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Abstract: With large-scale wind and solar power connected to the power grid, the randomness
and volatility of its output have an increasingly serious adverse impact on power grid dispatching.
Aiming at the system peak shaving problem caused by regional large-scale wind power photovoltaic
grid connection, a new two-stage optimal scheduling model of wind solar energy storage system
considering demand response is proposed. There is a need to comprehensively consider the power
generation cost of various types of power sources, day-ahead load forecasting information, and other
factors and plan the day-ahead output plan of the energy storage system with the minimum system
operation cost as the optimization objective of day-ahead dispatching. The demand response strategy
is introduced into the time-ahead optimal scheduling, and the optimization of the output value of the
energy storage system in each period is studied with the goal of minimizing the system adjustment
cost. The particle swarm optimization algorithm is used to solve the model, and the IEEE33 node
system is used for an example simulation. The results show that using the demand response and the
collaborative effect of the energy storage system can suppress the uncertainty of wind power and
photovoltaic power, improve the utilization rate of the system, reduce the power generation cost of
the system, and achieve significant comprehensive benefits.

Keywords: demand response; energy storage system; two-stage scheduling; particle swarm optimization
algorithm

1. Introduction

With the large-scale integration of new energy into the grid, the instability and anti-
peak regulation of its power generation output greatly increases the adjustment burden of
the system [1]. This indirectly implies that vigorously improving the flexible regulation
capacity of the power system, ensuring the balance of power supply and demand at differ-
ent time scales, as well as the high-level absorption of new energy, is not only inherently
demanded to speed up the construction of a new power system with new energy as the
main body, but it is also an urgent requirement for the promotion of the realization of a
carbon peak in 2030 and carbon neutralization in 2060 [2—4].

With the increase in the proportion of new energy access, the research on respond-
ing to the volatility and randomness of new energy by demand response has increased
sharply [5,6]. In reference [7], a demand response scheduling strategy with multi-time scale
rolling coordination was designed, which calls for a flexible load to track wind power
rolling. In reference [8], a multi-objective optimization model of source-load coordination
was established to maximize the absorption of wind power and minimize the operating
cost of the system. In reference [9], a power system stochastic dispatching model consid-
ering large-scale wind power and demand response was established. In reference [10],
a day-ahead optimization model of the power system was constructed by introducing
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time-sharing electricity price and interruptible load into a large-scale wind power system.
In addition, the effects of two kinds of demand response resources to reduce the reverse
peak regulation performance of wind power and the impact of intermittence on the power
system were compared.

At present, there is almost no research on the analysis and modeling of demand
response uncertainty [11]. Reference [12] analyzed the causes of the uncertainty of demand
response resources and attributed the causes of the uncertainty to the uncertainty of the
model and forecast. Reference [13] established the random response model of price type
load. The uncertainty of price type load response is regarded as a random injection variable
and introduced into the random interactive probabilistic power flow model of source load.
Reference [14] artificially sets the range of uncertain demand response and reserves the
uncertain response within this range so that the economy of the system is the highest.
Reference [15] studied the incentive demand response and price demand response, and
the scheduling cost models under uncertain response were established, respectively. The
above literature provides a good theoretical basis for the uncertainty analysis of demand
response. However, these studies focus on the modeling of the influencing factors of
demand response uncertainty and analyze the relationship between influencing factors
and demand response uncertainty, which cannot provide a more practical reference for
power system dispatching.

In summary, this work constructs a two-stage optimal scheduling model of land-scape
storage considering demand response, analyzes the load characteristics of the user side,
and designs a DR model that integrates direct load control (DLC) and transferable load (TL)
to make the load and new energy generation closer in timing. Subsequently, the scheduling
optimization model of the day-ahead and the first two stages of the landscape storage
system is established, and the demand response strategy is introduced in the pre-time
scheduling phase to realize the comprehensive optimization of load demand distribution
and energy storage output planning. Finally, the IEEE33 node system is taken as the
simulation system to analyze the effect of the proposed model on the landscape ab-sorption
ability of the system.

2. Load Characteristic Analysis and DR Modeling
2.1. User Side Load Characteristic Analysis

According to the way that the power system participates in the demand response,
the customer-side load is divided into four categories [16]: (1) basic load: it belongs to
uncontrollable load, which is fully responsive to the needs of users, and the system cannot
change its energy use mode and time; (2) translational load: the power supply time of
the load can be changed according to the plan, the load needs to be shifted as a whole,
and the power absorption time spans multiple scheduling periods; (3) a load that can
be reduced: it can withstand a certain interruption or power reduction, reduce the load
running for a certain time, and reduce some or all of it according to supply and demand;
and (4) transferable load: the electricity absorption in each time period can be adjusted
flexibly, but the total load in the whole cycle should remain unchanged after transfer and
before transfer.

2.2. Demand Response Modeling
2.2.1. DLC Model of Daily Electricity Absorption

The load of DLC is directly reduced by the load control device of the power company
during the peak load, which is mainly aimed at residential or small commercial users and
other domestic electricity users. The response characteristic of the participating load is that
the load can be reduced, which belongs to peak-cutting resources, such as air conditioners,
electric water heaters, and other loads with cold and hot storage capacity [17]. According
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to the dispatching needs and load distribution, multiple groups of users are involved in
the DLC project, and the load reduction Fpyc(t) in the period t is as follows:

1

Fore(t) = ) ai(t)Forc,i(t) ¢))

i=1

where Fpj c ;(t) represents the reducible load of i-th group user in the time ¢, a;(t) represents
0-1 variable, a;(t) = 1 indicates that the load of i-th group is reduced, and «;(t) = 0 indicates
that the load of i-th group is not reduced.

In order to encourage users to implement DLC, power suppliers will give electricity
price compensation to participating users, and the rate of electricity price compensation
that users can obtain when they participate in DLC is proportional to the degree of load
reduction. Let the basic compensation rate of the DLC project be Ay pr.c(Aoprc€(0,1)), then
the actual electricity price compensation rate A;(t) of i-th group users in the time ¢ is

a;(t)FpLc,i(t) ]

Ai(t) = Aoprc(t)[ 12F,(¢)

@)
where F(t) represents the planned participation load of i-th group users in time ¢.

The load reduction compensation provided by the power supplier, that is, the DLC
cost, is

Cpic = Z 2 Ai( i(t)Forc,i(t)At 3)
i=1t=
where P (t) represents the domestic electricity price of the time ¢, T represents the number
of scheduling periods, and At represents the scheduling step, with a value of 1 h.

2.2.2. TL Model of Industrial Power Absorption

TL entails users controlling themselves after receiving the system instruction signal;
turn out or transfer to the load, mainly for large industrial users and other industrial power
users; and that the response characteristic of the participating load is movable load. It is a
kind of peak-cutting and valley-filling resource, and it is generally the industrial assembly
line load that can be arranged for downtime production. There are K groups of users to
participate in the TL project, and the transfer load Fry,(t) in the time ¢ is

K

Fro(t) = ) p(t)a(t) Fre k() 4)

k=1

where Frp i (t) represents the transferable load of k-th group users in the time ¢, turning in
is negative, turning out is positive; ay(t) is 0-1 variable, a(t) = 1 indicates that the load is
selected, ax(t) = 0 indicates that the load is not selected, p(t) represents the probability that
the user obeys the power grid regulation and control, taking into account the uncertainty
of user obedience, increases the load margin, which is more conducive to the stability of
the system.

Similarly, the participating users of the DLC project are compensated according to the
TL project, and the actual electricity price compensation rate Ax(t) and the TL cost Cry, are

A(0) = Ao (]2 1,2F):T>Lk( I )
K T

Cro = ) Y A()Pa(t)|o()a(t) Fr k()| At (6)
k=1i=1

where AgtL represents the basic compensation rate of TL, Fy(; represents the planned
participation load of k-th group users in time ¢, and P;(t) represents industrial electricity
price in time .
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2.2.3. DR Comprehensive Model

In order to reduce the load more quickly and reliably during the peak hours of power
absorption and to better improve the timing matching between load and new energy
generation, the proposed DR comprehensive model takes into account both DLC and TL
models. Then, the load Fpr(t) and the total call cost Cpr of DR after the implementation of
DR in time t is

Fpr(#) = Fitia1 (t) — Forc(t) — Fro(f) ()
Cpr = Cprc + CrL ®)

where Finitiq1(f) represents the initial load of time t.

2.3. User Satisfaction Degree

Users are important participants in the electricity market, and the implementation of
DR will have an impact on their power comfort. Considering the scale of user participation,
user satisfaction should be taken into account when implementing DR [18]. Customer
satisfaction requires that the electricity demand is met in time, and the lower the load
reduction or transfer, the higher the satisfaction.

I T ) )
MDLC = %z Z [1_ %&fﬂ(t)]

t=
K T N 9
Mp =1y 2[1fw] 9)

—_

where Mpyc and Mry, are the average user satisfaction of DLC and TL, respectively, and
Myser is the comprehensive satisfaction of users.

3. Two-Stage Optimal Scheduling Model of Scenery Storage
3.1. Day-Ahead Scheduling Model

With the goal of minimizing the operating cost of the system, the output arrange-
ment of the day-ahead energy storage system is established, and the objective function is
as follows:

minC; = Cy + Cw + Cpy + Cgss (10)

where C; represents the total operation cost of the whole dispatching cycle of the system,
Cy represents the operation cost of the thermal power plant, Cyy represents the cost of
wind power generation, Cpy represents the cost of photovoltaic power generation, and
Cgss represents the operation cost of energy storage.

T] nyg
Cu=Y ) cripmi(t) (11)

t=1i=1

where T represents the number of periods in a day-ahead dispatching cycle, ny; represents
the number of thermal power units, ¢y ; represents the coal-fired cost of thermal power
unit 7, py ;(t) represents the active power output of thermal power unit i at time .

Tl nw

Cw =YY cwipw,i(t) (12)

t=1i=1

where nyy represents the number of wind farms, cyy; represents the power generation cost
of wind farm i, py;(t) represents the active power output of wind farm i at time i.

Ty npy

Cov = )_ Y cpv,ippv,(t) (13)

t=1i=1
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where npy represents the number of photovoltaic power stations, cpy; represents the power
generation cost of photovoltaic power station i, ppy;(t)represents the active power output
of photovoltaic power station 7 at time .

Ty ngss

Cess = Y, ) CEss,ilechi(t)pessi(t) (1 = eni) + eqisi(F)pess,i () (1 — aisi)]  (14)
t=1i=1

where nggg represents the number of energy storage power stations, cgsg ; represents the
operating cost of energy storage power station 7, pgsg ;() represents the active power output
of energy storage power station i at time £, e, ;(t) and ey ;(t) represent the state variables
of energy storage charge and discharge of energy storage power station 7 at time ¢, with
values of 0 or 1. When the energy storage is charged, e, ;() = 1; when the energy storage is
discharged, ey;s i(t) = 1, and eg, i(t)eg;s i(t) = 0; 17¢, ; and 77455 ; are the charging efficiency and
discharging efficiency of the energy storage power station i, respectively.
The constraints of the day-ahead scheduling model are as follows:

(1) Power balance constraints:

ny nw npy MESS
Proad(t) = Y pri(t) + Y pw,i(t) + Y pevi(t) + ) prssi(t) (15)
= i=1 i i=

where pj,,4(t) represents the total load at time .

(2) Upper and lower limits of power generation output:

mm < pH 1( ) < pmax
0 < pwi(t) < pire (16)
0 < ppv,i(t) < Pivn\?);

where pii'f' and pij3* represent the minimum and maximum technical output of thermal

power unlt L pwr and PPy ; represent the maximum theoretical output of wind farm i and
photovoltaic power station i, respectively.

mm max

(3) Climbing rate constraint:

Ry < pri(t) — pri(t—1) < Ry,
R€V,i < pW,l(t) - pW,i(t — 1) < Ru (17)
Ry < pevi(t) = pev,i(t—1) < Rfé\,l

where R, ; and Ry} ; represent the lower limit and upper limit of the ramp rate of thermal
power unit i, respectively; R%v ; and Ry ; represent the lower limit and upper limit of the

ramp rate of wind farm i, respectively; Rii’Vi and Rpy, ; represent the lower limit and upper
limit of the ramp rate of photovoltaic power station i, respectively.

(4) Energy storage active output constraints:

PREE; < pess,i(t) < PR (18)

where pg‘sns‘ ; and pp&l; represent the lower limit value and upper limit value of the active

power output of the energy storage power station i, respectively.

(5) Energy storage SOC constraints:

S50Cmin,i < SOCi(t) < S50Cmax,i (19)

where soc;(t) represents the state of charge of energy storage power station i at time ¢; socyjp, ;
and socp,y ; represent the lower and upper limit of the state of charge of energy storage
power station i, respectively.
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In order to prevent the battery from being overcharged and overdischarged for a long
time and prolong the energy storage life, this paper determines the priority and size of
the output of each energy storage power station according to the SOC real-time status of
the energy storage battery and reasonably arranges the current output plan of the energy
storage system. The charge and discharge margin coefficients C% and D% are introduced
to measure the dispatchability of each energy storage power station. The higher the value
of C% and D%, the greater the dispatchability and the priority output of the energy storage
power station. The calculation equation is as follows:

S0Cmax i — 50C;(t)
S0Cmax,i

C% =

x 100% (20)

50¢;(t) — 50Cmin i

D% = x 100% (21)

SOCmin,i

3.2. Pre-Time Scheduling Model

The pre-time optimal scheduling model is based on the planned output curve of
the day-ahead energy storage system and aims to minimize the system adjustment cost
according to the user-side demand response. The adjustment cost mainly includes the
adjustment cost of load participation demand response and the adjustment cost of modified
energy storage output. The objective function is as follows:

T 1ESS

minC, = ) [Cpr(t) + Z Wess,i (t ‘PESSz t) = P'Essi(1)]] (22)
t=1

where T, represents the number of periods in the pre-scheduling cycle, C; represents the
adjustment cost of the whole scheduling cycle of the system, Cpr(t) represents the total DR
call cost at time ¢, wggg ;(t) represents the adjustment cost coefficient of the energy storage
power station i, pgss (t) represents the active power output of the energy storage power
station i in the pre-time dispatching, p'gsg ; () represents the day-ahead dispatching plan
value of the energy storage power station i active power output.

The constraints of the pre-time scheduling model are as follows:

(1)~(5) is similar to the equation in the day-ahead scheduling constraint.

(6) DR model-related constraints:

a;(t)FpLc,i(t) < Fi(t) (23)
lo(t)ax(£) Frox(t)| < Fe(t) (24)

(7) User satisfaction constraint:
MUSEI‘ Z Mg:er; (25)

where MTR represents the set minimum user satisfaction.

4. Evaluation Index
4.1. Peak-to-Valley Ratio

The greater the load peak-to-valley ratio, the more frequent the start-up and shutdown
of the thermal power unit or the operation in the state of deep peak regulation, which
affects the economic operation of the unit and interferes with the safety and stability of the
system. Both DR and ESS can cut the peak, fill the valley, and reduce the ratio of peak to
valley. The peak/valley ratio y is defined as the ratio of the maximum load to the minimum
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load in a statistical period ¢. The smaller the value of y, the better the effect of peak-cutting
and valley-filling:
_ max([FpRr(t) — pess(t)]

H= min[For(f) — pess(t)] @)

4.2. New Energy Absorption Rate

If the problem of trans-regional energy transmission is not considered, the new en-
ergy absorption is mainly related to the regulation performance of thermal power units
(maximum and minimum technical output, power installation growth rate), load scale
and peak-valley difference, energy storage scale, and maximum charging rate. The new
energy absorption rate is defined as the ratio of the actual output of the new energy to its
theoretical output [19]. The calculation equation is as follows:

Ry — WacttQwEss
W=

Qran
— Qpvact+0QpvEss
Rpy = Qpv th (27)
R — Qnew,act + Qnew,ESS
new Qr\ew,th

where Ry, Rpy, and Rpew represent wind, photovoltaic, and total new energy absorp-
tion rate, respectively; Qwact, Qprvact, and Qnew,act represent the direct output of wind,
photovoltaic, and total new energy, respectively; Qw i, Opvin, and Qpewh represent
the theoretical output of wind, photovoltaic, and total new energy, respectively; Qw gss,
QpvEess, and Qpew Ess represent wind power, photovoltaic, and total new energy stored by
ESS, respectively.

5. Case Analysis
5.1. Simulation Scenario Setting

Four kinds of system simulation scenarios are set to analyze the influence of the energy
storage system and demand response on the peak-cutting, valley-filling, and landscape-
absorbing ability of the system.

Case 1: The base scenario, which does not introduce energy storage systems and
demand responses.

Case 2: The energy storage scenario, in which only the energy storage system is
introduced, and four groups of energy storage are set up, each with a capacity of 50 MW-h.
Other parameters are shown in the following section.

Case 3: The demand response scenario, which only introduces demand response. The
proportion of planned participation load of DLC and TL projects to the total load is set to
0.05 and 0.08, respectively.

Case 4: The comprehensive scenario in which both demand response and energy
storage systems are introduced. The specific parameters are the same as in Case 2.

5.2. Basic Data

This work is analyzed by taking the improved IEEE33 system as an example. The
basic data of 10 thermal power units, DR and ESS, are shown in Tables 1-3, respectively. Vj
is the initial capacity of ESS.

The installed capacity of wind farms and photovoltaic power stations is 1500 and
500 MW, respectively. As shown in Figure 1, the photovoltaic output curve is set according
to the photovoltaic power generation forecasting model, and the wind power output and
load curve are set according to the historical forecast data. Assuming that the wind farm
and photovoltaic power station are arranged to generate electricity according to the forecast,
the costs of wind power and photovoltaic are 0.42 and 0.63 CNY (kW-h) !, respectively. In
order to facilitate statistics, it is assumed that the user load changes of each group of DR
projects are equal in one day, and the proportion of planned participation load to the total
load of DLC and TL projects is 0.05 and 0.08, respectively.
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Table 1. The basic data of thermal power unit.

Thermal Power p‘P‘I‘ii“/MW pﬁ;"/MW Rfl{ i/(MW-hfl) R”H,i/(MW'h_l) cp,if/ [yuan-(kW-h)—1]
No. 1 150 400 —160 160 0.23
No. 2 120 300 —100 100 0.25
No. 3 120 300 —100 100 0.25
No. 4 100 300 —80 80 0.26
No. 5 100 300 —80 80 0.26
No. 6 100 300 —80 80 0.26
No. 7 50 200 —50 50 0.31
No. 8 50 200 —50 50 0.31
No. 9 50 200 —50 50 0.31
No. 10 50 200 —50 50 0.31

Table 2. The basic parameters of DR.
. . Pq(t) Py(t)
Period Type Period/h flyuan-(kW-h)1]  /[yuan-(kW-h)-1] p(t)
Peak Hours [10, 15] and [20, 23] 1.00 1.25 0.8
Valley Period [0, 8] 0.30 0.40 1.0
Normal Period else 0.55 0.80 0.9
Table 3. The basic parameters of ESS.
Energy Storage Parameters ESS1 ESS2 ESS3 ESS4
Vo/(MW-h) 20 30 15 25
80Cmin, i 0.1 0.1 0.1 0.1
50Cmax, i 0.9 0.9 0.9 0.9
;7Ch,[/ Wdis,i 0.8 0.8 0.8 0.8
cESS’i/[yuan-(kW-hfl)] 0.08 0.08 0.08 0.08
3500
—&— Equivalent load 1
3000 ~—*— Thermal power 01}]3;1/\ fﬁ 1
‘Wind and solar outp \
2500 - ," 5\ f/ "lll |
= i
% 2000 % \ \.
2 oo . N/ \ |
AN
1000 |- ™~ / > W\ 1
“‘\ / i \
- ™ / =
500 6o o ave, N\ N or ]
“e——n /S W
0 o . - ¥
0 6 12 18 24

Time/h
Figure 1. Load forecasting and theoretical output of wind power photovoltaic.

5.3. Scheduling Optimization Analysis

The hypothesis is to verify the effectiveness and practicability of the proposed model
and to study the impact of DR and ESS on new energy absorption. The power generation
dispatching of the system is divided into several scenarios for optimization analysis by
MATLAB/Simulink 2023b simulation software.

Through the simulation experiment on scenarios 1-4, the corresponding equivalent
load curve is shown in Figure 2, and the system optimization result is shown in Table 4.
According to Figure 2, compared with the original load, the valley value of the equivalent
load of the two-stage coordinated optimal scheduling during the valley period is higher
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than that of the equivalent load with only the energy storage scheduling scheme. It reaches
its peak at about 13:00. At this time, the peak value of the equivalent load of the two-stage
coordinated optimal scheduling is even smaller than that of the equivalent load, with only
the energy storage scheduling scheme and other peak periods having similar effects. This
proves that the two-stage coordinated optimal scheduling improves load curves and has a
better effect on peak-cutting and valley-filling.

3500

Scenario 1 .
3000F T Scenan:o 2 [
 Scenario 3 5 TR
Scenario 4 |
2500 Vi ] !.‘
jll/
£ 2000 !
= A
2
QC: 1500 \
1000 - ,j
e
" ,
500 ¢ A

Figure 2. The curve of equivalent load.

12
Time/h

18

Table 4. Optimization results under different scenarios.

24

Indicator Scenario 1 Scenario 2 Scenario 3 Scenario 4

DR No No Yes Yes

ESS No Yes No Yes

Suser 1.00 1.00 0.74 0.76

U 8.29 7.06 6.22 5.91

Rw 0.55 0.65 0.68 0.77

Rpy 0.97 0.96 0.98 0.99

Rhew 0.63 0.68 0.70 0.81

C1/10 thousand CNY 1174.25 1191.45 1192.11 1185.94

C,/10 thousand CNY 0 58.23 59.76 65.12

According to Table 4, the proposed DR model effectively reduces the peak-to-valley
ratio, which increases the absorption rate of new energy and ensures the smooth operation
of the unit. After cooperating with ESS, the peak-to-valley ratio is further reduced, the level
of new energy absorption is further improved, and the system is more stable. Combined
with Figure 2, the reduction of the peak-to-valley ratio mainly improves the anti-peak regu-
lation characteristics of wind energy, and the wind power absorption rate is significantly
increased. The peak of photovoltaic output is consistent with the first peak of load, and the
characteristic of anti-peak regulation is weak. After considering ESS, the discharge cost of
ESS during the peak load period is much less than that of photovoltaic power generation.
Affected by the lowest total cost of the system, the photovoltaic absorption rate may be
slightly reduced, but the overall new energy absorption level still experiences a high degree
of improvement.

As for the total operation cost, compared with scenario 1, the total cost of scenario 3
increased by CNY 178,600, and the total cost of scenario 4 increased by CNY 116,900; the
new energy absorption level of scenarios 3 and 4 increased significantly, and the power
generation cost was higher than that of thermal power, coupled with the call cost of ESS,
so the total cost increased. The total cost of scenario 1 was low, but the peak and valley
were relatively large, the system was not stable enough, and the safety and reliability were
relatively low. For the problem of system adjustment cost, scenario 1 did not consider
ESS and DR, so the value was 0; the adjustment cost of scenario 4 with comprehensive
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consideration of DR and ESS increases by CNY 53,600 compared with scenario 3, but the
total operating cost of the system was reduced by CNY 61,700, so the overall economy is
better. At the same time, scenario 4 had the lowest peak-to-valley ratio and the highest
new energy absorption rate. To sum up, the comprehensive effect of the proposed model,
namely scenario 4, is optimal.

The comparison of equivalent load and unit output under Scenario 4 is shown in
Figure 3. The DR load change is shown in Figure 4. From 16:00 to 19:00, the actual peak
period of new energy output is also the peak period of electricity load. From 0:00 to 5:00,
the peak period of new energy output no longer corresponds to the trough period of load,
which also makes the output of thermal power units relatively stable and improves the
safety and stability of the system.

3000
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~—¢—— Thermal power output
2500 - Wind and solar output
2000 ¢

Power/MW
2
[=}

1000 =

500 - 4

0 6 12 18 24
Time/h

Figure 3. The comparison of equivalent load and unit output under scenario 4.
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Figure 4. The demand response load changes under scenario 4.

From Figure 5a, when the load is at a low ebb, both the energy storage ESS1 and the
energy storage ESS3 are in the charging state, and the charge of the energy storage ESS1 is
less than that of the energy storage ESS3. According to Equation (20), during the whole
valley period, the charge margin coefficient of energy storage ESS3 is larger than that of
energy storage ESSI, so the scheduling priority of energy storage ESS3 is higher than that
of energy storage ESS1. Therefore, when the system allocates power, the power allocated
by the energy storage ESS3 is more than the energy storage ESS1.
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Figure 5. The comparison of energy storage output in different periods.

From Figure 5b, it can be seen that during the peak period of load, both energy storage
ESS1 and energy storage ESS3 are in the state of discharge, and the discharge capacity
of energy storage ESS1 is less than that of energy storage ESS3 during the peak period.
During the whole valley period, the charging power of the energy storage ESS3 is greater
than that of the energy storage ESS1, while in the peak period, the electricity of the energy
storage ESS3 is larger than that of the energy storage ESS1. According to Equation (21), the
discharge margin coefficient of energy storage ESS3 is larger than that of energy storage
ESS1, so the scheduling priority of energy storage ESS3 is higher than that of energy
storage ESS1. In general, the discharge of energy storage ESS3 is more than that of energy
storage ESS1.

In order to reflect the superiority of the proposed DR model for different response
groups over the conventional DR scheduling mode, generally only one response mode
is considered. In this study, the new energy absorption rates of different proportions of
DLC and TL project participation loads are compared, as shown in Figure 6. From Figure 6,
the scheduling result considering different response modes is obviously better than that
considering only one response mode, and the scheduling result is better with the increase
of the proportion of the two response modes.

New energy
on
(=}
~
(=)}
i

0.06

0.04 TL proportion

DLC proportion ~ 0.02 I 0,02

Figure 6. The new energy absorption rate under different demand response modes.
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6. Conclusions

The reverse distribution of new energy output and load demand time is the main
reason for a large number of abandonments of wind and light. In order to promote the
large-scale grid connection of wind power and photovoltaic, a joint optimal scheduling
model of wind and solar energy storage considering demand response is constructed
based on the two-stage optimization theory. The results of numerical examples show
the following:

1. The designed DR model effectively optimizes the demand-side load distribution.
This, coupled with the call to the energy storage system, significantly improved the
anti-peak regulation of new energy and increased the rate of new energy absorption.

2. The two-stage optimal scheduling model of landscape storage can optimize the
output of the energy storage system (by modifying the day-ahead scheduling scheme),
promote the energy storage system to participate in the optimal scheduling more
reasonably, and improve the effect of peak-cutting and valley-filling.

3. The load peak-to-valley ratio is reduced through optimal dispatching; the output
of the thermal power unit is more stable; the total cost is reduced; and the safety,
reliability, and economic benefit of the system are improved.

The model proposed in this article has not yet taken into account the uncertainty and
category of the load side, and the energy storage devices are relatively single. In subsequent
research, the uncertainty of the load side and multiple types of energy storage devices can
be added as research objects.
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Abstract: In order to extend the service life of a highway power supply system and the level of new
energy consumption, a power dispatching strategy considering the health status of multi-energy
conversion equipment is proposed in this paper. Firstly, the energy and load forms of the highway
power supply system are introduced, and the structure of the multi-energy conversion equipment,
the topological structures of the DC-DC and DC-AC modules, and the operating characteristics are
analyzed. Secondly, the module temperatures and output voltages are used as main parameters
to establish the health indexes of DC-DC and DC-AC modules, and then the health index of the
multi-energy conversion equipment is further calculated. Thirdly, the new energy consumption
index is defined, and a multi-objective optimization model for power dispatching of highway power
supply systems is established with the goal of improving the health index of multi-energy conversion
equipment and the new energy consumption index. The case study shows that the power dispatching
strategy in this paper can better control the temperature of each module, improve the health status of
multi-energy conversion equipment, and have a high level of new energy consumption.

Keywords: highway power supply system; power dispatching strategy; multi-energy conversion
equipment; health index; new energy consumption index

1. Introduction

Highways are important basic transportation facilities in the process of national
economic construction and development. The power supply system plays a vital role in
maintaining the normal operation of the highway system. Highway power supply systems
are generally located in remote areas with a large power supply radius and weak connection
with the power grid. On the other hand, the highway power supply systems have gradually
become polymorphic in terms of energy supply and load type, with polymorphic energy
and load access such as wind, solar, electricity storage, heat, and hydrogen. Especially
with the popularization of new energy vehicles, the charging load of electric vehicles has
grown rapidly, and the peak-to-valley difference of the power supply system has increased
day by day. The highway power supply system has polymorphic power load, changeable
external climate, and untimely maintenance, and the problem of power supply reliability is
becoming increasingly prominent.

Currently, there are few studies on the power dispatching of highway power supply
systems. The main studies focus on multi-energy complementary considering economic
dispatching and new energy consumption. In terms of economic dispatching, reference [1]
proposes a comprehensive economic model of the multi-microgrid for optimizing the
power dispatching, and the source network load storage is taken into account. For the
full consumption of photovoltaic (PV) power, reference [2] uses HOMER Grid software
simulation to propose the economic benefit analysis method of PV plus battery energy
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storage systems (BESS) applied to the behind-the-meter (BTM) market, which is to consider
the effective use of renewable energy. Reference [3] comprehensively considers the total
operating cost of the system and the fluctuation of total power output and optimizes
the dispatching of the wind power, PV power, and hydropower complementary systems.
Reference [4] studies the economic efficiency of coal in the optimal dispatching of wind
power, hydropower, and thermal power based on the randomness of wind power and
load. Reference [5] considers the peak and frequency regulation of the system to establish a
wind power, hydropower, and thermal power optimal dispatching model. Reference [6]
studies the optimal dispatching of hydropower and wind power coordination based on
influencing factors such as wind power, electricity prices, and water resources reserves. Ref-
erence [7] considers the charging and discharging power performance of an energy storage
system to establish a wind power, hydropower, and energy storage system optimization
dispatching model.

In terms of new energy consumption, in reference [8], the new operational conditions
of conventional generators are taken into account for the safety and economics of the power
system with a high proportion of renewable energy. Reference [9] establishes an optimal
dispatching model for wind, solar, water, thermal, and energy storage. The objective
function is to minimize the comprehensive costs of power generation, pollutant control,
and renewable energy curtailment. The results show that the model can reduce the curtail-
ment rate of renewable energy and the system operating costs and effectively smooth out
power fluctuations. Reference [10] establishes a wind—solar-thermal-storage optimization
dispatching model based on the optimal wind-solar energy curtailment rate, indicating
that reasonable energy curtailment is conducive to improving the overall economic benefits
of the system. Reference [11] establishes a wind-storage-hydro-thermal optimization dis-
patching model based on the load mean deviation method and multi-objective optimization
solution strategy, effectively exerting the role of multi-energy complementarity and improv-
ing the consumption of clean energy. Reference [12] establishes a wind-hydro-thermal joint
dispatching model by optimizing carbon emissions through electricity substitution and
improving the consumption of new energy and environmental protection. Reference [13]
proposes a multi-energy complementary optimization dispatching model for wind power,
PV power, hydropower, thermal power, and energy storage with consideration of the
impacts of the peak load regulation initiative of thermal power units. The research re-
sults show that the model proposed in [13] is helpful to improve the consumption of new
energy. Reference [14] considers the randomness and volatility of renewable energy and
quantifies the power balance problem of power system with high proportion renewables.
Reference [15] focuses on power systems a with high proportion of renewable energy
and proposes key measures to solve the problem of renewable energy consumption from
multiple aspects, including the construction of complementary power sources, flexibility
transformation of thermal power units, and demand-side response.

In summary, current power dispatching strategies rarely pay attention to the operating
status of key equipment in the power grid. The health index method originated from the
assessment of human health status and is also used to indicate the expected performance
of the evaluated object [16]. It has been applied to measure and indicate the comprehensive
performance of objects in many fields, such as spacecraft, aircraft engines, rocket engines,
bridges, and other physical systems [17-19]. The concept of electric equipment health was
first proposed by British scholar D. Hughess in 2003. After years of development, electric
equipment health has gradually become a concept and expanded to multiple areas of
power supply reliability. Most of the health analyses in the power industry use evaluation
methods based on expert experiences [20-24].

Multi-energy conversion equipment is the core power electronic equipment in highway
power supply systems. Current research ignores the impacts of the converter operating
status, especially temperature, on the health status of the converter. Therefore, this paper
takes a highway power supply system in southwest China as the research background and
the multi-energy conversion equipment, the core equipment of the power supply system,

15



Energies 2024, 17, 4499

as the research object. It analyzes the factors affecting and evaluating the reliable operation
of multi-energy conversion equipment, establishes the health index of the multi-energy
conversion equipment and the multi-objective optimization model of power dispatching
based on the health index, and extends the service life of the multi-energy conversion
equipment on the basis of meeting the energy demand of the highway power system.

The remainder of this paper is structured as follows: Section 2 introduces the basic
functions and structure of the multi-energy conversion equipment of the highway power
supply system, the DC-DC and DC-AC module topologies, analyzes the fever conditions
of the modules, and proposes a method for calculating the health index of the multi-energy
conversion equipment based on the temperatures and voltages. Section 3 establishes a
multi-objective power control strategy that comprehensively considers the health status
of multi-energy conversion equipment and the consumption level of new energy. The
constraints are the module power limitations, state of charge (SOC) of energy storage
system constraints, and hydrogen production constraints. Section 4 is the case study, which
verifies and analyzes the power dispatching strategy of the highway power supply system
proposed in this paper. The result shows that the power dispatching strategy proposed
in this paper can improve the health index of multi-energy conversion equipment while
meeting the power demand of highway service areas and, at the same time, has a higher
level of new energy consumption.

2. Health Status Analysis of Multi-Energy Conversion Equipment
2.1. Multi-Energy Conversion Equipment of Highway Power Supply Systems

Multi-energy conversion equipment is manufactured by BJ-NEGO Automation Tech-
nology Co., Ltd. in Beijing, China. As the core electric device of the highway power supply
system, the multi-energy conversion equipment takes power conversion as its main task
and is supported by the power system to achieve multi-energy conversion and coordinated
power dispatching based on wind power, PV power, power grid electricity power, and an
energy storage system. The internal modules of the multi-energy conversion equipment
are divided into two categories according to the circuit topology: DC-DC modules and a
DC-AC module. The multi-energy conversion equipment adopts a rack mode, and multi-
ple DC-DC modules are inserted into the racks vertically or horizontally to ensure its heat
dissipation capacity and neatness. Among them, the DC-DC modules are connected to the
1500 V high-voltage DC bus, which is responsible for the energy access and control of wind
power, PV power, energy storage, fuel cells, and DC loads. Wind power and PV power are
the main power sources for highway power supply systems. The energy storage system is
responsible for the stability of DC and cooperates with system scheduling to implement
multi-objective control strategies. The bidirectional DC-AC module is connected to the
690 V AC bus, which is responsible for the DC-to-AC inversion, connected to the external
power grid, and supplies power to each energy-consuming unit in the highway power
supply system. The structure of the highway power supply system with multi-energy
conversion equipment is shown in Figure 1.

The rated capacity of a single DC-DC module in the multi-energy conversion equip-
ment is 270 kW. It adopts a three-phase interleaved parallel three-level buck-boost converter.
The topology is shown in Figure 2a. Each module consists of 12 insulate-gate bipolar tran-
sistors (IGBT). The power consumption of a single IGBT is 321.2 W, and the total power
consumption of IGBTs is 3854.4 W. According to the simulation condition of ambient
temperature (air inlet) of 55 °C, the maximum temperature simulation result of IGBT is
122.5 °C. The rated capacity of the bidirectional DC-AC module is 1.725 MW. It adopts an I
neutral point clamped (I-NPC) three-level inverter. The topology is shown in Figure 2b.
The module consists of 12 IGBTs. The total module loss is 6208.8 W and the maximum
temperature is 108.9 °C.
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Figure 1. The structure of the highway power supply system.
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Figure 2. The topologies of DC-DC and DC-AC modules. (a) DC-DC module topology; (b) DC-AC
module topology.

2.2. Health Index of Multi-Enerqy Conversion Equipment Based on Operating Status

In the early stage of highway power supply system operation, the historical operation
and maintenance data of multi-energy conversion equipment are lacking, and it is impossi-
ble to establish the outage model of each component like the traditional reliability analysis
method. Therefore, this paper evaluates the operating status of multi-energy conversion
equipment based on the operating parameters such as the temperature of each module of
multi-energy conversion equipment and the AC and DC bus voltages and establishes the
health index of multi-energy conversion equipment.

The closer the module’s operating temperature is to the lower limit of the normal
operating temperature, the better the module’s operating status is and the greater the
adjustable power of the module is. The closer the module temperature is to the upper limit
of the normal operating temperature, the worse the module’s operating status is. When it
exceeds the upper limit, it means that the module may be abnormal. The module health
index based on temperature is as follows:

1/ T S Tmin
hT: 1*7*1;73%23‘; Tmin < T < Tax (1)
0, T > Tmax
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where ht is the health index of DC-DC module or DC-AC module based on temperature;
T is the DC-DC or DC-AC module operating temperature measured; and [T min, Tmax] is
the module normal operating temperature range.

The DC and AC voltages output by DC-DC and DC-AC modules should be within a
reasonable range. When the output voltage deviates from the normal operating voltage
range, it indicates that the operating status of the module may deteriorate. When the
output voltage exceeds the module operating voltage limit, it means that the module may
be abnormal. The module health index based on the module AC or DC voltage is as follows:

0, V' < Vhin
1- 29, Vi <V <Va
hy =<1, Vo<V <V 2)
1— b W, <V < Vinax
0, V > Vinax

where V is the operating output voltage of the DC-DC or DC-AC module; [V, V3] is the
normal range of the module output voltage; and [Vin, Vmax] is the allowable operating
voltage of the module.

The operating parameters of the DC-DC module are the IGBT temperature and the DC
bus output voltage. The health index of a single DC-DC module is calculated as follows:

hpc = aht + Bhy 3)

where « and f are weight coefficients based on temperature and DC voltage health indica-
tors, respectively.

The main operating parameters of the DC-AC module are IGBT temperature, AC side
inductor temperature, and AC output voltage. The health index of a single DC-AC module
is calculated as follows:

hac = arhr1 + azhy + Bhy 4)

The multi-energy conversion equipment consists of multiple DC-DC modules and
one DC-AC module. The comprehensive health index of a single multi-energy conversion
equipment is calculated as follows:

N
H =) wjhpc,+ Bhac )
i

where N is the number of DC-DC modules in the multi-energy conversion equipment.

3. Multi-Objective Optimization Model for Power Dispatching Strategy of Highway
Power Supply System Considering Equipment Health and New Energy Consumption
The power dispatching of highway power supply systems must not only consider
the health status of multi-energy conversion equipment but also take into account the
power supply system’s consumption of new energy, make full use of the new energy power
generation in the power supply system, improve the energy self-consistency rate of the
power supply system, and reduce the cost of purchasing electricity from the external power
grid. Therefore, the establishment of the new energy consumption index is as follows [15]:

S-P—Ps

L=1-
=

(6)

where L is the new energy consumption index; S is the startup status of the new energy
unit, 1 indicates startup and 0 indicates shutdown; P is the actual output power of the new
energy unit; and Ps is the target power or predicted power of the new energy unit.
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3.1. Objective Function

On the basis of considering the conventional control objectives of highway power
supply systems, the health status information of multi-energy conversion equipment and
the new energy consumption level are integrated to establish a multi-objective optimization
model for power dispatching of highway power supply systems. The objective function is
as follows:

cC M . cC K . .
]—max{aZZHfﬂ-bZZS{(L{C} )
j=1i=1 =1k=1
where C is the number of optimized cycles; M is the number of multi-energy conversion
equipment; and K is the number of new energy unit installed.

3.2. Constraints

1. The power constraints of each new energy unit are as follows:

Pij,min < Pij < Pij,max (8)
where, Pij ™1 i the lower limit of the output power of the new energy unit in the jth
control period, which is generally determined by the minimum operating power of

the new energy unit; and Pi] ¥ is the upper limit of the output power of the new
energy unit in the jth control period, which can be equivalent to its predicted power.

2. Inorder to cope with the power demand of the highway power supply system when
the external grid power supply is lost, the SOC constraint of the energy storage system
at any time is as follows:

SOCmin S 50C S SOcmax (9)

During the entire dispatching cycle, the energy storage system may be in a charg-
ing state or a discharging state. The energy storage system SOC calculation formula is

as follows:
{ SOC = SOCy_1 +nP. - t

SOCt = SOCy_1 —nPq -t (10)

where, SOC;.; is the SOC of the energy storage system after the end of the previous
dispatching cycle; P. and Py are the charging and discharging power of the energy storage
battery, respectively; and 7 is the charging and discharging efficiency of the energy storage
power station.

3.  The module temperature is mainly affected by the module power. Simulation anal-
ysis shows that the module temperature is linearly related to the power. Therefore,
the relationship between the module temperature and power can be approximately
expressed as follows:

T="To+k(P—P) (11)

where, k is the proportional coefficient, which can be obtained through experiments;
Ty is the initial temperature of the module; and P is the initial power.

4. The module output voltage is also related to the power of the module. When the
power increases, the module output voltage decreases. When the power decreases,
the module output voltage increases. The relationship between voltage and power is
approximately expressed as follows:

V=W+k(P)—P) (12)

where V) is the voltage corresponding to the module power Py.
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5. The power constraints of the DC-DC module and the DC-AC module. Considering
the loss of the DC-DC module, the power of the DC-AC module is as follows:

Pac = Ppg — Ppr, — Ppy (13)

where Pc is the DC-AC module power from DC side to AC side; Ppg is the total
generation power of new energy; Ppy, is the total load power of DC side; and Pp is
the total power loss of DC-DC modules.

4. Case Analysis

In some highway power supply systems, new energy power generation includes wind
power and PV power. The energy storage system is mainly used to supply power to the
system in an emergency state, and to smooth the fluctuation of new energy power and im-
prove the new energy consumption capacity. The DC load is the hydrogen production load.
It starts when the generation of new energy is high, and corresponding production tasks
are formulated every day. The PV power installed capacity is 900 kW, which is connected
with multi-energy conversion equipment through four DC-DC modules. The wind power
installed capacity is 400 kW, which is connected with multi-energy conversion equipment
through two DC-DC modules. The level 1 load (non-interruptible load) in the power
supply system is 50 kW. The energy storage system must be able to provide continuous
power supply for 12 h. The energy storage system is configured to be 1000 kWh. Ignoring
the charge and discharge loss of the energy storage system and the change of the module
voltage, the minimum SOC constraint of the energy storage system is 60%~90%, the power
consumption of hydrogen production is 200 kWh, the initial temperature of the DC-DC
module is 90 °C, and the corresponding power is 150 kW. The proportional coefficient k is
0.1333. Only the effect of temperature on the health of multi-energy conversion equipment
is considered, assuming that the normal temperature range of each module is [85, 105].
Figure 3 shows the load curve, PV power, and wind power curves of the highway power
supply system.
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Figure 3. The load, PV power and wind power of highway power supply system.

