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Basic Computational Algorithms for Representing an Aircraft
Flight (Calculation of 3D Displacement and Displaying)

Adan Ramirez-Lopez

Department of Industrial Engineering, Technological and Autonomous Institute of Mexico (ITAM), Rio Hondo #1
col. Progreso Tizapan, Mexico City ZP 01080, Mexico; adan.ramirez@itam.mx

Abstract: This manuscript describes the computational process to calculate an airplane path and
display it in a 2D and 3D coordinate system on a computer screen. The airplane movement is
calculated as a function of its dynamic’s conditions according to physical and logical theory. Here,
the flight is divided into maneuvers and the aircraft conditions are defined as boundary conditions.
Then the aircraft position is calculated using nested loops, which execute the calculation procedure
at every step time (Δt). The calculation of the aircraft displacement is obtained as a function of the
aircraft speed and heading angles. The simulator was created using the C++ programming language,
and each part of the algorithm was compiled independently to reduce the source code, allow easy
modification, and improve the programming efficiency. Aerial navigation involves very complex
phenomena to be considered for an appropriate representation; moreover, in this manuscript, the
influence of the mathematical approach to properly represent the aircraft flight is described in detail.
The flight simulator was successfully tested by simulating some basic theoretical flights with different
maneuvers, which include stationary position, running along the way, take off, and some movements
in the airspace. The maximum aircraft speed tested was 120 km/h, the maximum maneuver time
was 12 min, and the space for simulation was assumed to be without obstacles. Here, the geometrical
description of path and speed is analyzed according to the symmetric and asymmetric results. Finally,
an analysis was conducted to evaluate the approach of the numerical methods used; after that,
it was possible to confirm that precision increased as the step time was reduced. According to
this analysis, no more than 500 steps are required for a good approach in the calculation of the
aircraft displacement.

Keywords: flight simulator; programming algorithms; calculation of aircraft position; graphical
display of aircraft path; 3D computer animation; numerical approaching

MSC: 00A71; 00A72

1. Introduction

The flight of an airplane is a very complex problem; there are many factors and
variables involved. Some of these factors depend on human and external factors such as
the route of the flight, the pilot’s ability, the geography of the terrain, the weather, etc.
Some of these factors depend on the aircraft’s features, such as its speed and aerodynamic
design [1–5]. Moreover, aeronautical has always been one of the pioneer industries in
developing new technologies to increase performance and improve designs [5–7]. Conse-
quently, authors in this area have worked on creating flight simulators, especially in order
to reduce costs for training pilots, operational times, and risks [3–6,8–13]. Simulation is a
huge area in aeronautics due to not only the flight can be simulated [7–11,14–20], there are
some situations and conditions can vary or can be represented computationally such as
flying operations, marketing, programming of routes, design of mechanical compounds
etc. [3–7,12–16,21–27]. Other authors have worked on creating flight simulators, especially
in order to reduce costs for training pilots, operational times, and risks [6–10,21–26]. The
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use of physical and computer simulations is desirable not only for training pilots; but, also
to evaluate their performance and certification [13–16,23–30]. Thus, many authors have
developed and programmed flight simulators in order to reproduce situations that happen
during real flights and other complex problems in aeronautics, aerodynamics and aerial
navigation [1–3,12–15,27–33].

Many of the aeronautical engineers developed physical flight simulators that repro-
duced some of the basic aircraft navigation instruments [5–7]. Their efforts were driven
to create functional cabins where pilots could be trained, and they learned what to do in
certain situations. As time went on, the aeronautical industry became interested in elec-
tronic and computer sciences; aeronautical engineers were pioneers in incorporating these
technologies into airplanes [6–11,14–18]. Then, with the increase in computer capacities
such as data speed management and storage, the improvement in programming methods
and techniques has made it possible to develop more complex algorithms and computer
simulators for flying [5,6].

Bruce Artwick [7–10,14–17] created the first consumer flight simulator software. His
original work for Apple II software was purchased by Microsoft and eventually became
Microsoft Flight Simulator. Artwick founded the company SubLogic after graduating from
the University of Illinois at Urbana-Champaign in 1977, which released the first version of
Flight Simulator the following year. Artwick worked for Hughes Aircraft in Culver City,
California. It was here that he realized he could create his own 3D dynamic graphics on
6800-based machines. In his thesis of May 1975, called “A versatile computer generated
dynamic light display” he showed a model of the flight of an aircraft on a computer
screen [8–11,18–23]. With this, Artwick proved that it was possible to use the 6800 processor,
which was the first available microcomputer, to handle the graphics and calculations of the
specifications needed to create a real-time flight simulation [1–3,5–8].

The algorithms for representing an aircraft flight described in this work are based on
the calculation as a single particle under certain speed and time of application conditions;
these are so elementary, but they are a platform for including more complex integrations
and calculations during an aircraft flight, such as the influence of the wind, the mechanical
and aero-dynamical forces, the post-representation of the aircraft position in a virtual
environment, etc.

2. Basic Assumptions and Reading Data

In this research, the aircraft flight is treated as an ideal set of planned operations in
an ordered sequence. Then the flight is divided into maneuvers and the control variables
are aircraft flying conditions such as the aircraft speed, heading angles, and defined times.
Then a maneuver is assumed to be the defined group of airplane conditions to be executed
during a period of time; thus, a change or remaining on any condition at any time defines
the beginning and ending of a maneuver [10–15,18–20,24–30]. Nevertheless, there is a
minimum of information required that defines the original aircraft status at the beginning
of the simulation [24–26,34–41].

The general information about the aircraft is the divisions (steps) for analyzing the
flight and the maximum takeoff weight (MTOW), which is defined as the aircraft weight
at the beginning of the simulation. Thus, a volume for the fuel deposit must be declared
according to the following restrictions:

(a) The fuel weight cannot be equal or minor to zero (Vtank ≤ 0).
(b) The fuel weight cannot be equal or major to the MTOW (Vtank ≥MTOW). This is a

basic logical assumption. Here, fuel capacity of tank must be input in (I).

Then a specific fuel consumption rate is defined in (l/km) or (l/min). This con-
sumption is assumed to be constant during the flight simulation; at least a consumption
coefficient as a function of the cruise speed was defined. All restrictions were programmed
using sentences (if) verifying and conditioning the reading data process [6–10,29–33,42].

All the corresponding warnings were programmed in order to avoid errors during
reading data; if any of these restrictions occur, a window with an appropriate message
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is displayed with a brief explanation in order to correct them [1–3,6–9,27–32]. Then, the
following assumptions were programmed and included to simulate the flights.

(1) Only one single flight is simulated.
(2) The simulation begins at the initial time (tsim = 0).
(3) The simulated flight is divided into maneuvers (using an integer data type).
(4) The information about every maneuver is used as boundary conditions for the

aircraft conditions.
(5) The maneuvers defined cannot be equal or minor to one (n ≤ 1).
(6) The initial conditions for beginning the simulation are established in maneuver (0). For

simulations in this work, the airplane was defined as being in stationary conditions.
(7) The times for maneuvers cannot be equals or minors to zero (tn ≤ 0).
(8) The values defined for every maneuver are modified at every step time (t + Δt)

according to the previous values until they reach the latest; then, the change is not
instantaneous; it is performed step by step during every maneuver.

(9) The aircraft speed is assumed to be in the same direction as the aircraft heading angle.
Thus, the aircraft speed is a result of the total propulsion force.

(10) The aircraft with an initial speed equal to zero (vAn=0 = 0) is considered to be in repose
or stopped on the ground.

(11) The vertical aircraft speed is assumed to be absolute in the same direction as the
pitching angle.

(l2) The values for every maneuver, such as heading angles or aircraft vertical speed,
can adopt positive or negative values without restrictions, with the exception of the
aircraft speed.

A computational array is used to store and order the information about every maneu-
ver. The array was defined as: Matdat [a][b]; this matrix stores floating data types for all
the maneuvers. The location occupied by the variable [a] is used to store and identify the
maneuver [a = n]. This location is also used to validate and take the appropriate values
during simulation. The location occupied by the variable [b] is used to identify any variable
as follows:

Matdat [a][ [b = 1] Horizontal aircraft speed (vHAn).
Matdat [a][ [b = 2] Vertical aircraft speed (vVAn).
Matdat [a][ [b = 3] Heading angle (αn).
Matdat [a][ [b = 4] Rolling angle (αheading).
Matdat [a][ [b = 5] Maneuver time (tn).
In addition, the locations for the variables [b] are also predefined as a matrix with extra

locations for storing all of the calculated variables after the execution of the calculation
process. Here, the sub-indexes (n) refer to the corresponding maneuver.

The first step in developing a flight simulator is to create a virtual environment on
the computer screen where the user can appreciate the aircraft path [1–4,7–10,34–41]. The
aircraft movement must be represented appropriately, and physical and mathematical
equations must be solved using the programming of numerical methods. Several authors
have developed methods for solving geometrical and mathematical problems using repet-
itive operations and procedures [3–6,9–13,27–33,42]. This kind of problem can be easily
programmed using any programming language. Here, code was generated using C++, and
nesting numerical procedures were to be solved [29–34,39,41].

Time, aircraft speed, and angular positions during every maneuver are used as initial
and final conditions to create a simulation of the aircraft’s animation, and the resulted
information is used as input to create an animation of the movement as would be in
the aeronautical instruments [29–31,37–41]. Then, in this work, the main procedure is a
calculation routine that contains the equations for calculating the aircraft displacement
along the 3D position. These are solved at every step time (Δt) inside an executed nested
loop using the boundary conditions defined by the user. Then, inside this procedure, are
included independent subroutines with the code for calculating the graphical information
to represent every aircraft instrument. The procedure is described as follows:
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(a) Reading the data included general information about the aircraft conditions and the
number of maneuvers during the flight. Then specific speed, time duration, and
directional conditions of every maneuver are read.

(b) Options for new reading and modification are valuable tools; after this, different
display animations were also programmed.

(c) An algorithm to make the simulation is executed, then a calculation of the
aircraft displacement is performed, and the information is used to represent the
instrument animation.

(d) Options for saving information are included.

In order to represent a landscape for the flight to be simulated, the following facts
were assumed to represent computationally the surface and the flight directions:

The North Pole corresponds to 0◦ according to the angular position shown in Figure 1.
And the clockwise direction is assumed to be positive to measure any heading angle. Then,
90◦ corresponds to the east, 180◦ corresponds to the south, and 270◦ corresponds to the west;
nevertheless, this condition can be modified according to the sense of the turn; for example,
−90◦ can also correspond to the west, −180 to the south, and −270◦ to the east. This fact is
due to the aircraft’s heading angle being taken as a function of its turning movement.

Figure 1. Assumptions for the graphical representation of the surface and the heading angle (direction
of flight) according with earth position.

The flow chart shown in Figure 2 represents the general operations of the flight
simulator developed. Here, the reading data process is the first action executed. Initially,
the general information for the aircraft is read because it is absolutely required to start the
calculation process; then the system executes the reading process for the maneuvers. This
process appears in better detail in Figure 3, where the procedure to read the data and store
it in the computational array is described [3–6,13–16,23–32]. This process is repeated from
maneuver (0) until the latest maneuver (nt). In Figure 2, there is a shaded subroutine in the
left part. This routine is included to be executed at the beginning to make a pre-calculus
about the aircraft flight. The loops and parts of the routines inside are so similar to those
in Figure 4a,b. These procedures are so similar, which is why all the procedures were
compiled independently and included as separate libraries [27–33,42]. This fact provides
easy identification and modification but also makes them more versatile. The execution
time of this subroutine is very short, and its inclusion eliminates the necessity of using
additional memory resources or saving unnecessary data. Here (ts) is the simulation time,
and the step time (Δt) is calculated as a function of the steps defined to analyze the flight.
Finally, the flowchart in Figure 3 shows an option to save the information or quit. The
option for saving the information would create a new file named by the pilot (user) and
save the data in a row and column format for easy identification.

4
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Figure 2. General flowchart for the flight simulator developed.

Figure 3. Flowchart for the reading data routine for each maneuver.
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Figure 4. Flowchart for selecting any option to display the results. (a) Option for display the aircraft
path and (b) option for display graphics and performance of the aircraft.

The processes for selecting and displaying the results are shown in the flowcharts
in Figure 4a,b. Here, the calculation process is again included during the execution of
the simulation loop because it is the same for both options. Each figure indicates the
procedure to be executed according to the selection made. In Figure 4a, the virtual aerial
space is traced, including the north–south and east–west directions. Then the calculation
procedure is executed to display the aircraft path [4–7,15–19,22–31]. The flowchart in
Figure 4b corresponds to the option developed to analyze the aircraft performance; here, a
screen to display the aircraft speed and displacement is drawn according to the calculated
scales [27–33,42]. The routines developed for this purpose were also compiled separately
because they are executed many times to display different flight parameters. The flowchart
shown in Figure 5 is used to obtain the maximum and minimum values for the displacement
of the aircraft along axis (x); a pair of sentences (if) is used for these purposes; the algorithm
uses two different comparison procedures that are included in the calculation loop just
after the execution of the calculation procedure. This procedure can be repeated for the
displacement along the axes (y) and (z); moreover, this procedure can also be nested and
used again to compare, obtain, and store the maximum and minimum values of all the
variables involved, eliminating unnecessary code.

The aircraft flight involves the calculation of the 3D aircraft displacement; the calcula-
tion is performed in the nested loops as a function of speed and the time conditions defined.
Simultaneously, a comparison to obtain the minimum and maximum positions for a good
fit with the computer screen pixels resolution is performed [9–14,22–32]. All procedures in
Figures 2–5 were compiled separately in order to be executed independently, and then a
quick calculation about the total distances traveled by the aircraft can be obtained. And the
display of the displacement is shown only if it is required by the user.

Procedures in shaded areas are nested in the executed loops according to the user
requirements; the routine in the flowchart in Figure 5 is also compiled separately and then
included during the execution of the nested loops. It is absolutely required to obtain the
minimum and maximum values of the aircraft displacement and then draw on the screen
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the flight; moreover, this procedure is repeated again for the (y) and (z) axes, which are
also necessary for it.

Figure 5. Flowchart sentence to find the maximum and minimum values for the aircraft displacement
along the (x) axis.

3. Calculation Procedure

The calculation procedure involves the solution of the equations for calculating the
aircraft path, as described next:

The time of a flight results from the sum of all the partial maneuver times, as shown
in Equation (1). Here (n) is the maneuvers, (tn) is the time of every maneuver, and (nt) is
the number of maneuvers.

t f light =
n=nt

∑
n=1

tn (1)

According to Equations (2) and (3), the values of displacement and acceleration can
be obtained as a function of the aircraft speed. Here, the super indexes (n) and (n − 1)
correspond to the latest and previous maneuvers, respectively.

d = ΔvΔt = (vn − vn−1)(tn − tn−1) (2)

a =
Δv
Δt

=
(vn − vn−1)

(tn − tn−1)
(3)

These equations treat the problem using general assumptions; nevertheless, it is
necessary to calculate the displacement and acceleration for every reference axis (x, y, z)
using Equations (4) to (6) and (7) to (9), respectively. These equations can be nested inside
a computational loop as a part of the calculation procedure; then, the equations for the
aircraft movement (10) and (11) are solved, providing instantaneous values for acceleration
and displacement.

x = (vn
x − vn−1

x )(tn − tn−1) (4)

y = (vn
y − vn−1

y )(tn − tn−1) (5)

7
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z = (vn
z − vn−1

z )(tn − tn−1) (6)

ax =
(vn

x − vn−1
x )

(tn − tn−1)
(7)

ay =
(vn

y − vn−1
y )

(tn − tn−1)
(8)

az =
(vn

z − vn−1
z )

(tn − tn−1)
(9)

dx
dt

+
dy
dt

+
dz
dt

=
dtot

dt
(10)

dvx

dt
+

dvy

dt
+

dvz

dt
=

dvtot

dt
(11)

In order to solve these equations and calculate the aircraft position at every moment
during the simulation, it is necessary to establish a step time (Δt) using Equation (12).
This value is used as a criterion to determine the precision of the simulation. Here (nt) is
the step number, which is an integer data type input by the pilot who runs the simula-
tion. As this number is increased, the step time (Δt) becomes shorter, and the simulation
precision improves.

Δt =
tn

nt
(12)

Then Equations (13) to (15) are used to calculate the distances for scaling the aircraft
flight on the computer screen.

xdmax = xmax − xmin (13)

ydmax = ymax − ymin (14)

zdmax = zmax − zmin (15)

The distances for the aircraft flight can be obtained from Equations (16) to (18).
Equation (16) is the general form of the equation between 2 points in a 3D system; but it
must be modified in order to calculate the distance from the starting point to the aircraft at
every moment, as is shown in Equation (17); then Equation (18) can be nested in a computer
loop to calculate the aircraft displacement.

dtotal =

√
(xtot)

2 + (ytot)
2 + (ztot)

2 (16)

dn =

√
(xn − xn−1)

2
+ (yn − yn−1)

2
+ (zn − zn−1)

2 (17)

dt+Δt =

√
(xt − xt−Δt)

2
+ (yt − yt−Δt)

2
+ (zt − zt−Δt)

2 (18)

4. Computer Simulation of Flights

During the flight simulation, the aircraft is placed in the original position (0,0,0) at the
initial time (t = 0). Then every maneuver is calculated, and the aircraft position is computed
and displayed. A virtual grid terrain is used as a reference for the aerial space where the
simulation is executed.
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The aircraft path is placed on the computer screen as a function of the transition from
a 3D system to a 2D graphical representation. According to this, projected and real paths
are displayed in order to provide a complimentary reference. The projected path is that
the aircraft is describing over flat terrain, and the real path is that described by the aircraft
considering the vertical displacement as a function of the step time (Δt).

Table 1 shows the information declared for the analyzed flights. The flights are 7 and
5 maneuvers; (vhor) and (vvert) are the horizontal and vertical speeds of the aircraft, and (α)
is the heading angle.

Table 1. Information for the flights to be simulated (conditions for every maneuver).

Flight 1

Maneuver 0 1 2 3 4 5 6 7

vhor (km/h) 0 100 120 100 110.5 100 97.25 95.45

vvert (km/h) 0 0 25 5 0 −2.2 15.55 12.25

αheading (◦) 45 45 45 180 180 450 450 270

t (min) 0 2.5 2.35 6 6 3.25 5.25 12.25

Flight 2

Maneuver 0 1 2 3 4 5

vhor (km/h) 0 100 120 110 100 100

vvert (km/h) 0 0 15 10 10 −5

αheading (◦) 0 0 0 90 360 450

t (min) 0 2.5 3.5 6 6 4.55

Flight 3

Maneuver 0 1 2 3 4 5

vhor (km/h) 0 100 120 105 100 100

vvert (km/h) 0 0 5.55 15 10 −4.5

αheading (◦) 0 0 0 90 90 0

t (min) 0 2 2.55 3.2 4.25 10.05

Figure 6a,b shows snapped screens from the simulator. These figures correspond to
the flight (1) displayed using different angles over the terrain in order to test the graphical
display using rotation and screen scaling tools. These views can be obtained by solving
Equations (19) to (21). Here (αterrain) is a reference used to provide an inclined view over
the terrain.

xdist =
(xt − xt−Δt)

xdmax
cos(αterrain) (19)

ydist =
(yt − yt−Δt)

ydmax
sin(αterrain) (20)

zdist =
(zt − zt−Δt)

zdmax
(21)

Finally, Equations (22)–(24) are used for scaling the aircraft path over the terrain. Here
(totpix) is the variable used to display the aircraft path using a congruent scale for the
computer screen. Then (npix, npiy and npiz) are the aircraft displacement values expressed
in pixels.

npix x = totpix

[
dx

t+Δt

dxmax

]
(22)
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npix y = totpix

[
dy

t+Δt

dymax

]
(23)

npix z = totpix

[
dz

t+Δt

dzmax

]
(24)

A brief description of the flight (1) simulated using the information in Table 1 is
explained next; these explanations can be confirmed by watching the aircraft path on
Figure 6a,b. Here can be observed the geometrical path in a simulated flat terrain; some
maneuvers are symmetrical, but others are non-symmetrical according to speed conditions.
The aircraft in this flight is initially placed on the ground at 45◦ (north–east direction) and
then runs over the road and takes off in the same direction and turns to the right (clockwise);
maintains a direction towards the south, then turns again to the right and maintains a new
direction to the east; finally, turns left to the north and west against clockwise.

Figure 6. Computational representation of the aircraft path for flight (1) using different terrain angles.
(a) Using 20◦ and (b) using 8◦.

The computational tool developed to incline the terrain is very useful and versatile to
provide a different point of view of the built aircraft paths. Here, the path over terrain can
be easily identified because it is never out of the shaded area.

Maneuver 1. The aircraft is initially in stationary conditions; then it runs in order to
prepare for take-off. The aircraft speed changes from (vx

n=0 = 0) to (vx
n=1 = 100 km/h) at

the end of the first maneuver. There are no modifications to the lateral or vertical speed; the
aircraft just runs over the reference plane. The heading direction is +45◦, which corresponds
to 45◦ measured from the North Pole direction. This run delays 2.50 min.

Maneuver 2. During this maneuver, the aircraft takes off, continues accelerating until it
reaches vx

n=2 = 120 km/h. Here, the aircraft increases its vertical speed until vz
n=2 = 25 km/h.

Then the projected and real aircraft paths are separated; the projected path is always traced
as a function of the reference plane, and the real path is displayed considering the aircraft
altitude over the terrain. This maneuver delays 2.35 min, and the heading angle remains
+45◦. So, the slope in the line for this segment indicates that the aircraft has taken off from the
highway at the same heading angle, describing a line with a smoothed slope.

Maneuver 3. Here the aircraft decelerates slightly until (vx
n=3 = 100 km/h); the vertical

speed is decreased until (vz
n=3 = 5 km/h); nevertheless, the aircraft continues ascending

due to the vertical speed value continuing to be positive. Moreover, during this maneuver

10
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the aircraft’s heading route is modified from +45◦ to 180◦. So, the original aircraft direction
north–east now is towards south. Then the aircraft turns to the right. This maneuver is
executed for 6 min, so the advanced distance is longer than those in previous maneuvers.

Maneuver 4. Here the aircraft accelerates slightly again until (vx
n=4 = 110 km/h); the

vertical speed is nearly invariable (vz
n=4 = 0 km/h). In addition, the heading angle remains

in a south direction, so the segment of the path for this maneuver is a straight line.
Maneuver 5. Here the aircraft decelerates lightly until (vx

n=5 = 100 km/h); the vertical
speed becomes negative (vz

n=5 = −2.20 km/h); and the aircraft suddenly turns from 180◦

to 450◦, changing the heading route to the east. A turn is quickly performed in 3.25 min,
during a light descent. Thus, the path described for this maneuver is a little elliptical arc.

Maneuver 6. The aircraft increases its propulsion and its vertical speed, but the same
heading angle remains; so, the aircraft direction also remains towards the east with a slight
increment in altitude.

Maneuver 7. Finally, the aircraft speed is slightly decreased, but although the vertical
speed is also slightly decreased, the ascending rate remains considerable. Thus, a notorious
increment in the aircraft’s altitude can be observed during this maneuver. Moreover, the
aircraft changes its heading angle towards the west during the longest period of time.

Speed curves are lines for the initial maneuvers when the aircraft runs along the way, and
others are sinusoidal or second-grade curves. Some of these present conditions of symmetry
or asymmetry as a function of the aircraft acceleration and the modification of the aircraft
direction. In maneuvers 5 and 7, the speed curves are sinusoidal and are inverted for both
axes (x, y). This can be considered a partially symmetric or inverted symmetry condition.

The aircraft performance and behavior during a flight can be analyzed along the axis
(x, y, z). Figure 7a,b shows the evolution of the flight (1). Both figures use a dual time
scale for the horizontal axis, indicating the maneuver duration just below. The maximum
and minimum values are indicated on the vertical axis, which were obtained from the
simulation. Figure 7a shows the aircraft speeds for each referred axis; here, the speed on
the axis (x) shows the following features:

The aircraft is initially in a stop position (vz
n=0 = 0 km/h). Then the speed is increased

until (vz
n=1 = 100 km/h) at the end of the first maneuver. Here, a straight line with a

constant slope is displayed, evidencing the aircraft’s acceleration. Another line with a
minor but constant slope was obtained for the second maneuver due to the increased speed,
but at a minor rate. For the third maneuver, the speed curve has a negative slope due to the
aircraft having modified its heading route. Then this condition changes the plotting of the
speed. During the fourth maneuver, the speed is slightly increased, but with a negative
implication, so the slope is nearly horizontal, thus the line with a lightly negative slope can
be appreciated. During the fifth maneuver the aircraft’s speed decreased slightly, but it
modified its heading direction from 180◦ to 450◦, or from the south to the east, including
a quick turn rotation, and the plotting conditions were modified again, resulting in a
sinusoidal line segment. During the sixth maneuver the aircraft speed is slightly decreased,
but the final plotting position of the fifth remains because the heading angle also remains
constant. Finally, during the seventh maneuver, the aircraft changes the heading condition
from east to west, becoming the line in this segment with a positive slope until it reaches a
maximum value for the North Pole direction; then, the slope becomes negative, forming
the end of the curve that corresponds to the final turn position.

The speed curves change geometrically with every maneuver as a function of the
simulation conditions. The segments are influenced by the heading angle changes, which
modify the direction of the slopes. During flight (1), the heading changes conducted
by the aircraft on maneuvers three and five were performed turning towards the right;
nevertheless, the final heading changes were performed turning towards the left. Moreover,
the maneuver times (tn) also influence the aircraft displacement. So, it is possible to mention
the following facts after analyzing the speed curve for the (y) axis:

During the first and second maneuvers the speed behavior is represented by 2 lines
with constant slopes in the same way as for the axis (x). Nevertheless, the curve for the
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third maneuver is very different due to the heading changing from 45◦ to 180◦. Here a
maximum is reached for a position east to 90◦. Then the curve changes its slope to negative
until the end of this maneuver. During the fourth maneuver, the heading remains invariable
with a slight increment in the aircraft speed, resulting in a quasi-horizontal line. The aircraft
modifies its heading during the fifth maneuver; here a sinusoidal curve is appreciated, but
the starting and ending angles are different in comparison with the curve for the speed on
the axis (x); the maximum and minimum positions on curves for the analysis over these
axes are in mathematical correspondence with the inflection points for the (x) axis. After
this, the aircraft remains with a constant heading angle, and for the sixth maneuver, a new
sinusoidal curve is shown for the final maneuver due to the heading angle change.

Figure 7. Aircraft performance graphics for flight (1) (a) Aircraft speed. (b) Aircraft displacement.

The vertical speed (vz) is very easy to understand due to all the segments being lineal.
Here, initially, the aircraft runs over the reference plane (vz = 0); this first maneuver is
represented by a horizontal line. During the second maneuver the aircraft takes off; then,
the curve has a very vertical positive slope. For the third, fourth, and fifth maneuvers, the
vertical speed decreases at different rates, although the aircraft remains always ascending.
For the sixth and seventh maneuvers, the vertical speed is increased, but also at a different
rate, so the slope changes from positive to negative.

The displacement curves for flight (1) are shown in Figure 7b. Thus, it is possible to
mention the following facts about the curve on the axis (x):

The curve begins at an initial speed equal to zero; the displacement curves are different
than speed curves due to the displacement rate not being constant (vHA = dHA/dt). During
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the third maneuver, the displacement reaches its maximum value, and then the slope
becomes negative due to the route change. On the fourth maneuver, the heading angle
remains unchanged, and the displacement is a line with a negative slope. During the
fifth maneuver, the aircraft turns suddenly, changing its heading angle; here, a little inverse
curved form with a quasi-flat ending is appreciated. During the sixth maneuver, the aircraft
route remains the same; consequently, the curve is lineal. Finally, during the last maneuver,
a sinusoidal form is the result of the route change.

Analyzing the curve for displacement on the axis (y), the displacement is similar to
the curve for (dx) for the first two maneuvers due to the aircraft speed and acceleration
being at the same heading angles. On the third maneuver, the heading angle changes,
and the displacement along (y) is lightly decreased. On the fourth maneuver, the effective
displacement is increased, but the heading angle is nearly perpendicular to the axis (y),
so the displacement about this axis is a horizontal line. During the fifth maneuver, the
aircraft turns quickly 270◦, turning in the east direction in a short period of time. On the
sixth maneuver, the aircraft remains at the same heading angle, resulting in a line with a
nearly invariable positive slope. Finally, during the last maneuver, the form of a circular
semi-arc is displayed due to the turning again.

The displacement along the vertical axis (z) is shown below. Here, the aircraft begins
remaining on the ground during the take-off run. Then the aircraft’s altitude begins to
increase during the second maneuver. The aircraft continues increasing its altitude for the
next maneuvers, but at different rates, so the slopes are also different. With the exception
of the fifth maneuver, which was defined with a negative value. Then it is important to
mention that if a negative value is defined on any maneuver for the vertical speed, the
aircraft remains ascending until the transition of values becomes negative (vz

t+Δt < 0).
Figures 8–11 show the aircraft path, speed, and displacement curves corresponding to

the flights (2) and (3), respectively. Here, differences and similarities in comparison with
flight (1) can be appreciated. Moreover, the influence of aircraft speed, heading angles, and
maneuver times can also be appreciated.

Figure 8. Computational representation of the aircraft path for flight (2) using different terrain angles.
(a) Using 20◦ and (b) using 8◦.
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Figure 9. Aircraft performance graphics for flight (2). (a) Aircraft speed. (b) Aircraft displacement.

The aircraft on this flight is stationary with a direction to the north equal to 0◦.
Then it runs over the road and takes off in the same direction. On the next maneuver,
the heading angles are always greater than the previous; thus, the aircraft always
turns to the right in a clockwise direction. Moreover, the vertical speed is positive, the
aircraft ascends until the fourth maneuver, and until the last maneuver, the aircraft
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lightly descends due to the final vertical speed being negative. Figure 8a,b shows the
aircraft displacement over different terrain angles for view, evidencing the importance
of displaying the flight path.

The flights were divided for analysis purposes into maneuvers with particular con-
ditions of aircraft horizontal and vertical speed; a route angle and time endurance are
defined; then the displacement is calculated. Then, all the equations in the manuscript
are solved using an integration numerical Runge–Kutta method, which is very easy to
program using nested loops with a minimal computational effort. Although increasing the
steps for calculation is an easy way, there are some variables involved in the simulation
that affect the final approach; therefore, it will be absolutely necessary to increase these in
the following cases.

(a) If the aircraft’s horizontal and vertical speeds are increased.
(b) If the endurance time of the maneuver is increased.

Other parameters influence the aircraft route, as follows:
If the heading angle is greater than in the previous maneuver, the aircraft will turn to

the right.

(a) If the heading angle is less than in the previous maneuver, the aircraft will turn to
the left.

(b) It is important to remember that a simulation is considered precise when a very
accurate calculation of the aircraft’s position in space is obtained. Additionally,
mathematical and physical theory must be applicable to different conditions with the
same certainty.

Figure 10. Computational representation of the aircraft path for flight (3) using different terrain
angles. (a) Using 20◦ and (b) using 5◦.
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Figure 11. Aircraft performance graphics for flight (3). (a) Aircraft speed. (b) Aircraft displacement.

5. Evaluation of Approaching

In order to evaluate the numerical method programmed for the simulator, approaches
and errors were analyzed by executing the nested routines in the simulator with different
divisions (steps) reproducing the 3 flights defined in Table 1. Similar curves resulted for
the three flights. The results for flight (2) have been chosen to evidence the error and
approaching obtained and are shown in Figures 12–15. These curves show the evolution of
the final distances calculated for the aircraft path. The distances (dx), (dy), and (dz) are
the distances flown along every axis, and (dtot) is the total distance from the origin of the
aircraft flight. All of them were measured from the original starting point of the flight,
assumed to be the position (0,0,0) towards the corresponding displacement axes. Their
description of content is as follows:
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Figure 12. Calculated approaching for flight (1) curves for axis (x) direction Sud-North. (a) consider-
ing displacement values. (b) considering the previous calculated value. (c) considering the division
of the displacement between the number of steps. (d) considering the approaching to the final value.

Figure 13. Calculated approaching for flight (1) curves for axis (y) direction Est-West. (a) considering
displacement values. (b) considering the previous calculated value. (c) considering the division of
the displacement between the number of steps. (d) considering the approaching to the final value.
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Figure 14. Calculated approaching for flight (1) curves for axis (z) this is for the altitude.
(a) considering displacement values. (b) considering the previous calculated value. (c) consid-
ering the division of the displacement between the number of steps. (d) considering the approaching
to the final value.

Approaching every displacement axis, the total displacement will be described.
Figure 12a–d shows the displacement for the (x) axis with different criteria of approaching
that are described next; similarly, Figure 13a–d shows the displacement for the (y) axis,
Figure 14a–d shows the displacement for the (z) axis, and Figure 15a–d shows the total
aircraft displacement, respectively. In all these figures, the values of displacement are
plotted as a function of the steps for calculation. But different criteria for approaching are
evaluated in order to achieve improvements.

Curves (12a, 13a, 14a, and 15a) show the fluctuation of the displacements along the
directions (x), (y), (z), and the total aircraft displacement, respectively, evidencing that the
final distances tend to adopt an invariable value. The reduction in this variation indicates
that error is reduced and approaching is improved as the steps for analysis are increased.

The vertical axis in Figures 12a, 13a and 15a represents the displacement along
the respective axis “x” for direction north–south and “y” for direction east–west and
the total displacement. In contrast, the vertical values in Figures 12b, 13b and 15b
are so minor because they were calculated using Equation (25). Additionally, the
curves in Figures 12c, 13c and 15c were obtained using Equation (26), and the curves in
Figures 12d, 13d and 15d were obtained using Equation (27).

Curves (12b, 13b, 14b, and 15b) show the fluctuation of the values calculated for the
distances for the (x), (y), and (z) axes and the total aircraft displacement. Respectively.
All these curves tend to zero because the values were obtained from the subtraction of
the values with the previous calculation (with steps 1). This also means that the error is
reduced as the steps for calculation are increased. The values in these curves were obtained
using Equation (25). Here, (dx) is the distance on the axis (x); this equation is also solved
again for the (y), (z) axes, and the total distance. The sub-index (ns) refers to the number of
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steps used for calculation. And the super index (t = total) means that the value corresponds
to the latest calculated displacement in the latest step of the latest maneuver; this is at the
end of the simulation.

dxb = dxt=total
ns − dxt=total

ns−1 (25)

Curves (12c, 13c, 14c, and 15c) show the fluctuation of the values calculated for the
distances for axis (x), (y), and (z) axes and the total aircraft displacement, respectively,
divided by the steps used, also evidencing that the final values tend to be zero. This
means that the error tends to be reduced again. Although these curves tend quickly to
zero, they are not considered the best evidence of a good approach. The curves resulted
after the application of Equation (26) to the final displacement values calculated; all these
curves immediately tend to zero. Nevertheless, this approaching calculation is not the most
reliable because (ns) is always increasing; thus, the next value will always be minor.

dxc =
dxt=total

ns
ns

(26)

Curves (12d, 13d, 14d, and 15d) show the fluctuation of the values calculated for the
distances for the (x), (y), and (z) axes and the total aircraft displacement, respectively, minus
the previous value and divided by the previous value, also evidencing that the final values
tend to be zero. This means that the error tends to be reduced again. These curves result
from the application of Equation (27). All of these curves tend to zero, but there are positive
and negative variations that diminish.

dxd =
dxt=total

ns − dxt=total
ns−1

dxt=total
ns−1

(27)

Fluctuations on these curves can be positives or negatives due to the change in heading
angles and the steps used for calculation; fluctuations for the axis (z) were major in contrast
with the (x) and (y) axes, but they are not according to the scales on the vertical axes.

These curves evidence the following facts for flight (2):
The difference between the displacements calculated tends to a final value; then the

error in the calculation is reduced as the number of steps is increased, as could be expected
for any integration method; thus, the approaching is improved. The same behavior can be
appreciated for every analyzed axis and for the total displacement.

According to the steps used for the calculation of the flights, it is possible to affirm the
following facts for all the analyzed axes:

Using 10 to 100 steps, the approaching is bad.
Using 100 to 1000 steps, the approaching is notoriously improved. The fluctuations in

the calculated values are damped.
Using 1000 to 2000 steps, the approaching was not significantly improved, which is

why it can be considered not absolutely required.
It is important to mention that horizontal aircraft speeds are often higher than vertical

speeds, but these can be so different depending on the aircraft type and capacity. For major
speeds, it will be necessary to calculate the displacement using more steps.

The maneuver time has a strong influence on the approaching; the increment in steps
is the best way to improve approaching for long times.

The aircraft speed also has a strong influence over calculation; increasing the steps for
calculation reduces the errors and improves approaching if the aircraft speed is increased,
as is appreciated in Figures 12–15. Moreover, fluctuations are so high in the vertical
axis (z) due to altitude, with minor values in comparison with horizontal displacements.
Additionally, it must be noted that a particular approaching can be calculated for every
maneuver since everyone has particular data. Nevertheless, for this work, it was decided
to do it for the completed flights.
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Figure 15. Calculated approaching for flight (1) curves for total distance measured for the original
point assumed as the aircraft was in a stationary position at (0,0,0). (a) considering displacement
values. (b) considering the previous calculated value. (c) considering the division of the displacement
between the number of steps. (d) considering the approaching to the final value.

In addition, the displacement values for every flight along the 3 axes and the final
displacement using 10,000 steps were calculated, which are considered enough for a very
good approaching. The results shown are in Table 2, and additional curves resulted from the
application of Equation (28) are shown in Figure 16a–d. The application of these equations
shows the approaching as an error in percentage, referring to the value calculated using a
large number of steps, and can also be used for comparison.

dx = 100

[
1−

(
dxt=total

ns

dxt=total
ns=10,000

)]
(28)

Table 2. Calculated distances along the axis (x, y, z) and total measured from the aircraft origin for
every simulated flight.

Flight dx dy dz dtot

1 8214 20,976 5825 62,019

2 20,724 10,432 3136 39,123

3 23,250 21,871 2071 37,755
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Figure 16. Reduction in the error calculated for flight (1) over every axis of displacement. Analysis
for every displacement calculated (a) for Sud-North direction. (b) for Est-West direction. (c) for
altitude. (d) for total displacement.
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According to the graph shown in Figure 16a, a good approach is obtained using more
than 400 steps for analysis because it tends to zero with such minimal variation. Maximum
variations are from (−7.2%) when less than 100 steps are used. In the case of the direction
east–west on axis (y), there is a similar damping behavior as the steps are increased, but at
the beginning, variations are positive and negative. The maximum variations are between
(−4%) and (2%). Although, in the same way as for axis (x), both curves tend to a final true
value with a variation almost equal to zero. Thus, it can be considered that the variation
over 400 steps is not so significant, and the solution is so close to the real, final true values.
In the axis (z) for the altitude where the aircraft is flying, there is a variation until 800 steps;
moreover, for 2000 steps, there is a variation of (2%). This variation is considerable, but
it must be taken into account that the distance over this axis is so minor in comparison
with the distances on the axes (x) and (y) and over the total distance. In Figure 16d, the
same behavior is observed, and the curve is so similar to those in Figure 16a,b, evidencing
the stronger influence of the much longer distances traveled on the horizontal axes as was
shown in the flight path.

6. Discussion

According to the results obtained, it is possible to affirm that any aircraft flight con-
dition can be properly calculated and represented computationally with the algorithm
developed. Moreover, the approaching calculation can be easily improved by increasing the
number of calculation steps. In addition, no more than 500 steps are needed for a good ap-
proach, although for different speeds and times of maneuvers, approaching analysis must
be performed; this work can be quickly carried out with a minor computational effort. For
immediate future studies, the information calculated can be employed to represent the air-
craft instrument animation in a virtual environment to develop a more complex simulator.
Some of the potential topics that can be developed from this work are the following:

(a) Computational representation of the aircraft instruments can be employed to train pilots
or just to show students and enthusiasm their function described with theoretical support.

(b) Planning of aircraft flights and representation of flights in a basic virtual environment,
including obstacles such as a defined geography for terrain. This option can provide
tools for planning operations with safe air flying conditions.

(c) More complex calculations, including wind components or weather conditions, influ-
ence the aircraft path and the calculation of forces to correct.

(d) Simulation of many flights in one single environment is very important in order to
avoid collisions and plan airport operations.

(e) Simulation of flights under pilot control using the computer keyboard with no defined
data, considering manual control.

(f) Planning and correction of more sophisticated maneuvers and comparison between
manual and automatic aircraft navigation.

(g) Calculation of application forces on stabilizers, flaps, slats, spoilers, rudders, elevators, etc.
(h) Inclusion of aero-dynamical behavior as a function of aircraft features.

In the algorithm developed, there are no limits on time or speed conditions that can
be input for the aircraft flight simulated; appropriate warnings were programmed to avoid
errors during input data; and the information about the aircraft displacement can be saved
as is calculated in an independent file if required.

7. Conclusions

The algorithms developed to represent the aircraft path in 2D and 3D computa-
tional representation were successfully tested and represent the aircraft path appropriately
during flights.

According to the conditions defined for the flights, simulated symmetrical and asym-
metrical speeds and path segments can be observed on the maneuvers as a function of the
aircraft direction and acceleration.

The reading data and modification options processes were also considered appropriate.
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The options for analyzing the flights were also successfully tested and provided the
information required.

The influence of the aircraft speed and maneuver time on the aircraft displacement is
properly described with this algorithm.

The main and subroutines of the simulator were properly compiled; computational
equipment with huge or specific features is not needed. No additional code is required on
the algorithms, the computational effort is not significant; moreover, the execution time is
short for a good approaching; thus, the simulator is efficient.

Increment of the steps used for calculation becomes short the step time (Δt) reducing
errors and improving approaching.
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Abstract: For a graph G = (VG, EG), a degree-based graphical index GId takes the general form
GId = ∑

xy∈EG

φ(dx, dy), where φ is a symmetric map and di is the degree of i ∈ VG. For α ∈ R, if

φ = (dxdy)α (resp. φ = (dx + dy)α), the index is called the general product-connectivity Rα (resp.
general sum-connectivity SCIα) index. In this paper, by formulating an optimization problem, we
determine the value(s) of α, for which the linear/multiple correlation coefficient of Rα and SCIα with
physicochemical properties of benzenoid hydrocarbons is the strongest. This, in turn, fills some
research gaps left by similar studies in this area.
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1. Introduction

Structure–property modeling employs molecular descriptors [1] to generate regression
models correlating the physicochemical, biological, or thermodynamic properties of chemi-
cal compounds. Degree-based graphical indices are a class of graph-theoretic molecular
descriptors that gained popularity in efficiently correlating the physicochemical properties
of benzenoid hydrocarbons (BHs). In 1975, Randić introduced the connectivity index,
commonly referred to as the Randić index (cf. [2]). Over the years, this index has emerged
as the predominant molecular descriptor in Quantitative Structure–Property Relationship
(QSPR) and Quantitative Structure–Activity Relationship (QSAR) studies (cf. [2]). Its
mathematical properties have been extensively examined, as succinctly outlined in two
recent monographs [2,3]. Moreover, various modifications and alternative formulations of
this index have been proposed in the scientific literature (cf. [4,5]). In the present discourse,
we also explore a closely affiliated variant of the connectivity index, denoted as the sum-
connectivity index [6]. For some recent progress on the structure–property modeling of
the physicochemical properties of nanostructures and bio-molecular networks, we refer
to [7–10].

In order to test the quality of a certain class of molecular graphical descriptors, it is
customary to conduct comparative testing by selecting suitable test molecules and their
particular chemical properties. Gutman and Tošović [11] tested the quality of degree-
dependent graphical descriptors for correlating the physicochemical properties of ismeric
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octanes (representatives of alkanes). Malik et al. [12] extended this study of degree-based
molecular indices from octane-isomers to benzenoid hydrocarbons (BHs). Hayat et al. [13]
(resp. Hayat et al. [14]) further extended the work from physicochemical properties to the
quantum-theoretical (resp. thermodynamic) properties of BHs.

In their study, Gutman and Tošović [11] selected isomeric octanes as test molecules,
whereas, other studies [11,12,14] opted for the lower 20–30 BHs as test molecules for their
investigation. Moreover, Gutman and Tošović [11] and Malik et al. [12] selected the normal
boiling point (bp) and the standard enthalpy of formation ΔHo

f to represent physicochemical
characteristics. Van der Waals and intermolecular forms of interactions are represented by
bp, whereas, ΔHo

f advocates for the thermal characteristics of a compound. On the other
hand, the total π-electronic energy (Eπ) was selected to represent quantum-theoretical
characteristics by Hayat et al. [13] and the entropy and heat capacity were selected to
advocate for thermodynamic properties by Hayat et al. [14].

All of the aforementioned quality testing revealed the strong potential of both gen-
eral product-connectivity Rα and sum-connectivity SCIα indices to efficiently correlate the
physicochemical, thermodynamical, and quantum-theoretical characteristics of benzenoid
hydrocarbons. For instance, Malik et al. [12] showed that, among all degree-based descrip-
tors, R−1 and SCI−2 are the top two indices in correlating physicochemical characteristics
of BHs. Similarly, Hayat et al. [13] showcased that SCI− 1

2
and R−0.2661 are the best descrip-

tors in predicting the Eπ of BHs, whereas Hayat et al. [14] showed that SCI−3 and R−1
are best two indices for correlating the thermodynamic properties of BHs. However, the
disadvantage to these studies is that they consider both Rα and SCIα in their comparative
testing for only finite values of α, i.e., α ∈

{
± 1

2 ± 1,±2
}

. Since both Rα and SCIα deliver
strong potential in correlating various properties of BHs, it is natural to consider these
indices by considering the general α ∈ R \ {0}. Note that there might be a possibility that
some other nonlinear function φ(dx, dy), for instance considering other powers of α, could
work even better. However, the current study is restricted to investigating the estimation
potential of Rα and SCIα only.

In summary, current comparative studies considered Rα and SCIα for α ∈
{
± 1

2 ± 1,±2
}

and showed that both Rα and SCIα with some of these values of α correlate well with
the physicochemical properties as well as the total π-electron energy (Eπ) of benzenoid
hydrocarbons (BHs). For instance, Malik et al. [12] showed that R−1 and SCI−2 are the
top two best degree-based predictors for correlating the physicochemical properties of BHs.
Moreover, Hayat et al. [13] showed that SCI− 1

2
correlates well with the Eπ of BHs. The only

limitation of these studies was that they considered Rα and SCIα for α ∈
{
± 1

2 ± 1,±2
}

only.
So, if Rα and SCIα deliver good predictors for these fixed integral values, both Rα and SCIα

might deliver even better predictors if we consider the general values of α ∈ R \ {0}.
In this paper, we determine the value(s) of α for which both SCIα and Rα deliver

strong predictive potential for the physicochemical properties of BHs. Multiple correlation
and regression analyses were also conducted to find the best α for which the strongest
multiple correlation is delivered both by SCIα and Rα simultaneously. Following Gutman
and Tošović [11], the physicochemical properties bp and ΔHo

f were selected as the test
properties of BHs. Moreover, 22 lower BHs were selected as the test molecules as the public
availability of the experimental values of bp and ΔHo

f is ensured for these test molecules. A
computational method was used to calculate the SCIα and Rα of these 22 BHs and then a
detailed statistical analysis was conducted to find the suitable values of α for which both
SCIα and Rα deliver strong predictive potential.

2. Mathematical Preliminaries

For a chemical graph G = (VG, EG), a degree-based graphical index GId takes the
general form GId = ∑

xy∈EG

φ(dx, dy), where φ is a symmetric map and di is the degree of

i ∈ VG. The product-connectivity index of G, proposed by Randić in [15] back in 1975, is
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one of the earliest degree-based graphical indices. Later on, the index was renamed as the
Randić index. Mathematically, it takes φ = (dxdy)

− 1
2 in GId. Thus, the product-connectivity

descriptor R(G) is defined as :

R(G) = GId, where φ(dx, dy) =
1√
dxdy

(1)

The diversity of its applicability in cheminformatics makes the Randić index one of most-
studied structure graphical descriptors. For instance, its mathematical and chemical prop-
erties were extensively examined in [2,16–19].

Introduced by Zhou and Trinajstić [6], the sum-connectivity index is another degree-
related molecular graphical descriptor. For a graph G, it considers φ = (dx + dy)

− 1
2 in GId.

Therefore, the sum-connectivity SCI(G) of G has the defining structure:

SCI(G) = GId, where φ(dx, dy) =
1√

dx + dy
(2)

The reader is suggested [12,13,20,21] for further studies on both applicative and mathemat-
ical perspectives of the sum-connectivity index.

The successful applicability of the product-connectivity and sum-connectivity indices
motivated researchers to consider variants of these descriptors. Perhaps, the most well-
studied variants are the generalized variants of the product- and sum-connectivity indices.
For α ∈ R, if φ = (dxdy)α (resp. φ = (dx + dy)α), the index is called the general product-
connectivity Rα (resp. general sum-connectivity SCIα) index. The general product-connectivity
index was put forward by Bollobás and Erdös [4] in 1998 while generalizing the classical
R(G) index:

Rα(G) = GId, where φ(dx, dy) = (dxdy)
α, (3)

where α ∈ R \ {0}. There have been numerous contributions in the chemical and math-
ematical literature published on the general product-connectivity index, see, for exam-
ple, [2,22–25].

Similarly, Zhou and Trinajstić [26] in 2010 proposed the general sum-connectivity
index with the following defining structure:

SCIα(G) = GId, where φ(dx, dy) = (dx + dy)
α, (4)

where α ∈ R \ {0}. A detailed mathematical treatment is reported in [27–30]. The appli-
cation perspective of SCIα is reported in Gutman and Tošović [11] and Hayat et al. [14].
Obviously,

R(G) = R−0.5(G)

SCI(G) = SCI−0.5(G)

In the field of statistics, the correlation coefficient between two finite-mean random
variables X and Y is defined to be ρXY = cov(X, Y)/σXσY ∈ [−1, 1], where cov is the
covariance function, and σX and σY represent the standard deviations of the random
variables X and Y, respectively. The correlation coefficient measures both the direction and
strength of the linear relationship between a predictor Y and a response variable X. For
a series of k measurements of these variables, denoted by xn and yn (n = 1, 2, . . . , k), the
value ρXY is estimated by

rxy =
∑k

n=1(xn − x̄)(yn − ȳ)√
∑k

n=1(xn − x̄)2
√

∑k
n=1(yn − ȳ)2

, (5)
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where x̄ = 1
k ∑k

n=1 xn and ȳ = 1
k ∑k

n=1 yn. Values of |ρXY| closer to 1 indicate a strong linear
relationship between X and Y.

The correlation coefficient is strongly linked to the concept of the linear regression of Y
against X by assuming a regression line Y = aX + b + ε where ε represents random errors,
and {a, b ∈ R} are coefficients to be estimated. The ordinary least squares method is typically
employed, with closed-form solutions of the estimators â and b̂ for a and b, respectively,
being readily available and widely known. In particular, for this simple linear regression
model, â = rxysy/sx, where sx and sy are the unbiased estimators of σx and σY, respectively,
while b̂ = ȳ− âx̄. Evidently, the correlation is related to the slope of the regression line.

The standard error of fit and correlation coefficient are both key goodness-of-fit measures
in regression analysis. The standard error of fit is defined as

s(Y, X) =

√√√√ 1
k− 2

k

∑
n=1

(yn − y′n)2 (6)

where y′n = âxn + b̂ (the regression line’s resulting predicted value). This quantifies how
much the observed values deviate from the values predicted by the model. Using various
types of mathematical or statistical software, they can be calculated.

The linear regression model can be extended to include multiple predictors, e.g.,
X1, . . . , Xp. Suppose we have two predictors X1 and X2, we may define the multiple
correlation measure between these predictors and a single response variable Y as follows:

R =

√(
rx1y rx2y

)( 1 rx1x2

rx2x1 1

)−1(rx1y
rx2y

)
∈ [0, 1].

In the context of multiple linear regression, the quantity R2 is usually referred to as the
coefficient of determination. It is interpreted as the proportion of variability in the response
variable Y that is accounted for by the predictor variables X1 and X2. The value R, thus,
provides a measure of the correlation between the observed values of Y and the values
predicted by the multiple linear regression model involving X1 and X2.

3. Materials and Methods

Every benzenoid hydrocarbon can be inherently depicted through a benzenoid system,
defined as a finite, connected plane graph devoid of cut vertices, wherein each internal face
is enclosed by a regular hexagon possessing sides of unit length.

The following definitions, as presented in [31], are applicable. Let B be a benzenoid
system with v vertices and p hexagons. For any path p1 − p2 − · · · − p�+1 of length � (� ∈
N, � ≥ 1) within B, the associated vertex degree sequence is defined as (dp1 , dp2 , . . . , dp�+1).
Subsequently, a fjord, cove, bay, and fissure refer to paths with degree sequences (2, 3, 3, 3, 3,
2), (2, 3, 3, 3, 2), (2, 3, 3, 2), and (2, 3, 2), respectively. These paths are traversed along the
perimeter of B, as depicted in Figure 1. Fjords, coves, bays, and fissures are all considered
different types of inlets. The number of inlets, k, is then defined as the total number of
fjords, coves, bays, and fissures summed.

Suppose a benzenoid system B has p hexagons, k inlets, and v vertices. Let nij denote
the number of B’s edges that satisfies the conditions da = i and db = j, where da and db,
respectively, are the degrees of the ends a and b of an edge. By Lemma 1 in [31], we have

n22 = v− 2p− k + 2, n23 = 2k, n33 = 3p− k− 3. (7)

By (3) and (7), the benzenoid system B has the general product-connectivity index as follows:

Rα(B) = n224α + n236α + n339α

= (4α)v + (3 · 9α − 2 · 4α)p + (2 · 6α − 4α − 9α)k− 3 · 9α + 2 · 4α,
(8)
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By (4) and (7), the benzenoid system B has the general sum-connectivity index as follows:

SCIα(B) = n224α + n235α + n336α

= (4α)v + (3 · 6α − 2 · 4α)p + (2 · 5α − 4α − 6α)k− 3 · 6α + 2 · 4α,
(9)

Figure 1. Fissure , cove, bay, and fjord in a benzenoid system.

We employ (8) and (9) to compute the Rα and SCIα for the 22 lower BHs given in Table 1.
Table 1 provides information on the molecular structure, normal boiling point (bp),

and standard enthalpy of formation (ΔHo
f ) for various polycyclic aromatic hydrocarbons

(PAHs). Additionally, Table 2 presents data on the general product-connectivity index Rα

and the general sum-connectivity index SCIα for the 22 lower BHs.

Table 1. The structural configuration of molecules, along with the experimental data pertaining to
the standard enthalpy of formation (ΔHo

f ) and the normal boiling point (bp), is provided for a set of
22 lower benzenoid hydrocarbons.

Molecule Structure ΔHo
f bp

Benzene 75.2 80.1

Naphthalene 141 218

Phenanthrene 202.7 338

Anthracene 222.6 340

Chrysene 271.1 431

Benzo[a]anthracene 277.1 425

Triphenylene 275.1 429

Tetracene 310.5 440

Benzo[a]pyrene 296 496

Benzo[e]pyrene 289.9 493

Perylene 319.2 497

Anthanthrene 323 547

Benzo[ghi]perylene 301.2 542
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Table 1. Cont.

Molecule Structure ΔHo
f bp

Dibenzo[a,c]anthracene 348 535

Dibenzo[a,h]anthracene 335 535

Dibenzo[a,j]anthracene 336.3 531

Picene 336.9 519

Coronene 296.7 590

Dibenzo(a,h)pyrene 375.6 596

Dibenzo(a,i)pyrene 366 594

Dibenzo(a,l)pyrene 393.3 595

Pyrene 221.3 393

Table 2. The general product-connectivity index Rα and the general sum-connectivity index SCIα of
the 22 lower benzenoid hydrocarbons.

Molecule Rα SCIα

Benzene 6 · 4α 6 · 4α

Naphthalene 6 · 4α + 4 · 6α + 9α 6 · 4α + 4 · 5α + 6α

Phenanthrene 7 · 4α + 6 · 6α + 3 · 9α 7 · 4α + 6 · 5α + 3 · 6α

Anthracene 6 · 4α + 8 · 6α + 2 · 9α 6 · 4α + 8 · 5α + 2 · 6α

Chrysene 8 · 4α + 8 · 6α + 5 · 9α 8 · 4α + 8 · 5α + 5 · 6α

Benzo[a]anthracene 7 · 4α + 10 · 6α + 4 · 9α 7 · 4α + 10 · 5α + 4 · 6α

Triphenylene 9 · 4α + 6 · 6α + 6 · 9α 9 · 4α + 6 · 5α + 6 · 6α

Tetracene 6 · 4α + 12 · 6α + 3 · 9α 6 · 4α + 12 · 5α + 3 · 6α

Benzo[a]pyrene 7 · 4α + 10 · 6α + 7 · 9α 7 · 4α + 10 · 5α + 7 · 6α

Benzo[e]pyrene 8 · 4α + 8 · 6α + 8 · 9α 8 · 4α + 8 · 5α + 8 · 6α

Perylene 8 · 4α + 8 · 6α + 8 · 9α 8 · 4α + 8 · 5α + 8 · 6α

Anthanthrene 6 · 4α + 12 · 6α + 9 · 9α 6 · 4α + 12 · 5α + 9 · 6α

Benzo[ghi]perylene 7 · 4α + 10 · 6α + 10 · 9α 7 · 4α + 10 · 5α + 10 · 6α

Dibenzo[a,c]anthracene 9 · 4α + 10 · 6α + 7 · 9α 9 · 4α + 10 · 5α + 7 · 6α

Dibenzo[a,h]anthracene 8 · 4α + 12 · 6α + 6 · 9α 8 · 4α + 12 · 5α + 6 · 6α

Dibenzo[a,j]anthracene 8 · 4α + 12 · 6α + 6 · 9α 8 · 4α + 12 · 5α + 6 · 6α

Picene 9 · 4α + 10 · 6α + 7 · 9α 9 · 4α + 10 · 5α + 7 · 6α

Coronene 6 · 4α + 12 · 6α + 12 · 9α 6 · 4α + 12 · 5α + 12 · 6α

Dibenzo(a,h)pyrene 8 · 4α + 12 · 6α + 9 · 9α 8 · 4α + 12 · 5α + 9 · 6α
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Table 2. Cont.

Molecule Rα SCIα

Dibenzo(a,i)pyrene 8 · 4α + 12 · 6α + 9 · 9α 8 · 4α + 12 · 5α + 9 · 6α

Dibenzo(a,l)pyrene 9 · 4α + 10 · 6α + 10 · 9α 9 · 4α + 10 · 5α + 10 · 6α

Pyrene 6 · 4α + 8 · 6α + 5 · 9α 6 · 4α + 8 · 5α + 5 · 6α

4. Results and Discussion

Recall that the general product-connectivity index Rα and the general sum-connectivity
index SCIα considering a range of values α exhibit a high degree of accuracy in predicting
the boiling point and enthalpy of formation for the lower benzenoid hydrocarbons (BHs).

First, we employed the method described in Section 3 to evaluate the exact analytical
expressions for Rα and SCIα for the 22 lower BHs provided in Table 1. In particular, we
utilized expressions for Rα and SCIα in (8) and (9), respectively, to compute their exact
values. Note that, we only needed the number of vertices v, the number of inlets k, and the
number of hexagons p for a given hexagonal system to compute its Rα and SCIα values.
The next example explains the methodology in Section 3 to compute the general sum- and
product-connectivity indices for a given BH graph.

Example 1. Let us consider the graph of phenanthrene, e.g., P from Table 1. Then, P comprises
two fissures, one bay (three inlets in total), three hexagons, and 14 vertices. Thus, v = 14, k = 3,
and p = 3. Using these values in (8) and (9), we obtain:

Rα(P) = 7 · 4α + 6 · 6α + 3 · 9α

SCIα(P) = 7 · 4α + 6 · 5α + 3 · 6α.

By using this method for all the graphs in Table 1, we generated the data in Table 2.
From the data shown in Table 2, we generated four curves, as illustrated in Figures 2–5.

For these 22 lower BHs, the correlation coefficient curves for their physicochemical proper-
ties (bp in Figures 2 and 3; ΔH0

f in Figures 4 and 5) and the indices (Rα or SCIα) are drawn
in the respective figures in solid lines, distinguished by colors.

Figure 2. Correlation coefficient curves between general indices and bp of lower benzenoids (far view).
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Figure 3. Correlation coefficient curves between general indices and bp of lower benzenoids.

Figure 4. Correlation coefficient curves between general indices and ΔH0
f of lower benzenoids (far

view).

Figure 5. Correlation coefficient curves between general indices and ΔH0
f of lower benzenoids.
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Comparing the two general indices, the general product-connectivity index Rα is the
best measure of the boiling point bp for BHs for α ∈ (−0.4630, 0), as shown in Figure 3,
while for any other α, the sum-connectivity index SCIα is the best. On the other hand,
as measures of the enthalpy of formation ΔHo

f of benzenoid hydrocarbons, the general
product-connectivity index Rα is better for α ∈ (−2.2887, 0), as can be seen in Figure 5,
while for any other α, the sum-connectivity index SCIα is better.

There exists a good correlation between bp and Rα when α is in some interval. For
example, for α ∈ [−1.154217, 0.681350], bp and Rα have a correlation coefficient greater
than 0.996558. Similarly, there also exists—for α in different intervals—a good correlation
between bp and SCIα, between ΔH0

f and Rα, and between ΔH0
f and SCIα, as shown in

Figure 6.

Figure 6. Intervals for good ρ for bp-Rα, bp-SCIα, ΔH0
f -Rα, ΔH0

f -SCIα for lower BHs.

By Figures 3 and 5, we have that, for the 22 lower BHs, R−0.3303 and R−1.7205 are the
most linearly correlated with bp and ΔH0

f , respectively, among all product-connectivity

indices, and SCI−0.6233 and SCI−3.2496 are the most linearly correlated with bp and ΔH0
f ,

respectively, among all sum-connectivity indices. The linear correlations (with 95% con-
fidence intervals) between the physicochemical properties (bp and ΔH0

f ) and both of the
aforementioned indices, respectively, are given below:

bp = 39.693±1.540 − 42.183±20.161 R−0.33030,

ρ(bp, R−0.33030) = 0.996558, s(bp, R−0.33030) = 10.9571,
(10)

bp = 59.430±2.334 − 40.884±20.388 SCI−0.62336,

ρ(bp, SCI−0.62336) = 0.996463, s(bp, SCI−0.62336) = 11.1067,
(11)

ΔH0
f = 300.943±30.399 − 85.181±38.305 R−1.72056,

ρ(ΔH0
f , R−1.72056) = 0.977344, s(ΔH0

f , R−1.72056) = 16.5206,
(12)

ΔH0
f = 2486.468±260.362 − 82.232±39.402 SCI−3.24966,

ρ(E, SCI−3.24966) = 0.975715, s(E, SCI−3.24966) = 17.0968,
(13)

Note that s and ρ are the standard error of fit and correlation coefficient, respectively.
Figure 7 shows scatter plots between the boiling point bp and the indices R−0.33030 and
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SCI−0.62336, and scatter plots between the enthalpy of formation ΔH0
f and the indices

R−1.72056 and SCI−3.24966 for the 30 lower benzenoids.

Figure 7. Scatter plots of bp-R−0.33030, bp-SCI−0.62336, ΔH0
f -R−1.72056, ΔH0

f -SCI−3.24966 for lower
benzenoids.

It is obvious from (10)–(13) that the product-connectivity indices R−0.33030 and R−1.72056,
respectively, are the best for measuring the boiling point and enthalpy of formation among
all the examined indices. All the Octave codes have been made publicly accessible. See the
Supplimentary Information at the end of the paper.

Recall that Gutman and Tošović [11] considered bp and ΔH0
f to be representatives of

physicochemical properties. Moreover, they considered isomeric octanes as test molecules.
We applied our study on the 18 isomeric octanes and the preliminary results showed that
the value(s) of α for the 22 lower BHs yielding a good estimate of bp and ΔH0

f were not the
same as they were for isomeric octanes. Thus, the current study and the corresponding
intervals/values of α are limited to BHs only. However, we expect a similar behavior for
other BHs (different from the 22 lower BHs considered in this study) as well.

5. Simultaneous Predictive Potential of Rα and SCIα

In this section, we are interested in finding value(s) of α for which the correlation of
either Rα or SCIα with both properties bp and ΔHo

f simultaneously is the strongest. In
order to achieve that, we need to consider the multiple correlation coefficient of either Rα or
SCIα with both bp and ΔHo

f by treating them as two independent variables. Let Y = Rα be
the dependent variable and X1 = bp, X2 = ΔHo

f be the two independent variables. Note
that the multiple correlation determines the relationship with one dependent and more
than one independent variable. Since there are two representatives of physicochemical
properties, i.e., bp and ΔHo

f , we employ multiple correlation between one graphical descrip-
tor GId ∈ {Rα, SCIα} and the two chosen properties X1 = bp, X2 = ΔHo

f . This was able
to deliver the predictive potential of a descriptor with the two properties simultaneously
rather than determining .the correlation strength of the considered descriptor with both
properties individually.

In the case where the response variable y depends on an unknown parameter α ∈ R,
the value of multiple correlation ρ above also depends on α, i.e., ρ := ρ(α). A preliminary
plot of ρ(α) in the region −10 < α < 10 reveals a unimodal shape with a maxima in this
region. A built-in optimizer in the R programming language was employed that yielded
the value α̂ = −0.319 that maximizes the multiple correlation value ρ(α̂) = 0.997. Figure 8
presents the corresponding plot elaborating this calculation.
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Figure 8. Plot delivering the value α̂ = −0.319 for Rα, which maximizes the multiple correlation
value ρ(α̂) = 0.997.

Figure 9 exhibits the matrix plot showing the distribution of the variables as well as
the bivariate relationships between them (using the optimal value α̂).

Figure 9. Distribution of variables Y = Rα and X1 = bp, X2 = ΔHo
f and the bivariate relationships

between them. Moreover, the main diagonal entries present the distribution of data points. The ***
denotes the continuance of decimal expression.

Next, we study the multiple correlation ρ := ρ(α) between Y = SCIα and the two
chosen physicochemical properties X1 = bp, X2 = ΔHo

f . In the case where the response
variables y depends on an unknown parameter α ∈ R, the value of R above also depends
on α, i.e., ρ := ρ(α). A preliminary plot of ρ(α) in the region −10 < α < 10 again reveals a
unimodal shape with a maxima in this region. This time, the built in R optimizer yielded the
value α̂ = −0.553, so ρ(α̂) = 0.996. Figure 10 presents the corresponding plot elaborating
these values.

Figure 10. Plot delivering the value α̂ = −0.553 for SCIα, which maximizes the multiple correlation
value ρ(α̂) = 0.996.
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Figure 11 exhibits the matrix plot, showing the distribution of the variables as well as
the bivariate relationships between them (using the optimal value α̂).

Figure 11. Distribution of variables Y = SCIα and X1 = bp, X2 = ΔHo
f and the bivariate relationships

between them. Moreover, the main diagonal entries present the distribution of data points. The ***
denotes the continuance of decimal expression.

6. Conclusions

We showed in this paper that there is good correlation between the boiling point (bp)
and general product-connectivity index (Rα), between bp and the general sum-connectivity
index (SCIα), between the enthalpy of formation (ΔH0

f ) and Rα, and between ΔH0
f and SCIα

when α is in some intervals (as in Figure 6) for benzenoid hydrocarbons. Moreover, for
α ∈ (−0.4630, 0) and α ∈ (−2.2887, 0) (marked with blue dashed lines in Figures 3 and 5),
Rα rather than SCIα is a better measure of the boiling point and enthalpy of formation,
respectively, of G. For an α outside those intervals, SCIα is a better measure of both the
boiling point and enthalpy of formation of G.

7. Future Work

This paper examined the correlation power of the general product-connectivity index
and general sum-connectivity index to determine the boiling point (bp) of benzenoid hy-
drocarbons, and their correlation power to determine the enthalpy of formation (ΔH0

f ) of
benzenoid hydrocarbons. We propose further studies to similarly examine other general-
ized valency-based indices in determining the bp and ΔH0

f of benzenoid hydrocarbons. We
also propose the following open problem:

Problem 2. Can one use a learning technique to learn a nonlinear function φ(dx, dy) of minimal
complexity that is a best predictor of GId?

Supplementary Materials: Octave 7.2 scripts used to generate results and draw Figures 2–7 are pro-
vided on GitHub: https://github.com/AzriArfan/Correl_of_RandSCI_between_bpandH (accessed
on 10 March 2024).
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31. Rada, J.; Araujo, O.; Gutman, I. Randić index of benzenoid systems and phenylenes. Croat. Chem. Acta 2001, 74, 225–235.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

38



axioms

Article

Biequivalent Planar Graphs

Bernard Piette

Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK; b.m.a.g.piette@durham.ac.uk

Abstract: We define biequivalent planar graphs, which are a generalisation of the uniform polyhedron
graphs, as planar graphs made out of two families of equivalent nodes. Such graphs are required to
identify polyhedral cages with geometries suitable for artificial protein cages. We use an algebraic
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300 nodes each with valencies ranging between three and six. We also present a graphic representation
of every graph found.
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1. Introduction

Recently, we showed that to construct a polyhedral cage (p-cages for short) one must
use planar graphs to characterise how the different faces of a p-cage are linked together [1].
P-cages are assemblies of regular or nearly regular polygons but with holes. The nodes
of the graph correspond to the faces of the p-cage, while the edges determine which
of the faces are sharing an edge. P-cages correspond to the mathematical description
of the geometry of artificial protein cages, which are being developed for targeted drug
delivery [2]. To form spontaneously, such protein cages must be symmetric so that each face
is equivalent, modulo a rotation, to all the other faces. The simplest p-cages candidates for
artificial protein cages are hence p-cages made out of a single type of polygon, where all the
faces are equivalent, thus having modulo rotation [3]. To be good candidates, p-cages must
have small holes, and each face should have at least four neighbours each. Unfortunately,
the number of such p-cages is relatively small. As an alternative, it is natural to consider
protein cages made out of two types of polygons. In [4], we have constructed such p-cages
but with the restriction that each face of a given type must be connected to face of the other
type. Unfortunately, very few of these p-cages have small holes.

The next step is then to construct p-cages made out of two types of polygons but
allowing each face to be adjacent to any type of face. To achieve this task, as explained in [1],
one must characterise all the planar graphs made out of two families of nodes such that the
nodes of a given family are equivalent to each other modulo to achieve automorphism of
the graph. Planar graphs for which all the nodes are equivalent to each other correspond to
the planar graphs of all the convex uniform polyhedra [5] (They are examples of Cayley
graphs). The aim of this paper is to determine a list of all the planar graphs made out of
two equivalent types of nodes with valencies ranging from three to six. This restriction
comes from the fact that the faces of a p-cage must have at least three neighbours and
cannot have more than six without being heavily irregular.

Artificial protein cages have been experimentally generated by a number of research
groups. One of the first ones was the TRAP-cage made out of 24 hendecagonal faces, which
are also called TRAP-rings [2,6]. More recently, a smaller protein cage was shown to be
made out of 12 of the same TRAP-protein hendecagonal rings [7].

Axioms 2024, 13, 437. https://doi.org/10.3390/axioms13070437 https://www.mdpi.com/journal/axioms39
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A number of other artificial protein cages have been made experimentally [8–11].
These cages are similar to virus capsids but require metal atoms to bind together [12].
The motivation to create these protein nanocages is to develop new method of drug
delivery [13–17] by enclosing the drug inside such cages. By adding to the protein cages
receptors that can bind to a target cell, such as cancer cells for example [13], the protein
cages can be swallowed by the cell, where the drug is then released [18]. For expensive
drugs, this method would greatly reduce the cost of medical treatment, and as only the
targeted cells receives the drug, thus greatly reducing the side effects. Our ultimate aim it
to identify geometries that can be used by nanobioengineers to create new protein cages.

The study of the structure of protein cages is quite new, and most investigations have
so far been mostly experimental [19,20]. The formal mathematical description of polyhedral
cages, as well as the connection between their structure and planar graphs, were identified
in our previous work [1].

Graphs do occur in a number of areas of science such as the study of complex protein
networks [21], quantum field theory [22], neurology [23], or mathematics [24]. The symme-
try of graphs has been studied extensively [25], but here, we restrict ourselves to planar
graphs. As we have stated above, planar graphs where all the nodes are equivalent, modulo
of an automorphism of the graphs, and correspond to the planar graphs of convex uniform
polyhedra. In this paper, we are constructing planar graphs made out of two families of
equivalent nodes.

2. Characteristics of Potential Graphs

We define a biequivalent planar graph as a planar graph made out of nodes split in
two families such that any node of a given family can be mapped to any other node of
the same family via an automorphism of the graph. For the reasons mentioned in the
introduction, in what follows, we restrict ourselves to graphs with a node valency ranging
from three to six. Notice that loops are excluded from planar graphs.

Each planar graph is made of a number of nodes connected together by edges that
then define faces. Each face is then characterised by the number of nodes from each family,
as well as their cyclic order around the face. To be equivalent, the nodes of a given family
must all be adjacent to the same type of faces and in the same order. To find biequivalent
graphs, we start by using the Euler formula that states that for any planar graph consisting
of F faces, E edges, and V nodes/vertices, the following condition is always satisfied:
V − E + F = 2. This will allow us to find restrictions on the number of nodes, as well as the
number and types of faces belonging to the graphs. We must emphasise that in the Euler
formula, the outside of the graph is considered as a face. This is easy to understand when
one visualises the graphs as a planar projection of a 3D polyhedron.

Considering planar graphs made out of V1 nodes of type 1, with each having valency
L1 and V2 nodes of type 2 of valency L2, we denote n(i1, i2) as the number of faces with
i1 nodes of type 1 and i2 nodes of type 2. Then, we have that the total number of edges E
and faces F are given by

E = ∑
j=1,2

1
2

LjVj (1)

F = ∑
i1

∑
i2

n(i1, i2). (2)

Moreover,

V1 = ∑
i1

i1
L1

∑
i2

n(i1, i2)

V2 = ∑
i2

i2
L2

∑
i1

n(i1, i2). (3)
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Then, as a result,

V = V1 + V2 = ∑
i1

∑
i2

(
i1
L1

+
i2
L2

)
n(i1, i2). (4)

Substituting these expressions for F, E, and V into the Euler formula, we have

∑
i1

∑
i2

n(i1, i2)
(

1 +
i1
L1

+
i2
L2

)
− 1

2 ∑
i1

∑
i2

(i1 + i2)n(i1, i2) = 2. (5)

Now, by multiplying (5) by 2L1L2, we obtain

∑
i1

∑
i2

n(i1, i2)(2 L1 L2 + i1L2(2− L1) + i2L1(2− L2)) = 4 L1 L2. (6)

If each node of type j belongs to vj,i1,i2 faces with i1 nodes of type 1 and i2 nodes of
type 2, we have

V1 =
i1 n(i1, i2)

v1,i1,i2
, (7)

and similarly for any i2:

V2 =
i2 n(i1, i2)

v2,i1,i2
. (8)

Indeed, for every face with i1 nodes of type 1 and i2 nodes of type 2, i1n(i1, i2) is the number
of nodes of type 1, and V1 is multiplied by the number of faces of that type adjacent to
nodes of type 1 and similarly for nodes of type 2. This only works because all the nodes of
a given type are equivalent.

Then, by definition, we also have

∑
i2

∑
i1

v1,i1,i2 = L1, ∑
i1

∑
i2

v2,i1,i2 = L2 . (9)

To construct all biequivalent planar graphs, we must find the integers i1, i2, and
n(i1, i2) satisfying (6). We must then compute V1 and V2 using (3) and reject the cases where
V1 and V2 are not integers. We must next compute v1,i1,i2 and v2,i1,i2 using (7) and (8), thus
keeping only the cases for which they are integers that satisfy (9).

To do so, we have written a computer program (available from zenodo), which
when given values for L1 and L2, scans all the possible combinations of n(i1, i2) polygons
made out of i1 type 1 and i2 type 2 nodes, thus considering polygonal faces such that
3 ≤ i1 + i2 ≤ 10, with a maximum of 300 faces.

We have restricted ourselves to decagonal faces, because they are the largest polygons
occurring in Archimedean solids and also because they already lead to p-cages with very
large holes. We restricted ourselves to 300 faces to capture all the graphs, which are
derivatives of the planar graphs corresponding to the Archimedean solids. We did so for
3 ≤ L1 ≤ 6 and L1 ≤ L2 ≤ 6. When L1 = L2 = 3, the program completes in a few minutes,
but for L1 = 5, L2 = 6 it ran for 3 months on a powerful workstation. We did run the
program for larger polygons and more faces (up to 1000) for some of the smaller values of
L1 and L2 but did not obtain any more graphs other than the one derived from the prisms
and antiprisms, of which there is an infinite number.

The program generates a list of potential graph characteristics (PGCs) of the type

[4 5; 5 4 0, 10 2 1; 2 0, 2 1; 5 1; 10 2]
valencies faces 0 & 1 node 1 node 2 # nodes
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The first two numbers correspond to the valencies of the graphs 4 and 5 for nodes of
type 1 and 2, respectively. The value 5 4 0, 10 2 1 indicates that the graph is made out
of five squares of valency, four nodes, and 10 triangles made out of two valency 4 and one
valency 5 nodes. The value 2 0, 2 1 indicates that the type 1 nodes are adjacent to two
faces of type 0 (the squares) and two faces of type 1 (the triangles). The value 5 1 indicates
that the nodes of type 2 are adjacent to five faces of type 1. The value 10 2 specifies that
there are 10 nodes of type 1 and 2 nodes of type 2. The total number of faces is hence 15 in
this case.

Between the nine pairs of valencies considered and after filtering out double entries
when L1 = L2 and in cases where there are no edges linking the two types of nodes, the
program generated over 30,000 PGCs, but only just over 1% of these correspond to an
actual planar graph. As an example of an impossible graph, the PGC [3 3; 1 0 4, 2 2
1, 2 4 0; 1 1, 2 2; 1 1, 2 0; 4 2] specifies that the type 2 nodes must be adjacent
to two squares 0 4, but as there is only one square, this is not possible.

As the next step, we must consider all the PGCs and try to convert them into actual
graphs, thus discarding those for which this is not possible.

3. Construction of the Graphs

3.1. The Faces of the Graph

Each graph is made out of the faces and nodes as specified in the PGC described in the
previous section. A face with i1 nodes of type 1 and i2 nodes of type 2 can assume different
configurations referring to the order in which the nodes are distributed. For example, up to
cyclic rotations, an hexagon (2, 4) can have the following configurations: (1, 2, 2, 1, 2, 2),
(1, 2, 1, 2, 2, 2), or (1, 1, 2, 2, 2, 2). In the first case, all the nodes 1 are equivalent, and there are
two types of nodes of type 2 (Some nodes 2 have the cyclic sequence 1, 2, 2, 1, 2 on the right,
while others have 2, 1, 2, 2, 1). For the last two cases, there are two types of node 1 and four
types of node 2. In what follows, we refer to these as the C-signature of the face, and we
call Nc(i1, i2) the number of different C-signatures for the face (i1, i2). We then label these
configurations as Cj(i1, i2), where j ∈ [1, Nc(i1, i2)] indexes the different configurations.
In the example above, Nc(2, 4) = 3, C1(2, 4) := (1, 2, 2, 1, 2, 2), C2(2, 4) := (1, 2, 1, 2, 2, 2),
and C3(2, 4) := (1, 1, 2, 2, 2, 2).

The cycle of the configuration, CyCj(i1,i2), is the smallest number of single cyclic
rotations needed to recover the configuration. In the example above, we have CyC1(2,4) = 3
and CyC2(2,4) = CyC3(2,4) = 6.

Each node on a face will have an index number, as well as a reduced index number
corresponding to the lowest index amongst all the equivalent nodes of the same type.
The reduced index of index i is simply i mod CyCj(i1,i2) (Notice that the index corresponds
to an offset and hence starts at 0). For example, the reduced indices of 1, 2, 2, 1, 2, 2 are
(0, 1, 2, 0, 1, 2), while the reduced indices of (1, 2, 1, 2, 2, 2) and (1, 1, 2, 2, 2, 2) are the actual
indices: (0, 1, 2, 3, 4, 5).

We call the node multiplicity of a face configuration CJ(i1, i2) as the number of
nonequivalent nodes of type t that it contains, and we label it as MtCJ(i1,i2). The multiplicity
of a type t node for a given configuration is simply given by MtCJ(i1,i2) = it/CyCj(i1,i2).

In the example above, M1C1(2,4) = 1, and M1C2(2,4) = M1C3(2,4) = 2; as well, M2C1(2,4) =
2, and M2C2(2,4) = M2C3(2,4) = 4.

Having described the faces of the graph, we must now consider the nodes.

3.2. The Nodes of the Graph

The planar graphs we are considering are of two types and can be of different valencies.
Each node of a given type will be surrounded by a sequence of faces of the different types,
and to be equivalent, that sequence must be the same for every node, thus being modulo
for a cyclic rotation.

As described above, each node of type t will be surrounded by vt,i1,i2 faces made out of
i1 nodes of type 1 and i2 nodes of type 2, and for the type t nodes to be equivalent, it is not
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just the type of face that must be in the same sequence, but the C-signatures of these faces
must be in the same sequence as well. Moreover, every nodes of type t must have the same
reduced indices for each of the matching face signatures in the sequence. By convention,
we label them in the anticlockwise order.

Figure 1 illustrates this as an example where the nodes of type 1 have valency 3, and
the nodes of type 2, marked with a read dot, have valency 4. The graph is made out of
two triangles, (0, 3), and nine squares, (2, 2). So, we have Nc(0, 3) = 2 and Nc(2, 2) = 9,
and we define C1(0, 3) = (2, 2, 2), C1(2, 2) = (1, 2, 1, 2), and C2(2, 2) = (1, 1, 2, 2). Notice
that one of the 222 face sits outside the graph, but if we picture the graph as a polyhedron,
it corresponds to the bottom of the polyhedron. In what follows, we call that face the
outside face.

The nodes of type 1 have the face sequence (C1(2, 2), C2(2, 2), C2(2, 2)) with the corre-
sponding reduce indices (0, 1, 0). This also means that v1,0,3 = 0, and v1,2,2 = 3. The multi-
plicity of the face configurations are then M1,C1(0,3) = 0, M1,C1(2,2) = 1, and M1,C2(2,2) = 2.

The nodes of type 2 have the face sequence (C1(0, 3), C2(2, 2), C1(2, 2), C2(2, 2)) with
the corresponding reduced indices (0, 2, 1, 3). This also means that v2,0,3 = 1, and v2,2,2 = 3.
The multiplicity of the face configurations are then M2,C1(0,3) = 1, M2,C1(2,2) = 1, and
M2,C2(2,2) = 2.
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Figure 1. Graph made out of six valency 3 nodes (type 1), six valency 4 nodes (type 2) and the
following faces: 2 C1(0, 3) = (2, 2, 2), 3 C1(2, 2) = (1, 2, 1, 2), and 6 C2(2, 2) = (1, 1, 2, 2). Nc(0, 3) = 2,
and Nc(2, 2) = 9. The reduced indices of each node are the black digits in the corner of each face.

Notice that the sum of the multiplicities of a type t node for the different configurations
must be less than or equal to vt,i1,i2 :

∑
j

MtCj(i1,i2) ≤ vt,i1,i2 . (10)

In the example above, we have

M1C1(0,3) = 0 ≤ v1,0,3 = 0

M2C1(0,3) = 1 ≤ v2,0,3 = 1

M1C1(2,2) + M1C2(2,2) = 1 + 2 ≤ v1,2,2 = 3

M2C1(2,2) + M2C2(2,2) = 1 + 2 ≤ v2,2,2 = 3. (11)

To determine the possible arrangements of faces around a node, we must consider all
the permutations of the different face signatures for each of their possible configurations.
For example, if a trivalent node of type 1 is surrounded by one (1, 2) face and two (2, 4)
faces, the possible arrangements are as follows: (We order the faces in the anticlockwise

43



Axioms 2024, 13, 437

order around the node, and the nodes are also ordered in the anticlockwise order around a
face. The first node on the face signature is the node considered).

