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Water Protection Zones—Impacts on Weed Vegetation of Arable Soil
Reprinted from: Water 2023, 15, 3161, https://doi.org/10.3390/w15173161 . . . . . . . . . . . . . 189

Jingwen Su, Aihua Long, Fulong Chen, Cai Ren, Pei Zhang, Ji Zhang, et al.

Impact of the Construction of Water Conservation Projects on Runoff from the Weigan River
Reprinted from: Water 2023, 15, 2431, https://doi.org/10.3390/w15132431 . . . . . . . . . . . . . 204

vi



Editorial

Advances in Ecohydrology in Arid Inland River Basins

Lianqing Xue 1,* and Guang Yang 2,*

1 College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
2 College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China
* Correspondence: lqxue@hhu.edu.cn (L.X.); mikeyork@163.com (G.Y.)

1. Introduction

Water is the foundation of life, ecosystems, and socioeconomic development [1]. Hy-
drological mechanisms, including flood and drought events, pollution, and water scarcity,
underlie climate–soil–vegetation dynamics and control the most basic ecological patterns
and processes, both for biota and materials [2]. Nowhere is this more evident than in arid
and semi-arid regions, where the complex interplay between climate variability, human ac-
tivities, and ecological systems shapes both the challenges and opportunities for sustainable
water management [3–6]. Over the past few decades, rapid climatic shifts, intensified land
use, and increasing anthropogenic pressures have exacerbated water scarcity, threatened
ecological security, and heightened the need for innovative management strategies in these
vulnerable landscapes.

The area of arid and semi-arid regions has expanded further with global climate warm-
ing, which has had profound impacts on the functional structure of ecosystems in these
regions. This, in turn, has significantly affected humans’ ability to access water resources [7].
Moreover, human activities, such as the development of water infrastructure and changes
in land use, have caused profound disturbances to the ecological hydrological processes in
arid and semi-arid regions [8,9]. Therefore, the ecological hydrological mechanisms in arid
inland river basins require further investigation [10,11].

This Special Issue of Water brings together twelve cutting-edge studies that advance
our understanding of water resources, hydrological processes, ecological risk, and sus-
tainable management practices in arid and semi-arid environments. Collectively, these
contributions offer novel insights into soil infiltration, hydrological modeling, drought
assessment, water quality, vegetation dynamics, landscape ecological risk, water gov-
ernance, and adaptive management strategies under the influence of both natural and
human-induced changes.

This editorial aims to highlight emerging trends in the sustainable management
of ecohydrological systems in arid regions. The studies in this Special Issue showcase
interdisciplinary research approaches, provide diverse perspectives for uncovering the
mechanisms of ecohydrology, and clarify how integrated scientific research can inform
policy-making, support sustainable development in arid inland river basins, and enhance
the resilience of ecosystems in arid inland river regions under the background of global
climate change.

2. Review and Synthesis of Contributions

1. Soil Infiltration, Vegetation, and Land Cover Change
Soil infiltration is a key factor influencing surface runoff, groundwater recharge, and

ecosystem functioning, particularly in regions where water resources are limited. The work
in [Contribution 1] compares the soil infiltration capacity between native grasslands and
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thicketed oak woodlands across different soil types. Their findings indicate that converting
oak savannahs to thicket-dominated woodlands can notably increase soil infiltration,
especially in clay-rich soils. The study also evaluates several infiltration measurement
methods and highlights the Simplified Steady Beerkan Infiltration (SSBI) technique as a
rapid and practical alternative to traditional rainfall simulation for field assessments.

Changes in land use and land cover (LUCC) further shape hydrological processes
and ecological risks. In the Kriya River Basin, the authors of [Contribution 9] use spatial
modeling to show that both natural factors and human activities affect landscape ecological
risk. The conversion of grasslands and unused land into croplands and built-up areas
reflects the highly dynamic nature of land systems in arid regions. The research emphasizes
that human activities have become the dominant force behind landscape risk and that
different scenario-based projections—such as natural development, cropland protection,
and ecological priority—lead to very distinct risk patterns. These results stress the impor-
tance of flexible land management and integrated risk assessment approaches to maintain
ecological security in a changing environment.

2. Hydrological Modeling and Flood/Drought Risk
Hydrological processes in arid and semi-arid regions are often complex, with both

episodic flooding and prolonged drought posing significant challenges for water resource
management. The study of the Jingjiang–Dongting Lake system in [Contribution 2] high-
lights the intricate relationships between rivers, lakes, and flood control infrastructure.
By building and validating a hydrological model with nearly 60 years of flood data, the
research offers insights into the limitations of current flood mitigation strategies. Even
with the operation of upstream infrastructure such as the Three Gorges Dam, it remains
difficult to eliminate flood risks in the Dongting Lake area, suggesting the ongoing need
for embankment reinforcement and policy innovation.

Concerns about drought are evident in the Manas River Basin [Contribution 5] and
Huangshui River Basin [Contribution 3]. In the Manas River Basin, long-term analysis
using the Standardized Precipitation Evapotranspiration Index (SPEI) and Standardized
Runoff Index (SRI) shows that, while both meteorological and hydrological droughts have
generally eased in recent decades, meteorological droughts during spring and autumn
persist, and severe droughts are becoming more frequent. This highlights the need for scale-
specific drought risk assessments and targeted management strategies. In the Huangshui
River Basin, declining runoff and reduced ecological flow assurance since the early 1970s
are closely related to intensified human activity. Still, ecological flows remain sufficient
in most months, indicating the effectiveness of flow management but also the increasing
vulnerability of river ecosystems to human pressures.

The authors of [Contribution 11] examine the impacts of water conservation projects
and reservoir construction in the Weigan River estuary. Using a SWAT model integrated
with glacier modules, the study quantifies how climate change, water engineering,
and runoff have interacted over the past fifty years. The findings show that artificial
regulation, particularly in spring, has significantly altered natural flow regimes, helping
to ease seasonal shortages but requiring continuous evaluation to balance ecological and
human needs.

3. Water Quality, Agricultural Practices, and Resource Allocation
Sustainable water management involves not only securing water quantity but also ad-

dressing water quality, especially in areas where agriculture, urban growth, and ecological
conservation intersect. In south-central Ningxia, the authors of [Contribution 4] report that
although water supply is generally adequate, water quality—specifically, persistently high
total nitrogen—remains an issue. The study proposes and tests an optimized scheduling
scheme, demonstrating that it is possible to improve water quality while meeting quantity

2
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demands, with reductions in total nitrogen exceeding 78%. These insights offer valuable
guidance for other regions facing similar challenges.

Agricultural water use is closely tied to weed management and pesticide application,
as discussed in [Contribution 10]. Limiting herbicide use in sensitive water zones can
benefit aquatic biodiversity and environmental health but may also encourage the spread of
particular weed species, complicating crop management. The research calls for innovative
and integrated weed control approaches that balance agricultural productivity and water
resource protection, underlining the need for cross-sectoral management.

Resource allocation is particularly complex in regions such as northwest China,
where socioeconomic development depends on rational water distribution between
urban and rural areas. These studies underscore the importance of considering both
quantity and quality, optimizing allocation schedules, and involving local stakeholders
to ensure sustainable outcomes.

4. Vegetation Dynamics and Ecological Restoration
Vegetation is central to ecosystem resilience, land–atmosphere interactions, and the

provision of ecological services in drylands. The lower reaches of the Tarim River [Contribu-
tion 6] provide a telling example of vegetation recovery under changing climatic and human
pressures. Using trend analysis, Hurst exponent projections, and GeoDetector modeling,
the research documents significant improvements in the NDVI (Normalized Difference
Vegetation Index) over the past twenty years, primarily driven by human intervention and
proximity to river channels. However, the risk of future degradation persists, especially in
areas far from water sources, as multiple factors combine to influence vegetation dynamics.
These results are crucial for guiding targeted restoration and monitoring.

Research on the Great Lakes Depression [Contribution 12] further highlights the
sensitivity of vegetation cover to hydro-climatic changes in Central Asia. In this region,
rising temperatures, decreased precipitation, and lower river discharge have reduced lake
water levels and altered vegetation patterns across diverse microenvironments. The study
draws attention to the seasonal nature of vegetation responses to climate extremes and
underscores the importance of integrated hydrometeorological and remote sensing analyses
for monitoring and managing ecological change.

5. Climate Change, LUCC, and Streamflow Projections
Understanding how climate change and LUCC interact to affect hydrological pro-

cesses is critical for future water security. The upper Tarim River [Contribution 7] is
especially vulnerable, with projections suggesting that increased precipitation and tem-
perature (under three socioeconomic scenarios) would raise streamflow, but ongoing
LUCC—mainly the expansion of farmland at the expense of grasslands—would decrease
it. Notably, LUCC is expected to have a greater impact on streamflow than climate
change alone, with streamflow reductions projected under all future land use patterns.
These findings reinforce the need for scenario-based integrated planning that accounts
for multiple interacting drivers over time.

6. Water Governance and Socio-Institutional Innovation
Effective water governance is the foundation of sustainable management, particu-

larly in regions that regularly experience both floods and droughts, such as Cambodia
[Contribution 8]. The study identifies several barriers to improved governance, including
fragmented sectoral responsibilities, weak coordination among agencies, and limited com-
munity participation. Through case studies of farmer water user groups and fisheries, the
research shows that current, often top-down, management strategies do not always address
local realities and can unintentionally worsen competition and conflict over resources.
The study recommends integrating water governance at the district level to promote both
sustainability and social equity.
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3. Conclusions

This Special Issue of Water not only presents recent advances in water resource assess-
ment but also offers an extensive view of water resource management issues, ecological
risk analysis, and sustainable management in drylands. By drawing on diverse case studies
from Asia and beyond, the collected studies provide a foundation for integrated solutions
that address competing demands and foster resilience in vulnerable dry environments. As
global water challenges intensify, ongoing collaboration among scientists, policymakers,
and communities will be essential to advancing both understanding and actions. We
sincerely thank all the authors, reviewers, and editorial staff for their contributions to this
Special Issue. We hope these findings and perspectives will encourage further research,
innovation, and dialogue on the path to sustainable water and ecological management.
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Article

A Comparison of Three Methodologies for Determining Soil
Infiltration Capacity in Thicketized Oak Woodlands
and Adjacent Grasslands

Furkan Atalar 1,2,†, Pedro A. M. Leite 2,*,† and Bradford P. Wilcox 2

1 Institute of Graduate Studies, Istanbul University-Cerrahpasa, 34320 Istanbul, Turkey;
furkanatalar061@gmail.com

2 Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA;
bwilcox@tamu.edu

* Correspondence: pedroleite@tamu.edu
† These authors contributed equally to this work.

Abstract: This study had two primary objectives: (1) to determine relative differences in
soil infiltration capacity between native grasslands and thicketized oak woodlands and
(2) to compare the effectiveness of three infiltration measurement techniques—rainfall
simulation, an automated Simplified Steady Beerkan Infiltration (SSBI) method, and the
Saturo dual-head infiltrometer. The study was conducted at three sites with clay, loamy
sand, and sandy soils. Rainfall simulation captured significant infiltration differences
between vegetation covers at all three sites, while SSBI did so at two sites, and Saturo failed to
detect significant differences. Consistent with past studies, rainfall simulation results showed
significantly higher infiltration capacity in thicketized woodlands compared to adjacent grass-
lands, with mean infiltration capacity an order of magnitude greater in clay soils (67 mm h−1

vs. 7.5 mm h−1) and more than twice as high in sandy (144.5 mm h−1 vs. 69 mm h−1) and
loamy sand (106 mm h−1 vs. 49 mm h−1) soils. Across sites, rainfall simulation and SSBI
showed strong positive correlations between infiltration capacity and dead biomass (R2 = 0.74
and 0.46, respectively; p < 0.001 for both), as well as significant negative correlations with
live biomass and bulk density. In contrast, the Saturo method exhibited higher variability,
overestimating infiltration capacity by an average of 34.3 mm h−1 compared to rainfall simula-
tion, and did not capture significant relationships with biomass or bulk density. Our findings
have twofold importance: first, they demonstrate that thicketization of oak savannahs
results in higher soil infiltration capacity; and second, they show that for determining soil
infiltration capacity, the SSBI methodology is an accurate and practical alternative to the
labor-intensive rainfall simulation.

Keywords: woody plant encroachment; shrub encroachment; soil hydraulic properties;
saturated hydraulic conductivity; ecohydrological connectivity; bulk density; preferential
flow pathways; surface runoff; Juniperus virginiana; Ilex vomitoria

1. Introduction

Thicketization is a form of woody plant encroachment (WPE) that, over time, leads to
the closing of woody plant canopies. It is a common process in oak woodlands and savan-
nahs in the central and eastern United States [1] that has been facilitated and accelerated by
a combination of fire suppression and agricultural land abandonment [2,3]. It is especially
prevalent in the Post Oak Savannah ecoregion of Texas, with the expansion of understory

Water 2025, 17, 518 https://doi.org/10.3390/w17040518
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shrubs, such as Yaupon (Ilex decidua, Ilex vomitoria), as well as of Eastern red cedar trees
(Juniperus virginiana) [4].

The impact of thicketization on the hydrological aspects of oak woodlands has received
relatively little attention. The work that has been carried out suggests that the impact is
significant. For example, in the Cross Timbers region of Oklahoma, field and modeling work
has demonstrated that thicketization will lead to significant decreases in both groundwater
recharge [5] and streamflows [6,7]. Similarly, Basant et al. [3] found that in sites overlying
the regionally important Carrizo–Wilcox Aquifer, groundwater recharge was effectively
eliminated in thicketized woodlands, whereas in open areas annual recharge rates ranging
from 3 to 18 cm were recorded.

One of the most important factors that regulate the terrestrial water cycle is the
infiltration capacity of soils. Commonly termed soil infiltrability, it is directly related to
the soil’s hydraulic conductivity and is influenced by soil properties, such as texture, bulk
density, pore structure, aggregate stability, and organic matter content [8]. Changes in
vegetation cover can alter these properties, consequently altering infiltration rates and
important hydrological processes, such as soil water storage, groundwater recharge, and
streamflow [9]. For this reason, soil infiltration capacity is a key parameter in many
hydrological and Earth system models [7].

With respect to how WPE may influence water infiltration into the soil, it has been
broadly reported that, in general, infiltration capacity and soil porosity (especially macrop-
orosity) are higher under trees or shrubs than in adjacent open areas [10–13]—most likely
owing to the formation of channels by decayed roots and the incorporation of leaf litter
and organic matter [13,14]. To date, little, if any, work has evaluated the influence of
thicketization on soil infiltration capacity in the Post Oak Savannah. However, in the
Cross Timbers region of Oklahoma, which is ecologically similar, Zou et al. [6] found that
soil infiltration capacity was three times higher under Eastern red cedar canopies than in
open grasslands.

Various instruments have been developed to determine soil infiltration capacity in
a variety of settings—the most commonly employed being rainfall simulators and ring
infiltrometers [15]. Both have advantages and limitations in measuring infiltration rates
and providing data useful for understanding the underlying processes. Rainfall simulators,
for example, can provide information not only on soil infiltration capacity at the plot
scale [16–18], but also on runoff and soil erosion rates [19–21]. Because rainfall simulation
is generally applied to areas larger than those for which ponding methods are used, it is
better able to capture the spatial variability of surface and subsurface conditions [22,23]. At
the same time, rainfall simulation often requires heavy equipment, large amounts of water,
and more than one operator—factors that can make multiple measurements difficult.

A more practical alternative for estimating infiltration capacity is the ring infiltrometer.
Double-ring infiltrometers are well established and widely used for this purpose; however,
they can be labor-intensive and consume more water than single-ring devices, without
necessarily providing greater accuracy [24]. A relatively simple and inexpensive single-
ring methodology is the Beerkan Estimation of Soil Transfer parameters (BEST) [25,26].
This technique involves inserting a ring into the soil at a shallow depth and sequentially
applying small water volumes (ensuring negligible head within the ring) until infiltration
rates stabilize, indicating the establishment of a steady-state condition. To reduce manual
effort and human error, constant-head infiltrometers can be employed to automate the
water application and data collection processes [27,28]. Various algorithms can then be
applied to the cumulative infiltration data to estimate field saturated hydraulic conductivity
(Kfs, mm h−1), a widely used measure for assessing soil infiltration capacity for different
vegetation covers [13,29,30]. Most of these algorithms also require soil texture, moisture,
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and bulk density data [26]. However, the Simplified Steady Beerkan Infiltration (SSBI)
method proposed by Bagarello et al. [31] requires only an estimation of the α* value,
which represents capillary length and takes into account the three-dimensional aspects of
infiltration. The α* value of 0.012 mm was considered a good approximation for most field
soils, but uncertainties in α* estimates can propagate into the resulting Kfs value. Another
potential limitation of this method is that an incorrect assumption of steady-state conditions
could result in an overestimation of the soil’s infiltration capacity [32].

Only a few commercially available infiltrometers do not require constant mon-
itoring or post-processing of data. One notable example is the Saturo device, pro-
duced by Meter Group, which employs the two-ponding head technique developed by
Reynolds and Elrick [33] to calculate Kfs. While this instrument does not require the
estimation of other parameters, such as bulk density or α* value, the user must set the
configurations—including pressure heads, soak and hold times, and number of pressure
cycles—which can also introduce bias. Additionally, the two-ponding head method often
generates invalid (negative) Kfs results, especially in more heterogeneous soils with high
microporosity [34]. Although fully automated and user-friendly, the Saturo device can be
costly and might not be the most feasible option for many users.

Different techniques for measuring soil infiltration capacity can yield varying results.
Many studies have compared different methods, but the conclusions drawn are often
contrasting and highly site-specific [15]. Rainfall simulators, for instance, have shown
results both similar to [22,35,36] and differing from [23,37] those of ring infiltrometers.
While such studies provide important insights into the differences between methods,
comprehensive comparisons across diverse soil textures and plant communities remain
limited. For example, to our knowledge, no studies have compared multiple measurement
techniques in woodland and grassland areas with different soil textures. This leaves a
substantial gap in understanding how contrasting natural or unmanaged vegetation covers
influence the performance, accuracy, and reliability of these methods. Comparative studies
addressing this knowledge gap are essential for improving our ability to select the most
appropriate techniques for specific environmental conditions.

Our study had two primary objectives: (1) to test the hypothesis that thicketization of
oak savannahs increases soil infiltration capacity, driven by changes in soil porosity and
addition of organic matter; and (2) to compare three different methodologies for estimating
soil infiltration capacity, each of which has distinct advantages and disadvantages. The
three methodologies we compared are rainfall simulation with a drip rainfall simulator [38],
the SSBI method employing a constant-head infiltrometer [28,39], and measurement via
a Saturo dual-head infiltrometer (Meter Group Inc., Pullman, WA, USA). Rainfall sim-
ulation was selected because it is a well-established and widely accepted method for
accurately measuring soil infiltration capacity. The SSBI method was included for its
simplicity, affordability, and positive comparisons with more complex single-ring meth-
ods. Finally, the Saturo infiltrometer was chosen as it is likely the only fully automated
commercially available infiltrometer, though its performance in field soils has not been
extensively evaluated. We hypothesize that these methods will yield significantly differ-
ent results due to differences in their measurement scale, underlying assumptions, and
calculation approaches.

2. Study Sites

This research was conducted at three sites, each representing a different soil textural
class (clay, loamy sand, and sandy) and each consisting of paired grassland- and woodland-
cover zones. The clay site was located at the Texas A&M University Beef Cattle Center in
College Station, Texas (30◦32′49′′ N, 96◦ 25′03′′ W, 68 m above sea level); the loamy sand
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site was located at the Texas A&M University Ecology and Natural Resources Teaching
Area in College Station, Texas (30◦34′39′′ N, 96◦21′04′′ W, 88 m above sea level); and the
sandy site was located at the Gus Engeling Wildlife Management Area, 32 km northwest of
Palestine, Texas (31◦56′21′′ N, 95◦53′45′′ W, 104 m above sea level). The average annual
temperature and precipitation are 21 ◦C and 1011 mm, respectively, at the clay and loamy
sand sites, and 19.6 ◦C and 1083 mm, respectively, at the sandy site. All three sites lie within
the Post Oak Savannah ecoregion of Texas and have a humid, subtropical climate.

According to the USDA/NRCS Web Soil Survey, the clay site is a Chromic Hapluderts
(Ships series), the loamy sand site is a Chromic Vertic Albaqualfs (Boonville series), and the
sandy site is an Arenic Plinthic Paleudults (Lilbert series). These soil types are characteristic
of the Post Oak Savanna region of Texas, and our site selection aimed to capture some of
this natural soil variability. While not exhaustive, selecting three distinct soil types and
contrasting vegetation covers improves the study representativeness within this landscape.

The overstory component of the woodland zones at all three sites is dominated by
post oak (Quercus stellata), blackjack oak (Quercus marilandica), winged elm (Ulmus alata),
and a few large individuals of Eastern red cedar (Juniperus virginiana). The dense shrub
understory consists mainly of encroaching species—Yaupon holly (Ilex vomitoria), the exotic
Chinese privet (Ligustrum sinense), and young individuals of Eastern red cedar. The little
herbaceous cover in the woodland zones is mostly C3 grasses such as Inland sea oats
(Chasmanthium latifolium) and a few forb species.

The grassland zones at the loamy sand and sandy sites are dominated by native
C4 grasses, including little bluestem (Schizachyrium scoparium) and switchgrass (Panicum
virgatum), and many forb species. Neither of these sites has any recent history of grazing.
At the clay site, the grassland zones are composed mainly of the introduced bermudagrass
(Cynodon dactylon). This site experiences rotational grazing annually at relatively low
stocking densities (approximately 1 animal unit/ha).

3. Materials and Methods

3.1. Experimental Design

At each site and within each cover type, we selected five measurement locations,
spaced three meters apart along a linear transect. The transects for grassland and wood-
land zones were drawn parallel to each other and approximately 10 m from the boundary
separating the two cover types. All measurements were conducted between April and
May during the early growing season to minimize potential effects of seasonal variability.
At each measurement location, a 65 cm × 65 cm runoff plot was established, enclosed by
galvanized steel sheets inserted to a shallow depth (approximately 5 cm), for the rainfall
simulation experiments. After the simulations had been completed, two corners of the
plot were randomly selected for infiltration capacity measurements with the SSBI method,
and a third corner was chosen for measurements with the Saturo infiltrometer (Figure 1).
Figure 2 shows photographs of the three methodologies deployed in two different vegeta-
tion cover settings.

3.2. Infiltration Capacity Measurement Methods and Instruments
3.2.1. Rainfall Simulation Method

We utilized a drip-type rainfall simulator that has been widely employed by previous
researchers [12,40–42] and is described in detail by Blackburn et al. [38]. The simulator
(see Figure 2a) is placed approximately 40 cm above the soil surface and delivers droplets
of water to a 90 cm × 90 cm surface area at a maximum rate of 154 mm h−1. At each
plot, we conducted a rainfall simulation over the 65 cm × 65 cm surface area. Because
we expected high infiltration capacity, especially in the woodland zones, we applied the
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maximum rainfall intensity of 154 mm h−1 in order to maximize the chances of obtain-
ing runoff. Runoff was collected for 30 s immediately after it commenced, followed by
30 s collections every 5 min until four consecutive runoff volumes were approximately the
same. These four volumes were averaged to calculate a terminal runoff value, which was
then subtracted from the rainfall intensity to obtain the steady-state infiltration rate [43,44].
The steady-state infiltration rate can be considered a good approximation of the soil’s
infiltration capacity, or Kfs [43], particularly under the assumption that lateral matrix flow
is negligible owing to the buffering effect created by water falling outside the plot [45].

Figure 1. A schematic diagram showing the layout of the five measurement locations along each transect
and the infiltration tests performed with the three methods. Green-outlined squares = rainfall simulation
plots; black X = measurement via automated SSBI; blue circle = measurement via Saturo infiltrometer.

 

Figure 2. Soil infiltration capacity was measured via three different types of instruments under
two vegetation cover conditions: (a) rainfall simulator in a thicketized woodland; (b) automated SSBI
system in a grassland; and (c) Saturo infiltrometer in a grassland.

3.2.2. Automated Simplified Steady Beerkan Infiltration (SSBI) Method

The automated infiltrometers described in Leite et al. [28] were used to determine the
Kfs values, which were calculated from steady-state infiltration rates obtained via the SSBI
method [31]. A 10 cm diameter ring was inserted to a depth of 1 cm and the infiltrometers
(see Figure 2b), filled with 2.2 L of water, were used to sustain a hydraulic head of about
1 cm within the ring. The test was conducted for a period of 60 min or until all water drained
from the infiltrometer. Pressure readings were recorded every five seconds by a HOBO U20
datalogger (Onset, Bourne, MA, USA) and were subsequently used to generate cumulative
infiltration curves via the calibration function provided in Leite et al. [28]. Steady-state
infiltration rates (is; mm h−1) were then derived from the linear (stable) segments of the
infiltration curves and used to calculate Kfs (mm h−1) according to Bagarello et al. [31],
as follows

K f s =
is

yyw
rα∗ + 1

, (1)
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where r denotes the radius of the ring in millimeters, y and yw are dimensionless constants,
and α* is an empirical parameter that captures the effects of gravitational and capillary
forces. We adopted an α* value of 0.012 mm, which is considered a good approximation for
most field soils [31]. We performed two tests per plot one week after the rainfall simulations.
The Kfs values for each plot represent the average of these two measurements.

3.2.3. Saturo Method

A Saturo dual-head infiltrometer (Meter Group Inc., Pullman, WA, USA) with a
14.4 cm (inner diameter) ring and a 5 cm insertion depth was employed to measure
Kfs at one point per plot (see Figure 2c). An increasing number of studies have been
adopting this instrument for evaluating soil infiltration capacity in engineered soils [46,47]
and agricultural settings [48,49]. Because it is a relatively new instrument, there are few
studies comparing the Saturo with other methods; however, one recent laboratory study
on homogenous soil beds concluded that it yields results comparable with those obtained
from rainfall simulators [36].

The instrument is fully automated and allows for setting different configurations—such
as pressure heads, soak and hold times, and number of pressure cycles. We used pressure
heads of 10 and 100 mm H2O, a soak time and hold time of 10 min, and three pressure
cycles, for a total test duration of 70 min. These configurations were selected to strike
a balance between water consumption and test duration (higher pressure heads and longer
hold times would have increased both water usage and the total duration of each test).
Additionally, we sought to align the test duration with those of the other two methods to
improve comparability across methodologies.

The final Kfs value is automatically calculated by the instrument by means of the sim-
plified version of the two-ponding head technique developed by Reynolds and Elrick [33],
as follows:

K f s =
Δ(i1 − i2)
D1 − D2

, (2)

where D1 represents the higher-pressure head (mm H2O), D2 denotes the lower-pressure
head (mm H2O), and Δ is calculated as 0.993 times the ring insertion depth (mm) plus
0.578 times the ring radius (mm). The variables i1 and i2 are the steady-state infiltration
rates (mm h−1) at D1 and D2, respectively.

3.3. Additional Data

For each test, we also collected 5 cm diameter soil cores at the 0 to 5 cm and 5 to 10 cm
depth intervals for measuring bulk density via a standard oven-drying technique (105 ◦C
for 48 h). After the rainfall simulations and prior to the other infiltration tests, we collected
all the live (clipped at ground level) and dead plant tissues from the surface of each plot
to determine live and dead plant biomass. The samples were taken to the laboratory and
oven-dried at 65 ◦C for 48 h.

3.4. Data Analysis

Infiltration capacity differences between vegetation cover types (woodland vs. grass-
land) for the three sites (clay soil, loamy sand soil, and sandy soil) were tested by means
of t-tests, and comparisons of the three measurement methodologies were analyzed with
one-way ANOVA and Tukey’s HSD post-hoc test. Prior to these tests, skewness and het-
eroscedasticity were taken into account by the application of log transformations that met
parametric assumptions. We then conducted simple linear regressions to evaluate how
vegetation biomass (live and dead) and bulk density correlated with infiltration capacity
values obtained with each method. Finally, we conducted paired t-tests to assess whether,
across all sites and treatments, the infiltration capacity values obtained from the automated
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SSBI and Saturo methods differed significantly from those obtained via rainfall simulation.
All analyses were performed using R version 4.4.1.

4. Results

4.1. Rainfall Simulation Method

The results obtained with the rainfall simulator showed significantly higher infiltration
rates for the thicketized woodland zones than for the grassland zones at all three sites
(clay, loamy sand, and sandy) (Figure 3, Table 1). Specifically, at the clay soil sites, mean
infiltration capacity values in the WPE-affected zones were an order of magnitude higher
than those in the grassland zones; and at the loamy sand and sandy soil sites they were
more than twice as high as those in grassland zones. At the sandy site, infiltration capacity
for the thicketized woodland exceeded rainfall intensity (154 mm h−1) in four of the
five plots. The mean from the rainfall simulation is likely underestimated, as there was
no runoff from those four plots, even at the maximum simulated rainfall intensity of
154 mm h−1. For this reason, statistical comparisons between methodologies were not
performed for the woodland tests at this site.

Figure 3. Infiltration rate curves from tests conducted with the rainfall simulator. The red dashed
line represents the average steady-state infiltration rate (infiltration capacity) for each site. For the
woodland zone in the sandy soil site, from which there was no runoff in four of the five plots, the
infiltration rates shown (measured at the maximum simulated rainfall intensity of 154 mm h−1) are
likely underestimations.
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Table 1. Infiltration capacity values (mean ± standard deviation, mm h−1) obtained via the three
measurement methodologies for each soil textural class and cover type. Capital A or B represents
a significant difference (revealed by t-tests) in the mean values obtained by each methodology for
the two cover types (grassland vs. woodland) within each site, while lowercase a or b represents a
significant difference (revealed by Tukey’s HSD test) between the mean values obtained by different
methodologies within the same site and cover type.

Site/
Soil Texture

Cover
Type

Methodology

Rainfall
Simulation

Automated
SSBI

Saturo

Clay Grassland 7.5 ± 3.4 A b 4.3 ± 3 A b 47.4 ± 18.6 A a
Woodland 66.8 ± 18.9 B a 71.7 ± 92.4 B a 153.3 ± 138.2 A a

Loamy sand Grassland 48.9 ± 26.6 A a 101.6 ± 94.3 A a 113 ± 63.6 A a
Woodland 106.3 ± 27.1 B a 79.2 ± 57.4 A a 56.3 ± 85.8 A a

Sandy Grassland 68.8 ± 14.1 A a 13.4 ± 2.1 A b 108.4 ± 81.6 A a
Woodland 144.5 ± 22.4 B 120.9 ± 28.6 B 183.4 ± 84.3 A

4.2. Automated SSBI Method

With the automated SSBI method, we found significantly higher infiltration capacity
for the woodland-cover zones than for the grassland-cover zones at the clay and sandy soil
sites, but no significant difference at the loamy sand site (Figure 4, Table 1). For the clay
and sandy soils, mean infiltration capacity in woodland zones was an order of magnitude
higher than in grassland zones.

Figure 4. Box plots of infiltration capacity values for grassland and woodland zones obtained at the
three sites via the three measurement methodologies.
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4.3. Saturo Method

Measurements with the Saturo infiltrometer indicated higher median infiltration
capacity in thicketized woodlands for the clay and sandy soil sites (Figure 4), but in both
cases the difference was not significant (Table 1) because of the higher variability of this
instrument. Similarly, for the grassland zone at the clay soil site, the Saturo-obtained mean
infiltration capacity was an order of magnitude higher than those obtained with the other
two methods; and for the grassland zone at the sandy soil site, the Saturo-obtained mean
value was 1.6 times higher than that obtained via rainfall simulation and 8 times higher
than that obtained with the automated SSBI method (Table 1).

4.4. Influence of Biomass and Bulk Density on Infiltration Capacity

With respect to the influence of biomass on infiltration capacity, we found that
the rainfall simulation and automated SSBI methods both indicated a significant neg-
ative correlation (adj R2 = 0.32, p < 0.001 and adj R2 = 0.28, p = 0.002, respec-
tively) between live biomass and infiltration capacity (Figure 5)—which suggests that
higher live biomass was associated with reduced infiltration rates. The Saturo method,
however, showed an insignificant correlation (adj R2 = -0.03, p = 0.874), indicat-
ing that this method was not sensitive to differences in live biomass. Additionally,
both the rainfall simulation (adj. R2 = 0.74, p = 0.001) and the automated SSBI
(adj. R2 = 0.46, p < 0.001) methods showed strong positive correlations between dead
biomass and infiltration capacity, suggesting that an increase in dead biomass significantly
enhances soil infiltration. This effect is likely due to decomposed organic matter and aggre-
gate breakdown, which slow runoff and facilitate infiltration. The Saturo method, on the
other hand, showed a result similar to that for live biomass, i.e., no significant relationship
between dead biomass and infiltration capacity (adj. R2 = 0.02, p = 0.213).

Finally, with respect to the effects of bulk density on infiltration, both rainfall simula-
tion and the automated SSBI method yielded significant negative correlations, on the basis
of measurements at two depth intervals (0–5 cm and 5–10 cm). For the 0 to 5 cm depth,
the adjusted R2 values for rainfall simulation and for automated SSBI were, respectively,
0.25 (p = 0.003) and 0.65 (p < 0.001); and in the 5 to 10 cm depth, they were 0.37 (p < 0.001) and
0.65 (p < 0.001)—implying that higher bulk density reduces infiltration capacity. In contrast,
the Saturo method showed non-significant relationships at both the 0 to 5 cm and 5 to 10 cm
depths, with adjusted R2 values of 0.08 (p = 0.067) and 0.03 (p = 0.166), respectively.

4.5. Differences Among Methodologies

With respect to variability, rainfall simulation generally showed the least of the three
methods. Coefficients of variability ranged from 15.5% to 54.3% for the rainfall simulator,
from 15.6% to 128.9% for the automated SSBI, and from 39.3% to 152.5% for the Saturo.
When we compared the rainfall simulation and automated SSBI infiltration capacity values
for all sites and both cover types, the paired t-test yielded a t-value of −0.49, a p-value of
0.627, and a mean difference of −5.42 mm h−1—that is, there was no significant difference
between the two methods. Conversely, when we compared the rainfall simulation and the
Saturo methods in the same way, the paired t-test revealed a significant difference (t = 2.15,
p = 0.041), with the Saturo method producing higher infiltration capacity values on average
(mean difference = 34.28 mm h−1). In other words, the Saturo method may overestimate
infiltration capacity relative to rainfall simulation.
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Figure 5. Correlations between infiltration capacity values (mm h−1) obtained with each method
(rainfall simulation, automated SSBI, and Saturo) and influencing variables: live biomass and dead
biomass (g m−2), and soil bulk density (g cm−3) in the 0 to 5 cm and 5 to 10 cm depth intervals. Note
that the regression line, adjusted R2, and p-values are based on a log–log relationship, but the scales
on both axes are presented in their original form for better visualization.

5. Discussion

We designed this study with two objectives in mind. The first was to evaluate dif-
ferences in soil infiltration capacity in thicketized woodlands vs. more open grasslands
in the Post Oak Savannah, and the second was to compare three field-based methods for
determining soil infiltration capacity.
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5.1. Effects of Thicketization on Soil Infiltration Capacity

We found that, regardless of soil texture, soil infiltration capacity was higher in
thicketized woodlands than in open grasslands. This finding is based primarily on the
results obtained via rainfall simulation, which (as we explain below) we consider the gold
standard for determining soil infiltration capacity. In addition, this finding is generally
supported by the other methodologies we tested.

Higher infiltration capacity in the thicketized woodland zones is broadly consistent
with what has been demonstrated elsewhere [6,12,13,20,30]. The closest comparison to our
site would be the Cross Timbers region, where juniper is encroaching upon grasslands and
open woodlands. As noted previously, Zou et al. [6] found that infiltration capacity was
three times higher in juniper-encroached areas than in open grasslands—most likely as a
result of the addition of organic matter from leaf litter.

Notably, we found that the highest contrast in infiltration capacity between encroached
woodlands and grasslands occurred at the clay site, which was also the only site subject
to grazing. This aligns with previous studies showing that grazing reduces infiltration
capacity [12,40] and that the contrast between woody and grass cover is most pronounced
in the presence of grazing [50].

While increased infiltration capacity may benefit soil water retention and aboveground
biomass productivity, it does not necessarily translate into higher streamflow or groundwa-
ter recharge, particularly in thicketized landscapes. For example, in regions like the Cross
Timbers, thicketization has been linked to lower streamflows due to enhanced evapotran-
spiration and reduced surface runoff, which is the primary contributor to streamflow in
the region [5,6]. Similarly, Basant et al. [3] found that in a Post Oak Savannah site overly-
ing deep sands, thicketization was associated with greater rooting depths and effectively
eliminated groundwater recharge. Nonetheless, higher infiltration under woody plants
can have positive aspects. At our clay site, for instance, the extremely low infiltration
capacity of the grassland (<10 mm/h) can lead to substantial runoff generation during
storms, contributing to high erosion rates, nutrient and contaminant transport, and flash
floods. Therefore, maintaining areas of thicketized woodlands within grazed grasslands
and pastures could be beneficial for capturing runoff, particularly near riparian corridors,
swales, and drainage depressions prone to gully erosion.

As shown in Figure 5, soil infiltration capacity at our sites was highly correlated with
dead biomass or leaf litter, a finding that also aligns with those of numerous other studies
reporting that litter enhances soil infiltration capacity [51–53]. The lower bulk densities for
soils in thicketized areas (Figure 5) are also likely a reflection of additions of organic matter.
The negative relationship between bulk density, which is an expression of soil compaction,
and soil infiltration capacity has been shown repeatedly [13,50,54,55].

One counter-intuitive result that we found was a negative correlation between infil-
tration capacity and live biomass (Figure 5). For the thicketized zones, the fact that there
was relatively little live biomass on the ground surface compared with the grassland zones
explains the negative correlation. Wilcox et al. [16] found grass biomass to be positively
correlated with soil infiltration capacity, whereas a meta-analysis by Thompson et al. [15]
reported both positive and non-significant relationships, depending on climate. In contrast,
findings from other studies have suggested that the dense root systems associated with
high levels of herbaceous cover may contribute to reduced free pore spaces, which impedes
the movement of water into the soil [56,57].

5.2. Comparison of Methodologies

Rainfall simulators have been widely used to measure surface runoff and infiltration
rates across areas that differ with respect to land use and vegetation cover. As noted above,
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rainfall simulation is often considered the gold standard for determining soil infiltration
capacity [22,58–60] because it is more comparable to natural rainfall than ponding methods
and its gradual wetting of the soil avoids problems such as air entrapment and rapid soil
slaking [58]. Another advantage over ring infiltration methods is that rainfall simulations
are normally performed over a larger soil surface, enabling them to capture greater spatial
variability of factors that influence infiltration capacity (e.g., microtopography and infil-
tration hotspots such as soil macropores). The net result is less variability in infiltration
capacity values [22,23,61]. In the case of our study, the larger measurement area of the
rainfall simulations offers a plausible explanation for the generally higher values than those
obtained with the SSBI method, as well as the lower variability in values than observed
with both the SSBI and Saturo methods.

Some types of rainfall simulators attempt to mimic natural rainfall events to take into
account the effect of raindrops’ kinetic energy on aggregate breakdown and soil sealing.
In our study, we opted to perform simulations from a short distance above the ground
surface to make results more comparable with those obtained by the two ring infiltrometers.
Nonetheless, one potential reason for differences between the rainfall simulation results
and those of the other methods could be the protective effect of leaf litter and herbaceous
cover. Because leaf litter and herbaceous cover—which are known to protect the soil against
surface sealing by soil aggregate breakdown [52,53,62]—were removed for the infiltration
tests with the automated SSBI and Saturo instruments, only the rainfall simulations would
have benefited from this protective effect. This could partially explain why the automated
SSBI infiltrometers yielded lower infiltration capacity values for the sandy soils. Previous
studies have demonstrated that surface sealing can lead to major reductions in infiltration
capacity [44], and that the effect can be accentuated for coarser-textured soils (which tend
to have lower aggregate stability than finer-textured soils) [63].

One drawback of rainfall simulators is that their maximum rainfall intensity imposes
an upper limit on measurable infiltration capacity values—in our case, 154 mm h−1. As
a result, soils with exceptionally high infiltration capacity, such as those observed in the
woodland zone at our sandy site, may exceed this limit, leading to imprecise measurements
and potentially undermining meaningful statistical analysis. Additionally, they are labor-
intensive and often require large volumes of water, making them less suitable for use in
areas with difficult access and limiting the number of replicates.

The Saturo infiltrometer, while fully automated and capable of providing Kfs values
without the need for additional data processing, shares some of these drawbacks. Like
a rainfall simulator, it is relatively bulky and water-demanding, limiting its applicability
in certain field situations. Further, with the Saturo device it is crucial to monitor the
equipment carefully; if the water runs out, the test can be interrupted and the results
lost. Additionally, the Saturo’s complexity and reliance on interconnected components
make it prone to malfunctions requiring specialized servicing, further increasing costs
and downtime.

Consistent with what has been found elsewhere, the Saturo infiltrometer generally
yielded higher infiltration capacity values than the other methods [64]. This difference
could be explained by the methodological approach of the Saturo. In contrast to rainfall
simulation and the automated SSBI method, with which ponding and water-pressure
heads are mostly negligible, the Saturo requires at least one relatively high-pressure head
(10 cm in our study)—which could exaggerate the role of preferential flow. Higher-pressure
heads could cause water to flow to a disproportionately greater extent through preferential
pathways, such as macropores or cracks in the soil, than through the soil matrix [65]. And
the fact that these pathways are more common in finer-textured soils [66] would explain
why the difference in values was particularly striking at the clay soil site.
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Compared with the SSBI method, the Saturo method involves the insertion of heavier-
gauge rings deeper into the soil, which causes greater disturbance to the soil structure,
potentially masking effects of vegetation cover on surface hydraulic properties. This
may also explain the lack of correlation between Saturo data and variables such as veg-
etation biomass or bulk density. In a study conducted across 124 sites in North Amer-
ica, [49] used the Saturo to measure Kfs and found that it was not significantly affected
by land management or soil properties—a finding that contradicts a substantial body of
research [12,39,67–70]. While the authors acknowledged that the limited sampling size
(one point per experimental unit) and the inherently high variability of Kfs likely influenced
their results, we further propose that their use of the Saturo may also have contributed to
these unexpected findings.

For the automated SSBI method, a potential source of uncertainty in the Kfs values
obtained is the choice of the α* value. However, for most applications, large variations in
the α* value would have relatively small impacts on Kfs estimates [71]. For example, even a
10-fold overestimation of the α* value would result in just a 50% error in Kfs estimates [72].
Within each site, the relative differences in Kfs between vegetation covers should be mostly
unaffected by the choice of α* value, as the soil class remains the same. For our clay and
loamy sand sites, the Kfs values obtained with the SSBI method were within the same range
as those obtained by other methods, suggesting that the recommended first-approximation
α* value of 0.012 mm was appropriate. However, for the sandy site, the SSBI method
yielded Kfs values lower than those of the other methods, and this may have been caused in
part by underestimation of the α* value. Thus, with the SSBI method, caution is warranted
in using a fixed α* value to compare Kfs across sites having different soil types.

Despite potential uncertainties, the automated SSBI method’s ability to collect more
replicates in a shorter time offers a clear advantage over both rainfall simulation and the
Saturo method. Being lightweight, requiring less water, and producing results within a range
comparable to those of the other methods—while generally aligning more closely with rainfall
simulation than with Saturo—it offers a practical compromise between the two.

As expected from a single-ring method, the infiltration capacity data obtained with
the SSBI method exhibit greater variability than those from rainfall simulation. How-
ever, the automated SSBI remains more affordable and significantly lighter than the other
two instruments. During our study, one operator using 10 automated SSBI infiltrometers (at
the cost of a single Saturo unit) was able to collect all 20 data points per site in less than four
hours. In contrast, collection of 10 data points with either a Saturo or a rainfall simulator
would take two days because of the time required for setup and testing. Additionally,
the automated SSBI required significantly less water per test (2.2 L or less) than either the
Saturo (5–30 L) or the rainfall simulator (60–80 L). This reduced water demand is especially
advantageous in remote or water-scarce environments, where transporting large volumes
of water may be impractical.

6. Summary and Conclusions

This study compared infiltration capacity determined through the use of three dif-
ferent measurement methodologies: rainfall simulation, automated SSBI, and the Saturo
dual-head infiltrometer method. The tests were carried out at three experimental sites
having soils of different textures (clay, loamy sand, and sandy) and each having both a
grassland and a woodland component. Measurements done with the rainfall simulator
revealed significantly higher infiltration capacity for the woodland-cover zones than for
the grassland zones across all three soil textures. For the woodland zones of the sites with
loamy sand and sandy soils, mean infiltration capacity was more than double that found in
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the grassland zones, and for the woodland zone of the clay soil site it was nearly ten times
higher than for the grassland zone.

Paired t-tests using data from all three sites showed no significant difference in infil-
tration capacity between the rainfall simulation and automated SSBI methods (t = −0.49,
p = 0.627). In contrast, the test results showed a significant difference for the Saturo method
(t = 2.15, p = 0.041), indicating a slight overestimation compared with rainfall simulation.
For both the rainfall simulation and automated SSBI methods, regressions analyses revealed
significant correlations between infiltration capacity and influencing factors (e.g., live and
dead biomass, bulk density), whereas no such correlations were observed for the Saturo.

Each of the three methods tested in this study has its advantages and disadvantages
and was able to generate infiltration capacity values within a comparable range. However,
with respect to ability to capture differences between woodland and grassland covers,
the three differed substantially. The Saturo infiltrometer, while fully automated, showed
high variability and failed to capture significant differences between covers. Rainfall simu-
lation yielded measurements with lower variability and showing significant differences
between grassland and woodland cover on all three sites—but its labor-intensive and
water-demanding nature limits its practicality. The automated SSBI method, despite also
showing high variability, captured differences in infiltration capacity between cover types
at two of the three sites. This method also offers several advantages over the other two,
including the ability to collect a larger number of replicates in less time, portability, and
reduced water requirements. For soils with natural vegetation cover and high spatial
heterogeneity, the SSBI method may be a practical alternative to rainfall simulation.
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Abstract: China’s Dongting Lake area is intertwined with rivers and lakes and possesses
many water systems. As such, it is one of the most complicated areas in the Yangtze River
Basin, in terms of the complexity of its flood control. Over time, siltation and reclamation
in the lake area have greatly weakened the river discharge capacity of the lake area, and
whether it can endure extreme floods remains an open question. As there is no effective
scenario simulation model for the lake area, this study constructs a hydrological model
for the Jingjiang–Dongting Lake system and verifies the model using data from 11 typical
floods occurring from 1954 to 2020. The parameters derived from 2020 data reflect the latest
hydrological relationship between the lake and the river, while meteorological data from
1954 and 1998 are used as inputs for various scenarios with the aim of evaluating the flood
pressure of the lake area, using the water levels at the Chengglingji and Luoshan stations as
indicators. The preliminary results demonstrate that the operation of the upstream Three
Gorges Dam and flood storage areas cannot completely offset the flood pressure faced by
the lake area. Therefore, the reinforcement and raising of embankments should be carried
out, in order to cope with potential extreme flood events. The methodology and results of
this study have reference value for policy formation, flood control, and assessment and
dispatching in similar areas.

Keywords: excess flood volume; Jingjiang–Dongting lake hydrological model; flood control
and disaster mitigation countermeasures

1. Introduction

Floods and droughts are common global challenges at present [1,2]. In particular, major
flood events (e.g., Pakistan in 2022, Libya in 2023, and the Midwest and south of the United
States in 2024) have impacted tens of millions of people and caused property losses worth tens
of billions [3]. Rapid and accurate hydrological forecasting, coupled with the effective planning
and management of water conservancy projects—including reservoirs and dams—has become
crucial in mitigating the impacts of flood and drought disasters [4–6]. Water conservancy
projects play a vital role in reducing flood peaks, supplementing irrigation, and supporting
ecological balance, all of which contribute to sustainable development [7,8]. However, they
also significantly alter the morphology of rivers, leading to uncertainty in flood modeling
and simulation endeavors [9]. Combined with the impacts of climate change, such changes
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present substantial challenges for accurately simulating floods within complex river and
lake systems [10,11].

To date, three types of models have been developed for flood simulation and fore-
casting; namely, hydraulic, hydrological, and data-driven models [12,13]. Among them,
hydraulic models (represented by MIKE and HEC) are widely used globally due to their
clear physical meaning and relatively reliable simulation results [14]. However, for complex
river–lake water networks, models with high efficiency and high-precision flood forecast-
ing capabilities are still under development due to limitations associated with acquiring
refined topography and boundary conditions [15,16]. Traditional hydrological models
(represented by SWAT and the Muskingum method) have achieved remarkable results in
the field of flood simulation due to their high computational efficiency and ease of data
collection [17,18]. However, for river–lake water networks in plains heavily influenced
by human activities and significant erosion and deposition changes, they can no longer
meet the needs of flood simulation. As black-box models, data-driven models simplify
the basic principles of hydraulics through seeking the non-linear relationships between
hydrological elements such as water level and flow rate, playing a significant role in rapid
flood element simulation [19]. However, the effectiveness of these models varies greatly
with the scale of the training dataset and the selection of driving factors [20]. Additionally,
when considering complex river–lake water networks, they ignore the interaction and
hysteresis effects between upstream and downstream hydrological elements, and further
improvements are needed for the simulation of hydrological processes under extreme flood-
ing and drought events. To overcome the shortcomings of each model, some researchers
have studied hydrological–hydrodynamic coupling models and hydrodynamic data-driven
coupling models [21,22]. However, addressing the issue of low operational efficiency in
large and complex river–lake systems without compromising simulation accuracy remains
a key problem [23]. Therefore, it is necessary to build new flood forecasting hydrological
models based on traditional hydrological models, incorporating refined flood simulation
methods while considering erosion and deposition changes through hydrodynamic models
and the operational efficiency of data-driven models, in order to achieve rapid and precise
simulation and facilitate flood control and disaster reduction management.

The Yangtze River is the most flood-prone river in China [24,25]. As an important
flood regulation and storage area of the Yangtze River, the Jingjiang–Dongting Lake reach
has been described as follows: “while the Yangtze River stretches for thousands of miles,
dangers may occur in Jingjiang River and challenges may be confronted by the Dongting
Lake”. To address the complex flood issues in this region, a flood control engineering system
centered on the Three Gorges Reservoir, Jingjiang Embankment, and flood storage and
detention areas has been established through long-term practice and exploration [26–31].
During the flood season, through ensuring that the water level at Shashi City on the
Yangtze River mainstream does not exceed 45 m and the water level at Lianhuatang does
not exceed 34.4 + 0.5 m, the system effectively controls floods below the 1954 standard
(once-in-a-century) in the middle and lower reaches of the Yangtze River, safeguarding
regional flood safety [32,33]. However, in recent years, due to the impacts of climate change
and variations in river discharge capacity, floods have concentrated near Chenglingji,
resulting in a flood control situation in the region that is still severe. In the event of a major
flood, the limited storage capacity of 12.02 billion cubic meters near Chenglingji can be
utilized; however, its activation would have significant economic and social impacts [34,35].

This study takes the Jingjiang–Dongting Lake reach as the research object and assumes
that, under the periodic action of water cycle due to climate change, floods similar to
those in 1954 and 1998 will recur in the Yangtze River Basin. Under the influence of river–
lake erosion and deposition changes and the operation of the reservoir group, significant
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differences can be expected to emerge under the existing river–lake relationships. Through
a predictive analysis using a self-constructed model, this hypothesis was verified and the
flood risks faced by the region under the present river–lake relationships were further
revealed, providing important technical support for rapid flood forecasting and flood
control layout optimization in the basin.

2. Study Area and Data

2.1. Study Area

The Jingjiang–Dongting Lake river section (27.8840◦–30.4383◦ N Latitude and
113.3275◦–111.37742◦ E Longitude) is located in the middle of China, within the mid-
stream of the Yangtze River basin. The Jingjiang River starts from Zhicheng Hydrological
Station and ends at Chenglingji Lianhuatang Hydrological Station, with a total length
of 339 km. The Yangtze River is diverted into Dongting Lake through the Songzi Estuary,
Taiping Estuary, Ouchi Estuary, and Diaoxian Estuary (which have been gated and con-
trolled since 1958). After converging with the waters of Xiangjiang, Zijiang, Yuanjiang, and
Lishui rivers, the combined flow then rejoins the Yangtze River at Chenglingji and flows
out through Luoshan Hydrological Station—a well-known bottleneck of the Yangtze River
where the relationship between water level and flow rate remains stable [35,36]. Xiangtan
Hydrological Station, Taojiang Hydrological Station, Taoyuan Hydrological Station, and
Shimen Hydrological Station are located on the Xiangjiang River, Zijiang River, Yuanjiang
River, and Lishui River, respectively, serving as control stations in their respective down-
stream regions. For a long time, in order to ensure flood control safety within the region as
well as in the middle and lower reaches of the Yangtze River, a total of 27 flood retention
basins have been established, with an effective flood storage capacity totaling 16.68 billion
cubic meters, as shown in Figure 1.

Figure 1. Map of the study area’s location.
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2.2. Data Sources

Considering that this study is primarily focused on the issue of floods, typical high-
water years were selected from the measured hydrological sequences between 1954 and
2024 as the research objects, including 1954, 1983, 1995, 1996, 1998, 1999, 2002, 2003, 2016,
2017, and 2020. Through integrating the measured data, flood survey results, and recon-
struction data from various high flood years, the model construction and flood control
situation analysis were successfully completed. Table 1 outlines the primary sources of me-
teorological and hydrological elements used in this process. Specifically, the investigation
and reconstruction data related to precipitation and floods in 1954 were sourced from the
Hydrology Bureau of the Yangtze River Water Resources Bureau and relevant references.
For other years, the measured hydrological data—including precipitation, water level, and
discharge at Lianhuatang and Luoshan stations—were obtained from the Hydrology Bu-
reau of the Yangtze River Water Resources Bureau and related references [37]. Additionally,
the measured hydrological data for precipitation, water level, and discharge at Xiangtan,
Taojiang, Taoyuan, and Shimen stations were sourced from the Hunan Hydrology and
Water Resources Survey Center. Furthermore, precipitation data for Changde, Chang-
sha, and Yueyang stations were retrieved from the China Meteorological Data Network
(http://data.cma.cn/dataService/cdcindex/datacode/A.0012.0001.html, accessed on 22
September 2023).

Table 1. List of data sources for relevant meteorological and hydrological factors.

Factors Stations Years

Discharge Xiangtan, Taojiang, Taoyuan, Shimen,
Zhicheng, Lianhuatang, Luoshan

1954, 1983, 1995, 1996,
1998, 1999, 2002, 2003,

2016, 2017, 2020
Water level Lianhuatang, Luoshan

Precipitation Xiangtan, Taojiang, Taoyuan, Shimen,
Zhicheng, Changsha, Changde, Yueyang

3. Methods

3.1. Jingjiang–Dongting Lake Hydrological Model
3.1.1. Flood Routing Model

The Jingjiang–Dongting Lake hydrological model, based on the Saint-Venant equations,
simplifies the continuity equation into a water balance equation for the river segment and
the dynamic equation into a storage equation using the empirical hydrological storage
curve method, as follows:

Idt − Qdt = dW, (1)

W = f (Q, I), (2)

where I, Q, and W denote the inflow, outflow, and storage volume of the river segment, respectively.
For the calculation, the storage volume of the river segment and the stage–discharge

relationship curve, which takes the daily stage increase rate, downstream backwater effect,
and initial stage as parameters, are used to rewrite Equation (1) as:

I1 + I2

2
Δt − Q1 + Q2

2
Δt = W2 − W1, (3)

where I1 and I2 represent the inflow at the beginning and end of the time period, re-
spectively; Q1 and Q2 represent the outflow at the beginning and end of the time period,
respectively; Δt represents the time duration (in days); and W1 and W2 represent the storage
volume at the beginning and end of the time period, respectively.
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When performing the specific calculations, Equation (3) is transformed into:

I1 + I2 − Q1 +
2W1

Δt
= Q2 +

2W2

Δt
. (4)

Based on the inflow values I1 and I2 at the beginning and end of the time period,
as well as the initial water level H1, and considering that Q1 W1 is a function of H1, the
relevant calculation curves are utilized to perform the computations:

I1 + I2 − Q1 +
2W1

Δt
= M. (5)

Then, assuming a water level H2 at the end of the time period and considering that
Q2 W2 is a function of H2, the relevant calculation curves are used to compute:

Q2 +
2W2

Δt
= M*. (6)

If the calculated values meet the criteria (with ε representing the allowable error limit),
Q2 and H2 are considered as the desired values at the end of the time period. Otherwise,
the bisection method is used for iterative calculation [38].∣∣∣M* − M

∣∣∣ < ε. (7)

3.1.2. Interval Runoff Generation and Concentration Model

For the interval runoff generation and concentration model, the Coupled Routing and
Excess Storage (CREST) approach was adopted. With the aid of a Digital Elevation Model
(DEM), the watershed was divided into numerous regular units. For each unit, the rainfall
runoff generation is calculated using the storage capacity curve, and rapid and slow runoffs
are distinguished based on the soil’s steady infiltration rate [39]. The main structure of the
model is illustrated in Figure 2.

Figure 2. Flowchart of the CREST Model. (PE: rainfall minus evapotranspiration capacity; IM: imper-
meability factor; Ec: canopy evaporation; Th: thresholds for delineation of slopes and channels; other
symbols are customary in hydrological modelling).
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3.1.3. Parameter Processing

(1) The stage–discharge relationship at Luoshan

The relationship between water level and discharge generally exhibits a complex loop
pattern, and is influenced by backwater from tributaries or fluctuations of flood levels.
For the sake of convenience in calculation, the concept of fluctuation rate is introduced to
simplify the water level–discharge relationship at Luoshan into a cluster of lines.

Assuming that, during the rise and fall of a flood, for the same water level Z within a
time interval Δt, the increment in water level is Δh, the surface slope is ΔI, and the flood
propagation time is U, then:

ΔI =
Δh
ΔL

=
Δh

U·Δt
=

1
U

Δh
Δt

, (8)

According to the Chézy formula, there is a direct proportional relationship between
the discharge at the same water level and the square root of the slope.

Q′

Q
=

√
I + ΔI√

I
=

√
1 +

1
UI

Δh
Δt

, (9)

where Q′ represents the flow rate considering flood fluctuations, Q represents the steady
flow rate, and I represents the slope of the stable flow water surface.

During this process, the relationship between water level and discharge under steady
flow conditions is known and, based on measured discharge data, a relationship curve
between Z and UI can be plotted. Based on this, assuming that there is a power exponential
relationship between water level fluctuations and discharge, the water level–discharge
relationship at Luoshan station under simplified water level fluctuation conditions can be
established as follows:

Z = k1Qm, (10)

where k1 and m are respectively referred to as the ZQ coefficient and the ZQ exponent.
Meanwhile, S—namely, the storage capacity of the composite system with Luoshan

Station as the outlet—exhibits a linear relationship with the outflow discharge Q [40]:

QΔt = Sk2, (11)

where k2 is the outflow coefficient, k2 ∈ (0, 1].

(2) Diversion of water flow through three outlets during high water levels

According to the study by Zhu et al. on the relationship between the diversion flows
at Songzi, Taiping, and Ouchikou and the flow at Zhicheng from 1955 to 2020, the diversion
ratios at gates with Zhicheng flow exceeding 30,000 m3/s follow a linear relationship [41].
These ratios can be calculated using Equations (12)–(14).

