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Abstract: Information management is a common paradigm in modern decision-making. A wide
range of decision-making techniques have been proposed in the literature to model complex business
processes. In this Special Issue, 16 selected and peer-reviewed original research articles contribute
to business information management in various current real-world problems by proposing crisp
or uncertain multiple-criteria decision-making (MCDM) models and techniques, mostly including
multi-attribute decision-making (MADM) approaches in addition to a single paper proposing an
interactive multi-objective decision-making (MODM) approach. The papers are mainly concentrated
in three application areas: supplier selection and rational order allocation, the evaluation and selection
of goods or facilities, and personnel selection/partner selection. A number of new approaches are
proposed that are expected to attract great interest from the research community.

Keywords: multiple-criteria decision-making (MCDM); multi-attribute decision-making (MADM);
fuzzy sets; neutrosophic sets; rough sets; aggregation operators; adaptive neuro-fuzzy inference
system (ANFIS)

1. Introduction

Complex information management is an important part of activity in modern decision-making.
Today’s real-world problems involve multiple data sets, some precise or objective and some uncertain
or subjective.

A wide range of statistical and non-statistical decision-making techniques have been proposed in
the literature to model complex business or engineering processes. Multiple-criteria decision-making
(MCDM) methods are among the techniques that have recently been gaining extraordinary popularity
and wide applications [1].

Due to lack of precise data in real-word problems, statistical methods (i.e., probability theory) are
useful in modeling processes with incomplete or inaccurate data. Meanwhile, non-statistical methods
(i.e., fuzzy set theory, rough set theory, possibility theory, or fuzzy neural networks) are useful for
modeling complex systems with imprecise, ambiguous, or vague data. Fuzzy MCDM techniques and
their applications are constantly developing [2,3], starting from type-1 fuzzy sets and further extending
to complex fuzzy sets [4]. A neuro-fuzzy approach recently has emerged as a popular technique
for addressing problem-solving in the business environment [5]. A new emerging tool for uncertain
data processing, known as neutrosophic set, has also been successfully applied for decision-making
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problems [6]. In addition, rough set theory is a powerful method for dealing within formation systems
that demonstrate inconsistency, and fuzzy-rough models are able to analyze inconsistent and vague
data [7]. On the basis of fuzzy set theory and aggregation operator theory, numerous decision-making
theories have been developed and information aggregation methods under fuzzy aggregation operator
have been suggested [8].

Discussions of the relationship and combination of fuzzy and probabilistic representations of
uncertainties in multiple-attribute engineering and management problems have lasted for many years
and do not seem to be finished to date [9]. Therefore, hybrid MCDM models are quickly emerging as
alternative methods for information modeling [10–12].

One can notice that crisp, fuzzy, or hybrid decision-making techniques are extremely
widely applied for transportation, logistics, and supplier selection problems, requiring the
effective management of information when evaluating alternative solutions and making optimal
decisions [13–18]. The next rather frequent application of MCDM techniques is for the assessment of
service quality in different industries and various types of economic activities [19,20].

Therefore, based on the above-discussed items that highlight the topicality of the issue, we invited
authors to submit their original research articles and disseminate their new ideas related to MCDM
models and techniques to rationalize the complex process of business information management and
optimal decision-making. Reviewers and editors approved 16 papers from all the received submissions.
Next, we discuss the contribution of the published papers to the aim of the Special Issue in terms of
proposed decision-making approaches and application areas.

2. Contributions

This Special Issue includes 16 original research articles. The papers contribute to decision-making
techniques for business processes information management by offering optimal choice benefits through
a variety of methodologies and tools, mainly including novel or extended decision-making models
and methods in uncertain environments.

The topics of the Special Issue gained attention in Europe and Asia. A total of 48 authors from
seven countries contributed to the Issue (Figure 1).

 
Figure 1. Distribution of authors by country.

The distribution of papers according to authors’ affiliation is presented in Table 1. Authors from
China contributed to 10 papers; authors and co-authors from Bosnia and Herzegovina, Serbia,
and Lithuania contributed three papers. Authors from Korea prepared two papers, an author
from Mexico contributed one paper, and researchers from Iran co-authored a single paper with
Lithuanian researchers.
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Table 1. Publications by country.

Countries Number of Papers

China 10
Korea 2

Bosnia and Herzegovina–Serbia 1
Bosnia and Herzegovina–Serbia–Lithuania 1

Iran–Lithuania 1
Mexico 1

The papers are classified according to decision-making approaches into several groups, as
presented in Figure 2. Mostly the papers propose uncertain multi-attribute decision-making (MADM)
models and techniques, while a single paper proposes a multi-objective decision-making (MODM)
approach. A significant part of papers are related to information aggregation operators (nine papers),
including Pythagorean fuzzy and Dombioperators, probabilistic fuzzy and hesitant information
aggregation (seven papers). Two papers analyze operations and aggregation methods of neutrosophic
numbers, covering neutrosophic Bonferroni mean operators and linguistic neutrosophic aggregation.
Two research works propose rough and fuzzy-rough MADM approaches and one paper presents
a fuzzy MADM dynamic approach for the optimal choice of alternatives. Another research paper
develops an adaptive neuro-fuzzy inference system (ANFIS) for the optimization of problem solutions,
one paper proposes an interactive multi-objective optimization model, one paper uses an interval
multiplicative preference relations (IMPRs) approach, and one paper develops a deterministic finite
automata-based model.

 

MCDM (16)

MADM (15)

Information 
Aggregation 
Operators (9)

Fuzzy Sets 
Theory (7)

Neutrosophic 
Theory (2)Rough and 

Fuzzy-Rough 
Sets (2)

Neuro-fuzzy 
approach (1)

Fuzzy MADM 
dynamic 

approach (1)

Deterministic 
finite automata-
based model (1

Interval 
multiplicative 

preference 
relations (1) 

MODM (1)

Figure 2. Decision-making approaches.
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The case studies and application examples of the proposed approaches presented in the papers
are mainly concentrated in three areas (Figure 3). One group of papers suggests different approaches
for supplier assessment and selection, including the topical question of green supplier selection, as
well as order allocation and the optimization of queuing systems in warehouses. The next group of
applications is related to the evaluation of facilities or goods from the viewpoint of consumers such
as brand selection, airline evaluation, or choosing a hospital, and from the view point of enterprise
managers such as enterprise resource planning (ERP) system selection, technology selection, or the
evaluation of investment alternatives. The last group of papers suggests multiple-criteria approaches
for personnel or partner selection optimization as well as job options evaluation.

Logistics, supplier
selection, and rational
order allocation

•Optimization of a
queuing system in
warehouses
• Green supplier
assessment
•Order allocation with
supplier selection
•Supplier selection with
the impact on the
efficiency of the supply
chain

Evaluation and selection
of goods, facilities, or

activities

•Evaluation of new market
•Enterprise resource
planning (ERP) system
selection
•Choosing a hospital
•Choosing a brand to buy
an air conditioner
•Selection of
propulsion/manoeuvring
system of a ferry
•Selection of investment
alternatives

Personnel
selection/partner selection

•Choosing a software
engineer for a company
(two papers)
•Graduate’s job options
evaluation
•Evaluation a
subcontractor for
outsourcing
• Partner selection for an
enterprise

Figure 3. Research areas of case studies.

The Special Issue received a paper related to subcontractor evaluation in a dynamic multi-attribute
group decision-making (MAGDM) environment using a new fuzzy approach based on the EDAS
(Evaluation based on Distance from Average Solution) method [21]. Another paper proposes an
extended bi-directional projection method for solving MADM problems with Pythagorean uncertain
linguistic variables [22]. A paper focusing on supplier selection in a polyvinyl chloride (PVC) carpentry
company develops a new model using rough analytical hierarchical process (AHP) for criteria weight
calculation, followed by the application of the rough weighted aggregated sum product assessment
(WASPAS) method to determine the ranking preorders of the alternative suppliers [23]. One more
paper related to supply chain management (SCM) offers an interactive multi-objective optimization
approach for the supplier selection and order allocation problem. In this paper, the concept of
desirability is also incorporated into the optimization model to take into account the principles of
diminishing marginal utility [24]. For uncertainty and incompleteness in assessing green suppliers,
an approach based on rough ANP and evidence theory is proposed [25]. A compound expression
tool of interval-valued dual hesitant fuzzy unbalanced linguistic set (IVDHFUBLS) is proposed to
help decision-makers by elucidating their assessments more comprehensively and completely. It also
prioritizes weighted aggregation operator for IVDHFUBLS-based decision-making scenarios and then
analyzes its properties and special cases [26]. A novel convex combination of multi-hesitant fuzzy
numbers (MHFNs) is introduced along with some aggregation operators and their corresponding
properties are discussed in detail [27]. Two papers focus on the analytical investigation of properties
and some special cases related to the parameter vector for a Muirhead mean (MM) operator in a
Pythagorean fuzzy context [28,29]. A MADM model is developed in a linguistic cubic variable (LCV)
setting on the basis of Dombi-weighted geometric average (DWGA) [30]. One paper presents the
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concept of a single-valued linguistic neutrosophic interval linguistic number and some weighted
arithmetic averaging and weighted geometric averaging operators are proposed and their properties
are investigated [31]. Score function and accuracy function are proposed, satisfying the ranking
principle and extending the operators under a neutrosophic environment [32]. Hesitant probabilistic
fuzzy MAGDM is studied [33]. An adaptive neuro-fuzzy inference system (ANFIS) model is developed
for a warehouse system with two servers to define queuing system optimization parameters [34].
A quick algorithm for a binary discernibility matrix simplification using deterministic finite automata
is proposed along with definitions of row and column relations [35]. A methodology is proposed
to provide reliable consistent and in consensus Interval Multiplicative Preference Relations (IMPRs)
using Hadamard’s operator [36].

3. Conclusions

The topics of this Special Issue piqued the interest of researchers both in Asia and in Europe;
researchers from seven countries authored and co-authored papers published in the Issue.

Although the announced topics of the Special Issue covered MADM and MODM theories, mainly
MADM approaches have been suggested, while a single research paper proposed a MODM model.
Therefore, multi-attribute decision-making techniques proved to be highly applicable for business
processes information management.

Most approaches suggested decision models under uncertainty, proposing extensions of
decision-making methods in combination with fuzzy, rough, and neutrosophic sets theory. Particular
attention was devoted to information aggregation operators; 65 percent of papers dealt with the item.

The application areas of proposed MCDM techniques mainly covered logistics and supply chains
optimization, the selection of goods or facilities, and personnel selection.

Author Contributions: All authors contributed equally to this work.

Acknowledgments: The authors express their gratitude to the journal Information for offering an academic
platform for researchers to contribute and exchange their recent findings in a sustainable environment.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Selection of appropriate subcontractors for outsourcing is very important for the success of
construction projects. This can improve the overall quality of projects and promote the qualification
and reputation of the main contractors. The evaluation of subcontractors can be made by some
experts or decision-makers with respect to some criteria. If this process is done in different
time periods, it can be defined as a dynamic multi-criteria group decision-making (MCGDM)
problem. In this study, we propose a new fuzzy dynamic MCGDM approach based on the
EDAS (Evaluation based on Distance from Average Solution) method for subcontractor evaluation.
In the procedure of the proposed approach, the sets of alternatives, criteria and decision-makers
can be changed at different time periods. Also, the proposed approach gives more weight to
newer decision information for aggregating the overall performance of alternatives. A numerical
example is used to illustrate the proposed approach and show the application of it in subcontractor
evaluation. The results demonstrate that the proposed approach is efficient and useful in real-world
decision-making problems.

Keywords: multi-criteria decision-making; group decision-making; subcontractor evaluation; MCDM;
MADM; fuzzy sets; fuzzy EDAS

1. Introduction

Subcontracting is one of the most important characteristics of the construction industry. In many
construction projects, the main contractor has usually the role of project coordinator, and a high
percentage of work is done by subcontractors [1,2]. The completion time of a construction project
(project delivery) and the reputation of the main contractor are heavily dependent on cooperation
between a subcontractor and its main contractor [3]. Therefore, the performance of subcontractors
could have a significant effect on the success of construction projects. Because of the increasing use
of subcontracting in the construction industry, evaluation of subcontractors can be considered as an
essential problem for the main contractors.

The subcontractor evaluation process (SEP) usually involves several alternatives (subcontractors),
multiple criteria and a group of decision-makers (experts). Thus, we can consider this process as a
multi-criteria group decision-making (MCGDM) problem [4]. Moreover, the main contractor generally
needs to evaluate its subcontractors in multiple periods of time. This process makes the SEP into
a dynamic MCGDM problem. In a dynamic MCGDM problem, the set of alternatives, criteria and
decision-makers can be changed in different time periods [5]. Thus, we can make the evaluation
process with a high degree of flexibility. In addition, the assessments of experts can be made under
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uncertainty in the SEP. The fuzzy sets theory is a useful tool to deal with the uncertainty of evaluation
process [6–11].

There have been some studies on the problems related to the SEP and multi-criteria
decision-making (MCDM) methods under certain and uncertain environments. Cheng, et al. [12]
proposed a hierarchical structure for the target and factors for evaluation of subcontractors, and used
the analytic hierarchy process (AHP) to select an appropriate subcontractor. Kargi and Öztürk [13] used
the AHP method and the Expert Choice software for evaluation of subcontractors in a Turkish company.
Yayla, et al. [14] presented a case study for selection of the optimal subcontractor in a Turkish textile
firm. They used generalized Choquet integral methodology and a hierarchical decision model to solve
the selection problem. Ng and Skitmore [15] proposed an approach based on the balanced scorecard
methodology for evaluation of subcontractor and performed a questionnaire survey administered in
Hong Kong. Abbasianjahromi, et al. [16] developed a model for subcontractor evaluation based on
the fuzzy preference selection index. In their model, the weighting criteria phase is eliminated in the
evaluation process of subcontractors. Shahvand, et al. [17] developed a multi-criteria fuzzy expert
system for supplier and subcontractor evaluation in the construction industry and used it in three
companies. Polat [2] presented an integrated MCDM approach based on AHP and preference ranking
organization method for enrichment evaluations (PROMETHEE), and applied it to the subcontractor
selection problem. Ulubeyli and Kazaz [18] proposed a fuzzy multi-criteria decision-making approach,
called CoSMo (Construction Subcontractor selection Model), for evaluation of subcontractors in the
construction projects. Abbasianjahromi, et al. [19] developed a new model to allocate the tasks of a
construction project to some subcontractors for optimization of the portfolio of subcontractors and
main contractor. Polat, et al. [20] proposed an integrated approach based on the AHP and Evidential
Reasoning (ER) methods. They used AHP and ER to find the criteria weights for evaluation of
subcontractors and rank the alternatives, respectively.

