rainfall events is simulated, and the impacts of the data
scarcity are quantified.

4. Results and Discussion

4.1. Training Results of the ANNUsing the Complete Data

This section demonstrates the training process with data for the three complete rainfall events,
illustrating that the applicability of ANN in different rainfall patterns. The training results for the
ANN areas followed (the figure is shown in the Supplementary Materials): the error surface gradient
rapidly converges to a flat surface for both the NPS-TN and NPS-TP. The mean squared error of the
training results for the NPS-TP prediction reaches the 1073, 1072, and 10~ orders of magnitude for
the light, moderate, and heavy rainfall events, respectively. However, the mean squared error for the
NPS-TN prediction reaches the 1.0, 1073, and 1.0 orders of magnitude during the light, moderate, and
heavy rainfall events, respectively, indicating that all the results fall within the range of permissible
errors or rapidly reach a flat surface. The correlation coefficients are more than 0.9, indicating that all
the training results are good. In this respect, it can be said that the ANN is applicability to simulate the
NPS for different rainfall patterns, and we extrapolated ANN for pollutant load simulations in the
data-scarce rainfall events.

To better understand the simulation results, the entropy weighting method was used in the
evaluation process. As shown in Table 3, K results are all higher than 0.9, indicating that there is
no obvious deviation between the simulated and measured values. Meanwhile, the K values for
the NPS-TP are higher than the NPS-TN for different rainfall patterns, and the K value for the light
rainfall is higher than the other rainfall patterns. Therefore, it is apparent that the NPS-TP simulation
is an improvement over the NPS-TN, and the simulation is better suited for the light rainfall events
for both the NPS-TP and NPS-TN. It is obvious that the flow have different shear force in different
rainfall patterns. The soil particles and pollutants act differently with different rainfall levels and
intensities. It is possible that our monitoring scheme is more appropriate in light rainfall patterns in this
experiment, and the peak data cannot be monitored during heavy rainfall patterns [39]. The NPS-TN
concentration peak and flow peak appear to be consistent. When one of the flow or load peaks is
missing, it is the same as both of them missing simultaneously, resulting in a poor simulation effect.
However, the apparent time of the NPS-TP concentration peak and flow peak is inconsistent in different
rainfall patterns. Xu et al. [40] introduced the support vector regression (SVR) model to develop a
quantitative relationship between the environmental factors and the eutrophic indices compared with
the ANN. The results show that the correlation coefficients of the NPS-TP are greater than those for
the NPS-TN, indicating that the model effect of the NPS-TP is improved over the NPS-TN. This study
verifies this conclusion with the ANN model.
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Table 3. Evaluation of the simulation results of the pollutant loads for different rainfall patterns.

Rainfall Events Comprehensive Indicators K

NPS-TP NPS-TN
21 April 2014 0.986 0.953
24 July 2014 0.973 0.938
5 August 2014 0.958 0.921

4.2. Simulated Results of the ANN for Data-Scarce Events

Five typical data-scarce rainfall events were used to discuss the impact of different data-scarce
patterns on the NPS predictions. As shown in Figure 4, the NPS-TP training results for the NPS-TN
have a faster convergence rate for the grads and lower mean squared errors. The training values for the
NPS-TN are represented by an R? value that is more than 0.9, and the mean squared errors are under
the permissible values or reach the flat surface rapidly. However, only one event (5 July 2013) was
observed to have lower grads beyond the preset value, and its training effect was the worst because
this rainfall event has peak scarcity.

The entropy values in the five data-scarce rainfall patterns are shown in Table 4. Combined
with the complete data events, it is apparent that the simulated effect for 5 July 2013 has a worse fit
compared with the other rainfall events, which reflects the poor training effect when there is a scarcity
of peak concentration data. The peak data are the key information, and reflect the overall process of
the rainfall events. However, the peak scarcity is unintentional and due to system errors. In addition,
the training effect of the NPS-TP is improved over the NPS-TN.

Table 4. Evaluation effect of the data scarcity on the models for the five data-scarce rainfall events.

. Comprehensive Indicators K Traditional Indicators (NPS-TP)
Rainfall Events —
NPS-TN NPS-TP Deviation d S
15 April 2014 0.546 0.971 0.989 0.956 0.966
23 August 2014 0.937 0.924 0.934 0.892 0.943
20 July 2014 0.959 0.930 0.964 0.882 0.941
5 July 2013 0.340 0.948 0.997 0.908 0.938
28 August 2013 0.948 0.982 0.996 0.980 0.970

We further compared the evaluation results between the traditional methods and the entropy
weighting method, which are shown in Table 4. As shown in the results, the rank order of the effects
of the simulation results with the traditional indicators (high to low) as the following: deviations:
5 July 2013, 23 August 2013, 15 April 2014, 20 July 2014, and 23 August 2014; d: 23 August 2014,
5 July 2013, 20 July 2014, 23 August 2013, and 15 April 2014; and S: 23 August 2014, 5 July 2013,
23 August 2013, 15 April 2014, and 20 July 2014. The application of a single indicator is limited by
the indicator selection so that we cannot sum them up simply or select one of them. For instance,
the effect of 5 July 2013 showed the best deviation but the worst S, which represents the rainfall amount
and the average rainfall, respectively. Therefore, choosing these traditional indicators would lead to
information loss during the model evaluation. Conversely, the entropy weighting method considers
the advantages and characteristics of each traditional indicators and assesses the simulation results
comprehensively form different perspectives [34,35]. Thus, the K values are more accurate and easier
to compare.
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Owing to the limited water quality data, we randomly selected 30% of the measured values
as verification points, and the simulated data points were compared to the selected data to test the
accuracy of the ANN during data-scarce conditions. The evaluated results are shown in Table 5, and
the intuitionistic indicator is the mean percentage of the load deviation. As shown in Table 5, the
effects of the training results for the runoff-pollutant load process are better in different rainfall events,
and each of the load deviations is smaller. The mean percentage load deviations of the three events
(15 April 2014, 23 August 2014, 28 August 2013) are higher than the other events. This is because these
pollutant load data for the three individual rainfall events have peak loads nearby the flow peaks. It is
apparent that the flow peak and these high values have major impacts on the training and predictive
values of the ANN. In general, the simulation effects are improved, which shows that this method is
feasible for estimating scarce pollutant load data.

Table 5. Evaluation of the predicted effects of the verification points.