• (1,2,2), (1,1,2,2,2,2), (1,1,2,2,2,2)
• (1,2,2), (1,2,2,2,2,1), (1,1,2,2,2,2)
• (1,2,2), (1,2,2,2,2,1), (1,2,2,2,2,1)
• (1,2,2), (1,1,2,2,2,2), (1,2,2,2,2,1)

The first three configurations are illustrated in the same order in Figure 2, where we see
that only the second configuration leads to compatible nodes. Indeed, not all configurations
are compatible, and the neighbouring faces must have matching node types: on the first
arrangement, the second face must have a second node of type 2 to match the (1, 2, 2) face,
and the two hexagons have a node mismatch above the green dot. One sees graphically that
the only compatible configuration is the middle one: (1, 2), (1, 2, 2, 2, 2, 1), (1, 1, 2, 2, 2, 2).
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Figure 2. Fitting of a (1, 2, 2) triangle and two 1, 1, 2, 2, 2, 2 hexagon around a trivalent node. The green
dot corresponds to the node being fitted. Red labels indicate incompatible node types.

If we denote as Cj(i1, i2)[k] the kth index of the configuration Cj(i1, i2), the condition
is that if A and B are two successive configurations in that order around a node with
respective index a and b for the node, we must have

A[(a− 1)mod PA] = B[(b + 1)mod PB] (12)

where PA and PB are the number of edges of, respectively, face A and B.
To construct a graph from a given PGC, we start by selecting a C-signature for each of

the faces making the graph. For both types of node, we order the different faces around the
node, as well as select a reduced index of the node for each face. We then pick a face as the
outside face, as well as a node on that face. We then try to add the different faces around
that node in the preselected order. Once a node is completed, we move to the adjacent
node and keep working our way through all the nodes but stop when the addition of a face
leads to a node type clash. We must then move one step backward and skip the addition of
the previous face. One must also stop and move one step back when all the faces or all the
nodes have been used. This is a recursive algorithm which, in some cases, can take a very
long time. When the graph is completed, one can stop and move on to the next potential
node and face configuration.

To find all the possible graphs for a given PGC, we must consider all the possible
combinations of the face C-signatures, as well as all the possible orders of these faces around
each type of node. This leads to a very large number of possibilities, but most of them can
be easily ruled out using simple matching node incompatibility, as described above.

To understand how to construct a graph, we start by describing how to deconstruct
one. If we start from a full graph and remove a given face, keeping the nodes and the edges
belonging to the other faces, the graph acquires a hole (the graph still looks the same, as
we have not removed any edges yet, but the removed face should be viewed as a hole in
the graph). We then remove a second face by removing the edges common to the holes and
that face. In the process, the hole becomes larger. We keep removing faces adjacent to the
hole until we are left with the outside face with just a hole in it.

To build a graph, we proceed the other way round, thus starting from the outside face
and adding faces inside the hole. We must consider every type of face that the graph is
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made of, as well as every rotation of the nodes. There is a very large number of ways to
do this: many face additions can be ruled out by the constrains described above. When
adding any face at a given location fails to satisfy all the constraints, we must remove the
previous face and try again with another face instead. This is a recursive algorithm. We
output a graph when it is completed.

We have written a computer program, available from Zenodo, (the link is given at the
end of the paper), which builds a planar graph using the algorithm described above, thus
using as input a PGC generated by the program described in the previous section.

It is usually best to take the largest face as the outside face, but sometimes, taking a
different face generates or rejects a graph much faster. For some parameters, the program takes
several weeks to complete, but in most cases, the graphs are rejected within a few minutes.

Some of the graphs have a chiral symmetry and hence correspond to two different
graphs. Most of the time, the characteristics of a potential graph correspond to a single
graph, modulo to the chiral symmetry, but in some instances, they actually correspond to
two or even three totally different graphs.

Some graphs can be excluded easily though. For example, the graph corresponding to
the PGC [3 4; 1 6 0, 2 0 3, 2 3 0, 2 3 1; 1 0, 1 2, 1 3; 1 3, 3 1; 6 2] has
to contain one hexagon made out of valency 3 nodes, as well as a triangle made out
of valency 3 nodes (see Figure 3a). The triangle 3 0 must share an edge with the hexagon
6 0 so that two of the valency 3 nodes are adjacent to a 3 0 and a 6 0 face. The remaining
two edges of the triangle must then be shared with an edge from the 3 1, but as a result,
the third node of the triangle is adjacent to two 3 1, which is not one as requested.

(6,0)

(3,0)

(3,1)

(3,1)
(10,0)

(2,2)
(2,2)

(2,2)

(2,2)

(2,2)
(2,2)

(2,2)

(2,2)

(2,2)

(2,2)

(a) (b)

Figure 3. Examples of impossible PGCs: (a) 34_F9_1-6-0_2-0-3_2-3-0_2-3-1_V6_2;
(b) 34_F122_10-0-8_12-10-0_120-2-2_V120_80.

As another example, the PGC [3 4; 10 0 8, 12 10 0, 120 2 2; 1 2, 2 3; 1 1,
3 3; 120 80] specifies that each face 10 0 must be surrounded by 10 2 2 forming a
compound decagon (see Figure 3b). We must then find a way to form the planar graph of a
uniform polyhedra made out of twelve decagons and ten octagons, but this is known to
not exist, as there is no corresponding regular polyhedron.

We have run our computer program to construct all the biequivalent graphs with
valencies ranging from three to six and made at most 300 faces ranging from triangle to
decagons. In the next section, we describe each of these graphs.

4. Results

Most of the biequivalent graphs can be seen as modifications of the planar graph of
a uniform polyhedron, where extra nodes and edges are added in symmetrically. So, we
will present these graphs as different categories of such modifications, but we will start
with the graphs derived from simple polygons. As shown in Appendix A, there are no
planar graphs made exclusively out of valency 6 nodes. As a result, we can only consider
the following pairs of valency values (L1, L2): (3,3), (3,4), (3,5), (3,6), (4,4), (4,5),
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(4,6), (5,5) and (5,6). The data files describing the PGC, the graph connectivities, and
the vector graphic representations of the graphs are available from Zenodo.

The drawing of a graph depends on the choice of the outside face, and most of the
time, we have chosen the largest polygon for it. The connectivity between the different
nodes, on the other hand, remains the same, regardless of the chosen outside face, and a
description of each graph as a set of pair of nodes linked together can be found as plain
text files available from Zenodo.

Most graphs can be seen as a member of a family of similarly obtained graphs, such
as, for example, the addition of a pyramid on the bases of prisms. As we have identified
over 400 different graphs, we only include one example of each family in the main text,
but the supplementary file contains a graphic representation of every graph that we have
found. On the figures, the nodes of type 2 are indicated with a red dot.

The names of the graphs are derived from their PGC and are of the type d1d2_Fn_n1−
i1,1 − i1,2_n2 − i2,1 − i2,2_ . . . _nk − ik,1 − ik,2_Vv1_v2, where d1 and d2, with d1 ≤ d2, are the
valencies of the nodes, n is the total number of faces of the graph, nj is the number of
faces of type ik,1, ik,2, and vk is the number of nodes of type k. For example, |45_F15_5-
4-0_10-2-1_V10_2| is a graph made out of ten valency 4 nodes and two valency 5 nodes,
with a total of fifteen faces: five squares (4, 0) and ten triangles (2, 1). When more than one
graph correspond to a given PGC, we add the suffix _a, _b, or _c at the end of the name to
differentiate them. We also add a * after the p-cage name when the graph is chiral.

To describe the families of graphs, we sometimes use some parameters, say P, and in-
clude an arithmetic expression inside curly brackets. For example, {2P+1} should be
thought of as the value of 2P + 1.

We now proceed by describing each graph and how they can be described as modifi-
cations of known structures. As an abuse of language, we use the names of regular solids
to refer to their planar graphs.

In what follows, we will be using some graph components to describe the biequivalent
graphs. They are presented in Figure 4, where the blue dots represent the nodes that will
be linked to the rest of the graph. We will also use the following abbreviations: P-gone for a
polygon with P edges, P-star for a polygonal star with P branches, P-fan for polygonal fan
with P blades, split P-fan for a split polygonal fan with P blades, inverted P-fan for inverted
polygonal fans with P blades, and P-mosaic for mosaic with a P-gon at its centre. We also
refer to pyramids, prisms, and antiprisms with a P-gonal base as, respectively, P-pyramids,
P-prisms, and P-antiprisms.

(a) (b) (c) (d)

(e) (f)

(g) (h) (i)

Figure 4. (a) 2D diamond, (b) 2D bubble diamond, (c) linked P-gon. (d) polygonal stars, (e) polygonal
fans, (f) polygonal split fans, (g) polygonal inverted fans, (h) linked P-gon face, (i) mosaic polygon.
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4.1. Special Graphs

Some graphs do not fall in any special category and should be considered as special:

• Two alternating diamonds: 34_F8_4-1-3_4-2-1_V4_4, (see Figure 5a).
• One 2D diamond and one 2D bubble diamond: 36_F8_4-1-2_4-2-1_V4_2, (see Figure 5b)
• Three 2D diamonds: 36_F9_3-2-2_6-2-1_V6_2, (see Figure 5c)
• Multitriangles: 45_F12_4-2-1_8-1-2_V4_4 (see Figure 5d).

(a) (b) (c) (d)

Figure 5. Special graphs: (a) 34_F8_4-1-3_4-2-1_V4_4, (b) 36_F8_4-1-2_4-2-1_V4_2, (c) 36_F9_3-2-

2_6-2-1_V6_2, (d) 45_F12_4-2-1_8-1-2_V4_4.

4.2. Polygonal Dressing Graphs

• Replacing every second edge of a 2P-gone by a 2D diamond yields the following:
33_F2P+2_2-P-2P_2P-2-1_VP_P, P = 4, 6, 8, (see Figure 6a,b)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Dressed polygons: (a) 33_F4_2-1-2_2-2-1_V2_2, (b) 33_F6_2-2-4_4-2-1_V4_4, (c) 35_F14_2-0-

6_6-1-2_6-2-1_V6_6, (d) 34_F8_2-3-3_6-2-1_V6_3, (e) 44_F18_2-0-4_8-2-1_8-2-2_V8_8, (f) 46_F18_2-4-

0_8-1-2_8-2-1_V8_4. (g) 44_F17_2-5-0_5-2-2_10-2-1_V10_9, (h) 55_F32_2-0-5_10-1-2_20-2-1_V10_10.

• Replacing every second edge of a 2P-gon by a 2D bubble diamond yields the following:
35_F{4P+2}_2-0-{2P}_{2P}-1-2_{2P}-2-1_V{2P}_{2P}, P = 2, 3, 4, 5 (see Figure 6c).

• P joined up 2D diamonds yield the following: 34_F{2P+2}_2-{P}-{P}_{2P}-2-1_V4_2,
P = 2, 3, 4, 5, (see Figure 6d)

• Inverted P-fans on both sides of a P-gon: 44_F{4P+2}_2-0-P_{2P}-2-1_{2P}-2-2_V{2P}_{2P},
P ≥ 3. (see Figure 6e).

• Two back-to-back P-stars on a polygon: 46_F{4P+2}_2-0-P_{2P}-1-2_{2P}-2-1_V{2P}_{P},
P ≥ 3. (see Figure 6f).

• Two back-to-back P-stars: 44_F{3P+2}_2-P-0_P-2-2_2P}-2-1_V{2P}_{P}, P ≥ 3.
(see Figure 6g).

• Two P-mosaics back to back: 55_F{6P+2}_2-0-P_{2P}-1-2_{4P}-2-1_V{2P}_{2P}, P ≥ 3.
When P = 3, this is an icosahedron. (see Figure 6h).
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4.3. Pyramid Derived Graphs

• P-pyramids with graphs of the following type: 3P_F{P+1}_1-P-0_0-P-2-1_VP_1, P =
3− 6. (see Figure 7a).

• Two P-pyramids joined at the base: 4P_F{2P}_{2P}-1-2_V2_P, P = 3, 4, 5, 6. P = 4 is
the octahedron. (see Figure 7b).

• P squares joined at a vertex, with two of them joined together: 3P_F{2P}_2P-1-3_V{2P}_2.
(see Figure 7c).

• Two truncated P-pyramids joined at the base: 34_F{2P+2}_2-P-0_{2P}-2-2_V{2P}_P,
P ≥ 3, (see Figure 7d).

(a) (b) (c) (d)

Figure 7. Dressed polygons: (a) 35_F6_1-5-0_5-2-1_V5_1, (b) 45_F10_10-1-2_V5_2, (c) 35_F10_10-3-

1_V10_2, (d) 34_F12_2-5-0_10-2-2_V10_5.

4.4. Prism Derived Graphs

• The nodes of the prisms can be split in two symmetric subsets in two different ways:
top base and bottom base nodes, F{P+2}_1-0-P_1-P-0_P-2-2_VP_P (see Figure 8a),
or, for even P values, alternating nodes on top and bottom base F{2P}_{2P}-2-{P/2}-

{P/2}_P-2-2_V6_6_a * (see Figure 8b), as well as F{2P}_{2P}-2-{P/2}-{P/2}_P-2-2_V6_6_b

(see Figure 8c).
• P-prisms with a P-pyramid on each base: 3P_F{3P}_P-0-4_{2P}-1-2_V2_{2P} P ≥ 3 (see

Figure 8d).
• P-risms with 4-pyramids on the square faces: 44_F{4P+2}_2-0-P_{4P}-1-2_V{P}_{2P}

P ≥ 3, (see Figure 8e).
• P-prism with a truncated 4-pyramid on each side face: 35_F{5P+2}_2-0-P_P-4-0_{4P}_2-

2_V{2P}_{2P} *, P ≤ 3 (see Figure 8f).
• P-prisms with a truncated P-pyramid on each base: 34_F{3P+2}_2-P-0_P-0-4_{2P}-2-

2_V{2P}_{2P}, P ≤ 3 (see Figure 8g).
• P-prisms where the base is replaced by a linked P-gon: 33_F14_2-0-P_{2P}-3-2_V{2P}_{2P},

P ≥ 3 (see Figure 8h).
• A P-prism where every other side is split in two triangles: 34_F{3P+2}_2-P-P_P-2-

2_{2P}-1-2_V{2P}_{2P} *, P = 2p, p ≥ 1 (see Figure 9a–c).
• P-prisms where every side edge becomes a 2D diamond: 34_F{3P+2}_2-0-P_P-2-4_{2P}-

2-1_V{2P}_{2P}, P ≥ 3, (see Figure 9d)
• P-prisms where the links between the two bases become a 2D bubble diamond:

36_F{5P+2}_2-0-P_P-0-4_{2P}-1-2_{2P}-2-1_V{2P}_{2P}, P ≥ 3, (see Figure 9e)
• P-prisms where the edges joining the bases are split into a square, and the two new

nodes are merged with the adjacent one, hence tiling the sides of the prism with
squares: 34_F{3P+2}_2-0-P_{3P}-2-2_V{2P}_{2P}, P ≥ 3, (see Figure 9f).

• P-prims with P-star bases, where P ≥ 3: 34_F{3P+2}_2-0-P_P-4-2_{2P}-1-2_V{2P}_{2P}

(see Figure 9g).
• A 2P-prism where the squares are split asymmetrically into two triangles: 35_F{4P+2}_2-

P-P_{4P}-1-2_V{2P}_{2P}, P ≥ 2 (see Figure 9h).
• P-prisms where the squares are split into four triangles and one square: 36_F{5P+2}_2-

0-P_P-2-2_{4P}-1-2_V{2P}_{2P} *, P ≥ 3, (see Figure 9i).
• P-prisms where every other vertex between the two bases becomes a 2D diamond:

35_F{4P+2}_2-0-P_{2P}-1-3_{2P}_2-1_V{2P}_{2P} *, P ≥ 3, (see Figure 9j).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Prism-derived graphs: (a) 33_F8_1-0-6_1-6-0_6-2-2_V6_6, (b) 33_F8_2-3-3_6-2-2_V6_6_a *,
(c) 33_F8_2-3-3_6-2-2_V6_6_b, (d) 46_F18_6-4-0_12-2-1_V12_2, (e) 45_F26_2-0-6_24-1-2_V6_12, (f)
35_F32_2-0-6_6-4-0_24-2-2_V24_12, (g) 34_F20_2-6-0_6-0-4_12-2-2_V12_12, (h) 33_F14_2-0-6_12-3-

2_V12_12.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Prism-derived graphs: (a) 34_F8_4-1-2_4-2-2_V4_4_a (parallel cut), (b) 34_F8_4-1-

2_4-2-2_V4_4_b *, (c) 34_F11_2-3-3_3-2-2_6-1-2_V6_6 *, (d) 34_F20_2-0-6_6-2-4_12-2-1_V12_12,
(e) 36_F32_2-0-6_6-0-4_12-1-2_12-2-1_V12_12, (f) 34_F20_2-0-6_18-2-2_V12_12, (g) 34_F20_2-0-

6_6-4-2_12-1-2_V12_12 (h) 35_F18_2-4-4_16-1-2_V8_8, (i) 36_F32_2-0-6_6-2-2_24-1-2_V12_12 *, (j)
35_F26_2-0-6_12-1-3_12-2-1_V12_12 *.

• P-prisms where the faces are split into two squares and two triangles: 35_F{4P+2}_2-0-

P_{2P}-1-2_{2P}_2-2_V{2P}_{2P}, P ≥ 3. This can be done in three different ways (see
Figure 10a–c).

• P-prism with a P-star on each base: 45_F{5P+2}_2-P-0_P-0-4_{2P}-1-2_{2P}-2-1_V{2P}_{2P},
P ≥ 3, (see Figure 10d).

• P-prisms where the squares are split into three triangles and a square: 45_F{5P+2}_2-

0-P_P-2-2_{2P}-1-2_{2P}-2-1_V{2P}_{2P} *, P ≥ 3, (see Figure 10e).
• P-prisms where the squares are split into six triangles: 46_F{6P+2}_2-0-P_{2P}-2-1_{4P}-

1-2_V{2P}_{2P} *, P ≥ 3, (see Figure 10f).
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(a) (b) (c)

(d) (e) (f)

Figure 10. Prism-derived graphs: (a) 35_F26_2-0-6_12-1-2_12-2-2_V12_12_a, (b) 35_F26_2-0-6_12-

1-2_12-2-2_V12_12_b, (c) 35_F26_2-0-6_12-1-2_12-2-2_V12_12_c, (d) 45_F27_2-5-0_5-0-4_10-1-2_10-

2-1_V10_10, (e) F27_2-0-5_5-2-2_10-1-2_10-2-1_V10_10 *, (f) 46_F32_2-0-5_10-2-1_20-1-2_V10_10 *.

4.5. Antiprism-Derived Graphs

• P-antiprisms where the two types of nodes are on each of the bases: 44_F{2P+2}_1-0-

P_1-P-0_P-1-2_P-2-1_VP_P, P ≥ 3 (see Figure 11a).
• P-antiprisms where the two types of nodes alternate between the bases: 44_F{2P+2}_2-

{P/2}-{P/2}_P-1-2_P-2-1_VP_P *, P ≥ 4 even, (see Figure 11b).
• P-antiprisms with a P-pyramid on each base: P5_F{4P}_{2P}-0-3_{2P}-1-2_V{2P}_{2P},

P = 3, 4, 5, 6, (see Figure 11c).
• P-antiprisms with two truncated P-gonal base pyramids: 35_F{4P+2}_2-P-0_{2P}-0-3_{2P}_2-

2_V{2P}_{2P}, P ≥ 3, (see Figure 11d).
• P-antiprism with a P-star base: 44_F{4P+2}_2-P-0_{2P}-1-3_{2P}-2-1_V{2P}_{2P}, P ≥ 3,

(see Figure 11e).
• P-antiprisms with P-fans added to the two bases: 46_F{6P+2}_2-P-0_{2P}-0-3_{2P}-1-

2_{2P}-2-1_V{2P}_{2P} *, P ≥ 3, (see Figure 11f).

(a) (b) (c)

(d) (e) (f)

Figure 11. Antiprism-derived graphs: (a) 44_F12_1-0-5_1-5-0_5-1-2_5-2-1_V5_5, (b) 44_F14_2-

3-3_6-1-2_6-2-1_V6_6 *, (c) 45_F16_8-0-3_8-1-2_V2_8, (d) 35_F22_2-5-0_10-0-3_10-2-2_V10_10, (e)
44_F22_2-5-0_10-1-3_10-2-1_V10_10, (f) 46_F32_2-5-0_10-0-3_10-1-2_10-2-1_V10_10.

50



Axioms 2024, 13, 437

4.6. Platonic Solids-Derived Graphs

The nodes of the Platonic solids can be split into two symmetric families, but these
graphs will also be characterised as part of other categories further done.

• Tetrahedron: 33_F4_2-1-2_2-2-1_V2_2.
• Cube: 33_F6_6-3-1_V6_2.
• Octahedron: 44_F8_8-2-1_V4_2.
• Dodecahedron: 33_F12_2-5-0_10-2-3_V10_10.
• Icosahedron: selecting two nodes on the poles of the solid 55_F20_10-2-1_10-3-0_V10_2.
• Icosahedron: selecting six nodes on the equator: 55_F20_2-3-0_6-2-1_12-1-2_V6_6.
• Platonic solids where the vertices become polygons, and the edges become two squares

so that the faces of the solids end up with twice as many edges:

– Tetrahedron: 34_F20_4-0-3_4-3-3_12-2-2_V12_12.
– Cube: 34_F38_6-4-4_8-0-3_24-2-2_V24_24.
– Octahedron: 34_F38_6-0-4_8-3-3_24-2-2_V24_24 (see Figure 12a).
– Dodecahedron: 34_F92_12-5-5_20-0-3_60-2-2_V60_60.
– Icosahedron: 34_F92_12-0-5_20-3-3_60-2-2_V60_60.

• Platonic solids where a pyramid is placed on four faces:

– Octhedron: 36_F16_4-0-3_12-1-2_V4_6 (see Figure 12b).
– Icosahedron: 36_F28_12-1-2_16-0-3_V4_12.

• Platonic solids where some faces become truncated pyramids:

– Tetrahedron: 36_F16_4-3-0_12-2-2_V12_4.
– Octahedron: 36_F20_4-0-3_4-3-0_12-2-2_V12_6 (see Figure 12c).
– Icosahedron: 36_F32_4-3-0_12-2-2_16-0-3_V12_12.

• Platonic solids where some P-gonal faces become P-stars. Doing this, the tetrahedron
becomes an octahedron, the cube becomes an the octahedron, and both become a
cuboctahedron, while the dodecahedron and icosahedron both become an icosidodec-
ahedron.

• Platonic solid where a face becomes a linked P-gon:

– Tetrahedron: 33_F10_4-3-0_6-4-2_V12_4.
– Cube: 33_F18_6-4-0_12-4-2_V24_8 (see Figure 12d).
– Octahedron: 34_F20_8-3-0_12-4-2_V24_6.
– Dodecahedron: 33_F42_12-5-0_30-4-2_V60_20.
– Icosahedron: 35_F50_20-3-0_30-4-2_V60_12.

• Platonic solids where every edge becomes a 2D diamond. The octahedron and icosa-
hedron lead to graphs with valency exceeding 6:

– Tetrahedron: 36_F16_4-3-3_12-2-1_V12_4,
– Cube: 36_F30_6-4-4_24-2-1_V24_8 (see Figure 12e),
– Dodecahedron: 36_F72_12-5-5_60-2-1_V60_20.

• Platonic solids where some edges become a 2D bubble diamond:

– Tetrahedron: 36_F12_4-0-3_4-1-2_4-2-1_V4_4.
– Dodecahedron: 36_F52_12-0-5_20-1-2_20-2-1_V20_20 (see Figure 12f).

• Octahedrom where every other face is a P-star: 44_F20_4-3-0_4-3-3_12-2-1_V12_6 (see
Figure 12g).

• Platonic solids with inverted P-fans replacing the faces. The octahedron and the
icosahedron have, respectively, valency 4 and 5 nodes, and this leads to graphs with a
valency exceeding six:

– Tetrahedron: 46_F22_4-3-0_6-2-2_12-2-1_V12_4.
– Cube: 46_F42_6-4-0_12-2-2_24-2-1_V24_8.
– Dodecahedron: 46_F102_12-5-0_30-2-2_60-2-1_V60_20.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Platonic solids-derived graphs: (a) 34_F38_6-0-4_8-3-3_24-2-2_V24_24, (b) 36_F16_4-0-

3_12-1-2_V4_6, (c) 36_F20_4-0-3_4-3-0_12-2-2_V12_6, (d) 33_F18_6-4-0_12-4-2_V24_8, (e) 36_F30_6-

4-4_24-2-1_V24_8, (f) 36_F52_12-0-5_20-1-2_20-2-1_V20_20. (g) 44_F20_4-3-0_4-3-3_12-2-1_V12_6,
(h) 46_F42_6-4-0_12-2-2_24-2-1_V24_8.

4.7. Archimedean Solids-Derived Graphs

• Truncated Platonic solids (the nodes of the other Archimedean solids cannot be split
into two equivalent families):

– Truncated octahedron: 33_F14_6-2-2_8-3-3_V12_12.
– Truncated cube: 33_F14_4-0-3_4-3-0_6-4-4_V12_12.
– Truncated cuboctahedron: 33_F26_6-4-4_8-3-3_12-2-2_V24_24 (see Figure 13a).
– Truncated icosidodecahedron: 33_F62_12-5-5_20-3-3_30-2-2_V60_60.

• Solids where a pyramid is placed on some of the faces of the truncated Platonic solids.
Only the face that does not touch similar faces can be tiled like this, as otherwise, the
equivalence is broken:

– Truncated tetrahedron (triangles): 34_F16_4-0-6_12-1-2_V4_12 (see Figure 13b).
– Truncated tetrahedron (hexagons): 56_F28_4-3-0_24-2-1_V12_4.
– Truncated cube (triangles): 34_F30_6-0-8_24-1-2_V8_24.
– Truncated octahedron (squares): 44_F32_8-6-0_24-2-1_V24_6.
– Truncated octahedron (hexagons): 56_F54_6-4-0_48-2-1_V24_8.
– Truncated dodecahedron (triangles): 34_F72_12-0-10_60-1-2_V20_60.
– Truncated icosahedron (pentagons): 45_F80_20-6-0_60-2-1_V60_12.
– Truncated icosahedron (hexagons): 56_F132_12-5-0_120-2-1_V60_20.

• Solids where a pyramid is placed on some faces of the Archimedean solids:

– Cuboctahedron (every other triangle): 35_F22_4-0-3_6-0-4_12-1-2_V4_12.
– Cuboctahedron (triangles): 36_F30_6-0-4_24-1-2_V8_12.
– Cuboctahedron (squares): 46_F32_8-0-3_24-1-2_V6_12.
– Rhombicuboctahedron (triangles): 35_F42_18-0-4_24-1-2_V8_24 (see Figure 13c).
– Rhombicuboctahedron (6 squares): 45_F44_8-0-3_12-0-4_24-1-2_V6_24.
– Rhombicuboctahedron (8 squares): 46_F62_6-0-4_8-0-3_48-1-2_V12_24.
– Icosidodecahedron (triangles): 36_F72_12-0-5_60-1-2_V20_30.
– Icosidodecahedron (pentagons): 56_F80_20-0-3_60-1-2_V12_30.
– Snub dodecahedron (pentagons): 56_F140_60-1-2_80-0-3_V12_60 *.
– Snub dodecahedron (20 triangles): 36_F132_12-0-5_60-0-3_60-1-2_V20_60 *.
– Rhombicosididecahedron (triangles): 35_F102_12-0-5_30-0-4_60-1-2_V20_60.
– Rhombicosididecahedron (squares): 46_F152_12-0-5_20-0-3_120-1-2_V30_60.
– Rhombicosididecahedron (pentagons): 55_F110_20-3-0_30-4-0_60-2-1_V60_12.
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• Truncated pyramid on truncated Platonic solids:

– Truncated tetrahedron (triangles): 34_F20_4-0-6_4-3-0_12-2-2_V12_12 (see Figure
13d).

– Truncated tetrahedron (hexagons): 35_F32_4-0-3_4-6-0_24-2-2_V24_12.
– Truncated cube (triangles): 34_F38_6-0-8_8-3-0_24-2-2_V24_24.
– Truncated cube (octagons): 35_F62_6-8-0_8-0-3_48-2-2_V48_24.
– Truncated dodecahedron (decagons): 35_F152_12-10-0_20-0-3_120-2-2_V120_60.
– Truncated icosahedron (pentagon): 34_F92_12-5-0_20-0-6_60-2-2_V60_60.
– Truncated icosahedron (hexagon): 35_F152_12-0-5_20-6-0_120-2-2_V120_60.
– Truncated octahedron (squares): 34_F38_6-4-0_8-0-6_24-2-2_V24_24.
– Truncated octahedron (hexagons): 35_F62_6-0-4_8-6-0_48-2-2_V48_24.
– Truncated dodecahedron (triangles): 34_F82_12-0-10_20-3-0_60-2-2_V60_60.

• Truncated pyramid on other Archimedean solids:

– Snub cube (squares): 36_F62_6-4-0_24-2-2_32-0-3_V24_24 *.
– Snub cube (8 triangles): 36_F62_6-0-4_8-3-0_24-0-3_24-2-2_V24_24 *.
– Rhombicuboctahedron (triangles): 35_F50_8-3-0_18-0-4_24-2-2_V24_24.
– Snub dodecahedron (pentagons): 36_F152_12-5-0_60-2-2_80-0-3_V60_60 *.
– Snub dodecahedron (triangles): 36_F152_12-0-5_20-3-0_60-0-3_60-2-2_V60_60 *.
– Cuboctahedron (squares): 36_F38_6-4-0_8-0-3_24-2-2_V24_12.
– Cuboctahedron(triangles): 36_F38_6-0-4_8-3-0_24-2-2_V24_12.
– Cuboctahedron (every other triangles): 35_F26_4-0-3_4-3-0_6-0-4_12-2-2_V12_12.
– Rhombicuboctahedron (6 squares): 35_F50_6-4-0_8-0-3_12-0-4_24-2-2_V24_24.
– Rhombicuboctahedron (8 squares): 36_F74_6-0-4_8-0-3_12-4-0_48-2-2_V48_24.
– Icosidodecahedron (pentagons): 36_F92_12-5-0_20-0-3_60-2-2_V60_30.
– Icosidodecahedron (triangles): 36_F92_12-0-5_20-3-0_60-2-2_V60_30.
– Rhombicosidodecahedron (triangles): 35_F122_12-0-5_20-3-0_30-0-4_60-2-2_V60_60.
– Rhombicosidodecahedron (pentagons): 35_F122_12-5-0_20-0-3_30-0-4_60-2-2_V60_60.

• Archimedean solids where some P-gonal faces become P-stars. This is only possible
when there is a P-fold rotation symmetry around the center of the P-gonal face:

– Truncated tetrahedron (triangles): 34_F20_4-0-3_4-6-3_12-1-2_V12_12.
– Truncated octahedron (squares): 34_F38_6-0-4_8-6-3_24-1-2_V24_24.
– Truncated icosahedron (pentagons): 34_F92_12-0-5_20-6-3_60-1-2_V60_60.
– Cuboctahedron (triangles): 44_F38_6-4-4_8-3-0_24-2-1_V24_12.
– Cuboctahedron (every other triangle): 44_F26_4-0-3_4-3-0_6-2-4_12-2-1_V12_12.
– Cuboctahedron (squares): 44_F38_6-4-0_8-3-3_24-2-1_V24_12.
– Rhombicuboctahedron (triangles): 44_F50_6-0-4_8-3-0_12-2-4_24-2-1_V24_24.
– Rhombicuboctahedron (squares): 44_F50_6-0-4_8-3-0_12-4-2_24-1-2_V24_24.
– Icosidodecahedron(triangles): 44_F92_12-5-5_20-3-0_60-2-1_V60_30.
– Icosidodecahedron (pentagons): 44_F92_12-0-5_20-3-3_60-2-1_V60_30.
– Snub cube (squares): 45_F62_6-4-0_8-0-3_24-1-3_24-2-1_V24_24 *.
– Snub cube (eight triangles): 45_F62_6-0-4_8-3-0_24-1-3_24-2-1_V24_24 *.
– Snub dodecahedron (pentagons): 45_F152_12-5-0_20-0-3_60-1-3_60-2-1_V60_60

*.
– Snub dodecahedron (20 triangles): 45_F152_12-0-5_20-3-0_60-1-3_60-2-1_V60_60

*.
– Rhombicosidodecahedron (triangles): 44_F122_12-0-5_20-3-0_30-2-4_60-2-1_V60_60.
– Rhombicosidodecahedron (pentagons): 44_F122_12-0-5_20-3-0_30-4-2_60-1-2_V60_60.

• Archimedean solids with some P-faces filled with a P-stars.
A P-star-filled cuboactahedron and icosidodecahedron have valency 8 nodes. The
following solids have nodes with valencies that are too large: truncated cubes (oc-
tagons), truncated octagons (hexagons), snub cubes, snub dodecahedrons, truncated
dodecahedrons (decagons), and truncated icosahedron (hexagons).

53



Axioms 2024, 13, 437

– Truncated tetrahedron (triangles): 45_F32_4-0-6_4-3-0_12-1-2_12-2-1_V12_12 (see
Figure 13f).

– Truncated tetrahedron (hexagons): 45_F32_4-0-3_4-3-0_12-1-3_12-2-1_V12_12 *.
– Truncated cube (triangles): 45_F62_6-0-8_8-3-0_24-1-2_24-2-1_V24_24.
– Truncated octahedron (squares): 45_F62_6-4-0_8-0-6_24-1-2_24-2-1_V24_24.
– Truncated dodecahedron (triangles): 45_F152_12-0-10_20-3-0_60-1-2_60-2-1_V60_60.
– Truncated icosahedron (pentagons): 45_F152_12-5-0_20-0-6_60-1-2_60-2-1_V60_60.
– Cuboctahedron (four triangles): 34_F20_4-0-3_4-6-3_12-1-2_V12_12.
– Rhomicuboctahedron (six squares): 46_F74_6-4-0_8-0-3_12-0-4_24-1-2_24-2-1_V24_24.
– Rhomicuboctahedron (triangles): 46_F74_8-3-0_18-0-4_24-1-2_24-2-1_V24_24.
– Rhomicosidodecahedron (pentagon): 46_F182_12-5-0_20-0-3_30-0-4_60-1-2_60-2-1.
– Rhomicosidodecahedron (triangles): 46_F182_12-0-5_20-3-0_30-0-4_60-1-2_60-2-1.

• Linked P-gon-filled truncated Platonic solids:

– Truncated tetrahedron: 34_F20_4-0-3_4-3-0_12-2-3_V12_12 *.
– Truncated cube: 34_F38_6-4-0_8-0-3_24-2-3_V24_24 * (see Figure 13g).
– Truncated octahedron: 34_F38_6-0-4_8-3-0_24-2-3_V24_24 *.
– Truncated dodecahedron: 34_F92_12-5-0_20-0-3_60-2-3_V60_60 *.
– Truncated icosahedron: 34_F92_12-0-5_20-3-0_60-2-3_V60_60 *.

• Archimedean solids where a face becomes a linked P-gon. When applying this to the
cuboctahedron, one obtains the truncated cube and the truncated octahedron. When
applying this to the icosidodecahedron, one obtains the truncated dodecahedron and
the truncated icosahedron. This cannot be applied to the truncated Platonic solids, as
this gives the same solid (truncation face) of an nonequivalent graph (adjacent faces):

– The snub cube (eight triangles) gives 34_F38_6-0-4_8-3-0_24-2-3_V24_24 (a linked
P-gon-filled truncated octahedron).

– The snub cube (squares) gives 34_F38_6-4-0_8-0-3_24-2-3_V24_24 (a linked P-
gon-filled truncated cube).

– The snub dodecahedron (20 triangles) gives 34_F92_12-0-5_20-3-0_60-2-3_V60_60

(a linked P-gon-filled truncated icosahedron).
– The snub dodecahedron (pentagons) gives 34_F92_12-5-0_20-0-3_60-2-3_V60_60

(a linked P-gon-filled truncated dodecahedron).
– Rhombicuboctahedron: 35_F26_6-0-4_8-3-0_12-4-4_V24_24 (see Figure 13h),.
– Rhombicosidodecahedron: 33_F62_12-0-5_20-3-0_30-4-4_V60_60.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Archimedean solids-derived graphs: (a) 33_F26_6-4-4_8-3-3_12-2-2_V24_24, (b) 34_F16_4-

0-6_12-1-2_V4_12, (c) 35_F42_18-0-4_24-1-2_V8_24, (d) 34_F20_4-0-6_4-3-0_12-2-2_V12_12, (e)
34_F38_6-0-4_8-6-3_24-1-2_V24_24, (f) 45_F32_4-0-6_4-3-0_12-1-2_12-2-1_V12_12 (g) 34_F38_6-4-

0_8-0-3_24-2-3_V24_24 *, (h) 35_F26_6-0-4_8-3-0_12-4-4_V24_24.
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• Truncated Platonic solids where some the 2P faces are filled with P-fans (P > 2). This
can be done in two different ways:

– Truncated tetrahedron: 45_F32_4-0-3_4-3-0_12-1-2_12-2-2_V12_12_a.
– Truncated tetrahedron: 45_F32_4-0-3_4-3-0_12-1-2_12-2-2_V12_12_b.
– Truncated cube 1: 45_F62_6-4-0_8-0-3_24-1-2_24-2-2_V24_24_a (see Figure 14a).
– Truncated cube 2: 45_F62_6-4-0_8-0-3_24-1-2_24-2-2_V24_24_b (see Figure 14b).
– Truncated cctahedron 1: 45_F62_6-0-4_8-3-0_24-1-2_24-2-2_V24_24_a.
– Truncated octahedron 2: 45_F62_6-0-4_8-3-0_24-1-2_24-2-2_V24_24_b.
– Truncated dodecahedron 1: 45_F152_12-5-0_20-0-3_60-1-2_60-2-2_V60_60_a.
– Truncated dodecahedron 2: 45_F152_12-5-0_20-0-3_60-1-2_60-2-2_V60_60_b.
– Truncated icosahedron 1: 45_F152_12-0-5_20-3-0_60-1-2_60-2-2_V60_60_a.
– Truncated icosahedron 2: 45_F152_12-0-5_20-3-0_60-1-2_60-2-2_V60_60_b.

• Archimedean solids where squares are split into two squares and two triangles. This
can be done in two different ways:

– Rhombicubotcahedron: 36_F62_6-0-4_8-0-3_24-1-2_24-2-2_V24_24_a (see Figure 14c).
– Rhombicubotcahedron: 36_F62_6-0-4_8-0-3_24-1-2_24-2-2_V24_24_b (see Figure 14d).
– Rhombicosidodecahedron: 36_F152_12-0-5_20-0-3_60-1-2_60-2-2_V60_60_a.
– Rhombicosidodecahedron: 36_F152_12-0-5_20-0-3_60-1-2_60-2-2_V60_60_b.

• Truncated Platonic solids with 2P-gon faces split into P squares:

– Truncated tetrahedron: 34_F16_4-0-3_12-1-3_V4_12 *.
– Truncated cube: 44_F32_8-3-0_24-3-1_V24_6 *.
– Truncated octahedron: 34_F30_6-0-4_24-1-3_V8_24 * (see Figure 14e).
– Truncated icosahedron: 34_F72_12-0-5_60-1-3_V20_60 *.
– Truncated dodecahedron: 45_F80_20-3-0_60-3-1_V60_12 *.

• As truncated Platonic solids have a 2-fold symmetry around the centre of the edges
shared by two identical faces, one can replace the edge with a 2D diamond. For the
truncated cube and truncated dodecahedron, this leads to faces with more than
10 edges:

– Truncated tetrahedron: 34_F20_4-0-3_4-3-6_12-2-1_V12_12.
– Truncated octahedron: 34_F38_6-0-4_8-3-6_24-2-1_V24_24 (see Figure 14f).
– Truncated icosahedron: 34_F92_12-0-5_20-3-6_60-2-1_V48_60.

• Archimedean solids with squares linking triangles are split into two triangles and a
square. This requires a 2-fold rotation symmetry of the solid around the split square:

– Split cuboctahedron: 35_F26_4-0-3_4-3-3_6-2-2_12-1-2_V12_12 * (see Figure 14g).
– Rhombicuboctahedron: 35_F50_6-4-4_8-0-3_12-2-2_24-1-2_V24_24 *.
– Rhombicuboctahedron: 35_F50_6-0-4_8-3-3_12-2-2_24-1-2_V24_24 *.
– Rhombicosidodecahedron: 35_F122_12-0-5_20-3-3_30-2-2_60-1-2_V60_60 *.
– Rhombicosidodecahedron: 35_F122_12-5-5_20-0-3_30-2-2_60-1-2_V60_60 *.

• Archimedean solids where some edges become a 2D bubble diamonds:

– Truncated tetrahedron: 36_F32_4-0-3_4-0-6_12-1-2_12-2-1_V12_12 (see Figure 14h).
– Truncated cube: 36_F62_6-0-8_8-0-3_24-1-2_24-2-1_V24_24.
– Truncated octahedron: 36_F62_6-0-4_8-0-6_24-1-2_24-2-1_V24_24.
– Truncated dodecahedron: 36_F152_12-0-10_20-0-3_60-1-2_60-2-1_V60_60.
– Truncated icosahedron: 36_F152_12-0-5_20-0-6_60-1-2_60-2-1.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14. Archimedean solids-derived graphs: (a) 45_F62_6-4-0_8-0-3_24-1-2_24-2-2_V24_24_a,
(b) 45_F62_6-4-0_8-0-3_24-1-2_24-2-2_V24_24_b, (c) 36_F62_6-0-4_8-0-3_24-1-2_24-2-2_V24_24_a,
(d) 36_F62_6-0-4_8-0-3_24-1-2_24-2-2_V24_24_b, (e) 34_F30_6-0-4_24-1-3_V8_24 *, (f) 34_F38_6-0-

4_8-3-6_24-2-1_V24_24, (g) 35_F26_4-0-3_4-3-3_6-2-2_12-1-2_V12_12 *, (h) 36_F32_4-0-3_4-0-6_12-1-

2_12-2-1_V12_12.

• Archimedean solids where some squares are split intro four triangles:

– Cuboctahedron: 36_F32_4-0-3_4-3-3_24-1-2_V12_12 * (see Figure 15a).
– Rhombicuboctahedron: 36_F32_4-0-3_4-3-3_24-1-2_V12_12 *.
– Rhombicuboctahedron: 36_F62_6-4-4_8-0-3_48-1-2_V24_24 *.
– Rhombicosidodecahedron: 36_F152_12-0-5_20-3-3_120-1-2_V60_60 *.
– Rhombicosidodecahedron: 36_F152_12-5-5_20-0-3_120-1-2_V60_60 *.

• Truncated Platonic solids where the faces are replaced by P-fans. This can only be done
with valency 3 graphs without exceeding the maximum valency, which we consider
as follows:

– Truncated tetrahedron: 44_F26_4-0-3_4-3-0_18-2-2_V12_12.
– Truncated cube and truncated octahedron:

44_F26_4-0-3_4-3-0_6-2-4_12-2-1_V12_12 (see Figure 14b).
– Truncated dodecahedron and truncated icosahedron:

44_F122_12-0-5_20-3-0_90-2-2_V60_60.

• Archimedean solids where the squares are split into four triangles to form braided links:

– Cuboctahedron: 45_F32_4-0-3_4-3-3_12-1-2_12-2-1_V12_12 *.
– Rhombicuboctahedron that is parallel braided: 45_F62_6-0-4_8-3-3_24-1-2_24-2-

1_V24_24 *.
– Rhombicuboctahedron that is perpendicular braided: 45_F62_6-4-4_8-0-3_24-1-

2_24-2-1_V24_24 * (see Figure 14c).
– Rhombicosidodecahedron that is parallel braided: 45_F152_12-5-0_20-0-3_60-1-

3_60-2-1_V60_6 *.
– Rhombicosidodecahedron that is perpendicular braided: 45_F152_12-5-5_20-0-

3_60-1-2_60-2-1_V60_60 *.

• Truncated Platonic solids with 2P-gonal faces replaced by split P-fans. For the trun-
cated cube and truncated icosahedron, this leads to nodes with valencies exceeding six:

– Truncated tetrahedron: 55_F38_4-0-3_4-3-0_6-2-2_12-1-2_12-2-1_V12_12 *.
– Truncated octahedron: 55_F74_6-0-4_8-3-0_12-2-2_24-1-2_24-2-1_V24_24 * (see

Figure 14d).
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– Truncated dodecahedron: 55_F182_12-0-5_20-3-0_30-2-2_60-1-2_60-2-1_V60_60

*.

• Truncated Platonic solids where the faces are P-mosaics:

– Truncated tetrahedron: 56_F44_4-0-3_4-3-0_12-2-1_24-1-2_V12_12 *.
– Truncated cube: 56_F86_6-4-0_8-0-3_24-2-1_48-1-2_V24_24 *.
– Truncated octahedron: 56_F86_6-0-4_8-3-0_24-2-1_48-1-2_V24_24 *.
– Truncated icosahedron: 56_F212_12-0-5_20-3-0_60-2-1_120-1-2_V60_60 *.
– Truncated dodecahedron: 56_F212_12-5-0_20-0-3_60-2-1_120-1-2_V60_60 *.

(a) (b) (c)

(d) (e)

Figure 15. Archimedean solids-derived graphs: (a) 36_F32_4-0-3_4-3-3_24-1-2_V12_12 *, (b)
44_F26_4-0-3_4-3-0_18-2-2_V12_12, (c) 45_F62_6-4-4_8-0-3_24-1-2_24-2-1_V24_24 *, (d) 55_F74_6-0-

4_8-3-0_12-2-2_24-1-2_24-2-1_V24_24 *, (e) 56_F86_6-4-0_8-0-3_24-2-1_48-1-2_V24_24 *.

4.8. Other Solids-Derived Graphs

• For solids with valency 4 nodes and a 2-fold rotational symmetry around each node,
one can replace the node with a 2D diamond:

– Octahedron: 34_F20_8-3-3_12-1-2_V12_12 * (see Figure 16a).
– Cuboctahedron: 34_F38_6-4-4_8-3-3_24-1-2_V24_24 * (see Figure 16b).
– Icosidodecahedron: 34_F92_12-5-5_20-3-3_60-1-2_V60_60 * (see Figure 16c).

(a) (b) (c)

Figure 16. Other solids-derived graphs: (a) 34_F20_8-3-3_12-1-2_V12_12 *, (b) 34_F38_6-4-4_8-3-

3_24-1-2_V24_24 *, (c) 34_F92_12-5-5_20-3-3_60-1-2_V60_60 *.

4.9. Dual of Archimedean Solids Graphs

The planar graphs of the dual of Archimedean solids with two inequivalent type of
faces have nodes that can be split into two families. These are the following:

• Triakis tetrahedron: 36_F12_12-1-2_V4_4 (see Figure 17a).
• Triakis hexahedron: 46_F24_24-1-2_V6_8 (see Figure 17b).
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• Pentakis dodecahedron: 56_F60_60-1-2_V12_20 (see Figure 17c).
• Rhomic dodecahedron: 34_F12_12-2-2_V8_6 (see Figure 17d).
• Rhomic tricontahedron: 35_F30_30-2-2_V20_12 (see Figure 17e).

The planar graphs of the dual of the truncated cube and the truncated dodecahedron
have valencies exceeding six and are hence not presented here.

(a) (b) (c)

(d) (e)

Figure 17. Archimedean solids-derived graphs: (a) Triakis tetrahedron: 36_F12_12-1-2_V4_4. (b) Triakis
hexahedron: 46_F24_24-1-2_V6_8. (c) Pentakis dodecahedron: 56_F60_60-1-2_V12_20. (d) Rhomic
dodecahedron: 34_F12_12-2-2_V8_6. (e) Rhomic tricontahedron: 35_F30_30-2-2_V20_12.

5. Conclusions

In this paper, we have defined biequivalent graphs as graphs made out of two families
of nodes equivalent in modulo to an automorphism of the graph. We have found 430 graphs
made out of up to 300 faces ranging from triangles to decagons and with valencies ranging
between three and six.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/axioms13070437/s1. graphs_full_list.pdf: a graphic representation
of all the graphs that we have identified.
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Appendix A

A maximal planar graph is a graph for which adding one edge would render the
graph nonplanar. Every maximal planar graph is made out of triangles. This means that
using F, E, and V for, respectively, the number of faces, edges, and nodes, we have

E = 3V − 6. (A1)

As the sum of the valencies of each node of the graph is 2E, the average valency of the
graph is

2E
V

= 6− 12
V

. (A2)

which is then strictly smaller than six. This means that maximal planar graphs must have at
least one node of a valency less than six, and as nonmaximal graphs, they can be obtained
by removing edges from some maximal graphs; this implies that it is impossible to have
planar graphs where all the nodes have a valency of six.
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1. Introduction

In many research articles, books, and monographs, Riemannian and pseudo-Riemannian
spaces have been studied. Some of the most significant authors who have developed the
theory of these spaces are L. P. Eisenhart [1], N. S. Sinyukov [2], J. Mikeš and his research
group [3–6], I. Hinterleitner [7,8], S. E. Stepanov [9], and many others.

An N-dimensional manifoldMN equipped with the regular symmetric metric tensor

gij, gij = gji is [2–6,10,11] the (pseudo-)Riemannian space
g
RN , where ij denote the sym-

metrization with respect to indices i and j. The affine connection (Levi–Civita connection)

coefficients of the space
g
RN are the Christoffel symbols Γi

jk, Γi
jk = Γi

kj, where Γi
jk = giαΓα.jk,

Γi.jk =
1
2
(

gji,k − gjk,i + gik,j
)
.

One kind of covariant derivative with respect to the symmetric metric tensor gij is

ai
j|gk = ai

j,k + Γi
αkaα

j − Γα
jkai

α, (1)

for a tensor ai
j of the type (1, 1), the Christoffel symbols Γi

jk and the partial derivative ∂/∂xk

are denoted by commas.
One Ricci identity [2–6] is founded with respect to the covariant derivative (1),

ai
j|gm|gn − aj|gn|gm = aα

j

g
Ri

αmn − ai
α

g
Rα

jmn. With respect to this identity, the curvature tensor,

the Ricci tensor, and the scalar curvature of the associated space
g
RN are obtained
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g
Ri

jmn = Γi
jm,n − Γi

jn,m + Γα
jmΓi

αn − Γα
jnΓi

αm, (2)
g
Rij =

g
Rα

ijα = Γα
ij,α − Γα

iα,j + Γα
ijΓ

β
αβ − Γα

iβΓβ
jα, (3)

g
R = gαβ

g
Rαβ = gαβ(Γγ

αβ,γ − Γγ
αγ,β + Γγ

αβΓδ
γδ − Γγ

αδΓδ
βγ

)
. (4)

Based on research articles
(
L. P. Eisenhart, [10,11]

)
, many researchers have studied

and developed the theories of generalized Riemannian spaces and special kinds of them.
The physical meaning of curvature tensors in the sense of Eisenhart’s definition is presented
in [12].

The studies about the affine connection spaces with torsion are started by the research
of L. P. Eisenhart [13]. An N-dimensional manifoldMN equipped with the affine connec-
tion with torsion ∇, whose coefficients are Li

jk, Li
jk �≡ Li

kj, for at least one pair of indices
(j, k), is the (general) affine connection space GAN .

The symmetric and antisymmetric parts of the coefficients Li
jk are

Li
jk =

1
2
(

Li
jk + Li

kj
)

and Li
jk
∨
=

1
2
(

Li
jk − Li

kj
)
.

The tensor Ti
jk = 2Li

jk
∨

is the torsion tensor for the space GAN .

The manifoldMN equipped with the torsion-free affine connection
0
∇, whose coeffi-

cients are Li
jk, is the associated space AN of the space GAN .

One kind of covariant derivative with respect to the affine connection
0
∇ is [2–6]:

ai
j|k = ai

j,k + Li
αkaα

j − Lα
jkai

α.

The corresponding Ricci-type identity is ai
j|mn − ai

j|nm = aα
j Ri

αmn − ai
αRα

jmn, where

Ri
jmn = Li

jm,n − Li
jn,m + Lα

jmLi
αn − Lα

jnLi
αm, (5)

is the curvature tensor of the space AN .
The Ricci tensor of the associated space AN is

Rij = Rα
ijα = Lα

ij,α − Lα
iα,j + Lα

ijL
β
αβ − Lα

iβLβ
jα. (6)

1.1. Generalized Riemannian Spaces

An N-dimensional manifoldMN equipped with the nonsymmetric metric tensor gij

is [1] the generalized Riemannian space G
g
RN

(
in the Eisenhart’s sense

)
.

The symmetric and antisymmetric parts of the metric tensor gij are

gij =
1
2
(

gij + gji
)

and gij
∨
=

1
2
(

gij − gji
)
.

We assume that the matrix
[
gij
]

is regular. In this case, gij is a metric tensor of some

Riemannian space, which we denote as
g
RN . Hence, the components gij of the contravariant

metric tensor are
[
gij] = [

gij
]−1. For this reason, the equality giαgjα = δi

j holds for the
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Kronecker δ-symbol δi
j. For this reason, the tensors gij and gij are used for lowering and

raising the indices in the G
g
RN space.

The affine connection coefficients of the G
g
RN space are the generalized Christoffell

symbols [1]:

Γi
jk =

1
2

giα(gjα,k − gjk,α + gαk,j
)
.

One obtains that the symmetric and antisymmetric parts Γi
jk =

1
2
(
Γi

jk + Γi
kj
)

and

Γi
jk
∨
=

1
2
(
Γi

jk − Γi
kj
)

are

Γi
jk =

1
2

giα(gjα,k − gjk,α + gαk,j
)
,

Γi
jk
∨
= −1

2
giα(gαj

∨
,k + gjk

∨
,α − gαk

∨
,j
)
.

The tensor 2Γi
jk
∨

is the torsion tensor for the space G
g
RN .

Motivated by the Einstein Metricity Condition

gij�k = gij,k − Γα
ikgαj − Γα

kjgiα = 0,

S. Ivanov and M. Lj. Zlatanović
(
see [14,15]

)
obtained the generalized Riemannian space

GRN , whose metric tensor is gij, but the affine connection coefficients are

Li
jk = Γi

jk −
1
2

giα(Tjαk + Tkαj + gkα|
1
j + gαj|

1
k − gjk|

1
α

)
+ Ti

jk, (7)

for gij|
1
k = gij,k − Lα

ikgαj − Lα
jkgiα and the torsion tensor Ti

jk, Ti
jk = −Ti

kj.

The curvature tensor and the Ricci tensor of the associated space RN are given by
((5) and (6)). The scalar curvature of the associated space RN is

R = gαβ(Lγ
αβ,γ − Lγ

αγ,β + Lγ
αβLδ

γδ − Lγ
αδLδ

βγ

)
, (8)

for the corresponding affine connection coefficients Li
jk.

The GRN space obtained and used in [14,15] is a special kind of affine connection
space GAN in Eisenhart’s sense [13].

1.2. Mappings of Space AN

Invariants of different mappings are significant objects in mathematical research.
Unlike in the theory of fixed points, where the existence of an object whose value does
not change under the action of a function is noted [16,17], in differential geometry, spe-
cific geometric objects are determined that do not change under the action of different
mappings [2–6,18,19].

The generalized Riemannian space G
g
RN in the Eisenhart’s sense [1] is the special case

of the affine connection space GAN
(
see [13]

)
.

A diffeomorphism f : AN → AN , in which the affine connection
0
∇ of the space AN

transforms to the affine connection
0
∇ of the space AN is the mapping of the space AN .
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If the mapping f transforms the affine connection coefficients Li
jk which correspond

to the affine connection
0
∇ of the space AN to the affine connection coefficients Li

jk of the

affine connection
0
∇ of the space AN , the tensor

Pi
jk = Li

jk − Li
jk, (9)

is the deformation tensor for the mapping f .
After adding a symmetric tensor πi

jk, πi
jk = πi

kj of the type (1, 2) to the affine connec-

tion coefficient Li
jk, i.e., Li

jk → Li
jk + πi

jk, one obtains the geometrical objects L̃i
jk which are

the coefficients of the corresponding (unique) affine connection
0
∇̃. For this reason, any

deformation tensor Pi
jk generates unique mapping f : AN → AN .

Geodesic Mappings of Space AN
A curve � =

(
�i(t)

)
in the space AN is a curve that satisfies the following system of

partial differential equations [2–6]

∂2�i

∂t2 + Li
αβ

d�α

dt
d�β

dt
= ρ

d�i

dt
,

for a scalar function ρ.
A mapping f : AN → ĀN , which any geodesic line of space AN transmits to a geodesic

line of the space ĀN , is the geodesic mapping [2–6].
The basic equation of geodesic mapping f is

L̄i
jk = Li

jk + ψjδ
i
k + ψkδi

j, (10)

for a 1-form ψj.
N. S. Sinyukov [2] and J. Mikeš with his research group [3–6] contracted the equal-

ity (10) by i and k, expressed the 1-form ψj as ψj =
1

N + 1
(

L̄α
jα − Lα

jα
)
, substituted this

expression into the basic Equation (12), and obtained that it is T̄gi
jk = Tgi

jk for

Ti
jk = Li

jk −
1

N + 1
(

Lα
jαδi

k + Lα
kαδi

j
)
, (11)

and the corresponding T̄i
jk. The geometric object Ti

jk is the Thomas Projective parameter

initially obtained by T. Thomas [20].
After that, N. S. Sinyukov [2] and J. Mikeš with his collaborators [3–6] applied H.

Weyl’s methodology [21] to obtain invariant from the transformation of curvature tensor
Ri

jmn caused by the basic Equation (10):

R̄i
jmn = Ri

jmn +
(
ψj|n − ψjψn

)
δi

m −
(
ψj|m − ψjψm

)
δi

n +
(
ψm|n − ψn|m

)
δi

j. (12)

They contracted the relation (12) by i and j, and obtained that it is ψm|n−ψn|m = Rmn− R̄mn.
The contraction of relation (12) by i and n gave

ψj|m − ψjψm =

(
N

N2 − 1
Rjm +

1
N2 − 1

Rmj

)
−
(

N
N2 − 1

R̄jm +
1

N2 − 1
R̄mj

)
. (13)

When substituting the expression (13) into the Equation (12), they obtained the equality
W̄i

jmn = Wi
jmn for
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Wi
jmn = Ri

jmn +
1

N + 1
δi

j
(

Rmn − Rnm
)

+
1

N2 − 1

((
NRjn + Rnj

)
δi

n −
(

NRjm + Rmj
)
δi

n

)
,

(14)

and the corresponding W̄i
jmn.

All of the traces Wα
jmα, Wα

jαn, Wα
αmn vanish. For this reason, it is not possible to use

the Weyl projective tensor to obtain an invariant for the geodesic mapping that is a linear
monic polynomial of Ricci tensor Rij.

The last presented methodology was used for obtaining invariants of mappings
defined on a nonsymmetric affine connection space GAN . Many authors have obtained
significant results in these generalizations. Some of them are M. S. Stanković [22–24], M. Lj.
Zlatanović [22–26], S. M. Minčić [23], M. S. Najdanović [27], and many others.
Preferred Methodology for Obtaining Invariants of Mappings

Motivated by the basic Equation (10) for geodesic mapping f : AN → ĀN , with substi-

tuted ψj =
1

N + 1
(

L̄α
jα − Lα

jα
)
,

L̄i
jk = Li

jk +
1

N + 1
(

L̄α
jαδi

k + L̄α
kαδi

j
)
− 1

N + 1
(

Lα
jαδi

k + Lα
kαδi

j
)
, (10a)

the methodology for obtaining invariants of a mapping F : AN → ĀN is developed in the
following way [19]:

• The deformation tensor L̄i
jk − Li

jk is expressed as

L̄i
jk − Li

jk = ω̄i
jk −ωi

jk, (15)

for geometrical objects ωi
jk = ωkj ∈ RN , ω̄i

jk = ω̄i
kj ∈ R̄N .

• In the next step, it was concluded that L̄i
jk − ω̄i

jk = Li
jk − ωi

jk. In this way, it was

proved that the geometrical object T i
jk = Li

jk −ωi
jk is an invariant for the mapping F.

The geometrical object T i
jk is the associated basic invariant of Thomas type for the

mapping F.
• In the next, based on the equality

T̄i
jm,n − T̄i

jn,m + T̄α
jmT̄i

αn − T̄α
jnT̄i

αm = Ti
jm,n − Ti

jn,m + Tα
jmTi

αn − Tα
jnTi

αm,

the next invariant for mapping F is obtained:

W i
jmn = Ri

jmn −ωi
jm|n + ωi

jn|m + ωα
jmωi

αn −ωα
jnωi

αm. (16)

The invariant W i
jmn is the associated basic invariant of the Weyl type for the

mapping F.
• After contracting the difference W̄ i

jmn −W i
jmn = 0, another invariant Wi

jmn for the
mapping F was obtained.

• The traceWα
ijα is a linear monic function of the Ricci tensor, unlike the trace Wα

ijα.

By using this methodology, we proved that two invariants with respect to the transfor-
mation of curvature tensor Ri

jmn may be obtained [28]. The traceWα
ijα of the first of these

two invariants is a monic linear polynomial of Ricci tensor Rij.
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In this paper, we focused on the associated invariants of Thomas and Weyl type of the
third class for a special mapping. These invariants are

(
see the Equations (2.6, 2.9) in [19]

)
:

T i
(3).jk = Li

jk +
1
2

Pi
jk, (17)

W i
(3).jmn = Ri

jmn +
1
2

Pi
jm|n −

1
2

Pi
jn|m, (18)

where Ri
jmn is the curvature tensor of the associated space AN and Pi

jk =
1
2
(

Pi
jk + Pi

kj
)
.

1.3. Variations and Variational Derivatives

Let f (x) be a continuously differentiable function defined on the interval [a, b], a 

x 
 b, and let F

[
x, y, z

]
be a function of three variables. The expression

J[ f ] =
∫ b

a
F
[
x, f (x), f ′(x)

]
dx,

where f (x) ranges over the set of all continuously differentiable functions defined on the
interval [a, b], is a functional [29].

The variational (or functional) derivative δJ/δ f of the operator J[ f ] is [29,30]

∫
δJ
δ f

φ(x)dx = lim
ε→0

J
[

f + εφ
]
− J
[

f
]

ε
=

[
d
dε

J
[

f + εϕ
]]

ε=0
,

where φ is an arbitrary function.
For a scalar L = L

[
f
]

in four-dimensional space and the corresponding operator
S =

∫
d4xL, it satisfies the equalities

δS
δ f

=
∫

d4x
δL
δ f

δ f and
δS1S2

δ f
=

δS1

δ f
S2 + S1

δS2

δ f
.

In particular, it holds the equality
δ

g
R

δgij =
g
Rij.

1.4. Motivation

The Einstein–Hilbert action that corresponds to the symmetric metric tensor gij is [31]

g
S =

∫
d4x

√
|g|
( g

R− 2Λ + LM),

for a term LM describing any matter fields appearing in the theory, the metric determinant
g = det

[
gij
]

and the cosmological constant Λ = 1.1056× 10−52m−2.
The Einstein’s equations of motion are

g
Rij −

1
2

g
Rgij +

1
2

Λgij =
g
Tij, (19)

where
g
Tij is the energy–momentum tensor.

In [32], the energy–momentum tensor
g
Tij is expressed as

g
Tij =

g
ρuiuj + qiuj + qjui −

( g
phij + πij

)
,
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for the energy density
g
ρ, the pressure

g
p, the 4-velocity ui, uαuα = 1, the 1-form qi such

that uαqα = 0, the trace-free tensor πij of type (0, 2) which, together with the 4-velocity ui,
satisfies the equality πiαuα = 0 and the tensor hij = gij − uiuj.

The next equalities are satisfied [32]:

g
ρ =

g
Tαβuαuβ, and

g
p = −1

3

g
Tα

α +
1
3

g
Tαβuαuβ.

The following equalities are satisfied [12,33]

g
p =

1
3

g
Rαβuαuβ +

1
6

g
R−Λ and

g
ρ =

g
Rαβuαuβ − 1

2

g
R + Λ, (20)

in the reference system ui = giαuα, such as

g
p1 =

1
3

g
R11 +

1
6

g
R−Λ and

g
ρ1 =

g
R11 −

1
2

g
R + Λ, (21)

in the comoving reference system ui = giαuα = δi
1.

2. Main Results

With respect to Equation (7), we conclude the existence of the unique mapping

f : GRN → G
g
RN whose deformation tensor is

Pi
jk =

1
2

giα(Tjαk + Tkαj + gkα|
1
j + gjα|

1
k − gjk|

1
α

)
− Ti

jk.

In this section, we realize the next purposes of this paper: (1) To obtain the associated

invariants of Thomas and Weyl type of the third class for the mapping f : GRN → G
g
RN ,

whose deformation tensor is given by (9); (2) To study the transformation rules of the

pressure p and the energy density ρ with respect to the mapping f : GR4 → G
g
R4.

2.1. Invariants

After symmetrizing the Equation (7) by j and k, one obtains

Γi
jk = Li

jk +
1
2

giα
(

Tjαk + Tkαj + gkα|
1
j + gαj|

1
k − gjk|

1
α

)
. (22)

From the last equation, after using the equalities

Γi
jk − Li

jk = −
1
2

Pi
jk −

(
− 1

2
Pi

jk
)
= ωi

(3).jk −ωi
(3).jk,

one obtains
ωi
(3).jk = −

1
4

giα(Tjαk + Tkαj + gkα|
1
j + gαj|

1
k − gjk|

1
α

)
. (23)

Based on Li
jk = Li

jk +
1
2

Ti
jk, we conclude that gij|

1
k = gij|k −

1
2

Tα
ikgαj −

1
2

Tα
jkgiα such as

giα(gkα|
1
j + gjα|

1
k − gjk|

1
α

)
= giα(gkα|j + gjα|k − gjk|α

)
− giα(Tkαj + Tjαk

)
.

Hence, the geometrical object ωi
(3).jk given by (23) reduces to

ωi
(3).jk = −

1
4

giα(gkα|j + gjα|k − gjk|α
)
. (23a)
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After substituting the expression (23a) into the Equations (17) and (18) multiplied by
4
3

, one obtains

T̃ i
(3).jk = Li

jk +
1
4

giα(gkα|j + gjα|k − gjk|α
)
, (24)

W̃i
(3).jmn = Ri

jmn −
1
3

giα(Rjαmn − g[mα|jn] + gj[m|αn]
)

− 1
3
(

giα
|[mgn]α|j + giα

|[mgαj|n] − giα
|[mgjn]|α

)
.

(25)

The next theorem holds.

Theorem 1. Let f : GRN → G
g
RN be the mapping which transforms the generalized Riemannian

space GRN in the sense of Ivanov and Zlatanović’s definition [14] of the generalized Riemannian

space G
g
RN in the sense of Eisenhart’s definition [1]. The geometrical objects T̃ i

(3).jk and W̃i
(3).jmn,

given by (24), (25), are the associated basic invariants of the Thomas and Weyl type of the third class
for the mapping f .

2.2. Physical Examples

In this part of the paper, we compare the pressures, energy densities, and state param-

eters generated by the spaces G
g
R4 and GR4. We also assume that the equality

δR

δgij = Rij

holds for the contravariant metric tensor gij obtained from the metric tensor gij.
Let us consider the Einstein–Hilbert action

S =
∫

d4x
√
|g|
(

R− 2Λ + LM
)
, (26)

for the scalar curvature of the associated Riemannian space R4 in the sense of the definition
from [14,15].

As in [12], after varying the Einstein–Hilbert action (26) by gij we obtain

Rij −
1
2

Rgij +
1
2

Λgij = Tij.

In a reference system ui = giαuα, the pressure and the energy density are

p =
1
3

Rαβuαuβ +
1
6

R−Λ, (27)

ρ = Rαβuαuβ − 1
2

R + Λ, (28)

for the 4-velocity (u1, u2, u3, u4).
In the comoving reference system ui = giαuα = δi

1, the pressure and the energy
densitygiven by (27), (28) reduce to

p1 =
1
3

R11 +
1
6

R−Λ, (29)

ρ1 = R11 −
1
2

R + Λ. (30)

With respect to Equations (22) and (23a), we get

Γi
jk = Li

jk +
1
2

giα(gkα|j + gjα|k − gjk|α
)
≡ Li

jk − 2ωi
(3).jk, (22a)

for the tensor ωi
(3).jk given by (23a).

68



Axioms 2024, 13, 463

After substituting the expression (22a) in Equations (3), (4), (6), and (8), one obtains

g
Rij = Rij − 2

(
ωα
(3).ij|α −ωα

(3).iα|j
)
+ 4

(
ωα
(3).ijω

β

(3).αβ
−ωα

(3).iβω
β

(3).jα

)
, (31)

g
R = R− 2gαβ(ωγ

(3).αβ|γ −ω
γ
(3).αγ|β

)
+ 4gαβ(ωγ

(3).αβ
ωδ
(3).γδ −ω

γ
(3).αδ

ωδ
(3).βγ

)
. (32)

As we concluded above, the symmetric part of the deformation tensor for the mapping

f : GR4 → G
g
R4 is Pi

jk = −2ωi
(3).jk. Hence, the geometrical object ωi

(3).jkω
p
(3).qr is an

invariant for the mapping f . The contravariant symmetric metric tensor gij is also an
invariant for the mapping f .

If one substitutes Equations (31) and (32) in the expressions (19)–(21), (27)–(30), one
will complete the proof for the next theorem.

Theorem 2. The mapping f : GR4 → G
g
R4 transforms the energy–momentum tensor Tij to the

energy–momentum tensor
g
Tij by the rule

g
Tij = Tij − 2ωα

(3).ij|α + 2ωα
(3).iα|j + gαβ(ωγ

(3).αβ|γ −ω
γ
(3).αγ|β

)
gij.

The following equalities E1 − E4 are equivalent

E1 : Tij =
g
Tij, E2 : ωα

(3).ij|α −ωα
(3).iα|j =

1
2

gαβ(ωγ
(3).αβ|γ −ω

γ
(3).αγ|β

)
gij,

E3 : ωα
(3).ij|α = ωα

(3).iα|j, E4 : gαβ(ωγ
(3).αβ|γ −ω

γ
(3).αγ|β

)
= 0.

The pressures p and
g
p obtained with respect to the spaces GR4 and G

g
R4 satisfy the equation

g
p = p− 1

3
(
ω

γ
(3).αβ|γ −ω

γ
(3).αγ|β

)
·
(
2uαuβ + gαβ). (33)

In the comoving reference system ui = giαuα = δi
1, the Equation (33) reduces to

g
p1 = p1 −

2
3
(
ωα
(3).11|α −ωα

(3).1α|1
)
− 1

3
gαβ(ωγ

(3).αβ|γ −ω
γ
(3).αγ|β

)
.

The pressure p is an invariant for the mapping f : GR4 → G
g
R4 if and only if

0 =
(
ω

γ
(3).αβ|γ −ω

γ
(3).αγ|β

)
·
(
2uαuβ + gαβ). (34)

In the comoving reference system ui = giαuα = δi
1, the condition (34) reduces to

ωα
(3).11|α −ωα

(3).1α|1 = −1
2

gαβ(ωγ
(3).αβ|γ −ω

γ
(3).αγ|β

)
.

The energy densities ρ and
g
ρ obtained with respect to the spaces GR4 and G

g
R4 satisfy

the equation
g
ρ = ρ−

(
ω

γ
(3).αβ|γ −ω

γ
(3).αγ|β

)
·
(
2uαuβ − gαβ).

In the comoving reference system ui = giαuα = δi
1, the Equation (33) reduces to

g
ρ1 = ρ1 − 2

(
ωα
(3).11|α −ωα

(3).1α|1
)
+ gαβ(ωγ

(3).αβ|γ −ω
γ
(3).αγ|β

)
.
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The energy density ρ is an invariant for the mapping f : GR4 → G
g
R4 if and only if

0 =
(
ω

γ
(3).αβ|γ −ω

γ
(3).αγ|β

)
·
(
2uαuβ − gαβ). (35)

In the comoving reference system ui = giαuα = δi
1, the condition (35) reduces to

ωα
(3).11|α −ωα

(3).1α|1 =
1
2

gαβ(ωγ
(3).αβ|γ −ω

γ
(3).αγ|β

)
.

The geometrical object ωi
(3).jk used in this theorem is given by (23a).

2.3. Contorsion and Spin Tensors

The covariant contorsion tensor of space GRN is

Kijk =
1
2

giα(Lα.jk
∨
− Lj.αk

∨
+ Lk.αj

∨

)
.

The corresponding spin tensor is [34]

σi
jk =

1
κ

giα(Li.jα
∨
+ δi

j L
α
kα
∨
− δi

kLα
jα
∨

)
. (36)

After lowering the index i in (36), we obtain the covariant spin tensor

σijk =
1
κ

gαβ(gkαLi.jβ
∨
+ gikLj.αβ

∨
− gjkLk.αβ

∨

)
=

1
κ

Li.jk
∨

.

3. Conclusions

In this paper, we connected different definitions of generalized Riemannian spaces
through their corresponding mapping.

In Section 2.1, we obtained the associated invariants of Thomas and Weyl type for this
mapping. The Purpose 1 of this paper is realized in this section.

In Section 2.2, we analyzed some physical terms and their changes with respect to
transformation from one to another definition of the generalized Riemannian space. We
obtained the necessary and sufficient conditions for these terms to be invariant under
this transformation.
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Abstract: The Schrödinger–Korteweg–de Vries (SKdV) system can describe the nonlinear dynamics
of phenomena such as Langmuir and ion acoustic waves, which are highly valuable for studying
wave behavior and interactions. The SKdV system has wide-ranging applications in physics and
applied mathematics. In this article, we investigate the local well-posedness of the SKdV system with
Robin boundary conditions and polynomial terms in the Sobolev space. We want to enhance the
applicability of this type of SKdV system. Our verification process is as follows: We estimate Fokas
solutions for the Robin problem with external forces. Next, we define an iteration map in suitable
solution space and prove the iteration map is a contraction mapping and onto some closed ball B(0, r).
Finally, by the contraction mapping theorem, we obtain the uniqueness solution. Moreover, we show
that the data-to-solution map is locally Lipschitz continuous and conclude with the well-posedness
of the SKdV system.

Keywords: Schrödinger–Korteweg–de Vries system; the local well-posedness of the Schrödinger–
Korteweg–de Vries system; unified transform method; Robin boundary condition
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1. Introduction and Main Results

1.1. Introduction

In this article, we study the local well-posedness of the following Schrödinger–Korteweg–
de Vries (SKdV) system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i∂tu + ∂2
xu = P(u)v, x ∈ (0, ∞), t ∈ (0, T),

∂tv + ∂3
xv = Q(v)vx, x ∈ (0, ∞), t ∈ (0, T),

u(x, 0) = u0(x) ∈ Hs
x(0, ∞), v(x, 0) = v0(x) ∈ Hs

x(0, ∞), x ∈ [0, ∞),
ux(0, t)− γ1u(0, t) = g1(t) ∈ H(2s−1)/4

t (0, T), t ∈ (0, T), γ1 ≥ 1,
vx(0, t)− γ2v(0, t) = g2(t) ∈ Hs/3

t (0, T), t ∈ (0, T), γ2 > 0,

where 0 < T < 1, 3/4 < s < 1, u(x, t) is a complex-valued function, v(x, t) is a real-valued
function, and

P(u) =
m

∑
i=0

aiui and Q(v) =
n

∑
j=0

bjvj

are polynomials, where ai and bj are constants. Well-posedness guarantees the reliability
and predictive accuracy of equation models in various fields, making it essential for
scientific research, engineering applications, and decision-making. According to our current
understanding from studies on the SKdV system, we investigate the local well-posedness
of the SKdV system with Robin boundary conditions. We consider the local well-posedness
of the SKdV system with Robin boundary conditions from a mathematical point of view.
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The right side of the equals sign of this system is composed of polynomials mainly because
we hope to use polynomials to approximate any arbitrary continuous function, allowing it
to be applied to different SKdV systems.

Next, we introduce the SKdV system. The SKdV system is a coupled nonlinear
partial differential system consisting of the Schrödinger equation, which describes complex-
valued functions, and the Korteweg–de Vries (KdV) equation, which describes real-valued
functions. The Schrödinger equation characterizes the temporal evolution of the wave
function, while the KdV equation describes the propagation and interaction of nonlinear
waves. This system integrates the properties of two types of waves: short waves (described
by the Schrödinger equation) and long waves (described by the KdV equation), making it
highly applicable to the study of wave phenomena and dynamic behavior.

The SKdV system has wide applications in physics and applied mathematics. In the
study of nonlinear waves, the SKdV system can describe the nonlinear dynamics of phe-
nomena such as Langmuir waves and ion acoustic waves, which is very useful for studying
wave behavior and interactions [1,2]. In plasma physics, the SKdV system is used to
describe wave phenomena in plasmas, such as the interactions between Langmuir waves
and ion acoustic waves. This is crucial to understanding the properties and behavior of
plasmas [3–7]. In fluid dynamics, the SKdV system is used to study wave phenomena in
fluids, such as the nonlinear interactions between short and long waves, and to describe
the behavior of water waves under nonlinear and dispersive effects [8,9]. In the field of
optics, the SKdV system can be used to describe nonlinear wave and dispersion effects
in optical fibers. This helps to understand the propagation characteristics of light in opti-
cal fibers and the impact of nonlinear effects on wave behavior [10]. In wave dynamics,
the SKdV system is used to describe the propagation and interaction of water waves, which
has important applications in oceanography and marine engineering. For example, this
system can be used to study the resonant interactions between short and long waves on the
water surface [11]. In the control theory of dynamical systems, the SKdV system is used
to study the dynamic behavior and control methods of systems [12]. In fractal dynamics,
the SKdV system is used to describe dynamical systems with fractal characteristics, and the
behavior and properties of such systems are further studied [13,14]. In the study of chaotic
synchronization, the SKdV system is used to investigate synchronization phenomena and
control methods in chaotic systems [15]. These applications demonstrate the versatile use
of the SKdV system in various fields and provide a deep understanding of the dynamic
behavior of such systems and control methods.

We present some relatively new research on the SKdV system. Shang, Li, and Li [16]
investigate traveling wave solutions of a coupled Schrödinger–Korteweg–de Vries equa-
tion using the generalized coupled trial equation method. The researchers have utilized
this method to discover a series of exact traveling wave solutions, which hold significant
importance in understanding various processes in dusty plasma. This study provides an
effective solution for nonlinear evolution equation systems and highlights the practical
applications of these equations in physics. Khan, Khan, and Ahmad [17] investigated the
fractal fractional nonlinear Korteweg–de-Vries–Schrödinger system with a power law ker-
nel. The study utilizes the Yang transform and Caputo fractional fractal operator, applying
the Yang transform homotopy perturbation method to solve this system. The research
aims to analyze the existence and uniqueness of the solution and provides graphical rep-
resentations of the results. The article also involves fixed point theory and nonlinear
functional analysis to delve into this challenging mathematical problem. Noor, Alotaibi,
Shah, Ismaeel, and El-Tantawy [18] analyze solitary waves and nonlinear oscillations of the
fractional Schrödinger–KdV equation using the Caputo Operator framework. They employ
the Laplace residual power series method (LRPSM) to study this model and compare the
resulting approximations with exact solutions in the integer case. Their research shows that
the approximations are highly accurate and more stable over large space-time domains.

Now, we present recent articles that discuss the existence, uniqueness, and well-
posedness of solutions associated with the SKdV system. Guo and Miao [6] studied
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the well-posedness of the Cauchy problem for the SKdV system. By establishing global
well-posedness in specific function spaces, this research explored the nonlinear dynamics
equations describing one-dimensional Langmuir and ion acoustic waves. The work focused
on the mathematical properties of the system, the existence and uniqueness of solutions,
and the relationship between the electric field of Langmuir oscillations and low-frequency
density perturbations. Corcho and Linares [12] studied the well-posedness of the Cauchy
problem for the SKdV system. The authors studied the local well-posedness for weak initial
data and obtained well-posedness results for data in Sobolev space L2(R)× H−

3
4+. These

results also led to global well-posedness in energy space H1(R)× H1(R). The authors
improved upon previous research on the well-posedness of the SKdV system. Matheus [19]
showed that the Cauchy problem for the SKdV system with periodic functions is globally
well-posed in the energy space H1 × H1. The study used the I-method introduced by
Colliander et al. and improved the results of Arbieto et al. on the global well-posedness of
the SKdV system. The author conducted a thorough investigation and proof of the global
well-posedness of the SKdV system for periodic functions. Guo and Wang [7] studied the
well-posedness of the SKdV system, in particular, for initial data in the Sobolev spaces
L2(R)× H−3/4(R) and Hs(R)× H−3/4(R) (s > −1/16). The article introduced Fs-type
spaces to handle the KdV component and coupling terms of the system, overcoming
difficulties arising from the lack of scale invariance through unified estimates of multipliers.
The authors demonstrated the local well-posedness of the SKdV system for certain initial
data under resonance conditions.

Wang and Cui [20] established the local well-posedness of the Cauchy problem for the
SKdV system in different function spaces. Using bilinear estimates and other techniques,
the authors presented results on the local well-posedness of the system under certain
conditions. Guo, Ma, and Zhang [21] investigated the global existence and uniqueness
of solutions for the fractional SKdV system. Using the contraction method, the authors
addressed local existence and uniqueness and proved the global existence of solutions
over time using a priori estimates. Cavalcante and Corcho [10] studied the local progress
theory of the SKdV system on the half-line. Cavalcante and Corcho [22] studied the well-
posedness and lower bounds of the growth of weighted norms for the SKdV system on
the half-line. The authors studied the initial boundary value problem for the SKdV system,
analyzing the growth of the weighted norms of the solutions over time. By studying the
dynamical properties and norm growth of the SKdV system, they determined the well-
posedness and lower bounds, thus gaining a deeper understanding of the behavior and
characteristics of this nonlinear evolution system. Chen [23] studied the periodic solutions
of the SKdV system, in particular, the influence of boundary and external forces on the
solutions. The author discussed the existence of theorems for periodic, quasi-periodic,
and nearly periodic solutions, investigating their properties and characteristics under
various conditions. The focus was on the stability and periodicity of the solutions, as well
as on the influence of external forces on the dynamical behavior of the system. Compaan,
Shin, and Tzirakis [24] studied the well-posedness of the SKdV system on the half-line.
By applying multilinear harmonic analysis techniques, the authors improved the well-
posedness theory based on L2 solutions. They studied the local well-posedness and global
existence of the system and proposed theorems describing the behavior of the solutions.
In addition, they discussed the smoothing effects and the growth of the solutions under
different parameter conditions. Himonas and Yan [11] investigated the well-posedness of
the initial boundary value problem for the SKdV system on the half-line. Using the Fokas
unified transform method, they analyzed the well-posedness of the problem, discussing
linear space-time estimates and quadratic/cubic estimates in Bourgain space.

After introducing the SKdV system, the main research of this paper will be pre-
sented next.
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1.2. Main Results

In this paper, we demonstrate the local well-posedness of the SKdV system pre-
sented below. ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

i∂tu + ∂2
xu = P(u)v, x ∈ (0, ∞), t ∈ (0, T),

∂tv + ∂3
xv = Q(v)vx, x ∈ (0, ∞), t ∈ (0, T),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ [0, ∞),
ux(0, t)− γ1u(0, t) = g1(t), t ∈ (0, T), γ1 ≥ 1,
vx(0, t)− γ2v(0, t) = g2(t), t ∈ (0, T), γ2 > 0,

(1)

where 0 < T < 1, u(x, t) is a complex-valued function, v(x, t) is a real-valued function,

P(u) =
m

∑
i=0

aiui and Q(v) =
n

∑
j=0

bjvj

are polynomials, ai and bj are constants, and u0(x) ∈ Hs
x(0, ∞) and v0(x) ∈ Hs

x(0, ∞) are

initial data with 3/4 < s < 1. The boundary data g1(t) ∈ H(2s−1)/4
t (0, T) and g2(t) ∈

Hs/3
t (0, T) are suggested by the time regularity of the boundary value problems (BVPs) for

the corresponding linear equations.
In this article, we demonstrate the local well-posedness of the initial boundary value

problem (IBVP) (1). The proof consists of four steps. In the first step, we replace the
nonlinear terms P(u)v and Q(v)vx with external forces and apply the unified transform
method (UTM) to solve the corresponding linear IBVPs. In the second step, we derive
linear estimates using the UTM formula, considering data and forcing in suitable spaces.
(The UTM and its applications were introduced by Fokas [25–28].) In the third step, we
define an iteration map in a suitable solution space by the UTM formula with the forcing
terms replaced by the nonlinearities and prove that the iteration map is a contraction map
and onto some closed ball B(0, r), and by the contraction mapping theorem, the IBVP (1)
has a unique solution. Finally, in the fourth step, we prove the local Lipschitz continuity of
the data-to-solution map, thereby confirming the local well-posedness of the IBVP (1).