In Figure 3, from 10:00 to 15:00, the PV power output is at a high level, and combined
with the wind power output, it can meet the load demand of the highway power supply
system. At other times, electricity needs to be imported from the external power grid.
Figure 4 compares the PV power and wind power outputs before and after power dispatch-
ing and shows the external power grid input power, the energy storage system charging
and discharging power, and the hydrogen production power after power dispatching.
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Figure 4. Dispatching of PV power, wind power, external power grid input power, energy storage
and hydrogen production.

It can be seen in Figure 4 that when the PV power and wind power powers are high,
in order to reduce the temperatures of the DC-DC modules, the dispatching strategy
appropriately reduces the output power of PV power and wind power. From 11:00 to 15:00,
during the PV power at high power period, in order to make full use of new energy, the
energy storage system charges and the hydrogen production produces hydrogen. From
17:00 to 24:00, the PV power is low, the PV power is not controlled, and in order to reduce
the amount of electricity imported from the external power grid, the energy storage system
discharges until the SOC reaches the minimum limit of 60%.

Figure 5 compares the temperatures of the PV power and wind power DC-DC modules
before and after power dispatching. It can be seen that after the implementation of power
dispatching, the temperature of the PV power module is significantly reduced during the
peak period and the temperature of the wind power module reduces during the entire
dispatching cycle. The maximum temperature of the photovoltaic module drops from
105 °C to 102 °C, and the maximum temperature of the wind power module drops from

103 °C to 88 °C.
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Figure 5. Temperature comparisons of different modules before and after power dispatching.

Assume that new energy is fully consumed before power dispatching. In order to
further verify the effectiveness of the power dispatching strategy in this paper, the health
index of multi-energy conversion equipment, the new energy consumption index, and the
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objective function value of the power dispatching optimization strategy before and after
power dispatching are calculated, as shown in Figure 6.
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Figure 6. Index values comparisons before and after power dispatching.

It can be seen that after adopting the power dispatching strategy, the health index
of multi-energy conversion equipment has been significantly improved, while the con-
sumption level of new energy is still at a high level. The abandoned PV and wind energy
is 530 kWh, and the objective function value is improved throughout the entire power
dispatching period.

5. Conclusions

The main novelties of this paper are establishing the health index of multi-energy
conversion equipment based on the temperature and output voltage of each module and
proposing a power dispatching optimization model based on the health index of multi-
energy conversion equipment and the new energy consumption index. The conclusions
and suggestions are as follows:

(1)  In multi-energy conversion equipment, the module temperature and power have a
certain relationship, and temperature is an important parameter affecting the multi-
energy conversion equipment health status;

(2) The health index based on temperature and output voltage can describe the operating
status of multi-energy conversion equipment to a certain extent;

(3) The power dispatching strategy based on equipment health index and new energy
consumption index in this paper can reduce the module temperature during the peak
period of new energy power while taking into account the consumption of new energy
and can delay the aging process of multi-energy conversion equipment and improve
the reliability of the power supply system. In addition, since wind power lasts for
a long time and has a large heat accumulation, wind power dispatching should be
given priority.
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Abstract: The development of electricity spot markets necessitates more refined and ac-
curate load forecasting capabilities to enable precise dispatch control and the creation of
new trading products. Accurate load forecasting relies on high-quality historical load data,
with complete load data serving as the cornerstone for both forecasting and transactions
in electricity spot markets. However, historical load data at the distribution network or
user level often suffers from anomalies and missing values. Data-driven methods have
been widely adopted for anomaly detection due to their independence from prior expert
knowledge and precise physical models. Nevertheless, single network architectures strug-
gle to adapt to the diverse load characteristics of distribution networks or users, hindering
the effective capture of anomaly patterns. This paper proposes a PLS-VAE-BiLSTM-based
method for anomaly identification and correction in load data by combining the strengths
of Variational Autoencoders (VAE) and Bidirectional Long Short-Term Memory Networks
(BiLSTM). This method begins with data preprocessing, including normalization and pre-
liminary missing value imputation based on Partial Least Squares (PLS). Subsequently, a
hybrid VAE-BiLSTM model is constructed and trained on a loaded dataset incorporating
influencing factors to learn the relationships between different data features. Anomalies
are identified and corrected by calculating the deviation between the model’s reconstructed
values and the actual values. Finally, validation on both public and private datasets demon-
strates that the PLS-VAE-BiLSTM model achieves average performance metrics of 98.44%
precision, 94% recall rate, and 96.05% F1 score. Compared with VAE-LSTM, PSO-PFCM,
and WTRR models, the proposed method exhibits superior overall anomaly detection
performance.

Keywords: anomaly identification and correction; bidirectional long short-term memory
network; power load data; partial least square; variational auto-encoders

1. Introduction

The widespread adoption of smart meters and cloud computing technologies has
enabled modern power systems to collect and store vast amounts of load data. These data
hold significant value for grid companies, electricity retailers, and virtual power plant op-
erators alike [1]. High-quality historical load data are foundational for accurate future load
curve prediction. Precise load forecasting is critical for informed decision-making across
various aspects of power system operations, including scheduling and control, demand
response, and electricity spot market transactions. With the advancement of electricity spot
markets, more granular and accurate load forecasting is becoming an essential capability
for fine-tuning scheduling control and designing innovative trading products. However,
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historical load data at the distribution network or user level are frequently plagued by
outliers and missing values. These data quality issues arise from factors such as erroneous
signal inputs, inaccurate measurements, data extraction problems, communication failures,
and integration inconsistencies [2,3]. Poor data quality severely hinders the accurate charac-
terization and prediction of more fine-grained electricity consumption patterns (e.g., at the
distribution network or individual user level), thus impacting subsequent decision-making
and actions. To avoid the “garbage in, garbage out” problem, it is imperative to identify
and rectify missing and outlier values in historical load data to improve data quality. This
ensures the reliability of the analysis, prediction, and scheduling processes involved in
power system operations and trading [4].

Currently, scholars have researched the identification of anomalous data and have
proposed corresponding solutions and measures to improve data quality. These methods
can be broadly categorized into four types: (1) statistical methods; (2) distance-based meth-
ods; (3) density-based methods; and (4) data-driven methods [5,6]. In the analysis of load
data, direct identification and correction of raw daily electricity data often lack a thorough
analysis of the underlying components and fail to capture the patterns and influencing
factors directly affecting electricity consumption. Statistical methods, including Z scores,
box plots, and hypothesis testing [7-13], typically assume that the data follow a specific
distribution and contain a certain proportion of normally distributed data. Furthermore,
their parameter settings tend to be subjective. Distance-based methods operate on the
assumption that normal data points are densely distributed within their local regions
while outliers are sparsely distributed [14]. This can be effective for anomaly detection;
however, the computational speed slows down when the distance formulas become more
complex. Among density-based methods, DBSCAN is a representative technique. It can
identify noise points without prior knowledge of the number of clusters to form and can
discover clusters of any shape, giving it some applicability. However, it struggles to in-
corporate influencing factors [15]. Data-driven learning methods, which do not require
expert prior knowledge or precise physical models, have also been applied to anomaly
detection. However, single-detection network structures often struggle to adapt to the
diverse characteristics of distribution grids or user loads and cannot effectively capture
data anomaly patterns. In comparison, combined models demonstrate greater potential.
For example, the model proposed in [16] combines a novel residual Convolutional Neural
Network (CNN) with a layered Echo State Network (ESN) to capture both spatial and
temporal dependencies in the data. Furthermore, the Variational Autoencoder (VAE)-Long
Short-Term Memory (LSTM)-combined models adopted in [17-19] have achieved effective
anomaly detection across multiple data types. These methods primarily learn the patterns
of load changes from the training dataset to predict load changes in the test dataset, thus
realizing anomaly detection through prediction. However, they often overlook the fact
that data after the anomaly detection point already exist and contain a significant amount
of pattern information. In reference [20], a bidirectional LSTM (BiLSTM) network was
successfully utilized to capture the latent patterns and dependencies in power load data. By
encapsulating a contextual understanding of the data, it significantly enhances predictive
capabilities and delivers outstanding performance, providing valuable insight. In addition,
current approaches to missing value imputation during data preprocessing typically rely
on traditional methods such as interpolation, curve fitting, or clustering. These approaches
often struggle to consider the underlying influencing factors.

Addressing the aforementioned issues, this paper proposes a method for identifying
and correcting missing and anomalous values in power spot market load data. This method
is based on a Partial Least Squares (PLS)-Variational Autoencoder (VAE)-Bidirectional
Long Short-Term Memory (BiLSTM) network. First, missing values are identified and
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then initially imputed using a PLS-based approach. This approach considers both the
underlying load variation patterns and the influencing factors, thereby preventing the
omission of extreme impacts. The completed load curves are then normalized to final-
ize the data preprocessing step. Second, a VAE-BiLSTM deep hybrid network model is
designed, leveraging the representation learning and modeling capabilities of the Varia-
tional Autoencoder along with the advantages of the bidirectional long short-term memory
network in capturing temporal features and learning contextual information. This model
effectively maps relationships between different data features. Finally, the effectiveness of
the proposed method is validated through outlier detection and correction experiments
conducted on both public and non-public datasets.

2. The Types of Anomalous Power Load Data

In power load data, common types of anomalous data can be broadly categorized into
two groups: missing values and outliers. Missing values exhibit a single form, characterized
by “NaN” when called. In comparison, outliers appear in more complex forms, such as
continuous duplicate data, abnormal peaks (or troughs), or trends that deviate entirely
from established electricity usage patterns. In addition to their different manifestations,
anomalous data often differ in their causes and handling methods.

2.1. Missing Value

Missing data refer to power load records that were not captured or lost over a specific
time point or period. Common causes include equipment failures, sensor disconnections,
communication interruptions, or human errors. Handling methods for missing data
typically include interpolation, imputation, or predicting missing values using statistical
models. The imputation of missing values should aim to preserve the temporal continuity
and physical consistency of the data as much as possible.

2.2. Outliers
(1) Continuous Duplicate Data

Continuous duplicate data refer to identical or similar load values recorded over the
same period, often caused by sensor malfunctions, data acquisition system failures, or
communication delays. These anomalies compromise data validity and may bias load
forecasting models. They should be addressed through timestamp inspections or data
deduplication algorithms;

(2) Abnormal Peaks (or Troughs)

Abnormal peaks or troughs refer to extreme high or low values in load data that far
exceed the normal operating range. These anomalies may arise from equipment failures,
sudden load increases or decreases, or environmental factors (e.g., climate changes). Al-
though often transient, such peaks or troughs can significantly impact data analysis and
system stability. Detection methods include threshold-based approaches, statistical analysis
(e.g., standard deviation), or anomaly detection models;

(3) Abnormal Consumption Trends

Abnormal consumption trends refer to load data patterns or periodic fluctuations
that deviate significantly from normal loads. These trends often indicate long-term system
issues, equipment aging, or changes in load composition. For instance, load curves may
exhibit fluctuations inconsistent with regular operating cycles or sustained deviations. De-
tecting such anomalies typically relies on time series analysis techniques, such as seasonal
adjustments, trend analysis, or machine learning-based pattern recognition methods.
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3. The Proposed Model
3.1. Partial Least Squares Regression

Partial Least Squares (PLS) is a regression technique suitable for high-dimensional,
multi-collinearity data sets. It can not only extract the principal components of the data
but also establish a linear regression relationship between the input variables and the
response variables.

The partial least squares regression for the single dependent variable is as follows: With
Xj € R™.
Partial least squares regression extracts the components ¢; and u; in X and Y, respectively,

a single dependent variable Y € R", independent variable X :|x1, X2, Xpl,

and the extraction of the components is required to satisfy for regression analysis:

(1) t; and u; should capture as much variation as possible from their respective datasets;
(2) The correlation between t; and 17 must be maximized.

After extracting the first components, t; and u; partial least squares regression is
performed to model X and Y, based on t;. If the regression equations achieve satisfactory
accuracy, the algorithm terminates. Otherwise, a second iteration is conducted using the
residuals of X and Y explained by t;. This process repeats until satisfactory accuracy
is reached. If a total of m components t1,t,,...,t, are extracted from X, partial least
squares regression is performed by regressing Y on these components. This regression is
subsequently expressed as a relationship between Y and the original variables x1, x3, ..., xp,
completing the modeling process.

3.2. Variational Autoencoder Model

Variational Autoencoder (VAE) is a generative model for learning the latent repre-
sentation of data and generating new data similar to the input data [20]. The objective of
VAE is to maximize the similarity between the reconstructed data L’ and the input data L
while ensuring that the latent variable z follows a predefined prior distribution, typically
a standard normal distribution. It consists of an encoder and a decoder. The encoder
maps the input data x to the parameters of a distribution in the latent space, e.g., the mean
and standard deviation. The latent variable z is then sampled from this distribution. The
decoder reconstructs the data Y from the sampled latent variable z.

z ~ Enc(x) = q(P(z\L) 1)

where ¢ is the distribution function of the encoder; L is the latent feature, and x is the
input function.

The decoding process is the recovery of the hidden variable space data and the
decoding, as shown in Equation (2).

L' ~ Dec(z) = po(L|z) @

where 6 is the distribution function of the decoder; L’ is the reconstructed data.

Because the potential features z cannot be directly observed in the above process’s
distribution, through the encoding process q, (z|L), the posterior distribution of pg(L|z)
is replaced.

To approximate the two, the KL scatter degree (the difference between the logarithms
of the two distributions) is measured, and the parameter ¢, 0 are passed to minimize the
KL scatter degree, as shown in Equation (3).

¢, 0 = argminDg, (q¢(z|L)Hp9(L|z)

(3)
= Eq,(zl) [log q,(z[L) —logpe(L|z)| + log pe(L)
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3.3. Bidirectional Long Short-Term Memory Networks

Unlike load forecasting, the load data before and after the data points to be examined in
the anomaly data identification and correction process have already occurred. In this paper,
we introduce a bi-directional structure that has advantages in learning the information of
front and backward text to improve the LSTM model in order to improve the ability to
learn the features of the complete load data. The Bi-LSTM uses two LSTM layers; one reads
the window data from the forward direction, and the other one reads the window data
from the backward direction and also utilizes the load information before and after the
occurrence of each load data, which makes the ability of LSTM model to learn the data
features improved. The following Figures 1 and 2 respectively show are the LSTM model
structure as well as the Bi-LSTM model structure:

fi= a(wf s [, %] + bf) )
iv = o (Wi * [y_1, %] + b;) (5)
Ci = tanh(W, * [hy_1, x¢] + be) (6)
Cr=fi*xCi1+irxC 7)

or = 0(Wp * [Iy_1, x¢] + by) 8)
hy = op % tanh(Cy) ©)

where f; is the output of the forgetting gate; i; is the control signal of the input gate for
controlling the output of the current cell state Cy; C; is the current cell state; o; is the control
signal of the output gate, and ; is the output value of the output gate.

Vi = wp * hyy +wp * by (10)

where y; is the output of the Bi-LSTM in the current window; hy; is the output of the
forward LSTM in the current window, and h;; is the output of the backward LSTM's output
in the current window.
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Figure 1. The structure of LSTM network.
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Figure 2. The structure of Bi-LSTM network.

3.4. VAE-BILSTM

In this paper, Bidirectional LSTM (Bidirectional LSTM) is embedded into the encoder
and decoder parts of VAE (Variational Autoencoder). Bidirectional LSTM allows the model
to learn information in both directions of the time step, which is particularly useful for the
processing of time series data.

In the encoder part, each bidirectional LSTM layer can be seen as consisting of two
unidirectional LSTM layers, one forward (from ¢ =1 to t = T) and one backward (from t =T

tot=1).
— —
{ " = LSTM; (x1, b)) 1)
n" = LSTM{ (x;, h{}))
Output: o
nt = ;) (12)

For the second bidirectional LSTM layer, the input is the output of the first layer:

3 1,0
2) _ — (7,1 2
htf = LSTM;" (I, ’htl) (13)
i = L5 040,12,
Output:
-
WD (@, ) (14)

The decoder is the same. Therefore, the overall structure of BILSTM embedded in VAE
is that the encoder extracts features from the input sequence L through the bidirectional
LSTM layer and compresses it into the potential space z, while the decoder decodes the
potential space z into the original sequence through the bidirectional LSTM layer.

3.5. Flowchart

Figure 3 shows the overall process of identifying and correcting incomplete and ab-
normal power load data based on the VAE-BiLSTM model. The details are as follows: First,
load and influencing factor data are loaded and preprocessed. The preprocessing includes
preliminary filling of missing values based on PLS and data normalization. Secondly, based
on the representation learning modeling ability of the VAE network and the ability of the
bidirectional LSTM to capture long-term and short-term dependencies between contextual
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data, the bidirectional LSTM is used to replace the BP neural network layer of the tradi-
tional VAE, and a VAE-BIiLSTM hybrid model for abnormal power load data detection is
designed. The model is trained to simulate potential power consumption patterns. The test
data Liest(t) with anomalies are input into the trained VAE-BiLSTM model, and the model
estimates the embedding sequence Z(t) of the test data Liest(t) through the VAE encoder;
then, the embedding sequence is input into the Bi-LSTM model for self-supervised learn-
ing and outputs the reconstructed embedding sequence; finally, the embedding sequence
output by the Bi-LSTM is reconstructed through the VAE decoder of the model to obtain
the reconstructed result Li(t) value. The deviation value calculated by input Liest(t) and
reconstructed output L. (t) is compared with the threshold to determine whether the load
data that have occurred are abnormal. The abnormality is marked and replaced with the
reconstructed value.

v
’ Input the original load data ‘

v

’ Missing point filling ( PLS algorithm ) ‘

v
Normalization

h 4

 Model training ™

—————————————————————— D e ————
’ Anomaly detection of the test set ‘

v

’ Calculate the reconstruction error ‘

:

’ Compare with the threshold ‘

’ Output test results ‘
 Model checking

Figure 3. Flowchart of the proposed model.

4. Performance Evaluation Index

In order to evaluate the detection and prediction accuracy of the model for the user’s
daily load, this study uses precision, recall, and F1 scores as indicators. The calculation
expressions are as follows:

.. TP
Precision = m (15)
P
Recall = m (16)
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Precision x Recall
F1=2 17
x Precision + Recall (17)

Among them, TP (True Positive) represents the number of samples that correctly detect
anomalies, that is, the number of samples with an anomaly detection label of 1 and a real
label of 1; TN (True Negative) represents the number of samples that are correctly detected
as normal, that is, the number of samples with an anomaly detection label of 0 and a real
label of 0. FP (False Positive) represents the number of misdetected samples, that is, the
number of normal samples misjudged as abnormal samples; FN (False Negative) represents
the number of missed samples, that is, the number of abnormal samples that cannot be
detected; precision is an indicator for evaluating the accuracy of the algorithm model in
detecting positive samples; the larger, the better; recall is an indicator for evaluating the
ability of the algorithm model to detect the full degree of positive samples, the bigger the
better; precision is mutually restricted with the recall. The comprehensive indicator F1
score is introduced for evaluation; the bigger, the better.

5. Case Analysis
5.1. Test Platform and Data Sources

The PLS-VAE-Bi LSTM model proposed in this paper is built using deep learning
Pytorch running on PyCharm 2024.3.1.1. The CPU is Intel Core i7-9750H CPU 2.60 GHz,
16 GB memory, and the graphics card is NVIDIA GTX1650, 4 GB video memory.

This paper uses public and private power load datasets to test the algorithm, including
main grid load, distribution grid load [21], manufacturing user’s load, and a residential
user’s load [22]. The data set covers not only the load data and meteorological factors of
different grid levels but also the load data of power users in different industries. The model
is trained using historical two-month load data, and the trained model is used to detect
abnormal load data in the next 10 days (once every 30 min, 48 data points per day).

5.2. Network Training and Result Analysis
The trend of the loss function of the PLS-VAE-Bi LSTM model is shown in Figure 4.

PLS-VAE-BILSTM Loss Curve Over Epochs

= PLS-VAE-BILSTM Loss

08

06

Loss

04

02

[ 5 10 15 20 2
Epochs

Figure 4. Trend chart of load data loss function.

In the initial stage of training, the loss of PLS-VAE-BiLSTM is high, and the model
has not learned the distribution of data well. In the previous epochs, the loss decreases
rapidly, indicating that the model is learning quickly and adjusting its parameters to
better fit the data. In the next training process, the loss tends to be stable, indicating that
the model has basically converged, and further training has little effect on the loss. The
rapid decrease in VAE loss indicates that the PLS-VAE-BiLSTM model quickly learns the
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Manufacturing User F1 Score at Different Thresholds

distribution of data at the initial stage and then tends to be stable, indicating that the model
has basically converged.

As shown in Figure 5, the analysis of the abnormal load data identification results
across the manufacturing, residential, distribution grid, and main grid reveals that the F1
index initially increases and then sharply decreases within the threshold range of 80% to
100%. Specifically, the F1 index for the manufacturing user increases gradually with the
threshold, peaking at 0.9474 at 98% before rapidly declining. In contrast, the residential user
reaches its highest value of 0.9677 at 96.5%, indicating optimal identification performance.
The distribution grid shows consistent improvement, with the F1 index steadily increasing
and reaching a peak of 0.9796 at 97.5%, the highest among the four sectors. Meanwhile, the
main grid F1 index peaks at 0.9474 at 96%, after which a further threshold increase leads to
a significant decline. These results demonstrate that the PLS-VAE-BiLSTM-based abnormal
load data identification method proposed in this study performs well across various
thresholds, with a significant improvement in the F1 index near the optimal threshold.
The model achieves efficient and stable identification across all industries, validating its
applicability and strong generalization in multi-industry contexts.

Residential User F1 Score at Different Thresholds

—e— F1Score

—e— F1Score

Distribution Grid F1 Score at Different Thresholds

Main Grid F1 Score at Different Thresholds
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7\
7 1%
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Figure 5. F1 score of abnormal load identification under different thresholds.

5.3. Comparison Experiments

Figure 6 compares the performance of the PLS-VAE-BiLSTM model proposed in this
study with the VAE-LSTM, PSO-PFCM [23], and WTRR [24] models in detecting abnormal
load data in the manufacturing user. The results show that the accuracy of the PLS-
VAE-BiLSTM model is 100.00%, significantly outperforming VAE-LSTM (95%), PSO-PFCM
(92%), and WTRR (90%). The recall rate is 90.00%, balancing the avoidance of excessive false
detections with a high recall rate. The F1 index reaches 94.74%, significantly outperforming
other models (VAE-LSTM: 89%, PSO-PFCM: 87.20%, WTRR: 84.21%), demonstrating a
strong balance between accurate detection and comprehensive coverage of abnormal data.
Manufacturing user load data exhibit strong periodicity and complex fluctuations, with
abnormal loads frequently occurring during peak production periods. Traditional methods,
such as PSO-PFCM and WTRR, struggle to handle nonlinear load fluctuations, leading to a
lower F1 index.
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Figure 6. Comparison of abnormal load identification results in manufacturing user load dataset.

Figure 7 compares the performance of the PLS-VAE-BiLSTM model proposed in this
study with the VAE-LSTM, PSO-PFCM, and WTRR models in detecting abnormal loads
in the residential user. The results show that the PLS-VAE-BiLSTM model exhibits clear
advantages in accuracy, recall, and F1 scores. Specifically, the accuracy of the PLS-VAE-
BiLSTM model is 93.75%, outperforming VAE-LSTM (90%), PSO-PFCM (85%), and WTRR
(80%). The recall rate is 100.00%, significantly higher than the other models, indicating that
PLS-VAE-BIiLSTM captures abnormal data more comprehensively. In terms of F1 score,
PLS-VAE-BiLSTM achieved 96.77%, surpassing VAE-LSTM (92.11%), PSO-PFCM (87.62%),
and WTRR (82.61%), demonstrating an effective balance between high-precision detection
and a low false-positive rate.
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40.00% PSO-PFCM
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— PLS-VAE-BiLSTM
o (]

Pre Recall F1

M PLS-VAE-BiLSTM  ® VAE-LSTM ® PSO-PFCM WTRR

Figure 7. Comparison of abnormal load identification results in residential user load dataset.

Figure 8 illustrates the performance of the PLS-VAE-BiLSTM model proposed in this
study, alongside the VAE-LSTM, PSO-PFCM, and WTRR models, in detecting abnormal
loads in the distribution grid. The results show that the PLS-VAE-BiLSTM model signifi-
cantly outperforms the other models in terms of accuracy, recall, and F1 score. Specifically,
the accuracy of PLS-VAE-BiLSTM is 100%, surpassing VAE-LSTM (97%), PSO-PFCM (93%),
and WTRR (85%). Its recall rate is 96%, significantly higher than the other models, in-
dicating VAE-BILSTM'’s superior ability to capture and identify abnormal loads. The F1
score of PLS-VAE-BiLSTM is 97.96%, leading VAE-LSTM (94%), PSO-PFCM (90%), and
WTRR (82.35%), demonstrating an effective balance between accurate detection and a low
false-positive rate. In contrast, the PSO-PFCM and WTRR models struggled to handle
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the random fluctuations and sudden changes in load within the complex distribution
grid, leading to lower detection accuracy and recall rates compared to PLS-VAE-BiLSTM.
PLS-VAE-BiLSTM demonstrates significant improvement in abnormal load detection in
the distribution grid, owing to its superior nonlinear feature extraction and time-series
dependency capture abilities, showcasing its strong adaptability and advantages in power
system load monitoring.

085% 82.35%

90.00%

100.00%
80.00%
0,
60.00% WTRR
40.00% PSO-PFCM
20.00% VAE-LSTM
0.00% PLS-VAE-BiLSTM
. 0

Pre Recall F1

M PLS-VAE-BiLSTM ®mVAE-LSTM ®PSO-PFCM WTRR

Figure 8. Comparison of abnormal load identification results in distribution grid load dataset.

Figure 9 compares the performance of the PLS-VAE-BiLSTM model proposed in this
study with the VAE-LSTM, PSO-PFCM, and WTRR models in detecting main grid load
anomalies. The results demonstrate that the PLS-VAE-BiLSTM model significantly outper-
forms the other models in accuracy, recall, and F1 score. Specifically, PLS-VAE-BiLSTM
achieves 100% accuracy, surpassing VAE-LSTM (98%), PSO-PFCM (92%), and WTRR (88%).
Its recall rate is 90.00%, significantly higher than the other models, indicating its superior
ability to capture abnormal data. The F1 score of PLS-VAE-BiLSTM is 94.74%, outperform-
ing VAE-LSTM (91.84%), PSO-PFCM (85.71%), and WTRR (81.63%), demonstrating an
excellent balance between high accuracy and low false-positive rate. Unlike anomalies in
the distribution grid and residential industries, main gird load anomalies typically mani-
fest as widespread trend deviations, significantly impacting power system stability and
exhibiting strong global and long-term characteristics. In contrast, although PSO-PFCM
and WTRR can handle some load fluctuations, they lack the nonlinear modeling and time-
series processing capabilities required to address the complex global anomalies of the main
gird load, resulting in inferior performance compared to PLS-VAE-BiLSTM in accuracy
and recall.

As illustrated in Figure 10, the PLS-VAE-BiLSTM model demonstrates superior perfor-
mance in the anomaly detection task, achieving a precision of 98.44%, a recall of 94%, and
an F1 score of 96.05%. This highlights its excellent ability to accurately capture anomalies
while maintaining high precision. The VAE-LSTM model follows closely, with a precision
of 94.88%, a recall of 89%, and an F1 score of 91.91%, reflecting strong overall performance.
In comparison, the PSO-PFCM model shows moderate performance, achieving a precision
of 90.5%, a recall of 85%, and an F1 score of 87.63%, which are slightly lower than those of
the VAE-based models. The WTRR model performs the worst, with a precision of 85.75%,
a recall of 80%, and an F1 score of 82.7%, indicating limited anomaly capture capability
and a higher false alarm rate. Overall, the PLS-VAE-BiLSTM model outperforms all other
compared models, showcasing its clear advantage in anomaly detection tasks.
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Figure 9. Comparison of abnormal load identification results in main grid load dataset.
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Figure 10. The average performance of each model.

6. Discussion

Currently, the volume of fine-grained power load data is rapidly increasing, and the
value of this data is contingent upon its quality meeting application requirements. To
enhance anomaly detection in fine-grained load data from distribution networks or users and
address the limitations of single-network models in capturing data patterns or accounting for
sequential data relationships, this paper has proposed a method for identifying and correcting
missing and anomalous load data based on a PLS-VAE-BiLSTM hybrid model. This method
introduces the PLS approach for missing value preprocessing and combines it with the
representation learning capabilities of the VAE and the contextual modeling advantages of the
BiLSTM network. First, data preprocessing is performed, including PLS-based missing value
imputation and data normalization. Second, a VAE-BiLSTM hybrid model is constructed
and trained using a loaded dataset incorporating influencing factors. This training process
allows the model to learn the relationships between different data features. Anomalous
data are then identified and corrected by calculating the deviations between the model’s
reconstructed values and the actual values. Finally, the proposed method is validated on
four real-world datasets. The experimental results demonstrate that the VAE-BiLSTM model
achieves average performance metrics of 98.44% for precision, 94% for recall, and 96.05% for
F1 score. In comparison to VAE-LSTM, PSO-PFCM, and WTRR models, the proposed model
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exhibits superior overall anomaly detection performance. Specifically, the VAE-BIiLSTM
model achieves 3.75%, 8.77%, and 14.79% higher precision than the VAE-LSTM, PSO-PFCM,
and WTRR models, respectively. It also demonstrates 5.62%, 10.59%, and 17.5% higher recall
than those models. Furthermore, the F1 score is 4.51%, 9.6%, and 16.15% higher compared to
the VAE-LSTM, PSO-PFCM, and WTRR models, respectively. For each method, the precision
and recall results across different datasets show a characteristic trade-off relationship. Overall,
the experiments demonstrate that the PLS-VAE-BiLSTM hybrid model can effectively capture
the interdependencies within load data and between load data and their influencing factors,
exhibiting strong overall detection performance.

In the current work, the single-dependent-variable PLS model can establish a max-
imized linear regression model between key influencing factors and the load. This is
computationally efficient but is limited by its linear form and inability to decouple the
correlations between influencing factors, which requires further improvements in future
research. In the VAE-BILSTM hybrid model, the threshold settings for anomaly detection
with VAE, which are dataset-dependent and learned through training, need to be con-
sidered regarding the model training time and resource consumption when deploying
the model on a platform. Future work will focus on optimizing the model performance,
making it lightweight, and reducing the detection time.

7. Conclusions

Based on an analysis of the issues and limitations of existing methods, this paper
proposes a power load anomaly detection and correction method based on the PLS-VAE-
BiLSTM model. The conclusions and recommendations are summarized as follows:

1. Data Preprocessing:

The Partial Least Squares (PLS) method was used to establish a maximized linear re-
gression model between historical load and influencing factors. This approach incorporates
influencing factors to impute missing values, forming a complete time-series load curve
that undergoes normalization for further analysis;

2. Anomaly Identification and Correction:

The VAE-BiLSTM model is trained to simulate historical data trends for anomaly detection.
In this model, BiLSTM replaces the BP neural network in the VAE framework for encoding
and decoding, effectively integrating influencing factors such as calendar and weather data.
The model learns the features of load data through training, reconstructs the data to capture
load variation trends, and identifies anomalies by comparing reconstructed data with actual
data for deviation correction. Compared to LSTM models used in previous predictive studies,
the BILSTM model demonstrates superior performance in anomaly cleaning due to its ability
to better leverage contextual information from both preceding and succeeding data;

3. Consideration of Influencing Factors and Future Improvements:

The proposed model considers major factors affecting power loads, such as calendar
and weather, during both data preprocessing and cleaning stages. However, there is room for
further improvement in algorithm design and computational performance. Additionally, the
exploration of more influencing factors holds potential for enhancing the model’s effectiveness.
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Abstract: With the increasing integration of wind energy into power systems, maintaining
frequency stability has become a significant challenge. To address the issue of secondary
frequency drop caused by wind turbines exiting the primary frequency regulation of power
systems, this paper presents a control parameters optimization method of wind turbines
participating in power system primary frequency regulation. Initially, with the assumption
of constant wind speed and linearization of the wind power coefficient, the relationship
between the mechanical power and rotor speed of the wind turbines is established. Subse-
quently, the primary frequency regulation component of wind turbines is integrated into
the classical system frequency response (SFR) model, accounting for the effects of exiting
time and rotor speed variations. Following this, the dynamic frequency of the power
system is computed with the modified SFR model, and the time domain expressions for
both primary and secondary frequency drops are derived. Furthermore, an optimization
model for the control parameters of wind turbines participating in primary frequency
regulation is developed, aiming to minimize the values both of primary and secondary
frequency drops. Finally, a case study is constructed to validate the efficacy of the proposed
method. The results demonstrate that the optimization method introduced in this paper
significantly enhances the dynamic characteristics of the system frequency.

Keywords: secondary frequency drop; wind turbines; primary frequency regulation;
control parameter optimization; system frequency response model

1. Introduction

Driven by the global energy transition, renewable energy sources, particularly wind
and photovoltaic power, are progressively displacing conventional power generation on
an unprecedented scale worldwide. As of the end of 2024, China’s installed capacity of
new energy power generation, predominantly consisting of wind and photovoltaic power,
had reached 1.45 billion kW, marking a historic milestone by surpassing thermal power
capacity for the first time, while demonstrating accelerated growth in the renewable energy
sector. The integration of large-scale wind power, photovoltaic power, and other renewable
energy sources into the power system via power electronic converters has led to the gradual
displacement of conventional synchronous generator units. This transition has resulted
in a reduction in overall power system inertia, a decline in primary frequency regulation
capability, and a deterioration of dynamic frequency characteristics. As a consequence,
the power system’s resilience to power disturbances has been significantly compromised,
heightening the risk of frequency instability [1].
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Grid-connected wind power and photovoltaic power should have active primary
frequency regulation ability with the increasing penetration rate of new energy [2]. Wind
turbines participate in the primary frequency regulation of a power system by utilizing the
rapid power modulation capability of electronic converters. The control strategies primarily
include virtual inertia control and droop control [3]. Virtual inertia control emulates the
inertial response of conventional synchronous generator units, while droop control repli-
cates the governor characteristics of these traditional units [4,5]. Concurrently, both pitch
angle control and de-loaded power tracking control are employed to supply power reserve
for wind turbines’ primary frequency regulation [6]. Nevertheless, these methods lead to
decreased wind energy utilization efficiency, thereby exhibiting economic drawbacks.

The release of more than half of the rotor’s kinetic energy by wind turbines would
result in improved economic performance and greater potential in frequency regulation [7].
However, most existing studies have failed to account for the dynamic changes in wind
turbine rotor speed and kinetic energy during primary frequency regulation. The release
of kinetic energy from wind turbines results in a reduction in rotor speed and mechanical
power [8], which imposes temporal constraints on wind turbines’ engagement in primary
frequency regulation control. When wind turbines exit primary frequency regulation
control due to the rotor speed decline, a new active power deficit will be caused in the
power system, resulting in the secondary frequency drop and affecting the frequency
stability of power system [9]. The previously mentioned problem can be mitigated by
implementing optimal control strategies for parameters adjustment and power regulation
in wind turbines engaged in primary frequency regulation. These approaches are designed
to mitigate the power deficit resulting from wind turbines’ disengagement from primary
frequency regulation. The specific measures comprise (1) the enhancement of the power-
rotor speed characteristics during primary frequency regulation [10-12]; (2) optimization of
primary frequency regulation control parameters based on disturbance power magnitude
to prevent excessive release of rotor kinetic energy [13-15]; and (3) implementation of
advanced control strategies, including (i) nonlinear droop control with adaptive parameter
adjustment according to rotor speed variations [16], (ii) utilization of energy state indices
for rotor kinetic energy quantification and corresponding parameter optimization [17], and
(iii) coordinated operation with energy storage systems to maintain continuous frequency
regulation capability [18-20].

In contrast to previous studies, this paper focuses on the optimization of primary
frequency regulation control parameters for wind turbines, with particular attention to
the secondary frequency drop phenomenon. Unlike the previous studies, we integrate
both wind turbine inertia control and droop control into the system frequency response
(SFR) model. This dual-control integration enables a more comprehensive analysis of
the dynamic relationship between wind turbine output power, rotor speed, and system
frequency characteristics. The modified SFR model provides a more precise assessment of
rotor kinetic energy’s role in frequency regulation processes. Furthermore, we introduce
a novel consideration of wind turbine exiting time into the SFR model, allowing for
systematic simulation of its impact on secondary frequency drop characteristics. These
methodological advancements in the modified SFR model offer unprecedented insights into
the kinetic energy release dynamics and their subsequent effects on secondary frequency
drop that have been insufficiently addressed in existing research paradigms.

The primary objective of this paper is to develop and optimize the primary frequency
regulation control parameters for wind turbines, with a specific focus on minimizing
both primary and secondary frequency drops. An optimization approach is proposed
to adjust the control parameters of wind turbines in such a way that both primary and
secondary frequency drop values are minimized, resulting in a more efficiently viable
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primary frequency regulation process. Thus, the optimization model presented shifts
the focus from merely delaying the secondary frequency drop to integrating it into the
optimization process of primary frequency regulation. The effectiveness of wind turbine
participation in power system frequency regulation can be enhanced.

2. Analysis of the Influence of the Wind Turbine Rotor Speed on
Mechanical Power

The wind turbine mechanical power is affected by two key factors: the wind power
coefficient and the input wind power. Assuming that there are n,, wind turbines participat-
ing in the primary frequency regulation, the total mechanical power of the wind turbines
can be expressed as follows:

Py = Cp-Py-niy 1)

where P, is the total mechanical power of wind turbines; C,, is the wind power coefficient;
and Py is the input wind power of single wind turbine.
The expression of Py is

P, = %pswzﬁ ()

where p is the air density; Sy, is the wind turbine blade swept area; and v is the wind speed.

The wind power coefficient is affected by the pitch angle and tip speed ratio [21]. In
the absence of pitch angle control, the wind turbine power coefficient C;, can be expressed
in terms of the tip speed ratio A as follows:

C(A)=C {Cz (/1\ - 0.035) - CS} -exp {—C4 <)1\ - 0.035)} + CsA (©)]

where C;~Cs are coefficients related to the wind turbine power coefficient characteristics; A
is the tip speed ratio.
The wind turbine tip speed ratio can be expressed as follows:

Rwwy
[

A

4)

where Ry, is the wind turbine blade radius. w; is the wind turbine rotor speed.
The variations in wind turbine rotor speed and wind speed lead to a corresponding
variation in tip speed ratio. The small signal increment of Cy, is

0.297tR
ACp(wy) = i 2. cos(
Ve

TRwyg o
15V 5

)Awy ©)

where A is the initial tip speed ratio.

In the context of the primary frequency regulation of wind turbines, the influence
of wind speed change is often overlooked. By substituting Equations (4) and (5) into
Equation (1), the mechanical power change in the wind turbines can be determined:

APy = C}/D(wro)-PD-nw-Awr = Kep-Awy (6)

where Kp is the ratio between the mechanical power change and rotor speed change in
wind turbines. Aw; is the rotor speed change.

3. Analysis of Wind Turbine Rotor Motion Status When Participating in
Frequency Regulation

Figure 1 illustrates the wind turbine power—rotor speed curves participating in the
primary frequency regulation. In the absence of de-loaded power tracking control, the initial
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operating point of the wind turbine is point A of the intersection between the mechanical
power curve and the maximum power point tracking (MPPT) curve. As the power system
load increases, the wind turbine generates additional electromagnetic power in accordance
with the control strategy. Concurrently, the electromagnetic power exceeds the mechanical
power, resulting in a reduction in rotor speed and a shift in the operating point from
point A to point B. When the wind turbine quits the primary frequency regulation, the
electromagnetic power abruptly declines to the MPPT power corresponding to the current
rotor speed, resulting in the wind turbine transitioning from operating point B to point C.
At point C, the mechanical power exceeds the electromagnetic power, the wind turbine
rotor speed increases, and the operating point gradually ascends to point A along the

curve CA.
T T T T T T T T
=———MPPT power curve
=——Mechanical power curve of wind turbine
0.035 |- Electromagnetic power curve of wind turbine b

Instantaneous step volume of wind turbines out-of frequency regulation

0.03 |- B 1
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Power/p

&
=y
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0.015 |- 2
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L | L | L | I | I |
0.95 1 1.05 1.1 1.15 1.2 1.25 13 135 1.4
Rotor speed of wind turbines/p.u.

Figure 1. The relationship curves between the power and rotor speed of the wind turbine.

Considering the interaction between system frequency and the wind turbine’s active
power, as well as the influence of the wind turbine’s participation in primary frequency
regulation on the wind turbine rotor speed, the system frequency response model, which
incorporates the wind turbine’s primary frequency regulation link introduced into the SFR
model, is illustrated in Figure 2.

2Hs+D Classical SFR model

K, (1+ FTs) |

+
+
i<
A
[\]
Em =
A “
>
8

Figure 2. Modified SFR model with primary frequency regulation of wind turbine.

In this figure, H is the inertia constant of the conventional generator unit. D is the
damping coefficient. Ky, is the mechanical power gain coefficient. R is the governor drop
coefficient. Fyg is the fraction of total power generated by the high-pressure turbine. Tg
is the reheater time constant. Py is the disturbance power caused by load changing. The
value greater than zero indicates a decrease in load, while the value less than zero indicates
an increase in load. Aw is rotor speed variation in the traditional generator rotor. Hyy is
the inertia time constant of the wind turbine under the equivalent value of a single unit.
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K is the droop control coefficient. Ky is the virtual inertia control coefficient. AP, is the
variation in electromagnetic power of the wind turbine. The value less than zero indicates
an increase in electromagnetic power, while the value greater than zero indicates a decrease.
AP, is the variation in mechanical power of the wind turbine. The switch O is a switch for
the wind turbine to participate in a frequency modulation. The switch is closed when the
wind turbine is participating in the primary frequency regulation. Conversely, when the
wind turbine is no longer participating in the primary frequency regulation, the switch is
turned off.

With system per unit, the system frequency variation is equivalent to the rotor speed
variation in the traditional generator, and the blade speed is equivalent to the rotor speed
of the wind turbine.

Assuming that the disturbance power Py is a step function and the step amount is
Pstep, the system frequency change during the primary frequency regulation of the wind
turbine is obtained from Figure 2:

Af(s) = Awl(s)
_ RPugp  (14Tgs)w? 7)
" DR+Km+RKgs  5(s2+20wns+w?)

where
(U2 o DR+Km+Rde
n = 2HRTR+RKp1x
_ 2HR+(DR+KmFya+RKg¢) Tr + RKpf (8)
- 2(DR+ K+ RKg) "Wn

In Figure 2, the change in electromagnetic power output by the wind turbine partici-
pating in the primary frequency regulation can be expressed as

APe(s) = Aw(s)Kyt + Aw(s)Kps

= APde (S) + APKPf (S) (9)

where APyg4¢ and APy, represent the electromagnetic power variation corresponding to
the droop control and the virtual inertia control of the wind turbine, respectively.