) Mean Load Deviation Percentage of Verification Points (%)
Rainfall Events

NPS-TP NPS-TN
15 April 2014 0.150 0.0770
23 August 2014 0.153 0.029
20 July 2014 0.041 0.094
5 July 2013 0.002 0.038
28 August 2013 0.120 0.022

4.3. Implication for NPS Studies of Multi-Events

Figure 5 compares pollutographs of complete rainfall events with pollutographs simulated
by ANN in the same rainfall pattern (data-scarce rainfall events in light and moderate rainfall
patterns). Most of the pollutographs conform to the ordinary rules (pollutographs in complete
data rainfall events), and the overall tendency is consistent with the hydrographs with complete data,
indicating that the method is reliable. Moreover, the model performance is worse under conditions
of missing peak data, which is consistent with the abovementioned conclusions. According to the
comparisons, the pollutographs of the measured points are more consistent with the ordinary rules
than when the tails have missing data. Meanwhile, tail scarcity often appears in actual monitoring
to reduce manpower [41]. The tails of the pollutographs have stronger linear characteristics, so a
linear interpolation is used to amend the incomplete tails [42]. The pollutographs amended by linear
interpolation are shown in Figure 6, indicating that the hydrographs with the tail correction are
more coincident.

During the monitoring process, emphasis is placed on the discrepancy in the monitoring
mechanism under different rainfall conditions. Based on the abovementioned analysis, the NPS
prediction performs the best during the light rainfall events and is the worst during heavy rainfall
events. Therefore, the monitoring process for the NPS can be appropriately focused on heavy rainfall
conditions. Researchers should pay more attention to monitoring time to avoid peak data scarcity,
especially for the NPS-TN monitoring [43]. As already suggested, peak concentration appeared after
nearly five hours of runoff during light rainfall events and after nearly three hours of runoff during
moderate events. Therefore, we promote peak monitoring techniques, for example, anautomatic
sampler with programming, we can appropriately shorten sampling intervals for the peak lag times.
Meanwhile, based on the pollutographs improved by this study, we can design the sampling scheme
and avoid the risk time in order to require complete water quality data. In addition, the entropy
weighting method can be effectively used to evaluate the measured and simulated data [44], showing
that it can be used to comprehensively assess the discrepancies more accurately and to easily compare
the results, which can be generalized to other catchments.
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5. Conclusions

In this study, a new framework is proposed for the event-based NPS prediction and evaluation in
data-scarce catchments. The results obtained from this study indicate that the proposed ANN had
an improved performance over the NPS simulation of light rainfall events, and the NPS-TP model
was always more accurate than the NPS-TN under scarce data conditions. In addition, the scarcity
of the peak pollutant data has a significant impact on the model performance, so more attention
should be given to the monitoring scheme of the event-based NPS studies, especially for the NPS-TN
monitoring and the lag time of the peak data. Compared to the traditional indicators, the entropy
weighting method can provide a more accurate ANN by considering all of the information during
model evaluation. These tools could be extended to other catchments to quantify the event-based NPS
pollution, especially data-poor catchments.

However, we should pay more attention to the mechanism of the NPS during multiple rainfall
events because the NPS pollution was not the simple consequence of current rainfall events.
Additionally, because of the computational burden, the errors and the related uncertainty of the
model results were not explored, so more studies are suggested to test this new framework among
more diverse regions. Meanwhile, data-driven black-box models are not good at long-term forecasting,
nor are they good for examining the effect of BMPs.

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/19/6/265/s1,
Figure S1: Training results of the loads in the different rainfall patterns: (a) NPS-TN; and (b) NPS-TP.
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Abstract: As a new development form for evaluating the regional water resources carrying capacity,
forewarning regional water resources of their carrying capacities is an important adjustment and
control measure for regional water security management. Up to now, most research on this issue
have been qualitative analyses, with a lack of quantitative research. For this reason, an index system
for forewarning regional water resources of their carrying capacities and grade standards, has been
established in Anhui Province, China, in this paper. Subjective weights of forewarning indices can be
calculated using a fuzzy analytic hierarchy process, based on an accelerating genetic algorithm, while
objective weights of forewarning indices can be calculated by using a projection pursuit method,
based on an accelerating genetic algorithm. These two kinds of weights can be combined into
combination weights of forewarning indices, by using the minimum relative information entropy
principle. Furthermore, a forewarning model of regional water resources carrying capacity, based on
entropy combination weight, is put forward. The model can fully integrate subjective and objective
information in the process of forewarning. The results show that the calculation results of the model
are reasonable and the method has high adaptability. Therefore, this model is worth studying
and popularizing.

Keywords: water resource carrying capacity; forewarning model; entropy of information; fuzzy
analytic hierarchy process; projection pursuit; accelerating genetic algorithm

1. Introduction

With the continuous development of the economy and the increase in population in China,
the contradiction between the rapid and steady development of the economy, the health of the
ecological environment and the sustainable development of water resources has become increasingly
prominent [1]. The water resources carrying capacity is a comprehensive index, which measures
whether the water resources system is sustainable or not. The water resources carrying capacity
is the largest scale for the development of economy and society that can be supported by regional
water resources in a particular area and the specific historical stage, which is based on the designed
available water resources, the predictable technology and the development level of economic and
social factors, and takes into account the principles of sustainable development and a good ecological
environment. This index is a “bottle neck” that determines whether the water resources can support
the population and the coordinated development of economy and environment in a water shortage
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area [2]. Therefore, the forewarning and control of the regional water resources carrying capacity are
significant for ensuring the safety of water resources.