Qsongzi = 0.154·Qzhicheng − 850, (12)

Qtaiping = 0.04·Qzhicheng + 100, (13)

Qouchi = 0.3025·Qzhicheng − 5175. (14)

(3) Calculation of excess flood volume

The excess flood volume is calculated by flattening the water level curve, which means
that the cumulative flow remaining after deducting the discharge capacity corresponding

28



Water 2025, 17, 1

to the Lianhuatang water level of 34.4 m is subtracted from the Luoshan discharge process,
and the remaining cumulative discharge is regarded as the excess flood volume.

3.1.4. Parameter Optimization

In this study, the SCE-UA algorithm—which has been widely used in conceptual,
semi-distributed, and distributed hydrological models—was selected for parameter opti-
mization [42–44]. The main parameters optimized include k1, m, and k2.

3.2. Evaluation Indices for Model Effects

For evaluation of model performance, we primarily employed the Nash–Sutcliffe
Efficiency Coefficient (NSE) and the Absolute Error (AE).

3.3. Scenario Design

The impact of controlled water levels on excess flood volumes is significant. This
study explores the reasonable range of controlled water levels at Lianhuatang station from
the perspective of smooth water surface profiles, combined with a fitting analysis of the
correlation between the measured super-warning high flood levels at Lianhuatang station
and those at upstream and downstream control stations from 1954 to 2020.

To avoid the influence of the Three Gorges Dam and upstream cascade reservoirs on
the consistency of the hydrological series, the year 2003 was taken as the dividing point
to separately plot the water levels at downstream Hankou station before and after the
operation of the Three Gorges Dam, in comparison with the water levels at Lianhuatang
station. Through linear fitting it was found that, under high flood conditions both before
and after the operation of the Three Gorges Dam, the correlation between the water levels
at Hankou and Lianhuatang was relatively good, with R2 values exceeding 0.5 in both
cases (Figure 3). When the controlled water level at Hankou is 29.73 m, based on the
correlation before and after the operation of the Three Gorges Dam, the corresponding
controlled water levels at Lianhuatang are 35.45 m and 35.18 m, respectively.

Figure 3. Correlations between water levels at Hankou and Lianhuatang stations before and after the
operation of the Three Gorges Dam.

Based on the current controlled water level and warning water level at Lianhuatang,
along with the calculated controlled water level, further plotting of the measured highest
water levels at Shashi, Jianli, Lianhuatang, Luoshan, and Hankou revealed the following:
the controlled water level surface profile from Shashi to Hankou tends to follow a concave
curve, while the measured high water level surface profile exhibits a trend of first concave,
then convex, and finally concave again, with the water level at Lianhuatang located at the
inflection point of the curve.
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In the observed high-water-level series, the water levels at various stations in 1954,
1980, and 1983 all fell within the ranges defined by the warning and control levels. In 1976
and 1989, despite Wuhan and Luoshan stations recording water levels below the warning
level, Lianhuatang, Jianli, and Shashi stations experienced water levels exceeding the
warning level. In 1988, 1991, 1995, 1996, 2002, 2003, 2010, 2016, 2017, and 2020, when Shashi
station’s water level was below the warning level and Hankou’s was near the warning
level, the water levels at Luoshan and Lianhuatang stations approached or exceeded the
guaranteed level. During the years of 1998 and 1999, when Hankou’s water level was
below the guaranteed level and Shashi’s was close to the guaranteed level, the water levels
at Lianhuatang, Luoshan, and Jianli stations far exceeded the guaranteed level. A statistical
analysis of the relationships between the water levels at various stations and the guaranteed
level in high water years before and after the operation of the Three Gorges Dam, as well
as over the long-term, revealed the following: at Shashi station, the average distance
from the high water level to the guaranteed level was −1.48 m before the dam operation,
−2.97 m after the dam operation, and −1.92 m over the long-term; at Lianhuatang station,
these averages were −0.42 m before the dam operation, −0.45 m after the dam operation,
and −0.43 m over the long-term; and, at Hankou station, the averages were −1.77 m before
the dam operation, −1.93 m after the dam operation, and −1.82 m over the long-term.
Overall, these findings indicate that, regardless of whether the Three Gorges Dam was
operating, the water level near Lianhuatang presented a relatively small difference from
the guaranteed level, leading to prominent flooding issues in the region. Considering
the smoothness of the water surface profile and based on the calculated control levels
of 35.18 m and 35.45 m, only the floods in 1998 and 1999 exceeded Lianhuatang’s control
level (Figure 4).

Figure 4. Relationships between the highest water levels at various control stations and the warning
and control water levels during high flood years.

Therefore, combining the current controlled water levels, water levels analyzed
through correlation analysis, and historical highest flood levels, ten scenarios were set for
flood routing in the years of 1954 and 1998. Meanwhile, based on potential floodwater di-
version and storage plans, an analysis of the regional flood control situation was conducted
under the scenario where the control water level remained unchanged. The specific plan
design is outlined in Table 2.
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Table 2. Scenario design for typical flood years in Dongting Lake area.

Scenarios Year Control Water Level (m) Note

1 1954 34.40 Current controlled water level
2 1954 34.90 Current operating water level
3 1954 35.18 Projected water level after the Three Gorges Dam operation
4 1954 35.45 Projected water level before the Three Gorges Dam operation
5 1954 35.80 Highest historical water level
6 1998 34.40 Current controlled water level
7 1998 34.90 Current operating water level
8 1998 35.18 Projected water level after the Three Gorges Dam operation
9 1998 35.45 Projected water level before the Three Gorges Dam operation

10 1998 35.80 Highest historical water level
11 1954 34.40 Activate Flood Storage and Detention Areas
12 1998 34.40 Activate Flood Storage and Detention Areas
13 1954 34.40 \
14 1998 34.40 \

4. Results

4.1. Training and Verification of Jingjiang–Dongting Lake Hydrological Model

To construct the Jingjiang–Dongting Lake hydrological model, daily hydrological data
from high flood years spanning from 1954 to 2020 and precipitation data from correspond-
ing stations were utilized. Figure 5 and Table 3 present the training and testing results of
the model, from which it can be seen that the simulated flow rates and water levels were
in high agreement with the observed values. Specifically, the Nash–Sutcliffe Efficiency
(NSE) coefficients were no less than 0.86. The absolute error for the highest water level
ranged from 0.02 to 0.26 m, with an average error of −0.06 m, accounting for 0.18% of
the multi-year average highest water level. The absolute error for peak flood flow ranged
from 47.7 to 2643.7 m3/s, with an average error of 315.88 m3/s, accounting for 0.53% of the
multi-year average peak flood flow. This indicates that the model performed excellently in
simulating flow rates and water levels. Meanwhile, all the values were within reasonable
parameter ranges: k1 ranged from 1 to 3.24, k2 from 0.13 to 0.19, and m from 0.21 to 0.32.

Table 3. Evaluation of results and calibration parameters for the Jingjiang–Dongting Lake hydrologi-
cal model (Luohshan station).

Year

Discharge Water Level

NSE
Absolute Error of Peak
Flood Discharge (m3/s)

k2 NSE
Absolute Error of Peak

Water Level (m)
k1 m

1954 0.86 2643.7 0.15 0.86 0.04 2.21 0.24
1983 0.95 −797.8 0.19 0.95 −0.08 2.03 0.25
1988 0.98 326.1 0.19 0.98 −0.18 2.00 0.25
1989 0.94 47.7 0.17 0.94 −0.1 3.24 0.21
1995 0.99 70 0.17 0.99 0.14 1.81 0.27
1996 0.99 71 0.13 0.99 0.26 1.93 0.26
1998 0.98 1712.5 0.18 0.99 −0.18 2.04 0.25
1999 0.99 10.8 0.14 0.99 0.03 2.04 0.25
2002 0.97 144.4 0.17 0.97 −0.20 2.23 0.24
2003 0.98 −379.3 0.15 0.98 −0.23 2.55 0.23
2016 0.98 −72.4 0.13 0.98 −0.02 1.00 0.32
2017 0.98 201.1 0.14 0.98 −0.14 1.51 0.28
2020 0.99 128.6 0.16 0.99 −0.08 1.17 0.31

Average - 315.88 - - −0.06 - -
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(a) Flow rate in 1954 (b) Water level in 1954 

 
(c) Flow rate in 1996 (d) Water level in 1996 

(e) Flow rate in 2016 (f) Water level in 2016 

 

(g) Flow rate in 2020 (h) Water level in 2020 

Figure 5. Comparisons of simulated and observed water levels and flow rates for typical years at
Luoshan station.
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4.2. Impact on Flood Control Situations in Dongting Lake Under Different Flood Scenarios

Relying on the constructed Jingjiang–Dongting Lake hydrological model, in order
to invert the flood impacts on the Dongting Lake area caused by the floods in 1954 and
1998 under the current river–lake relationship conditions, the measured flood series at the
Yangtze River’s Zhicheng boundary was utilized, with the discharge from the Three Gorges
and upstream cascaded reservoirs set to no more than 30,000 m3/s. Given the limited flood
regulation capabilities of the reservoirs on Xiangjiang, Zijiang, Yuanjiang, and Lishui rivers,
the corresponding measured flood series at the boundaries of Xiangtan on the Xiangjiang
River, Taojiang on the Zijiang River, Taoyuan on the Yuanjiang River, and Shimen on the
Lishui River were adopted. The entire model operated under the river–lake relationship
conditions of 2020.

4.2.1. Scenario of Elevated Flood Control Water Level

The overall flood control standard for the middle and lower reaches of the Yangtze
River aims to defend against the largest flood that has occurred since 1949; namely, the
catastrophic basin-wide flood in 1954. The flood control standard for the Jingjiang reach is
for a flood with a 100-year return period [45]. The 1998 flood was another major basin-wide
flood of the Yangtze River, characterized by its large magnitude, wide coverage, long
duration, and severe flooding disasters [46].

Under the river–lake relationship conditions for 2020, the maximum water level at
Lianhuatang station during the 1954 flood was 37.2 m and the maximum discharge at
Luoshan station was 73,770 m3/s. With water level controls at Lianhuatang station set at
34.4 m, 34.9 m, 35.18 m, 35.45 m, and 35.8 m, the excess flood volumes near Chenglingji were
17.864 billion m3, 7.957 billion m3, 6.926 billion m3, 4.418 billion m3, and 1.421 billion m3,
respectively. The excess flood volume in 1954, under the current engineering system,
was basically consistent with the previously studied figure of 17.6 billion m3 [47]. When
the controlled water level at Lianhuatang was raised to 35.18 m, 35.45 m, and 35.80 m,
respectively, compared to the controlled water level of 34.4 m, the excess flood volume
near Chenglingji decreased by 10.938 billion m3, 13.446 billion m3, and 16.443 billion m3,
respectively, with reduction percentages of 61.23%, 75.27%, and 92.05%.

For the 1998 flood, when the controlled water level at Lianhuatang was raised to
35.18 m, 35.45 m, and 35.80 m, respectively, compared to the controlled water level of 34.4 m,
the excess flood volume near Chenglingji decreased by 5.314 billion m3, 7.359 billion m3,
and 7.556 billion m3, respectively, with reduction percentages of 65.28%, 90.41%, and
92.75% (Table 4).

Table 4. Analysis of flood control situation near Chenglingji under different controlled water level
conditions.

Scenarios Year
Control Water

Level (m)
Peak Discharge/34.4 m

(m3/s)
Peak Water
Level (m)

Excess Flood Volume (108 m3)

Before After Reduction

1 1954 34.40 73,770/56,300 37.2 178.64 - -
2 1954 34.90 73,770/56,300 37.2 178.64 79.57 99.07
3 1954 35.18 73,770/56,300 37.2 178.64 69.26 109.38
4 1954 35.45 73,770/56,300 37.2 178.64 44.18 134.46
5 1954 35.80 73,770/56,300 37.2 178.64 14.21 164.43
6 1998 34.40 68,280/56,300 36.4 81.40 - -
7 1998 34.90 68,280/56,300 36.4 81.40 39.66 41.74
8 1998 35.18 68,280/56,300 36.4 81.40 28.26 53.14
9 1998 35.45 68,280/56,300 36.4 81.40 7.81 73.59

10 1998 35.80 68,280/56,300 36.4 81.40 5.90 75.5
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In summary, raising the controlled water level at Lianhuatang can basically address
the excess flood volume near Chenglingji. Moreover, the highest water level during the
historic flood in 1998 reached 35.8 m. Considering the current regional flood control layout,
if the water level at Lianhuatang was raised to 35.8 m, it would only require raising of
the 550 km main dike along the Yangtze River from Jianli to Hankou within the region,
as well as reinforcement of the main dikes totaling 2377 km in length at 11 key polders
and 24 flood storage polders in the Dongting Lake area [34]. Based on the unit investment
cost for the first-phase risk removal and reinforcement of key polders in Dongting Lake,
the estimated cost was CNY 20.376 billion.

4.2.2. Scenario of Using Flood Storage and Detention Areas

Taking into consideration the construction status of flood storage and detention areas,
current operable areas include Chengxi polder (5), Weidihu polder (8), Linan polder (9),
Datonghu dong polder (17), Gongshuangcha polder (22), Qianlianghu polder (23), and
Honghudongfenkuai (26). As shown in Table 5, for the 1954 flood, the excess flood volume
near Chenglingji was 17.864 billion cubic meters. Under current conditions, all completed
flood storage and detention areas would need to be activated, with a cumulative floodwater
storage and diversion of 12.36 billion cubic meters, reducing the peak flow at Luoshan
by 19.07% and lowering the water level at Lianhuatang Station by 0.23 m. For the 1998 flood,
considering economic losses, the effectiveness of floodwater storage and diversion by the
polders, and the need for roughly equal floodwater distribution between Hunan and Hubei
provinces, the activation of Weidihu polder (8), Linan polder (9), Gongshuangcha polder
(22), and Honghudongfenkuai (26) would be required, which would lower the water level
at Lianhuatang Station by 2 m and reduce the peak flow at Luoshan by 17.98%.

Table 5. Analysis of flood control situation near Chenglingji with the activation of different flood
retention basins.

Scenarios Year
Activated Flood
Retention Basins

Peak Discharge (34.4 m) Peak Water Level (m) Excess Flood Volume (108 m3)

Before (m3/s) After (m3/s) Decay Rate Before After Reduction Before After Reduction

11 1954 5, 8, 9, 17, 22, 23, 26 73,770
(56,300)

59,700
(53,900)

19.07%
(4.03%) 37.2 34.9 2.30 178.64 55.04 123.6

12 1998 8, 9, 22, 26 68,280
(56,300) 56,000 17.98%

(0.53%) 36.4 34.4 2.00 81.40 0 81.4

Combining previous studies, the estimated inundation losses from floodwater storage
and detention areas during the 1954 flood were CNY 26.978 billion, while the estimated
inundation losses for the 1998 flood were CNY 11.027 billion [48,49].

After comprehensively considering both the economic cost and the rationality of the
water surface profile, raising the controlled water level at Lianhuatang to 35.8 m and
implementing supporting measures to heighten and reinforce the dikes and polders is
a feasible strategy for flood control and disaster reduction in the middle reaches of the
Yangtze River, especially in the vicinity of Chenglingji.

5. Discussion

5.1. Analysis of the Impact of River–Lake Conditions on the Flood Control Situation
near Chenglingji

Under the condition of raising the controlled water level at Lianhuatang, the impacts
of changes in channel storage due to erosion and deposition, as well as variations in
the discharge capacity of Luoshan, on the excess flood volume within the region cannot
be ignored. Under the determined controlled water level at Lianhuatang, the excess
flood volume near Chenglingji is greatly influenced by the state of the river–lake system,
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especially the diversions at the three outlets of Songzi, Taiping, and Ouchi; the discharging
capacity of Luoshan; and the changes in the storage capacity of the river–lake system.
Table 6 reflects the flood situations in 1954 under the river–lake states of 1983, 1988, 1989,
1995, 1996, 1998, 1999, 2002, 2003, 2016, 2017, and 2020. It is evident that the highest water
level at Lianhuatang Station did not exceed the current controlled water level of 34.4 m
in 1954 under the river–lake states of 1988, 1989, 1996, 2003, and 2017, with no excess flood
volume. This is likely mainly due to the river–lake conditions in the years 1988, 1989,
2002, 2003, and 2017, which were characterized by the convergence of floods from the
Yangtze and Yuanjiang Rivers, floods in the Yangtze River, floods from the Yangtze and
Yuanjiang Rivers, floods from the Yangtze and Lishui Rivers, and floods from the Yangtze,
Xiangjiang, and Zijiang Rivers. These floods mainly originated in the upstream areas,
with combined inflow rates ranging from 54,900 to 66,000 m³/s. When the downstream
water level at Hankou was below 28 m and the drop between Luoshan and Hankou was
maintained in the range of 5.08 to 5.75 m, the attenuation effect on the discharge capacity
of Luoshan was limited, allowing it to remain around the theoretical value of 65,000 m³/s.
This is generally consistent with the discharge capacity of 65,800 m³/s at Luoshan, as
estimated by An Shenyi et al. in 2003, when the water levels at Chenglingji and Hankou
were 34.4 m and 27.5 m, respectively [50]. Adequate discharge capacity ensured that the
floods were transmitted downstream without significant accumulation in the region, thus
not generating excessive flood volumes.

Table 6. Flood control situation near Chenglingji under different river–lake conditions.

Serial
Number

Conditions of
River–Lake Interactions

Peak Water Level of
Lianhuatang Station (m)

Peak Discharge of
Luoshan Station (m3/s)

Excess Flood Volume (108 m3)

34.4 35.8

1 1983 34.6 65,580 3.4 -
2 1988 33.3 60,610 - -
3 1989 33.3 60,399 - -
4 1995 34.6 59,502 3.2 -
5 1996 34.2 59,944 - -
6 1998 34.6 60,736 2.3 -
7 1999 34.5 61,570 0.6 -
8 2002 33.9 63,840 - -
9 2003 33.5 60,961 - -
10 2016 35.7 59,914 57.2 -
11 2017 34.0 60,772 - -
12 2020 37.2 73,770 178.64 14.21

In 1996, the river–lake conditions were characterized by major floods in the middle
and lower reaches of the Yangtze River. With an upstream combined inflow of 64,800 m3/s,
a downstream water level at Hankou of 28.66 m, and a drop of 5.52 m, the backwater effect
was significant, reducing the discharge capacity of Luoshan to 60,000 m3/s. However, with
the initial water level at Lianhuatang at 27.18 m and limited base water in the rivers and
lakes, no excessive flood volumes were generated after centralized storage and regulation.

The river–lake conditions in 1995, 1998, and 1999 were all characterized by major
floods in the middle and lower reaches of the Yangtze River. With upstream combined
inflow rates ranging from 50,700 to 66,900 m3/s, downstream water levels at Hankou
of 27.79 to 29.43 m, and drops of 4.79 to 5.71 m, the backwater effect at Hankou was
significant, reducing the discharge capacity of Luoshan to 60,000 m3/s. Coupled with the
initial high water levels at Lianhuatang (ranging from 28.05 to 29.72 m) and limited storage
and regulation space in the rivers and lakes, the region generated excessive flood volumes
of 0.06 to 0.32 billion m3.
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In 1983, the river–lake relationship had not been reshaped by the multiple floods oc-
curring in the 1990s and still maintained the discharge capacity of 65,000 m3/s determined
in the flood control planning of the Yangtze River Basin in the 1960s. However, due to the
impact of early-stage reclamation, the storage and regulation space in the rivers and lakes
has reduced, resulting in an excessive flood volume of 0.33 billion m3 in the region.

In 2016 and 2020, the river–lake conditions were characterized by high water levels
in the region due to the backwater effect of floods in the Poyang Lake water system
or Hanjiang River water system downstream. When the water level at Hankou was
above 28.3 m and the drop between Hankou and Luoshan was below 5 m, the discharge
capacity of Luoshan further decreased to 53,000–56,000 m3/s. With high initial water levels
at Lianhuatang and reduced storage and regulation space in the rivers and lakes, the region
generated excessive flood volumes of 5.72 to 17.864 billion m3.

5.2. The Limitation of the Study

This study primarily utilized actual flood data recorded in the Yangtze River basin, con-
sidering an ideal regulation scenario where the combined discharge from the Three Gorges
Dam and upstream cascade reservoirs does not surpass 30,000 m3/s. These data were
integrated with the actual flood processes observed in the Xiangjiang, Zijiang, Yuanjiang,
and Lishui rivers, employing a specially constructed hydrological model of the Jingjiang–
Dongting Lake system in order to delve into the flood control challenges faced by typical
high flood water level regions within the current river–lake system (i.e., in 2020). This
analysis holds immense significance for flood control and disaster mitigation initiatives.

However, it is crucial to acknowledge that the ongoing operation of upstream cascade
reservoirs, led by the Three Gorges Dam, alongside the 53 control reservoirs that operate
under the unified management of the Yangtze River—which collectively possess a flood
storage capacity of 70.6 billion m3—will further modify downstream discharges during
flood seasons [51,52]. Subsequently, refined reservoir operations will lead to corresponding
changes in the inflow into tributaries within the Jingjiang–Dongting Lake area. Taking
the 2024 flood season as an illustrative example, the Three Gorges Dam maintained a
minimum discharge of 14,000 m3/s, well below the 30,000 m3/s threshold, thereby notably
enhancing the region’s flood control capabilities.

Moreover, the activation of flood detention basins exerts an interactive influence
on the flood control dynamics of external rivers—an aspect that was simplified in this
study by considering its impact solely on the flood volume of external rivers. Therefore,
future research endeavors must strive to further refine regional inflow optimization ap-
proaches in tandem with control objectives, and incorporate hydrodynamic models of local
flood detention basins to conduct a detailed re-assessment of the region’s future flood
control landscape.

6. Conclusions

A hydrological model of the Jingjiang–Dongting Lake system was constructed using
data from 12 typical high flood years between 1954 and 2020. The Nash–Sutcliffe Efficiency
(NSE) coefficients of the model exceeded 0.86, with an average absolute error in peak flow
simulation of 315.88 m3/s, accounting for 0.53% of the multi-year average peak flow. The
average absolute error in the highest water level was 0.06 m, representing 0.18% of the
average annual highest water level. This indicates that the constructed Jingjiang–Dongting
Lake hydrological model performs well in simulating both flows and water levels.

Based on the river–lake conditions in 2020, the Jingjiang–Dongting Lake hydrological
model was used to study the floods of 1954 and 1998. The findings revealed that, without
activating flood storage and detention areas, raising the control water level at Lianhuatang
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to 35.8 m could reduce the excess flood volume near Chenglingji by 92.05% and 92.75%,
respectively. Alternatively, without raising the control water level at Lianhuatang, activat-
ing the flood storage and detention areas could reduce the peak flow at Luoshan Station
by 19.07% and 17.98%, decreasing the excess flood volume near Chenglingji by 69.19%
and 100%, respectively. From the perspectives of reducing disaster losses and hydraulic
rationality, raising the controlled water level at Lianhuatang to 35.8 m and fully utilizing
the storage capacity of rivers and lakes, while reinforcing and raising the 2377 km of main
levees, can both address the issue of excessive flood volumes and avoid direct losses of
approximately 2.6978 billion Yuan due to flood diversion and storage. This has significant
practical implications for ensuring flood control safety, thus promoting the economic and
social development of the Yangtze River Economic Belt.
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Abstract: This study analyzed 61 years of hydrological data from the Minhe and Xiangtang Hydro-
logical Stations (1956–2016) to examine hydrological changes and ecological flow assurance rates
in the Huangshui River Basin, China. Using the Mann–Kendall trend test, IHA/RVA method, and
ecological flow calculation methods, the study revealed the following results: (1) After 1994, increased
human activity in the Datong River led to a measured runoff decrease compared to natural runoff.
Although human activities in the Huangshui River’s main stream were present before 1972, after
1972, these activities intensified, resulting in a more pronounced decrease in the measured runoff.
(2) Ecological flow analysis indicated that the main stream of the Huangshui River and the Datong
River have ecological flow assurance rates of 100% for all but a few months, where the rates are 98%.
The water volume is sufficiently abundant to meet ecological water demands.

Keywords: human activities; ecological flow; IHA/RVA; ecological flow assurance rates; Huangshui
River Basin

1. Introduction

Climate change and the intensification of human activities are causing a decrease
in river runoff worldwide, posing significant challenges to water resource management
and ecological development. Activities such as agricultural irrigation, water conservancy
projects, and land-use changes can lead to substantial hydrological alterations. Scholars
globally are conducting quantitative research on how these factors affect river runoff.
Climate change is expected to modify the behavior of droughts within watersheds, thereby
threatening drought monitoring and early warning systems [1]. For instance, Sadio et al. [2]
utilized the GR2M model to assess the impact of climate change on runoff characteristics in
watersheds in Senegal and Guinea. The interplay between climate change and watershed
characteristics can influence runoff evolution to varying extents. Based on the Budyko
hypothesis, Lv et al. [3] analyzed runoff and meteorological data from the Huangshui River
Basin, concluding that while runoff showed a non-significant decreasing trend, changes in
watershed characteristics were the primary contributors to the reduction in runoff. Previous
research indicates that human activities are the predominant factor affecting changes in
watershed runoff [4]. Li et al. [5] investigated the impact of human activities on hydrological
and drought dynamics in the Xilin River Basin, revealing that these activities were the main
cause of the significant reduction in runoff, accounting for 68% of the change.

Ensuring ecological flow is essential for sustaining a healthy aquatic ecosystem, espe-
cially amid changes in river hydrological conditions. Hydrological rhythms serve as a vital
reference for establishing reasonable ecological flow rates. Among the various methods for
calculating ecological flow, the hydrological method is the most widely used, including
techniques such as the Tennant method [6] and the 7Q10 method [7]. The data needed for
the Tennant method can be derived from hydrological monitoring stations without the
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need for on-site measurement. In cases where no monitoring station exists for the river
under study, hydrological technology can be employed to obtain the necessary data quickly
and efficiently. However, this method has its limitations, as it does not account for rivers
with high sediment content, pronounced seasonality, significant flow variability, or the
substantial influence of geometric shapes on flow.

Hydrological research encompasses a range of methods, such as wavelet analysis
(WA) [8,9], hydrological change indicators, the hydrological change range method [10,11],
and various hydrological models [12–15]. The Indicators of Hydrologic Alteration (IHA),
introduced by Richter et al. [10] in 1996, represent the most widely adopted indicator
system. To identify indicators that more precisely describe the extent of hydrological
changes, Richter et al. [11] proposed the Range of Variability Approach (RVA) in 1997,
building upon the IHA system. The combination of IHA and RVA offers a more systematic
and comprehensive assessment of river hydrological condition changes through multi-
indicator analysis. IHA is predominantly utilized in hydrological research to evaluate
temporal changes in hydrological conditions due to factors such as human activities, climate
change, and land transformation [16–18], as well as to assess the ecological response to
current or past hydrological conditions in relation to specific ecological variables [19].
Kannan et al. [20] also explored the use of IHA to assess the overall health status of rivers.

The Huangshui River is the largest and most important tributary of the upper reaches
of the Yellow River, and also a concentrated area for economic activities. In recent years, the
level of human activity in the basin has increased, and multiple water conservancy projects
have been constructed, such as the Datong River to Huangshui River Water Diversion
Project and the Yellow River to Xining Water Diversion Project. In this situation, it is
necessary to increase attention to the hydrological changes and ecological flow guarantee of
the long sequence of the Huangshui River and Datong River to provide scientific theoretical
guidance for the construction of water conservancy projects.

Therefore, this study primarily employs the IHA/RVA method and related ecological
water demand methods to analyze the hydrological condition changes in the Huangshui
River Basin and the ecological flow guarantee rates of the Datong River and the Huangshui
River. The aim is to identify the influencing factors and offer targeted recommendations.

2. Study Area

The Huangshui River and the Datong River both originate within Qinghai Province.
The Datong River, originating on Muli Mountain, flows from northwest to southeast and
merges with the Huangshui River at Xiangtangxia, on the border of Gansu and Qinghai
provinces. The Huangshui River, the largest tributary of the upper Yellow River, originates
on Daban Mountain. Its upper reaches, known as the Bawutu River, flow from north to
south before Haiyan, then gradually turn from west to east. Exiting Minhe in Qinghai, the
Huangshui River meets the Datong River in Haishiwan, Gansu Province, and is collectively
referred to as the Huangshui River. It eventually flows into the Yellow River near the Bapan
Gorge in Gansu Province.

The Huangshui River basin has a total controlled area of 32,863 km2. The watershed
area monitored by the Minhe Hydrological Station is 15,342 km2, and that of the Datong
River at the Xiangtang Hydrological Station is 15,126 km2. Together, the Minhe and
Xiangtang stations control a watershed area of 30,468 km2. Established by the Hydrological
and Water Resources Survey Bureau of the Yellow River Commission, these stations observe
various parameters including water level, flow rate, suspended sediment transport rate,
sediment concentration, water temperature, and ice conditions. Since their establishment in
1950, the stations have undergone reorganization and now offer excellent control conditions
for observation. The site of Huangshui River Basin is shown in Figure 1.

For this study, hydrological data from the Minhe and Xiangtang Hydrological Stations
spanning 61 years, from 1956 to 2016, were selected to analyze the hydrological changes
and the ecological flow assurance rate in the Huangshui River Basin. These data include
measured runoff, natural runoff, and precipitation.
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Figure 1. Site of Huangshui River Basin.

3. Study Methods

3.1. Mann–Kendall Mutation Test Method

The Mann–Kendall mutation test is a non-parametric hypothesis testing method used
to examine trend changes in time series. This testing method detects monotonic trends
(upward, downward, or no trend) in time series by comparing the size of each data point
with its previous data points.

In the Mann–Kendall test, the null hypothesis H0 is a time series (x1, . . ., xn) consisting
of n independent, identically distributed samples of random variables, without a certain
upward or downward trend, the alternative hypothesis H1 is a bilateral test, and for all
k, j ≤ n, and k �= j, the distributions of xk and xj are not the same. The test statistic S is
calculated as follows:

S = ∑n−1
k=1 ∑n

j=k+1 sgn(xj − xk) (1)

where, S represents a statistical quantity that follows a normal distribution.

sgn(xj − xk) =

⎧⎨
⎩

1, xj − xk > 0
0, xj − xk = 0
−1, xj − xk < 0

(2)

where, sgn(·) represents the sign function.
When n > 10, the standard normal system variable is calculated by the following formula:

Z =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S−1√
Var(S)

S > 0

0 S = 0
S+1√
Var(S)

S < 0

(3)

where, Z represents the standard normal distribution statistic and Var(S) represents variance.

Var(S) =
n(n − 1)(2n + 5)

18
(4)
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In this way, in the bilateral trend test, if |Z| ≥ Z1−α/2 at a given alpha confidence
level, the null hypothesis is unacceptable. This shows that there is a significant upward
or downward trend in the time series data at the α confidence level. The trend type is
determined by the sign of the statistic Z. Z > 0 indicates an upward trend and Z < 0 indicates
a downward trend. Whether this trend is significant is then determined by the magnitude
of the Z value.

The steps for using the M-K mutation algorithm for mutation testing are as follows:
1© For the time series xi, construct a rank sequence ri to represent the cumulative

number of samples where xi > xj (1 ≤ j ≤ i), and define sk as:

sk = ∑k
i=1 riri =

{
1
0

xi > xj
else

j = 1, 2, . . . , i (5)

2© Assuming the time series is randomly independent, the statistical variable UFk is
defined as [21]:

UFk =
sk − E(sk)√

Var(sk)
(k = 2, 3, . . . , n) (6)

where, UFk—standard normal distribution statistic; E(sk)—the mean value of sk; and√
Var(sk)—the variance of sk.

Among them, UF1 = 0, and at a given significance level α, if |UFk| ≥ Uα, this indicates
a significant trend change in the sequence.

3© Arrange the time series x in reverse order, repeat 1© and 2©, and make:

UBk = −UFk (k = n, n − 1, . . . , 1) (7)

Among them, UB1 = 0. By analyzing the statistical sequences UBk and UFk, we can
further analyze the time nodes of sequence x mutations and display the mutation regions.
If UFk > 0, it indicates that the sequence is showing an upward trend; conversely, UFk
shows a downward trend. When they exceed any critical line, this indicates a significant
upward or downward trend. If the UBk and UFk lines intersect and the intersection point
is between two critical lines, then the moment corresponding to the intersection point is
the moment when the mutation begins.

3.2. Indicators of Hydrologic Alteration (IHA)

To quantitatively assess the effects of human activities on hydrological conditions,
Richter et al. (1996) introduced the Indicators of Hydrologic Alteration (IHA). This com-
prehensive framework comprises 33 distinct indicators categorized into five ecologically
significant components. These components reflect various aspects of hydrological change,
including variability in flow magnitude, frequency of occurrence, timing of events, duration
of hydrologic events, and the rate of change in these conditions (Table 1).

Table 1. Indicators of Hydrologic Alteration and their characteristics.

IHA Parameter Groups Characteristics Indicators

Average monthly runoff Runoff
Time Average monthly runoff value

Annual extreme runoff Runoff
Duration

Annual maximum and
minimum average runoff (1, 3,

7, 30, 90 d)
Period of river interruption

Base flow coefficient
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Table 1. Cont.

IHA Parameter Groups Characteristics Indicators

Extreme runoff
occurrence time Time

Annual maximum and
minimum 1-day runoff

occurrence time

Frequency and duration of
high and low runoff

Runoff
Frequency
Duration

Number of occurrences of
high and low runoff per year
Average duration of high and

low runoff per year

Rate and frequency of
runoff changes

Rate of change
Frequency

Average rate of runoff
increase and decrease

Number of runoff reversals

3.3. Range of Variability Approach (RVA)

In 1997, Richter proposed the Range of Variability Approach (RVA) based on the
IHA index system. The core of this method is to construct the RVA target by adding or
subtracting the standard deviation of the average value of each index before the impact,
or the values of 75% and 25% of the frequency of occurrence of each index as the upper
and lower limits of each index. The degree of hydrological change is evaluated by the
proportion of each index value falling within the RVA target range after the impact and the
difference before the impact. The calculation formula for hydrological change degree is:

Di =
Nio − Nie

Nie
× 100% (8)

where, Nie = rNT,Di is the hydrological change degree of the i-th IHA indicator. When Di
is a positive value, this indicates that the i-th indicator falls within the RVA target after
being affected by human activities, and when Di is a negative value, this indicates that the
i-th indicator falls outside the RVA target after being affected by human activities. Nio is
the number of years in which the i-th indicator still falls within the RVA target after being
affected by human activities. Nie is the expected number of years for the i-th indicator to
fall within the RVA target after being affected by human activities. r is the proportion of
the i-th indicator falling within the RVA target before being affected by human activities.
NT is the total number of years of hydrological series affected by human activities. In order
to objectively evaluate the degree of hydrological change in IHA indicators, this method
divides hydrological change into three levels: 0 ≤ |Di| < 33% is a low degree change, 33%
≤ |Di| < 67% is a moderate change, and 67% ≤ |Di| ≤ 100% is a high degree change.

3.4. Ecological Water Demand Method
3.4.1. Tennant Method

This method considers 10% of the annual average flow as the minimum ecological
water demand of the river, 30% of the annual average flow as the optimal flow to meet
the survival of aquatic organisms, and 60% to 100% as the ecological flow to maintain the
original natural river ecosystem. The calculation formula is:

QT = ∑12
i Qi × Zi (9)

where, QT is the ecological water demand of the river channel (m3), Qi is the average annual
flow rate for the i-th month within a year (m3), and Zi corresponds to the recommended
base flow percentage (%) for the i-th month.

The Tennant method has 8 levels, and the recommended ecological environment water
demand in the river is divided into the general water use period (from October to March of
the following year) and the fish spawning and juvenile period (from April to September).
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The recommended value is based on the percentage of runoff. The recommended runoff of
the Tennant method is shown in Table 2.

Table 2. Recommended ecological flow by Tennant method.

Qualitative Description of
Habitats

Recommended Base Flow Standard (Percentage of Annual
Average Flow)

General Water Use Period (from
October to March of the

Following Year)

Fish Spawning and Juvenile
Period (from April to September)

Maximum 200 200
Optimum flow 60~100 60~100

Excellent 40 60
Very good 30 50

Good 20 40
Become vestigial 10 30

Poor or minimum 10 10
Extremely poor <10 <10

3.4.2. Ecological Flow Assurance Rate and Evaluation Standard

The ecological flow of rivers and lakes is evaluated based on the monthly average
satisfaction level. The degree of ecological flow satisfaction is defined as the ratio of the
number of months where the monthly flow value is greater than the monthly ecological
flow value to the total number of months corresponding to the long-term runoff year. The
calculation formula is:

Di = (Tbi/Ti) × 100%, 1 ≤ i ≤ 12 (10)

where, Di represents the ecological flow guarantee rate for the i-th month, Tbi is the number
of months that satisfy the ecological flow in the i-th month of the calculation year, and Ti is
the total number of months in the i-th month of the calculation year.

The evaluation criteria for the ecological flow satisfaction index are shown in Table 3.

Table 3. Evaluation criteria for ecological flow satisfaction index.

Index
Evaluation Criteria (%)

Excellent Good Medium Poor Inferior

Ecological flow assurance rate 100 95~100 90~95 80~90 <80

4. Result Analysis

4.1. Hydrological Change Trends and Impact Analysis of Huangshui River and Datong River

Measured runoff refers to the amount of water that passes through a certain cross-
section of a river during a certain period of time. Natural runoff refers to the amount of
water that has been reverted from the measured river runoff, which generally refers to
the measured runoff plus the utilization of water above the measured cross-section. A
Mann–Kendall trend test analysis was conducted on the measured annual runoff data of
the Huangshui River’s Minhe section and the Datong River’s Xiangtang section from 1956
to 2016 (Figure 2). At the Xiangtang section, there were four intersections between the UF
and UB curves during this period, occurring in the years 2000, 2007, 2011, and 2013. These
intersections indicate significant shifts in the measured runoff of the Datong River. Prior to
1973, positive UF values suggested an increasing trend in runoff. Between 1973 and 1987,
negative UF values indicated a decreasing trend. From 1987 to 1995, positive UF values
again pointed to an increasing trend. Post-1995, negative UF values with a strengthening
decreasing trend marked a pronounced reduction in runoff.
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(a) (b) 

Figure 2. Annual measured runoff, M-K mutation test. (a) Xiangtang; (b) Minhe.

In the Minhe section, three intersections between the UF and UB curves were observed
in 1963, 1964, and 1965, indicating abrupt changes in the main stream of the Huangshui
River during those years. Before 1965, positive UF values reflected an increasing trend in
runoff. After 1965, negative UF values indicated a decreasing trend that intensified from
1965 to 1980 and then moderated around 1980. The decreasing trend picked up again after
1989, and by around 2004, it began to subside.

Figure 3 shows the natural and measured runoff variations for the Xiangtang and
Minhe sections from 1956 to 2016. The deviation rate of measured runoff, denoted as α,
is calculated using the formula α = (measured runoff − natural runoff)/natural runoff.
Figure 4 shows the variations in the deviation rate.

 
(a) (b) 

Figure 3. Changes in natural runoff and measured runoff of Xiangtang Station and Minhe Station
from 1956 to 2016. (a) Xiangtang Station; (b) Minhe Station.

At the Xiangtang section, prior to 1994, the absolute value of the measured runoff
deviation rate remained under 1%, indicating that the river was predominantly in a natural
state with minimal human influence. Between 1994 and 2016, the absolute deviation rate
increased significantly, ranging from 2% to approximately 30%.

For the Minhe section, before 1972, the absolute deviation rate of measured runoff
was generally under 20%. The linear regression equation y = −0.0014x + 2.6807 reflected
minimal human impact during this period. However, between 1973 and 2016, the absolute
deviation rate consistently increased, typically exceeding 20%, with a peak reaching 45%.
The linear regression equation for this period was y = −0.0029x + 5.4149, featuring a slope
twice that of the pre-1972 period, indicating a significant increase in human activity levels.
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(a) 

(b) 

Figure 4. Changes in deviation rate of measured runoff of Xiangtang Station and Minhe Station from
1956 to 2016. (a) Xiangtang Station; (b) Minhe Station.

Both the Minhe and Xiangtang sections exhibited a rising trend in the absolute devia-
tion rate of measured runoff annually, suggesting an escalating impact of human activities
on the hydrological conditions of these rivers.

Therefore, the Xiangtang section was considered to be in a natural state before 1994,
and after 1994, it transitioned into a phase influenced by both human activities and climate
change. For the Minhe section, it can be approximated as being in a natural state stage before
1972, and after 1972, it entered a stage influenced by human activities and climate change.

Regarding the Xiangtang section, the runoff deviation rates from March to November
showed a decreasing trend under the influence of human activities and climate change, with
rates less than zero, compared to the natural state. However, from December to February of
the following year, the deviation rate was positive, indicating an increasing trend. Except
for February, the runoff in other months displayed moderate to high variability due to
human activities and climate change. The degree of change in hydrological indicators in
Xiangtang is shown in Table 4.

For the Minhe section, the runoff deviation rates from February to December were
negative, reflecting a decreasing trend following an increase in human activity levels,
compared to earlier stages of lower human activity. June and September showed low
variability, while other months exhibited moderate variability. Consequently, it is evident
that there was a significant increase in human activity levels in the main stream of the
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Huangshui River from January to May, July to August, and October to December after 1972.
The degree of change in hydrological indicators in Minhe is shown in Table 5.

Table 4. Degree of change in hydrological indicators in Xiangtang.

Indicator
(Average
Runoff)

1956—1993 (Approximate Natural State)
1994—2016 (Human Activities + Climate

Change)

Mean Value
RVA Target Value (m3/s)

Mean Value
Deviation
Rate (%)

Di (%)
Lower Limit Upper Limit

January 19.52 16.95 22.30 21.29 9.07 −52.17 (M)
February 19.26 17.15 22.55 21.14 9.75 −30.43 (L)

March 25.97 22.80 28.45 25.66 −1.17 −43.48 (M)
April 54.00 45.85 61.90 46.50 −13.89 −65.22 (M)
May 99.19 75.79 118.00 62.65 −36.84 −73.91 (H)
June 131.19 90.91 168.00 91.16 −30.52 −52.17 (M)
July 213.18 174.51 241.00 172.20 −19.23 −60.87 (M)

August 200.42 152.50 258.49 182.89 −8.75 −34.78 (M)
September 171.60 116.51 199.50 167.51 −2.38 −43.48 (M)

October 92.98 71.85 107.00 80.83 −13.07 −43.48 (M)
November 45.25 38.51 52.41 43.43 −4.00 −65.22 (M)
December 26.98 23.15 29.90 30.82 14.23 −69.57 (H)

Table 5. Degree of change in hydrological indicators in Minhe.

Indicator
(Average
Runoff)

1956—1972 (Approximate Natural State)
1973—2016 (Human Activities + Climate

Change)

Mean Value
RVA Target Value (m3/s)

Mean Value
Deviation
Rate (%)

Di (%)
Lower Limit Upper Limit

January 24.02 19.00 28.80 26.47 10.19 −43.18 (M)
February 26.92 21.70 32.16 26.25 −2.48 −36.36 (M)

March 28.16 22.95 32.85 20.65 −26.66 −65.90 (M)
April 33.51 18.30 44.10 28.96 −13.55 −36.36 (M)
May 49.62 22.80 57.55 28.53 −42.51 −43.18 (M)
June 46.76 19.00 73.36 42.28 −9.58 −25.00 (L)
July 85.97 54.51 116.51 71.52 −16.80 −36.36 (M)

August 115.88 63.84 171.50 87.39 −24.59 −38.64 (M)
September 110.31 63.25 171.49 94.74 −14.11 −15.91 (L)

October 81.52 58.36 97.24 72.74 −10.77 −40.91 (M)
November 44.36 33.20 49.34 37.47 −15.53 −52.27 (M)
December 32.48 25.80 37.04 31.98 −1.54 −34.09 (M)

The observed decrease in measured runoff compared to the natural state is attributed
to the combined effects of human activities and climate change. Interestingly, this analysis
also noted an increase in runoff during specific months: from December to February at the
Xiangtang Station and from January at the Minhe Station. The following analysis explores
the reasons for these increases.

The primary source of runoff in the Huangshui River basin is atmospheric precipita-
tion, with rainwater as the predominant source and snow as the secondary source. The
year can be divided into distinct hydrological periods: the spring flood season from May to
June, replenished by the melting of ice and snow in the upstream areas and rainfall; the
summer and autumn flood season from July to early September, mainly supplemented
by large-scale precipitation; the autumn normal water period from October to December,
primarily supported by groundwater recharge and river channel storage; and the winter
dry season from January to April of the following year, mainly sustained by groundwater
with a small and stable water volume.

After increases in human activity levels, the months when runoff at both Xiangtang
and Minhe Stations increases correspond to the river’s dry season. While not entirely
excluding the influence of climate change, considering the ‘flood storage and dry discharge’
operation mode of reservoirs, it can be inferred that the increase in runoff during the dry
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season is likely related to the discharge practices of the upstream reservoirs relative to the
hydrological stations.

The difference between the annual natural runoff and the annual measured runoff at
Xiangtang Station is used to estimate the volume of water extracted by human activities in
the Datong River. Similarly, the difference at Minhe Station can be used to estimate water
extraction in the main stream of the Huangshui River. The changes in these values from
1956 to 2015 are depicted in Figures 5 and 6.

Figure 5. Changes in water withdrawal from human activities at Xiangtang Station.

Figure 6. Changes in water withdrawal from human activities at Minhe Station.

Before 1994, human activity levels in the Datong River Basin were relatively low,
resulting in small volumes of water being taken from the river, with natural runoff closely
aligning with measured runoff. Since 1994, the volume of water extracted by human
activities in the Datong River Basin has gradually increased, with a notable spike around
2004. Concurrently, there were significant increases in human activity levels in 1999 and
2014. The Mann–Kendall (M-K) mutation test identified breakpoints that suggest human
activities as the primary cause of the sudden changes in the Datong River runoff.

The significant increases in water withdrawal at Xiangtang Station in 1999 and 2014
are attributed to specific developments. The first phase of the Datong-to-Huangshui
River Diversion Project, which includes the Heiquan Reservoir and the first phase of the
Huangshui North Main Canal, began construction in 1996. The Heiquan Reservoir started
intercepting the river flow in 1997 and completed its main project, allowing for water
storage, in 2001. The second phase of the project, featuring the Shitouxia Reservoir and
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the second phase of the Huangshui North Main Canal, concluded at the end of 2014 with
the completion of the Shitouxia Hydropower Station. The construction and operation of
these projects have significantly impacted water withdrawal, as evidenced by the abrupt
increases in 1999 and 2014.

Although human activities in the main stream of the Huangshui River were present
before 1972, water withdrawal from the river exhibited only slight fluctuations, remaining
relatively stable. However, since 1972, there has been a gradual increase in the level of
human activity. Between 1972 and 1989, the volume of water extracted through human
activities saw a gradual rise. From 1989 to 2004, human activity levels escalated further, but
there was a notable decrease around 1999. Post-2004, water intake has gradually decreased.

The Mann–Kendall (M-K) mutation test indicates that the changes in human activi-
ties within the Huangshui River Basin generally correspond to various breakpoints and
trends identified in the analysis. These findings suggest that human activities have had a
significant and evolving impact on water withdrawal patterns over the years.

The significant decrease in human activities in the Huangshui River Basin around
1999 can be attributed to several factors. The Hehuang Valley, primarily shaped by the
Huangshui River, is a region of intense human activity on the Qinghai–Tibet Plateau and
an early center of human activity within the Yellow River Basin. According to the Qinghai
Provincial Water Resources Bulletin, irrigation water consumption for farmland in the
Huangshui River Basin constitutes the largest portion of total water consumption, ranging
from 45% to 55%. This is followed by water consumption for forestry, animal husbandry,
fishing, and other livestock-related activities. The primary sources of irrigation water in
the basin are river withdrawal and natural precipitation, with climate factors exerting a
significant influence on irrigation needs.

Analyzing precipitation data, the Huangshui River Basin experienced relatively high
levels of rainfall from 1997 to 1999, contrasting with both the preceding and subsequent
three-year periods. In other years, higher precipitation was often an isolated event. The
sustained high precipitation over three consecutive years likely led to a reduction in the
amount of water extracted from rivers for agricultural irrigation in 1999. Additionally,
in 1998, nationwide heavy rainfall and catastrophic floods in major river basins severely
impacted farmland, which in turn affected agricultural production and led to a decrease in
irrigation water usage in the following year.

The annual variation in precipitation at the Minhe Station, which provides insight into
these climatic influences, is illustrated in Figure 7.

Figure 7. Annual variation of precipitation at Minhe Station from 1956 to 2015.

As depicted in Figure 8, the total amount of human water withdrawal at the Xiangtang
and Minhe Stations indicates a gradual increase in human activity levels in the Huangshui
River Basin since 1972. The activity level has remained relatively stable since 1980. However,
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a significant surge occurred in 1994, followed by a decline after 2007. Notably, there was a
sharp increase in 2014, after which the withdrawal rate gradually decreased.

Figure 8. Total human water withdrawal in the Huangshui River Basin.

This pattern suggests that while human activity in the basin has been generally
consistent since the 1980s, there have been notable fluctuations, particularly in the late
1990s and early 2000s. These changes likely reflect shifts in water management practices,
agricultural demands, and possibly climate-related factors affecting water availability
and demand.

4.2. Analysis of Ecological Flow Assurance Rate

The Tennant method is used to determine the ecological flow at the Xiangtang and
Minhe sections by designating 30% of the natural average flow from 1956 to 2016 as the
ecological flow for each section. As per the Implementation Rules of the Yellow River Water
Dispatching Regulations, the minimum flow requirement for a 95% assurance rate at the
Xiangtang Station of the Datong River is set at 10 m3/s. Based on this method, the annual
average ecological flow at the Xiangtang Station is calculated to be 28.42 m3/s, with an
annual ecological water demand of 896 million m3.

Similarly, for the Minhe section in the main stream of the Huangshui River, 30% of
the average natural flow from 1956 to 2016 is used to calculate the ecological flow. With
the warning flow rate of 8 m3/s as stipulated in the same regulations, the annual average
ecological flow for the Minhe section is determined to be 19.98 m3/s, with an annual
ecological water demand of 631 million m3.

The monthly ecological flow calculation results of the two sections are shown in
Table 6. These calculations ensure that the ecological needs of the river systems are met
while also considering the regulatory requirements for water flow management.

The ecological flow assurance rate for the Xiangtang section of the Datong River is
98% in January, classifying the ecological flow satisfaction as ‘good’ for that month. For all
other months, the rate is 100%, indicating an ‘excellent’ ecological flow satisfaction level.
Similarly, the Minhe section of the Huangshui River has ecological flow assurance rates of
98% in March, August, and September, with a ‘good’ satisfaction degree for those months,
and 100% in other months, reflecting ‘excellent’ satisfaction. The specific results are shown
in Table 7.

These data indicate that the Datong River and the main stream of the Huangshui River
have sufficient water volumes to meet ecological water demands throughout the year, with
only a slight decrease in assurance rates during specific months. The ecological health of
both rivers is generally well-maintained, demonstrating a strong capacity to support their
respective ecosystems.
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Table 6. Ecological flow rate of cross-section Unit: m3/s.

Month
Hydrology Stations

Xiangtang Minhe

January 10 8.32
February 10 8.65

March 10 10.13
April 17.8 22.16
May 28.87 18.57
June 37.80 20.72
July 60.87 28.43

August 58.54 31.28
September 52.19 31.14

October 29.95 31.13
November 15 18.43
December 10 10.21

Table 7. Evaluation of ecological flow assurance rate.

Month
Ecological Flow Assurance Rate (%) Ecological Flow Satisfaction

Datong River Huangshui River Datong River Huangshui River

January 98 100 Good Excellent
February 100 100 Excellent Excellent

March 100 98 Excellent Good
April 100 100 Excellent Excellent
May 100 100 Excellent Excellent
June 100 100 Excellent Excellent
July 100 100 Excellent Excellent

August 100 98 Excellent Good
September 100 98 Excellent Good

October 100 100 Excellent Excellent
November 100 100 Excellent Excellent
December 100 100 Excellent Excellent

5. Conclusions and Suggestions

Since 1994, there has been an increase in human activity levels in the Datong River,
resulting in a measured runoff that has shown a decreasing trend when compared to
the natural runoff. Although human activities were present in the main stream of the
Huangshui River before 1972, after 1972, these activities intensified, leading to a more
pronounced decrease in measured runoff compared to the natural runoff.

Ecological flow analysis indicates that the ecological flow assurance rates for both
the main stream of the Huangshui River and the Datong River are 100% for all months
except for a few, where the rates are 98%. This suggests that the water volume is relatively
abundant and capable of meeting the ecological water demand.

The Datong-to-Huangshui River diversion Project marked significant milestones
with successful water supply in the main canal by the end of 2015 and in the North and
West main canals in September 2023. These achievements underscore the importance of
monitoring the hydrological changes and ecological flow of the Datong and Huangshui
rivers, influenced by the project, to ensure the stability and health of the river ecosystems.

Ensuring stable water supply and ecological flow assurance rates involves a combina-
tion of management strategies, technological solutions, and regulatory measures. Here are
some specific measures that can be taken to maintain these aspects:

Water Allocation Management: Implementing a comprehensive water allocation plan
that prioritizes ecological needs while balancing human consumption and agricultural de-
mands.

Flow Regulation: Adjusting the operation of reservoirs and dams to maintain min-
imum ecological flows, especially during dry seasons. This can involve releasing water
from reservoirs to supplement natural flows.
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River Connectivity: Ensuring that rivers and their tributaries remain connected to
facilitate the movement of aquatic species and maintain ecological integrity.

Monitoring Systems: Establishing real-time monitoring systems to track water levels,
flow rates, and water quality. These data can be used to make informed decisions about
water management.

Climate Resilience Planning: Developing strategies to adapt to climate change impacts,
such as increased variability in precipitation and higher temperatures, which can affect the
flow of rivers and water availability and quality.

Stakeholder Engagement: Involving local communities, industries, and other stake-
holders in water management decisions to ensure that all perspectives are considered and
that solutions are sustainable and equitable.

Regulatory Frameworks: Enforcing regulations that limit water extraction and protect
water resources, ensuring that ecological flow requirements are met.

Restoration Projects: Undertake river restoration projects to improve habitat condi-
tions, reconnect fragmented habitats to ensure the continuity of flow, and enhance the
overall health of river ecosystems.

Education and Awareness: Raising public awareness about the importance of maintaining
ecological flows and the role of water in supporting biodiversity and ecosystem services.

Research and Innovation: Supporting research into new technologies and methods for
water management, such as artificial intelligence for predicting water needs and optimizing
water allocation.

By integrating these measures, it is possible to ensure that water supply and ecological flow
assurance rates remain stable, supporting both human needs and the health of river ecosystems.
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Abstract: The Northwest Arid Region faces the most serious resource-based water shortage in China,
with challenges from engineering-, structural- and management-based water shortages. This water
scarcity critically limits the socio-economic development of the region. Rational allocation of scarce
water resources to achieve sustainable development of the ecological environment and economy has
become a key issue in water resources research in the Northwest Arid Region. South-Central Ningxia,
part of the Northwest Arid Region, exemplifies these challenges. This paper examines the urban
and rural water supply projects in South-Central Ningxia. The current scheduling scheme focuses
primarily on the distribution of water demand, with inadequate attention paid to water-quality
requirements. Localized exceedances of water-quality standards indicate the existing scheduling
scheme has failed to effectively control water-quality issues while ensuring water quantity. This study
is the first to systematically evaluate the impact of the South-Central Ningxia Water Supply Project on
water quality alongside field surveys and data analysis and propose an optimized scheduling scheme
that addresses both water quantity and quality needs. The main findings are as follows: 1. Overall
water quality is good, except for consistently high total nitrogen levels. 2. The optimized scheme
significantly reduced total nitrogen levels, achieving a maximum reduction rate of 78.81%, and met
all Class III standards.

Keywords: water quantity and quality; scheduling; water transfer projects; environmental impact
assessment; optimal allocation of water resources

1. Introduction

Effective and equitable water distribution is an important means for ensuring the sus-
tainable use of water resources [1], and for achieving overall regulation of a basin’s water
cycle [2]. As water resource shortages and environmental pollution intensify globally, a water
resource model focused solely on water quantity allocation no longer meets the needs of
society. The integrated allocation of water quantity and quality has become a major concern
for the sustainable use of water resources in various countries [3]. However, compared to
single-objective dispatching, this combined allocation approach is more complex and requires
a comprehensive consideration of water distribution, the assimilation capacity of water func-
tional areas, and the improvement of water efficiency, thereby unifying the mechanisms and
joint optimization of water consumption and pollutant capacity [4].

Regarding water quantity and quality evaluation prediction and optimal scheduling, two
primary methods are currently used: field monitoring and numerical simulation. Masse first
proposed the issue of reservoir optimization scheduling in the 1940s, aiming to achieve a ratio-
nal allocation of water resources [5]. With advances in computer technology, water resource
system analysis, optimization, and simulation technologies have rapidly developed [6]. By
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1971, Marks had introduced linear programming for water resource systems, promoting the
widespread application of mathematical programming and simulation techniques in water
resource optimization scheduling [7]. In 1978, Shafer and Labadie proposed a watershed man-
agement model [8], marking a significant breakthrough in the technical application of water
resource management. The water resources management model developed by the Canadian
Inland Waters Centre, one based on linear programming and network flow algorithms, was
successfully applied to the Ottawa River Basin and the Great Lakes region in 1982 [9]. In the
late 1980s, research on water resource allocation began incorporating hierarchical theory and
gradually shifted towards multi-objective optimization [10]. In 1987, Willis et al. [11] used
linear programming to accurately simulate the joint scheduling of surface water, groundwater,
and reservoirs and solved the integrated management problem of a single reservoir and its
underlying aquifer using the SUMT algorithm. Percia et al. [12] developed a multi-source
integrated scheduling model that includes the utilization of groundwater, surface water, and
recycled wastewater, aiming to maximize economic benefits. In the 1990s, the application
of visualization technology and decision support systems promoted the development of
multi-user, multi-objective water resource allocation models [3]. To achieve visualization of
water resources decision analysis, Camara et al. [13] developed a multidimensional simulation
decision model based on logical relationships and vector calculations. Hamalalnen et al. [14]
investigated multi-criteria water resource management and Multi-Stakeholder Decision Sup-
port systems. At the end of the 20th century, further development was made in water resources
allocation. In 2000, Rosegrant et al. [15] combined hydrological models with economic models
to assess the benefits of optimizing water resource allocation and applied this approach to
the Maipo River Basin in Chile. In 2002, McKinney et al. [16] proposed a framework for
simulating watershed water resource allocation based on Geographic Information System
(GIS) technology. The application of GIS technology enabled managers to better understand
and analyze the spatial distribution and trends of water resources, leading to decisions which
were more scientific. These studies made meaningful attempts at optimizing water resource
allocation, applying emerging optimization techniques to water resource system models and
providing additional tools and methods for achieving rational water resource allocation and
management.