In [29], the authors mentioned the advantages of UTM over other standard methods
and gave some examples for discussion. The UTM complements the standard method for
the following reasons: In situations where the standard method can produce an explicit
solution, the UTM can also do so, and the solution formula obtained is equivalent; it is
more efficient than the standard method. It is versatile and can generate solution formulas
for many problems that cannot be solved by classical methods, especially problems with
higher than second-order derivatives; the standard method is a collection of methods for
specific equations and boundary conditions, while the UTM uses the same idea. The UTM
can generate explicit solution formulas and determine in a straightforward way how many
and which boundary conditions lead to a well-formulated problem, especially for problems
with higher than second-order derivatives. The solution can be efficiently evaluated by
various means, such as parameterization of the integration path, to make the integral easy
to evaluate by numerical methods, asymptotic methods like the steep descent method,
the residue theorem, etc. Background knowledge is limited to knowledge of Fourier
transform and inverse Fourier transform pairs, the residue theorem, and Jordan’s lemma.

Now, we provide an overview of Sobolev spaces. For s ∈ R, the Sobolev space Hs(R)
consists of all tempered distributions F with the finite norm:

‖ F ‖Hs(R)
.
=

(∫
R
(1 + ξ2)s|F̂(ξ)|2dξ

) 1
2
,
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where the Fourier transform F̂(ξ) is defined by

F̂(ξ) .
=
∫
R

e−ixξ F(x)dx.

Additionally, for an interval (a, b) ⊂ R which may extend to infinity on either side,
the Sobolev space Hs(a, b) is defined as

Hs(a, b) =
{

f : f = F|(a,b), where F ∈ Hs(R)

and ‖ f ‖Hs(a,b)
.
= infF∈Hs(R) ‖ F ‖Hs(R)< ∞

}
.

Solving the forced linear Robin IBVP using the UTM leads us to the following
Fourier transform.

Definition 1 (Fourier transform on the half-line). For a test function ψ(x) which is defined on
(0, ∞), its half-line Fourier transform is expressed as

ψ̂(k) .
=
∫ ∞

0
e−ikxψ(x)dx, (2)

where k ∈ C and �(k) ≤ 0. Here, �(k) and �(k) denote the imaginary and real parts of
k, respectively.

Remark 1. For Equation (2), it is evident that if ψ is an integrable function on (0, ∞), then ψ̂(k)
is well-defined for �(k) ≤ 0. In fact, within the more suitable space L2(0, ∞), the half-line Fourier
transform can be defined. Specifically, ψ in L2(0, ∞) can be extended to the entire real line by
defining ψ(x) = 0 for x < 0, resulting in a function in L2(R). Consequently, the half-line Fourier
transform of ψ can be expressed using the same formula as the Fourier transform for its extension
to the real line. Thus, the inverse of this transform can also be derived, which corresponds to the
inverse Fourier transform on the real line.

Let’s start by outlining the first step of our approach to solving the Robin problem
related to the forced linear Schrödinger equation and the forced linear KdV equation:⎧⎪⎨⎪⎩

iut + uxx = f1(x, t), x ∈ (0, ∞), 0 < t < T < 1,
u(x, 0) = u0(x) ∈ Hs

x(0, ∞), x ∈ [0, ∞),

ux(0, t)− γ1u(0, t) = g1(t) ∈ H
2s−1

4
t (0, T), 0 < t < T < 1, γ1 ≥ 1

(3)

and ⎧⎪⎨⎪⎩
vt + vxxx = f2(x, t), x ∈ (0, ∞), 0 < t < T < 1,
v(x, 0) = v0(x) ∈ Hs

x(0, ∞), x ∈ [0, ∞),

vx(0, t)− γ2v(0, t) = g2(t) ∈ H
s
3
t (0, T), 0 < t < T < 1, γ2 > 0,

(4)

respectively. By the UTM formulation, the solution to (3) is denoted by

u(x, t) .
= SLS[u0, g1; f1](x, t) (5)

=
1

2π

∫
R

eikx−ik2t
(

û0(k)− i
∫ t

0
eik2y f̂1(k, y)dy

)
dk

+
1

2π

∫
∂D+

1

eikx−ik2t k− iγ1

k + iγ1

(
û0(−k)− i

∫ t

0
eik2y f̂1(k, y)dy

)
dk

− i
π

∫
∂D+

1

eikx−ik2t k
k + iγ1

(∫ t

0
eik2yg1(y)dy

)
dk,
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where

û0(k) =
∫ ∞

0
e−ikxu0(x)dx, �(k) ≤ 0,

and the solution of (4) is denoted by

v(x, t) .
= SLK[v0, g2; f2](x, t) (6)

=
1

2π

∫
R

eikx+ik3t(v̂0(k) + F(k, t))dk

+
1

2π

∫
∂D+

2

eikx+ik3t (k− i(α + 1)γ2)(F(αk, T) + v̂0(αk))
α(k + iγ2)

dk

− 1
2π

∫
∂D+

2

eikx+ik3t (k(α + 1)− iγ2)
(

F(α2k, T) + v̂0(α
2k)
)

α(k + iγ2)
dk

+
3i
2π

∫
∂D+

2

eikx+ik3t k2

k + iγ2
g̃2(k3, T)dk,

where α = ei2π/3,

v̂0(k) =
∫ ∞

0
e−ikxv0(x)dx, �(k) ≤ 0,

g̃2(k3, τ)
.
=
∫ τ

0
e−ik3tg2(t)dt, k ∈ C,

F(k, τ)
.
=
∫ τ

0
e−ik3t f̂2(k, t)dt =

∫ τ

0
e−ik3t

(∫ ∞

0
e−ikx f2(x, t)dx

)
dt, �(k) ≤ 0,

and D+
1 and D+

2 are represented in Figure 1.

D+1

|__K

|__K

/3 /3

D
+
2

Figure 1. The positively oriented boundaries and regions for D+
1 and D+

2 .

Next, we outline the second step, which involves estimating the Hadamard norm of
the UTM solution formulas SLS[u0, g1; f1] (5) and SLK[v0, g2; f2] (6) based on the Sobolev
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norms of the data and a suitable norm of the forcing. In particular, we have the following
linear estimates. The linear estimate for the Schrödinger equation IBVP is as follows:

Theorem 1 (The linear estimate for the Schrödinger equation IBVP [30]). Suppose 1/2 < s <
3/2, u0(x) ∈ Hs

x(0, ∞), and g1(t) ∈ H(2s−1)/4
t (0, T). Then, the solution u = SLS[u0, g1; f1] ∈

C([0, T]; Hs
x(0, ∞)) of the forced linear Schrödinger equation IBVP (3) given by (5) satisfies

the estimate:

sup
t∈[0,T]

‖ u(t) ‖Hs
x(0,∞) + sup

x∈[0,∞)

‖ u(x) ‖
H

2s+1
4

t (0,T)
(7)

≤ Cs

(
‖ u0 ‖Hs

x(0,∞) + ‖ g1 ‖
H

2s−1
4

t (0,T)
+
√

T sup
t∈[0,T]

‖ f1(t) ‖Hs
x(0,∞)

)
,

where Cs = C(s) > 0 is a constant depending on s.

We can use a similar proof process for Theorem 1.2 in [30] to obtain the above theorem.
The linear estimate for the KdV equation IBVP is as follows:

Theorem 2 (The linear estimate for the KdV equation IBVP [31]). Suppose 1/2 < s <

3/2, v0(x) ∈ Hs
x(0, ∞), and g2(t) ∈ Hs/3

t (0, T). Then, the solution v = SLK[v0, g2; f2] ∈
C([0, T]; Hs

x(0, ∞)) of the forced linear KdV equation IBVP (4) given by (6) satisfies the estimate:

sup
t∈[0,T]

‖ v(t) ‖Hs
x(0,∞) (8)

≤ ds

(
‖ v0 ‖Hs

x(0,∞) + ‖ g2 ‖
H

s
3

t (0,T)
+T

3−2s
6

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2
)

,

where ds = d(s) > 0 is a constant depending on s.

We can find the above theorem in [31].
In the third and fourth steps, our objective is to prove the uniqueness of the solution

for (1) and to demonstrate that the data-to-solution map is locally Lipschitz continuous. To
achieve this, for s > 1/2 and 0 < T < 1, we define two Banach spaces XT and YT :

XT
.
= C([0, T]; Hs

x(0, ∞)) ∩ C
(
[0, ∞); H

2s+1
4

t (0, T)
)

with the norm

‖ u ‖XT= sup
t∈[0,T]

‖ u(t) ‖Hs
x(0,∞) + sup

x∈[0,∞)

‖ u(x) ‖
H

2s+1
4

t (0,T)
(9)

and

YT
.
=

{
v ∈ C([0, T]; Hs

x(0, ∞)) :
‖ v ‖YT

.
= ΛT(v) = max

{
ΛT

1,s(v), ΛT
2,s(v), ΛT

3 (v), ΛT
4 (v)

}
< ∞

}
, (10)

where the norms ΛT
1,s(v), ΛT

2,s(v), ΛT
3 (v), ΛT

4 (v) are defined as

ΛT
1,s(v) = sup

t∈[0,T]
‖ v(t) ‖Hs

x(0,∞), ΛT
2,s(v) =

(
sup

x∈[0,∞)

∫ T

0
|Ds

x∂xv(x, t)|2dt

) 1
2

, (11)
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ΛT
3 (v) =

(∫ ∞

0
sup

t∈[0,T]
|v(x, t)|2dx

) 1
2

, ΛT
4 (v) =

(∫ T

0
sup

x∈[0,∞)

|∂xv(x, t)|4dt

) 1
4

, (12)

where Ds
x is defined by

|Ds
xv(x, t)|2 .

=

⎧⎨⎩ |∂s
xv(x, t)|2, s ∈ N,∫ ∞

0

∣∣∣∂�s�x v(x+ζ,t)−∂
�s�
x v(x,t)

∣∣∣2
ζ1+2β dζ,

where �s� ∈ Z+ ∪ {0}, s = �s�+ β, and 0 < β < 1.
Then, we define the complete metric space XT and the data space D as

XT
.
= XT ×YT = {(u, v) : u ∈ XT , v ∈ YT}

with the norm

‖ (u, v) ‖XT=‖ u ‖XT + ‖ v ‖YT . (13)

The data space

D = Hs
x(0, ∞)× H

2s−1
4

t (0, T)× Hs
x(0, ∞)× H

s
3
t (0, T)

with the norm

‖ (u0, g1, v0, g2) ‖D=‖ u0 ‖Hs
x(0,∞) + ‖ g1 ‖

H
2s−1

4
t (0,T)

+ ‖ v0 ‖Hs
x(0,∞) + ‖ g2 ‖

H
s
3

t (0,T),
(14)

for (u0, g1, v0, g2) ∈ D.

We then present the main result of this work using the definitions provided above.

Theorem 3 (The local well-posedness of the SKdV system). Consider the SKdV system (1).
Suppose 3/4 < s < 1 and 0 < T < 1. For the data u0, v0 ∈ Hs

x(0, ∞), g1(t) ∈ H(2s−1)/4
t (0, T),

and g2(t) ∈ Hs/3
t (0, T).

Then, there exist Ks = K(s) > 0 and C̃s = C̃(s) > 0 which are constants depending on s,
and T∗ = min{T, T1, T2} > 0, where

r = max

{
1,

√
3
2

C̃s
−1

, 2K∗s ‖ (u0, g1, v0, g2) ‖D

}
,

n0 = max{m, n}, A = max{|a0|, |a1|, · · · , |am|}, B = max{|b0|, |b1| · · · , |bn|},

T1 =
1

64(A(m + 1) +
√

10B)6(K∗s )
6n0+6r6n0+6

,

and

T2 =
1

64(A(m2 + m + 1) +
√

5B(2n+1(n + 1) + 2nn3)
1
2 )6(K∗s )

6n0+6r6n0

,

such that the SKdV system (1) has a unique solution (u, v) ∈ XT∗ and the solution satisfies the size
estimate

‖ (u, v) ‖XT∗ ≤ r.
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Furthermore, the data-to-solution map (u0, g1, v0, g2) �−→ (u, v) is locally Lipschitz continuous.

According to the above theorem, we have proven that under certain conditions there
will be a unique solution to the SKdV system (1). Regarding the difficulty in studying the
local well-posedness of the SKdV system: The SKdV system will involve the algebraic
property of the nonlinear estimation term. In two-dimensional space, Hs

x(R
2) must be in

s > 1, even in n ≥ 2 dimensional space, and Hs
x(R

n) must be in s > n/2 to satisfy the
algebraic property. This is a major challenge for existing estimation techniques for the
KdV equation.

To facilitate calculations and presentation, we use the following notations.

Remark 2. For two quantities A and B that depend on one or several variables, we write A � B
if there exists a positive constant c such that A ≤ cB . If A � B and B � A , then we denote this
relationship by A � B .

In Section 2, we provide some tools that will be used in later sections. Section 3
outlines the proof of Theorem 2 in preparation for the proof in Section 5. In Sections 4 and
5, we define a new space, give the Λ-norm estimates for the UTM solution of the forced
linear KdV IBVP (4), and finish the proof of Proposition 2. In Section 6, we define the
iteration map and demonstrate that it is a contraction mapping onto a closed ball. We
then use the contraction mapping theorem to establish the uniqueness of the solution.
Additionally, in Lemma 12, we show that the data-to-solution map is locally Lipschitz
continuous. Finally, we complete the proof of Theorem 3.

Regarding Section 6, since we consider the SKdV system with polynomial nonlinear
terms, the proof of existence and uniqueness of solutions is more complex than in [30–33].
In proving that the iteration map is both onto and a contraction, more considerations about
the lifetime of the solution are required. For example, the coefficients and degrees of the
polynomials affect the length of the existence time, and the size of the unique solution
also requires additional considerations based on the data norm and the corresponding
range of s. Furthermore, in proving the data-to-solution aspect of local well-posedness,
the determination of the lifetime requires more complicated estimates due to the polynomial
nonlinear terms in the SKdV system. For example, the existence range of the solution is
also affected by the coefficients and degrees of the polynomials. Therefore, the estimates in
Section 6 extend and apply the results of [30–33].

In this paper, we consider the SKdV system with polynomial nonlinear terms and
Robin boundary conditions and discuss linear space-time estimates and the polynomial
nonlinear terms in Sobolev space. This differs from the work of Himonas and Yan [11], who
considered the SKdV system under Dirichlet boundary conditions and discussed linear
space-time estimates and quadratic/cubic estimates in Bourgain space.

2. Preliminary Results and Some Useful Tools

This section provides some tools that will be used in later sections.

Lemma 1 ([33]). If r = rR + irI with rI > 0, then∣∣∣eirkx − eirkζ
∣∣∣ ≤ √2

(
1 +

|rR|
rI

)∣∣∣e−rI kx − e−rI kζ
∣∣∣, ∀k, x, ζ ≥ 0.

Lemma 2 ([33]). Suppose φ(k) ∈ L2
k(0, ∞). Then, the map

φ(k) �−→
∫ ∞

0
e−kyφ(k)dk
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is bounded from L2
k(0, ∞) into L2

y(0, ∞) with

‖
∫ ∞

0
e−kyφ(k)dk ‖L2

y(0,∞)≤
√

π ‖ φ(k) ‖L2
k(0,∞) .

Lemma 3 ([32]). For m1 < m < m2, we have

‖ f ‖Hm≤‖ f ‖
m2−m

m2−m1
Hm1 ‖ f ‖

m−m1
m2−m1
Hm2 .

Lemma 4 ([34]). If s > n/2, then Hs
x(R

n) is an algebra with respect to the product of functions.
That is, if f and g in Hs

x(R
n), then f g ∈ Hs

x(R
n) with

‖ f g ‖Hs
x(Rn)≤ (C1)s ‖ f ‖Hs

x(Rn)‖ g ‖Hs
x(Rn),

for some constant (C1)s > 0 depending on s.

For the following lemma, we define the following operator

DrU2(t)R(x) .
=
∫
R

eikx+ik3t(ik)r R̂(k)dk �
∫
R

eikx+ik3t|k|r R̂(k)dk, (15)

where R̂(k) is the Fourier transform of R(x).

Lemma 5 ([31,35–37]). For R ∈ L2
x(R), the operator D

1
4 U2(t)R(x) defined by (15) is bounded

from L2
x into L4[Rt; L∞

x (0, ∞)]; that is, it satisfies the estimate

‖ D
1
4 U2(t)R(x) ‖L4[Rt ;L∞

x (R)]≤ CT ‖ R ‖L2
x(R)

,

for some constant CT > 0.

For the following lemma, we define the operator

ΔrR(x, t) .
=
∫ ∞

0
eiaτ

1
3 x+iτtτr R̂(τ)dτ, (16)

where R̂(τ) is the Fourier transform of R(t).

Lemma 6 ([35,38]). For R ∈ L2
t (R), the operator Δ

−1
4 R defined by (16) is bounded from L2

t into
L4[Rt; L∞

x (0, ∞)]; that is, it satisfies the estimate

‖ Δ
−1
4 R(x,−t) ‖L4[Rt ;L∞

x (0,∞)]=‖ Δ
−1
4 R(x, t) ‖L4[Rt ;L∞

x (0,∞)]≤ CT ‖ R ‖L2
t (R)

,

for some constant CT > 0.

Lemma 7 ([32]). If μ ∈ [0, ∞), β ∈ (0, 1)\
{

1
2

}
, and

Δ(μ,
1
μ

, β)
.
=
∫ ∞

0

∫ ∞

0

(e−μx − e−μy)

(
e
−x
μ − e

−y
μ

)
|x− y|1+2β

dxdy,

then

Δ(μ,
1
μ

, β) = C β

(
μ +

1
μ

)−1
(

μ2β +

(
1
μ

)2β

−
(

μ +
1
μ

)2β
)

,
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where

C β =

{ Γ(1−2β)
β , β ∈ (0, 1

2 ),
π

β sin(2πβ)Γ(2β)
, β ∈ ( 1

2 , 1),

and we obtain the estimate

Δ(μ,
1
μ

, β) � C β

(
μ +

1
μ

)−1
, C β > 0, β ∈ (0, 1)\

{
1
2

}
.

3. Sketch the Proof of the Theorem 2

This section details the proof of Theorem 2 by breaking down the Robin problem
for the forced linear KdV equation into four simpler problems. In Section 3.2, we use
Theorems 4 and 5 from Section 3.1 to derive estimates for the IBVPs.

3.1. The Discussion of the Reduced Pure IBVP for the Linear KdV Equation

In this subsection, Theorems 4 and 5 analyze a fundamental Robin problem related
to the linear KdV equation and are key tools for estimating the linear IBVPs (III) and (IV)
discussed in Section 3.2.

3.1.1. Reduced Pure IBVP

We begin with the most basic linear KdV equation IBVP on the half-line. That is, the
homogeneous IBVP with zero initial data and nonzero boundary data.

Furthermore, we assume that the boundary data g ∈ Hs/3
t (R) extends g2 ∈ Hs/3

t (0, T),
which is compactly supported in the interval [0, 2], and

‖ g ‖Hs/3
t (R)

≤ 2 ‖ g2 ‖Hs/3
t (0,T) . (17)

This specific problem, referred to as the reduced pure IBVP, can be formulated as follows:⎧⎪⎨⎪⎩
ωt + ωxxx = 0 x ∈ (0, ∞), 0 < t < 2,
ω(x, 0) = 0, x ∈ [0, ∞),

ωx(0, t)− γ2ω(0, t) = g(t) ∈ H
s
3
t (R), t ∈ [0, 2], γ2 > 0.

(18)

According to the UTM formula, the solution to (18) is

ω(x, t) = SLK[0, g; 0](x, t) =
3i
2π

∫
∂D+

2

eikx+ik3t k2

k + iγ2
g̃(k3, T)dk (19)

= ω1(x, t) + ω2(x, t).

We use the parameterization k �−→ ak or a2k, with a = eiπ/3, where

ω1(x, t) =
−3i
2π

∫ ∞

0
eiakx−ik3t k2

ak + iγ2
g̃(−k3, T)dk, (20)

ω2(x, t) =
−3i
2π

∫ ∞

0
eia2kx+ik3t k2

a2k + iγ2
g̃(k3, T)dk. (21)

Our objective is to estimate the Hadamard norm of the solution to the IBVP (18). The
following theorem, which we found in [31], addresses this estimation.

83



Axioms 2024, 13, 508

Theorem 4 (Reduced linear KdV IBVP with Sobolev data [31]). Let s ≥ 0. For a test function
g which is compactly supported in the interval [0, 2], the solution (19) to the Robin problem (18)
satisfies the estimate

sup
t∈R

‖ ω(t) ‖Hs
x(0,∞)≤ (̃C3)s ‖ g ‖

H
s
3

t (R)
, (22)

where (̃C3)s is a constant depending on s.

3.1.2. Homogeneous IBVP with Zero Initial Data

In this subsection, we consider the pure IBVP:⎧⎪⎨⎪⎩
ω̃t + ω̃xxx = 0 x ∈ (0, ∞), t ∈ [0, T],
ω̃(x, 0) = 0, x ∈ [0, ∞),

ω̃x(0, t)− γ2ω̃(0, t) = g2(t) ∈ H
s
3
t (0, T), t ∈ [0, T], γ2 > 0.

(23)

We will extend the boundary data g2(t) from the interval [0, T] to the entire real line R. Our

goal is to define a function g(t) ∈ H
s
3
t (R) with g compactly supported in the interval [0, 2]

as an extension of g2(t) ∈ H
s
3
t (0, T). For 1/2 < s < 3/2, g is defined by

g(t) =
{

Eθ(t), t ∈ (0, 2),
0, t ∈ (0, 2)c,

where θ ∈ C∞
0 (R) with |θ(t)| ≤ 1 for all t ∈ R, θ(t) = 1 for all |t| ≤ 1, θ(t) = 0 for all

|t| ≥ 2, and Eθ = θ(t)E(t). Here, E ∈ H
s
3
t (R) is an extension of g2 ∈ H

s
3
t (0, T) such that

‖ E ‖
H

s
3

t (R)
≤ 2 ‖ g2 ‖

H
s
3

t (0,T)
.

Consequently, we have that g is compactly supported in the interval [0, 2] and (17):

‖ g ‖
H

s
3

t (R)
≤ 2 ‖ g2 ‖

H
s
3

t (0,T)
, for

1
2
< s <

3
2

.

Thus, for IBVP (23), we can derive the following two inequalities: one for space
estimates and one for time estimates.

sup
t∈[0,T]

‖ ω̃(t) ‖Hs
x(0,∞) ≤ (̃C3)s ‖ g ‖

H
s
3

t (R)
, (by Theorem 4)

≤ 2(̃C3)s ‖ g2 ‖
H

s
3

t (0,T)
, for

1
2
< s <

3
2

, (by (17)),

where (̃C3)s is a constant depending on s.
Therefore, we obtain the following result:

Theorem 5. For 1/2 < s < 3/2 and the boundary data test function g2 ∈ H
s
3
t (0, T). The

solution for the IBVP (23) which satisfies the following Hadamard space estimate:

sup
t∈[0,T]

‖ S[0, g2; 0](t) ‖Hs
x(0,∞)≤ 2(̃C3)s ‖ g2 ‖

H
s
3

t (0,T)
,

where (̃C3)s is a constant depending on s.
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3.2. The Norm Estimates of the Forced Linear KdV Equation IBVP (4) (Theorem 2)

In this subsection, we will prove Theorem 2 by breaking down the forced linear KdV
equation into four simpler problems.

3.2.1. Decomposition into Simple Problems

To prove Theorem 2, we start by decomposing the forced linear IBVP (4) into a
combination of the following problems:

(I) The homogeneous linear initial value problem (IVP):

{
Vt + Vxxx = 0, x ∈ R, t ∈ (0, T),
V(x, 0) = V0(x) ∈ Hs

x(R), x ∈ R,
(24)

where V0 ∈ Hs
x(R) is an extension of the initial datum v0 ∈ Hs

x(0, ∞) such that

‖ V0 ‖Hs
x(R)

≤ 2 ‖ v0 ‖Hs
x(0,∞) (25)

with the solution to IVP (24) expressed using the Duhamel formula

V(x, t) = S[V0; 0](x, t) =
1

2π

∫
R

eikx+ik3tV̂0(k)dk, (26)

where the Fourier transform with respect to the spatial variable V̂0(ζ) is defined by

V̂0(ζ) =
∫
R

e−iζkV0(k)dk, ζ ∈ R.

(II) The forced linear IVP with zero initial condition:

{
W∗

t + W∗
xxx = F2(x, t), x ∈ R, t ∈ (0, T),

W∗(x, 0) = 0, x ∈ R,
(27)

where F2(x, t) ∈ C([0, T]; Hs
x(R)) is an extension of f2(x, t) ∈ C([0, T]; Hs

x(0, ∞)), which sat-
isfies

‖ F2 ‖L2([0,T];Hs
x(R))

≤ 2 ‖ f2 ‖L2([0,T];Hs
x(0,∞)) . (28)

The solution to IVP (27) is expressed using the Duhamel formula

W∗(x, t) = S[0; F2](x, t) =
1

2π

∫
R

(∫ t

0
eikx+ik3(t−t

′
) F̂2(k, t

′
)dt

′
)

dk (29)

=
∫ t

0
S[F2(·, t

′
); 0](x, t− t

′
)dt

′
.

(III) The linear IBVP on the half-line:

⎧⎨⎩
v#

t + v#
xxx = 0 x ∈ (0, ∞), t ∈ (0, T),

v#(x, 0) = 0, x ∈ [0, ∞),
v#

x(0, t)− γ2v#(0, t) = G1(t), t ∈ [0, T], γ2 > 0,
(30)

where G1(t)
.
= g2(t)−Vx(0, t)−W∗

x (0, t) and v# = S[0, G0; 0] is the solution of (30).

(IV) Homogeneous linear IBVP with zero initial condition:

⎧⎨⎩
v∗t + v∗xxx = 0 x ∈ (0, ∞), t ∈ (0, T),
v∗(x, 0) = 0, x ∈ [0, ∞),
v∗x(0, t)− γ2v∗(0, t) = H1(t), t ∈ [0, T], γ2 > 0,

(31)
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where H1(t)
.
= γ2(V(0, t) + W∗(0, t)) and v∗ = S[0, H1; 0] is the solution of (31).

By applying the superposition principle, the UTM solution (6) of the linear IBVP (4) is
expressed as follows: for x > 0 and 0 < t < T,

SLK[v0, g2; f2] = S[V0; 0]|x>0 + S[0; F2]|x>0 + S[0, G1; 0] + S[0, H1; 0], (32)

where the four terms on the right-hand side correspond to the solutions of problems (24),
(27), (30), and (31), respectively.

3.2.2. The Estimates for the Linear IVPs

We begin by analyzing the components of (32). First, we will estimate the solutions of
the homogeneous linear IVP (24) and the forced linear IVP with zero initial condition (27)
in Sobolev spaces. The following two theorems from [31] provide the necessary estimates
for these IVPs.

Theorem 6 ([31]). The function V defined by formula (26) solves the linear KdV IVP (24) and
satisfies the following estimates:

1. Space estimate:

sup
t∈[0,T]

‖ V(t) ‖Hs
x(R)

=‖ V0 ‖Hs
x(R)

, s ∈ R. (33)

2. Time estimates:

sup
x∈R

‖ V(x) ‖
H

s+1
3

t (0,T)
≤ (C6)s ‖ V0 ‖Hs

x(R)
, s ∈ R, (34)

sup
x∈R

‖ Vx(x) ‖
H

s
3

t (R)
≤ (C7)s ‖ V0 ‖Hs

x(R)
, s ∈ R, (35)

where (C6)s and (C7)s are constants depending on s.

Having analyzed the homogeneous linear IVP (24), we now turn to the estimation of
the forced linear IVP with zero initial condition (27).

Theorem 7 ([31]). The solution W∗ = S[0; F2] of the forced linear IVP (27) given by (29) admits
the following senses:

1. Space estimate:

sup
t∈[0,T]

‖ W∗(t) ‖Hs
x(R)

≤ (C8)sT
1
2

(∫ T

0
‖ F2(·, t

′
) ‖2

Hs
x(R)

dt
′
) 1

2

, s ∈ R. (36)

2. Time estimates:

sup
x∈R

‖ W∗(x) ‖
H

s+1
3

t (0,T)
≤ (C9)sT

2−s
3 ‖ F2 ‖L2([0,T]; Hs

x(R))
,

1
2
< s < 2, (37)

sup
x∈R

‖ W∗
x (x) ‖

H
s
3

t (0,T)
≤ (C10)sT

3−2s
6 ‖ F2 ‖L2([0,T]; Hs

x(R))
, 0 ≤ s <

3
2

, (38)

where (C8)s, (C9)s, and (C10)s are constants depending on s.

3.2.3. Proof of Theorem 2

In this subsection, we establish Theorem 2 by utilizing Theorems 4–7.
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According to Theorem 5, we obtain the following inequality:

sup
t∈[0,T]

‖ S[0, G1; 0](t) ‖Hs
x(0,∞) ≤ 2(̃C3)s ‖ G1 ‖

H
s
3

t (0,T)
, (39)

sup
t∈[0,T]

‖ S[0, H1; 0](t) ‖Hs
x(0,∞) ≤ 2(̃C3)s ‖ H1 ‖

H
s
3

t (0,T)
. (40)

According to (32), we have the following inequality:

sup
t∈[0,T]

‖ SLK[v0, g2; f2] ‖Hs
x(0,∞)

≤ 2 ‖ v0 ‖Hs
x(0,∞) +2(C8)sT

1
2

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2

+ 2(̃C3)s ‖ G1 ‖
H

s
3

t (0,T)

+ 2(̃C3)s ‖ H1 ‖
H

s
3

t (0,T)
, (by (25), (28), (33), (36), (39), (40)).

We must estimate ‖ G1 ‖
H

s
3

t (0,T)
and ‖ H1 ‖

H
s
3

t (0,T)
. Then, we obtain the following inequalities:

‖ G1 ‖
H

s
3

t (0,T)
=‖ g2(t)−Vx(0, t)−W∗

x (0, t) ‖
H

s
3

t (0,T)
(41)

≤‖ g2 ‖
H

s
3

t (0,T)
+ ‖ Vx(0, t) ‖

H
s
3

t (0,T)
+ ‖ W∗

x (0, t) ‖
H

s
3

t (0,T)

�‖ g2 ‖
H

s
3

t (0,T)
+ ‖ V0 ‖Hs

x(R)
+T

3−2s
6 ‖ F2 ‖L2([0,T]; Hs

x(R))
,

(by (35) and (38))

�‖ g2 ‖
H

s
3

t (0,T)
+ ‖ v0 ‖Hs

x(0,∞) +T
3−2s

6 ‖ f2 ‖L2([0,T];Hs
x(0,∞)),

(by (25) and (28)),

and

‖ H1 ‖
H

s
3

t (0,T)
=‖ γ2V(0, t) + γ2W∗(0, t) ‖

H
s
3

t (0,T)
(42)

≤ γ2 ‖ V(0, t) ‖
H

s
3

t (0,T)
+γ2 ‖ W∗(0, t) ‖

H
s
3

t (0,T)

≤ γ2 ‖ V(0, t) ‖
H

s+1
3

t (0,T)
+γ2 ‖ W∗(0, t) ‖

H
s+1

3
t (0,T)

≤ (C6)sγ2 ‖ V0 ‖Hs
x(R)

+(C9)sγ2T
2−s

3 ‖ F2 ‖L2([0,T]; Hs
x(R))

,

(by (34) and (37))

≤ 2(C6)sγ2 ‖ v0 ‖Hs
x(0,∞) +2(C9)sγ2T

2−s
3 ‖ f2 ‖L2([0,T];Hs

x(0,∞)),

(by (25) and (28)).

Hence, by (41) and (42), we can yield (8):

sup
t∈[0,T]

‖ SLK[v0, g2; f2] ‖Hs
x(0,∞)

≤ ds

(
‖ v0 ‖Hs

x(0,∞) + ‖ g2 ‖
H

s
3

t (0,T)
+T

3−2s
6

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2
)

,

which concludes this proof of Theorem 2.
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4. About the New Solution Space and Some Estimates

One strategy to prove the existence of solutions to our Robin problem for the KdV
equation on (0, ∞) is to use (8) with f2 replaced by Q(v)vx. However, the Hadamard space
C([0, T]; Hs

x(0, ∞)) is not a suitable candidate due to the presence of the term∫ T

0
‖ vvx ‖2

Hs
x(0,∞) dt.

This is precisely the necessary “algebraic property” (refer to Lemma 4).
Hence,

‖ vvx ‖Hs
x(0,∞)≤ (C1)s ‖ v ‖Hs

x(0,∞)‖ vx ‖Hs
x(0,∞)

for closing the loop is not true. Therefore, we introduce a new solution space, a subspace of
the Hadamard space, defined by specific Λ-norms.

The following lemma was proven in [33]; therefore, we omit its proof here. Below, we
provide the bilinear estimate for the problem term.

Lemma 8 (Bilinear estimate on the half-line). For 0 ≤ s < 1 and any u and v in YT, where the
space YT is defined in (10), we have the bilinear estimate

‖ uvx ‖2
L2([0,T];Hs

x(0,∞))
.
=
∫ T

0
‖ uvx(t) ‖2

Hs
x(0,∞) dt (43)

≤ T
1
2

(
ΛT

3 (u)Λ
T
4 (v)

)2
+ 2

(
ΛT

3 (u)Λ
T
2,s(v)

)2
+ 2T

1
2

(
ΛT

1,s(u)Λ
T
4 (v)

)2
.

We now turn to the following useful lemma for our estimation.

Lemma 9. For 1/2 < s < 1 and 0 < T < 1, we have the following results:

ΛT
3 (uv) ≤ ΛT

1,s(u)Λ
T
3 (v), (44)

and

ΛT
1,s(uv) ≤ (C1)sΛT

1,s(u)Λ
T
1,s(v), (45)

for u, v ∈ C([0, T]; Hs
x(0, ∞)), where (C1)s is a constant depending on s.

Proof. By definition of ΛT
3 (uv),

ΛT
3 (uv) =

(∫ ∞

0
sup

t∈[0,T]
|u(x, t)v(x, t)|2dx

) 1
2

≤
(∫ ∞

0
sup

t∈[0,T]

(
sup

x∈[0,∞)

|u(x, t)|2
)

sup
t∈[0,T]

|v(x, t)|2dx

) 1
2

≤
(∫ ∞

0
sup

t∈[0,T]
‖ u(t) ‖2

Hs
x(0,∞) sup

t∈[0,T]
|v(x, t)|2dx

) 1
2

,

(by the Sobolev Imbedding Theorem for s > 1/2)

≤ sup
t∈[0,T]

‖ u(t) ‖Hs
x(0,∞)

(∫ ∞

0
sup

t∈[0,T]
|v(x, t)|2dx

) 1
2

,

= ΛT
1,s(u)Λ

T
3 (v),

we obtain Equation (44).
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To estimate ΛT
1,s(uv):

ΛT
1.s(uv) = sup

t∈[0,T]
‖ uv(t) ‖Hs

x(0,∞)

≤ sup
t∈[0,T]

(
(C1)s ‖ u(t) ‖Hs

x(0,∞)‖ v(t) ‖Hs
x(0,∞)

)
, (by Lemma 4)

≤ (C1)s

(
sup

t∈[0,T]
‖ u(t) ‖Hs

x(0,∞)

)(
sup

t∈[0,T]
‖ v(t) ‖Hs

x(0,∞)

)
= (C1)sΛT

1,s(u)Λ
T
1,s(v),

we obtain Equation (45).

Finally, we obtain the following proposition.

Proposition 1. For 1/2 < s < 1 and 0 < T < 1, we have the following results:∫ T

0
‖ u1u2 · · · unvx(t) ‖2

Hs
x(0,∞) dt (46)

≤ T
1
2

(
ΛT

1,s(u1)ΛT
1,s(u2) · · ·ΛT

1,s(un−1)ΛT
3 (un)ΛT

4 (v)
)2

+ 2
(

ΛT
1,s(u1)ΛT

1,s(u2) · · ·ΛT
1,s(un−1)ΛT

3 (un)ΛT
2,s(v)

)2

+ 2((C1)s)
2(n−1)T

1
2

(
ΛT

1,s(u1)ΛT
1,s(u2) · · ·ΛT

1,s(un)ΛT
4 (v)

)2

≤ 5C̃2(n−1)
s ‖ u1 ‖2

YT
‖ u2 ‖2

YT
· · · ‖ un ‖2

YT
‖ v ‖2

YT
,

where n ≥ 2, n ∈ N, and C̃s = max{1, (C1)s}.

Proof. We use mathematical induction to prove this lemma.
In the first part, we assume n = 2. We have∫ T

0
‖ u1u2vx(t) ‖2

Hs
x(0,∞) dt

≤ T
1
2

(
ΛT

3 (u1u2)ΛT
4 (v)

)2
+ 2

(
ΛT

3 (u1u2)ΛT
2,s(v)

)2
+ 2T

1
2

(
ΛT

1,s(u1u2)ΛT
4 (v)

)2
,

(by Lemma 8)

≤ T
1
2

(
ΛT

1,s(u1)ΛT
3 (u2)ΛT

4 (v)
)2

+ 2
(

ΛT
1,s(u1)ΛT

3 (u2)ΛT
2,s(v)

)2

+ 2T
1
2

(
(C1)sΛT

1,s(u1)ΛT
1,s(u2)ΛT

4 (v)
)2

, (by Lemmas 4 and 9)

≤ 5C̃2(n−1)
s ‖ u1 ‖2

YT
‖ u2 ‖2

YT
‖ v ‖2

YT
.

Therefore, when n = 2, the inequality (46) holds.
In the second part, we assume n = k > 2 and the following inequality

∫ T

0
‖ u1u2 · · · ukvx(t) ‖2

Hs
x(0,∞) dt (47)

≤ T
1
2

(
ΛT

1,s(u1)ΛT
1,s(u2) · · ·ΛT

1,s(uk−1)Λ
T
3 (uk)Λ

T
4 (v)

)2

+ 2
(

ΛT
1,s(u1)ΛT

1,s(u2) · · ·ΛT
1,s(uk−1)Λ

T
3 (uk)Λ

T
2,s(v)

)2

+ 2((C1)s)
2(k−1)T

1
2

(
ΛT

1,s(u1)ΛT
1,s(u2) · · ·ΛT

1,s(uk)Λ
T
4 (v)

)2

≤ 5C̃2(k−1)
s ‖ u1 ‖2

YT
‖ u2 ‖2

YT
· · · ‖ uk ‖2

YT
‖ v ‖2

YT

holds.
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Then, when n = k + 1, we obtain∫ T

0
‖ u1u2 · · · uk+1vx(t) ‖2

Hs
x(0,∞) dt

≤ T
1
2

(
ΛT

1,s(u1)ΛT
1,s(u2) · · ·ΛT

1,s(uk−1)Λ
T
3 (ukuk+1)Λ

T
4 (v)

)2

+ 2
(

ΛT
1,s(u1)ΛT

1,s(u2) · · ·ΛT
1,s(uk−1)Λ

T
3 (ukuk+1)Λ

T
2,s(v)

)2

+ 2((C1)s)
2(k−1)T

1
2

(
ΛT

1,s(u1)ΛT
1,s(u2) · · ·ΛT

1,s(uk−1)Λ
T
1,s(ukuk+1)Λ

T
4 (v)

)2
,

(by Formula (47))

≤ T
1
2

(
ΛT

1,s(u1)ΛT
1,s(u2) · · ·ΛT

1,s(uk)Λ
T
3 (uk+1)Λ

T
4 (v)

)2

+ 2
(

ΛT
1,s(u1)ΛT

1,s(u2) · · ·ΛT
1,s(uk)Λ

T
3 (uk+1)Λ

T
2,s(v)

)2

+ 2((C1)s)
2(k−1)T

1
2

(
ΛT

1,s(u1)ΛT
1,s(u2) · · ·ΛT

1,s(uk−1)(C1)sΛT
1,s(uk)Λ

T
1,s(uk+1)Λ

T
4 (v)

)2
,

(by Lemma 9)

≤ T
1
2

(
ΛT

1,s(u1)ΛT
1,s(u2) · · ·ΛT

1,s(uk)Λ
T
3 (uk+1)Λ

T
4 (v)

)2

+ 2
(

ΛT
1,s(u1)ΛT

1,s(u2) · · ·ΛT
1,s(uk)Λ

T
3 (uk+1)Λ

T
2,s(v)

)2

+ 2((C1)s)
2kT

1
2

(
ΛT

1,s(u1)ΛT
1,s(u2) · · ·ΛT

1,s(uk−1)Λ
T
1,s(uk)Λ

T
1,s(uk+1)Λ

T
4 (v)

)2

≤ 5C̃2k
s ‖ u1 ‖2

YT
‖ u2 ‖2

YT
· · · ‖ uk+1 ‖2

YT
‖ v ‖2

YT
.

Therefore, when n = k + 1, the inequality (46) holds.
By mathematical induction, we finish the proof of inequality (46).

Refining our solution space from C([0, T]; Hs
x(0, ∞) to YT requires additional estimates

for the UTM solution SLK[v0, g2; f2] of (4). Therefore, SLK[v0, g2; f2] must be estimated
using the Λ-norms (11) and (12), which define the norm (10) of YT .

These new linear estimates are presented in the following proposition and are proven
in Section 5.

Proposition 2 (Λ-norms estimates for the forced linear IBVP). For 3/4 < s < 1, the solu-
tion SLK[v0, g2; f2] of the forced linear KdV IBVP (4) defined by the UTM formula (6) admits
the estimate:

ΛT(SLK[v0, g2; f2]) (48)

≤ (d2)s

(
‖ v0 ‖Hs

x(o,∞) + ‖ g2 ‖
H

s
3

t (0,T)
+T

3−2s
6

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2
)

,

where (d2)s > 0 is a constant depending on s.

5. The Proof of Proposition 2 (About the Norms Estimates of the Forced Linear
KdV IBVP)

In this section, we will prove Proposition 2. Recall that SLK[v0, g2; f2] (32) is the
solution of the forced linear KdV IBVP (4),

SLK[v0, g2; f2] = S[V0; 0]|x>0 + S[0; F2]|x>0 + S[0, G1; 0] + S[0, H1; 0],

where S[V0; 0] is the solution of the linear IVP (24).
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S[0; F2] is the solution of the forced linear IVP (27), and S[0, G1; 0] and S[0, H1; 0] are the
solution of the linear IVP (30) and (31), respectively. Now, we must estimate the Λ-norms
for SLK[v0, g2; f2]. We decompose the estimate into four cases:

(A) We estimate the ΛT
1,s-norm for SLK[v0, g2; f2] to obtain

ΛT
1,s(SLK[v0, g2; f2]) �‖ v0 ‖Hs

x(0,∞) + ‖ g2 ‖
H

s
3

t (0,T)
+T

3−2s
6

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2

; (49)

(B) We estimate the ΛT
2,s-norm for SLK[v0, g2; f2] to obtain

ΛT
2,s(SLK[v0, g2; f2]) �‖ v0 ‖Hs

x(o,∞) + ‖ g2 ‖
H

s
3

t (0,T)
+T

3−2s
6

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2

; (50)

(C) When s > 3/4, we estimate the ΛT
3 -norm for SLK[v0, g2; f2] to obtain

ΛT
3 (SLK[v0, g2; f2]) �‖ v0 ‖Hs

x(o,∞) + ‖ g2 ‖
H

s
3

t (0,T)
+T

3−2s
6

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2

; (51)

(D) We estimate the ΛT
4 -norm for SLK[v0, g2; f2] to obtain

ΛT
4 (SLK[v0, g2; f2]) �‖ v0 ‖Hs

x(o,∞) + ‖ g2 ‖
H

s
3

t (0,T)
+T

3−2s
6

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2

. (52)

Since

ΛT(SLK[v0, g2; f2])

= max
{

ΛT
1,s(SLK[v0, g2; f2]), ΛT

2,s(SLK[v0, g2; f2]), ΛT
3 (SLK[v0, g2; f2]), ΛT

4 (SLK[v0, g2; f2])
}

,

and by (49), (50), (51), and (52), we can yield that (48)

Λ(S[v0, g2; f2])

�‖ v0 ‖Hs
x(0,∞) + ‖ g2 ‖

H
s
3

t (0,T)
+T

3−2s
6

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2

, for
3
4
< s < 1.

Therefore, the proof of Proposition 2 is complete.
We will now proceed to prove statements (A), (B), (C), and (D).

(A) The estimate of ΛT
1,s-norm for SLK[v0, g2; f2] is as follows: For 3/4 < s < 1,

ΛT
1,s(SLK[v0, g2; f2])

= ΛT
1,s
(

S[V0; 0]|x>0 + S[0; F2]|x>0 + S[0, G1; 0] + S[0, H1; 0]
)

≤ sup
t∈[0,T]

‖ S[V0; 0]|x>0 ‖Hs
x(0,∞) + sup

t∈[0,T]
‖ S[0; F2]|x>0 ‖Hs

x(0,∞)

+ sup
t∈[0,T]

‖ S[0, G1; 0] ‖Hs
x(0,∞) + sup

t∈[0,T]
‖ S[0, H1; 0] ‖Hs

x(0,∞)

�‖ v0 ‖Hs
x(0,∞) + ‖ g2 ‖

H
s
3

t (0,T)
+T

3−2s
6

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2

,

(by (25), (28), (33), (36), (39), (40), (41), and (42).

In fact, by (8), we can attain (49).
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(B) The estimate of ΛT
2,s-norm for SLK[v0, g2; f2] is as follows: For 3/4 < s < 1,

ΛT
2,s(SLK[v0, g2; f2])

= ΛT
2,s
(

S[V0; 0]|x>0 + S[0; F2]|x>0 + S[0, G1; 0] + S[0, H1; 0]
)

=

(
sup

x∈[0,∞)

∫ T

0

∣∣Ds
x∂x
(

S[V0; 0]|x>0 + S[0; F2]|x>0 + S[0, G1; 0] + S[0, H1; 0]
)∣∣2dt

) 1
2

�
(

sup
x∈[0,∞)

∫ T

0
|Ds

x∂xS[V0; 0]|2dt

) 1
2

︸ ︷︷ ︸
(a)

+

(
sup

x∈[0,∞)

∫ T

0
|Ds

x∂xS[0; F2]|2dt

) 1
2

︸ ︷︷ ︸
(b)

+

(
sup

x∈[0,∞)

∫ T

0
|Ds

x∂xS[0, G1; 0]|2dt

) 1
2

︸ ︷︷ ︸
(c)

+

(
sup

x∈[0,∞)

∫ T

0
|Ds

x∂xS[0, H1; 0]|2dt

) 1
2

︸ ︷︷ ︸
(d)

.

We must estimate (a), (b), (c), and (d); then, we attain the following results:
We estimate (a) as follows:

(a) =

(
sup

x∈[0,∞)

∫ T

0

∣∣∣∣∣
∫ ∞

0

|Vx(x + ζ, t)−Vx(x, t)|2
ζ1+2β

dζ

∣∣∣∣∣dt

) 1
2

=

⎛⎜⎝ sup
x∈[0,∞)

∫ T

0

⎛⎜⎝∫ ∞

0

∣∣∣∫R keikx+ik3t
(

eikζ − 1
)

V̂0(k)dk
∣∣∣2

2πζ1+2β
dζ

⎞⎟⎠dt

⎞⎟⎠
1
2

,

(let η = k3 and by the Parseval’s Theorem)

≤

⎛⎜⎜⎜⎜⎝ sup
x∈[0,∞)

∫ ∞

0

⎛⎜⎜⎜⎜⎝
∫
R

∣∣∣∣eiη
1
3 x
(

eiη
1
3 ζ − 1

)
V̂0(η

1
3 )

3η
1
3

∣∣∣∣2dη

ζ1+2β

⎞⎟⎟⎟⎟⎠dζ

⎞⎟⎟⎟⎟⎠
1
2

=
1
3

⎛⎜⎜⎜⎝ sup
x∈[0,∞)

∫
R

∣∣∣∣∣ V̂0(η
1
3 )

3η
1
3

∣∣∣∣∣
2

⎛⎜⎜⎜⎝
∫ ∞

0

∣∣∣∣eiη
1
3 ζ − 1

∣∣∣∣2
ζ1+2β

dζ

⎞⎟⎟⎟⎠dη

⎞⎟⎟⎟⎠
1
2

=
1
3

⎛⎜⎜⎜⎝ sup
x∈[0,∞)

∫
R

∣∣∣∣∣ V̂0(η
1
3 )

3η
1
3

∣∣∣∣∣
2

⎛⎜⎜⎜⎝
∫ ∞

0

4 sin2
(

η
1
3 ζ
2

)
ζ1+2β

dζ

⎞⎟⎟⎟⎠dη

⎞⎟⎟⎟⎠
1
2

, (let y =
η

1
3 ζ

2
)

� 1
3

⎛⎝ sup
x∈[0,∞)

∫
R

∣∣∣∣∣ V̂0(η
1
3 )

η
1
3

∣∣∣∣∣
2

η
2β
3

(∫ 1

0

sin2 y
y1+2β

dy + lim
τ→∞

∫ τ

1

sin2 y
y1+2β

dy

)
dη

⎞⎠ 1
2

�

⎛⎝ sup
x∈[0,∞)

∫
R

∣∣∣∣∣ V̂0(η
1
3 )

η
1
3

∣∣∣∣∣
2

η
2β
3 dη

⎞⎠ 1
2

, (let η = k3)

=

(∫
R

3
∣∣∣V̂0(k)

∣∣∣2k2βdk
) 1

2
≤
(∫

R
3
∣∣∣V̂0(k)

∣∣∣2(1 + k2)βdk
) 1

2
�‖ V0 ‖Hs

x(R)
.
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Therefore, we derive the following inequality:

(a) �‖ V0 ‖Hs
x(R)

≤ 2 ‖ v0 ‖Hs
x(0,∞), (by (25)). (53)

We estimate (b) as follows:

(b) =

(
sup

x∈[0,∞)

∫ T

0
|Ds

x∂xS[0; F2]|2dt

) 1
2

=

(
sup

x∈[0,∞)

∫ T

0

∣∣∣∣Ds
x∂x

(∫ t

0
S[F2(·, t

′
); 0](x, t− t

′
)dt

′
)∣∣∣∣2dt

) 1
2

≤
(

sup
x∈[0,∞)

∫ T

0

(∫ t

0

∣∣∣Ds
x∂xS[F2(·, t

′
); 0](x, t− t

′
)
∣∣∣dt

′
)2

dt

) 1
2

≤ sup
x∈[0,∞)

∫ T

0

(∫ T

t′

∣∣∣Ds
x∂xS[F2(·, t

′
); 0](x, t− t

′
)
∣∣∣2dt

) 1
2

dt
′

≤ sup
x∈[0,∞)

∫ T

0

(∫ T

0

∣∣∣Ds
x∂xS[F2(·, t

′
); 0](x, τ)

∣∣∣2dτ

) 1
2

dt
′
, (let τ = t− t

′
)

≤
∫ T

0

(
sup

x∈[0,∞)

∫ T

0

∣∣∣Ds
x∂xS[F2(·, t

′
); 0](x, τ)

∣∣∣2dτ

) 1
2

dt
′
=
∫ T

0
ΛT

2,s

(
S[F2(·, t

′
); 0]

)
dt
′

�
∫ T

0
‖ F2(t

′
) ‖Hs

x(R)
dt
′
, (by (53))

≤ T
1
2

(∫ T

0
‖ F2(t

′
) ‖2

Hs
x(R)

dt
′
) 1

2

≤ 2T
1
2

(∫ T

0
‖ f2(t

′
) ‖2

Hs
x(0,∞) dt

′
) 1

2

, (by (28)).

Hence, we derive the following inequality:

(b) � T
1
2

(∫ T

0
‖ f2(t

′
) ‖2

Hs
x(0,∞) dt

′
) 1

2

. (54)

To estimate (c) and (d), we consider the UTM solution formula

SLK[0, g; 0] = ω1 + ω2, (55)

where

ω1(x, t) =
−3i
2π

∫ ∞

0
eiakx−ik3t k2

ak + iγ2
g̃(−k3, T)dk,

ω2(x, t) =
−3i
2π

∫ ∞

0
eia2kx+ik3t k2

a2k + iγ2
g̃(k3, T)dk.

We assume

X [0,T] =

{
1, if x ∈ [0, T],
0, if x ∈ R\[0, T].

Now, we estimate ΛT
2,s(ω1), and the estimate of ΛT

2,s(ω2) is similar to the estimate of
ΛT

2,s(ω1).
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(
ΛT

2,s(ω1)
)2

= sup
x∈[0,∞)

∫ T

0
|Ds

x∂xω1(x, t)|2dt

= sup
x∈[0,∞)

∫ T

0

(∫ ∞

0

|∂xω1(x + ζ, t)− ∂xω1(x, t)|2
ζ1+2β

dζ

)
dt

� sup
x∈[0,∞)

∫ T

0

⎛⎜⎝∫ ∞

0

∣∣∣∫ ∞
0 eiakx−ik3t

(
eiakζ − 1

)
k3

ak+iγ2
X̂ [0,T]g(−k3)dk

∣∣∣2
2πζ1+2β

dζ

⎞⎟⎠dt

≤ sup
x∈[0,∞)

∫ ∞

0

⎛⎜⎜⎜⎝
∫ T

0

∣∣∣∣∫ 0
−∞ e−iaτ

1
3 x+iτt

(
e−iaτ

1
3 ζ − 1

)
−τ

−aτ
1
3 +iγ2

X̂ [0,T]g(τ)dτ

∣∣∣∣2
2πζ1+2β|τ| 2

3
dt

⎞⎟⎟⎟⎠dζ,

(by Fubini’s Theorem and let τ = −k3)

≤ sup
x∈[0,∞)

∫ ∞

0

⎛⎜⎜⎜⎝
∫ 0
−∞

∣∣∣∣e−iaτ
1
3 x
(

e−iaτ
1
3 ζ − 1

)
X̂ [0,T]g(τ)

∣∣∣∣2dτ

ζ1+2β

⎞⎟⎟⎟⎠dζ,

(by Parseval’s Theorem)

≤ sup
x∈[0,∞)

∫ ∞

0

⎛⎜⎜⎜⎝
∫ 0
−∞ e

√
3τ

1
3 x
∣∣∣∣e√3

2 τ
1
3 ζ − 1

∣∣∣∣2∣∣∣X̂ [0,T]g(τ)
∣∣∣2dτ

ζ1+2β
,

⎞⎟⎟⎟⎠dζ, (by Lemma 1)

≤
∫ ∞

0

⎛⎜⎜⎜⎝
∫ 0
−∞

∣∣∣∣e√3
2 τ

1
3 ζ − 1

∣∣∣∣2∣∣∣X̂ [0,T]g(τ)
∣∣∣2dτ

ζ1+2β

⎞⎟⎟⎟⎠dζ

=
∫ 0

−∞

∣∣∣X̂ [0,T]g(τ)
∣∣∣2
⎛⎜⎜⎜⎝
∫ ∞

0

∣∣∣∣e√3
2 τ

1
3 ζ − 1

∣∣∣∣2
ζ1+2β

dζ

⎞⎟⎟⎟⎠dτ �
∫ 0

−∞

∣∣∣X̂ [0,T]g(τ)
∣∣∣2(√3

2
τ

1
3

)2β

dτ,

(let r = −
√

3
2

τ
1
3 ζ, and by

∫ ∞

0

(1− e−r)
2

r1+2β
dr < ∞)

≤
∫
R

(
1 + τ2

) β
3
∣∣∣X̂ [0,T]g(τ)

∣∣∣2dτ =‖ X [0,T]g ‖2

H
β
3

t (R)

≤‖ g ‖2

H
s
3

t (R)
.

We can estimate ΛT
2,s(ω2) in a similar way. Hence, we obtain the following inequalities:

ΛT
2,s(ω1) �‖ g ‖

H
s
3

t (R)
, ΛT

2,s(ω2) �‖ g ‖
H

s
3

t (R)
. (56)

According to (17) and (56), we obtain

ΛT
2,s(S[0, g; 0]) � ΛT

2,s(ω1) + ΛT
2,s(ω2) �‖ g ‖

H
s
3

t (R)
≤ 2 ‖ g2 ‖

H
s
3

t (0,T)
. (57)
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Therefore, we can have the following results:

(c) �‖ G1 ‖
H

s
3

t (0,T)
=‖ g2(t)−Vx(0, t)−W∗

x (0, t) ‖
H

s
3

t (0,T)
, (58)

(by (17), (30), and (57))

≤‖ g2 ‖
H

s
3

t (0,T)
+ ‖ Vx(0, t) ‖

H
s
3

t (0,T)
+ ‖ W∗

x (0, t) ‖
H

s
3

t (0,T)

≤‖ g2 ‖
H

s
3

t (0,T)
+(C7)s ‖ V0 ‖Hs

x(R)
+(C10)sT

3−2s
6 ‖ F2 ‖L2([0,T]; Hs

x(R))
,

(by (35) and (38))

≤‖ g2 ‖
H

s
3

t (0,T)
+2(C7)s ‖ v0 ‖Hs

x(0,∞) +2(C10)sT
3−2s

6 ‖ f2 ‖L2([0,T];Hs
x(0,∞)),

(by (25) and (28))

�‖ v0 ‖Hs
x(o,∞) + ‖ g2 ‖

H
s
3

t (0,T)
+T

3−2s
6

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2

,

and

(d) �‖ H1 ‖
H

s
3

t (0,T)
=‖ γ2V(0, t) + γ2W∗(0, t) ‖

H
s
3

t (0,T)
, (59)

(by (17), (31), and (57))

≤ |γ2| ‖ V(0, t) ‖
H

s
3

t (0,T)
+|γ2| ‖ W(0, t) ‖

H
s
3

t (0,T)

≤ |γ2| ‖ V(0, t) ‖
H

s+1
3

t (0,T)
+|γ2| ‖ W(0, t) ‖

H
s+1

3
t (0,T)

≤ (C6)s|γ2| ‖ V0 ‖Hs
x(R)

+(C9)s|γ2|T
2−s

3 ‖ F2 ‖L2([0,T]; Hs
x(R))

,

(by (34) and (37))

≤ 2(C6)s|γ2| ‖ v0 ‖Hs
x(0,∞) +2(C9)s|γ2|T

2−s
3 ‖ f2 ‖L2([0,T];Hs

x(0,∞)),

(by (25) and (28))

�‖ v0 ‖Hs
x(o,∞) +T

2−s
3

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2

.

According to (53), (54), (58), and (59), we obtain (50):

ΛT
2,s(SLK[v0, g2; f2])

�‖ v0 ‖Hs
x(o,∞) + ‖ g2 ‖

H
s
3

t (0,T)
+T

3−2s
6

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2

.

(C) The estimate of ΛT
3 -norm for SLK[v0, g2; f2] is as follows: For 3/4 < s < 1,

ΛT
3 (SLK[v0, g2; f2])

=

(∫ ∞

0
sup

t∈[0,T]
|SLK[v0, g2; f2](x, t)|2dx

) 1
2

=

(∫ ∞

0
sup

t∈[0,T]

∣∣S[V0; 0]|x>0 + S[0; F2]|x>0 + S[0, G1; 0] + S[0, H1; 0]
∣∣2dx

) 1
2

� ΛT
3 (S[V0; 0]) + ΛT

3 (S[0; F2]) + ΛT
3 (S[0, G1; 0]) + ΛT

3 (S[0, H1; 0]).

We must estimate ΛT
3 (S[V0; 0]), ΛT

3 (S[0; F2]), ΛT
3 (S[0, G1; 0]), and ΛT

3 (S[0, H1; 0]).
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The estimate of ΛT
3 (S[V0; 0]) according to (25) in [37] is

ΛT
3 (S[V0; 0]) ≤ (C14)s(1 + T)ρ ‖ v0 ‖Hs

x(0,∞), for s, ρ >
3
4

. (60)

The estimate of ΛT
3 (SLK[0; F2]) is as follows:

ΛT
3 (SLK[0; F2]) (61)

=

(∫ ∞

0
sup

t∈[0,T]

∣∣∣∣∫ t

0
SLK[F2(·, t

′
); 0](x, t− t

′
)dt

′
∣∣∣∣2dx

) 1
2

,

(since
∣∣∣SLK[F2(·, t

′
); 0](x, t− t

′
)
∣∣∣ ≤ sup

τ∈[0,T]

∣∣∣SLK[F2(·, t
′
); 0](x, τ)

∣∣∣, 0 ≤ t
′ ≤ t ≤ T, x ∈ [0, ∞),

and let τ = t− t
′
),

≤

⎛⎝∫ ∞

0

∣∣∣∣∣
∫ T

0
sup

τ∈[0,T]

∣∣∣SLK[F2(·, t
′
); 0](x, τ)

∣∣∣dt
′
∣∣∣∣∣
2

dx

⎞⎠ 1
2

≤
∫ T

0

(∫ ∞

0
sup

τ∈[0,T]

∣∣∣SLK[F2(·, t
′
); 0](x, τ)

∣∣∣2dx

) 1
2

dt
′

=
∫ T

0
ΛT

3

(
SLK[F2(·, t

′
); 0]

)
dt
′

�
∫ T

0
(1 + T)ρ ‖ f2(t

′
) ‖Hs

x(0,∞) dt
′
, (by (60))

� (1 + T)ρT
1
2

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2

, for s, ρ >
3
4

.

The estimates of ΛT
3 (SLK[0, G1; 0]) and ΛT

3 (SLK[0, H1; 0]) are as follows: We consider
the UTM solution formula (55) and

ΛT
3 (SLK[0, g; 0]) = ΛT

3 (ω1 + ω2)

≤
√

2

(∫ ∞

0
sup

t∈[0,T]
|ω1(x, t)|2dx

) 1
2

+
√

2

(∫ ∞

0
sup

t∈[0,T]
|ω2(x, t)|2dx

) 1
2

=
√

2ΛT
3 (ω1) +

√
2ΛT

3 (ω2).

We will estimate ΛT
3 (ω1), noting that the estimate for ΛT

3 (ω2) follows similarly to that of
ΛT

3 (ω1).

ΛT
3 (ω1) =

(∫ ∞

0
sup

t∈[0,T]
|ω1(x, t)|2dx

) 1
2

≤
(∫ ∞

0
sup

t∈[0,T]

(∫ ∞

0
e−

√
3

2 kxk
∣∣∣X̂ [0,T]g(−k3)

∣∣∣dk
)2

dx

) 1
2

=

(∫ ∞

0
sup

t∈[0,T]

(∫ ∞

0
e−kyk

∣∣∣X̂ [0,T]g(−k3)
∣∣∣dk
)2 2√

3
dy

) 1
2

, (let y =

√
3

2
x)

�
(∫ ∞

0
k2
∣∣∣X̂ [0,T]g(−k3)

∣∣∣2dk
) 1

2
, (by Lemma 2)

≤
(∫

R

∣∣∣X̂ [0,T]g(η)
∣∣∣2dη

) 1
2

, (let η = −k3)

=‖ X [0,T]g ‖L2(R)≤‖ g ‖
H

s
3

t (R)
.
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We can estimate ΛT
3 (ω2) in the same way. Hence, we obtain the following inequalities:

ΛT
3 (ω1) �‖ g ‖

H
s
3

t (R)
, ΛT

3 (ω2) �‖ g ‖
H

s
3

t (R)
.

Hence, we can yield that

ΛT
3 (SLK[0, g; 0]) �‖ g ‖

H
s
3

t (R)
≤ 2 ‖ g2 ‖

H
s
3

t (0,T)
, (by (17)). (62)

Therefore, we can have the following results:

ΛT
3 (S[0, G1; 0]) (63)

�‖ G1 ‖
H

s
3

t (0,T)
=‖ g2(t)−Vx(0, t)−W∗

x (0, t) ‖
H

s
3

t (0,T)
,

(by (17), (18), (30), and (62))

≤‖ g2 ‖
H

s
3

t (0,T)
+ ‖ Vx(0, t) ‖

H
s
3

t (0,T)
+ ‖ W∗

x (0, t) ‖
H

s
3

t (0,T)

≤‖ g2 ‖
H

s
3

t (0,T)
+(C7)s ‖ V0 ‖Hs

x(R)
+(C10)sT

3−2s
6 ‖ F2 ‖L2([0,T]; Hs

x(R))
,

(by (35) and (38))

≤‖ g2 ‖
H

s
3

t (0,T)
+2(C7)s ‖ v0 ‖Hs

x(0,∞) +2(C10)sT
3−2s

6 ‖ f2 ‖L2([0,T];Hs
x(0,∞)),

(by (25) and (28))

�‖ v0 ‖Hs
x(o,∞) + ‖ g2 ‖

H
s
3

t (0,T)
+T

3−2s
6

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2

,

and

ΛT
3 (S[0, H1; 0]) �‖ H1 ‖

H
s
3

t (0,T)
=‖ γ2V(0, t) + γ2W∗(0, t) ‖

H
s
3

t (0,T)
, (64)

(by (17), (18), (30), and (62))

≤ |γ2| ‖ V(0, t) ‖
H

s
3

t (0,T)
+|γ2| ‖ W∗(0, t) ‖

H
s
3

t (0,T)

≤ |γ2| ‖ V(0, t) ‖
H

s+1
3

t (0,T)
+|γ2| ‖ W∗(0, t) ‖

H
s+1

3
t (0,T)

≤ (C6)s|γ2| ‖ V0 ‖Hs
x(R)

+(C9)s|γ2|T
2−s

3 ‖ F2 ‖L2([0,T]; Hs
x(R))

,

(by (34) and (37))

≤ 2(C6)s|γ2| ‖ v0 ‖Hs
x(0,∞) +2(C9)s|γ2|T

2−s
3 ‖ f2 ‖L2([0,T];Hs

x(0,∞)),

(by (25) and (28))

�‖ v0 ‖Hs
x(o,∞) +T

2−s
3

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2

.

According to (60), (61), (63), and (64), we obtain (51):

ΛT
3 (SLK[v0, g2; f2])

�‖ v0 ‖Hs
x(o,∞) + ‖ g2 ‖

H
s
3

t (0,T)
+T

3−2s
6

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2

, for s >
3
4

.
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(D) The estimate of ΛT
4 -norm for SLK[v0, g2; f2] is as follows: For 3/4 < s < 1,

ΛT
4 (SLK [v0, g2; f2])

=

(∫ T

0
sup

x∈[0,∞)

|∂xSLK [v0, g2; f2](x, t)|4dt

) 1
4

=

(∫ T

0
sup

x∈[0,∞)

∣∣ ∂xS[V0; 0]|x>0 + ∂xS[0; F2]|x>0 + ∂xS[0, G1; 0] + ∂xS[0, H1; 0]
∣∣4dt

) 1
4

�
(∫ T

0
sup

x∈[0,∞)

(
|∂xS[V0; 0]|2 + |∂xS[0; F2]|2 + |∂xS[0, G1; 0]|2 + |∂xS[0, H1; 0]|2

)2
dt

) 1
4

� ΛT
4 (S[V0; 0]) + ΛT

4 (S[0; F2]) + ΛT
4 (S[0, G1; 0]) + ΛT

4 (S[0, H1; 0]).

We must estimate ΛT
4 (S[V0; 0]), ΛT

4 (S[0; F2]), ΛT
4 (S[0, G1; 0]), and ΛT

4 (S[0, H1; 0]).
The estimate of ΛT

4 (SLK[V0; 0]) is as follows: we define the operator

DrU2(t)R(x) .
=
∫
R

eikx+ik3t(ik)r R̂(k)dk �
∫
R

eikx+ik3t|k|r R̂(k)dk,

where R̂(k) denotes the Fourier transform of R(x).
Now, we apply Lemma 5 to estimate ΛT

4 (SLK[V0; 0]):

ΛT
4 (SLK[V0; 0]) =

(∫ T

0
sup

x∈[0,∞)

|∂xV(x, t)|4dt

) 1
4

(65)

=

(∫ T

0
sup

x∈[0,∞)

∣∣∣∣ 1
2π

∫
R

ikeikx+ik3tV̂0(k)dk
∣∣∣∣4dt

) 1
4

,

(let R(x) =
1

2π

∫
R

eikxR̂(k)dk and R̂(k) = k
3
4 V̂0(k))

=

(∫ T

0
sup

x∈[0,∞)

∣∣∣∣ 1
2π

D
1
4 U2(t)R(x)

∣∣∣∣4dt

) 1
4

≤
(∫ T

0
‖ D

1
4 U2(t)R(x) ‖4

L∞
x (R) dt

) 1
4

≤‖ D
1
4 U2(t)R(x) ‖L4[Rt ;L∞

x (R)]�‖ R ‖L2
x(R)

, (by Lemma 5)

=

(∫
R
|R(x)|2dx

) 1
2
=

(∫
R
|R̂(k)|2dk

) 1
2

≤
(∫

R

(
1 + k2

) 3
4
∣∣∣V̂0(k)

∣∣∣2dk
) 1

2

=‖ V0 ‖
H

3
4
x (R)

≤ 2 ‖ v0 ‖Hs
x(0,∞), for s ≥ 3

4
.

Hence, we can yield that

ΛT
4 (SLK[V0; 0]) � 2 ‖ v0 ‖Hs

x(0,∞), for s ≥ 3
4

. (66)
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The estimate of ΛT
4 (SLK[0; F2]) is as follows:

ΛT
4 (SLK [0; F2])

=

(∫ T

0
sup

x∈[0,∞)

|∂xSLK [0; F2](x, t)|4dt

) 1
4

≤

⎛⎝∫ T

0

(∫ t

0
sup

x∈[0,∞)

∣∣∣∂xSLK [F2(·, t
′
); 0](x, t− t

′
)
∣∣∣dt

′
)4

dt

⎞⎠ 1
4

,

≤
∫ T

0

(∫ T

t′
sup

x∈[0,∞)

∣∣∣∂xSLK [F2(·, t
′
); 0](x, t− t

′
)
∣∣∣4dt

) 1
4

dt
′
,

(by Minkowski’s integral inequality)

≤
∫ T

0

(∫ T

0
sup

x∈[0,∞)

∣∣∣∂xSLK [F2(·, t
′
); 0](x, τ)

∣∣∣4dτ

) 1
4

dt
′

(let τ = t− t
′
)

=
∫ T

0
ΛT

4

(
SLK [F2(·, t

′
); 0]

)
dt
′ �

∫ T

0
‖ f2(t

′
) ‖Hs

x(0,∞) dt
′
, (by (65))

≤ T
1
2

(∫ T

0
‖ f2(t

′
) ‖2

Hs
x(0,∞) dt

′
)2

, (by the Cauchy–Schwartz inequality).

Hence, we can yield that

ΛT
4 (SLK[0; F2]) � T

1
2

(∫ T

0
‖ f2(t

′
) ‖2

Hs
x(0,∞) dt

′
)2

.

The estimate of ΛT
4 (SLK[0, G1; 0]) and ΛT

4 (SLK[0, H1; 0]) are as follows: According to
the UTM solution formula (55) and

ΛT
4 (S[0, g; 0]) = ΛT

4 (ω1 + ω2)

�
(∫ T

0
sup

t∈[0,T]
|∂xω1(x, t)|4dx

) 1
4

+

(∫ T

0
sup

t∈[0,T]
|∂xω2(x, t)|4dx

) 1
4

= ΛT
4 (ω1) + ΛT

4 (ω2).

We will estimate ΛT
4 (ω1), noting that the estimate for ΛT

4 (ω2) follows similarly to that
of ΛT

4 (ω1).

ΛT
4 (ω1) =

(∫ T

0
sup

x∈[0,∞)

∣∣∣∣−3i
2π

∫ ∞

0
iakeiakx−ik3 t k2

ak + iγ2
g̃(−k3, T)dk

∣∣∣∣4dt

) 1
4

, (let τ = k3)

�

⎛⎜⎝∫ T

0
sup

x∈[0,∞)

∣∣∣∣∣∣ia
∫ ∞

0
eiaτ

1
3 x−iτtτ

−1
4

τ
7
12

aτ
1
3 + ir 2

X̂ [0,T]g(−τ)dτ

∣∣∣∣∣∣
4

dt

⎞⎟⎠
1
4

,

(let R(t) =
1

2π

∫
R

eiτt R̂(τ)dτ, R̂(τ) =
τ

7
12

aτ
1
3 + iγ2

X̂ [0,T]g(−τ) for τ ≥ 0 and R̂(τ) = 0 for τ < 0)

=

⎛⎝∫ T

0
sup

x∈[0,∞)

∣∣∣∣∣
∫ ∞

0
eiaτ

1
3 x−iτtτ

−1
4 R̂(τ)dτ

∣∣∣∣∣
4

dt

⎞⎠ 1
4

=

(∫ T

0
sup

x∈[0,∞)

∣∣∣∣Δ −1
4 R(x,−t)

∣∣∣∣4dt

) 1
4

�‖ R ‖L2
t (R)

, (by Lemma 6)

=‖ R̂ ‖L2
τ (R)

=

⎛⎜⎝∫
R

∣∣∣∣∣∣ τ
7

12

aτ
1
3 + iγ2

X̂ [0,T]g(−τ)

∣∣∣∣∣∣
2

dτ

⎞⎟⎠
1
2

≤
(∫

R
|τ| 1

2
∣∣∣X̂ [0,T]g(−τ)

∣∣∣2dτ

) 1
2

�‖ g ‖
H

s
3

t (R)
�‖ g2 ‖

H
s
3

t (0,T)
, for s ≥ 3

4
.
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We can estimate ΛT
4 (ω2) in the same way. Hence, we obtain the following inequalities:

ΛT
4 (ω1) �‖ g2 ‖

H
s
3

t (0,T)
, ΛT

4 (ω2) �‖ g2 ‖
H

s
3

t (0,T)
, for s ≥ 3

4
,

then

ΛT
4 (SLK[0, g; 0]) �‖ g2 ‖

H
s
3

t (0,T)
. (67)

Therefore, we can have the following results:

ΛT
4 (S[0, G1; 0])

�‖ G0 ‖
H

s
3

t (0,T)
=‖ g2(t)−Vx(0, t)−W∗

x (0, t) ‖
H

s
3

t (0,T)
,

(by (17), (18), (30), and (67))

≤‖ g2 ‖
H

s
3

t (0,T)
+ ‖ Vx(0, t) ‖

H
s
3

t (0,T)
+ ‖ W∗

x (0, t) ‖
H

s
3

t (0,T)

≤‖ g2 ‖
H

s
3

t (0,T)
+(C7)s ‖ V0 ‖Hs

x(R)
+(C10)sT

3−2s
6 ‖ F2 ‖L2([0,T]; Hs

x(R))
,

(by (35) and (38))

≤‖ g2 ‖
H

s
3

t (0,T)
+2(C7)s ‖ v0 ‖Hs

x(0,∞) +2(C10)sT
3−2s

6 ‖ f2 ‖L2([0,T];Hs
x(0,∞)),

(by (25) and (28))

�‖ v0 ‖Hs
x(o,∞) + ‖ g2 ‖

H
s
3

t (0,T)
+T

3−2s
6

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2

dt,

and

ΛT
4 (S[0, H1; 0]) �‖ H1 ‖

H
s
3

t (0,T)
=‖ γ2V(0, t) + γ2W∗(0, t) ‖

H
s
3

t (0,T)
, (68)

(by (17), (18), (31), and (67))

≤ |γ2| ‖ V(0, t) ‖
H

s
3

t (0,T)
+|γ2| ‖ W∗(0, t) ‖

H
s
3

t (0,T)

≤ |γ2| ‖ V(0, t) ‖
H

s+1
3

t (0,T)
+|γ2| ‖ W∗(0, t) ‖

H
s+1

3
t (0,T)

≤ (C6)s|γ2| ‖ V0 ‖Hs
x(R)

+(C9)s|γ2|T
2−s

3 ‖ F2 ‖L2([0,T]; Hs
x(R))

,

(by (34) and (37))

≤ 2(C6)s|γ2| ‖ v0 ‖Hs
x(0,∞) +2(C9)s|γ2|T

2−s
3 ‖ f2 ‖L2([0,T];Hs

x(0,∞)),

(by (25) and (28))

�‖ v0 ‖Hs
x(o,∞) +T

2−s
3

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2

.

Now, by combining the estimates (66)–(68), we obtain (52):

ΛT
4 (SLK[v0, g2; f2]) �‖ v0 ‖Hs

x(o,∞) + ‖ g2 ‖
H

s
3

t (0,T)
+T

3−2s
6

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2

, for s ≥ 3
4

.

Since

ΛT(SLK[v0, g2; f2])

= max
{

ΛT
1,s(SLK[v0, g2; f2]), ΛT

2,s(SLK[v0, g2; f2]), ΛT
3 (SLK[v0, g2; f2]), ΛT

4 (SLK[v0, g2; f2])
}

,
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and by (50)∼(52), we obtain (48):

ΛT(SLK[v0, g2; f2])

≤ (d2)s

(
‖ v0 ‖Hs

x(o,∞) + ‖ g2 ‖
H

s
3

t (0,T)
+T

3−2s
6

(∫ T

0
‖ f2(t) ‖2

Hs
x(0,∞) dt

) 1
2
)

,

for 3/4 < s < 1, where (d2)s > 0 is a constant depending on s. Therefore, the proof of
Proposition 2 is complete.

6. The Proof of Theorem 3 (About Solving the SKdV System in Sobolev Spaces)

In this section, we first define the iteration map. Next, Lemmas 10 and 11 demonstrate
that the iteration map is a contraction and maps onto a closed ball. By the contraction
mapping theorem, the solution is unique. Finally, Lemma 12 shows that the data-to-solution
map is locally Lipschitz continuous. With these results, we complete the proof of Theorem 3.

Now, we define the iteration map:

(u, v) �−→ ΦT∗ ×ΨT∗(u, v) .
= (ΦT∗(u, v), ΨT∗(u, v)),

which is derived from the UTM formulas (5) and (6) for the forced linear SKdV IBVP,
with the forcing terms replaced by the nonlinearities, and localized appropriately. Let
0 < T∗ ≤ T < 1. More precisely we have

ΦT∗(u, v) .
= SLS[u0, g1; P(u)v],

ΨT∗(u, v) .
= SLk[v0, g2; Q(v)vx].

The iteration map E is defined by

E(u, v) = (ΦT∗(u, v), ΦT∗(u, v)) = (SLS[u0, g1;P(u)v], SLk[v0, g2; Q(v)vx]). (69)

We will prove the iteration map (69) is a contraction map in the complete metric space
XT∗ = XT∗ ×YT∗ , where

XT∗ = {(u, v) : u ∈ XT∗ , v ∈ YT∗},

and where

XT∗ = C([0, T∗]; Hs
x(0, ∞)) ∩ C

(
[0, ∞); H

2s+1
4

t (0, T∗)
)

,

YT∗ = C([0, T∗]; Hs
x(0, ∞)),

with

‖ u ‖XT∗ = sup
t∈[0,T∗ ]

‖ u ‖Hs
x(0,∞) + sup

x∈[0,∞)

‖ u ‖
H

2s+1
4

t (0,T∗)
,

‖ v ‖YT∗ = ΛT∗(v) = max
{

ΛT∗
1,s(v), ΛT∗

2,s(v), ΛT∗
3 (v), ΛT∗

4 (v)
}

,

and

‖ (u, v) ‖XT∗=‖ u ‖XT∗ + ‖ v ‖YT∗ . (70)
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Next, when 3/4 < s < 1, we define a closed ball B(0, r) =
{
(u, v) ∈ XT∗ :‖ (u, v) ‖XT∗ ≤ r

}
,

where

C̃s = max{1, (C1)s}, (71)

K∗s = max
{

Cs, (C1)s, (C2)s, · · · , (C11)s, ds, (d2)s, C̃s

}
, (72)

r = max

{
2K∗s ‖ (u0, g1, v0, g2) ‖D, 1,

√
3
2

C̃−1
s

}
. (73)

In the following lemma, we identify the constraint on T∗ to ensure that E(u, v) maps
onto B(0, r).

Lemma 10. The iteration map E(u, v) onto B(0, r), when the following condition on T∗ holds:

0 < T∗ ≤ min{T, T1}, (74)

where

n0 = max{m, n},

A = max{|a0|, |a1|, |a2|, · · · , |am|},

B = max{|b0|, |b1|, |b2|, · · · , |bn|},

T1 =
1

64(A(m + 1) +
√

10B)6(K∗s )
6n0+6r6n0+6

.

Proof. For (u, v) ∈ B(0, r),

‖ E(u, v) ‖XT∗ =‖ (SLS[u0, g1; P(u)v], SLK[v0, g2; Q(v)vx]) ‖XT∗

=‖ SLS[u0, g1; P(u)v] ‖XT∗ + ‖ SLK[v0, g2; Q(v)vx] ‖YT∗ ,

we must estimate the ‖ SLS[u0, g1; P(u)v] ‖XT∗ and ‖ SLK[v0, g2; Q(v)vx] ‖YT∗ .
First, the estimate for ‖ SLK[v0, g2; Q(v)vx] ‖YT∗ :

‖ SLK[v0, g2; Q(v)vx] ‖YT∗= ΛT∗(SLK[v0, g2; Q(v)vx]) (75)

≤ (d2)s

⎛⎝‖ v0 ‖Hs
x(0,∞) + ‖ g2 ‖

H
s
3

t (0,T)
+(T∗)

3−2s
6

(∫ T∗

0
‖ Q(v)vx ‖2

Hs
x(0,∞) dt

) 1
2

⎞⎠,

(by Proposition 2),

where the term:

∫ T∗

0
‖ Q(v)vx ‖2

Hs
x(0,∞) dt =

∫ T∗

0
‖
(

n

∑
j=0

bjvj

)
vx ‖2

Hs
x(0,∞) dt (76)

�
n

∑
j=0

∣∣bj
∣∣2 ∫ T∗

0
‖ vjvx ‖2

Hs
x(0,∞) dt =

n

∑
j=0
|bj|2

(
5C̃2(j−1)

s ‖ v ‖2j
YT∗
‖ v ‖2

YT∗

)
, (by (46))

≤ 5B2
n

∑
j=0

C̃2(j−1)
s r2j+2 = 5B2

C̃−2
s r2

(
C̃2(n+1)

s r2(n+1) − 1
)

C̃2
s r2 − 1

.

We combine the estimates (75) and (76) such that we obtain the following result:
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‖ SLK[v0, g2; Q(v)vx] ‖YT∗ (77)

≤ (d2)s

⎛⎜⎜⎝‖ v0 ‖Hs
x(0,∞) + ‖ g2 ‖

H
s
3

t (0,T)
+(T∗)

3−2s
6

⎛⎝5B2
C̃−2

s r2
(

C̃2(n+1)
s r2(n+1) − 1

)
C̃2

s r2 − 1

⎞⎠
1
2

⎞⎟⎟⎠.

Next, we estimate ‖ SLS[u0, g1; P(u)v] ‖XT∗ for 0 < T∗ < T:

‖ SLS[u0, g1; P(u)v] ‖XT∗

= sup
t∈[0,T∗ ]

‖ SLS[u0, g1; P(u)v] ‖Hs
x(0,∞) + sup

x∈[0,∞)

‖ SLS[u0, g1; P(u)v] ‖
H

2s+1
4

t (0,T∗)

≤ Cs

(
‖ u0 ‖Hs

x(0,∞) + ‖ g1 ‖
H

2s−1
4

t (0,T)
+
√

T∗ sup
t∈[0,T∗ ]

‖ P(u)v ‖Hs
x(0,∞)

)
, (by Theorem 1), (78)

and the term:

sup
t∈[0,T∗ ]

‖ P(u)v ‖Hs
x(0,∞)= sup

t∈[0,T∗ ]
‖
(

m

∑
i=0

aiui

)
v ‖Hs

x(0,∞) (79)

≤ sup
t∈[0,T∗ ]

m

∑
i=0

A(C1)
i
s ‖ u ‖i

Hs
x(0,∞)‖ v ‖Hs

x(0,∞), (by Lemma 4)

≤
m

∑
i=0

A(C1)
i
sr
(i+1).