According to Equation (9), the rotor speed variation in the wind turbine participating
in primary frequency regulation is obtained as

AP (s)

A —_o%els)
W) = 95— Kep

= Awrgy (s) + Aerpf(s) (10)

where
RP. step Kar

Awiy(s) = 2H, (DR+Km+RKgp) < (11a)
(5 + %+ Sz

s $2 420 wns+w3

- Rpsteprf
Aerpf(s) = ZHW,(DR+Km+Rde) % (11b)

Al + B,SJrC/
s—K 1 24 20wns+w

The time domain expression of the rotor speed variation in the wind turbine obtained
from the simultaneous Equation (11a,b) is

Aw(t) = Awrk (1) + Aerpf(t) (12)

The detailed derivation processes of each coefficient in Equations (11a) to (12) are
presented in Appendix A.

From Equation (12), the rotor speed variation Aw,¢ corresponding to the exiting time
togf of the primary frequency regulation of the wind turbine can be calculated. Aw, is
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affected by Ky, Kpt, and fo¢ simultaneously, and in turn affects the range of values for ..
This parameter f. is essential for the design of the optimization method for the control
parameters of wind turbines’ primary frequency regulation.

4. Dynamic Frequency Calculation Considering Wind Turbines
Participating in Primary Frequency Regulation
4.1. Calculation of the Primary Frequency Drop and Its Minimum Value

When 0 < {< 1, the time domain expression of the system frequency variation Af can
be obtained from Equation (7) as

M) =aw()

13
m[l + a-exp( — Jwnt)- sin(wgt + ¢)] (13)

where

a=./1+ (TRW%*ZQTWn)Z
“d

wyq = wny/1— 2 (14)
¢$ = arctan( Vi-C )

¢—Trwn

Equation (13) has multiple moments when the derivative is zero, as

t, = nw— ¢ (15)
wq
Substituting Equation (15) into Equation (13), the system frequency variation corre-
sponding to these moments is

RP. step

_ —{(nm —¢1)
Afex(n) = prrr RKy T Ao

N

{ P = arctan( — ééz) 17)

Pr=¢+¢2

It can be seen from Appendix B that when n = 1, the system frequency reaches

1+ a-exp( )-sin(nm — ¢n) (16)

where

the minimum value, and the time corresponding to the minimum value of the system
frequency is
T—¢1
tmin = ( ? ) (18)
wq

Substituting Equation (18) into Equation (16) and solving it, when 0 < { < 1, the
minimum value of the frequency variation is

. RPste —g(ﬂ' — (P ) :
Afimin = DR—i—Km—ip-Rde. ! +“'eXp(\/1—;g2l>'sm(n¢2)] 4

When ( > 1, the time domain expression of Af is

M) = 80lt) = preeig {1 A
[ (gjgﬁ — Tan> exp(— (0 — m)wnt> — (20)
(5 — Toon ) -expl = (€ + V= Thoat)| }
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Then, the time corresponding to the minimum Af is

gy LT (c-v21)
o 17Tan(§+\/§271>
T 2w /22— 1

The lowest value of the system frequency drops when ¢ > 1 is obtained from
Equations (20) and (21).

(21)

4.2. Calculation of the Secondary Frequency Drop and Its Minimum Value

When the wind turbine exits the primary frequency regulation, the switch O in Figure 2
is open and only traditional generator units in the power system continue to contribute
to the primary frequency regulation. The SFR model shown in Figure 3 is established by
setting the initial time f.¢ as the new reference point at which the wind turbine exits the
primary frequency regulation. In Figure 3, Py, is the unbalanced power of the system at
the time ¢, and Awgc is the rotor speed variation in the traditional generator unit after the
wind turbine exits primary frequency regulation.

})(12 + 1 Aa)s(:
2Hs+D

»
»

K, (1+F,T;s)
R(1+Tys)

Figure 3. SFR model after wind turbines exit primary frequency regulation.

The ratio of the wind turbine power at the MPPT point to the cube of the wind rotor
speed is Ky :
R%

3
)‘opt

Ky = nw-%pnCpmax (22)
where Cpmax is the maximum wind power coefficient. Aqpt is the optimal tip speed ratio of
the wind turbine.

From Equation (22), the difference APmppt between the power at the initial operating
point and the power at the MPPT point of the wind turbine at the moment that the wind
turbine exits the primary frequency regulation is

APmppt = Ky [CUEO — (wro + A“Jrc>ff)3] (23)

where Awyyg is the wind turbine initial rotor speed.
Py, is still a step function, and the step amount is

P step2 — P step — AP, mppt (24)

Figure 1 illustrates that Py, should also include the power component of the wind
turbine rotor speed recovery stage, but the recovery time is long, and the electromagnetic
power of the wind turbine changes relatively slowly, which has limited influence on the
system frequency [9]. In order to simplify the analysis, this paper ignores the influence of
the wind turbine rotor speed recovery stage on the secondary frequency drop.

Decompose the SFR model in Figure 3, as shown in Figure 4. The SFR model, following
decomposition, comprises two state variables, x and x;.
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Figure 4. Decomposed SFR model.

The expression in state space of the decomposed SFR model in Figure 4 is

X = AgeX + Bgcu 25)
Yy = Csex + Dscu
where
[ KmFu+DR 1
Ao — 2HR 2H 1
sc K (1—F) _ 1
RTR Tr
E:
Bsc = 0 (26)
C=[1 0]
Dy =0
Assuming that the initial value of the state vector is x(0), solve Equation (25).
Y(s) = Cse(sI — Asc) ' [x(0) + BscU(s)] (27)
where b
U(s) = —Stsepz
(28)
x(o) _ X1 (O)
x2(0)

Simplifying Equation (27), the system frequency deviation Afs. after the wind turbine
exits primary frequency regulation is

_ _ Rpstepz (1+TRS)(4)/2
Afsc(s) = Awsc(s) = DR+Km.s(sz+2§’wgs$w;12 =+

X1 (O) . 1+TRs o 2
TR 2420 whs+wl? (29)
x2(0) | 1
2H 2420 whs+wf?

where

2 _ DR+Km

n — 2HRTR

& = 2HR+(DR+KmFH)TR.w/
- 2(DR+Km) n

w

(30)

From Equation (29), the time domain expression of Af is

RP, step2

Afsc(t) = m + eiglw‘,‘ttxx sin(wét + (Px) (31)

where

(32)

{ ax = /a% + b2

¢x = arctan( 2—’;)
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where
a4 — RPstepZ(TR‘U;z*é/wﬁ)_’_
X = T (DR+Km)@
1 (0)(1-FwpTr) _ x2(0) (33)
Trw 2Hw}
RPstepZ
by = ~ DR+K.. + X1(0)

Substituting the moment when the first derivative is zero into Equation (31), the
minimum value of the secondary frequency drop is

RPste —{' (1t — ¢y .
A fsemin = ﬁ + ax~exp(€\/(1n_7;21))- sin(7r — <Px2) (34)

where o
P2 = arctan( 7w 51)
b1 = Px + Pro (35)

! !/
wh = wpy/1-77

4.3. State Variable Initial Values Calculation

The state variables x; and x; are the rotor speed variation Aws. of the traditional power
unit and the output power variation APy p of the low-pressure cylinder of the traditional
generator unit, respectively; the initial value is the value at the time t,¢ when the wind
turbine exits the primary frequency regulation.

From Figure 2, Aw(s) and APy p(s) can be obtained when the wind turbine participates
in the primary frequency regulation. The expression of Aw(s) has been given in Equation (7)
and APpp(s) is
Psteme<1 _FH) ) w%

AP =
e (s) DR + K + RKys s(s2 + 2{wns + w3)

(36)

When 0 < { < 1, the time domain expression of Aw(t) has been given in Equation (13)

and APy p(t) is
_ PeepKm(1—Fy)
APLp(t) = DRER, TRy
1 | (37)
1- \/@exp( — Jwnt)-sin(wgt + ¢rp)
where
1-22
pLp = arctan(T) (38)
When { > 1, the time domain expression of Aw(t) has been given in Equation (20) and
APy p(t) is
PstepKm (1
APip(t) = D}{iKerR}I:(};f {1
exp(=((—v 1w ) exp(—(J++/ ézfl)wnt) (39)
- wz 1 V21

According to the values of ¢, the wind turbine primary frequency regulation exiting
time £, is substituted into Equation (13), Equation (37) or Equation (20), Equation (39), and
the initial values of the state variables x1(0) and x,(0) are obtained.



Energies 2025, 18, 1317

5. Parameters Optimization of the Wind Turbine Participating in Primary
Frequency Regulation

5.1. Optimization Objective and Solution Vector

Taking the minimum values both of the primary and secondary frequency drops when
the wind turbine participates in the primary frequency regulation as the optimization
objective, a set of multivariate function nonlinear optimization models is constructed.

Discussion on the classification of optimization objective function z is as follows. When
the primary frequency drop is more severe, the minimum value of the primary drop should
be as high as possible, otherwise the minimum value of the secondary frequency drop
should be as high as possible. Therefore, the optimization objective function of the primary
frequency regulation control parameters of the wind turbine is

{ z= maX<Afmir1)/ Afmin < Afscmirl (40)
z= maX<Afscmin)r Afmirl > Afscmin

The primary frequency regulation effect of the wind turbine is influenced by three
factors: the droop control parameter Ky, the virtual inertia control parameter K¢ and the
exiting time .. Therefore, the solution vector of the optimization model is

xo = [Kag, Ko, to] (41)

5.2. Constraint Conditions

The optimization model of wind turbine primary frequency control parameters con-
tains several equality and inequality constraints.

When 0 < { < 1, simultaneous Equations (12), (18), (19) and (34), the equality
constraints are

A(‘Jroff = Aerdf (toff> + Aerpf (toff)

RPstep —C(m—¢1)

Afmin = m 1+ lx-exp(ﬁ)- Sin(TC — ¢2) (42)
[ — (ﬂf‘Pl)
min wq

RPye (¢, .
Afscmin = ﬁ + ax.exp(%)» Sln(n - (PXZ)
When { > 1, simultaneous Equations (12), (20), (21) and (34), the equality constraints are

Awroff = Awrcy, (toff) + Awric, (off)
RPste
Af(t) = DR+KmtfR1<df'{1 - 2\/52771'
1 Vo

(g+\/1g271 _ Tan) -exp(— (¢ + m)wnt)] }

In ETRen(E—VE2-1)
b — 1-Trwn ({+V/¢2-1)
min 2w /T.z_l
. RlPsep (=) \ o
A fsemin = DR+ Ky, + tXx~eXp( @ )sm(n — 47X2)
Simultaneous Equations (20) and (21) separately lead to the equational constraints on
Af min for ¢ > 1.

(43)
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In order to verify the correctness of the frequency calculation expressions more in-
tuitively, typical parameters Kqs = 3, K¢ = 3, toff = 3 are taken and substituted into the
frequency time domain expressions. Figure 5 compares the frequency curves calculated
and simulated. It can be seen that the two frequency curves overlap with each other during

the entire simulation time.

50 T T T T T T T T
Caculation result
= = Simulation result
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Figure 5. Comparison of frequency curves calculated and simulated.

The inequality constraints of the optimization model are follows.
(1) In order to ensure the stable operation of the wind turbine, the rotor speed of the
wind turbine cannot be lower than the operation limit value of 0.7 p.u. and the constraint is

—AWyoff — (a)ro — 0.7) <0 (44)

(2) The traditional generator units should have sufficient time to the system frequency
deviation, and the wind turbine should exit the primary frequency regulation after the
system frequency drops to the minimum value. So, the constraint is

foft > tmin (45)

(3) According to whether the value of { is greater than 1 or not, an additional in-
equality constraint is set up, and one of the following formulas is selected as a constraint

{0<§<1 6)

during optimization.

7>1

With the wind turbines participating in the primary frequency regulation, the overall
optimal value of the primary and secondary drop of the system frequency is taken as the
optimization objective. Figure 6 shows the optimization process.
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The optimization objective is to
optimize the overall minimum
value of the system frequency

when the wind turbine is involved
in primary frequency regulation

Based on the dynamic frequency
characteristics of the system and
the operating conditions of the
wind turbine, the optimization
constraints are set up

When the system power is
disturbed, the disturbance is used
as the input for optimization, and

the wind turbine primary
frequency regulation control
parameters are used as the

solution vector
Solve the Solve the
optimization result optimization result
for £>1 for 0<JK1

The dynamic frequency of the
system corresponding to the
optimization result is better when ¢
>1

Taking the solution Taking the solution
vector at £>1 as the vector at0<Z<1 as the
optimal parameter optimal parameter

Figure 6. Flow chart of parameters optimization of primary frequency regulation of wind turbines.

6. Case Study
6.1. The Primary Frequency Regulation Effects of the Method Proposed in This Paper

The base value of the test system capacity is 100 MVA, the rated frequency is 50 Hz,
and the output power of the conventional generator is 100 MW during normal operation.
The base value of the wind turbine blade speed is 1.4273 rad/s, the wind speed is fixed at
12 m/s, the number of wind turbines participating in primary frequency regulation is 5,
and the initial operating point power under the wind turbine’s single machine equivalence
is 0.1185. The angular velocity ratio between the wind turbine rotor and blade is 110, the
wind turbine inertia time constant is 1.0185 s, the radius of the wind turbine blade is 40 m,
and the values of C; to Cs are 0.22, 116, 5, 12.5, and 0, respectively. The initial rotor speed
of the wind turbine is 1.3294 p.u., and the maximum wind power coefficient is 0.4328.
The optimal tip speed ratio is 6.325. The air density is 1.25 kg/m? and the value of K¢p
is assumed to be 0.0602. The parameters of the conventional unit are presented in the
literature [22].

The function fmincon in MATLAB version: R2020a is used to solve the optimization
model. The optimization results of the wind turbine primary frequency regulation control
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parameters when the system disturbance power is —0.1 p.u. are presented in Table 1,
and the simulation results are shown in Figure 7. As the output electromagnetic power
when the wind turbine exits primary frequency regulation is less than the initial operating
point power, the steady-state value of the frequency when the wind turbine participates in
frequency regulation in Figure 7 will be lower than the steady-state value when only the
conventional unit is used. As illustrated in Figure 7, regardless of whether { is greater than
1 or not, the system frequency curves obtained by solving the two optimization objectives
in Equation (41), respectively, overlap completely. This indicates that the optimization
process yields the optimal solution when the minimum values of the primary and second
frequency drops are equal. Conversely, the system frequency dynamic curve is optimal
when ¢ > 1, indicating that in comparison to the control parameter of 0 < { <1 when K¢
is too large and K is almost zero, the appropriate value of K4 has a more pronounced
improvement effect on the system frequency.

Table 1. Control parameters and minimum frequency under different optimization results.

Minimum Droop Control Virtual Inertia Exit Time/s
Frequency/Hz Coefficient Coefficient
When0< (<1 49.61 0.10 28.89 14.80
When { > 1 49.67 512 6.86 6.33
Only
conventional 49.46 / / /

units involved

50.1 T T T T T T T T
Conventional units only
50 = (>1,fmin<fscmin _
¢1,fmin>fscmin
= 0<¢<1,fmin<fscmin
E 49.9 = = 0<¢<l,fmin>fscmin T
g
$49.8 1
=
s
=
S
g 497 _
&
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49.5 !
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Figure 7. System frequency curves under different optimization results.

Figure 8 illustrates the optimization results of the wind turbine primary frequency
regulation control parameters with different disturbance powers. From Figure 8a,b, it can
be observed that when the disturbance power is small, the values of Kyt K¢, and ¢ exhibit
a tendency to change linearly with the disturbance power. However, they all appear to
decline to varying degrees when the disturbance power exceeds —0.4 p.u.
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Figure 8. Optimization results of primary frequency regulation control parameters of wind turbines
with different disturbance powers. (a) Optimal droop control coefficients /virtual inertia coefficients
with different disturbance powers, and (b) optimal exit moments with different disturbance powers.

6.2. Comparison of Frequency Regulation Effects with Different Control Parameters and Strategies

The impact of the primary frequency regulation of the wind turbine on the system
frequency and the wind turbine’s rotor speed is further analyzed when the control pa-
rameters take different values. Assuming that the disturbance power is —0.1 per unit, the
wind turbine exits the primary frequency regulation at a fixed rotor speed, the rotor speed
change is —0.1312 per unit, and the Ky¢ and K¢ values range from 5 to 7. Table 2 shows a
quantitative analysis of the percentage decline in frequency for different control parameters.
The system frequency curve of primary frequency regulation of the wind turbine and the
wind turbine rotor speed curve are shown in Figure 9a,b, respectively. Figure 9a illustrates
that increasing Kgf and K¢ can increase the minimum value of the primary frequency
drop, yet simultaneously it will also have a negative impact on the minimum value of the
secondary frequency drop. In addition, it can be seen from Figure 9b that there is a positive
correlation between the wind turbine’s rotor speed change rate and the Ky, Kpf values.
Increasing Ky and K¢ will accelerate the consumption of wind turbine’s rotor kinetic
energy, resulting in an early exit time of the wind turbine primary frequency regulation.

Table 2. Comparison of dynamic frequency characteristics of the power system with different
control parameters.

—0.1

Value of Value of Percentage of
Primary Secondary Exiting Time/s Maximum
Frequency Frequency Frequency
Drop/Hz Drop/Hz Drop
Kar =5 Kpr =5 49.66 49.67 6.71 0.68%
Kar=6,Kpe=6 49.68 47.63 5.84 0.74%
Kar=7,Kps =7 49.70 49.57 5.26 0.86%
Conventional 49.46 / / 1.08%
units only
The method in 49.67 49.67 6.33 0.66%
this paper
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Figure 9. Comparison of simulation results with different control parameters. (a) The system
frequency curves with the different control parameters. (b) Rotor speed deviation curves of wind
turbines with different control parameters.

Figure 10 compares the system frequency curves at different wind turbine primary
frequency regulation exit times t,¢ when the disturbance power is —0.1 per unit. The figure
illustrates that the minimum frequency with the wind turbine exiting at a fixed time is
consistently lower than the optimal solution, regardless of whether the ¢ is greater or less
than the 6.33 s corresponding to the optimization strategy in this paper. This indicates that
togf should be employed as part of the parameters optimization process to match the values
of K4¢ and Kpf to optimize the overall dynamic frequency of the system.
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Figure 10. System frequency curves with the different exit moments.

Figure 11 shows the comparison between the method proposed in this paper and
the method of preventing the secondary frequency drop in [11]. The method proposed in
this paper comprehensively considers the problem of primary and secondary frequency
drops to optimize the minimum frequency of the overall process of primary frequency
regulation. In contrast, the method in [11] primarily focuses on avoiding or relieving
the secondary frequency drop. As illustrated in Figure 11, while the reference method
effectively alleviates the issue of the secondary frequency drop, the improvement in the

overall frequency minimum is limited and the optimization results are overly conservative.

In contrast, although the method proposed in this paper still experiences a secondary
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frequency drop, the overall dynamic frequency is significantly enhanced in comparison
to the traditional method, and the system is less likely to trigger the low-frequency relays.
Furthermore, the method proposed in this paper shows a significant reduction in the
maximum RoCoF when the frequency disturbance occurs, in addition to a delayed system

frequency nadir.
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Figure 11. Comparison of optimization results between the proposed method and the method of
preventing secondary frequency drop.

7. Conclusions

This study introduces an innovative optimization approach for the control param-
eters of wind turbine primary frequency regulation, which significantly mitigates both
primary and secondary frequency drops. Further studies could explore the scalability of
this approach to larger, multi-area power systems, investigate its integration with other
renewable energy sources, and develop real-time adaptive control strategies for varying
power system conditions. The principal contributions and major findings of this paper are
outlined as follows:

(1) The optimization of wind turbine primary frequency regulation control parameters
necessitates a precise understanding of the correlation between these parameters
and the power system dynamic frequency characteristics. Furthermore, it is essen-
tial to consider the interdependent relationship between primary and secondary
frequency drops within the power system. Case study analysis demonstrates that
the implementation of control parameters which holistically address both primary
and secondary frequency drops can substantially enhance the power system dynamic
frequency performance.

(2) The optimization results demonstrate that the power system frequency exhibits op-
timal dynamic characteristics when the minimum values of primary and secondary
frequency drops are equivalent. This finding reveals the existence of a game-theoretic
relationship between primary and secondary frequency drops.

(3) The optimal configuration of wind turbine primary frequency regulation control
parameters is inherently dynamic rather than static. These parameters require coordi-
nated tuning and real-time adjustment in response to both the magnitude of power
system disturbances and the operational status of wind turbines.
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Appendix A

The time domain expression for the change in rotor speed of the wind turbine can be
solved according to Equation (11a,b).
The coefficients in Equation (11a,b) are
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Appendix B

From Equations (13)—(17), it can be observed that there are multiple points with zero
derivatives for the primary frequency drop. Among these, the maximum frequency offset
Af min, and its corresponding moment t,,i,, are of particular interest in the context of the
system frequency stability.

From Equation (16), n only affects the second half of the equation. Consequently, the
proportional function can be established as

exp(ﬂf”) sin(nmw — ¢»)
i) = L —ep(H <1 49

exp(ﬁ)-sin(ﬂ — )

The function h(n) is monotonically decreasing; thus, the system frequency reaches its
lowest value at n = 1.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Wang, R.; Qin, S.; Bao, W.; Hou, A.; Ying, Y.; Ding, L. Configuration and control strategy for an integrated system of wind turbine
generator and supercapacitor to provide frequency support. Int. ]. Electr. Power Energy Syst. 2023, 154, 109456. [CrossRef]
Messasma, C.; Barakat, A.; Chouaba, S.E.; Sari, B. PV system frequency regulation employing a new power reserve control
approach and a hybrid inertial response. Electr. Power Syst. Res. 2023, 223, 109556. [CrossRef]

Hatziargyriou, N.; Milanovic, J.; Rahmann, C.; Ajjarapu, V.; Canizares, C.; Erlich, I; Hill, D.; Hiskens, I.; Kamwa, I.; Pal, B.; et al.
Definition and Classification of Power System Stability—Revisited & Extended. IEEE Trans. Power Syst. 2021, 36, 3271-3281.
Morren, J.; Haan, SW.H.D.; Kling, W.L.; Ferreira, ].A. Wind turbines emulating inertia and supporting primary frequency control.
IEEE Trans. Power Syst. 2006, 21, 433-434. [CrossRef]

Chen, C.; Su, Y,; Yang, T.; Huang, Z. Virtual inertia coordination control strategy of DFIG-based wind turbine for improved grid
frequency response ability. Electr. Power Syst. Res. 2023, 216, 109076. [CrossRef]

Boyle, J.; Littler, T.; Muyeen, S.M.; Foley, A.M. An alternative frequency-droop scheme for wind turbines that provide primary
frequency regulation via rotor speed control. Int. |. Electr. Power Energy Syst. 2021, 133, 107219. [CrossRef]

Wang, S.; Tomsovic, K. A Novel Active Power Control Framework for Wind Turbine Generators to Improve Frequency Response.
IEEE Trans. Power Syst. 2018, 33, 6579-6589. [CrossRef]

Morren, J.; Pierik, J.; de Haan, S.W.H. Inertial response of variable speed wind turbines. Electr. Power Syst. Res. 2006, 76, 980-987.
[CrossRef]

Bao, W,; Ding, L.; Liu, Z.; Zhu, G.; Kheshti, M.; Wu, Q.; Terzija, V. Analytically derived fixed termination time for stepwise inertial
control of wind turbines—Part I: Analytical derivation. Int. |. Electr. Power Energy Syst. 2020, 121, 106120. [CrossRef]

Kang, M.; Muljadi, E.; Hur, K.; Kang, Y.C. Stable Adaptive Inertial Control of a Doubly-Fed Induction Generator. IEEE Trans.
Smart Grid 2016, 7, 2971-2979. [CrossRef]

Kang, M.; Kim, K.; Muljadi, E.; Park, ].W.; Kang, Y.C. Frequency Control Support of a Doubly-Fed Induction Generator Based on
the Torque Limit. IEEE Trans. Power Syst. 2016, 31, 4575-4583. [CrossRef]

Sun, M,; Min, Y.; Xiong, X.; Chen, L.; Zhao, L.; Feng, Y.; Wang, B. Practical Realization of Optimal Auxiliary Frequency Control
Strategy of Wind Turbine Generator. J. Mod. Power Syst. Clean Energy 2022, 10, 617-626. [CrossRef]

Meng, L.; Qin, C.; Zeng, Y.; Sun, B.; Chen, Q.; Chen, W. A two-stage frequency response method for DFIGs under variable wind
speeds. Electr. Power Syst. Res. 2023, 225, 109813. [CrossRef]

Wu, YK.; Yang, W.H.; Hu, Y.L.; Dzung, P.Q. Frequency Regulation at a Wind Farm Using Time-Varying Inertia and Droop
Controls. IEEE Trans. Ind. Appl. 2019, 55, 213-224. [CrossRef]

Gao, H.; Zhang, F,; Ding, L.; Cornélusse, B.; Zhang, G.; Salimu, A. Multi-segment droop control and optimal parameter setting
strategy of wind turbine for frequency regulation. Int. ]. Electr. Power Energy Syst. 2024, 158, 109968. [CrossRef]

Nie, Y.; Liu, J.; Gao, L.; Wu, Y,; Li, Z. Nonlinear rotor kinetic energy control strategy of DFIG-based wind turbine participating in
grid frequency regulation. Electr. Power Syst. Res. 2023, 223, 109678. [CrossRef]

Sun, M.; Min, Y.; Chen, L.; Hou, K;; Xia, D.; Mao, H. Optimal auxiliary frequency control of wind turbine generators and
coordination with synchronous generators. CSEE ]. Power Energy Syst. 2021, 7, 78-85.

Lin, C.H.; Wu, Y.K. Coordinated Frequency Control Strategy for VSC-HVDC-Connected Wind Farm and Battery Energy Storage
System. IEEE Trans. Ind. Appl. 2023, 59, 5314-5328. [CrossRef]

55



Energies 2025, 18, 1317

19.

20.

21.

22.

Xiong, L.; Yang, S.; Huang, S.; He, D.; Li, P; Khan, M.W.; Wang, J. Optimal Allocation of Energy Storage System in DFIG Wind
Farms for Frequency Support Considering Wake Effect. IEEE Trans. Power Syst. 2022, 37, 2097-2112. [CrossRef]

Rahimi, T.; Ding, L.; Kheshti, M.; Faraji, R.; Guerrero, ].M.; Tinajero, G.D.A. Inertia Response Coordination Strategy of Wind
Generators and Hybrid Energy Storage and Operation Cost-Based Multi-Objective Optimizing of Frequency Control Parameters.
IEEE Access 2021, 9, 74684-74702. [CrossRef]

Xia, Y.; Ahmed, K.H.; Williams, B.W. Wind Turbine Power Coefficient Analysis of a New Maximum Power Point Tracking
Technique. IEEE Trans. Ind. Electron. 2013, 60, 1122-1132. [CrossRef]

Anderson, PM.; Mirheydar, M. A low-order system frequency response model. IEEE Trans. Power Syst. 1990, 5, 720-729.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

56



energies ﬁw\D\Py

Article

Effective Customization of Evolutionary Algorithm-Based
Energy Management System Optimization for Improved Battery
Management in Microgrids

Alessandro Niccolai, Silvia Trimarchi *, Lisa Francesca Barbazza, Alessandro Gandelli, Riccardo Zich, Francesco
Grimaccia and Sonia Leva

Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan, Italy;
alessandro.niccolai@polimi.it (A.N.); lisafrancesca.barbazza@mail. polimi.it (L.EB.);
alessandro.gandelli@polimi.it (A.G.); riccardo.zich@polimi.it (R.Z.); francesco.grimaccia@polimi.it (F.G.);
sonia.leva@polimi.it (S.L.)

* Correspondence: silvia.trimarchi@polimi.it

Abstract: The growing penetration of renewable energy sources into electricity grids, along
with the problems linked to the electrification of rural areas, has drawn more attention
to the development of microgrids. Their Energy Management Systems (EMSs) can be
based on evolutionary optimization algorithms to identify efficient scheduling plans and
improve performance. In this paper, a new approach based on evolutionary algorithms
(EAs) is designed, implemented, and tested on a real microgrid architecture to evaluate its
effectiveness. The proposed approach effectively combines heuristic information with the
optimization capabilities of EAs, achieving excellent results with reasonable computational
effort. The proposed system is highly flexible, making it applicable to different network
architectures and various objective functions. In this work, the optimization algorithm
directly manages the microgrid Energy Management System, allowing for a large number
of degrees of freedom that can be exploited to achieve highly competitive solutions. This
method was compared with a standard scheduling approach, and an average improvement
of 11.87% in fuel consumption was achieved. After analyzing the differences between
the solutions obtained, the importance of the features introduced with this new approach
was demonstrated.

Keywords: microgrid; computational intelligence; energy management systems; evolutionary
optimization; battery management systems

1. Introduction

Microgrids are playing an increasingly important role in modern energy systems,
especially in integrating renewable energy sources (RES), batteries, and Electric Vehicles
(EVs) [1]. A microgrid is a localized energy system that can operate independently (islanded
mode) or in conjunction with the main grid (on-grid mode), and often includes a range of
renewable and non-renewable energy sources, energy storage, and loads. Microgrids can
address the intermittent nature of RES, such as solar and wind, by facilitating local energy
storage and smart distribution, thereby improving grid reliability and resilience [2]. Thus,
the presence of batteries is particularly important, ensuring better RES exploitation during
periods of low generation or high demand. This ability to store and dynamically deploy
energy not only increases the flexibility and efficiency of microgrids but also supports
grid stability by reducing reliance on external power during peak periods. In addition,

Energies 2025, 18, 2384 https://doi.org/10.3390/en18092384
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with the rise of electric vehicles placing new demands on energy infrastructure, microgrids
with battery storage offer a means to balance and optimize energy flows [3,4]. Microgrids
are important for advancing rural electrification in the developing world, where access to
centralized power grids is often limited or non-existent. In addition, they reduce reliance
on costly and polluting diesel generators, promoting a cleaner and more self-sufficient
energy model that empowers communities and supports economic development. As a
result, microgrids provide a scalable, flexible, and cost-effective solution for sustainable
rural electrification in the developing world [5].

Energy Management Systems (EMSs) are a fundamental component in the operation of
microgrids, optimizing the balance between energy generation, storage, and consumption
to ensure efficiency and reliability [6]. As microgrids increasingly incorporate renewable
energy sources such as solar and wind, they face challenges in managing variable power
generation and fluctuating energy demand. An effective EMS is critical in managing this
variability, as it dynamically allocates energy resources based on real-time data, forecasting,
and demand response strategies [7]. In this way, an EMS minimizes energy waste, prevents
overloading, and maximizes the use of locally generated renewable energy while ensuring
stability within the microgrid. In addition, an EMS can intelligently control energy storage
systems to store excess energy during off-peak periods and release it during peak periods,
improving overall resilience and economic performance [8].

The application of Computational Intelligence (CI) in Energy Management Systems
(EMSs) for microgrids has become increasingly important, providing advanced methods for
optimizing energy distribution, storage, and demand response [9]. CI techniques, including
machine learning, fuzzy logic, and evolutionary algorithms, enable EMSs to process large
amounts of real-time data, predict fluctuations in renewable generation and loads [10,11],
and adjust to fluctuating demand with high accuracy [12,13], thereby improving economic
performance [14].

Focusing on evolutionary optimization algorithms, their landscape is extremely varied
and wide, in terms of both implementations and applications. In the engineering field,
the most frequently employed algorithms are Particle Swarm Optimization (PSO) and
Genetic Algorithms (GAs), which currently represent the traditional benchmarks in the
development and comparison of more innovative EAs [15,16]. On the other hand, although
the Differential Evolution (DE) algorithm is less frequently employed, it usually outper-
forms GAs and PSO in engineering applications [17,18]. Finally, Biogeography-Based
Optimization (BBO) and Social Network Optimization (SNO) represent two noteworthy
EAs that have been developed more recently and shown promising performance in the
field [19,20].

Generally, evolutionary algorithms are applied to microgrid EMSs with intermediate
layers, such as fuzzy inference systems. These methods effectively reduce the number of
design variables; however, they can lead to suboptimal solutions. The direct application
of EAs to control microgrid EMSs is generally not used in industrial practice because
the high number of design variables and constraints often makes these algorithms slow
and unreliable.

Aiming to address these issues, in this paper, a new design variable coding technique is
developed to reduce problem complexity without affecting the capability of the algorithm to
find optimal and competitive solutions. The proposed approach exploits the power balance
constraint and provides the possibility of deterministically defining the optimal setpoint of
the dispatchable generators to reduce the number of design variables. Moreover, among all
the possible choices of design variables, the most effective one is selected. The methodology
is applied to a real microgrid architecture to evaluate its effectiveness.
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This paper makes the following key contributions:

*  Proposing a flexible framework that can be integrated into nearly any evolutionary
algorithm, facilitating the incorporation of more efficient algorithms into the structure.

¢  Identifying the minimal set of design variables that strikes a balance between conver-
gence speed, non-linearity, and problem complexity. This formulation is designed to
be easily integrated with PLC controllers of microgrids.

e  Offering a straightforward problem formulation that can be easily adapted to other
microgrids with varying components and constraints.

The application of EAs in microgrid EMSs presents a good solution for real-world
deployment. EAs are particularly well suited for such applications since they enable flexible
implementation on both PLCs and cloud-based platforms. This versatility supports a wide
range of operational scenarios and infrastructure configurations. Moreover, since energy
planning is performed on a day-ahead basis, the computational time required by EAs
does not pose significant limitations. In contrast, MILP approaches are less suitable in
this context due to their substantially higher computational demands, especially when the
problem includes non-linear cost functions or constraints. The computational complexity
of MILP formulations tends to scale poorly with problem size and non-linearity, making
them less practical for real-time or resource-constrained environments.

The remainder of this paper is structured as follows. In Section 2, the state of the
art in microgrid EMSs is reviewed, and the differences with the proposed approach are
highlighted. In Section 3, the microgrid optimization problem is described, focusing
on the free parameters, performance metrics, and constraints that should be taken into
account in the optimization process. In Section 4, the proposed method is described, the
free optimization variables are analyzed, and the cost function is defined. In Section 6,
the developed methodology is applied to a specific test case and compared with a basic
optimization process. Finally, in Section 7, the conclusions are drawn.

2. Related Works

It is possible to distinguish three different categories of EMSs for microgrids. The first
category consists of deterministic techniques, in which the scheduling of the microgrid is
determined using algorithms like non-linear programming, the interior point method, and
Mixed-Integer Linear Programming (MILP). For these algorithms, the optimal solution is
guaranteed, but the model must conform to the algorithm’s requirements [21].

Rule-based techniques rely on the definition of scheduling rules that can be activated
depending on the real-time conditions of the microgrid. These approaches generally do
not provide optimal solutions but can easily handle the stochastic nature of load and RES
production [22].

MILP is one of the most popular approaches for EMSs found in the literature [23].
In [24], MILP was used to solve the EMS problem for an off-grid microgrid. The MILP is
applied for unit commitment, while a second layer manages real-time operations. The use of
MILP has several limitations. The first one concerns the linearization of the working curves
of the components: to have a good approximation, it is necessary to use many segments,
leading to a large number of variables. The rigid structure required by MILP solvers
requires a lot of work to implement the EMS for a different microgrid structure. In addition,
many MILP solvers are computationally expensive and can hardly be implemented on the
control platforms of rural microgrids.

The use of evolutionary algorithms addresses these problems. Indeed, they can handle
non-linear problems and are very flexible, since they can be easily integrated with standard
control platforms. Furthermore, EAs are often used in the microgrid design process [25].
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In some cases, EAs are applied in combination with fuzzy logic to have a complete tool
for EMSs. For example, in [26], a Computational Intelligence-based system was proposed
for EMSs. In particular, a Hierarchical Genetic Algorithm was used to optimally tune
the rule parameters of a fuzzy inference system (FIS). The optimization process aimed
both to reduce the complexity of the FIS and to find the optimal set of parameters. This
approach was further investigated in [27], in which a Time-of-Use energy pricing policy was
considered. The results showed that the optimization process was capable of improving
performance with a reduced number of rules. Another improvement of the original system
was proposed in [28], in which the FIS controller was evolved into a neuro-fuzzy system,
trained using ad hoc clustering algorithms. This approach, compared to other methods
optimized by EAs, reduces the training and operating times, resulting in a more flexible
system that can be installed on cheaper machines. These approaches are effective in
uncertainty management but often provide sub-optimal solutions because the optimization
cannot directly manage the EMS.

In the literature, there are some examples of direct applications of EAs to EMSs. In [29],
a modified Particle Swarm Optimization (PSO) technique was proposed for scheduling the
production of renewable energy sources in the case of load uncertainty. Similarly, in [30],
a Moth Flame Optimization technique was used for managing EMSs in a multi-objective
context. With respect to the proposed method, in both of these methods, all the generators
were considered independent variables, leading to a very large optimization problem.

Despite advances in EMS development for microgrids, key challenges remain. De-
terministic methods like MILP and non-linear programming offer optimal solutions but
require strict solver constraints and extensive customization for different configurations.
In addition, the necessary model linearization increases both complexity and computational
load, posing practical limitations. In contrast, rule-based and fuzzy logic methods manage
uncertainty well but often fall short of achieving optimal performance, especially when
optimization relies on indirect rule tuning. Finally, while evolutionary algorithms have
been explored for EMS scheduling under uncertainty, these methods commonly treat each
generator or system component as an independent variable. This leads to an exponential
increase in the search space, significantly reducing computational efficiency.

3. Problem Formulation

This section describes the microgrid analyzed, highlighting the free management
parameters, the performance metrics, and the constraints to be taken into account in the
optimization process.

3.1. Microgrid Single-Node Model

A microgrid is an electrical grid that can operate islanded from (off-grid) or connected
to (on-grid) the main grid. It generally comprises dispatchable thermal generators, non-
programmable renewable energy sources such as photovoltaics and wind, and one or more
loads with different absorption profiles. Finally, it can be equipped with an energy storage
system [31].

In case the distances between all the network components are relatively small, a single-
node representation of the microgrid can be used, disregarding power-flow constraints [32].
Figure 1 shows the power contributions accounted for in the considered microgrid energy
model. This model captures a wide range of possible operating conditions, ensuring
adaptability during optimization. This flexibility is required due to the relevant stochastic
component in evolutionary algorithms, which randomly generates candidate dispatch
solutions both at the beginning and during the entire optimization process.
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Figure 1. Power flows in a microgrid. The designed procedure can be applied with an arbitrary
number of dispatchable generators and is not affected by the nominal size of the components.

The power balance on the common bus of the single-node network, enforced at all the
considered time instants, is shown in Equation (1).

Ng

Y Pg,(t) 4+ Pres(t) 4 Payy = Pr(t) + Pep(t) + Paymp(£) 1)
i—1

The first power contribution to the microgrid (Pg,(t)) is due to the presence of an
arbitrary number Ng of dispatchable generators: their power setpoint can be fully con-
trolled by the EMS, within their technical limits. The operating conditions of these units
are defined by their minimum and maximum power and their efficiency curves, linking
power production to fuel consumption in a non-linear way.

The contribution of non-programmable RES is determined starting from the fore-
casted generation potential profiles, i.e., the power produced at the maximum power point
(Pppp(t)). The microgrid EMS can then curtail the production from renewable sources to
obtain the net power fed into the grid Prgg, as reported in Equation (2):

Pres = Pyvipp — Peurt )

All the loads present in the network are modeled as a single power absorption point,
characterized by an expected load profile (P;(t)). The energy model used, as displayed in
Equation (3), accounts for the possibility that part of the load is not covered by production.
This case (which is discarded in the optimization process) is modeled using a virtual power
generation Py, i.e., the required power from loads that is not covered by production.

Pp = Py — Pyer 3)

The storage system can draw (P, (t)) energy and inject (Py,(t)) energy into the net-
work, based on the decisions of the EMS. Finally, the model admits the possibility of
having excess power generation not absorbed by the loads (P (t)). This term is also
characteristic of non-optimal solutions.

The energy storage system is defined by its nominal capacity (Cy), its minimum
and maximum states of charge (SoC) that can be achieved (S0C,,;,, and S0Cj4x), and its
maximum absorbable and deliverable power (P, 0y and Py 4, respectively) [33].
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Finally, the battery is characterized by a charging and discharging efficiency. The oper-
ation of the battery energy storage system (BESS) is described in Equations (4) and (5) [34].

. pnt
ASoCt = W 4)
ASoC™ = 5 A CA; ®)

where ASoC™ and ASoC™ are the state-of-charge variations in charging and discharging,
respectively, At is the considered time discretization expressed in hours, and 7+ and 1~
are the charging and discharging efficiencies.

Given this microgrid model, it is possible to analyze the management variables,
performance parameters, and constraints that should be taken into account in the optimiza-
tion process.

3.2. Microgrid Independent Variables

The microgrid independent variables are the degrees of freedom that can be exploited
by the EMS to optimize the microgrid’s operating schedule. In particular, for the presented
model, they are the power produced by the dispatchable generators, the power absorbed
(P:), and the power delivered (Py;) by the BESS.

The other powers (curtailment, slack, and dump) can be obtained from the free
variables identified using the following set of rules. Specifically, they depend on the
residual power between production and consumption. The expression for the net power is
given by Equation (6), which shows the different terms and contributions employed for

its evaluation:
Ng

Puet = Y Pc, + Pupp + Py — Py — Py (6)
i=1

If Pyt is negative, it means that the network is not able to satisfy all the demands of
the loads and, consequently, there will be a slack power, as shown in Equation (7):

Pstack = Pret, Ppet <0 (7)

Conversely, if Py, is positive, production exceeds demand. In this case, renewable
generation must be curtailed or surplus energy dumped. As shown in Equations (8) and (9),
in the application under analysis, the curtailment is performed first, followed by the dump:

_ Puet, 0 < Ppet < Pmpp
Pcurt - (8)
Pypp,  Puet > Pupp
Pdump = Pyet — Peyrt (9)

This excess power management choice does not affect the optimization process, as the
decision to perform curtailment or generation dumping does not have a substantial effect
on system performance.

3.3. Constraints

Following the identification of the independent variables, the constraints considered
in this study can be systematically analyzed. Notably, the power balance (Equation (1))
is intrinsically maintained through the selection of free variables and the corresponding
computation of the power dissipation or slack load.

The constraints of the problem arise from both the operational requirements of the
microgrid and the technical limitations of its components.
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To avoid trivial solutions where all the power of the loads is slack, it is necessary to
impose the first constraint. As shown in Equation (10), the slack is set to zero:

Pslack =0W (10)

In the case that the size of dispatchable generators is adequate to cover all the loads, it
is possible to always satisfy this constraint.