In the early stages of water resource optimization, excessive emphasis was placed on
rapid economic and social development, neglecting the crucial attribute of water quality,
which led to a failure to address the diverse water-quality requirements of different users
and the impact of wastewater discharge on the water environment within the social water
cycle [17]. With the advancement of theoretical theories in water resource management,
studies on water resource optimization have evolved from solely analyzing water quantity
allocation to models integrating both water quantity and quality and have shifted from
pursuing economic optimization to seeking overall benefit optimization while paying
more attention to the coordinated development of ecology and economy [18]. By 1990,
Pingryd et al. [19] had developed a joint water quantity and quality scheduling Decision-
Support system to address issues related to water resource allocation and water pollution
treatment balance. In 1992, Mehrez [20] employed a nonlinear programming model to
establish a multisource water supply system, incorporating various regional reservoirs and
groundwater wells. That same year, Afzalet al. [21] used linear programming models to
determine irrigation strategies for each crop based on differentiated water quality. In 1997,
Avogadro et al. [22] created a water resource planning decision procedure that, considering
water-quality constraints, simulated both water quantity and quality. This procedure
analyzed the extent to which different allocation schemes met the temporal and spatial
water-quality targets and pollutant reduction progress goals within a watershed, thereby
determining the optimal water resource allocation scheme. To manage the combined use of
surface water and groundwater, Wong [23] incorporated measures to prevent groundwater
degradation within a two-step nonlinear optimization model. By 2002, Campbell et al. [24]
had coupled the HEC-5C water-quality model with the MODSIM water quantity model
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to study the impacts of surface water and groundwater diversion mixing and dilution on
water quality, and examined the results under different scenarios.

The Northwest Region of China, despite possessing the majority of land and mineral
resources, faces severe water scarcity due to poor water resource combination, which
constrains its economic development [25]. The increasing population, coupled with rising
water demands from industrial and agricultural sectors, exacerbates water pollution and
results in the irrational exploitation and utilization of water resources. Consequently, there
is a substantial shortfall in socio-economic water use, and the ecological environment in
the arid northwest has become increasingly fragile [26]. Ningxia, part of this Northwest
Arid Region, exemplifies these challenges. The current water supply projects in Ningxia
have significant deficiencies, leading to water-quality exceedances that hinder the region’s
development. To address these issues, this paper conducts a study on the optimization of
the water allocation scheme based on water quantity and quality demand for the South-
Central Ningxia Urban and Rural Water Supply Project to ensure regional water security
and provide a reference for developing and implementing optimal water resource allocation
schemes in other regions.

2. Materials and Methods

2.1. Research Area and Project Overview

The South-Central Ningxia Urban and Rural Water Supply Project (Figure 1) is a
water resource optimization and allocation project that transports abundant surface water
from the Jing River basin on the eastern slopes of the Liupan Mountains in the south to
the arid and water-scarce regions in the central and northern parts of Guyuan. The first
intake point of the project is the Longtan Reservoir, located in the source area of the Jing
River, a first-order tributary of the Wei River. The project’s average annual water intake
is 39.8 M m3, with seven intake points distributed along the route. The main regulating
reservoir, Zhongzhuang Reservoir, is located 10 km south of Guyuan in a primary tributary
of the Qingshui River. The auxiliary regulating reservoir, Nuanshui River Reservoir, is
situated at the outlet of the Qinjia Valley.

2.2. Methodologies

This study evaluates the water quality of the South-Central Ningxia Urban and Rural
Water Supply Project and simulates an optimized scheduling scheme based on water quality
and water-quantity standards.

2.2.1. Water-Quality Analysis Methods

From 2019 to 2022, intake points were monitored every six months for fluoride, pH,
sulfate, dissolved solids, and total hardness, with focused monthly monitoring from March
2020 to February 2021 for 29 factors including temperature, pH, permanganate index,
dissolved oxygen, ammonia nitrogen, chloride, and nitrate. Zhongzhuang Reservoir
was monitored monthly during the same period for the same 29 factors, providing a
comprehensive four-year water-quality assessment. Monitoring sections were set up at each
intake point (Table 1), with water quality monitored according to China’s “Environmental
Quality Standards for Surface Water” (GB3838-2002) [27]. Table 2 outlines the specific
testing methods used to monitor various water-quality parameters. All of the data are
provided by the Liupanshui Water Authority in Ningxia.

Table 1. Surface water quality monitoring sections at intake points.

Section Name River Section Property

Longtan Reservoir Jing River mainstream Reservoir Center
Shi Ju Zi Cedi River mainstream Intake Point

Hongjia Canyon Jing River branch Intake Point
Qingjia Gully Nuanshui River mainstream Reservoir Front
Baijia Gully Nuanshui River branch Intake Point
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Table 1. Cont.

Section Name River Section Property

Qingshui Gully Jie River branch Intake Point
Woyang Valley Jie River mainstream Intake Point

Longtan Reservoir Jing River mainstream Reservoir Center

Figure 1. Engineering site location map.
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Table 2. Water quality parameters and corresponding testing methods.

Data Type Testing Method

Permanganate Index (mg/L) Acid Process
Bio-chemical Oxygen Demand (BOD5, mg/L) Dilution and Inoculation Test

pH Glass Electrode Method
Fluoride (mg/L) Fluoride Reagent Spectrophotometry

Ammonia Nitrogen (mg/L) Nessler’s Reagent Spectrophotometry
Total Phosphorus (mg/L) Molybdate Spectrophotometry

Nitrate (mg/L) Phenol Disulfonic Acid Spectrophotometer
Sulfate (mg/L) Ion Chromatograph

Chloride (mg/L) Silver Nitrate Titration
Chemical Oxygen Demand (COD) Dichromate Titration

Total Hardness EDTA Titration

The equipment used included an Atomic Absorption Spectrophotometer (A3, Shi-
madzu, Kyoto, Japan); Ion Chromatograph (ICS-90, Dionex, Sunnyvale, CA, USA); Gas
Chromatograph (Agilent 7890B GC, Agilent Technologies, Santa Clara, CA, USA); Elec-
tronic Balance (BSA224S-CW, Sartorius, Göttingen, Germany); Electro-Optical Analyti-
cal Balance (TG328A, Shimadzu, Kyoto, Japan); Spectrophotometer (UV751-GD model,
Shanghai Metash Instruments Co., Ltd., Shanghai, China); Spectrophotometer (721 model,
Shanghai Analytical Instrument Factory, Shanghai, China); Spectrophotometer (722S model,
Shanghai Precision & Scientific Instrument Co., Ltd., Shanghai, China); Infrared Oil Meter
(IR-200A, Infralyt, Berlin, Germany); pH Meter (PB-10 model, Sartorius, Göttingen, Ger-
many); Conductivity Meter (DDS-307A, Shanghai INESA Scientific Instrument Co., Ltd.,
Shanghai, China); Atomic Absorption Spectrophotometer (4530F, Beijing Ruili Analytical
Instrument Co., Ltd., Beijing, China).

2.2.2. Simulation of Water Supply System Optimization Model

The optimization of the water supply system was simulated using the Storm Water
Management Model (SWMM Version 5.1), which is specifically designed to simulate urban
hydrological and hydraulic conditions. SWMM effectively handles various flow scenarios
such as surface runoff, infiltration, pipe network flow, and river flow [28]. In this model, the
drainage system is represented by a network of nodes and connecting pipes, in which each
node can serve as an inflow point, confluence point, or outflow point. The model accurately
tracks and simulates the quantity and quality of runoff generated by each sub-basin across
different time steps, as well as the flow and water-quality changes within pipes and tunnels.

Pipe Network Water Quantity Model

SWMM simulates water flow movement based on the Saint-Venant equations for
unsteady free-surface flow, which conserves mass and momentum [29]:

∂A
∂t

+
∂Q
∂x

= 0 (1)

∂Q
∂t

+
∂
(

Q2

A

)
∂x

+ gA
∂H
∂x

+ gAS f = 0 (2)

A is the cross-sectional area of flow; t is the time coordinate; Q is the flow rate; x is the spatial
coordinate; H is the hydraulic head; Sf is the friction angle; g is the gravitational acceleration.

Nodes in the system are categorized into non-storage types (such as junction nodes)
and storage types (such as ponds and tanks). The model ensures flow conservation at sys-
tem nodes using the node continuity equation, where the total area of a node is composed
of its storage surface area and the surface area contributions of connected pipes [30]. The
change in the hydraulic head at a node is approximated by the following equation [31]:

dH
dt

=
∑ Qin − ∑ Qout

A
(3)
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where Qin and Qout are inflow and outflow rates, and A is the total area of the node.
The model uses the surface areas of the node and connected pipes in a finite difference

computation with an iterative method, solving implicit solutions at a set time step. Outflow
boundary conditions are user-defined and can be constants, time-series extractions, or
based on critical or normal flow depths [32].

Pipe Network Water-Quality Model

In the SWMM model, the concentration change of dissolved components along the
pipe is simulated through the mass conservation equation:

∂c
∂t

= −∂(uc)
∂x

+
∂

∂x

(
D

∂c
∂x

)
+ r(c) (4)

c is the constituent concentration (ML−3); u is the longitudinal velocity (LT−1); D is the
longitudinal dispersion coefficient; and r(c) is the reaction rate term.

Boundary conditions in SWMM are defined by the water-quality concentration at the
end nodes of the transport network [31]. For non-storage nodes, the concentration is the
flow-weighted average of inflow and outflow masses. For storage nodes, complete mixing
is assumed, and concentrations are updated using a simplified mixing equation based on
the mass conservation equation:

c(t + Δt) =
c(t)V(t)e−K1Δt + CinQinΔt

V(t) + QinΔt
. (5)

V(t) is the water volume in the reactor and e−K1Δt is the decay factor, with K1 being the
first-order reaction rate constant.

Model Calibration Validation

The model was calibrated using data collected from the water source intake points
on 8 April 2020. Calculations were performed to determine the water volumes and pollu-
tant distributions at various depths and concentrations along different pipelines over the
corresponding period. The simulation results show an average relative error of only 3.8%
compared to the measured data.

Further validation, using monitoring results from 9–17 April 2020, showed an average
error of just 1% (Figure 2). These results indicate that the model has high precision and
reliability and can be used for joint optimization and scheduling simulation of water
quantity and water quality.
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Figure 2. Model calibration and verification at intake points: (a) calibration results and (b) valida-
tion results.

3. Results and Discussion

3.1. Overall Water Quality

Figure 3 illustrates the basic water-quality parameters along the project route. Monthly
monitoring data were collected from each intake point of the water supply project and
the Zhongzhuang reservoir from March 2020 to February 2021. The water temperature
ranged from 1 ◦C to 24.2 ◦C, with a median of 12.0 ◦C. Dissolved oxygen levels were
between 6.15 mg/L and 11.01 mg/L (median: 8.4 mg/L). The permanganate index varied
from 0.73 mg/L to 3.54 mg/L (median: 1.25 mg/L), while biochemical oxygen demand
(BOD) was from 0.03 mg/L to 2.44 mg/L (median: 0.82 mg/L). The pH values ranged from
6.99 to 9.37, with a median of 8.33. For total phosphorus and fluoride, some sections and
periods showed values below detection limits, with medians of 0.03 mg/L and 0.23 mg/L,
respectively. Ammonia nitrogen concentrations ranged from 0.01 mg/L to 0.68 mg/L
(median: 0.1 mg/L). Total nitrogen levels were between 0.33 mg/L and 6.08 mg/L (me-
dian: 1.30 mg/L). Nitrate concentrations varied from 0.2 mg/L to 5.92 mg/L (median:
1.135 mg/L). Chloride levels ranged from 6 mg/L to 157 mg/L, with a median of 15 mg/L,
and sulfate levels ranged from 8 mg/L to 741 mg/L, with a median of 124.5 mg/L.

When compared with the concentration limits of the Surface Water Environmental
Quality Standards, the levels of dissolved oxygen, permanganate index, biochemical
oxygen demand (BOD), pH, fluoride, nitrate, and chloride were mostly at Class I levels.
Approximately 80% of sulfate measurements were at Class I levels. As for total phosphorus,
about 60% of measurements were at Class II levels and 40% at Class I. Ammonia nitrogen
was at Class I levels for around 70% of the measurements, with 30% at Class II. Total
nitrogen was generally at Class IV levels, but this is typically not used as an assessment
indicator. Overall, the water quality over the monitoring period of one year was good, with
most key indicators meeting Class II standards or higher.

3.2. Water-Quality Investigation and Evaluation of Zhongzhuang Reservoir

To understand the current water quality of the water source in the project area, a surface-
water-quality survey of Zhongzhuang Reservoir was conducted. Monitoring was carried out
monthly from 2019 to 2022. The results (Figure 4) indicated that the pH value (8.0), perman-
ganate index concentration (1.20–1.80 mg/L), five-day biochemical oxygen demand (BOD5)
concentration (0.71–1.77 mg/L), ammonia nitrogen (NH3-N) concentration (0.04–0.21 mg/L),
chemical oxygen demand (COD) concentration (3.75–11.03 mg/L), dissolved oxygen con-
centration (8.00 mg/L), total phosphorus (as P) concentration (0–0.04 mg/L), and sulfate
(SO4

2−) concentration (89–125 mg/L) all met the Class III water-quality standards set by the
“Environmental Quality Standards for Surface Water”. However, the total nitrogen (as N)
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concentration (0.84–1.40 mg/L) consistently exceeded the standard but showed a fluctuating
downward trend, indicating the potential to meet the Class III water-quality standards in
the future. Dissolved oxygen concentration exhibited clear seasonal variation, being lower
in summer and higher in winter, while the permanganate index and ammonia nitrogen
concentrations were higher in summer and lower in winter. Other indicators did not show
significant seasonal variations throughout the year.

 

Figure 3. Water-quality parameter comparison: (a) Temperature (◦C); (b) Dissolved Oxygen (mg/L);
(c) Permanganate Index (mg/L); (d) Biochemical Oxygen Demand (BOD5, mg/L); (e) pH; (f) Fluoride
(mg/L); (g) Ammonia Nitrogen (NH3-N, mg/L); (h) Total Phosphorus (mg/L); (i) Nitrate (mg/L);
(j) Total Nitrogen (mg/L); (k) Sulfate (SO4

2−, mg/L); (l) Chloride (mg/L), as compared to standards
in the urban and rural areas of southern Ningxia.
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Figure 4. Water-quality trends for (a) pH Values; (b) Permanganate Index; (c) Biochemical Oxygen
Demand (BOD5); (d) Ammonia Nitrogen (NH3-N); (e) Chemical Oxygen Demand (COD); (f) Dissolved
Oxygen (DO); (g) Total Phosphorus; (h) Sulfate (SO4

2−); and (i) Total Nitrogen at Zhongzhuang Reservoir.

3.3. Water-Quality Investigation and Evaluation of Intake Points

Based on China’s “Environmental Quality Standards for Surface Water” (GB3838-
2002) [27], water-quality monitoring was conducted at various intake points over four
years from 2019 to 2022, with monitoring conducted every 6 months. Additionally, from
March 2019 to March 2021, intensive monthly monitoring focused on Total Nitrogen (TN)
as a key factor.

3.3.1. Water-Quality Changes from 2019 to 2022

The pH monitoring results (Figure 5a) show that all monitoring points exhibited
similar variation patterns, with most results meeting the Class III water-quality standards.
Only Shi Ju Zi and Longtan Reservoir sections exceeded the standards, and only for a few
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months. The pH values peaked and hit their lowest point in April 2020, with Longtan
Reservoir reaching its peak and other points, including Baijia Gully, hitting their lowest.
Baijia Gully recorded the lowest pH value, at 7.04. Fluoride concentration monitoring
results (Figure 5b) indicate that most levels were far below Class III standards, except
for the Baijia Gully section in August 2019, where the fluoride levels were close to the
upper limit of Class III standards. Dissolved total-solids pollution was relatively severe
across the sections (Figure 5c), and these concentrations were generally higher in the
autumn across various sections. Baijia Gully section was the most prominent, showing
concentrations between 947 and 1586 mg/L, except for the August 2019 measurement,
while all other measurements failed to meet Class III standards. Baijia Gully section
also exhibited significant total hardness pollution (214–625 mg/L) (Figure 5d) and sulfate
concentration pollution (300–621 mg/L) (Figure 5e), while these types of pollution were
relatively less severe at other sections.
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Figure 5. Water-quality trends of (a) pH Values; (b) Fluoride Concentration; (c) Total Dissolved Solid
Concentration; (d) Total Hardness; and (e) Sulfate Concentration at different intake points.

3.3.2. Water-Quality Trend of Key Factor (TN) from 2020 to 2021

Based on the overall water-quality changes, further monitoring and analysis of Total
Nitrogen (TN) concentrations were conducted from 2020 to 2021 (Figure 6). The results
indicate that, except for the Hongjia Canyon section, most sections exhibited serious TN
pollution, failing to meet the Class III water-quality standards set by the “Environmental
Quality Standards for Surface Water” (GB3838-2002) [27]. The concentration of total ni-
trogen showed obvious differences between the different points, and the fluctuation was
significant. The Qingshui Gully and Woyang Valley sections were particularly affected,
with all measurements falling short of the Class III standards. In contrast, the Hongjia
Canyon section showed relatively low TN pollution, meeting the Class III standards in all
monitoring results except for June 2020.
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Figure 6. Water-quality trends of total nitrogen (as N) concentration at (a) Baijia Gully; (b) Long-
tan Reservoir; (c) Qinijia Gully; (d) Qingshui Gully; (e) Shi Ju Zi; (f) Woyang Valley; and
(g) Hongjia Canyon.

3.4. Optimization Scheduling of the Water Supply System
3.4.1. Design Schemes

The water intake volume determined in the “Preliminary Design of Urban and Rural
Drinking Water Safety Source Project 2012” was used as the baseline scheduling scheme.
To address issues such as the widespread exceedance of Total Nitrogen (TN) concentrations
at some intake points, an optimized scheme was designed by adjusting the water intake
volume. The optimization schemes follow the principle of “more water diversion in
wet season, less water diversion in normal season, and no water diversion, as far as
possible, in dry season”, and all intake points and reservoirs give priority to ensuring
10% ecological water quantity in the river and water demand outside the river. According
to water-quality monitoring data, when the TN concentration at an intake point exceeds
3 mg/L, water intake at that point will cease, and its flow will be redistributed among other
intake points to ensure the total diverted water volume remains unchanged (Optimization
Scheme 1). If the TN concentration exceeds 2 mg/L, water intake at that point will cease
(Optimization Scheme 2). Although the Class III standard for TN concentration is 1 mg/L,
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the threshold values of 2 mg/L and 3 mg/L are thought to be responsible for degradation
of TN concentrations along the way.

The water intake volumes for the three design schemes are shown in Table 3.

Table 3. Optimization of water intake scheme (m3/s).

Scheme Month Shi Ju Zi
Longtan

Reservoir
Hongjia
Canyon

Qinjia
Gully

Baijia
Gully

Qingshui
Gully

Woyang
Valley

Total

Baseline Scheme

1 28 74 8 42 7 11 5 175
2 23 54 6 40 7 10 4 144
3 26 65 7 48 8 13 5 171
4 47 139 16 42 7 11 4 266
5 56 195 18 40 6 11 20 345
6 47 168 17 42 6 13 21 314
7 59 266 29 66 8 28 35 492
8 51 288 32 78 9 40 45 544
9 51 278 33 90 10 52 55 568
10 33 183 20 78 9 40 43 405
11 36 142 20 72 10 28 20 327
12 24 101 13 55 8 17 11 229

total 481 1950 218 692 96 275 268 3980

Optimization
Scheme 1

1 0 74 8 0 7 0 5 94
2 23 54 6 0 7 0 4 94
3 0 65 7 0 0 0 5 77
4 68 139 16 53 0 0 4 280
5 61 195 18 129 6 0 20 429
6 0 168 17 119 6 0 21 571
7 0 313 29 94 8 0 35 479
8 0 376 32 109 9 0 45 571
9 0 478 33 0 10 52 55 628
10 33 271 20 0 9 40 43 416
11 0 217 26 0 12 44 36 335
12 0 214 13 0 8 0 11 246

total 185 2564 225 504 82 136 284 3980

Optimization
Scheme 2

1 0 74 8 0 0 0 5 87
2 23 54 6 0 0 0 4 87
3 0 65 7 0 0 0 17 89
4 79 193 22 0 0 0 0 294
5 68 195 18 131 13 0 0 425
6 0 192 17 91 14 0 48 362
7 0 353 34 131 13 0 53 584
8 0 375 37 144 14 0 66 636
9 0 539 58 0 13 0 0 610
10 0 279 29 0 12 0 45 365
11 0 219 26 0 13 0 36 294
12 0 0 26 0 14 0 0 40

total 170 2538 288 497 106 0 274 3980

3.4.2. Simulation Analysis of Scheduling Scheme
Zhongzhuang Reservoir Simulation Results Analysis

The annual Total Nitrogen (TN) concentration simulation results of different schedul-
ing schemes for Zhongzhuang Reservoir are shown in Figure 7, and the monthly average
TN concentration simulation results are presented in Table 4. Using the baseline scheduling
scheme, the predicted TN concentration in Zhongzhuang Reservoir exceeded the Class III
standard for 192 days, with a non-compliance rate of 52.89%. The baseline scheme simula-
tion results display significant TN concentration peaks, particularly in January, September,
and December.
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Figure 7. Annual total nitrogen (TN) concentration (mg/L): simulation results for Zhongzhuang
Reservoir under different schemes.

Table 4. Monthly average total nitrogen (TN) concentration simulation result (mg/L) for
Zhongzhuang Reservoir under different schemes.

Month Baseline Scheme Optimization Scheme 1 Optimization Scheme 2 Class Standard III

1 1.51 0.44 0.38 1
2 1.46 0.36 0.39 1
3 1.04 0.41 0.38 1
4 0.79 0.68 0.59 1
5 0.84 0.67 0.65 1
6 0.88 0.59 0.63 1
7 0.96 0.60 0.62 1
8 1.11 0.84 0.76 1
9 1.11 0.99 0.78 1
10 0.98 0.73 0.57 1
11 1.22 0.80 0.39 1
12 1.52 0.76 0.31 1

The simulation results of Optimization Schemes 1 and 2 indicate that by reasonably
adjusting the intake volumes and water diversion month at the intake points, the TN
concentration in Zhongzhuang Reservoir can be effectively reduced, leading to a more
stable annual water quality. Particularly during the autumn and winter seasons, the annual
predicted TN concentration shows a more noticeable decrease. Specifically, in Optimization
Scheme 1, the annual TN concentration exhibited a noticeable downward trend, with
February showing the most significant change, achieving a maximum reduction rate of
78.81%. The predicted maximum reduction rate reached 78.81%, and the monthly average
concentration decreased from 1.46 mg/L to 0.36 mg/L, a difference of 1.1 mg/L. How-
ever, the reduction during the spring and summer seasons was minimal, with 21 days of
TN concentration exceeding the standard in August and September, while the maximum
exceedance concentration reached 1.19 mg/L. The average monthly TN concentration in
September was 0.99 mg/L, slightly below the standard. In contrast, the average monthly
TN concentration under Optimization Scheme 2 was only 0.76 mg/L in September. The
predicted maximum annual reduction rate reached 83.66%, and all simulation results
met the Class III standard. In critical months like October to December, Optimization
Scheme 2 avoided significant TN concentration peaks. In December, the average monthly
TN concentration was 0.31 mg/L under Scheme 2, compared to 1.52 mg/L under the
baseline scheme. These lower concentrations in the autumn months help reduce the risk
of water-quality deterioration during the dry season (January to March), ensuring better
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management of potential pollution peaks. Therefore, Optimization Scheme 2 is recom-
mended for Zhongzhuang Reservoir to ensure compliance with water-quality standards
and sustainable use of the water source.

Simulation Analysis of Water Diversion Tunnels

The simulated section location of the water diversion tunnel is shown in Figure 8. To
understand the water-quality distribution along the water diversion system, a simulation
analysis was conducted for the water transfer tunnels (Table 5). The simulation results for
Optimization Scheme 1 indicate significant water-quality improvements in Tunnels 1, 4, 6,
and 8. Compared to the baseline scheme, the number of days exceeding the standard in
Tunnel 1 decreased from 317 to 135 days. In Tunnel 4, the exceedance days were reduced to
104, dropping the exceedance rate to 28.57%. For Tunnel 6, the exceedance days decreased
to 131, with the rate falling to 35.99%. Tunnel 8, the most downstream, showed a substantial
reduction to 46 exceedance days, lowering the rate to 12.64%. Further comparison of the
simulation results for Optimization Scheme 2 reveals even more obvious improvements
in Tunnels 1, 4, 6, and 8. In Tunnel 1, exceedance days were reduced to 83, with an
exceedance rate of 22.80%. For Tunnel 4, the exceedance days dropped to 57, lowering the
exceedance rate to 15.66%. In Tunnel 6, the exceedance days were reduced to 34, and the
exceedance rate was 9.43%. Finally, in Tunnel 8, the exceedance days significantly decreased
to 11, with an exceedance rate of only 3.02%. In summary, Optimization Scheme 1 and
Optimization Scheme 2 demonstrated obvious advantages over the baseline scheme in
improving water quality, with Optimization Scheme 2 maintaining much lower exceedance
rates and demonstrating improvements which were remarkable and more stable.

Table 5. Simulation results for water intake tunnel.

Tunnel
Number

Baseline Scheme Optimization Scheme 1 Optimization Scheme 2

Exceedance
Days

Exceedance
Rate

Exceedance
Days

Exceedance
Rate

Exceedance
Rate

Exceedance
Rate

1 317 87.09% 135 37.09% 83 22.80%
4 347 95.33% 104 28.57% 57 15.66%
6 364 100% 131 35.99% 34 9.43%
8 282 77.47% 46 12.64% 11 3.02%

The annual simulation results of the cross-sections of the water diversion tunnels under
different scheduling schemes are shown in Figure 9. Optimization Scheme 2 demonstrates
a more stable degradation of total nitrogen (TN) along the route, leading to a consistent
improvement in water quality. Both the baseline scheme and optimization Scheme 1 exhibit
an increase in TN concentration along Tunnel 4, mainly due to the severely high TN concen-
trations from the Baijia Valley intake point. During October to December, these two schemes
experienced water-quality deterioration and a surge in TN concentration, with consistently
high TN peaks in September. Optimization Scheme 2 effectively addresses these issues by
adjusting the water intake scheme, resulting in a more stable TN degradation along the
route and significant improvement in water quality. Compared to the baseline scheme and
Optimization Scheme 1, Optimization Scheme 2 achieved more noticeable reductions in TN
concentration from upstream (Tunnel 1) to downstream (Tunnel 8) in October to December,
indicating that early interventions effectively prevented high-TN water from entering the
system, resulting in a more stable water quality across all tunnels. Starting from Tunnel 6 in
September, the TN concentration peaks were significantly lower in Optimization Scheme 2.
The average monthly TN concentration in September was reduced by 0.47 mg/L compared
to the baseline scheme, whereas Optimization Scheme 1 only achieved a reduction of 0.21
mg/L. This indicates that Optimization Scheme 2’s overall reduction strategy is robust, with
cumulative effects becoming significant downstream. Even if some TN enters the system, it
can be effectively managed and reduced as the water flows through each tunnel.

68



Water 2024, 16, 2181

Figure 8. Simulated cross-section location of water intake tunnel.
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Figure 9. Simulation results for (a) No.1; (b) No.4; (c) No.6; and (d) No.8 intake tunnels under
different schemes.

The key factors contributing to the superiority of Optimization Scheme 2 include
strategic increases in water diversion during critical months and effective redistribution
of water in high-TN areas. In August, the TN concentration in Qinjia Gully approached
the Class III standard, and Optimization Scheme 2 increased the water diversion from
Qinjia Gully (from 109 to 144 m3/s), coupled with a significant increase in diversion in
September (from 568 to 628 m3/s). These measures ensured that low-N water diluted
the TN concentration, helping to flush out accumulated pollutants and maintain better
water quality. These actions ensured that TN levels remained low not only in August
and September but also in the following months. This further proves the superiority of
Optimization Scheme 2 over Scheme 1, indicating that Optimization Scheme 2 is more
suitable as the final optimized scheme to ensure improved water quality and reliable
scheduling effects.

In summary, Optimization Scheme 2 provides stable and consistent TN degradation,
effectively solving the water-quality decline caused by excessive TN concentrations at
the Baijia Valley intake point. However, this study focused solely on the optimization of
total nitrogen, without addressing other water-quality indicators. While other indicators
generally met quality standards, some monitoring points exhibited short-term exceedances.
Future studies should comprehensively consider multiple indicators, including pH, total
dissolved solids, and sulfates. Additionally, the improvements in water quality achieved by
altering water transfer plans are temporary. Long-term solutions should involve proactive
protection of the water source area to prevent water-quality issues from occurring at
the source.

4. Conclusions

Using the South-Central Ningxia Urban and Rural Water Supply Project as a case
study, this research employs the Storm Water Management Model to develop an optimized
scheduling scheme based on water quantity and quality demand, following a thorough
evaluation of the water quality at intake points and the water source. The main conclusions
are as follows:

1. Water-Quality Evaluation of Intake Points: The results indicate that the overall water
quality in the intake area is good, with most indicators meeting Class III water-quality
standards. However, there are instances of excessive total nitrogen and sulfate levels,
particularly in Baijia Valley, where sulfate and dissolved solids concentrations exceed
the standards to a considerable extent. Therefore, further efforts are needed to enhance
water environment management and governance.
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2. Water-Quality Evaluation of Zhongzhuang Reservoir: The results show that the
overall water quality of Zhongzhuang Reservoir is good, except for consistently high
total nitrogen levels. Other monitored factors meet Class III water-quality standards.
After water from the intake points mixes and degrades along the route, the total
nitrogen concentration upon reaching Zhongzhuang Reservoir is close to the Class
III standard.

3. Water-Quality Simulation Results: The simulation results reveal that using the design
water intake volume specified in the “Preliminary Design of Urban and Rural Drinking
Water Safety Source Project 2012,” the predicted annual total nitrogen concentration
in Zhongzhuang Reservoir exceeds the standards throughout the year, with an over-
standard rate of up to 52.89%. After the optimization scheme was adopted, the
annual predicted total nitrogen concentration in Zhongzhuang Reservoir significantly
decreased, with the maximum reduction rate reaching 78.81% and all simulation
results meeting the Class III standards of the “Environmental Quality Standards for
Surface Water”.

In conclusion, according to the “Technical guideline for delineating source water
protection areas” (HJ 338-2018) [33], issued by theMinistry of Ecology and Environment of
the People’s Republic of China, it is essential to scientifically delineate each intake point
and regulate reservoirs as water source protection areas and give them priority protection.
Additionally, there is a need to strengthen environmental risk assessments for water sources,
which includes screening potential risk sources and identifying potential risk types, as
well as assessing their risk levels. Finally, a comprehensive water-quality monitoring and
early warning system needs to be established, including regular patrols of water bodies
within the protection areas and continuous water-quality monitoring to prevent pollution.
Implementing these measures will likely enhance scientific management and scheduling
and provide valuable insights for other regions, promoting the sustainable utilization of
regional water resources.
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Abstract: Analyzing the changes in vegetation under different factors is crucial for ecological protec-
tion in arid areas. The spatial-temporal variations of vegetation in the lower reaches of the Tarim
River (LRTR) from 2000 to 2020, were analyzed using the Theil-Sen estimator and the Mann-Kendall
test. The future trends of NDVI are projected to use the Hurst exponent method. The driving
mechanisms of vegetation changes were analyzed using the GeoDetector method and multivariate
residual analysis. The NDVI values in the LRTR significantly increased during the study period,
indicating good vegetation recovery. The overall vegetation level remains poor and was primarily
concentrated around the riverine areas. There is still a risk of vegetation degradation in most areas of
the future LRTR. Compared to climate change, vegetation was more affected by human activities.
Human activities have helped restore the riparian vegetation and prevented the degradation of
vegetation far from the river. Therefore, distance from river channels is the strongest explanatory
factor (q = 0.078) for vegetation changes, followed by precipitation, and temperature, while changes
in slope have minimal impact on vegetation. Statistics have found that when two factors are com-
bined, their impact on vegetation change is stronger. These findings are beneficial for identifying
vegetation evolution patterns in LRTR and providing theoretical support for the government to carry
out ecological restoration.

Keywords: vegetation dynamics; remote sensing; environmental restoration; driving mechanisms;
Geodetector method

1. Introduction

Vegetation plays a crucial role in regulating the regional climate, and maintaining soil
and water conservation, making it a vital component of the ecological environment [1].
Because of the intensification of climate change and frequent human activities, ecological
problems in arid areas are becoming increasingly severe [2]. Evaluating vegetation dynam-
ics and further analyzing the driving mechanisms behind them have become crucial for the
management and restoration of ecosystems in arid areas [3]. In order to achieve sustainable
development and ecological conservation, the issue of vegetation restoration has garnered
widespread attention worldwide [4–6].

In the study of vegetation dynamics, remote sensing data are widely used due to the
advantages of continuous time series, wide coverage, and high spatial resolution [7,8]. By
performing statistical analysis on the Normalized Difference Vegetation Index (NDVI),
information on vegetation coverage and growth conditions can be obtained [9,10]. The
Theil-Sen median estimator [11] coupled with the Mann-Kendall test [12,13] is a commonly
used method for analyzing spatiotemporal changes in vegetation. This method is less
susceptible to the influence of outliers and can more accurately describe the spatial and
temporal variation characteristics of surface objects. Emamian et al. [14] discovered that
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NDVI in northern Iran exhibited a declining trend from 2004 to 2015. Sun et al. [15]
indicated that in the Haihe River Basin, NDVI increased in 2000–2013. Therefore, exploring
the driving mechanisms behind vegetation spatiotemporal changes has become a new
research focus.

Residual analysis is utilized to examine the driving factor that influences NDVI, [16,17]
and has been widely applied to research the contributions of human activity and climate
change to vegetation cover changes. Yang, et al. [18] found that in the Han River Basin,
human activity and climate change have generally promoted NDVI increase in non-urban
areas. Liu, et al. [19] analyzed that climate change is the primary influence factor of NDVI
increase on the Qinghai-Tibet Plateau, accounting for 68.05% of the observed increase.
The Geodetector method is commonly used to analyze the spatial changes of vegetation
and accurately identify the driving factors behind them [20]. Numerous researchers have
employed the Geodetector method to investigate the impact factors driving the spatial
and temporal changes of NDVI in different areas, such as Inner Mongolia [21], the Loess
Plateau [22], and the Heihe River Basin [23]. This statistical method uncovers the factors in-
fluencing the temporal and spatial changes of vegetation cover, providing a comprehensive
analysis of the variables [24].

The research area of this article is located in the lower reaches of the Tarim River
(LRTR) in northwest China. The local drought and water shortage have led to a very
fragile ecosystem [25]. Since 2000, the basin management organization has implemented
ecological water conveyance (EWC) to artificially intervene in the vegetation of the LRTR,
aiming to restore the degraded ecological environment. This paper investigates the spa-
tiotemporal change process of NDVI in the LRTR using the Theil-Sen Median estimator
coupled with the Mann-Kendall test. The impact of human activities and climate change on
vegetation change was quantitatively evaluated through residual analysis. The impact of
different driving factors on vegetation spatial change was evaluated using the Geodetector
method, which helped clarify the mechanisms driving vegetation change and the research
results provide theoretical support for the implementation of ecological restoration and
management in LRTR.

2. Study Area and Data Processing

2.1. Study Area

The Tarim River, situated in northwest China, is the longest inland river in the coun-
try [26,27]. The climate in the basin is arid, with low annual precipitation (116 mm), high
average annual temperature (10 ◦C), and extremely high evaporation (2200 mm) [28]. The
geographical scope of LRTR is the area between the Daxihaizi Reservoir and the Taitema
Lake. The local vegetation is dominated by species such as Populus euphratica and Hip-
pophae rhamnoides, with a low vegetation coverage rate [29,30]. Vegetation growth heavily
relies on groundwater, rendering the ecological environment extremely fragile. The Tarim
River divides into two channels at the Daxihaizi Reservoir. The northern channel is called
the Qiwenkuoer River, while the southern one is the Old Tarim River. These two channels
converge at Alagan. Since the late 20th century, because of the unreasonable exploitation
and allocation of water resources in the upstream area [31], the available water volume in
the downstream has sharply decreased. This has led to serious ecological problems such
as the decline of groundwater level, the reduction of vegetation, and the decrease of the
area of the terminal lake [29,32]. In 2000, the Tarim River Basin Authority launched EWC
to restore the ecosystem in the LRTR [33], conveying water from the Daxihaizi Reservoir
through the old Tarim River and Qiwenkuoer River, to the downstream area. The river
water ultimately flows into the terminal Taitema Lake, playing a pivotal role in restoring
riparian vegetation [34]. See Figure 1.
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Figure 1. Schematic diagram of the LRTR: (a) geographical location of the Tarim River Basin in China;
(b) geographical location of the LRTR in the Tarim River Basin; (c) elevation and river distribution in
the LRTR.

2.2. Data Source and Preprocessing

This study utilized high-resolution NDVI data (16-day, 500 m) from the MOD13Q1
product, and analyzed vegetation changes by calculating the annual average NDVI data.
The precipitation and temperature data (monthly, 1 km) were sourced from the National
Tibetan Plateau/Third Pole Environment Data Center (http://data.tpdc.ac.cn, accessed
on 28 July 2024) [35,36]. This study converted the monthly scale data to an annual scale in
order to calculate the influence of climatic factors on vegetation.

The DEM data (90 m resolution) was obtained from the Geospatial Data Cloud website
(https://www.gscloud.cn, accessed on 28 July 2024). ArcGIS 10.4 software was used to
calculate slope data using the DEM data. Further calculations were made to determine
the distance between different grids and river channels, in order to analyze the impact of
EWC on riparian vegetation. The Tarim River Basin Authority provided the EWC data,
including the volume and the duration. The time range of this study spanned from 2000 to
2020, and the grid accuracy is unified at 1 km. See Figure 2.
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Figure 2. Diagram of the study data: (a) average NDVI; (b) annual precipitation (mm); (c) annual
average temperature (◦C); (d) elevation (m); (e) slope (◦); (f) distance to the river channel (m).

3. Method

3.1. Theil-Sen Estimator

The Theil-Sen estimator is recognized as a reliable non-parametric approach for trend
analysis [37], and was proposed by Pranab K. Sen [38]. In contrast to approaches that rely
on time series conformity, this method adeptly manages minor outliers and missing data.
This study used it to compute the slope between successive data pairs within the NDVI
dataset. The overall trend within the NDVI changes is represented by the median slope
computed from the following calculations:

SlopeNDVI = Median
( xj − xi

j − i

)
, ∀j > i (1)

where SlopeNDVI represents the median of all slope data. If SlopeNDVI > 0, reveals a
growing tendency in NDVI; if SlopeNDVI < 0, shows a decline in NDVI over time. xi and
xj represent the two variables at time i and j, respectively.

3.2. Mann-Kendall (M-K) Significance Test

The Mann-Kendall significance test is combined with Theil-Sen estimator to assess
the significance of time series trends [39,40]. In this study, it was employed to evaluate
vegetation trends which were calculated as follows:

Z =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S√
V(S)

(S > 0)

0(S = 0)
S + 1√

V(S)
(S < 0)

(2)
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S =
n−1

∑
i=1

n

∑
j=i+1

Sign
(

xj − xi
)

(3)

V(S) =
n(n − 1)(2n + 5)

18
(4)

sign(NDVIj − NDVIi) =

⎧⎨
⎩

1, NDVIj − NDVIi > 0
0, NDVIj − NDVIi = 0
−1, NDVIj − NDVIi < 0

(5)

where n refers to the length of the dataset. If the |Z| is greater than 1.65, 1.96, or 2.58
respectively, it indicates that the trend has passed the significance test at a confidence level
of 90%, 95%, and 99%, respectively.

The integration of the Theil-Sen estimator and the M-K significance test effectively
captured the diverse spatial distribution of vegetation change characteristics. By overlaying
the Sen’s slope results with those of the M-K test, the changes in NDVI can be classified
into nine categories. See Table 1.

Table 1. The classification of NDVI changes.

Sen’s Slope Z Value Trend Characteristics

β > 0

2.58 < Z Extremely significant increased
1.96 < Z ≤ 2.58 significant increased
1.65 < Z ≤ 1.96 slightly significant increased

Z ≤ 1.65 Non-significant increased
β = 0 0 No changes

β < 0

Z ≤ 1.65 Non-significant decreased
1.65 < Z ≤ 1.96 slightly significant decreased
1.96 < Z ≤ 2.58 significant decreased

2.58 < Z Extremely significant decreased

3.3. Hurst Exponent Method

The Hurst exponent, originally established by Hurst [41] and later improved by
Mandelbrot [42], is a measure used to assess the persistence of changes in time series. It is
calculated using the rescaled range analysis (R/S) method and assisted in revealing the
autocorrelation within the time series, particularly emphasizing long-term trends that are
might otherwise remain concealed. Recent research has increasingly incorporated this
exponent into the analysis of long-term vegetation dynamics over time [43–45]. The process
for conducting R/S analysis encompasses the following steps:

Xt,a =
t

∑
z=1

xz,a − ea, t = 1, 2, · · · , n (6)

Ra = max(Xt,a)− min(Xt,a), 1 ≤ t ≤ m (7)

(R/S)m =
1
A

A

∑
a=1

Ra/Sa (8)

(R/S)m = D × mH (9)

Xt,a denotes the cumulative deviation; x is the annual NDVI; ea is the average NDVI;
Ra is the extreme deviation; and Sa is the sample standard deviation. H ranges from 0 to
1 and can be categorized into three types. When H = 0.5, the future changes of NDVI
are random. When H > 0.5, the future changes of NDVI remain the same as in the past.
Conversely, if H < 0.5, the future changes of NDVI are opposite to the past.

By combining the Theil-Sen median slope with the Hurst exponent method, the trend
of vegetation changes in the future can be analyzed. The classification indicators are as
follows (Table 2):
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Table 2. Classification of vegetation change trends.

Hurst Sen’s Slope Future Trends

0.5 < H < 1
β > 0 Improvement
β < 0 Degradation

H = 0.5 - Uncertain

0 < H < 0.5
β > 0 Degradation
β < 0 Improvement

3.4. Multivariate Residual Analysis

The impact of human activities and climate change on vegetation changes was eval-
uated using multivariate residual analysis. This approach is based on the premise that
changes in vegetation primarily driven by human activities can be discerned once the
influence of climate factors has been eliminated as seen in the following:

NDVICC = a × P + b × T + c (10)

NDVIHA = NDVIobs − NDVICC (11)

where a and b are the regression coefficients, and c is the constant. P represents the
precipitation time series and T represents the temperature time series. NDVICC represents
the calculated NDVI data with the regression equation, NDVIobs represents the observed
NDVI data, and NDVIHA represents the result of subtracting observed from the calculated
NDVI data. After conducting residual analysis, the factors influencing vegetation can be
categorized into six classes. The classification criteria used are shown in the following
(Table 3):

Table 3. Classification criterion of the driving factors of NDVI change.

Slope (NDVIobs) Driving Factors

Division Criteria Contribution Rate/%

Slope (NDVICC) Slope (NDVIHA)
Climate Change

(CC)
Human Activity

(HA)

>0
CC&HA >0 >0 Slope(NDVICC)

Slope(NDVIobs)

Slope(NDVIHA)

Slope(NDVIobs)
CC >0 <0 100 0
HA <0 >0 0 100

<0
CC&HA <0 <0 Slope(NDVICC)

Slope(NDVIobs)

Slope(NDVIHA)

Slope(NDVIobs)
CC <0 >0 100 0
HA >0 <0 0 100

3.5. Geodetector Method

The Geodetector model, which can be freely downloaded from https://www.geodetector.
cn/ (accessed on 28 July 2024), was utilized in conjunction with Excel. The model com-
prised of three types of detections: factor, ecological, and interactive. The factor detector
identified the spatial differentiation of NDVI and quantified the extent to which a driving
factor explained this differentiation. By calculating the q-values of various driving factors,
the relative strength of their impacts on NDVI changes can be compared. The specific
calculation process is as follows:

q = 1 −

L
∑

h=1
Nhσ2

h b

Nσ2 (12)

where L represents the variable of NDVI, Nh and σ2
h represent the number of units and

variance of layer h, respectively, N and σ2 refer to the number of units and overall variance.
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The range of the q value is [0,1]. The magnitude of the q value and driving factors on NDVI
is positively proportional. At the same time, interaction detection identifies the interplay
between various influencing factors and assesses the explanatory power when double
driving factors interact.

4. Results

4.1. Temporal Variation Characteristics of the NDVI

From Figure 3a, it is observed that the annual average NDVI during 2000–2020 was
about 0.007. NDVI exhibited an overall increasing trend, increasing by an average of 0.001
per year. At the same time, the accumulative ecological water conveyance volume (AEWCV)
also increased year by year. In years when the slope of AEWCV increase and decreased,
such as from 2006–2009, when ecological water conveyance volume (EWCV) declined,
NDVI also decreased, this indicated a high correlation between the two. To evaluate areas
with different vegetation cover, NDVI values were divided into three categories: 0–0.1,
0.1–0.2, and 0.2–1. Figure 3b shows that the area of the region with NDVI values between
0.1 and 0.2 significantly increases, while the area with NDVI values between 0.2 and 1 also
showed a small increase. From this, it can be observed that EWC played a significant role
in the vegetation restoration of LRTR.

Figure 3. Interannual variation of NDVI: (a) overall changes in NDVI and AEWCV; (b) changes in
the proportion of areas classified by different NDVI.

4.2. Spatial Variation Characteristics of the NDVI

From the vegetation change trends in Figures 4 and 5, it can be observed that vegetation
showed significant recovery during the first period after the initiation of EWC (2000–2005),
with a recovery area proportion reaching 91%. The vegetation in areas proximate to the
river channel has recovered better, indicating that EWC has a positive impact on vegetation
growth. However, as it can be seen in Figure 4b,d and Figure 5b,d, during the periods from
2005–2010 and 2015–2020, vegetation degradation reoccurred across the study area, with the
proportions of degraded areas reaching 71% and 73.2%, respectively. This was associated
with concurrent decreases in EWCV during these periods. Among them, during the period
from 2015 to 2020, the NDVI in 8.5% of the area significantly decreased, indicating that
not only the reduced EWCV but also other combined factors contributed to vegetation
degradation. From Figures 4e and 5e, it can be seen that vegetation has significantly
recovered during 2000–2020, with the restored areas accounting for 88.6% of the total,
mainly concentrated around river channel and tail lake.
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Figure 4. The changing trends of NDVI from: (a) 2000 to 2005, (b) 2005 to 2010, (c) 2010 to 2015,
(d) 2015 to 2020, and (e) 2000 to 2020.

Figure 5. The proportion of areas with different trends in NDVI from: (a) 2000 to 2005, (b) 2005 to
2010, (c) 2010 to 2015, (d) 2015 to 2020, and (e) 2000 to 2020 (portions less than 2% do not display
specific numbers).
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Furthermore, Hurst exponent analysis is used to analyze the vegetation change trend
of future LRTR. Figure 6 illustrates that the spatial distribution of the trends was rather
scattered, with no clear regularity. In total, 33% of the areas had H values between 0
and 0.5, indicating that the future trends would be opposite to the past; 66% of the areas
had H values between 0.5 and 1, indicating that the future trends would continue like
the past trends. Further, the results of the Theil-Sen estimator coupled with the Hurst
exponent method showed three future trends in vegetation change. Among them, 27.8%
of the areas would experience vegetation increase, while 71.5% of the areas would face
vegetation degradation. In terms of spatial distribution, the upper and terminal regions of
the watershed mainly showed an increasing trend in vegetation, while the middle region
of the watershed showed a decreasing trend in vegetation. This serves as a warning for
future ecological protection efforts.

Figure 6. The Hurst exponent of (a) NDVI and (b) its future trends.

4.3. Contribution of Climate Change and Human Activity to Vegetation Dynamics

Multivariate residual analysis method was used to evaluate the spatial distribution
of factors affecting NDVI changes. Figure 7 illustrates substantial spatial variability in
how human activity and climate change influence NDVI across the study area. Firstly,
it was evident that the area where NDVI has increased was much larger than the area
where NDVI has decreased. In the areas surrounding the river channel, the increase in
NDVI is due to the combined effects of climate change (CC) and human activity (HA). In
contrast, the areas where climate change and human activity independently contribute to
the increase of NDVI were scattered around the periphery without any regular pattern.
Meanwhile, in areas far from the river channel, NDVI showed a decreasing trend, mostly
driven by human activity.
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Figure 7. Driving factors of NDVI change in different regions.

Furthermore, the impacts of human activity and climate change on NDVI changes
were quantified. The study categorized regions into 11 groups based on their varying con-
tribution levels, specifically: [−100, −80), [−80, −60), . . ., (80, 100]. In Figure 8, the warmer
the color tone, the greater the contribution to NDVI changes. Positive contributions indicate
a positive effect on NDVI, while negative contributions indicate a negative effect. Figure 8a
shows that regions where climate change contributes positively to NDVI changes cover
approximately 32.26% of the study area. Notably, areas with contributions falling within
the ranges of 0–20% and 80–100% collectively cover a significant portion, approximately
20.2% of the total area. In contrast, climate change had no observable impact on NDVI
changes in 62% of the regions. Overall, the effect of climate change on NDVI changes in the
LRTR was not significant, with the affected areas being relatively scattered.

As shown in Figure 8b, the effect of human activity on NDVI changes is more pro-
nounced and the affected areas are relatively concentrated. However, the degree of impact
is polarized. The regions where human activity contributed 80–100% were mainly con-
centrated near the river channel. This indicated that in these areas, the NDVI showed
a significant increasing trend, and human activity positively contributed to vegetation
restoration. The areas where the contribution of human activity ranges from −100% to 80%
were mainly concentrated in regions far from the river channel, accounting for 38.15% of the
whole study area. Considering that NDVI showed a decreasing trend, it can be understood
that human activity has had a significant inhibitory effect on vegetation degradation.
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Figure 8. Spatial distribution of the contributions of (a) climatic change and (b) human activity to
NDVI change.

4.4. Detection of Factors Influencing Vegetation Distribution

This study considered five factors to analyze the driving mechanisms of vegetation
spatial variation, as shown in Table 4. These factors were annual precipitation, annual
average temperature, elevation, slope, and distance to the river channel. According to
the factor detection results (Figure 9), the order of the impact of driving factors on NDVI
was: X5 > X3 > X2 > X1 > X4. The distance to the river channel factor has the strongest
explanatory power for NDVI, with a Q value of 0.078, much higher than other driving
factors. The impact of slope on the spatiotemporal variation of NDVI is minimal, with a
Q value of only 0.001.

Table 4. Symbols for each factor.

X1 X2 X3 X4 X5

annual
precipitation

annual average
temperature elevation slope distance to the

river channel

Figure 9. The result of factor detection (** indicates p < 0.01, significant by testing).
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Ecological detection results (Table 5) show that only the distance to the river channel,
when combined with other factors, showed a significant difference (α = 0.05) in the impact
on the change of NDVI. The combinations of additional driving factors did not exhibit an
insignificant variation in their influence on the spatial distribution of NDVI.

Table 5. The result of ecological detection.

X1 X2 X3 X4 X5

X1 \
X2 N \
X3 N N \
X4 N N N \
X5 Y Y Y Y \

Note: Y indicates a significant difference exists between the two driving factors at the α = 0.05 level, while
N indicates there is none.

The comprehensive impact of driving factors on NDVI is evaluated using the inter-
action detector in the Geodetector method. The interactive detection results (Figure 10)
demonstrated a notable synergistic enhancement effect between different factors, with
the combination of two factors significantly amplifying their influence on NDVI’s spatial
distribution. Among them, the interaction between the distance to the river channel factor
and the precipitation factor, temperature factor, and elevation factor showed better ex-
planatory power for NDVI spatial distribution, with Q values of 0.1101, 0.1099, and 0.1058,
respectively. This result showed that the distance to the river channel was the primary
factor influencing the NDVI changes. The study demonstrated that the driving factors
influencing NDVI were interdependent and exhibited greater explanatory power when
they interacted.

Figure 10. Interaction between factors.
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5. Discussion

5.1. Vegetation Variation Characteristics in the LRTR

This study revealed a continuous increase in NDVI in the LRTR in 2000–2020. Hu
et al. [46] reported a significant vegetation increase in 65.9% of the Tarim River Basin, while
Yu et al. [47] found that the proportion of increasing NDVI in China’s endorheic basins
exceeded the proportion of decreasing NDVI. These findings were consistent with our
results. The restoration in vegetation conditions in the LRTR can be largely attributed to
the EWC [48]. Using the Theil-Sen estimator and the M-K significance test, we analyzed
vegetation changes of the LRTR from 2000 to 2020 and found that the vegetation conditions
in most areas (88.6%) have undoubtedly improved. From this perspective, the Chinese gov-
ernment’s ecological water conveyance has been very successful in effectively preventing
vegetation degradation.

5.2. Effect of Driving Factors on LRTR Vegetation Change

The vegetation cover in the LRTR was affected by the EWC, resulting in a human
activity contribution to NDVI changes significantly outweighing that of climate change.
Due to the scarcity of precipitation in the LRTR, vegetation growth mainly depends on
groundwater. At the same time, the main growth of drought-resistant tree species in the
area has lower leaf evaporation and is less sensitive to high temperatures. Therefore, climate
change has a small impact on vegetation. Meanwhile, human beings have made continuous
efforts in ecological restoration, so under the comprehensive impact of climate change and
human activities, vegetation is showing a trend of growth. Besides meteorological factors,
the distance to the river channel was a key driver of vegetation distribution in the LRTR.
Rivers mainly impact vegetation by recharging groundwater, which significantly influences
NDVI in arid regions [49,50]. The closer the distance to the river channel, the higher the
groundwater level, which better supplements water for plants. Additionally, elevation is
a major factor influencing vegetation distribution. It indirectly affects vegetation growth
by altering precipitation and temperature. However, in arid regions, due to the scarcity
of precipitation, the differences in vegetation growth at varying elevations are not as
pronounced as in humid areas [51]. Additionally, the slope has a weaker explanatory
power for vegetation growth. The study results indicate that slope had little impact on
vegetation distribution in the LRTR. Generally, slope affects vegetation growth through
solar radiation. However, in arid regions, due to intense sunlight and high temperatures,
vegetation growth may be inhibited due to water scarcity instead.

We found that combining low q statistics driving factors with other driving factors
greatly enhances explanatory power. Moreover, interactions between two driving factors
were not simply linear additions; instead, they exhibited nonlinear amplification. Specifi-
cally, factors like distance to the river channel, precipitation, and temperature, which are
significantly correlated with vegetation, exhibited higher explanatory power after inter-
action. This suggests that the factors are not independent of each other and typically act
together to collectively influence vegetation distribution.

6. Conclusions

This study employed multi-source geospatial data and used the Theil-Sen estimator
and the Mann-Kendall significance test to assess historical changes in NDVI in the LRTR.
Despite a gradual increase in vegetation cover from 2000–2020, the NDVI values in the
LRTR remain relatively low. The future trend of NDVI change was analyzed using the
Hurst exponent method. The findings showed that at the upper and lower parts of LRTR,
most areas would further increase in vegetation, while in the middle reaches, vegetation
was more likely to degrade. Subsequently, residual analysis was used for quantitative
evaluation of the contributions of human activity and climate change to NDVI changes.
The results showed that human activities, such as EWC, were the primary contributing
factors to vegetation growth in the LRTR. Meanwhile, the contribution of climate change is
minimal. Using the Geodetector method, we analyzed the driving mechanism of NDVI
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change in the LRTR. The top three driving factors affecting vegetation coverage were
the distance to the river channel, precipitation, and temperature. Slope has the least
effect on vegetation. The interaction effects between different driving factors showed
significant nonlinear enhancement, surpassing the explanatory power of individual factors
for vegetation changes. The study area is a typical arid region, and human intervention in
local vegetation growth is very obvious. The issue of vegetation protection is a common
problem faced by various arid regions around the world. Different human activities affect
whether vegetation is restored or degraded. Research by scholars in northern Oman [52],
the Loess Plateau in China [53], and Central Asia [54] has also confirmed that human
activities are the main factors affecting vegetation growth in arid regions. Due to the
positive impact of river leakage, riparian vegetation that relies on groundwater has emerged
in arid areas, which is significantly denser than vegetation in other regions. Studying
the mechanisms behind vegetation restoration and degradation is of great significance
for protecting fragile ecosystems. These findings offer theoretical support for ecological
conservation and sustainable development in arid areas.
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Abstract: In the context of global warming, the acceleration of the water cycle increases the risk of
meteorological drought (MD) and hydrological drought (HD) in the arid region of Northwest China.
The Manas River Basin is a typical agricultural oasis and the largest oasis farming area in Xinjiang,
Northwest China. Droughts in this basin have significant implications for both agricultural produc-
tion and the livelihoods of inhabitants. To evaluate the MD and HD and provide information for
drought relief in the MRB, the standardized precipitation evapotranspiration index (SPEI) and stan-
dardized runoff index (SRI) were calculated using long-term rainfall and runoff data. Subsequently,
combined with ArcGIS 10.3 software and the trend analysis method, the SPEI and SRI characteristics
were evaluated at different time scales (1-, 3-, 6-, and 12-month). There were three main findings.
First, both MD and HD were alleviated, with significantly more HD alleviation. MDs in spring
and autumn exhibited a trend of aggravation. The SRIs in summer, autumn, and winter increased
significantly at a confidence level of p < 0.01, with an insignificant decline in spring. In the 2010s,
the frequency of light drought of MD was stable at 10% to 20%, while severe and extreme droughts
increased. The frequency of HDs has decreased since the 1990s. Second, on annual and seasonal
scales, MDs occurred mainly as light and moderate droughts. The highest frequency of MD was 24%
of moderate droughts in winter. Spatially, the northern region of the MRB was characterized by more
frequent light and extreme droughts. Third, runoff in the Manas River Basin increased significantly
during the 1990s, which may have been related to the acceleration of glacial retreat in the Tianshan
Mountains. This study can effectively reveal the changes in meteorological and hydrological drought
in NWC and provide the basis for risk decision-making and management for watershed managers.

Keywords: meteorological and hydrological droughts; spatiotemporal distribution characteristics;
Manas River Basin

1. Introduction

Drought is a disaster with far-reaching effects and prolonged durations worldwide.
Accurately monitoring a drought is challenging because of its repetitive nature [1,2]. This
calamity damages the natural environment, including vegetation loss, land desertification,
and oasis shrinkage, and affects the development of human societies due to a lack of water
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resources, crop reduction, and resulting sandstorms [3,4]. A highlight of the sixth report
of the Intergovernmental Panel on Climate Change [5] was that global warming has led
to an increased atmospheric evaporation demand and intensity of drought events. As
the temperature on land increases more than that of the ocean, the relative humidity near
the surface decreases, resulting in regional drought. Water resources are indispensable
for sustainable economic development [6]. Recent studies have emphasized that extreme
drought events caused by climate change threaten the water balance in various regions,
resulting in the drying of rivers, declines in lake water levels, restriction of water use,
and destruction of ecosystems [7,8]. In California, the worst drought in a millennium [9]
has resulted in the death of large areas of coniferous forest. Water shortages in the arid
and semi-arid areas of Northwest China have resulted in vegetation degradation and
severe desertification [10]. Tropical plateau glaciers in East Africa have receded [11], and
hydropower generation in West African rivers has decreased. Droughts have unpredictable
consequences for both humans and nature. Therefore, to mitigate the consequences of
drought, it is necessary to investigate the temporal and spatial variations in drought
conditions. This knowledge can provide guidance for drought relief efforts and significantly
impact agricultural production, social life, and the environment [12,13].