By (78) and (79), we obtain the following result:

‖ SLS[u0, g1; P(u)v] ‖XT∗ ≤ Cs

(
‖ u0 ‖Hs

x(0,∞) + ‖ g1 ‖
H

2s−1
4

t (0,T∗)
+(m + 1)

√
T∗A(K∗s )

mr(m+1)

)
. (80)

By (77) and (80), we attain

‖ E(u, v) ‖XT∗

≤ (d2)s

⎛⎜⎜⎝‖ v0 ‖Hs
x(0,∞) + ‖ g2 ‖

H
s
3

t (0,T∗)
+(T∗)

3−2s
6

⎛⎝5B2
C̃−2

s r2
(

C̃2(n+1)
s r2(n+1) − 1

)
C̃2

s r2 − 1

⎞⎠
1
2

⎞⎟⎟⎠
+ Cs

(
‖ u0 ‖Hs

x(0,∞) + ‖ g1 ‖
H

2s−1
4

t (0,T∗)
+(m + 1)

√
T∗A(K∗s )

mr(m+1)

)
≤ K∗s

(
‖ (u0, g1, v0, g2) ‖D +(m + 1)(T∗)

1
6 A(K∗s )

mrm+1 +
√

10(T∗)
1
6 BC̃n

s r(n+2)
)

,

(by (73) and (72))

≤ r
2
+
(
(m + 1)A +

√
10B

)
(T∗)

1
6 (K∗s )

(n0+1)r(n0+2).

Now, we want to choose T∗ such that

r
2
+
(
(m + 1)A +

√
10B

)
(T∗)

1
6 (K∗s )

(n0+1)r(n0+2) ≤ r

holds. Therefore,

0 < T∗ ≤ min{T, T1}
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is satisfied. Hence, when T∗ satisfies (74), the iteration map E is onto B(0, r).

Next, we identify the constraint on T∗ under which E is a contraction on B(0, r), as
described in the following lemma.

Lemma 11. The iteration map E(u, v) is a contraction on B(0, r), when the following condition
on T∗ holds:

0 < T∗ ≤ min{T, T2}, (81)

where

T2 =
1

64
(

A(m2 + m + 1) +
√

5B
(
2(n+1)(n + 1) + 2nn3

) 1
2

)6

(K∗s )
6n0+6r6n0

.

Proof. For (u1, v1), (u2, v2) ∈ B(0, r), we have the following inequality:

‖ E(u1, v1)− E(u2, v2) ‖XT∗

=‖ (SLS[0, 0; P(u1)v1 − P(u2)v2], SLK [0, 0; Q(v1)(v1)x −Q(v2)(v2)x ]) ‖XT∗

=‖ SLS[0, 0; P(u1)v1 − P(u2)v2] ‖XT∗ + ‖ SLK [0, 0; Q(v1)(v1)x −Q(v2)(v2)x ] ‖YT∗

= Cs
√

T∗ sup
t∈[0,T∗ ]

‖ P(u1)v1 − P(u2)v2 ‖Hs
x(0,∞)︸ ︷︷ ︸

(A)

+ ds(T∗)
3−2s

6

⎛⎜⎜⎜⎝
∫ T∗

0
‖ Q(v1)(v1)x −Q(v2)(v2)x ‖2

Hs
x(0,∞) dt︸ ︷︷ ︸

(B)

⎞⎟⎟⎟⎠
1
2

,

(by Theorems 1 and 2).

Now, we estimate (A). There exists δ ∈ [0, 1]; we derive the following estimation
of (A):

sup
t∈[0,T∗ ]

‖ P(u1)v1 − P(u2)v2 ‖Hs
x(0,∞)

= sup
t∈[0,T∗ ]

‖ P(u1)(v1 − v2) + P′(δu1 + (1− δ)u2)(u1 − u2)v2 ‖Hs
x(0,∞)

≤ sup
t∈[0,T∗ ]

(
‖ P(u1)(v1 − v2) ‖Hs

x(0,∞) + ‖ P′(δu1 + (1− δ)u2)(u1 − u2)v2 ‖Hs
x(0,∞)

)

= sup
t∈[0,T∗ ]

(
‖
(

m

∑
i=0

ai(u1)
i

)
(v1 − v2) ‖Hs

x(0,∞) + ‖
(

m

∑
i=1

iai(δu1 + (1− δ)u2)
i−1

)
(u1 − u2)v2 ‖Hs

x(0,∞)

)

≤
m

∑
i=0
|ai | sup

t∈[0,T∗ ]
‖ (u1)

i(v1 − v2) ‖Hs
x(0,∞) +

m

∑
i=1
|iai | sup

t∈[0,T∗ ]
‖ (δu1 + (1− δ)u2)

i−1(u1 − u2)v2 ‖Hs
x(0,∞)

≤ (K∗s )
m

m

∑
i=0
|ai | sup

t∈[0,T∗ ]
‖ (u1) ‖i

Hs
x(0,∞)‖ (v1 − v2) ‖Hs

x(0,∞)

+ (K∗s )
m

m

∑
i=1
|iai | sup

t∈[0,T∗ ]
‖ δu1 + (1− δ)u2 ‖i−1

Hs
x(0,∞)

‖ (u1 − u2) ‖Hs
x(0,∞)‖ v2 ‖Hs

x(0,∞),

(by Lemma 4 and K∗s ≥ max{1, (C1)s})

≤ (K∗s )
m A ‖ (u1, v1)− (u2, v2) ‖XT∗

(
m

∑
i=0

ri + m
m

∑
i=1

ri

)
, (82)

(by (9)∼(12) and by (13) with T = T∗).

By r ≥ 1, we derive the inequality
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sup
t∈[0,T∗ ]

‖ P(u1)v1 − P(u2)v2 ‖Hs
x(0,∞)≤ (m2 + m + 1)A(K∗s )

mrm ‖ (u1, v1)− (u2, v2) ‖XT∗ . (83)

Now, we estimate (B). There exists δ1 ∈ [0, 1]; we obtain the following estimation of (B):∫ T∗

0
‖ Q(v1)(v1)x −Q(v2)(v2)x ‖2

Hs
x(0,∞) dt

≤ 2
∫ T∗

0

(
‖ Q(v1)(v1 − v2)x ‖2

Hs
x(0,∞) + ‖ Q′(δ1v1 + (1− δ1)v2)(v1 − v2)(v2)x ‖2

Hs
x(0,∞)

)
dt

≤ 2n+1
n

∑
j=0
|bj|2

∫ T∗

0
‖ (v1)

j(v1 − v2)x ‖2
Hs

x(0,∞) dt

+ 2n
n

∑
j=1
|jbj|2

∫ T∗

0
‖ (δ1v1 + (1− δ1)v2)

j−1(v1 − v2)(v2)x ‖2
Hs

x(0,∞) dt

≤ 2n+15(K∗s )
2(n−1)

n

∑
j=0
|bj|2 ‖ v1 ‖2j

YT∗
‖ v1 − v2 ‖2

YT∗

+ 2n5(K∗s )
2(n−1)

n

∑
j=1
|jbj|2 ‖ δ1v1 + (1− δ1)v2 ‖2(j−1)

YT∗
‖ v1 − v2 ‖2

YT∗
‖ v2 ‖2

YT∗
,

(by Proposition 1 and K∗s ≥ max
{

1, C̃s

}
)

≤ 2n5(K∗s )
2(n−1)B2 ‖ (u1, v1)− (u2, v2) ‖2

XT∗

(
2

n

∑
j=0

r2j + n2
n

∑
j=1

r2j

)
(84)

By r ≥ 1, we obtain the following inequality

∫ T∗

0
‖ Q(v1)(v1)x −Q(v2)(v2)x ‖2

Hs
x(0,∞) dt

≤ (2n+1(n + 1) + 2nn3)5B2(K∗s )
2(n−1)r2n ‖ (u1, v1)− (u2, v2) ‖2

XT∗
. (85)

By (83) and (85), we attain

‖ E(u1, v1)− E(u2, v2) ‖XT∗

≤ Cs(K
∗
s )

m(T∗)
1
2 (m2 + m + 1)Arm ‖ (u1, v1)− (u2, v2) ‖XT∗

+ ds(T∗)
3−2s

6

(
(2n+1(n + 1) + 2nn3)5B2(K∗s )

2(n−1)r2n ‖ (u1, v1)− (u2, v2) ‖2
XT∗

) 1
2

≤ K∗s (T
∗)

1
6

(
(m2 + m + 1)A(K∗s )

mrm +
(
(2n+1(n + 1) + 2nn3)5B2r2n(K∗s )

2n−1
) 1

2
)

‖ (u1, v1)− (u2, v2) ‖XT∗

≤
(
(m2 + m + 1)A +

√
5B
(
(2n+1(n + 1) + 2nn3)

) 1
2
)
(K∗s )

n0+1(T∗)
1
6 rn0 ‖ (u1, v1)− (u2, v2) ‖XT∗ .

Therefore, we need the following condition to help us prove that E is a contraction on
B(0, r): (

(m2 + m + 1)A +
√

5B
(
(2n+1(n + 1) + 2nn3)

) 1
2
)
(K∗s )

n0+1(T∗)
1
6 rn0 ≤ 1

2
.

Therefore,

0 < T∗ ≤ min{T, T2}
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is satisfied. Hence, when T∗ satisfies (81), the iteration map E is a contraction on B(0, r).

Now, by choosing the lifespan

T∗ = min{T, T1, T2}, (86)

we ensure that T∗ satisfies both (74) and (81). Consequently, the iteration map is a con-
traction and maps onto B(0, r). Thus, the equation (u, v) = E(u, v) has a unique solution
(u, v) ∈ B(0, r) ⊂ XT∗ .

Next, we will demonstrate that the data-to-solution map (u0, g1, v0, g2) �−→ (u, v) is
locally Lipschitz continuous.

We consider the two different data (u0, g1, v0, g2) and (U0,G1,V0,G2) that lie within a
ball Bρ ⊂ D of radius ρ > 0 centered at a distance R from the origin, where

D = Hs
x(0, ∞)× H

2s−1
4

t (0, T)× Hs
x(0, ∞)× H

s
3
t (0, T)

with the norm (14). We set (u, v) = E(u, v) and (U ,V ) = E(U ,V ), and T(u,v) and T(U ,V ) are
the lifespans of those solutions given according to (86). Since

max{‖ (u0, , g1v0, g2) ‖D, ‖ (U0,G1,V0,G2) ‖D} ≤ ρ + R ,

we have

T(u,v) = min
{

T, T1,(u,v), T2,(u,v)

}
≥ Tc, T(U ,V ) = min

{
T, T1,(U ,V ), T2,(U ,V )

}
≥ Tc,

where

r∗ = max

{
2K∗s (ρ + R ), 1,

√
3
2

C̃−1
s

}
,

T1,c =
1

64(A(m + 1) +
√

10B)6(K∗s )
6n0+6(r∗)6n0+6

,

T2,c =
1

64
(

A(m2 + m + 1) +
√

5B
(
2(n+1)(n + 1) + 2nn3

) 1
2

)6

(K∗s )
6n0+6(r∗)6n0

,

Tc = min{T, T1,c, T2,c}. (87)

Since T(u,v), T(U ,V ) ≥ Tc, both solutions (u, v) and (U ,V ) are valid for any 0 < t ≤ Tc. We
denote XTc as the solution space XT∗ with T∗ = Tc. Clearly, XTc ⊂ XT(u,v)

and XTc ⊂ XT(U ,V )
,

where XT(u,v)
and XT(U ,V )

represent the solution spaces XT∗ with T∗ = T(u,v) and T∗ = T(U ,V ),
respectively.

The following lemma demonstrates that the data-to-solution map (u0, v0, g0, h0) �−→
(u, v) is locally Lipschitz continuous.
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Lemma 12. Given

r̃1 =

⎛⎜⎜⎝ 1

2
(

A(n2
0 + n0 + 1) +

√
5B
(
2(n0+1)(n0 + 1) + 2n0 n3

0
) 1

2

)
(K∗s )

n0+1(Tc)
1
6

− 1

⎞⎟⎟⎠
1

n0

,

r̃2 =

⎛⎜⎜⎝ 1(
A(n2

0 + n0 + 1) +
√

5B
(
2(n0+1)(n0 + 1) + 2n0 n3

0
) 1

2

)
(K∗s )

n0+1(Tc)
1
6

− 1

⎞⎟⎟⎠
1

n0

,

rc = min
{

1, r̃1,
r̃2

2

}
.

For any (u, v), (U ,V ) ∈ B(0, rc) ⊂ XTc with data in the ball Bρ, we obtain the following inequality:

‖ (u, v)− (U ,V ) ‖XTc
≤ 2K∗s ‖ (u0, g1, v0, g2)− (U0,G1,V0,G2) ‖D . (88)

Hence, the data-to-solution map (u0, g1, v0, g2) �−→ (u, v) is locally Lipschitz continuous.

Proof. For any (u, v), (U ,V ) ∈ B(0, rc) ⊂ XTc with data in the ball Bρ, we have the follow-
ing inequality:

‖ (u, v)− (U ,V ) ‖XTc
=‖ E(u, v)− E(U ,V ) ‖XTc

=‖ (SLS[u0, g1; P(u)v], SLK[v0, g2; Q(v)vx])− (SLS[U0,G1; P(U )V ], SLK[V0,G2; Q(V )Vx]) ‖XTc

≤ ‖ (SLS[u0 −U0, g1 −G1; 0], SLK[v0 −V0, g2 −G2; 0]) ‖XTc︸ ︷︷ ︸
(C)

+ ‖ (SLS[0, 0; P(u)v− P(U )V ], SLK[0, 0; Q(v)vx −Q(V )Vx]) ‖XTc︸ ︷︷ ︸
(D)

Now, we estimate (C):

‖ (SLS[u0 −U0, g1 −G1; 0], SLK[v0 −V0, g2 −G2; 0]) ‖XTc
(89)

=‖ SLS[u0 −U0, g1 −G1; 0] ‖XTc
+ ‖ SLK[v0 −V0, g2 −G2; 0] ‖YTc

, (by (70) with T∗ = Tc)

≤ Cs

(
‖ u0 −U0 ‖Hs

x(0,∞) + ‖ g1 −G1 ‖
H

2s−1
4

t (0,T)

)
+ (d2)s

(
‖ v0 −V0 ‖Hs

x(0,∞) + ‖ g2 −G2 ‖
H

s
3

t (0,T)

)
,

(by (7) and (48) with T = Tc)

≤ K∗s ‖ (u0, , g1, v0, g2)− (U0,G1,V0,G2) ‖D .

Next, we estimate (D):
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‖ (SLS[0, 0; P(u)v− P(U )V ], SLK[0, 0; Q(v)vx −Q(V )Vx]) ‖XTc
(90)

=‖ SLS[0, 0; P(u)v− P(U )V ] ‖XTc
+ ‖ SLK[0, 0; Q(v)vx −Q(V )Vx] ‖YTc

, (by (70) with T∗ = Tc)

≤ K∗s T
1
6

c

⎛⎜⎜⎜⎜⎜⎝ sup
t∈[0,Tc ]

‖ P(u)v− P(U )V ‖Hs
x(0,∞)︸ ︷︷ ︸

(E)

+

⎛⎜⎜⎜⎝
∫ Tc

0
‖ Q(v)vx −Q(V )Vx ‖2

Hs
x(0,∞) dt︸ ︷︷ ︸

(F)

⎞⎟⎟⎟⎠
1
2

⎞⎟⎟⎟⎟⎟⎠,

(by (7) and (48) with T∗ = Tc, and K∗s ≥ max{Cs, (d2)s})

≤ K∗s T
1
6

c ‖ (u, v)− (U ,V ) ‖XTc

(
(K∗s )

m A

(
m

∑
i=0

ri
c + m

m

∑
i=1

ri
c

)

+

(
2n5(K∗s )

2(n−1)B2

(
2

n

∑
j=0

r2j
c + n2

n

∑
j=1

r2j
c

)) 1
2
⎞⎠,

(by (82) and (84) with T∗ = Tc, r = rc, u1 = u, v1 = v, u2 = U , and v2 = V ,

we obtain the estimates of (E) and (F))

≤ K∗s T
1
6

c ‖ (u, v)− (U ,V ) ‖XTc

(
(m2 + m + 1)A(K∗s )

m(1 + rm
c )

+
(
(2n+1(n + 1) + 2nn3)5B2(K∗s )

2(n−1)(1 + r2n
c )
) 1

2
)

≤
(
(n2

0 + n0 + 1)A +
√

5B
(

2n0+1(n0 + 1) + 2n0 n3
0

) 1
2
)
(K∗s )

n0+1T
1
6

c (1 + rn0
c ) ‖ (u, v)− (U ,V ) ‖XTc

.

By (89) and (90), we derive the following inequality:

‖ (u, v)− (U ,V ) ‖XTc

≤ K∗s ‖ (u0, g1, v0, g2)− (U0,G1,V0,G2) ‖D

+

(
(n2

0 + n0 + 1)A +
√

5B
(
(2n0+1(n0 + 1) + 2n0 n3

0)
) 1

2
)
(K∗s )

n0+1T
1
6

c (1 + rn0
c ) ‖ (u, v)− (U ,V ) ‖XTc

.

Therefore, we derive the following inequality:

‖ (u, v)− (U ,V ) ‖XTc

≤ K∗s ‖ (u0, g1, v0, g2)− (U0,G1,V0,G2) ‖D

1−
(
(n2

0 + n0 + 1)A +
√

5B
(
2n0+1(n0 + 1) + 2n0 n3

0
) 1

2

)
(K∗s )n0+1T

1
6

c (1 + rn0
c ))

.

Hence, when we set

rc = min
{

1, r̃1,
r̃2

2

}
,
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where

r̃1 =

⎛⎜⎜⎝ 1

2
(

A(n2
0 + n0 + 1) +

√
5B
(
2(n0+1)(n0 + 1) + 2n0 n3

0
) 1

2

)
(K∗s )

n0+1(Tc)
1
6

− 1

⎞⎟⎟⎠
1

n0

,

r̃2 =

⎛⎜⎜⎝ 1(
A(n2

0 + n0 + 1) +
√

5B
(
2(n0+1)(n0 + 1) + 2n0 n3

0
) 1

2

)
(K∗s )

n0+1(Tc)
1
6

− 1

⎞⎟⎟⎠
1

n0

,

then the two inequalities

1

1−
(
(n2

0 + n0 + 1)A +
√

5B
(
2n0+1(n0 + 1) + 2n0 n3

0
) 1

2

)
(K∗s )n0+1T

1
6

c (1 + rn0
c ))

≤ 2

and (
(n2

0 + n0 + 1)A +
√

5B
(

2n0+1(n0 + 1) + 2n0 n3
0

) 1
2
)
(K∗s )

n0+1T
1
6

c (1 + rn0
c )) < 1

hold with the definition of Tc (87). Therefore, we have established (88), which confirms
that the data-to-solution map is locally Lipschitz continuous. The proof of Lemma 12
is complete.

We are now in a position to prove Theorem 3. We set the lifespan

T∗ = min{T, T1, T2},

where

r = max

{
2K∗s ‖ (u0, g1, v0, g2) ‖D, 1,

√
3
2

C̃−1
s

}
,

T1 =
1

64(A(m + 1) +
√

10B)6(K∗s )
6n0+6r6n0+6

,

T2 =
1

64
(

A(m2 + m + 1) +
√

5B
(
2(n+1)(n + 1) + 2nn3

) 1
2

)6

(K∗s )
6n0+6r6n0

,

and then, by Lemma 10 to Lemma 12, the proof of Theorem 3 is complete.
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Abstract: Good Boussinesq equations are considered in this work. First, we apply three combined
compact schemes to approximate spatial derivatives of good Boussinesq equations. Then, three fully
discrete schemes are developed based on a symplectic scheme in the time direction, which preserves
the symplectic structure. Meanwhile, the convergence and conservation of the fully discrete schemes
are analyzed. Finally, we present numerical experiments to confirm our theoretical analysis. Both our
analysis and numerical tests indicate that the fully discrete schemes are efficient in solving the spatial
derivative mixed equation.

Keywords: Hamiltonian system; good Boussinesq equation; symplectic scheme; combined compact
scheme; conservation
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1. Introduction

Boussinesq equations are important mathematical–physical models for characterizing
ocean mixing, atmospheric convection, and intra-Earth convection. They play a key role
in fields such as Earth sciences, meteorology, and oceanography. The study of Boussinesq
equations is of great value because it helps us to better understand hydrodynamic behavior,
especially in terms of thermal convection, ocean currents, and atmospheric phenomena. In
addition, the study of Boussinesq equations is essential for the development of numerical
models for weather forecasting, climate research, and oceanography. Such studies have
also helped to uncover the fundamental principles that govern fluid motion and heat
transfer, contributing to advances in fields such as engineering, environmental science,
and geophysics. The good Boussinesq (GB) equation and its various extensions have been
broadly analyzed in the existing literature, such as a closed-form solution for the two-soliton
interaction in [1], a highly complicated mechanism for the solitary wave interaction in [2],
and the nonlinear stability and convergence of some simple finite difference schemes in [3].
Among recent works concerning the numerical solution of PDEs, a significant number
address the Schrödinger equation; see [4–11]. In [5,6], the authors use the Cubic B-Spline
Galerkin Method. This method has also been studied for the MRLW equation in [12].
In [11], the authors use a combined compact difference method to solve the Schrödinger
equation, and this scheme preserves the structure. This method originated from [13], and
it can also be found in [14–17]. In addition, many works related to GB equations can be
found in [18–24]. Boussinesq equations have also been investigated in [25,26].

In solving PDEs numerically, high-order compact (HOC) schemes are often used to discretize
spatial derivatives. For example, HOC schemes have been applied to solve steady convection–
diffusion equations [15], nonlinear Schrödinger equations [11], Klein–Gordon–Schrödinger equa-
tions [27], and GB equations [20]. Compared with general finite difference schemes, HOC
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schemes have the advantages of smaller error rates and higher accuracy under the same
calculation amount. However, for PDEs with multiple-order spatial derivatives, such as
the good Boussinesq equation utt = −uxxxx + uxx +

(
u2)

xx , the advantages of classical
HOC schemes are often offset. If multiple HOC schemes are used to discretize multiple
spatial derivatives simultaneously, it is necessary to perform multiple matrix inverse op-
erations, which will reduce the computational efficiency and affect the accuracy. In [11],
the combined high-order compact (CHOC) scheme is used to approximate PDEs with
multiple-order spatial derivatives and achieve some discrete conservation laws, and the
proposed CHOC scheme overcomes the above shortcomings of the compact scheme and is
worth popularizing. In this work, we study the CHOC schemes of GB equations with two
spatial derivatives.

In this work, three CHOC schemes for good Boussinesq equations are derived. Apply-
ing a Taylor analysis to an equality combining the solution u and its first derivative and
second derivative yields the first three-point CHOC scheme. This scheme has sixth-order
precision and extensive applications. Then, similarly, we propose the second three-point
eight-order scheme by using a combination of the first, second, and third derivatives of the
solution. Since the two schemes have a large number of matrix operations and complex
formulations, the third scheme is designed finally by combining the solution and its second
derivative and fourth derivative, which greatly simplifies the matrix operations and ensures
certain accuracy. In this scheme, through simpler computation, the relationship between
the solution and its fourth-order derivative, as well as the relationship between the solution
and its second-order derivative, can be directly obtained, which cannot be achieved with
the first two schemes described in this work. Finally, we use the three schemes to simulate a
motion invariant and a conservation law and summarize the structure-preserving property
of these schemes. At the same time, compared with a three-point compact scheme with
sixth-order accuracy derived by Chu and Fan in 1998 [13], our schemes are more accurate
for GB equations.

In this work, we consider fully discrete schemes for the linear good Boussinesq equation

∂2
t u = ∂2

xu− ∂4
xu, (1)

where 0 ≤ x ≤ L, t > 0, L is a constant. The following nonlinear good Boussinesq equation
is also numerically solved, as follows:

∂2
t u = ∂2

xu− ∂4
xu + ∂2

x(u
2). (2)

We consider the initial conditions and periodic boundary conditions as follows:

u(t, 0) = u(t, L), u(0, x) = f1(x), ut(0, x) = f2(x), 0 ≤ x ≤ L. (3)

2. Establishment of the CHOC Scheme

In this work, we introduce three schemes for the discretization of spatial derivatives. To
detail the CHOC scheme, we introduce a uniform grid x0 < x1 · · · < xN with xj = x0 + jh
and h = xL−x0

N , j = 1, 2, · · · , N. First, we introduce the first scheme (4) and (5)

α1

(
u
′
j+1 + u

′
j−1

)
+ u

′
j + β1h

(
u
′′
j+1 − u

′′
j−1

)
+ γ1

uj+1 − uj−1

h
= 0, (4)

α2

⎛⎝u
′
j+1 − u

′
j−1

h

⎞⎠+ u
′′
j + β2

(
u
′′
j+1 + u

′′
j−1

)
+ γ2

uj+1 − 2uj + uj−1

h2 = 0, (5)

where α1, β1, γ1 and α2, β2, γ2 are coefficients to be determined according to the accuracy of
the approximation. The three-point CHOC scheme for the combination of the first and second
derivatives aims to relate uj, u

′
j, u

′′
j to their neighbors uj−1, u

′
j−1, u

′′
j−1 and uj+1, u

′
j+1, u

′′
j+1.
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This scheme approximates the first-order derivative and second-order derivative of u
separately using the above combinations to numerically solve the Schrödinger equation
in [11].

By applying Taylor expansion to Equations (4) and (5), we can obtain the following
Tables 1 and 2. Here, the last row denotes the summation of each corresponding column.
The tables related to Taylor expansion and discussed subsequently are similarly constructed.

Table 1. Taylor series of scheme (4).

Term ujh−1 u
′
j u

′′
j h u

′′′
j h2 u(4)

j h3 u(5)
j h4 u(6)

j h5 u(7)
j h6 u(8)

j h7

α1u
′
j+1 0 α1 α1

α1
2!

α1
3!

α1
4!

α1
5!

α1
6!

α1
7!

α1u
′
j−1 0 α1 −α1

α1
2! − α1

3!
α1
4! − α1

5!
α1
6! − α1

7!

u
′
j 0 1 0 0 0 0 0 0 0

β1u
′′
j+1h 0 0 β1 β1

β1
2!

β1
3!

β1
4!

β1
5!

β1
6!

−β1u
′′
j−1h 0 0 −β1 β1 − β1

2!
β1
3! − β1

4!
β1
5! − β1

6!
γ1
h uj+1 γ1 γ1

γ1
2!

γ1
3!

γ1
4!

γ1
5!

γ1
6!

γ1
7!

γ1
8!

− γ1
h uj−1 −γ1 γ1 − γ1

2!
γ1
3! − γ1

4!
γ1
5! − γ1

6!
γ1
7! − γ1

8!

Σ 0 y11 0 y12 0 y13 0 y14 0

Table 2. Taylor series of scheme (5).

Term ujh−2 u
′
jh

−1 u
′′
j u

′′′
j h u(4)

j h2 u(5)
j h3 u(6)

j h4 u(7)
j h5 u(8)

j h6

α2
h u

′
j+1 0 α2 α2

α2
2!

α2
3!

α2
4!

α2
5!

α2
6!

α2
7!

− α2
h u

′
j−1 0 −α2 α2 − α2

2!
α2
3! − α2

4!
α2
5! − α2

6!
α1
7!

u
′′
j 0 0 1 0 0 0 0 0 0

β2u
′′
j+1 0 0 β2 β2

β2
2!

β2
3!

β2
4!

β2
5!

β2
6!

β2u
′′
j−1 0 0 β2 −β2

β2
2! − β2

3!
β2
4! − β2

5!
β2
6!

γ2
h2 uj+1 γ2 γ2

γ2
2!

γ2
3!

γ2
4!

γ2
5!

γ2
6!

γ2
7!

γ2
8!

−2 γ2
h2 uj −2γ2 0 0 0 0 0 0 0 0

γ2
h2 uj−1 γ2 −γ2

γ2
2! − γ2

3!
γ2
4! − γ2

5!
γ2
6! − γ2

7!
γ2
8!

Σ 0 0 y21 0 y22 0 y23 0 y24

To obtain this scheme with sixth-order convergence, the above coefficients must satisfy
the following algebraic equations:⎧⎪⎪⎨⎪⎪⎩

y11 = 2(α1 + γ1) + 1 = 0,
y12 = α1 + 2

(
β1 +

γ1
3!
)
= 0,

y13 = 2
(

α1
4! +

β1
3! +

γ1
5!

)
= 0,

(6)

and ⎧⎪⎨⎪⎩
y21 = 2(α2 + β2) + γ2 + 1 = 0,
y22 = α2

3 + β2 +
γ2
12 = 0,

y23 = α2
5! +

β2
4! +

γ2
6! = 0.

(7)

The solutions of the above equations are

α1 =
7
16

, β1 = − 1
16

, γ1 = −15
16

,
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and
α2 =

9
8

, β2 = −1
8

, γ2 = −3.

Therefore, schemes (4) and (5) possess the specific forms

1
16

(
7u

′
j+1 + 16u

′
j + 7u

′
j−1

)
− h

16

(
u
′′
j+1 − u

′′
j−1

)
=

15
16h

(
uj+1 − uj−1

)
, (8)

9
8h

(
u
′
j+1 − u

′
j−1

)
− 1

8

(
u
′′
j+1 − 8u

′′
j + u

′′
j−1

)
=

3
h2

(
uj+1 − 2uj + uj−1

)
. (9)

After conducting a thorough analysis, it is determined that this scheme has relatively
limited applicability. Its usage often necessitates complex matrix operations, and it is
insufficient for differential equations involving certain high-order derivatives. In the
good Boussinesq equation under study in this work, a fourth-order spatial derivative is
involved. To obtain the numerical solutions of good Boussinesq equations, we require the
discretization of ∂4

xu and ∂2
xu. Here, we adopt the combination of the function values of

u and its first-order derivative and second-order derivative to represent the fourth-order
spatial derivative

u(4)
j = −36

h4

(
uj+1 − 2uj + uj−1

)
+

21
h3

(
u
′
j+1 + u

′
j−1

)
− 3

h2

(
u
′′
j+1 + u

′′
j−1

)
. (10)

Under periodic boundary conditions, by combining (8) and (9), we have{
A11Ux + A12Uxx = A13U,
A21Ux + A22Uxx = A23U.

(11)

where

A11 =
1
16

⎡⎢⎣
16 7 7
7 16 7

.. . . . . . . .
7 16 7

7 7 16

⎤⎥⎦, A12 = − h
16

⎡⎢⎣
0 1 −1
−1 0 1

.. . . . . . . .
−1 0 1

1 −1 0

⎤⎥⎦, A13 =
15

16h

⎡⎢⎣
0 1 −1
−1 0 1

.. . . . . . . .
−1 0 1

1 −1 0

⎤⎥⎦,

A21 =
9

8h

⎡⎢⎣
0 1 −1
−1 0 1

.. . . . . . . .
−1 0 1

1 −1 0

⎤⎥⎦, A22 = −1
8

⎡⎢⎣
−8 1 1
1 −8 1

.. . . . . . . .
1 −8 1

1 1 −8

⎤⎥⎦, A23 =
3

h2

⎡⎢⎣
−2 1 1
1 −2 1

.. . . . . . . .
1 −2 1

1 1 −2

⎤⎥⎦.

By solving (11), we can obtain Ux = G ·U, Uxx = H ·U, G = A−1B, H = A−1C, where
A = A11A22 −A12A21, B = A22A13 −A12A23, C = A11A23 −A21A13. For (10), we have⎡⎢⎢⎢⎢⎢⎣

u(4)
1

u(4)
2
...

u(4)
N−1

u(4)
N

⎤⎥⎥⎥⎥⎥⎦ = −36
h4

⎡⎢⎣
−2 1 1
1 −2 1

.. . . . . . . .
1 −2 1

1 1 −2

⎤⎥⎦
⎡⎢⎣

u1
u2
...

uN−1
uN

⎤⎥⎦+
21
h3

⎡⎢⎣
0 1 −1
−1 0 1

.. . . . . . . .
−1 0 1

1 −1 0

⎤⎥⎦
⎡⎢⎢⎢⎢⎢⎣

u
′
1

u
′
2
...

u
′
N−1

u
′
N

⎤⎥⎥⎥⎥⎥⎦−
3

h2

⎡⎢⎣
0 1 1
1 0 1

.. . . . . . . .
1 0 1

1 1 0

⎤⎥⎦
⎡⎢⎢⎢⎢⎢⎣

u
′′
1

u
′′
2
...

u
′′
N−1

u
′′
N

⎤⎥⎥⎥⎥⎥⎦,

where

B1 = − 3
h2

⎡⎢⎣
0 1 1
1 0 1

.. . . . . . . .
1 0 1

1 1 0

⎤⎥⎦.

By substituting Ux = G · U, Uxx = H · U into this, the above expression can be
represented as follows:

∂4
xU = −12

h2 A23 ·U +
56
3h2 A21G ·U + B1H ·U. (12)
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Let M = B1 ·H + 56
3h2 A21 · G − 12

h2 A23. We will use the following schemes for the
spatial derivatives: ⎧⎨⎩∂4

xU = M ·U,

∂2
xU = H ·U.

(13)

Next, we will obtain the second CHOC scheme with eighth-order accuracy with
the combination of the first, second, and third derivatives relating uj, u

′
j, u

′′
j , u

′′′
j to their

neighbors uj−1, u
′
j−1, u

′′
j−1, u

′′′
j−1 and uj+1, u

′
j+1, u

′′
j+1, u

′′′
j+1. The generalization of (4) and (5)

to the case of three derivatives similarly yields the following CHOC scheme:

α1

(
u
′
j+1 + u

′
j−1

)
+ u

′
j + β1h

(
u
′′
j+1 − u

′′
j−1

)
+ ω1h2

(
u
′′′
j+1 + u

′′′
j−1

)
+ γ1

uj+1 − uj−1

h
= 0, (14)

α2

⎛⎝u
′
j+1 − u

′
j−1

h

⎞⎠+u
′′
j+β2

(
u
′′
j+1 + u

′′
j−1

)
+ ω2h

(
u
′′′
j+1 − u

′′′
j−1

)
+ γ2

uj+1 − 2uj + uj−1

h2 = 0, (15)

α3

⎛⎝u
′
j+1 + u

′
j−1

h

⎞⎠+ u
′′′
j + β3

⎛⎝u
′′
j+1 − u

′′
j−1

h

⎞⎠+ ω3

(
u
′′′
j+1 + u

′′′
j−1

)
+ γ3

uj+1 − uj−1

h3 = 0, (16)

where α1, β1, ω1, γ1 and α2, β2, ω2, γ2 and α3, β3, ω3, γ3 are coefficients to be determined
according to the accuracy of the approximation. Through the Taylor expansion of
Equations (14)–(16), we can obtain Tables 3–5.

Table 3. Taylor series of scheme (14).

Term ujh−1 u
′
j u

′′
j h u

′′′
j h2 u(4)

j h3 u(5)
j h4 u(6)

j h5 u(7)
j h6 u(8)

j h7

α1u
′
j+1 0 α1 α1

α1
2!

α1
3!

α1
4!

α1
5!

α1
6!

α1
7!

α1u
′
j−1 0 α1 −α1

α1
2! − α1

3!
α1
4! − α1

5!
α1
6! − α1

7!

u
′
j 0 1 0 0 0 0 0 0 0

β1u
′′
j+1h 0 0 β1 β1

β1
2!

β1
3!

β1
4!

β1
5!

β1
6!

−β1u
′′
j−1h 0 0 −β1 β1 − β1

2!
β1
3! − β1

4!
β1
5! − β1

6!

ω1u
′′′
j+1h2 0 0 0 ω1 ω1

ω1
2!

ω1
3!

ω1
4!

ω1
5!

ω1u
′′′
j−1h2 0 0 0 ω1 −ω1

ω1
2! −ω1

3!
ω1
4! −ω1

5!
γ1
h uj+1 γ1 γ1

γ1
2!

γ1
3!

γ1
4!

γ1
5!

γ1
6!

γ1
7!

γ1
8!

− γ1
h uj−1 −γ1 γ1 − γ1

2!
γ1
3! − γ1

4!
γ1
5! − γ1

6!
γ1
7! − γ1

8!

Σ 0 y11 0 y12 0 y13 0 y14 0

To obtain these schemes with the eighth order, they must satisfy the algebraic equations⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y11 = 2(α1 + γ1) + 1 = 0,

y12 = α1 + 2
(

β1 + ω1 +
γ1
3!
)
= 0,

y13 = 2
(

α1
4! +

β1
3! +

ω1
2! + γ1

5!

)
= 0,

y14 = 2
(

α1
6! +

β1
5! +

ω1
4! + γ1

7!

)
= 0,

(17)

and
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y21 = 2
(
α2 + β2 +

γ2
2!
)
+ 1 = 0,

y22 = 2
(

α2
3! +

β2
2! + ω2 +

γ2
4!

)
= 0,

y23 = 2
(

α2
5! +

β2
4! +

ω2
3! + γ2

6!

)
= 0,

y24 = 2
(

α2
7! +

β2
6! +

ω2
5! + γ2

8!

)
= 0,

(18)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y31 = 2(α3 + γ3) = 0,

y32 = 2
( α3

2! + β3 + ω3 +
γ3
3!
)
+ 1 = 0,

y33 = 2
(

α3
4! +

β3
3! +

ω3
2! + γ3

5!

)
= 0,

y34 = 2
(

α3
6! +

β3
5! +

ω3
4! + γ3

7!

)
= 0.

(19)

Table 4. Taylor series of scheme (15).

Term ujh−2 u
′
jh u

′′
j u

′′′
j h u(4)

j h2 u(5)
j h3 u(6)

j h4 u(7)
j h5 u(8)

j h6

α2
h u

′
j+1 0 α2 α2

α2
2!

α2
3!

α2
4!

α2
5!

α2
6!

α2
7!

− α2
h u

′
j−1 0 −α2 α2 − α2

2!
α2
3! − α2

4!
α2
5! − α2

6!
α2
7!

u
′′
j 0 0 1 0 0 0 0 0 0

β2u
′′
j+1 0 0 β2 β2

β2
2!

β2
3!

β2
4!

β2
5!

β2
6!

β2u
′′
j−1 0 0 β2 −β2

β2
2! − β2

3!
β2
4! − β2

5!
β2
6!

ω2u
′′′
j+1h 0 0 0 ω2 ω2

ω2
2!

ω2
3!

ω2
4!

ω2
5!

−ω2u
′′′
j−1h 0 0 0 −ω2 ω2 −ω2

2!
ω2
3! −ω2

4!
ω2
5!

γ2
h2 uj+1 γ2 γ2

γ2
2!

γ2
3!

γ2
4!

γ2
5!

γ2
6!

γ2
7!

γ2
8!

− 2γ2
h2 uj −2γ2 0 0 0 0 0 0 0 0

γ2
h2 uj−1 γ2 −γ2

γ2
2! − γ2

3!
γ2
4! − γ2

5!
γ2
6! − γ2

7!
γ2
8!

Σ 0 0 y21 0 y22 0 y23 0 y24

Table 5. Taylor series of scheme (16).

Term ujh−3 u
′
jh

−2 u
′′
j h−1 u

′′′
j u(4)

j h u(5)
j h2 u(6)

j h3 u(7)
j h4 u(8)

j h5

α3
h2 u

′
j+1 0 α3 α3

α3
2!

α3
3!

α3
4!

α3
5!

α3
6!

α3
7!

α3
h2 u

′
j−1 0 α3 −α3

α3
2! − α3

3!
α3
4! − α3

5!
α3
6! − α3

7!

u
′′′
j 0 0 0 1 0 0 0 0 0

β3
h u

′′
j+1 0 0 β3 β3

β3
2!

β3
3!

β3
4!

β3
5!

β3
6!

− β3
h u

′′
j−1 0 0 −β3 β3 − β3

2!
β3
3! − β3

4!
β3
5! − β3

6!

ω3u
′′′
j+1 0 0 0 ω3 ω3

ω3
2!

ω3
3!

ω3
4!

ω3
5!

ω3u
′′′
j−1 0 0 0 ω3 −ω3

ω3
2! −ω3

3!
ω3
4! −ω3

5!
γ3
h3 uj+1 γ3 γ3

γ3
2!

γ3
3!

γ3
4!

γ3
5!

γ3
6!

γ3
7!

γ3
8!

− γ3
h3 uj−1 −γ3 γ3 − γ3

2!
γ3
3! − γ3

4!
γ3
5! − γ3

6!
γ3
7! − γ3

8!

Σ 0 y31 0 y32 0 y33 0 y34 0

Their unique solutions are

α1 =
19
32

, β1 = −1
8

, ω1 =
1

96
, γ1 = −35

32
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and
α2 =

29
16

, β2 = − 5
16

, ω2 =
1
48

, γ2 = −4

and
α3 = −105

16
, β3 =

15
8

, ω3 = − 3
16

, γ3 =
105
16

respectively. Therefore, schemes (14)–(16) have the following specific forms:

1
32

(
19u

′
j+1 + 32u

′
j + 19u

′
j−1

)
− h

8

(
u
′′
j+1 − u

′′
j−1

)
+

h2

96

(
u
′′′
j+1 + u

′′′
j−1

)
=

35
32h

(
uj+1 − uj−1

)
, (20)

(
29u

′
j+1 − 29u

′
j−1

)
16h

−

(
5u

′′
j+1 − 16u

′′
j + 5u

′′
j−1

)
16

+
h
(

u
′′′
j+1 − u

′′′
j−1

)
48

=
4
(
uj+1 − 2uj + uj−1

)
h2 , (21)

(
105u

′
j+1 + 105u

′
j−1

)
−16h2 +

(
15u

′′
j+1 − 15u

′′
j−1

)
8h

−

(
3u

′′′
j+1 − 16u

′′′
j + 3u

′′′
j−1

)
16

=
105

(
uj+1 − uj−1

)
−16h3 . (22)

This three-point scheme possesses eighth-order accuracy and involves three deriva-
tives, so it is more applicable and allows for greater accuracy in comparison to (4) and (5).
Under periodic boundary conditions, by combining (20)–(22), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

B11Ux + B12Uxx + B13Uxxx = B14U,

B21Ux + B22Uxx + B23Uxxx = B24U,

B31Ux + B32Uxx + B33Uxxx = B34U.

(23)

where

B11 =
19
32

⎡⎢⎢⎢⎢⎣
32
19 1 1
1 32

19 1

. . . . . . . . .
1 32

19 1
1 1 32

19

⎤⎥⎥⎥⎥⎦, B12 = − h
8

⎡⎢⎣
0 1 −1
−1 0 1

.. . . . . . . .
−1 0 1

1 −1 0

⎤⎥⎦, B13 =
h2

96

⎡⎢⎣
0 1 1
1 0 1

.. . . . . . . .
1 0 1

1 1 0

⎤⎥⎦,

B14 =
35

32h

⎡⎢⎣
0 1 −1
−1 0 1

.. . . . . . . .
−1 0 1

1 −1 0

⎤⎥⎦, B21 =
29

16h

⎡⎢⎣
0 1 −1
−1 0 1

.. . . . . . . .
−1 0 1

1 −1 0

⎤⎥⎦, B22 = − 5
16

⎡⎢⎢⎢⎢⎣
− 16

5 1 1
1 − 16

5 1

. . . . . . . . .
1 − 16

5 1
1 1 − 16

5

⎤⎥⎥⎥⎥⎦,

B23 =
h

48

⎡⎢⎣
0 1 −1
−1 0 1

.. . . . . . . .
−1 0 1

1 −1 0

⎤⎥⎦, B24 =
4
h2

⎡⎢⎣
−2 1 1
1 −2 1

.. . . . . . . .
1 −2 1

1 1 −2

⎤⎥⎦, B31 = − 105
16h2

⎡⎢⎣
0 1 −1
−1 0 1

.. . . . . . . .
−1 0 1

1 −1 0

⎤⎥⎦,

B32 =
15
8h

⎡⎢⎣
0 1 −1
−1 0 1

.. . . . . . . .
−1 0 1

1 −1 0

⎤⎥⎦, B33 = − 3
16

⎡⎢⎢⎢⎢⎣
− 16

3 1 1
1 − 16

3 1

. . . . . . . . .
1 − 16

3 1
1 1 − 16

3

⎤⎥⎥⎥⎥⎦, B34 = − 105
16h3

⎡⎢⎣
0 1 −1
−1 0 1

.. . . . . . . .
−1 0 1

1 −1 0

⎤⎥⎦.

Next, we adopt the combination of the function values of u and its first, second, and
third derivatives to represent the fourth-order spatial derivative
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u(4)
j =−72

h4

(
uj+1 − 2uj + uj−1

)
+

183
4h3

(
u
′
j+1 − u

′
j−1

)
− 39

4h2

(
u
′′
j+1 + u

′′
j−1

)
+

3
4h

(
u
′′′
j+1 − u

′′′
j−1

)
. (24)

In light of solving (23), we can obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂xU = G∗ ·U,

∂2
xU = H∗ ·U,

∂3
xU = I ·U,

(25)

where G∗ = D−1D1, H∗ = D−1D2, I = D−1D3. For D, D1, D2 and D3, we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

D = B11B22B33 + B12B23B31 + B13B21B32 − B11B23B32 − B12B21B33 − B13B22B31,

D1 = B14B22B33 + B14B23B31 + B13B21B34 − B11B23B34 − B14B21B33 − B13B24B31,

D2 = B11B22B34 + B12B24B31 + B14B21B32 − B13B24B31 − B14B21B33 − B11B23B34,

D3 = B11B22B34 + B12B24B31 + B14B21B32 − B11B24B32 − B12B21B34 − B14B22B31.

(26)

Substituting Ux = G∗ ·U, Uxx = H∗ ·U, Uxxx = I ·U into (24) gives

∂4
xU = −18

h2 B24 ·U −
366
h4 B12G∗ ·U +

936
h4 B13H∗ ·U − 6

h2 B12I ·U. (27)

Let M∗ = 936
h4 B13H∗ − 366

h4 B12G∗ − 18
h2 B24 − 6

h2 B12I. We will obtain the following dis-
crete schemes of the spatial derivative, as follows:⎧⎨⎩∂4

xU = M∗ ·U,

∂2
xU = H∗ ·U.

(28)

For the above scheme, we find that the matrix operation becomes complicated. To
obtain the discrete form of ∂2

xu and ∂4
xu according to (14)–(16), we require many matrix

operations, and the subsequent simulation of the numerical solution will be more difficult.
Thus, we consider constructing a direct combination of ∂2

xu, ∂4
xu and u to devise the third

CHOC scheme. This scheme will maintain sixth-order precision and can be used to easily
obtain the discrete forms of ∂2

xu and ∂4
xu, which will be more pertinent and accurate. This

scheme has the following formulation:

α1

⎛⎝u
′′
j+1 + u

′′
j−1

2

⎞⎠+ u
′′
j + β1h2

⎛⎝u(4)
j+1 + u(4)

j−1

2

⎞⎠ = γ1
uj+1 − 2uj + uj−1

h2 , (29)

α2

⎛⎝u
′′
j+1 − 2u

′′
j + u

′′
j−1

h2

⎞⎠+ u(4)
j + β2

⎛⎝u(4)
j+1 + u(4)

j−1

2

⎞⎠ = γ2
uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2

h4 . (30)
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We apply Taylor expansion to (29) to obtain

LHS = u
′′
j + α1

⎛⎝u
′′
j+1 + u

′′
j−1

2

⎞⎠+ β1h2

⎛⎝u(4)
j+1 + u(4)

j−1

2

⎞⎠
= u

′′
j + α1

(
u
′′
j +

h2

2!
u(4)

j +
h4

4!
u(6)

j + o
(

h6
))

+β1h2
(

u(4)
j +

h2

2!
u(6)

j +
h4

4!
u(8)

j +o
(

h6
))

= (1 + α1)u
′′
j +

(α1

2!
+ β1

)
h2u(4)

j +

(
α1

4!
+

β1

2!

)
h4u(6)

j + o
(

h6
)

,

RHS = γ1

(uj+1 − 2uj + uj−1

h2

)

= γ1

⎛⎝u
′′
j +

u(4)
j

12
h2 +

u(6)
j

360
h4

⎞⎠+ o
(

h6
)

.

To obtain the scheme with sixth-order accuracy, the coefficients must satisfy the
algebraic equations ⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + α1 = γ1
2! ,

α1
2! + β1 = γ1

4! ,
α1
4! +

β1
2! = γ1

6! ,

⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α1 = 14

61 ,

β1 = − 3
244 ,

γ1 = 75
61 .

Similarly, for (30), we have

LHS = u(4)
j + α2

⎛⎝u(4)
j +

u(6)
j

12
h2 +

u(8)
j

360
h4

⎞⎠+ β2

⎛⎝u(4)
j +

u(6)
j h2

2!
+

u(8)
j h4

4!

⎞⎠+ o
(

h6
)

= (1 + α2 + β2)u
(4)
j +

(
α2

12
+

β2

2!

)
h2u(6)

j +

(
α2

360
+

β2

4!

)
h4u(8)

j + o
(

h6
)

,

RHS = γ2
uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2

h4 + o
(

h6
)

= γ2

(
25 − 23

4!
u(4)

j +
27 − 23

6!
h2u(6)

j +
29 − 23

8!
h4u(8)

j

)
+ o

(
h6
)

.

To obtain the scheme with sixth-order accuracy, the coefficients must satisfy the
algebraic equations ⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + α2 + β2 = 25−23

4! γ2,

α2
12 + β2

2! = 27−23

6! γ2,

α2
360 + β2

4! = 29−23

8! γ2,

=⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α2 = 6

7 ,

β2 = 5
7 ,

γ2 = 18
7 .

Under periodic boundary conditions, for (29) and (30), we obtain⎧⎨⎩A∗11Uxx + A∗12Uxxxx = A∗13U,

A∗21Uxx + A∗22Uxxxx = A∗23U.
(31)
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where

A∗11 =
7
61

⎡⎢⎢⎢⎢⎢⎢⎢⎣

61
7 1 1

1 61
7 1

. . . . . . . . .
1 61

7 1

1 1 61
7

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, A∗12 = − 3h2

488

⎡⎢⎢⎢⎢⎣
0 1 1
1 0 1

.. . . . . . . .
1 0 1

1 1 0

⎤⎥⎥⎥⎥⎦, A∗13 =
75

61h2

⎡⎢⎢⎢⎢⎣
−2 1 1

1 −2 1

.. . . . . . . .
1 −2 1

1 1 −2

⎤⎥⎥⎥⎥⎦,

A∗21 =
6

7h2

⎡⎢⎢⎢⎢⎣
−2 1 1

1 −2 1

.. . . . . . . .
1 −2 1

1 1 −2

⎤⎥⎥⎥⎥⎦, A∗22 =
5

14

⎡⎢⎢⎢⎢⎢⎢⎢⎣

14
5 1 1

1 14
5 1

. . . . . . . . .
1 14

5 1

1 1 14
5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, A∗23 =

18
7h4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −4 1 1 −4

−4 6 −4 1 1

1 −4 6 −4 1

.. . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . 1
1 1 −4 6 −4

−4 1 1 −4 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

With (31), we can readily derive Uxx and Uxxxx via the expressions of U. This signifi-
cantly streamlines the matrix operations. By solving (31), we can obtain⎧⎨⎩∂2

xU = G1 ·U,

∂4
xU = H1 ·U.

(32)

where G1 = A−1
1 B1, H1 = A−1

1 C1. For A1, B1, C1, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
A1 = A∗11A∗22 −A∗12A∗21,

B1 = A∗22A∗13 −A∗12A∗23,

C1 = A∗11A∗23 −A∗21A∗13.

(33)

Additionally, the following high-order compact (HOC) scheme is presented in the
existing literature [28]. For good Boussinesq equations, the above scheme has higher spatial
accuracy compared to the scheme given in [28].

α1u
′′
j−1 + u

′′
j + α1u

′′
j+1 = b1

uj+2 − 2uj + uj−2

4h2 + a1
uj+1 − 2uj + uj−1

h2 , (34)

α2u(4)
j−1 + u(4)

j + α2u(4)
j+1 = b2

uj+3−9uj+1+16uj−9uj−1+uj−3

6h4

+a2
uj+2−4uj+1+6uj−4uj−1+uj−2

h4 ,
(35)

for (34) and (35), according to [28], we have α1 = 2
11 , α2 = 7

26 , a1 = 12
11 , a2 = 19

13 ,
b1 = 3

11 , b2 = 1
13 . Therefore, we can also express this HOC scheme in the same way as in

the three aforementioned schemes, where we denote⎧⎨⎩∂4
xU = S2 ·U,

∂2
xU = S1 ·U.

(36)
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3. Establishment of the Fully Discrete Scheme

Let τ be a temporal step size and tn = nτ, n = 0, 1, 2, · · · , M, where M = T/τ. Denote
the approximation of u(x, tn) by un. Define the following operators:

δtun+ 1
2 =

un+1 − un

τ
, un+ 1

2 =
un + un+1

2
.

Let v = ut, and the considered good Boussinesq equation can be written as

∂tv = ∂2
xu− ∂4

xu + ∂2
x(u

2).

Applying the CHOC scheme (13) to the spatial derivatives of the above equation gives

vt = −M · u + H · u + H · u2 = N · u + H · u2,

where N = H−M. By applying a symplectic midpoint scheme with second-order accuracy
to the above equation, we obtain the following fully discrete scheme:

un+1 = un +
τ

2

(
vn + vn+1

)
, (37)

− τ

2
N · un+1 + vn+1 =

τ

2
N · un + vn +

τ

2
H ·

{(
u2
)n

+
(

u2
)n+1

}
. (38)

Similarly, using CHOC scheme (28) for the spatial derivatives yields

vt = −M∗ · u + H∗ · u + H∗ · u2 = N∗ · u + H∗ · u2,

where N∗ = H∗ −M∗. We obtain the corresponding fully discrete scheme

− τ

2
N∗ · un+1 + vn+1 =

τ

2
N∗ · un + vn +

τ

2
H∗ ·

{(
u2
)n

+
(

u2
)n+1

}
. (39)

Applying the CHOC scheme (31) for the spatial derivatives gives

vt = −H1 · u + G1 · u + G1 · u2 = N1 · u + G1 · u2,

where N1 = G1 − H1. We similarly obtain the following fully discrete scheme:

− τ

2
N1 · un+1 + vn+1 =

τ

2
N1 · un + vn +

τ

2
G1 ·

{(
u2
)n

+
(

u2
)n+1

}
. (40)

Applying the HOC scheme (34) and (35) for the spatial derivatives gives

vt = −S2 · u + S1 · u + S1 · u2 = S3 · u + S1 · u2,

where S3 = S1 − S2. We also similarly obtain the following fully discrete scheme:

− τ

2
S3 · un+1 + vn+1 =

τ

2
S3 · un + vn +

τ

2
S1 ·

{(
u2
)n

+
(

u2
)n+1

}
. (41)

By combining (38)–(41) with (37), respectively, we always obtain the algebraic equation
as follows:

A · Tn+1 = B · Tn + F
(

Tn+1, Tn
)

,

where A and B are some invertible tridiagonal matrices depending on the corresponding
scheme, Tn = [un , vn]ᵀ, and F is the corresponding nonlinear term.
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For simplicity, we will denote the schemes corresponding to (38)–(41) by CHOC-A,
CHOC-B, CHOC-C, and HOC, respectively.

4. Conservation Laws of CHOC Schemes

Under periodic boundary condition (3) with L = 1, some good Boussinesq equations
have certain conservation laws. Below, we consider periodic domain [0, 1].

Theorem 1. Let ‖·‖ denote the standard L2-norm for 1-periodic functions. Then, along with
∂2

t u = −∂4
xu, the quadratic functional

‖ut‖2 + ‖uxx‖2 (42)

is invariant. Thus, it is an integral of motion.

Proof. According to (3), after multiplying both sides of ∂2
t u = −∂4

xu by ut and integrating
it by parts, we have ∫ 1

0
ut · uttdx =−

∫ 1

0
uxx · utxxdx. (43)

For (43), we take integration with respect to t to obtain∫ t

0

∫ 1

0
ut · utt dx dt = −

∫ t

0

∫ 1

0
uxxutxx dx dt.

⇒
∫ 1

0
u2

t (x, t) dx +
∫ 1

0
u2

xx(x, t) dx =
∫ 1

0
u2

t (x, 0) dx +
∫ 1

0
u2

xx(x, 0) dx.

Therefore, we have (42).

Theorem 2. For nonlinear Boussinesq Equation (2), the following conservation law is satisfied:∫ 1

0
ut(x, t) dx =

∫ 1

0
v0(x) dx. (44)

If
∫ 1

0 v0(x) dx = 0, then we obtain the conservation law as follows:

∫ 1

0
u(x, t) dx =

∫ 1

0
u0(x) dx. (45)

Proof. For t ∈ [0, T], integrating with respect to x on both sides of (2), we obtain∫ 1

0
uttdx =

∫ 1

0
(uxx − ∂4

xu + (u2)xx)dx.

According to (3), the integration on the right side of the above equation is 0, i.e.,∫ 1

0
uttdx = 0.

Taking integration with respect to t yields
∫ 1

0 ut(x, t)dx =
∫ 1

0 v0(x)dx, which is (44). If∫ 1
0 v0(x) dx = 0, then

∫ 1
0 ut(x, t)dx = 0, which gives (45) by integration with respect to t.

First, we are interested in the discrete versions of Theorems 1 and 2 under numerical
analysis for CHOC schemes. To this end, we list some important properties of circulant
matrices [11]. A matrix written in the form
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Circ(c0, c1, c2 · · · cN−1) =

⎡⎢⎢⎢⎢⎢⎣
c0 c1 c2 · · · cN−1

cN−1 c0 c1 · · · cN−2

· · ·
. . .

. . .
. . . · · ·

c2 c3
. . .

. . . c1
c1 c2 · · · cN−1 c0

⎤⎥⎥⎥⎥⎥⎦
is said to be a circulant matrix.

All of the matrices Aij(i, j = 1, 2.), Bij(i, j = 1, 2, 3.), A∗ij(i, j = 1, 2.) are circulant. There
are a number of favorable characteristics of this type of matrix.

We list some of them in the following; these are useful in analyzing our schemes.

Proposition 1 ([11,27]). If A, B are circulant matrices with the same number of rows and columns,
then we have the following.

(i) A + B, A− B, AB are circulant matrices.
(ii) If A−1 is well defined, then A−1 is also a circulant matrix.
(iii) A, B are commutators, AB = BA.
(iv) If A, B are symmetric and positive definite matrices, then AB = BA is a symmetric and positive

definite matrix.
(v) The eigenvalue of the circulant matrix above is λj = ∑N−1

k=0 cke−ikθj with the corresponding

eigenvector wj =
1
N

[
1, e−iθj , · · · , e−i(N−1)θj

]ᵀ
.

With Proposition 1, we can obtain the following proposition.

Proposition 2. For the matrices in the CHOC solvers (13), (28), (31), and the HOC solver (36),
we have the following:

(i) A11, A22, −A23, B22, B33, A∗11, A∗22, A∗23 are symmetric and positive definite.
(ii) A12, A13, A21, B12, B14, B21, B23, B34 are skew-symmetric.
(iii) B11, B13, B24, B31, B32, A∗12, A∗13, A∗21, S1 are symmetric.
(iv) A, A−1, D, A1, C1 are symmetric and positive definite; D1, D3 are skew-symmetric; and D2,

B1 are symmetric.
(v) M∗, H1, S2 are symmetric and positive definite; G, G∗, I, are skew-symmetric; and H, M, H∗,

G1, N, N∗, N1, S1 are symmetric.
(vi) All of these are circulant.

Proof. The conclusions (i)–(iv) and (vi) can be observed or be verified from Proposition 1.
The result (v) can be derived from the last conclusion in Proposition 1 by finding their
eigenvalues.

Theorem 3. Define
wn = (vn, vn) + (un, R · un),

where (u, v) is the standard unitary inner product at the discrete level for finite-dimensional
sequence vectors, vn =

[
vn

1 , vn
2 , · · · , vn

NX
]ᵀ, un =

[
un

1 , un
2 , · · · , un

NX
]ᵀ. R is the matrix coefficient

when approximating the fourth-order spatial derivative expressed by M (13), M∗ (28), H1 (31),
S2 (36). Then, for CHOC solvers (13), (28), (31), and HOC solver (36) to solve ∂2

t u = −∂4
xu, the

numerical solutions satisfy that
ωn+1 = wn. (46)

Moreover, for M∗ (28), H1 (31) and S2 (36), there exists C such that Cᵀ · C = R; therefore,

wn = (vn, vn) + (C · un, C · un).

Proof. Since v = ut, we have vt = −uxxxx, and its discrete scheme is

vn+1 − vn

τ
= −Run+1 + Run

2
.

124



Axioms 2024, 13, 574

By multiplying un+1−un

τ = vn+1+vn

2 on both sides of the above formula, we have(
vn+1 + vn)ᵀ(vn+1 − vn)

2τ
= −

(
vn+1 + vn)ᵀ

2
· Run+1 + Run

2
.

Therefore, we obtain that(
vn+1

)ᵀ(
vn+1

)
− (vn)ᵀ(vn) = −

(
un+1

)ᵀ
R ·
(

un+1
)
− (un)ᵀR · (un),(

vn+1
)ᵀ(

vn+1
)
+
(

un+1
)ᵀ(

R · un+1
)
= (vn)ᵀ(vn) + (un)ᵀ(R · un),

which is ωn+1 = ωn. Taking into account the symmetric positivity of M∗ (28), H1 (31), and
S2(36), there exists C such that Cᵀ · C = R, which yields

(un, R · un) = (C · un)ᵀ(C · un).

Therefore, we obtain
wn = (vn, vn) + (C · un, C · un).

Theorem 4. For the nonlinear good Boussinesq Equation (2) with periodic boundary conditions, the
schemes CHOC-A, CHOC-B, CHOC-C, and HOC satisfy the following discrete conservation law:

un = h
NX

∑
j=1

un
j ≡ u0 (47)

provided that v0 = 0.

Proof. Firstly, we consider scheme CHOC-A to solve nonlinear system (2) and have the
following formula:

un+1 = un + τ

(
vn + vn+1

2

)
, vn+1 = vn +

τ

2
N
(

un+1 + un
)
+

τ

2
H
[
(un)2 +

(
un+1

)2
]

. (48)

By calculation, we obtain that

vn+1 = vn +
τ

2

(
E− τ2

4
N
)−1{

τNvn + 2Nun + H
[
(un)2 +

(
un+1

)2
]}

. (49)

We construct the following iterative algorithm:

vn+1
(k+1) = vn +

τ

2

(
E− τ2

4
N
)−1{

τNvn + 2Nun + H
[
(un)2 +

(
un+1
(k)

)2
]}

,

un+1
(k+1) = un + τ

⎛⎝vn + vn+1
(k+1)

2

⎞⎠, (50)

where k = 0, 1, ... and un+1
(0) = un. Then, we find that

lim
k→∞

un+1
(k) = un+1, lim

k→∞
vn+1
(k) = vn+1. (51)

Considering v0 = 0 and the symmetry of N, H, we can obtain vn+1
(k+1) = vn = 0, un+1

(k+1) = un.

The limit (51) yields vn+1 = 0, un+1 = un. The conservation identity (47) for schemes
CHOC-B, CHOC-C, and HOC can be derived similarly.
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For the linear good Boussinesq Equation (1), we have the following equivalent Hamil-
tonian system: {

ut = v,
vt = uxx − uxxxx,

(52)

with the Hamiltonian function H = − 1
2

∫ (
v2 + u2

x + u2
xx + V2(u)

)
dx. Thus, we obtain the

symplectic conservation law as follows:

w(t) =
∫

du ∧ dvdx = w(0). (53)

Symplectic schemes for Hamiltonian systems are proven to be more efficient than non-
symplectic schemes for long-time numerical computations and are widely applied to
practical problems arising in many fields of science and engineering. These include ce-
lestial mechanics, quantum physics, statistics, and so on (see [16,29–31]). Next, we will
demonstrate that the considered schemes are symplectic.

Theorem 5. For linear GB Equation (1), the schemes CHOC-A, CHOC-B, CHOC-C, and HOC
are symplectic with the following conservation law:

wn = h
NX

∑
j=1

dun
j ∧ dvn

j = w0. (54)

Proof. For (38), scheme CHOC− A has the formula as follows:[
− τ

2 N E

E − τ
2 E

][
Un+1

Vn+1

]
=

[
τ
2 N E

E τ
2 E

][
Un

Vn

]
.

Therefore, through extensive calculation, scheme CHOC-A is shown to be symplectic.
Similarly, the schemes CHOC-B, CHOC-C, and HOC are also symplectic.

5. Numerical Experiments

In this section, we present some numerical results to illustrate the above theoretical
analysis of the CHOC and HOC schemes, mainly focusing on the convergence and discrete
conservation laws for numerical solutions of the GB equation. Our numerical results were
obtained via MATLAB 2022a.

First, for the linear GB equation, we take the initial value f (x) = sin(x) and exact
solution u(x, t) = sin(x) cos

(√
2t
)

. Here, we focus on issues within a limited space–time
domain [0, 2π]× [0, T]. The L2 and L∞ norms of the errors between the numerical solution
and exact solution are defined, respectively, as

‖en(h, τ)‖2 =

√
hΣ

j

(
Un

j − un
j

)2
, ‖en(h, τ)‖∞ = max

j

∣∣∣Un
j − un

j

∣∣∣,
where Un

j = u
(

xj, tn
)

is the exact solution and un
j is the numerical solution. The conver-

gence order in the space and time directions is defined as order1 and order2, respectively,

order1 =
ln(‖e(h1, τ)‖/‖e(h2, τ)‖)

ln(h1/h2)
, order2 =

ln(‖e(h, τ1)‖/‖e(h, τ2)‖)
ln(τ1/τ2)

.

First, we test the convergence order of CHOC− A, CHOC− B, CHOC− C, HOC and
take different step sizes in the direction to be considered, while taking a very small step
size in the other direction.

Table 6 lists the errors of the numerical solution and exact solution under the L2 and
L∞ norms, as well as the spatial convergence order calculated with order1 for the four
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schemes while taking different spatial step sizes. In order to render the error in the time
direction relatively negligible, we take the time step size τ = 10−4.

Next, Table 7 shows the ratio of the numerical errors in Table 6, calculated with

Numerical error by CHOC− B or CHOC− C
Numerical error by CHOA scheme

.

Table 8 shows the ratio of the numerical errors in Table 6 calculated with

Numerical error by CHOC− B or CHOC− C
Numerical error by HOC scheme

.

Table 9 lists the errors of the numerical solution and exact solution under the L2 and
L∞ norms, as well as the time convergence order calculated with order2 when the four
schemes take different time step sizes. In order to render the error in the spatial direction
relatively negligible, we take the spatial step size h = 2π

80 .
This indicates that the two additional CHOC schemes derived from CHOC-A are

more accurate than the CHOC-A and HOC schemes.
Secondly, for the linear principal part of the GB equation, we simulate the discrete

conservation law (46) in time interval [0, 15], which is measured with the following approx-
imate motion-invariant error: ωn −ω0.

Thirdly, we consider the nonlinear GB equation (2) with an exact solitary wave solution
as follows:

u(x, t) = −A sech2
[(

P
2

)
(ξ − ξ0)

]
, ξ = x− ct, (x, t) ∈ [−50, 50]× [0, 1],

where 0 < P < 1, A = 3P2

2 , ξ0 =
(
1− P2)1/2. Below, we take a moderate amplitude

A = 0.5 , ξ0 = 0 and take step sizes h = 0.5 , τ = 0.01. We simulate the discrete conservation
law (47) in time interval [0, 15], which is measured with the following approximate motion-
invariant error: un− u0. We also test three CHOC schemes for the interaction of two solitary
waves governed by the nonlinear GB equation. In this work, we set different amplitudes A
of 1 and 0.25, with corresponding initial phases ξ of −60 and −80, respectively. We also
take step sizes h = 0.5 , τ = 0.01. The experimental results indicate that all three CHOC
schemes effectively simulate the interaction of the two solitary waves, and the results
are similar. Therefore, we only present the simulation results for the CHOC-C scheme at
different time instances.

Table 6. Numerical errors of un
j with τ = 10−4.

h Scheme ‖en‖2 Order ‖en‖∞ Order

2π
5

CHOC− A 7.629× 10−3 − 4.1841× 10−3 −
CHOC− B 7.4229× 10−4 − 3.9829× 10−4 −
CHOC− C 9.4958× 10−4 − 5.0952× 10−4 −
HOC 8.7936× 10−4 − 6.1928× 10−4 −

2π
10

CHOC− A 4.203× 10−4 4.1816 2.3058× 10−4 4.1816
CHOC− B 9.4353× 10−6 6.2978 5.0628× 10−6 6.2977
CHOC− C 1.348× 10−5 6.1384 7.2331× 10−6 6.1384
HOC 2.4481× 10−5 5.1667 1.3136× 10−5 5.5590

2π
15

CHOC− A 8.0998× 10−5 4.0609 4.5682× 10−5 3.9927
CHOC− B 7.9367× 10−7 6.1054 4.4533× 10−7 5.9952
CHOC− C 1.1673× 10−6 6.0338 6.5498× 10−7 5.9236
HOC 2.1169× 10−6 6.0374 1.1878× 10−6 5.9272
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Table 6. Cont.

h Scheme ‖en‖2 Order ‖en‖∞ Order

2π
20

CHOC− A 2.5403× 10−5 4.0307 1.4288× 10−5 4.0402
CHOC− B 1.3599× 10−7 6.1321 7.6726× 10−8 6.1129
CHOC− C 2.0994× 10−7 5.9636 1.1844× 10−7 5.9448
HOC 3.7792× 10−7 5.9893 2.1322× 10−7 5.9702

2π
25

CHOC− A 1.0361× 10−5 4.0190 5.8447× 10−6 4.0059
CHOC− B 3.2376× 10−8 6.4316 1.823× 10−8 6.4406
CHOC− C 5.7932× 10−8 5.7701 3.262× 10−8 5.7784
HOC 1.0185× 10−7 5.8760 5.7347× 10−8 5.8850

Table 7. The ratio of the numerical errors among different CHOC schemes of un
j with τ = 10−4.

h
CHOC − B CHOC − C

Rate eu
2 Rate eu

∞ Rate eu
2 Rate eu

∞

2π
5 0.097 0.095 0.124 0.122

2π
10 0.022 0.022 0.032 0.031
2π
15 0.0098 0.0097 0.0144 0.0143
2π
20 0.0053 0.0054 0.0083 0.0083
2π
25 0.0031 0.0031 0.0056 0.0056

Table 8. The ratio of the numerical errors among different schemes of un
j with τ = 10−4 .

h
CHOC − B CHOC − C

Rate eu
2 Rate eu

∞ Rate eu
2 Rate eu

∞

2π
5 0.8441 0.6432 1.8 0.8228

2π
10 0.3854 0.3854 0.5506 0.5506
2π
15 0.3749 0.3749 0.5514 0.5514
2π
20 0.3598 0.3598 0.5555 0.5555
2π
25 0.3179 0.3179 0.5688 0.5688

Table 9. Verification of temporal convergence rate with h = 2π
80 .

τ Scheme ‖en‖2 Order ‖en‖∞ Order

1
40

CHOC− A 5.5718× 10−6 − 1.1056× 10−5 −
CHOC− B 5.574× 10−6 − 1.106× 10−5 −
CHOC− C 5.574× 10−6 − 1.106× 10−5 −
HOC 5.574× 10−6 − 1.106× 10−5 −

1
80

CHOC− A 1.4094× 10−6 1.9831 2.8058× 10−6 1.9783

CHOC− B 1.4116× 10−6 1.9814 2.8101× 10−6 1.9764
CHOC− C 1.4116× 10−6 1.9814 2.8101× 10−6 1.9764
HOC 1.4116× 10−6 1.9814 2.8101× 10−6 1.9764

1
160

CHOC− A 3.5297× 10−7 1.9975 7.0373× 10−7 1.9953
CHOC− B 3.5515× 10−7 1.9908 7.0808× 10−7 1.9886
CHOC− C 3.5514× 10−7 1.9909 7.0806× 10−7 1.9887
HOC 3.5514× 10−7 1.9909 7.0807× 10−7 1.9887
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Table 9. Cont.

τ Scheme ‖en‖2 Order ‖en‖∞ Order

1
320

CHOC− A 8.689× 10−8 2.0223 1.7336× 10−7 2.0213
CHOC− B 8.907× 10−8 1.9954 1.7772× 10−7 1.9943
CHOC− C 8.9065× 10−8 1.9955 1.777× 10−7 1.9944
HOC 8.9069× 10−8 1.9954 1.7771× 10−7 1.9944

1
640

CHOC− A 2.0124× 10−8 2.1103 4.0162× 10−8 2.1099
CHOC− B 2.2307× 10−8 1.9974 4.4534× 10−8 1.9966
CHOC− C 2.2301× 10−8 1.9978 4.4511× 10−8 1.9972
HOC 2.2305× 10−8 1.9976 4.452× 10−8 1.9970

Finally, we give three-dimensional waveform diagrams of the exact solution and
numerical solution of the three schemes. We also give a comparison between the numerical
solution and the exact solution.

6. Conclusions

In this work, for a GB equation, we construct three combined high-order compact
symplectic schemes, which are CHOC − A, CHOC − B, and CHOC − C. The schemes
satisfy the discrete conservation laws corresponding to the structure-preserving property of
the GB equation. Equations (46), (47) and (54) indicate the types of stability of the schemes.
CHOC schemes improve the efficiency of the traditional HOC method in simulating such
differential equations with multiple-order spatial derivatives, such as GB equations. CHOC
schemes make full use of the information of all of the involved derivative values, which
leads to fewer nodes and higher-accuracy schemes. Therefore, it mitigates the difficulties
of boundary treatment. Finally, the CHOC scheme is more accurate than the HOC scheme
with the same order.

In the numerical experiments, we first test the convergence order of CHOC−A, CHOC− B,
CHOC− C, and HOC by taking different step sizes in the direction to be considered and
taking very small step sizes in the other direction. In Table 6, we list the spatial conver-
gence order of CHOC− A, CHOC− B, CHOC−C, and HOC. We can observe that scheme
CHOC − A is of fourth-order accuracy in space. Schemes CHOC − B, CHOC − C, and
HOC are of sixth-order accuracy in space. In line with Tables 7 and 8, we can conclude
that CHOC− B and CHOC− C are more accurate for the GB equation than CHOC− A
and HOC, and CHOC − B is also superior to CHOC − C. In Table 9, we list the time
convergence order of CHOC − A, CHOC − B, CHOC − C, and HOC. We can observe
that the schemes are of two orders in time. Also, from Figure 1, we can observe that the
CHOC− C scheme effectively simulate the interaction of the two solitary waves with the
nonlinear GB Equation (2).

Second, from the approximate motion-invariant error simulation depicted in
Figures 2–5, we can see that the three CHOC schemes and the HOC scheme satisfy the
discrete conservation law (46) for linear GB equations.

Next, we observe Figures 6–9. We find that the errors are small enough; in other
words, the three CHOC schemes and the HOC scheme satisfy the conservation law (47) for
nonlinear GB Equation (2).

Finally, we use the three CHOC schemes to numerically simulate the solitary wave
solutions with the nonlinear good Boussinesq Equation (2). From Figures 10–13, we can
observe that the numerical solutions fit the waveforms of the exact solutions well.

When the equation contains multiple spatial derivatives or there are higher-order
derivatives, it may be difficult to accurately solve the discrete formulas for these spatial
derivatives. In this case, we can use some software, such as Maple, or perform a simulation
through numerical methods. In the future, we will also construct combined compact
difference schemes to solve more general Boussinesq equations and other PDEs.
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Figure 1. The interaction of two solitary waves in CHOC− C, when h = 0.5 , τ = 0.01.
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Figure 2. Approximate motion−invariant error diagram for CHOC− A when h = 2π
80 , τ = 0.001.
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Figure 3. Approximate motion−invariant error diagram for CHOC− B when h = 2π
80 , τ = 0.001.
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Figure 4. Approximate motion−invariant error diagram for CHOC− C when h = 2π
80 , τ = 0.001.
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Figure 5. Approximate motion−invariant error diagram for HOC when h = 2π
80 , τ = 0.001.
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Figure 6. un error diagram for CHOC− A when h = 0.5, τ = 0.01.
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Figure 7. un error diagram for CHOC− B when h = 0.5, τ = 0.01.
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Figure 8. un error diagram for CHOC− C when h = 0.5, τ = 0.01.
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Figure 9. un error diagram for HOC when h = 0.5, τ = 0.01.

Figure 10. For h = 0.5 , τ = 0.01, the three-dimensional waveform diagrams of the CHOC − A,
CHOC − B, and CHOC − C schemes and the three-dimensional waveform diagram of the exact
solution are shown.
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Figure 11. The case of h = 0.5, at time T = 1. The exact solution vs. the numerical solution of
CHOC− A.
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Figure 12. The case of h = 0.5, at time T = 1. The exact solution vs. the numerical solution of
CHOC− B.
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Figure 13. The case of h = 0.5, at time T = 1. The exact solution vs. the numerical solution of
CHOC− C.
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1. Introduction and Main Results

1.1. Introduction

In this article, we consider the following system of coupled wave equations with Robin
boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

utt = uxx + u2v, x ∈ (0, ∞), t ∈ (0, T),
vtt = vxx + uv2, x ∈ (0, ∞), t ∈ (0, T),
(u, v)(x, 0) = (u0, v0)(x), x ∈ [0, ∞),
(ut, vt)(x, 0) = (u∗, v∗)(x), x ∈ [0, ∞),
ux(0, t)−�1u(0, t) = γ1(t), t ∈ [0, T],
vx(0, t)−�2v(0, t) = γ2(t), t ∈ [0, T],

(1)

where 0 < T < 1 and �i ≥ 1 for i = 1, 2; u(x, t) and v(x, t) are real-valued functions;
u0(x), v0(x), u∗(x), v∗(x) are initial data in Hs

x(0, ∞); and γ1(t), γ2(t) are boundary data
in Hs−1

t (0, T). The Robin boundary conditions model the dynamic balance of partial
energy reflection and absorption at a system’s boundary. It is widely applied in simulating
interactions in fields such as acoustics, electromagnetics, elastic waves, and heat conduction.

The primary objective of this article is to employ the Unified Transform Method (UTM)
to derive UTM formulas for the linear initial-boundary-value problems (IBVPs) associated
with the system (1). We then provide estimates for these UTM formulas and utilize them to
construct an iteration map in a suitable function space, which allows us to prove the local
well-posedness of (1). For readers interested in UTM and its application to proving the
local well-posedness of various equations, please refer to the articles [1–6].
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Typically, the solution of IBVPs for linear partial differential equations with constant
coefficients involves methods such as the separation of variables and specific integral
transforms. These classical methods apply only to problems with particular boundary
conditions. Fokas’ UTM not only handles the problems solvable by these classical methods
but also extends to address issues that classical methods cannot resolve. Moreover, the
UTM can clearly determine which boundary value problems are well-posed. Additionally,
the paper [7] highlights several key benefits of the UTM compared to standard methods:

• Efficiency: The UTM offers a more efficient means of providing explicit solutions
compared to standard methods, and it is capable of addressing problems involving
higher-order derivatives that classical approaches may not handle effectively.

• Unified Approach: The UTM provides a consistent framework applicable to a wide
range of problems, facilitating the determination of necessary boundary conditions
for well-posedness, even in complex scenarios.

• Flexible Evaluation: Solutions obtained through the UTM can be efficiently evaluated
using various techniques, including integration path parameterization, asymptotic
methods, or the residue theorem.

• Minimal Knowledge Required: The UTM necessitates only a basic understanding of
Fourier transforms, the residue theorem, and Jordan’s lemma, making it accessible to
those with fundamental knowledge in these areas.

Based on the advantages of the UTM outlined above, this article applies the UTM to
derive the UTM formulas for the linear wave equations on the half-line. We then investigate
whether these formulas remain valid for data in broader, appropriate Sobolev spaces and
conduct a deeper analysis of the linear wave equations on the half-line. This approach
ultimately helps us prove the local well-posedness of (1).

Next, we explain the motivation behind considering the system (1). From a math-
ematical perspective, we are curious whether the UTM can help us establish the local
well-posedness of the following system:{

utt = uxx + f (u, v),
vtt = vxx + g(u, v),

(2)

where f and g are polynomial functions of u and v. Furthermore, we can also consider f
and g as continuous functions of u and v.

Given that many results already exist on the local well-posedness of the coupled Klein–
Gordon equations, we chose to study the distinct system (1). Our subsequent research will
investigate the system (2).

The coupled system of Klein–Gordon equations is{
utt = uxx + hu(u, v),
vtt = d2vxx + hv(u, v),

where h(u, v) is a nonlinear coupling potential function, and d is the ratio of the sound
speeds in the u- and v-components. The system describes the long-wave dynamics of a
pair of coupled one-dimensional periodic particle chains [8]. The elements of each chain
are connected through linear coupling, while the chains interact via nonlinear coupling.

When h(u, v) = a2u2

2 + b2v2

2 + c2u2v2

2 , where u and v are scalar fields of masses a and b,
respectively, and c is the interaction constant, the system models the motion of charged
mesons in an electromagnetic field. For readers interested in the coupled system of Klein–
Gordon equations, please refer to [9–14].

We now present recent studies that explore the existence, uniqueness, and well-
posedness of solutions for coupled systems of wave equations. In [15], the authors establish
the well-posedness and exponential stability of a strongly coupled Klein–Gordon system in
a bounded domain with smooth boundaries, considering the effect of locally distributed
viscoelastic damping. In their research, the authors employ microlocal analysis tools and a
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unique continuation principle to address the challenges posed by integral terms. They also
formulate a perturbation problem to obtain the exponential decay rate. The conclusions
show that under suitable initial conditions, the system achieves exponential energy decay,
thereby proving the stability of the system.

In [16], the authors investigated the local well-posedness of the one-dimensional
nonlinear wave equation on a half-line. They used the UTM to help analyze the problem’s
local well-posedness.

In [17], the authors study a coupled system of two biharmonic equations with damp-
ing and source terms of variable-exponent nonlinearities under mixed boundary value
conditions. They investigate the existence and uniqueness of weak solutions. By apply-
ing Green’s formula, the authors derive an integral equation for the weak solution and
then prove the existence and uniqueness of the solution using the fixed-point theorem.
Additionally, they establish a blow-up result for negative-initial energy solutions within a
finite time.

In [18], the authors investigate the global existence, uniqueness, and uniform stability
of the solution energy for the Klein–Gordon system. They employ the Faedo–Galerkin
method with compactness arguments and the energy method to prove the existence and
uniqueness of the global solution. Additionally, they demonstrate that under specific bound-
ary conditions, the solutions of the system exhibit stable asymptotic behavior over time.

In [19], the authors study the global existence theory for a system of wave equations
with variable-exponent nonlinearities. They use the Galerkin method and compactness
properties to prove the existence of solutions and further demonstrate that these solutions
stabilize towards a stationary state under sufficient regularity conditions.

In [20], the authors investigate the existence of periodic solutions for a Klein–Gordon
system with linear coupling and prove that as the coupling constant approaches zero, these
solutions converge to those of the uncoupled wave equation. The results highlight the high
regularity and stability of the solutions.

In [21], the authors investigate a coupled system of wave equations with coupled
Robin boundary conditions, employing group methods to study the issues of approximate
boundary controllability and approximate boundary synchronization. The authors provide
an algebraic lemma, which generalizes Kalman’s criterion or the Hautus test. They also
establish the well-posedness of the coupled system of wave equations with coupled Robin
boundary conditions. Additionally, the authors demonstrate the equivalence between the
approximate controllability of the system and the D-observability of its adjoint system
under certain conditions.

In [22], the authors study a coupled system of two nonlinear hyperbolic equations,
where the exponents in the damping and source terms are variables. They establish the
existence and uniqueness of solutions by using the Faedo–Galerkin approximation and
the Banach fixed-point theorem to prove the existence and uniqueness of weak solutions.
Additionally, they apply the energy method to demonstrate that certain solutions with
positive-initial energy blow-up in a finite time.

In [23], the authors analyze the solutions of the nonlinear Klein–Gordon equation,
presenting necessary and sufficient conditions for finite-time blow-up based on new mass
properties of ordinary differential equations. They refine Levine’s concavity method and
also prove the global existence of solutions and their asymptotic behavior under specific
initial energy conditions.

After introducing the coupled systems of wave equations under consideration, the
next subsection will present the main results of this article.