Dynamic MCDM approaches have been used by researchers in several fields. Campanella and
Ribeiro [21] introduced a flexible framework for dynamic MCDM that can be used in many dynamic
decision processes, and applied it to a small helicopter landing problem. Wei [22] utilized grey
relational analysis (GRA) to develop a dynamic MCDM approach. Chen and Li [23] proposed a
dynamic MCDM method based on triangular intuitionistic fuzzy numbers. Wang, et al. [24] presented a
three-dimensional grey interval relational degree approach for dynamic multi-criteria decision-making
problems. They applied the presented approach to the investment decision-making problems. Junhua,
et al. [25] developed a dynamic stochastic MCDM approach based on conjoint analysis and prospect
theory. Li, et al. [26] proposed a dynamic fuzzy MCDM method using a mathematical programming
model and fuzzy technique for order preference by similarity to ideal solution (TOPSIS). Yan, et al. [27]
presented a dynamic grey target MCDM method using interval numbers and based on the status
of alternatives. Liu, et al. [28] proposed a dynamic fuzzy framework based on GRA and used it for
evaluation of emergency treatment technology. Yan, et al. [29] developed a new dynamic MCDM
approach with three-parameter grey numbers. In their approach, not only the attribute values of
alternatives at all periods are aggregated, but also changes of these values between the adjacent periods
are considered.

The EDAS (Evaluation based on Distance from Average Solution) method is a new and efficient
method which introduced by Keshavarz Ghorabaee, et al. [30] and extended for using in the fuzzy
environment [31]. The evaluation process in the EDAS method is made based on the distances of
alternative from an average solution. Two types of distances (positive and negative) are defined for
alternatives in this method, and the utility of alternatives is determined based on these distances.
This method has been developed for using in different uncertain environments such as intuitionistic
fuzzy sets [32], interval-valued neutrosophic sets [33], interval-valued fuzzy soft sets [34], neutrosophic
soft sets [35], interval grey numbers [36] and interval type-2 fuzzy sets [37]. Also, the EDAS method has
been applied to some real-world MCDM problems such as life cycle and sustainability assessment [38],
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supplier selection [39], architectural shape of the buildings [40], cultural heritage structures [41], quality
assurance [42], evaluation in logistics [43,44] and stairs shape assessment [45].

In this study, we propose a new dynamic fuzzy MCGDM approach based on the EDAS method
for evaluation of subcontractors. The main advantage of the proposed approach is its flexibility so that
we can define different sets of alternatives, criteria and decision-makers in different time periods and
make the evaluation in a fuzzy environment. Because of the importance of new information, we use
a function that gives greater weights to newer time periods for aggregating the performance score
of each alternative. A numerical example of subcontractor evaluation is presented to illustrate the
proposed approach and show the efficiency of it.

The rest of this article is organized as follows. Section 2 describes the methodology. In this section,
first, we present concepts and some definitions related to the fuzzy sets theory and the arithmetic
operations of the fuzzy numbers, then the steps and flowchart of the proposed approach is depicted in
detail. In Section 3, a numerical example is used to show the application of the proposed approach in
subcontractor evaluation. Conclusions are briefly discussed in Section 4.

2. Methodology

In this section, we first present some concepts and definitions about the fuzzy sets theory, and then
an extended dynamic fuzzy EDAS is described for multi-criteria group decision-making.

2.1. Concepts and Definitions of Fuzzy Sets

To deal with the uncertainty of information in real-world problems, the fuzzy sets theory was
developed by Zadeh [46]. The membership of elements in a fuzzy set is described by means of a
membership function with a range in [0, 1]. Therefore, fuzzy sets generalize classical sets in which the
membership of elements has a two-valued condition (zero or one). The fuzzy set theory has been applied
to many problems in different fields of science and engineering. To describe this theory, some definitions
are presented as follows:

Definition 1. Let denote by X a universal set. Then a fuzzy set G̃ can be defined by a membership function
μG̃(x) as follows [47]:

G̃ =
{(

x, μG̃ (x)
)∣∣x ∈ X

}
(1)

In the above equation, x denotes the elements belong to X, and μG̃ (x) : X → [0, 1].

Definition 2. A fuzzy number can be defined as a special case of a fuzzy set which is convex and normal [48].

Definition 3. If the membership function of a fuzzy number G̃ is defined by the following equation then we can
call it a triangular fuzzy number [49]:

μG̃ (x) =

⎧⎪⎨⎪⎩
(x− g1)/(g2 − g1), g1 ≤ x ≤ g2

(g3 − x)/(g3 − g2), g2 ≤ x ≤ g3

0, otherwise
(2)

A triplet G̃ = (g1, g2, g3) can also be used to define this fuzzy number. Figure 1 represents an example of
triangular fuzzy numbers.

In this study, we use the triangular fuzzy sets due to their simplicity of presentation and
computation. However, the other types of fuzzy numbers such as trapezoidal fuzzy number can
also be used in the methodology proposed in the following sub-section.
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1

Figure 1. A triangular fuzzy number.

Definition 4. Let us define G̃ = (g1, g2, g3) and H̃ = (h1, h2, h3) as two triangular fuzzy numbers which
are also positive (i.e., g1 ≥ 0 and h1 ≥ 0), and suppose that q is a crisp number. In the following equations,
the arithmetic operations of these fuzzy numbers are presented [49]:

• Addition:
G̃⊕ H̃ = (g1 + h1, g2 + h2, g3 + h3) (3)

G̃ + q = (g1 + q, g2 + q, g3 + q) (4)

• Subtraction:
G̃� H̃ = (g1 − h3, g2 − h2, g3 − h1) (5)

G̃− q = (g1 − q, g2 − q, g3 − q) (6)

• Multiplication:
G̃⊗ H̃ = (g1 × h1, g2 × h2, g3 × h3) (7)

G̃× q =

{
(g1 × q, g2 × q, g3 × q) if q ≥ 0
(g3 × q, g2 × q, g1 × q) if q < 0

(8)

• Division:
G̃
 H̃ = (g1/h3, g2/h2, g3/h1) (9)

G̃/q =

{
(g1/q, g2/q, g3/q) if q > 0
(g3/q, g2/q, g1/q) if q < 0

(10)

Definition 5. The defuzzified or crisp value of a triangular fuzzy number G̃ = (g1, g2, g3) can be defined by
the following equation [50]: (

G̃
)
=

1
3
(g1 + g2 + g3) (11)

Definition 6. To find the maximum between a triangular fuzzy number G̃ = (g1, g2, g3) and zero, the following
function can be used [31].

S
(

Ã
)
=

⎧⎨⎩ G̃ i f
(

G̃
)
> 0

0̃ i f
(

G̃
)
≤ 0

(12)

where 0̃ = (0, 0, 0).
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2.2. Dynamic Fuzzy EDAS

The EDAS method is a new and efficient MCDM method introduced by Keshavarz Ghorabaee,
Zavadskas, Olfat and Turskis [30], and has been extended to deal with fuzzy MCDM problems [31].
In this section, a new approach is proposed to handle dynamic fuzzy multi-criteria group
decision-making based on the EDAS method, which is called dynamic fuzzy EDAS.

In a dynamic multi-criteria group decision-making, the multi-criteria evaluation process is made
by multiple decision-makers in multiple periods. In each period, we have a set of alternatives that
needs to be evaluated with respect to a set of criteria. Suppose that there are T periods and DMt,
CRt and ALt denote the sets of decision-makers, criteria, and alternatives at period t, respectively.
The cardinality of these sets can be defined as |DMt| = kt, |CRt| = mt and |ALt| = nt. In other words,
we have kt decision-makers, mt criteria and nt alternatives at period t.

Step 1: Start with the first period (t = 1).
Step 2: Define the sets of decision-makers, criteria, and alternatives (DMt, CRt and ALt) at period t.
Step 3: Determine the union of the sets of alternatives at period t denoted by ALT

t ,
where ALT

t = ALT
t−1 ∪ ALt and ALT

0 = ∅.
Step 4: Construct the decision-matrix and the matrix of criteria weights related to each

decision-maker at period t as follows:

Xpt =
[
x̃ijpt

]
nt×mt

(13)

Wpt =
[
w̃jpt

]
1×mt

(14)

where x̃ijpt denotes the rating of ith alternative (Ai) on jth criterion (Cj) given by pth decision-maker,
and w̃jpt shows the importance or weight of jth criterion given by pth decision-maker (1 ≤ i ≤ nt,
1 ≤ j ≤ mt and 1 ≤ p ≤ kt).

Step 5: Determine the average decision-matrix at period t using the following equations:

Xt =
[
x̃ijt
]

nt×mt
(15)

x̃ijt =
1
kt

kt

⊕
p = 1

x̃ijpt (16)

where x̃ijt shows the average ratings at period t. If the decision-makers or experts, depending on their
experience and knowledge, have different importance in the process of decision-making, we can use a
weighted average instead of ordinary average of Equation (16).

Step 6: Compute the average matrix of criteria weights at period t presented as follows:

Wt =
[
w̃jt
]

1×mt
(17)

w̃jt =
1
kt

kt

⊕
p = 1

w̃jpt (18)

where w̃jt denotes the average weights of criteria at period t. Like the previous step, we can also
use a weighted average instead of ordinary average of Equation (18) if there are different weights
for decision-makers.

It should be noted that if we have a problem with a hierarchical structure including some criteria
and sub-criteria, we should calculate the average weights of criteria and sub-criteria first. Then the
global weights of sub-criteria should be determined by multiplying the average calculated weights of
them by the average weights of their upper level criterion.

12
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Step 7: Calculate average solutions at period t using the following formula:

g̃jt =
1
nt

nt

⊕
i = 1

x̃ijt (19)

Step 8: Let denote by BCt and NCt the sets of beneficial and non-beneficial criteria at period t,
respectively. The values of positive and negative distances from the average solutions at each period
are calculated as follows:

p̃dijt =

⎧⎪⎪⎨⎪⎪⎩
S(x̃ijt�g̃jt)

(g̃jt)
i f j ∈ BCt

S(g̃jt�x̃ijt)

(g̃jt)
i f j ∈ NCt

(20)

ñdijt =

⎧⎪⎪⎨⎪⎪⎩
S(g̃jt�x̃ijt)

(g̃jt)
i f j ∈ BCt

S(x̃ijt�g̃jt)

(g̃jt)
i f j ∈ NCt

(21)

where p̃dijt and ñdijt denote the values of positive and negative distances from the average solutions
at period t, respectively.

Step 9: Compute the weighted sum of the positive and negative distances for each alternative at
period t using the following equations:

s̃pit =

mt

⊕
j = 1

(
w̃jt ⊗ p̃dijt

)
(22)

s̃nit =

mt

⊕
j = 1

(
w̃jt ⊗ ñdijt

)
(23)

Step 10: Calculate the normalized values of s̃pit and s̃nit as follows:

ñpit =
s̃pit

max
l

(
(s̃plt)

) (24)

ñnit = 1− s̃nit

max
l

(
(s̃nlt)

) (25)

Step 11: Compute the overall performance score of ith alternative at period t (Ũit) by the
following formula:

Ũit =
1
2
(ñpit ⊕ ñnit) (26)

Step 12: Calculate the dynamic scores (Sit) for all alternatives which are the elements of the set
ALT

t (Ai ∈ ALT
t ) by the following equation:

Sit =

{ (
Ũit

)
i f Ai ∈ ALt

0 i f Ai /∈ ALt
(27)

Step 13: Let ρt denotes the weight or importance of period t. Compute the aggregated dynamic
scores (Hit) of the alternatives belong to the set ALT

t as follows:

Hit = (1− ρt)Hi(t−1) + ρtSit (28)
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where Hi0 = 0, and if Ai /∈ ALT
t−1 then Hi(t−1) = min

l,l∈ALT
t−1

Hl(t−1).

Because newer information is more important in decision-making, a weight function of periods
that gives greater weight to the current period should be defined. We define the following function for
setting the weights of periods:

ρt =
t

2t− 1
(29)

In Equation (29), the value of ρt is equal to 1 for the first period (t = 1), and it is always greater
than 0.5.

Step 14: Increase the value of period by 1 ( t ← t + 1). If t < T go to Step 2, otherwise continue.
Step 15: Evaluate the alternatives according to the values of aggregated dynamic scores (Hit).

The higher values of Hit get the better alternatives.
To make the proposed approach clear, its procedure is depicted by a flowchart in Figure 2.

 

Figure 2. The flowchart of the proposed approach.

3. Illustrative Example (Subcontractor Evaluation)

In this section, the proposed approach is applied to a dynamic multi-criteria subcontractor
evaluation problem in a construction project. The evaluation process is made by the main contractor
of the project in four periods. According to the procedure of the proposed approach, we can define
any number of decision-makers, criteria, and alternatives at each period. In this problem, four criteria
are defined for evaluation of subcontractors based on the study of Lin, et al. [51]. These criteria are
defined as follows:
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• Reliability (C1): This criterion is related to evaluation of subcontractors with respect to their
records, reputation, and financial condition. It is clear that a subcontractor with good reputation
and better financial condition is more favorable.

• Schedule-control ability (C2): This criterion is related to the mobilization and efficiency of
subcontractors. Activation of the subcontractor’s physical and manpower resources for transfer
to a construction site until the completion of the contract can be measured by this criterion.

• Management ability (C3): The level of safety, quality and environmental management of
subcontractors is very important in the overall performance of a subcontractor. This criterion can
be used to assess these dimensions of subcontractors.

• Labor quality (C4): This criterion can be used for assessment of the level of workers’ skill and the
coordination of managers and workers. The quality of the outcomes of a construction project is
significantly affected by this criterion.

The criteria defined are used in all the periods. In other words, we can define the set of criteria as
CRt = {C1, C2, C3, C4} where t ∈ {1, 2, 3, 4}. The evaluation process is made based on the assessments
of some experts of the main contractor which are considered as decision-makers. In each period,
some of the decision-makers may be available and some may be not available for the assessment. In
this problem, the sets of decision-makers at each period are as follows:

DM1 = {D1, D2, D3, D4},
DM2 = {D1, D3, D4},
DM3 = {D1, D2, D3, D4},
DM4 = {D1, D2, D3}.

The number of subcontractors also varies from period to period. Here, we have four sets of
alternatives (subcontractors):

AL1 = {A1, A2, A3, A4, A5, A6, A7, A8, A9},
AL2 = {A1, A2, A3, A4, A6, A7, A10, A11, A12, A13},
AL3 = {A1, A2, A5, A6, A7, A8, A9, A10, A12},
AL4 = {A2, A3, A6, A7, A8, A10, A13}.

The decision-makers give the importance of criteria and rating of alternatives at each period using
linguistic variables. The linguistic variables and their fuzzy equivalents are presented in Table 1 [52].
Because we use a spectrum from “Very poor” to “Very good” for rating of alternatives, all the criteria
in the problem should be considered as beneficial criteria. Based on the linguistic variables defined
in Table 1, the decision-matrix and the matrix of criteria weights related to each decision-maker can
be constructed at each period. The decision-matrices of different periods are presented in Tables 2–6
presents the matrices of criteria weights in different periods.

Based on the steps of the proposed approach and Tables 1–6, we can determine the overall
performance scores of alternatives at each period. According to the defuzzified values of overall
performance scores, the rank of each alternative at each period can be obtained. The results of each
period are shown in Table 7. Also, in this table, we present the ranking results which are obtained by
using defuzzified decision-matrices and criteria weights and the TOPSIS method [53]. In addition,
to show the validity of the ranking result of each period, the Spearman’s rank correlation coefficients
(rs) between the results of the fuzzy EDAS and TOPSIS methods are calculated. As can be seen in
Table 7, all the correlation values are greater than 0.9, and we can say that there is a strong relationship
between the results in all the periods.
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Table 1. The linguistic variables and their fuzzy equivalents.