Drought is a serious problem that affects many global regions. Three types of droughts
have been studied: meteorological, agricultural, and hydrological [14]. Meteorological
drought is the cause of almost all droughts. This drought occurs when precipitation is
below the normal threshold for an extended period. Agricultural drought occurs when
soil water and rainfall are insufficient to maintain crop growth during the growing season.
The occurrence of hydrological drought is related to surface water and groundwater and is
caused by a lack of effluent, which is closely linked to the water cycle [15,16]. Generally,
meteorological droughts have a significant impact on large regional scales [17]. As rainfall
deficits and evaporation rates increase, river runoff and groundwater recharge decrease,
leading to hydrological droughts. Several scholars have conducted extensive research on
meteorological and hydrological droughts. These studies include the use of Pearson’s linear
or copula function-based conditional probability nonlinear methods [18] to calculate the
drought propagation time, trigger the threshold of meteorological drought to hydrological
drought propagation in water-limited areas [19], and determine the relationship between
meteorological and hydrological droughts based on wavelet analysis [20].

Data obtained from meteorological stations are characterized by long time series and
high accuracy. Numerous researchers have utilized meteorological station data to calculate
meteorological drought indices such as the standardized precipitation index (SPI), Palmer
drought severity index (PDSI), and standardized precipitation evapotranspiration index
(SPEI). Among these indices, the SPEI is widely used in drought assessment because it
incorporates the advantages of the multiple time scales of the SPI and the sensitivity to
evapotranspiration of the PDSI [21]. The SPEI is particularly useful in arid and semi-arid
regions. The standardized runoff index (SRI), which is based on runoff volume, can be
used to monitor and evaluate hydrological droughts and determine the drought status in a
basin. To ensure efficient use and management of water resources, it is essential to study
the characteristics of meteorological and hydrological droughts. Muhammad et al. (2020)
used the SPEI and SRI to predict the impact of climate change on the propagation of
meteorological to hydrological drought [22]. The authors found that the propagation
probability of meteorological to hydrological drought in Korea has increased significantly
under the influence of climate change. Using the SPEI and SRI, Li et al. (2023) analyzed the
spatiotemporal variations of meteorological and hydrological droughts in various regions,
including the upper reaches of the Yangtze River, over the past 120 years [23]. The authors
reported that the two indices are effective in identifying relatively continuous dry and
wet periods. The collective findings indicate the reliability of SPEI and SRI for assessing
meteorological and hydrological drought conditions.

The Manas River Basin (MRB) is the largest oasis farming area in Xinjiang [24], the
fourth largest irrigated agricultural region in China, and an essential part of the local
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economic belt. However, in recent years, the basin has been affected by the increased
frequency of drought events due to global warming. This has restricted water resource
usage, created ecological security barriers, and hindered socioeconomic development in
the region. Water resources are the foundation of production and life in the MRB. In this
context, it is essential to understand how drought conditions in the MRB are changing.
Meteorological and hydrological droughts in the MRB have not been investigated. This
study aimed to analyze the drought situation in the MRB using the SPEI and SRI, with
the ultimate goal of guiding production and life in the river basin. The study objectives
were to clarify the temporal and spatial evolution characteristics of meteorological and
hydrological droughts, periodic characteristics of the meteorological and hydrological
droughts, and runoff trends in the MRB. By gaining a better understanding of the drought
situation in the MRB, it will be possible to enhance the region’s ability to prevent and
manage drought disasters.

2. Materials and Methods

2.1. Study Area

The MRB is located in the Xinjiang territory of China between 43◦27′~45◦21′ N and
85◦01′~86◦32′ E (Figure 1). This is an arid region of Northwest China on the southern edge
of the Junggar Basin. The landscape of the basin inclines from southeast to northwest, with
the highest elevation at 5145 m and the lowest at 241 m. Its mountainous oasis plains and
desert areas constitute a “mountain-oasis-desert” topographical structure. Rainfall in the
basin is minimal, occurs mainly during summer, and is unevenly distributed in both time
and space. Evaporation is high, and evapotranspiration is much greater than rainfall. The
study area has a typical continental temperate climate.

Figure 1. The Manas River Basin study area.

2.2. Data Sources and Processing

Meteorological data from 1970 to 2019, including the monthly average temperature
and rainfall, were from 13 meteorological stations in and around the MRB from 1970 to
2019. The data were obtained from the Resources and Environment Science and Data

91



Water 2024, 16, 2088

Center (https://www.resdc.cn/ accessed on 29 November 2022). Hydrological data were
obtained from the Kenswat Station, a control hydrological station for the drainage pass.
Because the construction of the reservoir began in 2013, the discharge volume was not
the natural discharge volume [25] but rather an artificially controlled discharge volume,
which was unsuitable for analysis. Therefore, the monthly runoff volume from 1970 to 2012
was selected for the analyses. Meteorological and hydrological data were processed using
the SPEI package in R to obtain the SPEI and SRI, which represent the meteorological and
hydrological droughts, respectively. In this study, Origin2021 and ArcMap10.3 were used
to visualize all the processed data. This study used the data processed in this manner to
examine the meteorological and hydrological drought conditions in the region.

2.3. Drought Indices

The Thornthwaite equation [26] was used to calculate the SPEI with multi-time scale
characteristics after the standardization of precipitation and evapotranspiration. First, the
TH equation calculates the potential evapotranspiration (PET) of the basin using three gen-
eral methods: the Penman–Monteith (PM), Thornthwaite (TW), and Hargreaves–Samani
(HS) equations. However, the PM equation requires many parameters, such as temperature,
wind speed, relative humidity, and net radiation, which are not readily available because
of the limited number of meteorological stations in Xinjiang and their uneven spatial distri-
bution. The HS equation only requires the highest and lowest temperatures. However, it
has limitations under certain weather conditions, such as low humidity or strong winds (u
> 3 m/s), which can result in inaccurate evapotranspiration (ET0) estimates. In contrast,
under conditions of high relative humidity or a low evapotranspiration rate, the ET0 es-
timate can be relatively high, which can cause errors in the calculation results. Previous
researchers have calibrated HS models. However, these calibrations were site-specific and
could not be extrapolated to locations with completely different weather conditions [27,28].
Therefore, the TH equation was chosen to calculate the PET in this study. Precipitation data
were standardized to represent the water deficit or surplus and were then accumulated
into precipitation states at different time scales. Finally, a logarithmic logistic probability
distribution was used to fit the sequence data, and the SPEI values at the different time
scales were calculated. A negative SPEI value represents a water deficit, whereas a positive
value represents a water surplus. The calculation method for the SRI was similar to that
for the SPI [29]. Precipitation data replaced the runoff data, and the runoff probability
distribution model was selected for normal standardized calculations, which showed short-
and long-term drought characteristics. A negative SRI value indicates a lower runoff level,
whereas a positive value indicates higher runoff levels. The drought classifications of both
the SPEI and SRI are listed in Table 1.

Table 1. Classification schemes of drought intensity.

Drought Classes SPEI SRI

No drought/wet >0.5 >0.5
Near normal (−0.5, 0.5] (−0.5, 0.5]

Light drought (−1.0, −0.5] (−1.0, −0.5]
Moderate drought (−1.5, −1.0] (−1.5, −1.0]

Severe drought (−2.0, −1.5] (−2.0, −1.5]
Extreme drought ≤−2.0 ≤−2.0

2.4. Trend and Mutation Analyses

Domestic and foreign scholars have extensively researched the trend changes in
hydrometeorological time series data. The research methods are mainly divided into para-
metric and non-parametric test methods. Although parametric methods are typically more
efficient than non-parametric techniques, they are usually strict with data that should be
distributed, continuous, and independent. Conversely, if the hydrological or meteorological
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time series do not conform to the normality, independence, and linearity assumptions of
the parametric test, non-parametric techniques are employed.

This study utilized the Mann–Kendall non-parametric trend analysis method [30,31]
to investigate the meteorological and hydrological drought conditions in the MRB. This
method, recommended by the World Meteorological Organization for meteorological
research, is widely used to statistically analyze and assess hydrological series trends
without requiring adherence to a specific distribution. The Mann–Kendall test features a
high level of quantization and is highly effective in determining the direction of sequence
changes. Under the observation background of long-term meteorological data, the Mann–
Kendall test can also determine whether there is an abrupt climate change in the climate
series. If such a change is apparent, the mutation occurrence time is determined. When the
UF and UB crossing points appear, and the crossing points are between the critical lines,
the corresponding moment of the crossing point is the mutation start time. If the value
of the UF or UB statistic is >0, the series exhibits an upward trend. If the value is <0, it
indicates a downward trend.

2.5. ArcGIS Spatial Interpolation

The inverse distance weight interpolation (IDW) is based on the basic assumption
of “close similarity” in the first law of geography [32]. IDW estimates the pixel value by
calculating the average value of sample data points near the pixels to be processed. The
closer the data point is to the center of the pixel being estimated, the greater its influence or
weight in the average calculation, resulting in a higher degree of similarity as the distance
between the points decreases. As a reliable method, IDW combines the advantages of
the Tyson polygon adjacent-point method and the trend analysis gradient method while
simultaneously accounting for the spatial distribution of regional connections between
various factors [33]. This straightforward approach has proven useful in data processing
and is well-suited for addressing spatial distribution challenges. In this study, we employed
IDW to interpolate the frequency of meteorological drought and investigate the spatial
distribution characteristics of drought.

2.6. Run Theory

To identify the meteorological and hydrological droughts, we used the run-course
theory [34]. The identification method is shown in Figure 2. An appropriate drought index
was selected as the threshold values, R0, R1, and R2, based on the type of drought. A
drought event was initially identified when the drought index was below R1 for a specified
period. Drought events lasting only one month and with a drought index above R2 were
excluded from the identified drought events. When the interval between two drought
events was one month and the drought index for that month was below R0, the two drought
events were combined. The duration of the drought event identified by the run-course
theory is the length of the drought. The intensity of the drought event was represented
by the absolute value of the sum of the drought index values below the threshold R1 for
each month of the drought event. In this study, the values at which the drought index fell
below 0, indicating light drought and moderate drought, were selected as the threshold
values. Therefore, R0, R1, and R2 were equivalent to 0, −0.5, and −1, respectively.
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Figure 2. Schematic diagram of drought events identification, pooling, and exclusion.

3. Results

3.1. Temporal Evolution Characteristics of Meteorological and Hydrological Elements

To analyze the interannual variation trends of precipitation, as well as the average
temperature in the MRB and discharge of the Kenswart Hydrological Station, meteoro-
logical and hydrological elements were selected for linear fitting (Figure 3). The figure
illustrates the multiyear values of the three factors. According to the results, both temper-
ature and rainfall passed the significance test of 0.05, whereas rainfall and runoff passed
the significance test of 0.01. In the past 50 years, the rainfall in the MRB has increased
significantly (Zs = 3.16, p < 0.01), with an average of 243.35 mm—increasing by approxi-
mately 13.3 mm every 10a—while the average temperature also exhibited a significant rise
(Zs = 2.19, p = 0.02), with an average temperature of 8.75 ◦C and growing by about 0.2 ◦C
every 10a. The consistent rainfall and temperature trends are indicative of warmer and
wetter climates. The overall fluctuation of the flow of 43a Kenswart Hydrological Station
increased significantly (Zs = 3.62, p < 0.01), reaching a maximum value of 1946.07 m3/s in
1999. This increase in flow reduced the occurrence and intensity of hydrological drought
events. Although the runoff decreased in the 21st century, the overall growth trend re-
mained the same. These results indicate that the climatic and hydrological conditions in
the study area are changing.

Figure 3. Interannual variation characteristics of precipitation (a), mean temperature (b), and runoff
(c) in the MRB.
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3.2. Temporal and Spatial Characteristics of Meteorological Drought
3.2.1. Interannual Evolution Trend of Meteorological Drought

Monthly SPEI values on the 1, 3, 6, and 12 scales in the MRB from 1970 to 2019 were
calculated to characterize meteorological drought (Figure 4). The figure shows that with
the increase in the SPEI time scale, the fluctuation gradually decreases and the continuity
becomes stronger. This is mainly due to the high sensitivity of the SPEI to the precipitation
of the current month, and the change in meteorological drought is greatly affected by short-
term precipitation, resulting in obvious SPEI fluctuations between months. However, with
the accumulation of precipitation, the sensitivity of the SPEI to precipitation decreases with
the increase in the time scale and demonstrates less randomness and less volatility. The
SPEI has a positive linear slope on both short- and long-term scales, and the annual SPEI
scale increases at a rate of 0.0037 a−1, demonstrating that meteorological droughts in the
MRB have been alleviated in the last 50 years. Notably, in 1997, the SPEI1, SPEI3, SPEI6, and
SPEI12 values were all <−1.4, with the minimum value reaching −2.24, indicating severe
and extreme droughts. As shown in Figure 4b, the drought events occurred primarily in
the 1970s, 2000s, and 2010s, with fewer events occurring in the 1990s. However, drought
severity was high during this period, and the SPEI value was the lowest, indicating that
relatively serious drought events occurred in the MRB during this period. The interannual
variations in drought events are evident in Figure 4d. From 1970 to 2019, there were ten
prominent low peaks in the SPEI value, and the average drought duration was 12 months.
The longest drought duration lasted 19 months, from November 1977to March 1979, with
an average SPEI value of −0.95, which corresponds to a moderate drought. Conversely,
the shortest drought duration was two months, from August 1983 to September 1983. The
average SPEI value from April 1997 to April 1998 was −1.39, indicating severe drought.

Figure 4. Change rules of the SPEI1 (a), SPEI3 (b), SPEI6 (c), and SPEI12 (d) time scales.

3.2.2. Seasonal Variation Trends of Meteorological Drought

To investigate the seasonal variations in meteorological drought in the basin, the
seasonal scale SPEI indices of May, August, November, and February of the following
year were chosen to represent spring (March–May), summer (June–August), autumn
(September–November), and winter (December–February), respectively. The SPEI indices
for spring, summer, and autumn decreased at a rate of −0.063 × 10 a−1, −0.003 × 10 a−1,
and −0.086 × 10 a−1, respectively, indicating that drought in these three seasons is insignif-
icant (Figure 5a–c). In contrast, the SPEI in winter increased at a rate of 0.154 × 10 a−1. The
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Z-values for spring, summer, autumn, and winter were −0.652, −0.05, −1.104, and 2.576,
respectively. The results indicate that the drought conditions in spring and autumn were
characterized by frequent dry and wet alterations and significantly negative SPEI values
after 1997. The summer SPEI values were negative from 1973 to 1983 and were generally >0
after 1984. Severe and extreme drought events in winter were infrequent, with a low degree
of drought. The UF statistics in spring and autumn did not exceed the critical line with a
significance level of 0.05 (−1.96 < UF < 1.96), indicating that there is no abrupt point in the
variation curve of the drought index. The UF and UB curves intersected in approximately
1983 in the summer, indicating that 1983 was a sudden change year. Since 1977, summer
droughts in the MRB have significantly intensified. The UF and UB curves intersected in
approximately 1993 in winter. Thus, 1993 was a sudden change year, and after 2003, the
winter-wetting state was significant.

Figure 5. Meteorological drought change characteristics in spring (a), summer (b), autumn (c), and
winter (d).

3.2.3. Analysis of Annual Scale Meteorological Drought Frequency

Table 2 shows the annual drought frequency in the MRB. TD, LD, MD, SD, and ED
represent the total annual scales of drought, light drought, moderate drought, severe
drought, and extreme drought, respectively. The total drought frequency ranges from 28%
to 32%. Further analyses of the drought conditions of different grades showed that the
annual frequency of LD was between 11% and 16%, and the frequency of LD was higher at
Shihezi station. The frequency of MDs was between 8% and 12%, and drought was more
evident at the Shawan and Wulan Wusu stations. The frequency of SDs was between 4%
and 6%, mainly in the Manas. The frequency of EDs was between 1% and 3% and was
concentrated in Ulan Usu. In general, LD and MD occurred easily in the MRB. However,
the frequencies of SD and ED were low, showing the characteristics of a high frequency of
LD and MD and a low frequency of SD and ED.

3.2.4. Analysis of Annual Scale Meteorological Drought Frequency

The IDW method in ArcGIS software was used to analyze the spatial distribution
characteristics of drought frequency at different seasonal scales. Figure 6 shows that spring
droughts ranged from 26% to 38%, with an average of approximately 31.69%. Among
the three stations, Manas experienced the highest frequency of drought (38%), whereas
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Shihezi and Ulan Wusu experienced 32%. In spring, the frequency of LDs ranged from
10% to 20%, and all three stations were prone to this phenomenon. The frequency of
MDs was between 4% and 14% and was mainly concentrated in the eastern part of the
river basin. The frequency of summer droughts varied between 28% and 36%, with a
maximum value of 36% in Shihezi and a minimum value of 28% in Shawan, Ulan Wusu,
and Manas. Summer droughts were more frequent in the basin, and the LD frequency
ranged from 10% to 24%. The frequency of MDs ranged from 4% to 16%, revealing a
declining trend from north to south. The frequency of autumn droughts ranged between
26% and 34%, with a higher frequency in the east and a lower frequency in the west. The
LD and SD frequencies gradually decreased from north to south. In winter, LDs were
concentrated in Paotai, whereas MDs were mainly concentrated in Mossos Bay. SDs and
EDs occurred less frequently during this season. The frequency of drought in spring and
summer was higher than that in autumn and winter (Figure 6(a1–a4)); The frequency of LDs
in autumn was lower than that in other seasons, and the frequency of LDs in winter was
more severe (Figure 6(b1,b2)). EDs in the summer season were uncommon but occasionally
occurred in the spring and winter months (Figure 6(e1–e4)). In summary, the study area
was particularly susceptible to LDs and MDs throughout the year. It is crucial to pay close
attention to the Shawan and Mosso Bay regions because they are vulnerable to severe and
extreme droughts.

Table 2. Year-scale meteorological drought frequency characteristics.

Station TD LD MD SD ED

Paotai 29% 14% 8% 5% 2%
Mosowan 30% 14% 8% 5% 2%

Shihezi 32% 16% 9% 5% 2%
Shawan 30% 13% 12% 4% 2%

Wulanwusu 28% 11% 11% 4% 3%
Manas 31% 13% 10% 6% 1%

3.2.5. Annual Variation Characteristics of Groundwater Table

The study area showed similar drought frequency evolution characteristics on an
annual scale. From highest to lowest, it was LD > MD > SD > ED. On a seasonal scale,
the frequency of LDs was more prominent in spring and did not change significantly
throughout the year. As can be seen from (Figure 7a–c), the MD frequency in spring was
lower than that in other seasons from 1970 to 1999 and increased from 2000 to 2019 as
shown in (Figure 7d). In summer, MD events occurred easily in the 1970s, but the frequency
of SDs decreased from 1970 to 1999 and increased from 2000 to 2019. The probability of
SDs in autumn was low from 2000 to 2019. In (Figure 7e) the number of winter MD events
decreased between 1970 and 2019. Overall, the frequencies of LDs and MDs did not change
significantly, but SDs and EDs increased in this decade compared with the 2000s.

3.3. Time Variation Characteristics of Hydrological Drought
3.3.1. Interannual Evolution Trend of Hydrological Drought

Hydrological drought was assessed using SRI1, SRI3, SRI6, and SRI12. (Figure 8a–d)
shows that at a significance level of p < 0.01, all of the time scales demonstrated a significant
increase at rates of 0.0582, 0.0485, 0.0487, and 0.498 a−1, respectively. The values indicate
that hydrological droughts have been markedly alleviated over the last 43 years. SD
and ED events mainly occurred from 1970 to 2000, with the lowest SRI values of the
four scales being −2.05, −2.02, −1.89, and −1.56, respectively. After 2000, the basin mostly
experienced LD events. In the short time scales of one and three months, the frequency of
drought was higher in the 1970s, 1980s, and 1990s, among which SRI1 (Figure 8a) lasted
the longest from September 1974 to July 1975, totaling 11 months with an average of −1.34,
indicating a moderate drought level. In SRI3 (Figure 8b), the longest drought lasted from
November 1983 to March 1985, reaching 17 months with an average value of −1.11.
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Figure 6. Spatial distribution characteristics of drought frequencies on a seasonal scale. (a1–a4) represents
the frequency of drought in different seasons of the whole basin, (b1–b4,c1–c4,d1–d4,e1–e4) represent
the frequency of light drought, medium drought, severe drought and extreme drought in spring,
summer, autumn and winter of the basin, respectively.

3.3.2. Seasonal Variation Trends of Hydrological Drought

The seasonal variation trends of hydrological drought were analyzed. A non-significant
downward trend was evident in spring SRI (Figure 9a) at the rate of −0.013a−1. In contrast,
summer (Figure 9b), autumn (Figure 9c), and winter (Figure 9d) showed significant upward
trends at confidence levels of 0.04, 0.036, and 0.05a−1, respectively. The Mann–Kendall trend
analysis showed that the Z-values of the four seasons were 1.02, 3.47, 2.97, and 4.5, and all
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seasons except spring passed the significance test. The hydrological drought-weakening
trend was evident in summer, autumn, and winter, whereas the spring SRI values alter-
nated between the dry and wet conditions. The summer SRI was almost negative from
1970 to 1995, with light and moderate droughts. After 1995, the SRI was generally greater
than zero, indicating a wet state. MDs easily occur in autumn and winter, and dry and
wet states change significantly throughout the year. The UF statistics in spring did not
exceed the critical threshold of 0.05 (−1.96 < UF < 1.96), indicating no abrupt point in the
drought index change curve. In summer, the UF and UB curves intersect around 1993, and
abrupt changes occur. Since 1998, summer HDs have decreased significantly. The UF and
UB curves in autumn intersected around 1996, indicating that 1996 was a sudden change
year and that the wetting state of the fall season was significant after 2001.

Figure 7. Temporal variation characteristics of meteorological drought frequency. (a–e) represents
the frequency of meteorological drought of different seasons and degrees in five decades.

Figure 8. The change rules of the four time scales, SRI1 (a), SRI3 (b), SRI6 (c), and SR12 (d).

99



Water 2024, 16, 2088

Figure 9. Hydrological drought change characteristics in spring (a), summer (b), autumn (c), and
winter (d).

3.3.3. Temporal Variation Characteristics of Hydrological Drought Frequency

(Figure 10a–d) shows that from the annual scale, SDs rarely occurred, EDs never
occurred, and the frequencies of LDs and MDs decreased each passing year. The change
in LDs during spring was negligible, whereas the frequency of LDs decreased during
summer. In winter, MDs occurred frequently from 1970 to 1990 (Figure 10a,b) but not after
1991. Notably, the drought frequency of all grades decreased significantly, indicating that
hydrological drought was alleviated.

Figure 10. Temporal variation characteristics of hydrological drought frequency. (a–d) represents the
frequency of hydrological drought of different seasons and degrees in recent 43 years.
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3.3.4. Drought Characteristic Analysis

The box plot in Figure 11 shows the annual characteristics of the meteorological and
hydrological droughts. The duration of the meteorological drought events was relatively
short, concentrated within approximately 11 months. The duration of the hydrological
drought events was longer, concentrated within approximately 18 months. The average
intensity of the meteorological drought events was 5, whereas that of the hydrological
drought events was 7. The values indicate that meteorological droughts are characterized
by shorter and more concentrated durations and intensities, whereas hydrological droughts
have longer and more scattered durations and intensities with greater severity.

Figure 11. Box chart of annual drought characteristics in the MRB. Figure (a) shows the duration
months of meteorological and hydrological drought events. Figure (b) shows the cumulative index
values of meteorological and hydrological drought events from their onset to their end. The orange-
yellow dots represent the characteristic values of drought events.

3.3.5. Evolution Trend of Multi-Scale Drought at Different Stations

To comprehensively analyze the multi-timescale evolution of drought in the MRB,
data from six meteorological stations and one hydrological station in the basin were
selected to calculate the SPEI and SRI values. Over the past 50 years, the frequency of
meteorological droughts across the entire river basin (Figure 12a) has been high, with
drought events of varying severity occurring in more than half of the years. Yellow and red
bands appeared in 1974, 1977, 1992, and 1997, indicating that relatively severe droughts
occurred during this period. In these four years, SD, MD, MD, and ED occurred. The
Paotai station (Figure 12b) generally exhibits a characteristic drought–humid–drought
pattern, with MD events occurring in 1996 and 1997 and ED events occurring in 1974 and
1997, which is consistent with the historical data. Mosso Bay (Figure 12c) experienced five
relatively severe droughts, characterized by frequent alternating dry and wet years after
1984. The Shihezi, Shawan, Ulan Wusu, and Manas stations (Figure 12d–g) experienced
long drought durations before 1984 and relatively short drought durations after 1984.
Among these years, 1987, 1988, and 1993 were wet years. In general, the drought evolution
characteristics over multiple time scales at the six meteorological stations were consistent,
with droughts occurring relatively easily. From 1970 to 1996, hydrological drought occurred
more frequently, except for 1972, 1982, and 1994, when the watershed was wet and the
remaining years were dry. After 1996, the watershed changed from dry to wet, with a
noticeable increase in moisture content. Overall, the hydrological dry–wet state from 1970
to 2012 showed a trend characteristic of drought–wet–drought.
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Figure 12. Hovmoller-type maps of the meteorological drought and hydrological drought at different
time scales (1–12 months) in the MRB. Subfigures (a–h) represent the 50–year evolution characteristics
of meteorological drought in the whole basin, the 50–year evolution characteristics of meteorolog-
ical drought at all stations in the basin, and the 50–year evolution characteristics of hydrological
drought, respectively.

4. Discussion

4.1. Characteristics of Drought and Runoff Changes

This study found that the precipitation and temperature in the study area showed
increasing trends, which aligns with the conclusion of [35] that the northwestern climate
would transition to warm and wet conditions. The meteorological drought in the MRB
has a weakening trend, but the trend is not obvious, and it maintains a relatively stable
state. Seasonally, winter droughts have decreased significantly in recent years, which is
related to the increase in rainfall. The weakening trend of hydrological drought is very
significant and is closely related to runoff. The MRB, located in the middle of the northern
foot of the Tianshan Mountains in Xinjiang, is a typical arid inland area with limited rainfall
and intense evaporation. Its river runoff is mainly supplied by mountainous and glacial
snowmelt. Some studies have found that with global warming, rising temperatures are
causing snowline shifts and mountain snowmelt. Consequently, the overall snow cover
area in the MRB showed a downward trend, and the melting of snow and ice significantly
increased the recharge of the water inflow of the river, which weakened hydrological
droughts and transitioned from drought to wetting [36,37]. Figure 13 shows that the UF
and UB runoff curves in the MRB intersected in 1993 and experienced abrupt changes,
resulting in a significant increase in runoff after 1993. This finding is consistent with the
conclusion of Zhang Zhengyong [38] that the runoff cycle experienced a sudden change
in the early 1990s. In Figure 14, the slope of the fitting trend line for runoff from 1993 to
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2000 increased significantly, and the slope of the fitting trend line changed from positive
to negative from 2000 to 2012; it showed that runoff experienced characteristics of first
an increase and then a decrease. Additionally, the drought index SRI in Figure 12h also
experienced a period of change from significant wetness to a decreasing wetting degree.
The reasons for the significant increase in runoff during the 1990s and the subsequent slight
decrease in the 21st century were further analyzed. This increase was primarily attributed
to the acceleration of glacier retreat in the Tianshan Mountains during the 1990s. However,
glacier retreat slowed or stabilized after the 21st century [39]. Runoff from the Manas
River is closely related to the reduction in glacier area and thinning of glacier thickness.
Because meltwater is the primary source of runoff in the MRB, its hydrological processes
and characteristics are primarily determined by the water stored in ice and snow during
winter [40].

Figure 13. Mann–Kendall mutation detection of runoff sequence in MRB.

Figure 14. Fractional fitting trend of runoff series in MRB.

4.2. Relationship between Meteorological and Hydrological Droughts

Generally, hydrological drought occurs later than meteorological drought, with a
noticeable delay between the two phenomena. According to [41], hydrological drought
in the Pearl River Basin lags behind meteorological drought by 2–6 months. The authors
of [42] found that hydrological drought in the source region of the Yellow River lags
meteorological drought by 3–6 months, and other studies [43] have also demonstrated a
lag effect in the propagation of meteorological and hydrological droughts. To examine
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drought propagation in the MRB, the SPEI and SRI at the 1-, 3-, 6, and 12-month scales
of typical drought events from March 1974 to August 1975 were selected for analyses.
The yellow- and green-shaded areas represent hydrological drought and meteorological
drought, respectively. Drought occurrence is typically defined as a period when the
drought index falls below −0.5 for two consecutive months. As shown in Figure 15a,
the annual meteorological drought events began in June 1974 and ended in July 1975.
Hydrological drought events began in September 1974 and ended in August 1975. Notably,
the hydrological drought event occurred three months after the onset of the meteorological
drought event and ended one month later. On a seasonal scale, the hydrological drought
started five months after the meteorological drought and ended three months after the
meteorological drought. In general, the duration of a drought event increases over time.
However, except on the annual scale, the peak hydrological drought lagged behind the
peak meteorological drought. These findings indicate a time lag between meteorological
and hydrological droughts, which are consistent with the previous research results.

Figure 15. Cont.
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Figure 15. Spatial distribution of the variance of the groundwater table contrast coefficient. (a–d) represents
the lag relationship between meteorological drought at four time scales and monthly scale hydrologi-
cal drought in typical drought events. The red dotted frame represent the beginning to the end of
the drought.

5. Conclusions

(1) Both meteorological and hydrological droughts decreased, and hydrological droughts
decreased significantly. Meteorological droughts tended to increase in spring and
autumn, whereas the basin became wetter during winter. The dry and wet conditions
in spring and autumn remained relatively stable, with no abrupt changes. Abrupt
changes in summer and winter occurred around 1983 and 1993, respectively, from
drought to humidity. Except in spring, the SRI did not decrease significantly, and the
SRIs in summer, autumn, and winter increased significantly (p < 0.01), indicating a
shift from drought to humidity and a weakening of seasonal drought.

(2) Meteorological droughts at different time scales and intensities exhibited similar
characteristics. Light and moderate droughts are commonly observed at the annual
and seasonal scales, whereas severe and extreme droughts are relatively infrequent.
In terms of geographic distribution, the northern part of the study region has expe-
rienced frequent light and extreme droughts, whereas the southern part has tended
to experience more severe droughts during the summer months. Conversely, severe
droughts in autumn were more likely to occur in the north. Basin managers can make
appropriate water resource allocation plans based on this to effectively reduce the
probability of drought. In addition, in this study, Shawan and Mosso Bay are prone to
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severe and extreme droughts, so it is important for watershed managers to pay more
attention to prevention. From the perspective of meteorological drought frequency,
there were no significant changes in the occurrence of light or moderate droughts
during the 2010s. However, the frequency of severe and extreme droughts increased
during the same period. Hydrological droughts have become less common since
the 1990s. Overall, these findings suggest that the frequency of severe and extreme
droughts has increased, whereas the frequency of light and moderate droughts has
remained relatively stable.

(3) The significant increase in runoff in the MRB during the 1990s could be related to the
accelerated glacier retreat that occurred at the same time in the central and western
Tianshan Mountains. Hydrological drought, which follows meteorological drought,
is inevitably delayed and occurs after meteorological drought.
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Abstract: Cambodia faces the challenge of managing excess water during the wet season and
insufficient water during the dry season. This harms human life and endangers aquatic and natural
resources, agricultural practices, and food security. Water governance is crucial to ensure the well-
being of both people and their food security. However, Cambodia’s water governance is hindered by
various obstacles, including sectoral and centralized influences, top-down and large-scale strategies,
weak coordination among relevant agencies, and limited involvement of local communities. This
study examines water governance across different sectors, from centralized to community-based
natural resources management, and explores the opportunities that can be done to improve water
governance. This study undertakes the literature and case studies of farmer water user communities
(FWUCs), community fisheries (CFis), and community fish refuges (CFRs) in three Mekong Delta
provinces in Cambodia. This study concludes that water governance has been challenged by FWUCs
competing for water resources to intensify rice production at the expense of increased pesticides and
fertilizer uses, which undermine the fishery productivity, degrade the natural resources in rivers
and water bodies, and increase water conflicts among farmers and sectors in the face of climate
change. To enhance water governance in Cambodia, it is critical to integrate it at the district level.
This will promote sustainable water use and management across the country and pave the way for
a brighter future.

Keywords: water governance; rice farming; irrigation; community fisheries; community fish refuge;
water conflict

1. Background

Cambodia faces the challenge of managing excess water during the wet season and
insufficient water during the dry season. This harms human life and endangers aquatic and
natural resources, agricultural practices, and food security [1]. Water governance is crucial
to ensure the well-being of both people and their food security. However, Cambodia’s water
governance is hindered by various obstacles, including sectoral and centralized influences,
top-down and large-scale strategies, weak coordination among relevant agencies, and
limited involvement of local communities. This study examines water governance across
different sectors, from centralized to community-based natural resources management, and
explores the opportunities that can be done to improve water governance [1–3].

It is widely believed that effective water management entails the development and
management of irrigation systems to store water for rice farming. Despite the Ministry of
Water Resources and Meteorology’s (MOWRAM) efforts to support rice farming through
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large-scale irrigations, farmers continue to experience water scarcity issues and annual
crop damage from floods. These challenges can be attributed to the centralization of water
management through large-scale irrigation development [2–4].

In recent years, Cambodia has adopted a decentralized approach to water manage-
ment by introducing the Farmer Water User Community (FWUC) system. This system
entrusts farmers responsible for managing irrigation systems through contributions in cash
and kind [5]. However, the study has revealed that FWUCs tend to be weak and managed
centrally, with limited financial and technical support, minimal input and poor ownership
from community members, and unclear benefit-sharing mechanisms, contributing to the
weak performance of FWUCs. In addition, other community organizations such as commu-
nity fisheries (CFis) and community fish refuges (CFRs) also compete for water resources to
sustain their livelihoods [6–9]. While FWUCs utilize water for rice farming, CFis and CFRs
rely on water resources for sustainable fishery productivity. Furthermore, the decentralized
water governance is complicated by a centralized system whereby FWUC management
and performance are influenced by the decisions and direction of the Ministry of Water
Resources and Meteorology (MOWRAM), while CFis/CFRs are influenced by the Fishery
Administration (FiA) and the Ministry of Agriculture, Forestry, and Fishery (MAFF). While
water is viewed as part of the fishery sector and its management, MOWRAM considers
water management as its mandate, and to do so, it is done through irrigation management
and development [10]. Nevertheless, MAFF has a role to play when it comes to rice pro-
duction, and so, water has been strategically planned as part of rice farming planning and
programs. These different dimensions and approaches have made the coordination and
integration between sectors challenging, implicating decentralized water governance [8,9].
Moreover, the situation is further complicated by climate change, which impacts water
availability for all three communities [11,12].

This study examines water governance in FWUCs, CFis/CFRs, and rice farming
in three Mekong Delta Provinces in Cambodia and evaluates how water resources are
shared among these communities. First, this article reviews the literature concerning water
governance and constructs the framework that analyzes water governance in the study
sites. Second, this article delves into the subject of water governance, investigating the
manner in which water is used by FWUCs, CFis, and CFRs, as well as its impact on water
resources. Third, it explores the ramifications of climate change on water usage, including
its effects on rice farming seasons and the competition that arises between FWUCs and
CFis/CFRs. This study concludes with recommendations for enhancing water governance
to promote fishery, rice farming, and livelihood.

2. Conceptual Framework

Water is an essential ingredient for the sustenance of life, the environment, and growth.
It naturally flows and is stored in various forms such as rivers, streams, lakes, ponds, and
underground reservoirs. These bodies of water provide a habitat for aquatic animals, fish,
and plants, while terrestrial plants rely on underground water for growth. The dry season
can cause water stress in lakes, rivers, and streams due to evaporation [13]. These are
relevant to the Mekong River and Tonle Sap Lake, where Cambodia is part of these river
systems, and it experiences heavy floods in the wet season and severe drought in the
dry season, raising the need for water governance [3,4]. Water governance is key to the
development of Cambodia. In the past, water governance was governed by the open access
regime, for instance, Tonle Sap Lake (TSL) and Cambodia’s Mekong Delta (CMD) play a
critical role in terms of providing natural and cultural capital for numerous communities
living around the Lake and the Delta. Hitherto, there have always been relatively plentiful
supplies of fish that provide a ‘safety net’ against famine. Thus, many Cambodians rely on
the river and Lake’s resources for their living, and they consider these water bodies as a
‘social safety net’ [14]. However, the growing population and development pressures have
increased the demand for water resources, resulting in technical and sectoral systems taking
over, including increasing irrigation development, commercial fishing, and industrial uses.
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These have made water governance significant challenges with multi-sectoral dimensions.
Thus, water governance in Cambodia has evolved and changed over time. The literature on
water governance primarily discusses its effects on multiple sectors, including fishery and
rice farming. A literature review highlights six dimensions of water governance related to
fishery and rice production [15,16].

First, water governance is influenced by different sectors and actors at different levels.
Some sectors are considered more economically important than others and, therefore,
receive priority in terms of planning and investment aimed at extracting more water to
generate income and benefits. Within each sector, actors with power and interests drive
decision-making. In the Mekong River Basin, water has been prioritized for hydropower
development over supporting the fishery sector, with the goal of securing energy and
boosting industrial development in the Mekong countries [17,18]. Hydropower companies
are actively involved in driving this development, supported by upstream states of the
Mekong River. The industrial sector has also competed for water to support its own
development, which has impacted the fishery, agriculture, natural resources, and food
security during the production cycle [19–21].

In Cambodia, water governance is characterized by top-down, sectoral, and large-scale
approaches, emphasizing the role of the irrigation system as a key sector in managing
water resources. As such, it requires a high technical capacity, high costs, and state-driven
interventions, which are highly complex, administratively and politically challenging, and
have limited capacity of local authorities [22,23]. Consequently, farmers still face water
scarcity, affecting agricultural productivity and low yields. In 2000, concerted efforts were
made to decentralize water governance by establishing Farmer Water User Communities
(FWUCs) to manage water resources at local levels for rice cultivation. FWUCs were formed
in accordance with the Water Law (2007) and a subsequent sub-decree, comprising the
regulations on water use and fee collection, controlling, and monitoring [10]. However,
water governance via FWUCs has been challenged by the lack of focus on roles and respon-
sibilities, particularly with regard to distributing water equitably, effectively, and efficiently
to members of FWUCs. There has been little communication and mediation between farm-
ers and the Provincial Department of Water Resources and Meteorology (PDOWRAM) in
administrative processes to comply with IWRM procedures and frameworks and even less
financial support [24]. At the same time, another form of decentralization of related water
governance is the establishment of the community fisheries (CFis) and the community fish
refuges (CFRs) to manage fishery resources under the Fishery Administration (FiA), as
well as oversight by the Ministry of Agriculture, Forestry, and Fishery (MAFF) [25]. While
CFis/CFRs protect water resources and water bodies to improve fishery productivity and
fish production, FWUCs extract water to irrigate rice cultivation in the wet and dry seasons.
Thus, while decentralized water governance has been constrained by the weak FWUCs, it
has also been challenged by competing sectoral interests and weak coordination between
sectors at local levels [9,26].

Second, the management of water resources is intricately linked to the unique physical
attributes of the Mekong River, lakes, and floodplains, including their overall volume and
quality. This issue primarily affects the communities residing upstream and downstream of
these vital water sources during both wet and dry seasons, which are the cases in the study
areas, where some communities are located upstream of the rivers, lakes, and canals, while
others are in the downstream [9,18]. In times of drought in the context of climate change,
for instance, upstream communities may consume a disproportionate amount of water,
causing a scarcity of this resource for downstream farming and fishing communities. This
can result in tensions and disagreements between the various groups. Similarly, during the
flood season, the release of excess water by upstream communities can inundate the rice
fields of downstream communities, exacerbating existing tensions [17,19,20,24].

Third, water usage, governance, and management across various sectors are guided
by institutional frameworks and policies. These policies are formulated by institutions and
governing bodies to provide a set of rules and regulations that help these sectors access and
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govern water resources for their benefit [2,3,27]. These policies are influenced by technical
expertise and specialization within institutions, which in turn affect other institutions. The
creation of policies is intrinsically linked with power and politics, where power sustains
politics and policy and politics involves the processes of achieving, exercising, and resisting
power [28]. Politics operates within institutions and sectors, while power as a strategy
involves controlling and organizing spaces and resources through forms of territoriality
and the classification of precise geographic areas and boundaries. The organization and
management of water resources are based on technical, scientific, economic, and political
interests [29]. Henri Lefebvre [29] highlights the following:

Specializations divide space [water resources] among them and act upon its
truncated parts, setting up mental barriers and practice-social frontiers. Thus,
architects are assigned architectural space as their private property, economists
come into possession of economic space, geographers get their own place in the
sun, and so on. The ideologically dominant tendency divides space up into parts
and parcels in accordance with the social division of labor ([29], 1991: 89–90).

In Cambodia, the Ministry of Water Resources and Meteorology (MOWRAM) has
developed and managed the irrigation systems to manage water resources, but very few
have enough water for rice farming in the dry season, while rice farming is under the
responsibility of MAFF, which is not managing water [10]. Meanwhile, fisheries and
water are closely linked, but each management has been separated by sectoral policies and
interests; for instance, the irrigation system may be beneficial for the national output of rice,
but tensions and conflict over land and water use often arise between local user groups
and large-scale commercial actors in the irrigated and intensively cultivated land. Also, the
segmentation of traditional rice-field fisheries, which are unaccounted-for trade-offs with
inland capture fisheries, remains a critical issue. In the fisheries sector, unregulated fisheries
tend to exclude household fisheries, impacting food security and household income.

Fourth, using, sharing, and controlling water for fishery, agriculture, industry, etc.,
involves decision-making by actors from different sectors at different levels. Dore [30]
in the deliberative water governance and Dore et al. [16] in a framework for analyzing
transboundary water governance complexes in the Mekong Region suggest that water
governance is a social process of dialogue, negotiation, and decision-making in which
many different actors from different sectors are dealing with a variety of issues influenced
by their individual and shared context: actors from different sectors engage in multiple
arenas, depending on the opportunity, necessity, and choice; drivers are what influence
and motivate actors in different sectors; actors employ drivers to establish and legitimize
their positions, inform debate, and influence negotiations; decisions emerge from the
arenas, and the impacts of decisions result in fairness and water allocation [19,27]. The
same happens in Cambodia. Along this line, Ratner et al. [21] look at the governance of
the aquatic agricultural system in TSL from three governance dimensions: (i) Stakeholder
representation—which actors are represented in decision-making and how? (ii) Distribution
of authority—how are formal and informal authority distributed concerning decisions
over resource access, management, enforcement, dispute resolution, and benefit sharing?
(iii) Mechanisms of accountability—how are power-holders held accountable for their
decisions and to whom? These form the basis of governance of water, where decision-
making by actors from different sectors and levels, is always challenging and dominated by
powerful sectors, in this case, the irrigation development more than the fishery sector [31].

Fifth, access to water resources is crucial for the livelihoods of the farmers, fishers, and
the rural population. It also plays an essential role in ensuring the well-being of people,
reducing crop failures during dry spells, and providing opportunities for farmers to grow
two or three rice crops a year in the study areas. However, treating water as a public
good and assuming that it is accessible to all can create a few problems. Firstly, powerful
farmers with resources and equipment would maximize the extraction of water for their rice
farming at the expense of other farmers, leading to potential water conflicts and shortages,
which state institutions may be unable to address fairly due to limited financial resources,
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capacities, rules, and regulations [32]. Secondly, treating water as a public good can lead to
wasteful use, as it is free, and wasting it does not incur any cost [33,34]. On the other hand,
when people have to pay to use water, such as a member of FWUCs, they tend to use only
enough water to satisfy their immediate needs; however, poor farmers may be unable to
do so due to small farmlands and low yield with the uncertainty of climate change. Thus,
this article examines these dilemmas in the study areas in a great deal [32].

Sixth, water governance is intricately linked to the physical structures that are put
in place to regulate, collect, store, move, and distribute it. The design and operation of
water infrastructure have a profound impact on the natural and social environments in
which they exist. Furthermore, social systems and processes play a crucial role in shaping
the physical infrastructure used for water management. To truly understand a water man-
agement system, it is essential to recognize the interdependence of social, technological,
and biophysical systems. This interconnectedness also highlights the continuous evolution
of governance arrangements and processes. Ultimately, decision-making related to water
management will involve a diverse group of stakeholders at different levels, utilizing a
range of platforms and technologies [15,32]. There has been a variety of infrastructural
interventions affecting the natural environmental regime [35]. Chief amongst these are
hydropower dams, which have a high disruptive potential, altering flow, quantity, temper-
ature, and flooding patterns, sometimes in combination with large-scale irrigation schemes.
Finally, the effects of global climate change are increasingly being felt. Southeast Asia in
general, and particularly Cambodia and its water regime, are hypothesized to be one of the
most vulnerable areas in the world [36].

3. Materials and Methods

The conceptual framework above has been utilized to analyze water governance in
Cambodia’s Mekong Delta (CMD) and assess its impact on rice field fishery productivity,
rice production, food security, and livelihoods. The CMD is a rice-producing region in
Cambodia; it is rich in fishery resources and agricultural products, which produce foods
to support millions of people with water at the center of food production. The increased
population, the development pressures from the upstream and around the CMD, and
climate change underline the capacity of the CMD to produce foods, affecting many people.
Thus, the above framework is employed to analyze water governance in the FWUCs,
CFis, and CFRs in the CMD under the above changing dynamics aiming at increasing rice
farming and fishery management for food production to feed its population.

Empirical research was carried out in two of Cambodia’s Mekong Delta Provinces,
namely, Prey Veng and Takeo, as well as in Kampong Thom—a province located in the
Tonle Sap Lake (TSL) region (Figure 1). This study selected four sites across three provinces:
(1) Beung Sneh Lake (Beung Sneh) and (2) Beung Plang in Prey Veng Province, (3) Beung
Ream in Kampong Thom Province, and (4) Ta Soung in Takeo Province (Table 1). Beung
Sneh, a 3924 ha freshwater lake in Prey Veng Province, is connected to the Mekong River
and surrounded by 44 villages located in 8 communes in 4 districts. Hundreds of thousands
of people living in these villages are dependent on Beung Sneh for water for both domestic
uses and agriculture, fish, and biodiversity. Within Beung Sneh, you can find four CFis, two
FWUCs, and a community-based eco-tourism (CBET). Our study examines the Chamcar
Kouy Irrigation Scheme (CKIS) and the four CFis situated in Beung Sneh. Beung Plang is
a serene freshwater pond nestled in Ampil Krav commune, Sithor Kandal District, Prey
Veng Province. The pond is a beloved fixture in the area, surrounded by five vibrant
villages and providing a home to 2112 households. It is noteworthy that three of these
villages have come together to establish the community fish refuge (CFR), known as a
Beung Plang CFR, to protect the last remaining fish refuge areas and link the CFR to rice
fields, aiming at increasing fish and rice production for food security. For our study, we
directed our focus toward the CFR site and the Vaiko Irrigation Scheme (VIS) located in the
Ampil Krav commune.
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Table 1. Characteristics of the study sites, FWUCs, CFis, and CFRs.

Studied
Sites

FWUC CFis CFRs

Irrigation
System

Irrigation
Canal
(km)

Irrigated
Area
(ha)

No. of
Villages

Membership
(HHs)

No Areas
No.

Villages Membership No Area No. of
Village

Membership

Beung
Phlang

Vaiko (no
FWUC) 78 153,400 3 93 - - - 1 27 3 4981

Ta Soung Ta Soung
Irrigation 50 1511 15 970 4 844,793 15 1016 - - -

Beung Ream Taing Krasain 22 9869 10 13,058 - - - 1 13 2 572
Beung Sneh Chamcar

Kouy 9 2010 6 984 4 85,236 6 11,034 - - -

Total 4 159 166,790 31 15,105 8 930,029 21 12,050 2 40 5 5553

Note: Source: authors.

The Farmers Water User Community (FWUC) of the Ta Soung Irrigation Scheme
(TSIS) serves nearly 1000 farming households across 15 villages in Prey Kabbas District,
Takeo Province. This community is linked to the Prek Ambel River, which feeds into the
Bassac River. It is a rice-producing region where farmers cultivate three rice crops a year
using water from the Bassac River, and it has a former fishing lot area, where rice and
fish are produced for food consumption and trade. Additionally, this study delves into
the connection between the Ta Soung Irrigation Scheme and the four community fisheries
(CFis) that were established to manage former fishing lot no. 20 in the Prek Ambel River,
Takeo Province.

Beung Ream is a pristine freshwater pond nestled in Kakoh Commune, Santuk District,
Kampong Thom Province. It has been designated as Beung Ream CFR and is linked to
the Tang Krasaing Irrigation Scheme, which has been established as FWUC. Nestled
within Tang Krasaing Irrigation Scheme, Kakoh Commune is home to approximately
3309 households that are spread across 10 villages and organized into Sub-FWUC. This
study explores the Beung Ream CFR and the Sub-FWUC of Kakoh Commune as a crucial
component of Tang Krasaing Irrigation Scheme.

The researchers utilized both qualitative and quantitative methods to gather pri-
mary and secondary data from the studied sites. The team, comprised of members from
WorldFish, International Water Management Institute (IWMI), Inland Fishery Research
and Development Institute (IFReDI), and Fishery Administration Cantonments (FiACs),
and data collection was conducted between December 2022 and June 2023. Secondary
data on various factors such as CFis, CFRs, FWUCs, irrigation schemes, rice production,
fishery, pesticides and fertilizers, population, and farming lands were collected from the
commune database (2021), CFi and CFR databases (2022), and the irrigation database of
MOWRAM (2019).

Primary data were obtained through key informant interviews (KIIs) and focus group
discussions (FGDs). The KIIs were conducted with Provincial Departments of Water
Resources and Meteorology (PDWRAMs), FiACs, District Officers in charge of Agriculture,
Environment and Water Resources, Commune Chiefs, and NGOs in the respective sites
to obtain their knowledge on sectors, the policy and legal frameworks, the institutional
arrangements, roles, responsibilities, activities, challenges and opportunities in carrying out
their works. The FGDs were conducted with various groups such as CFis, CFRs, FWUCs,
Identity of the Poor 1 and 2 (ID Poor 1 and 2), and non-ID Poor (Table 2). The KIIs and
FGDs were conducted concerning the performance of FWUCs, CFis, and CFRs. Specifically,
the water usage of FWUCs during three rice farming seasons and its effects on CFis/CFRs
were discussed, along with the competition between FWUCs and CFis/CFR for water
resources. The roles of local governments in water governance were also examined, and
recommendations were made for improving water governance for FWUCs, CFis/CFRs,
rice farming, and fishing. Furthermore, FGDs were held with both ID Poor and non-Poor
people to discuss the changes in water resources, fishery, agriculture, and food over the
past 10–15 years. The impact of these changes on ID Poor 1 and 2 and non-Poor individuals
was also explored. The ID Poor is a government system under the Ministry of Planning
to classify poor households into four categories to which households can be assigned:
Poor 1 (very poor); Poor 2 (poor); at-risk; and non-Poor, which were promulgated by
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sub-decree no. 291 issued in December 2011 [37]. Finally, the group discussed the positive
developments in water resources, rice farming, fishery, foods, and livelihoods that have
resulted from the implementation of irrigation systems, FWUCs, CFis, and CFRs in the
studied areas. The information gathered from the FGDs, interviews, and secondary sources
underwent analysis utilizing an Excel spreadsheet. The data were then transformed into
percentages, figures, and tables, with qualitative data included to support the findings.
This article is descriptive and based on the data and analysis, and it is structured into first,
the introduction; second, the analytical frameworks; third, the results and discussions; and
fourth, the conclusion.

Table 2. The primary data collection using KIIs and FGDs.

Data Collection
Methods/Sites

KIIs
FGDs with
CFis/CFRs

FGDs with FWUCs
FGDs with ID Poor 1 and
2; and the Non-ID Poor

Beung Sneh

• Chief of PDOWRAM
and two staff,

• FiAC Prey Veng
Province,

• Commune Chiefs of
Prey Kandieng,
Theay, Samrong and
Damrei Poun
Communes

4 FGDs with CFis:
(1) Theay,
(2) Samrong,
(3) Damrei Poun;
(4) Prey Kandieng

• 01 FGD with
Chamcar Kyou’s
FWUC

• 01 FGD with Private
FWUC in Toap Sday
Village/Theay
Commune

15 FGDS in 5 villages in
five Communes around
Beung Sneh:

1. Samrong,
2. Prey Khla,
3. Kok Trom,
4. Kampong Sleng,
5. Chamcar Kyou,

Beung Phlang One FGDs with CFR n/a 03 FGDs in Peanea Village

Beung Ream

• PDWRAM of Prey
Veng Provinve,

• District of Officers
Santuk District in
charge of FWUC,

• Kakoh Commune
Authority,

• Chief of Kakoh’s
FWUC

02 FGDs 3 FGDs of FWUCs

15 GFDs in five villages in
Kakoh Commune:
(1) Chey Chomneas,
(2) Kiriwone,
(3) Samnak.
(4) Santuk Krav,
(5) Cheay Spai

Ta Soung

• District Officers in
charge of irrigation,
agriculture and
fishery

03 FGDs with 3 CFis One FGD with FWUC

15 FGDs in five villages
three communes:
(1) Sethey,
(2) Prey Lvea Keut,
(3) Pontong,
(4) Kampomg Reab,
(5) Prey Tapong

Note: Source: authors.

4. Results and Discussion

4.1. Results
4.1.1. Water Resources in Cambodia

Cambodia is situated in the Lower Mekong Basin, spanning an area of 181,035 km2.
A substantial portion of Cambodian land, roughly 86% (156,000 km2), is within the Mekong
catchments. As a downstream and lowland nation, Cambodia is blessed with plentiful
water resources. It boasts approximately 1216 km3 of water within its borders, with an
additional 355.5 km3 flowing into the Mekong River from external sources. Cambodia’s
estimated annual total renewable water resources are around 476 km3 [38] (units of volume:
1 km3 = 1 billion m3 = 1000 million m3 = 109 m3). The annual water usage amounts to
around 2.18 cubic kilometers, with agriculture being the primary consumer at 94%. The
withdrawal of irrigation water alone accounts for about 1.928 million cubic meters on
a yearly basis, while the remaining water is allocated for domestic and industrial use.
The estimated water withdrawal per individual ranges from 130 to 160 cubic meters per
year [38].
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With 39 river basins located in five sub-regions, Cambodia is home to a vast array of
water resources. The Tonle Sap Lake alone is made up of sixteen sub-river basins, while
the Upper Mekong River basin contains five, the 3S basin has three, the Mekong Delta has
eight, and the coastal river basin has eight sub-river basins. At Kratie, the Mekong River
provides Cambodia with its primary external water resources, with an average discharge
of 476 km3 per year before it flows into the South China Sea [1].

4.1.2. Water Management through Irrigation Development
Irrigation Development

There are 2500 irrigation schemes across Cambodia, which could irrigate 2.32 million
ha, among which 65% are located in the Mekong floodplains and Delta and 35% in the
Tonle Sap floodplains. We studied three irrigation systems in Cambodia’s Mekong Delta
in the Prey Veng and Takeo Provinces. Prey Veng province has 177 irrigation systems
and Takeo has 136 irrigation schemes. In the Tonle Sap floodplain, this study focuses on
Kampong Thom Province, with 258 irrigation schemes [39].

In Cambodia, there are 2500 irrigation schemes that could irrigate 2.32 million hectares
of land. Of these, 65% are found in the Mekong floodplains and Delta, while the remaining
35% are situated in the Tonle Sap floodplains. Our investigation specifically examined
three irrigation systems in Cambodia’s Mekong Delta, which are located in Prey Veng and
Takeo Provinces. Prey Veng Province boasts 177 irrigation systems and Takeo has 136.
Furthermore, we delved into Kampong Thom Province in the Tonle Sap floodplain, where
there are 258 irrigation schemes. These statistics were procured from the CISIS database in
2020 and were authenticated via personal communication in February 2023 [39].

An analysis of four irrigation schemes has been chosen for this study, comprising two
in Prey Veng Province (Chamcar KKouy Irrigation Scheme and Vaiko Irrigation Scheme),
one in Takeo Province (Ta Soung Irrigation Scheme), and one in Kampong Thom Province
(Taing Krasaing Irrigation Scheme). The Chamcar Kouy Irrigation Scheme is primarily
supplied with water from Beung Sneh, which provides approximately 85 million cubic
meters of water during the wet season and reduces to around 40 million m3 during the
dry season. The Ta Soung Irrigation Scheme uses water from the Prek Ambel River, a
tributary of the Bassac River, while the VIS scheme relies on the Mekong River. The Taing
Krasaing Irrigation Scheme uses water from the Taing Krasaing and Stung Chinit Rivers.
These irrigation schemes cover an area of approximately 63,895 hectares, which accounts
for around 3% of the targeted national irrigated area of 2 million hectares by 2023 [40].

The Prey Kabbas District boasts the Ta Soung Irrigation Scheme, which is an irrigation
system that comprises two main canals, ten secondary earth canals, and eight secondary
concrete canals. The system is equipped with a pumping station that houses five pumping
machines and irrigates 1511 hectares of land owned by 970 farming households from
15 villages across four communes. Another notable irrigation scheme in Kampong Thom
Province is the Taing Krasaing Irrigation Scheme. The Taing Krasaing Irrigation Schem in
Kakoh Commune consists of a main canal, six secondary canals, and sixteen tertiary canals,
with two water gates that can cover a distance of 22 km from the Stung Chinit River to the
Beung Ream in Kakoh Commune, Santuk District. Part of the Taing Krasaing Irrigation
Scheme located in Kakoh Commune can irrigate up to 9869 hectares of land across ten
villages in Kakoh Commune (Table 1).

Farmer Water User Community

The Royal Government of Cambodia (RGC) introduced the Water Law in 2005, which
allows farmers who utilize the irrigation system to form FWUCs under Article 19 [12]. To
better manage water resources, RGC decentralized the implementation and maintenance
of irrigation schemes to FWUCs via Prakas 306 in 2006. To date, 544 FWUCs have been
established to manage irrigation schemes [41], but in Prey Veng Province, only 38 out
of 177 irrigation systems have FWUCs. Meanwhile, Kampong Thom has 258 schemes
and 30 FWUCs, but, unfortunately, many FWUCs are inactive, with only 10% currently
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active. Five of the identified FWUCs were examined in their respective study areas—two
in Beung Sneh and one each in Beung Phlang, Beung Ream, and the Soung Irrigation
Scheme. These FWUCs cover a total of 9067 hectares of agricultural land and have 15,781
agricultural households as members. The largest of the studied areas is Damrei Puon’s
FWUC in Beung Sneh, followed by the FWUC in Ta Soung Irrigation Scheme in Takeo
Province and Theay’s FWUC in Beung Sneh (Table 3).

Table 3. The selected FWUCs for the studies of water governance.

Site/Commune
No. of

FWUCs
No. of

Sub-FWUC
No. of Villages

in FWUC
Total Areas

(ha)
No. of Members

(HHs)
Year of

Establishment

Beung Phlang 1 0 3 107 93 n/a
Beung Sneh (Damrei

Puon and Theay) 2 0 10 2350 1660 (2018, 2005)

Boeung Ream (Kakoh) 1 9 10 5099 13,058 2018
Ta Soung 1 15 15 1511 970 2022

Grand Total 5 24 38 9067 15,781 0

Note: Source: authors.