1.2. Main Results

Now, we briefly outline the process through which we establish the local well-
posedness of the system (1). The proof is carried out in four steps. First, we replace
the nonlinear terms u2v and v2u with external forces, allowing us to derive UTM formulas
for the corresponding linear IBVPs. Second, using these UTM formulas, we derive linear
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estimates that account for the data and forcing terms in appropriate functional spaces.
Third, we define an iterative mapping in the chosen solution space, substituting the nonlin-
ear terms for the external forces. We then prove that this mapping is a contraction onto a
closed ball B(0, r), ensuring the existence of a unique solution by applying the contraction
mapping theorem. Finally, we show that the data-to-solution map is locally Lipschitz
continuous, thus confirming the local well-posedness of the IBVP (1).

Before introducing the main theorem of this article, we will briefly define some terms.
For s ∈ R, the Sobolev space Hs(R) consists of all tempered distributions F that have a
finite norm given by

‖ F ‖Hs(R)
.
=

(∫
ξ∈R

(1 + ξ2)s|F̂(ξ)|2dξ

) 1
2
, (3)

where F̂(ξ) denotes the Fourier transform of F, defined by

F̂(ξ) .
=
∫
R

e−ixξ F(x)dx.

Additionally, for any open interval (a, b) in R, the Sobolev space Hs(a, b) is defined as

Hs(a, b) =
{

f : f = F|(a,b), where F ∈ Hs(R)

and ‖ f ‖Hs(a,b)
.
= infF∈Hs(R) ‖ F ‖Hs(R)< ∞

}
.

When we apply the UTM to solve the forced linear Robin IBVP, it yields the following
Fourier transform.

Definition 1 (Half-Line Fourier Transform). Let Φ(x) be a test function defined on the interval
(0, ∞). The Fourier transform of Φ(x), restricted to the half-line, is expressed as

Φ̂(k) .
=
∫ ∞

0
Φ(x)e−ikx dx, (4)

where k ∈ C and �(k) ≤ 0. Here, �(k) and �(k) denote the real and imaginary components of k,
respectively.

Remark 1. In the case of Equation (4), it is straightforward to observe that if Φ is integrable over
the interval (0, ∞), the Fourier transform Φ̂(k) is well-defined for values of k where �(k) ≤ 0.
Furthermore, the half-line Fourier transform extends naturally within the space L2(0, ∞). A
function Φ ∈ L2(0, ∞) can be extended to the entire real line by defining it as zero for all x < 0,
thereby embedding Φ into L2(R). This allows the half-line Fourier transform to be written similarly
to the standard Fourier transform for functions defined on R. Consequently, the inverse transform
can also be defined analogously to the inverse Fourier transform on the full real line.

First, we will outline the first step in our strategy for tackling the Robin boundary
problem associated with the forced linear wave equations. For the nonlinear IBVP (1), the
corresponding linear problem is the forced linear IBVP:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

utt = uxx + f (x, t), x ∈ (0, ∞), t ∈ (0, T),
vtt = vxx + g(x, t), x ∈ (0, ∞), t ∈ (0, T),
(u, v)(x, 0) = (u0, v0)(x), x ∈ [0, ∞),
(ut, vt)(x, 0) = (u∗, v∗)(x), x ∈ [0, ∞),
ux(0, t)−�1u(0, t) = γ1(t), t ∈ [0, T],
vx(0, t)−�2v(0, t) = γ2(t), t ∈ [0, T],

(5)

where �i ≥ 1, for i = 1, 2, and 0 < T < 1.
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The IBVP (5) can be separated into two parts, (6) and (7):⎧⎪⎪⎨⎪⎪⎩
ut = u1,
(u1)t = uxx + f (x, t),
u(x, 0) = u0(x), u1(x, 0) = u∗(x),
ux(0, t)−�1u(0, t) = γ1(t),

(6)

and ⎧⎪⎪⎨⎪⎪⎩
vt = v1,
(v1)t = vxx + g(x, t),
v(x, 0) = v0(x), v1(x, 0) = v∗(x),
vx(0, t)−�2v(0, t) = γ2(t).

(7)

Next, we briefly explain how to use the UTM to derive the corresponding formulas
for (6). A similar process can be applied to (7) to obtain its UTM formulas. For Equation (6),
we can express it as

∂tQ + Λ(−i∂x)Q = F, where Q =

[
u
u1

]
, Λ(k) =

[
0 −1
k2 0

]
, and F =

[
0

f (x, t)

]
.

The first step in applying UTM to (6) is to rewrite the above system of equations in a
divergence form as

(e−ikxI+Λ(k)tQ)t − (e−ikxI+Λ(k)t M(x, t, k)Q)x = e−ikxI+Λ(k)tF, (8)

where I is a 2-dimensional identity matrix and the vector M(x, t, k) is a differential matrix
operator which is defined by

M(x, t, k) = i
Λ(k)−Λ(l)

k− l

∣∣∣∣
l=−i∂x

.

We refer to this form (8) as the local relation.
In the next step, we integrate the local relation over an infinite strip in the (x, t)-plane.

Applying Green’s Theorem allows us to convert the area integrals into boundary integrals
along the domain’s boundary. Through this process, we obtain the following global relation:

Q̂0(k)− eΛ(k)tQ̂(k, t)− G(k, t) =
∫ t

0
eΛ(k)t′ F̂(k, t′)dt′,

where

Q0 =

[
u0(x)
u∗(x)

]
, Q̂0(k) =

∫ ∞

0
e−ikxQ0(x)dx, Q̂(k, t) =

∫ ∞

0
e−ikxQ(x, t)dx,

G(k, t) =
∫ t

0
eΛ(k)x M(0, x, k)Q0(x)dx, F̂(k, t) =

∫ ∞

0
e−ikxF(x, t)dx.

Then, we apply the inverse Fourier transform to the global relation, and we have a
solution formula with unknown boundary conditions. We can use the symmetry relation
of Λ(k) replacing k by −k to solve the unknown boundary condition; then, we obtain the
UTM formulas (9) and (10) for (6). A similar process can be applied to (7) to obtain its UTM
formulas (11) and (12).

Due to the complexity and length of the detailed calculations in this section, interested
readers are encouraged to refer to references [16,24] for further details.

The UTM formulas for (6) and (7):
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u(x, t) .
= S1[u0, u∗, γ1; f ](x, t) (9)

=
1

2π

∫ ∞

−∞

ieikx

2i
√

k2

(√
k2e−i

√
k2t +

√
k2ei

√
k2t
)(

û0(k) +
(

�1 + ik
−�1 + ik

)
û0(−k)

)
dk

+
1

2π

∫ ∞

−∞

eikx

2i
√

k2

(
ei
√

k2t − e−i
√

k2t
)(

û∗(k) +
(

�1 + ik
−�1 + ik

)
û∗(−k)

)
dk

+
1

2π

∫ ∞

−∞

eikx
√

k2

(
k

−�1 + ik

)(
e−i

√
k2tγ̃11(k, t)− ei

√
k2tγ̃12(k, t)

)
dk

+
1

2π

∫ ∞

−∞

eikx

2i
√

k2

[
ei
√

k2t
(

f̂2
∗
(k, t) +

(
�1 + ik
−�1 + ik

)
f̂2
∗
(−k, t)

)
−e−i

√
k2t
(

f̂1
∗
(k, t) +

(
�1 + ik
−�1 + ik

)
f̂1
∗
(−k, t)

)]
dk

and

u1(x, t) .
= S2[u0, u∗, γ1; f ](x, t) (10)

=
1

2π

∫ ∞

−∞

eikx

2i
√

k2

(
k2e−i

√
k2t − k2ei

√
k2t
)(

û0(k) +
(

�1 + ik
−�1 + ik

)
û0(−k)

)
dk

+
1

2π

∫ ∞

−∞

eikx

2

(
e−i

√
k2t + ei

√
k2t
)(

û∗(k) +
(

�1 + ik
−�1 + ik

)
û∗(−k)

)
dk

+
1

2π

∫ ∞

−∞
−ieikx

(
k

−�1 + ik

)(
ei
√

k2tγ̃12(k, t) + e−i
√

k2tγ̃11(k, t)
)

dk

+
1

2π

∫ ∞

−∞

eikx

2

[
e−i

√
k2t
(

f̂1
∗
(k, t) +

(
�1 + ik
−�1 + ik

)
f̂1
∗
(−k, t)

)
+ei

√
k2t
(

f̂2
∗
(k, t) +

(
�1 + ik
−�1 + ik

)
f̂2
∗
(−k, t)

)]
dk,

where

f̂1
∗
(k, t) =

∫ t

0

∫ ∞

0
e−ikx+i

√
k2s f (x, s)dxds, f̂2

∗
(k, t) =

∫ t

0

∫ ∞

0
e−ikx−i

√
k2s f (x, s)dxds,

γ̃11(k, t) =
∫ t

0
ei
√

k2sγ1(s)ds, γ̃12(k, t) =
∫ t

0
e−i

√
k2sγ1(s)ds

and

v(x, t) .
= S1[v0, v∗, γ2; g](x, t) (11)

=
1

2π

∫ ∞

−∞

ieikx

2i
√

k2

(√
k2e−i

√
k2t +

√
k2ei

√
k2t
)(

v̂0(k) +
(

�2 + ik
−�2 + ik

)
v̂0(−k)

)
dk

+
1

2π

∫ ∞

−∞

eikx

2i
√

k2

(
ei
√

k2t − e−i
√

k2t
)(

v̂∗(k) +
(

�2 + ik
−�2 + ik

)
v̂∗(−k)

)
dk

+
1

2π

∫ ∞

−∞

eikx
√

k2

(
k

−�2 + ik

)(
e−i

√
k2tγ̃21(k, t)− ei

√
k2tγ̃22(k, t)

)
dk

+
1

2π

∫ ∞

−∞

eikx

2i
√

k2

[
ei
√

k2t
(

ĝ2
∗(k, t) +

(
�2 + ik
−�2 + ik

)
ĝ2
∗(−k, t)

)
−e−i

√
k2t
(

ĝ1
∗(k, t) +

(
�2 + ik
−�2 + ik

)
ĝ1
∗(−k, t)

)]
dk

and
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v1(x, t) .
= S2[v0, v∗, γ2; g](x, t) (12)

=
1

2π

∫ ∞

−∞

eikx

2i
√

k2

(
k2e−i

√
k2t − k2ei

√
k2t
)(

v̂0(k) +
(

�2 + ik
−�2 + ik

)
v̂0(−k)

)
dk

+
1

2π

∫ ∞

−∞

eikx

2

(
e−i

√
k2t + ei

√
k2t
)(

v̂∗(k) +
(

�2 + ik
−�2 + ik

)
v̂∗(−k)

)
dk

+
1

2π

∫ ∞

−∞

eikx

2i
√

k2

(
2k

−�2 + ik

)(√
k2ei

√
k2tγ̃22(k, t) +

√
k2e−i

√
k2tγ̃21(k, t)

)
dk

+
1

2π

∫ ∞

−∞

eikx

2

[
e−i

√
k2t
(

ĝ1
∗(k, t) +

(
�2 + ik
−�2 + ik

)
ĝ1
∗(−k, t)

)
+ei

√
k2t
(

ĝ2
∗(k, t) +

(
�2 + ik
−�2 + ik

)
ĝ2
∗(−k, t)

)]
dk

where

ĝ1
∗(k, t) =

∫ t

0

∫ ∞

0
e−ikx+i

√
k2sg(x, s)dxds, ĝ2

∗(k, t) =
∫ t

0

∫ ∞

0
e−ikx−i

√
k2sg(x, s)dxds,

γ̃21(k, t) =
∫ t

0
ei
√

k2sγ2(s)ds, γ̃22(k, t) =
∫ t

0
e−i

√
k2sγ2(s)ds.

Next, we present the second step, which involves estimating the Hadamard norm of
the UTM Formulas (9)–(12) in connection with the Sobolev norms of the data as well as a
suitable norm for the forcing terms. Specifically, we derive the following linear estimates.

Theorem 1 (Linear estimates for the wave equations with Robin boundary condition).
Consider the wave Equations (6) and (7). Suppose 1

2 < s < 1, 0 < T < 1, u0 ∈ Hs
x(0, ∞),

u∗ ∈ Hs
x(0, ∞), v0 ∈ Hs

x(0, ∞), v∗ ∈ Hs
x(0, ∞), γ1 ∈ Hs−1

t (0, T), and γ2 ∈ Hs−1
t (0, T).

Then, the UTM Formulas (9)–(12) define the solutions (u, u1) and (v, v1) to the forced-linear
wave-Equation IBVPs (6) and (7), and they satisfy the following estimates:

sup
t∈[0,T]

‖ u(t) ‖Hs
x(0,∞) + sup

x∈[0,∞)

‖ u(x) ‖Hs
t (0,T) (13)

≤ Cs

(
‖ u0 ‖Hs

x(0,∞) + ‖ u∗ ‖Hs
x(0,∞) + ‖ γ1 ‖Hs−1

t (0,T) +
√

T sup
t∈[0,T]

‖ f (t) ‖Hs
x(0,∞)

)
,

and

sup
t∈[0,T]

‖ v(t) ‖Hs
x(0,∞) + sup

x∈[0,∞)

‖ v(x) ‖Hs
t (0,T) (14)

≤ ds

(
‖ v0 ‖Hs

x(0,∞) + ‖ v∗ ‖Hs
x(0,∞) + ‖ γ2 ‖Hs−1

t (0,T) +
√

T sup
t∈[0,T]

‖ g(t) ‖Hs
x(0,∞)

)
,

where Cs > 0 and ds > 0 are constants depending on s.

In the subsequent third and fourth steps, our objective is to prove the uniqueness of
the solution for (1) and to establish the local Lipschitz continuity of the data-to-solution
mapping. To facilitate this, we define two Banach spaces, referred to as X and D, under the
conditions s > 1/2 and 0 < T∗ ≤ T < 1, as detailed below:

X = (C([0, T∗]; Hs
x(0, ∞)) ∩ C([0, ∞); Hs

t (0, T∗)))2
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with the following norm:

‖ (u, v) ‖X = sup
t∈[0,T∗ ]

‖ u(t) ‖Hs
x(0,∞) + sup

x∈[0,∞)

‖ u(x) ‖Hs
t (0,T∗)

+ sup
t∈[0,T∗ ]

‖ v(t) ‖Hs
x(0,∞) + sup

x∈[0,∞)

‖ v(x) ‖Hs
t (0,T∗) .

The data space

D = Hs
x(0, ∞)× Hs

x(0, ∞)× Hs
x(0, ∞)× Hs

x(0, ∞)× Hs−1
t (0, T)× Hs−1

t (0, T)

with the data norm

‖ (u0, u∗, v0, v∗, γ1, γ2) ‖D =‖ u0 ‖Hs
x(0,∞) + ‖ u∗ ‖Hs

x(0,∞) + ‖ v0 ‖Hs
x(0,∞)

+ ‖ v∗ ‖Hs
x(0,∞) + ‖ γ1 ‖Hs−1

t (0,T) + ‖ γ2 ‖Hs−1
t (0,T) .

Having established the above definitions, we now present the main result of
this study.

Theorem 2 (Local well-posedness of the coupled wave system on the half-line). Consider
the coupled wave system (1). Suppose 1/2 < s < 1, u0 ∈ Hs

x(0, ∞), v0 ∈ Hs
x(0, ∞), u∗ ∈

Hs
x(0, ∞), v∗ ∈ Hs

x(0, ∞), γ1(t) ∈ Hs−1
t (0, T), and γ2(t) ∈ Hs−1

t (0, T). Then, there exists T∗,
0 < T∗ ≤ T < 1, with

T∗ = min

{
T,

1
2304(C∗s )10 ‖ (u0, u∗, v0, v∗, γ1, γ2) ‖4

D

}
,

such that the coupled wave system (1) has a unique solution (u, v) ∈ X which satisfies the size
estimate

‖ (u, v) ‖X≤ 2C∗s ‖ (u0, u∗, v0, v∗, γ1, γ2) ‖D,

where C∗s > 0 is a constant depending on s.
Furthermore, the data-to-solution map {u0, u∗, v0, v∗, γ1, γ2} �−→ (u, v) is locally Lipschitz

continuous.

Based on the aforementioned theorem, we have demonstrated the local well-posedness
of the coupled wave system (1).

In this article, we conclude that the UTM can be employed to derive UTM formulas
for the linear IBVPs associated with system (1). We then provide estimates for these UTM
formulas and use them to construct an iteration map in a suitable function space, ultimately
proving Theorem 2 to establish the local well-posedness of the system (1).

This article is organized as follows: In Section 2, we introduce a variety of tools that
will be used in the subsequent sections. Section 3 focuses on transforming the IBVP (6) into
one with zero initial data and simplified boundary conditions, which facilitates estimating
the corresponding solution for the linear wave equation IBVP. These estimates are essential
for the proof provided in Section 4, where we conclude the proof of Theorem 1. In Section 5,
we define the iteration map and demonstrate that it functions as a contraction mapping
onto a closed ball, employing the contraction mapping theorem to establish the uniqueness
of the solution. Furthermore, in Lemma 7, we show that the data-to-solution map is locally
Lipschitz continuous. Finally, we conclude with the proof of Theorem 2.
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2. Preliminary Results

In this section, we present several tools that will be utilized in the following sections.

Remark 2. The norm of Sobolev–Slodobeckii spaces on time is

‖ u(x) ‖2
Hs

t (0,T)=

⎧⎨⎩ ∑
�s�
j=0 ‖ ∂

j
tu(x) ‖2

L2
t (0,T)

+ ‖ ∂
�s�
t u(x) ‖2

β, for s ∈ R+\Z+,

∑
�s�
j=0 ‖ ∂

j
tu(x) ‖2

L2
t (0,T)

, for s ∈ Z+,

where 0 < β < 1 and �s� = s− β ∈ Z+ ∪ {0}. The fractional norm ‖ · ‖β is defined by

‖ u(x) ‖2
β

.
=
∫ T

0

∫ T−t

0

|u(x, t + ζ)− u(x, t)|2
ζ1+2β

dζdt, ∀β ∈ (0, 1).

Lemma 1 ([25] Ch.3). For m1 < m < m2, we have

‖ f ‖Hm≤ (‖ f ‖Hm1 )
m2−m

m2−m1 (‖ f ‖Hm2 )
m−m1

m2−m1 .

Lemma 2 ([25] Ch.3). If s > n
2 , then Hs(Rn) is an algebra with respect to the product of functions.

That is, if f and g ∈ Hs(Rn), then f g ∈ Hs(Rn) with

‖ f g ‖Hs(Rn)≤ Cs ‖ f ‖Hs(Rn)‖ g ‖Hs(Rn),

for some constant Cs > 0, which is a constant depending on s.

Lemma 3 ([26] CH.8). Suppose that (X, μ1) and (Y, μ2) are two σ—finite measure spaces and
F : X×Y → R is measurable. Then, Minkowski’s integral inequality is

(∫
Y

∣∣∣∣∫X
F(x, y)dμ1(x)

∣∣∣∣pdμ2(y)
) 1

p

≤
∫

X

(∫
Y
|F(x, y)|pdμ2(y)

) 1
p
dμ1(x),

for 1 ≤ p < ∞.

Theorem 3 ([26] CH.13). If f ∈ L1(Rn), then at every point x of the Lebesque set of f,

f (x) = lim
t→0

1
(2π)n

∫
Rn

f̂ (y)eix·ye−t|y|2 dy. (15)

In addition, if f̂ ∈ L1(Rn), then at every Lebesque point x of f,

f (x) =
1

(2π)n

∫
Rn

f̂ (y)eix·ydy. (16)

In particular, (15) and (16) hold a.e. in Rn and at every point of continuity of f.

Theorem 4 ([27]). For each f ∈ L2, a function f̂ ∈ L2, so that the following properties hold:

(i) If f ∈ L1 ∩ L2;
(ii) For every f ∈ L2, ‖ f̂ ‖2=‖ f ‖2;
(iii) The mapping f �−→ f̂ is a Hilbert space isomorphism of L2 onto L2;
(iv) The following symmetric relation exists between f and f̂ : If

φA(t) =
∫ A

−A
f (x)e−ixtdm(t) and ψA(x) =

∫ A

−A
f̂ (t)eixtdm(t),
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then

‖ φA − f̂ ‖2→ 0 and ‖ ψA − f ‖2→ 0 as A → 0. (17)

Theorem 5 ([28]). If Ω satisfies a uniform interior cone condition (that is, there exists a fixed cone
kΩ such that each x ∈ Ω is the vertex of a cone kΩ(x) ⊂ Ω̄ and congruent to kΩ), then there is an
embedding

Wk,p(Ω) ↗ L
np

(n−kp) , for kp < n,
↘ Cm

B (Ω), for 0 ≤ m < k− n
p ,

where

Cm
B (Ω) = {u ∈ Cm(Ω)|Dαu ∈ L∞(Ω) for |α| ≤ m}.

To facilitate our calculations and enhance the clarity of our presentation, we introduce
the following notations.

Remark 3. Given two quantities A and B that may depend on one or more variables, we denote
A � B when there exists a positive constant c such that A ≤ cB. If both inequalities A � B and
B � A hold, we express this relationship as A � B.

3. The Reduced Pure Linear Robin Problem and Sobolev Space Estimates

In this section, we will demonstrate Theorem 6, which provides estimates of the
solution to the linear wave equation IBVP, and will help us to prove Theorem 1 in Section 4.

We begin our analysis with the fundamental IBVP for the linear wave equation defined
on the half-line. This involves considering the homogeneous IBVP with zero initial data
and non-zero boundary conditions.

Moreover, we assume that the boundary data γ� is a test function of time, where
γ� ∈ Hs−1

t (R) is an extension of γ1 ∈ Hs−1
t (0, T) such that

‖ γ� ‖Hs−1
t (R)≤ 2 ‖ γ1 ‖Hs−1

t (0,T), for
1
2
< s < 1, (18)

and γ� is compactly supported within the interval [0, 2].
This particular problem, referred to as the reduced pure IBVP, can be expressed as

follows: ⎧⎪⎪⎨⎪⎪⎩
wt = w1, x ∈ (0, ∞), t ≥ 0,
(w1)t = wxx, x ∈ (0, ∞), t ≥ 0,
w(x, 0) = 0, wt(x, 0) = 0, x ∈ [0, ∞),
wx(0, t)−�1w(0, t) = γ�(t), t ≥ 0.

(19)

By employing the UTM Formulas (9) and (10), we can derive the corresponding UTM
formulas for the reduced pure initial-boundary-value problem (IBVP) (19):

w(x, t) = S1[0, 0, γ�; 0](x, t) (20)

=
1

2π

∫ ∞

−∞
eikx(

k
|k|(−�1 + ik)

)(e−i|k|tγ̃�1(k, t)− ei|k|tγ̃�2(k, t))dk,

and

w1(x, t) = S2[0, 0, γ�; 0](x, t) (21)

= − 1
2π

∫ ∞

−∞
eikx(

ik
−�1 + ik

)(e−i|k|tγ̃�2(k, t) + ei|k|tγ̃�1(k, t))dk,
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where

γ̃�1(k, t) =
∫ t

0
ei
√

k2sγ�(s)ds, γ̃�2(k, t) =
∫ t

0
e−i

√
k2sγ�(s)ds.

In the subsequent result, we evaluate the solutions (20) and (21) within the Hadamard
space.

Theorem 6. (Estimates for the Pure IBVP on the Half-Line) Let 1/2 < s < 3/2 and consider
the boundary data test function γ� ∈ Hs−1

t (R), which is compactly supported within the interval
[0, 2]. The solution to the reduced pure initial-boundary-value problem (IBVP) (19) satisfies the
following Hadamard space estimates:

sup
t∈[0,2]

‖ S1[0, 0, γ�; 0](t) ‖Hs
x(0,∞) ≤ (C1)s ‖ γ� ‖Hs−1

t (R), (22)

sup
t∈[0,2]

‖ S2[0, 0, γ�; 0](t) ‖Hs−1
x (0,∞) ≤ (C1)s ‖ γ� ‖Hs−1

t (R), (23)

and time estimates:

sup
x∈[0,∞)

‖ S1[0, 0, γ�; 0](x) ‖Hs
t (0,2) ≤ (C1)s ‖ γ� ‖Hs−1

t (R), (24)

sup
x∈[0,∞)

‖ S2[0, 0, γ�; 0](x) ‖Hs−1
t (0,2) ≤ (C1)s ‖ γ� ‖Hs−1

t (R), (25)

where s ∈ R and (C1)s > 0 is a constant that depends on s.

Proof. We will first present the proof for the space estimate given in (22). To perform this,
we will analyze Equation (20):

w(x, t) = S1[0, 0, γ�; 0](x, t)

=
1

2π

∫ ∞

−∞
eikx(

k
|k|(−�1 + ik)

)(e−i|k|tγ̃�1(k, t)− ei|k|tγ̃�2(k, t))dk

=
1

2π

∫ 0

−∞
eikx(

−1
−�1 + ik

)(eiktγ̃�1(k, t)− e−iktγ̃�2(k, t))dk︸ ︷︷ ︸
(A)

+
1

2π

∫ ∞

0
eikx(

1
−�1 + ik

)(e−iktγ̃�1(k, t)− eiktγ̃�2(k, t))dk︸ ︷︷ ︸
(B)

.

Regarding equations (A) and (B), we deduce that the space Fourier transform of W is
given by

ŵx(k, t) =

⎧⎨⎩
(−1)(eiktγ̃�1

(k,t)−e−iktγ̃�2
(k,t))

−�1+ik , k ∈ (−∞, 0],
(e−iktγ̃�1

(k,t)−eiktγ̃�2
(k,t))

−�1+ik , k ∈ [0, ∞).

Applying (3), we derive the following inequality:
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‖ S1[0, 0, γ�; 0](x, t) ‖2
Hs

x(0,∞)=
∫
R
(1 + k2)s|ŵx(k, t)|2dk

=
∫ 0

−∞
(1 + k2)s|ŵx(k, t)|2dk +

∫ ∞

0
(1 + k2)s|ŵx(k, t)|2dk

�
∫ 0

−∞
(1 + k2)s−1(

∣∣∣γ̃�1(k, t)|2 + |γ̃�2(k, t)
∣∣∣2)dk +

∫ ∞

0
(1 + k2)s−1(

∣∣∣γ̃�1(k, t)|2 + |γ̃�2(k, t)
∣∣∣2)dk

=
∫ 0

−∞
(1 + k2)s−1(

∣∣∣∣∫ t

0
e−iksγ�(s)ds

∣∣∣∣2 + ∣∣∣∣∫ t

0
eiksγ�(s)ds

∣∣∣∣2)dk

+
∫ ∞

0
(1 + k2)s−1(

∣∣∣∣∫ t

0
eiksγ�(s)ds|

∣∣∣∣2 + ∣∣∣∣∫ t

0
e−iksγ�(s)ds

∣∣∣∣2)dk

=
∫ 0

−∞
(1 + k2)s−1(

∣∣∣∣∫
R

e−iksχ[0,t](s)γ�(s)ds
∣∣∣∣2 + ∣∣∣∣∫

R
eiksχ[0,t](s)γ�(s)ds

∣∣∣∣2)dk

+
∫ ∞

0
(1 + k2)s−1(

∣∣∣∣∫
R

eiksχ[0,t](s)γ�(s)ds
∣∣∣∣2 + ∣∣∣∣∫

R
e−iksχ[0,t](s)γ�(s)ds

∣∣∣∣2)dk

=
∫ 0

−∞
(1 + k2)s−1(

∣∣∣χ̂[0,t]γ�(k)
∣∣∣2 + ∣∣∣χ̂[0,t]γ�(−k)

∣∣∣2)dk

+
∫ ∞

0
(1 + k2)s−1(

∣∣∣χ̂[0,t]γ�(−k)|2 + |χ̂[0,t]γ�(k)
∣∣∣2)dk

=
∫
R
(1 + k2)s−1|χ̂[0,t]γ�(k)|2dk +

∫
R
(1 + k2)s−1|χ̂[0,t]γ�(−k)|2dk

=‖ χ[0,t]γ� ‖2
Hs−1

t (R)
+ ‖ χ[0,t]γ� ‖2

Hs−1
t (R)

�‖ γ� ‖2
Hs−1

t (R)
.

Hence, we have Equation (22):

sup
t∈[0,2]

‖ S1[0, 0, γ�; 0](t) ‖Hs
x(0,∞)≤ (C1)s ‖ γ� ‖Hs−1

t (R) .

Next, we begin proving the space estimate (23). We examine Equation (21):

w1(x, t) = S2[0, 0, γ�; 0](x, t)

= − 1
2π

∫ ∞

−∞
eikx(

ik
−�1 + ik

)(e−i|k|tγ̃�2(k, t) + ei|k|tγ̃�1(k, t))dk

= − 1
2π

∫ 0

−∞
eikx(

ik
−�1 + ik

)(eiktγ̃�2(k, t) + e−iktγ̃�1(k, t))dk︸ ︷︷ ︸
(C)

− 1
2π

∫ ∞

0
eikx(

ik
−�1 + ik

)(e−iktγ̃�2(k, t) + eiktγ̃�1(k, t))︸ ︷︷ ︸
(D)

.

Regarding Equations (C) and (D), we deduce that the space Fourier transform of W1 is
given by

ŵ1
x(k, t) =

{ −ik
−�1+ik (e

iktγ̃�2(k, t) + e−iktγ̃�1(k, t)), k ∈ (−∞, 0],
−ik

−�1+ik (e
−iktγ̃�2(k, t) + eiktγ̃�1(k, t)), k ∈ (0, ∞).

Applying (3), we derive the following inequality:
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‖ S2[0, 0, γ�; 0](x, t) ‖2
Hs−1

x (0,∞)
=
∫
R
(1 + k2)s−1|ŵ1

x(k, t)|2dk

=
∫ 0

−∞
(1 + k2)s−1|ŵ1

x(k, t)|2dk +
∫ ∞

0
(1 + k2)s−1|ŵ1

x(k, t)|2dk

=
∫ 0

−∞
(1 + k2)s−1| −ik

−�1 + ik
(eiktγ̃�2(k, t) + e−iktγ̃�1(k, t))|2dk

+
∫ ∞

0
(1 + k2)s−1| −ik

−�1 + ik
(e−iktγ̃�2(k, t) + eiktγ̃�1(k, t))|2dk

�
∫ 0

−∞
(1 + k2)s−1(

∣∣∣γ̃�2(k, t)|2 + |γ̃�1(k, t)
)2

)dk +
∫ ∞

0
(1 + k2)s−1(

∣∣∣γ̃�2(k, t)|2 + |γ̃�1(k, t)
)2

)dk

=
∫ 0

−∞
(1 + k2)s−1(

∣∣∣∣∫ t

0
e−i

√
k2sγ�(s)ds

∣∣∣∣2 + ∣∣∣∣∫ t

0
ei
√

k2sγ�(s)ds
∣∣∣∣2)dk

+
∫ ∞

0
(1 + k2)s−1(

∣∣∣∣∫ t

0
e−i

√
k2sγ�(s)ds

∣∣∣∣2 + ∣∣∣∣∫ t

0
ei
√

k2sγ�(s)ds
∣∣∣∣2)dk

=
∫ 0

−∞
(1 + k2)s−1(

∣∣∣∣∫
R

eiksχ[0,t](s)γ�(s)ds
∣∣∣∣2 + ∣∣∣∣∫

R
e−iksχ[0,t](s)γ�(s)ds

∣∣∣∣2)dk

+
∫ ∞

0
(1 + k2)s−1(

∣∣∣∣∫
R

e−iksχ[0,t](s)γ�(s)ds
∣∣∣∣2 + ∣∣∣∣∫

R
eiksχ[0,t](s)γ�(s)ds

∣∣∣∣2)dk

=
∫ ∞

−∞
(1 + k2)s−1|χ̂[0,t]γ�(k)|2dk +

∫ ∞

−∞
(1 + k2)s−1|χ̂[0,t]γ�(−k)|2dk

=‖ χ[0,t]γ� ‖2
Hs−1

t (R)
+ ‖ χ[0,t]γ� ‖2

Hs−1
t (R)

�‖ γ� ‖2
Hs−1

t (R)
.

Hence, we have Equation (23):

sup
[0,2]

‖ S2[0, 0, γ�; 0](x, t) ‖Hs−1
x (0,∞)≤ (C1)s ‖ γ� ‖Hs−1

t (R) .

Next, we proceed to prove the time estimates (24) and (25). First, we consider the
estimate of ‖ S1[0, 0, γ�; 0](x, t) ‖Hs

t (0,2) as follows:

‖ S1[0, 0, γ�; 0](x, t) ‖Hs
t (0,2)

=‖ 1
2π

∫ 0

−∞
eikx(

−1
−�1 + ik

)(eiktγ̃�1(k, t)− e−iktγ̃�2(k, t))dk

+
1

2π

∫ ∞

0
eikx(

1
−�1 + ik

)(e−iktγ̃�1(k, t)− eiktγ̃�2(k, t))dk ‖Hs
t (0,2),

≤ ‖ 1
2π

∫ 0

−∞
eikteikx(

−1
−�1 + ik

)γ̃�1(k, t)dk ‖Hs
t (0,2)︸ ︷︷ ︸

(E)

+ ‖ 1
2π

∫ 0

−∞
e−ikteikx(

−1
−�1 + ik

)γ̃�2(k, t)dk ‖Hs
t (0,2)︸ ︷︷ ︸

(F)

+ ‖ 1
2π

∫ ∞

0
e−ikteikx(

1
−�1 + ik

)γ̃�1(k, t)dk ‖Hs
t (0,2)︸ ︷︷ ︸

(G)

+ ‖ 1
2π

∫ ∞

0
eikteikx(

1
−�1 + ik

)γ̃�2(k, t)dk ‖Hs
t (0,2)︸ ︷︷ ︸

(H)

.

Applying Theorem 3, we derive the following inequality:
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(E)2 ≤‖ 1
2π

∫ 0

−∞
eikteikx(

−1
−�1 + ik

)γ̃�1(k, t)dk ‖2
Hs

t (R)

�
∫
R
(1 + k2)s−1|χ̂[0,t]γ�(k)|2dk ≤‖ γ� ‖2

Hs−1
t (R)

,

(F)2 ≤‖ 1
2π

∫ 0

−∞
e−ikteikx(

−1
−�1 + ik

)γ̃�2(k, t)dk ‖2
Hs

t (R)

=‖ 1
2π

∫ ∞

0
eikte−ikx(

−1
−�1 − ik

)γ̃�2(k, t)dk ‖2
Hs

t (R)

�
∫
R
(1 + k2)s−1|χ̂[0,t]γ�(k)|2dk ≤‖ γ� ‖2

Hs−1
t (R)

.

Following a similar proof process as used for the estimates of (E)2 and (F)2 above, we also
derive the following results:

(G)2 ≤‖ γ� ‖2
Hs−1

t (R)
, (H)2 ≤‖ γ� ‖2

Hs−1
t (R)

.

Thus, we can conclude that

‖ S1[0, 0, γ�; 0](x, t) ‖Hs
t (0,2)�‖ γ� ‖Hs−1

t (R),

and then, we have Equation (24):

sup
x∈[0,∞)

‖ S1[0, 0, γ�; 0](x) ‖Hs
t (0,2)≤ (C1)s ‖ γ� ‖Hs−1

t (R) .

Following a similar proof process as in (24), we can derive Equation (25):

sup
x∈[0,∞)

‖ S2[0, 0, γ�; 0](x) ‖Hs−1
t (0,2)≤ (C1)s ‖ γ� ‖Hs−1

t (R) .

We finish the proof of Theorem 6.

4. The Proof of Theorem 1 (about the Forced Linear IBVP Estimates)

In this section, we utilize Theorem 6 to perform the space and time estimates for (36)
and (38). We establish the fundamental linear estimates (13) and (14), thereby completing
the proof of Theorem 1. We begin by breaking down the forced linear IBVP (6) into a
combination of simple IVPs and IBVPs.

4.1. Decomposition into a Superposition of IVPs and IBVPs

In this subsection, we focus on proving Theorem 1. Our approach begins with decom-
posing the forced linear IBVP (6) into a superposition of the following problems.

Let U0 ∈ Hs
x(R) and U∗ ∈ Hs

x(R) represent extensions of the initial data u0 ∈ Hs
x(0, ∞)

and u∗ ∈ Hs
x(0, ∞), respectively, such that

‖ U0 ‖Hs
x(R)

≤ 2 ‖ u0 ‖Hs
x(0,∞), s ≥ 0, (26)

‖ U∗ ‖Hs
x(R)

≤ 2 ‖ u∗ ‖Hs
x(0,∞), s ≥ 0, (27)

and F be an extension of the forcing term f such that

sup
t∈[0,T]

‖ F(t) ‖Hs
x(R)

≤ 2 sup
t∈[0,T]

‖ f (t) ‖Hs
x(0,∞), s > 0. (28)

Based on the definitions of U0, U∗, and F established, we initiate our approach by
breaking down the IBVP (6) into a combination of the following component problems:
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(I) The homogeneous linear IVP:

⎧⎨⎩
Ut = U1, x ∈ R, t ∈ (0, T),
(U1)t = Uxx, x ∈ R, t ∈ (0, T),
U(x, 0) = U0(x), Ut(x, 0) = U∗(x), x ∈ R.

(29)

Using the Fourier transform, we derive the following solutions:

U(x, t) = S̃1[U0, U∗; 0](x, t) (30)

=
1

2π

∫ ∞

−∞

eikx

2i|k|
[(

e−i|k|t + ei|k|t
)(

i|k|Û0

)
+
(

ei|k|t − e−i|k|t
)

Û∗
]
dk,

U1(x, t) = S̃2[U0, U∗; 0](x, t) (31)

=
1

4π

∫ ∞

−∞
eikx
[(

ei|k|t − e−i|k|t
)(

i|k|Û0

)
+
(

ei|k|t + e−i|k|t
)

Û∗
]
dk,

where

Û0(ξ) =
∫

x∈R
e−iξxU0(x)dx, Û∗(ξ) =

∫
x∈R

e−iξxU∗(x)dx.

(II) The forced linear IVP with zero initial condition:

⎧⎨⎩
Wt = W1, x ∈ R, t ∈ (0, T),
(W1)t = Wxx + F(x, t), x ∈ R, t ∈ (0, T),
W(x, 0) = Wt(x, 0) = 0, x ∈ R.

(32)

Using the Fourier transform, we derive the following solutions:

W(x, t) = S̃1[0, 0; F](x, t) =
1

2π

∫ t

0

∫ ∞

−∞

eikx

2i|k| F̂(k, s)
(

ei|k|(t−s) − e−i|k|(t−s)
)

dkds, (33)

W1(x, t) = S̃2[0, 0; F](x, t) =
1

4π

∫ t

0

∫ ∞

−∞
eikx F̂(k, s)

(
ei|k|(t−s) + e−i|k|(t−s)

)
dkds, (34)

where

Ŵ(ξ, t) =
∫

x∈R
e−ixξW(x, t)dx.

(III) The linear IBVP on the half-line:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ũ)t = ũ1, x ∈ (0, ∞), t ∈ (0, T),
(ũ1)t = ũxx, x ∈ (0, ∞), t ∈ (0, T),

ũ(x, 0) = ũt(x, 0) = 0, x ∈ [0, ∞),
ũx(0, t)−�1ũ(0, t) = γ1(t)−Ux(0, t)−Wx(0, t)

.
= G0(t), t ∈ [0, T],

(35)

where �1 ≥ 1, and with the solution

ũ(x, t) = S1[0, 0, G0; 0](x, t) (36)

(IV) The homogeneous linear IBVP with zero initial condition:
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(u∗)t = u∗1, x ∈ (0, ∞), t ∈ (0, T),
(u∗1)t = u∗xx, x ∈ (0, ∞), t ∈ (0, T),

u∗(x, 0) = u∗t (x, 0) = 0, x ∈ [0, ∞), t ∈ (0, T),
u∗x(0, t)−�1u∗(0, t) = �1U(0, t) + �1W(0, t)

.
= H0(t), t ∈ [0, T],

(37)

where �1 ≥ 1, and with the solution

u∗(x, t) = S1[0, 0, H0; 0](x, t). (38)

By utilizing the superposition principle, the UTM solutions (9) and (10) for the linear
IBVPs (6) have been represented as

S1[u0, u∗, γ1; f ](x, t) = S̃1[U0, U∗; 0]|x>0 + S̃1[0, 0; F]|x>0 (39)

+ S1[0, 0, G0; 0](x, t) + S1[0, 0, H0; 0](x, t),

where the four terms on the right-hand side of (39) correspond to the solutions of the
respective problems (29), (32), (35) and (37), respectively.

4.2. The Estimations for the Linear IVPs in Sobolev Spaces

In this subsection, we will derive the space and time estimates for the components
of (39), namely S̃1[U0, U∗; 0]|x>0, S̃1[0, 0; F]|x>0, S1[0, 0, G0; 0](x, t), and S1[0, 0, H0; 0](x, t).

Theorem 7 (Estimates for Homogeneous IVP (29)). The solutions U = S̃1[U0, U∗; 0] and
U1 = S̃2[U0, U∗; 0] of the linear IVP (29) given by Formulas (30) and (31) admit the estimates

sup
t∈[0,T]

‖ U(t) ‖Hs
x(R)

≤ (C2)s(‖ U0 ‖Hs
x(R)

+ ‖ U∗ ‖Hs
x(R)

), s ∈ R, (40)

sup
t∈[0,T]

‖ U1(t) ‖Hs−1
x (R) ≤ (C2)s(‖ U0 ‖Hs

x(R)
+ ‖ U∗ ‖Hs

x(R)
), s ∈ R, (41)

sup
x∈[0,∞)

‖ U(x) ‖Hs
t (0,T) ≤ (C2)s(‖ U0 ‖Hs

x(R)
+ ‖ U∗ ‖Hs

x(R)
), s > 0, (42)

sup
x∈[0,∞)

‖ U1(x) ‖Hs−1
t (0,T) ≤ (C2)s(‖ U0 ‖Hs

x(R)
+ ‖ U∗ ‖Hs

x(R)
), s > 1, (43)

where (C2)s > 0 is a constant depending on s.

Proof. First, we will prove (40). We will analyze the solution formula given in (30):

U(x, t) = S̃1[U0, U∗; 0](x, t)

=
1

2π

∫ ∞

−∞

eikx

2i|k|
[(

e−i|k|t + ei|k|t
)(

i|k|Û0(k)
)
+
(

ei|k|t − e−i|k|t
)

Û∗(k)
]
dk

=
1

2π

∫ 0

−∞

eikx

−2ik

[(
eikt + e−ikt

)(
−ikÛ0(k)

)
+
(

e−ikt − eikt
)

Û∗(k)
]
dk

+
1

2π

∫ ∞

0

eikx

2ik

[(
e−ikt + eikt

)(
ikÛ0(k)

)
+
(

eikt − e−ikt
)

Û∗(k)
]
dk.

Now, we will calculate the estimate for ‖U(t)‖2
Hs

x(R)
:
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‖ U(t) ‖2
Hs

x(R)

�‖ 1
2π

∫ 0

−∞
eikx
(

1
−2ik

((
eikt + e−ikt

)(
−ikÛ0(k)

)
+
(

e−ikt − eikt
)

Û∗(k)
))

dk ‖2
Hs

x(R)

+ ‖ 1
2π

∫ ∞

0
eikx
(

1
2ik

((
e−ikt + eikt

)(
ikÛ0(k)

)
+
(

eikt − e−ikt
)

Û∗(k)
))

dk ‖2
Hs

x(R)

≤
∫
R

(
1 + k2

)s
∣∣∣∣ 1
−2ik

((
eikt + e−ikt

)(
−ikÛ0(k)

)
+
(

e−ikt − eikt
)

Û∗(k)
)∣∣∣∣2dk

+
∫
R

(
1 + k2

)s
∣∣∣∣ 1
2ik

((
e−ikt + eikt

)(
ikÛ0(k)

)
+
(

eikt − e−ikt
)

Û∗(k)
)∣∣∣∣2dk

(by Theorem 3)

�
∫
R

(
1 + k2

)s∣∣∣(eikt + e−ikt
)

Û0(k)
∣∣∣2dk︸ ︷︷ ︸

(A)

+
∫
R

(
1 + k2

)s

∣∣∣∣∣∣
(

e−ikt − eikt
)

−2ik
Û∗(k)

∣∣∣∣∣∣
2

dk

︸ ︷︷ ︸
(B)

,

where

(A) =
∫
R

(
1 + k2

)s∣∣∣(eikt + e−ikt
)

Û0(k)
∣∣∣2dk �

∫
R

(
1 + k2

)s∣∣∣Û0(k)
∣∣∣2dk =‖ U0 ‖2

Hs
x(R)

,

(B) =
∫
R

(
1 + k2

)s

∣∣∣∣∣∣
(

e−ikt − eikt
)

−2ik
Û∗(k)

∣∣∣∣∣∣
2

dk =
∫
R

(
1 + k2

)s
∣∣∣∣−2i sin (kt)

−2ik
Û∗(k)

∣∣∣∣2dk

�
∫
R

(
1 + k2

)s
∣∣∣∣ kt

k

∣∣∣∣∣∣∣Û∗(k)∣∣∣2dk �‖ U∗ ‖2
Hs

x(R)
, (as t ∈ [0, T], T < 1).

Thus, we can conclude that

‖ U(t) ‖2
Hs

x(R)
�‖ U0 ‖2

Hs
x(R)

+ ‖ U∗ ‖2
Hs

x(R)
, ∀t ∈ [0, T], T < 1,

and then, we have the inequality (40):

sup
t∈[0,T]

‖ U(t) ‖Hs
x(R)

≤ (C2)s(‖ U0 ‖Hs
x(R)

+ ‖ U∗ ‖Hs
x(R)

), s ∈ R.

Second, we proceed with the proof of (41). We examine the solution Formula (31):

U1(x, t) = S̃2[U0, U∗; 0](x, t)

=
1

4π

∫ ∞

−∞
eikx
((

ei|k|t − e−i|k|t
)(

i|k|Û0(k)
)
+
(

ei|k|t + e−i|k|t
)

Û∗(k)
)

dk

=
1

4π

∫ 0

−∞
eikx
((

e−ikt − eikt
)(
−ikÛ0(k)

)
+
(

e−ikt + eikt
)

Û∗(k)
)

dk︸ ︷︷ ︸
(C)

+
1

4π

∫ ∞

0
eikx
((

eikt − e−ikt
)(

ikÛ0(k)
)
+
(

eikt + e−ikt
)

Û∗(k)
)

dk︸ ︷︷ ︸
(D)

,

then

‖ U1(t) ‖2
Hs−1

x (R)
�‖ (C) ‖2

Hs−1
x (R)

+ ‖ (D) ‖2
Hs−1

x (R)
.
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At this point, we calculate Equation (C) to derive the following inequality:

‖ (C) ‖2
Hs−1

x (R)
(44)

=‖ 1
4π

∫ 0

−∞
eikx
((

e−ikt − eikt
)(
−ikÛ0(k)

)
+
(

e−ikt + eikt
)

Û∗(k)
)

dk ‖2
Hs−1

x (R)

≤
∫
R

(
1 + k2

)s−1∣∣∣(e−ikt − eikt
)(
−ikÛ0(k)

)
+
(

e−ikt + eikt
)

Û∗(k)
∣∣∣2dk, (by Theroem 3)

�
∫
R

(
1 + k2

)s−1(
1 + k2

)∣∣∣Û0(k)
∣∣∣2dk +

∫
R

(
1 + k2

)s−1∣∣∣Û∗(k)∣∣∣2dk

≤
∫
R

(
1 + k2

)s∣∣∣Û0(k)
∣∣∣2dk +

∫
R

(
1 + k2

)s∣∣∣Û∗(k)∣∣∣2dk =‖ U0 ‖2
Hs

x(R)
+ ‖ U∗ ‖2

Hs
x(R)

.

Following a similar proof process as used for the estimates of (C) in (44), we also derive
the results:

‖ (D) ‖2
Hs−1

x (R)
�‖ U0 ‖2

Hs
x(R)

+ ‖ U∗ ‖2
Hs

x(R)
. (45)

By combining Formulas (44) and (45), we arrive at the inequality (41):

sup
t∈[0,T]

‖ U1(t) ‖Hs−1
x (R)≤ (C2)s

(
‖ U0 ‖Hs

x(R)
+ ‖ U∗ ‖Hs

x(R)

)
, s ∈ R.

Third, we start with the proof of (42). We examine the solution Formula (30):

U(x, t) = S̃1[U0, U∗; 0](x, t)

=
1

2π

∫ ∞

−∞

eikx

2i|k|
((

e−i|k|t + ei|k|t
)(

i|k|Û0(k)
)
+
(

ei|k|t − e−i|k|t
)

Û∗(k)
)

dk

=
1

2π

∫ ∞

−∞

eikx

2i|k|
(

2 cos (|k|t)
(

i|k|Û0(k)
)
+ (2i sin (|k|t))Û∗(k)

)
dk

=
1

2π

∫ ∞

−∞
eikx
(

cos (|k|t)Û0(k) +
sin (|k|t)
|k| Û∗(k)

)
dk.

For the time estimate, we express U(x, t) as

U(x, t) = I1(x, t) + I2(x, t), (46)

where

I1(x, t) =
1

2π

∫ ∞

−∞
eikxQ(k)

(
cos (|k|t)Û0(k) +

sin (|k|t)
|k| Û∗(k)

)
dk,

I2(x, t) =
1

4π

∫ ∞

−∞
eikx(1−Q(k))

⎛⎝(e−i|k|t + ei|k|t
)

Û0(k) +

(
ei|k|t − e−i|k|t

)
Û∗(k)

ik

⎞⎠dk,

and Q(k) ∈ C∞
0 (R) is a smooth cut-off function, which is defined by

Q(k) =
{

1, if |k| ≤ 1,
0, if |k| ≥ 2,

and 0 ≤ Q(k) ≤ 1.

Now, we will calculate the equations I1(x, t) and I2(x, t) in the following parts (A )
and (B ), respectively.
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(A ) The estimation of I1:
For μ ∈ N0, by Remark 2, the definition for ‖ I1(x) ‖Hμ

t (0,T) is

‖ I1(x) ‖2
Hμ

t (0,T)=
μ

∑
j=0
‖ ∂

j
t I1(x) ‖2

L2
t (0,T),

where N0 = N ∪ {0}, and N is the set of natural numbers. For j ∈ N, by the definition of
Q(k),

|∂j
t I1(x, t)| ≤ 1

2π

∫ 2

−2
|k|jQ(k)

∣∣∣Û0(k)
∣∣∣dk +

1
2π

∫ 2

−2
|k|j−1Q(k)

∣∣∣Û∗(k)∣∣∣dk (47)

≤ 2j−1

π

∫ 2

−2

∣∣∣Û0(k)
∣∣∣dk +

2j−2

π

∫ 2

−2

∣∣∣Û∗(k)∣∣∣dk

≤ 2j−1
(∫ 2

−2

(
1 + k2

)−s
dk
) 1

2
(∫

R

(
1 + k2

)s∣∣∣Û0(k)
∣∣∣2dk

) 1
2

+ 2j−2
(∫ 2

−2

(
1 + k2

)−s
dk
) 1

2
(∫

R

(
1 + k2

)s∣∣∣Û∗(k)∣∣∣2dk
) 1

2

� 2j−1 ‖ U0 ‖Hs
x(R) +2j−2 ‖ U∗ ‖Hs

x(R) .

Hence, for any j ∈ N, by (47), we derive the following two inequalities:

‖ ∂
j
t I1(x, t) ‖L2

t (0,T) =

(∫ T

0
|∂j

t I1(x, t)|2dt
) 1

2

�
(∫ T

0

(
2j−1 ‖ U0 ‖Hs

x(R) +2j−2 ‖ U∗ ‖Hs
x(R)

)2
dt
) 1

2

�
(∫ T

0
22j−2 ‖ U0 ‖2

Hs
x(R)

dt +
∫ T

0
22j−4 ‖ U∗ ‖2

Hs
x(R)

dt
) 1

2

≤ 2j−1
(∫ T

0
‖ U0 ‖2

Hs
x(R)

dt
) 1

2

+ 2j−2
(∫ T

0
‖ U∗ ‖2

Hs
x(R)

dt
) 1

2

≤ 2j−1
√

T
(
‖ U0 ‖Hs

x(R) + ‖ U∗ ‖Hs
x(R)

)
,

and

‖ I1(x, t) ‖2
L2

t (0,T) =
∫ T

0
|I1(x, t)|2dt

=
∫ T

0
| 1
2π

∫ ∞

−∞
eikxQ(k)

(
cos (|k|t)Û0(k) +

sin (|k|t)
|k| Û∗(k)

)
dk|2dt

≤
∫ T

0

(∫ 2

−2

(∣∣∣Û0(k)
∣∣∣+ ∣∣∣Û∗(k)∣∣∣)dk

)2

dt

�
∫ T

0

(∫ 2

−2

∣∣∣Û0(k)
∣∣∣dk
)2

dt +
∫ T

0

(∫ 2

−2

∣∣∣Û∗(k)∣∣∣dk
)2

dt

≤
∫ T

0

(∫ 2

−2

(
1 + k2

)−s
dk
)(∫

R

(
1 + k2

)s∣∣∣Û0(k)
∣∣∣2dk

)
dt

+
∫ T

0

(∫ 2

−2

(
1 + k2

)−s
dk
)(∫

R

(
1 + k2

)s∣∣∣Û∗(k)∣∣∣2dk
)

dt

�
(
‖ U0 ‖2

Hs
x(R)

+ ‖ U∗ ‖2
Hs

x(R)

)
,
(

since
∫ 2

−2

(
1 + k2

)−s
dk is finite and s > 0

)
.
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Thus, we have the following two inequalities:

‖ ∂
j
t I1(x, t) ‖L2

t (0,T) � 2j−1
√

T
(
‖ U0 ‖Hs

x(R) + ‖ U∗ ‖Hs
x(R)

)
, (48)

‖ I1(x, t) ‖L2
t (0,T) �‖ U0 ‖Hs

x(R)
+ ‖ U∗ ‖Hs

x(R)
. (49)

For μ ∈ N, by Formulas (48) and (49), we derive the following inequality:

‖ I1(x) ‖Hμ
t (0,T) =‖ I1(x) ‖L2

t (0,T) +
μ

∑
j=1
‖ ∂

j
t I1(x) ‖L2

t (0,T)

�‖ U0 ‖Hs
x(R)

+ ‖ U∗ ‖Hs
x(R)

+
μ

∑
j=1

2j−1
√

T(‖ U0 ‖Hs
x(R)

+ ‖ U∗ ‖Hs
x(R)

)

�‖ U0 ‖Hs
x(R)

+ ‖ U∗ ‖Hs
x(R)

.

Thus, for μ ∈ N, we have the following inequality:

‖ I1(x) ‖Hμ
t (0,T)�‖ U0 ‖Hs

x(R)
+ ‖ U∗ ‖Hs

x(R)
. (50)

According to Lemma 1, for any s > 0 and s /∈ N, let m1 = �s� and m2 = �s�+ 1; then,
we derive the following inequality:

‖ I1 ‖Hs(0,T) ≤‖ I1 ‖�s�+1−s
H�s�(0,T)

‖ I1 ‖s−�s�
H�s�+1(0,T)

�‖ U0 ‖Hs
x(R)

+ ‖ U∗ ‖Hs
x(R)

, (by (49) and (50)).

Thus, we derive the following inequality:

‖ I1 ‖Hs(0,T)�‖ U0 ‖Hs
x(R)

+ ‖ U∗ ‖Hs
x(R)

, for s > 0. (51)

(B ) The estimation of I2:
Now, we consider I2(x, t):

I2(x, t) =
1

4π

∫ ∞

−∞
eikx(1−Q(k))

⎛⎝(e−i|k|t + ei|k|t
)(

Û0(k)
)
+

(
ei|k|t − e−i|k|t

)
Û∗(k)

ik

⎞⎠dk (52)

= I21(x, t) + I22(x, t),

where

I21(x, t) =
1

4π

∫
|k|≥1

eikx+i|k|t
(

Û0(k) +
Û∗(k)

ik

)
dk,

I22(x, t) =
1

2π

∫
|k|≥1

eikx−i|k|t
(

Û0(k)−
Û∗(k)

ik

)
dk.

Next, we will calculate I21(x, t) in the following:

I21(x, t) =
1

4π

∫ −1

−∞
eikx−ikt

(
Û0(k) +

Û∗(k)
ik

)
dk +

1
4π

∫ ∞

1
eikx+ikt

(
Û0(k) +

Û∗(k)
ik

)
dk

=
1

4π

∫ ∞

1
e−ikx+ikt

(
Û0(−k)− Û∗(−k)

ik

)
dk +

1
4π

∫ ∞

1
eikx+ikt

(
Û0(k) +

Û∗(k)
ik

)
dk

=
1

4π

∫ ∞

1
eikt

(
e−ikx

(
Û0(−k)− Û∗(−k)

ik

)
+ eikx

(
Û0(k) +

Û∗(k)
ik

))
dk,
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and

‖ I21(x, t) ‖2
Hs

t (0,T) ≤
∫ ∞

1

(
1 + k2

)s
∣∣∣∣∣e−ikx

(
Û0(−k)− Û∗(−k)

ik

)
+ eikx

(
Û0(k) +

Û∗(k)
ik

)∣∣∣∣∣
2

dk

�
∫ ∞

1

(
1 + k2

)s∣∣∣Û0(−k)
∣∣∣2dk +

∫ ∞

1

(
1 + k2

)s
∣∣∣∣∣ Û∗(−k)

ik

∣∣∣∣∣
2

dk

+
∫ ∞

1

(
1 + k2

)s∣∣∣Û0(k)
∣∣∣2dk +

∫ ∞

1

(
1 + k2

)s
∣∣∣∣∣ Û∗(k)ik

∣∣∣∣∣
2

dk

�
∫
R

(
1 + k2

)s∣∣∣Û0(k)
∣∣∣2dk +

∫
R

(
1 + k2

)s∣∣∣Û∗(k)∣∣∣2dk

=‖ U0 ‖2
Hs

x(R)
+ ‖ U∗ ‖2

Hs
x(R)

,

and hence, we have the following inequality:

‖ I21(x, t) ‖Hs
t (0,T)�‖ U0 ‖Hs

x(R)
+ ‖ U∗ ‖Hs

x(R)
. (53)

By employing a similar proof strategy as in (53), we obtain the following inequality:

‖ I22(x, t) ‖Hs
t (0,T)�‖ U0 ‖Hs

x(R)
+ ‖ U∗ ‖Hs

x(R)
. (54)

Consequently, we obtain the following inequality:

‖ U(x) ‖Hs
t (0,T) ≤‖ I1(x, t) ‖Hs

t (0,T) + ‖ I2(x, t) ‖Hs
t (0,T), (by (46))

≤‖ I1(x, t) ‖Hs
t (0,T) + ‖ I21(x, t) ‖Hs

t (0,T) + ‖ I22(x, t) ‖Hs
t (0,T), (by (52))

≤ (C2)s(‖ U0 ‖Hs
x(R)

+ ‖ U∗ ‖Hs
x(R)

), (by (51), (53) and (54)).

As a result, we establish the inequality (42):

sup
x∈[0,∞)

‖ U(x) ‖Hs
t (0,T)≤ (C2)s(‖ U0 ‖Hs

x(R)
+ ‖ U∗ ‖Hs

x(R)
), s > 0.

Ultimately, by employing a similar proof strategy as in (42), we establish (43):

sup
x∈[0,∞)

‖ U1(x) ‖Hs−1
t (0,T)≤ (C2)s(‖ U0 ‖Hs

x(R)
+ ‖ U∗ ‖Hs

x(R)
), s > 1.

We finish this proof of Theorem 7.

Now, we will show the estimates of W and W1 in the following Theorem.

Theorem 8 (Sobolev-type estimates for the homogeneous linear IVP (32)). The solutions
W = S̃1[0, 0; F] and W1 = S̃2[0, 0; F] of the linear IVP (32) given by Formulas (33) and (34) admit
the following estimates:

Space estimates:

sup
t∈[0,T]

‖ W(t) ‖Hs
x(R)

� T sup
t∈[0,T]

‖ F(t) ‖Hs
x(R)

, s ∈ R, (55)

sup
t∈[0,T]

‖ W1(t) ‖Hs−1
x (R) � T sup

t∈[0,T]
‖ F(t) ‖Hs

x(R)
, s ∈ R. (56)
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Time estimates:

sup
x∈[0,∞)

‖ W(x) ‖Hs
t (0,T) �

√
T sup

t∈[0,T]
‖ F(t) ‖Hs

x(R)
, for

1
2
< s < 1, (57)

sup
x∈[0,∞)

‖ W1(x) ‖Hs−1
t (0,T) �

√
T sup

t∈[0,T]
‖ F(t) ‖Hs

x(R)
, for

3
2
< s < 2. (58)

Proof. Using the Fourier transform, we have the solution formulas:

W(x, t) = S̃1[0, 0; F](x, t) =
1

2π

∫ t

0

∫ ∞

−∞

eikx

2i|k| F̂(k, t′)(ei|k|(t−t′) − e−i|k|(t−t′))dkdt′, (59)

W1(x, t) = S̃2[0, 0; F](x, t) =
1

4π

∫ t

0

∫ ∞

−∞
eikx F̂(k, t′)(ei|k|(t−t′) + e−i|k|(t−t′))dkdt′.

First, we begin with the proof of (55). We will focus on estimating ‖ W(t) ‖Hs
x(R)

:

‖ W(t) ‖2
Hs

x(R)
=‖

∫ t

0

(
1

2π

∫ ∞

−∞

eikx

2i|k| F̂
(
k, t′

)(
ei|k|(t−t′) − e−i|k|(t−t′)

)
dk

)
dt′ ‖2

Hs
x(R)

=‖
∫ t

0
S̃1[0, F; 0]

(
x, t− t′

)
dt′ ‖2

Hs
x(R)

(by (30))

≤
(∫ t

0
‖ S̃1[0, F; 0]

(
x, t− t′

)
‖Hs

x(R) dt′
)2

≤
(∫ T

0
sup

t∈[0,T]
‖ S̃1[0, F; 0](x, t) ‖Hs

x(R) dt′
)2

= T2

(
sup

t∈[0,T]
‖ S̃1[0, F; 0](t) ‖Hs

x(R)

)2

.

Consequently, we obtain the following inequality:

‖ W(t) ‖Hs
x(R)≤ T sup

t∈[0,T]
‖ S̃1[0, F; 0](t) ‖Hs

x(R), ∀t ∈ [0, T].

As a result, we establish the inequality (55):

sup
t∈[0,T]

‖ W(t) ‖Hs
x(R) ≤ T sup

t∈[0,T]
‖ S̃1[0, F; 0](t) ‖Hs

x(R)

� T sup
t∈[0,T]

‖ F(t) ‖Hs
x(R), s ∈ R. (by (40)).

Second, by employing a similar proof strategy as in (55), we can have the result (56):

sup
t∈[0,T]

‖ W1(t) ‖Hs−1
x (R)� T sup

t∈[0,T]
‖ F(t) ‖Hs

x(R), s ∈ R.

Third, we start with the proof of (57). By Remark 2, the definition for ‖ W(x) ‖Hs
t (0,T)

is

‖ W(x) ‖2
Hs

t (0,T)=‖ W(x) ‖2
L2

t (0,T) + ‖ W(x) ‖2
s , 0 ≤ s < 1,

where

‖ W(x) ‖2
s=

∫ T

0

∫ T−t

0

|W(x, t + ξ)−W(x, t)|2
ξ1+2s dξdt.
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Now, we will focus on estimating ‖ W(x) ‖L2
t (0,T):

‖ W(x) ‖2
L2

t (0,T) =
∫ T

0

∣∣∣∣∣ 1
2π

∫ t

0

∫ ∞

−∞

eikx

2i|k| F̂
(
k, t′

)(
ei|k|(t−t′) − e−i|k|(t−t′)

)
dkdt′

∣∣∣∣∣
2

dt

=
∫ T

0

∣∣∣∣∫ t

0
S̃1[0, F; 0]

(
x, t− t′

)
dt′
∣∣∣∣2dt

≤
(∫ T

0

(∫ T

t′

∣∣∣S̃1[0, F; 0]
(

x, t− t′
)∣∣∣2dt

) 1
2

dt′
)2

, (by Lemma 3)

≤
(∫ T

0

(∫ T

0

∣∣∣S̃1[0, F; 0](x, τ)
∣∣∣2dτ

) 1
2

dt′
)2

,
(
let τ = t− t′

)
≤
(∫ T

0
‖ S̃1[0, F; 0](x) ‖Hs

τ(0,T) dt′
)2

≤
(∫ T

0
sup

x∈[0,∞)

‖ S̃1[0, F; 0](x) ‖Hs
τ(0,T) dt′

)2

�
(∫ T

0
‖ F(t) ‖Hs

x(R) dt′
)2

, (by (42))

≤ T2

(
sup

t∈[0,T]
‖ F(t) ‖Hs

x(R)

)2

.

Consequently, we obtain the following inequality:

‖ W(x) ‖L2
t (0,T)� T sup

t∈[0,T]
‖ F(t) ‖Hs

x(R) . (60)

Next, we will focus on estimating ‖ W(x) ‖s. From Equation (59),

W(x, t) = S̃1[0, 0; F](x, t) =
1

2π

∫ t

0

∫ ∞

−∞

eikx

2i|k| F̂
(
k, t′

)(
ei|k|(t−t′) − e−i|k|(t−t′)

)
dkdt′

=
∫ t

0

(
1

2π

∫ ∞

−∞

eikx

2i|k| F̂
(
k, t′

)(
ei|k|(t−t′) − e−i|k|(t−t′)

)
dk

)
dt′

=
∫ t

0
S̃1[0, F; 0]

(
x, t− t′

)
dt′,

and then we obtain

W(x, t + ζ)−W(x, t) (61)

=
∫ t+ζ

0
S̃1[0, F; 0]

(
x, t + ζ − t′

)
dt′ −

∫ t

0
S̃1[0, F; 0]

(
x, t− t′

)
dt′

=
∫ t

0

(
S̃1[0, F; 0]

(
x, t + ζ − t′

)
− S̃1[0, F; 0]

(
x, t− t′

))
dt′

+
∫ t+ζ

t
S̃1[0, F; 0]

(
x, t + ζ − t′

)
dt′.

From Equation (61), we derive the estimation of ‖ W(x) ‖2
s :
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‖ W(x) ‖2
s=

∫ T

0

∫ T−t

0

|W(x, t + ζ)−W(x, t)|2
ζ1+2s dζdt

=
∫ T

0

∫ T−t

0

1
ζ1+2s

∣∣∣∣∫ t

0

(
S̃1[0, F; 0]

(
x, t + ζ − t′

)
− S̃1[0, F; 0]

(
x, t− t′

))
dt′

+
∫ t+ζ

t
S̃1[0, F; 0]

(
x, t + ζ − t′

)
dt′
∣∣∣∣2dζdt

�
∫ T

0

∫ T−t

0

1
ζ1+2s

∣∣∣∣∫ t

0

(
S̃1[0, F; 0]

(
x, t + ζ − t′

)
− S̃1[0, F; 0]

(
x, t− t′

))
dt′
∣∣∣∣2dζdt︸ ︷︷ ︸

(E)

+
∫ T

0

∫ T−t

0

1
ζ1+2s

∣∣∣∣∫ t+ζ

t
S̃1[0, F; 0]

(
x, t + ζ − t′

)
dt′
∣∣∣∣2dζdt︸ ︷︷ ︸

(F)

.

Now, we calculate the equations (E) and (F) to derive the following two inequalities:

(E) =
∫ T

0

∫ T−t

0

1
ζ1+2s

∣∣∣∣∫ t

0

(
S̃1[0, F; 0]

(
x, t + ζ − t′

)
− S̃1[0, F; 0]

(
x, t− t′

))
dt′
∣∣∣∣2dζdt (62)

≤
(∫ T

0

(∫ T

0

∫ T−t

0

1
ζ1+2s

∣∣∣S̃1[0, F; 0]
(

x, t + ζ − t′
)
− S̃1[0, F; 0]

(
x, t− t′

)∣∣∣2dζdt
) 1

2

dt′
)2

,

(by Lemma 3)

=

(∫ T

0
‖ S̃1[0, F; 0]

(
x, t− t′

)
‖s dt′

)2

≤
(∫ T

0
‖ F(t) ‖Hs

x(R) dt′
)2

, (by (42))

≤
(∫ T

0
sup

t∈[0,T]
‖ F(t) ‖Hs

x(R) dt′
)2

=

(
T sup

t∈[0,T]
‖ F(t) ‖Hs

x(R)

)2

,

and

(F) =
∫ T

0

∫ T−t

0

1
ζ1+2s

∣∣∣∣∫ t+ζ

t
S̃1[0, F; 0]

(
x, t + ζ − t′

)
dt′
∣∣∣∣2dζdt

=
∫ T

0

∫ T−t

0

1
ζ1+2s

∣∣∣∣∣
∫ t+ζ

t

(
1

2π

∫ ∞

−∞

eikx

2i|k| F̂
(
k, t′

)(
ei|k|(t+ζ−t′) − e−i|k|(t+ζ−t′)

)
dk

)
dt′
∣∣∣∣∣
2

dζdt

≤
∫ T

0

∫ T−t

0

1
ζ1+2s ‖

1
2π

∫ t+ζ

t

∫ ∞

−∞

eikx F̂(k, t′)
(

ei|k|(t+ζ−t′) − e−i|k|(t+ζ−t′)
)

2i|k| dkdt′ ‖2
L∞

x (R) dζdt

(since s >
1
2

, by Theorem 5 (the Sobolev Embedding Theorem))

≤
∫ T

0

∫ T−t

0

1
ζ1+2s ‖

1
2π

∫ t+ζ

t

∫ ∞

−∞

eikx F̂(k, t′)
(

ei|k|(t+ζ−t′) − e−i|k|(t+ζ−t′)
)

2i|k| dkdt′ ‖2
Hs

x(R)
dζdt

=
∫ T

0

∫ T−t

0

1
ζ1+2s ‖

1
2π

∫ ∞

−∞
eikx

∫ t+ζ
t F̂(k, t′)

(
ei|k|(t+ζ−t′) − e−i|k|(t+ζ−t′)

)
dt′

2i|k| dk ‖2
Hs

x(R)
dζdt

=
∫ T

0

∫ T−t

0

1
ζ1+2s

⎛⎜⎝∫
R

(
1 + k2

)s

∣∣∣∣∣∣
∫ t+ζ

t F̂(k, t′)
(

ei|k|(t+ζ−t′) − e−i|k|(t+ζ−t′)
)

dt′

2i|k|

∣∣∣∣∣∣
2

dk

⎞⎟⎠dζdt

(by Theorem 3 and Theorem 4)
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=
∫ T

0

∫ T−t

0

1
ζ1+2s

(∫
R

(
1 + k2

)s
∣∣∣∣ 1
2i|k|

∫ t+ζ

t
F̂
(
k, t′

)(
2i sin

(
|k|
(
t + ζ − t′

)))
dt′
∣∣∣∣2dk

)
dζdt

≤
∫ T

0

∫ T−t

0

1
ζ1+2s

(∫
R

(
1 + k2

)s
(

1
2|k|

∫ t+ζ

t

∣∣∣F̂(k, t′
)∣∣∣ · 2|k|(t + ζ − t′

)
dt′
)2

dk

)
dζdt

=
∫ T

0

∫ T−t

0

1
ζ1+2s

(∫
R

(
1 + k2

)s
(∫ t+ζ

t

∣∣∣F̂(k, t′
)∣∣∣(t + ζ − t′

)
dt′
)2

dk

)
dζdt

≤
∫ T

0

∫ T−t

0

1
ζ1+2s

(∫ t+ζ

t

(∫
R

(
1 + k2

)s∣∣∣F̂(k, t′
)∣∣∣2(t + ζ − t′

)2dk
) 1

2
dt′
)2

dζdt

(by Lemma 3 (Minkowski integral inequality))

≤
∫ T

0

∫ T−t

0

1
ζ1+2s

(∫ t+ζ

t

(
t + ζ − t′

)(∫
R

(
1 + k2

)s∣∣∣F̂(k, t′
)∣∣∣2dk

) 1
2
dt′
)2

dζdt

=
∫ T

0

∫ T−t

0

1
ζ1+2s

(∫ t+ζ

t

(
t + ζ − t′

)
‖ F
(
t′
)
‖Hs

x(R) dt′
)2

dζdt

= sup
t′∈[t,t+ζ]

‖ F
(
t′
)
‖2

Hs
x(R)

(∫ T

0

∫ T−t

0
ζ3−2sdζdt

)
� sup

t′∈[t,t+ζ]

‖ F
(
t′
)
‖2

Hs
x(R)

T5−2s ≤ sup
t′∈[0,T]

‖ F
(
t′
)
‖2

Hs
x(R)

T, (for T < 1).

Consequently, we obtain the following inequality:

(F) � T sup
t∈[0,T]

‖ F(t) ‖2
Hs

x(R)
. (63)

By (60), (62) and (63), we derive (57):

‖ W(x) ‖2
Hs

t (0,T)�
(

T sup
t∈[0,T]

‖ F(t) ‖2
Hs

x(R)

)

=⇒ sup
x∈[0,∞)

‖ W(x) ‖Hs
t (0,T)�

√
T sup

t∈[0,T]
‖ F(t) ‖Hs

x(R)
, for

1
2
< s < 1 and 0 < T < 1.

Ultimately, by employing a similar proof strategy as in (57), we establish (58):

sup
x∈[0,∞)

‖ W1(x) ‖Hs−1
t (0,T)�

√
T sup

t∈[0,T]
‖ F(t) ‖Hs

x(0,T), for
3
2
< s < 2 and T < 1.

We finish this proof of Theorem 8.

4.3. About the Proof of Therorem 1

By applying the superposition principle, we can synthesize Theorem 6, Theorem 7,
and Theorem 8 to derive Theorem 1 for the forced linear IVPs (6) and (7). Additionally, we
incorporate the following time estimates:
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‖ G0 ‖Hs−1
t (0,T) =‖ γ1(t)−Ux(0, t)−Wx(0, t) ‖Hs−1

t (0,T) (64)

≤‖ γ1(t) ‖Hs−1
t (0,T) + ‖ Ux(0, t) ‖Hs−1

t (0,T)

+ ‖ Wx(0, t) ‖Hs−1
t (0,T)

and

‖ H0 ‖Hs−1
t (0,T) =‖ �1U(0, t) + �1W(0, t) ‖Hs−1

t (0,T) (65)

≤ �1 ‖ U(0, t) ‖Hs−1
t (0,T) +�1 ‖ W(0, t) ‖Hs−1

t (0,T) .

Thus, we need to estimate ‖ Ux(0, t) ‖Hs−1
t (0,T) and ‖ Wx(0, t) ‖Hs−1

t (0,T).

Lemma 4. (Sobolev-type estimates) For 1
2 < s < 1, we obtain the following estimates:

sup
x∈[0,∞)

‖ Ux(x) ‖Hs−1
t (0,T)�‖ U0 ‖Hs

x(R) + ‖ U∗ ‖Hs
x(R) (66)

and

sup
x∈[0,∞)

‖ Wx(x) ‖Hs−1
t (0,T)�

√
T sup

t∈[0,T]
‖ F(t) ‖Hs

x(R) . (67)

Proof. First, we begin the proof of (66). From Equation (30), we have

U(x, t) =
1

2π

∫ 0

−∞

eikx

−2ik

((
eikt + e−ikt

)(
−ikÛ0(k)

)
+
(

e−ikt − eikt
)

Û∗(k)
)

dk

+
1

2π

∫ ∞

0

eikx

2ik

((
e−ikt + eikt

)(
ikÛ0(k)

)
+
(

eikt − e−ikt
)

Û∗(k)
)

dk.

Thus, we obtain that

Ux(x, t) =
1

2π

∫ 0

−∞
eikt
(

1
2
(ik)eikxÛ0(k) +

1
2

eikxÛ∗(k)
)

dk

+
1

2π

∫ 0

−∞
e−ikt

(
1
2
(ik)eikxÛ0(k)−

1
2

eikxÛ∗(k)
)

dk

+
1

2π

∫ ∞

0
eikt
(

1
2
(ik)eikxÛ0(k) +

1
2

eikxÛ∗(k)
)

dk

+
1

2π

∫ ∞

0
e−ikt

(
1
2
(ik)eikxÛ0(k)−

1
2

eikxÛ∗(k)
)

dk.

According to Theorem 3, the estimation of ‖ Ux(x) ‖2
Hs−1

t (0,T)
is
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‖ Ux(x) ‖2
Hs−1

t (0,T)
≤‖ Ux(x) ‖2

Hs−1
t (R)

�‖ 1
2π

∫ 0

−∞
eikt
(

1
2
(ik)eikxÛ0(k) +

1
2

eikxÛ∗(k)
)

dk ‖2
Hs−1

t (R)

+ ‖ 1
2π

∫ 0

−∞
e−ikt

(
1
2
(ik)eikxÛ0(k)−

1
2

eikxÛ∗(k)
)

dk ‖2
Hs−1

t (R)

+ ‖ 1
2π

∫ ∞

0
eikt
(

1
2

ikeikxÛ0(k) +
1
2

eikxÛ∗(k)
)

dk ‖2
Hs−1

t (R)

+ ‖ 1
2π

∫ ∞

0
e−ikt

(
1
2

ikeikxÛ0(k)−
1
2

eikxÛ∗(k)
)

dk ‖2
Hs−1

t (R)

≤
∫
R

(
1 + k2

)s−1
∣∣∣∣12 (ik)eikxÛ0(k) +

1
2

eikxÛ∗(k)
∣∣∣∣2dk

+
∫
R

(
1 + k2

)s−1
∣∣∣∣−1

2
ike−ikxÛ0(−k)− 1

2
e−ikxÛ∗(−k)

∣∣∣∣2dk

+
∫
R

(
1 + k2

)s−1
∣∣∣∣12 ikeikxÛ0(k) +

1
2

eikxÛ∗(k)
∣∣∣∣2dk

+
∫
R

(
1 + k2

)s−1
∣∣∣∣−1

2
ike−ikxÛ0(−k)− 1

2
e−ikxÛ∗(−k)

∣∣∣∣2dk

≤
∫
R

(
1 + k2

)s−1
k2
∣∣∣Û0(k)

∣∣∣2dk +
∫
R

(
1 + k2

)s−1∣∣∣Û∗(k)∣∣∣2dk

+
∫
R

(
1 + k2

)s−1
k2
∣∣∣Û0(−k)

∣∣∣2dk +
∫
R

(
1 + k2

)s−1∣∣∣Û∗(−k)
∣∣∣2dk

+
∫
R

(
1 + k2

)s−1
k2
∣∣∣Û0(k)

∣∣∣2dk +
∫
R

(
1 + k2

)s−1∣∣∣Û∗(k)∣∣∣2dk

+
∫
R

(
1 + k2

)s−1
k2
∣∣∣Û0(−k)

∣∣∣2dk +
∫
R

(
1 + k2

)s−1∣∣∣Û∗(−k)
∣∣∣2dk

�
∫
R

(
1 + k2

)s∣∣∣Û0(k)
∣∣∣2dk +

∫
R

(
1 + k2

)s∣∣∣Û∗(k)∣∣∣2dk

=‖ U0 ‖2
Hs

x(R)
+ ‖ U∗ ‖2

Hs
x(R)

.

Consequently, we obtain the following inequality:

‖ Ux(x) ‖2
Hs−1

t (0,T)
�‖ U0 ‖2

Hs
x(R)

+ ‖ U∗ ‖2
Hs

x(R)
,

and then we derive the following inequality (66):

sup
x∈[0,∞)

‖ Ux(x) ‖Hs−1
t (0,T)�

(
‖ U0 ‖Hs

x(R) + ‖ U∗ ‖Hs
x(R)

)
.

Next, we begin the proof of (67). We will consider Equation (59):

W(x, t) = S̃1[0, 0; F](x, t) =
1

2π

∫ t

0

∫ ∞

−∞

eikx

2i|k| F̂
(
k, t′

)(
ei|k|(t−t′) − e−i|k|(t−t′)

)
dkdt′,

and then, we derive that

Wx(x, t) =
1

2π

∫ t

0

∫ ∞

−∞

ik
2i|k| e

ikx F̂
(
k, t′

)(
ei|k|(t−t′) − e−i|k|(t−t′)

)
dkdt′.

The estimation of ‖ Wx(x, t) ‖Hs
t (R)

is
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‖ Wx(x, t) ‖Hs
t (R)

≤
∫ T

0
‖ 1

2π

∫ ∞

−∞

ik
2i|k| e

ikx F̂
(
k, t′

)(
ei|k|(t−t′) − e−i|k|(t−t′)

)
dk ‖Hs

t (R)
dt′

=
∫ T

0
‖ 1

2π

∫ 0

−∞

−1
2

eikx F̂
(
k, t′

)(
ei|k|(t−t′) − e−i|k|(t−t′)

)
dk

+
1

2π

∫ ∞

0

1
2

eikx F̂
(
k, t′

)(
ei|k|(t−t′) − e−i|k|(t−t′)

)
dk ‖Hs

t (R)
dt′

≤
∫ T

0
‖ 1

2π

∫ 0

−∞
e−ikteikxeikt′ F̂

(
k, t′

)
dk ‖Hs

t (R)
dt′

+
∫ T

0
‖ 1

2π

∫ 0

−∞
eikteikxe−ikt′ F̂

(
k, t′

)
dk ‖Hs

t (R)
dt′

+
∫ T

0
‖ 1

2π

∫ ∞

0
eikteikxe−ikt′ F̂

(
k, t′

)
dk ‖Hs

t (R)
dt′

+
∫ T

0
‖ 1

2π

∫ ∞

0
e−ikteikxeikt′ F̂

(
k, t′

)
dk ‖Hs

t (R)
dt′

=
∫ T

0
‖ 1

2π

∫ ∞

0
eikte−ikxe−ikt′ F̂

(
−k, t′

)
dk ‖Hs

t (R)
dt′

+
∫ T

0
‖ 1

2π

∫ 0

−∞
eikteikxe−ikt′ F̂

(
k, t′

)
dk ‖Hs

t (R)
dt′

+
∫ T

0
‖ 1

2π

∫ ∞

0
eikteikxe−ikt′ F̂

(
k, t′

)
dk ‖Hs

t (R)
dt′

+
∫ T

0
‖ 1

2π

∫ 0

−∞
eikte−ikxe−ikt′ F̂

(
−k, t′

)
dk ‖Hs

t (R)
dt′

≤
∫ T

0

(∫ ∞

−∞

(
1 + k2

)s∣∣∣e−ikxe−ikt′ F̂
(
−k, t′

)∣∣∣2dk
) 1

2
dt′

+
∫ T

0

(∫ ∞

−∞

(
1 + k2

)s∣∣∣eikxe−ikt′ F̂
(
k, t′

)∣∣∣2dk
) 1

2
dt′

+
∫ T

0

(∫ ∞

−∞

(
1 + k2

)s∣∣∣eikxe−ikt′ F̂
(
k, t′

)∣∣∣2dk
) 1

2
dt′

+
∫ T

0

(∫ ∞

−∞

(
1 + k2

)s∣∣∣e−ikxe−ikt′ F̂
(
−k, t′

)∣∣∣2dk
) 1

2
dt′,

(by Theorem 3 and Theorem 4)

= 4
∫ T

0
‖ F
(
t′
)
‖Hs

x(R) dt′ � T sup
t∈[0,T]

‖ F(t) ‖Hs
x(R)≤

√
T sup

t∈[0,T]
‖ F(t) ‖Hs

x(R) .

Consequently, we obtain the following inequality:

‖ Wx(x, t) ‖Hs
t (R)

�
√

T sup
t∈[0,T]

‖ F(t) ‖Hs
x(R) .

Since the inequality

‖ Wx(x, t) ‖Hs−1
t (R)≤‖ Wx(x, t) ‖Hs

t (R)
,

we obtain the inequality

‖ Wx(x, t) ‖Hs−1
t (R)�

√
T sup

t∈[0,T]
‖ F(t) ‖Hs

x(R) .
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As a result, we establish the inequality (67) as follows:

sup
x∈[0,∞)

‖ Wx(x, t) ‖Hs−1
t (0,T)�

√
T sup

t∈[0,T]
‖ F(t) ‖Hs

x(R) .

We finish this proof of Lemma 4.