Linguistic Variables Triangular Fuzzy Number

Importance of criteria

Very low (VL) (0, 0, 0.1)
Low (L) (0, 0.1, 0.3)

Medium low (ML) (0.1, 0.3, 0.5)
Medium (M) (0.3, 0.5, 0.7)

Medium high (MH) (0.5, 0.7, 0.9)
High (H) (0.7, 0.9, 1)

Very high (VH) (0.9, 1,1)

Rating of alternatives

Very poor (VP) (0, 0, 1)
Poor (P) (0, 1, 3)

Medium poor (MP) (1, 3, 5)
Fair (F) (3, 5, 7)

Medium good (MG) (5, 7, 9)
Good (G) (7, 9, 10)

Very good (VG) (9, 10, 10)

Table 2. The decision-matrix of each decision-maker at first period (t = 1).

D1 D2 D3 D4

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

A1 P F MP MP P P MP P VP MP MP P VP F F VP
A2 P MP P P MP F MP VP MP MG MP VP MP F P MP
A3 F G MP G F F F G P G MP G P F MG P
A4 VG G G MG VG VG MG MG G VG F G G G F G
A5 MG G VG VG F F VG MG F G MG VG G F MG G
A6 MP F MG MG F F MG F F G MP F MP G F MP
A7 MP F F F VP P MP F VP F MP MG P P F P
A8 F VP F P F MP MP MP MP VP P P MG VP MP MG
A9 F MG MG G G MG VG G G G G F G MG VG G

Table 3. The decision-matrix of each decision-maker at second period (t = 2).

D1 D2 D3 D4

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

A1 P MP MP VP — — — — P MP MG P VP MP F MP
A2 P MP F VP — — — — P MG P VP VP MG MP P
A3 P F MP MG — — — — P MG MG G P MG F F
A4 MG VG MG MG — — — — MG G MG G G G MG G
A6 P MG F MP — — — — P G MP MP F G MG F
A7 P F P MP — — — — P P MP F P P F MG
A10 VG VG G MG — — — — G VG G G G G G MG
A11 P MG G MG — — — — MP MG G MG F G MG F
A12 P VP P MP — — — — VP VP MP P VP VP P MP
A13 MG P VP MP — — — — MP P P P F MP P MP

Table 4. The decision-matrix of each decision-maker at third period (t = 3).

D1 D2 D3 D4

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

A1 P P MP P VP F MP MP P MP F MP VP F F MP
A2 MP F P VP VP MP P P P MG F MP MP MP F MP
A5 MG G MG VG F G MG MG MG G VG G G F G MG
A6 P G MG MP MP MG F F MP F F MP P F MG F
A7 VP P MP MG MP MP MP F VP F P F VP MP P MP
A8 F MP F P MG MP P MP MG P F MP MG P F F
A9 MG G VG F MG G VG F G VG G F MG VG VG G
A10 G G G G MG G VG MG G G G F MG VG VG G
A12 VP P P P P P P F MP VP MP F P P P F
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Table 5. The decision-matrix of each decision-maker at fourth period (t = 4).

D1 D2 D3 D4

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

A2 MP MG F P MP MP F MP MP MG MP VP — — — —
A3 F MG MP F F G MG MG MP F MP F — — — —
A6 MP F F MP MP MG MP MG P F F MP — — — —
A7 VP P P MP P F MP F MP MP P MP — — — —
A8 MP P P MP MP VP MP MP MP VP MP F — — — —
A10 MG G VG G VG VG G MG VG G G G — — — —
A13 MP VP VP P F VP VP MP MG MP P VP — — — —

Table 6. The matrices of criteria weights in different periods.

D1 D2 D3 D4

t = 1

C1 ML L M M
C2 M ML M M
C3 MH VH MH H
C4 H MH M MH

t = 2

C1 L — ML L
C2 ML — M M
C3 VH — VH MH
C4 H — MH M

t = 3

C1 L L M L
C2 ML ML MH ML
C3 MH MH H VH
C4 M M M H

t = 4

C1 ML M L —
C2 ML ML MH —
C3 MH MH H —
C4 MH MH H —

According to the results presented in Table 7 and Steps 12 and 13 of the proposed approach,
the dynamic and aggregated dynamic scores of alternatives can be calculated.

It should be noted that we use Equation (29) to set the weights for aggregating the dynamic scores.
However, this function can be replaced with any custom function which can consider the importance
of newer decision information. Also, the user of the proposed approach can set the weights manually
without defining a function.

The values of Sit, Hit and the rank of each alternative related to each period are represented in
Table 8. We also show the changes in the members of ALt and ALT

t in this table. The members of these
sets should be known for the calculations of Steps 12 and 13.”

As it can be seen in Table 8, A9 is the best alternative (subcontractor) in the first period (t = 1),
but this alternative is not available in the second period. The unavailability of A9, and availability of
some better alternatives in the second period lead to a decrease in the value of the aggregated dynamic
score for this alternative. Therefore, the rank of A9 is changed from 1 to 6 at t = 2. On the other hand,
the rank of A4, which has the second rank at t = 1, is changed to 1 in the second period, and A10,
which is a new available subcontractor, has the second rank in the second period. We can say that the
rank of alternatives is dynamic and changes in different periods according to the new information of
decision-making process.

In this example, the changes in the rank of subcontractors at different time periods are depicted in
Figure 3.
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Table 7. The overall performance scores and ranking results at each period.

Ũit

(
Ũit

) Rank

Fuzzy EDAS TOPSIS

t = 1

A1 (−0.716, 0.05, 0.67) 0.0013 8 9
A2 (−0.712, 0.0290, 0.683) 0 9 8
A3 (−0.0580, 0.617, 1.305) 0.6216 4 4
A4 (0.349, 0.914, 1.614) 0.9591 2 3
A5 (0.366, 0.898, 1.562) 0.9421 3 2
A6 (−0.137, 0.550, 1.258) 0.5572 5 5
A7 (−0.524, 0.252, 0.903) 0.2105 6 6
A8 (−0.639, 0.101, 0.757) 0.0730 7 7
A9 (0.415, 0.953, 1.632) 1 1 1

rs = 0.97

t = 2

A1 (−0.402, 0.263, 0.762) 0.2075 7 7
A2 (−0.453, 0.166, 0.707) 0.1402 8 8
A3 (0.037, 0.59, 1.125) 0.5838 4 4
A4 (0.439, 0.874, 1.472) 0.9281 2 2
A6 (−0.089, 0.517, 1.111) 0.5130 5 5
A7 (−0.353, 0.309, 0.874) 0.2767 6 6
A10 (0.514, 0.965, 1.522) 1 1 1
A11 (0.249, 0.77, 1.334) 0.7843 3 3
A12 (−0.636, 0.041, 0.595) 0 10 10
A13 (−0.526, 0.091, 0.694) 0.0864 9 9

rs = 1

t = 3

A1 (−0.652, 0.194, 0.848) 0.1298 7 7
A2 (−0.65, 0.15, 0.801) 0.1005 8 8
A5 (0.436, 0.875, 1.501) 0.9376 3 2
A6 (−0.215, 0.489, 1.144) 0.4725 4 4
A7 (−0.569, 0.184, 0.782) 0.1324 6 6
A8 (−0.473, 0.278, 0.991) 0.2652 5 5
A9 (0.448, 0.9, 1.482) 0.9434 2 3
A10 (0.503, 0.947, 1.55) 1 1 1
A12 (−0.745, 0.05, 0.695) 0 9 9

rs = 0.98

t = 4

A2 (−0.26, 0.357, 0.93) 0.3424 4 4
A3 (0.179, 0.614, 1.102) 0.6318 2 2
A6 (−0.026, 0.507, 1.016) 0.4992 3 3
A7 (−0.586, 0.242, 0.946) 0.2007 6 6
A8 (−0.592, 0.244, 0.969) 0.2070 5 5
A10 (0.59, 0.971, 1.438) 1 1 1
A13 (−0.599, 0.043, 0.611) 0.0183 7 7

rs = 1

 

Figure 3. The changes in the rank of alternatives at different time periods.
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Table 8. The final scores and ranks of alternatives at each period.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

t = 1

ALt
√ √ √ √ √ √ √ √ √ × × × ×

ALT
t

√ √ √ √ √ √ √ √ √ × × × ×
Sit 0.0013 0 0.6216 0.9591 0.9421 0.5572 0.2105 0.0730 1 — — — —
Hit 0.0013 0 0.6216 0.9591 0.9421 0.5572 0.2105 0.0730 1 — — — —

Rank 8 9 4 2 3 5 6 7 1 — — — —

t = 2

ALt
√ √ √ √ × √ √ × × √ √ √ √

ALT
t

√ √ √ √ √ √ √ √ √ √ √ √ √
Sit 0.2075 0.1402 0.5838 0.9281 0 0.5130 0.2767 0 0 1 0.7843 0 0.0864
Hit 0.1388 0.0935 0.5964 0.9384 0.314 0.5277 0.2546 0.0243 0.3333 0.6667 0.5229 0 0.0576

Rank 9 10 3 1 7 4 8 12 6 2 5 13 11

t = 3

ALt
√ √ × × √ √ √ √ √ √ × √ ×

ALT
t

√ √ √ √ √ √ √ √ √ √ √ √ √
Sit 0.1298 0.1005 0 0 0.9376 0.4725 0.1324 0.2652 0.9434 1 0 0 0
Hit 0.1334 0.0977 0.2386 0.3754 0.6882 0.4946 0.1813 0.1689 0.6994 0.8667 0.2091 0 0.023

Rank 10 11 6 5 3 4 8 9 2 1 7 13 12

t = 4

ALt × √ √ × × √ √ √ × √ × × √
ALT

t
√ √ √ √ √ √ √ √ √ √ √ √ √

Sit 0 0.3424 0.6318 0 0 0.4992 0.2007 0.2070 0 1 0 0 0.0183
Hit 0.0572 0.2375 0.4633 0.1609 0.2949 0.4972 0.1924 0.1907 0.2997 0.9429 0.0896 0 0.0203

Rank 11 6 3 9 5 2 7 8 4 1 10 13 12

According to the evaluation of the last period (t = 4), A10 is the best alternative, and the final
ranking is as follows:

A10 � A6 � A3 � A9 � A5 � A2 � A7 � A8 � A4 � A11 � A13 � A12

Although the final evaluation can be made based on the above-mentioned ranking, the main
contractor should be cautious about the subcontractors which have higher degree of fluctuation in their
ranks at different periods. The fluctuation in the rank of subcontractors could be occurred due to the
unavailability of them or their low performance in some periods. Both reasons lead to unreliability of a
subcontractor. As we can see in Figure 3, the ranks of A10, A6, A7, A12 and A13 have lower fluctuation
than the other alternatives. Therefore, the main contractor can select A10 as a reliable subcontractor
and consider A6 as a backup alternative.

4. Conclusions

In the management of a contract, it has become usual to outsource specialized tasks by the main
contractor. This can be done to ensure the quality of construction projects. Although outsourcing
most tasks to a subcontractor is convenient and safe for the main contractor, the failure of the selected
subcontractor can lead to the failure of the entire project. Hence the process of evaluation and selection
of subcontractors can be considered as one of the important actions that should be carried out by the
main contractor.

In this study, we have defined the subcontractor evaluation process as a dynamic multi-criteria
group decision-making problem. Due to the uncertainty of information in the process of evaluation,
a fuzzy dynamic MCGDM approach has been proposed to deal with SEP. The proposed approach
has been designed based on the EDAS method which is a new and efficient MCDM approach.
In the procedure of the proposed approach, we can define different sets of alternatives, criteria,
and decision-makers in different time periods. The performance of each alternative is updated in each
period by an aggregation function which gives greater weights to newer information. Thus, we can
ensure that the final evaluation involves the importance of up-to-date decision information.

We have used an example of subcontractor evaluation problem to illustrate the process of the
proposed approach and show the utility of it in real-world decision-making problems. Because the
weights of criteria as well as the set of criteria can be changed at each period in the process of using the
proposed dynamic approach, the sensitivity analysis on the weights of criteria has not been made in
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this study. Lack of this analysis can be considered as a limitation of this study. To make the sensitivity
analysis in the proposed approach, we need to devise a new research methodology, and this can
be addressed in future research. Also, future research can examine the effect of different weight
functions for aggregation of the dynamic scores of alternatives and apply the proposed approach to
the other MCDM problems such as supplier evaluation, service quality assessment and risk evaluation.
Moreover, other types of fuzzy sets such as interval type-2 fuzzy sets, intuitionistic fuzzy sets and
hesitant fuzzy sets can be used to extend the propose approach.
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Abstract: To solve the multi-attribute decision making (MADM) problems with Pythagorean uncertain
linguistic variable, an extended bi-directional projection method is proposed. First, we utilize the
linguistic scale function to convert uncertain linguistic variable and provide a new projection model,
subsequently. Then, to depict the bi-directional projection method, the formative vectors of alternatives
and ideal alternatives are defined. Furthermore, a comparative analysis with projection model
is conducted to show the superiority of bi-directional projection method. Finally, an example of
graduate’s job option is given to demonstrate the effectiveness and feasibility of the proposed method.

Keywords: multi-attribute decision making; projection model; bi-directional projection model;
Pythagorean uncertain linguistic variable

1. Introduction

Multi-attribute decision making (MADM) problem is to select the optimal alternative(s) or get
the ranking order of all alternatives with multiple attributes. For the complexity of the decision
making environment and the limitation of decision makers’ knowledge, vagueness and uncertainty are
typical factors we must take into account. To describe the vague and uncertain information accurately,
Zadeh [1] proposed the concept of fuzzy set. However, applying fuzzy set to solve decision making
problems is confined to the lacking of information. Intuitionistic fuzzy set (IFS) as the extension of
fuzzy set, can capture uncertain information more appropriately. Recently, IFS have been extensively
applied to MADM area, because the superiority in dealing with vague and uncertain information [2–5].
Whereas, IFS is difficult to depict vague and uncertain information when the sum of membership
degree and non-membership degree is bigger than 1.