4.1.3. Fishery Resource Management

The areas under study are rich in fishery resources, with connections to a variety
of water bodies including rivers, streams, and lakes. The Soung Irrigation Scheme was
a former fishing lot n. 20 in Takeo Province, and it is connected to Prek Ambel River, a
tributary of the Bassac River. Similarly, the Beung Sneh is linked to the Mekong River,
which is a habitat for a diverse array of fish that people from 44 villages depend on for
their livelihoods. Beung Ream, located in the Tonle Sap Floodplain, serves as a migration
route for fish between Tonle Sap Lake and Beung Ream during the rainy season. Despite
this, only 24% of households in the studied areas rely on fishing, with Prey Kabbas District
having the highest percentage of fishing households at 33%. Around 30% of households
in Kampong Thom’s Beung Ream still rely on fishing, while Beung Sneh in Prey Veng
Province has a significantly lower percentage of fishing households at just 19%.

Community Fisheries (CFis)

The studied CFis were established after 2000, following the release of commercial
fishing areas for public open access to local communities. The prominent roles of CFis are
to conserve and protect fishery resources within the CFi territories. All members could fish
openly throughout the year using the fishing gear defined in the CFi by-laws. The by-laws
allow CFi members to fish with subsistence and not commercial, aiming at conserving
fishery resources.

The CFis in Beung Sneh are connected to eight large irrigation systems that utilize
water from the CFi areas to irrigate rice fields spanning over 22,899 hectares around the lake.
These CFis are established at the commune level, with elected committees from villages
in the communes. Their primary objective is to protect and conserve the fishery resources
by reserving approximately 40 hectares inside the lake and nine deep water areas in the
Beung Sneh as CFi-protected zones (Table 1). To achieve this, CFis maintain the water level
in the lake at approximately 4–5 m deep during the dry season, providing fish with shelter.
However, their actions often contradict those of Farmer Water User Committees (FWUCs),
as farmers need to pump water to irrigate their rice fields. This puts CFis under immense
pressure as they lose water to rice cultivation, leading to a decrease in the lake’s water level,
which impacts both the CFis and fisheries and results in illegal fishing within the protected
areas. Additionally, they also face the destruction of flooded forests around the lake and
water pumping from the lake.

From 2000 to 2002, four community fishery institutions (CFis) were established in
the Prey Kabbas District of Takeo Province, specifically in the areas of TSIS. These CFis
boast a total of 1016 members, with 550 of them being female (Table 1). The leadership
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of the CFis consists of 36 committee members, 4 of whom are female. The establishment
of these CFis aimed to protect fishery resources and support the communities. Oxfam
Australia partnered with these CFis from 2002 until 2015 to protect fishery resources to
support communities. However, since Oxfam phased out of the area, CFis have become
inactive due to financial and technical support, staffing, and budget constraints. In 2022
and 2023, the European Union provided a small grant of USD 1000 per year to Kampong
Reab, one of the CFis. However, this grant only addresses patrolling, conservation, and
signboard for CFi awareness-raising and not the other pressing issues that CFis are facing.

CFis encounter several obstacles, including encroachment in their conservation zones,
illegal fishing within CFi core areas, and limited participation from both members and non-
members in the management of CFi areas. Moreover, the lack of support from FiA, FiAC,
and local government in managing CFi areas, as well as limited financial and technical
support from concerned agencies, hinders the protection of fishery resources. Addressing
conflicts between CFis and Farmers Water User Committees (FWUCs) over water pumps
from CFi areas to irrigate rice fields, overlapping areas between CFis and FWUCs, lack
of fishery management within FWUC areas, and the use of pesticides and fertilizers in
rice farming that results in the killing of aquatic animals and fish are crucial issues that
require attention.

Community Fish Refuges (CFRs)

This study delves into two CFRs, namely the Beung Ream CFR in Kampong Thom
Province and the Beung Phlang CFR in Prey Veng Province. The Beung Ream CFR was
established in 2021 by two villages in the Kakoh Commune, Santuk District, Kampong
Thom Province. It covers a vast area of 13 hectares, with a 2-hectare core protected region
and an average water depth of 2.5 m during the dry spell (Table 1). The CFR area is
equipped with a water level monitoring system that triggers an alarm to prevent any
further water extraction from the lake. It is marked with pillars, a security guard post, and
a signboard that explicitly states the prohibition of illegal fishing within the Beung Ream
CFR area.

In the vicinity of Beung Ream CFR, three canals are present: O’ Praing, Beung
Karav, and irrigation canals constructed by MoWRAM. O’ Praing underwent rehabili-
tation through a private company that utilized the soil to construct roads. Since then, it
has ensured a year-long water supply to Beung Ream CFR. The Kakoh irrigation canal
enters Beung Ream CFR via a water gate that regulates water supply to CFR areas. The
Kakoh irrigation system is part of the Taing Krasaing Irrigation Scheme. Farmers have been
irrigating 995 hectares of rice fields surrounding Beung Ream CFR with water from the
Kakoh irrigation canals and Beung Ream CFR, enabling them to cultivate 2–3 crops of rice.
Approximately 572 households are actively involved in fishing and harvesting fish and
other aquatic animals from the floodplain area and rice fields surrounding Beung Ream
CFR, which gets flooded during the rainy season. In addition, around 294 households fish
within the Beung Ream CFR area for approximately five months a year. Fishing benefits
approximately 716 families of which 20 percent are impoverished households. The esti-
mated annual fish catch per household is about 88 kg, and the estimated annual catch of
other aquatic animals is about 48 kg per household.

The Beung Phlang CFR, situated in the Ampil Krau Commune, is home to 17,572 individuals
from 2112 households across five villages. The majority of the population, approximately
85%, is engaged in farming, while about 20% are involved in fishing. Established in 2008 by
Peanea, Kbal Beung, and Svay Teap villages, the Beung Phlang CFR was created to protect
land, fish, and biodiversity for the community’s benefit. Covering an area of roughly
27 hectares, the Beung Phlang CFR boasts a length of 1800 m and a width of 200 m. It holds
water all year round, with a depth of 6 m in the wet season and 2 m in the dry season. The
core area, spanning 12 hectares, is managed as a conservation zone, with poles marking its
boundaries. The release of indigenous fish fingerlings 2–3 times has resulted in an increase
in fish stock. While villagers from these villages can fish within the CFR, they are not
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permitted to do so in the conservation areas. The Vaiko Irrigation Scheme encircles the
Beung Phlang CFR and includes two primary canals, one pumping station, two vertical
sub-canals, and four horizontal sub-canals. One vertical and one horizontal sub-canal link
the Beung Phlang CFR to the main canals. The canal system is observed to be shallow and
poorly maintained, and villagers have not utilized much of the water. Nonetheless, the
connectivity allows fish to move between the sub-canals and the Beung Phlang CFR to rice
fields, with an estimated fish catch at about 25 kg/ha.

4.2. Discussion
4.2.1. Rice Export Policy, Irrigation Development, and Fishery Management

Water is a crucial component for both rice farming and fishery production. With
abundant water resources, Cambodia is rich in fishery, standing no. 5 globally after China,
India, Bangladesh, and Myanmar in inland fishery production. The Tonle Sap Lake and
Mekong Rivers are well known for fishery production. However, between 2000 and 2012,
RGC removed the fishing lot systems, a hundred-year-old system, and turned the fishing
lot areas into CFis/CFRs, fishery conservations and open access areas. The fishery sector
has gradually and economically become inactive [41,42]. In 2015, RGC developed a rice
export policy to promote the paddy rice export for one million tons a year. These have led
to mushrooming of rice production and the development of irrigation systems to manage
water to irrigate rice farming [43].

To promote rice intensification and fulfill the rice export policy, investments are
poured into irrigation development and rehabilitation to increase water availability for
rice cultivation. MOWRAM has developed the National Irrigation and Water Resources
Management Investment Program (NIWRMIP) 2019–2033 to develop and rehabilitate
irrigation schemes at a total cost of USD 2.64 billion. FWUCs have been established under
the MOWRAM, as a local arm, which is in line with the above policy to promote community
participation in water management and uses for rice farming [44,45].

Nevertheless, agriculture is managed under the Ministry of Agriculture, Forestry,
and Fishery (MAFF), including rice farming, agricultural extension, agricultural land
management, and so on. At the same time, fishery policy supports the establishment of
CFis/CFRs to manage the changing fishery management system. The fishery views water as
part of the fishery and water bodies as natural habitats for fish and fishery production [46].
However, MOWRAM treats water as a separate sector, which is managed as part of the
irrigation system. Thus, the irrigation policy considers water as a valuable resource to
be leveraged, utilized, controlled, and managed primarily for agricultural purposes. The
irrigation system is designed to retain water and employ it for irrigating rice fields [47,48].
The rice intensification for commercial rice exports requires a larger amount of water.
Farmers extract more water from irrigation canals and, in some cases, from rivers, lakes,
and ponds to irrigate dry-season rice farming. This often causes conflicts among farmers
and between upstream and downstream communities along rivers and around lakes. With
the expansion of the rice farming industry, the use of pesticides, fertilizers, and other
chemical inputs has increased to improve rice production.

In the name of economic development, policy, actors, power, and interest drive these
changes. Even with a common policy for promoting rice production and export, some
sectors (agriculture, irrigation) gain momentum, while others (e.g., fishery sector, etc.) are
vulnerable in terms of their contribution to the economy and the country’s development.
Instead, dominant and powerful sectors get leveraged, which to some extent undermines
the credibility of other sectors, in this case, the fishery sector (Table 4) [27,28,30].
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The rice export policy has triggered the expansion of agricultural land. At a national
level, the total rice farming area has expanded to reach 3.34 million hectares by 2023, with
82% dedicated to wet-season rice farming and 18% to dry-season rice farming. Multiple
irrigation schemes, including the Vaiko, Taing Krasaing, Ta Soung, and Chamcar Kouy
Irrigation Schemes, have undergone rehabilitation to enhance agriculture, specifically
rice farming.

In the study areas, the total rice farming area is 37,363.5 hectares, with 71% dedicated
to wet-season rice farming and 29% to dry-season rice farming. Agricultural landholdings
are relatively small, at approximately 1.95 hectares per household, and the increased rice
production primarily relies on water and agricultural inputs. In Beung Sneh, rice farming
covers a vast area of 22,899 hectares. The majority of this land, 69%, is dedicated to wet-
season rice farming, while the remaining 31% is for dry-season rice farming. The Ta Soung
Irrigation Scheme is the second-largest rice farming area, with 40% allocated to wet-season
rice farming and 60% to dry-season rice farming. Although the Beung Ream and Beung
Plang areas have constructed irrigation canals, farmers currently do not engage in dry-
season rice farming. Nonetheless, many agricultural households in Beung Ream have been
observed to utilize the Taing Krasaing Irrigation Scheme and the FWUC to manage water
supply and transform wet-season rice farming areas into dry-season rice farming areas.

Under the rice export policy and improved irrigation system, farming households
have intensified the rice farming industry. They have graduated from one rice crop a year
to 2–3 rice crops a year, moving away from rainfed farming to irrigated agriculture, from
labor-intensive to mechanization, from farming for subsistence to farming for trading, and
from low yield to high yield. Farmers cultivate both wet- and dry-season rice at present.
These happen following the increased water availability, irrigation systems, and access to
water bodies.

On the other hand, the rice market is influenced by rice traders from Vietnam who
buy rice from Cambodian farmers to sell in Vietnam. The Vietnamese rice traders have
to introduce the Vietnamese rice varieties to Cambodian farmers if they intend to trade
their types of rice with Vietnamese rice traders. For these reasons, Cambodian farmers in
the study areas cultivate a high-yield rice variety, including IR 504, IR 5154, and others
imported from Vietnam.

About 98% of Cambodian agricultural households own farmlands, of which 99.3% are
in Takeo Province, 99.1% in Prey Veng Province, and 98.3% in Kampong Thom Province.
Furthermore, about 5% of agricultural households in Cambodia rent farmlands from
others for agriculture; perhaps they are landless. In Prey Veng Province, about 4% of
agricultural households rent their farmlands or are landless, followed by 3.4% in Kampong
Thom Province and 2% in Takeo Province [49]. In the study areas, about 57% of all
agricultural households are engaged in agricultural production [50]. The average household
landholding is 1.95 ha. About 12.5% of farming households own less than one hectare
of farmland, and 10.3% of households are landless. About 24% of the total population
is in fishing. In Prey Kabbas District, the fishing population constitutes 33% of the total
population. In Beung Ream in Kampong Thom, about 30% of its population is still engaged
in fishing. However, the fishing population in Prey Veng, generally, and in Beug Sneh
constitute 19%, which is low compared with other provinces.

Cultivating three rice crops per year requires much water. The irrigated command
area is about 1.2 million hectares, which represents only 22% of all arable land [51]. In
the study area, about 19% of farming households have their farmlands irrigated, of which
26% of farming households are located in the Ta Suong Irrigation Scheme, 18% of farming
households around the Beung Sneh in Prey Veng, and 17% of farming households in
Kah Koh Commune/Beung Ream. However, 42% of the total dry-season farmlands are
irrigated, while 24% of the wet rice farming areas are irrigated in the wet season.

This study found that most farming households cultivate 2–3 rice crops per year. The
first rice farming season starts in May and harvests in October, which is called ‘wet-season
rice farming’; it is when rainfalls and river water flood the floodplains, and when farmers
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cultivate the wet-season rice in the upper rice fields or ‘sreleu’ that are not flooded. Farmers
cultivate the local varieties, namely, ‘neang minh, senkra oup, malis, and others, which
yield between 4 and 5 tons/ha. Farmers cultivate the ‘wet-season rice’ mostly for household
consumption and the rice surplus is sold to those in need. However, given the increased rice
trades, farmers gradually changed to cultivate the high-yield rice varieties from Vietnam
for sale, and some farming households buy local rice production with local varieties for
household consumption.

The second rice farming season starts from November to January, which is called
the first dry-season rice farming, which is when the flood water recedes the floodplains
and farmers start cultivating the recession rice, namely, the ‘first dry-season rice farming’.
During this period, farmers cultivate high-yield rice varieties, including rice varieties from
Vietnam, such as IR 504 and IR 5154 in the middle rice fields, or ‘srekandal’. These varieties
consume so much chemical agricultural inputs and water, which could yield 5–6 tons/ha
for three three-month periods. With the increased rice farming during the first dry-season
rice farming, farmers experience water shortage to some degree but in many cases manage
to secure water for their rice farming. The rice production during this period is mostly sold
to rice traders who trade them to Vietnam (Figure 2).

 

Figure 2. Water governance challenges (source: authors).

Some farmers cultivate the second dry-season rice farming, from February to April,
but are at risk of water shortage, which could harm rice farming and increase the cost of
production. Due to water shortage, farming households cultivate the second dry-season
rice farming in the lower rice fields or ‘srekrom’ located adjacent to water bodies (lakes,
rivers, and streams), where farmers could pump out water to irrigate the rice farming.
The second dry-season rice farming is mainly for rice trades to Vietnam, and so, farmers
cultivate the high-yield rice varieties from Vietnam, but it may not have a high yield,
approximately 4–5 tons/ha, as they could be spoiled due to shortages of water or severe
droughts. Water competition during this period is relatively high between farmers and
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between ‘sreleu, srekandal, and srekrom’. Water competition sometimes could lead to
water conflicts, which could increase the cost of rice production (Figure 2).

4.2.2. Changing Hydrological Regime and Climate Change

In the last 20 years, changes to hydrological flows in the Mekong River, floodplains,
and lakes have occurred. The hydrological flows of the Mekong River to the Tonle Sap
Lake and the Mekong Delta have dropped, affecting rice farming, fishery production,
food security, and the livelihoods of millions of people downstream. Many scholars
blame this on the developments of hydropower, particularly the Chinese hydropower
dams [52–56], while others in favor of Chinese dams deny the accusations but claim climate
change to be the cause [57,58]. Nevertheless, a third group of scholars came out and
asserted neither Chinese dams nor climate change caused the declines in the Mekong flow
downstream to Tonle Sap Lake and the Mekong Delta but argued that it was due to local
developments, particularly the irrigation developments [59,60]. It is estimated that, on
average, approximately 13% of the annual discharge, which is equivalent to around 62 km3

of water, has been withdrawn from the entire lower MRB, of which Vietnam, Thailand,
China, Laos, Cambodia, and Myanmar account for approximately 52%, 29%, 9%, 5%,
3%, and 2%, respectively. The expansion of irrigation and croplands will play a role in
decreasing the annual streamflow by 3% over the period of 2036–2065 compared with the
period of 1971–2000 [61]. Furthermore, another study has confirmed that hydropower and
other infrastructure developments could reduce the water discharge in the Mekong River
by 21% at Kratie, 5% at the Kampong Cham, and 8% at Prek Kdam and Chak Tomuk. They
also confirm that rainfall in the Cambodian floodplains has remained roughly constant
from 1960–2019 and conclude that local anthropogenic factors are likely causing the flow
reduction [59].

In the study areas, particularly the Mekong Delta, over the past 10–20 years, the natural
flooding events have been altered due to the development of hydropower in the upper
Mekong River and the construction of irrigational canals and dyke systems. In the Mekong
River at Neak Luong, which is in the Mekong Delta Region in Cambodia, the annual wet
season discharge dropped by 10% between 2010 and 2020 [59]. Local villagers reported
that the Mekong River has not caused any significant flooding since 2011. Furthermore, the
Vaiko Irrigation Scheme has played a role in reducing the Mekong flooding from reaching
rice fields in Sithor Kandal District, Prey Veng Province. Farmers in the Ta Soung Irrigation
Scheme area have reported no flood events in the past decade. Similarly, the natural Beung
Ream Lake has not been affected by floods from the Tonle Sap Lake for the last 15 years.

Climate change has impacted the availability of water for rice farming, causing greater
uncertainty of rainfalls. In the Mekong River Basin (MRB), climate change may increase
the annual streamflow by 15% over the period of 2036–2065 compared with the period of
1971–2000 [61]. Nevertheless, climate change is also expected to decrease the dry season
flow by 2.18 percent. Frequent drought events also occur, offsetting the wet season flows,
and resulting in frequent droughts in the lower MRB [62]. In the study areas, local commu-
nities report that ‘tuk thom’ (the big floods) in the wet season have never occurred in the
study areas in the past 10 years. Instead, farmers experience frequent droughts, which cause
damage to agriculture and rice farming. It is observed that the frequent droughts make the
wet and the dry seasons homogenous, with slight differences in terms of a short wet season
with drought-pronged periods and a long dry season duration, particularly between 2014
and 2023 [63]. These have created the farming practices homogenously throughout the year,
including using the same rice varieties (IR 504, IR5154) for different rice farming seasons,
three-month cultivating periods for rice cultivations, using the same amounts of water
quantity to irrigate the same plots of rice cultivating areas, and using the same quantity of
agriculture cultural inputs and obtaining the similar rice yields per hectare (4–5 tons/ha)
throughout the year. The wet-season rice farming is also irrigated, as is the first and second
dry-season rice farming; the only difference is that when the irrigation canals run out of
water, particularly during the first and second dry-season rice farming, farmers compete
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for the remaining water from elsewhere using their extra pumping generators to pump
water from rivers, lakes, and ponds near their rice fields (Table 4).

Communities such as Kampong Reap and Pou Rumchak in the Ta Soung Irrigation
Scheme previously experienced frequent flooding from the Bassac and Prek Ambel Rivers
for half of the year, and waters receded in the dry season, leaving the community areas on
the dry land for another six months of the year. However, now they rely on irrigation canals
and embankments for protection. Similarly, Penea and Svay Rompea used to be inundated
by Mekong floods during the wet season but have not experienced such events since 2015
due to the completion of the Vaiko Irrigation Scheme. These changes have resulted in a shift
away from water-based communities to land-based communities reliant on human systems
for water supply, such as irrigation systems, wells, and water supply and sanitation.

During the first and second dry-season rice farming periods, the irrigation system
serves as a water weapon [64] for the communities, playing a primary role in the fight for
water between different communities either upstream or downstream of the Beung Sneh
Lake, the Vaiko Irrigation Scheme, the Prek Ambel River, and the Taing Krasaing Irrigation
Scheme. Additionally, at the household level, each farming household owns at least one or
two water pumping generators, which are considered a water weapon that households use
to compete with other agricultural households in the same community to fight for limited
water resources during severe droughts [65]. Farmers use water pumping generators to
pump water from irrigation canals, rivers, and lakes and distribute it to remote rice fields.
There is also competition among farmers with rice fields near the canals, rivers, and lakes
and those with remote rice fields. Farmers collaborate at one time to pump water from the
canals but compete at other times to pump water to irrigate their rice farming.

Four community fisheries (CFis) in Beung Sneh have experienced low water levels
during the dry season between 2020 and 2023, posing a challenge for rice field irrigation. To
address this issue, eleven irrigation schemes covering 22,899 hectares have been pumping
water from Beung Sneh. In addition, 10,911 households in 44 villages have been utilizing
the irrigation canals to irrigate their rice fields. In the Prey Kabbas District, the Ta Soung
Irrigation System pumps water from the Prek Ambel River to irrigate 1511 hectares in four
communes, while farmers in the Beung Ream in the Taing Krasaing Irrigation Scheme
pump water from the Beung Ream CFR to the lowest water level during the dry season
of 2023. Despite being from the same communities, these activities have led to tension
between the CFis/CFRs and FWUCs [10].

Private individuals in the Torp Sdach village of Theay Commune operate a private
water pumping station (PWPS) under permits granted by the district authority. The PWPS
operator has a four-year contract (2016–2024) to pump water from Beung Sneh and irrigate
305 hectares of land across five villages, charging water fees ranging from KHR 270,000
to KHR 300,000 per hectare per season. This enables farmers to cultivate 2–3 rice crops
annually. Of the 305 hectares, 105 hectares of upland rice fields are not flooded by the rising
water level in Beung Sneh, and farmers cultivate three rice crops per year. The remaining
200 hectares are located within Beung Sneh’s floodplain, which floods during the wet
season, permitting only one dry seasonal rice crop per year (typically from March to May).
The PWPS serves approximately 250–300 households, 175 of which do dry seasonal rice
farming and own at least one pumping generator per household. In addition, Beung Sneh
has three water supply stations operated by private individuals who possess licenses from
MOWRAM. These stations pump water from Beung Sneh Lake, filter, clean, and sell it to
villagers. Two stations are operational, while one is under construction. It is estimated that
50–60% of the population around Beung Sneh uses water from the water supply system,
paying KHR 1800–2000 per cubic meter. On average, a household uses around 10 cubic
meters of water per month.

In the region of Beung Ream, the lowest part of the Taing Krasain Irrigation Scheme
is known as the Kakoh. During the wet season, farmers from ten villages rely on the
Kakoh’s canals to cultivate rice, and thanks to the Taing Krasain Irrigation Scheme, they
can now grow three crops per year. However, the farmers face challenges as upstream
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communities tend to use as much water as possible before releasing it downstream, causing
delayed water release to the Kakoh’s canals. The ten villages also compete for water,
especially the upstream and downstream ones. The Chey Chumnas, Kiriwon, and Samnak
Villages, located at the lowest reach of the Taing Krasain Irrigation Scheme, have reported
water shortages due to upstream villages tapping more water and releasing the leftovers
downstream. As a result, the Kakoh Commune experiences water scarcity between January
and April, and farmers resort to taking water from the Beung Ream CFR to irrigate their
rice fields. Unfortunately, water conflicts have arisen between upstream and downstream
villages, as well as between rice farming and CFR.

4.2.3. Water Resources, Water Fees, and Water Conflict

Every year, water resources are limited, as shown in Figure 2, and they have been used
throughout for rice farming; they are abundant in the wet-season rice farming, moderate
but with a slight shortfall in the first dry-season rice farming, and have a severe shortage in
the second dry-season rice farming. Based on the efficiency of the irrigation system utilized
in dry-season rice farming, it takes one cubic meter of water to produce 0.11–0.242 kg of
paddy rice [66]. The irrigation systems in the studied regions can pump an estimated
245.45 million m3 of water annually through four primary pumping stations from the
Mekong River’s connected rivers and lakes. This water is utilized to irrigate dry-season
rice farming areas that span at least 10,909 hectares (Figure 3). Nonetheless, the expansion
of dry-season rice farming in the region results in the cultivation of more wetlands and the
extraction of additional water for irrigation purposes.

 

Figure 3. The total area of wet and dry seasonal rice in hectares by targeted communes (source: authors).

The rice farming communities located upstream and downstream of the Prek Ambel
River, in Kandal Province and Takeo Province, respectively, compete for water for both
their fisheries and rice farming. The Ta Soung Irrigation Scheme has extracted a minimum
of 86.4 million cubic meters (MCM) of water from the Prek Ambel River to irrigate approxi-
mately 3840 hectares of dry seasonal rice farming in four communes, namely, Ban Kam,
Kampong Reab, Pou Rumchak, and Prey Lvea, in Prey Kabbas District, Takeo Province.
However, farmers in the Ta Soung Community cultivate three rice farming seasons per
year, which means that the amount of water extracted from the Prek Ambel River could be
tripled. Additionally, the CFis in the Prek Ambel River, located in Prey Kabbas District,
have reported a negative impact of the Ta Soung Irrigation Scheme’s water pumping on
fishery and fish conservation; this mainly during the dry season when the water level in
the Prek Ambel River is low. This results in some areas along the river drying up. Rice
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farming communities downstream of the Ta Soung Irrigation Scheme, particularly in the
Prey Kabbas Commune, have voiced their concerns about the shortage of water for their
rice farming during the dry season.

Competitions revolving around water usage for rice farming have been observed
among farmers in the vicinity of Beung Sneh. In Damrei Puon Commune, the Chamcar
Kouy Irrigation Scheme is responsible for extracting water for rice farming, which puts it in
competition with other farmers from different communes. Despite this, the pumping station
is capable of extracting a minimum of 4 MCM for dry-season rice farming. Meanwhile,
in the Theay Commune, three irrigation schemes—Po Louk, Khse, and Top Sdach—are
responsible for extracting approximately 23.35 MCM of water from Beung Sneh. In the
Prey Kandieng Commune, three irrigation schemes—Phum Chan, Prey Kandieng, and
Russei Muou Kom—use 32.82 MCM of water from the Beung Sneh to irrigate 1459 hectares
of dry-season rice. Similarly, in the Ta Kao Commune, 2–3 irrigation canals that date back
to the Khmer Rouge period have been revitalized by local communities using their own
funds. The farmers in Ta Kao rely on these canals to extract 65.25 MCM of water from
the Beung Sneh, competing with other communes to irrigate 2900 hectares of dry-season
rice. At the village and household levels, each farmer possesses at least one pumping
generator to extract water from the irrigation canals and irrigate their far-off rice fields. In
total, around the lake, 158.94 MCM of water is extracted annually from the Beung Sneh to
irrigate 7064 hectares. Between 2022 and 2023, the demand for water to irrigate dry-season
rice farming areas caused the lake to reach dangerously low levels. Emergency measures
were required due to the severity of the situation. The lack of water caused all irrigation
canals to dry up, forcing nearby communities to resort to dredging the canals to extract the
remaining water from the lake. In March, April, or early May of both years, farmers used
water pumping generators to irrigate their rice fields, further exacerbating the already low
levels of water in the lake and adversely affecting fishery and aquatic biodiversity.

Given the increased rice farming, farming households in the study areas experience
increasing water shortages during the late first dry-season rice farming and the second
dry-season rice farming. In response, FWUCs put the prices for water uses for its mem-
bers to increase efficiency and effectiveness in water governance [9,25]. The fees for
water use from the irrigation schemes per farming season range between 270,000 and
300,000 KHR/ha (USD 67–75). The water fee by gravity is around 250,000 KHR/ha and
300,000–350,000 KHR/ha by pumping. In the Ta Sung, FWCU collects water fees based
on the costs of electricity usage to pump the water from the Prek Ambil River into the
irrigation system, ranging between 200,000 and 250,000 KHR/ha. In Beung Sneh and Beung
Ream, farmers pay water fees only for the first dry-season rice farming, which is between
November and January, as they receive enough water to irrigate their rice fields, but they
do not pay water fees for the wet-season rice farming between May and October, as they
cultivate with rainfalls. The dry-season rice farming is between February and April, as there
is not enough water to irrigate the dry-season rice farming. Also, about 50% of water users
pay water fees. However, due to intensive three rice crops yearly, water use has reached
critical levels. In addition, farmers have pumped from nearby water sources to irrigate
the dry-season rice farming. Each household owns a water pumping machine/generator.
There is competition among farmers over the uses of water from Beung Sneh areas. The
water used for rice farming has affected the fisheries [10].

4.2.4. Pesticide and Fertilizer Utilization for Rice Farming

The rise in rice farming has led to an increase in the use of agro-chemical inputs to
enhance rice yields. In the areas under study, fertilizers were commonly used by around
73% of households during both wet and dry farming seasons. Prey Veng Province saw the
highest percentage of households using fertilizers, with 80% of them using them, compared
to 67% in Takeo and 31% in Kampong Thom Provinces. In Prey Veng Province, farming
households in Samraong, Tuek Thla, and Damrei Puong communes used fertilizers the most,
accounting for 88%, 87%, and 85%, respectively. In Takeo Province, around 82% and 85% of
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farming households in Kan Kam and Pou Rumchak Communes applied fertilizers to their
rice crops. Farmers usually used 5–7 bags (50 kg/bag)/ha of fertilizers for a farming season,
from the time they sowed the rice seeds until harvest. They used various types of fertilizers,
including DAP, urea, and others, which cost approximately KHR 120,000 (USD 30)/bag.
The total cost of fertilizers per hectare ranged between USD 150 and 210. These fertilizers
were mainly imported from Vietnam and sold publicly. Based on the interviews conducted,
farmers had limited knowledge about fertilizer indications and how to use them.

Pesticides are commonly used by farmers to protect their crops, but this practice can
negatively impact rice yield. Research indicates that around 70% of agricultural households
in the studied areas use pesticides during the rice farming season. Prey Veng Province
has the highest percentage of pesticide use at 78%, followed by Takeo at 69%. Notably,
the communes of Damrei Puon, Samraong, Ampil Krav, and Prey Kandieng located far
from the BSL, which experiences water shortages during the rainy season, have the highest
percentage of pesticide use at 90%, 83%, 81%, and 80%, respectively. In Takeo, Pou Rumchak
and Ban Kam Communes have the highest percentages of pesticide use in rice farming,
accounting for 83% and 80%, respectively (Table 5).

Table 5. The uses of chemical inputs in rice farming.

Site Commune
No. of
HHs

HHs Using
Chemical Fertilizers

HHs Using
Organic

Fertilizers

HHs Using
Pesticides

HHs Using
Organic

Pesticides
(Nature) to Kill
Pests and Grass

No % No % No % No %

Beung Phlang Ampil Krau 1981 1610 81 77 4 1606 81 71 4

Beung Sneh

Theay 2964 2240 76 186 6 2170 73 157 5
Damrei Puon 2679 2284 85 32 1 2402 90 16 1

Samraong 2482 2179 88 43 2 2060 83 25 1
Tuek Thla 2820 2457 87 23 1 2107 75 15 1
Me Bon 2109 1531 73 67 3 1521 72 0 0
Baray 1655 1256 76 27 2 1256 76 0 0
Ta Kao 3739 2752 74 50 1 2754 74 4 0

Prey Kandieng 2887 2308 80 60 2 2308 80 6 0
Sub-total Sub-total 23,316 18,617 80 565 2 18,184 78 294 1

Boeung Ream Kakoh (Sub-total) 3325 1023 31 536 16 609 18 81 2

Ta Soung

Ban Kam 1607 1320 82 111 7 1290 80 0 0
Kampong Reab 532 220 41 100 19 220 41 100 19
Pou Rumchak 778 662 85 25 3 648 83 55 7

Prey Lvea 814 307 38 53 7 416 51 27 3
Sub-total Sub-total 3731 2509 67 289 8 2574 69 182 5

Grant total Grant Total 30,372 22,149 73 1390 5 21,367 70 557 2

Note: Source: commune database 2021.

Based on data provided by farmers, each hectare of land requires approximately
nine containers of pesticides, each priced at KHR 15,000 (USD 3.75), resulting in a total
pesticide cost of USD 33.75. To ensure maximum effectiveness, farmers spray their crops
with pesticides 3–4 times per hectare until harvest, at a cost of USD 1.25 (KHR 5000) per
spray. As a result, they spend around USD 105–140 per hectare on pesticides alone. On top
of this, farmers also use other chemical treatments to combat weeds and invasive species
such as snails, which have been causing damage to their rice fields. Unfortunately, the
use of pesticides can also have negative effects on aquatic life. The pesticide use kills
aquatic animals, including fish, and thus, not many fish are reported by farmers in the rice
fields [67]. However, the percentage of households using organic pesticides and fertilizers
is relatively low, 2% and 5%, respectively. Farmers no longer use organic fertilizers and
pesticides in some villages, such as in the Prey Kandieng Commune (Table 5).
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At the market, there was a diverse range of fertilizers offered by different importers
and distributors. Urea and Muriate of Potash (KCl) were single-nutrient options, while
di-ammonium phosphate (DAP) (18-46-0) and ammonium sulfate (16-20-0) were available
as compound nitrogen-based fertilizers. Farmers could also find compound nitrogen,
phosphorus, and potassium (NPK) products with ratios of 15-15-15, 16-16-8-(13S), and
20-20-15. Fertilizers could be purchased by the kilogram or in 50 kg bags. Most of the
products were labeled in Khmer, with the exception of the 16-16-8-13 fertilizer from the
Philippines and the urea from China and Vietnam, which had small Khmer stickers [68].

4.2.5. Impacts on Fishery Resources

The irrigation systems play a crucial role in controlling and regulating water flow
between rivers, lakes, and rice fields. It is a type of structure that was built to improve
water efficiency for rice farming, which may hinder fish migration patterns, breeding, and
feeding grounds between dry and wet seasonal refuges, affecting fishery and agriculture
practices [69]. The fishery domains and rice fields’ segmentation into different sections can
result in a lower fish population in rice fields, as reported by villages in the FGDs and KIIs,
especially in the irrigation schemes. Additionally, the irrigation systems prioritize water for
rice farming over fisheries, leading to the undermining of fisheries to some extent [70]. For
instance, irrigation canals are emptied to get water to rice fields, resulting in the destruction
of fishery resources in the canals. Moreover, there is no management system for fisheries in
the irrigation systems, so fisheries are being harvested without any restrictions.

CFis and CFRs are established at various water sources, and some specific areas are
designated as fishery conservation zones to safeguard rivers, lakes, and other bodies of
water, creating a conducive environment for fish and their habitats and ensuring their
survival. However, irrigation schemes such as Ta Soung, Tang Krasing, and Chamcar Kouy
Irrigation Schemes extract water from the Prek Ambel River, Taign Krasaing River, and
Beung Sneh Lake, respectively, in areas where CFis and CFRs are present. Also, FWUCs
were established overlapping CFi and CFR areas to decentralize water extraction for rice
farming, particularly during the dry season, by agricultural households. Without water,
dry-season rice farming would be compromised, resulting in lost income for farmers [25].

The goals of CFis/CFRs and FWUCs/irrigation schemes can sometimes be at odds
with each other. While CFis and CFRs aim to protect fishery sources to maintain productiv-
ity, FWUCs were established to extract water from sources to improve rice productivity. In
dry seasons, these two organizations may compete for access to water resources, despite
households being members of both. However, the extraction of water for rice farming
can harm fisheries, leading to losses in productivity for sites such as Beung Sneh, Prek
Ambel River, and Beung Ream CFR. Farmers in the studied areas face a difficult decision, as
prioritizing water for CFis and CFRs may lead to water shortages and a loss of dry-season
rice farming while protecting rice farming is necessary to maintain yield and production.

Rice fields are treated as food stocks for rural households in the study areas, including
paddy rice, aquatic plants, aquatic animals, and fish. The use of pesticides and fertilizers for
rice intensification has harmed and killed the aquatic animals and fisheries, undermined
the aquatic plants, and also polluted the water in the canals, lakes, and rivers. Farming
households in the study areas have reported a decline in fisheries in the rice fields and
water bodies. Also, households indicate that they buy fish from the market to make food
for their family members. These issues have affected the food items of rural households.

4.3. Level and Scale of Water Governance

Enhancing rice farming and fishery production requires improving water governance
through the promotion and decentralization of integrated approaches to institutions and
policies. Improving water governance involves multi-stakeholders at different levels and
scales [19,29,30]. In natural resource management, decentralization has been implemented
through community fisheries (CFis) and community fisheries refuges (CFRs) to empower
local communities to manage their own resources [42,46]. Similarly, farmer water user
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communities (FWUCs) enable local communities to decentralize water resources. However,
centralized control of technical and financial resources presents challenges for sectoral
decentralization [5]. To address this, MOWRAM established two FWUCs, while FiA/FiAC
established four CFis in Beung Sneh, and MoE established one community-based eco-
tourism (CBET). Despite these efforts, decentralized practices remain unintegrated as each
community organization is institutionalized by their respective line ministries, resulting in
unintegrated CFis, CBETs, and FWUCs. In the Ta Soung Irrigation Scheme, village commu-
nities are separated by CFis/CFRs or FWUCs, despite being from the same village. CFis are
supervised by FiA and FiACs, while FWUCs are supervised by MOWRAM/PDOWRAM
(Figure 4).

 

Figure 4. Level and scale of water governance (source: authors).

Furthermore, in Beung Sneh, different communes tend to manage the Beung Sneh
from the geographical locations of the communes in the lake and not from integrated
approaches. Competitions between communes in the lake have led to the uncertainty of the
lake in the future. In the Ta Soung Irrigation Scheme, CFis and FWUCs are two different
entities in the same communes, but the FWUC extracts water from the CFis to sustain rice
farming and collect water fees from farmers. At the same time, CFis protect the water
sources and do not charge any water fees to farmers or fishers to support their protection
of the water sources. The lack of integration and connection between FWUCs and CFis
leaves them uncertain about the system’s future. Also, the Beung Ream CFR and the Kakoh
Irrigation Canal are connected in one integrated system, but they operate independently,
one under the FiA and another under MOWRAM/PDOWRAM.

However, FWUCs in Taing Krasaing, Ta Soung, and Chamcar Kouy Irrigation Schemes
are managed under the District Agriculture, Environment, and Water Resource Office
(DAEW) in which district officers in charge of water resources are responsible for managing
FWUCs. Nevertheless, CFis/CFRs are not managed under the DAEW due to the fact that
the fishery sector is not decentralized to DAEW, and so, its management remains with
the FiACs. Thus, there is an urgent need to integrate fisheries into DAEW, so that district
agriculture officers are responsible for fishery management and agriculture. This new
approach would enable DAEW to coordinate the agriculture, environment, and water man-
agement at the district level, and they could report to district governors and the Provincial
Departments of Agriculture, Water Resources and Meteorology, and Environment.

Nonetheless, DAEW is still new and has limited capacity and resources to deal with
the growing water, fishery, and agriculture issues. Given the limited capacity and staff,
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they still have not been given the full power to implement their roles and responsibil-
ities. Above all, they need capacity building and orientations to improve water gover-
nance, fishery management, and agricultural development. In the future, working with
DAEW would address integrating water, fishery, and agriculture and decentralizing natural
resource management.

5. Conclusions

Cambodia has abundant water resources in general, but it has little water in the dry
season. Following the increased rice export policy in Cambodia in 2015 and the spill-over
effects of the rice trade in Vietnam at present, the increased dry-season rice farming in many
provinces has led to high water demand for dry seasonal rice farming. These have led to
water shortages and conflicts over water among farmers in many provinces in Cambodia
and between sectors, for instance, fishery and rice farming.

Irrigation system development and improvement have increased water availability,
which improves agricultural development and rice farming. Rice farming areas have been
expanded to around 3.34 million ha in 2019, and from one to three rice crops a year, the
rice yield has increased from 3 tons/ha to 4–5 tons per ha. Rice production increased to
10.32 million tons in 2019, of which about 7 million tons were surplus for exports [7]. The
increased rice production has occurred at the expense of the increased use of pesticides and
fertilizers, mechanizations, indebtedness, and migration.

Furthermore, the irrigation system has imposed structures on the physical landscapes;
first, it divides the land, wetlands, and water bodies into primary and sub-canals, and
second, it blocks the water flows and migration patterns of fish in the floodplains and river
systems in order to direct the irrigational flows to the rice fields. Further, it has broken the
connectivity of fish migration pathways between the rivers, floodplains, lakes, and rice
fields and vice versa. However, no tools and materials are in place to manage fisheries in
the irrigation system. In contrast, fisheries management focuses more on central water
bodies than rice field fisheries. The fishery is often ignored in irrigation management, as no
expertise is involved in irrigation management. Thus, fishery productivity is low in the
irrigation system and rice fields, where plenty of water exists. However, stock enhancement
is needed to improve rice field fish stock.

The irrigation managements have been decentralized toward FWUCs, promoting
the water fee system among members. To do so, FWUCs and irrigation schemes keep
pumping water from river and lake systems, where CFis and CFRs are established to
protect fisheries and water resources. These two systems are connected by water but are
opposite in their approaches. The FWUC and CFis/CFRs often compete for water and
conflict over water resources.

On the other hand, fisheries and their productivity are undermined and affected
by agricultural practices, particularly the use of agricultural inputs such as pesticides,
fertilizers, and chemical inputs to kill pests and herbs. These agricultural inputs are
harmful to fishery and aquatic animals. Thus, even though there is water, there are few fish
and aquatic animals in the rice fields.

Water governance remains sectoral, technical, and centralized, which has affected the
productivity of water, fishery, and agriculture, as well as the cost of production, and it also
has induced conflicts between sectors and among farmers. Decentralized water governance
has been embedded into the policy, planning, and implementation through FWUCs, Cfis,
and CFRs, but they are still sectoral and centralized to some extent, with limited financial
and human resources and a lack of capacity.

Water governance can be improved through improving coordination between sec-
tors and agencies at different levels and scales. It also needs an integration of different
sectors and agencies and decentralization. Institutional integration should be strength-
ened to combine water, fishery, agriculture, and water resource management into one
management system down at the ground. The district agriculture, water resources, and
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environment office should be strengthened to manage this integration and promote decen-
tralized water governance.
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Abstract: Climate change and land use/cover change (LUCC) are two major factors that alter
hydrological processes. The upper reaches of the Tarim River, situated in the northwest region of
China, experience a dry and less rainy climate and are significantly influenced by human activities.
This study comprehensively assessed the impacts of individual and combined climate changes and
LUCCs on streamflow. Three general circulation models (GCMs) were utilized to predict future
climate changes under three shared socioeconomic pathways (SSP119, SSP245, and SSP585). Cellular
Automata–Markov (CA–Markov) was employed to predict future LUCC under three scenarios
(i.e., ecological protection, historical trend, and farmland development). Streamflow for the period
2021–2050 was simulated using the calibrated MIKE SHE model with multiple scenarios. The results
showed that from 2021 to 2050, increments in both average annual precipitation and average annual
temperature under the three SSPs were predicted to lead to an increased streamflow. In comparison to
the conditions observed in 2000, under three LUCC scenarios for 2030, the grassland area decreased
by 1.04% to 1.21%, while the farmland area increased by 1.97% to 2.26%, resulting in reduced
streamflow. The related changes analysis indicated that the variation in streamflow during winter
is most significant, followed by spring. The study predicted that climate change would increase
streamflow, while LUCC would decrease it. Due to the greater impact of LUCC, considering the
combined effect of both factors, runoff would decrease. The contribution analysis indicated that
climate change contributed between −7.16% and −18.66%, while LUCC contributed between 107.16%
and 118.66%.

Keywords: CA–Markov; climate change; land-use change; multiple scenarios; MIKE SHE model

1. Introduction

Climate change and land use/land cover change (LUCC) play a significant role
in hydrological variations. Variations in precipitation and temperature due to cli-
mate change have impacts on streamflow [1]. LUCC alters streamflow by affecting
evapotranspiration, interception, and infiltration. Simultaneously, the interactions
between climate and land use make hydrological processes even more complex [2].
The assessment of streamflow responses to climate change and LUCC is crucial for
water resources management [3–5].

Many studies have quantified impacts of climate change on streamflow with the
aid of General Circulation Model (GCM) [6–8]. Due to the presence of some uncertainty,
multiple GCMs are often used in research to reduce errors in simulating scenarios
compared to real conditions [9–11]. Currently, there have been various findings on
how climate change affects streamflow among different basins. Meanwhile, projections
indicated increased streamflow in the future for the Yuan River Basin [12] and Yangtze
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River Basin [13] in China in response to escalating temperatures and precipitation
levels. Conversely, in the Songkhram River Basin, Thailand [14], and the Amu Darya
River Basin [15], streamflow responded differently to climate change. The integration
of representative concentration pathways (RCPs) with shared socioeconomic pathways
(SSPs) in the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) enhances
the realistic simulation of future scenarios [16–18].

At the same time, as human activities continue to intensify, the impacts of LUCC
on streamflow have also been the subject of extensive research [19,20]. Zhang, et al. [21]
concluded that the continuous expansion of cities would lead to a significant increase
in streamflow. Additionally, different land-management measures, such as land recla-
mation or “Grain for Green” [22], have different impacts on streamflow [23–25]. There-
fore, predicting future LUCC under different scenarios and determining its impact on
streamflow is important. The CA–Markov model, integrating Cellular Automata (CA)
and the Markov Chain, is currently the most commonly used approach in predicting
future land use [26–30].

Previous research has predominantly concentrated on the separate effects of cli-
mate change or LUCC on runoff, often relying on historical data [31–33]. Research on
comprehensive studies about how runoff will change in the future under the combined
impacts of climate change and LUCC remains limited. The Tarim River, situated in the
arid northwest region of China, is the country’s largest inland river [34,35], yet there
is still a lack of research on this aspect within its basin. To implement more scientific
management of the valuable water resources, it is crucial to precisely assess the impacts
of future climate change and LUCC on streamflow.

To fill this research gap, this study employed multi-GCMs to predict future climate
change and utilized the CA–Markov model to project future LUCC. Three climate
change scenarios (SSP119, SSP245, and SSP585), three LUCC scenarios (i.e., ecological
protect, history trend, and farmland development), and nine integrated scenarios were
established. The hydrological model was established by coupling MIKE SHE with
MIKE 11, followed by separate streamflow simulations for each of the 15 scenarios.
Furthermore, the study analyzed the individual and combined influences of climate
change and LUCC on streamflow using metrics such as the relative change rate (RCA)
and contribution rate (Figure 1).
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Figure 1. Schematic of methodology.

2. Methodology

2.1. MIKE SHE Model

MIKE SHE is a grid-based model that uses physics-based algorithms to represent
distributed processes of the hydrological cycle [36]. MIKE SHE was developed to model
water movement, including overland flow, snow melting, rivers and lakes, and unsaturated
and saturated flow [37]. The overland flow simulation used a two-dimensional diffusive
wave approximation by the finite-difference method. The modified degree–day method
was used to simulate snow melting, where the starting times of snowfall and snowmelt
were determined by setting threshold temperatures. The characteristic functions of the
degree–day method are determined on a time scale based on a day [38]. It has been proved
to be accurate of the physically based models [39]. The unsaturated flow was quantified
by a two-layer water-balance method. The saturated flow was modeled using a numerical
finite-difference scheme.
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The rivers and lakes model was based on the one-dimensional unsteady flow Saint–
Venant equations. Using MIKE SHE and MIKE 11 [40], the dynamic coupling model
of surface water and groundwater was established. In the coupled modeling system,
data exchange between two models was achieved through shared storage space, where
simulation can be simultaneous in both MIKE SHE and MIKE 11 [41].

2.2. CA–Markov Model

CA–Markov combines the dual advantages of simulating complex spatial dynamic
changes through Cellular Automata (CA) models and making long-term predictions using
Markov models. The model is widely applied in simulating the dynamic changes in land
use and cover structures over long sequences [29,42,43].

The Markov chain is a stochastic probability model characterized by the current state
being only related to the preceding state [44]. Additionally, it is discrete in both time series
and events [45]. Equation (1) describes the properties of the Markov chain:

Vt+1 = Vt × Pij (1)

Pij =

⎡
⎢⎢⎣

P11 P12 . . . P1n
P21 P22 . . . P2n
. . . . . . . . . . . .
Pn1 Pn2 . . . Pnn

⎤
⎥⎥⎦(0 ≤ Pij ≤ 1

)
(2)

where Vt and Vt+1 denote the system state at time t and t + 1, respectively. Meanwhile, Pij
is the probability of transitioning from state i to state j in the subsequent time period.

The CA is a dynamic model that is discrete in both time and space [46]. The princi-
ple is to predict the state of the next time step by utilizing specific transformation rules
based on the current state of individual cells and their neighboring states in the cellular
automaton [47]. The model can be defined as follows:

S(t, t + 1) = f (S(t), N) (3)

where S denotes a set of cellular states within the field N, while t and t + 1 are consecutive
time periods. The transition rule of the cell is denoted as f .

2.3. Accuracy Evaluation

Calibration and validation are pivotal in enhancing model accuracy, significantly
reducing the uncertainty stemming from their intricate iterative equations [48]. To gauge
model performance, two widely adopted metrics (the Nash–Sutcliffe efficiency coefficient
(NSE) [49–51] and Root Mean Square Error (RMSE) [52]) were utilized. They are defined
as follows:

NSE = 1 − ∑n
i=1(Qobs,i − Qsim,i)

2

∑n
i=1

(
Qobs,i − Qobs

)2 (4)

RMSE =

√
1
n

n

∑
i=1

(Qobs,i − Qsim,i)
2 (5)

where Qobs,i and Qsim,i refer to the observed and simulated streamflow on the i-th day
(m3/s), respectively. Meanwhile, Qobs and Qsim are the mean observed and simulated head
values throughout the simulation period (m3/s), with n indicating the total number of time
steps [53].

The accuracy assessment of land-use prediction involves testing with indicators. One
such indicator is the Kappa index, originally introduced by Cohen [54]. This index assesses
the consistency between measured data and simulated result. It is a commonly used
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criterion for assessing the relationship between simulated data of land use map and actual
data [42,55].

Kappa =
P0 − Pc

Pp − Pc
(6)

where P0 is the observed agreement rate between the reference map and the simulation
results. Meanwhile, Pc stands for the expected proportion of correct simulations in a
random scenario. On the other hand, Pp denotes the proportion of correct simulations in
the ideal classification case, typically considered as 1.

2.4. Separating Effects of Climate Change and LUCC

Following streamflow forecasting, it becomes essential to analyze the subsequent
impacts of climate changes and LUCC on streamflow. The quantitative assessment of
the contributions made by these changes to streamflow involves calculations using the
following formulas:

ΔQL,C = QL,C − Qbaseline (7)

where ΔQL,C is the overall change in future streamflow compared to the baseline, QL,C
denotes the streamflow projected under future climate and land-use scenarios, Qbaseline
stands for the streamflow during the baseline period.

ηL =
QL,baseline − Qbaseline

ΔQL,C
(8)

ηC =
Qbaseline,C − Qbaseline

ΔQL,C
(9)

where ηL and ηC are the contribution of LUCC and climate changes to streamflow, respec-
tively. QL,baseline is the streamflow under future land-use scenarios and baseline climate
conditions. Similarly, Qbaseline,C is the streamflow under the baseline land-use scenario and
future climate change conditions.

3. Study Area and Data

3.1. Study Area

The Tarim River (Northwest China, Xinjiang Uygur Autonomous Region) is the
longest inland river in the country [34]. Dominated by the typical continental temperate
arid climate, the Tarim River Basin (TRB) is a typical water-shortage area with mean annual
precipitation of less than 116 mm, an annual mean temperature of about 10 ◦C, and potential
evapotranspiration of up to 2200 mm per year [56,57]. Except for summer precipitation in
mountains, seasonal snowmelt and glacier melt dominate the runoff in the TRB. Thus, flow
characteristics are sensitive to climate change [58].

As shown in Figure 2, the study area is located in the upper reaches of the Tarim River
Basin (URTRB), covering an expanse of 3.43 × 105 km2. This region comprises the Aksu,
Yerqiang, and Hetian Rivers, as well as the mainstream above the Xinquman hydrological
station. Among them, the Aksu River is the main source of the TRB, contributing about
73.2% of the water supply [59]. In such an ecological fragile area, with the long-term
development and utilization, streamflow processes and land-use patterns have changed
greatly [60,61]. The contradiction between economic development and ecological protection
poses an unprecedented challenge to the management of the river basin.
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Figure 2. Location of the upper reaches of the Tarim River Basin (URTRB) and hydrological station
river network.

3.2. Data

The hydrological data used in this study included: (1) The discharge data collected by
six hydrological stations in the source stream (i.e., Xiehela, Shaliguilanke, Kaqun, Jiangka,
Wuluwati, and Tongguziluoke) and two hydrological stations in the mainstream (i.e., Alaer
and Xinquman); and (2) The water level data of the Xinquman hydrological station in the
lower reaches. These hydrological data during ~1985–2014 were monitored and provided
by the Tarim River Basin Authority.

All climate data (from 12 meteorological stations during ~1985–2014), including pre-
cipitation, temperature, and evaporation, were provided by the China Meteorological
Data-Sharing Service System. We used the Thiessen polygon method to deal with the data
of each station and obtained the average value of the meteorological data in the study area.
The future climate change data were acquired from the National Tibetan Plateau Data Cen-
ter (http://data.tpdc.ac.cn, accessed on 1 December 2023). The data were downscaled by
Peng, et al. [62] using the Delta method [63,64] and have been widely used [65–67]. These
monthly scale meteorological data were derived from three climate models: EC–Earth3,
GFDL–ESM4, and MRI–ESM2–0 under SSP119, SSP245, and SSP585 scenarios with a spatial
resolution of 30 s × 30 s from 2021–2050.

The Digital Elevation Model (DEM) data in this study were obtained from the Landsat
series images available on the Geospatial Data Cloud (https://www.gscloud.cn, accessed
on 1 December 2023). The DEM, with a resolution of 90 m, served as the primary data
source for characterizing the terrain and river network within the catchment. Land-use data
for this study were sourced from the Resource and Environment Science and Data Center
at the Chinese Academy of Sciences (https://www.resdc.cn, accessed on 1 December 2023).
The remote-sensing images were utilized to analyze changes in land-use patterns in the
study area. In this study, the categories were reclassified as cropland, forest, grassland,
built-up land, unused land, and water bodies. Soil type and soil depth were based on data
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of Harmonized World Soil Database (HWSD). Using the SPAW hydrology 6.02.75 software,
the soil types were reclassified based on soil attributes into 13 different categories.

3.3. Scenario Design

Three LUCC scenarios, representing a spectrum of tradeoffs between ecological preser-
vation and farmland development, were introduced to examine the impact of diverse
land-use policies on streamflow. These scenarios include ecological protection (EP), histori-
cal trends (HT), and farmland development (FD).

(1) EP Scenario. The scenario enacts ecological conservation, keeping the area of farmland
and urban space unchanged while gradually expanding the grassland and forest areas
each year.

(2) HT Scenario. This scenario indicates that future land use remains unaffected by any
policy influence and continues to develop along historical trends.

(3) FD Scenario. This scenario assumes that human activities are steadily increasing, with
farmland land and urban areas experiencing gradual expansion.

A total of nine different scenarios have been created by combining climate and land-
use/cover changes. We assemble SSPs with EP as EPs (i.e., EP119, EP245, and EP585); HT
as HTs (i.e., HT119, HT245, and HT585); and FD as FDs (i.e., FD119, FD245, and FD585).

4. Result and Discussion

4.1. Climate Change Scenarios

To reduce the uncertainty of future climate data, this study employed the average
values of the EC–Earth3, GFDL–ESM4, and MRI–ESM2–0 models as the basis for analyzing
future climate data. As shown in Figure 3, the bar chart represents the mean monthly
precipitation and temperatures for the period from 2021 to 2050 over URTRB. The error
bars depict the range of the multi-model ensemble. The multi-model ensemble range
for the monthly temperature is small. In contrast, for monthly precipitation, it is much
larger. This indicates that, across various SSP scenarios, monthly temperatures exhibit
more similarity, while there is a greater degree of uncertainty in monthly precipitation.
Precipitation in the URTRB is extremely unevenly distributed throughout the year, with
very little rainfall in the spring and winter, leading to drought conditions. In contrast,
precipitation during the summer season is significantly higher, accounting for 49% to 51%
of the annual total, and it can easily lead to flooding. At the same time, temperatures vary
significantly across different months, with a difference of about 30 ◦C between the highest
and lowest temperatures. January, February, March, November, and December all have
temperatures below freezing, which is why precipitation primarily occurs in the form of
snow. It is not surprising that the monthly average temperature increases with the increase
in radiation intensity.

Figure 4 shows the future precipitation and temperature under various SSP scenarios
for the period from 2021–2050. The overall temperature exhibited a notable upward trend.
The rising temperature helps to melt snow in mountainous areas, so as the melting snow
replenishes runoff, it also helps with vegetation growth. At the same time, there is no
significant change in precipitation. The annual average precipitation under SSP245 is
69.48 mm, slightly higher than 66.59 mm under SSP119 and 67.69 mm under SSP585.
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Figure 3. Mean monthly (a) precipitation and (b) temperature averaged over URTRB under different
SSPs from 2021–2050. The error bars indicate the multi-model ensemble range.

Figure 4. Annual average precipitation and temperature changes from 2021–2050.
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4.2. Land Use Change Scenarios

The CA–Markov model was used to simulate 2010 land-use patterns, leveraging data
from 2000 as a basis. As shown in Figure 5, the Kappa value is 0.87, indicating that the
simulated and measured land-use projections demonstrate satisfactory agreement.

Figure 5. Actual land-use maps of 2010 (a) and simulated land-use maps of 2010 (b).

As shown in Figure 6, the CA–Markov model was employed to simulate the LUCC
under the three scenarios in 2030. Under the influence of different land-use policies, the
conversion probabilities between different types of land use have changed. Comparing the
land-use/cover simulation result of URTRB in 2030 with those in 2000, we concluded that
after 30 years of change, the proportion of farmland in the study area increased by 2.03%,
forest decreased by 0.22%, grassland decreased by 1.14%, water bodies increased by 0.02%,
urban areas increased by 0.03%, and bare land decreased by 0.66%. Under the influence
of human activities, a significant amount of grassland, forest, and bare land has been
developed into farmland. When comparing the simulated results of land use/cover across
the three scenarios for 2030, noticeable differences in both quantity and spatial distribution
among the patterns were evident. Compared to the HT scenario, in the EP scenario, there
has been a 1.5% reduction in farmland, a 1.4% increase in grassland, and a 0.1% increase
in forest. This indicates that through ecological protection efforts, the expansion of arable
land has been reduced, leading to a greater transformation of barren land into grassland
and forest. Meanwhile, in the FD scenario, farmland increased by 0.5% compared to the HT
scenario while forest decreased by 0.1%, grassland decreased by 0.2%, and water bodies
decreased by 0.3%. This indicates that if human activities intensify further, there will be
more grassland and forest reclaimed as farmland. This would have a negative impact on
the local ecological environment. Therefore, in the EP scenario, the expansion of grasslands
and forests has a promoting effect on desert ecology. Moreover, excessive water resource
usage will lead to a significant reduction in water bodies.
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Figure 6. Projected land use maps in 2030 under (a) EP, (c) HT, and (e) FD scenarios, and proportions
of area of each land use/cover type under (b) EP, (d) HT, and (f) FD scenarios.