Based on a comprehensive analysis of the factors affecting the regional water resources carrying
capacity, the forewarning index system and corresponding grade standard of regional water resources
carrying capacity have been set up. The actual values of the forewarning indices in different periods of
the study area are compared with the corresponding standard values at different levels, to judge and
identify the warning status of the study area. Currently, there are many studies on the evaluation of the
water resources carrying capacity. Xiang et al. simplified seven factors, which included irrigation rate,
the utilization rate of water resources, the developmental degree of water resources, a water supply
module, a water requirement module, the per capita water supply and the ecological environment
water use rate, into two principal components, with a principal component analysis. In addition,
the corresponding principal component evaluation criteria of the water resources carrying capacity
were obtained, based on the classification criteria of the evaluation parameters. On this basis, the water
resources carrying capacity of each district was evaluated [3]. Zhou et al. calculated the comprehensive
score of the water resources carrying capacity in Guiyang City, according to the three principal
components of the water resources carrying capacity that were selected by the principal component
analysis and their weights were calculated by entropy [4]. Gong et al. evaluated the current situation
of the water resource capacity in Lanzhou and its dynamic trends, by using the method of fuzzy
comprehensive evaluation, based on historical data over a 40-year period in Lanzhou [5]. Based on the
analysis of the main factors affecting the carrying capacity, Liang et al. used a factor analysis method
to determine their weights. Then the comprehensive index value of each partition in the Shiyang river
basin was calculated, to evaluate the water resources carrying capacity [6]. Zhao et al. analyzed the
water resources carrying capacity in Ningxia, during 20042014, by using the principal component
analysis and factor analysis. Then, based on these analyses, the water resources utilization index and
classification criteria in different areas of Ningxia were obtained [7]. Chen et al. put forward a new
fuzzy model, according to the Jaynes maximum entropy in information theory, and applied this model
in assessing the water resources carrying capacity in Henan province [8]. Wang et al. constructed a
set pair analysis model, based on entropy weight, and calculated the average connection degree of
each region with this model, to rank their water resources carrying capacities [9]. Li et al. simulated
changes in the carrying capacity of water resources under the conditions of future water management
policies, by using a system dynamics model [10]. However, from a theoretical and practical point
of view, the regional water resources carrying capacity warning is a new form of development for
evaluating the regional water resources carrying capacity, and is still in its infancy.

Anhui Province was chosen as the study area in this paper. This province lies in the Eastern
part of China. Floods and droughts occur frequently in this province. Water use in agriculture and
industry, accounts for the majority of water consumption in this area. The water resources in Anhui
account for only 2.7% of the total water resources in China and the water resources per capita are
much lower than the world average. Thus, it is necessary to study the water resources carrying
capacity in Anhui Province. The forewarning index system and grade standards of regional water
resources carrying capacity were established according to the regional situation. The combination
weights, which are a combination of subjective weights and objective weights, were calculated based
on the principle of minimum relative information entropy. The forewarning model of the water
resources carrying capacity was established according to the corresponding relationship between the
“non-warning” membership degree, and the comprehensive forewarning index, of the standard grade
sample value series.
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2. Summary of the Study Area

2.1. Hydrological and Climatic Conditions

Anhui Province, located in the east of China’s mainland (Figure 1), is a total area of 1.396 x 10°
square kilometers, accounting for about 1.45% of the area of China. The main rivers in Anhui Province
are the Yangtze river, Huaihe river and Xin’An river, as well as one of the five largest freshwater
lakes, Chaohu lake. It belongs to the transition zone between the warm temperate zone and the
subtropical zone, whose climate is warm and humid, and the monsoon climate is obvious. The annual
average temperature is about 14-17 °C and the relative humidity is about 70-80%. The distribution
of precipitation in time and space is uneven. The precipitation in the south is more than in the north
and the precipitation in mountain areas is more than in plain and hilly areas. The variation of annual
precipitation is great (Figure 2) and under the influence of the monsoon climate; the precipitation in
summer is abundant and accounts for 40-60% of the total annual precipitation. In addition, the monthly
precipitation also changes greatly, which often leads to drought and flood disasters. The Northern
droughts often appear in spring and summer, while the droughts south of the Huaihe river often
appear in summer and autumn. Floods occur mostly in the Huaihe river basin and secondarily, in the
Yangtze river basin.

Xinan river

Anhui Province

Figure 1. The location of Anhui Province in China.
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Figure 2. Annual variation curve of precipitation in Anhui Province (2005-2015).
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2.2. Situation of Water Resources

The average annual water resources in Anhui was about 72 billion m?, accounting for only 2.7% of
the total water resources in China. The Per capita water resources was about 1190 m®, which accounts
for about 59% of the per capita water resources of China. Similar to the precipitation distribution,
the water resources also showed a trend of decreasing from the south to the north in space. At the
same time, the amount of water resources had an uneven distribution over time (Figure 3).
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Figure 3. Annual variation curve of water resources in Anhui Province (2005-2015).

2.3. Situation of Water Consumption

The annual water consumption in Anhui Province varied from 20 to 30 billion cubic meters
in 2005-2015, which included a rapid growth trend from 2005-2009, but tended to be stable after
2010 (Figure 4). The structure of water consumption is shown in Figure 5. Agricultural water accounted

for about 56% of total water consumption and industrial water, domestic water and ecological water
accounted for 33%, 10% and 1%, respectively.
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Figure 4. Annual variation curve of water consumption in Anhui Province (2005-2015).
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Figure 5. The structure of water consumption in Anhui Province.
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3. Forewarning Model and Application

In order to illustrate the modeling steps more clearly, the forewarning model of the water resources
carrying capacity in Anhui, China was used as an example to show how this model was established.
The procedure of modeling is shown in the diagram of the technical route (Figure 6).

Construction of the index system
and the grade standard

AGA-FAHP ¢ ¢ AGA-PP
(the fuzzy analytic hierarchy N Determination of Determination of | | (The projection pursuit method,
rocess method, based on the subjective weight objective weight based on the accelerating
acceleratinggenetic algorithm) ‘ ‘ genetic algorithm)

l

’ Determination of combination weight H entropy of information

|

Calculation of comprehensive
forewarning index

:

Determination of
warning status

Figure 6. Diagram of the technical route.

3.1. Construction of the Index System and the Grade Standard

According to the specific situation of Anhui Province, and the construction experience and
principles of the index system, the index system of the water resources carrying capacity for Anhui
Province was established, as shown in Table 1.

Table 1. Forewarning Index System of the Water Resources Carrying Capacity for Anhui Province and

its Grade Standard.
Forewarning Index System Grade Standard
Target Layer Subsystem Layer Index Layer First Grade Second Grade Third Grade
xp m® [1670, +c0) [1000, 1670) [0, 1000)
holding power ¥ 104 m3/km? [80, +00) [50, 80) [0, 50)
subsystem x3m3/ year [450, +o0) [350, 450) [0, 350)
x4% [40, +c0) [25, 40) [0, 25)
x5% [0, 40] (40, 70] [70, +00)
X6 yuan [24,840, +00) [6624, 24,840) [0, 6624)
Water Resources rfgllﬂateb anctl x7% [90, +o0) [70, 90) [0, 70)
Carrying Capacity controt subsystem xg% [95, +c0) [70, 95) [0, 70)
x9% [5, +00) [1,5) [0,1)
xp L/d [0, 70] (70, 180] [180, +o0)
x11 L/d [0, 100] (100, 400] [400, +00)
pressure subsystem 12 m? [0, 501 (50,200] 200, +c0)
x13 people/km? [0, 200] (200, 500] [500, +00)
X14% 0, 50] (50, 80] [80, +o0)
x15 m3/mu [0, 250] (250, 400] [400, +00)

x1 is the per capita water resources. x; is the modulus of water production. x3 is the water supply
quantity. x4 is the vegetation coverage rate. x5 is the water resources development and utilization rate.
X is the per capita gross domestic product (GDP). x7 is the wastewater discharge compliance rate.
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xg is the compliance rate of the water function zone. xg is the ecological water use rate. x1g is the daily
water consumption per capita. x1; is the water consumption per ten thousand yuan GDP. x;; is the
water demand per ten thousand yuan of industrial added value. x;3 is the population density. x4 is
the urbanization rate. x;5 is the irrigation quota of farmland.