Now, by applying Lemma 4 to Formulas (64) and (65), we derive the following
inequalities:

‖ G0 ‖Hs−1
t (0,T) ≤‖ γ1(t) ‖Hs−1

t (0,T) + ‖ Ux(0, t) ‖Hs−1
t (0,T) + ‖ Wx(0, t) ‖Hs−1

t (0,T)

�‖ γ1(t) ‖Hs−1
t (0,T) +

(
‖ U0 ‖Hs

x(R) + ‖ U∗ ‖Hs
x(R)

)
+
√

T sup
t∈[0,T]

‖ F(t) ‖Hs
x(R)

(by (66) and (67))

�‖ u0 ‖Hs
x(0,∞) + ‖ u∗ ‖Hs

x(0,∞) + ‖ γ1 ‖Hs−1
t (0,T) +

√
T sup

t∈[0,T]
‖ f (t) ‖Hs

x(0,∞)

(by (26)–(28)),

and

‖ H0 ‖Hs−1
t (0,T) ≤ �1 ‖ U(0, t) ‖Hs−1

t (0,T) +�1 ‖ W(0, t) ‖Hs−1
t (0,T)

≤ �1 ‖ U(0, t) ‖Hs
t (0,T) +�1 ‖ W(0, t) ‖Hs

t (0,T)

≤ �1

(
‖ U0 ‖Hs

x(R) + ‖ U∗ ‖Hs
x(R)

)
+ �1

(
√

T sup
t∈[0,T]

‖ F(t) ‖Hs
x(R)

)
(by (42) and (57))

�‖ u0 ‖Hs
x(0,∞) + ‖ u∗ ‖Hs

x(0,∞) +
√

T sup
t∈[0,T]

‖ f (t) ‖Hs
x(0,∞)

(by (26)–(28)).

According to Equation (39),

S1[u0, u∗, γ1; f ](x, t) = S̃1[U0, U∗; 0]|x>0 + S̃1[0, 0; F]|x>0 + S1[0, 0, G0; 0](x, t) + S1[0, 0, H0; 0](x, t),

we obtain the following inequality:

sup
t∈[0,T]

‖ S1[u0, u∗, γ1; f ](x, t) ‖Hs
x(0,∞)

≤ sup
t∈[0,T]

‖ S̃1[U0, U∗; 0](t) ‖Hs
x(0,∞) + sup

t∈[0,T]
‖ S̃1[0, 0; F](t) ‖Hs

x(0,∞)

+ sup
t∈[0,T]

‖ S1[0, 0, G0; 0](t) ‖Hs
x(0,∞) + sup

t∈[0,T]
‖ S1[0, 0, H0; 0](t) ‖Hs

x(0,∞)

�‖ U0 ‖Hs
x(R)

+ ‖ U∗ ‖Hs
x(R)

+T sup
t∈[0,T]

‖ F(t) ‖Hs
x(R) + ‖ G0(t) ‖Hs−1

t (0,T) + ‖ H0(t) ‖Hs−1
t (0,T)

(by (18), (22), (40) and (55))

�‖ u0 ‖Hs
x(0,∞) + ‖ u∗ ‖Hs

x(0,∞) +T sup
t∈[0,T]

‖ f (t) ‖Hs
x(0,∞) + ‖ γ1 ‖Hs−1

t (0,T)

+
√

T sup
t∈[0,T]

‖ f (t) ‖Hs
x(0,∞) (by (26)–(28) and (64)–(67))

�‖ u0 ‖Hs
x(0,∞) + ‖ u∗ ‖Hs

x(0,∞) + ‖ γ1 ‖Hs−1
t (0,T) +

√
T sup

t∈[0,T]
‖ f (t) ‖Hs

x(0,∞) .

Consequently, we obtain the following inequality:
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sup
t∈[0,T]

‖ u(t) ‖Hs
x(0,∞)�‖ u0 ‖Hs

x(0,∞) + ‖ u∗ ‖Hs
x(0,∞) + ‖ γ1 ‖Hs−1

t (0,T) +
√

T sup
t∈[0,T]

‖ f (t) ‖Hs
x(0,∞), (68)

and

sup
x∈[0,∞)

‖ S1[u0, u∗, γ1; f ](x, t) ‖Hs
t (0,T)

≤ sup
x∈[0,∞)

‖ S̃1[U0, U∗; 0](x) ‖Hs
t (0,T) + sup

x∈[0,∞)

‖ S̃1[0, 0; F](x) ‖Hs
t (0,T)

+ sup
x∈[0,∞)

‖ S1[0, 0, G0; 0](x) ‖Hs
t (0,T) + sup

x∈[0,∞)

‖ S1[0, 0, H0; 0](x) ‖Hs
t (0,T)

�‖ U0 ‖Hs
x(R)

+ ‖ U∗ ‖Hs
x(R)

+
√

T sup
t∈[0,T]

‖ F(t) ‖Hs
x(R) + ‖ G0(t) ‖Hs−1

t (0,T)

+ ‖ H0(t) ‖Hs−1
t (0,T) (by (18), (24), (42) and (57))

�‖ u0 ‖Hs
x(0,∞) + ‖ u∗ ‖Hs

x(0,∞) + ‖ γ1 ‖Hs−1
t (0,T) +

√
T sup

t∈[0,T]
‖ f (t) ‖Hs

x(0,∞)

(by (26)–(28), (42), (57), (66) and (67)).

Therefore, we derive the following inequality:

sup
x∈[0,∞)

‖ u(x) ‖Hs
t (0,T)�‖ u0 ‖Hs

x(0,∞) + ‖ u∗ ‖Hs
x(0,∞) + ‖ γ1 ‖Hs−1

t (0,T) +
√

T sup
t∈[0,T]

‖ f (t) ‖Hs
x(0,∞) . (69)

We combine Equations (68) and (69) and establish the following inequality (13):

sup
t∈[0,T]

‖ u(t) ‖Hs
x(0,∞) + sup

x∈[0,∞)

‖ u(x) ‖Hs
t (0,T)

≤ Cs

(
‖ u0 ‖Hs

x(0,∞) + ‖ u∗ ‖Hs
x(0,∞) + ‖ γ1 ‖Hs−1

t (0,T) +
√

T sup
t∈[0,T]

‖ f (t) ‖Hs
x(0,∞)

)
,

where Cs > 0 is a constant depending on s.
By employing a similar proof strategy as in (13), we can derive the inequality (14)

below:

sup
t∈[0,T]

‖ v(t) ‖Hs
x(0,∞) + sup

x∈[0,∞)

‖ v(x) ‖Hs
t (0,T)

≤ ds

(
‖ v0 ‖Hs

x(0,∞) + ‖ v∗ ‖Hs
x(0,∞) + ‖ γ2 ‖Hs−1

t (0,T) +
√

T sup
t∈[0,T]

‖ g(t) ‖Hs
x(0,∞)

)
,

where ds > 0 is a constant depending on s. We finish this proof of Theorem 1.
Now, by applying Theorem 1 and combining the results from Equations (13) and (14),

we obtain that

sup
t∈[0,T]

‖ u(t) ‖Hs
x(0,∞) + sup

x∈[0,∞)

‖ u(x) ‖Hs
t (0,T) + sup

t∈[0,T]
‖ v(t) ‖Hs

x(0,∞) + sup
x∈[0,∞)

‖ v(x) ‖Hs
t (0,T)

≤ C∗s
(
‖ u0 ‖Hs

x(0,∞) + ‖ u∗ ‖Hs
x(0,∞) + ‖ v0 ‖Hs

x(0,∞) + ‖ v∗ ‖Hs
x(0,∞) + ‖ γ1 ‖Hs−1

t (0,T)

+ ‖ γ2 ‖Hs−1
t (0,T) +

√
T sup

t∈[0,T]
‖ f (t) ‖Hs

x(0,∞) +
√

T sup
t∈[0,T]

‖ g(t) ‖Hs
x(0,∞)

)
, (70)

where C∗s = max{Cs, ds}.
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5. The Proof of Therorem 2 (about the Local Well-Posedness of the Coupled System of
Wave Equations in Sobolev Spaces)

In this section, we begin by introducing the iteration map. Following this, Lemma 5
and Lemma 6 are presented to demonstrate that the iteration map is both a contraction and
a self-map on a closed ball. By applying the contraction mapping theorem, we prove the
uniqueness of the solution. Additionally, Lemma 7 establishes that the data-to-solution
map is locally Lipschitz continuous. By leveraging these results, we conclude the proof of
Theorem 2.

5.1. Existence and Uniqueness

In this subsection, we prove the existence and uniqueness of the solution for (1).
First, for 0 < T < 1 and some T∗ ∈ (0, T), we set f = u2v and g = uv2 in (9) and (11),

respectively. And then, for data D1 = (u0, u∗, v0, v∗, γ1, γ2), we define the iteration map
(u, v) �−→ FD1(u, v) .

= (ΦT∗(u, v), ΨT∗(u, v)), which is derived from Formulas (9) and (11)
for the forced-linear wave-equation IBVPs (6) and (7). More precisely, we have

ΦT∗(u, v) .
= S1[u0, u∗, γ1; u2v], ΨT∗(u, v) .

= S1[v0, v∗, γ2; uv2].

We will demonstrate that the iteration map

FD1(u, v) .
= (ΦT∗(u, v), ΨT∗(u, v)) =

(
S1[u0, u∗, γ1; u2v], S1[v0, v∗, γ2; uv2]

)
is a contraction in the Banach space

X = (C([0, T∗]; Hs
x(0, ∞)) ∩ C([0, ∞); Hs

t (0, T∗)))2, (71)

with the norm

‖ (u, v) ‖X = sup
t∈[0,T∗ ]

‖ u(t) ‖Hs
x(0,∞) + sup

x∈[0,∞)

‖ u(x) ‖Hs
t (0,T∗)

+ sup
t∈[0,T∗ ]

‖ v(t) ‖Hs
x(0,∞) + sup

x∈[0,∞)

‖ v(x) ‖Hs
t (0,T∗) .

Next, we begin to prove that the map (u, v) �−→ FD1(u, v) is onto X. We consider a
closed ball B(0, r) = {(u, v) ∈ X :‖ (u, v) ‖X≤ r}, where

C∗s = max{Cs, ds}, r .
= 2C∗s ‖ (u0, u∗, v0, v∗, γ1, γ2) ‖D

and

‖ (u0, u∗, v0, v∗, γ1, γ2) ‖D =‖ u0 ‖Hs
x(0,∞) + ‖ u∗ ‖Hs

x(0,∞) + ‖ v0 ‖Hs
x(0,∞) (72)

+ ‖ v∗ ‖Hs
x(0,∞) + ‖ γ1 ‖Hs−1

t (0,T) + ‖ γ2 ‖Hs−1
t (0,T) .

In the next lemma, we determine the condition on T∗ under which FD1 maps onto
B(0, r).

Lemma 5. Let C∗s = max{Cs, ds} and r = 2C∗s ‖ (u0, u∗, v0, v∗, γ1, γ2) ‖D. If the following
condition for T∗ given by

0 < T∗ ≤ min

{
T,

1

256(C∗s )
10 ‖ (u0, u∗, v0, v∗, γ1, γ2) ‖4

D

}
(73)

is satisfied, then the iteration map FD1 is onto B(0, r).
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Proof. For (u, v) ∈ B(0, r), the following inequality holds:

‖ FD1(u, v) ‖X=‖
(

S1[u0, u∗, γ1; u2v], S1[v0, v∗, γ2; uv2]
)
‖X

= sup
t∈[0,T∗ ]

‖ S1[u0, u∗, γ1; u2v](t) ‖Hs
x(0,∞) + sup

x∈[0,∞)

‖ S1[u0, u∗, γ1; u2v](x) ‖Hs
t (0,T∗)

+ sup
t∈[0,T∗ ]

‖ S1[v0, v∗, γ2; uv2](t) ‖Hs
x(0,∞) + sup

x∈[0,∞)

‖ S1[v0, v∗, γ2; uv2](x) ‖Hs
t (0,T∗)

≤ C∗s
(
‖ u0 ‖Hs

x(0,∞) + ‖ u∗ ‖Hs
x(0,∞) + ‖ v0 ‖Hs

x(0,∞) + ‖ v∗ ‖Hs
x(0,∞) + ‖ γ1 ‖Hs−1

t (0,T)

+ ‖ γ2 ‖Hs−1
t (0,T) +

√
T∗ sup

t∈[0,T∗ ]
‖ u2v ‖Hs

x(0,∞) +
√

T∗ sup
t∈[0,T∗ ]

‖ uv2 ‖Hs
x(0,∞)

)
, (by (70))

=
r
2
+ C∗s

√
T∗
(

sup
t∈[0,T∗ ]

‖ u2v ‖Hs
x(0,∞) + sup

t∈[0,T∗ ]
‖ uv2 ‖Hs

x(0,∞)

)
≤ r

2
+ C∗s

√
T∗
(

C2
s r3 + C2

s r3
)

, (by Lemma 2)

≤ r
2
+ 2(C∗s )

3√T∗r3.

Hence, we obtain the inequality

‖ FD1(u, v) ‖X≤
r
2
+ 2(C∗s )

3√T∗r3.

For 0 < T∗ ≤ T, in order to prove that FD1 is onto on B(0, r), we aim for the following
inequality to hold:

r
2
+ 2(C∗s )

3√T∗r3 ≤ r,

which is equivalent to

0 < T∗ ≤ 1

256(C∗s )
10 ‖ (u0, u∗, v0, v∗, γ1, γ2) ‖4

D

.

Thus, when T∗ satisfies the following condition (73):

0 < T∗ ≤ min

{
T,

1

256(C∗s )
10 ‖ (u0, u∗, v0, v∗, γ1, γ2) ‖4

D

}
,

it follows that FD1 is onto B(0, r).

Now, we begin to prove that the map (u, v) �−→ FD1(u, v) is a contraction in X. We
establish the constraint on T∗ such that FD1 is a contraction on B(0, r), for C∗s = max{Cs, ds}
and r = 2C∗s ‖ (u0, u∗, v0, v∗, γ1, γ2) ‖D. This is detailed in the following lemma.

Lemma 6. Let C∗s = max{Cs, ds} and r = 2C∗s ‖ (u0, u∗, v0, v∗, γ1, γ2) ‖D. If the following
condition for T∗ given by

0 < T∗ ≤ min

{
T,

1

2304(C∗s )
10 ‖ (u0, u∗, v0, v∗, γ1, γ2) ‖4

D

}
(74)

is satisfied, then the iteration map FD1 is a contraction on B(0, r).
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Proof. For (ū1, v̄1), (ū2, v̄2) ∈ B(0, r), the following inequality holds:

‖ FD1(ū1, v̄1)−FD1(ū2, v̄2) ‖X

=‖
(

S1[u0, u∗, γ1; ū2
1v̄1], S1[v0, v∗, γ2; ū1v̄2

1]
)
−
(

S1[u0, u∗, γ1; ū2
2v̄2], S1[v0, v∗, γ2; ū2v̄2

2]
)
‖X

=‖
(

S1[0, 0, 0; ū2
1v̄1 − ū2

2v̄2], S1[0, 0, 0; ū1v̄2
1 − ū2v̄2

2]
)
‖X

= sup
t∈[0,T∗ ]

‖ S1[0, 0, 0; ū2
1v̄1 − ū2

2v̄2](t) ‖Hs
x(0,∞)

+ sup
x∈[0,∞)

‖ S1[0, 0, 0; ū2
1v̄1 − ū2

2v̄2](x) ‖Hs
t (0,T∗)

+ sup
t∈[0,T∗ ]

‖ S1[0, 0, 0; ū1v̄2
1 − ū2v̄2

2](t) ‖Hs
x(0,∞)

+ sup
x∈[0,∞)

‖ S1[0, 0, 0; ū1v̄2
1 − ū2v̄2

2](x) ‖Hs
t (0,T∗)

≤ C∗s

(
√

T∗ sup
t∈[0,T∗ ]

‖ ū2
1v̄1 − ū2

2v̄2 ‖Hs
x(0,∞) +

√
T∗ sup

t∈[0,T∗ ]
‖ ū1v̄2

1 − ū2v̄2
2 ‖Hs

x(0,∞)

)
,

(by (70))

≤ C∗s
√

T∗
(

sup
t∈[0,T∗ ]

‖ ū2
1(v̄1 − v̄2) ‖Hs

x(0,∞) + sup
t∈[0,T∗ ]

‖ (ū1 + ū2)(ū1 − ū2)v̄2 ‖Hs
x(0,∞)

+ sup
t∈[0,T∗ ]

‖ v̄2
1(ū1 − ū2) ‖Hs

x(0,∞) + sup
t∈[0,T∗ ]

‖ (v̄1 − v̄2)(v̄1 + v̄2)ū2 ‖Hs
x(0,∞)

)
≤ 6(C∗s )

3r2
√

T∗ ‖ (ū1, v̄1)− (ū2, v̄2) ‖X

For 0 < T∗ ≤ T, in order to prove that FD1 is a contraction, we aim for the following
inequality to hold:

6(C∗s )
3r2
√

T∗ ≤ 1
2

which is equivalent to

0 < T∗ ≤ min
1

2304(C∗s )
10 ‖ (u0, u∗, v0, v∗, γ1, γ2) ‖4

D

.

Thus, when T∗ satisfies the following condition (74):

0 < T∗ ≤ min

{
T,

1

2304(C∗s )
10 ‖ (u0, u∗, v0, v∗, γ1, γ2) ‖4

D

}

it follows that FD1 is a contraction.

We will now set the lifespan as follows:

T∗ = min

{
T,

1

2304(C∗s )
10 ‖ (u0, u∗, v0, v∗, γ1, γ2) ‖4

D

}
. (75)

This choice ensures that T∗ satisfies both conditions (73) and (74). As a result, the iteration
map FD1 acts as a contraction and maps onto B(0, r). Consequently, by applying the
contraction mapping theorem, we conclude that Equation (u, v) = FD1(u, v) has a unique
solution (u, v) ∈ B(0, r) ⊂ X.

168



Axioms 2024, 13, 673

5.2. Continuity of the Data-to-Solution Map

In this subsection, we will establish that the data-to-solution map (u0, u∗, v0, v∗, r1, r2)
�−→ (u, v) is locally Lipschitz continuous. This step is crucial for completing the proof of
local well-posedness for the IBVP (1) on the half-line.

We consider two distinct sets of data D1 = (u0, u∗, v0, v∗, r1, r2) and D2 = (U0,U∗,V0,
V∗, R 1, R 2). These datasets reside within a ball Bρ ⊂ D of radius ρ > 0 centered at a
distance R from the origin, where

D = Hs
x(0, ∞)× Hs

x(0, ∞)× Hs
x(0, ∞)× Hs

x(0, ∞)× Hs−1
t (0, T)× Hs−1

t (0, T)

with the norm (72).
Let (u, v) = FD1(u, v) and (U ,V ) = FD2(U ,V ) represent the solutions correspond-

ing to the IBVP (1). The lifespans of (u, v) and (U ,V ) are denoted by T(u,v) and T(U ,V ),
respectively, where

T(u,v) =min

{
T,

1

2304(C∗s )
10 ‖ (u0, u∗, v0, v∗, γ1, γ2) ‖4

D

}
,

T(U ,V ) =min

{
T,

1

2304(C∗s )
10 ‖ (U0,U∗,V0,V∗, R 1, R 2) ‖4

D

}
.

Given that

max{‖ (u0, u∗, v0, v∗, γ1, γ2) ‖D, ‖ (U0,U∗,V0,V∗, R 1, R 2) ‖D} ≤ ρ + R ,

we can deduce that

min
{

T(u,v), T(U ,V )

}
≥ min

{
T,

1

2304(C∗s )
10(R + ρ)4

}
.
= Tη .

Thus, both solutions (u, v) and (U ,V ) are guaranteed to exist for any 0 < t ≤ Tη . For the
lifespan Tη , we define the solution space Xη as the solution space X outlined in (71) with
T∗ = Tη .

In the upcoming lemma, we will demonstrate that the data-to-solution map (u0, u∗, v0,
v∗, r1, r2) �−→ (u, v) is locally Lipschitz continuous.

Lemma 7. Let C∗s = max{Cs, ds} and rη =

(
12(C∗s )

3T
1
2

η

)− 1
2
. For any (u, v), (U ,V ) ∈

B(0, rη) ⊂ Xη with data in the ball Bρ, we can establish the following inequality:

‖ (u, v)− (U ,V ) ‖Xη≤ 2C∗s ‖ (u0, u∗, v0, v∗, r1, r2)− (U0,U∗,V0,V∗, R 1, R 2) ‖D . (76)

Hence, the data-to-solution map (u0, u∗, v0, v∗, r1, r2) �−→ (u, v) is locally Lipschitz continuous.

Proof. For any (u, v), (U ,V ) ∈ B(0, rη) ⊂ Xη with data in the ball Bρ, we derive the
following inequality:
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‖ (u, v)− (U ,V ) ‖Xη=‖ FD1(u, v)−FD2(U ,V ) ‖Xη

=‖ (S1[u0 −U0, u∗ −U∗, r1 − R 1; u2v−U 2V ], S1[v0 −V0, v∗ −V∗, r2 − R 2; uv2 −UV 2]) ‖Xη

= sup
t∈[0,Tη ]

‖ S1[u0 −U0, u∗ −U∗, r1 − R 1; u2v−U 2V ](t) ‖Hs
x(0,∞)

+ sup
x∈[0,∞)

‖ S1[u0 −U0, u∗ −U∗, r1 − R 1; u2v−U 2V ](x) ‖Hs
t (0,Tη)

+ sup
t∈[0,Tη ]

‖ S1[v0 −V0, v∗ −V∗, r2 − R 2; uv2 −UV 2](t) ‖Hs
x(0,∞)

+ sup
x∈[0,∞)

‖ S1[v0 −V0, v∗ −V∗, r2 − R 2; uv2 −UV 2](x) ‖Hs
t (0,Tη)

≤ C∗s (‖ u0 −U0 ‖Hs
x(0,∞) + ‖ u∗ −U∗ ‖Hs

x(0,∞) + ‖ v0 −V0 ‖Hs
x(0,∞) + ‖ v∗ −V∗ ‖Hs

x(0,∞)

‖ r1 − R 1 ‖Hs−1
t (0,∞) + ‖ r2 − R 2 ‖Hs−1

t (0,∞) +
√

Tη sup
t∈[0,Tη ]

‖ u2v−U 2V ‖Hs
x(0,∞)

+
√

Tη sup
t∈[0,Tη ]

‖ uv2 −UV 2 ‖Hs
x(0,∞)) (by (70))

≤ C∗s ‖ (u0, u∗, v0, v∗, r1, r2)− (U0,U∗,V0,V∗, R 1, R 2) ‖D

+ C∗s
√

Tη

⎛⎝ sup
t∈[0,Tη ]

‖ v(u−U )(u +U ) ‖Hs
x(0,∞) + sup

t∈[0,Tη ]

‖ (u−U )v2 ‖Hs
x(0,∞)

+ sup
t∈[0,Tη ]

‖U (v−V )(v +V ) ‖Hs
x(0,∞) + sup

t∈[0,Tη ]

‖U 2(v−V ) ‖Hs
x(0,∞)

⎞⎠
≤ C∗s ‖ (u0, u∗, v0, v∗, r1, r2)− (U0,U∗,V0,V∗, R 1, R 2) ‖D +6C∗s C2

s r2
η

√
Tη ‖ (u, v)− (U ,V ) ‖Xη

≤ C∗s ‖ (u0, u∗, v0, v∗, r1, r2)− (U0,U∗,V0,V∗, R 1, R 2) ‖D +6(C∗s )
3r2

η

√
Tη ‖ (u, v)− (U ,V ) ‖Xη .

Therefore, we derive the following inequality:

‖ (u, v)− (U ,V ) ‖Xη≤
C∗s

1− 6(C∗s )
3√Tηr2

η

‖ (u0, u∗, v0, v∗, r1, r2)− (U0,U∗,V0,V∗, R 1, R 2) ‖D .

Hence, when we set

rη =

(
12(C∗s )

3T
1
2

η

)− 1
2
,

the following two inequalities hold:

1

1− 6(C∗s )
3√Tηr2

η

≤ 2 and 1− 6(C∗s )
3
√

Tηr2
η > 0.

Consequently, we can derive (76), demonstrating that the data-to-solution map is locally
Lipschitz continuous. This concludes the proof of Lemma 7.

Now, we can proceed to prove Theorem 2. We define the lifespan as

T∗ = min

{
T,

1
2304(C∗s )10 ‖ (u0, u∗, v0, v∗, γ1, γ2) ‖4

D

}
.

By utilizing Lemmas 5–7, we can finalize the proof of Theorem 2.
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In conclusion, based on our previous experience, using classical methods to prove the
local well-posedness of a system tends to be more cumbersome and restrictive compared to
the UTM. The UTM facilitates the selection of appropriate Sobolev spaces for the boundary
conditions of system (1), which simplifies subsequent estimates and the process of proving
the local well-posedness of system (1). This article thus enhances our understanding of
the utility of the UTM in establishing the local well-posedness of coupled wave equations,
laying the foundation for future research on system (2).
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Abstract: To explore intermittency in discrete systems with two or more degrees of freedom,
we analyze the general characteristics of type I intermittency within a two-dimensional
map. This investigation is carried out numerically, concentrating on the system’s attractors,
bifurcation diagrams, and the characteristic relation associated with type I intermittency.
We present two methods for determining the laminar interval and the channel structure.
Our computations yield numerical results for the average laminar length as a function
of the control parameter, which we then compare with findings from intermittency in
one-dimensional maps. We observe a strong agreement between the numerical data and
the theoretical predictions.

Keywords: two-dimensional; map; intermittency; characteristic relation; laminar interval

MSC: 37D45; 37E05

1. Introduction

Chaotic intermittency is an interesting phenomenon observed in dynamical systems,
characterized by a distinctive alternation between chaotic and laminar or regular behaviors.
During the laminar phases, which may also be referred to as pseudo-equilibrium regions
or pseudo-periodic solutions, the solution of the system moves close to the previous stable
solution. In contrast, the bursts that occur during the chaotic phases signify a transition
to irregular patterns. This duality highlights the complex nature of dynamical systems
and the intricate balance between regular and chaotic behavior within their evolution.
Understanding these dynamics is crucial for analyzing a wide range of complex systems,
whether they are of natural or human origin [1]. Intermittency is a route that leads to chaos
and has been found in physics, engineering, astronomy, chemistry, medicine, neurosciences,
economics, biology, and genetics [2–23]. A more detailed description of chaotic intermit-
tency could lead to a better understanding of these phenomena. Consequently, this area of
research has the potential to provide significant benefits across various fields. Additionally,
accurately describing chaotic intermittency is crucial for systems that have incomplete or
unknown equations.

About 45 years ago, chaotic intermittency was classified into three distinct types,
referred to as I, II, and III [9,24]. This classification depends on the bifurcation that gives
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rise to the intermittency. This bifurcation occurs when the eigenvalues of the system’s
Jacobian matrix—evaluated in the local solution—depart from the unit circle. Type I
intermittency is characterized by an eigenvalue exiting the unit circle through +1, while
type II involves two complex conjugated eigenvalues leaving the unit circle. Finally, type III
is defined by an eigenvalue leaving the unit circle through −1 [25–27]. Subsequent research
introduced additional types of chaotic intermittency, including on-off, eyelet, ring, in-out,
type X, and type V (see [27,28] and references there).

One-dimensional maps, commonly referred to as Poincaré maps, offer an alternative
for investigating chaotic intermittency. Two essential elements characterize these maps: a
specific local map, which establishes the intermittency type, and a reinjection mechanism
returning the trajectories from the chaotic dynamics to the regular phase. The core of this
process is encapsulated in the reinjection probability density function (RPD). The RPD
quantifies the probability of trajectories re-entering the laminar zone around an unstable
or disappearing fixed point. When paired with the local map, the RPD function provides
profound insights into the dynamical characteristics of the system. Determining the RPD
function correctly is paramount for a comprehensive understanding of chaotic intermittency.
However, extracting the RPD from experimental or numerical data can be quite challenging
due to the vast amounts of data and the inherent statistical fluctuations. Various strategies
have emerged for calculating the RPD function. Traditionally, the classical framework for
chaotic intermittency has relied on the assumption of uniform reinjection within the laminar
interval. Recently, two innovative methodologies have been developed to more accurately
derive the RPD function. The first, the M function methodology, introduces a generalized
power law for the RPD and has demonstrated remarkable accuracy for a wide range of
one-dimensional maps exhibiting type I, II, III, and V intermittencies. This approach not
only integrates the classical approximation but also accommodates uniform reinjection as a
specific instance. The second methodology, known as the continuity technique, employs
the Perron–Frobenius operator to effectively compute the reinjection probability density
function. Like the M function methodology, the continuity technique has been validated
across various maps displaying different types of intermittency. To gain deeper insights into
the phenomenon of intermittency, it is also essential to consider other statistical functions,
such as the probability density of laminar lengths, ψ(l), the average laminar length, l̄,
and the characteristic relation l̄ = l̄(ε). These functions, however, are contingent on the
RPD. Furthermore, the RPD and the related statistical functions that characterize chaotic
intermittency are influenced by external noise and the lower boundary of reinjection (LBR).
Remarkably, the M function methodology has been further refined to encompass both of
these crucial aspects [27,28].

However, these previous studies only consider one-dimensional maps. In this paper,
we are interested in analyzing chaotic intermittency in two-dimensional maps, more specif-
ically, we analyze the characteristic relation, the dependence of the average laminar length,
l̄, with the control parameter ε for type I intermittency. To carry out this task, we study a
2D map introduced in [29], which exhibits type I intermittency. The researchers provided
a comprehensive description of the structure of the reinjection channel and the trajectory
within it, resulting in the establishment of scaling relations based on the trajectory.

The main objective of this paper is to investigate the phenomenon of chaotic inter-
mittency. In addition, it includes a partial analysis of specific attractors within the system.
However, this study does not aim to provide a comprehensive description of the system’s
attractors, and the methodology employed is not particularly well-suited for uncovering
hidden chaotic attractors [30].
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This study focuses on the dynamics of the system, examining the basins of attraction
for different attractors, analyzing various trajectories within the channel, and calculating
the exponents of the characteristic relation. The findings presented in this research serve
as a preliminary exploration of the potential for extending the new theory of chaotic
intermittency [27,28] to high-dimensional maps. This article is a revised and expanded
version of a paper entitled “Intermitencia en un mapa bidimensional”, which was presented
at XXXIX Congreso Argentino de Mecánica Computacional, Concordia, Argentina in
November 2023 [31].

This paper is organized as follows: In Section 2, we introduce the two-dimensional
map and analyze the dynamics of the system. We describe the fixed points and assess
their stability, followed by the presentation of bifurcation diagrams along with an ex-
planation of the attraction basins. Section 3 explores the type I intermittency observed
in the two-dimensional map. We illustrate this intermittency for various values of the
control parameters, which correspond to different trajectories related to 14 cycles and
10 cycles. Finally, Section 4 summarizes the main conclusions and discusses perspectives
for future research.

2. Two-Dimensional System

A general map in d-dimensions can be written as

x̄n+1 = f̄ (x̄n) (1)

where x̄n ∈ Rd is a finite-dimensional vector, being Rd the d-dimensional Euclidean space,
and d is an integer number verifying d > 1.

In a two-dimensional vector space defined by the pair (x̄n+1, x̄n), the equation
x̄n+1 = x̄n represents a diagonal hyper-surface (DHS) [29]. In type I intermittency, the DHS
surface, along with the local map, establishes a channel that allows the system to enter
a laminar phase as the trajectory passes through it. The function of the DHS surface in
two-dimensional maps is similar to that of the bisector line in one-dimensional maps.

In this paper, we analyze the two-dimensional map, d = 2, proposed by [29]:

xn+1 = F(xn, yn) = 4αxn(1− xn) + βyn(1− xn)

yn+1 = G(xn, yn) = 4αyn(1− yn) + βxn(1− yn)
(2)

where α and β are control parameters, and the vector x̄n = (xn, yn) ∈ R2.
We perform a classical analysis of the dynamics of the system for a fixed value of β.

In this analysis, the dynamics are determined by the parameter α. We calculate the fixed
points and assess their stability, and we also generate bifurcation diagrams and basins of
attraction for the system’s attractors.

The fixed points of the system are all pairs (x∗, y∗) such that x∗ = F(x∗, y∗) and
y∗ = G(x∗, y∗). The stability of these points is determined by the dynamic behavior in their
vicinity. Some points can attract nearby trajectories, while others can repel them, and some
may act as centers for periodic trajectories. The stability of fixed points can be analyzed by
considering the eigenvalues of the Jacobian matrix.

J =

∣∣∣∣∣∣∂x F(x∗, y∗) ∂yF(x∗, y∗)

∂xG(x∗, y∗) ∂yG(x∗, y∗)

∣∣∣∣∣∣ (3)
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Evaluating the stability of a system’s solutions requires a comprehensive understand-
ing of the system dynamics. The eigenvalues of the Jacobian matrix are critical in deter-
mining the stability of the fixed points, as they provide important information about the
system’s response to perturbations. These eigenvalues exist within the complex plane,
and a fixed point is classified as hyperbolic if no eigenvalue is located on the unit circle.

The stability condition indicates that if at least one eigenvalue lies outside the unit
circle, the fixed point is unstable, whereas it is considered stable if all eigenvalues are
within the unit circle. If at least one eigenvalue of the fixed point is on the unit circle,
the fixed point is categorized as non-hyperbolic, for which the stability condition based on
the eigenvalues of the Jacobian matrix is insufficient.

Bifurcation diagrams illustrate the behavior of dynamical systems, showing the solu-
tions and their stability within the state-control space. In these diagrams, stable solutions
are represented as stable branches, while unstable solutions are depicted as unstable
branches. Generally, a branch of solutions will either commence, terminate, or change its
stability at a bifurcation point [25].

Each attractor of the system, X̄, possesses its basin or domain of attraction, which is
the domain D ∈ Rd that includes all the initial conditions x̄0 such f̄ n(x̄0)→ X̄ as n → ∞.

As a first step to determine the dynamics behavior, we start with the calculation of
the fixed points of the map f̄ (x, y), given by Equation (2). The fixed points have been
calculated using analytic methods. For β = 0.5, they are:

x∗1 = 0 y∗1 = 0 (4)

x∗2 =
α− 0.125
α + 0.125

y∗2 =
α− 0.125
α + 0.125

(5)

x∗3 =
0.09375− 0.25α

0.046875 + (−0.5 + α)α + A
y∗3 =

0.09375− 0.25α

0.046875 + (−0.5 + α)α− A
(6)

x∗4 =
0.09375− 0.25α

0.046875 + (−0.5 + α)α− A
y∗4 =

0.09375− 0.25α

0.046875 + (−0.5 + α)α + A
(7)

where A =
√
(α− 0.375)(α− 0.125)(α2 + 0.046875).

Once the control parameter β is established, the fixed points of the system depend only
on the other control parameter, α. Figures 1 and 2 show the evolution of the fixed points
with α. From the figures, we can observe that the fixed point (x∗1 , y∗1) does not depend on α.

To generate a bifurcation diagram, we start by iterating the system from chosen initial
values, denoted as (x0, y0). This iterative process continues until we arrive at a solution
that characterizes the system’s behavior. Once this is achieved, we repeat the iteration
process using various values of the control parameter α.
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Figure 1. The evolution of fixed points as the control parameter α changes (see Equations (5)–(7)).
Blue: (x∗1 , y∗1). Orange: (x∗2 , y∗2). Red: (x∗3 , y∗3). Green: (x∗4 , y∗4).

-0.3 0.85x∗
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∗

Figure 2. The evolution of the fixed points in the (x, y) plane. Blue: (x∗1 , y∗1). Orange: (x∗2 , y∗2). Red:
(x∗3 , y∗3). Green: (x∗4 , y∗4).

Figure 3 presents a bifurcation diagram consisting of two superimposed plots: one in
blue and the other in red. The blue plot illustrates the stationary solutions derived from
initial conditions where x0 = y0, with each value of α held constant. This plot resembles
a one-dimensional bifurcation diagram that follows the logistic equation, as the system
described in Equation (2) is decoupled, functioning as two separate one-dimensional
logistic maps.

In contrast, the red plot represents results from random initial conditions (x0 �= y0)
in the interval (0, 1) for each value of α. This curve exhibits its first bifurcation around
α = 0.53, indicating a period-doubling bifurcation. The blue curve’s first bifurcation,
however, occurs at α = 0.62, as depicted in Figure 3. Each bifurcation corresponds to
an eigenvalue departing from the unit circle through −1, resulting in a period-doubling
bifurcation. Fixed points on the upper branches are unstable, while those on the lower
branches remain stable until α ≈ 0.85 for the blue plot and α ≈ 0.77 for the red diagram.
Fixed points on the lower branches become unstable or vanish beyond these values of α.
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Figure 3. Numerical bifurcation diagram for β = 0.5.

The provided figures indicate a significant correlation between the initial conditions
and the observed attractors. Consequently, each bifurcation diagram exhibits distinct
basins of attraction. This information will be essential for developing a comprehensive
understanding of the system’s behavior and gaining insights into its dynamics.

As examples, we indicate some periodic points corresponding to different values of α

that belong to solutions of periods 2, 4, 8, and 16, as shown in [32].
Fixing the β parameter at 0.3 and increasing α, with equal initial conditions x0 = y0

yields 2, 4, 8, and 16 period solutions for values of α 0.7, 0.79, 0.816, 0.8166.
With α = 0.7 the fixed points are (x1 = 0.55, y1 = 0.558), (x2 = 0.764, y2 = 0.764),

with α = 0.79: (x1 = 0.467, y1 = 0.467) , (x2 = 0.861, y2 = 0.861),
(x3 = 0.413, y3 = 0.413), (x4 = 0.838, y4 = 0.838); for α = 0.816:
(x1 = 0.346, y2 = 0.346), (x2 = 0.807, y2 = 0.807), (x3 = 0.553, y3 = 0.553),
(x4 = 0.880, y4 = 0.880), (x5 = 0.374, y5 = 0.374), (x6 = 0.835, y6 = 0.835),
(x7 = 0.490, y7 = 0.490), (x8 = 0.890, y8 = 0.890; and finally for α = 0.8166:
(x1 = 0.378, y1 = 0.378), (x2 = 0.838, y2 = 0.838), (x3 = 0.482, y3 = 0.482), (x4 =

0.890, y4 = 0.890), (x5 = 0.347, y5 = 0.347), (x6 = 0.809, y6 = 0.809), (x7 = 0.551, y7 =

0.551), (x8 = 0.882, y8 = 0.882), (x9 = 0.370, y9 = 0.370), (x10 = 0.831, y10 =

0.831), (x11 = 0.499, y11 = 0.499), (x12 = 0.891, y12 = 0.891), (x13 = 0.344, y13 =

0.344), (x14 = 0.805, y14 = 0.805), (x15 = 0.558, y15 = 0.558), (x16 = 0.879, y16 = 0.879).
If the initial conditions are now different x0 �= y0, then we have two bifurcation

regions, the first going into a 2-period solution before an explosive bifurcation takes place,
then at α ∼ 0.72, a new period-doubling bifurcation starts, and it shows solutions of period
2, 4, 8, and 16 for α 0.73, 0.81, 0.815, and 0.817.

For α = 0.73 the fixed points are: (x1 = 0.505, y1 = 0.505) and (x2 = 0.804897, y2 =

0.804897); for α = 0.81: (x1 = 0.521, y1 = 0.521), (x2 = 0.883, y2 = 0.883), (x3 = 0.364, y3 =

0.364), (x4 = 0.820, y4 = 0.820); when α = 0.815: (x1 = 0.808, y1 = 0.808), (x2 =

0.550, y2 = 0.550), (x3 = 0.880, y3 = 0.880), (x4 = 0.373, y4 = 0.373), (x5 = 0.833, y5 =

0.833), (x6 = 0.494, y6 = 0.494), (x7 = 0.889, y7 = 0.889), (x8 = 0.348, y8 = 0.348); and
finally for α = 0.817: (x1 = 0.379, y1 = 0.379), (x2 = 0.840, y2 = 0.840), (x3 = 0.479, y3 =

0.479), (x4 = 0.890, y4 = 0.890), (x5 = 0.347, y5 = 0.347), (x6 = 0.809, y6 = 0.809), (x7 =

0.550, y7 = 0.550), (x8 = 0.883, y8 = 0.883), (x9 = 0.368, y9 = 0.368), (x10 = 0.830, y10 =
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0.830), (x11 = 0.502, y11 = 0.502), (x12 = 0.891, y12 = 0.891), (x13 = 0.343, y13 = 0.343),
(x14 = 0.804, y14 = 0.804), (x15 = 0.560, y15 = 0.560), (x16 = 0.879, y16 = 0.879);

The same analysis is performed for β = 0.5 but only for x0 �= y0, showing period 2, 4,
and 8 solutions for α = 0.72 with fixed points (x1 = 0.838, y1 = 0.838) and (x2 = 0.457, y2 =

0.457); α = 0.75 (x1 = 0.424, y1 = 0.424), (x2 = 0.826, y2 = 0.826), (x3 = 0.500, y3 = 0.500),
(x4 = 0.874, y4 = 0.874); α = 0.756 (x1 = 0.424, y1 = 0.544), (x2 = 0.833, y2 = 0.809),
(x3 = 0.487, y3 = 0.880), (x4 = 0.895, y4 = 0.860), (x5 = 0.329, y5 = 0.424), (x6 =

0.809, y6 = 0.833), (x7 = 0.809, y7 = 0.833), (x8 = 0.860, y8 = 0.895); and α = 0.75
(x1 = 0.912, y1 = 0.837), (x2 = 0.833, y2 = 0.809), (x3 = 0.487, y3 = 0.880), (x4 =

0.895, y4 = 0.860), (x5 = 0.329, y5 = 0.424), (x6 = 0.809, y6 = 0.833).
To explain the bifurcations displayed by bifurcation diagrams, we compute the stability

of the fixed points for the maps f̄ (x, y) and f̄ 2(x, y) = f̄ ◦ f̄ (x, y). In Figure 4, we observe
the progression of the fixed points for f̄ 2(x, y) as the control parameter α is modified.

The two eigenvalues of the Jacobian matrix for the fixed point (x∗2, y∗2), given by the
yellow curve in Figure 1 and light blue one in Figure 4, exit the unit circle for different values
of α: one for α = 0.53 and another for α = 0.62. The first eigenvalue has a strong influence
on generating the red bifurcation diagram of Figure 3. However, the blue bifurcation
diagram starts in the instability produced by the second eigenvalue. Also, in Figure 4,
we can observe the instability and generation of new fixed points shown by red and
blue curves.

0 0.8
α

-0.3

1

x
∗

Figure 4. Fixed points for the map f 2(x, y).

On the other hand, Figures 5–8 displays the vector field in the (x, y) plane together
with the fixed points of map f̄ 2(x, y) that appear as α grows.

Figure 5 shows the vector field for α = 0.3. In this figure, we can see that there are only
two fixed points which are shown in Figure 1 as blue and yellow lines. One fixed point
is at (0, 0), and it is unstable, with the other one being stable at approximately (0.42, 0.42).
As we move to Figure 6, with an α value 0.5, we observe the bifurcation occurring at point
(0, 0) and two more fixed points appearing. These two fixed points are saddle points, they
attract alongside a direction and repel alongside the other. Figure 7 shows two new fixed
points corresponding to the bifurcation shown in the violet solution of Figure 4. Finally,
in Figure 8 (α = 0.65), the directional field shows the appearance of a pair of fixed points
that correspond to the ones shown in pink and yellow in Figure 4, which are saddle points
with one eigenvalue inside the unit circle and the other outside of it.
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Figure 5. Vector field for f̄ 2 for α = 0.3. Red points are the fixed points.

-0.3 1x

1

y

Figure 6. Vector field for f̄ 2 for α = 0.5. Red points are the fixed points.

-0.3 1x

1
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Figure 7. Vector field for f̄ 2 for α = 0.6. Red points are the fixed points.
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Figure 8. Vector field for f̄ 2 for α = 0.65. Red points are the fixed points.

Figure 9 shows the bifurcation diagram used in [29]. From the figure, we see that
for values of α ∼ 0.7 and ∼ 0.8, the map presents a more complex behavior than those
observed in the directional field (see Figures 5–8). There is a set of fixed points that meet
the condition x∗ = y∗, these fixed points correspond to the blue diagram shown in Figure 3,
because solutions with x = y decouple the system and transform it into two independent
logistic maps (see blue diagram in Figure 3).

Figure 9. Bifurcation diagrams for x and y using deliberated initial conditions. The diagram is equal
for x and y. β = 0.5.

Figure 9 is only feasible if the initial conditions of the iterative process for each α are
deliberately selected. For an α lower to ∼ 0.715, the initial conditions must verify x0 �= y0.
On the other hand, for an α greater than ∼ 0.715, the initial conditions have to satisfy
x0 = y0.

Figure 10 shows the bifurcation diagrams for x obtained for different initial conditions
in the iterative process. The upper figure displays the diagram built with initial conditions
x0 �= y0 for every α, while the lower one was obtained only using x0 = y0 as initial
condition for every α.
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Figure 10. Bifurcation diagrams for x with x0 �= y0 (up) and x0 = y0 (down). β = 0.5.
Figure 11 displays the relations between the variables x and y for the bifurcation

diagrams of Figure 10. The left figure was calculated with initial conditions x0 �= y0 for
0.6 ≤ α < 0.78. The right figure was obtained using x0 = y0 as initial condition for
0.65 ≤ α ≤ 0.85.

Figure 11. Bifurcation diagrams on x, y plane for x0 �= y0 and x0 = y0. β = 0.5, 0.65 < α < 0.85.

For α greater than approximately 0.776, the basin of attraction for the attractor de-
picted in the upper Figure 10 becomes nearly non-existent. Additionally, once α exceeds
approximately 0.77, the logistic attractor can be deemed a stable solution. This is achieved
when the iterative processes are initiated on the bisector line in the (x, y) plane, specifically
on points where (x0 = y0).

3. Type I Intermittency

In this section, we examine three cases where type I intermittency occurs. We adhere
to the criteria established by [29] to define type I intermittency for a two-dimensional map.

Figures 12 and 13 present the regions of interest in the bifurcation diagrams, showing
the period-14 solution at α ∼ 0.674 and a period-10 solution at α ∼ 0.689, both with β = 0.5.
With β = 0.3, a chaotic solution is shown for α ∼ 0.778 near a period-14 solution.
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Figure 12. Bifurcation diagram of f (x, y) map, with β = 0.5, period-14 (red) and period-10 (blue)
solutions.

Figure 13. Bifurcation diagram of f (x, y) map, with β = 0.3 and period-14 solution.

The bifurcation diagram presented in Figure 12 shows a period-14 solution that occurs
at approximately α ∼ 0.674 with β = 0.5. The period-14 solution is placed between chaotic
solutions for both lower and higher values of α, indicating the potential presence of inter-
mittency. Therefore, examining the n + 14 map is particularly interesting in this context.

The solution for the map f̄ 14(x, y), characterized by the parameter α = 0.67414, is
shown in Figure 14. As we analyze the dynamics of the system, we can observe that the
trajectory initially follows one branch of the attractor for a certain duration. Subsequently, it
transitions to the alternate branch, and this pattern continues in a cyclic fashion, occurring
a total of fourteen times. This repetitive switching between branches culminates in the
formation of a limit cycle solution.

When we examine the trajectory in the two-dimensional state space (x, y), it delineates
a closed curve, as shown in Figure 15. This closed curve is indicative of the periodic nature
of the oscillations within the system, demonstrating how the state variables evolve over
time in a limit cycle.
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Figure 14. Temporal evolution of the f̄ 14(x, y) map for α = 0.67414. β = 0.5.

To gain a better understanding of the behavior of the solution, it is useful to analyze
the map of xn+14 versus xn for f̄ 14(x, y). In Figure 16, we observe that the plateaus shown
in Figure 14 are the result of the system solution approaching the bisector line xn = xn+14.
This proximity of the map to the bisector line causes the trajectory to stay close for several
iterations before being rapidly expelled and transported to a new region near the bisector
line. Each time the trajectory approaches the line xn = xn+1, a narrow channel forms,
resembling the behavior seen in type I intermittency in one-dimensional maps. In [29], this
behavior is classified as type I intermittency, and a law for the mean or average laminar
length is derived and compared with the results found for one-dimensional systems using
the classic theory of chaotic intermittency.

0.2 0.5
x

0.8

0.92

y

Figure 15. Attractor in (x, y) plane for α = 0.67414. β = 0.5.

Figure 16. f̄ 14(x, y) map for α = 0.67414. β = 0.5.
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The laminar length, in the context of intermittency, refers to the duration of the
laminar phase. This duration is measured in iterations for discrete-time systems. For one-
dimensional maps experiencing type I intermittency, the laminar length is a function of
the distance between the map and the bisector line, known as the channel. The average
laminar length depends on the control parameter ε in the following way [27]:

〈l〉 ∼ 1√
ε

(8)

where 〈l〉 is the average laminar length. In these systems, the value of ε is directly related
to the distance between the map and the bisector line. This distance determines the width
of the channel, which causes the trajectory to pass more slowly. In this region, the laminar
flow characteristics of the intermittency phenomenon are defined.

The map f̄ 14(x, y) showed a separation concerning the bisector line when the con-
trol parameter, defined as ε = αc − α, was modified. The critical value of α at which
intermittency is said to start and the limit cycle is found is known as αc.

The laminar or regular interval is defined as the stages of evolution in which the
trajectory did not significantly change position. These stages are understood as the
plateaus in Figure 14. However, unlike in one-dimensional maps, the laminar region in
two-dimensional maps is not connected. It consists of very confined domains through
which the system rapidly jumps, generating a structure of multiple channels.

Figure 17 shows the influence of the control parameter ε on the distance between the
map f̄ 14(x, y) and the bisector. Note that as ε grows, the distance between f̄ 14(x, y) and the
bisector also increases.

n

x
n
+
14

Figure 17. Displacement of region of the f̄ 14(x, y) map with respect to bisector line for ε = e−10 (red)
and e−9 (blue).

To measure how many iterations the trajectory needs to pass through each channel,
we define the relative error function of the variable x as follows:

xerr =

∣∣∣∣ xn+14 − xn

xn

∣∣∣∣ (9)

When the changes in the variable are small, xerr 
 1, it is detected that the trajectory
is in a laminar region-iterating within one of the fourteen channels. Laminar intervals
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are defined by a relative error that is less than a certain fixed threshold. Figure 18 shows
the temporal evolution of the solution xn+14 and the relative error function given by
Equation (9).

The total number of iterations needed to complete the limit cycle was calculated by
excluding the transition iterations between laminar regions, as they are insignificant when
compared with others. The results obtained are presented in Figure 19. It shows the same
slope as that achieved in [29].
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n
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Figure 18. Temporal evolution of f̄ 14(x, y) map and the xerr function. ε = e−11.
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Figure 19. Mean laminar length and control parameter: in blue is the numerical result and in red is a
line with slope −0.5. α ∼ 0.674149 with β = 0.5.

To verify the previous results, we study two other cases. The first one uses α ≈ 0.689
and β = 0.5. A period-10 solution in Figure 12 lies near a chaotic region which may indicate
intermittency behavior as well as the period-14 solution in the same figure.

Figure 20 shows the change in laminar phase duration as the control parameter
ε = α− αc is modified. As ε grows (α moves away αc) the average laminar length decreases.
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Figure 20. Change in duration in laminar phases as ε grows away from αc: (top) ε = e−20, (middle)
ε = e−18, (bottom) ε = e−15. αc ∼ 0.6890011. . . , β = 0.5.

To determine the laminar or regular region, we use a second method. We define the
distance between the map and the DHS surface. To determine this distance, we must find
the minimum distance d from a 4th dimensional point pn = (xn, yn, xn+10, yn+10) to a hyper-
surface determined by DHS: {xn, yn, xn+10, yn+10 ∈ R4| xn = xn+10 ∧ yn = yn+10}. So, we
must find a point of the hyper-surface ps = (xs, ys, xs, ys) (because it satisfies the hyper-
surface constraint) whose distance is the minimum to our point pn. The 4th-dimensional
Euclidean distance between the points will be

d =

√
(xn − xs)

2 + (yn − ys)
2 + (xn+10 − xs)

2 + (yn+10 − ys)
2, (10)

minimizing the expression taking its derivatives with respect to xs and ys and equating
them to zero, we obtain that

xs =
xn + xn+10

2
ys =

yn + yn+10

2
(11)

Figure 21 shows the temporal evolution of the variables xn+10 and yn+10, along with
the distance to the DHS surface calculated using Equation (10).

The numerical results for the characteristic relations are presented in Figure 22. This
figure illustrates the relationship between the average or mean laminar length and the
control parameter. The blue points represent the numerical results, while the red line is
derived from Equation (8). It is noteworthy that there is good agreement between the
numerical findings and the theoretical predictions.

Finally, we analyze the following case: β = 0.3 and α ≈ 0.778 (see Figure 13). To de-
termine the laminar interval, we employed the distance between the map and the DHS
surface given by Equation (8). The results for the average laminar length are shown in
Figure 23.

For the three analyzed cases, we numerically confirm the validity of Equation (8) for
the two-dimensional map studied in this investigation. This equation indicates that the
same scaling behavior of the laminar length as a function of the control parameter observed
in one-dimensional maps is also applicable for the map given by Equation (2).
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Figure 21. Temporal series for xn+10, yn+10 and d (distance to DHS).
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Figure 22. Mean laminar length and control parameter: in blue is the numerical result, and in red is a
line with slope −0.5. α ∼ 0.689011 and β = 0.5.
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Figure 23. Mean laminar length and control parameter: in blue is the numerical result, and in red is a
line with slope −0.5. α ∼ 0.77826511. . . and β = 0.3.

4. Conclusions

We explore the intricate dynamics of the two-dimensional map defined by
Equation (2). Our analysis includes calculating the solutions and their stability, bifur-
cation diagrams, and the basins of attraction for the system’s attractors. We observe that,
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for constant β, the solutions rapidly multiply when the control parameter α is altered,
leading to significant changes in their stability. Additionally, we examine the intermittency
phenomenon generated at distinct values of the control parameters α and β and numerically
derive the characteristic relationship associated with two-dimensional intermittency.

The system’s symmetry results in bifurcation diagrams that vary with the initial con-
ditions. We discover that the symmetry of these initial conditions influences the solutions;
different attractors emerge for cases where x0 = y0 compared with x0 �= y0. Furthermore,
we confirm that the bifurcations of fixed points and their stability changes depend on the
chosen initial conditions.

We also investigate the relationship between the average laminar length and the
control parameter ε = αc− α. To identify the laminar or regular phases in high-dimensional
maps, we propose two alternative approaches (see Equations (9) and (10)). One method
utilizes the error function, while the other calculates the distance between the map and the
DHS surface. The first method is simpler, but the second method takes both variables into
account. Despite these differences, both approaches yield the same results. Our calculations
confirm that, for all studied cases, the relationship we obtain for type I intermittency aligns
with what has been established for one-dimensional maps using classical theory.
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Abstract: The thermoelastic Bresse system is a mathematical model that describes the
dynamic behavior of elastic beams accounting for both mechanical deformations and
thermal effects. Incorporating concepts such as second sound and fractional delay into
this system enhances its ability to model complex physical phenomena. The paper studies
a Bresse thermoelastic system with fractional delay and second sound. Firstly, we prove
the existence and uniqueness of the solution for our system using semi-group theory.
Additionally, we derive an exponential decay estimate for the associated semi-group
utilizing suitable multiplier techniques.
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1. Introduction and Problem Statement

Around 1867, Maxwell drew scientists’ attention to a theoretical contradiction hidden
in Fourier’s law, which produces a contradiction in many scientific applications that have
any kind of relationship to the subject: thermodynamics, machinists, thermal technicians,
and so on. The core of the problem is very simple. The task of thermal diffusion described
in Fourier’s law leads to the equivalent differential equation, and as a result of the infinite
velocity of diffusion. As a solution to this kind of contradiction, dozens of modified laws
and methods of modification have been implemented, and the common feature of these
efforts is that they all result in a hyperbolic differential equation and the propagation
velocity becomes finite. This is the origin of the name “second sound”, which has become
the slogan of the entire phenomenon; see [1–3]. The extension of derivatives and integrals to
fractional orders was discussed as soon as integral and differential calculus was introduced.
However, even though the area has many applications, little attention has been paid to
this area until recently. For instance, models of thermoelastic bodies, continuous media
with memory, and temperature and humidity transformations in atmospheric layers and
in diffusion equations make use of fractional calculus; see [4–6]. It is well known in the
theory of thermoelasticity that the compound system that determines these phenomena
includes differential equations and fractional equations. As the thermoelasticity theory
is essentially a linear theory, these differential equations are also linear, so they can be
solved using fairly simple methods. Similarly to integro-differential, systems of fractional-
integral and fractional-differential equations usually do not have exact solutions. The
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presence of a fractional derivative with respect to time in the first equation of the Bresse
system is interpreted as a reflection of a special property of the process being described,
such as memory effects, or, in the case of a stochastic process, the influence of past states;
see [7–9]. Fractional derivatives with respect to coordinates usually reflect the self-similar
inhomogeneity of the structure or medium in which the process develops. Such structures
are called fractals.

The new problem of interactions between the effects of the second-sound phenomenon
and fractional delay on thermoelasticity has not been solved yet. The very complicated
feature of the question has several signs; please see [10,11]. One of which is the impact
of the delay and second sound on the stability. Another is related to thermoelasticity;
see [12,13].

Let x ∈ Ω = (0, 1) and t ∈ (0, ∞). We consider a thermoelastic Bresse system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1�tt − k(ϕ + �x + lϑ)x − lk0(ϑx − l�) + a0�t + μ∂α,α0
t �(x, t− τ0) = 0

ρ2 ϕtt − bϕxx + k(ϕ + �x + lϑ) + γθx = 0
ρ1ϑtt − k0(ϑx − l�)x + lk(ϕ + �x + lϑ) = 0
ρ3θt + qx + γϕtx = 0
τqt + βq + θx = 0

�(x, 0) = �0(x), �t(x, 0) = �1(x), θ(x, 0) = θ0(x)
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), q(x, 0) = q0(x)
ϑ(x, 0) = ϑ0(x), ϑt(x, 0) = ϑ1(x), �t(x,−t) = f0(x, t), t ∈ (0, τ0)

�(0, t) = �x(1, t) = ϕ(1, t) = ϕx(0, t) = 0
ϑ(1, t) = ϑx(0, t) = θ(0, t) = q(1, t) = 0.

(1)

Here, the parameters ρ1, ρ2, ρ3, k, k0, b, l, α0, a0, γ, τ, β are all positive, α ∈ (0, 1), α0 > 0 and
μ ∈ R, where the time delay is represented by τ0 > 0. Here, � = �(x, t), ϕ = ϕ(x, t), and
ϑ = ϑ(x, t) represent the vertical, longitudinal, and shear angle displacements, respectively,
while the fourth and fifth coupled equations with variables θ and q represent the additional
thermoelastic damping phenomenon. The system (1) is, of course, provided with specific
boundary conditions (with respect to x) and initial conditions (with respect to t). The
second sound physical properties come from the heat conduction, which is described by
Fourier’s law, which implies an infinite speed of heat propagation. However, in certain
materials, especially at low temperatures, heat propagates at a finite speed, a phenomenon
known as “second sound”. This behavior is often modeled using Cattaneo’s law, modifying
the heat equation to account for finite thermal propagation speeds. In the context of the
Bresse system, incorporating second sound leads to a more accurate representation of the
thermoelastic interactions.

The operator ∂α,α0
t is the generalized fractional derivative of order α, and it is ex-

pressed by:

∂α,α0
t u(t) =

1
Γ(1− α)

t∫
0

(t− s)−αe−α0(t−s) du
ds

(s)ds.

Fractional delay refers to the incorporation of memory effects into the system, acknowl-
edging that the current state is influenced by its history. This is achieved by introducing
terms that account for past states, often modeled using fractional calculus. In the Bresse
system, the fractional delay can be represented through integral terms that capture the
influence of past deformations and thermal states on the current behavior. In the following,
we recall some works on the asymptotic behavior of solutions for thermoelastic Bresse
systems. In [14], a Bresse system with thermal dissipation effective is considered
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ1�tt − k(ϕ + �x + lϑ)x − lk0(ϑx − l�) = 0
ρ2 ϕtt − bϕxx + k(ϕ + �x + lϑ) + γθx = 0
ρ1ϑtt − k0(ϑx − l�)x + lk(ϕ + �x + lϑ) = 0
θt − k1θxx + mϕtx = 0.

The exponential stability is shown if and only if the speeds of wave propagation are equal.
A similar model was studied later in [15], where the authors proposed a Timoshenko
system of thermoelasticity of type III with a delay⎧⎪⎨⎪⎩

ρ1�tt − k(�x + ϕ)x + μ1�t + μ2�t(x, t− τ) = 0
ρ2 ϕtt − bϕxx + k(ϕ + �x) + βθtx = 0
ρ3θtt − δθxx + γϕtx − Kθtxx = 0.

When certain conditions on the initial data were present, the authors proved the exponential
decay of the solution when the wave prorogation speeds were equal, regardless of the
presence of the delay term.

Motivated by the above articles, we study Problem (1). We structure our article as
follows. In Section 2, some useful tools and results are listed, which will be used later. In
the third section, we define a new system that is related to (1). Then, we give the existence
and uniqueness result for the new system by using the semi-group theory. The strong
stability for the new section is proved in Section 5 using the multiplier technique.

2. Preliminary

In this section, we state useful results for the model (1). We begin with the following
theorem, and lemma are needed.

Theorem 1 ([16]). Define the function ϑ as follows:

ϑ(ξ) = |ξ|(2α−1)/2 −∞ < ξ < +∞, 0 < α < 1.

Then, the ‘input’ U and the ‘output’ O of the system

∂t ϕ(ξ, t) + (ξ2 + k)ϕ(ξ, t)−U(t)ϑ(ξ) = 0,

ϕ(ξ, 0) = 0,

O(t) = (π)−1 sin(απ)

+∞∫
−∞

ϑ(ξ)ϕ(ξ, t)dξ,

have a relationship that is given by

O = I1−α,α0U = Dα,α0U,

where

[Iα,α0 f ](t) =
1

Γ(α)

t∫
0

(t− s)α−1e−α0(t−s) f (s)ds.

The following lemma is given by [12], and it is important for our reformulation.

Lemma 1. Let
Dα0 = {λ ∈ C : Reλ + α0 > 0} ∪ {λ ∈ C : Imλ �= 0}
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If λ ∈ Dα0 , then
+∞∫
−∞

ϑ2(ξ)

λ + α0 + ξ2 dξ =
π

sin(απ)
(λ + α0)

α−1.

For positive real numbers a and b, and conjugate exponents p and q satisfying

1
p
+

1
q
= 1,

Young’s inequality states:

ab ≤ ap

p
+

bq

q
.

This can be extended beyond products to convolutions. For functions f and g in appropriate
Lp spaces, the convolution f ∗ g satisfies:

‖ f ∗ g‖r ≤ ‖ f ‖p‖g‖q,

where
1
r
=

1
p
+

1
q

.

3. The Major Results

The system (1) can be reformulated to a suitable problem. To do this, the following
variable will be introduced, as in [4]:

z(x, ρ, t) = �t(x, t− ρτ0), ρ ∈ (0, 1).

With a simple differentiation, we can show that this variable satisfies

τ0zt(x, ρ, t) + zρ(x, ρ, t) = 0, ρ ∈ (0, 1).

Hypotheses on the weights of damping terms with/without delay are taken as

μαα−1
0 < a0.

Consequently, Theorem 1 enables us to derive an equivalent system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1�tt − k(ϕ + �x + lϑ)x − lk0(ϑx − l�) + a0�t + ζ
+∞∫
−∞

φ(ν)Ψ(x, ν, t)dν = 0

ρ2 ϕtt − bϕxx + k(ϕ + �x + lϑ) + γθx = 0
ρ1ϑtt − k0(ϑx − l�)x + lk(ϕ + �x + lϑ) = 0
ρ3θt + qx + γϕtx = 0
τqt + βq + θx = 0
τ0zt(x, ρ, t) + zρ(x, ρ, t) = 0,
∂tΨ(x, ν, t) + (ν2 + α0)Ψ(x, ν, t)− z(x, 1, t)φ(ν) = 0, ν ∈ R

�(x, 0) = �0(x), �t(x,−t) = f0(x, t), θ(x, 0) = θ0(x), t ∈ (0, τ0)

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), q(x, 0) = q0(x)
ϑ(x, 0) = ϑ0(x), ϑt(x, 0) = ϑ1(x), z(w, 0, t) = �t(x, t),
�(0, t) = �x(1, t) = ϕ(1, t) = ϕx(0, t) = 0
ϑ(1, t) = ϑx(0, t) = θ(0, t) = q(1, t) = 0,
Ψ(x, ν, 0) = 0, ν ∈ R,

(2)
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where
ζ = μ(π)−1 sin(απ),

and

I =
+∞∫
−∞

φ2(ν)

ν2 + α0
dν.

Now, the energy of solutions of (2) can be defined by

E(t) = 1
2

1∫
0

[
ρ1�2

t + ρ2 ϕ2
t + bϕ2

x + ρ1ϑ2
t + ρ3θ2 + τq2

]
dx +

δ

2

1∫
0

1∫
0

z2(x, ρ, t)dρdx

+
Λ
2

1∫
0

+∞∫
−∞

Ψ2(x, ν, t)dνdx +
1
2

1∫
0

[
k0(ϑx − l�)2 + k(�x + ϕ + lϑ)2

]
dx,

(3)

with
ΛIτ0 < δ < τ0(2a0 − ζ I) and ζ < Λ. (4)

This energy equation satisfies the next estimate.

Lemma 2. Let
U = (�, u, ϕ, v, ϑ, �, θ, q, z, Ψ)T ,

be a solution to system (2), then the energy defined by (3) satisfies

E′(t) ≤ −C

⎡⎣ 1∫
0

q2dx +

1∫
0

�2
t dx +

1∫
0

+∞∫
−∞

(
ν2 + α0

)
Ψ2(x, ν, t)dνdx +

1∫
0

z2(x, 1, t)dx

⎤⎦. (5)

Proof. By multiplying (2)1, (2)2, (2)3, (2)4, (2)5, (2)6, and (2)7 by �t, ϕt, ϑt, θ, q, δz, and ΛΨ,
respectively, and then integrating over Ω and summing up, we obtain

E′(t) = −ζ

1∫
0

+∞∫
−∞

Ψ(x, ν, t)�tφ(ν)dνdx− β

1∫
0

q2dx

− Λ
1∫

0

+∞∫
−∞

Ψ2(x, ν, t)(ν2 + α0)dνdx

− Λ
∫ 1

0

∫ +∞

−∞
Ψ(x, ν, t)z(x, 1, t)φ(ν)dνdx

− a0

∫ 1

0
�2

t dx− δ

τ0

∫ 1

0

∫ 1

0
z(x, ρ, t)zρ(x, ρ, t)dρdx. (6)

We have

− δ

τ0

∫ 1

0

∫ 1

0
z(x, ρ, t)zρ(x, ρ, t)dρdx = − δ

2τ0

∫ 1

0

∫ 1

0

∂

∂ρ
z2(x, ρ, t)dρdx

=
δ

2τ0

∫ 1

0

[
�2

t − z2(x, 1, t)
]
dx.
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Now, Young’s inequality yields

−ζ
∫ 1

0

∫ +∞

−∞
Ψ(x, ν, t)z(x, 1, t)φ(ν)dνdx

≤ ζ I
2

(∫ 1

0
z2(x, 1, t)dx

)
+

ζ

2

∫ 1

0

∫ +∞

−∞
(ν2 + α0)Ψ2dνdx,

and

−Λ
1∫

0

+∞∫
−∞

φ(ν)Ψ(x, ν, t)�tdνdx ≤ ΛI
2

⎛⎝ 1∫
0

�2
t dx

⎞⎠+
Λ
2

1∫
0

+∞∫
−∞

(ν2 + α0)Ψ2dνdx.

Inserting the last two inequalities in (6) will lead to

E′(t) ≤
(
−a0 +

ζ I
2

+
δ

2τ0

) 1∫
0

�2
t dx +

(
ΛI
2
− δ

2τ0

) 1∫
0

z2(x, 1, t)dx

− β

1∫
0

q2dx +

(
ζ I
2
− Λ

2

) 1∫
0

+∞∫
−∞

(
ν2 + α0

)
Ψ2(x, ν, t)dνdx,

from (4), the proof is completed.

4. Existence and Uniqueness

The semi-group theory will be needed to prove that there exists a unique solution to
the system (2). Define

U = (�, u, ϕ, v, ϑ, �, θ, q, z, Ψ)T ,

where u = �t, v = ϕt and � = ϑt.
Now, we can rewrite (2) to be{

U′(t) = AU(t)
U(t = 0) = U0 = (�0, �1, ϕ0, ϕ0, ϑ0, ϑ1, θ0, q0, z0, 0)T ,

(7)

where
A : D(A) ⊂ H → H,

is the linear operator defined by

AU =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u

k
ρ1
(ϕ + �x + lϑ)x +

lk0
ρ1
(ϑx − l�)− a0

ρ1
u− ζ

ρ1

+∞∫
−∞

φ(ν)Ψ(x, ν, t)dν

v
b
ρ2

ϕxx − k
ρ2
(ϕ + �x + lϑ)− γ

ρ2
θx

�
k0
ρ1
(ϑx − l�)x − lk

ρ1
(ϕ + �x + lϑ)

− 1
ρ3

qx − γ
ρ3

vx

− β
τ q− 1

τ θx

− 1
τ0

zρ

−(ν2 + α0)Ψ + z(x, 1, t)φ(ν),

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)
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and H is the energy space given by

H =H1
∗(Ω)× L2(Ω)× H̃1

∗(Ω)× L2(Ω)× H̃1
∗(Ω)× L2(Ω)

× L2(Ω)× L2(Ω)× L2(Ω×Ω)× L2(Ω×R),

with
H1
∗(Ω) =

{
f ∈ H1(Ω) : f (0) = 0

}
H̃1
∗(Ω) =

{
f ∈ H1(Ω) : f (1) = 0

}
H2
∗(Ω) = H2(Ω) ∩H1

∗(Ω)

H̃2
∗(Ω) = H2(Ω) ∩ H̃1

∗(Ω).

The inner product in H is defined by

(U, Ũ)H =k
1∫

0

(�x + ϕ + lϑ)
(
�̃x + ϕ̃ + lϑ̃

)
dx + k0

1∫
0

(ϑx − l�)
(
ϑ̃x − l�̃

)
dx

+ ρ1

1∫
0

uũdx + b
1∫

0

ϕx ϕ̃xdx + ρ2

1∫
0

vṽdx + ρ1

1∫
0

��̃dx + ρ3

1∫
0

θθ̃dx + τ

1∫
0

qq̃dx

+ δ

1∫
0

1∫
0

zz̃dρdx + Λ
1∫

0

+∞∫
−∞

Ψ(x, ν, t)Ψ̃(x, ν, t)dνdx.

The domain of the linear operator A is

D(A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
U ∈ H/� ∈ H2

∗(Ω); ϕ, ϑ ∈ H̃2
∗(Ω); u, θ ∈ H1

∗(Ω); v, �, q ∈ H̃1
∗(Ω),

�x(1) = ϕx(0) = ϑx(0) = 0; z, zρ ∈ L2((0, 1)× L2(Ω)
)
, z(x, 0) = �(x),

(ν2 + α0)Ψ− z(x, 1, t)φ(ν) ∈ L2(Ω×R),
|ν|Ψ ∈ L2(Ω×R)

⎫⎪⎪⎪⎬⎪⎪⎪⎭.

(9)
We are going to show that the operator A generates a C0 semi-group of contractions in H.
To this end, we start by proving that A is monotone.

Lemma 3. The linear operator A is monotone and for any U ∈ D(A), the following inequality
is satisfied:

(AU, U) < −C

⎡⎣ 1∫
0

q2dx +

1∫
0

u2dx +

1∫
0

+∞∫
−∞

(
ν2 + α0

)
Ψ2(x, ν, t)dνdx +

1∫
0

z2(x, 1, t)dx

⎤⎦. (10)

Proof. We can easily show that D(A) is dense in H. Besides, for any

U = (�, u, ϕ, v, ϑ, �, θ, q, z, Ψ)T ∈ D(A),

we have
E(t) = 1

2
‖U‖2.

Then, from (7), we have

E′(t) = (U′, U)

= (AU, U).

Using (10), we conclude that the operator A is monotone.
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Next, we prove the following lemma with respect to the operator (I −A).

Lemma 4. The operator (I −A) is surjective.

Proof. For any
G = (g1, g2, g3, g4, g5, g6, g7, g8, g9, g10) ∈ H,

there exists U ∈ D(A), which satisfies

(I −A)U = G. (11)

It can be observed that Equation (11) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−u + � = g1 ∈ H1
∗(Ω)

−k(ϕ + �x + lϑ)x − lk0(ϑx − l�) + (a0 + ρ1)u + ζ
∫ +∞

−∞
φ(ν)Ψ(x, ν, t)dν = ρ1g2 ∈ L2(Ω)

−v + ϕ = g3 ∈ H̃1
∗(Ω)

−bϕxx + k(ϕ + �x + lϑ) + γθx + ρ2v = ρ2g4 ∈ L2(Ω)

−� + ϑ = g5 ∈ H̃1
∗(Ω)

−k0(ϑx − l�)x + lk(ϕ + �x + lϑ) + ρ1� = ρ1g6 ∈ L2(Ω)

qx + γvx + ρ3θ = ρ3g7 ∈ L2(Ω)

(τ + β)q + θx = τg8 ∈ L2(Ω)

zρ + τ0z = τ0g9 ∈ L2(Ω× (0, 1))
(ν2 + α0)Ψ− z(x, 1, t)φ(ν) + Ψ = g10(x, ν) ∈ L2(Ω×R).

(12)

By (12)8, we have

τ
∫ x

0
g8(y)dy− (τ + β)

∫ x

0
q(y)dy = θ,

which means that θ(0, t) = 0. Given that

z(x, 0) = u(x),

u = �− g1,

v = ϕ− g3,

and
� = ϑ− g5.

Integrating the Equation (12)9 yields

z(x, ρ) = �(x)e−τ0ρ − e−τ0ρg1(x) + τ0e−τ0ρ
∫ ρ

0
eτ0sg9(x, s)ds,

then

z(x, 1) = �(x)e−τ0 − e−τ0 g1(x) + τ0e−τ0

∫ 1

0
eτ0sg9(x, s)ds.

From (12)10, one has

Ψ =
g10(x, ν) + z(x, 1, t)φ(ν)

ν2 + α0 + 1
.
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Now, it can be easily shown that �,ϕ,ϑ and q satisfy the following system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−k(ϕ + �x + lϑ)x − lk0(ϑx − l�) + (a0 + ρ1 + ζMe−τ0)� = h1 ∈ L2(Ω)

−bϕxx + k(ϕ + �x + lϑ) + ρ2 ϕ− γ(τ + β)q = h2 ∈ L2(Ω)

−k0(ϑx − l�)x + lk(ϕ + �x + lϑ) + ρ1ϑ = h3 ∈ L2(Ω)

−qx + ρ3(τ + β)
x∫

0
q(y)dy− γϕx = h4 ∈ L2(Ω),

(13)

with

M =
∫ +∞

−∞

φ2(ν)

ν2 + α0 + 1
dν,

and

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h1 = ρ1g2 + (a0 + ρ1 + ζMe−τ0)g1 − ζMτ0e−τ0

∫ 1

0
eτ0sg9(x, s)ds− ζ

∫ +∞

−∞

g10(x, ν)φ(ν)

ν2 + α0 + 1
dν

h2 = (g3 + g4)ρ2 − γτg8

h3 = (g5 + g6)ρ1

h4 = −γg3x − ρ3

(
g7 − τ

∫ x

0
g8(y)dy

)
.

(14)

Multiplying (13)1, (13)2, (13)3 and (13)4 by �̃, ϕ̃, ϑ̃ and

(τ + β)
∫ x

0
q̃(y)dy,

respectively. Then, integrating over Ω and summing up, we obtsain the variational formu-
lation of (13), as

B
(
(�, ϕ, ϑ, q), (�̃, ϕ̃, ϑ̃, q̃)

)
= L(�, ϕ, ϑ, q), (15)

where
B :

[
H1
∗(Ω)× H̃1

∗(Ω)× H̃1
∗(Ω)× L2(Ω)

]2
→ R,

is the bilinear form defined by

B
(
(�, ϕ, ϑ, q), (�̃, ϕ̃, ϑ̃, q̃)

)
= k

∫ 1

0
(�x + ϕ + lϑ)

(
�̃x + ϕ̃ + lϑ̃

)
dx + k0

∫ 1

0
(ϑx − l�)

(
ϑ̃x − l�̃

)
dx

+ ρ3(τ + β)2
1∫

0

(∫ x

0
q(y)dy

)(∫ x

0
q̃(y)dy

)
dx + γ(τ + β)

∫ 1

0
q̃ϕdx

+
(
a0 + ρ1 + ζMe−τ0

) ∫ 1

0
��̃dx

+ b
∫ 1

0
ϕx ϕ̃xdx + ρ2

∫ 1

0
ϕϕ̃dx− γ(τ + β)

∫ 1

0
qϕ̃dx + ρ1

∫ 1

0
ϑϑ̃dx + γ(τ + β)

∫ 1

0
qq̃dx,

and
L :
[
H1
∗(Ω)× H̃1

∗(Ω)× H̃1
∗(Ω)× L2(Ω)

]
→ R,

is the linear functional given by

L(�, ϕ, ϑ, q) =
∫ 1

0
h1�̃dx +

∫ 1

0
h2 ϕ̃dx +

∫ 1

0
h3ϑ̃dx + (τ + β)2

∫ 1

0
h4

(∫ x

0
q̃(y)dy

)
dx.

Let us now define a new space V by

V = H1
∗(Ω)× H̃1

∗(Ω)× H̃1
∗(Ω)× L2(Ω),
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equipped with the norm

‖(�, ϕ, ϑ, q)‖V = ‖(�x + ϕ + lϑ)‖2
2 + ‖(ϑx − l�)‖2

2 + ‖ϕ‖2
2 + ‖q‖2

2.

It is easy to see, if l is small enough, that

∫ 1

0

(
�2

x + ϕ2
x + ϑ2

x

)
dx ≤ c

∫ 1

0

[
(�x + ϕ + lϑ)2 + (ϑx − l�)2 + ϕ2

x

]
dx,

which shows us that B and L are bounded in V ×V and V, respectively.
Moreover, the definition of B will lead to

B((�, ϕ, ϑ, q), (�, ϕ, ϑ, q)) ≥ c‖(�, ϕ, ϑ, q)‖2
V ,

which means that B is coercive. As a result, from the Lax–Milgram theorem, we conclude
that the system (13) has a unique solution

(�, ϕ, ϑ, q) ∈ H1
∗(Ω)× H̃1

∗(Ω)× H̃1
∗(Ω)× L2(Ω).

Now, by substituting �, ϕ, ϑ and q into (12)1, (12)3, (12)5 and (12)8, respectively, we find that

(u, v, �, θ) ∈ H1
∗(Ω)× H̃1

∗(Ω)× H̃1
∗(Ω)× L2(Ω).

If
(ϕ̃, ϑ̃, q̃) = (0, 0, 0) ∈ H̃1

∗(Ω)× H̃1
∗(Ω)× L2(Ω),

then, (15) provides us

k
∫ 1

0
(�x + ϕ + lϑ)

(
�̃x + ϕ̃ + lϑ̃

)
dx + k0

∫ 1

0
(ϑx − l�)

(
ϑ̃x − l�̃

)
dx =

∫ 1

0
h1�̃dx, (16)

for all � ∈ H1
∗(Ω). The latter implies that

−k�xx = k�x + l(k0 + k)ϑx −
(

k0l2 + ρ1 + a0 + ζMe−τ0
)

� + h1 ∈ L2(Ω). (17)

Then, from the regularity theory for the linear elliptic equations, we obtain � ∈ H2
∗(Ω).

Moreover, (16) is also true for any φ satisfying φ ∈ C1([0, 1]) and φ(0) = 0, which is in
H1
∗(Ω). Therefore, for any φ ∈ C1([0, 1]), we obtain

k
∫ 1

0
�xφxdx−

∫ 1

0

[
k�x + l(k0 + k)ϑx −

(
k0l2 + ρ1 + a0 + ζMe−τ0

)
� + h1

]
φdx = 0.

When the last equation is integrated in parts, using (17) will lead to

φ(1)�x(1) = 0 ∀φ ∈ C1([0, 1]),

and, thus, �x(1) = 0. In the same way, we can verify that⎧⎪⎪⎨⎪⎪⎩
−bϕxx = −k�x − (k + ρ2)ϕ− klϑ− γ(τ + β)q + h2 ∈ L2(Ω)

−bϑxx = −l(k0 + k)�x − klϕ + (ρ1 + l2k0)ϑ + h3 ∈ L2(Ω)

−qx = γϕx − (τ + β)ρ3

∫ x

0
q(y)dy + h4 ∈ L2(Ω).

Then, we have
ϕ, ϑ ∈ H̃2

∗(Ω), q ∈ H̃1
∗(Ω),
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and
ϑx(0) = ϕx(0) = 0,

which leads to the existence of a unique solution U ∈ D(A) to (11). This completes
the proof.

The previous two lemmas imply that the operator A is a maximal monotone operator.
Then, A is the infinitesimal generator of a linear contraction C0-semi-group on H. In other
words, this can be considered as the proof of the following theorem (see [17]).

Theorem 2. (Existence and uniqueness)

1. If U0 ∈ D(A), then there exists a unique strong solution to system (7), and it is given by

U ∈ C
(
R+, D(A)

)
∩ C1(R+, H

)
.

2. If U0 ∈ H, then there exists a unique weak solution to system (7), and it is given by

U ∈ C
(
R+, H

)
.

5. Exponential Stability

The exponential stability of the semi-group S(t) in the Hilbert space H will be demon-
strated in this section, then there exists a strong unique solution to the system (7). We
will need to employ the necessary and sufficient conditions for C0-semi-groups to be
exponentially stable in a Hilbert space, which was achieved by Gearhart [18].

Theorem 3. Let
S(t) = eAt,

be a C0-semi-group of contractions on Hilbert space H. Then, S(t) is exponentially stable if and
only if

ρ(A) ⊇ {iχ : χ ∈ R} ≡ iR, (18)

lim
|χ|→∞

∥∥∥(iχI −A)−1
∥∥∥ < ∞, (19)

hold, where ρ(A) denotes the resolvent set of A.

Theorem 4. The C0-semi-group of contractions eAt, t > 0, generated by A, is exponentially stable.

Proof. Proving the exponential stability of eAt requires demonstrating the validity of
Theorem 3. By verifying the properties (18) and (19). To begin with, we establish the
following

ρ(A) ⊇ {iλ : λ ∈ R} ≡ iR. (20)

This can be proved in contradiction. Assume that λ̃ ∈ R with λ̃ �= 0 and U �= 0, such that

AU = iλ̃U.
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Then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iλ̃�− u = 0

iλ̃ρ1u− k(ϕ + �x + lϑ)x − lk0(ϑx − l�) + a0u + ζ
+∞∫
−∞

φ(ν)Ψ(x, ν, t)dν = 0

iλ̃ϕ− v = 0
iλ̃ρ2v− bϕxx + k(ϕ + �x + lϑ) + γθx = 0
iλ̃ϑ−� = 0
iλ̃ρ1�− k0(ϑx − l�)x + lk(ϕ + �x + lϑ) = 0
iλ̃ρ3θ + qx + γvx = 0
iλ̃τq + βq + θx = 0
iλ̃τ0z + zρ = 0
iλ̃Ψ + (ν2 + α0)Ψ− z(x, 1, t)φ(ν) = 0.

(21)

From (10), we obtain
u = 0, q = 0, z(x, 1) = 0.

From (21)10 we obtain Ψ = 0, from (21)8 we obtain θ = 0, and (21)1 gives us � = 0. From
(21)9, we can write the solution

z(x, ρ) = Ce−iλ̃τ0ρ,

as the only one. With the fact z(x, 1) = 0, we obtain z(x, ρ) = 0. We continue, using (21)7
with the initial conditions to obtain v = 0, then (21)3 gives us ϕ = 0. From (21)4, we can
conclude that ϑ = 0. Finally, from (21)5, we deal with � = 0. In other words, ‖U‖H = 0,
but this is a contradiction with U �= 0; therefore, there are no imaginary eigenvalues.

Now, the proof of (19) will be given.
Assume (19) is false, that is

lim
|λ|→∞

sup
∥∥∥(iλI −A)−1

∥∥∥ = ∞.