At this point, it is necessary to consider the constraints related to the technical limits
of the microgrid components. Starting from dispatchable generators, it is possible to write
the constraints on the minimum and maximum power, as shown in Equation (11):

» 0w zi(t)
G —
PG,-,min < PGi(t) < PGi,max Zi(t) =

0
1 (11)

where z;(t) is the on/off status of the i-th dispatchable generator, which is given by

Equation (12):
)0 Pg,(t) =0

In the case of BESSs, it is necessary to consider both the constraints on the minimum
and maximum states of charge and the constraints on the maximum absorbed or supplied
power [34]. The set of constraints taken into account is shown in Equation (13):

SoCin < SoC(t) < SoCax
Pch(t) < Pch,max (13)
Pdh(t) < Pdh,max

The last constraint considered in this paper is the spinning reserve requirement,
which requires always having an upward generation margin to compensate for potential
stochastic fluctuations in loads and non-dispatchable generation [24]. Equation (14) gives
the expression for the spinning reserve (SR, (t)). This must be provided by the dispatchable
units of the microgrid (e.g., the diesel generators) and the BESS.

(SOC(t) — SOle’n) -Cn
At

Ng
SRap(t) = Zzi(t)Pmax,i + N (14)
i=1
where 777 is the discharging efficiency of the BESS and z;(t) is the on/off status of the i-th
dispatchable generator.
The required spinning reserve can be computed, based on [24], as shown in
Equation (15).
SRyeq(t) = (1 —dp)Py(t) — (1 — dr)Ppmpp(t) (15)

where dp and dr quantify the maximum expected sudden demand increase and the PV
output decrease, respectively, with respect to the forecasted values.
The formulation of the spinning reserve constraint is given by Equation (16):

SRy (t) > SRyeq(t) (16)

All the presented constraints must be enforced at all time intervals considered; conse-
quently, it can be seen that the optimization problem is highly constrained.
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3.4. Performance Parameters

The main goal in the optimization of the microgrid EMS is to reduce operating costs.
This can be achieved by minimizing the total fuel consumption. At each time step, the fuel
consumption can be calculated as shown in Equation (17):

Fi(t) = Pg,(t) - ng,(Pg,) - zi(t) (17)

where P, (t) is the power generated by the dispatchable units, 7, (Pg,) is the generation
efficiency at that power level, and z;(t) is the on/off status of the generators.

By analyzing this equation, it can be seen that there are two ways to improve system
performance: first, by reducing the power contribution from the dispatchable generators,
and second, by operating them at load levels with higher efficiency. In general, both of
these objectives can be achieved by efficiently managing renewable energy sources and the
battery storage system.

4. Method

In this section, the proposed customization method for the evolutionary algorithm-
based EMS is described. This method aims to be flexible in terms of both the microgrid
model and the selected EAs. Moreover, it should provide effective results. It is based on
the proper choice of optimization variables and the exploitation of heuristic constraints
to reduce the problem dimensionality. Moreover, the cost function is defined to help the
algorithm converge using a proper penalty for infeasible and sub-optimal solutions.

This section is structured as follows. First, the general framework of the method is
proposed, and then each step is detailed.

4.1. Optimization Framework

The proposed method is designed, taking into account the selection of optimization
variables, the calculation of the physical free problem variables from the optimization
variables, and the cost calculation.

Through its specific operators, the optimization algorithm generates a set of candidate
solutions (blue blocks in Figure 2). Each candidate solution represents a possible trajectory
of the battery energy storage system (BESS) within the microgrid. Based on this information
and by utilizing the microgrid model, all relevant power flows are computed, including
the power exchanges of the BESS, the setpoints for the dispatchable generators, and the
overall system balancing (purple blocks in Figure 2). The balancing process depends on the
specific operating scenario considered (green blocks in Figure 2).

The computed power flows are subsequently used by the cost function module (orange
blocks in Figure 2) to evaluate constraint violations, apply penalty terms, and estimate fuel
consumption. The total cost value is then calculated according to Equation (32). This cost
value is fed back into the optimization algorithm, which proceeds to the next iteration,
based on the updated evaluations.

The proposed approach differs from the standard methodology in two main aspects.
First, it involves the specific selection of optimization variables and a corresponding
redefinition of the steps required to compute the power contributions within the system.
These steps are designed to minimize the infeasible regions in the search space and reduce
the number of optimization variables. Second, a dedicated penalty strategy is introduced
to enhance the convergence of the optimization process.
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Figure 2. Flowchart of the proposed method. The algorithm uses its operators to create candidate

PV production

solutions that represent the trajectory of the BESS. The microgrid model computes the power flows
that are used in the cost function to close the loop.

4.2. Decodification of Optimization Variables

The first step in the proposed methodology is transforming the optimization variables
into the power contributions to the microgrid.

The optimization variables are defined as the BESS state-of-charge values at each time
step (SoC(t)). This value should be limited by the minimum and maximum allowable
states of charge, as stated in inequality (18):

S0Cin < SoC(t) < SoCrmax (18)

The corresponding power exchanges are derived by calculating the SoC variation, as
shown in Equation (19):
ASoC(t) = SoC(t) —SoC(t —1) (19)

The power exchanged is then constrained to remain within the BESS operational
power limits, i.e., the maximum charging and discharging powers. The corresponding
calculations are shown in Equations (20) and (21):

1 Cn
Py — max <ASOC(L‘) v _Pmax,dh> ASoC(t) <0 (20)
oW ASoC(t) > 0
oW ASoC(f) < 0
Py = Cx @)

min (ASOC(t) . W, Pmax,ch) ASOC(t) >0

These steps are shown in Figure 3. Figure 3a shows a sample profile of the SoC
(the blue line); this is defined by the optimizer, and it naturally takes into account the
minimum and maximum allowed SoCs (black horizontal lines) from the allowed ranges of
the optimization variables. From the computed SoC variations, the BESS power exchanges
are then calculated, as shown in Figure 3b; the power limits (black lines) are embedded in
this power calculation in order to reduce the constraints that should be considered in the
optimization process.
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Figure 3. Steps for defining the Pprgs from the optimization variables: (a) The optimizer defines the
time profile of the state of charge. (b) From the SoC variation, the power exchanged by the BESS can
be computed, also considering the power constraints.

The power exchanged by the BESS and the scenario information can be used to com-
pute the total power required by the dispatchable generators and, consequently, the power
output of each one. The calculation of the required power is performed by exploiting the
power balance (Equation (1)), assuming that the slack, dumped, and curtailed power are
zero. The formulation used is displayed in Equation (22):

Piot = (P4 — Pmpp) — Paess (22)

where PBESS = Pch - Pdh'

Given Py, the dispatchable generator outputs are determined by solving a simpli-
fied optimization problem that minimizes fuel consumption while respecting generator
constraints. The definition of the optimization problem is shown in Equation (23):

Ng
min F(«;,
iy 1( i Zz)
i=1
Ng
s.t. Z zi;Prot > Prot ,
i=1 (23)

&iProt < ziPpayi, i=1,...,Ng,
&;Prot > ZiPryin i i=1,...,Ng,
0<u; <1, i=1,...,Ng

In this minimization problem, the technical limits of the generators are considered. In
addition, potential ramp-up and ramp-down limits can be added by properly adjusting the
minimum and maximum operating powers of each generator at each time instant, based
on its operating load determined in the previous timestep.

If dynamic constraints are not present, this load allocation can be precomputed and
excluded from the main EMS optimization loop, reducing overall computational cost. This
approach allows the proposed method to minimize the specific consumption at each time
step, improving optimization convergence.

The solution of the lower-level minimization problem for the identification of the
power contribution of each dispatchable generator can introduce some undesired power
contributions (curtailed, dumped, and slack power). These can be calculated using
Equations (6)—(9).

66



Energies 2025, 18, 2384

The final output of the algorithm is the definition of all the power terms within
the microgrid. The last steps required to fully define the optimization method involve
managing the constraints and defining the cost function.

4.3. Managing the Constraints and Defining the Cost Function

The proposed selection of the optimization variables allows for a drastic reduction
in the number of constraints that must be considered in the optimization process. This is
possible because the physical component limits are inherently satisfied.

The two constraints that must be checked are related to the slack power and the
spinning reserve. Both are included in the optimization problem using a penalty approach,
thus solving an unconstrained problem in which infeasible solutions incur additional
cost components.

The main cost component is the total fuel consumption over the analyzed time horizon.
In addition to these three cost components, two other penalties for dumped and curtailed
power are introduced to improve the algorithm’s convergence.

As shown in Equation (24), the resulting cost value comprises five components:

C= Cfuel + Csiack + Csr + Cdump + Ceurt (24)

The fuel-related cost is detailed in Equation (25):

Nt Ng

Cfuel = Z ZFi(t) (25)

t=1i=1

The violation of the slack power constraint is taken into account with the cost compo-
nent, as shown in Equation (26):

Ny Nr
Cstack = M- H <Z Pslack(t)> + Z Pslack(t) (26)
t=1 t=1

where A; is a penalty value and H is the Heaviside function defined in Equation (27):

0 <0
Hy) ={ 7= 27)
1 y>0

This definition of the constraint violation cost is introduced because with a proper
selection of the value of A1 (1.5 x10° in the analyzed problem), all infeasible solutions have
a cost higher than the feasible ones. Moreover, the second penalty term (proportional to
the entity of the violation) helps the algorithm converge toward solutions with a lower
constraint violation.

The violation of the spinning reserve is considered using a similar approach. The
missing spinning reserve can be defined as a function of the difference between the required
and available ones, as shown in Equation (28):

SRyeq(t) — SRao(t)  SRyeq(t) — SRan(t) > 0

SR iss () = (28)
e 0 SRyeq(t) — SRy (£) < 0
Thus, the cost component is formulated in Equation (29):
Nr Nr
Csr=7A2-H (Z SRmissU)) + Z SRmiss(t) (29)
t=1 t=1
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The curtailment penalty employed, as shown in Equation (30), helps the optimization
move toward the optimal solution because it reinforces the benefit of exploiting RES production:

Nr

Ceurt = p1 - Z Peurt (t) (30)
t=1

In this cost component, the step penalty is not introduced because it prevents the
correct convergence of the optimization. Moreover, the optimal y; value is very low (1/250
in the analyzed test case).

Finally, the dump power penalty is managed similarly to the curtailment penalty, and
its expression is shown in Equation (31):

Nt
Cdump = M2 Z Pdump(t) (31)
t=1

In order to achieve proper algorithm convergence, the y4 value should be lower than the
o value. In particular, in this work, it is set to 1/500 using a sensitivity analysis.

Once the different terms have been defined, it is possible to present the final and
comprehensive formulation of the cost function, as shown in Equation (32). In this way,
the different contributions and physical properties that play a role in the objective function
can be inferred.

Nt Ng

Nr Nt Nt
C= 2 ZFi<t)+)\1 “H (Z Psluck(t)> + 2 Psluck(t) +A2-H (2 SRmiss(t)> +
t=1i=1 t=1 t=1 =1

(32)

Nr

Nr Nt
Z SRmiss(t) +H1e Z Pdump(t) +p2 - Z Pcurt(t)
t=1 t=1 t=1

5. Case Study

The proposed methodology was numerically tested on a case study based on the data
collected from a real off-grid hybrid microgrid. The required inputs for the simulations
are the load consumption profile and the PV-generation potential profile. All the data
employed in the study have hourly time resolution.

The microgrid studied can be modeled as detailed in the problem formulation and is
composed of two 550 kW peak diesel engines, a 1000 kWp photovoltaic system, a battery
energy storage system (BESS) with a maximum capacity of 1440 kWh, and a variable
non-programmable load with a maximum power absorption of 928.3 kW. The microgrid is
not connected to the main electrical grid. The microgrid scheme is shown in Figure 4.

Some examples of the PV power production profiles and the demand for a sample
week in the year are shown in Figure 5.

The microgrid energy storage system has a nominal capacity (Cy) of 1440 kWh; how-
ever, a minimum state of charge (SoC) and a maximum value (1% and 90%, respectively) are
considered. In terms of power, the BESS is characterized by maximum deliverable power
(Pan,max = 1440 kW) and absorbable power (P, ;5 = 1440 kW). In the case under analysis,
it can be seen that these values do not constitute a particular constraint; however, they are
taken into account in the design of the optimization system to ensure maximum flexibility.
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Figure 4. Scheme of the analyzed microgrid.

200 T T T T T T 1000

PV production [kKW]
Consumption [kW]

0 ' ' . . . . 400 . . L L L .
Oi-Jan  02-Jan  03-Jan 04-Jan  05-Jan  0B-Jan 0O7-Jan  08-Jan 01-Jan  02-Jan  03-Jan  0O4-Jan  05-Jan 0B-Jan 07-Jan  0B-Jan
Date Date

(a) (b)
Figure 5. Examples of (a) renewable power production and (b) load profile. These values were

measured in a real microgrid.

The two diesel engines have a maximum power of 550 kW and a minimum power
of 110 kW. Below this threshold, the engine is off (P = 0 W). Figure 6 shows the details
of the consumption curves of the two generators, indicated as G; and Gy in the figure.
The left axis shows the consumption as a function of the produced power; the efficiency
of the engines is not constant, resulting in a quadratic consumption curve. The right axis
shows the specific consumption of the two engines; the reduction in the fuel consumption
with the produced power shows that it is convenient to avoid using the engines with low
required power.

The optimal power breakdown between the two generators can be calculated a priori
by solving the minimization problem in Equation (23). The results of the breakdown
as a function of the total required power are shown in Figure 7. Figure 7a shows the
power produced by each generator (G; in blue and G, in orange). Due to the lower
specific consumption of Gy, this generator is preferentially used; in particular, if the power
production is below its maximum limit, only this engine is activated. Figure 7b shows
the total specific consumption of the combination of the two engines (left axis) and the
best breakdown value obtained in the minimization problem (right axis). The curve of
the specific consumption shows a step corresponding to the ignition of the second engine,
which has a lower generation efficiency.

69



Energies 2025, 18, 2384

110 T T T T T T T T 0.3
Consumption G1
100 Consumption Gz
0.28
Specific consumption G| :
20 Specific consumption G, g
_ 026 =
= 8T 5
S 1
e E
E 70 024 3
=]
O 60r o
0.22 5
2
50 | w
0.2
40 L

20 | | . . . . . . o8
100 150 200 250 300 350 400 450 500 550
Produced power [kW]
Figure 6. Characteristics of the two engines in the microgrid: the left axis represents the consumption,

and the right axis represents the specific consumption.

0.3

T T T 1
Specific consumption
®  Bestavalue 0.8

2
I
@

08

0.7
800

e
o
@

0.6

___.__-———/05:

04

600

Power [kW]

2
g
N

0.3

Total specific consumption
o
n
-

0.2
200

02r

0.1

00

0.18 0
100 200 300 400 500 600 700 BOO 900 1000 11 100 200 300 400 500 600 700 8OO 900 1000 1100
Total produced power - Fm( [kW] Total produced power - th [kw]
(a) (b)

Figure 7. Optimal power breakdown between the two dispatchable generators: (a) the proportion of
power produced by the two generators as a function of the total required power; (b) the total specific
consumption and the breakdown « value.

6. Results

The proposed method was validated on the described case study, and this section
discusses the results of the assessment.

This section is divided into three parts. In the first one, different EAs are applied with
the proposed method for optimization on a sample scenario extracted from the described
test case. Then, the optimal solution of the best-performing algorithm is analyzed. Finally,
the proposed method is compared with a standard optimization procedure on a set of
scenarios to assess the robustness of the methodology.

All the analyses were performed on an Intel(R) Core(TM) i9-10900KF 3.70 GHz. The
number of objective function calls was used as the termination criterion, as it correlates
with total optimization time. It also enables fair comparisons across algorithms with
different population sizes. In order to ensure the statistical reliability of the results, several
independent trials were performed in all the tests.

Table 1 shows an overview of the tests performed in this section, highlighting the
number of cost function calls, the number of independent trials, and the number of scenar-
ios tested.
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Table 1. Overview of the tests performed in this section.

Test Case Cost Function Independent Scenarios

Calls Trials Tested
Algorithm and parameter selection 100,000 100 1
Best solution analysis 100,000 50 1
Approach comparison 100,000 50 28

6.1. Algorithm and Parameter Selection

To identify the most suitable evolutionary algorithm for the proposed application,
a comparative analysis was conducted among five different algorithms: Social Network Op-
timization (SNO) [35], Differential Evolution (DE) [36], Biogeography-Based Optimization
(BBO) [37], Particle Swarm Optimization (PSO), and a Genetic Algorithm (GA) [38].

Table 2 summarizes the working parameters of the algorithms employed. They
represent the population size in addition to algorithm-specific parameters, such as the
mutation rate for the GA and the inertia for PSO.

Table 2. Parameters of the four tested evolutionary algorithms: (a) Social Network Optimization,
(b) Genetic Algorithm, (c) Biogeography-Based Optimization, (d) Particle Swarm Optimization, and
(e) the Differential Evolution.

(a) Social Network Optimization (b) Genetic Algorithm
Population size 40 Population size 25
Attraction rate 0.64 Crossover probability 0.98

Preserve rate 0.52 Mutation rate 0.1
Linguistic error probability 0.08 Mutation amplitude 0.06
(c) Biogeography-Based Optimization (d) Particle Swarm Optimization
Population size 20 Population size 20
Immigration coefficient 500 Inertia 0.95
Emigration coefficient 1 Acceleration coefficients 0.45
Mutation rate evolution 0.01 Velocity clamping 0.35
(e) Differential Evolution
Population size 25
Crossover probability 0.5
Differential weight 0.5

Figure 8 presents the average convergence curves, computed over 100 independent
trials, for the evaluated optimization algorithms. The results are displayed on a logarithmic
scale to highlight differences in convergence behavior. PSO and the GA exhibited a very
rapid initial convergence; however, their progress slowed earlier compared to the other
algorithms. In terms of final performance, SNO, DE, BBO, and the GA achieved compara-
ble results. Notably, SNO demonstrated particularly competitive behavior, maintaining
superior performance over the majority of the optimization process.

An additional critical aspect in selecting the most appropriate algorithm for EMS
applications is the robustness of the optimization process. Figure 9 shows box plots of the
results obtained from 100 independent trials for each algorithm. This analysis highlights the
strong performance of SNO and DE, which demonstrated not only excellent convergence
capabilities but also high consistency across trials, indicating the greater reliability of the
solutions produced.
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Finally, since in operation, computational time is very important, Table 3 shows the
average computational time required by each of the tested algorithms. Performance was
comparable across all the algorithms, and the optimization times were compatible with the
specific EMS application. In fact, due to the changing conditions of the loads and weather,
it was often necessary to run the optimization several times.

Table 3. Computational time required for the optimization in seconds.

SNO DE BBO PSO GA
13.61 12.42 14.36 13.44 12.69

From the comparison, the superior performance of the DE and SNO algorithms
emerged compared to PSO, the GA, and BBO. Particularly notable was their much higher
reliability, inferable from the considerably lower standard deviation values achieved. There-
fore, for the application analyzed here, they have more robust optimization capabilities
compared to the other three methods. Focusing on the SNO and DE algorithms, Figure 9
shows that SNO achieved both a slightly lower mean value and standard deviation. There-
fore, to optimize the current problem, the Social Network Optimization algorithm was
selected, and its optimization process and working principles are briefly reported in the
next section.

The cost function presented in Equation (32) includes scalarization parameters. Their
values were selected based on a sensitivity analysis conducted using the SNO algorithm.
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The results of this analysis are shown in Figure 10. While the introduction of these param-
eters led to a slight improvement in the overall performance of the algorithm, the most
significant effect was a noticeable reduction in the dispersion of the results, thereby enhanc-
ing the robustness of the optimization process.
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Figure 10. Sensitivity analysis of the penalty coefficients ;1 and yy, respectively in (a) and (b): the
blue line represents the average fuel consumption, while the gray bands show the dispersion of
the results.

6.2. Analysis of SNO Optimization Process

The SNO algorithm is a population-based evolutionary algorithm. It is inspired by
the dynamics of social media platforms and the way information circulates within them.
In this algorithm, the pool of potential solutions represents users in a virtual social network,
imitating how individuals communicate, exchange ideas, and engage with one another
online. Given its superior performance, it was selected for the optimization study, and its
optimization process was analyzed in more detail.

Figure 11 shows the convergence curves of 50 independent trials of SNO; each trial is
represented by a thin gray line, and the thick blue line represents the average convergence.
Due to the wide variation in cost values in the optimization, an insert zooms in on the
lower cost values. Finally, the histogram on the right of the figure shows the distribution of
the final values of each trial.
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Figure 11. Convergence curves of 50 independent trials of SNO on an optimization scenario. Each
gray line represents one trial, while the thick line represents the average convergence. The insert
zooms in on lower cost values, while the histogram on the right shows the distribution of the
final values.

Analyzing the convergence, a sharp drop can be seen in the early stages of the process,
which corresponds to the fulfillment of the constraints, particularly the spinning reserve
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requirement. Then, the convergence rate decreases because the optimization process enters
the exploitation phase to improve the solution quality.

The distribution of the final values is concentrated on low costs, even if some trials
do not properly converge. This is due to the intrinsic stochastic nature of evolutionary
algorithms. However, the low dispersion indicates good algorithm reliability; thus, only a
few independent trials are required in real applications of this approach.

Figure 12 shows the optimal solution found by SNO for the analyzed scenario.
Figure 12a represents the power flows in the microgrid; the red line represents the to-
tal demand, while the bars represent all the power contributions. The EMS utilizes the first
part of the day to charge the battery, drawing energy from both the dispatchable generators
and the photovoltaic production. This evolution is evident in Figure 12b, which shows the
evolution over time of the state of charge; each scenario analyzed starts with the BESS at
its minimum value. Since the remaining energy content in the storage is not in the cost
function, the final SoC in the optimal solution is the minimum allowed.
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Figure 12. Optimal solution found by SNO: (a) Energy flow in each hour of the day; (b) Evolution of
the BESS SoC; (¢) Consumption in each hour; (d) Spinning reserve.

Figure 12c shows the total consumption of the two dispatchable generators. The main
cost component minimized is the integral of this curve.

Finally, Figure 12d shows the available and required spinning reserves, where the
red line represents the required reserve and the green line represents the actual reserve.
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Analyzing these curves, it is clear that this constraint affects the optimal solution because
the algorithm cannot turn off the ICEs earlier; otherwise, the available spinning reserve
would become too low.

In the next subsection, the proposed approach is compared with a standard optimiza-
tion method across several scenarios.

6.3. Comparison with Standard Approach

After analyzing the optimization process using the proposed problem codification and
SNO method, the method was compared with a standard approach. Using the standard
approach, an optimization process is considered here in which all the free problem variables
(power production of dispatchable generators and SoC trajectory of the BESS) are directly
managed by the optimizer. This standard approach is referred to in the following as full
optimization.

The comparison was conducted across 28 different scenarios, optimizing with SNO
and performing 50 independent trials. Using diverse scenarios demonstrates the approach’s
robustness to variations in loads and RES production.

Figure 13 shows a comparison in terms of the consumption of the final solution. Each
bar represents the average value, and the 5th and the 95th percentiles are represented
by the black whiskers. The green bars represent the analyzed methodology, and the
orange ones represent full optimization. The figure shows the superiority of the proposed
approach in terms of both the average value and standard deviation across all the analyzed
scenarios in absolute terms. In this way, the actual advantages in terms of fuel consumption
when the microgrid is managed with the optimization method proposed are highlighted.
In addition, it is possible to compare the two methods also in relative terms. On average,
compared to a standard scheduling approach, our optimization methodology leads to an
improvement of 11.87%. Therefore, the proposed approach shows a significant reduction
in fuel consumption in both absolute and relative terms.
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Figure 13. Comparison between full optimization and the proposed approach across 28 different
scenarios. The bars represent the average values of 50 independent trials, and the black whiskers
represent the 5th and the 95th percentiles.
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The advantages of the proposed method can also be analyzed using the convergence
curves for one of the sample scenarios, as shown in Figure 14, which highlights that both
the final value and reliability improved with the proposed approach. Indeed, in this case,
the average value obtained by the 50 independent trials is lower, and the confidence band
is thinner.

In order to identify where the improvement in performance is introduced and the pro-
posed approach’s reliability lies, the cost contributions were analyzed for all the scenarios,
as shown in Figure 15. In particular, the figure shows how the variation in the final fuel
consumption was obtained; all the bars are positive because the consumptions obtained
by the proposed method were lower than those found by the standard approach. Each
bar is divided into two parts: blue represents the amount of fuel saved by reducing the
power production of the diesel engine, and brown represents the fuel saved using a better
selection of the working point of the generators at the same value of power output.

These results show that the improvement is, on average, driven by lower energy pro-
duction. This is due to the reduced number of optimization variables and the introduction
of the energy balance in the variable decodification process. The remaining improvement
is due to better specific consumption, which is due to the separate minimization problem
used to define the diesel generators’ power breakdown.
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Figure 15. Components of the variation in fuel consumption between the proposed method and
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6.4. Improved Storage Energy Management

The implemented Energy Management System improves storage management by
addressing two key factors: reducing energy losses in the BESS and minimizing the number
of charge-discharge cycles.

The energy losses are primarily determined by the BESS’s efficiency, and the optimiza-
tion algorithm identifies a solution that operates at the maximum efficiency point. Figure 16
shows this improvement, with the data normalized to the total daily energy demand.

1 T T T T T T T T T T T T T T

0.9
0.8

0.7

A BESS energy losses [% total demand]

15 16 19 25 31 34 45 56 87 89 121 129 158 161 195 222 238 240 247 264 267 272 206 298 300 331 338 357
Day

Figure 16. Difference in energy losses between basic optimization and the proposed method. The data
are normalized with respect to the total daily energy demand.

The degradation of the battery can be analyzed by computing the number of cycles
performed by the battery on each of the tested days. Figure 17 shows the comparison
between the basic optimization and the proposed method on the number of battery cycles.
The results take into account 50 independent trials. The bars represent the average values,
and the whiskers the 5th and the 95th percentiles.

T T T T T T T T T
2L 0 Full optimization
I Froposed method

Battery cicles
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Day of the year
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o || EEEEEFul optimization
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0.5 -

195 222 238 240 247 264 267 272 296 208 300 331 338 357
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Figure 17. Comparison of the number of battery cycles between full optimization and the proposed
approach across 28 different scenarios. The bars represent the average values of 50 independent trials,
and the black whiskers represent the 5th and the 95th percentiles.
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The results show that the proposed method is able to reduce the average number of
cycles per day from 1.42 to 0.92, corresponding to an improvement of 35%.

7. Conclusions

In this paper, evolutionary algorithms were applied to optimize scheduling decisions
in the Energy Management System of a microgrid. The proposed approach is capable of
finding the optimal trade-off between the degrees of freedom of the optimization algo-
rithm and the heuristic information introduced in the optimization process. The proposed
approach was tested with different evolutionary algorithms, and Social Network Opti-
mization achieved the best performance. This procedure was compared with a traditional
approach in which the optimization algorithm can tune all of the free design variables.
The results show that the heuristic information introduced is very important for the quality
of the final result. In addition, the proposed method enhances battery management by
accounting for both energy losses and battery degradation.

The results obtained in this work can serve as a benchmark for the application of
reinforcement learning. These approaches are particularly promising, as they can be
implemented in real time and are inherently more robust to the uncertainties associated with
loads and weather forecasting. However, their deployment requires a dedicated training
phase for each new microgrid configuration, which can be a limiting factor. Furthermore, RL
methods are highly data-intensive, necessitating the availability of large and representative
datasets to achieve satisfactory performance.
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The following abbreviations are used in this manuscript:

BBO Biogeography-Based Optimization
BESS Battery Energy Storage System

CI Computational Intelligence

DE Differential Evolution

EA Evolutionary Algorithm

EMS Energy Management System
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EV Electric Vehicle

FIS Fuzzy Inference System

GA Genetic Algorithm

MILP Mixed-Integer Linear Programming
PSO Particle Swarm Optimization

RES Renewable Energy Sources

SoC State of Charge

SNO Social Network Optimization

List of Symbols

Pg,(t) Power production of the i-th dispatchable generator
Prpp(t) Maximum power produced by RES
Pres(t) Effective power input from RES
Peyrt(t) Curtailed power from RES

Py(t) Total load power absorption
Pyrack(t) Load slack power

Pr(t) Effective load power absorption

Py BESS charging power

Py, BESS discharging power

Piump (t) Dumped power

Cn BESS nominal capacity

Pch,mux / Pdh,max
ASoC*t / ASoC™
At

BESS maximum charging/discharging power
BESS SoC variation in charge/discharge
Time discretization interval

nt /e BESS charging/discharging efficiency

Ei(t) Fuel consumption of the i-th dispatchable generator

1e,(Pa,) Efficiency of the i-th dispatchable generator at Pg, power

PG, min / Pc,mex ~ Minimum/maximum power of the i-th dispatchable generator
SoC,in BESS minimum state of charge

SoCrax BESS maximum state of charge

SRy (t) Available spinning reserve

zi(t)

On/ off status of the i-th dispatchable generator
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Abstract: The increasing integration of renewable energy sources has posed significant
challenges to grid frequency stability. To maximize the advantages of energy storage in
primary frequency regulation, this paper proposes a comprehensive control strategy for a
hybrid energy storage system (HESS) based on supercapacitor battery. Firstly, considering
the characteristics of the HESS and different control strategies, the battery responds to
virtual droop control to reduce frequency deviation, while the supercapacitor responds
to inertia control to suppress frequency drops and facilitate frequency recovery. Simul-
taneously, a reasonable dynamic dead zone is configured to prevent frequent actions of
the battery and thermal unit while allowing flexible adjustments according to the load
condition. Thirdly, an algebraic S-curve-based adaptive droop coefficient incorporating
SOC is proposed, while the inertia coefficient additionally considers load type, enhancing
adaptability. Furthermore, to better maintain the battery’s SOC, an improved adaptive
recovery strategy within the battery dead zone is proposed, considering both SOC re-
covery requirements and system frequency deviation constraints. Finally, a simulation
validation was conducted in MATLAB/Simulink. Compared to the conventional strategy,
the proposed control strategy reduces the frequency drop rate by 17.43% under step dis-
turbance. Under compound disturbances, the RMS of frequency deviation decreases by
13.34%, and the RMS of battery SOC decreases by 68.61%. The economic benefit of this
strategy is 3.212 times that of the single energy storage scheme. The results indicate that
the proposed strategy effectively alleviates sudden frequency disturbances, suppresses
frequency fluctuations, and reduces battery output while maintaining the SOC of both
the supercapacitor and the battery, thereby extending the battery lifespan and improving
economic performance.

Keywords: adaptive control strategy; hybrid energy storage system; primary frequency
regulation; virtual droop control; virtual inertia control

1. Introduction

Under the depletion of fossil energy sources and the development of clean en-
ergy sources, the global energy structure is undergoing profound changes, and wind
and solar energy are increasing steadily. The rapid development of these clean en-
ergy sources provides new impetus for achieving sustainable energy development and
environmental protection [1,2].

The high percentage of renewable energy integration results in low inertia characteris-
tics in the system, making it challenging to maintain frequency stability [3,4]. Traditional

Energies 2025, 18, 2423 https://doi.org/10.3390/en18102423
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thermal power units (TPUs) are constrained by ramp rate limitations, and they face chal-
lenges such as slow response, poor regulation accuracy, and reverse regulation, and the
frequency regulation standards of the grid are hard to satisfy [5]. Energy storage sys-
tems (ESSs) are widely used in primary frequency regulation (PFR) applications and have
better features such as faster response, bi-directional regulation, and precise tracking ca-
pabilities [6]. For example, a universal mathematical model for ESSs was developed in
reference [7], laying the groundwork for future studies. Equating ESS to a first-order inertia
model simplifies the model without affecting experimental results was also demonstrated
in reference [8].

When the system frequency experiences sudden changes, increasing system inertia
and adjusting power output based on frequency variation can both reduce frequency
deviation (FD) [9]. Virtual droop control (VDC) and virtual inertia control (VIC) were
separately introduced in references [10,11]. These strategies enable ESS to simulate the
regulation and dynamic characteristics of TPUs, providing a basis for subsequent research.
On the one hand, the VDC adjusts the active power output of ESS based on the deviation
between the grid frequency and the rated frequency, effectively altering the steady-state
value of the FD [12,13]. It was applied to electric vehicles for the purpose of grid PFR,
thereby enhancing the voltage stability of DC distribution networks [14]. On the other
hand, VIC uses the rate of change in the grid FD as the control signal to simulate the inertia
response of conventional generators, effectively mitigating grid frequency degradation. In
reference [15], it was proposed that battery energy storage systems (BESSs) could adopt
both VIC and VDC methods in PER. The VIC can respond promptly to large disturbances,
thereby preventing the exacerbation of frequency deterioration, but it impedes frequency
recovery during the restoration phase [16]. Therefore, virtual negative inertia control
(VNIC) was proposed in reference [17]; it is opposite in sign to VIC and can facilitate
frequency recovery during the restoration phase. Then, a switching method between
VIC and VDC for PFR was employed in references [18,19], where the switching timing
is determined through sensitivity analysis. This method combines the advantages of
VIC and VDC, but the ESS output experiences a significant jump when switching, which
easily causes frequency fluctuations. To smooth the output during switching, the direct
switching of output modes was modified in reference [20] by distributing the output ratio
between VDC and VIC using a distribution coefficient, thereby ensuring a smoother output
transition. However, this approach typically depends on complex functions, making it
challenging to implement in engineering practices.

Extensive research has focused on the control coefficients for ESS charging and dis-
charging. The “fixed-K method” was employed in reference [21], which involves a constant
VDC coefficient to control the BESS output. In reference [22], the method is improved,
which is called the “variable-K method”, and it is categorized into ordinary, conservative,
aggressive, and hybrid types. The VDC coefficient considers the SOC of the BESS, as
shown in reference [23], enhancing frequency regulation effectiveness while preventing
overcharging and over-discharging of the BESS. Most studies determined control coeffi-
cients based on the SOC of energy storage systems, employing functions such as hyperbolic
tangent [24], piecewise [25], quartic [26], or linear [27,28]. However, these methods were
basically adapted to changes in SOC and did not consider variations in control coefficients
under different load conditions. Meanwhile, excessively complex curves increase the
computational burden during actual operation.

As the requirements for grid frequency stability continue to increase, a single ESS has
frequently proved to be inadequate in meeting these demands. ESS can be categorized
into power-type storage and energy-type storage [29]. Energy-type electrochemical BESS
has the advantages of high energy density and relatively low cost [30]. However, frequent
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grid frequency fluctuations lead to frequent BESS cycling, significantly shortening the
lifespan of the BESS. Power-type energy storage systems, such as the supercapacitor energy
storage system (SESS), are widely used. It has extremely high charge/discharge rates and a
long cycle life, enabling rapid response, but its low energy density prevents long-duration
operation. Currently, no ESS can meet the requirements for both high power density
and high energy density [31]. Therefore, HESS can overcome the limitations of a single
storage system, providing complementary advantages and more effectively maintaining
grid stability.

Existing research on HESS coordination faces the problem of simply combining two
types of storage and the lack of flexibility in control strategies. Flywheel ESS and BESS were
directly connected in parallel in reference [32] to allow each to leverage the advantages of
the respective energy storage types. Reference [33] employed a sliding average filtering
method to allocate wind power, where the flywheel absorbs high-frequency power and
the lithium battery energy storage system handles low-frequency power. Reference [34]
selected a lithium battery and a supercapacitor for ESS frequency regulation, each using
VDC, achieving better frequency regulation than a single ESS. However, the selection of
control strategies is somewhat limited. References [16,35] simply applied control methods
previously used for the BESS to both the BESS and SESS, combining them without ad-
dressing the coordination between different energy storage types or solving the problems
inherent in the control strategies of individual ESS.

In summary, the deficiencies in the current ESS control strategies for PFR are as follows:

(1) Current control strategies do not fully leverage the characteristics of ESSs and funda-
mental control methods;

(2) Control coefficients for ESS output are fixed or only based on SOC without considering
output variations under different operating conditions, while a more reasonable
output curve is lacking.

(3) The potential for SOC recovery within the PFR dead zone is not fully utilized.

To resolve these problems, a comprehensive control strategy for a battery-supercapacitor
HESS participating in PFR is presented. The power-type SESS responds to the inertia control
with VIC during frequency deterioration and VNIC during frequency recovery, making use of
the high power of the SESS and inertia control to rapidly suppress frequency deterioration
and facilitate frequency recovery. The large-capacity BESS responds to the VDC signal,
continuously supplying power to reduce FD. A dynamically adjustable dead zone based on
load conditions is configured, and the SESS is prioritized for power output through reasonable
interval settings. To better maintain the SOC while regulating frequency, an algebraic S-curve-
based adaptive droop coefficient incorporating SOC is proposed, with the VIC coefficient
further considering the load types to enhance adaptability. To address the issue of SOC
of BESS deterioration, adaptive recovery of BESS SOC is applied within the dead zone of
the BESS, considering both SOC recovery requirements and system frequency deviation
constraints. Finally, the comprehensive control strategy was verified through simulations
under different disturbances, demonstrating its effectiveness across various metrics. It also
reduces the charge/discharge cycles of BESS and enhances its cycle life, yielding better
economic performance.

2. PFR Control Model Based on HESS

This section develops a dynamic model for PFR of a regional grid, incorporating HESS.
Then, the advantages and disadvantages of VDC, VIC, and VNIC are theoretically analyzed.
Finally, two typical types of loads are analyzed and differentiated.
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2.1. Primary Frequency Regulation Model

Based on the regional equivalent method, the models of each component within the
region are converted into transfer function form. The resulting PFR model is shown in
Figure 1. The parameters and units of the model are provided in Table 1.

(1+ FypTaps) P 1 %
BP(s) | (1+Teys) (I+Tges) || || 1+Tgs ¢
N " The transfer function of turbine ~ The transfer function
AP(s) - ® of governor 1
2Hs+ D
+ The output of supercapacitor AF (s)
The transfer function of I Adaptive virtual Integrated Control I
supercapa(:ltor | positive inertia [ &—o© iy I
AP (s) i ' | control Selection I :
+ OPFsc i 1 ! :
% 14T é?—l \0e of control [<— I ;
. +Tses | Adaptive virtual model I
________________ I negative inertia [¢<—o i
| control I '
: The output of  The transfer function of T , s |
: battery ____battery___ | Adaptive virtual || ;
APy(s) i | droop control N Sein I
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: | dead zone | :

Figure 1. Dynamic model of PFR in regional power grid with HESS.

Table 1. Definition of parameters in the model.

Parameters Definition Unit
APg(s) PFR output of the TPU MW
APsc(s) SESS PFR power out MW
APg(s) BESS PFR power out MW
APy (s) Load disturbance MW

Kg PER factor for TPU -
H Inertia TC of the power grid -
D Load damping coefficient -

Fyp Reheater gain -
Tg Governor TC of the TPU S

TrH Reheater TC S

Tcu Turbine TC S

Tsc Inertia TC of SESS s
Tg Inertia TC of BESS s

Where the TC presents the time constant.

2.2. Three Control Strategies

Following frequency fluctuations in the power grid, the frequency regulation signal
passes through the prime mover and governor of the TPU, leading to a change in the
turbine steam inlet flow, which in turn modifies the mechanical power output [36]. ESS can
mimic the control of traditional TPUs to offset FD, as shown in Equation (1),

Af(S) — APG(S)-'PZAI_IPSEL%—AP]_(S)
APG(s) = —KgAf(s)Ggl(s) "
1+Fp T, i’
Gg(s) = (1+TCHEI;{)P(1{§¥RHS)

APE(S) = APKE (S) + APME (S)
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where Gg(s) represents the transfer function of the TPU, and APg(s) represents the output
of the ESS. The output of the VDC and VIC is APy, (s) and APk, (s), given by (2). The
principle of VNIC resembles VIC, with only the output direction reversed, and therefore
does not require separate analysis.

APy (s) = —MgsAf(s)Gg(s)
APg(s) = —KgAf(s)Gg(s) . )
sAf(s) = dAf(s)/dt
where sAf(s) represents the rate of change in the FD, Mg represents the VIC coefficient,
and K represents the VDC coefficient. Substituting Equation (2) into Equation (1) yields

the following:

_ —AP(s
Afug(s) = 2Hs+D7KGGg(s())7MEsGE(s)
)

®)

—AP; (s
Afxg(s) = 2H5+D7KGG8L((S)7KEGE(S)

Analyzing the rate of change in frequency deviation Aoy(s) and the quasi-steady-state
frequency deviation Af 45 for VDC yields the following:

Aog = lim s - [s- Afi (s)] = i (
4)

1 _ _ —ApL ’
Afgs = lim's - Afi () = prrgixg

As shown in Equation (4), VDC effectively reduces the steady-state FD but has no
impact on the rate of change in FD.

Analyzing the rate of change in frequency deviation Aoy(s) and the quasi-steady-state
frequency deviation Af 45 for VIC yields the following:

AOO = S11_)1'1(;10 S [S . AfME (S)] - ﬁ

©)

As shown in Equation (5), VIC does not impact the final steady-state FD but does
influence the rate of change in FD. Positive inertia control can effectively reduce the rate
of change in FD, preventing its further deterioration, but it impedes the recovery of the
FD. During the frequency recovery phase, VNIC facilitates the restoration of frequency.
The proper coordination of VIC and VNIC can better utilize the ESS throughout the entire
frequency regulation period.

2.3. Analysis of Load Disturbance Types
Substituting Equation (2) into Equation (1) yields the following:

(2H+ME)%+(D+KE)AJC:APG—APL. (6)

At the moment the disturbance is introduced into the system at time £, the TPU has
not yet responded, and the frequency has not changed. Therefore, Equation (6) can be
expressed as Equation (7), which takes the form of Equation (8).

dA
(ZH + ME)th |t:t0: —APL ‘l‘:l‘o . (7)

dAf - APL [i=4,
dt "0

(2H + Mg)’ ®)
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From this, it can be concluded that the rate of change in system FD is closely related to
the type of disturbance introduced into the system.

There are two typical load disturbance scenarios in power grids: one is the sudden
event disturbance (which is also called step disturbance), and the other is load fluctuation
(which is also called continuous disturbance) [12]. Sudden event disturbances are usually
associated with the startup or shutdown of large-capacity motors or load shedding due
to grid faults. These disturbances in the power grid are characterized by sudden changes,
leading to rapid and significant frequency variations. Load fluctuations are typically caused
by the variability of renewable energy, random load variations in the power system, and
uncertainties in grid operation. These disturbances are sustained over time, unlike step
disturbances that are sudden and significant.

Based on the characteristics of the two load types, the disturbance type can be deter-
mined using the rate of change in FD, as illustrated by Equation (9),

fi—fi
Ao(t) = —=——

o(t) = 120, ©)
where f; and f;_; denote the frequency at the i-th and the i—1-th sampling point. AT is the
sampling time interval.

The time-varying curves of Ao(t) under two typical disturbances are shown in Figure 2.
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Figure 2. Curves of the rate of change in FD under different disturbances.