3.2. Determination of Subjective Weight by AGA-FAHP

The fuzzy analytic hierarchy process method, based on the accelerating genetic algorithm (AGA-
FAHP) [11-16], was used to determine the subjective weights of each forewarning index. The fuzzy
complementary judgment matrix can be defined as:

A= (aif)nxn

1
Ogllijgl, aij+aji:1 Vi,j:1,2,~~~,n ()

where a;; is the relative importance between indices, i and j. If a;; > 0.5, it means that index i is more
important than index j. The bigger a;; is, the more important index i is. If a;; = 0.5, it means that index i
is as important as index j. If a;; < 0.5, it means that index j is more important than index i.

If A has complete consistency, then there is [17]:

ii|05n71 (i) = w(f)}+0~5*ﬂij|/ﬂ2=0 @)

where the bars | | denote the absolute value; {w(j),j=1,2, ..., n} is the subjective weight of each index.

In practical applications, due to the fuzziness and complexity of the evaluation system and the
diversity and instability of a person’s cognition, there is no uniform and exact yardstick to measure
the importance of indices. Therefore, in practical applications, conditions that matrix A, given by the
decision-maker, cannot satisfy with consistency, often occur. Thus,

minCIC(n) = ¥ ¥ [0.5(n — 1)[w(i) — w(j)] + 05 — az| /n?
j=1 ®3)

st 3 w(j) =1L w() >0
=1

m:

i

where the objective function CIC(n) is the consistency index coefficient; n is the order of matrix A.
The weight of each index w(j) can be calculated according to Equation (3). If CIC(n) < 0.1, A is
considered to have satisfactory consistency and the corresponding w(j) is the subjective weight of each
index [17].
By comparing the indices one by one, the fuzzy complementary judgment matrixes of each
subsystem are obtained:

05 05 06 09 05 06 08 06 09

05 05 06 09 04 05 07 055 0.6

A = ’ ' ’ " |Ay=|02 03 05 04 06
04 04 05 08

01 01 02 05 04 045 06 05 08

' ’ ’ ’ 01 04 04 02 05

05 02 04 02 04 02
08 05 06 05 06 05
06 04 05 04 04 04
08 05 06 05 06 05
06 04 06 04 05 04
08 05 06 05 06 05
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If the nonlinear optimization problem is calculated with Equation (3) by AGA-FAHDP, the subjective
weights of the indices in each subsystem can be obtained.
The subjective weights of indices x; to x4, in the holding power subsystem of the water resources
carrying capacity, are wy = (0.3335, 0.3332, 0.2665, 0.0668).
The corresponding CIC is (1) = 2.60 x 107 < 0.1.
The subjective weights of indices x5 to x9 in the regulatory and control subsystems of the water
resources carrying capacity are wy = (0.2968, 0.2427, 0.1469, 0.2167, 0.0969).
The corresponding CIC is (n) = 0.03 < 0.1.
The subjective weights of indices x1¢ to x15 in the regulatory and control subsystems of the water
resources carrying capacity are ws = (0.0824, 0.1997, 0.1561, 0.2024, 0.1597, 0.1997).
The corresponding CIC is (1) = 0.02 < 0.1.
Then, the importance of three subsystems and the fuzzy complementary judgment matrix can be
compared with the following:
05 07 0.5
A'=103 05 03
05 07 0.5

Using AGA-FAHP, the weights of these three subsystems can be calculated: w’ = (0.4, 0.2, 0.4).

The corresponding CIC is (1) = 1.19 x 1078 < 0.1.

The subjective weights of each index relative to the water resources carrying capacity (ws) can be
obtained by multiplying the weights of each index, relative to the subsystems (w1, wy, w3) and by the
weights of each subsystem (w’), as shown in Table 2. For example, ws; = 0.3335 x 0.4 = 0.1334.

Table 2. The Subject Weights, the Objective Weights and the Combination Weights of Indices.

Weight X1 X X3 X4 X5 X6 X7 Xg
Wg 0.1334 0.1333 0.1066 0.0267 0.0594 0.0485 0.0294 0.0433
Wo 0.0515 0.0589 0.0022 0.0523 0.0884 0.0309 0.0555 0.0137
We 0.0952 0.1018 0.0176 0.0429 0.0833 0.0445 0.0464 0.0280

Weight X9 X10 x11 x12 x13 X14 X15
Wg 0.0194 0.033 0.0799 0.0624 0.081 0.0639 0.0799
Wo 0.0715 0.1344 0.1302 0.0001 0.1464 0.0868 0.0771
We 0.0428 0.0765 0.1172 0.0029 0.1251 0.0856 0.0902

3.3. Determination of Objective Weight by AGA-PP

The projection pursuit method, based on the accelerating genetic algorithm (AGA-PP) [16,18,19],
was used to determine the objective weight of each index: {w,(j), j = 1,2, ..., n}. According to the water
resources carrying capacity evaluation standard, the water resources carrying capacity was divided
into three grades: 1 (available load state), 2 (critical state), and 3 (overload state). When the grade of the
carrying capacity of regional water resources is greater than 1, the state of the water resources carrying
capacity is changed from available load to overload. According to the principle of forewarning,
the system will enter into the “warning” state. The “non-warning” state of the regional water resources
carrying capacity is a fuzzy set, and its membership degree (f) can be defined as follows: When the
water resources carrying capacity is in an available load state, the f value is 1; when the water resources
carrying capacity is in an overload state, the f value is 0. The “non-warning” membership degree (f) is
divided into five sub-intervals: [0.8, 1.0], [0.6, 0.8], [0.4, 0.6], [0.2, 0.4], and [0.0, 0.2], which are defined
as the non-warning interval, light warning interval, middle warning interval, heavy warning interval,
and great warning interval, respectively. In order to determine the objective weights of each index,
nine standard grade sample values were interpolated linearly between the critical values of each index.
At the same time, the “non-warning” membership (f) was also interpolated linearly in [0, 1]. Therefore,
together with the two critical sample values, there were 11 standard rank sample values of each index
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obtained, which are shown as the sample numbers 1-11 in Table 3. In Table 3, the meanings of the
warning indices x1—x15 are the same as those in Table 1. The sample numbers 12-22 are the sample
value series of the water resources carrying capacity of Anhui Province in 2005-2015.