To express fuzzy information more effectively, Yager [6] proposed the Pythagorean fuzzy set
(PFS) to capture the vague and uncertain information. Different from IFS, the sum of membership
degree and non-membership degree of PFS may be bigger than one, but the square sum of them is
less than one. As a useful extension of IFS, the PFS can depict the problem which the IFS cannot.
For example, if the membership degree and non-membership degree are 0.8 and 0.6, respectively. It is
easily to see, the IFS cannot describe this situation because of 0.8 + 0.6 > 1, but the PFS can effectively
solve the issue due to 0.82 + 0.62 ≤ 1. Since PFS appeared, multi-attribute decision making problems
under PFS environment have got a lot of attention, and some research results have been obtained.
Du et al. [7] proposed a new score function and a new accurate function of PFS. Liang et al. [8],
Liang and Xu [9], and Zhang and Xu [10] extended the TOPSIS (Technique for Order Performance by
Similarity to Ideal Solution) method under PFS and hesitant Pythagorean fuzzy set circumstances,
respectively. A new closeness index of Pythagorean fuzzy set was proposed by Zhang [11] and
the QUALIFLEX (QUALItative FLEXible multiple criteria method) method was extended based on
the closeness index subsequently. Ren et al. [12] presented an extended TODIM (An Acronym in
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Portuguese of Interactive and Multiple Attribute Decision Making) method based on PFS, and made
an emulational analysis for the result. Chen [13] proposed a new distance formula for PFS and an
extended VIKOR (the Serbian name: Vlsekriterijumska Optimizacijia I Kompromisno Resenje) method
was presented based on the distance formula. Following the pioneering work of Yager, Garg [14,15]
developed a new relevant coefficient of PFS and an extended accurate function of interval Pythagorean
fuzzy set (IPFS), respectively. A new MADM method was proposed by Peng and Dai [16] based on
prospect theory and regret theory. Furthermore, Xue et al. [17] defined the concept of entropy of PFS
and extended the LINMAP (The Linear Programming Technique for Multidimensional Analysis of
Preference) method based on the concept. Liang et al. [18] developed a weighted Pythagorean fuzzy
geometric mean operator and extended the projection method based on the geometric mean operator.
Peng and Yang [19] proposed an extended ELECTRE (ELimination Et Choice Translating REality)
method based on IPFS. The new accurate function and similarity measure of PFS were developed by
Zhang [20], respectively.

The projection model can simultaneously consider the angle and distance between two evaluative
values [18]. Therefore, the projection model has been widely applied to replace the single distance
measure in multi-attribute decision making domain. Tsao and Chen [21] developed a projection model
of interval intuitionistic fuzzy set (IIFS) and an extended VIKOR method was proposed based on
the projection model. Sun et al. [22] proposed a projection model of hesitant linguistic variable and
extended the multi-attributive border approximation area comparison (MABAC) method to hesitant
linguistic circumstance. To overcome the drawback of the extant TODIM method, Ji et al. [23] developed
a projection-based TODIM method with multi-valued neutrosophic sets (MVNSs). Wu et al. [24]
proposed an extended projection model based on hesitant linguistic variable to handle the hospital
management problem. Inspired by the advantage of projection model, Liang et al. [25] proposed
an extended PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluations)
method based on the projection model.

Recently, projection model has been extensively applied to solve the MADM problems due to
the advantage of capturing vague and uncertain information. However, projection model cannot
effectively get the ranking order when alternatives distribute on the perpendicular bisector of ideal
alternatives [26]. Motivated by the drawback of the projection model and the advantage of linguistic
variables, we developed an extended bi-directional projection model of Pythagorean uncertain
linguistic variables [27]. Our model can not only utilize the advantage of both Pythagorean uncertain
linguistic variable and projection models but it can also effectively overcome the defects of the
projection model.

This paper is organized as follows. Section 2 presents some basic definitions of IFS, linguistic
variables, and the Pythagorean uncertain linguistic variables. In Section 3, we propose a new
bi-directional projection model. Comparative analysis of the proposed model and projection model is
provided in Section 4 and the MADM Procedures are listed in Section 5. In Section 6, the effectiveness
of the proposed method is demonstrated by a practical MADM problem. Finally, Section 7 comes to
some conclusions.

2. Preliminaries

Definition 1 [2]. Let X be a crisp set, an intuitionistic fuzzy set on X can be defined as

A = 〈x, uA(x), vA(x)|x ∈ X〉.

where, uA(x): X → [0, 1] and vA(x): X → [0, 1] denote membership function and non-membership function
of x ∈ X, respectively, with 0 ≤ uA(x) + vA(x) ≤ 1. π(x) = 1− uA(x)− vA(x) denote the hesitation
function of x ∈ X.
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Definition 2 [28]. Let S = {si|i = 0, 1, · · · , 2z} be linguistic term set, where z is a positive integer and si
denotes an evaluation value of linguistic variable. We call s̃ =

[
sα, sβ

]
as the uncertain linguistic variable,

where sα, sβ ∈ S and 0 ≤ α ≤ β ≤ z, besides, α and β are positive integers. sα, sβ denote the upper bound and
the lower bound, respectively.

Definition 3 [27]. Let X be a fixed set. α̃ =
{〈

xi|
([

sα, sβ

]
, P̃
(

up̃(xi), vp̃(xi)
))〉

|xi ∈ X
}

denote the
Pythagorean uncertain linguistic variable on X, where function up̃(x): X → [0, 1] and vp̃(x): X → [0, 1]
denote membership function and non-membership function of x ∈ X, respectively, with u2

p̃(x) + v2
p̃(x) ≤ 1.

To expediently depict the evaluation value, we call α =
〈[

sα, sβ

]
, P̃
(

up̃(xi), vp̃(xi)
)〉

as the Pythagorean
uncertain linguistic number.

Definition 4 [25]. If ηi ∈ [0, 1] is a numerical value, then the linguistic scale function f can defined as
f : si → ηi(i = 0, 1, · · · , 2z) , where 0 ≤ η0 < η1 < · · · < η2z. ηi represent the preference of decision maker

on the chosen linguistic term si.

f (si) = ηi =

⎧⎨⎩
zδ−(z−i)δ

2zδ , 0 ≤ i ≤ z
zγ+(i−z)γ

2zγ , z < i ≤ 2z
(1)

where δ, γ denote the sensibility coefficient, δ, γ ∈ [0, 1] and f is a monotone increasing function.

Definition 5 Let Xp =
(〈[

spj, spj

]
, P̃
(
upj, vpj

)〉)
and Xq =

(〈[
sqj, sqj

]
, P̃
(
uqj, vqj

)〉)
be two Pythagorean

uncertain linguistic variable on X. If we convert Xp and Xq to Xp =
(〈[

f
(

spj

)
, f
(
spj
)]

, P̃
(
upj, vpj

)〉)
and

Xq =
(〈[

f
(

sqj

)
, f
(
sqj
)]

, P̃
(
uqj, vqj

)〉)
via linguistic scale function, then the formative vector of Xp and Xq

is computed as
XpXq =

(〈[
min f

(
spj
)
, max f

(
spj
)]

, P̃
(∣∣uqj − upj

∣∣, ∣∣vqj − vpj
∣∣)〉) (2)

where
min f

(
spj
)
= min

(∣∣∣ f(sqj

)
− f

(
spj

)∣∣∣, ∣∣ f (sqj
)− f

(
spj
)∣∣)

max f
(
spj
)
= max

(∣∣∣ f(sqj

)
− f

(
spj

)∣∣∣, ∣∣ f (sqj
)− f

(
spj
)∣∣)

Example 1. Let Xp =
(〈

[s3, s5], P̃(0.6, 0.5)
〉)

and Xq =
(〈

[s4, s5], P̃(0.7, 0.4)
〉)

be two Pythagorean
uncertain linguistic numbers, where z = 4, α = 0.6, γ = 0.8.

According to Definition 4, we can obtain

Xp =
(〈

[0.28, 0.66], P̃(0.6, 0.5)
〉)

Xq =
(〈

[0.5, 0.66], P̃(0.7, 0.4)
〉)

Then, the formative vector of Xp and Xq is obtained via (2).

XpXq =
(〈

[0, 0.22], P̃(0.1, 0.1)
〉)
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3. Bi-Directional Projection Model

3.1. Projection Model

Let α =
〈[

sαj
, sαj

]
, P̃
(

uαj , vαj

)〉
and β =

〈[
sβ j

, sβ j

]
, P̃
(

uβ j , vβ j

)〉
, which are two Pythagorean

uncertain linguistic variables, then the cosine of α and β is defined as

cos(α, β) =

n
∑

j=1

(
f
(

sαj

)
· f
(

sβj

)
+ f
(

sαj

)
· f
(

sβj

)
+u2

αj
·u2

βj
+v2

αj
·v2

βj

)
√√√√ n

∑
j=1

(
f
(

sαj

))2
+
(

f
(

sαj

))2
+
(

uαj

)4
+
(

vαj

)4·
√√√√ n

∑
j=1

(
f
(

sβj

))2
+
(

f
(

sβj

))2
+
(

uβj

)4
+
(

vβj

)4
(3)

|α| =
√√√√ n

∑
j=1

(
f
(

sαj

))2
+
(

f
(

sαj

))2
+
(

uαj

)4
+
(

vαj

)4
and |β| =

√√√√ n
∑

j=1

(
f
(

sβj

))2
+
(

f
(

sβj

))2
+
(

uβj

)4
+
(

vβj

)4
denote the

modules of α and β. f is linguistic scale function.
Therefore, the projection of α and β is defined as

prjβ(α) = |α| · cos(α, β)

=

n
∑

j=1

(
f
(

sαj

)
· f
(

sβj

)
+ f
(

sαj

)
· f
(

sβj

)
+u2

αj
·u2

βj
+v2

αj
·v2

βj

)
√√√√ n

∑
j=1

(
f
(

sβj

))2
+
(

f
(

sβj

))2
+
(

uβj

)4
+
(

vβj

)4

(4)

Theorem 1 [25]. The cosine of α and β meets the following several properties

(1) cos(α, β) = cos(β, α)

(2) 0 ≤ cos(α, β) ≤ 1
(3) α = β ⇔ cos(α, β) = 1

3.2. Bi-Directional Projection Model

Let Xi =
〈[

f
(

sij

)
, f
(
sij
)]

, P̃
(
uij, vij

)〉
be an alternative with Pythagorean uncertain linguistic

variable information. The positive and negative ideal alternatives are denoted as:
X+=

〈[
max

1≤i≤m
f(sij), max

1≤i≤m
f(sij)

]
,P̃
(

max
1≤i≤m

uij, min
1≤i≤m

vij

)〉
and X− =

〈[
min

1≤i≤m
f(sij), min

1≤i≤m
f(sij)

]
,P̃
(

min
1≤i≤m

uij, max
1≤i≤m

vij

)〉
,

respectively, m represents the number of alternatives. Then, the formative vectors of Xi and ideal
alternatives are denoted as

X−X+ =
〈[

f
(

st
ij

)
, f
(

st
ij

)]
, P̃
(

ut
ij, vt

ij

)〉
(5)

X−Xi =
〈[

f
(

s−ij
)

, f
(

s−ij
)]

, P̃
(

u−ij , v−ij
)〉

(6)

XiX+ =
〈[

f
(

s+ij
)

, f
(

s+ij
)]

, P̃
(

u+
ij , v+ij

)〉
(7)

where

f
(

st
ij

)
= min

((
max

1≤i≤m
f
(

sij

)
− min

1≤i≤m
f
(

sij

))
,
(

max
1≤i≤m

f
(
sij
)− min

1≤i≤m
f
(
sij
)))

f
(

st
ij

)
= max

((
max

1≤i≤m
f
(

sij

)
− min

1≤i≤m
f
(

sij

))
,
(

max
1≤i≤m

f
(
sij
)− min

1≤i≤m
f
(
sij
)))

ut
ij = max

1≤i≤m
u2

ij − min
1≤i≤m

u2
ij, vt

ij = max
1≤i≤m

v2
ij − min

1≤i≤m
v2

ij

f
(

s−ij
)
= min

((
f
(

sij

)
− min

1≤i≤m
f
(

sij

))
,
(

f
(
sij
)− min

1≤i≤m
f
(
sij
)))
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f
(

s−ij
)
= max

((
f
(

sij

)
− min

1≤i≤m
f
(

sij

))
,
(

f
(
sij
)− min

1≤i≤m
f
(
sij
)))

u−ij = u2
ij − min

1≤i≤m
u2

ij, v−ij = v2
ij − min

1≤i≤m
v2

ij

f
(

s+ij
)
= min

((
max

1≤i≤m
f
(

sij

)
− f

(
sij

))
,
(

max
1≤i≤m

f
(
sij
)− f

(
sij
)))

f
(

s+ij
)
= max

((
max

1≤i≤m
f
(

sij

)
− f

(
sij

))
,
(

max
1≤i≤m

f
(
sij
)− f

(
sij
)))

u+
ij = max

1≤i≤m
u2

ij − u2
ij, v+ij = max

1≤i≤m
v2

ij − v2
ij

(1)

The modules are computed as

∣∣X−X+
∣∣ =

√√√√ n

∑
j=1

((
f
(

st
ij

))2
+
(

f
(

st
ij

))2
+
(

ut
ij

)4
+
(

vt
ij

)4
)

(8)

∣∣X−Xi
∣∣ =

√√√√ n

∑
j=1

((
f
(

s−ij
))2

+
(

f
(

s−ij
))2

+
(

u−ij
)4

+
(

v−ij
)4
)

(9)

The cosine of X−X+ and X−Xi is expressed as

cos
(
X−Xi, X−X+

)
=

n
∑

j=1

(
f
(

st
ij

)
· f
(

s−ij
)
+ f

(
st

ij

)
· f
(

s−ij
)
+
(

ut
ij · u−ij

)2
+
(

vt
ij · v−αij

)2
)

|X−X+| · |X−Xi| (10)

The projection value of X−Xi on X−X+ and X−X+ on XiX+ are calculated as

prjX−X+(X−Xi) = |X−Xi| · cos(X−Xi, X−X+)

=

n
∑

j=1

(
f
(

st
ij

)
· f
(

s−ij
)
+ f
(

st
ij

)
· f
(

s−ij
)
+
(

ut
ij ·u−ij

)2
+
(

vt
ij ·v−ij

)2
)

|X−X+ |
(11)

prjXiX+(X−X+) = |X−X+| · cos(XiX+, X−X+)

=

n
∑

j=1

(
f
(

st
ij

)
· f
(

s+ij
)
+ f
(

st
ij

)
· f
(

s+ij
)
+
(

ut
ij ·u+

ij

)2
+
(

vt
ij ·v+ij

)2
)

|XiX+ |
(12)

Theorem 2. The bigger the value of prjX−X+(X−Xi), the closer the alternative Xi to positive ideal alternative
X+. Analogously, the bigger the value of prjXiX+(X−X+), the closer the alternative Xi will be to negative ideal
alternative X− (as shown in Figure 1 [29]).

iX

X− +X( )iX Xprj X X− +
−

(
)

i
X

X

prj

X
X

+

−

+

Figure 1. The graphical representation of prjX−X+

(
X−Xi

)
and prjXi X+

(
X−X+

)
.
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4. Comparative Analysis of Projection Model and Bi-Directional Projection Model

Let Xi =
〈[

f
(

sij

)
, f
(
sij
)]

, P̃
(
uij, vij

)〉
and Xl =

〈[
f
(

slj

)
, f
(

slj

)]
, P̃
(

ulj, vlj

)〉
, which are two

alternatives with Pythagorean uncertain linguistic variable information, the positive and negative ideal

alternatives are defined as X+ =

〈[
max

1≤i≤m
f
(

sij

)
, max

1≤i≤m
f
(
sij
)]

, P̃
(

max
1≤i≤m

uij, min
1≤i≤m

vij

)〉
and X− =〈[

min
1≤i≤m

f
(

sij

)
, min

1≤i≤m
f
(
sij
)]

, P̃
(

min
1≤i≤m

uij, max
1≤i≤m

vij

)〉
, respectively. The Xi and Xl distribute on the

perpendicular bisector of X− and X+ (shown as Figure 2). We compare the Xi and Xl via projection
and bi-directional projection models, respectively.