4.3. Calibration and Validation of MIKE SHE Model

The MIKE SHE model was calibrated and validated at a monthly scale for the periods
of 1985–1999 and 2000–2014, respectively. Various parameters were calibrated through
manual calibration (Table 1). The results indicated a good fit between observed and
simulated streamflow, with NSE values of 0.79 and 0.81 and RMSE values of 97.81 m3/s
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and 93.81 m3/s for the calibration and validation periods, respectively. The hydrological
model fits well for both low and peak flow conditions as shown in Figure 7. According to
the criteria outlined in Moriasi, Gitau, Pai, and Daggupati [52], the simulation results during
both the calibration and validation periods consistently met the “Very Good” standard.
They suggested that the MIKE SHE model was deemed suitable for simulating streamflow
in the URTRB.

Table 1. Calibration results of model parameters.

Components Parameters Units Calibrated Values

Snow melt
Melting temperature ◦C 0
Degree–day coefficient mm◦C/day 0

Overland flow
Manning number m1/3/s 25
Detention storage mm 4

River
Manning number m1/3/s 11
Leakage coefficient m/s 1.47 × 10−7

Saturated zone

Horizontal hydraulic conductivity m/s 1.25 × 10−3

Vertical hydraulic conductivity m/s 1.25 × 10−4

Storage coefficient m−1 2.22 × 10−5

Specific yield - 0.11

Figure 7. Comparison of observed and simulated streamflow.
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4.4. Streamflow Response Modelling under Multiple Scenarios
4.4.1. Under Varying Climate Change Scenarios

We used the calibrated MIKE SHE model to predict long-term (2021–2050) streamflow
only under climate change, LUCC, and their combinations. From 1985–2014, the annual
streamflow was 133.51 m3/s. Due to climate influences, the annual streamflow from
2021–2050 ranges from 135.62 to 138.21 m3/s, representing an increase of 1.6% to 3.5%
compared to the 1985–2014 period. In all scenarios, there is a trend of increased streamflow.
This outcome is attributed to the fact that the streamflow in URTRB is derived from melting
snow, and as a result, streamflow increases with rising precipitation and temperatures.

Figure 8b shows that the monthly streamflow in URTRB is unevenly distributed, with
a significant difference in streamflow between the summer flood season and the other three
seasons. During the flood season from June to September in the period from 1985–2014, the
average streamflow was 312.33 m3/s, accounting for 79.52% of the total annual streamflow.
From 2021 to 2050, the monthly streamflow variation within the year may decrease. The
average monthly streamflow in the eight months outside the flood season has increased
by 1.19% to 10.08% compared to the years 1976–2005, resulting in the flood season’s total
streamflow accounting for 76.73% to 78.23% of the total streamflow, which represents a
decrease of 1.29% to 2.79%.

Figure 8. Mean annual and monthly streamflow in URTRB from 2021–2050 under (a,b) Climate
change, (c,d) LUCC, and (e,f) Combined climate change and LUCC.
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4.4.2. Under Varying Land Use/Cover Change Scenarios

Figure 8c,d illustrated the annual and monthly streamflow variations under LUCC.
Under three LUCC scenarios, as grassland and forests are converted to farmland to varying
extents and bare land decreases, there is a decreasing trend in streamflow from 2021 to
2050, with a mean annual streamflow ranging from 129.48 to 130.69 m3/s. The expansion
of farmland areas is significantly under the FD scenario. In the period from 2021–2050, the
mean annual streamflow shows a decrease of 2.86% compared to the period from 1985–2014.
Due to EP’s ecological conservation efforts, the degree of conversion from farmland to
forests has been reduced, resulting in a higher mean annual streamflow compared to HT
and FD, but it is still lower than the baseline period.

Intra-annual monthly streamflow still exhibits the situation where the monthly stream-
flow during the summer flood season is significantly higher than in other months, but the
gap has decreased. Summer season streamflow accounts for approximately 78.24% of the
total stream, which is 3.28% less than the baseline period. This may be due to the fact that
the growing season of crops in farmlands primarily occurs during the summer, making
their impact on summer streamflow more pronounced.

4.4.3. Under Varying Combined Climate and Land Use/Cover Change Scenarios

Figure 8e,f showed the annual and monthly streamflow variations under combined
climate change and LUCC scenarios. Over the period from 2021–2050, the streamflow
exhibits a decreasing trend in these combined scenarios, with a mean annual streamflow
ranging from 129.67 to 130.32 m3/s. This represents a variation of 2.39–2.87% compared to
the period from 1985–2014. The mean annual streamflow is highest under EPs, followed by
that under HTs and FDs. Additionally, the alteration characteristics of annual streamflow
remain similar under different LUCCs. The annual runoff fluctuation between the compre-
hensive scenarios is greater than that of the LUCC scenario and smaller than that of the
climate change scenario.

5. Discussion

In this study, we analyzed the separate and combined impacts of climate change and
LUCC on the alteration of the mean monthly streamflow in the URTRB. We employed multi-
GMSs to reduce uncertainties between different SSPs. The RCA of streamflow, attributed to
climate change, LUCC, and their combination, was defined as the ratio of the streamflow
change under SSPs, LUCC (EP, HT, and FD), and combined conditions (EPs, HTs, and FDs)
from 2021–2050 relative to the standard deviation of streamflow from 1985–2014. Refer to
Figure 9 for the presented results.

Climate change, a key factor influencing variations in streamflow, results in an aug-
mented streamflow due to the heightened radiation intensity. Its impact on streamflow
is mainly manifested in the increase of precipitation and rising temperatures. Under the
influence of SSP119, SSP245, and SSP585, the mean RCA is 0.12, 0.11, and 0.18, respectively.
During the months of May to September, when runoff is relatively concentrated, the impact
of climate change on runoff is smaller, with a mean RCA of only 0.01. However, during
the dry season, runoff is more significantly affected by climate change mainly due to the
increase in snowmelt following a rise in temperature, which supplements the runoff in the
dry season.

In addition, the changes in flow induced by EP, HT, and FD are different, with mean
RCAs of 0.28, 0.19, and 0.29, respectively. The RCA under LUCC is larger than that under
climate change, which indicates that the impact of LUCC on streamflow is greater than
that of climate change. Due to extensive farmland expansion, FD has the greatest land-use
change, so its impact on streamflow is greater than EP and HT.
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Figure 9. Monthly attribution of streamflow attributed to climate change, LUCC, and combined
LUCC and climate change effects in URTRB.

As seen from Figure 9, the streamflow changes in EPs are smaller than those in HTs and
FDs. This is because, under ecological protection, the expansion of farmland is significantly
restricted and grassland and forests are effectively preserved, resulting in a relatively
smaller impact on streamflow compared to the baseline period. Wang, et al. [68] found that
the streamflow increases when farmland was converted into forests, which is consistent
with the conclusion of this study. The streamflow shows significant changes in both spring
and winter. Upon comparing it with Figure 8, it is found that the main reason for this is an
increase in spring streamflow and a decrease in winter streamflow.

The impacts of climate change and LUCC on the annual streamflow were then quan-
tified. The results showed that the combined effect of both resulted in a decrease of
3.18–3.84 m3/s in the mean annual streamflow. The change in annual mean streamflow is
primarily driven by LUCC (Table 2). Specifically, climate change increases annual stream-
flow by 0.27–0.60 m3/s, contributing from −18.67% to −7.16%, while LUCC leads to a
decrease in annual streamflow by 3.78–4.11 m3/s, with a contribution ranging from 107.16%
to 118.67%. In different years and months, the results may vary. The dominant effects of
LUCC identified in our study align with findings from prior research in the Yihe River [69],
Beiluo River [70], and Luanhe River, China [20]. The opposite was found in Heihe River,
China [33,71], where climate change is the dominant factor in runoff variation.
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Table 2. Annual contributions of climate change and LUCC in URTRB.

Scenarios EP119 EP245 EP585 HT119 HT245 HT585 FD119 FD245 FD585

Climate change (%) 7.16 13.67 16.12 11.09 14.48 18.08 11.43 14.94 18.66
LUCC (%) −107.16 −113.67 −116.12 −111.09 −114.48 −118.08 −11.43 −114.94 −118.66
Total (%) −100 −100 −100 −100 −100 −100 −100 −100 −100

6. Conclusions

This study projected future climate change and LUCC by designing multiple scenarios.
Through the establishment of a hydrology response model, it quantified and characterized
the individual and combined impacts of climate change and LUCC on the future streamflow
variation in the upper reach of the Tarim River Basin. The main conclusions can be
summarized as follows:

(1) Analysis showed that in this study area, compared to the period from 1985 to 2014,
the climate from 2021 to 2050 was expected to be warmer and wetter.

(2) From 2021 to 2050, the FD scenario is expected to experience the most pronounced
expansion of agricultural land among all scenarios. Similarly, HT, due to consistent
human activity trends, also exhibits a significant conversion of grasslands and forests
into farmland. Only EP has curbed the extensive expansion of farmland, thereby
protecting the ecological environment.

(3) Alterations in mean annual streamflow were primarily influenced by LUCC, while
the impact of climate change reduced the influence attributed to LUCC on stream-
flow. Climate change increases runoff (contribution: −18.67% to −7.16%), while
LUCC decreases runoff (contribution: 107.16% to 118.67%), and the combined effect
reduces runoff.

(4) In the future, streamflow would shift towards the beginning of the year with increased
spring streamflow and decreased winter streamflow, which contributes to the growth
of vegetation in the study area.

This study is valuable for predicting climate change and LUCC under various scenar-
ios and understanding the diverse impacts on streamflow in the URTRB. It is beneficial
for managers to take proactive measures and devise better responses in the face of envi-
ronmental changes. The Tarim River is a typical inland river in arid areas. Studying the
impact of upstream climate change and LUCC on runoff can serve as a reference for water
resource management in other basins with similar conditions.

Author Contributions: Conceptualization, L.X.; Methodology, Q.H., M.Y. and S.L.; Software, Q.H.
and S.L.; Validation, L.X.; Formal analysis, X.C.; Investigation, T.Q. and M.Y.; Resources, T.Q., Y.L.
and X.C.; Data curation, L.X.; Writing – original draft, Q.H.; Supervision, Y.L.; Funding acquisition,
Q.H. and L.X. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Key Research and Development Program of
China (2023YFC3206800), Xinjiang Production and Construction Corps (No. 2022BC001), National
Scientific Foundation of China (No. 51779074), Graduate Research and Innovation Projects of Jiangsu
Province (No. SJKY19_0473).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to data confidentiality.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References

1. Chen, Y.; Shu, L.; Li, H.; Opoku, P.A.; Li, G.; Xu, Z.; Qi, T. Identification of Preferential Recharge Zones in Karst Systems Based on
the Correlation between the Spring Level and Precipitation: A Case Study from Jinan Spring Basin. Water 2021, 13, 48. [CrossRef]

2. Qi, T.; Shu, L.; Li, H.; Wang, X.; Opoku, P.A. Water Distribution from Artificial Recharge via Infiltration Basin under Constant
Head Conditions. Water 2021, 13, 1052. [CrossRef]

150



Water 2024, 16, 100

3. Zuo, D.; Chen, G.; Wang, G.; Xu, Z.; Han, Y.; Peng, D.; Pang, B.; Abbaspour, K.C.; Yang, H. Assessment of changes in water
conservation capacity under land degradation neutrality effects in a typical watershed of Yellow River Basin, China. Ecol. Indic.
2023, 148, 110145. [CrossRef]

4. Zhai, R.; Tao, F. Climate Change in China Affects Runoff and Terrestrial Ecosystem Water Retention More Than Changes in Leaf
Area Index and Land Use/Cover Over the Period 1982–2015. J. Geophys. Res.-Biogeosci. 2021, 126, e2020JG005902. [CrossRef]

5. Shi, S.; Yu, J.; Wang, F.; Wang, P.; Zhang, Y.; Jin, K. Quantitative contributions of climate change and human activities to vegetation
changes over multiple time scales on the Loess Plateau. Sci. Total Environ. 2021, 755 Pt 2, 142419. [CrossRef]

6. Robertson, D.E.; Chiew, F.H.S.; Potter, N. Adapting rainfall bias-corrections to improve hydrological simulations generated from
climate model forcings. J. Hydrol. 2023, 619, 129322. [CrossRef]

7. Bhadoriya, U.P.S.; Mishra, A.; Singh, R.; Chatterjee, C. Implications of climate change on water storage and filling time of a
multipurpose reservoir in India. J. Hydrol. 2020, 590, 125542. [CrossRef]

8. Gao, J.; Sheshukov, A.Y.; Yen, H.; Douglas-Mankin, K.R.; White, M.J.; Arnold, J.G. Uncertainty of hydrologic processes caused by
bias-corrected CMIP5 climate change projections with alternative historical data sources. J. Hydrol. 2019, 568, 551–561. [CrossRef]

9. Wang, B.; Deveson, E.D.; Waters, C.; Spessa, A.; Lawton, D.; Feng, P.; Liu, D.L. Future climate change likely to reduce the
Australian plague locust (Chortoicetes terminifera) seasonal outbreaks. Sci. Total Environ. 2019, 668, 947–957. [CrossRef]

10. Lee, S.; Qi, J.; McCarty, G.W.; Yeo, I.-Y.; Zhang, X.; Moglen, G.E.; Du, L. Uncertainty assessment of multi-parameter, multi-GCM,
and multi-RCP simulations for streamflow and non-floodplain wetland (NFW) water storage. J. Hydrol. 2021, 600, 126564.
[CrossRef]

11. Wang, B.; Gray, J.M.; Waters, C.M.; Anwar, M.R.; Orgill, S.E.; Cowie, A.L.; Feng, P.; Liu, D.L. Modelling and mapping soil organic
carbon stocks under future climate change in south-eastern Australia. Geoderma 2022, 405, 115442. [CrossRef]

12. Wen, X.; Liu, Z.; Lei, X.; Lin, R.; Fang, G.; Tan, Q.; Wang, C.; Tian, Y.; Quan, J. Future changes in Yuan River ecohydrology:
Individual and cumulative impacts of climates change and cascade hydropower development on runoff and aquatic habitat
quality. Sci. Total Environ. 2018, 633, 1403–1417. [CrossRef] [PubMed]

13. Su, B.; Huang, J.; Zeng, X.; Gao, C.; Jiang, T. Impacts of climate change on streamflow in the upper Yangtze River basin. Clim.
Chang. 2016, 141, 533–546. [CrossRef]

14. Sangam, S.; Binod, B.; Manish, S.; Shrestha, P.K. Integrated assessment of the climate and landuse change impact on hydrology
and water quality in the Songkhram River Basin, Thailand. Sci. Total Environ. 2018, 643, 1610–1622.

15. Xu, Z.P.; Li, Y.P.; Huang, G.H.; Wang, S.G.; Liu, Y.R. A multi-scenario ensemble streamflow forecast method for Amu Darya River
Basin under considering climate and land-use changes. J. Hydrol. 2021, 598, 126276. [CrossRef]

16. Yeh, S.-W.; Wang, G.; Cai, W.; Park, R.J. Diversity of ENSO-Related Surface Temperature Response in Future Projection in CMIP6
Climate Models: Climate Change Scenario Versus ENSO Intensity. Geophys. Res. Lett. 2022, 49, e2021GL096135. [CrossRef]

17. Sreeparvathy, V.; Srinivas, V.V. Meteorological flash droughts risk projections based on CMIP6 climate change scenarios. Npj Clim.
Atmos. Sci. 2022, 5, 77. [CrossRef]

18. Su, B.; Huang, J.; Mondal, S.K.; Zhai, J.; Wang, Y.; Wen, S.; Gao, M.; Lv, Y.; Jiang, S.; Jiang, T.; et al. Insight from CMIP6 SSP-RCP
scenarios for future drought characteristics in China. Atmos. Res. 2021, 250, 105375. [CrossRef]

19. Zhang, H.; Meng, C.; Wang, Y.; Wang, Y.; Li, M. Comprehensive evaluation of the effects of climate change and land use and land
cover change variables on runoff and sediment discharge. Sci. Total Environ. 2020, 702, 134401. [CrossRef]

20. Wu, L.; Zhang, X.; Hao, F.; Wu, Y.; Li, C.; Xu, Y. Evaluating the contributions of climate change and human activities to runoff in
typical semi-arid area, China. J. Hydrol. 2020, 590, 125555. [CrossRef]

21. Zhang, Y.; Xia, J.; Yu, J.; Randall, M.; Zhang, Y.; Zhao, T.; Pan, X.; Zhai, X.; Shao, Q. Simulation and assessment of urbanization
impacts on runoff metrics: Insights from landuse changes. J. Hydrol. 2018, 560, 247–258. [CrossRef]

22. Xu, Z.G.; Xu, J.T.; Deng, X.Z.; Huang, J.K.; Uchida, E.; Rozelle, S. Grain for green versus grain: Conflict between food security and
conservation set-aside in China. World Dev. 2006, 34, 130–148. [CrossRef]

23. Wang, X.; He, K.; Dong, Z. Effects of climate change and human activities on runoff in the Beichuan River Basin in the northeastern
Tibetan Plateau, China. Catena 2019, 176, 81–93. [CrossRef]

24. Yang, W.; Long, D.; Bai, P. Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in
North China. J. Hydrol. 2019, 570, 201–219. [CrossRef]

25. Ji, L.; Duan, K. What is the main driving force of hydrological cycle variations in the semiarid and semi-humid Weihe River Basin,
China? Sci. Total Environ. 2019, 684, 254–264. [CrossRef] [PubMed]

26. Yin, Z.; Feng, Q.; Zhu, R.; Wang, L.; Chen, Z.; Fang, C.; Lu, R. Analysis and prediction of the impact of land use/cover change on
ecosystem services value in Gansu province, China. Ecol. Indic. 2023, 154, 110868. [CrossRef]

27. Wang, Q.; Xu, Y.; Wang, Y.; Zhang, Y.; Xiang, J.; Xu, Y.; Wang, J. Individual and combined impacts of future land-use and
climate conditions on extreme hydrological events in a representative basin of the Yangtze River Delta, China. Atmos. Res. 2020,
236, 104805. [CrossRef]

28. Wang, Z.; Shu, L.; Xu, P.; Yin, X.; Lu, C.; Liu, B.; Li, Y. Influence of land use changes on the remaining available aquifer storage
(RAAS): A case study of the Taoerhe alluvial-proluvial fan. Sci. Total Environ. 2022, 849, 104805. [CrossRef]

29. Aguejdad, R. The Influence of the Calibration Interval on Simulating Non-Stationary Urban Growth Dynamic Using CA-Markov
Model. Remote Sens. 2021, 13, 468. [CrossRef]

151



Water 2024, 16, 100

30. Cao, C.; Sun, R.; Wu, Z.; Chen, B.; Yang, C.; Li, Q.; Fraedrich, K. Streamflow Response to Climate and Land-Use Changes in a
Tropical Island Basin. Sustainability 2023, 15, 3941. [CrossRef]

31. Wang, Q.; Cheng, L.; Zhang, L.; Liu, P.; Qin, S.; Liu, L.; Jing, Z. Quantifying the impacts of land-cover changes on global
evapotranspiration based on the continuous remote sensing observations during 1982–2016. J. Hydrol. 2021, 598, 126231.
[CrossRef]

32. Farsi, N.; Mahjouri, N. Evaluating the Contribution of the Climate Change and Human Activities to Runoff Change under
Uncertainty. J. Hydrol. 2019, 574, 872–891. [CrossRef]

33. Yang, L.; Feng, Q.; Yin, Z.; Wen, X.; Si, J.; Li, C.; Deo, R.C. Identifying separate impacts of climate and land use/cover change on
hydrological processes in upper stream of Heihe River, Northwest China. Hydrol. Process. 2017, 31, 1100–1112. [CrossRef]

34. Liao, S.; Xue, L.; Dong, Z.; Zhu, B.; Zhang, K.; Wei, Q.; Fu, F.; Wei, G. Cumulative ecohydrological response to hydrological
processes in arid basins. Ecol. Indic. 2020, 111, 106005. [CrossRef]

35. Han, Q.; Xue, L.; Liu, Y.; Yang, M.; Chu, X.; Liu, S. Developing a multi-objective simulation-optimization model for ecological
water conveyance in arid inland river basins. J. Hydrol. Reg. Stud. 2023, 50, 101551. [CrossRef]

36. Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’connell, P.E.; Rasmussen, J. An introduction to the European Hydrological
System—Systeme Hydrologique Europeen, “SHE”, 2: Structure of a physically-based, distributed modelling system. J. Hydrol.
1986, 87, 61–77. [CrossRef]

37. Butts, M.B.; Payne, J.T.; Kristensen, M.; Madsen, H. An evaluation of the impact of model structure on hydrological modelling
uncertainty for streamflow simulation. J. Hydrol. 2004, 298, 242–266. [CrossRef]

38. Sengul, S.; Ispirli, M.N. Estimation and analysis of the Antecedent Temperature Index-Melt Rate (ATIMR) function using observed
data from the Kirkgoze-Cipak Basin, Turkey. J. Hydrol. 2021, 598, 126484. [CrossRef]

39. Gan, G.; Wu, J.; Hori, M.; Fan, X.; Liu, Y. Attribution of decadal runoff changes by considering remotely sensed snow/ice melt
and actual evapotranspiration in two contrasting watersheds in the Tienshan Mountains. J. Hydrol. 2022, 610, 127810. [CrossRef]

40. Thompson, J.R.; Sørenson, H.R.; Gavin, H.; Refsgaard, A. Application of the coupled MIKE SHE/MIKE 11 modelling system to a
lowland wet grassland in southeast England. J. Hydrol. 2004, 293, 151–179. [CrossRef]

41. Sahoo, G.B.; Ray, C.; Carlo, E.H.D. Calibration and validation of a physically distributed hydrological model, MIKE SHE, to
predict streamflow at high frequency in a flashy mountainous Hawaii stream. J. Hydrol. 2006, 327, 94–109. [CrossRef]

42. Yu, X.; Xiao, J.; Huang, K.; Li, Y.; Lin, Y.; Qi, G.; Liu, T.; Ren, P. Simulation of Land Use Based on Multiple Models in the Western
Sichuan Plateau. Remote Sens. 2023, 15, 3629. [CrossRef]

43. Lin, Z.; Peng, S. Comparison of multimodel simulations of land use and land cover change considering integrated constraints—A
case study of the Fuxian Lake basin. Ecol. Indic. 2022, 142, 127810. [CrossRef]

44. Iacono, M.; Levinson, D.; El-Geneidy, A.; Wasfi, R. Markov Chain Model of Land Use Change in the Twin Cities. TeMA J. Land Use
Mobil. Environ. 2012, 8. [CrossRef]

45. Zhang, Z.; Hoermann, G.; Huang, J.; Fohrer, N. A Random Forest-Based CA-Markov Model to Examine the Dynamics of Land
Use/Cover Change Aided with Remote Sensing and GIS. Remote Sens. 2023, 15, 2128. [CrossRef]

46. Liu, J.; Zhou, Y.; Wang, L.; Zuo, Q.; Li, Q.; He, N. Spatiotemporal Analysis and Multi-Scenario Prediction of Ecosystem Services
Based on Land Use/Cover Change in a Mountain-Watershed Region, China. Remote Sens. 2023, 15, 2759. [CrossRef]

47. Sanchayeeta, A.; Jane, S. Simulating Forest Cover Changes of Bannerghatta National Park Based on a CA-Markov Model: A
Remote Sensing Approach. Remote Sens. 2012, 4, 3215–3243.

48. Jalil, A.; Akhtar, F.; Awan, U.K. Evaluation of the AquaCrop model for winter wheat under different irrigation optimization
strategies at the downstream Kabul River Basin of Afghanistan. Agric. Water Manag. 2020, 240, 106321. [CrossRef]

49. McMichael, C.E.; Hope, A.S.; Loaiciga, H.A. Distributed hydrological modelling in California semi-arid shrublands: MIKE SHE
model calibration and uncertainty estimation. J. Hydrol. 2006, 317, 307–324. [CrossRef]

50. Qi, T.; Khanaum, M.M.; Boutin, K.; Otte, M.L.; Lin, Z.; Chu, X. Incorporating Wetland Delineation and Impacts in Watershed-Scale
Hydrologic Modeling. Water 2023, 15, 2518. [CrossRef]

51. Khanaum, M.M.; Qi, T.; Boutin, K.D.; Otte, M.L.; Lin, Z.; Chu, X. Assessing the Impacts of Wetlands on Discharge and Nutrient
Loading: Insights from Restoring Past Wetlands with GIS-Based Analysis and Modeling. Wetlands 2023, 43, 103. [CrossRef]

52. Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. HYDROLOGIC AND WATER QUALITY MODELS: PERFORMANCE
MEASURES AND EVALUATION CRITERIA. Trans. Asabe 2015, 58, 1763–1785.

53. Van Liew, M.W.; Garbrecht, J. Hydrologic simulation of the Little Washita River Experimental Watershed using SWAT. J. Am.
Water Resour. Assoc. 2003, 39, 413–426. [CrossRef]

54. Cohen, J. A coefficient of agreement of nominal scales. Psychol. Bull. 1960, 20, 37–46. [CrossRef]
55. Beroho, M.; Briak, H.; Cherif, E.K.; Boulahfa, I.; Ouallali, A.; Mrabet, R.; Kebede, F.; Bernardino, A.; Aboumaria, K. Future

Scenarios of Land Use/Land Cover (LULC) Based on a CA-Markov Simulation Model: Case of a Mediterranean Watershed in
Morocco. Remote Sens. 2023, 15, 1162. [CrossRef]

56. Xue, L.; Bao, R.; Meixner, T.; Yang, G.; Zhang, J. Influences of topographic index distribution on hydrologically sensitive areas in
agricultural watershed. Stoch. Environ. Res. Risk Assess. 2014, 28, 2235–2242. [CrossRef]

57. Xue, L.; Zhang, H.; Yang, C.; Zhang, L.; Sun, C. Quantitative Assessment of Hydrological Alteration Caused by Irrigation Projects
in the Tarim River basin, China. Sci. Rep. 2017, 7, 4291. [CrossRef] [PubMed]

152



Water 2024, 16, 100

58. Chen, Y.; Li, W.; Deng, H.; Fang, G.; Li, Z. Changes in Central Asia’s Water Tower: Past, Present and Future. Sci. Rep. 2018,
6, 35458. [CrossRef]

59. Xue, L.; Yang, F.; Yang, C.; Chen, X.; Zhang, L.; Chi, Y.; Yang, G. Identification of potential impacts of climate change and
anthropogenic activities on streamflow alterations in the Tarim River Basin, China. Sci. Rep. 2017, 7, 8254. [CrossRef]

60. Zhang, F.; Tiyip, T.; Feng, Z.D.; Kung, H.T.; Johnson, V.C.; Ding, J.L.; Tashpolat, N.; Sawut, M.; Gui, D.W. Spatio-temporal patterns
of land use/cover changes over the past 20 years in the middle reaches of the tarim river, Xinjiang, China. Land Degrad. Dev. 2015,
26, 284–299. [CrossRef]

61. Hou, Y.; Chen, Y.; Li, Z.; Li, Y.; Sun, F.; Zhang, S.; Wang, C.; Feng, M. Land Use Dynamic Changes in an Arid Inland River Basin
Based on Multi-Scenario Simulation. Remote Sens. 2022, 14, 2797. [CrossRef]

62. Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration
over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [CrossRef]

63. Peng, S. 1 km Multi-Scenario and Multi-Model Monthly Precipitation Data for China in 2021–2100. A Big Earth Data Platform
for Three Poles. 2022. Available online: http://loess.geodata.cn/data/datadetails.html?dataguid=223722163526125&docid=1
(accessed on 1 December 2023).

64. Ding, Y.; Peng, S. Spatiotemporal change and attribution of potential evapotranspiration over China from 1901 to 2100. Theor.
Appl. Climatol. 2021, 145, 79–94. [CrossRef]

65. Peng, D.; Lyu, J.; Song, Z.; Huang, S.; Zhang, P.; Gao, J.; Zhang, Y. Mercury budgets in the suspended particulate matters of the
Yangtze River. Water Res. 2023, 243, 120390. [CrossRef] [PubMed]

66. Li, X.; Zhang, K.; Li, X.; Verger, A. The Minimum Temperature Outweighed the Maximum Temperature in Determining Plant
Growth over the Tibetan Plateau from 1982 to 2017. Remote Sens. 2023, 15, 4032. [CrossRef]

67. He, Z.-W.; Tang, B.H. Spatiotemporal change patterns and driving factors of land surface temperature in the Yunnan-Kweichow
Plateau from 2000 to 2020. Sci. Total Environ. 2023, 896, 165288. [CrossRef]

68. Wang, H.; Sun, F.; Xia, J.; Liu, W. Impact of LUCC on streamflow based on the SWAT model over the Wei River basin on the Loess
Plateau in China. Hydrol. Earth Syst. Sci. 2017, 21, 1929–1945. [CrossRef]

69. Li, B.; Shi, X.; Lian, L.; Chen, Y.; Chen, Z.; Sun, X. Quantifying the effects of climate variability, direct and indirect land use change,
and human activities on runoff. J. Hydrol. 2020, 584, 124684. [CrossRef]

70. Yang, T.; Yang, X.; Jia, C. Detecting the main driving force of runoff change in the Beiluo River Basin, China. Environ. Sci. Pollut.
Res. 2023, 30, 89823–89837. [CrossRef]

71. Zhang, L.; Nan, Z.; Yu, W.; Zhao, Y.; Xu, Y. Comparison of baseline period choices for separating climate and land use/land
cover change impacts on watershed hydrology using distributed hydrological models. Sci. Total Environ. 2018, 622, 1016–1028.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

153



water

Article

Landscape Ecological Risk Assessment of Kriya River Basin in
Xinjiang and Its Multi-Scenario Simulation Analysis

Jinbao Li 1,2, Xuemin He 1,2,3,*, Pengcheng Huang 1,2, Zizheng Wang 1,2 and Ranran Wang 1,2

1 College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; 15701919668@163.com (J.L.);
wzz952580616@163.com (Z.W.)

2 Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi 830017, China
3 Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education,

Jinghe 833300, China
* Correspondence: hxm@xju.edu.cn

Abstract: To comprehend the potential impacts of both natural phenomena and human activities on
ecological risk, a thorough examination of the spatial and temporal evolution characteristics of Land-
scape Ecological Risk (LER) in arid river basins is imperative. This investigation holds paramount
importance for the proactive prevention and mitigation of LER, as well as for the preservation of
ecological security within these basins. In this scholarly inquiry, the Kriya River Basin (KRB) serves
as the focal point of analysis. Leveraging three historical land use and land cover (LULC) images
and incorporating a diverse array of drivers, encompassing both natural and anthropogenic factors,
the study employs the PLUS model to forecast the characteristics of LULC changes within the basin
under three distinct scenarios projected for the year 2030. Concurrently, the research quantitatively
assesses the ecological risks of the basin through the adoption of the Landscape Ecological Risk
Assessment (LERA) methodology and the Spatial Character Analysis (SCA) methodology. The results
showed the following: (1) The study area is primarily composed of grassland and unused land,
which collectively account for over 97% of the total land. However, there has been a noticeable rise
in cropland and considerable deterioration in grassland between 2000 and 2020. The key observed
change in LULC involves the transformation of grassland and unused land into cropland, forest,
and construction land. (2) The overall LER indices for 2000, 2010, and 2020 are 0.1721, 0.1714, and
0.16696, respectively, showing strong positive spatial correlations and increasing autocorrelations
over time. (3) Over time, human activities have come to exert a greater influence on LER compared
to natural factors between 2000 and 2020. (4) In the natural development scenario (NDS), cropland
protection scenario (CPS), and ecological priority scenario (EPS), the LER of KRB experienced notable
variations in the diverse 2030 scenarios. Notably, the CPS exhibited the highest proportion of low-risk
areas, whereas Daryaboyi emerged as the focal point of maximum vulnerability. These findings offer
theoretical and scientific support for sustainable development planning in the watershed.

Keywords: Landscape Ecological Risk (LER); Kriya River Basin (KRB); PLUS model; multi-scenario
simulation; driving factors

1. Introduction

Watersheds are geographical areas with complex structures consisting of multiple
systems, including ecological, economic, and social, with different functions, such as
maintaining biodiversity and supporting human production, life, and culture [1–3]. Global
climate change is becoming more pronounced as human activities intensify, and this,
combined with the sensitivity and vulnerability of drylands themselves, makes them one
of the most ecologically risky regions [4–6]. On the other hand, the rapid expansion of
cities has caused enormous ecological and ecological problems, such as the degradation of
land resources, the reduction in regional biodiversity, the reduction in the carrying capacity
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of the environment and the exacerbation of the problem of ecological security, which is
evident in the drylands [7–10]. Arid zones, which are mostly composed of oasis cities
and desert ecosystems, have stronger feedback to human activities, which makes them an
ideal area for the study of nature–human complex systems [9,11]. In the midst of climate
warming and transitional resource exploitation, the high intensity of LULC has brought
great pressure on the environment [10]. Consequently, the quantification of ecological risks
in a scientific and rational manner, along with the analysis of the drivers responsible for
their spatial and temporal variations, has emerged as a prominent focus in ecological and
environmental research [12–14].

LERA is an important part of ecological risk assessment, which complements and
expands ecological risk assessment [15], and emphasizes the comprehensive analysis of the
possible impacts of various large-scale disasters that the regional ecological environment
may face [16,17]. LER can be used to evaluate various traditional ecological risk assessment
methods, based on the perspective of the coupled association of ecological processes and
spatial patterns in landscape ecology, paying more attention to the spatial and temporal
heterogeneity of ecological risk and the possible adverse consequences of scale effects, and
belonging to an important branch of regional ecological risk assessment [18,19].

The ecological risk assessment method, which is based on the LULC LER, can be used
to assess the ecological status of a watershed from both an ecological and landscape per-
spective [17,20,21]. The method is able to map the interactions between landscape patterns
and ecological processes and focuses on describing the spatial and temporal variability
of ecological risk, the impact of the spatial distribution of landscape components on eco-
logical risk, and these three areas [22,23]. Thus, from the standpoint of landscape pattern
ecological processes, the study of regional ecological security has emerged [24–28]. In the
1990s, Heggem et al. (2000) [29] introduced a landscape pattern analysis approach to assess
the impact of human activities on ecological change in watersheds. Later, Kapustka et al.
(2001) [30] and other landscape ecology theories introduced ecological risk assessment and
used it to propose control strategies. Paukert et al. (2011) [31] evaluated the ecological
health of the Colorado River Basin using an LERI constructed using the landscape index
method. Research on LER is increasing again both at home and abroad as we enter the
21st century, and most of the evaluation objects are ecologically fragile and sensitive ar-
eas as well as areas with high intensity of human activities, which are mainly centered
around watersheds, cities, mines, nature reserves, and ecologically fragile areas [23,32–36].
The methods of evaluation include landscape pattern index method [9], entropy value
method [37], exposure–response method [38], etc.; additionally, the evaluation scale evolves
from a single scale to multiple scales, and numerous researchers have looked into the LER’s
multi-scale changes [39].

Simulating and forecasting dynamic trends under different conditions is imperative,
as is looking into the characteristics of the temporal and spatial evolution of LER in
rapidly developing watersheds. Furthermore, in order to support future high-quality
economic and social development in watersheds, strategies for optimizing LULC structure
in arid watersheds must be proposed [40,41]. Multi-scenario LULC change models can
be classified into quantitative predictive models, spatial predictive models and coupled
models [36]. Currently, commonly used quantitative forecasting models include Markov,
system dynamics (SDs), grey forecasting models (GMs), and artificial neural network
(ANN) models [42,43]. Spatial prediction models include the CA model, the CLUE model,
and the FLUS model [44–46]. By combining data prediction models and spatial prediction
models into a coupled model, the requirements of quantitative and spatial accuracy can
be highly met. Liang et al. developed a preamble model called the Patch-Level LULC
Simulation (PLUS) model was created [47]. It proposes a rule mining framework based on
the Land Expansion Analysis Strategy (LEAS) and CA based on muti-type random patch
seeds (CARSs) that can be used to explore the drivers of multiple types of land expansion
to determine and predict the patch-level development of the LULC landscape, leading to
more accurate LULC simulation results [9,35].
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The Keriya River Basin (KRB) is an area with important ecological functions in the
north-west arid zone, which is of great significance for regional ecological security as well as
water resource protection. The basin is located in the hinterland of the Eurasian continent,
far from the sea, with the Taklamakan Desert in the north and the Kunlun Mountains in
the south, which makes the basin’s climate arid due to its unique geographical location. In
recent years, with the increase in population and the demand for economic development,
a large amount of land has been reclaimed in the middle and lower plains of the basin,
resulting in the evolution from desert land to oases. The main water resources in the basin
are composed of surface water and groundwater, but the spatial and temporal distribution
of water resources is extremely uneven, and seasonal water shortages often occur in the
oases, which leads to constraints on agricultural production [48]. In this context, it is
particularly important to effectively assess ecological risks. Based on the LULC of the
KRB in 2000, 2010, and 2020, this study analyzes the changing characteristics of landscape
types, examines the spatial and temporal evolution of LER, and simulates the development
trend of LER of the KRB in three different scenarios using the PLUS model and presents
the scenarios of ecological environmental protection, aiming to solve the three practical
problems of development and ecological protection of KRB: (1) How did the spatial pattern
of LULC in the KRB change from 2000 to 2020? (2) What were the characteristics of the
spatial distribution and changes in the LER in the basin, and what are the dominant factors
leading to the changes of LER? (3) Which development scenarios optimize ecological risk
in catchments?

2. Materials and Methods

2.1. Study Area

The Keriya River Basin (KRB), located in the heart of the Eurasian continent, is flanked
by the Taklamakan Desert to the north and the Kunlun Mountains to the south (refer
to Figure 1). Its geographical coordinates range from 80◦09′ to 83◦51′ E longitude and
35◦14′ to 39◦29′ N latitude, encompassing a land area of 70.5 × 104 km2. The basin is
characterized by a warm temperate inland arid desert climate, marked by an average annual
temperature of 11.6 ◦C, a scant annual rainfall of 44.7 mm, and considerable evaporation
totaling 2500 mm [49]. The elevation variance from north to south is approximately 5000 m,
creating a sloping terrain with higher elevations in the south and lower elevations in
the north. Geological tectonics have shaped five distinct landforms in the region: mid-
altitude mountains in the upper reaches, pre-mountainous hills in the upper and middle
reaches, pre-mountainous sloping plains in the middle and lower reaches, alluvial plains
in the lower reaches, and the desert area. These have given rise to a natural desert oasis
known as the Daryabuyi Oasis. The area exhibits a typical arid continental climate, with
scanty annual precipitation of 44.7 mm, high evaporation of 2500 mm, and predominantly
drought-resistant vegetation, Poor vegetation conditions. The central plain serves as the
primary agricultural zone, cultivating crops such as cotton, maize, and wheat.

2.2. Data Acquisition

LULC data were obtained from the Globeland30 global land cover database (http:
//globeland30.org, accessed on 23 April 2023). The dataset encompasses three distinct time
periods, namely 2000, 2010, and 2020, and possesses a spatial resolution of 30 m × 30 m [50]
that reclassified the LULC into six categories, including: cropland, forest, grassland, water,
unused land, and construction land. Data on soil type, GDP, population, temperature, and
precipitation are available in the Scientific Data Center for Resources and Environment of
Chinese Science (https://www.resdc.cn/, accessed on 16 May 2023). The distance vari-
able was retrieved from OpenStreetMap (https://www.openstreetmap.org/, accessed on
24 May 2023). The patterns of the distance variables were also ascertained. The Euclidean
distance analysis also revealed the patterns of the distance variables The DEM data were
obtained from the geospatial data cloud (https://www.gscloud.cn/, accessed on 3 May
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2023) at a resolution of 30 m. The slope, slope direction, and topographic relief data were
calculated through the ArcGIS 10.7 platform.

Figure 1. Area of study.

2.3. Landscape Ecological Risk Index

This study investigates the spatial and temporal changes in LULC within the KRB
region from 2000 to 2020. The analysis combines the PLUS model with five natural and
socioeconomic drivers to simulate different scenarios for 2030, including natural develop-
ment, agricultural land protection, and ecological priority. The regional ecological risk level
was quantified using the LERI. The study’s methodology and framework are illustrated
in Figure 2.

Building upon previous research, this study develops a rating system for the LERI
by incorporating landscape disturbance and vulnerability factors [9], and the landscape
type index was determined using Fragstats 4.2 software [51]. The LERI was calculated
as follows:

ERIi =
n

∑
i=1

Aki
Ak

Ri (1)

ERIi is LERI within the ith sampling unit; Aki is the area of landscape type i in the kth
sampling unit; AK is the area of the i-th sampling unit; Ri is the landscape loss degree index.

Ri =
√

Ei × Fi (2)

Ei = aCi + bSi + cDi (3)

Ei represents the landscape disturbance index, which is constructed by the landscape
fragmentation Ci, landscape separation Si, and landscape dominance Di, while a, b, and
c denote the weights of the corresponding landscape indexes, and a + b + c = 1. These
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weights, according to existing research and the actual situation [17,18,52], are assigned as
0.5, 0.3, and 0.2, respectively. Additionally, Fi represents the landscape vulnerability index,
and for the six land types of (cropland forest, grassland, watershed, construction land, and
unused land), the assigned weights are 0.1905, 0.1429, 0.0952, 0.2381, 0.0476, and 0.2857,
based on the characteristics of the study area and the results of previous research [53,54].

Figure 2. Ecological risk assessment framework. PLUS Model: patch-generating land use simulation.

In order to visually analyze the characteristics of spatial distribution of ecological
risks, ordinary Kriging interpolation in the geostatistics module of GIS was used to obtain
the LER distribution of KRB. The natural breakpoint method was also used to divide
the 2020 Landscape Ecological Risk values into five classes: lowest risk (LER < 0.1517),
lower risk (0.1517 ≤ LER < 0.2039), medium risk (0.2039 ≤ LER < 0.2846), high risk
(0.2846 ≤ LER < 0.3764), and highest risk (0.3764 < LER). The data for the remaining
periods were standardized using the 2020 assessment intervals for better comparability.

2.4. Analysis of Spatial Autocorrelation for the LER

Spatial autocorrelation analysis is employed to examine the presence of significant
correlations in the spatial distribution of LER. This analysis involves two types of indices:
the global Moran’s I index evaluates the spatial correlation of attribute values across the
entire study area, while the local Moran’s I index assesses the correlation between LER and
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neighboring spatial units. Moran’s I shows a positive correlation when its value is positive,
with increasing significance as the value increases. The LISA map is utilized to identify
distinct patterns of high–high and low–low clustering of LER within local areas [17,55].

2.5. Analysis of the LER Driving Mechanism GeoDetector

Geographic probes are statistical methods that reveal spatial heterogeneity and, con-
sequently, its driving factors [56]. With reference to related studies, the topographic
and climatic characteristics and socioeconomic development of the KRB were also com-
bined to analyze the driving forces of LER changes in the KRB by selecting the following
10 influencing factors from natural and social factors: slope, elevation, climate factors
include soil type, annual precipitation, average temperature, distance from a river, GDP,
population density, and distance from residential areas [35].

q = 1 − ∑L
h=1 Ahσ2

h
A2

σ
(4)

In the equation, the q value represents the influence of the driving factor on the LER of
the KRB. It ranges between 0 and 1, where a larger q-value indicates a stronger explanation
of the spatial distribution of the factor on LER. The variable h (1, 2, . . ., L) represents the
number of subregions of the detection factor X. Ah represents the unit count of layer h, and
A represents the total area σ2

h denotes the variance of the h layer, while σ2 represents the
overall variance of the entire region.

2.6. Multi-Scenario Ecological Risk Prediction Using the Markov-PLUS Model

The PLUS model uses a number of steps to analyze changes in LULC. The LULC
data are initially transformed into the appropriate format. The expansion proportion of
LULC is then extracted using the LEAS module in two stages. Natural and socioeconomic
drivers are integrated into the model, and the random forest classification algorithm is
employed to determine the driving contribution rate of each driver. This information is
then used to calculate LULC change and determine the expansion potential for each LULC
type [47]; the Markov model is used to predict the demand of each LULC in 2030, and
the panels are automatically generated to acquire the future LULC simulation map in the
CARS module [57].

To further investigate the alterations in ecological risk due to different developmental
trends in future, this research presents three scenarios: NDS, CPS, and EPS. NDS: The rate
of change between 2010 and 2020 is used as a reference to forecast land usage demand in
2030. CPS: Protect cropland by preventing it from being converted to any other LULC type,
except for construction land, all other LULC can be converted to cropland. EPS: Preserve
forested land and watersheds by prohibiting their conversion to any other LULC. The cost
settings for every situation are illustrated in Table 1 underneath.

Table 1. Cost matrix for land use conversion in each scenario.

NDS CPS EPS

2000–2030 a b c d e f a b c d e f a b c d e f
a 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1
b 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0
c 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0
d 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 0
e 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Notes: a, b, c, d, e, and f represent cropland, forest, grassland, water, construction land, and unused, respectively,
and 0 means no conversion was allowed and 1 means conversion was allowed.
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Accuracy Verification

This study uses the 2010 LULC, driving factor data, and LULC extension analysis
data as its raw inputs in order to keep the simulation error at a level that is reassuringly
acceptable. By contrasting it with the predicted outcomes from the 2020 PLUS model, the
accuracy of the spatial distribution of LULC in the study area for the year 2020 is assessed.
The assessment of simulation accuracy in this article employs the Kappa coefficient and the
Fom coefficient [35,58]. The kappa coefficient, which ranges from 0 to 1, is used to assess
the consistency and accuracy of the simulation results. A value greater than 0.7 indicates a
higher level of consistency and accuracy. Conversely, the FOM coefficient is computed as
the ratio of the intersection of the projected and actual land changes to the total of the two.
Higher values of this coefficient, which likewise has a range of 0 to 1, denote increased
simulation accuracy [36,59].

3. Results

3.1. Spatiotemporal LULC Change

Figure 3 and Table 2 show the spatial and temporal changes in the composition of
the six LULC types in the KRB. The overall change in the area of LULC types in the
KRB from 2000 to 2020 is more obvious, with unused land and grassland being the most
important land types, accounting for more than 78% and 19% of the total land area at all
times, respectively, showing a gradually decreasing trend. Arable land, water catchment
areas, forest areas, and construction areas generally show increasing trends. In 2000–2020,
cropland area continued to increase, with the cropland area increasing by 354.88 km2 and
the unused area increasing by 45.51 km2. During 2010–2020, construction land grew the
fastest, with an expansion rate of 172%. The distribution of construction land is usually
surrounded by cultivated land, which represents the main area of human activity and is
subject to the most human intervention. The amount of undeveloped land and grassland
will drop by 425.42 km2 and 51.43 km2, respectively, between 2000 and 2020, while the area
of water will hardly change.

Figure 3. Map of LULC in KRB.
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Table 2. LULC in KRB by area and percentages in 2000, 2010, and 2020.

Land Use
Type

2000 2010 2020

Area
(km2)

Proportion of
Total Area (%)

Area
(km2)

Proportion of
Total Area (%)

Area
(km2)

Proportion of
Total Area (%)

Cropland 872.8434 1.24 967.9833 1.37 1227.725 1.74
Forest 214.4655 0.30 364.6845 0.52 265.6377 0.38

Grassland 13,505.01 19.13 13,482.52 19.10 13,453.58 19.06
Water 79.9893 0.11 86.0904 0.12 105.2874 0.15

Construction 19.9017 0.03 24.0372 0.03 65.4102 0.09
Unused 55,902.14 79.19 55,669.04 78.86 55,476.72 78.59

Analysis of LULC Structure Change

Figure 4 shows the conversion relationship of the LULC for the three phases from 2000
to 2020, and it is represented visually by a chord diagram. The expansion of cropland and
forest areas was obvious between 2000 and 2010. The expansion of cropland came mainly
from the development of grassland and unused land, with a total increase of 95.14 km2,
while the forest area increased by 150.21 km2, mainly from the evolution of grassland, and
it was the only increase period of the three phases. During the time period of 2010–2020,
the area of grassland transferred in was 2449.11 km2 and the area transferred out was
2420.17 km2. The overall area had increased, and the development of unused land had
become an important way for grassland expansion to occur. The area of construction land
doubled during this period, expanding much faster than in the previous period, while
cropland was the main contributor to urban expansion, providing a total of 38.82 km2 or
93.83% of the total. The area of forest shrank severely, with 64.62 km2 of forest converted
to unused land and 131.9 km2 converted to grassland. From 2000 to 2020 as a whole,
the main use types transferred out from the watershed were grassland and unused land,
with 51.4323 km2 and 425.428 km2, respectively, being transferred out, and the use types
transferred in were cropland, forest, and construction land, with 354.88 km2, 51.17 km2,
and 45.50 km2, respectively, being transferred in.

Figure 4. LULC transfer map of the KRB from 2000 to 2020. (a) 2000–2010; (b) 2010–2020;
(c) 2000–2020.

3.2. Spatiotemporal Variations in the LER in the KRB

The LERI for the watershed had mean average values of 0.1721, 0.1714, and 0.1669 in
2000, 2010, and 2020, respectively. These values indicated a slight downward trend. Figure 5
shows that the LERI of the watershed had significant spatial and temporal variability. In
the spatial distribution, the entire watershed was dominated by low and lower risks, while
high and higher risks were mainly distributed along the Kriya River system, especially in
the Daryaboyi, which are deep in the desert with sparse surrounding vegetation and poor
natural conditions. The combined percentage of the study area’s total area that was made
up of the lowest risk and the lower risk was approximately constant, making up 98.69%,
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97.88%, and 99.18% in 2000, 2010, and 2020, respectively. In 2000, 2010, and 2020, the total
of the highest and highest risks is 0.29%, 0.58%, and 0.44%, respectively, with a slightly
expanding and fluctuating trend towards the Northern Desert Region.

Figure 5. The spatially variable distribution of ERI in the KRB.

3.2.1. Defining the Temporal and Spatial Distribution of KRB

LER Moran’s I values are, respectively, 0.818, 0.847, and 0.920 from 2000 to 2020
(Figure 6), all greater than 0.5. This indicated that the LERI of the KRB over the past
20 years had a positive and significant spatial correlation; in addition, the scattered points
were distributed close to the regression line, suggests that the distribution of LER is spatially
clustered and that this spatial clustering increases over time.
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Figure 6. The ERI values in the KRB from 2000 to 2020 are shown in a scatter distribution of Moran’s
I index.

The trend of the LISA map for the period 2000 to 2020 (Figure 7) shows that the LER
in the catchment area mainly has an aggregated “high–high” and “low–low” distribution.
High-risk areas within the KRB exhibit concentration in the transition zone between desert
and green land, particularly along the lower course of the Kriya River. These areas are
characterized by pronounced landscape fragmentation. Additionally, sporadic high-risk
areas are observed around the city. The high vegetation cover contributes to the relatively
stable ecological quality, while low value zones are typically confined to grassland and
cropland regions.

 
Figure 7. Map of the LISA clusters of the ERI in the KRB.

3.2.2. Analysis of Deriving Factor on the LER by the Geodetector Model

Based on factor detection, the LER of the KRB was examined with respect to the
drivers for three periods from 2000 to 2020, and all factors passed the significance test
(p < 0.01). Figure 8 displays the results of factor detection for each year. The LER of KRB
is primarily driven by socioeconomic and natural condition factors, and each driving
factor has a different contribution rate. For example, in 2000, soil conditions, annual
temperature, precipitation, and DEM were the main influencing factors; in 2010, urban
settlements, annual temperature, precipitation, and DEM were the dominant factors; and
in 2020, GDP, population, annual temperature, and precipitation were the main influencing
factors. According to the findings, environmental drivers will continue to have the greatest
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influence on the spatial distribution of LER through the year 2020, while social drivers’
influence will grow as society advances.

Figure 8. q-statistics of the factors influencing the changes in the ERI.

3.3. Multi-Scenario LULC and Multi-Scenario Modelling, 2030

A comparison between the simulated and real LULC in 2020, together with the
validation results and the spatial distribution of the PLUS model simulation error (Figure 9).
With a Kappa coefficient of 0.818 and an FOM coefficient of 0.253, the PLUS model is
generally more accurate. With its ability to accurately simulate variations in LULC demand
within the KRB, the PLUS model shows a high degree of accuracy. This model provides a
reliable foundation for future LER simulation predictions, enabling a more precise analysis
of LER dynamics in response to LULC demand changes [13,58,59].

 
Figure 9. Actual and simulated land use types in the KRB for the year 2020.
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3.3.1. Analysis of KRB Land Use While Modeling Multiple Scenarios

Figure 10 and Table 3 show the simulated LULC under different development scenarios
for the year 2030, and they show different trends for each scenario for 2030 compared to
the LULC for 2020. In accordance with Table 3, we can derive the following: (1) According
to the NDS, compared to 2020, cropland, forest land, water, and construction land all
increased. Forest land saw the largest increase, with a 92.83 km2 increase, while grassland
and unused land areas decreased. The construction land change rate was 60.37%. (2) Within
the framework of CPS, the primary focus was on the protection of cropland. In this
context, cropland witnessed a substantial increase in area, with a growth of 156.02 km2

or 12.71%, representing the largest expansion among all types of land. The expansion of
construction land, on the other hand, primarily resulted from the conversion of grassland
and unused land. In comparison to the 2020 figures, the area of grassland decreased by
26.81 km2, while the amount of construction land remained relatively stable. (3) Under the
EPS: all ecological land areas increased to different degrees, including forest land, which
increased by 66.27 km2, and grassland, which increased by 132.48 km2, and the total area
of ecological land reached 13,918 km2, which was the maximum area of ecological land
under all scenarios.

Figure 10. LULC under the different scenarios for the year 2030 in the KRB.

Table 3. Status of 2020 and Multi-scenario simulation of LULC change in 2030.

Scenario Type Cropland/km2 Forest/km2 Grassland/km2 Water/km2 Construction
Land/km2 Unused/km2

2020 1227.725 265.6377 13,453.58 105.2874 65.4102 55,476.72
NDS NDS 1295.027 358.4763 13,449.61 111.4929 104.8995 55,274.85
CPS CPS 1383.749 329.0373 13,426.77 111.4929 68.4603 55,274.85
EPS EPS 1185.139 331.9137 13,586.06 111.4929 104.8995 55,274.85

2020–2030 NDS 5.48% 34.95% −0.03% 5.89% 60.37% −0.36%
2020–2031 CPS 12.71% 23.87% −0.20% 5.89% 4.66% −0.36%
2020–2032 EPS −3.47% 24.95% 0.98% 5.89% 60.37% −0.36%

3.3.2. Comparative Analysis of LER in Three Scenario Watersheds

Figure 11 depicts the spatial distribution of LER in the catchment in 2030 under various
scenarios. Under NDS, CPS, and EPS conditions, respectively, the simulation yields an
overall LERI for the catchment of 0.1682, 0.0933, and 0.0903, showing notable variations
from those of 2020 (0.1669). The pattern distribution of LERI in the NDS scenario remains
largely consistent with 2020. LERs decreased for both CPS and EPS. Comparing the overall
spatial pattern distribution of LER, the similarity between the NDS and EPS was extremely
high compared to that of 2020, while the lower risk occupied a very large area in the arable
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CPS, and the lower risk dominated. In addition, the map clearly showed that ecological
land was located in areas with low levels of LER, such as grassland and forest areas. High-
risk areas in Daryabuyi under different scenarios in 2030. Combined with Figure 12, the
ecological risk ratio of the landscape for 2020 and 2030 under each scenario showed that low
risk and lower risk were always in the dominant position, but the area of each ecological
risk zone under the different scenarios was still significantly different, especially in the
2030 arable land protection scenario where the low-risk zone accounted for 99.1%. It is also
worth mentioning that the largest area of high-risk zone was in 2020, reaching 116.899 km2,
which indicated that there were many ecological risks in the current LULC.

Figure 11. Spatial patterns of the LER rankings in the KRB under the different scenarios for the
year 2030.

Figure 12. Percentage of area in the ecological risk class of the KRB landscape under different scenarios.
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4. Discussion

4.1. The KRB Shows a Spatial Distribution of ERI

Spatial and temporal variations in ecological risk in arid zone watersheds are negative
manifestations of natural and social impacts, and LERI can reflect the degree to which
watershed ecosystems are threatened by climate change and human activities, thereby
revealing mechanisms and trends in ecological processes [60,61]. With LULC serving as
a driving force, we found a connection between LER patterns, offering a way to examine
the temporal and spatial dynamics of LER. It was discovered that during the period of
2000–2020, the spatial and temporal distribution characteristics of LER in the KRB changed
more, primarily in the following ways: Prior to 2010, the area of cultivated land in the
central part of the basin was primarily where the high and higher risks were concentrated.
This is mainly because the study area is constrained by climatic and environmental factors,
the KRB is located in the Gobi Desert, which is arid with low rainfall, and water resource
constraints are obvious. This, coupled with the rapid development of agriculture which
has led to a large amount of water resource depletion, and because the arable land has
been distributed in a fragmented manner, has resulted in poorer landscape connectivity
and a relatively high level of ecological risk. The overall LER in the catchment shows a
decreasing trend after 2010, with a significant decrease in high-risk areas and an increase
in the proportion of low- and medium-risk areas, although there has been an increase
in ecologically risky areas in Dariyaboi due to the displacement of downstream water
use by upstream water use for irrigated agriculture. In an effort to address the declining
ecological environment, the Chinese government has started to restore farmland to forests
and grasslands [53,62,63], which to some extent improves the ecological quality and reduces
the probability of land degradation, as evidenced by the area of forest the past 20 years.

4.2. Impacts of the Driving Factors on the Pattern of the LER

Taking into account the unique natural geographical, climatic, and social conditions of
the KRB, this study explored the intrinsic mechanisms of the LER changes from the per-
spective of socioeconomic and natural factors. The geodetector results showed significant
differences in the main drivers of the LER changes for the three phases from 2000 to 2020.
The 20-year period from the initial temperature, precipitation, and topography-driven
factors to the GDP, population, temperature, and residence area factors in 2020 showed
a very high influence; this indicates, to some extent, that human activities have become
an important part of influencing the LER. The period 2000–2020 was a period of rapid
economic development from the perspective of the GDP. The 11-fold increase in GDP in
the KRB during the two periods was directly manifested by the large expansion in land
for construction and was based on encroachment on arable land. However, the increase in
the population increased the exploitation and excavation of resources, which was clearly
expressed through the expansion in arable land [17,64]. Agriculture and animal husbandry
were the main sources of GDP in the basin, and during the study period, regarding the
population and socioeconomic development, people increased the area of arable land,
which resulted in a large amount of resource plundering in rivers as well as surrounding
water bodies, leading to the degradation of the original grassland and artificially changing
the spatial configuration of water resources in the basin, which seriously damaged the
ecological water use and degraded the grassland vegetation without any resupply [9,65].
Combined with the spatial characteristics of the LER, the locations of the grassland had
substantial impacts on the LERs of the watershed areas, and the total area of grassland
in 2020 did not change much compared to 2010, but the area of grassland on both sides
of the Kriya channel in 2020 increased significantly; that is, this change made the LER of
the whole watershed decrease, and the landscape pattern played a key role in relation to
the LER.
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4.3. Creation of Future LULC Policies and LER Administration

In the KRB region, both natural and societal factors predominantly dictate changes
in land use resources, with the natural environment forming the foundational basis that
invariably experiences impacts during economic development [66]. Concurrently, amidst
the backdrop of severe global climatic alterations, arid zone climates have transitioned from
“warm–humid” to “warm–dry” [67]. This shift, coupled with heightened evaporation from
river basins, has strained the balance between water resource supply and demand. The
land use/cover and landscape patterns in the KRB have drastically transformed over the
past two decades [49,68,69]. As the climate in the watershed has evolved, there has been an
upsurge in glacial snowmelt runoff upstream, thereby enhancing the accessibility of water
resources for agricultural production in the midstream region [70]. However, the expanding
cultivated land area in the midstream region, driven by agricultural economic activities,
has considerably elevated the demand for agricultural water. Concurrently, the large-scale
development of arable land has substantially altered the landscape pattern of natural
vegetation in the mid and downstream areas of the river. This alteration has influenced the
ecological water demand of the vegetation, leading to a more noticeable trend of vegetation
degradation. The rising demand for agricultural water and the decreasing ecological
water demand of vegetation have significantly altered the water demand structure of the
river basin, as evident in the spatial distribution of the high-risk area of LER from 2000 to
2020. The key ecological LULC in the KRB region is grassland, which, compared to other
areas, displays heightened susceptibility and plays a critical role in mitigating ecological
risks [9,36].