Table 3. Sample Values of the Regional Water Resources Carrying Capacity Forewarning and its
“Non-Warning” Membership Degrees (f) and Comprehensive Forewarning Indices (s).

Values of Forewarning Indices

Serial Number

X1 X2 X3 X4 X5 X6 x7 xg X9

1 1670.00 80.00 450.00 40.00 40.00 24,840.00  90.00 95.00 5.00

2 1603.00 77.00 440.00 38.50 43.00 23,01840  88.00 92.50 4.60

3 1536.00 74.00 430.00 37.00 46.00 21,196.80  86.00 90.00 420

4 1469.00 71.00 420.00 35.50 49.00 19,375.20  84.00 87.50 3.80

5 1402.00 68.00 410.00 34.00 52.00 17,553.60  82.00 85.00 3.40

6 1335.00 65.00 400.00 32.50 55.00 15,732.00  80.00 82.50 3.00

7 1268.00 62.00 390.00 31.00 58.00 13,910.40  78.00 80.00 2.60

8 1201.00 59.00 380.00 29.50 61.00 12,088.80  76.00 77.50 2.20

9 1134.00 56.00 370.00 28.00 64.00 10,267.20  74.00 75.00 1.80
10 1067.00 53.00 360.00 26.50 67.00 8445.60 72.00 72.50 1.40
11 1000.00 50.00 350.00 25.00 70.00 6624.00 70.00 70.00 1.00
12 1135.70 51.57 319.26 26.06 28.92 7685.40 69.81 52.20 0.66
13 950.10 41.62 333.95 26.06 25.46 8820.18 56.41 64.30 0.59
14 1164.50 51.08 347.59 26.06 32.57 10,016.20  58.26 59.10 0.69
15 1139.80 50.13 395.13 26.06 38.09 11,261.22  71.02 72.20 0.61
16 1195.70 52.56 430.32 26.06 39.81 12,699.43  66.36 75.40 0.66
17 1578.20 67.33 428.45 27.53 31.15 15,092.34¢  67.03 78.50 0.79
18 1008.80 43.17 428.49 2753 48.94 16,992.92  64.32 74.30 1.34
19 1170.60 50.53 418.08 27.53 4117 17,072.43  69.42 71.40 1.31
20 974.54 41.99 427.22 2753 50.55 17,262.21 71.92 70.50 1.37
21 1279.78 55.81 392.29 28.65 34.95 17,956.27 73.01 73.60 1.71
22 1495.31 65.54 415.40 28.65 31.58 18,665.40  73.68 78.90 1.70

Values of Forewarning Indices .
Serial Number Warning Status
X10 x11 x12 x13 X14 X15 s(i) f@

1 70.00 100.00 50.00 200.00 50.00 250.00 0.9449 1.00 -

2 81.00 130.00 65.00 230.00 53.00 265.00 0.8573 0.90 -

3 92.00 160.00 80.00 260.00 56.00 280.00 0.7697 0.80 -

4 103.00 190.00 95.00 290.00 59.00 295.00 0.6821 0.70 -

5 114.00 220.00 110.00 320.00 62.00 310.00 0.5945 0.60 -

6 125.00 250.00 125.00 350.00 65.00 325.00 0.5069 0.50 -

7 136.00 280.00 140.00 380.00 68.00 340.00 0.4193 0.40 -

8 147.00 310.00 155.00 410.00 71.00 355.00 0.3317 0.30 -

9 158.00 340.00 170.00 440.00 74.00 370.00 0.2441 0.20 -
10 169.00 370.00 185.00 470.00 77.00 385.00 0.1565 0.10 -
11 180.00 400.00 200.00 500.00 80.00 400.00 0.0689 0.00 -
12 89.04 386.10 369.10 465.00 35.50 320.30 0.3694 - heavy
13 85.69 393.80 361.90 470.00 37.10 337.60 0.3022 - heavy
14 91.13 305.90 287.90 479.00 38.70 287.30 0.4019 - heavy
15 96.10 288.80 24490 483.00 40.05 349.20 0.3827 - heavy
16 101.21 290.30 227.60 487.00 42.10 366.10 0.3780 - heavy
17 107.62 238.50 166.30 490.00 43.20 358.60 0.5154 - middle
18 109.53 195.00 123.10 493.00 44.80 341.50 0.3683 - heavy
19 109.63 167.60 120.90 495.00 46.50 362.60 0.4212 - middle
20 109.99 155.50 110.20 496.00 47.86 313.90 0.3911 - heavy
21 110.35 131.00 97.00 497.00 49.15 259.00 0.5439 - middle
22 110.94 131.20 96.80 498.00 50.50 282.40 0.5961 - light

The sample value series are denoted as {x(i,j)li=12,...,m;j=1.2, ..., n}. For this example:
m =22 and n = 15. In order to eliminate the dimension effect of each index and make the modeling
universal, it was necessary to standardize the x(i,j). The standardized result was recorded as y(i,).
For positive indices (the larger the index value is, the greater the water resources carrying capacity is)

y(i,j) = [x(i, ) = Xmin (/)]/ [Xmax (/) = Xmin (/)] )

221



Entropy 2017,19, 574

For negative indices (The larger the index value, the smaller the carrying capacity of
water resources)

y(i,j) = [xmax(7) = x (i, )]/ [Xmax () = *min ()] ®)

where the xpin(j) is the minimum value of the j index in the sample value; ¥max(j) is the maximum
value of the j index in the sample value series. In addition, in this example, the indices, x;—x4 and xs—xg
are the positive indices. The negative indices include x5 and x1p—x15.