0

X +

X −

iX

lX

 

Figure 2. The closeness degree of projection model.

4.1. Projection Model

Step 1: Compute the projection of Xi and Xl on the positive and negative ideal alternatives via (4).

prjX+(Xi) = |Xi| · cos(Xi, X+)

=

n
∑

j=1

(
f (sij)· max

1≤i≤m
f (sij)+ f (sij)· max

1≤i≤m
f (sij)+u2

ij · max
1≤i≤m

u2
ij+v2

ij · min
1≤i≤m

v2
ij

)
√√√√ n

∑
j=1

(
max

1≤i≤m
f (sij)

)2
+

(
max

1≤i≤m
f (sij)

)2
+

(
max

1≤i≤m
uij

)4
+

(
min

1≤i≤m
vij

)4
(13)

prjX−(Xi) = |Xi| · cos(Xi, X−)

=

n
∑

j=1

(
f (sij)· min

1≤i≤m
f (sij)+ f (sij)· min

1≤i≤m
f (sij)+u2

ij · min
1≤i≤m

u2
ij+v2

ij · max
1≤i≤m

v2
ij

)
√√√√ n

∑
j=1

(
min

1≤i≤m
f (sij)

)2
+

(
min

1≤i≤m
f (sij)

)2
+

(
min

1≤i≤m
uij

)4
+

(
max

1≤i≤m
vij

)4
(14)

prjX+(Xl) = |Xl | · cos(Xl , X+)

=

n
∑

j=1

(
f (slj)· max

1≤l≤m
f (slj)+ f (slj)· max

1≤l≤m
f (slj)+u2

l j · max
1≤l≤m

u2
l j+v2

l j · min
1≤l≤m

v2
l j

)
√√√√ n

∑
j=1

(
max

1≤l≤m
f (slj)

)2
+

(
max

1≤l≤m
f (slj)

)2
+

(
max

1≤l≤m
ulj

)4
+

(
min

1≤l≤m
vlj

)4
(15)

prjX−(Xl) = |Xl | · cos(Xl , X−)

=

n
∑

j=1

(
f (slj)· min

1≤l≤m
f (slj)+ f (slj)· min

1≤l≤m
f (slj)+u2

l j · min
1≤l≤m

u2
l j+v2

l j · max
1≤l≤m

v2
l j

)
√√√√ n

∑
j=1

(
min

1≤l≤m
f (slj)

)2
+

(
min

1≤l≤m
f (slj)

)2
+

(
min

1≤l≤m
ulj

)4
+

(
max

1≤l≤m
vlj

)4
(16)

Step 2: Calculate the closeness degree of Xi and Xl to ideal alternatives, respectively.

C(Xi) =
prjX+(Xi)

prjX−(Xi) + prjX+(Xi)
(17)
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C(Xl) =
prjX+(Xl)

prjX−(Xl) + prjX+(Xl)
(18)

we can see prjX+(Xi) = prjX−(Xi) and prjX+(Xl) = prjX−(Xl) because the Xi and Xl distribute on
the perpendicular bisector of X− and X+. Therefore, C(Xi) = C(Xl) =

1
2 , Xi~Xl .

Where the closeness degree is ranking indicators. The bigger value of the closeness degree,
the better the preference order of the alternatives.

4.2. Bi-Directional Projection Model

Step 1: Compute the formative vector: XiX+, X−Xi, XlX+, X−Xl , respectively.

X−X+ =
〈[

f
(

st
ij

)
, f
(

st
ij

)]
, P̃
(

ut
ij, vt

ij

)〉
(19)

X−Xi =
〈[

f
(

s−ij
)

, f
(

s−ij
)]

, P̃
(

u−ij , v−ij
)〉

(20)

XiX+ =
〈[

f
(

s+ij
)

, f
(

s+ij
)]

, P̃
(

u+
ij , v+ij

)〉
(21)

XlX+ =
〈[

f
(

s+l j
)

, f
(

s+l j
)]

, P̃
(

u+
l j , v+l j

)〉
(22)

X−Xl =
〈[

f
(

s−l j
)

, f
(

s−l j
)]

, P̃
(

u−l j , v−l j
)〉

(23)

Step 2: Calculate the projection value of formative vector X−Xi and X−Xl to X−X+, denoted as
prjX−X+(X−Xi), prjX−X+(X−Xl), and the projection value of formative vector X−X+ to XiX+

and XlX+, denoted as prjXiX+(X−X+), prjXl X+(X−X+), respectively (shown as Figure 3).

prjX−X+(X−Xi) = |X−Xi| · cos(X−Xi, X−X+)

=

n
∑

j=1

(
f
(

st
ij

)
· f
(

s−ij
)
+ f
(

st
ij

)
· f
(

s−ij
)
+
(

ut
ij ·u−ij

)2
+
(

vt
ij ·v−ij

)2
)

|X−X+ |
(24)

prjXiX+(X−X+) = |X−X+| · cos(XiX+, X−X+)

=

n
∑

j=1

(
f
(

st
ij

)
· f
(

s+ij
)
+ f
(

st
ij

)
· f
(

s+ij
)
+
(

ut
ij ·u+

ij

)2
+
(

vt
ij ·v+ij

)2
)

|XiX+ |
(25)

prjX−X+(X−Xl) = |X−Xl | · cos(X−Xl , X−X+)

=

n
∑

j=1

(
f
(

st
lj

)
· f
(

s−l j
)
+ f
(

st
lj

)
· f
(

s−l j
)
+
(

ut
lj ·u−l j

)2
+
(

vt
lj ·v−l j

)2
)

|X−X+ |
(26)

prjXl X+(X−X+) = |X−X+| · cos(XlX+, X−X+)

=

n
∑

j=1

(
f
(

st
lj

)
· f
(

s+l j
)
+ f
(

st
lj

)
· f
(

s+l j
)
+
(

ut
lj ·u+

l j

)2
+
(

vt
lj ·v+l j

)2
)

|XiX+ |

(27)

Step 3: Compute the closeness degree of Xi and Xl to ideal alternatives.

C(Xi) =
prjX−X+(X−Xi)

prjX−X+(X−Xi) + prjXiX+(X−X+)
(28)

C(Xl) =
prjX−X+(X−Xl)

prjX−X+(X−Xl) + prjXl X+(X−X+)
(29)

We can see prjX−X+(X−Xi) = prjX−X+(X−Xl) because Xi and Xl distribute on the perpendicular
bisector of ideal alternatives, as shown in Figure 3 prjXl X+(X−X+) > prjXiX+(X−X+). Therefore,
C(Xi) > C(Xl), Xi � Xl .
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From the foregoing analysis, we can know the projection model is difficult to obtain the ranking
order of Xi and Xl , when they distribute on the perpendicular bisector of ideal alternatives. Whereas,
the bi-directional projection model can remarkably overcome the drawback and get the rational ranking
order of Xi and Xl .

iX

lX

(
)

i
X

X
prj

X
X

+

−
+

(

)
l

X
X

prj

X
X

+

−

+

( )( )i lX X
prj X X− +

−X−

X+

Figure 3. The closeness degree of bi-directional projection model.

5. Decision Making Steps of Bi-Directional Projection Model

To solve certain decision making problems, we propose a new bi-directional projection model
based on Pythagorean uncertain linguistic variables. X = {X1, X2, · · · , Xn} denotes the set of
alternatives, the set of attributes are denoted by C = {C1, C2, · · · , Cn} and the weights are represented

by W = {w1, w2, · · · , wn}, where wj ∈ [0, 1],
n
∑

j=1
wj = 1. α =

〈[
sij, sij

]
, P̃
(
uij, vij

)〉
is the evaluation

value of Xi under Cj with Pythagorean uncertain linguistic variable information. The linguistic term set
is S = {s0, s1, · · · , s2z}, Ib and Ic denote the benefit attribute and cost attribute, respectively. In general,
the proposed method involves the following steps:

Step 1: Construct the decision making matrix α =
(
αij
)

with Pythagorean uncertain linguistic
variable information, and normalize the decision matrix.

αij =

{
αij , bene f it attribute Ib(

αij
)c, cost attribute Ic

where,
(
αij
)c is the complement of αij, and the form of

(
αij
)c is defined as

(
αij
)c

=〈[
f−
(

f (st)− f
(
sij
))

, f−
(

f (st)− f
(

sij

))]
, P
(
vij, uij

)〉
.

Step 2: Convert the Pythagorean uncertain linguistic variable to Pythagorean uncertain linguistic
function via the linguistic scale function.

Step 3: Determine the ideal alternatives β+ =
{

β+
1 , β+

2 , · · · , β+
n
}

and β− =
{

β−1 , β−2 , · · · , β−n
}

.

Where,

β+
j =

〈[
max

1≤i≤m
f
(

sij

)
, max

1≤i≤m
f
(
sij
)]

, P̃
(

max
1≤i≤m

uij, min
1≤i≤m

vij

)〉
β−j =

〈[
min

1≤i≤m
f
(

sij

)
, min

1≤i≤m
f
(
sij
)]

, P̃
(

min
1≤i≤m

uij, max
1≤i≤m

vij

)〉
Step 4: Compute the formative vector of ideal alternative and Xi via (2).
Step 5: Calculate the projection value of formative vector X−Xi to X−X+, denoted as

prjX−X+(X−Xi), and the projection value of formative vector X−X+ to XiX+, denoted as
prjXiX+(X−X+), respectively.
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Step 6: Develop a closeness degree formula based on TOPSIS method, and obtain the ranking order
of all alternatives via closeness degree.

C(Xi) =
prjX−X+(X−Xi)

prjX−X+(X−Xi) + prjXiX+(X−X+)

6. Numerical Example

It is essential to choose the right enterprise for graduates’ future development. In order to
provide reasonable employment guidance for graduates, we get the influence factors by questionnaires
of 260 college graduates of Shandong province. After eliminating the invalid and incomplete
questionnaires, seven main attributes are selected to evaluate the alternative companies according
to 210 valid questionnaires. The set of attributes is: {prospects of company, working strength, wage level,
personal prospects, social insurance and house funding, professional relevance, geographical}. For the sake
of convenience, the set of attributes is denoted by {C1, C2, C3, C4, C5, C6, C7}. C2 is cost attribute and
the rest are benefit attributes. The detailed guidance process of a graduate is shown as follows:
The set of companies are denoted as: {A1, A2, · · · , A10} and the weights are {w1, w2, · · · , w7},
where, w1 = 0.12, w2 = 0.06, w3 = 0.2, w4 = 0.24, w5 = 0.1, w6 = 0.21, w7 = 0.07, which are
given by experts, α =

〈[
sij, sij

]
, P̃
(
uij, vij

)〉
is the evaluation value of Xi under Cj with Pythagorean

uncertain linguistic variable information. The linguistic term set is: S = {s0 = extremely bad, s1 = very
bad, s2 = bad, s3 = slightly bad, s4 = fair, s5 = good, s6 = slightly good, s7 = very good, s8 = extremely good}.
Determine the ranking order of the 10 companies based on bi-directional projection model.

Step 1: Construct the decision making matrix α =
(
αij
)

with Pythagorean uncertain linguistic
variable information, and normalize the decision matrix.

c1 c2 c3 c4 c5

A1 〈[s4, s6], (0.8, 0.6)〉 〈[s5, s6], (0.6, 0.8)〉 〈[s5, s7], (0.8, 0.6)〉 〈[s4, s6], (0.7, 0.6)〉 〈[s4, s5], (0.8, 0.6)〉
A2 〈[s5, s7], (0.8, 0.4)〉 〈[s4, s7], (0.6, 0.7)〉 〈[s6, s7], (0.9, 0.3)〉 〈[s7, s8], (0.8, 0.3)〉 〈[s6, s7], (0.9, 0.2)〉
A3 〈[s4, s7], (0.7, 0.6)〉 〈[s4, s6], (0.6, 0.7)〉 〈[s4, s6], (0.8, 0.5)〉 〈[s4, s5], (0.6, 0.5)〉 〈[s6, s8], (0.7, 0.4)〉
A4 〈[s4, s5], (0.7, 0.5)〉 〈[s5, s8], (0.5, 0.7)〉 〈[s3, s5], (0.6, 0.5)〉 〈[s5, s6], (0.7, 0.4)〉 〈[s4, s5], (0.6, 0.3)〉
A5 〈[s5, s7], (0.8, 0.4)〉 〈[s5, s7], (0.5, 0.8)〉 〈[s5, s6], (0.6, 0.4)〉 〈[s6, s7], (0.6, 0.5)〉 〈[s3, s6], (0.6, 0.5)〉
A6 〈[s6, s8], (0.7, 0.5)〉 〈[s6, s7], (0.4, 0.5)〉 〈[s3, s5], (0.8, 0.5)〉 〈[s4, s7], (0.7, 0.5)〉 〈[s5, s7], (0.7, 0.4)〉
A7 〈[s5, s6], (0.6, 0.5)〉 〈[s6, s8], (0.6, 0.7)〉 〈[s4, s5], (0.6, 0.5)〉 〈[s6, s8], (0.7, 0.3)〉 〈[s6, s7], (0.7, 0.5)〉
A8 〈[s4, s6], (0.7, 0.6)〉 〈[s5, s6], (0.3, 0.9)〉 〈[s5, s7], (0.6, 0.4)〉 〈[s4, s5], (0.6, 0.4)〉 〈[s4, s5], (0.8, 0.5)〉
A9 〈[s6, s8], (0.7, 0.6)〉 〈[s4, s7], (0.4, 0.8)〉 〈[s4, s5], (0.7, 0.5)〉 〈[s5, s6], (0.6, 0.5)〉 〈[s4, s7], (0.6, 0.5)〉
A10 〈[s4, s7], (0.8, 0.5)〉 〈[s3, s5], (0.5, 0.7)〉 〈[s4, s6], (0.6, 0.5)〉 〈[s4, s6], (0.7, 0.5)〉 〈[s4, s5], (0.7, 0.4)〉

c6 c7

A1 〈[s6, s7], (0.7, 0.6)〉 〈[s6, s8], (0.8, 0.5)〉
A2 〈[s6, s8], (0.8, 0.6)〉 〈[s6, s7], (0.8, 0.4)〉
A3 〈[s4, s5], (0.7, 0.5)〉 〈[s4, s7], (0.6, 0.4)〉
A4 〈[s5, s6], (0.6, 0.4)〉 〈[s5, s7], (0.6, 0.5)〉
A5 〈[s5, s7], (0.7, 0.4)〉 〈[s4, s7], (0.7, 0.4)〉
A6 〈[s5, s8], (0.7, 0.3)〉 〈[s5, s7], (0.8, 0.6)〉
A7 〈[s6, s7], (0.8, 0.4)〉 〈[s4, s6], (0.7, 0.5)〉
A8 〈[s4, s5], (0.9, 0.3)〉 〈[s6, s7], (0.7, 0.6)〉
A9 〈[s4, s6], (0.6, 0.4)〉 〈[s7, s8], (0.6, 0.3)〉
A10 〈[s5, s7], (0.7, 0.5)〉 〈[s4, s5], (0.7, 0.4)〉
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Step 2: Convert the Pythagorean uncertain linguistic variable to Pythagorean uncertain linguistic
function via the linguistic scale function, where α = 0.6, γ = 0.8.