Then, there exists a sequence (Vn) ∈ H and λn ∈ R, such that∥∥∥(iλn I −A)−1Vn

∥∥∥ > n‖Vn‖,

for all n > 0. Given
iλn ∈ ρ(A),

it can be observed that there exists a unique sequence (Un) ∈ D(A), such that

iλnUn −AUn = Vn, ‖Un‖ = 1,

i.e.,
Un = (iλI −A)−1Vn,

and
‖Un‖ > n‖iλnUn −AUn‖.

Now, define
Fn = iλnUn −AUn,

which results in ‖Fn‖ ≤ 1
n , and then Fn → 0 (strong) in H and n → ∞.
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Let
u = �t, v = ϕt, � = ϑt,

and
Un = (�n, un, ϕn, vn, ϑn, �n, θn, qn, zn, Ψn),

and
Fn = ( f n

1 , f n
2 , f n

3 , f n
4 , f n

5 , f n
6 , f n

7 , f n
8 , f n

9 , f n
10).

From
Fn = iλnUn −AUn,

the following equations can be obtained⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iλn�n − un = f n
1

iλnρ1un − k(ϕn + �n
x + lϑn)x − lk0(ϑ

n
x − l�n) + a0un + ζ

+∞∫
−∞

φ(ν)Ψn(x, ν, t)dν = ρ1 f n
2

iλn ϕn − vn = f n
3

iλnρ2vn − bϕn
xx + k(ϕn + �n

x + lϑn) + γθn
x = ρ2 f n

4
iλnϑn −�n = f n

5
iλnρ1�n − k0(ϑ

n
x − l�n)x + lk(ϕn + �n

x + lϑn) = ρ1 f n
6

iλnρ3θn + qn
x + γvn

x = ρ3 f n
7

iλnτqn + βqn + θn
x = τ f n

8
iλnτ0zn + zn

ρ = τ0 f n
9

iλnΨn + (ν2 + α0)Ψn − zn(x, 1, t)φ(ν) = f n
10.

(22)

Taking the real part of the inner product of (iλn I −A)Un and Un in H, noting that Un is
bounded and Fn → 0 and using (10) will lead to

a0

1∫
0

(un)2dx + β

1∫
0

(qn)2dx +

1∫
0

(zn(x, 1))2dx → 0, (23)

where
un → 0, qn → 0, zn(x, 1)→ 0, (24)

then, from (22)10 we obtain Ψn → 0.
Now, with the fact that

k
ρ1

=
b
ρ2

,

and k = k0, after some calculations, we obtain

1∫
0

[
ρ2(vn)2 + b(vn

x)
2 + ρ1(�

n)2 + ρ3(θ
n)2 + (zn(x, 1))2

+k(ϕn + �n
x + lϑn)2 + k(ϑn

x − l�n)2
]
dx → 0,

(25)

so that
iλn‖Un‖2 − (AUn, Un)→ 0.

Then, λn‖Un‖ → 0, which is true only if ‖Un‖ → 0. This contradicts ‖Un‖ = 1; therefore,
the proof of the theorem is now completed.

203



Axioms 2025, 14, 176

6. Conclusions

The integration of second sound and fractional delay into the thermoelastic Bresse
system provides a more comprehensive framework to model the dynamic behavior of
thermoelastic beams, particularly in scenarios where the speed of propagation of the heat
and historical effects are significant, and this is the case in the present work. An analysis
of the exponential stability is conducted. The study establishes both the existence and
uniqueness of solutions for the system through semi-group theory, deriving an exponential
decay estimate for the associated semi-group via appropriate multiplier techniques.

Our system models the interplay between mechanical and thermal waves in materials,
incorporating advanced concepts from fractional calculus and non-local effects.
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Abstract: We introduce a framework presenting the interaction between a four-level atom
(F-LA) and a field mode that begins in a coherent state within the para-Bose field (P-BF). The
F-LA is considered in a cascade configuration and initially prepared in the upper level. We
display the system dynamics by solving the motion equation. We discuss various dynami-
cal behaviors of fundamental quantum resources used in quantum optics and information
tasks, including atomic population inversion, quantum entanglement (QE), and the statistical
properties of the P-BF based on the parameters of the quantum model. In this context, we
demonstrate the impact of various system parameters on these quantum resources. Finally,
we illustrate the dynamic relationships among the quantum resources within the model.

Keywords: para-Bose field; four-level atom; quantum entanglement; statistical properties

MSC: 20-xx; 81-xx

1. Introduction

In recent decades, numerous studies have explored extensions and modifications of
the bosonic Fock–Heisenberg algebra to enhance various aspects of quantum field theory.
Researchers have introduced different q-deformations of the simple harmonic oscillator
using Jackson’s q-calculus [1–4], leading to novel states associated with q-deformed Lie
algebras, including q-coherent states, q-cat states, and q-squeezed states [4–12]. Another
significant adaptation is the Wigner algebra, which integrates the reflection operator and the
Wigner parameter into its structure. This formulation emerges within bosonic relationships
and dynamics, yielding infinite-dimensional para-boson representations as well as finite-
dimensional representations linked to parafermions [13]. These generalizations naturally
lead to concepts involving para fields and para statistics [14,15].

The Jaynes–Cummings model (JCM) is widely utilized in quantum optics to depict the
coupling between a two-level quantum system, such as an atom, and a single quantized
mode of an electromagnetic field, adhering to the conditions of the rotating wave approxi-
mation [16]. This model has been expanded to encompass multi-photon transitions and
various forms of fields, alongside an intensity-dependent coupling between the atom and
the quantum field [17,18]. Extensions of the standard JCM have also explored additional
levels, including three-level atomic systems [19–23]. In this context, many studies have
examined the effects of the Kerr medium [24] and intensity-dependent coupling on the

Axioms 2025, 14, 211 https://doi.org/10.3390/axioms14030211
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dynamics of three-level atomic systems. Furthermore, the interaction of two three-level
atomic systems with a single-mode field, incorporating multi-photon transitions, has been
examined in the presence of a Kerr nonlinear medium and detuning effects [25]. Recently,
there has been growing interest in the quantum interaction between four-level atoms and
cavity fields, with various configurations being explored [26,27].

Quantum entanglement is a fundamental feature of quantum theory, representing
nonlocal correlations among composite quantum systems, where classical descriptions
of correlations between subsystems are inadequate. It has been extensively studied in
quantum information science [28–32] and is crucial for various applications, including
quantum communication, teleportation, quantum entanglement swapping, cryptography,
quantum computing, and dense coding [33–39]. The amount of entanglement can be
quantified using measures such as von Neumann entropy, concurrence, linear entropy, and
entanglement of formation [40,41]. Several methods have been proposed to quantify and
identify quantum coherence within quantum systems [42]. Numerous studies have been
undertaken to characterize and analyze quantum coherence, gaining significant attention
through development and application of coherence quantification measures [43–45].

Beyond the specific domain of quantum optics, the mathematical methodologies
and physical principles examined in this study have broader implications across multiple
fields of physics. The deformed quantum algebras explored here, particularly para-Bose
structures, have been extensively utilized in quantum gravity, where they play a crucial
role in models of noncommutative space-time and extensions of the Heisenberg alge-
bra [46–49]. Likewise, in condensed matter physics, these algebraic deformations have
been instrumental in characterizing unconventional quantum phases, including topological
insulators, superconductors, and quantum Hall systems, wherein fractional statistics arise
as a consequence of strong electron correlations [50–53]. Specifically, para-statistics and
deformed oscillator algebras provide a robust theoretical framework for investigating
anionic excitations, which are fundamental to the description of fractional quantum Hall
states and spin-liquid phases [54–56]. Furthermore, these mathematical structures con-
tribute significantly to the theoretical modeling of correlated electron systems and quantum
materials exhibiting nontrivial topological properties, where symmetry-protected quantum
orders emerge [57–59]. In addition, the quantum resources analyzed in this work, such
as entanglement and coherence, hold central importance in quantum information science,
quantum computing, and quantum metrology. These properties are essential for advancing
quantum cryptographic protocols, enhancing precision measurement techniques, and en-
abling the development of scalable quantum architectures [38,60–63]. By highlighting these
interrelations, this study establishes a framework that extends beyond quantum optics and
contributes to the broader landscape of modern physics. Moreover, our approach is closely
aligned with recent experimental advances in superconducting qubit systems, engineered
quantum states, and cavity quantum electrodynamics, further demonstrating the practical
relevance of our findings beyond purely theoretical considerations [64–66].

Our manuscript focuses on examining the degree of entanglement, atomic coherence,
and atomic inversion in a bipartite system where a four-level atom is coupled with a
para-Bose field. We investigate how field deformation and photon transitions impact the
dynamic behavior of quantifiers, particularly when the quantum field originates from
a coherent state of the P-BF. The time evolution of entanglement between the four-level
atom and para-Bose field is analyzed using quantum entropy, while atomic coherence is
evaluated through the l1 norm.

The manuscript is organized as follows: Section 2 describes the quantum model and
dynamics, Section 3 presents the quantum quantifiers and discusses the numerical results,
and Section 4 provides our conclusions.
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2. Mathematical Model and Dynamics

This section describing the Hamiltonian of the interaction between one-mode P-BF
with an F-LA has a state |k〉 ordered from upper to lower as |1〉 − |4〉

Ĥint =
4

∑
k=1

�
(

âJ |k〉
〈

k + 1
∣∣∣+â†J

∣∣∣k + 1
〉
〈k|
)

, (1)

where � represents the coupling constant between the F-LA and PB-field, J denotes the
number of photons exchanged in transitions between (F-LA) and (P-BF), and â†(â) is the
creation (annihilation) operator of the quantized field, respectively, acting on the Fock
states as

â†|n〉 =
√

G(n + 1)|n + 1〉, â|n〉 =
√

G(n)|n− 1〉. (2)

Here, the G is a positive function and is equal to G(n) = n−
([

n
2

]
−
[

n+1
2

])
q, and q

is the P-BF deformed parameter.
The para-Bose field (P-BF) holds significance as it extends traditional bosonic field

theory by introducing parastatistics, modifying the conventional commutation relations
of annihilation and creation operators. These operators adhere to a parity-deformed os-
cillator algebra, where { R, â} =

{
R, â†} = 0 and

[
â, â†] = G(N + 1) − G(N), with

N = â† â + q(I − R), resulting in a more generalized Fock space representation. The opera-
tor R, known as the parity operator, is a Hermitian operator satisfying R2 = 1, meaning it
has eigenvalues ±1, which classify states into even and odd parity components. This exten-
sion enables the study of systems where particles exhibit characteristics that differ from
purely bosonic or fermionic behavior, making it a fundamental concept in quantum optics
and quantum field theory [67]. The coherent states in the P-BF are characterized as the
eigenstates associated with the field’s annihilation operator. These states form an overcom-
plete and nonorthogonal basis, fulfilling the resolution of identity, akin to Glauber coherent
states but with alterations due to parastatistical effects [67]. They exhibit notable quantum
properties, such as photon antibunching, where the second-order intensity correlation
function demonstrates a decreased probability of detecting two photons simultaneously.
Additionally, they follow sub-Poissonian statistics, indicated by a negative Mandel parame-
ter, signifying reduced photon number fluctuations compared to classical light sources [67].
Furthermore, these states show quadrature squeezing, where field quadratures x and p
experience noise redistribution, confirming the presence of nonclassical effects [8]. Within
the framework of JCM, extended to a single-mode P-BF, these states influence atomic
inversion, modify Rabi oscillations, and enhance entanglement.

The final state of the (F-LA)–(P-BF) system at any time τ > 0, where τ = �t represents
the scaled time, can be expressed as:

|ψ(τ)〉 =
∞

∑
n=0

4

∑
k=1

Rj(n, τ)|n + k− 1, k〉. (3)

The amplitude Rj(n, τ), j = 1, 2, 3, 4 can be obtained by solving the equation of motion of
this system:

−i �
∂

∂t
|ψ(τ)〉 = Ĥint|ψ(τ)〉. (4)

At τ = 0, the F-LA in the upper state and the field in the coherent state of the P-BF
|Z, q〉. So, the initial state is assumed to be

|ψ(0)〉 = |ψF-LA(0)〉 ⊗ |ψB-PF(0)〉 = |1〉 ⊗ |Z, q〉, (5)
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where |Z, q〉 are provided as [41]

|Z, q〉 =
exp

(
−|Z|

2

2

)
4q
√
(q!)3√

(2q)!

∞

∑
n=0

Zn

√ (
q +

[ n
2
])

![ n
2
]
!(2q + n)!

L[ n−1
2 ]+ 1

2
q

(
|Z|2

2

)
|n〉. (6)

Here, Z is the amplitude of the coherent state of the P-BF and Lm
q (. . .) are the associ-

ated Laguerre polynomials.
The coefficients Rj, representing the probability amplitudes, are determined by solving

the time-dependent Schrödinger Equation (4) with the initial condition |ψ(0)〉 =|Z, q, 1〉.
Consequently, these coefficients fulfill the following set of coupled differential equations:

d
dt

⎛⎜⎜⎜⎝
R1

R2

R3

R4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 −i�

√
(n+J)!

n! 0 0

−i�
√

(n+J)!
n! 0 −i�

√
(n+2J)!
(n+J)! 0

0 −i�
√

(n+2J)!
(n+J)! 0 −i�

√
(n+3J)!
(n+2J)!

0 0 −i�
√

(n+3J)!
(n+2J)! 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

R1

R2

R3

R4

⎞⎟⎟⎟⎠. (7)

In this paper, we focus on the effects of single- and double-photon transitions, corre-
sponding to J = 1 and 2, respectively. We analyze the time-dependent features of various
quantum quantifiers related to the quantum system under investigation using the wave
function |ψ(τ)〉 (see Appendix A).

The atomic population inversion, quantum entropy, and coherence are all linked to
the components of the atomic density matrix ρF-LA(τ), which is given by

ρF-LA(τ)= TrP-BF|ψ(τ)〉
〈

ψ(τ)
∣∣∣= ∑4

r=1 ∑4
l=1 ρrl(τ)

∣∣∣r〉〈l|. (8)

The P-BF density matrix can be obtained as ρP-BF(τ) = TrF-LA|ψ(τ)〉〈ψ(τ)|=
∑∞

m ρm|m〉〈m| .

3. Quantum Quantifiers

To investigate the effect of the P-BF deformed parameter q and single- and double-
photon transition on the dynamics of quantum quantifiers, in Figures 1–4 illustrate the time-
dependent behavior of the atomic inversion, second-order correlation function (S-OCF),
atomic entropy, and atomic coherence.

3.1. Population Inversion Corresponding to the F-LA

Population inversion is one of the most significant quantities when considering quan-
tum information. It can be applied to determine the collapse and revival times, which
are crucial for characterizing the maximally entangled and separable state periods. We
define the atomic population inversion through the diagonal elements of the atomic density
matrix ρF-LA(τ) as

ρZ(τ) = ρ11(τ)− ρ44(τ). (9)

3.2. Nonclassical Effects

The S-OCF is widely employed to investigate the statistical characteristics of the field,
as well as to assess photon bunching or antibunching phenomena. It is defined as:

g(2)(τ) =

〈
L̂

†2
L̂

2〉
〈

L̂
†
L̂
〉2 . (10)
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Figure 1. Dynamics of the atomic inversion ρZ of F-LA with z = 4 and for the parameter values of P-
BF deformed parameter q and number of photons transitioned J as (a) (q, J) = (0, 1), (b) (q, J) = (0, 2),
(c) (q, J) = (20, 1), and (d) (q, J) = (20, 2).

Figure 2. Dynamics of the S-OCF g2, with z = 4 and for the parameter values of P-BF de-
formed parameter q and number of photons transitioned J as (a) (q, J) = (0, 1), (b) (q, J) = (0, 2),
(c) (q, J) = (20, 1), and (d) (q, J) = (20, 2).
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Figure 3. Dynamics of the SF-LA as a measure of QE between F-LA and P-BF with z = 4 and
for the parameter values of P-BF deformed parameter q and number of photons transitioned J as
(a) (q, J) = (0, 1), (b) (q, J) = (0, 2), (c) (q, J) = (20, 1), and (d) (q, J) = (20, 2).

Figure 4. Dynamics of the quantum coherence QC, of F-LA with z = 4 and for the parameter
values of P-BF deformed parameter q and number of photons transitioned J as (a) (q, J) = (0, 1),
(b) (q, J) = (0, 2), (c) (q, J) = (20, 1), and (d) (q, J) = (20, 2).
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We say that the quantized field is governed by super-Poissonian statistics if g(2) > 1,
Poissonian statistics if g(2) = 1, and sub-Poissonian statistics if g(2) < 1. The sub-Poissonian
distribution of photons illustrates the quantum nature of the field.

3.3. Quantum Entanglement

The subsystem entropy, defined by the von Neumann entropy, can be used to deter-
mine the degree of entanglement (DoE) evolution of the (F-LA)–(P-BF) state. It is given by

DoE = −Tr
{

ρF-LA(τ)ln
[
ρF-LA(τ)

]}
, (11)

where ρF-LA(τ) represents the F-LA density operator, as given by Equation (8). Based on
refs. [40,41], the function DoE(F-LA)–(P-BF) takes the following form:

DoE(F-LA)–(P-BF) = −∑4
j=1 rjlnrj, (12)

where rj is the jth eigenvalue of the state ρF-LA.

3.4. Quantum Coherence

The diagonal components of the system’s density operator delineate the essential
properties of coherence. The quantum coherence is determined by considering the absolute
value of the non-diagonal elements and applying the l1 norm. The coherence measure is
the distance between the state in question and the nearest incoherent state from the point of
view of the concept of entropy. To detect the amount of coherence, we consider the l1 norm
of coherence. This measure depends on off-diagonal elements for the density operator and
it is defined by the formula [42]:

Qc = ∑
kl

k �=l

|ρkl |, (13)

4. Numerical Results and Discussion

Figure 1 illustrates the dynamics of atomic population inversion in the F-LA system
interacting with the P-BF under conditions of zero and non-zero deformation parameters,
considering both single- and double-photon transitions. For a zero-deformation parameter,
panels (a) and (b) depict the time evolution of atomic population for single- and double-
photon excitations, respectively. In the single-photon excitation case, we observe distinct
features of collapses and revivals in atomic population inversion. Initially, the collapses are
well defined within the scaled time, but they become less distinct over time, with the revival
amplitude gradually diminishing. In the double-photon excitation scenario, the atomic
population exhibits brief revivals interspersed with adjacent collapses. These revivals are
asymmetric around the zero-population inversion line, with fluctuations between positive
and negative values of +1 and −1. The revival duration is notably shorter compared to
the single-photon case. Panels (c) and (d) present the dynamics for a non-zero deforma-
tion parameter, set at 20 scaled units, for single- and double-photon transitions. In the
single-photon case, we observe revivals in atomic population with very brief collapses,
and the revival amplitude spans the entire range of population values. For the double-
photon transition with a non-zero deformation parameter, the dynamics show collapses
and revivals similar to the single-photon case, but with an increased collapse duration
and a slightly reduced oscillation amplitude. Comparing the effects of varying photon
transition numbers and deformation parameters, it is evident that these factors significantly
influence the population inversion dynamics. For q = 20, increasing J from 1 to 2 leads to
more frequent revivals and a reduction in their width. Conversely, for q = 20, increasing J
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does not increase the number of revivals but shortens the revival span. The collapse and
revival phenomena observed in atom-field interactions indicate coherent quantum evolu-
tion, where revivals stem from constructive interference among atomic state amplitudes,
while collapse periods reflect decoherence effects caused by transitions between energy
levels. These results are consistent with previous research on Jaynes–Cummings mod-
els and intensity-dependent atom-field interactions, where nonlinearity and deformation
significantly influence atomic transition dynamics. In particular, studies on q-deformed os-
cillators and para-Bose models reveal that deformation alters energy spectra and transition
rates, leading to extended coherence times and modified revival patterns. The alignment of
these findings with theoretical predictions in nonlinear optics and quantum field theories
suggests that para-Bose field deformation serves as a controllable parameter for regulating
atomic inversion dynamics.

Figure 2 shows the evolution of S-OCF g2 for the F-LA system under condi-
tions of zero and non-zero deformation parameters q, considering both single- and
double-photon transitions J = 1, 2, respectively. For q = 0, we can observe that
g(2) < 1 at the beginning of interaction for J = 1, 2, indicating sub-Poissonian statistics.
As the time increases, the function g(2) becomes larger than 1, indicating super-Poissonian
statistics. For q = 20, we can observe that the function g(2) exhibits an oscillatory behavior
with values greater and smaller than one, indicating super- and sub-Poissonian statistics.
In the case of J = 2, we have g(2) < 1 at the beginning of interaction and g(2) > 1 as the
time increases. The shift from sub- to super-Poissonian statistics suggests that interaction
time significantly influences photon distribution. Studies on q-deformed oscillators and
para-Bose fields demonstrate that deformation alters photon statistics by introducing non-
linear effects, leading to oscillatory behavior in g(2) for q = 20. Similar patterns have been
observed in nonlinear quantum optics, such as Kerr media, where nonlinearity modulates
photon distribution, indicating that para-Bose deformation introduces an additional degree
of complexity to photon dynamics. The tunability of photon statistics enables the design of
nonclassical light sources. Para-Bose deformation provides a useful method for controlling
photon statistics, contributing to advancements in quantum optics applications.

Figure 3 displays the quantum entanglement (QE), as measured by the von Neumann
entropy, for the F-LA–P-BF state under varying field deformation and photon transition
numbers. For q = 0, panels (a) and (b) depict the SF-LA dynamics for single-photon (J = 1)
and double-photon (J = 2) transitions, respectively. In the single-photon case, rapid oscilla-
tions are observed in the entanglement measure, with the amplitude fluctuating around a
steady-state value before eventually stabilizing. In contrast, for the double-photon transi-
tion (J = 2), the entanglement exhibits quasi-periodic behavior. Unlike the single-photon
case, the entanglement measure does not settle into a steady state. Panels (c) and (d) show
the time-dependent behavior of entanglement for a non-zero field deformation parameter
q for both single- and double-photon transitions, respectively. For J = 1, the function SF-LA

exhibits consistent periodic behavior with a constant amplitude of oscillations throughout
the dynamics. In the double-photon transition case (J = 2), the QE dynamics also display
periodicity, but the amplitude of oscillations varies over time, introducing an additional
layer of complexity to the system’s behavior. Thus, the consideration of field deformation
and double-photon transitions enhances the periodic nature of the entanglement measure
during the evolution. These observations align with established studies in quantum optics,
particularly the JCM, where single-photon transitions typically lead to periodic entan-
glement oscillations, while multi-photon transitions introduce interactions that increase
quantum correlations. The quasi-periodic behavior in the J = 2 case suggests an enhanced
interaction mechanism, as multi-photon absorption–emission processes can induce more
complex quantum correlations. Studies on q-deformed oscillators and para-Bose fields have
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shown that deformation modifies energy levels and transition dynamics, which explains the
stable periodic behavior in the J = 1 case and the varying oscillation amplitude in the J = 2
case. Additionally, entanglement dynamics in nonlinear quantum optics, such as Kerr-type
media, exhibit similar periodic structures, indicating that para-Bose deformation effectively
introduces an adjustable nonlinearity that influences quantum correlations. The ability
to control entanglement oscillations through deformation and photon transition tuning
presents promising applications in different tasks in quantum information and optics.

Figure 4 displays the dynamics of QC for the F-LA system for both zero and non-zero
deformation parameters q of the P-BF, considering single- and double-photon transitions.
For the zero-deformation parameter case, the dynamics of QC for single- and double-
photon transitions are shown in panels (a) and (b), respectively. In the single-photon case,
the QC dynamics exhibit collapses and revivals, with the collapse line fluctuating around
a value of 1. In contrast, for the double-photon transition (J = 2), periodic behavior is
observed in the QC dynamics, characterized by increased amplitude fluctuations and a
shorter revival width compared to the single-photon case. Notably, no collapses are present
in this scenario. For the non-zero deformation parameter case, the QC dynamics for single-
photon transitions show periodic behavior with an increased amplitude of oscillations
compared to the zero-deformation case. In the double-photon transition case (J = 2),
oscillations are observed in the QC dynamics, but the amplitude of these oscillations varies
over time, indicating more complex dynamic behavior. In summary, the introduction of
non-zero deformation parameters enhances the periodic nature of quantum coherence, with
single-photon transitions leading to more pronounced oscillations, while double-photon
transitions result in oscillations with varying amplitude.

5. Conclusions

In this study, we have explored the dynamics of atomic population inversion, S-OCF,
degree of entanglement, and quantum coherence in the F-LA system interacting with the
P-BF under both zero and non-zero deformation parameters. For zero deformation param-
eter values, the system exhibits characteristic collapses and revivals in atomic population
inversion during single-photon transitions, while double-photon transitions lead to brief,
asymmetric revivals. The S-OCF similarly shows collapses and revivals, with an increasing
slope of the collapse line that remains constant across both single- and double-photon
transitions. The entanglement dynamics under single-photon transitions oscillate rapidly,
stabilizing around a steady state, whereas double-photon transitions induce periodicity
without reaching a steady state. Quantum coherence dynamics for single-photon excita-
tions display collapses and revivals, with a collapse line that fluctuates around a steady
value. The introduction of non-zero deformation parameters adds additional complexity to
the system. For atomic population inversion, the period of oscillation remains the same as
in the single-photon transition case, but with an extended collapse duration. The S-OCF
and quantum coherence exhibit periodic behaviors, with increased amplitude and variable
oscillations, particularly in double-photon transitions. The entanglement dynamics also
show enhanced periodicity under non-zero deformation, highlighting the effects of defor-
mation parameter and photon transition numbers on the overall system behavior. Overall,
this work highlights the significant impact of field deformation and photon transition num-
bers on the quantum dynamics of the F-LA system. It provides valuable insights into how
these parameters can be effectively controlled to extract and optimize quantum resources
from the system. Regarding the experimental feasibility of our findings, we highlight that
our model, which considers the interaction between a four-level atom and a deformed
para-Bose field, can be realized using trapped atoms or ions in cavity quantum electrody-
namics setups, where four-level atomic structures naturally arise in alkali or alkaline-earth
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atoms through well-defined energy level configurations. Another promising platform is
cold atoms in optical lattices, where multi-level atomic transitions can be engineered via
laser coupling.

Author Contributions: M.A.: investigation (equal); methodology (equal); software (equal);
writing—original draft (equal). S.A.-K.: investigation (equal); methodology (equal); writing—review
and editing (equal). K.B.: investigation (equal); resources (equal); writing—original draft (equal). All
authors have read and agreed to the published version of the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2025R225), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge to Princess Nourah bint Abdulrahman University
Researchers Supporting Project number (PNURSP2025R225), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Detailed Calculation

The evolution of the quantum state of the system is governed by the time-dependent
Schrödinger equation:

i�
∂

∂t
|ψ(t)〉 = Ĥint|ψ(t)〉, (A1)

where Ĥint represents the interaction Hamiltonian describing the coupling between the
four-level atom and the para-Bose field. The objective is to express this equation in terms
of a set of differential equations governing the probability amplitudes associated with the
atomic and field states.

Given that the system comprises an atom possessing four distinct energy levels cou-
pled to a quantized field mode, the wavefunction is articulated as a superposition of the
atomic states and the field’s Fock states:

|ψ(t)〉 = ∑4
k=1 ∑∞

n=0 Rk(n, t)|n + k− 1, k〉, (A2)

where Rk(n, t) represents the probability amplitude for the atom being in state |k〉 with
n + k− 1 photons in the field. Substituting this expansion into the Schrödinger equation
and differentiating,

i�∑4
k=1 ∑∞

n=0
dRk(n, t)

dt
|n + k− 1, k〉 = Ĥint∑4

k=1 ∑∞
n=0 Rk(n, t)|n + k− 1, k〉. (A3)

Multiplying both sides by 〈n + k− 1, k| and utilizing the orthonormality of the basis
states, we obtain

i�
dRk(n, t)

dt
= ∑4

j=1 〈n + k− 1, k|Ĥint|n + j− 1, j〉Rj(n, t). (A4)

This equation provides a framework for obtaining the system of differential equations
once we determine the Hamiltonian matrix elements. The interaction Hamiltonian for the
quantum system is expressed as:

Ĥint = ∑4
k=1 �

(
L̂J |k〉

〈
k + 1

∣∣∣+L̂†J
∣∣∣k + 1

〉
〈k|
)

, (A5)

The operators and L̂† and L̂ govern the transitions between atomic levels, leading to
the coupling terms in the equations of motion. Using the matrix elements obtained from the
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Hamiltonian action on the basis states, we obtain at the final system of coupled differential
equations. The probability amplitudes evolve according to:

d
dt

⎡⎢⎢⎢⎣
R1

R2

R3

R4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 −iω

√
(n+J)!

n! 0 0

−iω
√

(n+J)!
n! 0 −iω

√
(n+2J)!
(n+J)! 0

0 −iω
√

(n+2J)!
(n+J)! 0 −iω

√
(n+3J)!
(n+2J)!

0 0 −iω
√

(n+3J)!
(n+2J)! 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

R1

R2

R3

R4

⎤⎥⎥⎥⎦. (A6)

This system provides a full description of the time evolution of the probability ampli-
tudes, incorporating the effects of multi-photon transitions and field deformation.

To determine the probability amplitudes Rk(n, t), we solve the system of coupled
differential equations. This system can be expressed in matrix form as

d
dt

R(t) = MR(t), (A7)

where R(t) is the column vector of probability amplitudes and M is the coupling ma-
trix. Since the matrix M is time-independent, the formal solution can be obtained using
matrix exponentiation:

R(t) = eMtR(0). (A8)

If M is diagonalizable, we write it as M = VDV−1, leading to the solution:

R(t) = VeDtV−1R(0), (A9)

where V is the matrix whose columns are the eigenvectors of M, and eDt is a diagonal
matrix with elements eλi t, where λi are the eigenvalues of M. Alternatively, numerical-
method techniques can be used. Once the amplitudes Rk(n, t) are determined, they allow
analysis of quantum properties such as atomic population inversion, quantum coherence,
and entanglement.
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Abstract: We have analyzed solutions of bound states of a scalar particle in spacetime
with torsion. In the first analysis, we investigate the confinement of a scalar particle in a
cylindrical shell. In the second step, we investigate the Klein–Gordon oscillator. Then, we
finish our analysis by searching for solutions of bound states of the Klein–Gordon oscillator
by interacting with a hard-wall potential. In all these systems, we determine the relativistic
energy profile in the background characterized by the presence of torsion in spacetime
represented by a spiral-like dislocation.
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1. Introduction

In analogy to phase transitions in condensed matter systems, it is believed that the
decoupling of the fundamental interactions in the early Universe gave rise to cosmological
objects known as topological defects (TDs) [1]. The best known TDs in the literature are
the domain wall [2], global monopole [3,4] and the cosmic string [5–7]. In particular, the
cosmic string is an example of a linear TD associated with the curvature of spacetime [8].
In crystallography, this type of defect is known as disclination [9]. In addition to the
association between disclination and curvature, there are also linear defects associated
with the torsion in a continuous solid [9]. These types of defects are known as dislocations,
which, in cylindrical symmetry, can be typified as screw-like dislocation and spiral-like
dislocation [10]. Recently, these two dislocations have been studied in quantum mechanics
systems. For example, the screw-like dislocation has been investigated on the Landau
quantization [11,12], on the harmonic oscillator [13], on a harmonic oscillator subjected
to a linear potential [14], on the doubly anharmonic oscillator [15] and in non-inertial
effects on a non-relativistic Dirac particle [16]. The spiral-like dislocation has been studied
on an electron subjected to an electric field and an uniform magnetic field [17] and on
the harmonic oscillator [18]. Other topological structures have been investigated in the
gravitational context. For example, studies have evaluated the Hawking effect for a massive
Dirac spinor under the effects of RP3 geon [19], quantum-gravitational effects produced
in Minkowski spacetime with a periodic boundary condition [20] and the structure of
the density matrix for two Unruh–DeWitt detectors coupled with a massless scalar field
in two locally flat topologically nontrivial spacetimes constructed from identifications of
Minkowski spacetime.
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The screw-like and spiral-like dislocations have been reformulated in (1 + 3)-
dimensions in Einstein–Cartan geometry through the generalized concept of the Volterra
process [21], also known as the “cut and paste” process, in distorted spacetimes [22].
Another process capable of producing these types of structures is through the periodic
identification of one of the spatial coordinates, imposing a periodic boundary condition
on the fields in the background [20]. In particular, in the relativistic quantum mechanic
context, recently, the screw-like dislocation has been investigated in several quantum
systems [23–31]. The spiral-like dislocation has been studied on a scalar field subjected to a
hard-wall confining potential [32] and in rotating effects on a Dirac field [33]. The metric
that describes a spacetime with a spiral-like dislocation is given by [32] (c = h̄ = 1)

ds2 = −dt2 + (dρ + βdϕ)2 + ρ2dϕ2 + dz2, (1)

where ρ = (x2 + y2)1/2 and β > 0 are the parameters associated with the TD of the
spacetime.

In this manuscript, we analyzed the effects of torsion on the relativistic quantum
dynamics of a scalar particle immersed in spacetime with a spiral-like dislocation described
by the line element given in Equation (1). Our first step is to investigate a relativistic
scalar particle confined into a cylindrical shell. In addition, we analyze the dynamics of
the Klein–Gordon oscillator [34] in the spacetime described by Equation (1), and thus,
extend this discussion to the confinement of a hard-wall confining potential by searching
for analytical solutions to the Klein–Gordon equation.

The structure of this paper is as follows: in Section 2, we investigate the topological
effects of a spiral-like dislocation on the relativistic energy spectrum of a scalar particle
into a cylindrical shell; in Section 3, we study the interaction between a scalar particle
and the Klein–Gordon oscillator in spacetime with a spiral-like dislocation; in Section 4,
we analytically determine the relativistic energy profile of the Klein–Gordon oscillator
subjected to a hard-wall potential in this background with torsion; in Section 5, we present
our conclusions.

2. On a Scalar Particle Confined to an Elastic Cylindrical Shell

A scalar particle associated with a field φ in a curved spacetime is described by the
Klein–Gordon equation in the form [23]

1√−g
∂μ(
√
−ggμν∂ν)φ−m2φ = 0, (2)

where g = det(gμν) = −ρ2, by using Equation (1), gμν = (gμν)−1 and m is the parameter
associated with the remaining mass of the field. From Equations (1) and (2), we obtain

− ∂2φ

∂t2 +

(
1 +

β2

ρ2

)
∂2φ

∂ρ2 +

(
1
ρ
− β2

ρ3

)
∂φ

∂ρ
− 2β

ρ2
∂2φ

∂ρ∂ϕ
+

β

ρ3
∂φ

∂ϕ
+

1
ρ2

∂2φ

∂ϕ2 +
∂2φ

∂z2 −m2φ = 0. (3)

Equation (3) describes the relativistic quantum motion of a spin-0 particle in spacetime
with a spiral-like dislocation. The general solution to Equation (3) is

φ(ρ, ϕ, z, t) = u(ρ)eilϕeikze−iE t, (4)

where l = 0,±1,±2 . . . are the quantum numbers associated with the angular momentum
operator L̂z = −i∂ϕ, −∞ < k < ∞ are the quantum numbers associated with the linear
momentum operator p̂z = −i∂z, where [L̂z, Ĥ] = [Ĥ, L̂z] and [ p̂z, Ĥ] = [Ĥ, p̂z], with Ĥ as
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the Hamiltonian operator, and u(ρ) is a radial function. Then, by substituting Equation (4)
into Equation (3), we obtain the axial wave equation(

1 +
β2

ρ2

)
d2u
dρ2 +

(
1
ρ
− β2

ρ3 −
2ilβ
ρ2

)
du
dρ

+
ilβ
ρ3 u− l2

ρ2 u + α2u = 0, (5)

where

α2 = E2 −m2 − k2. (6)

Now, in order to analytically solve Equation (5), let us consider the axial wave func-
tion [32]

u(ρ) = R(ρ)eil arctan
(

ρ
β

)
, (7)

that is, by substituting Equation (7) into (5), we obtain(
1 +

β2

ρ2

)
d2R
dρ2 +

(
1
ρ
− β2

ρ3

)
dR
dρ
− l2

(ρ2 + β2)
R + α2R = 0. (8)

Let us define s = α(ρ2 + β2)1/2; then, Equation (8) becomes

d2R
ds2 +

1
s

dR
ds
− l2

s2 R + R = 0. (9)

Equation (9) is the Bessel equation [35] and its general solution is

R(s) = C1 J|l|(s) + C2N|l|(s), (10)

where C1 and C2 are constants, Jl(s) is the first type of Bessel function and Nl(s) is the
Neumann function [35]. In the interval 0 ≤ ρ < ∞, we impose that C2 = 0, since N|l|(s)→
∞ when s → 0 (ρ → 0). In this case, we obtain a simpler solution, R(s) = C1 J|l|(s); that is,
the solution for a free scalar particle in spacetime with a spiral-like dislocation, as already
discussed in Ref. [32].

From now on, let us consider a scalar particle confined to a cylindrical shell; that
is, the relativistic quantum particle is restricted to move in interval sa ≤ s ≤ sb, where

sa = α
√

ρ2
a + β2 and sb = α

√
ρ2

b + β2, with ρa = a and ρb = b fixed and b > a. In addition,
let us consider the boundaries of this region as impenetrable walls, such that the axial wave
function satisfies

R(sa) = R(sb) = 0. (11)

This type of confinement has been studied in spacetime with curvature and torsion [23],
in Safka–Witten spacetime [36], in curved spacetime [37], on a non-relativistic particle in an
environment with a magnetic dislocation [38], and on a neutral particle interacting with a
dipole moment [39]. Equation (11) yields the following relation:

J|l|(sa)N|l|(sb)− J|l|(sb)N|l|(sa) = 0. (12)

Let us consider the case where sa % 1, sb % 1 and l are fixed numbers. In this specific
case, Jl(s) and Nl(s) functions are rewritten, respectively, in the form [40]
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J|l|(si) ∼
√

2
πsi

[
cos
(

si −
lπ
2
− π

4

)
− (4l2 − 1)

8si
sin
(

si −
lπ
2
− π

4

)]
, (13)

and

N|l|(si) ∼
√

2
πsi

[
sin
(

si −
lπ
2
− π

4

)
+

(4l2 − 1)
8si

cos
(

si −
lπ
2
− π

4

)]
, (14)

where i = a, b. By substituting Equations (13) and (14) into Equation (12), we obtain

α2 ∼ π2n2

(
√

b2 + β2 −
√

a2 + β2)2
+

4l2 − 1
4
√
(a2 + β2)(b2 + β2)

, (15)

with n = 0, 1, 2, . . .. By substituting Equation (6) into Equation (15), we obtain

Ek,l,n ≈
√

m2 + k2 +
π2n2

(
√

b2 + β2 −
√

a2 + β2)2
+

4l2 − 1
4
√
(a2 + β2)(b2 + β2)

. (16)

Equation (16) gives us the relativistic energy spectrum of a scalar particle into a cylin-
drical shell in an environment with a spiral-like dislocation. We can see that the relativistic
energy profile of this system is influenced by the spacetime topology. This influence is

the correction made on the fixed axial radius ρeff =
√

ρ2
i + β2, with i = a, b. In contrast to

ref. [23], there is no gravitational effect analogous to the Aharonov–Bohm effect for bound
states on the allowed energy values of the relativistic quantum system [26–28,30]. By mak-
ing β = 0 into Equation (16) we recover the result discussed in refs. [23,36]; that is, the rela-
tivistic energy spectrum of a scalar particle into a cylindrical shell in Minkowski spacetime.

Figure 1 provides the relativistic energy levels for the first five radial modes of the
system, which shows us how the permitted energy values of the system vary for each radial
mode, both for the positive part and for the negative part (antiparticle). Figures 2 and 3
show the variation in the relativistic energy levels of the system through the variation in
the TD. Figure 2 gives us the ground state (n = 0) of the system as a function of the torsion
in spacetime, while Figure 3 gives us the first four excited states of the system as a function
of the dislocation, both for l = 1. By observing Figures 2 and 3, we can note that the higher
the value of n, the more abrupt the increase in energy (analyzing the positive side), while,
in the fundamental state, the variation is minimal and occurs very tenuously when mβ → 0.

Figure 1. The positive and negative relativistic energy levels given in Equation (16) for n = 0, 1, 2, 3
and 4, with a = 1, b = 2, l = 1 and βm = 1.

222



Axioms 2025, 14, 227

Figure 2. Relativistic energy level given in Equation (16) for the radial mode n = 0, with a = 1, b = 2,
l = 1 and k/m = 1.

Figure 3. Positive and negative relativistic energy levels given in Equation (16) for n = 1, 2, 3 and 4,
with a = 1, b = 2, l = 1 and k/m = 1.

By taking b → a, we have a relativistic quantum particle restricted to move in a circle
of radius of a. In Ref. [23], this confinement configuration has been investigated on a scalar
field immersed in a spacetime with curvature and (time-like and space-like) torsion, while
in Ref. [36], this confinement configuration is analyzed in a background characterized by a
tubular matter source with axial interior magnetic field and a vanishing exterior magnetic
field. However, for b → a into Equation (16), we have E → ∞, which is not a physically
acceptable result. Next, let us introduce a potential of attractive nature in the interval
a < ρ < b to compete with the growth of the allowed energy values for the radial modes of
the quantum system. In this case, Equation (16) is rewritten as follows

Ek,l ≈
√

m2 + k2 +
l2

a2 + β2 −
1

4(a2 + β2)
, (17)

which represents the relativistic energy spectrum of a scalar particle confined into a quan-
tum ring in the spacetime with spiral-like dislocation. We can note that the permitted values
of relativistic energy of this system are influenced by the torsion present in the spacetime.
This influence is the contribution that gives rise to an effective radius ρeff =

√
a2 + β2. By

making β = 0 into Equation (17), we obtain a relativistic energy profile of a scalar particle
confined into a quantum ring in Minkowski spacetime.
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3. Klein–Gordon Oscillator Under Effect of a Spiral-like Dislocation

Inspired by the Dirac oscillator [41,42], Bruce and Minning [34] proposed a relativistic
quantum oscillator model for scalar particles which became known as the Klein–Gordon
oscillator (KGO) in the literature. This relativistic quantum oscillator model, in addition to
providing an analytical solution at the non-relativistic limit, falls on the quantum harmonic
oscillator described by the Schröndiger equation [43]. KGO has been investigated in a
noncommutative space [44], on anti-de Sitter space [45], on a generalized uncertainty prin-
ciple framework [46], on a topologically nontrivial spacetime [47], in position-dependent
mass systems [48–50], in a curved spacetime [51], in the Som–Raychaudhuri spacetime [52],
in possible Lorentz symmetry violation scenarios [53,54], and in the global monopole
spacetime [55]. However, KGO has not yet been analyzed in a spacetime with a spiral-like
dislocation. Here, we investigate the topological effects of a spiral-type dislocation on KGO.
In this case, Equation (2) in the spacetime considered in this study can be rewritten as [29]

1√−g
(∂μ + mωXμ)(

√
−ggμν)(∂ν + mωXν)φ−m2φ = 0, (18)

where ω is the angular frequency of KGO and Xμ = (0, ρ, 0, 0). Then, by following the
steps from Equation (3) to Equation (5), we obtain the axial wave equation(

1 +
β2

ρ2

)
d2u
dρ2 +

(
1
ρ
− β2

ρ3 −
2ilβ
ρ2

)
du
dρ

+
ilβ
ρ3 u− l2

ρ2 u−m2ω2ρ2u + γu = 0, (19)

with

γ = E2 −m2 − k2 −m2ω2β2 − 2mω. (20)

By substituting Equation (7) into Equation (19), we obtain the differential equation(
1 +

β2

ρ2

)
d2R
dρ2 +

(
1
ρ
− β2

ρ3

)
dR
dρ
− l2

(ρ2 + β2)
R−m2ω2ρ2R + γR = 0. (21)

Let us define the new variable r = mω(ρ2 + β2), such that we obtain

d2R
dr2 +

1
r

dR
dr
− l2

4r2 R +
δ

r
R− 1

4
R = 0, (22)

with

δ =
γ + m2ω2β2

4mω
=
E2 −m2 − k2 − 2mω

4mω
. (23)

We are interested in a well-behaved solution to Equation (22) in the limits r → 0 and
r → ∞, and we have the following general solution:

R(r) = r
|l|
2 e−

r
2 f (r), (24)

where f (r) is a function to be determined. By substituting Equation (24) into Equation (22),
we obtain

r
d2 f
dr2 + (|l|+ 1− r)

d f
dr

+

(
γ− |l|

2
− 1

2

)
f = 0, (25)
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which is the confluent hypergeometric differential equation [35] and f (r) is the confluent
hypergeometric series: f (r) = 1F1(A, B; r), with

A =
1
2
+
|l|
2
− γ; B = |l|+ 1. (26)

The confluent hypergeometric series becomes a polynomial of degree n by imposing that
A = −n = 0, 1, 2, . . ., of which we obtain

Ek,l,n = ±
√

m2 + k2 + 4mω

(
n +

|l|
2

+ 1
)

. (27)

By observing Equation (27), we can see that the relativistic energy profile of KGO in
the spiral-like dislocation spacetime is equal to the relativistic energy profile of KGO in
the Minkowski spacetime [27,29,56]; that is, the relativistic energy levels of KGO are not
influenced by the spacetime topology. This is due to Equation (23); note that the parameter
δ is defined in terms of the parameter γ, where the latter is added by the term m2ω2β2,
which cancels out with the term −m2ω2β2 that exists in the definition of the parameter γ.
However, the eigenfunctions of KGO depend on the TD, since they are defined in terms
of the confluent hypergeometric polynomials, which in turn depend on the parameter
A = A[γ(β2)] given in Equation (26). In addition, there is no gravitational effect analogous
to the Aharonov–Bohm effect for bound states on relativistic energy levels of the quantum
system [26–28,30].

4. On the Klein–Gordon Oscillator Subjected to a Hard-Wall Potential
in Spacetime with a Spiral-like Dislocation

In this section, we investigate the effects of the spacetime topology on KGO sub-
jected to a hard-wall. This confinement type has been investigated in several quantum
systems, for example, on a Dirac oscillator [57,58], in quantum systems under non-inertial
effects [59,60], in a Landau-type quantization plus a Dirac field [61], in quantum system
of geometric phase [62], in an environment with a pointlike defect [63] and on a massive
scalar field under effects of the aether-like Lorentz symmetry violation [64]. This confining
potential is important due its similarity to a box of certain dimensions, which is a very
good approximation to consider when discussing the quantum properties of a gas molecule
system and other particles, which are necessarily confined in a box.

Then, let us restrict a scalar particle in the following form:

u(ρ0) = 0, (28)

where ρ0 = const.. The boundary condition given in Equation (28) indicates that the radial
wave function vanishes at a fixed radius ρ0; that is, the quantum particle is under the effects
of the hard-wall potential. To obtain the relativistic energy levels of this quantum system,
let us consider the specific case γ % 1 and with l fixed. This means that parameters A and
B is larger and fixed, respectively. Under these mathematical constraints, the confluent
hypergeometric series is rewritten as follows

1F1(A, B; r0) ∝ cos
(

π

4
− Bπ

2
+
√

2Br0 − 4Ar0

)
. (29)
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By substituting Equations (7) and (24) into Equation (28), we have

Ek,l,n ≈ ±
√

m2 + k2 +
π2

(ρ2
0 + β2)

(
n +

|l|
2

+
3
4

)2

+ 2mω. (30)

Equation (30) gives us the relativistic energy spectrum of KGO plus a hard-wall
potential in the spacetime with a spiral-like dislocation, influenced by the TD present in
spacetime. We can note this influence by the contribution that gives rise to an effective

radius ρeff =
√

ρ2
0 + β2. We can also that there is no gravitational effect analogous to the

Aharonov–Bohm effect for bound states on the relativistic energy profile of the quantum
system [26–28,30]. In addition, by taking ω → 0 and β �= 0 into Equation (30) we recover
the result obtained in Ref. [32]. By making ω �= 0 and β = 0 into Equation (30) we
obtain the relativistic energy spectrum of KGO interacting with a hard-wall potential in the
Minkowski spacetime discussed in Ref. [65].

5. Conclusions

We have investigated some possible scenarios of a scalar particle interacting with
confining potentials in spacetime with a spiral-like dislocation. We started our analysis
with a scalar particle restricted in a cylindrical shell where we obtained the relativistic
energy levels, which are influenced by the TD present in the spacetime. This influence
is described explicitly through an effective radius defined by the parameter associated
with the torsion. Next, we analyzed KGO in this background and analytically defined its
relativistic energy levels, which are not influenced by the spiral-like dislocation; that is,
the energy profile of KGO remains the same, despite being immersed in a background
with torsion. In addition, we obtain the relativistic energy levels of KGO plus a hard-wall
confining potential, which, again, are influenced by the spiral-like dislocation through an
effective radius defined by the parameter associated with the TD. Finally, unlike the effects
of the cosmic string and screw dislocation on confined quantum systems, we have observed
that in all cases analyzed, there is no gravitational effect analogous to the Aharonov–Bohm
effect for bound states on relativistic energy levels of the quantum system [26–28,30].

It is worth mentioning that the above results open up paths for extensions or gener-
alizations. For example, the scalar particle subjected to relativistic Landau quantization
[66] has already been studied in several distorted backgrounds [27,29], for different types
of confinements [27,31,67]; however, this system has not been studied under the effects of
spiral-like dislocation. Furthermore, confined quantum systems have recently been the
object of study in the thermodynamic context [68–79], in which the effects of curvature and
torsion on thermodynamic quantities, such as internal energy, entropy, specific heat, etc.,
are analyzed. In this sense, as a future perspective, the results obtained here can be used
for this type of investigation.
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Abstract: We investigate the relationship between confluent Heun functions and the eigen-
value spectra of infinite matrices related to the semi-classical and quantum Rabi models,
revealing distinct connections in each case. In the semi-classical model, the eigenval-
ues are explicitly expressed through confluent Heun functions, whereas in the quantum
Rabi model, they are determined by zeros of a condition involving confluent Heun func-
tions. Our findings establish a unified framework for solving the eigenvalue problem of
infinite-dimensional unbounded matrices related to the Rabi models. We derive some new
identities for confluent Heun functions, enabling simplifications and broader applications
in mathematics and physics. The explicit eigenvalue expressions in the semi-classical case
align with approximate results from earlier studies, while the derived conditions for the
quantum model provide a concise and unified form, encompassing special cases that are
typically treated as exceptions. We also discuss the energy spectrum of the quantum Rabi
model, uncovering intriguing phenomena and patterns. Our results deepen the under-
standing of Rabi models and extend their potential applications in quantum optics and
quantum information.

Keywords: Rabi model; confluent Heun function; infinite matrix; quantum optics; eigenvalue
problem

MSC: 81Q05; 81Q80; 35Q40; 35Q41; 81Q93

1. Introduction

The Rabi model, initially proposed by Isidor I Rabi in 1936 [1,2], describes the inter-
action between a two-level atom and a classical oscillating magnetic field. It is one of the
simplest and most fundamental models for studying matter–light interactions and has
served as a basis for various areas in quantum physics [3–7], including quantum optics,
quantum information, and condensed matter physics. A widely used approximation, the
Jaynes–Cummings model applies when the coupling between the two-level system and
the oscillator is weak, allowing certain terms in the Hamiltonian to be neglected, which is
the rotating wave approximation (RWA) [8–14]. In recent years, advancements in experi-
mental techniques have allowed the exploration of regimes beyond the applicability of the
Jaynes–Cummings model, particularly the ultra-strong and deep-strong coupling regimes.
In these regimes, the RWA fails, and the full regimes of the Rabi model must be used to
accurately describe the system.

Axioms 2025, 14, 263 https://doi.org/10.3390/axioms14040263
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Two typical classifications are the semi-classical Rabi model and the quantum Rabi
model [14–24].

Definition 1. A semi-classical Rabi model [1,2] is usually defined as H = β
2 σz +

g
2 cos(ωt)σx,

where σx, σy, σz are Pauli matrices and β is the transition frequency of the two-level system. The
parameters ω and g are the frequency and amplitude of harmonic driving. A quantum Rabi
model [8,14] has the Hamiltonian as H = ωa†a + μσz + λσx

(
a† + a

)
, where a (a†) is the destruc-

tion (creation) operator, 2μ is the qubit frequency, ω is the mode frequency, and λ is the coupling
strength of the light–matter interaction.

The semi-classical Rabi model can be regarded as the classical version of the effective
Hamiltonian of the quantum Rabi model in the interaction picture. Recent theoretical
developments, including analytical solutions for the quantum Rabi model, have further
increased interest in the Rabi model. Braak’s analytic solution [15] provided a basis for
determining the full energy spectrum of the model, sparking ongoing research on various
extensions, such as multi-photon, two-mode, and multi-atom Rabi models. The quantum
Rabi model is focused on its eigenvalues, while the semi-classical Rabi model is focused on
its evolution since its eigenvalue is trivial [21–24]. Both kinds of model can be transformed
into an infinite matrix, to solve the above problem, although by different methods. Those
matrices are unbound operators, and are often difficult to solve in mathematics.

In this paper, we present a new theoretical approach to obtain the eigenvalues and
eigenvectors of certain types of infinite matrices, by establishing a link with the correspond-
ing physical Rabi models. By solving this specific physical model problem, we actually
also address the related mathematical problem of determining the eigenvalues of infinite
unbounded matrices. The interesting thing is that confluent Heun functions appear in
both the semi-classical and quantum Rabi models. We find that the eigenvalue of the
matrix with the semi-classical Rabi model is determined by the confluent Heun functions,
while the eigenvalue spectra of the quantum Rabi model are the roots of the equation
defined by the confluent Heun functions. The analytical solution for the regular energy
spectrum of the quantum Rabi model was first presented by Braak [15]. The results of
Zhong [17] and Maciejewski [18] combine the regular energy spectrum with the other two
special cases. The advantage of our approach lies in its ability to unify the regular case
with the other two special cases. Additionally, we examine the energy spectrum of the
quantum Rabi model, revealing intriguing phenomena and patterns. Our results enhance
the understanding of Rabi models, broaden their potential applications in quantum optics
and quantum information [3–7], and offer a framework for further exploration of confluent
Heun functions in related fields.

We introduce the solvable infinite matrix generated by the semi-classical Rabi model
in Section 2, while the infinite matrix for the quantum Rabi model is discussed in Section 3.
Our discussions and conclusions are presented in Section 4 and Section 5, respectively.

2. Solvable Infinite Matrix Generated by Semi-Classical Rabi Models

2.1. The Infinite Matrix

We consider an infinite-dimensional Hermitian matrix HF , related to the semi-classical
Rabi model under Fourier transform. Floquet theory can solve this so-called Floquet
Hamiltonian HF , and here, we can continue to obtain the analytical expression of the
eigenvalues qi of HF by solving the semi-classical Rabi model. Let us observe the expression
of the infinite matrix HF , which can be divided into 2× 2 block matrices as Hm,n

F = Hn,m
F =

hm−n · σ̂ + δmnnωI , where I is the identity matrix, hi = (xi, yi, zi)
T, σ̂ =

(
σx, σy, σz

)
, and

σx, σy, σz are Pauli matrices. Then, through the inverse Fourier transform, we can obtain the
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expression of the corresponding Hamiltonian as Hf = ∑∞
n=−∞ cos(nωt)hn · σ̂. Since HF is

Hermitian, the coefficient hi must be symmetric as hi = h−i. We rewrite the Hamiltonian
as Hf = h · σ̂, where h = h0 + 2 ∑∞

n=1 hn cos(nωt).

For simplicity, we choose the semi-classical Rabi model as H = β
2 σz +

g
2 cos(ωt)σx.

The corresponding coefficients are h0 = (0, 0, β/2)T, h1 = (g/4, 0, 0)T, and hi≥2 = 0.
Then, the Floquet Hamiltonian HF has the following infinite matrix representation in
Floquet states ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · ·
· s−−2 g/4 0 0 0 0 0 0

g/4 s+−1 0 0 g/4 0 0 0
0 0 s−−1 g/4 0 0 0 0
0 0 g/4 s+0 0 0 g/4 0
0 g/4 0 0 s−0 g/4 0 0
0 0 0 0 g/4 s+1 0 0
0 0 0 g/4 0 0 s−1 g/4
0 0 0 0 0 0 g/4 s+2 ·

· · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where s±n = nω ± β/2. To solve the eigenvalue of the infinite matrix HF is in principle
to solve det(HF − λI) = 0. It is easy to check that, if λ is the eigenvalue of HF , λ + nω

is also an eigenvalue for any integer n. According to Floquet theory, the time evolution
operator of the Hamiltonian Hf can be expressed as U(t; t0) = F(t)F−1(t0), and F(t) has
the form [25–28]

F(t) = M(t)e−iQt, (2)

where M(t) is a periodic matrix of t and the constant Q is the characteristic diagonal
matrix as Q = diag(qα, qβ). Since we consider a two-level system here, the number of
the characteristic eigenvalue is two, and the relation qα + qβ = TrHf = 0 makes only one
characteristic exponent independent. Thus, the characteristic matrix Q can be written as
Q = qασz.

2.2. Solution to the Characteristic Exponent

The solution to the characteristic exponent qα is related to the time evolution oper-
ator U(t; t0) of a two-level system H = β

2 σz +
g
2 cos(ωt)σx, which has been previously

discussed [21–23]. Here, we recall the time evolution operator U(t; t0) in a more concise
way. After a rotation R = e−i π

2 σx e−i π
4 σy , the efficient Hamiltonian takes a new form as

H1 = RHR† = β
2 σx +

g
2 cos(ωt)σz, leaving the structure of the energy spectrum unchanged.

The parameter ω can be regarded as a scaling parameter [23,29]. We choose a transform
as τ = ωt− π

2 ; then, the Hamiltonian can be obtained as H′ = β′
2 σx +

g′
2 sin(τ)σz, where

β′ = β/ω and g′ = g/ω. For simplicity, we assume ω = 1 and denote the Hamiltonian
as H = β

2 σx +
g
2 sin(t)σz. The time period remains T = 2π/ω = 2π. The Schrödinger

equation is

i∂t|ψ〉 = H(t)|ψ〉 =
(

β

2
σx +

g
2

sin(t)σz

)
|ψ〉, (3)

where |ψ〉 = (c1, c2)
T is the normalized wave function of the two-level system and h̄ is set

to 1. Then, after removing c2 (or c1), we obtain a second-order differential equation for c1

(or c2), as

∂2
t c1 + (i

g
2

cos t +
g2

4
sin2 t +

β2

4
)c1 = 0. (4)
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Next, applying the change in the variable from t to z = 1
2 (1− cos t) and another transform

c1 = eigz f , we can obtain the differential equation as

z(z− 1)
∂2 f
∂z2 +

[
1
2
(z− 1) +

1
2

z− 2igz(z− 1)
]

∂ f
∂z

+ (− β2

4
) f = 0. (5)

Compared to the standard confluent Heun equation

z(z− 1)y′′ + [γ(z− 1) + δz + z(z− 1)ε)]y′ + (αz− q)y = 0, (6)

we can obtain the coefficients q = β2

4 , α = 0, γ = 1
2 , δ = 1

2 , ε = −2ig. The solution that
satisfies the confluent Heun equation is the confluent Heun function HC(q, α; γ, δ, ε; z),
with the initial condition HC(q, α; γ, δ, ε; 0) = 1 [30–32]. The confluent Heun function can
be expressed as a standard power-series expansion around z = 0 as HC(q, α; γ, δ, ε; z) =
∑∞

n=0 bnzn. The coefficients bn are determined by the three-term recurrence relation Rnbn +

Qn−1bn−1 + Pn−2bn−2 = 0 with the initial conditions b−2 = b−1 = 0 and b0 = 1. Here,
Rn = n(n − 1 + γ), Qn = q − n(n − 1 + γ + δ − ε), and Pn = −α − εn. Therefore, the
solution to Equation (4) is

c1(t) = e−igzHC
(

β2

4
, 0;

1
2

,
1
2

,−2ig; z
)

:= e−igzHC(a1; z), (7)

where parameters a1 :=
(

β2

4 , 0; 1
2 , 1

2 ,−2ig
)

, and z = sin2 t
2 . Here, we choose the initial

condition c1(t = 0) = 1, c2(t = 0) = 0.
From the symmetry of the two functions c1 and c2, we can observe that, apart from

g changing sign to −g, c1 and c2 satisfy differential equations of the same form. Then,
according to the initial condition c2(t = 0) = 0, we know that c2 is the other linearly
independent solution z1−γHC(q + (1− γ)(ε− δ), α + (1− γ)ε, 2− γ, δ, ε, z), which is

c2(t) = iη β sin
t
2

eigzHC
(

β2 − 1
4

+ ig, ig;
3
2

,
1
2

, 2ig; z
)

:= iη β sin
t
2

eigzHC(a2; z), (8)

where parameters a2 :=
(

β2−1
4 + ig, ig; 3

2 , 1
2 , 2ig

)
, z = sin2 t

2 , and η = 1 + 2� t−π
T � with the

floor function �x�. The parameter η can be treated as a constant within each continuous
period t ∈ [(2n− 1)π, (2n + 1)π). Then, we can construct the time evolution operator as

U1(t) =

(
c1(t) −c2(t)∗

c2(t) c1(t)∗

)
. (9)

According to the symmetry H(t) = σx H(t− T
2 )σx, we derive U2(t) = σxU1(t− T

2 )σx.
Consequently, the total time evolution operator can be expressed (see Appendix B) as

U(t, 0) = U2(t− NT)U†
2 (0)e

i2NΘσn/2, (10)

where N = � t
T �, Θ = 2 arcsin |c2(

T
2
−
)|, and σn = sin Φσx + cos Φσy with Φ =

arg[c∗1(
T
2
−
)c2(

T
2
−
)]. For simplicity, some notations (e.g., f (t−)) are defined in Appendix A.

The continuity of the functions c1(t) and c2(t) in Equations (7) and (8) is worth
mentioning. If the reader has no concerns about continuity, this section can be skipped. It
should be noted that the two functions c1(t) and c2(t) are discontinuous at the periodic
points t = (2n + 1)π, n ∈ Z. As a result, they only satisfy the differential Equation (3)
within a single period. The parameter η indicates that the solution c2(t) differs by a negative
sign between adjacent periodic intervals. Thus, we use U1(t) and U2(t) to construct the
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total time evolution operator U(t, 0), ensuring that U(t, 0) remains continuous at all times.
This approach guarantees that U(t, 0) depends solely on the complete evolution during
the first period. For example, we can obtain the continuity at t = T, as N = 0 and
U(T−, 0) = U2(T−)U†

2 (0) = ei2Θσn/2 = U2(0)U†
2 (0)e

i2Θσn/2 = U(T, 0) = U(T+, 0).

Lemma 1. Compared to the Floquet theory [25–28], an additional rotation is required, which is
Rs = e−i π

4 σx e−i Φ
2 σz . Then, we can obtain the Floquet operator F(t) as

F(t) = RsUR†
s = RsU2(t− NT)U†

2 (0)R†
s eiNΘσz . (11)

Proof of Lemma 1. Following Equations (3)–(10), the total time evolution operator U(t, 0)
is given by (for a more detailed derivation, see Appendix B)

U = U(t, 0) = U2(t− NT)U†
2 (0)e

i2NΘσn/2. (12)

Since the direction of the spin in Equation (2) is σz, we need a rotation Rs to modify
the direction σn, which is σn′ = RsσnR†

s = e−i π
4 σx e−i Φ

2 σz(sin Φσx + cos Φσy)ei Φ
2 σz ei π

4 σx =

e−i π
4 σx σyei π

4 σx = σz. Then, we can obtain the Floquet Operator as F(t) = RsUR†
s =

RsU2(t− NT)U†
2 (0)R†

s Rsei2NΘσn/2R†
s = RsU2(t− NT)U†

2 (0)R†
s eiNΘσz .

Theorem 1. The characteristic value qα is

qα =
Θ
T

=
2 arcsin |c2(

T
2
−
)|

2π
(13)

=
1
π

arcsin
(√

2βRe[eigHC(a∗1;
1
2
)HC(a2;

1
2
)]

)
(14)

Proof of Theorem 1. Equation (11) is a little different from the standard Floquet opera-
tor (2). Thus, we modify Equation (11) as

F(t) = RsU2(t− NT)U†
2 (0)R†

s eiNΘσz (15)

= RsU2(t− NT)U†
2 (0)R†

s e−i(t−NT) Θ
T σz ei(t−NT) Θ

T σz eiNT Θ
T σz (16)

= RsU2(t− NT)U†
2 (0)R†

s e−i(t−NT) Θ
T σz eit Θ

T σz (17)

≡ M(t)e−iQt, (18)

where M(t) = RsU2(t− NT)U†
2 (0)R†

s e−i(t−NT) Θ
T σz and Q = Θ

T σz. Then, compared with

Q = qασz, we can obtain qα = Θ
T = arcsin |c2(

T
2
−
)|/π.

2.3. Comparison with Previous Results

The approximate result for β 
 1 was well studied in Refs. [5,27–29,33–39], and
the one proposed earliest among them is [29]. The approximate result for β is qapp

α ≈√
2β

π Re[eigHC(a∗1 |β=0; 1
2 )HC(a2|β=0; 1

2 )] ≡
β
2 J0(g). These transformations, τ = ωt− π/2

and cos(ωt) = sin τ, introduce a bias of 1/2 to the characteristic value qα, which should be
noted when comparing with the previous work [29].

When g 
 1, the approximate result [29] is

qapp
α ≈ β

2
− β

8(1− β2)
g2 +

β
(
3β2 + 1

)
128(1− β2)

3 g4 + . . . , (19)

which can also be obtained by a perturbation expansion. Figure 1 shows the micro differ-
ence between the approximate and exact results when g 
 1. If we compare the Taylor
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expansions of the two results, we will find some identities about the confluent Heun
function, which are

1 2 3 4

-0.4
-0.2

0.2

0.4

q

0.995 1.000 1.005 1.010

0.492

0.494

0.496

0.498

0.500
q

Figure 1. The difference between the exact and approximate characteristic value qα with g = 0.01.
The yellow line is the exact value qα, while the blue line is the approximate value qapp

α . The right
panel is an enlarged view near β = 1.

∂qα

∂g

∣∣∣∣
g=0

= 0,
∂2qα

∂g2

∣∣∣∣∣
g=0

= (−1)�
β−1

2 � β

4(1− β2)
. (20)

When β is large (β % 1), the approximate result [29] is

qapp
α ≈ 1

2
+

g
πx

E(x), (21)

where x2 = g2

g2+(1−β)2 and E(x) is the complete elliptic integral. As shown in Figure 2, the
difference becomes very small when β is large.

0.05 0.10 0.50 1 5 10

-1.0

-0.5

0.5

1.0

Figure 2. Comparison of the exact and approximate values of the characteristic value qα when β is
small or large. The continuous blue line is sin[qαπ]. The yellow line is sin

[ g
x E(x)

]
, E(x) is the average

of the first and second kinds of the complete elliptic integral. The red line is sin
[

β
2 J0(g)π

]
, where

J0(g) is the first kind of the Bessel function of 0-order.

3. Solvable Infinite Matrix Generated by Quantum Rabi Models

3.1. The Quantum Rabi Model

The Hamiltonian of the quantum Rabi model [15–20] is described by

H = ωa†a + μσz + λσx

(
a† + a

)
, (22)
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where a (a†) is the destruction (creation) operator, and σx,z are Pauli matrices. The energy
difference between the two levels is 2μ, and λ denotes the coupling strength between
the two-level system and the bosonic mode. We set the frequency ω = 1 for simplicity,
without loss of generality. The eigenvalue equation H|ψ〉 = E|ψ〉 can be regarded as a
matrix equation HM|ψ〉 = E|ψ〉, where HM is an infinite matrix and |ψ〉 is the eigenvector
corresponding to eigenvalue E. The eigenstates |ψ〉 for the model can be written

|ψ〉 =
∞

∑
n=0

cn|n〉|↑〉+ dn|n〉|↓〉, (23)

where |n〉 is the Fock state for the bosonic mode, and |↑〉 and |↓〉 are the eigenstates of σz

with eigenvalues 1 and −1, respectively.
The infinite matrix HM can be divided into 2× 2 block matrices as Hm,n

M = hm,n ·
σ̂ + δmnnI , for m, n ≥ 0. Here, hn,n = (0, 0, μ)T, hm,n =

√
(m + n + 1)/2(λ, 0, 0)T for

|m− n| = 1 and hm,n = 0 for |m− n| ≥ 2. These terms for |m− n| ≥ 2 arise when
considering multi-photon interactions, which are not addressed in this paper. Then, the
Hamiltonian HM has the following infinite matrix representation⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ 0 0 λ 0 0 0
0 −μ λ 0 0 0 0
0 λ 1 + μ 0 0 λ

√
2 0

λ 0 0 1− μ+ λ
√

2 0
0 0 0 λ

√
2 2 + μ 0 0

0 0 λ
√

2 0 0 2− μ λ
√

3
0 0 0 0 0 λ

√
3 3 + μ

· · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (24)

From the structure of the matrix, we can see that the solution space is naturally
divided into two subspaces (odd and even), which can also be derived from the conditions
(Equation (45)) formed by the confluent Heun functions later. Actually, it is very difficult
to directly obtain the eigenvalue spectrum for this infinite matrix, as it is an unbounded
operator. From an analytical perspective, the spectrum of unbounded operators may
contain various components (e.g., point spectrum, continuous spectrum, and residual
spectrum), whereas truncation methods struggle to handle the continuous and residual
spectra. Numerically, the matrix elements of unbounded operators may grow rapidly as the
row or column indices increase. When truncated to finite-dimensional matrices, issues such
as truncation errors and convergence problems may arise, sometimes even introducing
spurious eigenvalues unrelated to the original operator. However, its eigenvalue spectrum
can be determined by connecting it to the physically relevant quantum Rabi model, which
can be solved using creation and annihilation operators. This functional method yields
Heun functions as exact solutions in a power series form. Even when considering finite
truncations of these power series, the numerical precision can be controlled to any desired
level of accuracy.

3.2. Conditions for Eigenvalues

There are several approaches to derive the conditions that the eigenvalues should
satisfy. The earliest was the G-function form of the recurrence coefficient type given by
Braak [15]. Next, Chen proposed a more physical way using Bogoliubov transforma-
tions [16]. Then, Zhong introduced a concise form by using the confluent Heun func-
tions [17]. Here, we will follow some of Zhong’s steps to solve the eigenvalues, then
provide a more direct and concise expression for the conditions. We use analytical func-

236



Axioms 2025, 14, 263

tions ψ1,2 of the creation operator a† to rewrite the eigenstates |ψ〉 in Equation (23) as

|ψ〉 = ψ1

(
a†
)
|0〉|↑〉+ ψ2

(
a†
)
|0〉|↓〉, (25)

where |0〉 is the vacuum state for the bosonic mode.
From the eigenvalue equation H|ψ〉 = E|ψ〉, the operator functions ψ1,2 are found to

satisfy the differential equations [17,40–42] as

z dψ1
dz + λ

(
dψ2
dz + zψ2

)
+ μψ1 = Eψ1, (26)

z dψ2
dz + λ

(
dψ1
dz + zψ1

)
− μψ2 = Eψ2, (27)

where z = a† can be formally regarded as a complex number. Using the linear combinations
f = ψ1 + ψ2 and g = ψ1 − ψ2, the above equations can be transformed into a second-order
differential equation for f (z) or g(z), which is

d2 f
dz2 + p(z)

d f
dz

+ q(z) f = 0 (28)

with p(z) = [(1− 2E− 2λ2)z− λ]/[z2 − λ2], q(z) = [λz− λ2(z2 + 1) + E2 − μ2]/[z2 − λ2].
We can transform the above equation into the standard confluent Heun equation by

the two transformations as f1(z) = e−λzφ1(x1) and f2(z) = eλzφ2(x2), where x1 = λ−z
2λ

and x2 = λ+z
2λ . Firstly, we use the transformation x1 = λ−z

2λ , and Equation (28) becomes

x1(x1 − 1)φ′′1 + [γ(x1 − 1) + δx1 + x1(x1 − 1)ε)]φ′1 + (αx1 − q)φ1 = 0, (29)

where q = μ2 −
(
E + λ2)2, α = −4λ2(E + λ2), γ = −

(
E + λ2), δ = −

(
E + λ2) + 1,

ε = 4λ2. From the form of Equation (29), we can naturally express the eigenvalue E in
terms of a new variable as k = E + λ2. Here, k can be regarded as a quasi-energy value
of a modified Hamiltonian H′ = H + λ2, which makes this formulation convenient for
subsequent discussions. The parameters in the confluent Heun Equation (29) can be re-
expressed as q = μ2 − k2, α = −4kλ2, γ = −k, δ = 1− k, ε = 4λ2. Therefore, the solution
to Equation (28) is

f1(z) = e−λzHC
(

μ2 − k2,−4kλ2;−k, 1− k, 4λ2; x1

)
:= e−λzHC(a3; x1), (30)

with the parameter a3 :=
(
μ2 − k2,−4kλ2;−k, 1− k, 4λ2). The other linearly independent

solution of the Heun confluent function is x1−γ
1 HC(q + (1− γ)(ε− δ), α + (1− γ)ε; 2−

γ, δ, ε; x1), which requires separate discussion only when 1− γ ∈ N, due to the physical
meaning of z = a†. Since a†n|0〉 =

√
n!|n〉 in the Bargmann space, the analytical functions

ψ1,2 do not always correspond to valid states as they may not be normalized. Under certain
conditions, the coefficients bn in Heun confluent function HC(q, α; γ, δ, ε; x) may satisfy
bn/bn−1 � −ε/n for large n, where the analytical functions ψ1,2 can be normalized and are
thus valid. However, these conditions are not explicitly provided in the confluent Heun
functions and are often related to the convergence at the singular point x = 1. Therefore,
we use an alternative approach to determine the conditions for the eigenvalues, employing
the next transformation and an additional solution.

We apply the second transformation x2 = λ+z
2λ , and through a similar sequence of

steps, we obtain another solution to Equation (28) as

f2(z) = eλzHC(a4; x2) := eλzHC
(

μ2 − k2 + 4λ2, 4(1− k)λ2; 1− k,−k, 4λ2; x2

)
, (31)

237



Axioms 2025, 14, 263

with the parameter a4 := (μ2 − k2 + 4λ2, 4(1− k)λ2; 1− k,−k; 4λ2). When E is an eigen-
value of the quantum Rabi model, the two forms of the solution f (z) must coincide within
the common domain of definition (up to a multiplicative constant), which implies that
the Wronskian determinant vanishes. Noticing x1 + x2 = 1, we can obtain the Wronskian
determinant [18,20] as

W(k, λ, μ; y) = f1∂z f2 − f2∂z f1 (32)

=
1

2λ
[4λ2H3(y)H4(1− y) + H′

3(y)H4(1− y) + H3(y)H′
4(1− y)], (33)

where y = x1, Hi(y) := HC(ai; y), and H′
i(y0) := ∂yHC(ai; y)|y=y0 .

Lemma 2. The Wronskian can be expressed without explicitly involving derivatives, which is

W(k, λ, μ; y) = k2H3(y)H3(1− y)− μ2H4(y)H4(1− y), (34)

where a parameter 2kλ(y− 1) is multiplied.

Theorem 2. The Wronskian Equation (34) must vanish in the intersection of domains of solutions.
By choosing y = 1/2, we can obtain a more concise form as

w(k, λ, μ) := W(k, λ, μ; y = 1/2) = k2H2
3(1/2)− μ2H2

4(1/2) (35)

= [kH3(1/2)− μH4(1/2)][kH3(1/2) + μH4(1/2)], (36)

where Hi(1/2) := HC(ai; 1/2). From the above equation, we can see that the condition can be
divided into two parts kH3(1/2)− μH4(1/2) = 0 and kH3(1/2) + μH4(1/2) = 0, and those
conditions are more concise than previous results [15–19].

Proof of Lemma 2 and Theorem 2. After applying the identity Equations (52) and (53),
we can simplify Equation (33) as

W(k, λ, μ; y) =
1

2λ
[4λ2H3(y)H4(1− y) +

μ2H4(y)− k2H3(y)
k(1− y)

H4(1− y)

+H3(y)
(k− 4λ2(1− y))H4(1− y)− kH3(1− y)

1− y
] (37)

=
1

2kλ(1− y)
[4kλ2(1− y)H3(y)H4(1− y) + (μ2H4(y)− k2H3(y))H4(1− y)

+kH3(y)
(
(k− 4λ2(1− y))H4(1− y)− kH3(1− y)

)
] (38)

=
1

2kλ(1− y)
[
H3(y)H4(1− y)(4kλ2(1− y)− k2 + k(k− 4λ2(1− y)))

−k2H3(y)H3(1− y) + μ2H4(y)H4(1− y)
]

(39)

=
1

2kλ(y− 1)

[
k2H3(y)H3(1− y)− μ2H4(y)H4(1− y)

]
. (40)

When y = 1/2, we can obtain

w(k, λ, μ) = 2kλ(y− 1) ∗W(k, λ, μ; y) (41)

= k2H3(1/2)H3(1− 1/2)− μ2H4(1/2)H4(1− 1/2) (42)

= k2H2
3(1/2)− μ2H2

4(1/2) (43)
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3.3. The Energy Spectrum of Quantum Rabi Model

We have now derived the conditions that the energy E = k− λ2 needs to satisfy. These
conditions are explicitly restated as

kHC(a3; 1/2)± μHC(a4; 1/2) = 0, (44)

where a3 := (μ2 − k2,−4kλ2;−k, 1 − k, 4λ2) and a4 := (μ2 − k2 + 4λ2, 4(1 − k)λ2; 1 −
k,−k; 4λ2). When the energy E = k− λ2 satisfies Expression (44) above, we can reconstruct
a physical eigenstate with the corresponding eigenvalue of E that can be normalized. If
we look at the above equation from the perspective of parameter k, we will find that it has
poles at k ∈ Z+. A new method is to multiply the condition expressions by a constant, the
Gamma function Γ(1− k), so that they no longer diverge at these poles. The use of Gamma
functions to eliminate poles in the equivalent of G-functions for the asymmetric quantum
Rabi model was also proposed theoretically in Refs. [43–45].

Remark 1. The Wronskian condition (44) becomes l∓(k) = 0, where

l∓(k) := HC(a3; 1/2)/Γ(−k)∓ μHC(a4; 1/2)/Γ(1− k). (45)

Figure 3 shows the above functions l∓ and their zeros, which are consistent with the
previous results [15–19]. Since these functions l∓ have no poles, we can observe their zero
distributions more clearly.

1 2 3

-2

-1

1

2
l-

1 2 3
k

-2

-1

1

2
l+

Figure 3. Comparison with previous results for μ = 0.4, λ = 0.7, ω = 1. The zeros of G∓ in Ref. [15],
G+

1(4)|z=0 in Ref. [17], and l∓ in this paper are consistent. (Left panel): G− (red dash lines), G+
1 (green

dot-dash lines), and l− (blue solid lines). (Right panel): G+ (red dash lines), G+
4 (green dot-dash

lines), and l+ (blue solid lines). To enhance clarity, the values of the l∓ functions have been rescaled
by a constant factor of 5.

The structure of the energy spectrum E = k− λ2 is shown in Figure 4. The energies
of the blue solid (red dashed) lines belong to the odd (even) subspace and satisfy the
energy condition l− = 0 (l+ = 0). We can see that the non-trivial crossings occur only at
k ∈ Z+ and there are trivial crossings when μ and k are half-integers, and λ = 0. The non-
trivial crossings of the spectral lines occur only between lines of different colors or shapes,
indicating that non-trivial energy degeneracy does not occur within the same subspace.
We can then use the ordering of energies within the corresponding subspace to label the
energy levels (− for odd subspace and + for even subspace), as illustrated in Figure 4. As λ

approaches infinity, the quasi-energy value k converges to the corresponding marked level
n. This type of marking indicates that non-trivial crossings occur only when the energies
are at the same marked level, while trivial crossings occur between adjacent marked levels.
This result has been verified using numerical methods; however, a theoretical proof would
require a deeper understanding of confluent Heun functions and the quantum Rabi model,
and is therefore not provided here. Numerical calculations show that when k is a half-
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integer, approximate crossing points appear. The lower right corner of the right panel in
Figure 4 provides a magnified view of this situation.
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Figure 4. Quasi-energy spectrum (k = E + λ2) of quantum Rabi models for μ = 1 (left panel) and
μ = 2.5 (right panel). The energies of the blue solid lines belong to the odd subspace and satisfy the
energy condition l− = 0. The energies of the red dashed lines belong to the even subspace and satisfy
the energy condition l+ = 0.

When a non-trivial crossing occurs at kz ∈ Z+, the two condition functions l∓ also
intersect at kz, where the eigenstates degenerate into the Jude states [46–48] (polyno-
mial states). We find that the number m of non-trivial crossings at kz ∈ Z+ is given by
m(μ, kz) = �max(0, kz + 1− |μ|)�, where �x� represents the floor function and |x| repre-
sents the absolute value function; this result has also been verified by numerical methods.
The result m represents the number of Juddian isolated exact solutions [45–47] and is
consistent with the findings in Ref. [48] for the case |μ| < 1. Another situation is that only
one of the condition functions, l− or l+, equals zero at kz. This situation implies that the
limiting values of the two functions H3(1/2)/Γ(−k) and μH4(1/2)/Γ(1− k) at the pole kz

are either identical or opposite, corresponding to the odd or even subspace, respectively.
Figure 5 shows these two situations, and we can regard these two special cases k ∈ Z+ as
the limiting situations at the poles, from the perspective of the criterion l∓(k) = 0. Our
method unifies the conditions into a single consistent formula, whether k is a pole or not,
indicating that we do not need to treat the poles as special cases. For both the regular and
exceptional spectra, this consistent formula provides a clear understanding of the roots of
conditional Equation (45).

-0.5 0.5 1.0 1.5 2.0 2.5
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l+
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Figure 5. Exceptional quasi-energy k = 1 with the l∓ functions (yellow line for l− and blue line for
l+). The left panel represents the degenerate case with μ = 1/2, λ =

√
3/4, and the right panel

represents the non-degenerate case with μ = 1, λ = 1.1647879.

Although we have obtained the exact conditions for the eigenvalues of the quantum
Rabi model, the explicit expressions for a specific energy level remain unclear, as the exact
forms of the roots involving the confluent Heun functions are difficult to obtain. Here, we
obtain the upper and lower bounds for the energy E0, which is the ground state energy of
the quantum Rabi model.
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Remark 2. The ground state energy is the lowest root of the odd parity condition l− = 0, for which
we obtain a lower bound, denoted as

E0 + λ2 ≥ eg = −μ +
μ

1 + λ−2(μ + 1/2)
, (46)

where we consider μ > 0. When λ is small or large, we can obtain two more concise upper bounds
E0 + λ2 ≤ min(es

up, el
up) as

es
up = −μ +

μ
1/4

μ+1/2 + λ−2(μ + 1/2)
, el

up = −μ +
μ

1 + λ−2(μ/4)
. (47)

Figure 6 illustrates the differences between the three bounds and the exact ground
quasi-energy k, which are negligible when λ is either small or large. This expression for
small λ can be derived using perturbation theory (see Appendix C), while numerical checks
are employed for other regions.
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Figure 6. The upper and lower bound for the ground states with μ = 1.5 (left panel) and μ = 0.4
(right panel). The black solid lines are the exact quasi-energy of the ground states. The two upper
bounds are el

up (red dashed line) and es
up (green dot-dash line), while the lower bound is eg (purple

dotted line) at the bottom right corner.

4. Discussion

The confluent Heun functions are used in both the semi-classical and quantum Rabi
models, which is an interesting and noteworthy phenomenon. However, in these two cases,
the relationship between the confluent Heun functions and the eigenvalue spectrum differs.
In the semi-classical Rabi model, the eigenvalues qα are expressed directly in terms of the
confluent Heun functions as

qα =
1
π

arcsin
(√

2βRe[eigHC(a∗1;
1
2
)HC(a2;

1
2
)]

)
, (48)

whereas in the quantum Rabi model, the eigenvalues E = k− λ2 are determined as the
zeros of a condition defined by the confluent Heun functions as

0 = HC(a3; 1/2)/Γ(−k)∓ μHC(a4; 1/2)/Γ(1− k). (49)

In both cases, the special point x = 1/2 in confluent Heun functions HC(ai; x) is
utilized, suggesting that this specific value x = 1/2 warrants further investigation. And
we find that they are both related to the convergence at the singularity x = 1. In the
semi-classical Rabi model, we ensure that the confluent Heun functions converge at x = 1
and take the value as

HC(a1; x = 1) = HC2(a1; 1/2)− β2

2
e2igHC2(a2; 1/2). (50)
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In the quantum Rabi model, we find that the convergence of the confluent Heun
function at x = 1 is a necessary condition for the energy E to be an eigenvalue. It should
be clarified that the confluent Heun functions can also converge at x = 1 when E is not an
eigenvalue. There are two modes of convergence. One mode in the semi-classical case is
that Re(δ) < 1 ensures the convergence of the Heun confluent function. The other mode,
relevant to the eigenvalue spectrum of the quantum Rabi model, requires the convergence
to occur more rapidly, as the coefficients satisfy bn/bn−1 ∼ −ε/n.