Under a sudden disturbance, Ao(t) rapidly increases to its peak and then quickly
returns to zero. Under load fluctuations, Ao(t) fluctuates slightly around zero. Since the
Ao(t) caused by sudden events varies across different power grids, the threshold value for
determining a sudden disturbance also differs accordingly. In practical applications, the
critical empirical value of o is decided in accordance with the actual conditions of the
regional power grid. When Ao(t) > Aoy, it indicates a sudden event disturbance.

Reference [37] theoretically demonstrated that the rate of change in FD at the initial
moment under step disturbance can be calculated using Equation (10),

dAf fs

“a =0T @H T MpR' 10

where Af; is the FD at steady state after the step disturbance.
GB/T 15945-2008 [38] states that under normal operating conditions of the power
system, the absolute value of FD should be within 0.2 Hz, so the steady-state FD should be
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less than 0.2 Hz. Substituting fs = 0.2 Hz and the relevant parameters of this model (see
Section 5.1) into Equation (10), it is determined that when the disturbance causes the rate
of change of the FD to reach 0.18 Hz/s, the system’s steady-state deviation will exceed
the safe limit. Reference [39] mentions that during the UK blackout incident, the rate of
change of the FD at the onset of the disturbance was 0.135 Hz/s. Therefore, for safety
considerations, the value of 0,¢f should not exceed 0.135 Hz/s.

A quasi-steady-state coefficient ¢ is introduced to determine whether the frequency
reaches a quasi-steady state after a sudden event disturbance. The expression is shown in
Equation (11), where 6 < J,¢ indicates that the system frequency has entered a quasi-steady
state. J,ef is set to 0.001 [40].

fi i—1
5 = 11
fi D

3. Control Strategies for ESS Participation in PFR
3.1. Coordinated Control Based on Supercapacitor-Battery HESS

As analyzed before, VDC can provide a continuous output over the entire frequency
regulation cycle to eliminate the FD. During the grid frequency drop phase, VIC is required
to respond quickly and mitigate frequency changes. During the recovery phase, VNIC is
required to support the restoration process. Each of the three control methods has its own
characteristics and application scenarios, and achieving optimal frequency regulation re-
quires their coordination throughout the entire regulation cycle. Reference [41] applied VIC
and VNIC along with VDC to a single ESS, leveraging the advantages of these three control
methods. Reference [42] employed both BESS and SESS for frequency regulation but only
used VDC. Reference [16] utilized HESS and coordinated the three control strategies within
a single storage device, achieving effective frequency regulation, but did not adequately
account for the specific requirements of VIC and VDC on the storage characteristics.

BESS is the most widely used ESS, known for its high energy density, low power
density, relatively short cycle life, and low cost. In contrast, SESS exhibits high power
density and long cycle life, but its standalone application in PFR is limited due to its smaller
capacity and higher cost. Based on the characteristics of the two types of ESS and the
three control strategies, SESS, with its high power and rapid response characteristics, is
well-suited to respond to inertial signals. BESS, with its high energy density and low cost,
is more appropriate for VDC and can operate effectively throughout the entire frequency
regulation cycle.

Therefore, to optimally match different ESSs and control methods, this paper proposes
a coordination control strategy for HESS participation in PFR. When the FD exceeds the
frequency regulation dead zone, the BESS operates with VDC to eliminate the FD. During
the frequency deterioration phase, where [dAf/dt]-Af > 0, the SESS uses VIC to counteract
the frequency decline. In the frequency recovery phase, where [dAf/dt]-Af <0, the SESS
employs VNIC to promote frequency recovery.

Figure 3 presents the Bode plots analyzing the magnitude—frequency characteristics
under four scenarios: no ESS participation, BESS-only frequency regulation, SESS-only
frequency regulation, and HESS frequency regulation.

It can be observed that the BESS, governed by VDC, effectively suppresses frequency
deviation in the low-frequency range. The SESS, utilizing VIC, mitigates the impact of
high-frequency power fluctuations on system frequency. The HESS strategy integrates the
advantages of both control approaches. Across the full frequency spectrum, it yields lower
and flatter response curves compared to single strategies. In the low-frequency range,
its minimum magnitude ensures optimal steady-state accuracy; in the mid-frequency
to high-frequency bands, it smooths out gain peaks of the single strategies, enhancing
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robustness to multi-frequency disturbances; and the steeper high-frequency attenuation
aids in noise suppression.
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Figure 3. Amplitude—frequency characteristic of different strategies.

The gain margins (GM) of the four strategies, calculated using MATLAB (R2022b),
are 24.16 dB, 30.05 dB, 24.99 dB, and 32.22 dB, respectively. The HESS approach yields the
highest GM, implying superior robustness against gain fluctuations. For the linearized
closed-loop systems under all four strategies, all poles are strictly located in the left half of
the complex plane, confirming the stability of each strategy.

Additionally, to further leverage the fast response and long cycle life of SESS, its dead
zone Afscd is set smaller than that of BESS, ensuring that SESS responds to frequency
variations first. This prioritization enables frequency restoration before reaching the dead
zone of the BESS (Afp9), significantly reducing the number of BESS cycles and mitigating
its lifespan degradation due to cycling. Meanwhile, the Afg is set smaller than that of the
TPU to prevent frequent start-stop operations, which could lead to mechanical wear.

To account for the varying demands for dead zones under different load types and
time periods, a dynamic dead zone is introduced for the ESS in this study. The expression
of the dynamic dead zone is shown in Equation (12),

Dead Zone(t, Af) = ki(Af)ka (1) fS, (12)

where k; is the load adjustment coefficient that varies dynamically with the load, and k,
is the time adjustment coefficient that differs between peak and off-peak hours, de is the
dead zone for the TPU.

The construction rule of kg is as follows: under high-frequency, low-amplitude fluctua-
tions, a larger dead zone is adopted to reduce ineffective cycling and equipment wear; under
low-frequency and large-amplitude disturbances, a smaller dead zone is employed to ensure
rapid frequency regulation response. The expression of k is provided in Equation (13),

klmin + %(klmax - klmin) |Af‘ > Afth
k(f) = { & (13)

klmax |Af| < Afth

where kimax is the maximum value of the load adjustment coefficient (set to 0.6 for the
SESS and 0.8 for the BESS), and ki, is the minimum value (0.55 for the SESS and 0.75
for the BESS). Afy, is the reference value of FD; a deviation greater than Afy, indicates
significant load disturbance. Based on multiple simulation validations, Afy, is set to 0.1 Hz
in this study.
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The construction principle of k; is that during electricity peak hours (generally from
17:00 to 22:00), both residential and commercial areas experience high and fluctuating
loads, causing many small-magnitude but frequent short-term disturbances. Appropriately
enlarging the dead zone during these times helps ignore small but frequent disturbances
within a safe margin, thereby reducing unnecessary switching of storage devices.

The expression of k; is given in Equation (14),

k2(t):{1.117:00§t<2.2:00. 14
elsetimeperiods

3.2. Adaptive Droop Coefficient Based on SOC Feedback

Traditional virtual droop control often uses fixed droop coefficients, known as the
“fixed-K method”. This method maintains a constant power output throughout the en-
tire frequency regulation cycle, achieving good results in the early stages of frequency
fluctuation. However, it does not take into account the SOC of the ESS, which can lead
to overcharging and over-discharging, significantly affecting the lifetime of the ESS. To
ensure effective frequency regulation performance while also considering the SOC of the
ESS, using an adaptive virtual droop coefficient that incorporates the SOC is a good choice.
When the SOC is within an optimal range, the ESS prioritizes frequency regulation needs,
charging and discharging at higher power levels. When the SOC is excessively low or high,
the charging/discharging power is reduced to balance frequency regulation performance
and the SOC. When the SOC exceeds the threshold, charging and discharging are stopped
to prevent overcharging or over-discharging, which could pose a risk to the ESS.

To meet these requirements, most studies employ the logistic function to constrain the
power output [43—45]. Reference [46] points out that the design of output constraints for
ESS should consider the feasibility and engineering convenience in subsequent hardware
implementation. Reference [47] states that complex mathematical operations such as ex-
ponential functions can cause significant computational burdens in embedded systems,
whereas algebraic S-curves offer superior computational efficiency. Reference [48] demon-
strates that algebraic S-curves meet the requirements for high-speed and high-precision
robot applications. Reference [49] notes that in automatic machinery trajectory planning,
algebraic S-curves facilitate a trade-off between smooth motion and computational cost.

The virtual droop coefficient based on the algebraic S-curve is shown in Equations (15) and (16).

When Af > 0,
Kiax SOC < Sochigh
SOC—SOChien 2 SOC—SOChien 3
Ke =19 Kmax % [1— (3(%) - 2(W%) )] SOCign < SOC < SOCpmax (15)
0 SOC > SOCmax
When Af <0,
0 SOC < SOChin
. 2 _ 3
Ki=1q Kmax % [(3(she—g58-)" — 2(55—2g522-)")] SOCumin < SOC < SOCiqqy , (16)
Kiax SOC = SOCigy

where K. and Ky represent the virtual droop coefficient during the charging and dis-
charging of the ESS, respectively. SOC indicates the measured SOC of the ESS. SOCpin,
SOClow, SOChigh, and SOCmax represent the minimum, low, high, and maximum SOC
levels, respectively, varying with different types of ESS.

The virtual droop coefficients for SESS charging and discharging are Ksc. and Kgcq,
respectively, with SOCmax = 0.9, SOChjgp = 0.55, SOCjoy = 0.45, and SOCpin = 0.1. It should
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be noted that the SESS in the proposed control strategy does not employ VDC. However,
the concept of the virtual droop control coefficient is used to help construct its virtual
inertia control coefficient. For BESS charging and discharging, the virtual droop coefficients
are Kgc and Kpg, with SOCmax = 0.8, SOChigp = 0.55, SOCjoy = 0.45, and SOCin = 0.2.
Taking the SESS as an example, the relationship between the virtual droop coefficient

and SOC is shown in Figure 4.

SOC,in SOC,,  SOCyg, SOC,ax soC

Figure 4. Relationship between VDC coefficient and SOC.

Figure 5 compares charge—discharge curves over the SOC interval [0.1, 0.45] and
[0.55, 0.9] using algebraic S-curves, linear functions, logistic functions, and hyperbolic
tangent functions (the values of the hyperbolic tangent function are approximately zero at
the endpoints). It can be observed that linear functions exhibit poor adaptability in output
curves, whereas algebraic S-curves, logistic functions, and hyperbolic tangent functions
can effectively describe the transition from rapid response to steady state, achieving good
adaptive performance. In practical engineering applications, the algebraic S-curve can
reduce the computational burden and enhance real-time responsiveness without sacrificing

control accuracy.
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Figure 5. Comparison of different VDC curves.
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3.3. Adaptive Inertia Coefficient Based on Disturbance Type and SOC

The virtual inertia control coefficient Mgp is expressed by Equation (17),

aByKgee, Af >0
MEP:{ BrKsce, Af 17)

aByKgeq, Af <0

where « is the output adjustment factor. Since the magnitudes of the FD and the rate of
change in FD differ significantly, a proper value of « should be set to ensure comparable
outputs of VIC and VDC. In this study, « is set to 0.5 [50-52].

(3 is the load adjustment factor, which varies with the type of load. As analyzed in
Section 2.3, under load fluctuation, the rate of change in FD is relatively small; a moderate
increase in the inertia coefficient can assist in mitigating frequency fluctuations. At this
time, B is set to 1. During a sudden event disturbance, the system FD and its rate of change
are large. Using a high inertia coefficient during such instances may result in excessive
power injection/absorption, thereby leading to a new frequency fluctuation. At this time,
3 should take a smaller value of 0.5 [53]. When J < d,y, it implies the FD is stabilizing,
permitting 3 to return to a higher value of 1.

v is the direction adjustment factor.

Reference [54] presents sensitivity curves for different values of Mg and finds that
the sensitivity changes from negative to positive and then tends toward zero. Further
sensitivity analysis on Mg demonstrates that VIC is effective only before the FD reaches
its peak. After that, it suppresses frequency recovery; the suppression becomes more
significant with a larger M.

Therefore, vy is introduced to regulate the direction of power output. When
dAf/dt-Af >0, indicating that the FD and its rate of change have the same direction,
the system is in a frequency deterioration phase, y takes a positive value, indicating that
VIC is applied to mitigate frequency deterioration. When dAf/dt-Af <0, the FD and its
rate of change are opposite, the system is in a frequency recovery phase (dAf/dt-Af < 0),
and y becomes negative, signifying the use of VNIC to promote frequency recovery.

An extreme disturbance (0.1 p.u.) was introduced into the system using only virtual
inertia control; the maximum FD reached 0.15 Hz, staying within the safe limit, demon-
strating the robustness of the VID coefficient in this model.

3.4. SOC Recovery Within the BESS Frequency Regulation Dead Zone

Previous research has shown that the SOC of the BESS often struggles to remain
stable during large-scale system disturbances [17]. Therefore, in addition to the adaptive
BESS output during the frequency regulation phase, an adaptive recovery mechanism is
introduced within the BESS’s dead zone. Within the dead zone, where grid frequency
remains within acceptable limits, the recovery demand coefficient is calculated according to
the SOC. To prevent excessive charging or discharging power during recovery, which could
push the frequency outside the dead zone again, a recovery constraint coefficient is derived
considering the grid’s tolerance capacity. The SOC recovery coefficient is determined based
on both the recovery demand coefficient and the recovery constraint coefficient. SESS, on
the other hand, can effectively maintain its SOC under various operating conditions and
therefore does not require an additional SOC recovery mechanism.

3.4.1. Recovery Demand Coefficient Determination Based on SOC

Taking the charging recovery demand coefficient K. as an example, when SOC < SOCppin,
the SOC is excessively low, which may negatively impact the lifespan of the BESS. Under
such conditions, the BESS charges at maximum power, and K reaches its maximum value.
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When SOCpin < SOC < SOCloyw, K¢1 remains relatively high but decreases as SOC increases.
In the range SOCjqy, < SOC < SOChgp, the SOC is considered to be within a safe range,
and no recovery is required. When SOC > SOCl;gp, the SOC is already high, and further
charging could worsen SOC conditions. Therefore, for SOC > SOCy,,, K1 is set to 0. The
specific expressions for the charging and discharging recovery demand coefficients K.; and
Kgq1 are given in Equations (18) and (19).

Komax SOC < SOCin
_ . 2 _ . 3
K1 = ¢ Kmax % [1 = (3(532—552-)" — 2(538—55%=)")] SOCpmin < SOC < SOCiony
0 SOC > SOCigy,
0 SOC < SOChigh

Kin =

SOC—SOCyy; 2 SOC—SOCy; 3
Kmax X [(3(m) - Z(M) )] SOChigh < 50C < 50Cmax

Kimax 50C 2 50Cmax

The recovery demand coefficients for charge/discharge are illustrated in Figure 6.
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Figure 6. The coefficient of demand for charge/discharge recovery.

3.4.2. Recovery Constraint Coefficient Based on Af

The FD is classified into six states: —Afq, —Afhigh, —Aflows M lows B high and Afg,
where Af 1oy, Afhigh and Af 4 correspond to the lower value, higher value, and upper dead
zone limit of the FD, respectively.

Taking the charging recovery constraint coefficient K., as an example, the principle is
as follows: when Af is less than —Afygn, the grid frequency is in a dangerous state with a
risk of exiting the dead zone, and the discharge of the BESS is required to adjust the FD;
hence, K¢, is set to 0. When Af lies between —Afygn and —Afioyw, the grid frequency is
relatively safe, and K, increases as the absolute value of the FD decreases. When Af lies
between —Afio, and Afj,y, the frequency is within a safe range. When Af exceeds Afjqy,
the grid requires the BESS charging. Therefore, for Af > —Af},y, K reaches its maximum
value. The charge/discharge recovery constraint coefficients K, and Ky, are constructed
using a cosine function, with their specific expressions shown in Equations (20) and (21).
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0 —fa < f < —fnigh
1—cos (7‘( S~ Chign) >
_ —fow —(~/high)
Ko = Kmax X 12 high - fhigh < f < _flow ’ (20)
Kmax 7_](10W < f < fd
Kinax _fd < f < flOW
l+cos<n%>
KdZ — Kmax % f;ugh flow flow S f S fhigh (21)
0

frigh < f < fa
The recovery constraint coefficients for charge/discharge are illustrated in Figure 7.
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Figure 7. The coefficient of constraint for charge/discharge recovery.

3.4.3. Determination of the Recovery Coefficient

To balance the SOC recovery demand of the BESS with the FD constraint of the grid,
most studies selected the smaller value between the recovery demand coefficient and
the recovery constraint coefficient as the SOC recovery coefficient of the BESS [55-57].
However, this approach leads to abrupt changes in BESS output during recovery, causing
secondary disturbances to the system. Moreover, selecting the minimum value imposes
excessive restrictions on recovery power, making the strategy overly conservative. To

achieve smoother power output during battery recovery, a demand-constraint dynamically
coupled recovery coefficient is adopted, as expressed in Equation (22).

Krequ =

a-Ka+(1-a)Ka S < SOCigy
0

SOCion < S < SOChigh -

(22)
a-Kgp +(1—a)Kgp S = SOCyg)
The value of a is determined by Equation (23),
1 AR
4= I o k(soc—s) ~ (1 T Af ) ’ (23)
where ki and k; are tuning coefficients used to adjust the magnitude of a
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When the SOC deviates significantly from 0.5 while the frequency remains within a
safe range, a approaches 1, prioritizing the SOC recovery demand. When the SOC is close
to 0.5 but the FD is about to exceed the dead zone, 4 tends toward 0, prioritizing frequency
constraints. In intermediate states, a varies between 0 and 1, with its weight determined
based on the deviations of SOC and Af.

The calculation of the BESS recovery output Prequ within the dead zone is expressed
in Equation (24),

APrequ - _Krequ|Af|- (24)

4. Comprehensive Control Strategy and Evaluation Metrics
4.1. Comprehensive Control Strategy

This study puts forward a comprehensive control method for HESS to participate in
PER by considering the characteristics of SESS and BESS, flexibly adopting the three control
strategies, and integrating adaptive control rules based on SOC and load type. The specific
control strategy is illustrated in Figure 8.
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Figure 8. Comprehensive control method of HESS participating in PFR of power grid.

Taking the case where Af > 0, indicating that the BESS needs to absorb power for
frequency regulation, yields the following:

(1)  When Af < Afscd, the FD lies within a safe range, so no frequency regulation is required.

(2)  When Afsc? < Af < Afgd, the SESS is employed for frequency regulation, while the
BESS decides whether to restore its SOC based on its current status.

(® The participation of the SESS in grid frequency regulation can be categorized
as follows:

(@) When dAf/dt > 0: At this stage, the FD and its rate of change are in the same direction,
indicating a worsening frequency condition. The SESS determines the VIC coefficient
based on (17) and applies adaptive VIC to mitigate frequency deterioration.

(b) When dAf/dt <« 0: Here, the FD and its rate of change are in opposite directions,
indicating a frequency recovery phase. The SESS determines the VNIC coefficient
based on (17) and employs adaptive VNIC to speed up frequency recovery.

@ The recovery of BESS SOC within the dead zone is governed by the following principles:

(@) When the SOC of the BESS is in a satisfactory condition, the recovery of SOC is
deemed unnecessary.
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(b)  When the SOC of the BESS is suboptimal, the recovery demand coefficient is deter-
mined based on (18) and (19), while the recovery constraint coefficient is calculated
based on (20) and (21). Considering both the recovery demand and recovery con-
straint, the recovery coefficient is determined according to Equations (22) and (23),
which is then used to calculate the SOC recovery power output of the BESS.

(3) For Afpd < Af < AfgY, the SESS and BESS collaborate for frequency regulation. The
BESS participates in grid frequency regulation using VDC, with the VDC coefficient
calculated according to (15) and (16). While the SESS continues to apply positive or
negative inertia control based on the product of the FD and its rate of change.

(4) For Af > AfcY, the FD is large, and the HESS collaborates with the TPU to
generate power.

From the above process, it can be seen that the proposed comprehensive control
strategy divides the output timing of HESS and TPUs through dead zones, determines the
output mode and direction based on FD and its rate of change, and adapts the droop and
inertia coefficients according to SOC and disturbance type.

4.2. Evaluation Metrics

For step disturbance loads, the commonly used evaluation metrics are as follows: Afp,
and tpy, represent the maximum FD and the corresponding time after the disturbance, while
Afs and ts represent the steady-state FD and the corresponding time. vy, denotes the rate of
frequency decline, and vm = | Afm | /tm. A lower Afy, implies a less significant frequency
drop, a smaller vy, reflects a slower rate of frequency decline, while a smaller Af; signifies
better frequency recovery. Consequently, the smaller the values of these three parameters,
the more effective the frequency regulation method.

For continuous disturbance signals, the root mean square (RMS) of FD, termed fidex
and the RMS of SOC deviation, termed SOC;,4ex, are utilized as evaluation indicators, with
the specific forms provided in Equations (25) and (26),

fndex =\ LA, 25)
i=1

1
SOCindex = \/ — ) (50C; ~ 50Co)?, (26)

BN

l
—

1

where Af; represents the FD at the i-th sampling point, SOC; represents the SOC at the i-th
sampling point, SOCy is the set reference value, which is taken as 0.5, and N signifies the
total number of sampling points. fingex and SOCingex reflect the degree of dispersion of
frequency and SOC, respectively. It is evident that the smaller the values of these indices,
the smaller the deviation of frequency and SOC from the reference standard, indicating
better frequency regulation and SOC maintenance performance of the system.

To evaluate the economic performance, an economic assessment model was established
based on the life cycle cost theory and estimated benefits of ESS participation in PFR.

The cost present value Cy cc is expressed as shown in Equation (27),

Crcc = Giny + Cogm + Cser + Cp + Ca, (27)

where Cjpy is the life cycle investment cost of ESS, Cpg is the operation and maintenance
cost, Cscr is the disposal cost, C p is the penalty cost due to deficiencies, and C, is the cost of
curtailed energy. The detailed formulation can be found in reference [54].
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The net revenue present value Nggs is calculated as in Equation (28),

NRreG = Rrec X Erec, (28)

where Rggg is the market compensation for PFR and Eggg is the regulation energy.
The net present benefit Pypr is given in Equation (29),

Pner = Nres — Cree- (29)
A higher PNgr indicates better economic performance of the proposed control strategy.

5. Simulation Verification
5.1. Simulation Model

To evaluate the effectiveness of the proposed control strategy, a PFR simulation model
for a regional power grid, as illustrated in Figure 1, was constructed in MATLAB/Simulink
(R2022b). The thermal power unit has a rated capacity of 1000 MW, with the SESS con-
figured at 25 MW /0.5 MW-h and the BESS capacity set at 10 MW /1 MW-h. To better
capture the variations in the SOC of the ESSs, the ESSs were configured with relatively
small capacities. The system reference frequency is 50 Hz, and the primary PFR dead zone
for the TPU was set at £0.033 Hz. The remaining parameters were converted into per-unit
values based on the rated frequency and rated capacity of the unit. Specifically, the Fyp
value was set to 0.3; T, Try, and Tcy were set to 0.1, 10, and 0.3 s, respectively; H was set
to 5; D was set to 4; and Tsc and T were set to 0.2 and 0.3, respectively.

To explore the appropriate value for o, a segment of actual grid load data shown
in Figure 9 was introduced to the HESS, and the recognition effectiveness of the step
disturbance signal was tested at three values of 0.05 Hz/s, 0.1 Hz/s, and 0.135 Hz/s.
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Figure 9. Variation curve of realistic load disturbance curve for 800 s.

Under the same load disturbance, the system with o.¢ set to 0.05 Hz/s identified
8262 sudden disturbance events, resulting in a very high false detection rate, which was
completely unacceptable. The system with o, set to 0.135 Hz/s failed to recognize any
sudden disturbance events, resulting in a high miss detection rate, which could not meet
the requirements. The system with o set to 0.1 Hz/s recognized five sudden disturbance
events, which was more in line with the actual grid situation.

To investigate the impact of different o,f values on system stability, a typical step
disturbance signal was added to systems with o, values of 0.05 Hz/s, 0.1 Hz/s, and
0.135 Hz/s, and the resulting frequency deviations are shown in Figure 10. The curves
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for oef values of 0.05 Hz/s and 0.1 Hz/s overlap, both effectively identifying the step
disturbance signal and promptly reducing the VIC coefficient, thus maintaining system
stability. The system with o, set to 0.135 Hz/s failed to effectively recognize the step
disturbance signal, resulting in excessive system inertia and causing frequency fluctuations.
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Figure 10. FD variation curves for different oref values under typical step disturbance.

In conclusion, selecting 0.1 Hz/s as the o,¢ value for the proposed control strategy
strikes a balance between recognizing step signals and maintaining system stability.

5.2. Simulation and Analysis of Step Load Disturbance

A step disturbance signal of 0.05 p.u. was employed for the model under four sce-
narios: the method proposed in this study (“Paper strategy”), the adaptive VDC strategy
outlined in reference [58] (“Adaptive VDC strategy”) (also called the conventional strategy),
the fixed-K method (“Fixed-K method”), and the condition without ESS (“No ESS”). The
resulting FD curves are illustrated in Figure 11, the SOC variation curves are illustrated in
Figure 12a,b, and the PFR performance metrics are summarized in Table 2.
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Figure 11. FD curve under 0.05 p.u. step disturbance.
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Figure 12. SOC variation curve of ESS under 0.05 p.u. step disturbance. (a) SOC variation curve of SESS
under 0.05 p.u. step disturbance. (b) SOC variation curve of BESS under 0.05 p.u. step disturbance.

Table 2. PFR evaluation index under 0.05 p.u. step disturbance.

Control Policies | Afm /1073 p.u. tm [Afs1/1073 p.u. ts om/10-3
Paper strategy 2.739 3.443 1.981 20.885 0.796
Adaptive VDC strategy 1.649 1.710 1.999 23.571 0.964
Fixed-K method 2.946 2.616 2.001 23.946 1.126
No ESS 3.665 2.491 2.313 24.274 1.471

As illustrated in Figure 11, the frequency of all four systems experiences a rapid
decline at the initial stage of the disturbance. The system without energy storage exhibits
the most significant frequency reduction, whereas the three systems with energy storage
demonstrate comparatively minor declines. Although adaptive VDC achieves the smallest
initial frequency drop, it experiences a secondary drop in the subsequent phase. This
reveals the limitation of using VDC alone, where ESS cannot flexibly adjust its output
during sudden events, leading to rapid energy depletion and an inability to continue
output, causing a secondary frequency drop. The proposed control strategy achieves a
smaller maximum FD compared to the other two methods. This is due to the fact that VIC
can suppress the deterioration of frequency. Subsequently, the frequencies of all systems
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recover relatively quickly. Given that PFR is a proportional control, the FD cannot be
entirely eliminated without considering the secondary frequency regulation, leaving each
system’s FD stabilized at a specific value. Among these, the proposed control strategy
attains the smallest steady-state deviation. This demonstrates the role of using VNIC in
frequency recovery. As shown in Table 2, compared to traditional TPU frequency regulation,
the steady-state FD in this control strategy decreased by 25.27%, and the maximum FD
decreased by 14.35%. The proposed control strategy effectively suppresses the frequency
drop and facilitates frequency recovery. Compared to the other three control strategies, this
strategy has the slowest frequency decline rate, with reductions of 17.43%, 29.31%, and
46.89%, respectively. Additionally, it achieves the shortest recovery time, reducing recovery
time by 11.39%, 12.78%, and 13.96%, respectively. This is attributed to the combination of
SESS and inertial control, which enables rapid response and adjustment.

The minimal maximum FD and absence of secondary drop indicate that this strategy
effectively mitigates the impact of sudden disturbances on system frequency. Moreover,
the smallest steady-state FD confirms its superior ability to mitigate the impact of sudden
disturbances on grid frequency.

As illustrated in Figure 12a, under the adaptive VDC strategy, the SOC of the SESS
drops significantly. This is because when only droop control is used, the ESS continues to
output during large disturbances, making it difficult to maintain its SOC. Both the proposed
control strategy and the fixed-K method stabilize the SOC decline of the SESS. Although the
proposed strategy slightly underperforms the fixed-K method in maintaining the SOC, the
difference is negligible, and the SOC remains within the safe range. Under large load distur-
bances, the primary task of ESS is to maintain frequency stability. Therefore, the proposed
control strategy in this paper outputs more power than the fixed-K method. Sacrificing
SOC within a reasonable range to achieve better frequency regulation is highly worthwhile.

As illustrated in Figure 12b, during the BESS frequency regulation process, the fixed-K
method exhibits poor adaptability, causing the SOC to continuously decline beyond the
acceptable range. This demonstrates the superiority of adaptive output. In contrast, both
the proposed control strategy and the adaptive VDC strategy effectively stabilize the SOC
decline of the BESS. The SOC maintenance capability of the proposed control strategy is
nearly identical to that of the adaptive VDC strategy, slightly outperforming it, and far
surpassing the fixed-K method.

Based on the preceding analysis, it can be inferred that the proposed control strategy
effectively maintains the grid frequency under step disturbances and ensures the SOC
stability of both the SESS and the BESS.

5.3. Simulation Analysis of Continuous Load Disturbance

To verify the PFR performance of the proposed control strategy under short-term
continuous disturbance signals, a 25 s continuous disturbance signal, as shown in Figure 13,
was introduced into the system. The corresponding FD is illustrated in Figure 14, while the
SOC of the SESS and BESS are shown in Figure 15, and the corresponding performance
metrics are listed in Table 3.

Table 3. PFR evaluation index under 25 s continuous disturbance.

Control Policies findex/107% p.u. SOCscCindex SOCR;ngex/1074
Paper strategy 2.9478 0.0049 0
Adaptive VDC strategy 4.0143 0.0019 4.3488
Fixed-K method 4.4223 0.0015 2.9782
No ESS 5.4207 - -
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Figure 13. Variation curve of load disturbance for 25 s.
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Figure 15. SOC variation curve of ESS under 25 s continuous disturbance. (a) SOC variation curve of SESS
under 25 s continuous disturbance. (b) SOC variation curve of BESS under 25 s continuous disturbance.

As shown in Figure 14 and Table 3, the proposed control strategy achieves the smallest
frequency fluctuation, and the conclusion is supported by the lowest RMS value of the
frequency. Compared to the other three control strategies, the RMS of FD decreased by
25.57%, 33.34%, and 45.62%, respectively. Meanwhile, Figure 15a and Table 3 reveal that
the SOC maintenance ability of the SESS under the proposed strategy is slightly inferior
to that of the fixed-K method and adaptive VDC method, but the difference in SOC’s
RMS is minimal, and the maximum SOC fluctuation does not exceed 0.1, ensuring the
SESS operates in a highly safe charge state. The SOC of the BESS remains consistently
stable at 0.5, showing that the BESS does not need to be discharged under minor short-
term disturbances. The BESS’s SOC RMS further confirms that the proposed strategy
adequately safeguards the SOC of the BESS. This demonstrates that the priority output of
SESS significantly reduces the losses of the BESS.

This result shows that under continuous load disturbances, the proposed control

strategy exhibits superiority in both frequency regulation and maintaining the SOC of
the ESS.

5.4. Simulation Analysis of Combined Disturbances

To further evaluate the PFR performance of the system under long-duration disturbance
conditions and simulate a more realistic power grid environment, a semi-realistic composite
disturbance signal based on historical datasets, as illustrated in Figure 16, was applied to the
system. The FD curve and the SOC of the ESSs are illustrated in Figures 17 and 18, respectively.
The corresponding performance metrics are shown in Table 4.

Table 4. Evaluation index of PFR under 250 s continuous combined load disturbance.

Control Policies

findexlloi4 p-u.

SOCscindex SOCgindex
Paper strategy 5.1355 0.0809 0.0458
Adaptive VDC strategy 5.9258 0.0224 0.1459
Fixed-K method 6.5755 0.0217 0.0652
No ESS 7.2071 -
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Figure 18. SOC variation curve of ESS under 1800 s combined disturbance. (a) SOC variation
curve of SESS under 1800 s combined disturbance. (b) SOC variation curve of BESS under 1800 s
combined disturbance.

As shown in Figure 17, the system without ESS experiences the most severe frequency
fluctuations. As shown in Table 4, compared to the other three control strategies, the RMS
of FD decreased by 15.39%, 21.89%, and 40.34%, respectively. This indicates that this control
strategy effectively stabilizes frequency fluctuations during daily grid operations and offers
strong engineering applicability.

As illustrated in Figure 18a, the proposed control strategy is less effective in maintain-
ing the SOC of the SESS compared to the other two systems. However, the SOC fluctuations
remain within the safe range, so the disadvantage is not significant. As shown in Figure 18b
and Table 4, the SOC of the BESS exhibits minimal fluctuations under the combined dis-
turbances. Compared to the other two strategies, the RMS of BESS’s SOC decreased by
68.61% and 29.75%, respectively. This is attributed to the narrow dead zone of the SESS,
which enables it to respond promptly and suppress most frequency fluctuations within the
BESS’s dead zone. Therefore, under this strategy, the SESS can independently respond to
continuous small-scale disturbances most of the time, significantly reducing the frequency
of BESS discharge. This enhances the lifespan of the BESS while leveraging the long cycle
life of the SESS.

Combined frequency disturbances more closely resemble real-world grid conditions, and
simulation results show that the proposed control strategy better maintains grid frequency
while effectively preserving the SOC of the SESS and extending the life of the BESS.

5.5. Simulation Analysis of Commercial Load Disturbance

To further evaluate the system’s PFR performance under commercial loads with
random characteristics, a random disturbance of +0.005 p.u. is added to the real load
shown in Figure 9, simulating a more variable commercial load. The FD curve and the
SOC of the ESSs are illustrated in Figures 19 and 20, respectively. The corresponding
performance metrics are shown in Table 5.

Due to the intense random fluctuations in commercial loads, the complete FD graph
can not intuitively show the advantages and disadvantages of the four control strategies
in terms of PFR. However, by observing the localized zoom of the FD in Figure 19 along
with the RMS value of FD in Table 5, it is clear that the proposed control strategy achieves
the best PFR performance under commercial loads. Compared to the other three control
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strategies, the RMS of FD decreased by 7.69%, 20%, and 33.33%, respectively. As shown
in Figure 20a,b and Table 5, similar to the composite disturbance case, under commercial
loads, the proposed control strategy’s SESS lacks an advantage in maintaining SOC but can
effectively maintain the SOC of the BESS. Compared to the other two strategies, the RMS
of BESS’s SOC decreased by 21.36% and 23.65%, respectively.
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Figure 19. Local magnified curve of FD variation under commercial load.
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Figure 20. SOC variation curve of ESS under 800 s commercial disturbance. (a) SOC variation

curve of SESS under 800 s commercial disturbance. (b) SOC variation curve of BESS under 800 s
commercial disturbance.
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Table 5. Evaluation index of PFR under 800 s continuous commercial disturbance.

Control Policies findex/P-u. SOCscindex SOCgindex
Paper strategy 0.0012 0.1606 0.1156
Adaptive VDC strategy 0.0013 0.2808 0.1470
Fixed-K method 0.0015 0.0039 0.1514
No ESS 0.0018 - -

The performance of the FD and the SOC of the ESS demonstrates the applicability of
the proposed control strategy under the random characteristics of commercial load.

5.6. Simulation Analysis of Different Capacity Configurations

To further demonstrate the scalability and adaptability of the proposed control strategy,
the 1800 s combined disturbance load shown in Figure 16 was applied to models with
three different capacity configurations: the original capacity (“Origin Capacity”), half of the
original capacity (“Half Capacity”), and twice the original capacity (“Double Capacity”).
The FD curve and the SOC of the ESSs are illustrated in Figures 21 and 22, respectively.
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Figure 21. FD curve of different capacity configurations under 1800 s combined disturbance.

As shown in Figure 21, the proposed control strategy can effectively mitigate FD under
different capacity configurations. As shown in Figure 22a,b, both the SESS and BESS are
able to maintain the SOC within a reasonable range under different capacity configurations.
The capacity configuration adopted by the proposed control strategy results in relatively
low HESS energy consumption while achieving good frequency regulation performance
and avoiding high initial investment costs, demonstrating its rationality.

5.7. Economic Analysis

The composite disturbance illustrated in Figure 15 is introduced into the systems with
HESS and BESS-only primary frequency regulation, respectively. The rain flow counting
method is used to calculate the number of cycles at various depths of charge and discharge,
which are then converted to equivalent full cycles at a depth-of-discharge (DoD) of 1. The
actual lifespan of the ESS is then estimated based on its cycle life.

In this simulation case, the BESS-alone PFR leads to 0.7254 equivalent cycles within
1800 s, yielding a BESS lifespan of about 143.61 days. After integrating the SESS, the
BESS output is reduced, and the equivalent number of cycles over 1800 s drops to 0.5033,
extending the BESS lifespan to 206.96 days. This significantly reduces the operating and
maintenance costs of the BESS.
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Figure 22. SOC variation curve of different capacity configurations under 1800 s combined distur-
bance. (a) SOC variation curve of SESS of different capacity configurations under 1800 s combined
disturbance. (b) SOC variation curve of BESS of different capacity configurations under 1800 s
combined disturbance.

The effectiveness of SESS in mitigating BESS capacity degradation can be qualitatively
inferred from Equation (30),

—31700 + 370.3 X Crate
RT

Qloss = B - exp (Neycle X DoD x 2 X Crage) ™™, (30)
where Q)5 represents the percentage of capacity loss, Ny is the equivalent full cycle
count, DoD is the depth of discharge, Crate is the rated capacity, and B, R, and T are the
pre-exponential factor, gas constant, and absolute temperature, respectively.

Compared with BESS-only frequency regulation, the HESS reduces both the equivalent
cycle count and DoD, thereby slowing capacity degradation and extending service life.

To verify the economic efficiency and engineering practicality of the proposed control
strategy, the net present benefit PNgr was calculated for both the proposed strategy and the
strategy where only the BESS participates in PFR. The economic parameters for the SESS
and BESS are adopted from reference [59]. The calculation results are shown in Table 6.
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Table 6. Economic indicators for various ESSs participating in PFR.

BESS in HESS BESS in HESS BESS Only
CrLcc/USD 7.8426 x107 1.728 x 107 9.857 x 107
Ngrps/USD 2.0394 x 108 5.1281 x 108 2.9188 x 108
Pner/USD 1.2551 x 108 4.9553 x 108 1.9331 x 108

As clearly illustrated in Table 6, the economic benefit of HESS participating in PFR is
3.212 times that of using only BESS.

The point at which the PNgr becomes zero corresponds to when the benefits outweigh
the costs, which defines the economic lifetime [60]. The calculated economic lifetime is
1.4776 years for the HESS and 4.7137 years for the BESS-only system. The proposed strategy
shortens the economic lifetime by approximately 3.23 years, significantly enhancing the
economic viability of ESS-based frequency regulation.

5.8. Discussion on Simulation Verification

The above analysis, based on simulation experiments under various operating condi-
tions and capacities, as well as economic evaluation, demonstrates the effectiveness and
economic benefits of the proposed coordinated control strategy for PFR.

It is important to eliminate potential errors that may affect the reliability of the simula-
tion conclusions. The four simulated strategies in this paper employ a simplified equivalent
ESS model, where the ESS behavior is represented by the product of a first-order iner-
tia element and a control gain, without considering other device parameters [61]. This
simplification introduces deviations between the simulation outcomes and actual system
performance. Reference [62] has demonstrated that neglecting internal battery character-
istics and using a simplified equivalent model can enhance simulation efficiency while
maintaining adequate accuracy. Since all four strategies adopt the same storage model
configuration, the impact of model precision on the simulation results is ruled out.

Practical implementation of this control strategy should consider real-world factors
such as technical limitations, sensor requirements, and controller response times.

Firstly, the design of BESS output in this paper assumes a constant rated power
throughout its operation. Reference [63] points out that lithium-ion batteries experience
degradation during repeated cycling, primarily in the form of capacity loss and increased
internal resistance, which results in reduced power output and weakened frequency regu-
lation performance over time. Therefore, in practical applications, frequency regulation
commands should accommodate the gradual performance degradation of batteries.

Secondly, accurate measurement of system frequency and its rate of change is fun-
damental for both VIC and VDC. Accurate frequency tracking requires high-precision
frequency sensors. In addition, applying anti-aliasing or moving average filtering prior to
sampling facilitates the delivery of accurate frequency regulation signals to the HESS [64].

Moreover, controller response time may be constrained by computational load and commu-
nication delays in real systems. Therefore, optimizing the control algorithm and improving con-
troller performance is essential to reduce response time and enhance dynamic performance [65].

6. Conclusions

This paper proposes an HESS adaptive PFR control strategy that incorporates the
frequency regulation dead zone of ESS. The conclusions are outlined as follows:

(1) The proposed control combines the advantages of VDC and VIC with the distinct
characteristics of power-type and energy-type storage systems. The high-power SESS
is designed to respond to inertial control signals, while the high-capacity BESS re-
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sponds to VDC signals. Compared to the conventional strategy, the proposed control
strategy reduces the frequency drop rate by 17.43% under step disturbance. Under
compound disturbances, the RMS of frequency deviation decreases by 13.34% and
the RMS of BESS’s SOC decreases by 68.61%. The economic benefit of this strategy is
3.212 times that of the single-energy-storage scheme. This approach maximizes the
advantages of different ESSs, exhibits superior performance in PFR and economic
benefits, strengthens frequency stability of the, power grid, supports greater integra-
tion of renewable energy sources, and contributes to reducing fossil fuel dependence
and carbon emissions.

(2) The strategy effectively protects the lifespan of ESSs, reduces the start/stop frequency
of the TPU, and reduces the costs associated with BESS replacement, disposal of
retired BESS, and TPU maintenance. By appropriately setting dead zones, the SESS
is prioritized for output following the BESS, with the TPU acting as a last resort.
This approach leverages the long cycle life of SESS, avoiding excessive BESS charge-
discharge cycles and start/stop frequency of TPU. Additionally, to prevent over-
charging and over-discharging, which could irreversibly damage the storage system,
the output coefficient of ESS is adaptively controlled according to the SOC. Compared
with the fixed-K method, the proposed strategy better maintains the SOC of ESSs.

(3) The proposed control strategy better adapts to the impact of different loads. The
inertia coefficient and the dead zone of the ESS are flexibly adjusted according to the
load type, enhancing adaptability to various operating conditions.

(4) The proposed control strategy fully utilizes SOC recovery within the dead zone for the
BESS. During the SOC recovery phase of the BESS, it introduces a recovery demand
coefficient determined by the SOC and a recovery constraint coefficient determined by
the FD. These coefficients are used to establish an SOC recovery coefficient within the
frequency dead zone, ensuring effective SOC recovery while preventing secondary
frequency drops. Simulations demonstrate no occurrence of secondary frequency
drops, and the SOC remains in good condition.