Projection pursuit (PP) [20,21] is a type of statistical technique which involves finding the optimal
possible projections in multidimensional data. In this example, it was used to make fifteen-dimensional
data {y(i,j)} into a one-dimensional projection value date p(i), whose unit length projection direction
was a = (a(1), a(2), ... ,a(15)):

15
p(i) =Y a(iy(i,j) (i=12,---,22) 6)
j=1
15
a(j) >0,y a%(j) =1 @)
j=1

In the projection process, the projection value, p(i), should extract the change information in {y(i,j)}
as much as possible, and make the projection of the clusters as far as possible. This means the standard
deviation (S) of p(i) is as large as possible. The local projection points should be as dense as possible,
and it is best to condense into a number of clusters. In addition, according to Jaynes maximum entropy
principle [22], when only partial information is grasped, the distribution of a%(j) which makes the
information entropy maximum and meets the condition of Equation (7), should be adopted. Based on
this, the projection index function can be constructed as [16]:

Q(a) = S(a) + D(a) + E(a) ®)

where 5(a) is the standard deviation of p(i); D(a) is the local density of p(i); and E(a) is the information
entropy of a2(j).

m 0.5
S(a) = |3 (pi) — p)2/ (m — 1) ©)
i=1
D(a) =YY (R~ ryu(R — ;) (10)
i=1j=1
E(a) = - Y. 22(j) Ind() (a1)
i=1

where p is the meaning of the sequence {p(i)}. R is the window radius for calculating the local density,
the selection of which should not only make the average number of projection points contained in the
window not too little, but also make it not increase too fast with an increase in sample size. Normally,
R =0.1S. 7= 1p@) — p(j)!. u(t) is a unit step function. When ¢ < 0, the function value of u(t) is 0.
Otherwise the function value of u(t) is 1.

When the sample value series are given, the projection index function (Q(a)) will only change
with the projection direction a. In addition, the classification and sorting feature structure of
high-dimensional index data can be exposed by the most likely optimal projection. Therefore,
the optimal projection direction can be estimated by solving the maximization of the projection
index function

maxQ(a) = S(a) + D(a) + E(a)

sta(j) >0, ¥ a2(j) =1
=1

12)
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where a%(j) is the objective weight w,(j) of the index Xj.

This is a nonlinear optimization problem with a(j) as a variable. It can be solved by AGA [13,23],
which simulates biological population evolution and genetic mechanisms. For this example, the best
projection direction is

a = (0.2270, 0.2426, 0.0470, 0.2288, 0.2973, 0.1759, 0.2356, 0.1171, 0.2674, 0.3666,
0.3609,0.0100, 0.3826,0.2946, 0.2777)

The objective weights of each index are w,(j) = az(j), as shown in Table 2.

3.4. Determination of Combination Weight by Entropy of Information

After combining the subjective weights, ws(j) and objective weight, w,(j), the combination weight
wc(j) of each index can be obtained. Obviously, wc(j), ws(j) and w,(j) should be as close as possible.
According to the principle of minimum relative entropy [24]

minF = 3 we(j)Inwe(j) ~ Inwy ()] + ¥ w(j)[nwe(j) — nw, ()
= = (13)

n
s.t. 21 we(j) = 1; we(j) >0
=

where F is the relative entropy.
The Lagrange multiplier method [25] can be used to solve the above optimization problems:

Wm:%g@@@ﬁl (14)

% [ws (j)wo ()]

j=1

Equation (14) shows that in all combinations of weights which satisfy Equation (13), the geometric
average requires the least amount of information. Taking other forms of combination weights adds
tangible or intangible additional information that is not actually available. According to the index of
Equation (14), the combination weights of indices 1-15 can be calculated, as shown in Table 2.

3.5. Calculation of Comprehensive Forewarning Index

s() = Y we(y(if) (=12 ,m) (15)
=1

where s5(i) is the comprehensive forewarning index of the sample (i). The greater the forewarning
index s(i) is, the greater the water resources carrying capacity of the sample (i) is. In addition,
the corresponding “non-warning” membership degree f(i) is greater. The calculation results of s(i) are
shown in Table 3.

According to the corresponding relationship between the “non-warning” membership degree
f(i) and the forewarning comprehensive index s(i), the forewarning interval corresponding to the
forewarning comprehensive index can be obtained. The corresponding relationship is a forewarning
model of the regional water resources carrying capacity based on entropy combination weights.

4. Results and Discussions

4.1. Determination of the Warning Status of the Water Resources Carrying Capacity

According to the previous introduction, we know that when the “non-warning” membership
degree is (i) € [0.8, 0.1], it means that the forewarning state of the water resources carrying capacity in
that year is non-warning. As shown in Table 3, the interval of the comprehensive forewarning index
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corresponding to the non-warning interval is [0.7697, 0.9449]. Similarly, when s(i) belongs to [0.5945,
0.7697], [0.4193, 0.5945], [0.2441, 0.4193], [0.0689, 0.2441], the corresponding warning status of the water
resources carrying capacity is light warning status, middle warning status, heavy warning status, and
great warning status, respectively. Taking 2005 as an example, the comprehensive forewarning index
of 2005 which is equal to 0.3694 belongs to [0.2441, 0.4193]. This means that the warning status of the
water resources carrying capacity in 2005 is a heavy warning status. Similarly, the warning status of
the water resources carrying capacity over the years 2006-2015 can be obtained (Table 3).

Figure 7 shows the yearly variation curve of the comprehensive warning indices and the range of
each warning interval. As shown in Figure 7, the water resources carrying capacity in Anhui showed
an overall trend of improvement. But most years had a heavy warning status. Although the state of the
water resources carrying capacity did not enter the overload state, it still should arouse our attention
and measures must be taken to prevent further reduction of the water resources carrying capacity.
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Figure 7. The change chart of the forewarning comprehensive indices.

4.2. Results Comparison

Because the research on the water resources carrying capacity forewarning is less established,
the results of this study are compared with only two other studies on the water resources carrying
capacity in Anhui.

Huang and Chen selected twelve indicators from aspects of water resources, environmental
development, economic development and the ecological environment, and evaluated the water
resources carrying capacity in Anhui Province in 2006-2015. The water resources carrying capacity
index (CCI) was used to determine the status of water resources carrying capacity. If CCI < 1, it means
that the carrying capacity of water resources is in the loaded state. If CCI > 1, it means that the carrying
capacity of water resources is in the overload state. And if CCI =1, it means that the carrying capacity
of water resources is in the critical load state. This standard shows that there was hardly ever a critical
state. The results show that the value of CCI was between 0.9-1.3 [26]. This is basically consistent with
the results of this paper which show that most warning statuses of water resources are in the middle
and heavy warning statuses.

Liu and Yu used entropy weight and an analytic hierarchy process to evaluate the water resources
carrying capacity in Anhui Province in 2007-2010. The comprehensive score of the water resources
carrying capacity was used to measure the size of the water resources carrying capacity. The closer the
value is to 0, the higher the carrying capacity is, and the closer is to 1, the lower the carrying capacity
is. The result showed that the water resources carrying capacity comprehensive evaluation values
in 2007-2010 were between 0.46 and 0.49, which means that the state was a critical load state [27].
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This implies that the water resources in Anhui have been developed to a certain extent, no longer in
the status of higher carrying capacity, but they can still provide necessary water for life and production.
This is also consistent with the result of this paper.