Within the convergence range of the function, we derive several useful identities.
Among them, some have been obtained previously, while others are new and useful. In the
semi-classical case, we obtain the following identity equation

eεxHC(q, α; γ, δ, ε; x) = HC(q− γε, α− ε(γ + δ); γ, δ,−ε; x), (51)

which has also been presented in previous work [49]. In the quantum case, we obtain two
identities as

k(1− x)HC′(a3; x) = μ2HC(a4; x)− k2HC(a3; x), (52)

xHC′(a4; x) = (k− 4λ2x)HC(a4; x)− kHC(a3; x), (53)

where HC′(ai; x) represents the x-derivative of HC(ai; x). Equations (52) and (53) above
are identities involving the derivatives of the confluent Heun functions and have been used
to simplify the Wronskian (33).

Our method can be generalized to handle more general cases. In the classical model,
it can be extended to incorporate higher-order trigonometric functions, such as sin nωt
and cos nωt. From a theoretical perspective, based on the Fourier transform, such a series
approximation can be applied to approximate any given function. Although this introduces
additional complexity, it remains a feasible approach. In the quantum model, we can
introduce multi-photon interactions, thereby enabling the expansion of our formalized
matrix (24). Naturally, after such a modification, the resulting solution is no longer a Heun
function; instead, it may correspond to the solution to a more complex equation. With a
deeper understanding of the confluent Heun function, we hope to obtain explicit forms of
eigenvalues in the future, which will require further research.

5. Conclusions

In conclusion, we establish the relationship between infinite-dimensional matrices and
the Rabi model, and applying the confluent Heun functions, we present a unified approach
to derive the eigenvalue spectrum of these unbounded matrices. For the first kind of matrix
related to the semi-classical Rabi model, we obtain the explicit form of the eigenvalues,
which is consistent with the previous approximate results. For the second kind of matrix
related to the quantum Rabi model, we derive an explicit condition that the eigenvalue
must satisfy. This condition is more concise than the previous results, and is valid to all
situations. We have discussed the degeneracy of the energy spectrum, which aligns with
the findings of previous studies. We obtain numerical upper and lower bounds in explicit
forms for the eigenvalue, which fit well in the regimes where the interaction strength is
either small or large.

The relationship between mathematics and physics is complementary since our ap-
proach actually solves the eigenvalue problem of infinite-dimensional unbounded matrices.
We derive some identities involving the confluent Heun functions, which can not only be
applied in the situation of this paper but also in many other related fields of mathematics
and physics. The eigenvalues in the Rabi models are related to the special values of the
confluent Heun functions and their convergence at the singular point x = 1. Our results
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enhance the understanding and potential applications of the Rabi model in quantum optics,
quantum information, and condensed matter physics.
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Appendix A. Notations in This Paper

x∗ represents the complex conjugate of x. Re[x] represents the real part of x, while
Im[x] represents the imaginary part of x. The function arg(x) represents the argument of
the complex number x. �x� represents the floor function as �x� = max{m ∈ Z|m ≤ x}.
J0(x) is the first kind of the Bessel function of 0-order and j0(n) represents the n-th zero
point of the Bessel function J0(x). f (x±0 ) represents f (x±0 ) ≡ limx→x0+0± f (x).

Appendix B. Key Derivations in the Semi-Classical Rabi Model

The Schrödinger equation is

i∂t|ψ〉 = H(t)|ψ〉 =
(

β

2
σx +

g
2

sin(t)σz

)
|ψ〉, (A1)

where |ψ〉 = (c1, c2)
T is the normalized wave function. The Schrödinger equation can be

written into two equations as

i
∂c1

∂t
− g

2
c1 sin t =

β

2
c2 (A2)

i
∂c2

∂t
+

g
2

c2 sin t =
β

2
c1 (A3)

Then, after removing c2 (or c1), we obtain a second-order differential equation for c1

(or c2), as
∂2c1

∂t2 + (i
g
2

cos t +
g2

4
sin2 t +

β2

4
)c1 = 0. (A4)

Applying the change in the variable from t to z = 1
2 (1− cos t) = sin2 t

2 , we can obtain
(for 0 ≤ t ≤ π/2)

cos t = 1− 2z (A5)

| sin t| = sin t = 2
√

z(1− z) (A6)

∂z
∂t

=
1
2

sin t =
√

z(1− z) (A7)

0 = z(1− z)
∂2c1

∂z2 + (
1
2
− z)

∂c1

∂z
+ (ig(

1
2
− z) + g2z(1− z) +

β2

4
)c1. (A8)

By applying another transform c1 = e−igz f , we can obtain
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∂c1

∂z
=

∂

∂z
(e−igz f ) = e−igz(

∂ f
∂z
− ig f ) (A9)

∂2c1

∂z2 =
∂

∂z

(
e−igz(

∂ f
∂z
− ig f )

)
= e−igz

(
−g2 f − 2ig

∂ f
∂z

+
∂2 f
∂z2

)
(A10)

z(1− z)
(
−g2 f − 2ig

∂ f
∂z

+
∂2 f
∂z2

)
+

(
1
2
− z)(

∂ f
∂z
− ig f ) + +(ig(

1
2
− z) + g2z(1− z) +

β2

4
) f = 0 (A11)

z(1− z)
∂2 f
∂z2 +

[
(

1
2
− z)− 2igz(1− z)

]
∂ f
∂z

+ (ig(
1
2
− z) +

β2

4
− (

1
2
− z)ig) f = 0 (A12)

z(z− 1)
∂2 f
∂z2 +

[
−2igz(z− 1) + (z− 1

2
)

]
∂ f
∂z

+ (− β2

4
) f = 0. (A13)

Then, we can obtain the differential equation as

z(z− 1)
∂2 f
∂z2 +

[
1
2
(z− 1) +

1
2

z− 2igz(z− 1)
]

∂ f
∂z

+ (− β2

4
) f = 0. (A14)

Compared to the standard confluent Heun equation

z(z− 1)y′′ + [γ(z− 1) + δz + z(z− 1)ε)]y′ + (αz− q)y = 0, (A15)

we obtain the coefficients q = β2

4 , α = 0, γ = 1
2 , δ = 1

2 , ε = −2ig. The solution that
satisfies the confluent Heun equation is the confluent Heun function HC(q, α; γ, δ, ε; z),
with the initial condition HC(q, α; γ, δ, ε; 0) = 1 [30–32]. The confluent Heun function can
be expressed as a standard power-series expansion around z = 0 as HC(q, α; γ, δ, ε; z) =
∑∞

n=0 bnzn. The coefficients bn are determined by the three-term recurrence relation Rnbn +

Qn−1bn−1 + Pn−2bn−2 = 0 with the initial conditions b−2 = b−1 = 0 and b0 = 1. Here,
Rn = n(n− 1 + γ), Qn = q− n(n− 1 + γ + δ− ε), and Pn = −α− εn. Thus, the solution
to Equation (A4) is

c1(t) = e−igzHC
(

β2

4
, 0;

1
2

,
1
2

,−2ig; z
)

:= e−igzHC(a1; z), (A16)

where parameters a1 :=
(

β2

4 , 0; 1
2 , 1

2 ,−2ig
)

, and z = sin2 t
2 . Here, we choose the initial

condition c1(t = 0) = 1, c2(t = 0) = 0.
From the symmetry of the Equations (A2) and (A3), we can see that except for g

becoming −g, c1 and c2 have differential equations of the same form. Then, according
to the initial condition c2(t = 0) = 0, we know that c2 is the other linearly independent
solution z1−γHC(q + (1− γ)(ε− δ), α + (1− γ)ε, 2− γ, δ, ε, z), which is

c2(t) = iη βz1/2eigzHC
(

β2 − 1
4

+ ig, ig;
3
2

,
1
2

, 2ig; z
)

:= iη β sin
t
2

eigzHC(a2; z), (A17)

where parameters a2 :=
(

β2−1
4 + ig, ig; 3

2 , 1
2 , 2ig

)
, z = sin2 t

2 , and η = 1 + 2� t−π
T � with the

floor function �x�. Then, we can construct the time evolution operator as

U1(t) =

(
c1(t) −c2(t)∗

c2(t) c1(t)∗

)
. (A18)
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The question is whether U1 or c2 is discontinuous at the points t = (2k + 1) T
2 , k ∈ Z.

Hence, an alternative form of the evolution operator U2 is required to ensure continuity
at these junctures. According to the symmetry H(t) = σx H(t− T

2 )σx, we derive U2(t) =
σxU1(t− T

2 )σx. By combining U1 and U2, the evolution of half a period is attainable as
U T

2
≡ U( T

2 , 0) = U†
2 (

T
4 )U1(

T
4 ). We need three parameter functions as follows: φ1 =

arg(c∗1c2), θ1 = 2 arcsin|c2|, and γ1 = − arg(c1c2). Now, we can obtain the evolution
over a complete period as UT = U2(T−)U†

2 (0) = ei2Θσn/2, where σn = sin Φσx + cos Φσy,

Φ = φ1(
T
2
−
), and Θ = θ1(

T
2
−
). This UT represents a clockwise rotation by an angle 2Θ in

the n-direction. Consequently, the total time evolution operator can be expressed as

U(t, 0) = U2(t− NT)U†
2 (0)e

i2NΘσn/2, (A19)

where N = � t
T � and U†

2 (0) = U T
2

. Here, U T
2

as U T
2

= e−
1
2 iΦσz e−

1
2 iΘσy e−

1
2 iΓσz , where

Φ = φ1(
T
2
−
), Θ = θ1(

T
2
−
) and Γ = γ1(

T
2
−
) with the notation f (x±0 ) ≡ limx→x0+0± f (x).

As compared to Floquet theory [25–28], there is one more rotation needed, which is
Rs = e−i π

4 σx e−i Φ
2 σz . Then, we can obtain the operator F(t) as

F(t) = RsUR†
s = RsU2(t− NT)U†

2 (0)R†
s eiNΘσz . (A20)

As we all can see, the characteristic value qα should be

qα =
Θ
T

=
2 arcsin |c2(

T
2
−
)|

2π
(A21)

=
2
π

arcsin
(√

2βRe[eigHC∗(a1;
1
2
)HC(a2;

1
2
)]

)
(A22)

Appendix C. Perturbation Theory for the Ground State Energy

We use the perturbation theory to derive the explicit form for a small interaction
strength λ. The Hamiltonian H of the system can be written as the sum of a solvable part H0

(the unperturbed Hamiltonian) and a small perturbation V (the perturbing Hamiltonian):

H = H0 + λV, (A23)

where λ is a small parameter controlling the strength of the interaction, H0 = a†a + μσz,
V = σx

(
a† + a

)
. The spectrum of the unperturbed Hamiltonian H0 is E(0)

n,±1 = n ± μ.

Consider the odd subspace. The spectrum becomes e(0)n = En,(−1)n+1 = n + (−1)n+1μ,
while the corresponding eigenstates are denoted as |n〉. In the representation of |n〉, the
perturbation Hamiltonian V and the transformation matrix U can be expressed as

Vi,j = 〈i|V|j〉, Ui,j = 〈i|U|j〉. (A24)

The transformation matrix U can also be expressed in the power series of λ as U =

∑∞
i=0 λiUi. The first-order perturbation term for the energy is shown as

e(1)n = 〈n|V|n〉 = 0. (A25)

and the second-order perturbation term for the energy is shown as

e(2)n = ∑
l �=n

Vn,lVl,n

e(0)n − e(0)l

=
2μ(−1)n(2n− 1) + 1

4μ2 − 1
. (A26)
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We observe that the odd-order perturbation of the energy is always zero. Here, we are
concerned with the ground state, so we obtain the perturbation term of the ground energy
with the sixth-order as

e(0)0 = −μ, e(2)0 = − 1
1 + 2μ

, e(4)0 = − 2μ

(2μ + 1)3 , e(6)0 = − 4μ
(
4μ2 + 4μ− 1

)
(2μ + 1)5(2μ + 3)

. (A27)

Then, we expand the equations in (46) and (47) when λ is small, which are

eg = −μ + λ2 − λ2

1 + 2μ
− 4μλ4

(2μ + 1)2 +
8μλ6

(2μ + 1)3 + O
(

λ7
)

, (A28)

es
up = −μ + λ2 − λ2

1 + 2μ
− 2μλ4

(2μ + 1)3 +
2μλ6

(2μ + 1)5 + O
(

λ7
)

. (A29)

Since − 4μ(4μ2+4μ−1)
(2μ+1)5(2μ+3) < 2μ

(2μ+1)5 when μ > 0, we deduce that eg < E0 + λ2 < es
up for

small λ.
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Abstract: Various numerical techniques have been developed to address multiple problems
in computational fluid dynamics (CFD). The finite volume method (FVM) is a numerical
technique used for solving partial differential equations that represent conservation laws by
dividing the domain into control volumes and ensuring flux balance at their boundaries. Its
conservative characteristics and capability to work with both structured and unstructured
grids make it suitable for addressing issues related to fluid flow, heat transfer, and diffusion.
This article introduces an FVM for the linear advection and nonlinear Burgers’ equations
through a fifth-order targeted essentially non-oscillatory (TENO5) scheme. Numerical
experiments showcase the precision and effectiveness of TENO5, emphasizing its benefits
for computational fluid dynamics (CFD) simulations.

Keywords: linear advection equation; nonlinear Burgers’ equation; finite volume method;
targeted essentially non-oscillatory scheme; error analysis
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1. Introduction

Computational fluid dynamics (CFD) refers to the numerical analysis of systems
involving fluid motion, heat transfer, and related phenomena, such as chemical reactions,
through computer simulations. This computational approach is widely applied across both
industrial and non-industrial sectors.

CFD techniques play a crucial role in various industries, such as the design, research,
development, and production of aircraft and jet engines. Furthermore, CFD has found
extensive application across an array of other industries, demonstrating its wide-ranging
impact and utility [1,2].

The finite volume method (FVM) is a numerical technique developed to solve partial
differential equations (PDEs) that encapsulate various conservation laws, including those
related to mass, momentum, and energy. By integrating these equations over well-defined
control volumes, the FVM effectively transforms them into a system of algebraic equa-
tions. This transformation is crucial as it inherently preserves local conservation properties,
ensuring that fundamental physical principles are maintained. Over the years, the finite
volume method has undergone significant evolution, adapting to tackle increasingly com-
plex challenges within the field of computational fluid dynamics (CFD). Its versatility and
robustness render it a recommended choice for simulating fluid flow across a wide range
of applications, from aerospace engineering to environmental modeling [1–4].

Axioms 2025, 14, 359 https://doi.org/10.3390/axioms14050359
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The FVM framework includes several essential computational steps. Initially, a mesh
is generated to partition the computational domain into small, discrete control volumes that
can be analyzed independently. Next, the evaluation of flux across the boundaries of these
control volumes is performed, which involves calculating conserved quantities such as
fluid velocity and pressure. Finally, appropriate boundary conditions are applied to define
the behavior of the fluid at the edges of the computational domain. By carefully following
these steps, the finite volume method provides an effective and reliable framework for
simulating complex phenomena in fluid dynamics [1–3].

There have been several studies using numerical methods presented in the literature
for solving nonlinear partial differential equations (PDEs). Recent studies have been pro-
posed based on physics-informed neural networks (PINNs) and finite difference methods
(FDMs), and they have shown promising performances for modeling complex waves and
nonlinear dynamics, such as Burgers’ and sine-Gordon equations [5,6]. Although these
techniques provide valuable insights, this work chooses the finite volume method (FVM)
framework due to its conservative implementation and robustness concerning sharp gradi-
ents and discontinuities, which are important when dealing with high-resolution schemes
like TENO5.

The finite volume method (FVM) has been applied by researchers to address a variety
of problems in computational fluid dynamics. The FVM is effective in solving the Poisson
equation, heat equation, and diffusion equation, which govern numerous physical pro-
cesses [7,8]. Additionally, its application with unstructured moving meshes for simulations
highlights its capability to manage free surface flows [9].

In the finite volume method (FVM), various numerical schemes have unique char-
acteristics, such as conservativeness, boundedness, and transportiveness. This research
utilizes a high-order method, specifically the fifth-order targeted essentially non-oscillatory
(TENO5) scheme, which aims to improve both numerical stability and accuracy.

The primary aim of this paper is to explore the fifth-order targeted essentially
non-oscillatory (TENO5) scheme within the finite volume method for addressing a one-
dimensional linear advection equation and a two-dimensional nonlinear Burgers’ equation
that includes diffusion. The finite volume method will be developed and utilized to tackle
these equations, and numerical experiments will be conducted to evaluate the approximate
solutions against the exact solutions.

This paper is organized as follows: Section 2 provides a brief overview of the targeted
essentially non-oscillatory (TENO) scheme. Section 3 presents numerical experiments to
evaluate the performance of the TENO scheme. Section 4 includes a discussion of the
results. Finally, Section 5 concludes the paper and proposes future research directions,
particularly focusing on extending the higher-order capabilities of the TENO scheme and
exploring its application in 3D numerical experiments.

2. Targeted Essentially Non-Oscillatory (TENO) Scheme

The targeted essentially non-oscillatory (TENO) approach is crafted to minimize oscil-
lations that may arise in the numerical solutions of problems featuring sharp gradients or
discontinuities, commonly seen in computational fluid dynamics (CFD) and other areas
that require the simulation of wave propagation or transport processes. TENO effec-
tively addresses turbulence while maintaining controllable, low numerical dissipation.
In the TENO approach, a scale separation technique adeptly distinguishes between dis-
continuities and minor fluctuations, leading to reduced dissipation when compared to
conventional methods, which can produce oscillations and instabilities in the presence of
strong shocks [10–12].
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This paper will discuss the fifth-order version of the method, known as the fifth-order
targeted essentially non-oscillatory (TENO5) scheme.

2.1. TENO Methodology in FVM Framework

The scalar hyperbolic conservation law in one dimension is given by

∂u
∂t

+
∂ f (u)

∂x
= 0. (1)

An equivalent formulation is as follows:

ut + f (u)x = 0. (2)

The initial condition is defined as

u(x, 0) = u0(x). (3)

Discretizing Equation (1) on uniform cell elements, e.g., Ii =
[

xi− 1
2
, xi+ 1

2

]
with

Δx = xi+ 1
2
− xi− 1

2
for i = 0, 1, · · · , N, the system reduces to a set of ordinary differen-

tial equations (ODEs) of the form

dūi
dt

= − 1
Δx

∫ xi+Δx/2

xi−Δx/2

∂ f
∂x

dx, i = 0, 1, · · · , N. (4)

where

ūi(t) =
1

Δx

∫ xi+Δx/2

xi−Δx/2
u(x, t)dx, (5)

expresses the cell-averaged conservative variable in Ii.
Moreover, Equation (4) could be approximated as

dūi
dt
≈ − 1

Δx

(
f̂i+ 1

2
− f̂i− 1

2

)
, (6)

The numerical fluxes at the cell interface f̂i+ 1
2

and f̂i− 1
2

in the semi-discrete finite
volume scheme, which is given in Equation (6), can be computed using a Riemann solver.
For example, the flux f̂i+ 1

2
is given by

f̂i+ 1
2
= f Riemann

i+ 1
2

(
uL

i+ 1
2
, uR

i+ 1
2

)
. (7)

Here, uL
i+ 1

2
and uR

i+ 1
2

represent left-biased reconstruction and right-biased reconstruc-

tion, respectively, within cell Ii.
Even though the exact Riemann problem can be solved at the cell interface, approxi-

mate Riemann solvers are commonly used for their high efficiency. There are many different
variants of approximate Riemann solvers, such as the Rusanov flux, the Roe flux, and the
HLLC flux, as detailed in [12,13]. They can be represented in a general form as follows:

f Riemann
i+ 1

2

(
uL

i+ 1
2
, uR

i+ 1
2

)
=

1
2

[
f
(

uL
i+ 1

2

)
+ f

(
uR

i+ 1
2

)]
︸ ︷︷ ︸

Non-dissipative central flux term

− 1
2

∣∣∣∂̃i+ 1
2

∣∣∣(uR
i+ 1

2
− uL

i+ 1
2

)
︸ ︷︷ ︸
Numerical Dissipation term

. (8)

where ∂̃i+ 1
2

denotes the characteristic signal velocity evaluated at the cell interface.
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The reconstruction candidate stencils: To achieve high-order reconstruction, a polyno-
mial can be found for each candidate stencil by solving a linear system through Equation (5)
with an approximation that is represented by

ur(x) ≈ ûr(x) =
k−1

∑
l=0

al,rxl . (9)

where k indicates the stencil’s width. The coefficient al is determined by solving the
system of linear algebraic equations formed by substituting ur(x) into Equation (5) and
evaluating the integral functions at the stencil nodes. In terms of the five-point scheme, the
reconstructed conservative variable at the cell interface can be obtained as demonstrated
in [10,11].

Scale separation: To separate smooth scales from discontinuities effectively, the smooth-
ness indicators are defined as follows:

γr =

(
C +

τK
βr,k + ε

)q
. r = 0, . . . , 3. (10)

where the parameters are C = 1, q = 6, and ε = 10−40 to avoid a zero denominator, and K
is the number of points.

βr,k can be determined using

βr,k =
k−1

∑
l=1

Δx2l−1
∫ x

i+ 1
2

x
i− 1

2

(
dl

dxl ûr(x)

)2

dx. (11)

To obtain a high-order accurate scheme at the critical points, the global reference
smoothness indicator τ is introduced for the five-point scheme, as presented in [11].

The TENO scheme is based on the principle of either abandoning the non-smooth
stencil or applying the stencil with the optimal linear weights for the final reconstruction.
To achieve this, the smoothness indicators are normalized as follows:

χr =
γr

∑3
r=0 γr

. (12)

Here, the sharp cut-off function is defined by

δr =

⎧⎨⎩0, if χr < CT ,

1, otherwise.
(13)

The cut-off parameter CT determines the dissipation properties of the resulting scheme,
and it is typically set to CT = 10−5.

If the large candidate stencil is judged to be smooth, i.e., δ3 = 1, the final reconstruction
uL

i+ 1
2

can be directly expressed as uL
3,i+ 1

2
. Otherwise, the final reconstruction is obtained

through a nonlinear combination of the remaining small stencils, expressed as

uL
i+ 1

2
=

2

∑
r=0

wruL
r,i+ 1

2
. (14)

where the weight wr is expressed as

wr =
αr

∑2
r=0 αr

, αr = drδr, r = 0, 1, 2. (15)
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Here, dr is the optimal weight to achieve the maximum accuracy order with the full
stencil [10,11,14].

2.2. Time Discretization for TENO Scheme

After employing the finite volume method (FVM) and discretizing the spatial deriva-
tives using the TENO scheme, the semi-discrete form of the governing equation can be
expressed as

du
dt

= L(u). (16)

where L(u) denotes the operator used for spatial discretization.
For time integration, a third-order strong-stability-preserving (SSP) Runge–Kutta

method is utilized:

u(1) = u(n) + ΔtL
(

u(n)
)

,

u(2) =
3
4

u(n) +
1
4

u(1) +
1
4

ΔtL
(

u(1)
)

,

u(n+1) =
1
3

u(n) +
2
3

u(2) +
2
3

ΔtL
(

u(2)
)

.

(17)

This explicit Runge–Kutta method provides strong stability characteristics while
achieving third-order temporal accuracy [10–12].

3. Numerical Experiments

In this section, two numerical experiments will be carried out to solve the linear
advection of multiple waves and two-dimensional Burgers’ equation with diffusion for
comparison purposes and to verify the results.

3.1. Linear Advection of Multiple Waves

Consider the one-dimensional linear advection equation

∂u
∂t

+
∂u
∂x

= 0. (18)

with the initial condition

u(x, 0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
6 [G(x− 1, β, z− θ) + G(x− 1, β, z + θ) + 4G(x− 1, β, z)], if 0.2 ≤ x < 0.4,
1, if 0.6 ≤ x ≤ 0.8,
1− |10(x− 1.1)|, if 1.0 ≤ x ≤ 1.2,
1
6 [F(x− 1, α, a− θ) + F(x− 1, α, a + θ) + 4F(x− 1, α, a)], if 1.4 ≤ x < 1.6,
0, otherwise.

(19)

where
G(x, β, z) = e−β(x−z)2

, F(x, α, a) =
√

max(1− α2(x− a)2, 0). (20)

The parameters are given as

a = 0.5, z = −0.7, θ = 0.005, α = 10, β =
log(2)
36θ2 . (21)

The initial condition consists of a Gaussian pulse, a square wave, a sharp triangle
wave, and a half ellipse arranged from the left to the right in the computational domain
x ∈ [0, 2].
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The exact solution, representing the theoretical solution for the linear advection equa-
tion with a constant propagation speed c, is

u(x, t) = u0(x− ct). (22)

where u0(x) = u(x, 0) represents the initial profile of the solution at time t = 0.
The final time for the experiment is tend = 0.5. Spatial discretization is performed at

various uniform grid points Nx of 25, 50, 100, and 200, with a Courant number of CFL = 0.5
(Table 1).

Table 1. Error analysis for TENO5 in the FVM framework at CFL = 0.5.

Nx Error Type TENO5

L1 error 0.28068
L2 error 0.2909325
L∞ error 0.72617

L1 error 0.14012
L2 error 0.1712650
L∞ error 0.41374

L1 error 0.065585
L2 error 0.12042100
L∞ error 0.5023

L1 error 0.027077
L2 error 0.070048200
L∞ error 0.3272

3.2. Burgers’ Equation with Diffusion

Consider the two-dimensional Burgers’ equation with diffusion

ut + a

[(
u2

2

)
x
+

(
u2

2

)
y

]
− D

(
uxx + uyy

)
= 0. (23)

on the domain [0, 2]2.
When a = 1, the exact solution is given as

u(x, y, t) = −2Dπ
cos(π(x + y)) exp

(
−2Dπ2t

)
2 + sin(π(x + y)) exp(−2Dπ2t)

. (24)

with CFL = 0.5, and at the final time, tend = 0.5.
In this context, the diffusion coefficient, denoted as D, is given by the equation

D = 1
Re , where Re indicates the Reynolds number. In addition, different grid sizes are

considered in this experiment, as represented in Table 2. The plots in this paper are
specifically for a 40× 40 uniform grid (Table 3).

This work also incorporates an additional study that investigates the performance of
the TENO5 scheme at different Reynolds numbers (Re) to examine its suitability within the
FVM framework.

The Reynolds number (Re) is an important dimensionless number in fluid dynamics
that determines the relative importance of the inertial to viscous force in the system.

At low Re, viscous effects outweigh inertial effects, and the flow is smooth, while at
high Re, inertial forces are larger, and the flow becomes turbulent or has sharp gradients.

Numerical simulations, which were aimed at investigating the performance of TENO5
in handling a flow regime and simulating both the sharp and smooth features at different
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Re, were made to study its potential. The purpose of these tests was to determine the
general operation of the scheme in a wide range of flows and to check the stability and
accuracy of the solution in a smooth and complex flow.

The numerical results of these experiments are given below.

Table 2. Error analysis of the TENO5 scheme in the FVM framework for a diffusion coefficient of
D = 0.0002 with CFL = 0.5.

Nx × Ny Error Type TENO5

L1 error 4.1892 × 10−8

L2 error 6.7318 × 10−820× 20
L∞ error 1.8217 × 10−7

L1 error 1.2546 × 10−8

L2 error 2.0612 × 10−840× 40
L∞ error 5.8097 × 10−8

L1 error 5.8603 × 10−9

L2 error 9.967 × 10−980× 80
L∞ error 5.9789 × 10−8

L1 error 7.9686 × 10−9

L2 error 1.1022 × 10−8160× 160
L∞ error 3.2989 × 10−8

Table 3. Error analysis for TENO5 in the FVM framework at various Reynolds numbers, performed
on a 40× 40 uniform grid with CFL = 0.5.

Error Type Re = 50 Re = 100 Re = 500 Re = 1000

L1 error 0.0028585 0.00034326 2.7898 × 10−6 4.006 × 10−7

L2 error 0.0051578 0.00046317 4.1123 × 10−6 6.1714 × 10−7

L∞ error 0.019154 0.00094257 1.2755 × 10−5 2.2067 × 10−6

4. Discussion

The numerical experiments presented in Section 3 illustrate the efficacy of the TENO5
scheme in addressing both linear and nonlinear issues within a finite volume context. The
examination focuses on the advection of multiple waveforms and the two-dimensional
Burgers’ equation incorporating diffusion. The subsequent subsections discuss the accuracy,
convergence behavior, and performance of the numerical method.

4.1. Effect of Final Time Integration, CFL Number, Reynolds Number, and Grid Resolution

In the present study, we use a final simulation time of tend = 0.5 and a CFL number of
0.5, and we consider Reynolds numbers of Re = 50, 100, 500, 1000, and 5000. So, D = 1

Re ,
e.g., D = 0.0002 at Re = 5000. In addition to their direct effect, these attributes need to be
accounted for in coordination with spatial resolution. Before moving on, we highlight its
relationship to the number of grid points and grid optimization.

1. Final simulation time (tend): A larger Δt means that it takes more steps to reach
its location (as Δt is controlled by CFL), and it also amplifies the effect of spatial
discretization errors. For coarser meshes, error propagation and numerical diffusion
are more dominant over the long run; so when tend is increased, one should ensure
that the mesh (increasing Nx) is refined such that the target accuracy is maintained.
The error analysis of the TENO5 scheme for the two experiments at different tend is
shown in Tables 4 and 5. The results indicate that the L1, L2, and L∞ errors significantly
increase as the tend rises. Therefore, there is an accumulation of errors.
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Hence, the determination of tend is influenced by the selected experiment and other
factors, such as parameters and diffusion.

Table 4. Error analysis for the one-dimensional linear advection of multiple waves using TENO5 in
the FVM framework at different tend, performed on a a uniform grid consisting of 200 points, with
CFL = 0.5.

Error Type tend = 0.5 tend = 1.0 tend = 1.5 tend = 2.0 tend = 2.5

L1error 0.027077 0.10487 0.18209 0.28088 0.32118

L2 error 0.070048 0.26756 0.3707 0.45204 0.49381

L∞ error 0.327 1.0053 1.0111 1.0122 1.0129

Table 5. Error analysis for two-dimensional Burgers’ equation using TENO5 in the FVM framework
at different tend, performed on a 40× 40 uniform grid with CFL = 0.5 and Re = 5000.

Error Type tend = 0.5 tend = 1.0 tend = 1.5 tend = 2.0 tend = 2.5

L1error 1.2546× 10−8 2.5416× 10−8 4.0946× 10−8 5.9112× 10−8 8.012× 10−8

L2 error 2.0612× 10−8 4.1019× 10−8 6.4118× 10−8 9.0932× 10−8 1.2343× 10−7

L∞ error 5.8097× 10−8 1.2983× 10−7 2.1927× 10−7 3.2275× 10−7 4.4134× 10−7

2. Courant–Friedrichs–Lewy number (CFL): To simplify the method, the CFL condition
in one dimension can be stated as follows: Δt = CFL Δx

c . For a specific CFL = 0.5, the
decrease in the cell size Δx (increasing the number of cells Nx) splits Δt in half, which
means that terms proceed through twice as many time steps, and consequently, the
temporal and the spatial truncations are reduced. Conversely, when using extremely
fine meshes, one can wisely raise the CFL to a maximum of 0.5 to lower overall
expenses, though this comes at the cost of stability.
The error analysis of the TENO5 scheme for the linear advection of multiple waves,
with various CFL, is presented in Table 6. The results indicate that the L1, L2, and L∞

errors significantly increase as the CFL rises, and the determination of the CFL is also
influenced by the selected experiment and other factors such as parameters.

Table 6. Error analysis for the one-dimensional linear advection of multiple waves using TENO5 in
the FVM framework with different CFL, performed on a a uniform grid consisting of 200 points, at
tend = 0.5.

Error Type CFL = 0.5 CFL = 1.0 CFL = 1.5 CFL = 2.0 CFL = 2.5

L1error 0.027077 0.027251 0.027077 0.035564 0.04933

L2 error 0.070048 0.072087 0.071968 0.08464 0.10223

L∞ error 0.327 0.34092 0.34508 0.40645 0.4416

In the linear advection of multiple waves, errors and plot profiles are sharply and
strongly influenced by the CFL number as the scheme must accurately follow wave
propagation over many periods. A better temporal resolution and minimum phase
error can be achieved for a lower CFL number.
Moreover, for the two-dimensional Burgers’ equation with diffusion, diffusion has
a smoothing effect since it removes small-scale oscillations and the dependence on
the time step’s size. Because the solution is smooth and decaying, temporal errors are
much smaller than spatial errors.
In addition, with a short final time (e.g., tend = 0.5), the time error dictated by the
CFL is negligible.
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3. Reynolds number (Re) and diffusion coefficient (D): The diffusion coefficient spans,
in fact, from D = 1

Re . With the Re value increasing, the physical diffusion becomes
smaller, and as a result, the gradients of density become sharper such that a finer
spatial resolution is needed. For a higher Re, a refined mesh is still needed to capture
these steep features and fully exploit the low-dissipation nature of the TENO5 scheme
for D = 0.0002 at 5000 (as well as higher Re).

4. Grid optimization strategy:

To keep an acceptable balance between accuracy and efficiency, the choices of
(tend, CFL, Re, and Nx) should be implemented concurrently.
In practice, it is common to use CFL to ensure stability. A grid convergence test is con-
ducted by increasing Nx, based on which the error norms tend to stabilize. For a larger
Re or longer tend, additional finer meshes are necessary to resolve sharper gradients.
This formulation guarantees accurate results and enables TENO5 to demonstrate its
formal fifth-order convergence.

4.2. Linear Advection of Multiple Waves

The linear advection scenario involves a variety of waveforms, such as a Gaussian
pulse, a square wave, a sharp triangle wave, and a half ellipse, that propogate without
distortion according to governing Equation (18). Figures 1–4 depict the numerical solution
achieved with the TENO5 scheme in comparison to the exact solution at tend = 0.5.
The numerical findings show a strong correlation with the exact solution, especially in
accurately capturing smooth areas of the waves. Nonetheless, minor numerical dissipation
and dispersion effects are noted around discontinuities and sharp gradients, which is
typical for high-order schemes dealing with discontinuous issues.

Figure 1. One-dimensional linear advection of multiple waves, comparing the exact solution and the
numerical solution using the TENO5 scheme at simulation time tend = 0.5. Spatial discretization is
on Nx = 25 uniform grid points with CFL = 0.5.

The error analysis illustrated in Table 1 verifies that the numerical error diminishes
as the grid becomes finer. The L1 and L2 errors consistently decrease with enhanced
resolutions, indicating that the scheme attains high-order accuracy in smooth regions.
However, the L∞ error does not decrease as smoothly as the other norms, implying that
the maximum error remains localized around discontinuities where numerical oscillations
might arise. These results suggest that TENO5 achieves commendable accuracy while
effectively managing spurious oscillations.
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Figure 2. One-dimensional linear advection of multiple waves, comparing the exact solution and the
numerical solution using the TENO5 scheme at simulation time tend = 0.5. Spatial discretization is
on Nx = 50 uniform grid points with CFL = 0.5.

Figure 3. One-dimensional linear advection of multiple waves, comparing the exact solution and the
numerical solution using the TENO5 scheme at simulation time tend = 0.5. Spatial discretization is
on Nx = 100 uniform grid points with CFL = 0.5.

Figure 4. One-dimensional linear advection of multiple waves, comparing the exact solution and the
numerical solution using the TENO5 scheme at simulation time tend = 0.5. Spatial discretization is
on Nx = 200 uniform grid points with CFL = 0.5.
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4.3. Two-Dimensional Burgers’ Equation with Diffusion

Regarding the two-dimensional Burgers’ equation with diffusion, the findings ex-
pose the scheme’s capacity to accurately capture the complexities of nonlinear advection–
diffusion behavior. Figures 5 and 6 contrast the exact solution and the numerical solution
for a diffusion coefficient of D = 0.0002 and Reynolds number of Re = 5000. The TENO5
scheme successfully reflects the solution structure with minimal numerical artifacts, even
when using a relatively coarse 40× 40 grid.

Figure 5. Exact solution of the two-dimensional Burgers’ equation with diffusion. The value of the
diffusion coefficient is D = 0.0002 and associated with Re = 5000, with a CFL = 0.5. The domain is
discretized using a 40× 40 uniform grid.

Figure 6. Numerical solution of the two-dimensional Burgers’ equation with diffusion. The value
of the diffusion coefficient is D = 0.0002 and is associated with Re = 5000, with a CFL = 0.5. The
domain is discretized using a 40× 40 uniform grid.

The error analysis in Table 2 shows that enhancements in the grid’s resolution lead to
a significant drop in numerical errors. The L1, L2, and L∞ errors decrease with grid refine-
ment, corroborating the convergence of the scheme. Furthermore, the results presented
in Figures 7–10 reveal how varying Reynolds numbers affect the numerical solution. As
the Reynolds number escalates, sharper gradients and more defined features appear in the
solution. The TENO5 scheme adeptly resolves these characteristics, affirming its robustness
in managing advection-dominated flows.
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Figure 7. Numerical solution of the two-dimensional Burgers’ equation with diffusion. The value of
the diffusion coefficient is D = 0.02 and is associated with Re = 50, with a CFL = 0.5. The domain is
discretized using a 40× 40 uniform grid.

Figure 8. Numerical solution of the two-dimensional Burgers’ equation with diffusion. The value of
the diffusion coefficient is D = 0.01 and is associated with Re = 100, with a CFL = 0.5. The domain
is discretized using a 40× 40 uniform grid.

Figure 9. Numerical solution of the two-dimensional Burgers’ equation with diffusion. The value of
the diffusion coefficient is D = 0.002 and is associated with Re = 500, with a CFL = 0.5. The domain
is discretized using a 40× 40 uniform grid.
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Figure 10. Numerical solution of the two-dimensional Burgers’ equation with diffusion. The value
of the diffusion coefficient is D = 0.001 and is associated with Re = 1000, with a CFL = 0.5. The
domain is discretized using a 40× 40 uniform grid.

The error analysis across different Reynolds numbers, as outlined in Table 3, rein-
forces these findings. The scheme retains its accuracy across various flow regimes, with
slight differences in numerical errors resulting from increased sharpness in the solution at
higher Reynolds numbers. This indicates that the scheme effectively balances numerical
dissipation while resolving steep gradients.

5. Conclusions

This research evaluates the TENO5 scheme within a finite volume context for problems
dominated by advection. Numerical tests on both linear and nonlinear cases reveal its
precision, reliability, and convergence. The TENO5 scheme successfully captures smooth
wave patterns in linear advection scenarios while maintaining low dissipation and dis-
persion errors, even though there are slight oscillations near discontinuities. In the case
of the two-dimensional Burgers’ equation with diffusion, it effectively addresses nonlin-
ear dynamics at elevated Reynolds numbers and exhibits consistent convergence with
grid refinement.

In summary, the TENO5 scheme demonstrates itself to be a very efficient method for
problems driven by advection, striking a balance between numerical dissipation and resolu-
tion. Future research could broaden this study to encompass more intricate test cases, such
as turbulent flows and multi-dimensional nonlinear systems. Moreover, examining higher-
order extensions of the TENO framework could further improve accuracy, especially for
issues involving fine-scale structures and turbulence. The extension to three-dimensional
settings may provide some valuable insight into the performance and robustness properties
of the scheme under increased complexity. However, there are difficulties in increased
computational cost and the construction of the stencil in three dimensions.
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The following abbreviations are used in this manuscript:

ODEs Ordinary differential equations;
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TENO Targeted essentially non-oscillatory;
FVM Finite volume method;
PDEs Partial differential equations;
SSP Strong stability preserving;
CFL Courant–Friedrichs–Lewy.

References

1. Moukalled, F.; Mangani, L.; Darwish, M.; Moukalled, F.; Mangani, L.; Darwish, M. The Finite Volume Method; Springer:
Berlin/Heidelberg, Germany, 2016.

2. Petrova, R. Finite Volume Method: Powerful Means of Engineering Design; BoD—Books on Demand: Norderstedt, Germany, 2012.
3. Liang, S. Numerical Simulation of the Navier-Stokes Equations Using Finite Volume Method. Master’s Thesis, Universitat

Politècnica de Catalunya, Barcelona, Spain, 2017.
4. van Gestel, R.A.M. The Finite Volume Method for Systems of Conservation Laws. Master’s Thesis, Eindhoven University of

Technology, Eindhoven, The Netherlands, 2019.
5. Savović, S.; Ivanović, M.; Drljača, B.; Simović, A. Numerical Solution of the Sine—Gordon Equation by Novel Physics-Informed

Neural Networks and Two Different Finite Difference Methods. Axioms 2024, 13, 872. [CrossRef]
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Abstract: Conformal mappings between Riemannian spaces R̄N and RN are defined by
the explicit transformation of the metric tensor of the space R̄N to the metric tensor of the
space RN . Geodesic mapping between these two Riemannian spaces is a transformation
that transforms any geodesic line of the space R̄N to a geodesic line of the space RN . In
this research, we defined an m-conformal line of a Riemannian space, which is geodesic if
m = 0. Based on this definition, we involved the concept of (m̄, m)-conformal mapping
as a transformation R̄N → RN in which any m̄-conformal line of the space R̄N transforms
to an m-conformal line of the space RN . The result of this research is the establishment of
three invariants for these mappings. At the end of this research, we gave an example of a
scalar geometrical object which may be used in physics.

Keywords: mapping; Riemannian space; invariant; variation
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1. Introduction

The theory of Riemannian spaces was given by L. P. Eisenhart [1]. Based on his
research, this theory was developed to such a degree that it can be studied as a theoretical
concept or a tool for applications in physics.

Many authors have developed the theory of mappings between Riemannian spaces.
Some of them include J. Mikeš, with his research group [2–6], N. S. Sinyukov [7–9], U. C.
De [10,11], among many others.

Motivated by Eisenhart’s definition of a generalized Riemannian space, the theory
of mappings of generalized Riemannian spaces has been developed. The most significant
researchers in of subject are M. S. Stanković [12–16], M. Lj. Zlatanović [17–19], Lj. S.
Velimirović [16,20], among many others.

An article [21] by N. Vesić developed the well known methodology for obtaining
invariants of geometric mappings. In many later papers, like in this research paper, the
article [15] and the methodology presented in [21] are applied, and the result is at least one
new invariant for the analyzed mapping. In this research, we will review the results of
Vesić’s article and apply them to obtain invariants for a special mapping of a Riemannian
space, which will be defined.
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Conformal transformations are important for different applications in physics [22].
The Weyl tensor is composed by itself for generating the integrand for Einstein–Hilbert
action. But this integrand leads the study of R2-cosmology. We are interested in finding
invariants for mappings which stay within the valid research topic of R1-cosmology.

The integrand in Einstein–Hilbert action in [23] is very similar to invariants which
Vesić obtained in [21]. In this research, we will study the Einstein–Hilbert action generated
by Vesić’s invariants.

In this manuscript, we aim to generalize the concept of conformal mappings by
transforming the basic equation of conformal mapping between two Riemannian spaces.
These results will provide different opportunities for theoretical research into this new class
of mappings, and for its applications in cosmology as well.

1.1. Tensors as Indexed Geometrical Objects

An indexed magnitude X
α1...αp
β1...βq

, αi, β j = 0, . . . , N − 1, presented in the Cartesian

coordinate system (O, x0, . . . , xN−1), is a tensor of the type (p, q) if under a change of
coordinate system to (0′, x′0, . . . , x′N−1), where the value X

α1...αp
β1...βq

transforms as [2,9]

X
α′1...α′p
β′1...β′q

= xα′1
α1 . . . x

α′p
αp xβ1

β′1
. . . x

βq
β′q

X
α1...αp
β1...βq

,

where xα′i
αi =

∂x′αi

∂xαi
, x

β j
β′j
=

∂xβ j

∂x′β j
, and Einstein’s Summation Convention is used for repeated

indices. Scalar functions are tensors of the type (0, 0).
From the last definition, we conclude that a partial derivative of a tensor of the type

(0, 0) forms a tensor of the type (0, 1). Partial derivatives of a tensor of any another type do
not form tensors.

1.2. Riemannian Spaces

An N-dimensional manifold M = M(u0, . . . , uN−1) equipped with a symmetric
metric tensor gμν, gμν = gνμ is the Riemannian space RN (see [2,9]). The Greek indices μ, ν,
. . . take values of 0,. . . , N − 1.

Remark 1. For studies in physics, especially in cosmology, it is important to make a distinction
between indices which denote time and indices which denote space. It is standardized in physics
that the Greek indices present both time and space, but Latin indices correspond to space. In our
study, we will not make such a distinction, but for possibly easier applications, we will use the
Greek indices.

We assume that the matrix
[
gμν

]
is non-singular, i.e., det

[
gμν

]
�= 0. Hence, the

contravariant metric tensor is defined as
[
gμν
]
=
[
gμν

]−1. This means that gμαgνα = δ
μ
ν .

Christoffel symbols of the second kind,

Γπ
μν =

1
2

gπα
(

gμα,ν − gμν,α + gνα,μ
)
,

where a comma denotes partial differentiation, are the affine connection coefficients of the
space RN .

The Christoffel symbols are not tensors because they change as

Γπ′
μ′ν′ = xπ′

π xμ
μ′x

ν
ν′Γ

π
μν + xπ′

π xπ
μ′ν′ ,
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where xπ
μ′ν′ =

∂2xπ

∂x′μ∂x′ν
.

The Christoffel symbols Γπ
μν and their traces Γμ = Γα

μα are not tensors.

1.3. Geodesic Lines of Riemannian Spaces

A curve � = (�μ) = �(t) in Riemannian space RN is geodesic if its tangential vector

λμ =
d�μ

dt
satisfies the forthcoming system of differential equations

dλμ

dt
+ Γμ

αβλαλβ = ρλμ, (1)

where ρ is a scalar function. In one paper (Mikeš et al. [2], pp. 88–89), the definition of
geodesics is discussed.

In spaces with a positive definite metric, the geodesic line is the shortest line between
two points on manifolds by the path in it. The FLRW metric is not a positive definite one;
light (the fastest unit in cosmology) moves along geodesic lines.

We are interested in obtaining some new invariants for a special geometric mapping
and to present the corresponding action in four-dimensional cosmology.

1.4. Motivation

In cosmology, a geodesic line is defined in the case of homogeneous Equation (1),
i.e., in the case of ρ = 0 (see [24], page 30, Equation (2.18)). For geodesics defined in
such a way, we will prove that a geometrical object which determines a transformation of
Christoffel symbols under geodesic mapping vanishes, (for the concrete methodology, see
the sections on geodesic mappings in [2,9]).

After connecting the invariance of the Ricci tensor under geodesic mappings, we find

that the standard Einstein–Hilbert action [24] S =
1

2κ

∫
d4x
√−gR is nothing more than

action for the Lagrangian which is equal to the invariant Rαβ composed by gαβ, and for
topological invariance multiplied by

√−g.
Perturbations in cosmology are nothing more than summing the Friedmann–Lemaitre–

Robertson–Walker metric ḡμν with a tensor δgμν (named perturbation). In this way, any
geodesic line of the initial space equipped with the FLRW metric transforms to a curve of
perturbed space (equipped with metric gμν = ḡμν + δgμν).

Geodesics are defined by the non-homogeneous Equation (1) [1,2,9]. All special curves
(F-planar, almost geodesic, . . . [2,9]) are generalizations of geodesics.

Until 2020, all invariants for mappings (Weyl projective tensor, Weyl conformal tensor,
Weyl F-plannar tensor,. . . ) were created in such a way that their traces by contravariant
and covariant indices vanish. In (Vesić, 2020 [21]), the methodology for obtaining another
invariant (whose traces do not vanish) was presented.

This other invariant, which does not lose the Ricci tensor after contraction, motivated
us to pursue this research. The other motivation for our research is the significance of the
conformal mappings of Riemannian spaces presented in [22]. The Lagrangian of Einstein–
Hilbert action studied in [23] is very similar to the invariants for mappings obtained in [21],
which is another motivation for our research, presented below.

This manuscript is organized as follows:

1. We will review the preferred methodology for obtaining invariants of geometric
mappings from [15,21]. In this review, we will present the corresponding invariants
for geodesic and conformal mappings of an N-dimensional Riemannian space.
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2. In the next section, we will generalize the concept of conformal mapping by defining
a special curve of a Riemannian space. A mapping from which any geodesic line from
an initial space transforms to a curve of this special class of the deformed space will
be the subject of our research.

3. We will obtain the basic equations for mappings mentioned in previous studies. After
that, we will obtain the invariants for this mapping.

4. At the end of this paper, we will present the cosmology which corresponds to one of
the invariants obtained herein and present the corresponding Einstein equations.

2. Review of Invariants for Geometric Mappings

In this section, we will review the process for obtaining invariants of mappings defined
on N-dimensional Riemannian spaces [15,21]

Let f : R̄N → RN be a mapping whose basic equation is

Γπ
μν = Γ̄π

μν + ψνδπ
μ + ψμδπ

ν + ωπ
μν − ω̄π

μν. (2)

After contracting this equation by π and ν, we obtain Γμ = Γ̄μ + (N + 1)ψμ +ωμ− ω̄μ,
i.e.,

ψμ =
1

N + 1
(
Γμ −ωμ

)
− 1

N + 1
(
Γ̄μ − ω̄μ

)
. (3)

With respect to (3), the basic Equation (2) is transformed to

Γπ
μν = Γ̄π

μν + ωπ
μν +

1
N + 1

(
δπ

μ Γν + δπ
ν Γμ

)
− 1

N + 1
(
δπ

μ ων + δπ
ν ωμ

)
− ω̄π

μν −
1

N + 1
(
δπ

μ Γ̄ν + δπ
ν Γ̄μ

)
+

1
N + 1

(
δπ

μ ω̄ν + δπ
ν ω̄μ

)
.

(4)

The basic Equation (4) is expressed in the form Γπ
μν = Γ̄π

μν + dπ
μν − d̄π

μν, where

dπ
μν = ωπ

μν +
1

N + 1
(
δπ

μ Γν + δπ
ν Γμ

)
− 1

N + 1
(
δπ

μ ων + δπ
ν ωμ

)
,

d̄π
μν = ω̄π

μν +
1

N + 1
(
δπ

μ Γ̄ν + δπ
ν Γ̄μ

)
− 1

N + 1
(
δπ

μ ω̄ν + δπ
ν ω̄μ

)
.

The basic invariants for the mapping f of the Thomas and Weyl type are T π
μν = Γπ

μν− dπ
μν

andWπ
μνσ = Rπ

μνσ − dπ
μν|σ + dπ

μσ|ν + dα
μνdπ

ασ − dα
μσdπ

αν, and the corresponding T̄ π
μν andWπ

μνσ.
The invariants T π

μν andWπ
μνσ are directly expressed as

T π
μν = Γπ

μν −ωπ
μν −

1
N + 1

(
δπ

μ Γν + δπ
ν Γμ

)
+

1
N + 1

(
δπ

μ ων + δπ
ν ωμ

)
, (5)

Wπ
μνσ = Rπ

μνσ −ωπ
μν|σ + ωπ

μσ|ν + ωα
μνωπ

ασ −ωα
μσωπ

αν

− 1
(N + 1)2 δπ

ν

(
(N + 1)

(
Γμ|σ −ωμ|σ + ωα

μσ(Γα −ωα)
)
+
(
Γμ −ωμ

)(
Γσ −ωσ

))
+

1
(N + 1)2 δπ

σ

(
(N + 1)

(
Γμ|ν −ωμ|ν + ωα

μν(Γα −ωα)
)
+
(
Γμ −ωμ

)(
Γν −ων

))
,

(6)

and the corresponding T̄ π
μν andWπ

μνσ.

The equality 0 =Wα
ανσ −W

α
ανσ is equivalent to the equality

ων|σ −ωσ|ν = ω̄ν‖σ − ω̄σ‖ν,

265



Axioms 2025, 14, 652

which proves that the anti-symmetric part of ωμ|ν by μ and ν is an invariant for the
mapping f .

The equivalent forms of invariants,Wπ
μνσ andWπ

μνσ are⎧⎨⎩W
π
μνσ = Rπ

μνσ −ωπ
μν|σ + ωπ

μσ|ν + ωα
μνωπ

ασ −ωα
μσωπ

αν + δπ
ν Xμσ − δπ

σ Xμν,

Wπ
μνσ = R̄π

μνσ − ω̄π
μν‖σ + ω̄π

μσ‖ν + ω̄α
μνω̄π

ασ − ω̄α
μσω̄π

αν + δπ
ν X̄μσ − δπ

σ X̄μν,

where⎧⎪⎪⎨⎪⎪⎩
Xμν = − 1

N + 1

(
Γμ|ν −ωμ|ν + ωα

μν

(
Γα −ωα

))
− 1

(N + 1)2

(
Γμ −ωμ

)(
Γν −ων

)
,

X̄μν = − 1
N + 1

(
Γ̄μ‖ν − ω̄μ‖ν + ω̄α

μν

(
Γ̄α − ω̄α

))
− 1

(N + 1)2

(
Γ̄μ − ω̄μ

)(
Γ̄ν − ω̄ν

)
.

The invarianceWπ
μνσ =Wπ

μνσ is equivalent to the equality 0 =Wπ
μνσ −W

π
μνσ, i.e.,

0 =
(

Rπ
μνσ − R̄π

μνσ

)
−
(
ωπ

μν|σ − ω̄π
μν‖σ

)
+
(
ωπ

μσ|ν − ω̄π
μσ‖ν

)
+
(
ωα

μνωπ
ασ − ω̄α

μνω̄π
ασ

)
−
(
ωα

μσωα − ω̄α
μσω̄α

)
+ δπ

ν

(
Xμσ − X̄μσ

)
− δπ

σ

(
Xμν − X̄μν

)
.

(7)

After contracting (7) by π and ν, one obtains

Xμσ − X̄μσ = − 1
N − 1

Rμσ +
1

N − 1
(
ωμ|σ −ωα

μσ|α −ωα
μβω

β
σα + ωα

μσωα

)
+

1
N − 1

R̄μσ −
1

N − 1
(
ω̄μ‖σ − ω̄α

μσ‖α − ω̄α
μβω̄

β
σα + ω̄α

μσω̄α

)
.

(8)

If we substitute (8) into (7), we will obtain the relation 0 = Wπ
μνσ − W̄π

μνσ, for

Wπ
μνσ = Rπ

μνσ −
1

N − 1
(
δπ

ν Rμσ − δπ
σ Rμν

)
−ωπ

μν|σ + ωπ
μσ|ν + ωα

μνωπ
ασ −ωα

μσωπ
αν

+
1

N − 1
δπ

ν

(
ωμ|σ −ωα

μσ|α −ωα
μβω

β
σα + ωα

μσωα

)
+

1
N − 1

δπ
σ

(
ωμ|ν −ωα

μν|α −ωα
μβω

β
να + ωα

μνωα

)
,

(9)

W̄π
μνσ = R̄π

μνσ −
1

N − 1
(
δπ

ν R̄μσ − δπ
σ R̄μν

)
− ω̄π

μν‖σ + ω̄π
μσ‖ν + ω̄α

μνω̄π
ασ − ω̄α

μσω̄π
αν

+
1

N − 1
δπ

ν

(
ω̄μ‖σ − ω̄α

μσ‖α − ω̄α
μβω̄

β
σα + ω̄α

μσω̄α

)
+

1
N − 1

δπ
σ

(
ω̄μ‖ν − ω̄α

μν‖α − ω̄α
μβω̄

β
να + ω̄α

μνω̄α

)
.

The traces of invariant Wπ
μνσ are

Wα
ανσ = −N − 2

N − 1
(
ων|σ −ωσ|ν

)
, Wα

μασ = −Wα
μσα = 0.

The next theorem was proven above.

Theorem 1. Let f : R̄N → RN be a mapping between Riemannian spaces R̄N and RN. The
geometrical objects T π

μν andWπ
μνσ given by (5) and (6) are the basic invariants of the Thomas and

Weyl type for the mapping f . The geometrical object Wπ
μνσ given by (9) is the derived invariant

of the Weyl type for the mapping f . The geometrical object ωμ|ν − ων|μ is an invariant for the
mapping f .
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2.1. Review of Geodesic and Conformal Mappings

In this section, we will review the necessary results presented in [2,9] about geodesic
and conformal mappings and their preferment with respect to the methodology for obtain-
ing invariants of geometric mappings presented in [21], and its form, presented in [15],
necessary for this research.

A mapping f : R̄N → RN in which any geodesic line of the space R̄N transforms to a
geodesic line of the space RN is geodesic. The basic equation of mapping f is

Γπ
μν = Γ̄π

μν + ψνδπ
μ + ψμδπ

ν ,

In comparison with (4), we conclude that ωπ
μν = 0 and ω̄π

μν = 0. That means that for
geodesic mappings, the equalities ωμ = 0 and ω̄μ = 0 are satisfied. Hence, the invariants
for geodesic mapping f are

Tπ
μν = Γπ

μν −
1

N + 1
(
δπ

μ Γν + δπ
ν Γμ

)
, (10)

Wπ
μνσ = Rπ

μνσ −
1

(N + 1)2 δπ
ν

(
Γμ|σ + ΓμΓσ

)
+

1
(N + 1)2 δπ

σ

(
Γμ|ν + ΓμΓν

)
, (11)

Wπ
μνσ = Rπ

μνσ −
1

N − 1
(
δπ

ν Rμσ − δπ
σ Rμν

)
. (12)

For the Weyl projective tensor Wπ
μνσ, the next identities are satisfied Wα

ανσ ≡ 0,

Wα
μασ ≡ 0, Wα

μνα ≡ 0, butWα
ανσ ≡ 0,Wα

μασ = −Wα
μσα = Rμσ −

N − 1
(N + 1)2

(
Γμ|σ + ΓμΓσ

)
�≡ 0.

The basic equation of conformal mapping f : R̄N → RN is

Γπ
μν = Γ̄π

μν + ψνδπ
μ + ψμδπ

ν − gμνgπαψα. (13)

After contracting (13) by π and ν, we obtain

ψμ =
1
N

Γμ −
1
N

Γ̄μ. (14)

Substituting (14) into the basic Equation (13), one can transform it to the form

Γπ
μν = Γ̄π

μν +
1
N
(
δπ

μ Γν + δπ
ν Γμ − gμνgπαΓα

)
− 1

N
(
δπ

μ Γ̄ν + δπ
ν Γ̄μ − ḡμν ḡπαΓ̄α

)
.

This relation is equivalent to

Γπ
μν = Γ̄π

μν + δπ
μ ψν + δπ

ν ψμ −
1
N

gμνgπαΓα +
1
N

ḡμν ḡπαΓ̄α. (15)

It is well known that the mapping f : R̄N → RN is conformal if and only if the
Christoffel symbols Γ̄π

μν and Γπ
μν satisfy (13). It is not hard to prove that the relation (13)

is identically satisfied for ψμ =
1
N

Γμ −
1
N

Γ̄μ. Moreover, (15) is equivalent to (2) for

ωπ
μν = − 1

N
gμνgπαΓα and ω̄π

μν = − 1
N

ḡμν ḡπαΓ̄α.
Hence, the corresponding basic invariants of the Thomas and Weyl type, and the

derived invariant of the Weyl type for conformal mapping, f are

T π
μν = Γπ

μν −
1
N

δπ
μ Γν +

1
N

δπ
ν Γμ +

1
N

gμνgπαΓα,
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Wπ
μνσ = Rπ

μνσ +
1

N2 gμνgπα
(

NΓα|σ + ΓαΓσ

)
− 1

N2 gμσgπα
(

NΓα|ν + ΓαΓν

)
− 1

N2 δπ
ν

(
NΓμ|σ + ΓμΓσ − gμσgαγΓαΓγ

)
+

1
N2 δπ

σ

(
NΓμ|ν + ΓμΓν − gμνgαγΓαΓγ

)
,

Wπ
μνσ = Rπ

μνσ −
1

N − 1
(
δπ

ν Rμσ − δπ
σ Rμν

)
+

1
N2 gμνgπα

(
NΓα|σ + ΓαΓσ

)
− 1

N2 gμσgπα
(

NΓα|ν + ΓαΓν

)
+

1
N2(N − 1)

δπ
ν

(
NΓμ|σ − ΓμΓσ − gμσgαγ

(
NΓα|γ − ΓαΓγ

))
− 1

N2(N − 1)
δπ

σ

(
NΓμ|ν − ΓμΓν − gμνgαγ

(
NΓα|γ − ΓαΓγ

))
.

2.2. What Is Given byVesić’s Method [21]

If f : R̄N → RN is a mapping between Riemannian spaces R̄N and RN , whose
deformation tensor is Pπ

μν = Γπ
μν − Γ̄π

μν, the transformation rule of the curvature tensor R̄π
μνσ

to Rπ
μνσ of the spaces R̄N and RN is

Rπ
μνσ = R̄π

μνσ + Pπ
μν‖σ − Pπ

μσ‖ν + Pα
μνPπ

ασ − Pα
μσPπ

αν. (16)

If the mapping f is geodesic, then it is Pπ
μν = ψνδπ

μ + ψμδπ
ν . After substituting this

relation into (16), we will obtain [2,9]

Rπ
μνσ = R̄π

μνσ + δπ
μ

(
ψν‖σ − ψσ‖ν

)
+ δπ

ν

(
ψμ‖σ − ψμψσ

)
− δπ

σ

(
ψμ‖ν − ψμψν

)
. (17)

When one contracts (17) by π and μ, and by π and ν, the next relations will be obtained

ψν‖σ − ψσ‖ν = − 1
N + 1

(
Rα

ανσ − R̄α
ανσ

)
= 0,

ψμ‖σ − ψμψσ =
1

N − 1
Rμσ −

1
N − 1

R̄μσ.

The last two equalities, together with (17), give

Rπ
μνσ = R̄π

μνσ +
1

N − 1
(
δπ

ν Rμσ − δπ
σ Rμν

)
− 1

N − 1
(
δπ

ν R̄μσ − δπ
σ Rμν

)
.

From the last equality, the invariance of Weyl projective tensor Wπ
μνσ given by (12) is

confirmed. Because Wα
ανσ = 0, Wα

μασ = 0, and Wα
μνα = 0, we are not able to obtain an another

invariant for the mapping f which contains Rπ
μνσ as a variable of a monic polynomial.

Vesić’s approach [21] gives the significance. Namely, if Γπ
μν = Γ̄π

μν + dπ
μν − d̄π

μν, for
tensors dπ

μν and d̄π
μν of the type (1, 2), and symmetric by μ and ν, it was directly concluded

that T π
μν = T̄ π

μν for T π
μν = Γπ

μν − dπ
μν and the corresponding T̄ π

μν.
In the next step, the following relation was analyzed:

W̄π
μνσ := T̄ π

μν,σ − T̄ π
μσ,ν + T̄ α

μνT̄ π
ασ − T̄ α

μσT̄ π
αν = T π

μν,σ − T π
μσ,ν + T α

μνT π
ασ − T α

μσT π
αν =: Wπ

μνσ.

The last equality is equivalent to W̄π
μνσ = Wπ

μνσ, where Wπ
μνσ = Rπ

μνσ − dπ
μν|σ + dπ

μσ|ν +

dα
μνdπ

ασ − dα
μσdπ

αν, and the corresponding W̄π
μνσ.
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In the case of geodesic mapping f , the tensor dπ
μν is dπ

μν =
1

N + 1
(
δπ

μ Γν + δπ
ν Γμ

)
. In

the case of a conformal mapping, the tensor dπ
μν is dπ

μν =
1
N
(
δπ

μ Γν + δπ
ν Γμ

)
.

The corresponding basic invariants Wπ
μνσ are not trace-free, nor is the Ricci-tensor

vanished in their trace. The same holds for any of the above obtained basic invariants. That
will help us to create an R1-cosmological model as an example in this manuscript.

Furthermore, the invariance W̄π
μνσ =Wπ

μνσ gives us the chance to obtain an another
invariant for analyzed mapping as a monic polynomial of curvature tensor Rπ

μνσ. The Weyl
projective and Weyl conformal tensors are examples of these other invariants.

Hence, by the methodology presented by H. Weyl, we are able to obtain only trace-free
invariants for mappings. By Vesić’s methodology, we obtained a novel invariant which
makes it possible for linear cosmological models to be created from these invariants. Both
of these invariants will present some significant magnitudes in physics, but we will not
talk about these details in this paper.

3. Generalized Concept of Conformal Mappings

In this section, we are ready to define a curve of new kind in space RN . An m-
conformal line of space RN is a curve � = �(t) whose tangential vector (λμ) satisfies the
system of differential equations

dλμ

dt
+ Γμ

αβλαλβ = ρλμ + mgαβgμγΓγλαλβ,

where ρ and m are scalar functions. The function m is the conformality coefficient.
A 0-conformal line of space RN is a geodesic line of this space.

A (− 1
N

,− 1
N
)-conformal mapping f : R̄N → RN is the conformal mapping of space R̄N .

A (0, 0)-conformal mapping f : R̄N → RN is geodesic mapping.

3.1. Invariants for (m̄, m)-Conformal Mappings

A mapping f : R̄N → RN in which any m̄-conformal line of space R̄N transforms to
an m-conformal line of space RN is the (m̄, m)-conformal mapping.

The (0, m)-conformal mapping f : R̄N → RN transmits any geodesic line of space
R̄N to an m-conformal line of space RN . The (m̄, 0)-conformal mapping f : R̄N → RN

transforms any m̄-conformal line of space R̄N to a geodesic line of the space RN .
Let us consider an m̄-conformal line of the space R̄N and an m-conformal mapping of

the space RN , ⎧⎪⎨⎪⎩
dλμ

dt
+ Γ̄μ

αβλαλβ = ρ̄λμ + m̄ḡαβ ḡμγΓ̄γλαλβ,
dλμ

dt
+ Γμ

αβλαλβ = ρλμ + mgαβgμγΓγλαλβ.
(18)

Based on the expressions ρ = ραλα, ρ̄ = ρ̄αλα, λμ = δ
μ
α λα, from system (18), one obtains((

Γμ
αβ− Γ̄μ

αβ

)
− 1

2
(ραδ

μ
β + ρβδ

μ
α

)
+

1
2
(ρ̄αδ

μ
β + ρ̄βδ

μ
α

)
−
(
mgαβgμγΓγ− m̄ḡαβ ḡμγΓ̄γ

))
λαλβ = 0.

The next lemma was proven above.

Lemma 1. A mapping f : R̄N → RN is an (m̄, m)-conformal one if and only if

Γπ
μν = Γ̄π

μν + δπ
μ ψν + δπ

ν ψμ + mgμνgπαΓα − m̄ḡμν ḡπαΓ̄α, (19)

where m is a scalar function and ψμ is a 1-form.
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3.2. Invariants for (m̄, m)-Conformal Mappings

Let f : R̄N → RN be an (m̄, m)-conformal mapping. After contracting its basic
Equation (19) by π and ν, we obtain

ψμ = −m− 1
N + 1

Γμ −
m̄− 1
N + 1

Γ̄μ. (20)

After substituting (20) into the basic Equation (19), we obtain

Γπ
μν = Γ̄π

μν −
m− 1
N + 1

(
δπ

μ Γν + δπ
ν Γμ

)
+ mgμνgπαΓα

+
m̄− 1
N + 1

(
δπ

μ Γ̄ν + δπ
ν Γ̄μ

)
− m̄ḡμν ḡπαΓ̄α.

(21)

(21) is equivalent to the equality T π
μν = T̄ π

μν, for

T π
μν = Γπ

μν −mgμνgπαΓα +
m− 1
N + 1

(
δπ

μ Γν + δπ
ν Γμ

)
, (22)

and the corresponding T̄ π
μν.

From the basic Equation (21) of (m̄, m)-mapping f : R̄N → RN , one obtains⎧⎪⎨⎪⎩
dπ

μν = −m− 1
N + 1

(
δπ

μ Γν + δπ
ν Γμ

)
+ mgμνgπαΓα,

d̄π
μν = − m̄− 1

N + 1
(
δπ

μ Γ̄ν + δπ
ν Γ̄μ

)
+ m̄ḡμν ḡπαΓ̄α.

(23)

Remark 2. From (23) we have ωπ
μν = gμνgπαΓα and ω̄π

μν = m̄ḡμν ḡπαΓ̄α, but it will be more
simple to use the equalityWπ

μνσ = Rπ
μνσ − dπ

μν|σ + dπ
μσ|ν + dα

μνdπ
ασ − dα

μσdπ
αν.

For dπ
μν given by (23), and with respect to Γμ|ν = Γν|μ, one obtains

−dπ
μν|σ + dπ

μσ|ν =
1

N + 1
δπ

μ

(
Γνmσ − Γσmν

)
+

1
N + 1

δπ
ν

(
Γμmσ + (m− 1)Γμ|σ

)
− 1

N + 1
δπ

σ

(
Γμmν + (m− 1)Γμ|ν

)
− gπαΓα

(
gμνmσ − gμσmν

)
−mgπα

(
gμνΓα|σ − gμσΓα|ν

)
,

dα
μνdπ

ασ − dα
μσdπ

αν = m2gπαΓα

(
gμνΓσ − gμσΓν

)
+

1
(N + 1)2 δπ

ν

(
(N + 1)m(m− 1)gμσgαγΓαΓγ − (m− 1)2ΓμΓσ

)
− 1

(N + 1)2 δπ
σ

(
(N + 1)m(m− 1)gμνgαγΓαΓγ − (m− 1)2ΓμΓν

)
,

and the corresponding differences −d̄π
μν‖σ

+ d̄π
μσ‖ν

and d̄α
μνd̄π

ασ − d̄α
μσ d̄π

αν.
Hence, we obtain the following geometrical objects

Wπ
μνσ = Rπ

μνσ − gπαΓα

(
gμνmσ − gμσmν −m2(gμνΓσ − gμσΓν

))
−mgπα

(
gμνΓα|σ − gμσΓα|ν

)
+

1
N + 1

δπ
μ

(
Γνmσ − Γσmν

)
+

1
(N + 1)2 δπ

ν

(
(N + 1)(m− 1)

(
Γμ|σ + mgμσgαγΓαΓγ

)
+ Γμmσ − (m− 1)2ΓμΓσ

)
− 1

(N + 1)2 δπ
σ

(
(N + 1)(m− 1)

(
Γμ|ν + mgμνgαγΓαΓγ

)
+ Γμmν − (m− 1)2ΓμΓν

)
,

(24)
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W̄π
μνσ = R̄π

μνσ − ḡπαΓ̄α

(
ḡμνm̄σ − ḡμσm̄ν − m̄2(ḡμνΓ̄σ − ḡμσΓ̄ν

))
− m̄ḡπα

(
ḡμνΓ̄α‖σ − ḡμσΓ̄α‖ν

)
+

1
N + 1

δπ
μ

(
Γ̄νm̄σ − Γ̄σm̄ν

)
+

1
(N + 1)2 δπ

ν

(
(N + 1)(m̄− 1)

(
Γ̄μ‖σ + m̄ḡμσ ḡαγΓ̄αΓ̄γ

)
+ Γ̄μm̄σ − (m̄− 1)2Γ̄μΓ̄σ

)
− 1

(N + 1)2 δπ
σ

(
(N + 1)(m̄− 1)

(
Γ̄μ‖ν + m̄ḡμν ḡαγΓ̄αΓ̄γ

)
+ Γ̄μm̄ν − (m̄− 1)2Γ̄μΓ̄ν

)
.

(25)

The traces of the geometrical objectsWπ
μνσ and W̄π

μνσ from Equations (24) and (25) by

π and μ are Wα
ανσ = − N

(N + 1)2

(
Γνmσ − Γσmν

)
and W̄α

ανσ = − N
(N + 1)2

(
Γ̄νm̄σ − Γ̄σm̄ν

)
.

The traces of these geometrical objects by π and ν are

Wα
μασ = Rμσ −

2m + N − 1
N + 1

Γμ|σ + mgμσgαγΓα|γ −
(

2
N + 1

m +
N − 1
N + 1

)
gμσgαγΓαΓγ

+

(
N2 + N + 2
(N + 1)2 m2 +

2N − 2
(N + 1)2 m− N − 1

(N + 1)2

)
ΓμΓσ + gμσgαγΓαmγ

− 1
N + 1

Γσmγ −
N2 + 1
(N + 1)2 Γμmσ,

W̄α
μασ = R̄μσ −

2m̄ + N − 1
N + 1

Γ̄μ‖σ + m̄ḡμσ ḡαγΓ̄α‖γ −
(

2
N + 1

m̄ +
N − 1
N + 1

)
ḡμσ ḡαγΓ̄αΓ̄γ

+

(
N2 + N + 2
(N + 1)2 m̄2 +

2N − 2
(N + 1)2 m̄− N − 1

(N + 1)2

)
Γ̄μΓ̄σ + ḡμσ ḡαγΓ̄αm̄γ

− 1
N + 1

Γ̄σm̄γ −
N2 + 1
(N + 1)2 Γ̄μm̄σ.

BecauseWπ
μνσ = −Wπ

μσν and W̄π
μνσ = −W̄π

μσν, the traces ofWπ
μνσ and W̄π

μνσ by π and
σ areWα

μνα = −Wα
μαν and W̄α

μνα = −W̄α
μαν.

After substituting the previously obtained geometrical objects necessary for the de-
rived invariant Wπ

μνσ, we get

Wπ
μνσ = Rπ

μνσ −
1

N − 1
(
δπ

ν Rμσ − δπ
σ Rμν

)
− gπαΓα

(
gμνmσ − gμσmν

)
−mgπα

(
gμνΓα|σ − gμσΓα|ν

)
+ m2gπαΓα

(
gμνΓσ − gμσΓν

)
+

1
N − 1

δπ
ν

(
mΓμ|σ + Γμmσ −m2ΓμΓσ − gμσgαγ

(
mΓα|γ + Γαmγ −m2ΓαΓγ

))
− 1

N − 1
δπ

σ

(
mΓμ|ν + Γμmν −m2ΓμΓν − gμνgαγ

(
mΓα|γ + Γαmγ −m2ΓαΓγ

))
,

(26)

and the corresponding W̄π
μνσ.

The traces Wνσ = Wα
ανσ and Wμσ = Wα

μασ of the invariant Wπ
μνσ given by (26) are

Wνσ = −N − 2
N − 1

(
Γνmσ − Γσmν

)
and Wμσ = 0.

The next theorem was proven above.

Theorem 2. Let f : R̄N → RN be an (m̄, m)-mapping. The geometrical object T π
μν given by (22)

is the basic invariant for mapping f of the Thomas type. The geometrical objectWπ
μνσ given by (24)

is the basic invariant for mapping f of the Weyl type. The geometrical object Wπ
μνσ given by (26) is

the derived invariant for mapping f of the Weyl type.
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3.3. Lagrangian Caused by (m̄, m)-Conformal Mappings

In [23], the Lagrangian is taken to be

LN =
√
−ggμν

(
Gα

μν,α +
1

N − 1
Gα

αμGβ
βν − Gα

βμGβ
αν

)
,

for Gπ
μν = Γπ

μν −
1
2
(
δπ

μ Γν + δπ
ν Γμ

)
.

The value Gπ
μν is similar to the Thomas projective parameter (10). As we mentioned

above, the basic invariantWμσ =Wα
μασ for the geodesic mapping given by (11) reduces to

the Ricci tensor Rμσ.
We obtained the basic invariant Wπ

μνσ for an (m̄, m)-conformal mapping. In this
example, we will study the transformation of Γ̄π

μν to Γπ
μν such that any m̄-conformal line of

an N-dimensional Riemannian space R̄N equipped with an FLRW-metric whose square
form is ds2 = −dt2 + a2(dx12

+ . . .+ dxN−12), where a = a(t) is the scale factor, transforms
to an m-conformal line of the perturbed space.

To simplify our computing, we will start from the basic equation of the form
Γπ

μν = Γ̄π
μν + dπ

μν − d̄π
μν, where⎧⎪⎨⎪⎩

dπ
μν = −m− 1

N + 1
(
δπ

μ Γν + δπ
ν Γμ

)
+ mgμνgπαΓα,

d̄π
μν = − m̄− 1

N + 1
(
δπ

μ Γ̄ν + δπ
ν Γ̄μ

)
+ m̄ḡμν ḡπαΓ̄α.

is given by (23).
The corresponding basic invariant of the Weyl type in the perturbed space is

Wμσ =Wα
μασ = Rμσ − dμ|σ + dα

μσ|α + dα
μβdβ

σα − dα
μσdα.

The corresponding Einstein–Hilbert action is

2κS+
0 =

∫
dN x

√
−ggαβWαβ,

i.e.,
2κS+

0 =
∫

dN x
√
−gR−

∫
dN x

√
−ggαβdα|β +

∫
dN x

√
−ggαβdγ

αβ|γ

+
∫

dN x
√
−ggαβdγ

αδdδ
βγ −

∫
dN x

√
−ggαβdγ

αβdγ.
(27)

Because Γμ =
(

ln
√−g

)
,μ =

√−g,μ√−g
, we get

√−g,μ =
√−gΓμ.

For this reason, if τα is a tensor of the type (1, 0), we obtain√
−gτα

|α =
√
−gτα

,α +
√
−gΓα

βατβ =
√
−gτα

,α +
√
−g,βτβ =

(√
−gτα

)
,α.

Because δgμν = 0 at the border of integration, and based on the Stokes Theorem,
we conclude that the variation δ

(∫
dN x

√−gdα
|α

)
vanishes. For this reason, and because

gαβdα|β =
(

gαβdα

)
|β and gαβdγ

αβ|γ =
(

gαβdγ
αβ

)
|γ, the variations of the second and third

integral of (27) are equal to zero.
The variation of the scalar curvature R is

δR = δgμνRμν + gμν
(
(δΓα

μα

)
,ν −

(
δΓα

μν

)
,α + δΓβ

μαΓα
νβ + Γβ

μαδΓα
νβ − δΓα

μσΓα − Γα
μσδΓα

)
=
(
δΓμ|

)
|σ −

(
δΓα

μσ

)
|α.
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For this reason, because δ
√−g = −1

2
√−gδgμνgμν, and with respect to the Stokes

Theorem, we obtain

δ

(∫
dN x

√
−gR

)
=
∫

dN x
√
−gδgμν

(
Rμν −

1
2

Rgμν

)
.

Because m̄ and m are scalars, the variation δm = m− m̄ is a scalar too. With respect
to the tensor δgμν of the type (0, 2), and the quotient rule, there exists a tensor Mμν of the
type (0, 2) such that δm = Mμνδgμν.

Because 0 = δ(δα
β) = δ(gαγgβγ) = δgαγgβγ + gαγδgβγ, we conclude that

δgβδ = −δgαγgαβgγδ.

The variation of the vector Γα = Γβ
αβ is

δΓα =
1
2

δ
(

gβδ(gαβ,δ − gαδ,β + gβδ,α)
)
=

1
2

δgβδgβδ,α +
1
2

gβδ
(
δgβδ

)
,α

=
1
2

δgβδgβδ,α −
1
2

gεζ
(
δgβδgβεgδζ

)
,α

=
1
2

δgβδgβδ,α −
1
2
(
δgβδ

)
,αgβδ −

1
2

δgβδgβδ,α −
1
2

δgβδgβδ,α = −1
2
(
δgβδgβδ

)
,α.

For dπ
μν given by (23), the following equalities hold:

gαβdγ
αδdδ

βγ = −
(

N2 + N − 2
(N + 1)2 m2 +

2(N2 + N − 2)
(N + 1)2 m +

N + 3
(N + 1)2

)
gαγΓαΓγ,

gαβdγ
αβdγ =

(
N2 + N − 2
(N + 1)2 m +

2
N + 1

)
gαγΓαΓγ.

Hence, the difference I = gαβdγ
αδdδ

βγ − gαβdγ
αβdγ between the last two integrands in

(27) is

I = −
(

N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
gαγΓαΓγ.

The variation of term
√−gI is

δ
(√
−gI

)
=

1
2
√
−gδgμνgμν

(
N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
gαγΓαΓγ

−
√
−gδgμν

(
N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
ΓμΓν

− N2 + N − 2
(N + 1)2

√
−gδgμν Mμν(2m− 3)gαγΓαΓγ

+
√
−g
(

N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
gαγΓα

(
δgμνgμν

)
,γ
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The following equality is satisfied

√
−g
(

N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
gαγΓα

(
δgμνgμν

)
,γ

=

(√
−g
(

N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
gαγΓαδgμνgμν

)
,γ

−
√
−g
(

N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
δgμνgμνgαγΓαΓγ

−
√
−g

N2 + N − 2
(N + 1)2 δgμνgμν(2m− 3)gαγΓαmγ

−
√
−g
(

N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
δgμνgμνgαγ

(
Γα|γ − ΓαΓγ

)
.

Finally, the variation of Einstein–Hilbert action (27) vanishes if and only if

0 = Rμν −
1
2

Rgνν −
(

N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
ΓμΓν

− 1
2

(
N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
gμνgαγΓαΓγ

− N2 + N − 2
(N + 1)2 (2m− 3)gαγΓα

(
MμνΓγ + gμνmγ

)
−
(

N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
gμνgαγ

(
Γα|γ − ΓαΓγ

)
.

The corresponding energy–momentum tensor is

Tμν = Rμν −
1
2

Rgνν −
(

N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
ΓμΓν

− 1
2

(
N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
gμνgαγΓαΓγ

− N2 + N − 2
(N + 1)2 (2m− 3)gαγΓα

(
MμνΓγ + gμνmγ

)
−
(

N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
gμνgαγ

(
Γα|γ − ΓαΓγ

)
.

(28)

If the scalar functions m and m̄ are equal, which means that is δm = 0, the energy–
momentum tensor Tμν given by (28) reduces to

Tμν = Rμν −
1
2

Rgνν −
(

N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
ΓμΓν

− 1
2

(
N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
gμνgαγΓαΓγ

− N2 + N − 2
(N + 1)2 (2m− 3)gαγΓαgμνmγ

−
(

N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
gμνgαγ

(
Γα|γ − ΓαΓγ

)
.
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If m and m̄ are equal numbers, which means Mμν = 0 and mμ = m̄μ = 0, the energy–
momentum tensor Tμν given by (28) reduces to

Tμν = Rμν −
1
2

Rgνν −
(

N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
ΓμΓν

− 1
2

(
N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
gμνgαγΓαΓγ

−
(

N2 + N − 2
(N + 1)2 m2 − 3(N2 + N − 2)

(N + 1)2 m +
N + 5

(N + 1)2

)
gμνgαγ

(
Γα|γ − ΓαΓγ

)
.

The free parameters Mμν, mμ and m make possible some cosmological measuring
to be presented exactly by the model. In this way, the problems with Einstein’s model
of cosmology that makes relatively high numerical errors in some experiments may be
attempted to be solved.

4. Conclusions

In this paper we reviewed the methodology for obtaining invariants of geomet-
ric mappings, already published by Vesić [21] and developed by Vesić, Stanković, and
Mihajlović [15]. We also defined the m-conformal line of a Riemannian space. The con-
formal mappings of Riemannian spaces are generalized to (m̄, m)-conformal mappings.
This represents a completely new approach in the field of conformal mappings that is very
important, especially from an application perspective.

At the end of this research, we introduced one example from cosmology that illustrates
how the results can be applied in further physical research.

In future research, we will determine the general equations of motion for various
cosmological models defined in Riemannian spaces of different dimensions. In the simplest
case, these general equations of motion will reduce to those obtained in classical mechanics.
Furthermore, since the geometric mappings transform all curves of a given class in the
initial Riemannian space into curves of a corresponding class in the deformed space, and
since the transformation laws for the Christoffel symbols and the associated invariants are
determined based on this, we will use these transformed curves to identify the correspond-
ing mechanical properties of a particle moving along such a curve. A special case will be
the Navier–Stokes equations, when the moving particle is considered to be a fluid particle.
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