Nonetheless, this study still has some limitations. For instance, the power and capacity
of the energy storage system are configured based on empirical values, lacking a more
reasonable optimization scheme to achieve the best economic performance.

At the same time, in low-inertia grids or grids with a high proportion of uncontrollable
renewable energy, the frequency and depth of frequency regulation tasks for the ESS
will significantly increase. This accelerates the degradation of the ESS’s capacity, further
restricting its long-term frequency regulation performance. If the capacity configuration
of the ESS cannot meet such high-intensity frequency regulation demands, the HESS
may fail to provide stable and continuous frequency regulation services under frequent
fluctuations in renewable energy, which could impact the overall frequency stability of the
grid. Therefore, under low inertia or high renewable energy penetration conditions, the
limitation of this strategy lies in the need for higher capacity configuration.

In addition, the BESS in this paper is treated as an integrated unit during the de-
sign phase. In practice, however, numerous battery cells must be grouped together for
frequency regulation. Inconsistent output among the cells during operation may lead
to premature aging of certain cells, shortening the overall lifespan of the BESS, causing
capacity degradation, and even posing safety risks.

Additionally, this study establishes a simplified active power—frequency control model
for HESS participating in PFR, based on the concepts of area equivalence and the flat-
voltage assumption. This model omits inverter voltage loops and reactive power dynamics
to highlight the active power—frequency coupling and reduce simulation complexity. As a
future extension, we plan to embed Q-V droop control and virtual synchronous generator
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(VSG) techniques into a detailed inverter-level model. Simulations under transient load
switching and three-phase fault scenarios will be conducted to quantitatively assess the
impact of the proposed strategy on bus voltage sag, recovery time, and reactive power
injection, thereby systematically validating the role of HESS in enhancing voltage stability
and reactive power support.
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Abbreviations

The following abbreviations are used in this manuscript:

HESS  hybrid energy storage system
SOC state of charge

TPUs  thermal power units

ESSs  energy storage systems

PFR primary frequency regulation
FD frequency deviation

VDC  virtual droop control

VIC virtual inertia control

BESSs  battery energy storage systems
VNIC  virtual negative inertia control
SESS  supercapacitor energy storage system
RMS  root mean square

DoD  depth-of-discharge
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Abstract: The integration of renewable energy sources, such as wind power, into the
electrical grid is essential for the development of sustainable energy systems. Doubly fed
induction generators (DFIGs) have been significantly utilized in wind energy conversion
systems (WECSs) because of their efficient power generation and variable speed operation.
However, optimizing wind power extraction at variable wind speeds remains a major
challenge. To address this, an artificial neural network (ANN) is adopted to predict the
optimal shaft speed, ensuring maximum power point tracking (MPPT) for a wind energy-
driven DFIG connected to a matrix converter (MC). The DFIG is controlled via field-oriented
control (FOC), which allows independent power output regulation and separately controls
the stator active and reactive power components. Through its compact design, bidirectional
power flow, and enhanced harmonic performance, the MC, which is controlled by the
simplified Venturini modulation technique, improves the efficiency and dependability
of the system. Simulation outcomes confirm that the ANN-based MPPT enhances the
power extraction efficiency and improves the system performance. This study shows how
wind energy systems can be optimized for smart grids by integrating advanced control
techniques like FOC and simplified Venturini modulation with intelligent algorithms
like ANN.

Keywords: wind energy; WECS; MPPT; DFIG; FOC; MC; Venturini algorithm

1. Introduction

In the last two decades, wind energy has definitively been recognized as an applica-
ble source of renewable energy systems, fundamentally due to its characteristic of being
an inexhaustible source that could be converted to electrical energy across numerous sys-
tems called WECSs. Recently, researchers have increasingly concentrated on the optimiza-
tion of WECSs to take advantage of the full potential of this abundant and non-polluting
energy source [1]. Furthermore, nowadays, energy experts are looking for alternative effica-
cious and environmentally friendly energy resources in order to decrease the dependence
on fossil fuels such as hydrocarbon- and petroleum-based fuels, the primary contributor to
the problem of global warming, which are becoming scarce [2]. The increasing integration
of the production of wind energy in modern power systems has brought about new diffi-
culties and challenges. One of the significant requirements for WECSs is their capability for
generating stable and desirable power in spite of fluctuating and varying wind speed situa-
tions; moreover, they react swiftly to sudden wind speed variations [3]. Numerous control
schemes have been suggested for both grid-side converters and machine-side converters,

Energies 2025, 18, 2521

114

https://doi.org/10.3390/en18102521



Energies 2025, 18, 2521

interconnected through a DC bus capacitor. Additionally, WECSs use a range of electrical
generator types, such as permanent magnet synchronous generators (PMSG) and DFIG, to
effectively convert wind energy into electrical energy [4]. Fixed-speed and variable-speed
WECSs are the two main categories into which WECSs have been divided according to their
operational speed. In fixed-speed WECSs, power converters are not required because of
the constancy in the speed of the generator’s rotor and the direct connection to the grid [5].
In the variable-speed WECSs, in order to make sure that the turbine runs at its maximum
power, the generator’s shaft speed needs to be continuously modified and adjusted. As
a result, the maximum power extraction (MPE) occurs, which would be the cause of the
rising annual production of the energy by 5-10% [6]. Taking into consideration that the
wind turbine operating regions have been divided into four operation regions presented
in Figure 1, the first region encompasses the area from start-up until the cut-in point. The
second region, commonly referred to as the MPPT region, spans between the cut-in and
the rated speed, where the turbine’s output power ought to be maximized. The third
region, known as the speed regulation region, aims to keep the shaft speed at rated levels
in order to ensure that the turbine does not generate power exceeding the generator’s
rated capacity. The fourth region occurs if the speed of the wind exceeds the cut-out point,
ensuring protection against potential damage from excessively high wind speeds [24]. It is
remarkable to note that the maximum power from WECSs can be taken out by operating
the turbine in the second region [7].

Region 1

Region 2 Region 3 Region 4

ower

P, rated

Output p
cmeme e -————-

Veut in Vratea Veut out

Wind speed

Figure 1. The wind turbine’s operational regions.

To optimize the efficiency and performance, several algorithms have been applied in
WECSs. Among them is the MPPT algorithm, which is widely utilized in sustainable energy
systems, such as photovoltaic systems and wind energy, to maximize power extraction
under varying environmental conditions [8]. In WECSs, the MPPT algorithm’s primary
objective is to gather the greatest possible amount of power from the wind. The two
primary methods, into which MPPT algorithms have been separated in the published
works, are direct power control (DPC) and indirect power control (IPC) [9]. DPC directly
measures the generated output power and modifies system parameters to guarantee that
the turbine performs its MPE. In contrast, the IPC technique pre-calculates the power using
wind-speed data [3,8,9].

WECSs, equipped with variable-speed wind turbine-driven DFIGs, have been be-
coming widespread day by day due to their capability of operating throughout a broad
spectrum of fluctuating wind speeds and can be operated at both sub-synchronous and
super-synchronous speeds. Moreover, they can be controlled with a partial-scale converter
since the converter addresses only the slip power, so that the converter components can
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be smaller and less expensive compared to those in full-power conversion systems. Typi-
cally, a gearbox is used to operate the DFIG, creating a link between the wind turbine and
the DFIG [10-12].

WECSs are characterized by an environmentally friendly nature and low-cost in-
stallation, yet they often suffer from low efficiency because of continuously altering
wind speeds [13]. Therefore, the MPPT plays a critical role in enhancing WECSs” per-
formance. Various significant studies have been conducted to improve efficient MPPT
controllers; many of them have been applied to variable speed DFIGs, which can continu-
ously become acclimatized to changing wind speeds. This acclimation has been leading to
an enhancement in the overall turbine efficiency and limited power fluctuations [14].
MPPT’s fundamental objective is to maximize the power coefficient’s value (Cp) to its high-
est value, even with fluctuations in wind speed. The existing literature covers two broad
methods of MPPT strategies, which are conventional methods and the soft computing-
based approach [2]. Hill climbing search (HCS), which has been also known as perturbation
and observation (P&O), is one of the conventional techniques that has been documented
in [15]. One more method is the optimal torque control (OTC) technique, and it is utilized
to maximize the power for a WECS-based PMSG [16]. The advantages of this technique are
higher efficiency and straightforwardness. However, it suffers from dependency on the
climatic conditions [9]. Latterly, many researchers have been interested in soft computing
approaches, divided into two categories: nature-inspired techniques and artificial intelli-
gence (Al) techniques [2]. Ant colony optimization (ACO) [17], particle swarm optimization
(PSO) [18], and genetic algorithms (GAs) [19] are a few of the nature-inspired methods
adopted into the MPPT controller. Compared to conventional methods, the nature-inspired
methods have demonstrated fast tracking under changeable wind speeds. However, the
requirements of the multiparameter-like selection of chromosomes, crossover rate, and
population size have made them complex tasks [20]. The Al-based MPPT controller in
WECSs involves a fuzzy logic (FL) controller [21,22] and an ANN-based controller [23,24].
These methods do not require accurate mathematical modeling even though they operate
with variable inputs and have the ability of self-convergence in addition to self-learning
capabilities. Moreover, they are adaptable to the systems” non-linear behavior. The FL tech-
nique has been used for maximizing the extracted power in WECSs [21,22]. However, its
tracking performance and efficiency depend on the predefined rule base, which decreases
its practical applicability. In addition, it requires a large scale of hypothetical knowledge
and might not ensure the best possible response [2]. In [23], the ANN technique was utilized
for pitch angle controllers to enhance the power maximization from the available wind in
a grid-connected wind turbine system. The outcomes demonstrated that the controller-
based ANN has better performance in contrast against traditional strategies.

In [25], in order to control DFIG-based-WECS, MPPT control based on the adaptive
neuro-fuzzy inference (ANFI) method was employed. The simulation results of the ANFI-
based approach were compared with those obtained using a classical PI controller. The
frequently used method in WECSs is the sliding mode control (SMC) method. It offers
robustness with variations in system parameters and can effectively handle limited external
disturbances. Thus, it has been widely utilized to control the squirrel cage induction
generator [26]. It has been reported in [27] that the fractional-order PI controller method
has been utilized for controlling the pitch angle, and the simulation results demonstrated
an enhancement in the capacity of DFIG at strong wind conditions. Other control methods
have been also reported in the literature, such as the proportional integral [28], the linear-
quadratic-Gaussian control method [29], and quantitative feedback theory [30], which have
been used for the MPPT of WECSs. However, such methods seek inclusive computational
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and graphical analysis and because they are not robust, they often result in oscillations at
output power [31].

It is essential for variable-speed WECSs to convert power from a source with varying
speed into electrical energy with a consistent frequency. In a variable-speed WECS that
uses DFIG, the main grid is directly connected to the stator side windings, so that fixed-
frequency electric power can be generated through the stator side, whereas the windings of
the rotor are supplied with inconstant voltage and frequency. To integrate the rotor-side
with the main grid, a controllable power electronic converter is required [10]. Additionally,
effective speed control is required to achieve MPT [11].

Grid-connected variable-speed WECSs driven by DFIG typically employ a back-
to-back converter that enables bidirectional power flow [32]. However, back-to-back
converters involve two-stage power conversion, which might require a complex control
algorithm to control the entire system effectively. Moreover, the large DC link capacitors
which are used in the converter system may increase volume, weight, and cost [33].

The DFIG can be controlled by a direct AC-AC MC in place of a traditional back-to-
back converter. The MC has a number of positive effects, including the ability to guarantee
sinusoidal input, output currents, and bidirectional power flow in a single-stage conversion
process without the necessity for a DC link capacitor. It has also gained popularity because
of its unity input power factor. Unlike traditional back-to-back converters, the MC has
a simpler control strategy and does not seek large and expensive elements for energy storing.
Furthermore, it can extend the speed range of the DFIG to be operated over synchronous
speed, so that the DFIG can deliver power not only from the stator but also from the rotor
to the main grid through MC. All the above-mentioned advantages have made the MC
a perfect choice for the wind power generation systems [34,35]. Most control strategies for
wind turbine-driven DFIG systems are typically based on the FOC approach [10,36].

In DFIG-based WECSs, the FOC schematic is specifically designed to regulate the
rotor currents in such a way that the power can flow bidirectionally from and to the grid,
depending on the rotor speed and operation conditions. This approach allows the shaft
speed to follow the reference value, which is determined by the curves of power-speed
characteristic of the wind turbine [10]. A block diagram of a grid-connected DFIG-based
WECS with MC is illustrated in Figure 2.

The ANN-based MPPT strategies have been discussed for several renewable energy
systems in the literature. However, no prior study has combined an ANN-based MPPT
approach with a MC-fed DFIG for a WECS. The proposed control strategy, which has
been presented in [10], uses a 2D lookup table for achieving the MPPT in a DFIG-based
WECS with a MC. While effective, the 2D lookup table method seeks offline data and lacks
adaptation to unexpected operating conditions. To address these limitations, this study
proposes replacing the 2D lookup table with an ANN-based MPPT approach, offering
improved adaptability, dynamic response, and reduced reliance on offline-generated data.
This paper presents the design, simulation, and evaluation of the proposed ANN-based
MPPT strategy.

The main contributions of this study are summarized as follows: proposing an ANN-
based MPPT approach to replace the conventional 2D lookup table utilized in reference [10];
integrating the ANN-based MPPT with the FOC strategy in a DFIG-based WECS fed by an
MC, which ensures bidirectional power flow with unity power factor; developing a global
simulation model in MATLAB/Simulink (version: R2024a)to evaluate the proposed system
under different wind conditions; and providing a comparative analysis of the ANN and
the 2D lookup table approach from [10].
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Figure 2. The diagram of a variable-speed WECS.

2. Wind Turbine Model

The produced power and mechanical torque, both of which depend on the airflow
across the blades and are significantly influenced by varying wind speeds, are represented
by the wind turbine’s aerodynamic model [3]. The mechanical power on the turbine’s rotor
is influenced by the power coefficient Cp()x, 6), which varies with wind speed (v;) in %
and blade pitch angle () in degrees, can be expressed as follows [10,37]:

Py = % Cp(A, 0)p T R* 3, (1)

where R is the turbine rotor-plane radius (m); p is the air density (%), and A is the tip
speed ratio, which is calculated by Equation (2):

- th
Ow

A ()

Equation (3) gives the generated mechanical torque by the turbine:

Pw
T, =%
’ ; 3)
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d . .
2. The mechanical coupling between the gen-

erator and turbine is commonly achieved by a gearbox, whose ratio G is calculated
as Equation (4):

where w; is the turbine shaft’s speed in

Wm

G= E “4)
where wy, is the generator speed %. If the power obtained from the wind turbine overrides
the generator’s rated power, limiting the wind turbine’s input power is essential and pitch
angle control achieves this. However, when the obtained power in a range below the
generator-rated power, the turbine ought to extract the maximum amount of power [10,38].
It should be noted that the power coefficient Cy (A, 6) is at its highest level when the pitch
angle value is zero.

11 _ 125
Cp(A, 0) =0.22 <A6 —040— 5> e N 5)
1
1 1 ~ 0.035 ©)
A A+00860 1+63

As illustrated in Figure 3, the output power of the turbine is shown remarkably and
simultaneously rising as the speed of the wind rises. It is also obvious that the curve of the
output power attains its peak value at a definite shaft speed. Therefore, the turbine should
be run at the speed value that maximizes the power. Keep in mind that the value of C;,
which is a non-linear function of tip speed ratio A and pitch angle 6, differs depending on
the system. Theoretically, the highest value of C) is 0.44, as depicted in Figure 4 [10]. The
mathematical details of C, is found in [39].
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Figure 3. The turbine characteristics in terms of power and speed for varying wind speeds.

The wind turbine characteristics shown in Figures 3 and 4 were drawn based on
Equations (2), (5) and (6).

In this paper, the pitch angle control not only regulates the aerodynamic power input at
high wind speeds but also acts as an inherent rotor speed-limiting mechanism by reducing
the aerodynamic torque. As a result, there was no need for a separate speed limiter in
the control system. This interaction was embedded in the training data of the ANN,
where the pitch angle values reflect both normal operation and power-limiting conditions.
Accordingly, the ANN was trained to predict the optimal shaft speed based on both wind
speed and pitch angle.

The wind turbine model represents a laboratory-scale turbine that has been designed
to align with the characteristics of the 1 kW DFIG, which is available in the laboratory,
ensuring compatibility for the simulation and potential experimental validation.
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Figure 4. The turbine’s characteristics at different wind speeds.

3. The MC and Simplified Form of Venturini Algorithm

The MC, which consists of bidirectional switches, functions as a direct AC-AC con-
verter. It has the ability to convert an input voltage with a constant amplitude and frequency
to a variable output voltage at different frequencies, and it eliminates the requirement of the
intermediate DC link capacitor. Consequently, it provides a substitute solution to the con-
ventional back-to-back converter, which is ordinarily and traditionally utilized to efficiently
control the DFIG-based WECSs. The array of nine bi-directional switches, made up from
semiconductor materials, establishes a direct connection between the three-phase source
and the three-phase load, forming the direct three-phase AC-AC conversion. Figure 5
illustrates the schematic representation of MC where three groups of bi-directional switches
have been coordinated; each group is connected with an output line. This coordination
would provide a direct connection between the input and output phases [40-42]. Due
to the direct supply of the MC from source voltage, it is imperative to keep away from
short circuiting the input phase. Additionally, the output phase ought never to be open
circuited if the load is inductive. For the MC to be operated safely, these two guidelines
are necessary [42].

VAC; %%l}zﬁ'{“

o}
Y

Va Ve Ve

Figure 5. The power circuit for the MC.
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In this study, a simplified form of the Venturini modulation algorithm (Sunter—Clare
algorithm) [43], has been used to control the MC. Implementation of this algorithm is
easier and more appropriate for closed-loop operations. It is supposed that the MC is
supplied by a balanced three-phase constant voltage source. The input voltages v4, vg, vc,
and modulation terms can be used to represent the MC output voltages v, vy, v, as

in Equation (7).
Vg Ma, Mpa Mca| |va
vp| = |Map Mpy Mcy| |UB 7)
Uc Mas Mpe Mce| |vc

To use this modulation technique, at least two of the three input line-to-line voltages
need to be measured. Then, the peak value of input voltages V;,, and its position w;; can be
expressed as Equation (8):

4
Vi = ) [Vﬁs + Vi + VABVBC} ®)
w;t = atan ZVVBC v 9)
V3( e+ 1)

where Vyp, Vpc are the line voltages. The target voltage’s peak magnitude, V;,;; and its
position, w,; can be calculated by Equations (10) and (11):

2
Vi =5 |V2+VE+ V] (10)
Wyt = arctan ( Vo — VC) (11)
V3V,

where the target phase output voltages are denoted by V,, V},, andV.. The voltage magni-
tude and angle are directly derived from the output of the control loops. Equation (12) is

Viin
7=/ (12)
Vi

Note that the maximum value of g cannot exceed 0.866. Equations (13)—(15) are used

used to obtain the voltage ratio g:

to obtain the modulations for the output phase, a:

1

2 2V B Vae
My, = =+ K —(V, + K — 1
Aa =3+ 31+3V§n(”+ 33)< 3 T3 (13)
1 2 Vae Vs
— 2 4 Koy + — (Vo + Ka3) [ 2BC _ 148 14
Mg, 3t 32+3Vl%n(a+ 33)<3 3 (14)
Me, =1-— (MAa + MBa) (15)

The triple harmonics K are injected into the target output voltage in order to achieve
the maximum voltage ratio [44], and can be found using Equations (16)—(18):

Ks1 = 2T sin(w;t)sin(3wit) (16)
99m
2q . 2\ .
Ks3 = \/@Ecos(?)wot) — Allcos(?)wl-t)] (18)
m
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where g, is the highest value of transfer ratio which equals to 0.866.
Based on Equations (13)—(18), for the unity power factor, the turn-on times of the
switch locate between the input phase and the output phase are expressed as Equation (19).

1 ZVO"/Viﬁ Zq . .
Tg, = Ts 3+ 7 + 91775111 (wit + @g)sin(Bw;t) (19)

where V,, and Vjg are the output and input voltages and can be calculated as follows:

1
Voy = qVim.cos (wot + D) — %Vimcos (Bw,t) + Zqivimcos(Bwit), Vig = Vimeos (wjt + @5) (20)
m

where @, Dp = 0, 27”, 47”.

In Equations (13) and (14), V, is substituted with V}, and V,, respectively, to yield the
modulation functions for phases b and c. It should be mentioned that the target output
waveforms in Equation (10) do not have to be strictly sinusoidal. Equation (19) can be used

to obtain the MC’s input currents.

Ia Ma, M, Mca| |In
Ig| = |May Mpy Mcy| |1 (21)
Ic Mac Mpe Mcc| | L

Switching signals for the MC were produced using a simplified version of the Venturini
modulation method. The MC provides the controlled rotor voltage and frequency required
to carry out FOC and decoupled active and reactive power regulation of the DFIG, taking
the role of the traditional rotor-side back-to-back converter in this system. The MC supports
the active and reactive control techniques used in this work as well as the MPPT by allowing
bidirectional power flow and variable-frequency operation at the rotor side.

MC Model

MC has been modeled in MATLAB/Simulink as a switching-based model employing
nine bidirectional switches coordinated in a 3 x 3 matrix arrangement. The FOC strategy
has generated reference voltage signals to synthesize the required voltage and frequency
for the rotor side. The simulation model operates the MC at a switching frequency of 5
kHz. Figure 6 illustrates the implementation of one phase of MC in Simulink. The other
two phases are not shown for clarity since they are the same except for a phase shift of 27”
and 47” [44]. Ideal switches have been assumed in the simulation of the MC circuit. Figure 7
shows in detail the switching period calculation of phase (a) using a simplified form of
Venturini algorithm.

]

®—> in_clock SAa _; ;
® % i
Vim VB
VAB VAB "imf SBa ] > 9,—“’ @
L @_\—.

VBC g Va

VBC Vabc* wo

2

SCa

wo >

Vr_abc* Phase a

Figure 6. Detail of the Simulink block diagram of the MC for one phase.
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In the Simulink block diagrams “*” refers to the reference values.

4. Dynamic Model of DFIG

The DFIG equivalent circuit in the d — g frame is displayed in Figure 8. All the machine
parameters are referred to the stator side. This approach simplifies the machine structure
and allows us to easily simulate the machine in closed-loop control systems [3].

wsY .
ias . R —% s Lo :)r_lllqr R, lar
‘:Z'VVV‘—O 7555\ O—’\/\N‘:
n /OO n
dlpds EL dlpdr
v v
ds dt m dt dr
. wsPgs W Pg i
E» Rs <4— las lar _r_; Rr &
+
v dy L dgr Var
* i " @

Figure 8. The equivalent circuit of DFIG in d — g frame.

Equations (22)—(29) represent the DFIG model in the synchronously rotating d — g
reference frame [16]:

d
Vi = Rolua + 258 — wpy 22)
d
Vig = Rlyy + % + weth (23)
d
Vi = Ry + 04 — (w0, — )y )
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Vig = Relyg + % + (w, — wr)Psy (25)
g = Lsloy + LinLy (26)
Wsq = Lslsg + Ly (27)
Yrg = Lelg + Linlsy (28)
$rg = Lylrg + Linlsg (29)

By rearranging the previous equations with the flux linkages taken into consideration
as state variables, it is simple to obtain state space representation of the 4 — g expression

as Equation (30).
—Ry R;L
lpds oL (‘;; ais Ln; R (2 lpds s
d _CUg —s 0 St D,
E qus = | &1, (rlds R, oLsL, qu 4 qs (30)
¢d7 oLsL, RL oL, “g lzbdr Ogr
Par 0 Ffr  —wr o7 Par Ugr

If currents are utilized as state—space variables rather than fluxes, the DFIM’s state-
space model in the synchronous reference frame will be as Equation (31).

igs i —R,L, Wy L2, 4 weoLsL, R,Ly, Wy Ly Ly
d g | 1 —wy L2, — weoLsL, —RL, —wyLyL, R,Ly
dt |ig, | \oLsL, RsLy —wyLyLy —R,Ls —wyL2, + weoLsL,
igr | wrLulLs RsLy wrl2 — weoLsLy —R/Ls
[ g L, 0 —Lm 0 Uds
.iqs N ( 1 > 0 L, 0  —Lum || vgs 1)
igr oLsLy ) | —Ly, 0 Ls O Uiy
igr 0 —Lpy 0 Ls Vgr

The previous arrangement is used to represent the DFIG in d — g frame since it is
helpful to obtain steady state for given stator and rotor input voltages.

The electrical torque and mechanical dynamics of the system are being represented
using Equations (32) and (33), respectively.

P
T, = 3§Lm (Isqlrd — Isdqu) (32)
dwy,

dt

where s and r represent stator and rotor quantities, respectively. L;,;, Ls, and L, are magne-

=T, + TLoud — Bwm (33)

tizing inductance, stator, and rotor self-inductances, respectively. T, and T;,,; denote the
electrical and load torques. B is the friction coefficient, and P indicates the pole number. wy,
denotes the mechanical speed in %, and | stands for moment of inertia. Figure 9 illustrates
the Simulink model of the DFIG in d — g frame.

By utilizing the quadrature component of the rotor current, the DFIG dynamic model
permits control of the electromagnetic torque (I;). This control mechanism enables the
system to follow the reference speed generated by the MPPT algorithm while keeping

active and reactive power under stator-flux FOC decoupled.
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Figure 9. DFIG’s Simulink model.

5. Prediction of the Shaft Speed

For the estimation of the non-linear mapping between the independent variables,
which are the speed of the wind speed (V,, ), the blade pitch angle (6), and the dependent
variable, which is chosen to be the turbine’s shaft speed (w,,), is the parameter whose
power is to be maximized, an ANN is utilized. In neural networks, the training set for
this non-linear estimation or prediction implicates the states V;, and 0 as inputs and w,, as
an output. A three-layer ANN is an efficacious technique for nonlinear function prediction.
Figure 10 displays this study procedure’s schematic diagram.

Input layer

Figure 10. Neural network for predicting shaft speed.

It is essential to note that the pitch angle in this system functions not only as
an aerodynamic control variable but also as a power-limiting mechanism. During the
high wind, when the generator power exceeds the rated power, the pitch angle is regulated
to limit the turbine’s input power and indirectly reduce rotor speed. Therefore, the ANN
training dataset inherently captures both normal operation and power-limited scenarios
through variations in 6. By including this interaction in the training data, the ANN can
accurately predict the optimal rotor speed under both unconstrained and power-limited
conditions, which accordingly eliminates the need for a separate speed limiter
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To calculate the net activation 4; in a neural network, data are received by the in-
put layer, multiplied by the relevant weights Vj;, and then added to a bias term bj,.
Equation (34) expresses the calculation of the net activation of the input layer:

lo
aj =) ;1 Vipi+bj (34)

where p; is the input to the i* node; bj, is the associated bias term; and j = 1,2,3...10
denotes the hidden layer’s number of neurons. An activation function f applied to the net
activation value yields the hidden layer’s output, which is determined by the following:

lo
yi=f(aj) = f(Z,-:l Viipi + bjo) (35)
where f represents the activation function, selected to be hyperbolic tangent (tanh).
Then, the net activation of the output layer is calculated as Equation (36):
lo

a =Y Wi + bo (36)
j=1
where k represents the neuron number of the output layer, and Wj; represents the weight,
which has a scalar value, between the j* node in the hidden layer and the k" node at the
output layer. Based on its net activation, the output layer generates the desired shaft speed,
w,, as output:
wh = filay) (37)

As expressed in Equation (38), the weights relating to the input and hidden layers V;,
and the weights relating to the hidden and output layers Wy, can all be used to indicate
the output of the model.

wy = fi (Z;; ijf( L Vipi + bjo) + bko) (38)
This expression can be expressed in vector form as Equation (39):
wi=F(WF(VP+b0) +ba) (39)
This equation can be stated more specifically as Equation (40):
wy, = (Wtanh(Vp + by) +by) (40)

Once the network structure has been chosen, the mean squared error (MSE), commonly
referred to as the cost function, is typically defined as Equation (41):

1 .
(Vi wig) = 53 (wn = wp)’ (41)
i=1
where w;, the actual optimal shaft speed and wy,, is the ANN-predicted shaft speed.

Results from ANN Simulation

The weights of the ANN model have been modified using the Levenberg-Marquardt
training procedure. Either the maximum permitted number of iterations or the MSE
standard determines when the iterative process ends. To estimate an accurate shaft speed
based on the training data, a range of network parameter values, such as the number
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of neurons distributed across the hidden layers, have been methodically changed. The
flowchart of ANN model is given in Figure 11.

[ Initialize input J

[ Specify inputs and Target data ]

v v

[ Define the ANN training algorithm ] [ Export NN model to Simulink ]

v

Divide data into 3 sets

Y

[ Network is ready for using ]

Run the network

. Training model in Simulink
. Validation
. Test

v "
Liua
[ Specify the size of hidden layer ]‘_ \/

v

Train the network

v

Evaluate Performance (MSE No
and R)

I Yes

Figure 11. Flow chart of ANN.

The training data were generated by simulating a wind turbine model designed to
match the 1 kW DFIG. A total of 6001 samples were generated by varying wind speed from
3 m/s to 15 m/s and pitch angle from 0° to 12°. For each combination, the optimal rotor
speed was calculated by maximizing the power coefficient Cp. The dataset was randomly
divided into 70% training, 15% validation, and 15% testing. ANN parameters are listed
in Table 1.

Three layers make up the final ANN structure for w,, prediction. The input variables
are found in the first layer, also referred to as the input layer, contains the input variables
Vw and 0. The second layer, refers to the hidden layer, contains 15 neurons. The third
layer, known as the output layer, predicts the shaft speed wj, that maximizes the gener-
ated power. With this selection of network parameters, the predicted and actual values
match excellently.

There is a massive error at the beginning of the prediction; however, as demonstrated
in Figure 12, the error decreases as the number of epochs increases. The regression plot of
the ANN model has been illustrated in Figure 13. The regression value R determines if the
prediction is successfully performed or needs to be trained again. It is obviously seen that
R =1, which is the optimal value of the prediction process.
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Table 1. ANN parameters.

Neuron Network Architecture

Multi-Layer Perceptron Feedforward

Inputs Pitch angle and wind speed

output Turbine Shaft speed
Number of neurons at each layer input 2

Hidden 15

Output 1

Training function (Algorithm)

(Levenberg-Marquardt algorithm)
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Figure 12. Performance of the ANN.

Training: R=1

Validation: R=1

Figure 13. The regression plot of ANN.
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Figure 14 displays the error histogram related to the shaft speed prediction. It displays

very little inaccuracy with almost zero average value. The predicted shaft speed, which has

been obtained so far, will be used as the speed reference for controlling the DFIG.
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Figure 14. The errors in the histogram plot of ANN.

6. Field-Oriented Controller

The FOC method has been implemented together with the MC modulation technique
for controlling the DFIG. The control has been executed in a synchronously rotating ref-
erence frame, where the flux through the windings of the stator has been aligned with
the d — axis.

0

d d
;P;q = 0,93y = Ly Lins and ;Ptfﬁ =
where ;s is DFIG’s stator magnetizing current.

By assuming the q — axis component of the stator flux to be zero, the flux is directed
entirely along the d-axis. In this configuration, the rotor current’s 4 component controls

Psg = 0 and

active power control, while its d component manages reactive power control. This approach
will enhance the system’s dynamic performance and efficiency [10].

The substantiality of the proposed control approach can be acquired by measuring
the stator voltage, rotor current, and rotor mechanical speed. Then, the stator magnetizing
current can be estimated as Equation (42):

T dl
Llnjvsd + Ly = Ims + TmsTTs (42)

The stator’s time constant, 7,5 is given by 1% The electrical angular velocity can be

estimated by Equation (43):

Tys
2 Vsg + Ing

We = 43
‘ Tins Ims )
dl.,
Via = Relyq + ULYW + Vide (44)
dly,
qu = errq + ULrW + quc (45)
P12
T, = _3*71”1511’17 (46)
2 L
LZ
P = _3w37m1msqu (47)
Ls
LZ
Qs = 3weL—mIms(Ims =Ly (48)
s
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where ¢ is the leakage coefficient; Ps is the real power of the stator; and Qs is the re-
active power of the stator. Then, compensation terms, V,;. and V., are expressed as
Equations (49) and (50):

dI
Vige = (1 — a)er—'Zs—(we — wy)oLy Iy (49)

Vige = (w, — wy) 0LeLyg + (w, — wr) (1 — ) LyIys (50)

The leakage coefficient is expressed by Equation (51).
2

These are the equations used in the control system. Block diagram representation of
the wind turbine-driven DFIG employing FOC with an ANN-based MPPT algorithm are
shown in Figure 15.

MPPT based ANN Field-oriented control MC Algorithm
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Figure 15. The diagram of the FOC.

By synthesizing the regulated rotor voltage and frequency directed by FOC method,
the MC acts as the rotor-side converter, achieving decoupled active and reactive power
control in the DFIG, as seen in Figure 15.
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7. Simulation Results

Simulations based on the MATLAB/Simulink environment have been carried out to

assess the effectiveness and performance of the suggested control system for overall system,

and the entire system model in Simulink blocks is displayed in Figure 16. The objective
is to validate the impact of the ANN-based MPPT and the FOC scheme in maximizing
power extraction and ensuring stable operation under variable wind conditions. The

parameters of the DFIG were taken from an actual machine used in the laboratory. In

order to ensure the compatibility and realistic simulation performance, the wind turbine

parameters were determined to match the operational characteristics of the DFIG. Turbine

and DFIG parameters are displayed in Table 2.
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Figure 16. MATLAB/Simulink model of the entire system.

The main objective of the simulation was to assess the ANN-based MPPT performance

under various wind speed situations during regular grid operation without replicating

grid failures or transient disruptions.
The WECS model-based DFIG with MC has been operated at wind speeds that fluctu-
ate over time using a pitch-angle control mechanism. Unless the power produced by the

wind exceeds the generator’s rated power, the value of the pitch-angle value continues to be

zero. Otherwise, it would be regulated. Through the adopted control strategy, the turbine

was able to achieve its optimal power by tracking the maximum value of C, when the pitch

angle is zero degrees as demonstrated in Figure 17. However, at the intervals between

22.4 and 37 s, the pitch angle was regulated due to the excess wind power generated by

the turbine. This pitch angle regulation protects the turbine from severe wind powers by

adjusting the C;, value.

The ANN model, which predicts or forecasts the ideal shaft speed that optimizes

the power, gives the possible wind speeds and pitch angle values based on the curves of

the power and speed of the wind turbine. Wind turbine shaft speed is transmitted to the

generator side through the gearbox ratio. The predicted speed, which guarantees ideal

tracking and MPE, is utilized as the reference speed for the DFIG’s rotor. Figure 18 shows

how the DFIG functions at sub-synchronous and super-synchronous speeds. The stator

windings of the four-pole DFIG are connected to a 50 Hz constant voltage source. The
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generator operates at super-synchronous region when the rotor speed exceeds 1500 rpm.
Otherwise, it operates at sub-synchronous region.

Table 2. The wind turbine and DFIG parameters.

Turbine Parameters

Parameters Symbol Value Unit
Length of the blade R 0.7 m
Air density 0 1.25 kg /m3
Gearbox ratio G 14 -
DFIG Parameters
The nominal power P 1000 W
The number of pole pairs p 2 -
The stator resistance Rq 9.83 Q
The stator inductance Ly 0.0292 H
The rotor resistance R, 8.14 Q
The rotor inductance L, 0.0292 H
The mutual inductance L, 0.4294 H
Inertia j 0.01 kgm2
Viscous friction coefficient B 0.005 N-m-s
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Figure 17. The power coefficient Cp, pitch angle, and wind speed profile.

DFIG power is divided into stator and rotor components. While the stator’s real power
P; is always negative, indicating that it is being supplied to the main grid, the rotor’s real
power P, which depends on the rotor speed, can be either supplied to or drawn from the
main grid. In Figure 19, it is seen that under sub-synchronous conditions, the power of the
rotor has a positive sign, indicating that the power is being absorbed by the rotor, whereas
at the super-synchronous condition, the power has a negative value, indicating the power
is being delivered to the main grid. The algebraic sum of both powers will give the net
power generated by the machine Pyt = Ps £ P;, which is presented in Figure 19.

The stator’s reactive power curve is illustrated in Figure 20. It has been controlled
to remain zero due to the assumption that the power factor should be unity; this can be
achieved according to Equation (48) by setting the reference of the current I,; to be equal to
the magnetizing stator current I,,s. However, in cases where reactive power is needed to be
delivered to the main grid, the current I,; will be increased to be more than the magnetizing
current; this is performed by multiplying the reference current by a factor that makes it
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above the magnetizing current I;;s. The reference value of g component of rotor current I,
is obtained from the output of speed controller loop.
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Figure 19. The DFIG stator power Ps, rotor power Py, and net power Py;;.

In Figure 21, as long as the stator’s reactive power is kept at zero, there will be a phase
angle of 180° between the voltage of the main grid and DFIG’s stator current, indicating
the pure real power exchange by the stator side, ensuring that it is operating with power
factor of unity. Additionally, despite the variation in the rotor speed, the stator current
frequency stays fixed at 50 Hz because it is connected to the main grid directly.

Figure 22 demonstrates the waveforms of the MC input current and the grid phase
voltage during sub-synchronous operation region of the DFIG. During this region, the
waveforms will be in phase, which indicates that the rotor of the machine is absorbing
power from the main grid. However, in Figure 23, it has been illustrated that while the
DFIG operates in the super-synchronous region, there will be a phase shift of 180° between
the voltage and current, indicating the power is being transmitted from the rotor to the
grid over MC.
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Figure 20. The stator reactive power.
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Figure 21. The grid phase voltage and its corresponding phase current waveforms.
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Figure 22. Waveforms of grid phase voltage and MC input current in a sub-synchronous region.

The simulation results confirm that the MC successfully maintained the decoupled
active and reactive power control by effectively supplying the necessary rotor-side voltage
and frequency, allowing for bidirectional power flow in a range of wind conditions.

Furthermore, a comparison between the suggested ANN-based MPPT and a tradi-
tional 2D lookup table-based MPPT, which was developed in [10], was conducted. The
tracking performance of the power coefficient (Cp) for both approaches at different wind
speeds is shown in Figure 24.

134



Energies 2025, 18, 2521

— Voltage
—Current
0.8

S
IS

i

1
26.02 26.04 26.06 26.08 26.1 26.12 26.14 26.16 26.18 26.2
Time (s)

e
9

'
S
N

'
e
IS

Grid Voltage x10 (V)
MC input current (A)

-0.8

Figure 23. Waveforms of grid phase voltage and MC input current in super-synchronous region.
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Figure 24. Comparison of power coefficient (Cp) tracking using the proposed ANN-based MPPT
and the conventional 2D lookup table method under varying wind speeds.

In comparison to the 2D lookup table technique, the findings show that the ANN-
based MPPT achieves faster convergence to the optimal Cp and maintains superior tracking
accuracy especially in transient regions. Table 3 provides a summary of a comparison study
to further illustrate the benefits of the suggested ANN-based MPPT over the traditional 2D
lookup table-based MPPT developed in [10]. This table outlines key differences in adaptabil-
ity, performance, and implementation aspects between the two approaches, demonstrating
the improvements achieved by the proposed method.

Table 3. Comparison between ANN-based and lookup table-based MPPT approaches.

MPPT Method 2D Lookup Table [10] ANN
Data Requirement Requires offline-generated lookup table Trained once; no real-time lookup needed
pﬁfriztzriiﬁgrfgoes Limited (static table) High (ANN can generalize to unseen data)
Convergence speed to Cpmax Slower Faster
Control Complexity Moderate Slightly higher (due to ANN)

Requires manual update if parameters

Need for updating data Self-adaptive after retraining

change
Memory requirements Higher (due to table storage) Lower
Simulation Tool MATLAB/Simulink MATLAB/Simulink
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8. Conclusions

The design, control, and simulation of the grid-connected WECS are presented in
this article. The ANN technique has been used to predict the shaft speed that extracts
the maximum possible power from the wind. By utilizing an ANN model, the system
dynamically predicts the shaft speed based on the speed of the wind and pitch angle to
ensure the extraction of maximum power. The simulation results have illustrated that the
usage of the ANN improves adaptability; moreover, it obtains accurate and efficient power
tracking under variable wind conditions. Furthermore, it offered faster convergence to the
optimal power coefficient and a smoother dynamic response compared to the conventional
2D lookup table method.

There are several benefits using the MC in the rotor side of DFIG as compared to
conventional back-to-back converters. Whereby, the need for DC-link capacitors has been
removed with the MC, increasing system reliability by lowering the number of elements. It
also enables bidirectional power flow, which allows the dynamic transfer of energy between
the main grid and rotor of the DFIG in both sub-synchronous and super-synchronous
regions. Furthermore, the MC ensures sinusoidal input and output waveforms at both
sides, which minimizes harmonic distortion and improves power quality. The simulation
results highlight that the combination of ANN-based MPPT together with MC offers
a compact, effective, and high-performance solution for DFIG-based WECSs.

Future works might concentrate on putting the proposed control system into real-
time hardware. Further investigation will focus on the ANN-based MPPT’s scalability for
utility-scale turbines, the integration of advanced machine learning models to increase
adaptability under rapidly changing situations, and the incorporation of fault detection
and diagnostic capabilities to improve system resilience and reliability.
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Abstract: To investigate the security issues of loop-closing operations in medium-low-
voltage distribution networks under the influence of stochastic fluctuations from distributed
generators (DGs) and loads, probabilistic power flow is introduced for analyzing loop-
closing currents in active distribution networks. A novel method combining Latin Hyper-
cube Sampling (LHS) and the Gram—Charlier (GC) series, termed the LHS-GC method, is
proposed to calculate the probability distribution of loop-closing currents. By modeling
DGs and loads as random variables, their cumulants are efficiently obtained through LHS.
Based on a linearized formulation of loop-closing current equations, the cumulants of
loop-closing currents are calculated, ultimately reconstructing the probability distribution
function of loop-closing currents in active distribution networks. Subsequently, a security
assessment framework for loop-closing operations is established using the probability dis-
tribution of loop-closing currents. This framework provides a quantitative evaluation from
two dimensions: preliminary loop-closing success rate and the severity of current limit vio-
lations, offering data-driven decision support for loop-closing operations. Taking the IEEE
34-node distribution network as an example for feeder loop-closing current assessment, the
proposed LHS-GC method achieves results with less than 4% deviation from simulation
values in terms of cumulative probability distribution of loop-closing currents and safety
assessment metrics. Under a sampling scale of 500 points, the computational time is 0.76 s,
demonstrating its efficiency and reliability. These outcomes provide actionable references
for decision-making support in loop-closing operations of active distribution networks.