To safeguard grasslands, moderate grazing intensities can enhance their resilience
and bolster their habitat quality stability in riverine ecosystems. Reducing watershed
LER necessitates diverse strategies, contingent on the specific region: (1) In high-risk
areas, meticulous consideration of natural conditions and actual economic needs is crucial.
One strategy involves accommodating the demand for ecological land through natural
restoration, encompassing comprehensive protection of forests, grasslands, and arable
land, and strategic planning to resolve the conflict between ecological and economic
water usage. This includes proactive ecological restoration efforts and the conversion
of farmland back to forests and grasslands. Simultaneously, it is essential to develop
the agricultural economy in alignment with local conditions, advocate for energy- and
water-efficient agricultural management models, and encourage agricultural restructuring.
(2) Recognizing the evident spatial variation of LER, adjustments to the spatial distribution
pattern of LULC can be employed as a component of ecological risk management. In
areas characterized by concentrated ecological risks, it is crucial to address landscape
fragmentation and employ spatial governance strategies at the national level. This should
entail implementing regionally specific control measures that are tailored to the local
natural conditions.

4.4. Limitations and Future Work

In this investigation, an analysis of the Land Ecological Risk (LER) status within
the Kriya River Basin (KRB) over the past two decades was undertaken, employing a
landscape ecology perspective. The study aimed to elucidate the spatial and temporal
distribution of LER while investigating the mechanisms of influencing factors on ecological
risk. Furthermore, the research extended to designing and simulating ecological risks under
different development scenarios projected for the year 2030. The overarching objective was
to provide a theoretical foundation for future ecological risk control measures. Arid zone
watersheds, characterized by ecologically sensitive attributes, have witnessed a surge in
ecological issues in recent years [2,11]. These concerns have manifested as typical ecological
and environmental problems observed globally, garnering extensive attention from various
sectors of society. Consequently, the development of a rational and effective ecological
assessment model for watersheds, especially those with unique natural geographical
conditions like the KRB, assumes critical importance. In this paper, a landscape pattern

168



Water 2023, 15, 4256

index was formulated based on land use (LULC) data to assess the KRB. This method proves
feasible for managing land resources within the basin and addressing regional ecological
and environmental challenges. However, the study acknowledges certain limitations owing
to the intricate nature of data sources and ecological risks in the area. The uncertainties
introduced as a result of these complexities impact the outcomes of the comprehensive
assessment. Notably, the risk assessment method grounded in landscape ecology exhibits
a discernible scale effect, where the size of the scale influences the calculation results of
the landscape pattern index, leading to potential bias [17,35]. Additionally, the driving
factors behind changes in land use landscape patterns within the KRB are exceedingly
intricate. The selection of some natural and anthropogenic factors in this study, while
omitting others challenging to quantify, hinders the precise prediction of the future spatial
pattern of land use in the simulation. Subsequent research endeavors should consider a
multi-scale comprehensive assessment, emphasizing the scale effects of diverse influencing
factors for a more accurate evaluation. Furthermore, exploring additional quantitative
driving analysis indicators in conjunction with the specific conditions of the KRB will
contribute to enhancing the simulation’s accuracy.

5. Conclusions

This study employs the Landscape Ecological Risk Assessment (LERA) model to con-
duct a comprehensive examination of the spatial and temporal dynamics within the Kriya
River Basin (KRB) from 2000 to 2020. Additionally, the investigation integrates the PLUS
model to simulate and forecast the spatial distribution of LER, projecting potential trends in
the KRB under diverse scenarios by the year 2030. (1) The KRB predominantly encompasses
grassland and unused land, constituting over 97% of its total expanse. Over the two-decade
timeframe, notable expansions occur in cropland, water, and construction land, while
unused land and grassland witness contractions. Spatial alterations notably reveal that the
proliferation of construction land predominantly encroaches upon cropland. (2) The period
from 2000 to 2020 manifests a discernible spatial clustering pattern of Ecological Risk
Index (ERI) values in the KRB, with an observed escalation in the degree of clustering.
Dominating the LER spectrum are low-ecological-risk areas and lower-ecological-risk areas.
(3) ERI, as an index, reflects the confluence of socioeconomic and natural conditions, and
its principal determinants undergo a nuanced transition over the two decades. In the early
2000s, natural variables including temperature, precipitation, topography, and soil type
wield substantial influence, whereas by 2020, socioeconomic factors such as GDP, popula-
tion, temperature, topography, and proximity to settlements emerge as predominant factors
shaping LER. Human activities progressively assert themselves as the paramount catalyst
for LER variations. (4) The anticipated landscape configurations under three distinct KRB
scenarios in 2030 portray varied degrees of transformation, wherein low-risk and high-risk
areas predominate within the NDS, CPS, and EPS scenarios. Spatially, high-risk LERs
exhibit notable concentration, particularly evident in the Daryabuyi site across divergent
scenarios. The conclusions of the study can provide a decision-making basis for ecological
risk early warning for the ecological protection of the Kriya River Basin, enhancement of
the ecological security level as well as giving full play to the role of ecological functional
zones of inland river basins in arid zones.
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Abstract: The Great Lakes Depression region basin is among the most sensitive regions to vegetation
change due to climate change. This study estimated spatial-temporal changes and relationships
in hydro-climate and vegetation dynamics in the basin. Studying the spatial-temporal variation
between vegetation dynamics and hydro-climate in this basin is essential for assessing climate
change and sustainability. This research involved an examination of the mean yearly air temperature,
overall annual rainfall, fluctuations in river discharge, vegetation cover, and alterations in vegetation
types within the selected basin stations. This was accomplished through the utilization of hydro-
meteorological analysis, satellite assessment, land cover determination, and statistical analysis. Over
the course of the study, it was observed that the average annual air temperature increased at all
stations (with a positive change of Z = +1.16). The amount of precipitation decreased (Z = −0.79),
especially from 2000 to 2014, and its statistical significance decreased. During the study period,
average river discharge significantly decreased (Z = −3.51). Due to these combined factors, the lake’s
water level also decreased (Z = −2.03). Vegetation cover change varied in high mountains, near river
and lake water surfaces, and in arid regions. Changes in air temperature and precipitation in the
current year determine vegetation cover. Because of the large amount of precipitation in the summer
months from 2000 to 2010 and 2020, the growth of vegetation cover during that period was relatively
good. This study was conducted in arid and semi-arid regions of Central Asia and demonstrates the
impact of climate change on changes in vegetation cover.

Keywords: Central Asia; arid regions; semi-arid region; vegetation cover; water; climate change

1. Introduction

Vegetation plays many vital roles in nature and society. It performs a crucial function
in controlling the carbon cycle, influencing climate patterns, and facilitating the transfer of
substances and energy among the atmosphere, land surface, hydrological processes, food
chains, and soil-dwelling organisms [1]. In society, vegetation is the primary source of raw
materials for food, medicine, medical equipment, beauty, industrial raw materials, and an
important component of material wealth [2]. Therefore, it is very important to determine
how vegetation cover is changing with climate change and the main factors influencing
this change. Looking at the interrelationships of vegetation changes and climate change in
areas with the most significant vegetation change, and also vulnerable and sensitive areas,
can be useful for predicting the changes in other areas and vegetation communities [3]. A
classic example of such a place is Central Asia’s arid and semi-arid regions [4–6]. Central
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Asia’s arid and semi-arid regions are among the most sensitive vegetative regions to
climate change. It is vital to estimate the spatial and temporal variations in climate changes
and the associated changes in water and vegetation in these sensitive areas, such as the
Mongolian Plateau.

Changes in vegetation cover in the Mongolia Plateau region are closely related to water
and climate variables [7]. The study of vulnerable ecosystems about hydro-climatic change
has enormous implications for the ability of a region to maintain its unique characteris-
tics [8]. This mid-latitude region in the northern part of the world has four seasons, where
sensitive plants are dominant, seasonal and winter temperature differences are significant,
and plant growth dynamics differ between seasons [6,9]. The region’s most favorable
climate and weather period for vegetation growth is 5–8 months when the vegetation cover
grows best during an active balance of air temperature and precipitation [10]. It is the
region where the influence of hydro-climate on vegetation growth is most pronounced and
a region where it is changing the most.

Another critical factor affecting vegetation cover is the human impact. In particular,
the use of surface water significantly impacts changes in vegetation cover [11,12]. Hu-
man factors affecting vegetation cover include surface water use, which can influence
agricultural practices, soil and plant cover use, and the grazing capacity of hydrological
networks [13,14]. In particular, the impact of grazing on water points is one of the major
causes of vegetation cover degradation and erosion. Therefore, studying the process of
degradation of vegetation cover due to the effects of hydro-climate on the one hand and
livestock grazing on the other hand may be very important to estimate the combined effects
in the semi-arid and arid regions of the Mongolian Plateau.

In the study of water and climate change, it can be very important to compare the
changes in the main climate parameters with the surface water changes and to calculate
the direct and indirect correlations to detect the subsequent changes due to the main
parameters [15,16]. It is important to estimate the impact of changes in air temperature in
the basin on precipitation and then study the impact of precipitation on surface water [17].
It may be possible to calculate the interrelationship between these changes and the changes
and effects of other factors affecting the vegetation cover.

The relationship between these changes may vary from place to place depending on
the characteristics of the place. For example, in the arid and semi-arid highlands of Central
Asia, surface water mostly flows from high mountain snow and glaciers and precipitation
water has the greatest impact on lowland vegetation and surface water [18]. Therefore, it
is important to calculate in detail how changes in hydro-climate, such as changes in air
temperature, precipitation, and river discharge in high regions, will affect vegetation cover
and the rate and extent of spatial and temporal changes.

The purpose of this study is to study the interrelationship between hydro-climatic
change and vegetation cover in the Great Lakes Depression region in western Mongolia. In
order to achieve the objectives of this study, the following objectives were set, including
(i) determining the hydro-climatic changes; (ii) determining temporal and spatial changes
in vegetation cover; and (iii) establishing the relationship between hydro-climate and
vegetation cover.

2. Materials and Methods

2.1. Study Area

The Great Lakes Depression is in the western part of Mongolia, surrounded by the
Mongolian Altai Mountains in the west, the Sayan mountain system in the north, the
Khangai Mountains in the east, and the Mongolian Altai and Khangai Mountains in the
south (45◦51′26′′–51◦07′03′′ N, 87◦44′58′′–99◦03′56′′ E), with a small part of the northern
area crossing into the Russian Federation (Figure 1). The total land area is 268,309.52 km2,
of which 9% is located in the territory of the Russian Federation, while 91% of the total area,
or 244,182.13 km2, is located in the territory of Mongolia. The region has a fragile ecosystem
with a variety of natural typologies, including the desert steppe, gobi, steppe, forest-steppe
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zones, and high mountain belts with an elevation of 744–4306 m above sea level. Due to the
diversity of its nature, the area has its own unique flora. Desert is found in the central part
of the Great Lakes basin (Nanophyton erinaceum, Anabasis brevifolia, Reaumurua soongorica)
“A desert is a dry area with sparse or no vegetation.”. Gobi (Artemisia xerophytica, Stipa glareosa,
Asterofhamus hereopappoides), “The gobi is a large desert and semi-desert with region sparse or little
vegetation in Central Asia” and steppe (Allium eduardi, Festuca valesiaca, Caragana pygmaea)
“A steppe is a natural grassy area with dense or large vegetation area.” vegetation communities
are formed around large rivers and lakes in basins (Populus laurifolia, Cleistogenes squarrosa,
Agropyron nevskii). A wide variety of plants [19] are present across the basin. Further,
mountain and high-altitude plants (Adonis apennina L., Allium altaicum, Swertia banzragczii)
grow in the Mongolian Altai, Khangai, and Kharhiraa Turgeni Mountains located at the
outermost edge of this region [20].

 
Figure 1. Location of the area and hydro-climate stations in the Great Lakes Depression region
of Mongolia.

2.2. Data Sources

To study the interrelationship between hydro-climatic change and vegetation cover,
a number of different data sets were collected. Climate data, such as air temperature
and precipitation, for the Great Lakes Depression region of Mongolia were obtained
from National Centers for Environmental Information, i.e., NOAA’s National Centers
for Environmental Information (NCEI) “(https://ngdc.noaa.gov/ accessed on 23 Septem-
ber 2022)” and Information and Research Institute of Meteorology, Hydrology, and En-
vironment (IRIMHE) in Mongolia. River discharge and lake water level information
were also obtained from the Hydrology and Measurement department of the IRIMHE
“(http://irimhe.namem.gov.mn/ accessed on 20 November 2022)”. Global SRTM 90 m res-
olution Digital Elevation Model (DEM) data were obtained from the CGIAR-CSI GeoPortal
“(https://cmr.earthdata.nasa.gov/ accessed on 7 August 2022)”. The normalized difference
vegetation index (NDVI) and enhanced vegetation index (EVI) data were extracted from
the MODIS NDVI product (MOD13Q1) obtained from the land processes distributed active
archive center, NASA “(https://lpdaac.usgs.gov/ accessed on 10 January 2023)”. The
land cover data of Landsat resolution of 30 m from 1990 to 2020 were used for land cover
classification. The detailed global land cover classification system (containing 16 global
and 14 regional land cover types) and 30 m spatial resolution images (GLC_FCS30-2015)
were used [21]. The locations of the meteorological and water gauge stations used in the

175



Water 2023, 15, 3748

study are shown in Figure 1. The following factors were considered when selecting the
climate and water gauge stations: (1) spatial distribution of stations, (2) the amount of
data from the stations and the time of measurement, and (3) whether the stations are near
water systems.

2.3. Methods

This study used the Mann–Kendall (MK) test method to detect hydro-climate time
series data trends. Results were compared with the Innovative Trend Analysis Method
(ITAM) and Sen’s Slope Estimator Test (SSET) to assess Mann–Kendall (MK) reliability
and observe changes in trend. Trend analysis significance levels of 10%, 5%, and 1% were
adopted to evaluate the hydro-climatic time series data. A digital elevation model (DEM)
calculated the study area and baseline. The relationship between hydro-climatic data,
NDVI, EVI, and land cover was calculated to estimate changes in plant cover according to
the following general figure (Figure 2).

Figure 2. Diagram on detecting spatio-temporal relationships between vegetation dynamics and
hydro-climate.

2.3.1. Hydro-Climatic Trend Analysis

The MK test method indicates statistically significant upward and downward trends [22,23].
Annual hydro-climatical data series were used in this study and analysis to detect changing
trends. Annual precipitation, air temperature, river discharge, and lake water surface level
trends were also analyzed separately. Individual hydro-meteorological time series data
were compared with all-time series data for the same year.

The MK statistics are the cumulative results of all the data values. The MK test statistics
“S” are then equated as

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(

xj − xi
)

(1)
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The trend test is applied to xi data values (i = 1, 2, . . . n − 1) and xj(j = i + 1, 2, . . . n).
The data value of each xi is used as a reference point to compare with the data value of xj,
which is given as

sgn
(

xj − xi
)
=

⎧⎪⎪⎨
⎪⎪⎩
+1 if

(
xj − xi

)
> 0

0 if
(

xj − xi
)
= 0

−1 if
(

xj − xi
)
< 0

(2)

where sgn is the sign function, and xj and xi are the values in period j and i. When the
number of data series is greater than or equal to ten (n ≥ 10), MK test is then characterized
by a normal distribution with the mean E(S) = 0, and variance Var(S) is equated as

E(S) = 0 (3)

Var(S) =
n(n − 1)(2n + 5)− ∑m

k=1 tk(tk − 1)(2tk + 5)
18

(4)

where m is the number of the tied groups in the time series, and tk is the number of ties in
the kth tied group.

The test statistics Z are as follows:

Z =

⎧⎨
⎩

s−1
δ if S > 0
0, if S = 0

s+1
δ if S < 0

(5)

When Z is greater than zero, δ is the variance of S, indicating an increasing trend, and
when Z is less than zero, it is a decreasing trend.

In time sequence, the statistics are defined independently:

UFk =
dk − E(dk)√

var(dk)
(k = 1, 2, . . . , n) (6)

Firstly, given the confidence level α, if the UFk > UFα/2, indicating that the sequence
has a significant trend. Then, the time sequence of changes is represented in reverse
order. The following equation is used to express the inverse relationship according to the
calculation of the equation:

UBk = −UFk (7)

K = n + 1 − k (8)

where UFk and UBk are the statistical variables, two statistical order curves UBk and UFk
are drawn as UB and UF curves, and two critical value lines are drawn on the graph to
detect MK change points. UB and UF of these two crucial values indicate a significant
upward or downward trend when it exceeds the line, and the range beyond the essential
value line is defined as the time interval of the change. In this case, the intersection of the
UB and UF curves indicates the start of the change, which is the point of difference [24].

ITAM has been used in several studies to detect changes in hydro-climate trends [23,25].
The ITAM divides a time series into two equal parts, and it sorts both sub-series in ascending
order. Then after, the two halves are placed on a coordinate system (xi : i = 1, 2, 3, . . . n/2)
on X-axis and

(
xj : j = n/2 + 1, n/2 + 2, . . . n

)
on Y-axis. If the time series data on a scat-

tered plot are collected on the 1:1 (45◦) straight line, it indicates no trend. However, the
trend increases when data points accumulate above the 1:1 straight line, and the trend
decreases when data points accumulate below the 1:1 straight line.

The trend indicator is given as

ϕ =
1
n

n

∑
i=1

10
(

xj − xi
)

μ
(9)
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where ϕ = trend indicator, n = number of observations on the sub-series, xi = data series
in the first half sub-series class, xj = data series in the second half sub-series part, and
μ = mean of data series in the first half sub-series part.

A positive value of ϕ indicates an increasing trend. However, a negative value of ϕ
indicates a decreasing trend. However, when the scatter points are closest around the 1:1
straight line, it implies the non-existence of a significant trend.

In SSET, the trend magnitude is calculated using [26] slope estimator methods. The
slope Qi between two data points is given by the equation

Qi =
xj − xk

j − k
, for i = 1, 2, . . . N (10)

where xj and xk are data points at time j and (j > k), respectively. When there is only

single datum in each time, then N = n(n−1)
2 ; n is number of time periods. However, if the

amount of data in each year is high, then N < n(n−1)
2 ; n is the total number of observations.

The N values of slope estimator are arranged from smallest to biggest. Then, the median of
slope (β) is computed as

β =

{
Q[(N + 1)/2] when N is odd

Q[(N/2) + Q(N + 2)/(2)/(2)] when N is even
(11)

The sign of β shows whether the trend is increasing or decreasing.

2.3.2. Vegetation Analysis

NDVI is one of the most widely used vegetation indices of plant biomass and vegeta-
tion activity [27], which indicates the change in an area’s vegetative greenness [28].

NDVI =
(NIR − RED)

(NIR + RED)
(12)

where NIR and RED are the near-infrared and red channels of the electromagnetic spectrum,
respectively, corresponding to bands 2 and 1 of the MODIS (MOD13Q1) product. The
second vegetation layer is the EVI, which has improved sensitivity for high biomass regions.

EVI =
G ∗ (PNIR − PRed)

(PNIR + C1 ∗ PRed − C2 ∗ PBlue + L)
(13)

where EVI is the enhanced vegetation index, G is the gain factor (=2.5), PNIR is the near-
infrared reflectance, PRed is the red reflectance, PBlue is the blue reflectance, C1 is the
atmosphere resistance red correction coefficients (=6), C2 is the atmosphere resistance blue
correction coefficients (=7.5), and L is the canopy background brightness correction factor
(=1) [25].

2.3.3. Land Cover Analysis

Analysis of vegetation cover changes in land cover categories allowed for greater
control over temporal and spatial changes in vegetation. Therefore, spatial analysis was
performed in duplicate to detect differences in land cover change over distinct periods and
to establish transitions and correlations between land cover changes. By overlapping the
land cover maps from 1990, 2000, 2010, and 2020, we derived a land cover transformation
map, which was then employed for further analysis using a transformation matrix. The
extent of changes in land cover was subsequently quantified as [25].

CA = TA(t2)− TA(t1) (14)

CE = [CA/TA(t1)] ∗ 100 (15)
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where TA, CA, and CE stand for the total area, changed the area, and the extent of change,
respectively, t1 and t2 are the beginning and ending times. An external Kappa coefficient
(KC) was calculated to confirm the transition of land cover change. KC is a measure of
agreement between predefined producer ratings and user-assigned ratings. The calculation
is based on the difference between how much agreement is present (“observed” agreement)
and how much agreement would be expected to be present by chance alone (“expected”
agreement) [29].

K = P(A)− P(E)/1 − P(E) (16)

P(A) =
(A + D)

N
(17)

P(E) =
(

A1
N

)
∗
(

B1
N

)
+

(
A2
N

)
∗
(

B2
N

)
(18)

where K is the Kappa coefficient, P(A) is the number of times the K rates agree, P(E) is the
number of times the K rates are expected to agree only by chance, A and D are unchanged
categories, A1 and B1 are subject’s categories, and N is the change in results.

2.3.4. Statistical Analysis

Correlation analysis was used to check whether there is a linear relationship between
vegetation cover and water climate, and the strength of the relationship was expressed as a
correlation coefficient [30,31]. The correlation coefficient is expressed by Equation (19).

r = ∑ (x − _
x)(y − _

y)√
∑ (x − _

x)2∑(y − _
y)2

(19)

Here, r: correlation coefficient, x—variable,
_
x—standard deviation of x variable, y—

variable, and
_
y—standard deviation of y variable.

3. Results

3.1. Hydro-Climatic Analysis

When calculating the water–climate relationships, the parameters that most affect the
hydrological process are selected. These parameters are average annual air temperature,
total annual precipitation, river discharge, and lake water level. In the last 30 years, the air
temperature in the basin has warmed by 1.09 ◦C, i.e., from −0.5 ◦C to + 0.5 ◦C (Figure 3).
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Figure 3. Hydro—climate change.

The amount of total annual precipitation decreased sharply from 1994 to 2010, and
especially from 2000 to 2014, decreasing with statistical significance. Overall, this region
receives little precipitation. Most of the precipitation falls during the summer months. In I
confirm the winter months, the snow water remains stable for a long time. The average
annual precipitation here is 134.6 mm. This is indicative of the semi-arid and arid regions
of Central Asia.
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In this region, Mongolia has the largest rivers in Central Asia, such as the Khovd River,
the Zavkhan River, and the Tesin River, all flowing into terminal large lakes. Data from
water monitors on these rivers were processed, and the average river discharge of these
rivers decreased from 60 to 40 m3/s in the last 30 years. This decline continued from 1994
to 2012, with a slight upward trend since 2013. However, since 2005, it has continuously
decreased with statistical significance.

The water level measurements of the two largest lakes in the study area, Uvs Lake and
Khyargas Lake, show that the water level was high from 1995 to 1997, but the water level
of the lake has continuously decreased since 1998. Especially since 2011, the decrease has
been statistically significant (Figure 4).

  
(a) (b) 

  
(c) (d) 

Figure 4. Trends in water climate change in the Great Lakes Depression region: (a) annual mean air
temperature trends; (b) trends in changes in total annual precipitation; (c) changes in the mean river
discharge; and (d) changes in the water level of the Great Lakes.

Hydro-climatic parameters were calculated using MK, and a change analysis was
performed using ITAM and SSET to confirm the calculation. The average air temperature
increased (Z = 1.16), while precipitation slightly decreased (Z = −0.79). In arid and semi-
arid regions, river discharge is directly related to changes in precipitation. However, despite
the slight decrease in precipitation in this area, the river discharge (Z = −3.51) significantly
decreased. The rate of decline in river discharge is twice as high as the rate of decline in
precipitation, suggesting that there may be other factors influencing river discharge. In this
region, the flow of river water, which is the main source of lake water, decreased due to
this, and the lake’s water level (Z = −2.03) decreased significantly. This is directly related
to the decrease in river discharge, the primary source (Table 1).

Table 1. Results for hydro-climate trends: MK (Z), ITAM (ϕ), and SSET (β).

№ Indicator Z ϕ β Rate of Change

1 Air temperature 1.16 * 1.86 * 0.01 0.10
2 Precipitation −0.79 0.07 0.59 −0.16
3 River discharge −3.51 *** −2.66 ** −1.36 * −0.61
4 Lake water level −2.03 ** −2.05 ** −3.39 *** −5.9 ***

Notes: * Trends at 0.1 significance level; ** trends at 0.05 significance level; and *** trends at 0.01 significance level.
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3.2. Vegetation Analysis
3.2.1. NDVI Analysis

The Great Lakes basin region is located amid a diverse natural landscape with diverse
vegetation associated with different ecosystems and climates. There are several large lakes
in the central part of the basin, but there is an arid and semi-arid zone around the lake.
Depending on the annual air temperature and precipitation, the most active vegetation
period is between 5 and 9 months in this region. The MODIS NDVI product (MOD13Q1)
was used to calculate the vegetation cover NDVI during the study period from August
12 to 27, 2000, 2010, and 2020. In arid and semi-arid regions of Mongolia, the most active
summer vegetation period is from May 20 to August 10. But from September, plant growth
stops and starts to wither due to the cold. Therefore, the period between August 12 and 27
was chosen when the vegetation in the region was most stable. NDVI had different values
in high-altitude areas where surface water and vegetation cover, such as rivers and lakes,
were greatest (Figure 5).

  
(a) (b) 

  
(c) (d) 

Figure 5. NDVI changes in Great Lakes Depression region of Mongolia. (a) NDVI in 2000; (b) NDVI
in 2010; (c) NDVI in 2020; and (d) percentage of change in NDVI area.

Considering the number of plants, in August 2000, 43.77% of the total area had a very
poor yield or −0.20–0.20, while 41.34% of the total area had a poor yield. However, the
rest of the land with relatively good yield accounted for 14.89% of the total area. As of
2010, 42.23% of the total area had a very poor yield of −0.20–0.20, while 39.18% of the total
area had a poor yield. But the remaining 28.23% was relatively good yield land. As of
2020, 20.58% of the total area had very low vegetation cover or −0.20–0.20, while 46.77% of
the total area had poor yields. But, the remaining 32.66% was relatively good yield land.
In arid and semi-arid regions, vegetation cover growth is likely to be directly related to
temperature and precipitation distribution. For example, from 2000 to 2009, there was an
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increase in air temperature and the amount of precipitation significantly decreased during
this period. This overlaps with the period of low vegetation cover in the 2000 NDVI map.
In addition, in 2020, when the increase in air temperature is relatively stable and the total
annual precipitation increases, the NDVI of the basin will have a relatively high value.
Therefore, it can be seen from the above comparison that air temperature and precipitation
are directly related to NDVI growth.

3.2.2. EVI Analysis

The EVI values of the study area were divided into five levels: no vegetation, low
vegetation, medium vegetation, medium and higher vegetation, and higher vegetation.
A significant feature of EVI was the degradation of vegetation cover in areas near large
lakes and rivers. The amount of vegetation cover also showed similar trends, temporal and
spatial variations, to NDVI (Figure 6).

  
(a) (b) 

  
(c) (d) 

Figure 6. EVI changes in Great Lakes Depression region of Mongolia. (a) EVI in 2000; (b) EVI in 2010;
(c) EVI in 2020; and (d) percentage of change in EVI area.

As of 2000, 20.45% of non-vegetated land in the basin was the largest, with 36.07%
of the land with low vegetation. On the other hand, 43.48% of areas had medium and
large vegetation, respectively. Plant growth in 2010 was average compared to the 2000 and
2020 figures. As of 2020, the place without vegetation was 6.68%, while the area with low
vegetation was 23.63%. The site with medium and large vegetation increased to 69.69%.
The five categories of changes in the study area showed that the area with vegetation was
less in 2000 (y = −4.7908x + 34.372, R2 = 0.4664), and the region with vegetation increased
in 2020 (y = 2.6304x + 12.109, R2 = 0.1766). These changes were associated with changes in
temperature and precipitation inputs, similar to changes in NDVI. In addition, vegetation
cover degradation was significant in areas near surface water in the basin. This may be
related to surface water use and possibly livestock grazing.
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3.3. Land Cover Analysis

The land cover change was determined using satellite image data during August 1990,
2000, 2010, and 2020 when vegetation growth was stable. Not all land cover categories were
separated and classified, but only three typologies were considered: vegetation, water, and
empty land without vegetation. When calculating the change in vegetation cover, forest,
cropland, shrubland, grassland, and spare vegetation types were included in the vegetated
area. But, in the water section, water bodies, wetlands, permanent ice, and snow were
included. In the bare areas section, impervious surfaces, bare areas, and consolidated bare
area levels were calculated (Figure 7).

(a) (b) 

  
(c) (d) 

Figure 7. Map of land cover changes in the Great Lakes Depression region: (a) 1990 land cover map;
(b) 2000 land cover map; (c) 2010 land cover map; and (d) 2020 land cover map.

Vegetation change in land cover showed relatively little spatial variation. Vegetated
surface area decreased in 2000 and increased by 2.4% between 2010 and 2020 due to changes
in air temperature and precipitation, while water surface area decreased by 1.2% from 1990
to 2020. Bare area also decreased by 3.1% from 1990 to 2020. Vegetation and wetlands,
as well as bare areas, changed slightly in relatively small areas between 1990 and 2020
(Table 2).

The land cover change increased from 65% to 66.9% from 1990 to 2020 by almost 2%
in areas with vegetation area. The amount of water increased by 1.2%, from 3.7% to 4.9%.
Bare area decreased by 3.1%, from 31.3% to 28.2%. This change was similar to the changes
in NDVI and EVI.
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Table 2. Area and percentage of land cover change.

Land Cover Type 1990 2000 2010 2020

Area (km2) (%) Area (km2) (%) Area (km2) (%) Area (km2) (%)

Vegetation area 174,452.7 65.0 173,673.8 64.7 175,344.8 65.4 179,485.9 66.9
Water area 9829.5 3.7 10,978.4 4.1 11,276.0 4.2 13,250.0 4.9
Bare area 84,027.3 31.3 83,657.3 31.2 81,688.7 30.4 75,573.7 28.2
Total area 268,309.5 100 268,309.5 100 268,309.5 100 268,309.6 100

3.4. Statistical Analysis

Considering the time and space relationship between vegetation dynamics and hydro-
climatic, the relationship between the most sensitive parameters studied was confirmed
using statistical analysis. For this purpose, the growth area of vegetation cover was divided
into three main areas in the study area: low vegetation area, medium vegetation area, and
high vegetation area, and the relationship between air temperature, precipitation, and river
flow was calculated in each section (Figure 8).

Figure 8. Relationship between hydro-climatic (temperature, precipitation, and river discharge)
factors in the Great Lakes Depression region: (a) low vegetation area; (b) medium vegetation area;
and (c) high vegetation area.

When considering the relationship between air temperature and precipitation by
dividing the study area into low vegetation area (a1–a3), medium vegetation area (b1–b3),
and high vegetation area (c1–c3), when the air temperature increases, the pattern of gradual
decrease in precipitation was observed at all points. Considering the relationship between
precipitation and vegetation cover, vegetation cover increases as precipitation increases. For
example, the correlation in (a1) became r = −0.14, while the correlation in (b1) increased to
r = −0.48. Vegetation changes are most closely related to climate factors. Considering how
the river flow depends on the difference in air temperature, a relatively weak relationship
is revealed. The highest is r = −34 in areas with high vegetation area. This indicates that
the air temperature in areas with high vegetation area may have an indirect effect on the
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flow of river water. Considering how the river discharge water depends on the increase
in precipitation in the low vegetation area (a1–a3), medium vegetation area (b1–b3), and
high vegetation area (c1–c3) in the research area, it is positively moderate at all points
where related. The river discharge in the study area is affected by many factors, such
as increasing air temperature, the melting of high mountain permafrost, and changing
precipitation, and it can be seen that the influence of precipitation is significant. Therefore,
in arid and semi-arid regions, the amount of precipitation positively and strongly influences
the river discharge. The increase in air temperature will increase evaporation and change
precipitation, and the sum of air temperature and precipitation will significantly impact
water and vegetation growth that year.

4. Discussion

In the Great Lakes Depression region in western Mongolia, we can detect the changes
in vegetation cover related to climate change. Studying these changes may provide op-
portunities for the development of appropriate land management techniques and predict
how vegetation may change in a warmer future. Climate change and its associated hy-
drologic changes are taking place very strongly in the Great Lakes Depression region of
Mongolia [32]. In this region, climate indicators such as temperature increase, precipitation
decrease, water surface area decrease, and permafrost glacier area decrease have all been
observed in recent years [33]. In particular, due to increased air temperature, snow and
glaciers have steadily decreased in recent years [34], leading to less surface water.

During the last 30 years, the air temperature in the basin has warmed by 1 ◦C from
−0.5 ◦C to +0.5 ◦C. From 1995 to 2005, the air temperature gradually increased, and after
2008, the warming intensity stabilized slightly. This increase in temperature increases
the melting of high mountain permafrost and glaciers. The meltwater flows through
surface water, like rivers, and accumulates in low-lying areas. The sudden increase in
air temperature in the spring and summer seasons increases the melting of permafrost
and glaciers on high mountain tops, causing a sharp rise in river water levels and the
expansion of lake water areas in the early season. Conversely, considering the general trend
of hydro-climate, the increase in air temperature in this region will decrease the amount
of precipitation, and the decrease in precipitation impacts the flow of water in the river.
Despite more water earlier in the season, average lake levels steadily declined over time.
The change in the water consumption of the river likely also caused the water level of the
lake to change. In our study, the decline in precipitation was most strongly linked to lower
lake levels.

The expansion and reduction in vegetation cover are intimately connected to alter-
ations in both precipitation and air temperature [35]. Changes in air temperature, the
most prominent climate parameter, will indirectly have the most significant impact on
vegetation growth. These changes are especially evident in sensitive areas of arid and
semi-arid regions [36]. For example, in 2000, when the air temperature increased, the
amount of precipitation decreased, and in the years 2010 and 2020, when the precipitation
increased, the amount of vegetation cover increased in the basin, especially in the years
when the NDVI and EVI values were high. An increase in the sensitivity of plants to water
availability could lead to a decrease in tolerance to water changes and an increase in the
conflict between plants and human societies related to water [37].

The processing of satellite images is useful in many ways when considering the
factors influencing the detection of changes in vegetation cover [38,39]. Consideration of
changes in land cover changes in vegetated surfaces, water surfaces, and bare land without
vegetation is important for estimating the impact of vegetation cover changes [40]. The
biggest change in the area of the basin was the bare area between 1990 and 2020, which
was 8453.6 km2 or 3.1% of the total area of the basin. This area is quite extensive, especially
for arid and semi-arid regions. While the area of wetlands in that area is increasing by a
small percentage, the bare area, land without vegetation, is increasing, which may indicate
a strong natural transition due to natural factors and other factors, especially climate.

185



Water 2023, 15, 3748

5. Conclusions

In this study, hydro-climatic trend analysis, satellite image analysis, land cover de-
termination, and statistical analysis methods were used to calculate the spatio-temporal
relationship between vegetation dynamics and hydro-climate changes in the Great Lakes
Depression region of Mongolia from 1990 to 2020.

The average annual air temperature increased by +1 ◦C from −0.5 ◦C to +0.5 ◦C during
the research period. This increase substantially affected plant growth processes but differed
depending on elevation and proximity to water. Mean annual air temperature tended
to increase at all stations (Z = +1.16). The mean yearly precipitation within the research
amounted to 134.6 mm. The amount of precipitation rapidly decreased from 1994 to 2010,
and from 2000 to 2014, it decreased with statistical significance. During the study period,
the river discharge changed significantly due to the interrelationship between the increased
air temperature and the decrease in precipitation. During the study period, average river
discharge significantly decreased (Z = −3.51). Also, the water level of the studied lake
significantly decreased (Z = −2.03).

Vegetation cover changes due to hydro-climatic changes were different in high moun-
tains, near the water surface of rivers and lakes, and in arid and semi-arid regions. Veg-
etation yield is determined by changes in air temperature and precipitation of the same
year, and the amount of precipitation in the summer months from 2000 to 2010 and 2020
was high, so the increase in the height of vegetation cover during that period was relatively
good. That is why the amount of vegetation cover in NDVI, EVI, and land cover types tends
to increase during this period. This change in vegetation cover is one of the paradoxes of
climate change in the region that we must continue to study.

The growth of vegetation cover is highly dependent on hydro-climatic changes in the
study area. In terms of distance, mainly water and vulnerable parts of vegetation cover
in arid and semi-arid areas have changed. The most sensitive areas to climate change
were those with moderate-to-high vegetation cover. This suggests that climate change
significantly affects changes in vegetation cover in studies conducted in arid and semi-arid
regions of Central Asia.

This research can serve as the primary data for researching the relationship between
climate change, vegetation cover, land cover change, and ecosystem change in the Great
Lakes Depression region of Mongolia, which is representative of the semi-arid region. In
the future, studying human factors affecting vegetation cover is essential, as is studying
human responses to vegetation change in the region.
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8. Foroumandi, E.; Nourani, V.; Dąbrowska, D.; Kantoush, S.A. Linking Spatial—Temporal Changes of Vegetation Cover with
Hydroclimatological Variables in Terrestrial Environments with a Focus on the Lake Urmia Basin. Land 2022, 11, 115. [CrossRef]

9. Yuchen, L.; Zongxing, L.; Xiaoping, Z.; Juan, G.; Jian, X. Vegetation variations and its driving factors in the transition zone
between Tibetan Plateau and arid region. Ecol. Indic. 2022, 141, 109101. [CrossRef]

10. Zhang, T.; Xu, X.; Jiang, H.; Qiao, S.; Guan, M.; Huang, Y.; Gong, R. Widespread decline in winds promoted the growth of
vegetation. Sci. Total Environ. 2022, 825, 153682. [CrossRef]

11. Noori, R.; Maghrebi, M.; Mirchi, A.; Tang, Q.; Bhattarai, R.; Sadegh, M.; Noury, M.; Torabi Haghighi, A.; Kløve, B.; Madani, K.
Anthropogenic depletion of Iran’s aquifers. Proc. Natl. Acad. Sci. USA 2021, 118, e2024221118. [CrossRef]

12. Maghrebi, M.; Noori, R.; Mehr, A.D.; Lak, R.; Darougheh, F.; Razmgir, R.; Farnoush, H.; Taherpour, H.; Moghaddam, S.M.R.A.;
Araghi, A.; et al. Spatiotemporal changes in Iranian rivers’ discharge. Elem. Scie. Anthr. 2023, 11, 00002. [CrossRef]

13. Lei, C.; Wagner, P.D.; Fohrer, N. Effects of land cover, topography, and soil on stream water quality at multiple spatial and
seasonal scales in a German lowland catchment. Ecol. Indic. 2021, 120, 106940. [CrossRef]

14. Tola, S.Y.; Shetty, A. Land cover change and its implication to hydrological regimes and soil erosion in Awash River basin,
Ethiopia: A systematic review. Environ. Monit. Assess. 2021, 193, 836. [CrossRef] [PubMed]

15. Chen, H.; Liu, H.; Chen, X.; Qiao, Y. Analysis on impacts of hydro-climatic changes and human activities on available water
changes in Central Asia. Sci. Total Environ. 2020, 737, 139779. [CrossRef] [PubMed]

16. Javadinejad, S.; Eslamian, S.; Ostad-Ali-Askari, K. The analysis of the most important climatic parameters affecting performance
of crop variability in a changing climate. Int. J. Hydro. Scie. Techno. 2021, 11, 1–25. [CrossRef]

17. Guevara-Ochoa, C.; Medina-Sierra, A.; Vives, L. Spatio-temporal effect of climate change on water balance and interactions
between groundwater and surface water in plains. Sci. Total Environ. 2020, 722, 137886. [CrossRef] [PubMed]

18. Zhao, Y.; Miao, Y.; Fang, Y.; Li, Y.; Lei, Y.; Chen, X.; Dong, W.; An, C. Investigation of factors affecting surface pollen assemblages
in the Balikun Basin, central Asia: Implications for palaeoenvironmental reconstructions. Ecol. Indic. 2021, 123, 107332. [CrossRef]

19. Baasanmunkh, S.; Oyuntsetseg, B.; Urgamal, M.; Norris, J.; Shiga, T.; Choi, H.J. Notes on the taxonomy of Nymphaeaceae and
Menyanthaceae in Mongolia. J. Asia-Pac. Biodivers. 2022, 15, 129–137. [CrossRef]

20. Baasanmunkh, S.; Batlai, O.; Tsegmed, Z.; Khurelpurev, O.; Magsar, U.; Batdelger, G.; Chuluunbat, J.; Nyamjantsan, N.; Petr, K.;
Jae, C.H. Distribution of vascular plants in Mongolia—I Part. Mong. J. Biol. Sci. 2022, 20, 3–28. [CrossRef]

21. Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at
30&thinsp;m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [CrossRef]

22. Dorjsuren, B.; Batsaikhan, N.; Yan, D.; Yadamjav, O.; Chonokhuu, S.; Enkhbold, A.; Qin, T.; Weng, B.; Bi, W.; Demberel, O.; et al.
Study on Relationship of Land Cover Changes and Ecohydrological Processes of the Tuul River Basin. Sustainability 2021, 13, 1153.
[CrossRef]

23. Dorjsuren, B.; Yan, D.; Wang, H.; Chonokhuu, S.; Enkhbold, A.; Yiran, X.; Girma, A.; Gedefaw, M.; Abiyu, A. Observed Trends of
Climate and River Discharge in Mongolia’s Selenga Sub-Basin of the Lake Baikal Basin. Water 2018, 10, 1436. [CrossRef]

24. Li, X.; Fang, G.; Wen, X.; Xu, M.; Zhang, Y. Characteristics analysis of drought at multiple spatiotemporal scale and assessment of
CMIP6 performance over the Huaihe River Basin. J. Hydrol. Reg. Stud. 2022, 41, 101103. [CrossRef]

25. Dorjsuren, B.; Yan, D.; Wang, H.; Chonokhuu, S.; Enkhbold, A.; Davaasuren, D.; Girma, A.; Abiyu, A.; Jing, L.; Gedefaw, M.
Observed trends of climate and land cover changes in Lake Baikal basin. Environ. Earth Sci. 2018, 77, 725. [CrossRef]

26. Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [CrossRef]

187



Water 2023, 15, 3748

27. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec.
Publ. 1974, 351, 309–313.

28. Barboza, T.O.C.; Ardigueri, M.; Souza, G.F.C.; Ferraz, M.A.J.; Gaudencio, J.R.F.; Santos, A.F.d. Performance of Vegetation Indices
to Estimate Green Biomass Accumulation in Common Bean. Agric. Eng. 2023, 5, 840–854. [CrossRef]

29. Ray, R.; Das, A.; Hasan, M.S.U.; Aldrees, A.; Islam, S.; Khan, M.A.; Lama, G.F.C. Quantitative Analysis of Land Use and Land
Cover Dynamics using Geoinformatics Techniques: A Case Study on Kolkata Metropolitan Development Authority (KMDA) in
West Bengal, India. Remote Sens. 2023, 15, 959. [CrossRef]

30. Ren, Z.; Tian, Z.; Wei, H.; Liu, Y.; Yu, Y. Spatiotemporal evolution and driving mechanisms of vegetation in the Yellow River
Basin, China during 2000–2020. Ecol. Indic. 2022, 138, 108832. [CrossRef]

31. Xue, L.; Kappas, M.; Wyss, D.; Wang, C.; Putzenlechner, B.; Thi, N.P.; Chen, J. Assessment of Climate Change and Human
Activities on Vegetation Development in Northeast China. Sensors 2022, 22, 2509. [CrossRef]

32. Demberel, O.; Munkhbat, B.; Dorjsuren, B.; Callaghan, T.V.; Tsogoo, B.; Zemtsov, V.A.; Shaarav, O.; Gongor, E.; Jargalsaikhan, Z.;
Ganhuyag, N.; et al. Relationship between Dynamics of Modern Glaciers of the Mt. Munkhkhairkhan (Mongolian Altai) and
Climate. Water 2023, 15, 1921. [CrossRef]

33. Klinge, M.; Schlütz, F.; Zander, A.; Hülle, D.; Batkhishig, O.; Lehmkuhl, F. Late Pleistocene lake level, glaciation and climate
change in the Mongolian Altai deduced from sedimentological and palynological archives. Quat. Res. 2020, 99, 168–189.
[CrossRef]

34. Pan, C.G.; Kamp, U.; Munkhjargal, M.; Halvorson, S.J.; Dashtseren, A.; Walther, M. An Estimated Contribution of Glacier Runoff
to Mongolia’s Upper Khovd River Basin in the Altai Mountains. Mt. Res. Dev. 2019, 39, R12–R20. [CrossRef]

35. Qu, S.; Wang, L.; Lin, A.; Yu, D.; Yuan, M.; Li, C.a. Distinguishing the impacts of climate change and anthropogenic factors on
vegetation dynamics in the Yangtze River Basin, China. Ecol. Indic. 2020, 108, 105724. [CrossRef]

36. Li, G.; Yu, L.; Liu, T.; Jiao, Y.; Yu, J. Modeling Potential Impacts on Regional Climate Due to Land Surface Changes across
Mongolia Plateau. Remote Sens. 2022, 14, 2947. [CrossRef]

37. Jiang, T.; Wang, X.; Afzal, M.M.; Sun, L.; Luo, Y. Vegetation Productivity and Precipitation Use Efficiency across the Yellow River
Basin: Spatial Patterns and Controls. Remote Sens. 2022, 14, 5074. [CrossRef]

38. Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover Classification by Machine
Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [CrossRef]

39. Alvarez-Vanhard, E.; Corpetti, T.; Houet, T. UAV & satellite synergies for optical remote sensing applications: A literature review.
Sci. Remote Sens. 2021, 3, 100019.

40. Xie, Z.; Phinn, S.R.; Game, E.T.; Pannell, D.J.; Hobbs, R.J.; Briggs, P.R.; McDonald-Madden, E. Using Landsat observations
(1988–2017) and Google Earth Engine to detect vegetation cover changes in rangelands—A first step towards identifying degraded
lands for conservation. Remote Sens. Environ. 2019, 232, 111317. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

188



water

Article

Water Protection Zones—Impacts on Weed Vegetation of
Arable Soil
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Abstract: The aim of this study is to evaluate the occurrence of weeds under conditions of limited
herbicide use due to the protection zone of water resources. A total of 23 weed species were found
in maize stands, 19 species were found in wheat stands, and 16 species were found in rapeseed
stands. The redundancy analysis (RDA) results show significant differences in weed occurrence and
composition due to herbicide regulation in each crop. Changes in weed composition induced by
herbicide application limitations lead to a preference for more specialized weed species (specialists)
at the expense of widespread species (generalists). Limiting the use of pesticides in sensitive and
vulnerable areas, such as water sources, bodies, and watercourses, is justified from the perspective
of protecting the aquatic environment and biodiversity. However, such measures can cause weed
growth that is difficult to control, and therefore, it is important to search for new methods for weed
control in field crops. Determining a balance between safeguarding water resources and addressing
agricultural challenges remains crucial for sustainable land and water management.

Keywords: water protection; herbicides; biodiversity; agriculture; weed flora

1. Introduction

Human activity is often the primary source of pollution, bringing potentially haz-
ardous substances into atmospheric, terrestrial, and aquatic ecosystems [1]. Agriculture
is one of the largest sources of emissions in surface water and aquatic ecosystems [2,3].
Hoever, aquatic ecosystems are often contaminated with herbicides [4]. This contamination
depends on many parameters, such as watershed structure and land use (anthropic activity,
surface, and slope), soil structure and composition, environmental factors, hydrology (rain-
fall, flow, and wind), aquatic environmental conditions (pH, organic matter, and suspended
particles), and the chemical properties of herbicides [5,6]. Many European studies have
reported the detection of active herbicides such as diuron, metolachlor, isoproturon, ter-
butryn, and atrazine in aquatic environments [7,8]. Owing to their phytotoxic effects, their
behavior in freshwater ecosystems poses a risk to non-target organisms, such as benthic
diatoms (Diatomeae) [9]. Herbicides generally inhibit various vital functions in photosyn-
thetic organisms [10]. Weeds have been suppressed since the beginning of agriculture
because they are the main biotic cause of yield losses in field crops [11]. A revolution in
weed control started in the early 1950s, owing to the use of herbicides, which laid the
foundation for industrial agriculture [12,13]. In recent years, increased use of herbicides
has been reported in various countries [14–16]. During the 12 years of the monitoring of
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pilot farms in Switzerland, an increase from 0.034 kg/ha to 0.141 kg/ha in glyphosate use
in arable land was recorded [17].

The use of pesticides is one of the most debated aspects of agricultural intensifica-
tion, given their potential direct and indirect consequences at the individual, population,
and ecosystem levels [18,19]. The direct toxic effects of pesticides can appear quickly
after their application [20], whereas the indirect effects of pesticides can occur one or sev-
eral years later [21,22]. The toxicity of pesticides can vary substantially among affected
organisms [23,24], and the ecological impacts of pesticides can persist several years after
their application [25]. Herbicide use can also reduce shelter for bees, insects, reptiles, etc.,
in agricultural landscapes [26–28].

The leakage of herbicides, or the concept of herbicide loss, is based on spatial hetero-
geneity, where hydrological factors of the environment dominate, for example, the nature
of the first rain event after herbicide application. Several studies have demonstrated that
factors such as topography and soil hydrological properties can clarify the spatial patterns
of herbicide loss [29]. Some herbicides can be transported from agricultural land to the
surface and groundwater, where they can affect the ecosystem [30–32].

Pesticides, together with nitrates, currently form the main pollution sources of drink-
ing water in Europe [33]. To limit or at least mitigate the negative effects of agricultural
emissions on water, in recent decades, the European Union (EU) has developed an extensive
and interconnected regulatory political framework that influences water management, agri-
cultural practices, and environmental protection [34]. For example, the Nitrates Directive
(91/676/EEC) [35] builds on the objectives of the Drinking Water Directive (98/83/EC) [36]
and the Water Framework Directive (2000/60/EC) [37] to form an overarching framework
for EU directives on the specific functions of water, the use of chemicals, and their effect
on environmental protection and the state of European waters. Apart from international
treaties and EU law, the basic legal regulation in the Czech Republic (CR) governing water
protection is Act No. 254/2001 Sb. [38] (water law). Although the directives are linked,
their implementation has side effects that prevent the effective protection of drinking
water sources. For example, fertilizer use rules are not always beneficial to groundwater
and drinking water quality [34]. The adopted EU framework directives reflect a growing
awareness of the complexity of the water and river basin issue [39–41]. The new provisions
related to the Water Directive require interdisciplinary cooperation within individual EU
member states and international cooperation [34]. The pesticide regulatory framework in
Europe creates strong incentives for growers to reduce herbicide application. In Denmark,
since the late 1980s, the demand for herbicides has been increasing; therefore, several
pesticide action plans have been initiated [42].

In CR water protection, the use of water and the right to access it are regulated by
the Water Act [38]. The Water Act is specified or elaborated upon by subsequent regula-
tions (government regulations and decrees) issued by the Ministry of the Environment
together with the Ministry of Agriculture. Subsequent regulations have defined zones
of hygienic protection for surface water sources, including rules and restrictions for the
use of pesticides.

It should be emphasized that the pollution of aquatic ecosystems by herbicides and
pesticides has far-reaching consequences for biodiversity, ecosystem services, and human
health [43–45]. Pesticides can also negatively affect the environment in ponds, rivers, and
other freshwater and marine habitats [46,47].

Restrictions on the application of herbicides in areas of surface water protection have
led to a limited choice of herbicides. Different weed regulations create diverse selection
pressures on weed vegetation. The aims of this study are (i) to assess the effect of herbicide
limitations on the species composition of weeds in selected crops, (ii) to determine the
weed species that meet the conditions of limited weed regulation, and (iii) to determine
the proportions of neophytes and species with invasive status. Water surface protection
based on herbicide use reduction can lead to challenges in the regulation of certain weed
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species. Increased weed infestation by specific types of weeds without effective regulation
can exacerbate conflict between farmers and water management authorities.

2. Materials and Methods

2.1. Study Area

Selected plots are in the cadastral territory of Zarazice (South Moravian Region, Czech
Republic). The monitored agricultural holding operates over an area of 200 ha and includes
flint maize (Zea mays), winter wheat (Triticum aestivum), winter rapeseed (Brassica napus),
spring barley (Hordeum vulgare), and alfalfa (Medicago sativa).

The study plots are situated in two geomorphologically different parts. Plots in the
southern part of the study area lie near the Morava River. The soil types are mainly fluvial
soils formed from water sediments of the river, and the altitude is 170 m above sea level.
This area falls within the groundwater protection zone, where the use of herbicides listed
in the regulations is restricted. The plots in the eastern part of the study area are located
at an altitude of 220 m above sea level. The most common soil types are cambizemes and
regozemes. Both parts belong to the area, which is characterized by an average annual
temperature exceeding 10 ◦C with an annual rainfall of up to 500 mm [48–50]. The Morava
River flows through the center of the cadastral territory of Zarazice. Furthermore, there
is an artificial water canal—the Bat’ův kanál on the right bank of the Morava—which is
used for recreation purposes. The western border of the cadastral territory is formed by
the relief arm of the Morava River, which was built in the 1930s to divert flood flows. The
entire area between the relief arm and the Bat’a canal is delimited as a protection zone
of the water source–Bzenec complex. In this complex, underground water is collected
from wells and serves as a mass source of drinking water. The investigated plots in the
southern part fall into the second degree Protection Zone, in which the requirements and
prohibitions based on the Decision on the Determination of Water Resource Protection
Zones from 1990 are respected.

No herbicide limitations (full regulation): In the plots, it is permissible to use all
registered herbicides that are approved for the given crop, and their application is gov-
erned by general regulations for the use of plant protection products. Herbicides applied
to maize crops include BALATON (Terbuthylazine) at a rate of 3.0 L/ha and STORY
(Florasulam and Mesotrione) at a rate of 0.3 L/ha. Herbicides applied to winter wheat
crops consist of GLEAN 75 PX (Chlorsulfuron) at a rate of 0.02 kg/ha and HURICANE
(Aminopyralid, Florasulam, and Pyroxsulam) at a rate of 0.2 kg/ha. Herbicides applied to
winter rapeseed crops include BUTISAN STAR (Chlormequat and Metazachlor) at a rate of
2.0 L/ha, GARLAND FORTE (Propaquizafop) at a rate of 0.8 L/ha, and GARLAND FORTE
(Propaquizafop) at a rate of 0.5 L/ha.

Herbicide limitations (limitation): Within the designated protective zone plots, chem-
ical weed control is restricted. Only herbicides with granted exceptions are allowed
to be used on these plots. Herbicides applied to maize crops include EQUIP ULTRA
(foramsulfuron) at a rate of 2.0 L/ha and STORY (Florasulam and Mesotrione) at a rate of
0.3 L/ha. Herbicides applied to winter wheat crops consist of HURICANE (Aminopyralid,
Florasulam, and Pyroxsulam) at a rate of 0.2 kg/ha. Herbicides applied to winter rapeseed
crops include GLEAN 75 PX (Chlorsulfuron) at a rate of 0.02 kg/ha and HURICANE
(Aminopyralid, Florasulam, and Pyroxsulam) at a rate of 0.2 kg/ha.

2.2. Method of Vegetation Assessment

Weed assessments were performed in six plots. Three of these are located in the surface
water protection zone. The other three plots were located in a zone in which herbicide
use was not restricted. Flint maize, winter wheat, and winter rapeseed were grown in the
plots. The plots’ characteristics are listed in Table 1. Weeds were assessed using a numerical
method. Eight sampling areas with a size of 1 m2 were demarcated on each monitored plot.
Sampling areas were evenly distributed in the plots. After demarcating the sampling area,
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the weed species were identified and counted. The taxonomic nomenclature of the plants
follows Kaplan et al. [51]. The observations were conducted between March and June 2018.

Table 1. Characteristics of selected plots.

Water Protection Zone Crop Surface Area (ha) GPS

No herbicide limitations (full regulation)
Maize 7.12 48.9282369 N, 17.3842381 E

Winter wheat 11.11 48.9334244 N, 17.3749683 E
Rapeseed 9.08 48.9294775 N, 17.3726725 E

Herbicide limitations (limitation)
Maize 7.07 48.9418253 N, 17.3554419 E

Winter wheat 15.95 48.9441083 N, 17.3509789 E
Rapeseed 8.05 48.9502931 N, 17.3555419 E

The identified weed species were categorized into groups based on their biological
characteristics. The spring weed group includes annual species that germinate at temper-
atures of 0–8 ◦C and do not survive the winter. The summer weed group encompasses
annual species that germinate at temperatures of 8 ◦C and higher and do not survive the
winter period. The winter weed group includes annual species that survive winter. The
perennial weed group comprises species with multiple growing seasons over several years.
The weeding crops group encompasses crops that behave like weeds and grow within
other crops as a consequence of previous cropping.

The results were processed using multivariate analyses of ecological data. The first
analysis performed was the segmental Detrended Correspondence Analysis (DCA), which
calculated the length of the gradient (Lengths of Gradient) and was followed by RDA.
Statistical significance was tested using the Monte Carlo test with 999 calculated permuta-
tions. All multivariate analyses were performed using CANOCO 5.0 [52]. The necessary
calculations were performed using Canoco 5.0 computer program.

3. Results

A total of 23 weed taxa were identified in corn stands, 19 were identified in winter
wheat stands, and 16 were identified in winter rapeseed stands within the assessment. The
average number of weeds is shown in Figure 1. The representations of the individual weed
taxa are shown in Figure 2 (for maize stands), Figure 3 (for wheat stands), and Figure 4 (for
rapeseed stands).

The results of the RDA, which evaluated the number of individuals of weed taxa in
wheat stands, were significant at the level of significance of α = 0.063 for all canonical axes.
However, the differences in weed abundance were statistically inconclusive. A graphical
illustration of the RDA results is shown in Figure 6.

The results of the RDA, which evaluated the number of individuals of weed taxa in
maize, were significant at the significance level of α = 0.023 for all canonical axes. The
differences in weed abundance were statistically significant. A graphical illustration of the
results of the RDA is shown in Figure 5.

The results of the RDA, which assessed the number of weed taxa in rapeseed stands,
were significant at the significance level of α = 0.023 for all canonical axes. The differences
in weed abundance were statistically significant. A graphical illustration of the RDA is
shown in Figure 7.

Based on the RDA, the identified plant taxa were divided into three groups. The
distribution of taxa into groups according to the RDA is shown in Table 2.