4.3. Results Analysis

It is obvious that the forewarning comprehensive index of Anhui Province in 2015 was the highest
from the last 11 years, which means that the water resources carrying capacity water resources in 2015
was the highest in the last 11 years. With reference to Figure 3, we can see that the water resources
quantity in Anhui Province in 2015 was close to that of 2010, both of which were much larger than
other years. However, the water resources carrying capacity in 2015 was larger than in 2010, obviously.
This was because the irrigation quota of farmland in Anhui province in 2010 (358.6 cubic meters per
mu) was far more than that in 2015 (282.4 cubic meters per mu) and water consumption per 10,000
GDP only accounted for about 55% in 2010 (Table 3). In addition, the water resources quantities in
2006, 2011 and 2013 were less, but the water resources carrying capacity gradually increased. This is
because the water consumption per 10,000 yuan GDP of these three years had gradually decreased
(Table 3). This indicates that the water use efficiency has a great influence on the water resources
carrying capacity when the water resources quantity is similar. Correspondingly, when the water
efficiency gap is not large, the total amount of water resources has a significant impact on the size of
the water resources carrying capacity, such as in the years of 2005 and 2006.

The above analysis results are consistent with the results from the weights of influence
factors analysis. According to the combination weights, the five indices which have the greatest
influence on water resources carrying capacity are population density, 10,000 yuan GDP water
consumption, water production modulus, per capita water resources and irrigation quota of farmland.
The population density changed slowly over the past 11 years. Thus, the water use efficiency and
water resources quantity are the most important factors affecting the water resources carrying capacity
in Anhui Province.

Therefore, in order to improve the regional water resources carrying capacity, it is necessary to
improve the efficiency of water use. In addition, some methods can be used to increase the amount
of available water resources, such as improving the sewage discharge rate and utilization rate of
reclaimed water.

5. Conclusions

(1) In this model, for the determination of the weight of each index, the forewarning index system
and the grade standards of water resources carrying capacity were established, according to
the actual situation of the study area. AGA-FAHP was used to calculate the subjective weight
of each index. AGA-PP was used to calculate the objective weight of each index. In addition,
the minimum relative information entropy principle was used to calculate the combination
weights. Then, the forewarning comprehensive index was calculated to find out the relationship
between the forewarning comprehensive index and the membership degree of “non-warning”.
On this basis, the forewarning model of the regional water resources carrying capacity was
established. This model combined expert experience and objective information in the research
area. In addition, the calculation results were reasonable. This can be used in other forewarning
systems by modifying the index system and grade standards for its universality.

(2)  Asabasic natural resources and strategic economic resources, water resources are an important
guarantee for the sustainable development of economy and society. Therefore, the water resources
carrying capacity forewarning, based on theory and technology, has an important significance
for guiding the water resources development and management, scientifically and reasonably.
With this forewarning model, we can evaluate the status of the water resources carrying capacity,
study the variation trend of water resources carrying capacity and analyze the main influence
factors of the water resources carrying capacity. Based on this we can forecast the status of the
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water resources carrying capacity, guide the strategy of the development and utilization of water
resources, according to the results of forewarning and the main influence factors, and find ways
to improve the water resources carrying capacity.

(3) Inorder to improve the water resources carrying capacity, product consumption must be reduced
and the water recycling rate must be improved through scientific management and technological
innovation. The efficient use of water resources, the reasonable development and utilization
of water resources must be ensured through the optimal allocation of water resources and the
adjustment of economic structure. Overall, it is time to promote the construction of a water-saving
society and building a harmonious environment between human and water.
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Abstract: Rainfall is an essential index to measure drought, and it is dependent upon various
parameters including geographical environment, air temperature and pressure. The nonlinear nature
of climatic variables leads to problems such as poor accuracy and instability in traditional forecasting
methods. In this paper, the combined forecasting method based on data mining technology and
cross entropy is proposed to forecast the rainfall with full consideration of the time-effectiveness of
historical data. In view of the flaws of the fuzzy clustering method which is easy to fall into local
optimal solution and low speed of operation, the ant colony algorithm is adopted to overcome these
shortcomings and, as a result, refine the model. The method for determining weights is also improved
by using the cross entropy. Besides, the forecast is conducted by analyzing the weighted average
rainfall based on Thiessen polygon in the Beijing-Tianjin-Hebei region. Since the predictive errors are
calculated, the results show that improved ant colony fuzzy clustering can effectively select historical
data and enhance the accuracy of prediction so that the damage caused by extreme weather events
like droughts and floods can be greatly lessened and even kept at bay.

Keywords: rainfall forecast; cross entropy; ant colony fuzzy clustering; combined forecast

1. Introduction

Rainfall forecasts play an important role in agricultural production, urban industry and life.
The accurate prediction of rainfall has significant economic and social value. It can provide data
support for the relevant departments and help detect droughts and floods and reduce the degree
of harm. However, affected by complex factors such as geographical environment, ocean currents,
air pressure, temperature, etc. [1], rainfall exhibits strong randomness and nonlinear characteristics
that often hamper the forecast of rainfall.

The rainfall prediction methods discussed in this paper are based on mathematical models and
algorithms, through the full mining of historical data to establish the forecasting model. At present,
a variety of approaches have been applied to predict rainfall at home and abroad and basically
they can be classified into five categories: (1) Numerical prediction model. This model is based on the
physical model of process. Its advantage lies in the fast speed and easy procedure, but due to the
impact of the memory required in can only reasonably be used for monthly forecasts and for longer
periods (such as an annual forecast) is difficult to use [2,3]; (2) Time series model exponential smoothing.
The moving average method and Autoregressive Integrated Moving Average Model (ARIMA) [4]
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belong to this type; they can better describe the linear change process yet sometimes they are not
suitable for non-stationary random processes; (3) Probabilistic simulation methods. These include the grey
model (GM) [5] and Monte Carlo method [6]. The prediction of exponential trends is more accurate
with the grey model, but it is only suitable for short and medium term forecasting and the longer
the forecast lasts, the larger the errors that may occur. The Monte Carlo method is characterized by
describing the random process, but the support of data is also required; (4) Artificial intelligence methods
such as radical basis function (RBF), genetic algorithm (GA), wavelet analysis (WA) [7-10], can better
simulate nonlinear processes with higher prediction accuracy, but may fail due to issues like local
optima, overlearning and weak generalization ability; (5) in addition there are some other methods,
like Numerical Weather Prediction (NWP) [11,12], R/S analysis [13], trend analysis [14], etc. that can
predict rainfall from different angles, but two problems should not be ignored: first, in the long-term
forecast, rainfall is a random process hence any single forecasting method cannot ensure the stability
during the process of prediction. Additionally, serious errors may occur at certain times resulting
in the failure of prediction. Second, obtaining useful information with a single method is one-sided,
and overlooks different factors from all perspectives.