Keywords: active distribution network; loop-closing current; probabilistic load flow;
cumulant; security assessment

1. Introduction

In recent years, ensuring power-supply reliability has emerged as a critical user
demand, driven by economic development. As the power-supply network on the user
side, the distribution network in China typically adopts the “closed-loop design, open-loop
operation” mode, with a radial network structure [1,2]. When the distribution network lines
need to handle faults or undergo maintenance, ring switching can achieve load transfer
without interrupting the power supply [3,4]. However, the “connect-first, disconnect-later”
strategy modifies the distribution network’s topology and power flow. During the loop

connection process, steady-state circulating currents and inrush currents may occur, leading
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to protection malfunctions and line overloads, which in turn threaten the safe and stable
operation of the power system [5,6]. Therefore, a method is needed to safely assess the
current generated during the loop closure.

In the field of looped connections in classical distribution networks, relevant research
has formed a relatively comprehensive theoretical system. In terms of equivalent models for
looped connections in distribution networks, reference [7] established a 10 kV distribution
network equivalent model considering the equivalent of the main network, feeder load,
and transformer. Reference [8] studied the calculation methods for loop current using the
superposition theorem and Thevenin’s theorem, and analyzed the key factors affecting the
magnitude of the current. Reference [9] constructed a typical equivalent network for loops,
and designed three methods for calculating loop current in medium- and low-voltage
distribution networks, taking into account the complexity of calculation and accuracy.

However, with the widespread adoption of renewable energy, photovoltaic (PV) power
generation systems are playing an increasingly critical role in distribution networks. The
inherent randomness and volatility of their output power significantly complicate the
calculation of loop-closing currents in distribution networks [10,11]. Currently, theoretical
research on loop-closing current assessment techniques remains relatively limited, with
many studies focusing on power flow optimization and computation in active distribu-
tion networks. For instance, reference [12] proposed a nonparametric quasi-Monte Carlo
(MC) method based on uniform experimental design for efficient probabilistic power flow
calculations. This approach introduces a hybrid discrepancy metric to enhance result
accuracy while reducing computational burden. Reference [13] developed a high-order
Markov chain-based modeling framework for PV output and load characterization in
probabilistic power flow, improving computational efficiency and accuracy through spatio-
temporally correlated scenarios generated via joint probability distributions and inverse
transform strategies. These studies reveal the potential of integrating probabilistic power
flow methodologies into loop-closing current assessment, offering valuable insights for
decision support in loop-closing operations. The calculation methods for probabilistic
power flow can be categorized into three main classes: the simulation method, analytical
method, and approximate method [14]. The simulation method [15,16], represented by the
MC method, simulates various uncertain factors through large-scale random sampling.
When the sampling is sufficient, the accuracy is high and the applicability is broad, but the
computational efficiency is low in complex systems. The approximation method [17,18]
directly describes the probabilistic statistical properties of the output random variables, but
the computational load increases significantly when solving models with a large number
of nodes. The analysis method [19,20] linearizes uncertain variables to obtain the probabil-
ity distribution of the output random variables, demonstrating excellent performance in
computational efficiency.

The cumulant method (CM) is one of the mainstream analytical methods for prob-
abilistic power flow. However, in medium- and low-voltage distribution networks, the
probability distributions of many input variables are often unknown. Traditional CM
inevitably introduces computational errors due to its reliance on approximated probability
distribution functions [21]. To address this limitation, reference [22] improved CM by incor-
porating maximum entropy-based probability density function approximation, significantly
enhancing its accuracy. Building on these advancements, this study focuses on refining
the application of CM in loop-closing current assessment. By integrating simulation and
analytical approaches, we propose a hybrid method for calculating the probability distri-
bution of loop-closing currents. This approach reduces cumulant calculation errors while
maintaining computational efficiency. The technical novelty of the method is summarized
as follows:
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(1) The Integration of LHS and GC Series: The combination of LHS and GC series
for loop-closing current probability distribution calculation in active distribution
networks retains the flexibility of simulation methods and the efficiency of analytical
approaches.

(2) The Direct Processing of Discrete Sampling Points: LHS is employed to handle discrete
sampling points with minimal dependence on predefined input variable distribu-
tions. Correlations between sampling points are mitigated through ranking strategies,
yielding more accurate cumulants for input variables.

(3) Linear Relationship Between Loop Currents and Nodal Power Injections: By establish-
ing a linear relationship between loop-closing currents and nodal power injections,
convolution operations are transformed into algebraic cumulant calculations, signifi-
cantly enhancing computational efficiency.

(4) Two-Dimensional Safety Assessment Framework: A quantitative framework incorpo-
rating preliminary loop-closing success rate and the severity of current limit violations
is developed, providing comprehensive and precise quantitative support for opera-
tional decision making.

(5) The proposed method is fundamentally based on linearized power flow equations,
making it inherently applicable to distribution networks of diverse scales and configu-
rations. Its effectiveness has been validated through a case study on the IEEE 34-node
system, demonstrating robust potential for real-world engineering applications.

2. Calculation of Loop Current in Active Distribution Networks
2.1. Calculation of Steady-State Current in a Closed Loop

Taking the typical active distribution network combined-loop operation shown in
Figure 1 as an example, the calculation theory and method of combined-loop steady-state
current are studied.

110kV and above voltage level power

grid
110kV — — 110kV
10kV Busbar 1] 10kV Busbar 2
X QF1 QF2X
> <«
— <—
S Spj :
—> <
DG1 |—» <«— DG2
QF3

T- ls bl T

Figure 1. Schematic diagram of active distribution network ring operation.

In the figure, the distribution network operates in an open loop. Two main trans-
formers T1 and T2 are, respectively, configured at 110 kV busbar; the distributed power
supplies DG1 and DG2 are, respectively, connected at 10 kV busbar; the outlet of the feeder
is controlled by circuit breakers QF1 and QF2, respectively; and the feeder is electrically
connected through connection switch QF3. In terms of load distribution, S5 and Sy, respec-
tively, represent the power load of the two feeders, and S,¢ and Sy, respectively, represent
the power load of the two sides of the connection switch.

The steady-state current analysis of the ring network is shown in Figure 2. Figure 2a is

v i
the network after the closure of the interconnection switch QF3, where I, and I, are the
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steady-state currents of the two feeders after the ring is closed, and I is the circulating
current generated by the closure of the ring; Figure 2b is the network before the ring is
closed, where I 2 and I p are the initial currents of the two feeders before the ring is closed;
Figure 2c is the equivalent circuit of the closed-ring network, simplified according to
Thevenin’s theorem, where the equivalent voltage source UOC represents the voltage phasor
difference across the interconnection switch before the ring closure, and the equivalent
impedance Zeq is the sum of the impedances of the ring network.

Active equivalent network Active equivalent network Use 7
eq

N

|  10kV Busbar 10kV Busbar ___| / —
Vi iy l l Vi iy
I .
Y art ar2 \ \ ot QF2 \ e
DG1 e& b DG2 DGl @ L DG2
_—t
)

@) (b

Figure 2. Closed-loop steady-state current analysis diagram. (a) Network after ring closure; (b) net-
work before closing the loop; (¢) equivalence network for closed loops.

According to the reference [7], the mesh current in a loop can be represented as:

. — Uoc _ Ua - Ub 1)
© O VBZeq  VBZeg
According to the superposition theorem, when the tie switch QF3 is closed to form
a looped network, the steady-state current in the feeders can be decomposed into two

independent components: the initial current components I ; and Ill) from the original open-
loop operation of each feeder, and the circulating current component I generated by the
potential difference at the loop-closing point. By vectorially superimposing these two
components, the steady-state current phasors of the feeders under looped operation can be
determined as follows: , o

{ I, = I+ I

!
I, = I — I.

@

2.2. Calculation of Loop Impulse Current

The combined-loop operation may cause a large transient current shock, and the
influence of the combined-loop shock current on the safety of the power grid needs to be
considered. According to reference [10], the loop impulse current instantaneous values iy
and the maximum rms values I are:

i = \f2(1+e—%)zc = V2kple 3)

Iv = Ie\/1+2(km —1)2 4)

where I, is the rms value of the circulating current; T, is the attenuation time constant of
the resultant loop shock current; and T, = Leq/ Regq-

As can be seen from Equations (1)—(4), the amplitude of the combined-loop steady-
state current and the shock current is determined by the voltage difference on both sides of
the break of the link switch, and decreases as the equivalent impedance of the combined-
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loop network increases. According to Equation (4), the effective values of the maximum
shock currents of the feeders at both ends of the combined ring are calculated as follows:

{IMa = L+ I\/142(km —1)* )

Ivy = Ip + Ie\/1+2(km — 1)?

Through power flow calculations at the reference node, the voltage magnitudes U;
and phase angles J; (i = 1, 2, ..., n) of all nodes in the pre-loop-closing network can be
obtained. Let U = [Uy,6y,...,Ua, 62, Up, Op, - .., Un, dn| denote the state variables of the
closed-loop network, and I = [I'y, Iy, Iva, Inp] Tepresent the effective values of the
steady-state currents and inrush currents on both sides of the feeders after loop closing.
The loop-closing current equations can then be expressed as:

I = G(U) (6)

In engineering practice, the inrush coefficient ky, is typically selected within the range
of 1.8-1.9 [23,24]. For conservative design purposes, km = 1.9 is adopted. Substituting this
value into Equation (5), the expanded form of Equation (6) can be derived as:

I, = |L.+1| = ¢1(U)

L —I| = g(U) @)
Iva = L +1.62I. = g3(U)

I, +1.62I. = g4(U)

3. Establishment of System Probability Model
3.1. Power Probability Model of Distributed Power Supply

Distributed household photovoltaic has developed rapidly, and photovoltaic power
generation systems will become an important form of renewable energy power genera-
tion in low- and medium-voltage distribution networks. The increasing penetration of
distributed PV systems, characterized by their randomness and output power variability,
has significantly intensified the challenges in performing power flow calculations prior to
loop-closing operations. Therefore, not only should the load fluctuation be considered in
the calculation of combined loop current, but a probability model for photovoltaic power
generation should also be constructed. The illumination intensity r can be approximately
regarded as a Beta distribution over a finite period of time, and its probability density

function is [13]:
a—1 -1
o = BB

where rmax is the maximum illumination intensity, « and § are the two shape parameters of

the Beta distribution, and T is the Gamma function.

In practice, the shape parameters of the Beta distribution can be determined by statis-
tical analysis, and two shape parameters in the Beta distribution are calculated from the
expectations y and variance ¢ of the given time-series data [11]:

(ool

p= ([t 1] ¥

The power probability characteristic of the photovoltaic power supply satisfies the
following requirements:
Py(r) = r-A-y (10)
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where Py is the total output power; A is the total area of the photovoltaic panel, and 7 is
the photoelectric conversion efficiency.

It can be seen from Equation (10) that the output power of the photovoltaic system
has a positive correlation with the illumination. In combination with Equation (8), the
probability density function of the light intensity and the photovoltaic output force can

be derived: . b et b p
f(Py) = rffﬂ[;))(vm) (1-5)

(11)

where Pypax is the maximum power of photovoltaic power generation, which meets
Pymax = rmaxAUo
In practice, through the regulation of the control system, photovoltaic power gener-
ation units can achieve stable control of the power factor, so they can be modeled as PQ
nodes in the load flow calculation of the distribution network. Thus, under the known
power factor angle of ¢, the reactive output power of the photovoltaic array can be obtained
as Qv [14].
Qv = Pytang (12)

After applying PQ node equivalent processing to the photovoltaic power source, it
can be regarded as a load to derive the Thevenin equivalent impedance expression Zyeq:

Py U? u?
- 2V Vz ~J (22\] Vz (13)
Py +Qy Py +Qy

Zveq =

3.2. Load Power Probability Model

Using a normal distribution to approximate the uncertainty of reactive power load,
assuming the corresponding parameters for active power and reactive power are yp, op
and g, 0q, the probability density functions of active power P, and reactive power Qr.
can be expressed as [20]:

27op

f(R) = e[ - )|

(14)
FlQ) = gk exp| 29l

4. Solution of Cumulants for Discrete Input Variables
4.1. Latin Hypercube Sampling

When calculating the joint probability of the load considering the randomness of
photovoltaic power generation, it is necessary to establish a method based on stochastic
power flow calculations. LHS can effectively reflect the overall distribution of random
variables through sampling values. This method divides the range of each variable equally
and samples uniformly within each interval, thereby improving the accuracy of the simula-
tion. Therefore, compared to MC sampling, it can obtain more accurate sample mean and
variance values with fewer sampling numbers.

LHS mainly has two steps of sampling and arrangement. The sampling step ensures
that the sample distribution area can be sufficiently collected, assuming X1, Xp, ..., and Xp
are p input random variables, where the cumulative probability distribution function of
Xp is:

Yp = Fp(Xp) (15)

The sampling scale is N, the value-taking interval (0,1) of Yp is divided into N intervals,
and the length of each interval is 1/N. By setting the sample point Y}, at the center of each
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interval, the i-th sample value of the corresponding input random variable X}, can be
obtained from the inverse function:

_1,i—0.5
Xpi = Fy' (=) (16)

The sampling matrix of each input random variable is 1 x N, and all p input random
variables are processed to form an initial sampling matrix of p x N, so that the sampling
step is finished, and the next order is carried out. The sorting step randomly arranges the
position of each element in each row, reduces the correlation between each random variable
of the initial sampling matrix, and obtains the final sampling matrix. Calculations of the
order of origin moments le(,v) and cumulants 'yg’) of the input random variable X, are then
performed based on the final sampling matrix.

4.2. Latin Hypercube Sampling for Discrete Data

The LHS requires the cumulative probability distribution function Y}, = F,(Xp) of the
random variable X}, as input. However, in engineering applications, many of the operating
parameters and historical data of variables are often discrete, making it impossible to
directly obtain the cumulative probability distribution function of these discrete data.
Therefore, a method is needed to determine semi-variates using LHS based on discrete data.

For a subsample set of the random variable X;,, when it contains N discrete observa-
tions, it can be represented as {xpl, Xp2, Xp3, - - -, XpN/}. Sort the subsample set of each input
random variable in ascending order and calculate the empirical distribution function of Xp:

0, Xp < x’pl
Hp(Xp) = { %o <xp < ¥pgay,k = 1,2,..., N1 (17)
/
Lxp 2 XpN+)
According to the empirical distribution function Hp(Xp), a sample set of X,

{x’/pl, X" p2, X" 3, X pN} is obtained using LHS, and the moments of different orders of
Xp are calculated, respectively:

W _1g .
ap = N'lepk,k =12,...,n (18)
1=

Then, based on the relationship between cumulants and the moment about the origin,
we obtain the cumulants of each order for Xp.

5. Probabilistic Calculation of Loop-Closing Currents and Line Losses
5.1. Linearization of the Loop Current Equation

Let W = [P1,Qq, ..., Py, Qu] be the injection power of each node in the ring network,
and the matrix form of the node power equation is:

W = F(U) (19)

The state variable U of the closed-loop network system can be decomposed into the ex-
pected value Uy and the disturbance amount AU, which satisfies the relationship Wy = F(Up)
with the expected value of the node injection power Wy. Expanding Equation (19) according
to the Taylor series and ignoring higher-order terms yields:

AW = JoAU (20)
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where | is the Jacobian matrix, defined as:

Jo = U T (21)

Similarly, the loop current equation can also be subjected to similar linearization
processing, resulting in:
Al = GoAU = GoJ, 'AW (22)

where G is the coefficient matrix, defined as:

aG(U)

Gy =
ou |y -y,

(23)

Equation (22) shows that the combined-loop current can be expressed as a linear
combination of the variable AW, providing a theoretical basis for obtaining the probability
distribution of the combined-loop current based on cumulants.

5.2. Loop-closing Current Probability Density Function
)

Apply the LHS method to process discrete data to obtain the cumulants Angk and

AWﬁk) for photovoltaic power generation and load. Due to the additivity of cumulants,

by summing the cumulants of each node’s load power AW]Ek) and the cumulant of the

photovoltaic output AW(k), we obtain the cumulative amount of node injection power A](/l\;).

A = aw®

k
+ AW (24)
Refer to the linear properties of the cumulant and combine with Equation (22) to
obtain the cumulant of the combined ring current AI(%).

k
AL — (Gojo—l) AW®) (25)

After obtaining the cumulants of each order of the circular current, the cumulative
probability distribution function F(x) can be constructed using the Gram—Charlier series
expansion method, as follows [22]:

c c
F(x) = ¥(x)+ 1—1"1”(x) + zl;qf”(x) +... (26)
where ¥ (x) is the cumulative distribution function of the standard normal distribution; the
coefficients c; can be obtained using the semi-invariants of each order.

5.3. Probability Function of Power Loss in Distribution Networks

Power loss is a critical comprehensive indicator for evaluating the economic and
technical performance of power grid operation. The integration of DGs into distribution
networks significantly complicates power loss calculations. To reduce computational
complexity, power loss can be defined as the difference between injected power and output
power. The cumulants of different orders for line losses in the distribution network can be
calculated as follows:

k k k k
APl(os)s = PS()JF,Z Pl - ZPJ(_L) (27)
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is the k-th order cumulant of distribution network power loss; Ps P is the k-th

order cumulant of the output power from the main power source; Z P( gG is the sum

where AP, (k)

loss

(k) .

of k-th order cumulants from g distributed generators; E Py is the sum of k-th order
j=1
cumulants from / loads.

6. Safety Assessment Indicators for Distribution Network
Ring Connection

6.1. Initial Success Rate of Loop Closure

The conditions for the safe loop operation of the distribution network are (1) the
steady-state current of each feeder after looping does not exceed its maximum carrying
capacity; (2) the impact current of each feeder during the closing loop is below the fast trip
action threshold of the protective device.

Let Fi(x), Fa(x), F3(x), and F4(x) be the cumulative distribution functions of the
combined-loop currents Iy, I'y, I, and Iy, respectively. The current carrying limits of
the two feeder lines are Imax.a and I axp, and the settings for the current instantaneous pro-
tection are [geq; o and Igeqrp- Then, the probability of the combined-loop current exceeding
the safety threshold can be expressed as [25]:

pl P(:a>1maxa) 1_F1(Imaxa)
P, = P(I; 2 Imaxb) = 1= F2(Imaxp) (28)
P3 = P(IMa > Iseta) 1— FS(Iseta)
Py = P(Iyp > Letn) = 1— Fallsetn)

The preliminary success rate of grid connection is quantitatively described to assess
the impact of distributed power sources on exceeding the grid connection current limit,
providing data support for grid connection decisions. The expression for the preliminary
success rate P is as follows:

P = (1-P)1—P)(1—P3)(1—Py) (29)
If P is greater than 95%, this operation is defined as a preliminary successful closure.

6.2. Excessive Ring Current Limit

Although the initial success rate of the loop closure can indicate a high probability
of meeting the requirements for loop-closure current, certain loop-closure currents with
lower probabilities may cause serious violation issues. Therefore, it is necessary to define
the maximum violation rate of the loop-closure current 7)1 and the average violation rate
174 as follows [25]:

- ( e 1) « 100% (30)

ILmax

f x)dx

na = [ Hmx” 7" 1) % 100% (31)

f ILmax

where If is the current value corresponding to the cumulative probability distribution of
the line current at 99.9%, I} max is the maximum current-carrying capacity of the line, and
f(x) is the probability density function of the line current.

Since the power system has a certain overload capacity, it is considered that the safe
operation of the distribution network requires that the 77); does not exceed 10% and 74
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does not exceed 5%. If a preliminary loop closing is unsuccessful but the exceeding current
rate meets the requirements, then the part of the current that does not meet the preliminary
loop-closing success rate is determined to be the safe current. In summary, using prelimi-
nary loop-closing success rate, maximum exceeding rate, and average exceeding rate as
quantitative standards for assessing the safety of loop-closing operations provides data
references for the operators’ loop-closing decisions.

In summary, the process of the LHS-GC method based on LHS and Gram—Charlier
series is shown in Figure 3. The arrows in Figure 3 indicate the next step.

Closed-loop network topology; network operation data before
closing the loop; historical data of light intensity, etc.

Apply LHS to calculate the Performing power flow
various order cumulants of calculation at the benchmark
input variables operating point
Cumulative values of the State variable Uo,
cumulants of the input -t Jacobian matrix Jo,
variables of various orders Sparse matrix Go
AW®
¢ i Power loss,
Initial successful coupling rate,

| AIY = (GoJy' ) AW

!

T T . .
0 _ pk) (k) () maximum exceeding rate
|A1)1(095_R +2R,DG’ZR,L| ) ’
i i1 average exceeding rate

Calculate various safety
The k-th order cumulant of The k-th order cumulant of assessment indicators
the loop closing current AI® the power loss AR and analyze power loss
i i Probability distribution
| Gram-charlier series »| characteristics of loop closing
expansion current and power loss

Figure 3. LHS-GC calculation process.

7. Example Verification

This paper uses the IEEE 34-node distribution network system as an example to
verify the proposed method. The standard system is simplified to a single voltage level
by removing transformers and voltage regulators from the lines. Due to the text length
constraints in the main body, the line impedance data of IEEE 34 nodes and the normal
distribution data of loads are presented in Appendices A and B. Based on the simplified
distribution network, photovoltaic power sources are configured using solar radiation
intensity samples from a region in South China as input data. The system topology and an
example of the tie line are shown in Figure 4. In Figure 4, the black solid line represents
the existing distribution line, and the blue dashed line represents the tie line that has not
been closed.

256

137104 226

° i01
- 189

13 16 17 19

Figure 4. A schematic diagram of the IEEE 34-node distribution network system.
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Based on the sample data of solar radiation intensity within a day, the shape parame-
ters of the Beta distribution are calculated to be & = 0.679 and = 1.778, with a maximum
solar radiation intensity of 1.134 kW /m?, as shown in Figure 5. Take the reference capacity
Sp as 1 MVA and the reference voltage Up as 24.9 kV.
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Figure 5. A photovoltaic sample curve for a region in South China. (a) Diurnal variation curve of

light intensity; (b) light intensity distribution characteristic curve.

Based on variations in PV integration nodes, loop-closing line locations, and load

standard deviations, two cases are defined as shown in Table 1. These cases are selected to

analyze the safety of loop-closing operations and power losses.

Table 1. Configuration of loop-closing operating conditions.

Case PV Integration Nodes Loop-Closing Line Locations Load Standard Deviation
1 23,29 28-34 30%
2 6,23 6-13 20%

7.1. Probabilistic Calculation of Loop-Closing Currents and Power Losses

This case study uses loop-closing currents obtained from MATLAB/SIMULINK sim-
ulations as a reference to compare the results of three methods: MC method, traditional
cumulant method, and the proposed LHS-GC method, with a sampling size of 500 for both
MC and LHS. The cumulative probability distributions of loop-closing currents for Case 1

and Case 2 are illustrated in Figures 6 and 7, respectively.

) 1
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0.6f 0or
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5 5 7 50

Figure 6. Cont.
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Figure 6. Cumulative probability distribution of loop-closing currents for Case 1. (a) Line 26-28 loop
steady-state current; (b) line 32-34 loop steady-state current; (c) line 26-28 loop impulse current;
(d) line 32-34 loop impulse current.
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Figure 7. Cumulative probability distribution of loop-closing currents for Case 1. (a) Line 4-6 loop
steady-state current; (b) line 11-13 loop steady-state current; (c) line 4-6 loop impulse current; (d) line
11-13 loop impulse current.

As shown in Figures 6 and 7, compared to the MC method and traditional CM,
the proposed LHS-GC method achieves higher accuracy, with its cumulative probability
distribution curves aligning more closely with simulation results. Due to limitations in
sampling scale, the traditional CM demonstrates higher precision than the MC method
under the current configuration.

Figure 8 illustrates the deviations of the three methods from simulation values at the
90% cumulative probability level. Taking Case 1 as an example, the calculation errors of the
LHS-GC method for steady-state currents and inrush currents in the two feeders are 3.49%,
6.33%, 3.4%, and 3.11% lower than those of the MC method, and 1.72%, 3.1%, 3.09%, and
1.8% lower than those of the CM, respectively. Furthermore, the current calculation errors
of the LHS-GC method are consistently below 3%, confirming its superior performance
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in approximating the cumulative probability distribution function of feeder loop-closing

currents. These results validate the reliability of the LHS-GC method for loop-closing
safety assessments.
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Figure 8. Feeder current error at 90% cumulative distribution probability. (a) Case 1; (b) Case 2.

Table 2 compares the computation times of the methods. The LHS-GC method requires
shorter single-cycle time and total duration, achieving a 68% speed improvement compared
to the MC method. Under identical sampling scales, it exhibits significant speed advantages.
Therefore, compared to the traditional CM, the LHS-GC method achieves higher accuracy

with only a minor sacrifice in computational efficiency, making it a practical tool for real-
time operator decision making.

Table 2. Comparison of computation time.

Computational Methods Single Cycle Time/s Total Duration/s
MC method 0.0019 2.43
CM - 0.15
LHS-GC method 0.0001 0.76

Under both operating cases, the power losses of the entire network before and after
loop closing are shown in Figure 9. For Case 1, the power losses showed no significant
variation between pre- and post-loop-closing operations. In contrast, for Case 2, the power
losses decreased after loop closing compared to pre-loop-closing levels, contributing to the
economic operation of the distribution network. The proposed LHS-GC method accurately
captures the variations in power losses, exhibiting errors within 8% compared to simulation
values at the 90% cumulative probability level. This demonstrates its capability to provide a

reliable reference for assessing the economic and technical performance of post-loop-closing
distribution networks.

1 1
0.8 After loop closing 0.8 After loop closing ‘/'.
0.6 0.6r
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Figure 9. Power loss in distribution network before and after loop closure. (a) Case 1; (b) Case 2.
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7.2. Loop-Closing Safety Assessment

Safety assessments for loop-closing operations are conducted using the cumulative
probability distribution curves of feeder loop-closing currents calculated by the LHS-
GC method. Based on the 3-sigma principle of load normal distribution, the maximum
allowable current-carrying capacity of branches is determined. The instantaneous current
protection settings are derived from the maximum short-circuit current at the end of the
protected line during a fault. The calculated results for the maximum allowable current-
carrying capacity and protection settings under Case 1 and Case 2 are summarized in
Table 3.

Table 3. The current indicator values of Case 1 and Case 2.

Feeder Maximum Allowable Instantaneous Current
Current-Carrying Capacity/A Protection Settings/A
26-28 3.24 13.21
32-34 2.62 36.50
4-6 12.93 143.94
11-13 12.73 100.68

The safety assessment results of loop-closing currents are presented in Tables 4 and 5.
In Case 1, the proposed LHS-GC method exhibits errors of 0.69% and 1.17% in the maximum
violation rates for feeders 2628 and 32-34 compared to simulation values, respectively.
The errors in average exceedance rates are 0.36% and 0.95%, respectively. In Case 2, the
errors of maximum violation rates and average exceedance rates calculated by LHS-GC
for feeders 4-6 and 11-13 are 1.53%, 0.59%, and 0.86%, 0.67%, respectively, all within 2%.
Additionally, the preliminary loop-closing success rates calculated by LHS-GC for both
cases closely align with simulation values, exhibiting errors of 1.26% and 1.81%.

Table 4. Assessment indices of loop-closing safety under Case 1.

Preliminary Closure

.1 Maximum Overrun Rate Average Exceedance Rate
Probability
Loop Current - : .
Simulated LHS-GC Simulated LHS-GC Simulated LHS-GC
Value Value Value
26-28 Steady-state 12.43% 13.12% 4.37% 4.01%
current
32-34 Steady-state 13.29% 14.46% 4.89% 3.94%
current
94.66% 95.92%
26-28 impact _ _ _ —
current
32-34 impact _ _ — —
current

In summary, an analysis of these two cases demonstrates that the LHS-GC method
can effectively assess the safety of loop-closing operations in active distribution networks,
even with limited samples. The entire process—from calculating the cumulative probability
distribution of loop-closing currents to deriving safety assessment metrics—requires only
0.76 s, meeting the timeliness requirements for engineering applications.
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Table 5. Assessment indices of loop-closing safety under Case 2.

Preliminary Closure

.1s Maximum Overrun Rate Average Exceedance Rate
Probability
Loop Current - - :
Simulated LHS-GC Simulated LHS-GC Simulated LHS-GC
Value Value Value
4-6 Steady-state 15.33% 16.86% 5.11% 5.97%
current
11-13 Steady-state o o 0 0
current 91.35% 93.16% 14.72% 15.31% 5.25% 5.92%

4-6 impact current — — —

11-13 imp
current

act

8. Conclusions

To address the challenges in the safety assessment of loop-closing operations for active
distribution networks, this paper proposes an LHS-GC-based framework for probabilistic
loop-closing current analysis and safety evaluation. Validation on the IEEE 34-node system
yields the following conclusions:

(1) Compared to the MC method, the LHS-GC method significantly improves both
accuracy and computational speed under identical sampling scales. Compared to the
traditional CM, it achieves higher accuracy while maintaining comparable speed. With
a sampling size of 500, the method completes calculations in 0.76 s with probability
distribution errors below 4%.

(2) Under the two-dimensional safety assessment framework (preliminary success rate
and severity of current violations), the LHS-GC method achieves errors within 3% for
all metrics. The total computation time of 0.76 s fulfills real-time operational demands
for active distribution networks.

(3) The LHS-GC method accurately captures the probabilistic distribution of loop-closing
currents and safety metrics across diverse scenarios, including varying PV integration
nodes, loop-closing line locations, and load standard deviations. Rooted in linearized
power flow equations, the method is inherently adaptable and holds potential for
application in distribution networks with various configurations.
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Abbreviations

The following abbreviations are used in this manuscript:

PV
MC
cM
LHS
GC
DG
QF

Sais Sbi
_Saf/_sbf
Iy, I,
e
I

(k)
AWI()k)
AW,
AWK
ATH)
¥(x)
Imax.a, Imax.b
IsetI.a/ Isetl.b
P
™
A
Sp
Ug

Photovoltaic

Monte Carlo method

Cumulant method

Latin hypercube sampling

Gram—Charlier

Distributed generation

Circuit breaker

the power load of the two feeders

the power load of the two sides of the connection switch
the initial currents of the two feeders

Current of the feeders after closing the loop

the circulating current

Voltage difference across the contact switch

Equivalent impedance of the loop

Instantaneous values of the loop impulse current
Maximum effective value of loop impulse current

the rms value of the circulating current

Decay time constant of the loop impulse current
Equivalent reactance of the loop

Equivalent resistance of the loop

Maximum impulse current effective value of the two feeders
Impact coefficient

Mlumination intensity

Shape parameters for beta distribution

Gamma function

Expectations for data in a given time series

Variance of data for a given time series

Photovoltaic array output power

Total area of photovoltaic panels

Photoelectric conversion efficiency

Maximum power for photovoltaic power generation
Input random variables

Cumulative distribution function of X,

Moment matrix of each order

Partial invariants of each order

Empirical distribution function

Injected power of each node in the ring network
Jacobian matrix

Cumulants of photovoltaic power at various stages
Cumulants of load at each level

Cumulants of the node injection power of various orders
Cumulants of the loop current

the cumulative distribution function of the standard normal distribution
the current carrying limits of the two feeder lines

the settings for the current instantaneous protection

The probability of the closed-loop current exceeding the safety threshold
the maximum violation rate of loop-closure current

the average violation rate

Benchmark capacity of distribution network

Reference voltage of the distribution network
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Appendix A

Table A1. Original data table of IEEE 34-node line.

Resistor (p.u.)

Reactance (p.u.)

Electricity (p.u.)

2.030825 x 1073
1.361754 x 1073
2.536956 x 102
4.596905 x 103
2.951780 x 102
2.340171 x 102
7.871413 x 1074
2.440138 x 104
1.346012 x 1073
8.036713 x 103
3.790085 x 102
6.611987 x 104
2.385038 x 1073
1.081532 x 1072
1.608917 x 1072
4.093135 x 104
2.899042 x 102
1.836401 x 1072
7.871413 x 104
3.064467 x 1073
3.856993 x 1073
8.312212 x 103
4589034 x 1073
1.275169 x 103
1.590025 x 103
2.203996 x 1074
2.109539 x 103
1.062641 x 1073
2.203996 x 104
6.769415 x 104
2.865194 x 1073
2.558431 x 1073
4.171849 x 104

8.953083 x 104
6.003423 x 104
1.118441 x 1072
2.026589 x 103
1.301320 x 1072
1.031687 x 1072
3.470187 x 1074
1.075758 x 10~*
5.934020 x 104
3.543061 x 103
1.670895 x 102
2.914957 x 104
1.051467 x 1073
4.768037 x 1073
7.093062 x 1073
1.804497 x 104
1.278070 x 102
8.095946 x 103
3.470187 x 10~
6.580539 x 103
1.700392 x 103
3.664518 x 1073
2.023119 x 1073
5.621703 x 104
7.009778 x 104
9.716525 x 10~°
9.300102 x 10~*
4.684753 x 1074
9.716525 x 10~°
2984361 x 104
1.263148 x 103
1.684948 x 103
1.839199 x 10~*

4.500000E x 10~7

3.000000 x 107
5.500000 x 10—
1.000000 x 10~°
6.500000 x 10~
5.000000 x 10~
0.000000
0.000000
2.500000 x 107
1.500000 x 10~°
8.000000 x 10~
1.000000 x 10~7
5.000000 x 108
2.350000 x 10~°
3.550000 x 10>
0.000000
6.000000 x 10~°
4.045000 x 10~°
0.000000
3.000000 x 10~
5.000000 x 107
1.500000E x 10~°
1.000000 x 10~°
2.500000 x 107
5.000000 x 108
5.000000 x 10~?
5.000000 x 107
2.000000 x 107
5.000000 x 10~?
1.500000 x 107
5.000000 x 107
5.000000 x 107
5.000000 x 108

Starting Leaf
Node Node
1 2
2 3
3 4
4 5
4 6
6 7
7 8
8 9
9 10
9 11
10 12
11 13
11 14
12 15
13 16
14 17
17 18
17 19
18 20
20 21
20 22
21 23
22 24
22 25
24 26
24 27
26 28
27 29
28 30
28 31
29 32
30 33
32 34

Appendix B

Table A2. Load data table of IEEE 34 nodes (for example, a standard deviation of 30%).

Active Power Load

Reactive Power Load

Node

Expectation

Variance

Expectation

Variance

2
4
9
10
11
12

13
17

1.910000 x 102
5.290000 x 103
1.300000 x 10~*
4596905 x 1073
1.490000 x 1072
1.184000 x 1072
2.060000 x 103
1.240000 x 1073

5.730000 x 103
1.587000 x 103
3.900000 x 10~°
3.390000 x 1073
4.470000 x 1073
3.552000 x 103
6.180000 x 104
3.720000 x 104

9.870000 x 103
2.740000 x 103
7.000000 x 10—°
5.840000 x 103
7.710000 x 103
2.336000 x 102
1.070000 x 1073
6.400000 x 104

2.960000 x 103
8.220000 x 10~*
2.100000 x 10—°
1.752000 x 103
2.313000 x 103
7.008000 x 103
3.210000 x 104
1.920000 x 10~*
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Table A2. Cont.

Active Power Load

Reactive Power Load

Node : : : :
Expectation Variance Expectation Variance
20 4370000 x 10~3  1.311000 x 1073  2.260000 x 10~3  6.780000 x 10~*
22 1.000000 x 10~2  3.000000 x 10~3  5.170000 x 10~3  1.551000 x 103
23 2.700000 x 10~2  8.100000 x 1073  2.162000 x 1072  6.486000 x 10~3
24 5.000000 x 102 1.500000 x 102 0.000000 0.000000
26 4.657000 x 1072 1.397100 x 1072  2.972000 x 10~2  8.916000 x 10~3
27 3.040000 x 1073 9.120000 x 10~*  1.570000 x 10~3  4.710000 x 10~*
28 1.310000 x 10~2  3.930000 x 1073 6.770000 x 10~3  2.031000 x 103
29 1.490500 x 10~!  4.471500 x 10~2  1.490000 x 10~2  4.470000 x 103
30 9.200000 x 1073 2.760000 x 103  4.760000 x 10~2  1.428000 x 10~3
31 8.859999 x 1073 2.658000 x 10~3  7.090000 x 10~3  2.127000 x 103
32 7.540000 x 1073 2.262000 x 10~3  3.900000 x 10~3  1.170000 x 103
34 1.945000 x 1072 5.835000 x 1073 1.344300 x 10~!  4.032900 x 10~?2
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Abstract: With the rapid development of renewable energy, wind power forecasting has
become increasingly important in power system scheduling and management. However,
the forecasting of wind power is subject to the complex influence of multiple variable
features and their interrelationships, which poses challenges to traditional forecasting
methods. As an effective feature extraction technique, representation learning can better
capture complex feature relationships and improve forecasting performance. This paper
proposes a two-stage forecasting framework based on lightweight representation learning
and multivariate feature mixing. In the representation learning stage, the efficient spatial
pyramid module is introduced to reconstruct the dilated convolution part of the original
TS2Vec representation learning model to fuse multi-scale features and better improve the
gridding effect caused by dilated convolution while significantly reducing the number of
parameters in the representation learning model. In the feature mixing stage, TSMixer
is used as the basic model to extract cross-dimensional interaction features through its
multivariate linear mixing mechanism, and the SimAM lightweight attention mechanism
is introduced to adaptively focus on the contribution of key time steps and optimize the
allocation of forecasting weights. The experimental results conducted on actual wind
farm datasets show that the model proposed in this paper significantly improves the
accuracy of wind power forecasting, providing new ideas and methods for the field of
wind power forecasting.

Keywords: wind power forecasting; representation learning; artificial intelligence; feature
mixture; attention mechanism

1. Introduction

With the continuous growth of global energy demand and the increasing awareness of
environmental protection, renewable energy has gradually become one of the focal points
of international attention. Among renewable energy sources, wind energy, as a relatively
mature and widely utilized form, has enormous development potential and economic
benefits [1]. However, due to the complexity and randomness of wind speed, the volatility
of wind power poses challenges for the operation and planning of wind power systems [2].
Therefore, accurately forecasting the time series of wind power is important. Time series
forecasting of wind power can provide strong support for grid scheduling, new energy
generation planning, and the operation and maintenance of wind turbines. An effective
wind power forecasting model can help optimize the scheduling and regulation of wind
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power systems and improve system performance and reliability while also reducing energy
costs and environmental pollution [3].

In wind power time series forecasting, researchers have conducted a substantial
amount of research. Currently, commonly used forecasting methods include statistical time
series analysis methods, Artificial Intelligence (Al) methods, and physics-based models [4].
Among these, machine learning methods such as Support Vector Machines (SVM), Arti-
ficial Neural Networks (ANN), Deep Neural Networks (DNN), and other deep learning
algorithms have been widely applied in wind power forecasting [5-7]. Karijadi et al. [8]
proposed a hybrid CEEMDAN-EWT deep learning method for wind power forecasting.
This method uses a combination of Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN) and Empirical Wavelet Transform (EWT) as preprocess-
ing techniques, where CEEMDAN is first used to decompose the original wind power data
into several sub-sequences, and the EWT denoising technique is used to denoise the highest
frequency sequence generated by CEEMDAN. Then, use Long-Short Term Memory (LSTM)
to predict all subsequences in the CEEMDAN-EWT process, and aggregate the prediction
results of each subsequence to achieve the final prediction result. However, this method did
not effectively utilize the various multivariate features that affect wind power generation.
Chen et al. [9] proposed a CNN-BiLSTM short-term wind power forecasting method based
on feature selection. Although this method utilizes multivariate features, it requires a
feature correlation analysis of the dataset and weighting the input data based on feature
correlation to form a multidimensional feature dataset, which is a cumbersome process.

Currently, traditional wind power forecasting models face numerous issues when
handling time series data, such as weak feature extraction capabilities and significant
information loss. In existing wind power forecasting methods, the use of feature represen-
tation is relatively limited. There are currently many methods for feature selection, such as
ElasticNet, Pearson’s correlation, and ReliefF algorithms [10,11], but using deep learning
techniques for automatic feature extraction and representation would be more convenient
and accurate. Feature representation can extract latent patterns and characteristics from
time series data, thereby improving the performance of forecasting models. Traditional
time series forecasting methods often rely on simple statistical features or directly use raw
data, failing to fully mine the deep-seated information within the data. This leads to certain
limitations for the models when confronted with the complex variations in wind power.

To address these issues, some researchers have proposed unsupervised representation
learning models in recent years, among which the TS2Vec model is a typical example [12].
The TS2Vec model extracts features by mapping time series data to a low-dimensional vector
space, utilizing traditional dilated convolution networks for feature processing. Although
the TS2Vec model has achieved certain results in various downstream machine learning
tasks, its dilated convolution module has limitations in capturing long-term dependencies,
and its gridding effect may result in information loss or ambiguity. Additionally, the model
makes a large number of parameters and computational complexity. The efficient spatial
pyramid structure proposed in ESPNet [13] can better compensate for the gridding effect
caused by dilated convolution while reducing model complexity.

It is equally a challenging problem to select suitable downstream forecasting models
for multi feature mixing and extraction of data with multiple feature variables after feature
representation by representation learning models. Many current time series forecasting
models are based on univariate time forecasting, while multivariate models seem to have
overfitting issues, especially when the target time series is not correlated with other covari-
ates [14]. However, when there is a strong correlation between the target time series of
wind power and various other meteorological factors covariates, it is meaningful to have a
model that can use information from covariates and other features for forecasting [15]. In
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recent years, scholars have proposed different models such as PatchTST [16], DLinear [17],
CycleNet [18], etc., which are based on channel independent implementation. These mod-
els usually do not consider any potential interactions or correlations between channels,
and each channel is processed as a separate input without utilizing shared information
or dependencies [19]. Various time series foundation models, such as LLM4TS [20], Time
LMM [21], Chronos [22], etc., are also based on channel independence. Although LLM4TS
and Time LLM introduce pre-training techniques, their self attention mechanisms are
still limited to single variable channels, making it difficult to establish dynamic weight
allocation mechanisms across feature domains.

In response to the above bottlenecks, multivariate feature mixing has become a new
direction to break through the limitations of channel independence [23]. TSMixer, as a
novel architecture, effectively captures temporal patterns and cross-variable information
through temporal and feature mixing operations, enabling dynamic fusion of multivariate
time series [24]. However, existing research still faces challenges in designing downstream
forecasting tasks based on feature representation, where redundancy and noise coexist
in high-dimensional feature spaces, and the contribution of key covariates needs to be
strengthened through adaptive weight allocation [25]. SIimAM, as a lightweight and
parameter-free attention mechanism, generates attention weights by calculating the local
self-similarity of feature maps without introducing any additional parameters [26]. The
introduction of a lightweight SImAM attention mechanism can evaluate feature importance
through an energy function that does not require parameter optimization, and can highlight
the weights of key segments in multivariate time series under controllable computational
costs [27].