c1 c2 c3 c4 c5

A1 〈[0.5, 0.79], (0.8, 0.6)〉 〈[0.66, 0.79], (0.6, 0.8)〉 〈[0.66, 0.9], (0.8, 0.6)〉 〈[0.5, 0.79], (0.7, 0.6)〉 〈[0.5, 0.66], (0.8, 0.6)〉
A2 〈[0.66, 0.9], (0.8, 0.4)〉 〈[0.5, 0.9], (0.6, 0.7)〉 〈[0.79, 0.9], (0.9, 0.3)〉 〈[0.9, 1], (0.8, 0.3)〉 〈[0.79, 0.9], (0.9, 0.2)〉
A3 〈[0.5, 0.9], (0.7, 0.6)〉 〈[0.5, 0.79], (0.6, 0.7)〉 〈[0.5, 0.79], (0.8, 0.5)〉 〈[0.5, 0.66], (0.6, 0.5)〉 〈[0.79, 1], (0.7, 0.4)〉
A4 〈[0.5, 0.66], (0.7, 0.5)〉 〈[0.66, 1], (0.5, 0.7)〉 〈[0.28, 0.66], (0.6, 0.5)〉 〈[0.66, 0.79], (0.7, 0.4)〉 〈[0.5, 0.66], (0.6, 0.3)〉
A5 〈[0.66, 0.9], (0.8, 0.4)〉 〈[0.66, 0.9], (0.5, 0.8)〉 〈[0.66, 0.79], (0.6, 0.4)〉 〈[0.79, 0.9], (0.6, 0.5)〉 〈[0.28, 0.79], (0.6, 0.5)〉
A6 〈[0.79, 1], (0.7, 0.5)〉 〈[0.79, 0.9], (0.4, 0.5)〉 〈[0.28, 0.66], (0.8, 0.5)〉 〈[0.5, 0.9], (0.7, 0.5)〉 〈[0.66, 0.89], (0.7, 0.4)〉
A7 〈[0.66, 0.79], (0.6, 0.5)〉 〈[0.79, 1], (0.6, 0.7)〉 〈[0.5, 0.66], (0.6, 0.5)〉 〈[0.79, 1], (0.7, 0.3)〉 〈[0.79, 0.9], (0.7, 0.5)〉
A8 〈[0.5, 0.79], (0.7, 0.6)〉 〈[0.66, 0.79], (0.3, 0.9)〉 〈[0.66, 0.9], (0.6, 0.4)〉 〈[0.5, 0.66], (0.6, 0.4)〉 〈[0.5, 0.66], (0.8, 0.5)〉
A9 〈[0.79, 1], (0.7, 0.6)〉 〈[0.5, 0.9], (0.4, 0.8)〉 〈[0.5, 0.66], (0.7, 0.5)〉 〈[0.66, 0.79], (0.6, 0.5)〉 〈[0.5, 0.9], (0.6, 0.5)〉
A10 〈[0.5, 1], (0.8, 0.5)〉 〈[0.28, 0.66], (0.5, 0.7)〉 〈[0.5, 0.79], (0.6, 0.5)〉 〈[0.5, 0.79], (0.7, 0.5)〉 〈[0.5, 0.66], (0.7, 0.4)〉

c6 c7

A1 〈[0.79, 0.9], (0.7, 0.6)〉 〈[0.79, 1], (0.8, 0.5)〉
A2 〈[0.79, 1], (0.8, 0.6)〉 〈[0.79, 0.9], (0.8, 0.4)〉
A3 〈[0.5, 0.66], (0.7, 0.5)〉 〈[0.5, 0.9], (0.6, 0.4)〉
A4 〈[0.66, 0.79], (0.6, 0.4)〉 〈[0.66, 0.9], (0.6, 0.5)〉
A5 〈[0.66, 0.9], (0.7, 0.4)〉 〈[0.5, 0.9], (0.7, 0.4)〉
A6 〈[0.66, 1], (0.7, 0.3)〉 〈[0.66, 0.9], (0.8, 0.6)〉
A7 〈[0.79, 0.9], (0.8, 0.4)〉 〈[0.5, 0.79], (0.7, 0.5)〉
A8 〈[0.5, 0.66], (0.9, 0.3)〉 〈[0.79, 0.9], (0.7, 0.6)〉
A9 〈[0.5, 0.79], (0.6, 0.4)〉 〈[0.9, 1], (0.6, 0.3)〉
A10 〈[0.66, 0.9], (0.7, 0.5)〉 〈[0.5, 0.66], (0.7, 0.4)〉

Step 3: Determine the positive and negative ideal alternatives X+ and X−.

X+ = {〈[0.79, 1], (0.8, 0.4)〉, 〈[0.79, 1], (0.6, 0.5)〉, 〈[0.79, 1], (0.9, 0.3)〉, 〈[0.9, 1], (0.8, 0.3)〉, 〈[0.79, 1], (0.9, 0.3)〉,
〈[0.79, 1], (0.9, 0.3)〉, 〈[0.9, 1], (0.8, 0.3)〉}

X− = {〈[0.5, 0.66], (0.6, 0.6)〉, 〈[0.28, 0.66], (0.3, 0.9)〉, 〈[0.28, 0.66], (0.6, 0.6)〉, 〈[0.5, 0.66], (0.6, 0.6)〉, 〈[0.28, 0.66], (0.6, 0.6)〉,
〈[0.5, 0.66], (0.6, 0.6)〉, 〈[0.5, 0.66], (0.6, 0.6)〉}

Step 4: Compute the formative vector of ideal alternative and Xi via (2).

X−X+ = {〈[0.29, 0.34], (0.2, 0.2)〉, 〈[0.34, 0.51], (0.3, 0.4)〉, 〈[0.34, 0.51], (0.3, 0.3)〉, 〈[0.34, 0.4], (0.2, 0.3)〉,
〈[0.24, 0.51], (0.3, 0.3)〉, 〈[0.29, 0.34], (0.3, 0.3)〉, 〈[0.34, 0.4], (0.2, 0.3)〉}

Similarly, we can get the formative vector of ideal alternative and .
Step 5: Calculate the projection value of formative vector X−Xi to X−X+, denoted as

prjX−X+(X−Xi), and the projection value of formative vector X−X+ to XiX+, denoted as
prjXiX+(X−X+), respectively.

prjX−X+(X−Xi) 0.487 0.822 0.429 0.357 0.508 0.59 0.607 0.412 0.467 0.341
prjXiX+(X−X+) 1.39 2.057 1.322 1.288 1.488 1.395 1.512 1.261 1.403 1.269

Step 6: Compute the closeness degree and obtain the ranking order of all alternatives via
closeness degree.

C(Xi) 0.259 0.285 0.245 0.217 0.254 0.297 0.287 0.246 0.25 0.212
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where,

C(X6) > C(X7) > C(X2) > C(X1) > C(X5) > C(X9) > C(X8) > C(X3) > C(X4) > C(X10)

Therefore, A6 � A7 � A2 � A1 � A5 � A9 � A8 � A3 � A4 � A10, and A6 is the best company
for this graduate.

7. Conclusions

To solve multi-attribute decision making (MADM) problems with Pythagorean uncertain linguistic
variables, we proposed an extended bi-directional projection model. The extended model can take the
advantages of the Pythagorean uncertain linguistic variable and projection models, and effectively
overcome the drawbacks of the single distance measure. The feasibility of the proposed method is
demonstrated by the graduates’ job-hunting problem.

The superiority of our bi-directional projection model is that it can consider the angle and distance
between two evaluation values simultaneously. Compared with projection model, the proposed model
can handle the real-life case of alternatives distribution on the perpendicular bisector of positive and
negative ideal alternatives, which made it widely suitable in MADM. However, the proposed method
does not consider the psychological risk factors of decision makers in this paper, which will be explored
in the future research.
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Abstract: The decision-making process requires the prior definition and fulfillment of certain factors,
especially when it comes to complex areas such as supply chain management. One of the most
important items in the initial phase of the supply chain, which strongly influences its further flow, is to
decide on the most favorable supplier. In this paper a selection of suppliers in a company producing
polyvinyl chloride (PVC) carpentry was made based on the new approach developed in the field of
multi-criteria decision making (MCDM). The relative values of the weight coefficients of the criteria
are calculated using the rough analytical hierarchical process (AHP) method. The evaluation and
ranking of suppliers is carried out using the new rough weighted aggregated sum product assessment
(WASPAS) method. In order to determine the stability of the model and the ability to apply the
developed rough WASPAS approach, the paper analyzes its sensitivity, which involves changing
the value of the coefficient λ in the first part. The second part of the sensitivity analysis relates
to the application of different multi-criteria decision-making methods in combination with rough
numbers that have been developed in the very recent past. The model presented in the paper is
solved by using the following methods: rough Simple Additive Weighting (SAW), rough Evaluation
based on Distancefrom Average Solution (EDAS), rough MultiAttributive Border Approximation
area Comparison (MABAC), rough Višekriterijumsko kompromisno rangiranje (VIKOR), rough
MultiAttributiveIdeal-Real Comparative Analysis (MAIRCA) and rough Multi-objective optimization
by ratio analysis plus the full multiplicative form (MULTIMOORA). In addition, in the third part of the
sensitivity analysis, the Spearman correlation coefficient (SCC) of the ranks obtained was calculated
which confirms the applicability of all the proposed approaches. The proposed rough model allows
the evaluation of alternatives despite the imprecision and lack of quantitative information in the
information-management process.

Keywords: rough number; rough weighted aggregated sum product assessment (WASPAS); rough
analytical hierarchical process (AHP); multiple criteria decision making (MCDM); supplier

1. Introduction

The concept of the supply chain changes over time, but essentially retains its original form; it is
growing in importance and, according to Petrović et al. [1], information management and control of the
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supply chain are the strategic focus of the leading manufacturing companies. This is caused by very
rapid changes in the environment in which companies operate, with the globalization of the market
and the very high demands of users for whom the high quality of products and services becomes a
priority. In today’s supply chains, supply as a subsystem and the choice of an adequate supplier as
the most important process in the procurement subsystem are issues of strategic importance for the
functioning of production and other companies, and the goal is to model the supply chain in such a
way as to provide profitable outputs for all parts of the supply chain and its participants. The basic
participants and elements in the supply chain in relation to the time when this concept emerged are
still almost the same, with increasing attention paid to the end-user of services and the satisfaction
of their requirements and needs. In order for this to be fulfilled and, on the other hand, to generate
profit and efficiently carry out a set of activities in the supply chain with as little cost as possible, it is
necessary to take into account the method of suppliers’ selection. Since the 1990s, organizational skills
were further enhanced according to Monczka et al. [2], and managers began to realize that material
inputs from suppliers have a major impact on their ability to respond to the fulfilment of user needs.
For this reason, a growing focus has been placed on suppliers as an important factor for the formation
of the final product price.

A reliable supplier who performs all his contractual obligations in an adequate way and a smooth
flow of goods can be distinguished as the most important goals, on which can largely depend the
complete flow of the supply chain and the achievement of the goals of its participants. The choice of
suppliers is one of the more important items for supply chain management [3], while managing and
developing relationships with suppliers is a critical issue for achieving a competitive advantage [4].
In addition to the aforementioned supply chain processes, information flows and the additional value
of material flows are important.

This work has two primary goals, whereby the first objective relates to the possibility of improving
the methodology for the treatment of imprecision when it comes to the field of group multiple criteria
decision making (MCDM) through the development of the new rough weighted aggregated sum
product assessment (WASPAS) approach. The second goal of this paper is to enrich the evaluation
methodology and selection of suppliers through a new approach to the treatment of imprecision that
is based on rough numbers.

The paper is structured in six sections. In the first section, introductory considerations about the
importance and effects of selection the most appropriate suppliers are given. In the second section,
a literature review is carried out presenting the application of the WASPAS method in different areas
and demonstrating rough sets theory applications. The third section presents the novel rough WASPAS
approach with a detailed explanation of each step. The fourth section presents a practical example of
selection of a supplier in a polyvinyl chloride (PVC) manufacturing company using a pre-developed
approach. The fifth section presents a sensitivity analysis consisting of three parts on the basis of which
the stability of the proposed approach is determined. In the same section, in addition to sensitivity
analysis, the results obtained are discussed. The sixth section contains concluding remarks.

2. Literature Review

A short literature review is carried out presenting successful applications of the WASPAS method
in different precise or uncertain decision-making situations, as well as demonstrating cases of rough
sets theory applications in MCDM problems.

2.1. Applications of Weighted Aggregated Sum Product Assessment (WASPAS) Method

The WASPAS method falls within a group of recent MCDM methods. It was developed by
Zavadskas et al. in 2012 [5] and so far has been successfully applied in various areas for solving
problems of a different nature. Ighravwe and Oke [6] use the WASPAS method for evaluating
maintenance performance systems, while Mathew et al. [7] make a selection of an industrial robot.
It is also applied to the determination of the location areas of wind farms in [8], while in [9] in
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combination with factor relationship (FARE) it is applied in hard magnetic material selection. Solving
the location problem for the construction of a shopping center was discussed in [10], where this
method is also applied. Zavadskas et al. [11] evaluated apartments in residential buildings using
the WASPAS method. The following studies in different areas use the WASPAS method [12,13].
The combination of the analytical hierarchical process (AHP) and WASPAS methods is not rare, so a
number of publications using AHP for determining the weight values of the criteria and WASPAS for
the choice of alternatives can be found in the literature [14,15]. Madić et al. [16] evaluate the machining
process with combination of AHP and WASPAS method, while Turskis et al. [17] use the fuzzy form
of these methods for construction site selection. A combination of the classic form of these methods
is applied to laser cutting in [18]. The combination of Step-wise Weight Assessment Ratio Analysis
(SWARA) and WASPAS is used for solar power plant site selection in [19], and in [20] the combination
of these two methods is applied in the nanotechnology industry. The integration of the SWARA,
Quality function deployment (QFD) and WASPAS methods is proposed in [21] to resolve the selection
of suppliers. SWARA was also used to determine the significance of the criteria. This combination
is also integrated into [22] where it is used for the selection of staff in tourism. The combination of
methods has been also applied in many decision-making problems and environments [23].

The WASPAS method has a number of extensions. Zavadskas et al. in 2015 [24] developed
a new WASPAS-G which is a combination of the classic WASPAS method with grey values, while
Keshavarz Ghorabaee et al. in 2016 [25] developed a WASPAS method with interval type-2 fuzzy
sets to evaluate and select suppliers in the green supply chain. The same approach is combined with
the CRiteria Importance Through Inter-criteria Correlation (CRITIC) method used for a third-party
logistics (3PL) provider in [26]. A combination of the WASPAS and single-valued neutrosophic set is
applied in [27,28]. WASPAS combined with interval-valued intuitionistic fuzzy numbers (IVIF) was
developed in [29]. Solving solar-wind power station location problem using the WASPAS method with
interval neutrosophic sets was considered in [30].