The results presented in Figure 1 demonstrate significant differences among the weed
groups within the monitored crops. However, the representation of weed groups under the
conditions of varied herbicide regulation limitations was not as pronounced.
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Figure 1. Average number of weeds in monitored crops.

 

Figure 2. Representation of weed taxa found in maize stands (pieces/m2).

From the results presented in Figures 2 and 5, it is evident that the limitation of
herbicide usage alters the weed species composition in maize. In maize crops, the use of
only specific herbicides (limitation) creates more favorable conditions for weed species,
such as Setaria viridis, Mercurialis annua, Chenopodium strictum, Solanum nigrum, Abutilon
theophrasti, Datura stramonium, and Chenopodium suecicum. Under full regulation conditions,
weed species such as Chenopodium album, Setaria pumila, and Elymus repens find it easier to
establish themselves.
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Figure 3. Representation of weed taxa found in wheat stands (pieces/m2).

 

Figure 4. Representation of weed taxa found in rapeseed stands (pieces/m2).

From the results depicted in Figures 3 and 6, it is evident that the limitation of herbicide
usage also alters the weed species composition in winter wheat. The restricted use of
herbicides (limitation) creates more favorable conditions for weed species such as Cirsium
arvense and Elymus repens. Under full regulation conditions, weed species such as Apera
spica-venti, Atriplex patula, Avena fatua, Descurainia Sophia, Galium aparine, Papaver rhoeas,
and Veronica persica find it easier to establish themselves.
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Figure 5. Response of weed occurring in maize stands to limited herbicide regulation (RDA result;
F-ratio = 8.1; p-value = 0.023); purple color indicates species preferring full regulation, green color
indicates species without preference, and red color indicates species preferring limitation.

Figure 6. Response of weeds occurring in maize stands to limited herbicide regulation (result of RDA;
F-ratio = 2.4.; p-value = 0.063); purple color indicates species preferring full regulation, green color
indicates species without preference, and red color indicates species preferring limitation.
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Figure 7. Response of weeds occurring in rapeseed stands to limited herbicide regulation (RDA
result; F-ratio = 8.0.; p-value = 0.023); purple color indicates species preferring full regulation, green
color indicates species without preference, and red color indicates species preferring limitation.

From the results presented in Figures 4 and 7, it is evident that the limitation of
herbicide usage also alters the weed species composition in winter rapeseed. The restricted
use of herbicides (limitation) creates more favorable conditions for weed species such as
Geranium pusillum, Papaver rhoeas, Plantago uliginosa, Sinapis arvensis, Veronica hederifolia, and
V. persica. Under full regulation conditions, weed species such as Apera spica-venti, Lamium
purpureum, and Thlaspi arvense are established more easily.

Table 2. Groups of weeds according to their reaction to limitation of herbicide use (RDA).

Occurence in
Crop Stand

Groups of Weeds

Species
Preferring Herbicide

Limitation

Species
without Any Preference,

Affected by Other Factors

Species
Preferring Full Herbicide

Regulation

Flint maize

AbuTheo—Abutilon theophrasti,
AnaArve—Anagallis arvensis,
DatStra—Datura stramonium,

CheStri—Chenopodium strictum,
CheSuec—Chenopodium suecicum,

MerAnnu—Mercurialis annua,
SetViri—Setaria viridis,

SolNigr—Solanum nigrum

AmaRetr—Amaranthus retroflexus,
CapBurs—Capsella bursa-pastoris,
EchCrus—Echinochloa crus-galli,
CheAlbu—Chenopodium album,
PerLapa—Persicaria lapathifolia,

SteMedi—Stellaria media,
ThlArve—Thlaspi arvense,

TriAest—Triticum aestivum

AmaPowe—Amaranthus powellii,
AnaFoem—Anagallis foemina,

CirArve—Cirsium arvense,
ElyRepe—Elymus repens,

ChePedu—Chenopodium album subsp.
Pedunculare, RumCris—Rumex

crispus, SetPumi—Setaria pumila
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Table 2. Cont.

Occurence in
Crop Stand

Groups of Weeds

Species
Preferring Herbicide

Limitation

Species
without Any Preference,

Affected by Other Factors

Species
Preferring Full Herbicide

Regulation

Winter wheat
AnaArve—Anagallis arvensis,

CirArve—Cirsium arvense,
ElyRepe—Elymus repens

CheAlbu—Chenopodium album,
SolNigr—Solanum nigrum,

VerHede—Veronica hederifolia

ApeSpic—Apera spica-venti,
AtrPatu—Atriplex patula,

AveFatu—Avena fatua,
BroSter—Bromus sterilis,

BroTect—Bromus tectorum,
CapBurs—Capsella bursa-pastoris,

DesSoph—Descurainia Sophia,
GalApar—Galium aparine,

MatCham—Matricaria chamomilla,
PapRhoe—Papaver rhoeas,

PlaUlig—Plantago uliginosa,
VerPers—Veronica persica,
VioArve—Viola arvensis

Winter
rapeseed

GerPusi—Geranium pusillum,
PapRhoe—Papaver rhoeas,

PlaUlig—Plantago uliginosa,
SinArve—Sinapis arvensis,

VerHede—Veronica hederifolia,
VerPers—Veronica persica

CapBurs—Capsella bursa-pastoris,
DesSoph—Descurainia Sophia,

MatCham—Matricaria chamomilla,
SteMedi—Stellaria media,

TriAest—Triticum aestivum,
TriInod—Tripleurospermum inodorum,

VioArve—Viola arvensis

ApeSpic—Apera spica-venti,
LamPurp—Lamium purpureum,

ThlArve—Thlaspi arvense

4. Discussion

The weeding of selected crops under real conditions varies based on chemical reg-
ulation limitations, which are given by the rules of the Water Protection Zones. The
reactions of weeds are manifested primarily in species composition rather than in the
intensity of weeding.

Higher weeding and a higher proportion of the weeds Setaria viridis, Mercurialis annua,
Chenopodium strictum, and Solanum nigrum were observed in the maize stands where the
use of herbicides was restricted. Species that are considered neophytes or species with an
invasive status (Abutilon theophrasti, Datura stramonium, and Chenopodium suecicum) were
also found in these stands to a greater extent.

The differences in the representation of weeds in the wheat stands were statistically
significant according to the RDA. This might have been caused by the low weeding rate,
which was implied by the high efficiency of the herbicides allowed in the water protection
zones. Nevertheless, perennial weeds (Cirsium arvense and Elymus repens), which are
difficult to control and very harmful in wheat stands, were more common in plots with
herbicide limitations. The occurrence of perennial weed species is mainly associated
with land. Although they spread slowly, there is a risk of spreading from a long-term
perspective.

The winter rapeseed stands differed in terms of weed species composition. Gera-
nium pusillum, Papaver rhoeas, Plantago uliginosa, Sinapis arvensis, Veronica hederifolia, and
V. persica occurred more frequently in plots with herbicide limitation. These weeds are
sensitive to common herbicides but are less sensitive to herbicides permitted in areas with
herbicide limitations.

Changes in the species composition of weeds evoked by the limitation of herbicide ap-
plications lead to the promotion of more specialized weeds (specialists) and to the exclusion
of generally widespread species (generalists). According to Clavel et al. [53], pesticides,
especially herbicides, can contribute to the process of “biotic homogenization,” which is
the representation of weeds that are resistant to herbicide increase. The heterogeneity of
habitats in the landscape is increasing by introducing limitations on the application of her-
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bicides. The reduction in pesticide doses is a fundamental contributor to taxonomic and/or
functional diversity in the broader agricultural landscape, according to Chiron et al. [25].

Herbicides co-create a selection pressure on field vegetation [54,55]. Different regu-
lation creates a specific pressure on weed vegetation, to which the plants also respond in
the longer term by changing their life strategy [56]. Weeds that can survive this pressure
occupy this niche and remain part of the agricultural landscape. Field vegetation under
herbicide regulation is important for the abundance of birds [27,57] and other animals that
are capable of settling in intensively managed fields [58].

Limiting the use of pesticides in sensitive areas (near water bodies) appears to be justi-
fied from the perspective of water protection and biodiversity [59]. The ecosystem response
of agricultural land to environmental changes remains understudied [60,61]. Biodiversity
and soil fertility are crucial for humanity [62]; therefore, they must be given proper atten-
tion. The massive use of pesticides around the world leads to the stabilization and increase
in crop yields, but also raises strong concerns about the impacts on biodiversity [63–65].
A recent review summarized the results of 394 studies and found that a large number of
studies reported significant negative effects of pesticides on soil invertebrates [66,67], which
constitutes a significant part of global biodiversity [60,68,69]. They are also an essential
part of terrestrial food webs and play an important role in ecosystem services for many ter-
restrial animals, including vertebrates [70–74]. A loss of biodiversity destabilizes farmland
ecosystems, which potentially threatens the sustainable intensification of agriculture [75].

A floristic analysis of the site is a well-known way of assessing the quality of the
environment, because the entire flora of the site is a bioindicator [76]. According to Van
Kleunen et al. [77], the presence of non-native taxa is an indicator of poor environmental
quality. It can be assumed that a simple limitation of herbicide use is not a guarantee of
improving the environment or water quality. Several studies have addressed the impacts
of government measures and implemented management (for example, ES 2018 and EC
2019) on water quality [78], but little empirical research has been conducted to contribute
to improving the quality of underground and surface water [79].

The limitations of chemical weed control resulting from regulations on water pro-
tection creates a need for non-chemical weed control in field crop stands. According to
Melander et al. [80], research on direct non-chemical methods of weed control uses policy
initiatives that aim to reduce the reliance on pesticides and promote organic crop pro-
duction. The need for non-chemical methods of weed regulation can also be attributed
to the lack of new active substances of chemical herbicides, which results from stricter
requirements for the registration of pesticides and environmental regulations. This situa-
tion caused a drastic decrease in available pesticides, with the loss being the greatest in
Europe, with 945 active substances in 1999 compared to 336 in 2009, which resulted in a 64%
reduction [81]. Our results show that on plots with herbicide limitations in real conditions,
there is an increase in difficult-to-control weeds (Cirsium arvense, Elymus repens, Geranium
pusillum, and Setaria viridis) or new species of weeds (Abutilon theophrasti, Mercurialis annua,
and Solanum nigrum). Their occurrence requires changes in weed regulation by farmers,
which are often reluctantly accepted.

Regulations aimed at water protection are of paramount importance to safeguard the
environment and human health. The impact on other ecosystem components must be
monitored and evaluated. Limiting the use of herbicides reduces surface water pollution
but simultaneously introduces challenges for farmers. Protective and regulatory measures
must be understood on a broader scale of the entire landscape. These measures should
be assessed not only from the perspective of water protection, but also by considering
other landscape components influenced by these regulations. In formulating protective
and regulatory measures, multidisciplinary discourse is necessary along with efforts to
find collaborative solutions. To ensure the viability and effectiveness of these measures,
it is crucial to avoid a scenario in which safeguarding one landscape element (water)
significantly disadvantages the other (agriculture).
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Therefore, it is essential to look for other techniques and methods to protect sur-
face water. In the entire landscape, buffer zones are very important, and according to
Mykrä et al. [82], they are very effective in protecting aquatic environments because of the
diversity of plant communities in floodplain forests. Buffer zones or coastal zones are
commonly considered to be effective filters of nutrients (N, P), as well as pesticides [83–86].
However, the relative effectiveness of these buffer zones depends on topography, vege-
tation and soil type, climate, and the extent of nutrient loading, and probably chiefly on
their width [87–90].

Riparian vegetation affects stream water quality and biodiversity in several ways [87,91,92].
The vegetated riparian zone is important for the degradation of organic agrochemicals,
including pesticides [93]. An appropriate design of the buffer zone based on site charac-
teristics and landscape restrictions offers experts a tool to take steps to limit the negative
effects of agriculture [94,95].

The need to feed billions of people necessitate reliable and predictable crop yields, with
a parallel requirement to preserve conditions for biodiversity. This can be achieved using a
model of agricultural production that includes water bodies and respects the multi-function
use of productive landscapes [75].

5. Conclusions

Restrictions on weed management within water protection zones, as applied in the
Czech Republic, led to alterations in the weed spectrum of the chosen crops. The reaction
of field weeds can be seen primarily in the weed species composition. Changes in the
vegetation composition were more evident in the stands of maize and winter rapeseed.
In winter wheat stands, the differences in the weed composition were not statistically
significant. Places with limited herbicide application are mainly suitable for weeds that are
less sensitive to permitted herbicides, perennial species, and neophytes. The proportion
of neophytes and invasive species was higher, especially in maize stands in plots with
herbicide limitation. The responses of weeds to the reduction in pesticide use can help in
planning appropriate weed control measures for individual crops.

Water protection rules can cause problems for the regulation of certain weed species.
The limited assortment of herbicides leads to the repeated application of herbicides with
the same active substance, which can result in the emergence of resistance in weeds. In
areas designated for water protection, a complete ban on the use of pesticides appears to be
more convenient, and in agricultural production areas, there is a transition to the organic
farming regime.

The planning and implementation of appropriate measures for weed control in indi-
vidual crops should consider specific conditions of a given location and the consequences of
the chosen practices. A comprehensive approach to this issue should be based on scientific
knowledge, monitoring of the development of weed resistence, and the ongoing optimiza-
tion of strategies to control them. By adhering to this approach, sustainable agriculture that
is in harmony with environmental protection and long-term sustainability can be achieved.

Alternative biological and physical weed control methods could represent a promising
direction for further research. A thorough analysis of the economic and environmental
aspects of these methods would help in finding a balanced and sustainable solution that
would minimize negative impacts on the environment and agricultural production. Edu-
cating farmers about optimal weed control practices is also key to achieving sustainable
agriculture and the long-term sustainable use of land and water resources.

Author Contributions: Conceptualization, J.W., E.K. and L.H.; methodology, J.W. and T.Ř.; validation,
J.W., V.H. and M.Ż.; formal analysis, J.W.; investigation, J.W. and T.Ř.; resources, J.W.; data curation,
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55. Winkler, J.; Dvořák, J.; Hosa, J.; Martínez Barroso, P.; Vaverková, M.D. Impact of Conservation Tillage Technologies on the
Biological Relevance of Weeds. Land 2023, 12, 121. [CrossRef]

56. Winkler, J.; Vaverková, M.D.; Havel, L. Anthropogenic life strategy of plants. Anthr. Rev. 2023, 10, 455–462. [CrossRef]
57. Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.;

Winqvist, C.; et al. Persistent negative effects of pesticides onbiodiversity and biological control potential on European farmland.
Basic Appl. Ecol. 2010, 11, 97–105. [CrossRef]

58. Chiron, F.; Filippi-Codaccioni, O.; Jiguet, F.; Devictor, V. Effects of non croppedlandscape diversity on spatial dynamics of
farmland birds in intensive farmingsystems. Biol. Conserv. 2010, 43, 2609–2616. [CrossRef]

59. Frelih-Larsen, A.; Chivers, C.A.; Herb, I.; Mills, J.; Reed, M. The role of public consultations in decision-making on future
agricultural pesticide use: Insights from European Union’s Farm to Fork Strategy public consultation. J. Environ. Policy Plan.
2023, 25, 476–492. [CrossRef]

60. FAO; ITPS; GSBI; SCBD; EC. State of Knowledge of Soil Biodiversity—Status, Challenges and Potentialities, 1st ed.; FAO: Rome, Italy,
2020; p. 618. [CrossRef]

61. Phillips, H.R.P.; Cameron, E.K.; Ferlian, O.; Türke, M.; Winter, M.; Eisenhauer, N. Red list of a black box. Nat. Ecol. Evol. 2017,
1, 103. [CrossRef]

62. Wall, D.H.; Nielsen, U.N.; Six, J. Soil biodiversity and human health. Nature 2015, 528, 69–76. [CrossRef] [PubMed]
63. Bernhardt, E.S.; Rosi, E.J.; Gessner, M.O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 2017, 15, 84–90.

[CrossRef]
64. Pelosi, C.; Bertrand, C.; Daniele, G.; Coeurdassier, M.; Benoit, P.; Nélieu, S.; Lafay, F.; Bretagnolle, V.; Gaba, S.; Vulliet, E.; et al.

Residues of currently used pesticides in soils and earthworms: A silent threat. Agric. Ecosyst. Environ. 2021, 305, 107167.
[CrossRef]

65. Wang, Z.; Walker, G.W.; Muir, D.C.G.; Nagatani-Yoshida, K. Toward a global understanding of chemical pollution: A first
comprehensive analysis of national and regional chemical inventories. Environ. Sci. Technol. 2020, 54, 2575–2584. [CrossRef]

66. Gunstone, T.; Cornelisse, T.; Klein, K.; Dubey, A.; Donley, N. Pesticides and soil invertebrates: A Hazard assessment. Front.
Environ. Sci. 2021, 9, 643847. [CrossRef]

67. Beaumelle, L.; Tison, L.; Eisenhauer, N.; Hines, J.; Malladi, S.; Pelosi, C.; Thouvenot, L.; Phillips, H.R.P. Pesticide effects on soil
fauna communities—A meta-analysis. J. Appl. Ecol. 2023, 60, 1239–1253. [CrossRef]

68. Bardgett, R.D.; van der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [CrossRef]
[PubMed]

69. Eisenhauer, N.; Bonn, A.; Guerra, C.A. Recognizing the quiet extinction of invertebrates. Nat. Commun. 2019, 10, 50. [CrossRef]
[PubMed]

70. Barnes, A.E.; Robinson, R.A.; Pearce-Higgins, J.W. Collation of a century of soil invertebrate abundance data suggests long-term
declines in earthworms but not tipulids. PLoS ONE 2023, 18, e0282069. [CrossRef]

71. Scherber, C.; Eisenhauer, N.; Weisser, W.W.; Schmid, B.; Voigt, W.; Fischer, M.; Schulze, E.D.; Roscher, C.; Weigelt, A.; Allan, E.; et al.
Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 2010, 468, 553–556. [CrossRef]

72. Schuldt, A.; Assmann, T.; Brezzi, M.; Buscot, F.; Eichenberg, D.; Gutknecht, J.; Härdtle, W.; He, J.S.; Klein, A.M.; Kühn, P.; et al.
Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 2018, 9, 2989. [CrossRef]
[PubMed]

73. Soliveres, S.; Van Der Plas, F.; Manning, P.; Prati, D.; Gossner, M.M.; Renner, S.C.; Alt, F.; Arndt, H.; Baumgartner, V.;
Binkenstein, J.; et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 2016, 536,
456–459. [CrossRef] [PubMed]

74. Wagg, C.; Bender, S.F.; Widmer, F.; Heijden, M.G. Soil biodiversity and soil community composition determine ecosystem
multifunctionality. Proc. Natl. Acad. Sci. USA 2016, 111, 5266–5270. [CrossRef]

75. Schiesari, L.; Saito, V.; Ferreira, J.; Freitas, L.S.; Goebbels, A.J.; Leite, J.P.C.B.; Oliveira, J.C.; Pelinson, R.M.; Querido, B.B.;
Carmo, J.; et al. Community reorganization stabilizes freshwater ecosystems in intensively managed agricultural fields. J. Appl.
Ecol. 2023, 60, 1327–1339. [CrossRef]

76. Braga, L.; Furia, E.; Buldrini, F.; Mercuri, A.M. Pollen and Flora as Bioindicators in Assessing the Status of Polluted Sites: The
Case Study of the Mantua Lakes (SIN “Laghi di Mantova e Polo Chimico”; N Italy). Sustainability 2023, 15, 9414. [CrossRef]

77. Van Kleunen, M.; Dawson, W.; Maurel, N. Characteristics of Successful Alien Plants. Mol. Ecol. 2015, 24, 1954–1968. [CrossRef]
[PubMed]

78. Newig, J.; Fritsch, O. Environmental governance: Participatory, multi-level—And effective? Environ. Policy Gov. 2009, 19, 18.
[CrossRef]

79. Wuijts, S.; Driessen, P.P.J.; Van Rijswick, H.F.M.W. Governance Conditions for Improving Quality Drinking Water Resources: The
Need for Enhancing Connectivity. Water Resour. Manag. 2018, 32, 1245–1260. [CrossRef]

80. Melander, B.; Rasmussen, I.; Bàrberi, P. Integrating physical and cultural methods of weed control—Examples from European
research. Weed Sci. 2005, 53, 369–381. [CrossRef]

81. Beckie, H.J.; Tardif, F.J. Herbicide cross resistance in weeds. Crop Prot. 2012, 35, 15–28. [CrossRef]

202



Water 2023, 15, 3161

82. Mykrä, H.; Annala, M.; Hilli, A.; Hotanen, J.P.; Hokajärvi, R.; Jokikokko, P.; Karttunen, K.; Kesälä, M.; Kuoppala, M.;
Leinonen, A.; et al. GIS-based planning of buffer zones for protection of boreal streams and their riparian forests. For. Ecol. Manag.
2023, 528, 120639. [CrossRef]

83. Arora, K.; Mickelson, S.K.; Baker, J.L.; Tierney, D.P.; Peters, C.J. Herbicide retention by vegetative buffer strips from runoff under
natural rainfall. Trans. ASAE 1996, 39, 2155–2162. [CrossRef]

84. Decamps, H.; Pinay, G.; Naiman, R.J.; Petts, G.E.; McClain, M.E.; Hillbricht-Ilkowska, A.H.T.A.; Hanley, T.A.; Holmes, R.M.;
Quinn, J.; Gibert, J.; et al. Riparian zones: Where biogeochemistry meets biodiversity in management practice. Pol. J. Ecol. 2004,
52, 3–18. Available online: https://miiz.waw.pl/pliki/article/ar52_1_01.pdf (accessed on 10 February 2023).

85. Mankin, K.; Daniel, R.; Ngandu, M.; Barden, C.J.; Hutchinson, S.L.; Geyer, W.A. Grass-shrub riparian buffer removal of sediment,
phosphorus, and nitrogen from simulated runoff. JAWRA 2007, 43, 1108–1116. [CrossRef]

86. Sieczka, A.; Bujakowski, F.; Falkowski, T.; Koda, E. Morphogenesis of a Floodplain as a Criterion for Assessing the Susceptibility
to Water Pollution in an Agriculturally Rich Valley of a Lowland River. Water 2018, 10, 399. [CrossRef]

87. Mander, Ü.; Kuusemets, V.; Hayakawa, Y. Purification processes, ecological functions, planning and design of riparian buffer
zones in agricultural watersheds. Ecol. Eng. 2005, 24, 21–432. [CrossRef]

88. Dosskey, M.G.; Helmers, M.J.; Eisenhauer, D.E. An approach for using soil surveys to guide the placement of water quality
buffers. J. Soil Water Conserv. 2006, 61, 344–354. Available online: https://www.srs.fs.usda.gov/pubs/ja/ja_dosskey003.pdf
(accessed on 10 February 2023).

89. Lam, Q.D.; Schmalz, B.; Fohrer, N. The impact of agricultural Best Management Practices on water quality in a North German
lowland catchment. Environ. Monit Assess. 2011, 183, 351–379. [CrossRef]

90. Winkler, J.; Jeznach, J.; Koda, E.; Sas, W.; Mazur, Ł.; Vaverková, M.D. Promoting Biodiversity: Vegetation in a Model Small Park
Located in the Research and Educational Centre. J. Ecol. Eng. 2022, 23, 146–157. [CrossRef]

91. Renouf, K.; Harding, J.S. Characterizing riparian buffer zones of an agriculturally modified landscape. New Zealand J. Mar. Freshw.
Res. 2015, 49, 323–332. [CrossRef]

92. Liu, X.; Zhang, X.; Zhang, M. Major factors influencing the efficacy of vegetated buffers on sediment trapping: A review and
analysis. J. Environ. Qual. 2008, 37, 1667–1674. [CrossRef] [PubMed]

93. Unger, I.M.; Goyne, K.W.; Kremer, R.J.; Kennedy, A.C. Microbial community diversity in agroforestry and grass vegetative filter
strips. Agrofor. Syst. 2013, 87, 395–402. [CrossRef]

94. Frey, M.P.; Schneider, M.K.; Dietzel, A.; Reichert, P.; Stamm, C. Predicting critical source areas for diffuse herbicide losses to
surface waters: Role of connectivity and boundary conditions. J. Hydrol. 2009, 365, 23–36. [CrossRef]

95. Lind, L.; Hasselquist, E.M.; Laudon, H. Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for
protecting ecosystem functions and biodiversity in agricultural landscapes. J. Environ. Manag. 2019, 249, 109391. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

203



water

Article

Impact of the Construction of Water Conservation Projects on
Runoff from the Weigan River

Jingwen Su 1,2, Aihua Long 1,2,3,*, Fulong Chen 1,*, Cai Ren 1,2, Pei Zhang 2,3, Ji Zhang 2,4, Xinchen Gu 2,4

and Xiaoya Deng 2,3

1 College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China;
jeaven2022@163.com (J.S.); cyrus1837@163.com (C.R.)

2 China Institute of Water Resources and Hydropower Research, Beijing 100038, China;
zhangpei-cool@163.com (P.Z.); zhangji940319@tju.edu.cn (J.Z.); gxc@tju.edu.cn (X.G.);
dengxy@iwhr.com (X.D.)

3 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water
Resources and Hydropower Research, Beijing 100038, China

4 School of Civil Engineering, Tianjin University, Tianjin 300072, China
* Correspondence: ahlong@iwhr.com (A.L.); cfl103@shzu.edu.cn (F.C.)

Abstract: In order to use water resources more efficiently, the construction of water conservation
projects in dryland watersheds has changed the natural water cycle processes. This study used the
SWAT (Soil and Water Assessment Tool) model coupled with the glacier module to simulate the
hydrological processes in the upper reaches of the Weigan River estuary from 1965 to 1991, to restore
and quantitatively evaluate the conditions of the estuarine runoff in the no-reservoir scenario, and to
analyse the impact of the construction of water conservation projects on the estuarine runoff based
on this model. The results show that the SWAT model has good applicability in the study area,
with 41.45% and 58.55% of the increase in runoff due to increased precipitation and temperature,
respectively, over the 52 years study period. The degree of influence of the construction of water
conservation projects on runoff from the mountain in different seasons was spring > autumn > winter
> summer, with 83.28% of the spring runoff being influenced by artificial regulation. The construction
of water conservation projects has alleviated water shortage problems to a certain extent, and is an
effective measure for achieving the efficient allocation of water resources in arid areas.

Keywords: human activities; water conservation construction; SWAT model; runoff configuration;
glacial runoff simulation; Weigan River Basin

1. Introduction

The study of the impact of human activities on the natural water cycle is a hot topic
in current research [1–3]. Natural and anthropogenic factors are two major drivers of the
water cycle in a basin. The natural factors are mainly reflected in changes in vertical water
circulation due to climate change and changes in the spatial and temporal distribution of
water resources in the horizontal direction. Anthropogenic factors mainly include changes
in the basin substrate conditions due to human activities and the exploitation of water
resources by humans [4]. In recent years, with the continuous social and economic progress
and development, the demand for water resources for population growth, industrial, agri-
cultural, and urban development has increased significantly [5,6]. The increasing human
activities and exploitation of water resources have led to various forms of anthropogenic
disturbances in the rivers, resulting in changes in the driving conditions and influencing
factors of natural hydrological processes in the basin, which have a significant impact on
water cycle processes [7].

This research area has received increasing attention from scholars around the world
in recent years [8]. For example, Chawla et al. [9] used the VIC model to simulate the
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hydrological processes in the upper Ganges River Basin in India to analyse the effects
of land use and climate change on runoff. Moldir Rakhimova et al. [10] assessed the
impact of climate change and human activities on runoff from the Buktirma River Basin in
Kazakhstan using various methods such as the climate elasticity method and circulation
models. Lei Hou et al. [11] quantitatively assessed the impact of climate change and
human activities on runoff changes in the upper reaches of the Yongding River Basin
based on the Budyko hypothesis of the climate elasticity approach. Jinping Liu [12],
Hongguang Chen [13], Jianyu Liu [14], and other scholars used hydrological models
and other methods to analyse the contribution of climate change and human activities
to runoff changes in different time periods; the results showed that the contribution of
climate change and human activities to runoff varied greatly in different river sections
and time periods, and the dominant factors affecting runoff changes were not the same.
Lei Wang et al. [15] established a SWAT hydrological model of the Qingshui River Basin
in Zhangjiakou and quantitatively analysed the impact of land use scenario changes on
runoff in the study area. Cai Ren [16] and Zubaida Muyibul [17] used the SWAT model
to simulate the runoff processes in the Yarkant River basin and Urumqi River basin, and
quantitatively analysed the degree of influence of climate and subsurface changes on runoff;
their studies concluded that the degree of influence of climate change on runoff was greater
than that of subsurface changes (i.e., human activities). The research method to investigate
the influence of basin water cycle drivers on runoff is more mature; the research conclusion
can guide the actual production.

Most of the current studies on water cycle influences are limited to climate change
and land use changes on the water cycle [18]. However, research on the impact of human
exploitation of water resources in watersheds is less well documented, especially in arid
zones. The construction of hydraulic projects, as the main component of human activities
in water resource exploitation, refers to the human modification of the substratum structure
in a strict sense [19], and also changes the distribution process of water resources in space
and time, which, in turn, affects the water cycle processes in basins. As research progresses,
scholars have found that the impact of water conservation construction on runoff has
changed the original water cycle process in basins; however, how to quantify this impact
needs further in-depth study.

In this study, we selected the upper reaches of the Weigan River outlet as the study area.
A SWAT distributed hydrological model with a coupled glacier module was constructed to
simulate the monthly runoff processes in the study area from 1965 to 1991 (27 years). The
study area was investigated for the overall runoff evolution in the last 52 years, and the
components of the runoff from the Weigan River were traced, while runoff from the study
area from 1992 to 2016 (25 years) without the reservoir was predicted, and the impact of the
construction of the Kizil Reservoir on the runoff from the Weigan River was subsequently
analysed. This study can provide more comprehensive decision support for the sustainable
development, use, and management of regional water resources.

2. Data Sources and Methods

2.1. Overview of the Study Area

The upstream area of the Weigan River outlet (Figure 1) is located in the Baicheng
Basin in the Aksu region of Xinjiang, connected to the middle of the southern foothills of
the Tianshan Mountains in the north and adjacent to the Queletage Mountains in the south,
with a geographical location between 80◦15′~83◦02′ E and 41◦31′~42◦39′ N, covering an
area of 16,792.56 km2. The overall topography of the study area slopes from northwest
to southeast, with elevations ranging from 1100 to 6778 m. The Weigan River is a typical
dry inland glacial snowmelt recharge river. According to the Glacier Catalogue of China,
853 glaciers with a total area of 1783.86 km2 are distributed in the upper headwater area of
the Weigan River, and the river runoff exhibits clear seasonal changes due to the influence
of glacial meltwater [20]. The five tributaries (Muzati River, Kapuslang River, Tylervichuk
River, Karasu River, and Heizi River) in the area are distributed in the shape of a comb, and
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each tributary flows from north to south and from west to east, along the southern edge of
the Baicheng Basin to the southeast corner of the basin near the Kizil Thousand Buddha
Cave [21]. Here, it is called the Weigan River after gathering out of the mountains and
passing southward through the southern edge of the basin in the Queletage Mountains [22],
and finally flowing to the northern edge of the Tarim Basin through the Weigan River
Canyon. Before the construction of the Kizil Reservoir, the hydrological station of the
Kizil Reservoir was located 3 km above the dam site of the Kizil Reservoir. In 1985,
construction officially started on the Kizil Reservoir; the hydrological station of Heizi
Reservoir was moved down to 1 km below the cross-section of the dam site and named
Heizi Reservoir (II) Station. In August 1991, the main project of the reservoir was completed
and water storage operations began. The Kizil Reservoir de-risking and strengthening
project started in 2009, and the highest reservoir storage level has gradually transitioned to
the designed storage level of 1149.57 m after de-risking and strengthening [23], which has
greatly reduced the flood control pressure in the downstream cities and counties of Kuche,
Xinhe, and Shaya [24].

 

Figure 1. Overview of the area upstream of the Weigan River outlet.

2.2. Data Sources

The basic data used in this study included digital elevation model (DEM) data, glacier
cataloguing data, soil data, land use data, and meteorological data. Among them, the DEM
data were obtained from the Geospatial Data Cloud, and original SRTMDEM elevation
data with a resolution of 90 m were used. The glacier cataloguing data were obtained
from the National Cryosphere Desert Data Center, including the first glacier cataloguing
data produced from aerial topographic maps from 1987 to 2004 [25] and the second glacier
cataloguing data extracted from Landsat TM/ETM+ and ASTER remote sensing images
from 2006 to 2013 [26]. In this study, the initial glacier inventory data were applied to the
model calibration period (1965–1978) and validation period (1979–1991), and the secondary
glacier inventory data were applied to the model prediction period (1992–2016). Soil data
were obtained from the 1:1 million soil data provided by the Second National Land Survey
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of Institute of Soil Science, Chinese Academy of Sciences. The land use data were obtained
from the national land use datasets of 1980 and 2000 with a resolution of 30 m provided by
the Geospatial Data Cloud. The glacial snow land use types in the 1980 and 2000 land use
datasets and the glacial soil types in the soil data were replaced with the glacial distribution
in the first and second glacial cataloguing data, respectively. The hydrometeorological data
were obtained from the China Meteorological Data Service Centre using the 0.5◦ × 0.5◦ grid
point dataset (V2.0) of daily values of surface air temperature and precipitation in China. In
this study, the time series of daily maximum temperature and daily minimum temperature
with daily precipitation data from 1961 to 2016 were selected to drive the SWAT model
simulation to restore the hydrological processes in the study area.

2.3. Research Methodology
2.3.1. Glacier Module Algorithm

The glacier module consists of three main modules: a glacier ablation algorithm, glacier
area change, and the glacier accumulation rate [27]. Among them, the glacier ablation
algorithm is mainly based on the modified temperature index method to simulate the
glacier melting process [28,29], which corrects spatial heterogeneity with the influence of
solar radiation factor and topography factor, and then uses the linear relationship between
the ablation factor and temperature to finally find the amount of glacier melting. The
calculation formulae are as follows:

M =

{(
FM + Rice Ipot

)× (T − Tmlt,ice), T > Tmlt,ice
0 , T ≤ Tmlt,ice

(1)

where M is the daily-scale glacier ablation (mm), FM is the glacier temperature ablation
factor, Rice is the glacier radiation ablation factor, Ipot is the potential direct solar radia-
tion (W·m−2), T is the daily-scale mean temperature (◦C), and Tmlt,ice is the temperature
threshold reached at glacier ablation (◦C).

V = cSγ (2)

where V is the glacier volume (m3), S is the glacier surface area (m2), c is a constant, and
γ is a dimensionless scale factor.

F = Ws × βo

{
1 + sin

[
2π

365
(t − 81)

]}
(3)

where F is the glacial material accumulation, Ws is the snow water equivalent, βo is the
base accumulation factor, and t is the ordinal number of a given day.

2.3.2. Hydrological Process Simulation and Evaluation of Results

(1) SWAT-based hydrological process simulation

The SWAT model is a distributed watershed hydrological model that uses the daily scale
as the unit running step, and is based on the GIS platform to simulate and construct the
hydrological cycle process under the changes in different influencing factors [30]. In the 1990s,
the United States Department of Agriculture (USDA) Institute of Agriculture developed the
SWAT model. Its predecessor is the SWRRB model, which is based on the integration of the
features of CREAMS, EPIC, and GLEAMS [31], and has been continuously modified and
developed to form the most representative distributed hydrological model [32,33] which can
be used as a tool for large-scale watershed runoff simulation [34]. This study took the upper
area of the Weigan River outlet as an example, and constructed a SWAT model to restore the
hydrological processes in the study area before the reservoir had been built. The modelling
process is mainly divided into the following steps.

First, the DEM data were imported, and the Heizi Reservoir (II) station was set as the
basin outlet. By drawing up different discretization schemes with different catchment area
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thresholds, it was finally determined that the best runoff simulation was achieved when the
catchment threshold was 300 km2. The input DEM data were then subjected to operations
such as water system extraction, watershed boundary depiction, sub-basin delineation,
and parameter calculation to discretize the study watershed into 33 sub-basins. Second, the
database of soil types, the land use database, and slope types of the Weigan River Basin
established in advance were entered in turn. Notably, the period of 1965–1978 was selected
as the model calibration period and the period of 1979–1991 was the validation period in
this study. Among them, the first glacial inventory dataset and 1980 land use data were
used in the calibration period intra model, and the second glacial inventory dataset and
2000 land use data were used in the validation period. Meanwhile, the glacial snow land
use types in the land use data and the glacial soil types in the soil data were replaced with
the glacial distribution in the first and second glacier cataloguing data, respectively. To
reflect the differences in the hydrologic responses of different soil types, land uses, and
slope combinations in the model, the SWAT model with 419 hydrologic response units
(Hrus) was divided. Finally, the meteorological data required for the model operation and
the prepared weather generator were imputed, and the model warm-up period was set to
1961–1964 to minimize the influence of the initial model conditions on the simulation results.
Through the parameter sensitivity analysis, the more sensitive parameters (Table 1) were
automatically or manually adjusted if necessary, until the model evaluation results met the
simulation criteria to determine the model parameter, and complete model calibration and
validation work.

Table 1. Results of parameter determination.

Parameter Module Parameters Definition Scope Optimum Value

Runoff

CN2 Initial SCS runoff curve number for moisture condition II −0.2~0.2 0.0650
SOL_AWC Available water capacity of the first soil layer (mm·mm−1) 0~1 0.8250

ESCO Soil evaporation compensation factor 0~1 0.4450
CH_K2 Effective hydraulic conductivity in the main channel alluvium (mm·h−1) −0.01~500 13.8742

ALPHA_BF Baseflow alpha factor (days) 0~1 0.0167
REVAPMN Threshold depth of water in the shallow aquifer for “revap” to occur (mm H2O) 0~1000 79.5000

GW_DELAY Groundwater delay (days) 0~500 417.5000
GWQMIN Threshold depth of water in the shallow aquifer for return flow to occur (mm H2O) 0~5000 103.0000

GW_REVAP Groundwater “revap” coefficient 0.02~0.2 0.0659

Snow

SFTMP Snowfall temperature (◦C) −5~5 4.1150
SMTMP Snow melt base temperature (◦C) −5~5 4.5700
SMFMX Maximum melt rate for snow during the year (mm H2O·◦C−1·day−1) 0~10 7.2500
SMFMN Minimum melt rate for snow during the year (mm H2O·◦C−1·day−1) 0~10 1.4050

TIMP Snow pack temperature lag factor 0~1 0.0225
TLAPS Temperature lapse rate (◦C·km−1) −50~50 −8.7500

Glacier
Bmelt6 Maximum melt rate for the glacier during the year (mm H2O·◦C−1·day−1) 1.4~16 1.9000
Bmelt12 Minimum melt rate for the glacier during the year (mm H2O·◦C−1·day−1) 1.4~16 2.8000

gmlt_tmp Glacier ablation threshold temperature (◦C) −5~5 1.0000

(2) Evaluation of simulation results

To verify the reliability of the model, the Nash–Sutcliffe efficiency coefficient (NSE),
the ratio of the root mean square error to the standard deviation of the measured values
(RSR), the percent bias (PBIAS), and the coefficient of determination (R2) were selected to
evaluate the model fitting effect in this study; the formulae are shown below:

NSE = 1 − ∑n
i=1(Qoi − Qsi)

2

∑n
i=1

(
Qoi − Qo

)2 (4)

RSR =
RMSE

STDEVo
=

√
∑n

i=1(Qoi − Qsi)
2√

∑n
i=1

(
Qoi − Qo

)2
(5)

PBIAS =
n

∑
i=1

Qsi − Qoi
Qoi

× 100 (6)
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R2 =

(
∑n

i=1(Qoi − Qo)(Qsi − Qs)
)2

∑n
i=1 (Qoi − Qo)

2
∑n

i=1 (Qsi − Qs)
2 (7)

where Qsi denotes the model simulated runoff, m3, and Qoi denotes the actual observed
runoff, m3.

The NSE indicates the degree of fit between the simulated and measured values, with
a range from −∞ to 1. The closer to 1, the better the simulation. RSR standardizes the
standard deviation of the measured values, and the closer to 0, the better the simulation.
PBIAS reflects the cumulative deviation between simulated and measured values. A PBIAS
value greater than 0 indicates that the model underestimates the deviation of measured
values, a value less than 0 indicates that the model overestimates the deviation of measured
values, and a PBIAS value equal to 0 is the optimal value, indicating that the model
simulation is accurate. R2 indicates the degree of linear correlation between simulated
and measured values, and the closer it is to 1, the better the simulation effect is, but the
response to the overall deviation of high or low simulated values is not very obvious.
The model simulation results are generally accepted when NSE > 0.5, RSR ≤ 0.7, and
PBIAS < ±25%, and the model simulation results are excellent when NSE > 0.75, RSR ≤ 0.5,
and PBIAS < ±10%.

2.3.3. The Process of Predicting Natural Mountain Runoff and its Response to the
Construction of Water Conservation Projects

Since the Kizil Reservoir started to lower its gates for storage in August 1991, it has
caused the flow measured at the Heizi Reservoir (II) station, which is not far downstream,
to change from natural flow to artificial regulated flow. Therefore, 1992 was taken as the
dividing point between natural flow and artificial regulated flow in this study. In this
study, we selected 1992–2016 as the model prediction period, based on the constructed and
validated reliable SWAT model with the required input data, to predict the natural outflow
runoff in the reduced study area without human activities, and to explore the response of
the Weigan River outflow runoff to human activities from seasonal-scale and monthly scale
comparisons. In recent years, the area of arable land within the study region (Baicheng
County) has grown rapidly (Figure 2), with a 29.0% increase during the 30 years period
from 1990 to 2020 (1348 km2 in 2020); arable water use in Baicheng County increased from
6.89 × 108 m3 to 8.86 × 108 m3 from 2000 to 2020. However, the actual measured runoff
into the Kizil Reservoir did not decrease (Table 2): the multi-year (1961–2000) average
runoff (27.37 × 108 m3) of the five tributaries in the area was basically consistent with
the multi-year average runoff into the Kizil Reservoir of 27.10 × 108 m3 in this study,
indicating the existence of a more complex and special water cycle relationship in Baicheng
County. Therefore, this study only considered the impact of human activities on runoff from
the Weigan River outflow from the perspective of the construction of water conservation
projects. The overall research process approach is shown in Figure 3.

Table 2. Major river conditions in the study area.

River Hydrological Station Measured Annual Runoff (108 m3)

Muzati River Broken City Station 14.66
Kapuslang River Kamluk Station 6.65

Tylervichuk River Baicheng Station 0.80
Karasu River Karasu Station 2.19
Heizi River Heizi Station 3.08

Total 27.37
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Figure 2. Land use status and interannual transfer changes in the upper reaches of the mountain pass
of Weigan River from 1990 to 2020 based on remote sensing.

 

Figure 3. Flow chart of the study on the prediction of natural mountain runoff and its response to the
construction of water conservation projects.

3. Results and Analysis

3.1. Simulation Prediction Results and Evaluation Analysis

First, monthly runoff data from 1965 to 1991 at the Heizi Reservoir hydrological station
were selected to calibrate and validate the SWAT model for the upstream area of the Weigan
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River outlet. The simulation results of the model calibration period and validation period
are shown in Figure 4a; the simulation results with the glacier module added were better
than those without the glacier module, so the glacier module was included in the simulation
when reverting the prediction of the runoff from the Weigan River outlet without human
activities. The simulated values with the glacier module are in good agreement with the
measured values at the Heizi Reservoir hydrological station during the flat and dry periods
of 1965–1991. Except for 1971, 1979, 1983, and 1986, when the simulated values of the
glacier module were lower than the measured values in the same period, and 1973, 1974,
1977, 1980, and 1981, when the simulated values of the glacier module were higher than
the measured values in the same period, the overall fit was good in the other years. The
simulation results of the calibration period and validation period were evaluated, and the
simulation results were evaluated with reference to the model evaluation criteria (Table 3).
The evaluation of the simulation results of the Heizi reservoir hydrological station in the
calibration period and the validation period were excellent, and the simulation effect was
good, which showed that the model could accurately reflect the runoff process of the
Weigan River from the mountain.

Figure 4. Simulation (a) and prediction (b) results of monthly average flow of SWAT model, 1965–2016.
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Table 3. Evaluation of monthly scale runoff simulation results in the upstream area of the Weigan
River outlet.

Station Name Time Period Scenario NSE RSR PBIAS (%) R2 Simulation Results

Heizi Reservoir
Hydrological

Station

Calibration Period (1 January 1965–31 December 1978) No Glacier Module 0.08 0.96 29.54 0.35 Unqualified
Glacier Module 0.84 0.40 −0.16 0.86 Excellent

Validation Period (1 January 1979–31 December 1991) No Glacier Module 0.09 0.96 34.02 0.39 Unqualified
Glacier Module 0.82 0.42 2.90 0.85 Excellent

Prediction Period (1 January 1992–31 December 2016) Glacier Module 0.88 0.34 1.11 0.89 Excellent

Based on the SWAT model that was constructed and verified to be reliable, combined
with the input data from 1992 to 2016, the natural mountain runoff in the study area from
1992 to 2016 under no human activity conditions was obtained. The measured flow at Heizi
Reservoir (II) station has been influenced by the artificially regulated storage and release
of water from the reservoir since 1992; therefore, the predicted runoff from the mountain
without human activities from 1992 to 2016 was compared with the runoff into the Kizil
Reservoir during the same period (Figure 4b). The results show that the relative errors
between the two are small, except for the floods in 2000, 2011, and 2013, when the model
simulation results were larger than the incoming flow of Kizil reservoir in the same period.
At the same time, in 2002, 2010, and 2016, when floods in the study area broke out and
the incoming water from the upper reaches increased compared with the other years, the
flow predicted by the model simulation for the same period was also closer to the actual
situation. The simulation results of the model in the prediction period are presented in
Table 3, in which R2 reached 0.89 and NSE was 0.88, the model simulation prediction results
are excellent, and the simulation effect is good. The model had considerable reliability in
predicting the hydrological process in the mountain area before the reservoir was built in
the restored study area, and could more realistically reflect the runoff from the mountain
when there was no human activity in the study area.

3.2. Portrayal and Analysis of the Weigan River Outflow Runoff Group Structure

From the actual measured runoff at the Heizi reservoir hydrological station (Figure 5a),
it can be seen that the multi-year average runoff from the Weigan River from 1965 to 2016 was
26.63 × 108 m3, of which the multi-year average glacial runoff was 8.17 × 108 m3, accounting
for 32.40% of the total runoff from the mountain. The actual measured month-by-month
runoff from the Heizi reservoir hydrological station from 1965 to 2016 showed an overall
increasing trend, increasing from 21.41 × 108 m3 in 1965 to 32.47 × 108 m3 in 2016, at a rate of
approximately 2.1 × 108 m3/10a, an increase of 51.66% compared to 1965. This indicated that
the water inflow from the outlet of the Weigan River showed a significant increasing trend in
the last 52 years, which has, to a certain extent, relieved the water stress in the middle and
lower reaches of the Weigan River and the irrigation area. Separating the simulation results
of the outflow from the mountains showed that glacier runoff increased from 6.15 × 108 m3

in 1965 to 8.77 × 108 m3 in 2016, an increase of 2.62 × 108 m3 or 42.60% over 1965, with an
increase rate of about 0.5 × 108 m3/10a, and the contribution of glacier runoff fluctuated from
27.09% in 1965 to 28.49% in 2016, which was as high as 44.84% in 2008.

From the annual runoff simulation results (Figure 5a), it can be seen that the overall
trends in the simulated and measured values were generally the same during the simu-
lation period, except for 1985 and 1986, when the simulated values were lower than the
measured values at the Heizi reservoir hydrological station. In the prediction, although the
simulated values without human activities were consistent with the overall runoff trend in
the measured values, the model simulated runoff from 1994 to 2001 was lower than the
measured runoff by 4.91 × 108 m3 per year. If the simulated runoff without human activi-
ties was compared with the incoming runoff from the Kizil Reservoir, the average annual
deviation between the two was only 1.21 × 108 m3, and the relative error did not exceed
5%. This indicates that the runoff from the mountain without human activities predicted
in this study had a high degree of confidence. Meanwhile, comparing the runoff from the
Weigan River before and after the presence of human activities, the annual average increase
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in incoming water from 1992 to 2016 compared with 1965 to 1991 was 2.99 × 108 m3, and
the quantitative separation showed that the increase in runoff caused by precipitation was
1.24 × 108 m3, accounting for 41.45% of the increase in incoming water; the increase in
runoff due to glacial melt caused by temperature rise was 1.75 × 108 m3, accounting for
58.55%. This shows that under global climate change conditions, the increase in runoff due
to temperature rise was predominant in the study area.

Figure 5. Annual scale (a) and monthly scale (b) simulation predictions of mountain runoff and
glacier runoff contributions.

From the monthly scale analysis (Figure 5b), the hydrological processes in the study
area mainly occurred in June, July, August, and September. According to the actual
measured values at the hydrological station of the Heizi Reservoir, the flow production
in June to September accounted for 55.39% of the annual flow production. The glacier
flow production mainly occurred in July, August, and September, accounting for 82.98% of
the annual glacier runoff. Comparing the simulated results of runoff from the mountain
without human activity with the inlet runoff of the Kizil Reservoir, the simulated values
were closer to the natural runoff values in the remaining months except for February, March,
and June, when the simulated runoff was slightly lower than the inlet runoff of the Kizil
Reservoir, and July and November, when the simulated runoff was slightly higher than the
inlet runoff of Kizil Reservoir; the overall trends in the two curves were basically the same.

3.3. Impacts of the Construction of Water Projects on Runoff from the Mountains

The measured data from the Heizi reservoir hydrological station showed an increasing
trend in runoff from the upper reaches of the Weigan River from 1965 to 2016 in spring,
summer, and autumn, and a decreasing trend in winter. The Weigan River outflow runoff
was mainly concentrated in summer, and according to the simulation results of the nat-
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ural outflow runoff, incoming water in the summer accounted for 51.06% of the annual
accumulation of water. The response of the runoff from the Weigan River to the artificial
regulation of reservoir storage was analysed by comparing the measured and model simu-
lated predictions from 1992 to 2016 at the Heizi Reservoir (II) station (Figure 6). The cut-off
year between natural runoff and runoff influenced by artificial regulation was 1992, and
the simulated natural runoff in summer and spring was greater than the measured runoff
influenced by artificial regulation after the reservoir began storing water. The analysis
shows that, under the influence of artificial regulation, the multi-year average runoff values
in summer and winter were 0.15 × 108 m3 and 0.41 × 108 m3 greater than the simulated
natural runoff, accounting for 3.33% and 7.08% of the natural runoff in summer and winter,
respectively. However, comparing the simulated natural runoff in spring and autumn with
the measured runoff affected by the artificial adjustment, we found that the simulated
natural runoff in spring and autumn was lower than the measured runoff affected by the
artificial adjustment, and the natural outflow in spring and autumn was increased by an ad-
ditional 0.92 × 108 m3 and 0.49 × 108 m3, respectively, after the artificial adjustment, which
accounted for 83.28% and 24.36% of the natural outflow in spring and autumn, respectively.
This shows that the degree of impact of the construction of the water conservation project
on natural runoff in spring and autumn was greater than its impact on natural runoff in
summer and winter.

Figure 6. Seasonal-scale comparison of measured and simulated runoff at the outlet of the Weigan River.

To further analyse the impact of the construction of water projects on the intra-annual
distribution of runoff, the simulated runoff was compared to the measured runoff at Heizi
Reservoir (II) station (Figure 7a). It can be seen that the simulated values in March and
November were significantly lower than the measured runoff values, while the simulated
runoff in the rest of the months exhibited less deviation from the measured runoff, and the
overall trend was basically the same. The reason for this is that in August 1991, the Kizil
Reservoir started to store water, and the artificial storage of the reservoir, such as storage at
the end of the flood and replenishment during the dry period, made the actual measured
runoff in March and November at the Heizi Reservoir (II) station higher than the incoming
runoff from the Kizil Reservoir. The flood season of water coming from the outlet of the
Weigan River also increased from July and August to March, July, August, and November,
solving the problem of insufficient spring irrigation in March and pressurized saltwater
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resources for winter irrigation in November for the irrigation areas downstream of the
Weigan River. At the same time, an average of 2.74 × 108 m3 more water was impounded
annually, and 5.28 × 108 m3 more water was regulated across seasons through storage
than before the reservoir was built. Since the reservoir was built and started storing water,
the Kizil Reservoir has held the equivalent of a 10-year flood 13 times, the equivalent
of a 40-year flood once (“1 August 2016” flood peak flow 3420 m3·s−1 [35]), and the
equivalent of a 100-year flood twice (“23 July 2002” flood peak flow 3677 m3·s−1 [21] and
“29 July 2010” flood peak flow 3360 m3·s−1 [36]). After the construction of the reservoir, the
actual measured runoff from the Heizi Reservoir (II) station, compared with the simulated
runoff values without human activities (Figure 7b–d), the temporal distribution of water
resources increased by an additional 0.92 × 108 m3, 2.04 × 108 m3, and 1.62 × 108 m3 of
water in 2002, 2010, and 2016, respectively, which strongly alleviated the problem of the
uneven temporal distribution of water resources.

Figure 7. Comparison of monthly measured and simulated runoff for multi-year average (a), 2002 (b),
2010 (c), and 2016 (d).

4. Discussion

4.1. Model Applicability and Simulation Results

In this study, the SWAT model with a coupled glacier module was used to simulate the
mountain runoff in the Weigan River Basin from 1965 to 1978 (calibration period) and from
1979 to 1991 (validation period). NSE coefficients of 0.84 and 0.82 were achieved in the
simulation evaluation results; the simulated values fit the measured runoff curves relatively
well, and the relative error was small. Therefore, the model can not only simulate the
restoration of the outflow runoff process in the study area without reservoir construction
more accurately, but also predict the restoration of the natural outflow runoff in the study
area without human activities from 1992 to 2016 based on the model. This study compared
the model prediction results with the NSE coefficient of 0.88 for the prediction period using
the runoff from the Kizil Reservoir in the same period instead of the runoff measured at the
Heizi Reservoir (II) station without the influence of artificial regulation. This shows that
the SWAT model has good applicability in the area upstream of the Weigan River outlet
and can be further used for the study of related problems.
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The multi-year average runoff of the Weigan River outflow from 1965 to 2016 was
26.63 × 108 m3, with an overall upward trend. Its increase rate was approximately
2.1 × 108 m3/10a, which is closer to the increase in runoff from the Weigan River Basin
from 1960 to 2013 (1.8 × 108 m3/10a) calculated by Peng Qin [37]. During the 52 years, the
glacial runoff of the upper Weigan River Basin showed a fluctuating yet stable upward
trend, with an average multi-year glacier runoff of 8.17 × 108 m3, accounting for 32.40%
of the total runoff from the mountain, similar to the results of Minxia Ni (30.8%) [38]. The
result of 51.06% of the annual incoming water in summer in this study is more consistent
with the range of 50~70% evident in the statistics of Jianjun Duan [39] and others, and the
calculation results of Peng Qin [37] and others (56%). The simulated reduced runoff in this
paper better reflects the actual runoff process in the study area, and also showed that the
model has some reliability.

4.2. Analysis of the Response of Outgoing Mountain Runoff to the Construction of Water
Conservation Projects

In a related study of the Kizil Reservoir, Mingwang Zhang [40] analysed the effects of
precipitation and human activities on factors such as runoff from the perspective of water
and sedimentary sequences, using methods such as double accumulation curves. However,
this study was an analysis of the relationship between the response of runoff from the
Kizil Reservoir to the construction of the water project from the perspective of artificial
storage in the Kizil Reservoir. The construction of the Kizil Reservoir has expanded the
flood season of water coming from upstream of the study area from July and August to
March, July, August, and November. During the runoff discharge process, 2.74 × 108 m3

more water was stored each year, and 5.28 × 108 m3 more water was released in the time
distribution of water resources than before the reservoir was built. Notably, there are many
irrigation areas around the Kizil Reservoir, and the irrigation return water produced by
watering the irrigation areas will be delayed, which makes the measured runoff of the Heizi
Reservoir (II) station larger than the simulated natural runoff. At the same time, the degree
of impact of the construction of water conservation projects on runoff from the mountain
varied from season to season (in descending order, spring > autumn > winter > summer),
where the proportion of natural runoff affected by artificial regulation in spring was as
high as 83.28%. The construction of water conservation projects has, to a certain extent,
regulated the distribution of runoff from the mountain over time, alleviating the problem of
insufficient water resources for downstream irrigation areas and ecological inter-seasonal
diversion, spring irrigation salt washing, and autumn irrigation overwintering.

4.3. Shortcomings of this Study

The response of outgoing mountain runoff to human activities in this study was ex-
plored and analysed based on the SWAT distributed hydrological model. However, the
existing hydrological model is only a general description of the water cycle process [41],
which cannot fully and objectively restore the real hydrological situation. This conclusion
was also reached by Zhenliang Yin et al. [42] in their discussion of the progress of hydrolog-
ical simulation studies in the mountainous region of the main stream of the Heihe River in
the Qilian Mountains. At the same time, because the outgoing runoff at the Heizi Reservoir
(II) station before the reservoir was constructed could not actually be measured, the incom-
ing runoff from the Kizil Reservoir during the same period was used for the evaluation of
the simulation results of the outgoing runoff under no human activity conditions during
the prediction period. Although the distance between the Heizi Reservoir (II) station and
Kizil Reservoir is not far, it cannot be denied that the errors between the two caused by
seepage losses in the runoff process, as well as reservoir seepage and surface evaporation,
still exist. This aspect should be studied in more depth in future simulations to provide a
reference for watershed water resource management.
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5. Conclusions

In order to make more efficient use of water resources, water conservation projects are
constructed in arid watersheds. This study considered the impact of human activities on
the runoff from the Weigan River from the perspective of water conservation construction,
and thus explored the extent to which water conservation projects affect natural water cycle
processes. In this study, the SWAT model was used to simulate and predict runoff for the
1965–2016 scenario without a reservoir in the upstream area of the Weigan River outlet, and
then analysed the component composition of runoff from the study area, and compared
and explored the degree of influence of the presence or absence of human activities on the
runoff from the study area to obtain the following conclusions:

(1) The SWAT model with the coupled glacier module was used to simulate the outflow
runoff from 1965 to 1991 in the Weigan River Basin, and to predict natural runoff in
the study area without human activities from 1992 to 2016 based on the constructed
SWAT model predictions; its NSE coefficients all reached above 0.8. This shows
that the SWAT model with a coupled glacier module has good applicability in the
upper Weigan River Basin and can be further used for studies of glacial-runoff-related
problems in arid zones.

(2) During the 52 years from 1965 to 2016, the overall runoff volume from the Weigan
River showed an increasing trend, among which glacial runoff exhibited a stable in-
creasing trend, and runoff due to precipitation also exhibited a fluctuating increasing
trend. The average value of the increase in incoming water from 1992 to 2016 com-
pared with 1965 to 1991 was 2.99 × 108 m3, with 41.45% and 58.55% of the increase
in incoming water was caused by the increases in precipitation and temperature,
respectively.

(3) The runoff from the Weigan River is mainly concentrated in summer, with 51.06%
of the annual water intake in summer. The construction of hydraulic projects has
translated to human activities having a very different impact on the runoff from
the mountain in different seasons (in descending order spring > autumn > winter >
summer), with 83.28% of the natural runoff in spring being influenced by artificial
regulation.
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