For the prediction of rainfall, a large amount of historical data is necessary to ensure the accuracy
of the forecast. Nonetheless, historical data inevitably contains some errors or abnormal information
and this affects the accuracy of the forecast because rainfall is associated with many factors such as
temperature, climate, and human activities. Therefore, the forecast method based on fuzzy clustering
prediction method has been applied in recent years [15,16]. However, the traditional fuzzy clustering
algorithm approach easily falls into local optimal solutions, and it is difficult to deal with a large
number of high-dimensional data from a time performance point of view [17]. In this paper, the ant
colony algorithm is proposed to improve the fuzzy clustering. With this method, the reliability and
computational efficiency of data filtering and processing are greatly increased.

Bates and Granger established the combined forecasting method based on weights in 1969 [18].
The approach combines the different methods and the features of data to improve the accuracy of
forecasting and reduce the risk of failure. The combined forecasting method has been widely used
in various fields, including electric power load forecasting, economics, logistics, etc., and facts have
proven how effective the method is [19-22]. Nonetheless, as a simple combination of several single
methods, the previous method neglects the bias of the selection of a single method. Furthermore,
there is no detailed analysis of the time characteristics of historical data. At present, some scholars are
paying attention to combined forecasting in the field of rainfall forecasting [23-25]. In Cui’s study [23],
the wavelet analysis method aims to determine the weight reconstruction of the rainfall forecast,
yet the time distribution of historical data is not considered. In Xiong’s study [24] and Lu’s study [25],
real-time river flow or flood forecasting methods have been studied, but they are not suitable for
medium and long-term prediction.

The concept of entropy propounded by the German physicist Clausius in 1877 is a function of the
state of the system, but the reference value and the variation of entropy are often analyzed and compared.
Cross Entropy (CE) is a kind of entropy that reflects the similarity between variables from the perspective
of probability. The application of entropy theory in hydrology mainly include the derivation of the
distributions and estimation of the corresponding parameters for hydrometeorological variables [26-28],
dependence analysis [29] and runoff forecasting [30-34]. The cross entropy is introduced into the
combination forecasting by Li et al. [24,25]. Their research put forward a new method of determining
weight, which improves the stability of the prediction results. However, the probability density
function [24] is not suitable for the prediction of radial flow. The wind power load forecasting method
based on normal distribution is proposed by Chen et al. [25]. The time characteristic of historical data is
not considered in this method and the solution is too complex to be implemented.

The key of the prediction method based on historical data is not only a prediction model, but also
a validity of historical data. And that is the category of data mining. The choice of historical data is
fundamentally a clustering process, so clustering method is very important. In terms of the weaknesses
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of the fuzzy clustering method, the ant colony algorithm attempts to improve the model. Meanwhile,
the method for determining weights is also improved by using the cross entropy (CE).

2. Improved Fuzzy Clustering Model

2.1. Research Data

The Beijing-Tianjin-Hebei region is located on the east coast of Eurasia, mid-latitude coastal
and inland transfer zone. Influenced by a temperate climate with alternating moist and dry seasons,
the annual rainfall in this area ranges from 400 to 800 mm. The study analyses the rainfall from 1969
to 2010 in the Thiessen rainfall station and the forecast is conducted based on the data of rainfall
from the Taisen Station in the Beijing-Tianjin—Hebei region. Based on the Taisen Station rainfall data,
the forecast is conducted. The results show that improved ant colony fuzzy clustering can effectively
select historical data and improve the accuracy of prediction.

On the basis of the data of rainfall from 26 stations, the weight is determined by the Thiessen
polygon method, and the weighted average rainfall data sequence is obtained. The Beijing—Tianjin—
Hebei administrative divisions and the change of monthly rainfall from 1960 to 2013 in this area are
shown in Figure 1.
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Figure 1. The Beijing-Tianjin-Hebei administrative divisions and change of monthly rainfall from 1960
to 2013. (a) Beijing-Tianjin-Hebei administrative divisions; (b) monthly rainfall from 1960 to 2013.
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Figure 2 gives the results of the wavelet analysis of the data from 1960-2006. Wavelet analysis
is a localized analysis of the time (space) frequency. It multiplies the signal (function) step by step
through the telescopic translation operation, finally reaches the time subdivision at high frequency,
subdivides the frequency at low frequency, and can automatically adapt to the data analysis.

A

0 2006 year

Figure 2. Wavelet analysis of the rainfall data from 1960-2006.

There are four obvious characteristic time scales, namely, 3a, 9a, 14a and 24a, respectively, where the
characteristic time scale of 3a is always present from 1960-2006 and the period oscillation is stable.
What is more, with 24a time scale cycle time oscillation throughout the study period, the performance
is relatively stable. In the middle of the 1960s, Beijing—Tianjin—Hebei area had experienced four dry
and wet alternations: from the mid-1960s to the late 1970s, the precipitation was abundant. In the
1980s, the precipitation was relatively low. In the 1990s, the precipitation again entered an abundant
period. After the 21st century, the precipitation began to decrease. The characteristics of the two feature
scales, 9a and 14a, are similar. Before the mid-1970s, the oscillation of the cycle time was more obvious,
and after the rich period of 1970 to 1980, there was a slight increase in the feature scale, respectively,
about 10a and about 15a.

The analysis reveals that the periodic variation of rainfall is obvious. Therefore, it is important
to predict the future rainfall by grasping the key information of the rainfall in the historical year and
using the data mining technology to classify the rainfall-related data reasonably.

2.2. An Introduction of Ant Colony Algorithm

We take the Travelling Salesman Problem (TSP) as an example to illustrate Ant Colony (AC)
Algorithm. Suppose there are  cities, d;; is the distance between city i and city j. 7;;(f) is the amount of
information between city i and city j at time t. We use it to simulate the actual ant anterin, set a total of
m ants, the term p;;(f) represents the probably of the k-th ant being transferred between city 7 and cit