2.2. Applications of Rough Sets in Multiple Criteria Decision Making (MCDM)

The popularization of rough sets is lately evident and is increasingly used to make decisions
in different areas. Song et al. in his paper [31] used a rough Technique for Ordering Preference by
Similarity to Ideal Solution (TOPSIS) approach in uncertain environments. Integration of rough AHP
and MABAC are proposed in [32], while integration interval rough AHP and interval rough MABAC
is proposed in [33] for evaluation of university websites. A rough AHP and rough TOPSIS approach is
also used in [34]. Rough numbers in integration with MCDM methods, according Stević et al. [35],
give good results, so lately we can notice the popularization of the use of rough numbers [36–38].
Besides the AHP method and its rough form, it is also possible to apply rough best worst method
(BWM). So far, rough BWM has been applied in several publications. A rough BWM model was
applied for determining the importance of the criteria for selecting a wagon for a logistics company
in [39]. The evaluation of suppliers can be executed using a new believable rough set approach which
was developed in [40] and, according to the authors, it provided good results.

In comparison with other concepts, a novel rough WASPAS approach has some advantages that
can be described as follows. The first reason is its advantage in comparison with grey theory. Grey
relation analysis provides a well-structured analytical framework for a multi-criteria decision-making
process, but it lacks the capability to characterize the subjective perceptions of designers in the
evaluation process. Rough set theory may help here, because rough sets can facilitate effective
representation of vague information or imprecise data [41]. According to Khoo et al. [42], a very
important advantage of using rough set theory to handle vagueness and uncertainty is that it expresses
vagueness by means of the boundary region of a set instead of membership function. In addition,
the integration of rough numbers in MCDM methods gives the possibility to explore subjective and
unclear evaluation of the experts and to avoid assumptions, which is not the case when applying
fuzzy theory [35]. According to Hashemkhani Zolfani et al. [10], the main advantage of the WASPAS
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method is its high degree of reliability. Integration of rough numbers and the WASPAS method
with advantages of both concepts presents a very important support in decision-making in everyday
conflicting situations.

The purpose of the fuzzy tehnique in the decision making process is to enable the transformation of
crisp numbers into fuzzy numbers that show uncertainties in real world systems using the membership
function. As opposed to fuzzy sets theory, which requires a subjective approach in determining partial
functions and fuzzy set boundaries, rough set theory determines set boundaries based on real values
and depends on the degree of certainty of the decision maker. Since rough set theory deals solely with
internal knowledge, i.e., operational data, there is no need to rely on assumption models. In other
words, when applying rough sets, only the structure of the given data is used instead of various
additional/external parameters [43]. Duntsch and Gediga [44] believe that the logic of rough set theory
is based solely on data that speak for themselves. When dealing with rough sets, the measurement of
uncertainty is based on the vagueness already contained in the data [45]. In this way, the objective
indicators contained in the data can be determined. In addition, rough set theory is suitable for
application on sets characterized by irrelevant data where the use of statistical methods does not seem
appropriate [46].

3. Methods

3.1. Rough Set Theory

In rough set theory, any vague idea can be represented as a couple of exact concepts based on the
lower and upper approximations.

Suppose U is the universe which contains all the objects, Y is an arbitrary object of U, R is a set of
t classes {G1, G2, ..., Gt} that cover all the objects in U, R = {G1, G2, ..., Gt}. If these classes are ordered
as G1 < G2 < ... < Gt}, then ∀Y ∈ U, Gq ∈ R, 1 ≤ q ≤ t, by R (Y) we mean the class to which the
object belongs, the lower approximation (Apr(Gq)), upper approximation (Apr(Gq)) and boundary
region (Bnd(Gq)) of class Gq are, according to [47], defined as:

Apr(Gq) = {Y ∈ U/R(Y) ≤ Gq
}

(1)

Apr(Gq) = {Y ∈ U/R(Y) ≥ Gq
}

(2)

Bnd(Gq) = {Y ∈ U/R(Y) �= Gq
}
= {Y ∈ U/R(Y) > Gq

} ∪ {Y ∈ U/R(Y) < Gq
}

(3)

Then Gq can be shown as rough number (RN(Gq)), which is determined by its corresponding
lower limit (Lim(Gq)) and upper limit (Lim(Gq)) where:

Lim(Gq) =
1

ML
∑
{

Y ∈ Apr(Gq)
}

R(Y) (4)

Lim(Gq) =
1

MU
∑
{

Y ∈ Apr(Gq)
}

R(Y) (5)

RN(Gq) =
[
Lim(Gq), Lim(Gq)

]
(6)

where ML, MU are the numbers of objects that are contained in Apr(Gq) and Apr(Gq), respectively.

3.2. A Novel Rough WASPAS Approach

The WASPAS method [5] represents a relatively new MCDM method, that has been proved to be
robust in a number of publications. Bearing in mind all the advantages of using rough theory [48,49]
in the MCDM to represent ambiguity, vagueness and uncertainty, the authors have decided in this
paper to modify the WASPAS algorithm using rough numbers, which is an original contribution.

The proposed rough WASPAS method consists of the following steps:
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Step 1: Formulation of the model, which consists of m alternatives and n criteria.
Step 2: Formation a team of k experts for the evaluation of alternatives according all criteria using

the linguistic scale (Table 1).

Table 1. Linguistic scale for evaluating alternatives depending on the type of criteria [39].

Linguistic Scale For Criteria of Type Max (Benefit Criteria) For Criteria of Type Min (Cost Criteria)

Very Poor—VP 1 9
Poor—P 3 7

Medium—M 5 5
Good—G 7 3

Very Good—VG 9 1

Step 3: Formation of initial individual matrices based on evaluations made by experts. It is
necessary to form as many individual matrices as there are experts. If the model includes e.g., 5 experts
it is necessary to form 5 individual matrices.

Step 4: Converting an individual matrix into a group rough matrix. Each individual matrix of
experts k1, k2, ..., kn needs to be converted into a rough group matrix (RGM) (1) using Equations (1)–(6):

RGM =

⎡⎢⎢⎢⎢⎣
[
xL

11, xU
11
][

xL
21, xU

21
]

...[
xL

m1, xU
m1
]

[
xL

12, xU
12
][

xL
22, xU

22
]

...[
xL

m2, xU
m2
]

· · ·
· · ·
. . .
· · ·

[
xL

1n, xU
1n
][

xL
2n, xU

2n
]

...[
xL

mn, xU
mn
]

⎤⎥⎥⎥⎥⎦ (7)

Step 5: In this step it is necessary to normalize the previous matrix using Equations (8) and (9):

nij =

[
xL

ij; xU
ij

]
max

[
x+L

ij ; x+U
ij

] f or C1,C2, . . . , Cn ε B (8)

nij =
min

[
x−L

ij ; x−U
ij

]
[

xL
ij; xU

ij

] f or C1,C2, . . . , Cn ε C (9)

where
[
xij

L; xij
U] denotes the values from the initial rough group matrix, max

[
xij

+L; xij
+U] represent

the maximum value of a criterion if the same belongs a set of benefit criteria and min
[
xij

−L; xij
−U]

represent minimal value of a criterion if the same belongs a set of cost criteria.
With “+“ and “−” values are marked in terms of easier recognition of the same criteria that belong

to a different type of criteria.
Equations (8) and (9) can simpler be written as:

nij =

[
xL

ij

x+U
ij

;
xU

ij

x+L
ij

]
f or C1,C2, . . . , Cn ε B (10)

nij =

[
x−L

ij

xU
ij

;
x−U

ij

xL
ij

]
f or C1,C2, . . . , Cn ε C (11)

and get a normalized matrix that looks like (12):

NM =

⎡⎢⎢⎢⎢⎣
[
nL

11, nU
11
][

nL
21, nU

21
]

...[
nL

m1, nU
m1
]

[
nL

12, nU
12
][

nL
22, nU

22
]

...[
nL

m2, nU
m2
]

· · ·
· · ·
. . .
· · ·

[
nL

1n, nU
1n
][

nL
2n, nU

2n
]

...[
nL

mn, nU
mn
]

⎤⎥⎥⎥⎥⎦ (12)
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Step 6: Weighting of the normalized matrix by multiplying the previously obtained matrix with
weighted values of the criteria (13):

Vn =
[
vL

ij; vU
ij

]
m×n

vL
ij = wL

J × nL
ij, i = 1, 2, . . . m, j

vU
ij = wU

J × nU
ij , i = 1, 2, . . . m, j

(13)

where wJ
L is lower limit, and wJ

U is the upper limit of the weight value of the criterion obtained by
applying one of the MCDM methods to determine the significance of the criteria.

Step 7: Summing all the values of the alternatives obtained (14):

Qi =
[
qL

ij; qU
ij

]
1×m

qL
ij =

n
∑

j=1
vL

ij; qU
ij =

n
∑

j=1
vU

ij

(14)

Step 8: Determination of the weighted product model using Equation (15):

Pi =
[

pL
ij; pU

ij

]
1×m

pL
ij =

n
∏
j=1

(
vL

ij

)wL
J

pU
ij =

n
∏
j=1

(
vU

ij

)wU
J

(15)

Step 9: Determination of the relative values of the alternative Ai (16):

Ai =
[

aL
ij; aU

ij

]
1xm

Ai = λ×Qi + (1− λ)× Pi

(16)

Coefficient λ can be crisp values in range 0, 0.1, 0.2, . . . .1.0, but it is recommended to apply the
Equation (17) for its calculation:

λ = 0.5 + ∑ Pi

∑ Qi + ∑ Pi
= 0.5 +

∑
[

pL
ij; pU

ij

]
∑
[
qL

ij; qU
ij

]
+ ∑

[
pL

ij; pU
ij

] (17)

Step 10: Ranking the alternatives. The highest value of the alternative marks the best ranked,
while the smallest value reflects the worst alternative.

4. Supplier Selection in a Company Manufacturing Polyvinyl Chloride (PVC) Carpentry

Supplier selection in the company manufacturing PVC carpentry was carried out on the basis
of the combination of nine quantitative and qualitative criteria: quality of the material, price of the
material, certification of the products, delivery time, reputation, volume discounts, warranty period,
reliability, and the method of payments. The second and the fourth criteria (the price of the material
and delivery time) are the Expenses criteria (type min), while the others are the Benefit criteria (type
max). Criteria used in this paper were selected and verified through two-year research related to
the evaluation of suppliers in the manufacturing companies of the supply chain presented in [50].
The market is filled with a large number of manufacturers of PVC carpentry products which need an
adequate supplier for ensuring the low cost of a product and a good position in the market. In the
research, six suppliers (alternatives) were selected from different countries which were evaluated using
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a developed rough model. In this study, a group of five experts took part in the assessment process.
After the interview with the experts, the collected data were processed, and the aggregation of the
expert opinion was obtained.

The rough AHP method [51] was used to determine the weight values of the criteria with the
following calculation procedure:

Step 1: After the experts’ evaluation of criteria, by applying Saaty’s scale, five matrices of
comparison were constructed in criteria sets (Table 2).

Table 2. Expert evaluation of the criteria.

E1 E2

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 1.00 7.00 2.00 5.00 6.00 4.00 3.00 3.00 8.00 1.00 8.00 2.00 6.00 6.00 4.00 5.00 3.00 9.00
C2 0.14 1.00 0.17 0.33 0.50 0.33 0.25 0.17 2.00 0.13 1.00 0.14 0.25 0.50 0.33 0.25 0.17 2.00
C3 0.50 6.00 1.00 4.00 5.00 6.00 2.00 2.00 7.00 0.50 7.00 1.00 4.00 5.00 6.00 2.00 2.00 7.00
C4 0.20 3.00 0.25 1.00 2.00 0.50 0.33 0.25 4.00 0.20 4.00 0.25 1.00 2.00 0.50 0.33 0.25 4.00
C5 0.17 2.00 0.20 0.50 1.00 0.33 0.25 0.20 3.00 0.17 2.00 0.20 0.50 1.00 0.33 0.25 0.20 3.00
C6 0.25 3.00 0.17 2.00 3.00 1.00 0.50 0.33 5.00 0.17 3.00 0.17 2.00 3.00 1.00 0.50 0.33 5.00
C7 0.33 4.00 0.50 3.00 4.00 2.00 1.00 0.50 5.00 0.20 4.00 0.50 3.00 4.00 2.00 1.00 0.50 5.00
C8 0.33 6.00 0.50 4.00 5.00 3.00 2.00 1.00 6.00 0.33 6.00 0.50 4.00 5.00 3.00 2.00 1.00 6.00
C9 0.13 0.50 0.14 0.25 0.33 0.20 0.20 0.17 1.00 0.11 0.50 0.14 0.25 0.33 0.20 0.20 0.17 1.00

E3 E4

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 1.00 8.00 1.00 6.00 6.00 4.00 5.00 3.00 8.00 1.00 6.00 0.50 4.00 5.00 4.00 2.00 2.00 7.00
C2 0.13 1.00 0.14 0.25 0.50 0.33 0.25 0.17 1.00 0.17 1.00 0.14 0.33 0.50 0.33 0.25 0.17 2.00
C3 1.00 7.00 1.00 6.00 6.00 4.00 5.00 3.00 8.00 2.00 7.00 1.00 5.00 6.00 6.00 3.00 3.00 8.00
C4 0.20 4.00 0.20 1.00 2.00 0.50 0.33 0.25 4.00 0.25 3.00 0.20 1.00 2.00 0.50 0.33 0.25 4.00
C5 0.17 2.00 0.17 0.50 1.00 0.33 0.25 0.20 3.00 0.20 2.00 0.17 0.50 1.00 0.33 0.25 0.20 3.00
C6 0.17 3.00 0.17 2.00 3.00 1.00 0.50 0.33 5.00 0.25 3.00 0.17 2.00 3.00 1.00 0.50 0.33 5.00
C7 0.20 4.00 0.20 3.00 4.00 2.00 1.00 0.50 5.00 0.50 4.00 0.33 3.00 4.00 2.00 1.00 0.50 5.00
C8 0.33 6.00 0.33 4.00 5.00 3.00 2.00 1.00 6.00 0.50 6.00 0.33 4.00 5.00 3.00 2.00 1.00 6.00
C9 0.13 1.00 0.13 0.25 0.33 0.20 0.20 0.17 1.00 0.14 0.50 0.13 0.25 0.33 0.20 0.20 0.17 1.00

E5

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 1.00 6.00 0.50 4.00 5.00 4.00 2.00 2.00 7.00
C2 0.17 1.00 0.14 0.33 0.50 0.33 0.25 0.17 2.00
C3 2.00 7.00 1.00 5.00 6.00 6.00 3.00 3.00 8.00
C4 0.25 3.00 0.20 1.00 2.00 0.50 0.33 0.25 4.00
C5 0.20 2.00 0.17 0.50 1.00 0.33 0.25 0.25 3.00
C6 0.25 3.00 0.17 2.00 3.00 1.00 0.50 0.50 5.00
C7 0.50 4.00 0.33 3.00 4.00 2.00 1.00 1.00 5.00
C8 0.50 6.00 0.33 4.00 4.00 2.00 1.00 1.00 5.00
C9 0.14 0.50 0.13 0.25 0.33 0.20 0.20 0.20 1.00
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By applying Expressions (1)–(6), each of presented sequences is transformed in rough sequence.
So, for the sequence x̃12 = {7, 8, 8, 6, 6} we get:

Lim(6) = 6.00, Lim(6) = 1
5 (7 + 8 + 8 + 6 + 6) = 7.00

Lim(7) = 1
3 (7 + 6 + 6) = 6.33, Lim(7) = 1

3 (7 + 8 + 8) = 7.67

Lim(8) = 1
5 (7 + 8 + 8 + 6 + 6) = 7.00, Lim(8) = 8.00

RN(x1
12) = [6.33; 7.67]; RN(x2

12) = RN(x3
12) = [7.00; 8.00]; RN(x4

12) = RN(x5
12) = [6.00; 7.00]

xL
12 =

x1
12+x2

12+xs
12+x4

12+x5
12

S = 6.33+7.00+7.00+6.00+6.00
5 = 6.47

xU
12 =

x1
12+x2

12+xs
12+x4

12+x5
12

S = 7.67+8.00+8.00+7.00+7.00
5 = 7.53

After formation of the group rough matrix shown in Table 3, it is necessary to calculate the
geometric middle of the upper and lower limits of the group matrix of the criteria. From the obtained
matrix maximum value, the upper limit is chosen, and all other values are divided by that. In that way,
we obtain the final values of the criteria weight:

wj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[0.803, 0.992]
[0.090, 0.095]
[0.819, 1.000]
[0.187, 0.194]
[0.127, 0.132]
[0.245, 0.254]
[0, 367, 0, 416]
[0.505, 0.552]
[0.067, 0.071]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

Table 3. Group rough matrix.