Therefore, this paper proposes a wind power forecasting method and constructs a two-
stage forecasting framework based on lightweight representation learning and multivariate
feature mixing. In the representation learning stage, the efficient spatial pyramid module
is utilized to replace the dilated convolution module in the original TS2Vec model. The
improved TS2Vec representation model is utilized to characterize the matrix containing
historical measured weather data, historical power generation data, and other features of
the wind farm. The multivariate feature data after representational learning serves as input
for the downstream forecasting model. In the stage of multivariate feature mixing, the use of
SimAM-TSMixer hybrid architecture is intended to break through the inherent limitations
of channel-independent models and provide a new solution for multivariate wind power
forecasting. By efficiently combining SimAM with TSMixer, the model can dynamically
calibrate the correlation strength between meteorological covariates and target time series
during feature mixing, while mining spatiotemporal interaction patterns across variables.

The main contributions of this paper are as follows:

1. A two-stage forecasting framework based on lightweight representation learning
and multivariate feature mixing is proposed, which can effectively extract potential
patterns and features in wind power related time series, and at the same time can
efficiently realize the dynamic fusion of multivariate features, enabling the model to
better adapt to complex time series data.

2. In the lightweight representation learning stage, the dilated convolution part of the
existing TS2Vec representation model is innovatively modified, and the efficient
spatial pyramid structure is adopted, which better compensates for the gridding effect
caused by the dilated convolution. This not only enhances the ability of the model to
capture multi-scale features, but also improves the flexibility and adaptability of the
model in dealing with complex time series data.

3.  In the multivariate feature mixing stage, a multivariate mixing layer is constructed
based on the TSMixer architecture, which utilizes its cross-dimensional interaction
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mechanism to extract implicit associations among features, and embeds the SimAM
lightweight attention mechanism, which adaptively adjusts the weights of the time
steps through parameter-free computation to suppress the noise interference and
enhance the contribution of key features.

2. Data

To verify the effectiveness and practicality of the model proposed in this paper, the
data used in the study consists of real historical data from a wind farm in Hunan Province,
China, over the course of one year. The data sampling frequency is 15 min and includes
measurements such as wind speed and direction at 10 m, wind speed and direction at 50
m, hub wind speed and direction, temperature, pressure, and historical actual power.

Due to the long-term operation of wind power generation systems and their support-
ing meteorological monitoring equipment, various problems may occur in data collection
(such as equipment failures, signal interference, network transmission interruptions, etc.),
resulting in noise, erroneous records, and missing data in the original data. The main
purpose of data cleaning is to eliminate invalid data, fill in missing values, and correct
erroneous records, thereby ensuring the integrity and accuracy of the dataset. Due to the
uncertainty of missing values, the longest continuous missing time is approximately 3 h,
which means 12 consecutive sampling points. The Isolation Forest algorithm [28] is used for
outlier detection, to fill in missing values and solve outliers, we used the commonly used
linear interpolation [29] method as shown in Equation (1), where (y2 > y1) and (x3 > x > x7).
In the equation, y represents the value of the unknown data point to be estimated, and x
is the value of the unknown data point. This equation is based on the principle of similar
triangles, using the two known data points (x1, y;)and (xp, y,) to calculate the data of
the interpolated point.

(Y2 —y1) X (x —x1)

y=wn-+ po— 1)

We use StandardScaler for data normalization [30], and the formula for data normal-
ization is shown in Equation (2):
z="_"F @)

Here x is the original data value, y is the mean of the feature, which is the average of
all data points, and ¢ is the standard deviation of the feature, which indicates the dispersion
of the data points.

3. Methods and Results

3.1. Lightweight Representation Learning Model
3.1.1. Model Design

The lightweight representation learning model set out in the present paper enhances
the dilated convolution in the encoder part of the original TS2Vec model. As illustrated in
Figure 1, the original TS2Vec model employs a dilated convolution module with 11 resid-
ual blocks to extract contextual representations for each timestamp. Each residual block
contains two one-dimensional dilated convolution layers with a dilation parameter of 21!
(i represents the order of the residual blocks) and a kernel size of 3. The dilation parameter
of the dilated convolution in each residual block increases from 1 to 1024. However, each
residual block contains two dilated convolutions with the same dilation parameter, which
can lead to some pixels in the feature map not participating in the computation when
dilated convolutions with the uniform dilation parameter are stacked. Additionally, the
gridding effect of the dilated convolution can result in a lack of interdependence between
the results of convolution layers, leading to insufficient correlation between the convo-
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lution results of corresponding layers and causing local information loss. Although the
original TS2Vec model uses a residual structure to overcome some gridding effects caused
by dilated convolutions, the dilated convolution residual block in the model performs
convolution operations based on the aforementioned residual block rather than separately
extracting multi-scale features from the original input data. Furthermore, the large number
of convolution layers in the model results in a significant number of parameters and com-
putational load. This paper refers to the scheme proposed in ESPNet [13] to replace the
dilated convolution module in the original TS2Vec model with the efficient spatial pyramid
module in Figure 2.
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Figure 2. Structure of the lightweight representation learning model.

Figure 2 illustrates the structure of the lightweight representation learning model set
out in the present paper. The starboard side of Figure 2 shows the specific implementation
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method of the efficient spatial pyramid module. To reduce the channel number of the
output feature map after the timestamp masking module in the original TS2Vec model
and thereby decrease the subsequent computational load, a one-dimensional pointwise
convolution with a kernel size of 1 is applied. Additionally, 11 parallel dilated convolution
layers with dilation parameters ranging from 1 to 1024 are utilized to perform convolution
operations on the feature map after pointwise convolution. Each dilated convolution layer
has a dilation parameter of 2/ ~! (where i represents the layer number), and the padding
value is consistent with the dilation parameter of that layer. The feature map output
from the dilated convolution layer with the smallest dilation parameter is progressively
stacked with the output feature maps from each dilated convolution layer, and each
stacked feature map is concatenated. Finally, the concatenated feature map is added to the
initially linearly projected input feature map to form a residual structure. This structure
employs the concept of feature hierarchy to directly utilize dilated convolutions with
different dilation parameters for multi-scale feature extraction on the input feature map
after pointwise convolution, layering, and stacking the output of dilated convolutions with
different dilation parameters. Essentially, this adds discrete receptive fields, effectively
compensating for the gridding effect caused by dilated convolutions, preserving local
details and global semantic features, and better capturing multi-scale temporal information.
Meanwhile, the use of pointwise convolution and a reduced number of convolution layers
decreases the overall computational load of the model.

The hierarchical contrasting module in Figures 1 and 2 utilizes temporal contrastive
loss and instance-wise contrastive loss values to capture the contextual representation of
the time series. The representation of the same timestamp from two views of the input
time series is considered positive, while the representation of different timestamps from the
same time series is considered negative. Let i be the index of the input time series sample
and t be the timestamp. The temporal contrastive loss of the i-th time series with timestamp
t can be given in Equation (3).

S exp (ris 1)
Yrea (exp (ri,t . rg,t’) + 1 zpexp (rig- ri,t/))

temp = _10g (3)

The instance-wise contrastive loss indexed by (i, t) can be expressed as Equation (4).

exp (T’i,t . rg,t)
L (exp(rie-7),) + Lsjexp(rig - i0))

(4)

3.1.2. Model Testing and Result Analysis

To validate the performance of the lightweight representation learning model set out
in the present paper, we use the feature matrix of wind farm historical data after feature
representation combined with the downstream time series forecasting model LSTM [31]
to test the lightweight representation learning model. Figure 3 displays the specific con-
struction method of the LSTM model used in the model testing process. The LSTM model
consists of 5 layers, with the first 3 layers of LSTM hidden layers having a size of units set
to 50 and a return sequence status set to True. The fourth layer of LSTM hidden layers has
a size of units set to 50 and a return sequence status set to False. The fifth layer is the fully
connected Dense layer, and the output data dimension is placed at 96, corresponding to a
data length of one day in the dataset.
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Figure 3. Details of LSTM during model testing process.

We first use the LSTM model to make downstream forecasting on the actual data
of the wind farm represented by the original TS2Vec model and the actual data of the
wind farm represented by the improved TS2Vec model, which is our proposed lightweight
representation learning model. The dataset includes wind speed at 10 m, wind direction at
10 m, wind speed at 50 m, wind direction at 50 m, hub height wind speed, hub height wind
direction, temperature, air pressure, and historical actual power data from wind turbines
within one year. The dataset size is (35,040, 9).

As shown in Figure 1, the original TS2Vec model’s dilated convolution part is set to
have a kernel size of 3, and the first 10 residual blocks have 64 input and output feature
map channels, while the last residual block has 352 output feature map channels. For the
improved TS2Vec model, since the original TS2Vec model outputs a feature map with a
feature dimension of 64 after the timestamp masking module, the feature map is transposed
to the number of channels of 64. Then, a one-dimensional pointwise convolution with
a kernel size of 1 is utilized to reduce the number of channels in the feature map to 32,
thereby reducing the subsequent computational load. In the subsequent parallel dilated
convolution section, the kernel size of each parallel dilated convolution layer is set as 3,
and the number of channels in the output feature map is 32. The feature maps output by
each dilated convolution layer are stacked step by step, and each stacked feature map is
concatenated. Finally, the concatenated feature map is added to the input feature map with
a channel number of 352 that was first projected through a linear connection layer to obtain
the output feature map with a channel number of 352. Using 70% of the data in the dataset
for training the original TS2Vec model and the improved TS2Vec model, and encoding the
original dataset with the trained models, a representation dataset of size (35,040, 352) can
be achieved.

As for the LSTM model for downstream time series forecasting used for model testing,
a historical data set with a length of 288, which corresponds to three days of data after
representation learning, is set as input x. The actual power of the original data with a
length of 96, which corresponds to one dayj, is taken as output y to train the LSTM model.
Similarly, 70% of the original data set is used as the training set, 10% of the data set is used
as the validation set, and 20% of the data set is used as the testing set.
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The evaluation indicators of the original TS2Vec model and the improved TS2Vec
model combined with LSTM for time series forecasting on the test set are as follows [32],
MAE and RMSE have the same unit as y.

l m
MAE = —Y | (i~ 4,) | ©)
i=1
R A
MSE = 203 (1= 9) ©)
1 m
RMSE = | [ (yi — §,)? )
i=1

The training and testing experiments of the model were conducted on an x86-64 Linux
operating system equipped with Intel (R) xeon (R) Gold 6430 CPU and NVIDIA A800
SXM4 80 GB GPU, using the PyTorch 2.1.0 and CUDA 12.1 environment.

Table 1 displays the test results of the lightweight representation learning model
proposed in this paper, namely the improved TS2Vec model and the original TS2Vec
model, when combined with the same downstream forecasting model LSTM for time series
forecasting on the same dataset.

Table 1. Comparison of performance testing between the original TS2Vec model and the improved

TS2Vec model.
Model MAE MSE RMSE
Original TS2Vec + LSTM 0.6438 0.7305 0.8547
Improved TS2Vec + LSTM 0.6228 0.7268 0.8525

We simultaneously calculated the parameter and computational complexity of the
Encoder section of both the original TS2Vec model and the improved TS2Vec model on the
test set [33]. The computational complexity (FLOPs) stands for floating point operations
per second, the parameter count (Params) is mainly used to designate the size of the model.
The comparison results are presented in Table 2.

Table 2. Comparison of model size between the original TS2Vec model and the improved TS2Vec

model.
Model FLOPs Params
Original TS2Vec + LSTM 4.9659 G 0.7110 M
Improved TS2Vec + LSTM 0.4286 G 0.0609 M

From Table 2, it can be observed that compared to the original TS2Vec model, the
improved TS2Vec model combined with LSTM significantly reduces computational and
parameter complexity while ensuring forecasting accuracy.

We also compared the results of time series forecasting on the original dataset using
the LSTM model and several other existing deep learning time series models without using
representation learning models, with the forecasting results of the improved TS2Vec set out
in the present paper combined with the LSTM model. The results are presented in Table 3.
Meanwhile, Figures 4-7 demonstrate the performance of the improved TS2Vec combined
with the LSTM model and other mainstream deep learning time series forecasting models
on the same test set.

From the comparison curves of the improved TS2Vec combined with LSTM model and
other mainstream deep learning time series forecasting models” wind power forecasting
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results and actual wind power generation values in randomly selected periods shown in
Figures 4-7, it can be observed that the improved TS2Vec combined with LSTM model’s
forecasting results are closest to the true curve. From the above results, it be observed
that the use of the representation learning model has significantly improved the wind
power time series forecasting results. At the same time, the improved representation model
has significantly reduced the parameter and computational complexity compared to the
original TS2Vec model, which well proves the superiority of the lightweight representation

learning model proposed in this paper.

Table 3. Comparison of performance testing between the improved TS2Vec combined with LSTM

model and other mainstream deep learning models.

Model MAE MSE RMSE

MLP [34] 0.7178 0.9589 0.9793

RNN [35] 0.7538 0.8680 0.9317
N-BEATS [36] 0.7001 0.8787 0.9374
LSTM 0.7380 0.9790 0.9895

Original TS2Vec + LSTM 0.6438 0.7305 0.8547
Improved TS2Vec + LSTM 0.6228 0.7268 0.8525
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Figure 4. Comparison between improved TS2Vec combined with LSTM and MLP.
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Figure 5. Comparison between improved TS2Vec combined with LSTM and RNN.
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Figure 6. Comparison between improved TS2Vec combined with LSTM and N-BEATS.
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Figure 7. Comparison between improved TS2Vec combined with LSTM and original LSTM.

3.2. Multivariate Feature Mixing Model
3.2.1. Model Design

In the earlier part of the paper, we designed a lightweight representation learning
model and verified through experiments that the feature representation model achieved
good representation performance. As the original data dimension after feature represen-
tation became 352 dimensions, we studied how to develop a better multivariate feature
mixing downstream time series forecasting model that can fully integrate and extract the
features of each dimension in multivariate time series data. As entered in Section 1, many
current time series forecasting models use the idea of channel independence. Therefore,
we draw inspiration from the Time Series Mixer (TSMixer) [24] model and use a stacked
multilayer perceptron architecture to achieve cross-variable information mixing and feature
extraction of high-dimensional and multivariate historical weather and power data of wind
farms after feature representation, thereby further improving the accuracy of wind power
forecasting. In addition, we have introduced a lightweight, parameter-free attention mech-
anism, SimAM [25], based on downstream forecasting models, which generates attention
weights by calculating the local self-similarity of feature maps without introducing any
additional parameters, thus improving the performance of downstream forecasting models.
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The overall structure diagram of the multivariate feature mixing downstream forecast-
ing model designed in this paper is presented in Figure 8. In terms of the dataset, we use the
improved TS2Vec representation model to represent the data with a size of (35,040, 352) as
the dataset. At the same time, to further highlight the impact of historical power generation
on future power generation, we also concatenated historical power generation data in the
last column based on 352-dimensional data, so the size of the dataset becomes (35,040, 353).
The model uses historical data from the past three days to forecast the power generation
for the next day. Here, a length of 288 is configured as the input, which corresponds to
the size of (288, 353) after representation learning. The output size of the model is (96, 1),
which is the power generation for the next day.

288 %352 288x1 288x%353 288x353 96x1 96x1
Tifne
] L Mixer ;

+ L g = l o N Ten_l por al E

) : Projection E

D L - ]
Historica! Historical Historical Forecasted
Representation  pgyer Data Time Series Power Data

Data

Figure 8. The overall structure of multivariate feature mixing model.

From Figure 8, it can be observed that the multivariate feature mixing model includes
two stacked Mixer Layer modules, which are the core modules of the multivariate feature
mixing model. Figure 9 shows the specific implementation details of the mixer layer in the
multivariate feature mixing model. The mixer layer is mainly composed of time mixing
and feature mixing, which can fuse the time and feature levels of input data to better
forecast time series using more information from the input data. Both the time mixing and
feature mixing modules include the MLP module. For time mixing, MLP;me consists of a
fully connected layer, a ReLU activation function, and a dropout layer. The input feature
map (where rows represent time and columns represent features) is first transposed, and
MLP4ipe is implemented in the time domain and shared among all features. For feature
mixing, MLPfeature consists of two fully connected layers, ReLU activation function, and
dropout layer. MLPqature applies to the feature domain and is shared across all time steps.
The time mixing and feature mixing modules can automatically adapt to the use of time
and cross-variable information, and both modules utilize residual connections to help
the model learn deeper data representations while maintaining reasonable computational
costs [37].

The attention mechanism can automatically identify important parts of the input
data, highlight key features through weight allocation, and reduce the interference of
redundant information on the subsequent processing of the MLP. This filtering mechanism
significantly improves model efficiency, especially in complex inputs such as long sequences
and multimodal data [38]. From the Figure 9, to enable the model to better extract the
features of the original data in the time and feature dimensions, this paper introduces
the lightweight and parameter free attention mechanism module SimAM, which has
good application effects in the image field, in both time mixing and feature mixing, and
modifies its structure to an attention mechanism module suitable for one-dimensional time
series domain.
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Figure 9. The specific implementation details of the mixer layer.

As indicated in Figure 10, many attention mechanism modules currently operate along
the channel or spatial dimension, generating channel or spatial weights and treating neu-
rons in each channel or spatial position equally [39]. SimAM can generate both channel and
spatial weights simultaneously, generating attention weights by calculating the similarity
between each pixel in the feature map and its adjacent pixels. For the input feature map
X € RB XCXL, where B represents batch size, C represents the number of channels in the
feature map, and L represents the length of the one-dimensional time series feature map.
For each pixel x; in the feature map, as shown in Equation (8), SimAM first indirectly
reflects similarity by calculating the average square of the difference between x; and its
neighboring pixels. (2; represents the neighborhood of x;, and N represents the number
of pixels in the neighborhood. However, to simplify the calculation, this paper uses the
average of pixels in the feature map as xj to calculate s;.
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Figure 10. Comparison of different types of attention mechanisms for time series.

After obtaining s;, the attention weight w; is calculated using Equation (9), which is
similar to the sigmoid function that projects the weight values into the (0, 1) interval, where
0? is the normalization of s; and € is taken as 1 x 10™%. After obtaining the attention weight
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map, it can be multiplied element by element with the original feature map to obtain the
feature map after passing through the attention module.

1

)

Figure 11 displays the temporal projection module in the multivariate feature mixing

)

w; =

model of this paper. The module first takes the data from the target column of the feature
map processed by the mixer layer. After various time mixing, feature mixing, and SimAM
attention mechanism modules in the early stage, the target column not only retains the
information of historical power generation, but also integrates numerous cross features
from other dimensions and spaces. After being applied to the fully connected layer in the
time domain, it can learn the time pattern and map the time series from the original input
length of 288 to the target forecasting length of 96.
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Figure 11. The specific implementation details of the temporal projection module.

3.2.2. Model Testing and Result Analysis

In order to verify the compatibility between the multivariate feature mixing model
and the lightweight representation learning model proposed in this paper, as well as the
forecasting performance of the model, we conducted sufficient experiments. The training
and testing experiments of the model were conducted on an x86-64 Linux operating system
equipped with Intel (R) xeon (R) Gold 6430 CPU and NVIDIA A800 SXM4 80 GB GPU,
using the Pytorch framework.

We took the lightweight representation learning model for feature representation and
used 70% of the data in the 35,040 length dataset as the training set, 10% of the data as the
validation set, and 20% of the data as the testing set to train and test the performance of
the multivariate feature mixing model and compare them with other mainstream models.
At the same time, ablation experiments were designed to verify the contribution of the
SimAM attention module in a multivariate feature mixing model to the improvement of
model forecasting performance. Utilizing MAE, MSE, and RMSE as evaluation indicators,
the Table 4 shows the specific performance of the model on different indicators.

From Table 4, it can be observed that we conducted experiments on various combina-
tions and found that adding the SimAM attention module to the downstream forecasting
model resulted in a decrease in forecasting error. In particular, the comparison data in
the third and fourth rows of Table 4 shows that the SimAM module has a particularly
significant improvement in forecasting performance when the representation model is not
used on the original data. Even with the use of the SimAM module for the data after feature
representation, the forecasting performance of the model can be enhanced to a certain
extent. In addition, we compared the experimental results of the original TS2Vec model
combined with our proposed multivariate feature mixing downstream forecasting model
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and the improved TS2Vec model combined with our proposed downstream forecasting
model in this paper. It was found that the improved TS2Vec model combined with the
downstream forecasting model performed better, further confirming the effectiveness of
the multivariate feature mixing model in this paper. At the same time, we also listed the
experimental results of the improved TS2Vec model combined with SimAM attention mod-
ule and the currently advanced lightweight time series forecasting model SparseTSF [40] in
Table 4. Through comparison, we can further verify the advantages of the model scheme
used throughout this paper. At the same time, Table 3 also lists the performance of other
models on the same dataset, all of which have well-verified the progressive nature of the
model set out in the present paper. Figure 12 shows the comparison results between the
forecasted power and actual power of the wind power forecasting model proposed in this
paper on a long-term test set. It can be observed that the trend of the model’s forecasted
results and true values is similar in most intervals. The model proposed in this paper not
only has significant advantages in the evaluation indicators such as MAE, MSE, RMSE
listed in Table 4, but also demonstrates the effectiveness and accuracy of the proposed
model in wind power forecasting by maintaining a consistent trend between the visualized
wind power forecasting results and the actual values over a long period of time, as shown
in Figure 12.

Table 4. Comparison of wind power forecasting performance on various combinations.

Model MAE MSE RMSE
Improved TS2Vec + LSTM 0.6228 0.7268 0.8525
Improved TS2Vec + SimAM + SparseTSF [40] 0.6674 0.7202 0.8486
TSMixer 0.7053 0.8167 0.9037
SimAM + TSmixer 0.6673 0.7423 0.8615
Original TS2Vec + TSMixer 0.5404 0.4889 0.6992
Original TS2Vec + SimAM + TSMixer 0.5334 0.4721 0.6871
Improved TS2Vec + TSMixer 0.3780 0.2477 0.4977
Improved TS2Vec + SimAM + TSmixer 0.3735 0.2434 0.4934
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Figure 12. Comparison between the forecasted results and actual wind power of our proposed model
on a long-term test set.
4. Discussion and Future Work

This paper proposes an innovative two-stage forecasting framework for wind power
forecasting tasks, which achieves improved forecasting performance through a collabo-
rative optimization mechanism of lightweight representation learning and multivariate

171



Energies 2025, 18, 2902

feature mixing. In the representation learning stage, by designing the efficient spatial pyra-
mid module to reconstruct the multi-scale feature fusion path, the gridding effect caused
by traditional dilated convolution is effectively alleviated, and the model parameters and
computational complexity are compressed, significantly improving the efficiency of feature
extraction. In the feature mixing stage, the TSMixer model achieves deep mining of cross-
dimensional interactive features through a linear mixing layer, and combines the SimAM
attention mechanism to construct a dynamic weight allocation network, enabling the model
to adaptively capture the contribution differences of key time steps. The experimental
results show the rationality and effectiveness of the model design. Future research will
focus on the fusion modeling of multimodal meteorological data, exploring a hybrid mod-
eling paradigm of physical constraints and data-driven approaches to enhance predictive
robustness under extreme weather conditions, and attempting to extend the framework to a
wider range of time series forecasting scenarios such as photovoltaic power forecasting and
power load forecasting, promoting the development of intelligent scheduling technology
for clean energy.

5. Conclusions

This study presents a two-stage wind power forecasting framework integrating
lightweight representation learning and multivariate feature mixing, which significantly im-
proves forecasting accuracy through the collaborative optimization of an improved TS2Vec
model and a SimAM-TSMixer hybrid architecture. Experimental results show that the
proposed model outperforms existing methods across key metrics (MAE, MSE, and RMSE),
validating its effectiveness. The efficient spatial pyramid module in the representation
learning stage mitigates the gridding effect of dilated convolution while reducing compu-
tational costs, whereas the feature mixing stage leverages TSMixer’s cross-dimensional
interaction and SimAM’s parameter-free attention to dynamically weight critical time steps.
However, limitations remain: (1) The model’s adaptability to high-frequency fluctuating
data requires further validation. (2) The linear assumptions in feature mixing may constrain
nonlinear modeling under extreme weather conditions. In realistic applications, ensuring
data quality and timeliness is crucial, and site-specific parameter tuning is recommended
to optimize performance. Additionally, the framework could be expanded to broader time-
series forecasting scenarios, such as photovoltaic power and load forecasting, to advance
intelligent scheduling technologies for clean energy.
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Al Artificial Intelligence

SVM Support Vector Machine

ANN Artificial Neural Network

DNN Deep Neural Network

CEEMDAN  Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
EWT Empirical Wavelet Transform

LSTM Long-Short Term Memory

ESPNet Efficient Spatial Pyramid Net
PatchTST Patch Time Series Transformer
SimAM Similarity-Aware Activation Module
LLMA4TS Large Language Models for Time Series
LLM Large Language Model

TSMixer Time Series Mixer

MLP Multilayer Perceptron

RNN Recurrent Neural Network

FLOPs Floating Point Operations

CPU Central Processing Unit

GPU Graphics Processing Unit

MAE Mean Absolute Error

MSE Mean Squared Error

RMSE Root Mean Square Error
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Abstract

In view of the limitations of traditional offline detection and external excitation online detection
of 10 kV cables, this paper proposes a method to evaluate the insulation aging condition
of power cables by online measuring of the phase angle of the cable’s ground current, and
explores the impact of load fluctuations on cable insulation. By setting the relative permittivity
of the cable to characterize the phase variation of the ground current under different aging
degrees, and analyzing the phase variation of the cable’s ground current under different load
changes at the same aging degree, a load correction-based dynamic dielectric loss evaluation
method for cables is proposed. Through the construction of cable simulation models and the
processing of field data, the following conclusions have been reached: Under a 1 MW load,
the phase angle of the sheath grounding current in the aged phase increases as the dielectric
constant of the insulation increases. At the same aging degree, with an increase in load, the
phase differences of the aging phase sheath ground current and the steel armor ground current
both show a decreasing trend. To eliminate the impact of load, a dynamic dielectric loss load
correction method is proposed, and combined with field data analysis, the dynamic dielectric
loss of cables under different loads is corrected to a 1 MW load. Specifically: Under 0.3 MW,
the correction coefficients k for the sheath and steel armor are 0.609 and 0.778, respectively.
Under 3.5 MW, the correction coefficients k for the sheath and steel armor are 1.435 and 1.089,
respectively. This study provides a theoretical basis and experimental verification for online
cable monitoring methods.

Keywords: cable aging; online detection; grounding current phase; load; dynamic
dielectric loss

1. Introduction

Due to the rapid development of urbanization, underground cables play an increas-
ingly vital role in urban power supply and are widely used [1]. However, power cables
have inherent drawbacks, such as unstable insulation performance during manufacturing,
potential insulation damage due to collisions during installation, and long-term exposure
to humid underground environments that can lead to water tree aging [2,3], as shown
in Figure 1. Statistics show that 32% of urban distribution cables in China have been in
operation for over 15 years, and insulation aging accounts for more than 47% of total cable
failures. These issues cause insulation degradation, significantly reducing performance and
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leading to insulation breakdown accidents [4]. It can be seen that the aging of cables has a
non-negligible impact on the normal operation of the power grid. Effective fault detection
of cables should be carried out as soon as possible to prevent serious losses.

Figure 1. Insulation damage caused by overheating and moisture.

Extensive research has been conducted on cable insulation aging detection [5-8]. For
example, reference [9] studied water tree and thermal aging in cable insulation, simulating
aging experiments on power cable samples and determining aging levels by comparing tand-
¢ curves under different aging conditions. In reference [10], tensile, breakdown strength,
infrared spectroscopy, and dielectric spectroscopy tests were performed on XLPE cables,
establishing relationships between aging time and parameters such as tensile strength,
breakdown strength, hydroxyl index, and dielectric loss factor. Reference [11] proposed an
oscillating wave partial discharge detection method for high-voltage XLPE cables using
LSTM algorithms, which locates defects by analyzing the time differences between the
original and reflected waves. Reference [12] provides a detailed introduction to partial
discharge detection methods, including the offline detection of AC test, VLF test, and DAC
test, as well as online detection methods such as HFCT, VHF, AE, etc., and introduces their
principles and applicability. Although these studies achieved results, most of the offline
detection methods are destructive, and have the disadvantages of large test equipment
and high operation requirements. Moreover, the online detection methods are affected by
serious electromagnetic interference and signal attenuation [13-15]. Research on reliable
online detection without external excitation remains scarce [16-18]. Based on this, this
paper aims to propose an online detection method for the variation of the grounding
current phase angle of power cables with aging. This method does not require external
excitation and compares the phase angle relationships of cable grounding currents under
different degrees of simulated aging through simulations and experiments, in order to
determine the aging status of the cable.

However, in practical engineering applications, changes in the load side of cable lines
can have a certain degree of impact on cable insulation. When the load side equipment
runs for a long time, a large amount of heat will be generated and conducted to the
cable, causing a sharp increase in cable temperature. High temperature conditions can
accelerate the thermal aging process of cable insulation materials, reducing their tensile and
bending strength and making them more susceptible to mechanical damage and insulation
breakdown [19-21]. And when the load size changes, it will directly cause a change in the
current size of the cable, thereby causing a change in the phase angle of the cable’s ground
current. Therefore, this article establishes aging models for power cables under different
loads, analyzes the influence of load on the phase angle of the ground current with aging,
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and proposes a method for dynamic dielectric loss load correction. By combining field data
collection with analysis, the dielectric loss measurements under different load conditions
are normalized to a 1 MW reference, thereby mitigating the influence of load variations
on detection accuracy. The results can provide a reference for online detection of aging in
power cables.

2. Phase Analysis Model for 10 kV Three-Core Pipe-Type Cables

This section builds a 10 kV three-phase cable model based on simulation software,
and simulates cable aging by changing the relative dielectric constant of its insulation layer.

2.1. Cable Simulation Model

The 10 kV cable simulation model, shown in Figure 2, consists of a power supply
side, input side, and load side. The power supply uses a 110 kV three-phase ideal source,
stepped down to a 10 kV equivalent source. The output connects to a 1 MW load to simulate
actual usage, while the input side includes current transformers to capture shielding layer
and armor grounding currents.

Encompassing
N - Pipe

(110.0 10.0 [MVA]
h ; \q Ph 110 [kV]/ 10.5 [kV] :: o 10.5 [k{/[/M(\)/.el][kV]
| 0.01 [ohm]
\
110.0 [kV], 50.0 [Hz] = VY
100.0 [MVA] 0-01 fohm]
71 = 6.0 [ohm] /_ 80.0 [deg] —
0.01 [ohm]
(@) (b)
Figure 2. Simulation model of 10 kV distribution network power cable: (a) power supply side;

(b) load side.

2.2. Cable Structure and Aging Simulation

The three-phase cable arrangement and single-cable structure are depicted in Figure 3. A sin-
gle cable comprises a conductor, inner semiconductor layer, insulation layer, outer semiconductor
layer, metal shielding layer, filler layer, inner sheath, armor layer, and outer sheath.

>
©®
@) |
Q \v/ §
<

Pipe Outer Insulator
Pipe
Pipe Inner Insulation

Inner Coax Cable

%
\“,

Conducto

! I
i I 0.022¢ - -
0.06 [m]!——————————— || 0.0395¢
0.065 [m];———————————, 0.044¢ - - - -
0.068 [m]y——————— 0.0475 - - - - [
0.0583¢ - - - - - -~ - Y
0.0635 ~ — — — — — - -5 >y

Figure 3. Structure of 10 kV three-core pipe-type cable.

The simulation focuses on phase angle changes in grounding currents after aging,
considering non-uniform single-phase aging. Aging is simulated by adjusting the relative
permittivity of the insulation layer: the non-aged phases are set to 2.0, while the aged phase

177

1 [MW]



Energies 2025, 18, 3586

is set to 2.0, 2.4, 2.8, 3.2, and 5.0 to observe phase angle variations in the shielding and
armor grounding currents [15].

3. Analysis of Grounding Current Phase Angle Under Cable Aging

In the study of the cable to ground current phase angle, by analyzing the changes in
the angle’s amplitude, the aging condition and specific aging phase of cable insulation
can be determined. Therefore, in this section, which covers research on the impact of load
side on cable insulation, we choose to compare and analyze the changes in the cable to
ground current phase angle under single-phase non-uniform aging conditions to verify the
sensitivity of the grounding current phase angle to cable insulation aging characteristics
and the accuracy of determining the cable insulation’s aging phase.

3.1. Phase Angle Analysis Under 1 MW Load

In simulations using a 1 MW load, the phase angle data for the sheath grounding
current of the aged phase (A-phase) is extracted, as shown in Figure 4.
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Figure 4. Grounding current phase angles for aged A-phase: (a) sheath grounding current phase
angle; (b) armor grounding current phase angle.

By observing the phase angle changes in the above figure, it can be seen that as the
dielectric constant gradually increases from 2 to 5, the phase angle of the aging A-phase
sheath to ground current increases from —51.9° to —51.69°, while the phase angle of the
steel armor to ground current increases from —54.21° to —54.13°. The amplitude changes
of the phase angles of the two currents are 0.21° and 0.09°, respectively, and the phase
angle of the sheath current shows a gradually increasing trend. Through comparative
analysis, it can be clearly observed that the amplitude change of the phase angle of the
sheath to ground current is greater. To further investigate the current phase angle changes
of the cable, a phase angle graph of the ground current for phase B of the unaged cable was
drawn, as shown in Figure 5.

From the above figure, it can be seen that as the dielectric constant increases, the phase
angle of the unaged B-phase sheath to ground current increases from —171.9° to —171.85°,
while the phase angle of the steel armor to ground current increases from —174.217°
to —174.211°.
0.05° and 0.006°, respectively. It can be seen that the amplitude changes of the phase

The amplitude changes of the current phase angles of the two are

angle of the unaged B-phase are relatively small, and the trends of the phase angle changes
of the sheath and steel armor currents are inconsistent.
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Figure 5. Grounding current phase angles for non-aged B-phase: (a) sheath grounding current phase

angle; (b) armor grounding current phase angle.

3.2. Phase Angle Analysis Under 2 MW Load

Analogous to the above analysis method, the parameters on the load side are simulated
to be 2 MW. By simulating the uneven aging state of the cable, the current phase angle
characteristics of cable aging phase A are analyzed, as shown in Figure 6.
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Figure 6. Grounding current phase angles for aged A-phase: (a) sheath grounding current phase
angle; (b) armor grounding current phase angle.

After comparing the above subfigures, it can be seen that as the dielectric con-
stant increases, the phase angle of the cable sheath to ground current increases from
—54.83° to —54.72°, while the phase angle of the steel armor to ground current increases
from —57.07° to —57.04°. The increases in the phase angle amplitude of the two are
0.11° and 0.03°, respectively. By analyzing the trend of the current phase angle changes in
aging phase A, it can be seen that the sheath to ground current phase angle shows a gradu-
ally increasing trend, while the changes in the steel armor to ground current phase angle
are relatively irregular, and the two trends do not reflect consistency. In order to compare
the phase angle variation characteristics of the aged and unaged phases of cables more
specifically, a current phase angle variation diagram of the unaged phase B was drawn, as
shown in Figure 7.
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Figure 7. Grounding current phase angles for aged A-phase: (a) sheath grounding current phase
angle; (b) armor grounding current phase angle.

By observing the amplitude changes of the current phase angle during the cable’s B phase,
it can be seen that as the dielectric constant increases, the phase angle of the sheath to ground
current increases from —174.83° to —174.80°, while the phase angle of the steel armor to ground
current decreases from —177.07° to —177.08°. The amplitude changes of the two phase angles
are 0.03° and —0.01°, respectively. From the data in the above figure, it can be seen that the
phase angle change during the unaged B-phase is relatively small, and there is no correlation
between the phase angle change characteristics of the sheath and steel armor currents.

3.3. Phase Angle Analysis Under Different Loads

As can be seen from the previous text, when the cable ages, the phase angle of the
grounding current of the cable shows a regular change as the degree of aging increases.
Different cable loads can have a certain impact on this pattern, such as changes in the
phase angle difference. In order to explore the influence of different loads on the online
monitoring of the aging status of the grounding current phase angle of the cable, this
section sets four different load side parameters of 0.5 MW, 1 MW, 1.5 MW, and 2 MW for
cables under four different working conditions, and compares the phase angle change
patterns of the cables under aging compared to normal conditions.

We simulated single-phase aging conditions under four different loads, with a di-
electric constant of 2.8 for the aging cable. The phase difference between the grounding
currents under normal conditions is shown in Figure 8.
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Figure 8. Grounding current phase differences under different loads: (a) aged phase cable;
(b) non-aged phase cable.
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As the load increases, the phase difference for the aged phase decreases: the sheath
phase difference is reduced from —0.145° to —0.039°, and the armor phase difference
decreases from —0.044° to 0.007°. For the non-aged phase, the sheath phase difference
decreases from —0.035° to —0.011°, while the armor phase difference increases from 0.007°
to 0.02°. The sheath phase difference is most affected by load changes, indicating that load
variations can influence the accuracy of online aging detection.

4. Dynamic Dielectric Loss Correction Method Under Different Loads

To mitigate load interference, a dynamic dielectric loss correction method is proposed.

4.1. Dynamic Dielectric Loss Calculation

A vector diagram of three-phase cable currents is shown in Figure 9.

Figure 9. Cable current phase vector diagram.

Here, I, Ip, and I¢ are the main currents, while I54, I;, and I5c are the grounding
currents. The dynamic dielectric loss angle J is defined as the complement of the angle
between the grounding current and the main current:

(SAR‘J9OO—Z(I(5A, IA) (1)

Under normal cable conditions, distributed capacitance is formed between the con-
ductor of the cable and the insulation and shielding layers. When the insulation is fine,
the resistive component of the leakage current is extremely small, while the capacitive
component dominates. Therefore, the phase difference between the grounding current and
the main current is about 90°. When the cable ages, the insulation resistance decreases,
the resistive component of the leakage (grounding) current increases, and the grounding
current changes from being mainly capacitive to exhibiting a mixture of resistance and
capacitance, resulting in a decrease in the phase difference between the grounding current
and the main current, that is, an increase in the dynamic dielectric loss angle 4 and an
increase in the dynamic dielectric loss tand 4. When the cable load increases, the main
current increases and the cable heats up, causing changes in insulation resistance and also
causing changes in 6 4. Therefore, this section studies the method of dynamic dielectric loss
discrimination for insulation aging based on load correction, and summarizes its variation
pattern through analysis of field data.

181



Energies 2025, 18, 3586

4.2. Cable Current Signal Collection and Analysis

The signal of the grounding current of the cable box during the operation of a branch line
is collected by using clamp-type transformers and oscilloscopes. A diagram of the current field
collection model and a photo of it in the field are shown in Figure 10. The 10 kV branch coaxial
cable is transmitted through underground cables, and each phase cable is stripped and led out
to the ring-shaped main unit. The model used is ZR-YJV22-8.7/15-3X400. By using current
transformers to collect the main current of the cable, the grounding current of the steel cable
and the grounding current of the external shield can be used to obtain the current signals.

Inflow
End 5

X Steel Armor
Grounding

= Outer Shield

Outflow : X
Grounding

Figure 10. Underground cable model and field photo: (a) current collection model; (b) field collection.

The test cable parameters are shown in Table 1. The experiment used three cables
with the same operating years under the same branch line. According to the on-site
introduction, the F70 cable was used for residential electricity, the F71 cable distributed
energy to commercial stores, and the F72 cable was used to supply power to roadside
lighting lamps. Due to the on-site time period and relevant personnel, the approximate
load situation was understood, and the copper shielding (sheath) grounding current and
armor grounding current signals were collected separately.

Table 1. Test cable parameters.

Test Cable Cable Switch Approximate Load
F70 3.5 MW
10 kV branch line F71 1MW
F72 0.3 MW

The phase and dynamic dielectric loss angles of the current signal collected and
processed by the oscilloscope are shown in Table 2.

Table 2. Collected phase and dielectric loss angles.

Dynamic Dielectric Dynamic Dielectric Loss

Cable Sheath Armor Main Loss Angle J; .of Angle 5 of Armor to
. Phase Phase Phase Current Sheath to Main K
Switch Main Current Phase
Angle Angle Angle Current Phase .
. Difference
Difference

F70 A 24.6° 23.7° —63.5° 1.9° 2.8°

F71 A —80.3° —81.6° —169° 1.3° 2.6°

F72 A 51.4° 50.2° —37.8° —0.8° 2°
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Based on the above dielectric loss angle calculation method, the dynamic dielectric
loss under different loads is normalized and corrected according to a 1 MW load. The
correction coefficient k is as follows:

o tand o)

T tandy”

In the formula, 6 represents the dynamic dielectric loss angle under different loads,
and Jy represents the dynamic dielectric loss angle under a load of 1 MW. The dynamic
dielectric loss and the correction factor are obtained as shown in Table 3.

Table 3. Dynamic dielectric loss and correction coefficients.

Correction Correction
Load tandy tand; Coefficient ky  Coefficient kj
3.5 MW 0.033 0.049 1.435 1.089
1MW 0.023 0.045 1 1
0.3 MW 0.014 0.035 0.609 0.778

In summary, by correcting the dynamic dielectric loss under different loads, normal-
ized dynamic dielectric loss values can be obtained to evaluate cable aging and eliminate
the influence of load on signal acquisition.

5. Conclusions

This paper investigates the phase angle changes of grounding currents in 10 kV three-
core cables under aging and varying loads, analyzes the impact of load on aging assessment,
and proposes a dynamic dielectric loss correction method. The key conclusions are as
follows:

1. For single non-uniform aging, the phase of the grounding current of the aging phase
sheath shows an increasing trend with increases in the dielectric constant, and the
change amplitude is significantly greater than that of the non-aging phase, which can
indicate a change in the phase of the aging state.

2. Observing the simulation of cable aging under 1 MW and 2 MW loads, the phase
angle of the grounding current of the steel cable first decreases and then increases
with the deepening of cable aging, and there is no overall regularity. However, the
amplitude of the phase angle change of the grounding current during the aging phase
of the steel cable is greater than that of the non-aging phase, which can be used to
distinguish aged cables.

3. When the degree of cable aging is the same, the phase angle changes of the cable
grounding current are different under different loads. As the cable load increases,
the phase difference of the aging phase grounding current shows a gradually de-
creasing trend. The phase difference of the sheath grounding current decreases from
—0.145° to —0.039°, the phase difference of the armor grounding current decreases
from —0.044° to 0.007°, the phase difference of the non-aging phase sheath grounding
current decreases from —0.035° to —0.011°, and the phase difference of the armor
grounding current increases from 0.007° to 0.02°. Therefore, it can be seen that the
load size of the cable will, to some extent, affect the accuracy of online monitoring of
cable aging based on the phase difference of the grounding current.

4. By defining the dynamic dielectric loss angle 4, a correction coefficient k based on load
normalization is proposed. Experimental data shows that under different loads, the
dynamic dielectric loss tané; needs to be normalized to a 1 MW benchmark through
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the correction coefficient k to eliminate load interference and improve the accuracy of
aging assessment under different load conditions.

The phase change of the grounding current can, to some extent, characterize cable
aging, of which the phase difference of the sheath current is a key indicator, but it needs to
be corrected based on actual load conditions to improve accuracy. This research provides a
theoretical basis and experimental verification for online cable detection methods.
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