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 [1, 1] [6.47, 7.53] [0.81, 1.61] [4.47, 5.53] [5.36, 5.84] [4, 4] [2.63, 4.23] [2.36, 2.84] [7.36, 8.25]
C2 [0.14, 0.16] [1, 1] [0.14, 0.15] [0.28, 0.32] [0.5, 0.5] [0.33, 0.33] [0.25, 0.25] [0.17, 0.17] [1.64, 1.96]
C3 [0.81, 1.61] [6.64, 6.96] [1, 1] [4.36, 5.25] [5.36, 5.84] [5.28, 5.92] [2.4, 3.67] [2.36, 2.84] [7.36, 7.84]
C4 [0.21, 0.23] [3.16, 3.64] [0.21, 0.23] [1, 1] [2, 2] [0.5, 0.5] [0.33, 0.33] [0.25, 0.25] [4, 4]
C5 [0.17, 0.19] [2, 2] [0.17, 0.19] [0.5, 0.5] [1, 1] [0.33, 0.33] [0.25, 0.25] [0.2, 0.22] [3, 3]
C6 [0.2, 0.24] [3, 3] [0.17, 0.17] [2, 2] [3, 3] [1, 1] [0.5, 0.5] [0.34, 0.4] [5, 5]
C7 [0.27, 0.43] [4, 4] [0.3, 0.44] [3, 3] [4, 4] [2, 2] [1, 1] [0.52, 0.68] [5, 5]
C8 [0.36, 0.44] [6, 6] [0.36, 0.44] [4, 4] [4.64, 4.96] [2.64, 2,96] [1.64, 1,96] [1, 1] [5.64, 5.96]
C9 [0.12, 0.14] [0.52, 0.68] [0.13, 0.14] [0.25, 0.25] [0.33, 0.33] [0.2, 0.2] [0.2, 0.2] [0.17, 0.18] [1, 1]

After obtaining the weight of the criteria, the expert team performed an evaluation of the
alternatives (Table 4).

After the first two steps of the rough WASPAS method which imply the setting of a model by
choosing the criteria and alternatives in the first step and determining the expert assessment in the
second step (Table 2), it is necessary to convert all the individual matrices from the third step into a
group rough matrix, which is the fourth step.

Converting individual matrices into rough matrices is executed in the same way as was the case
in determining the weight values of the criteria. The example of the group matrix elements evaluation
is presented in Table 5.
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x̃11 = {7, 9, 5, 5, 7}
Lim(5) = 5.00, Lim(5) = 1

5 (7 + 9 + 5 + 5 + 7) = 6.60

Lim(7) = 1
4 (7 + 5 + 5 + 7) = 6.00, Lim(7) = 1

3 (7 + 9 + 7) = 7.67

Lim(9) = 1
5 (7 + 9 + 5 + 5 + 7) = 6.60, Lim(9) = 9.00

RN(x1
11) = RN(x5

11) = [6.00; 7.67]; RN(x2
11) = [6.60; 9.00]; RN(x3

11) = RN(x4
11) = [5.00; 6.60]

xL
11 =

x1
11+x2

11+xs
11+x4

11+x5
11

S = 6.00+6.60+5.00+5.00+6.00
5 = 5.72

xU
11 =

x1
11+x2

11+xs
11+x4

11+x5
11

S = 7.67+9.00+6.60+6.60+7.67
5 = 7.51

(19)

Table 4. Evaluation of the alternatives based on the criteria of five experts.

A1 A2 A3

E1 E2 E3 E4 E5 E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

C1 7 9 5 5 7 7 7 3 5 7 5 3 5 7 5
C2 1 1 1 3 1 3 3 5 1 3 7 9 3 5 7
C3 3 3 1 3 1 7 9 5 5 7 7 7 3 5 5
C4 9 7 7 9 9 9 5 5 7 9 5 1 7 7 5
C5 1 9 1 3 3 3 7 3 5 5 7 5 3 5 9
C6 3 7 3 3 7 5 7 5 3 7 7 5 3 5 9
C7 5 5 3 3 5 5 3 5 1 5 7 7 5 3 7
C8 3 5 1 1 7 5 7 3 3 9 5 5 5 3 9
C9 3 7 3 1 7 3 5 1 3 5 7 5 3 5 7

A4 A5 A6

C1 5 3 7 7 5 5 3 5 7 5 3 5 3 5 5
C2 3 7 5 3 5 9 9 5 5 9 7 7 7 5 7
C3 3 3 1 3 1 9 9 5 7 7 7 9 3 5 7
C4 5 3 7 5 5 3 1 5 5 1 3 3 3 5 3
C5 7 5 5 5 9 7 5 9 7 9 5 5 3 3 5
C6 3 3 5 3 9 5 5 3 7 5 3 5 3 5 9
C7 9 7 5 3 9 9 7 5 3 9 3 3 1 3 3
C8 5 5 3 3 7 5 5 5 5 7 3 5 3 5 5
C9 5 5 5 3 9 7 5 5 5 9 3 1 5 5 3

Table 5. Group rough matrix.

C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 [5.72, 7.51] [1.08, 1.72] [1.72, 2.68] [7.72, 8.68] [1.88, 5.16] [3.64, 5.56] [3.72, 4.68] [1.91, 4.96] [2.81, 5.64]
A2 [4.88, 6.66] [2.3, 3.7] [5.72, 7.51] [5.93, 8.07] [3.72, 5.51] [4.49, 6.28] [2.88, 4.66] [3.91, 6.96] [2.49, 4.28]
A3 [4.3, 5.7] [4.84, 7.51] [4.49, 6.28] [3.67, 6.2] [4.49, 7.16] [4.49, 7.16] [4.88, 6.66] [4.38, 6.48] [4.49, 6.28]
A4 [4.49, 6.28] [3.72, 5.51] [1.72, 2.68] [4.3, 5.7] [5.34, 7.12] [3.42, 5.96] [5.04, 8.09] [3.72, 5.51] [4.38, 6.48]
A5 [4.3, 5.7] [6.44, 8.36] [6.49, 8.28] [1.93, 4.07] [6.49, 8.28] [4.3, 5.7] [5.04, 8.09] [5.08, 5.72] [5.34, 7.12]
A6 [3.72, 4.68] [6.28, 6.92] [4.84, 7.51] [3.08, 3.72] [3.72, 4.68] [3.8, 6.33] [2.28, 2.92] [3.72, 4.68] [2.49, 4.28]

In the fifth step, it is necessary to normalize a rough group matrix using Equations (8) and (9)
(Table 6) in the following way:

Normalization of the group matrix elements for benefit criteria was carried out in the
following way:

n11 =

[
xL

ij

x+U
ij

;
xU

ij

x+L
ij

]
=

[
4.88
7.51

;
6.66
5.72

]
→ n11 = [0.65; 1.16] (20)
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and for the cost criteria:

n22 =

[
x−L

ij

xU
ij

;
x−U

ij

xL
ij

]
=

[
1.08
3.70

;
1.72
2.30

]
→ n22 = [0.29; 0.75]

Step 6: Weighting of the normalized matrix multiplying the previously obtained matrix by the
weighted values of the criteria using Equation (13) (Table 7):

vL
13 =

[
wL

3 × nL
13; wU

3 × nU
13

]
= [0.82× 0.21; 1.00× 0.41]→ vL

13 = [0, 17; 0.41]

Table 6. Normalized matrix.

C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 [0.76, 1.31] [0.63, 1.59] [0.21, 0.41] [0.22, 0.48] [0.23, 0.8] [0.51, 1.24] [0.46, 0.93] [0.27, 0.98] [0.39, 1.06]
A2 [0.65, 1.16] [0.29, 0.75] [0.69, 1.16] [0.24, 0.63] [0.45, 0.85] [0.63, 1.4] [0.36, 0.92] [0.56, 1.37] [0.35, 0.8]
A3 [0.57, 1] [0.14, 0.36] [0.54, 0.97] [0.31, 1.01] [0.54, 1.1] [0.63, 1.59] [0.6, 1.32] [0.63, 1.28] [0.63, 1.18]
A4 [0.6, 1.1] [0.2, 0.46] [0.21, 0.41] [0.34, 0.87] [0.64, 1.1] [0.48, 1.33] [0.62, 1.61] [0.53, 1.08] [0.62, 1.21]
A5 [0.57, 1] [0.13, 0.27] [0.78, 1.28] [0.47, 1.93] [0.78, 1.28] [0.6, 1.27] [0.62, 1.61] [0.73, 1.13] [0.75, 1.33]
A6 [0.5, 0.82] [0.16, 0.27] [0.58, 1.16] [0.52, 1.21] [0.45, 0.72] [0.53, 1.41] [0.28, 0.58] [0.53, 0.92] [0.35, 0.8]

Table 7. Weighted normalized matrix.

C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 [0.61, 1.3] [0.06, 0.15] [0.17, 0.41] [0.04, 0.09] [0.03, 0.1] [0.12, 0.31] [0.17, 0.39] [0.14, 0.54] [0.03, 0.08]
A2 [0.52, 1.16] [0.03, 0.07] [0.57, 1.16] [0.04, 0.12] [0.06, 0.11] [0.15, 0.36] [0.13, 0.38] [0.28, 0.76] [0.02, 0.06]
A3 [0.46, 0.99] [0.01, 0.03] [0.44, 0.97] [0.06, 0.2] [0.07, 0.15] [0.15, 0.41] [0.22, 0.55] [0.32, 0.7] [0.04, 0.08]
A4 [0.48, 1.09] [0.02, 0.04] [0.17, 0.41] [0.06, 0.17] [0.08, 0.14] [0.12, 0.34] [0.23, 0.67] [0.27, 0.6] [0.04, 0.09]
A5 [0.46, 0.99] [0.01, 0.03] [0.64, 1.28] [0.09, 0.37] [0.1, 0.17] [0.15, 0.32] [0.23, 0.67] [0.37, 0.62] [0.05, 0.1]
A6 [0.4, 0.81] [0.01, 0.03] [0.48, 1.16] [0.1, 0.23] [0.06, 0.09] [0.13, 0.36] [0.1, 0.24] [0.27, 0.51] [0.02, 0.06]

Step 7: Summing all the values of the alternatives obtained (summing by rows) (14):

Qi =
[
qL

ij; qU
ij

]
1×m

qL
ij =

n
∑

j=1
vL

ij; qU
ij =

n
∑

j=1
vU

ij

qL
11 = [0.61 + 0.06 + 0.17 + 0.04 + 0.03 + 0.12 + 0.17 + 0.14 + 0.03] = 1.37
qU

11 = [1.3 + 0.15 + 0.41 + 0.09 + 0.1 + 0.31 + 0.39 + 0.54 + 0.08] = 3.38

WSM =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[1.37, 3.38]
[1.81, 4.17]
[1.78, 4.08]
[1.47, 3.55]
[2.10, 4.54]
[1.57, 3.49]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(21)

Step 8: Determination of the weighted product model using Equation (15):

Pi =
[

pL
ij; pU

ij

]
1×m

pL
ij =

n
∏
j=1

(
vL

ij

)wL
J

pU
ij =

n
∏
j=1

(
vU

ij

)wU
J

pL
11 =

[(
0.610.80)× (0.060.09)× (0.170.82)× (0.040.19)× (0.030.13)× (0.120.24)× (0.170.37)× (0.140.50)× (0.030.07)] = 0.004

pu
11 =

[(
1.300.99)× (0.150.09)× (0.411.00)× (0.090.19)× (0.10.13)× (0.310.25)× (0.390.42)× (0.540.55)× (0.080.07)] = 0.063

WPM =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[0.004, 0.063]
[0.013, 0.187]
[0.013, 0.168]
[0.006, 0.074]
[0.021, 0.240]
[0.008, 0.088]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Step 9: Determination of the relative values of the alternative Ai (Equation (16)):

Ai =
[

aL
ij; aU

ij

]
1xm

Ai = λ×Qi + (1− λ)× Pi

(22)

Coeficient λ can be in the range of 0, 0.1, 0.2, . . . , 1.0.
However, it is recommended to apply Equation (17) for its calculation:

λ = 0.5 + ∑ Pi

∑ Qi + ∑ Pi
= 0.5 +

[0.065, 0.820]
[10.087, 23.203] + [0.065, 0.820]

= [0.503, 0.581]

Table 8 shows the calculations of Equation (16). At first it is necessary to calculate the product
of the coefficient λ with the values of the Qi matrix from the 7th step. After that, it is necessary to
detract a rough number of the coefficient λ from one (1) and multiply it with the values of the Pi matrix
from the 8th step. In addition, Table 8 shows rough values for each alternative, their crisp number
and ranking.

Table 8. Determining the relative values of the alternatives and their ranking.

λ × Qi (1 − λ) × Pi Ai Crisp Ai Rank

A1 [0.687, 1.963] [0.002, 0.031] [0.689, 1.995] 1.342 6
A2 [0.908, 2.422] [0.005, 0.093] [0.914, 2.515 1.714 2
A3 [0.894, 2.367] [0.005, 0.083] [0.899, 2.450] 1.675 3
A4 [0.739, 2.061] [0.002, 0.037] [0.741, 2.098] 1.419 5
A5 [1.053, 2.636] [0.009, 0.119] [1.063, 2.755 1.909 1
A6 [0.790, 2.026] [0.004, 0.044] [0.793, 2.070] 1.432 4

After applying the previous 1–9 steps of the rough WASPAS method, in the last, 10th step it is
necessary to perform the ranking of alternatives. The highest value represents the best alternative,
which in this case is alternative A5, while the worst alternative is alternative A1.

5. Sensitivity Analysis

The sensitivity analysis performed in this paper consists of three parts. In step 9, it is indicated
that besides Equation (17) which is recommended for the calculation of the coefficient λ, this can also
have a crisp value in the range of 0.1, 0.2, 0.3, ..., 1.0. Therefore, in the first part of the sensitivity
analysis, a change in the coefficient λ was made, which is shown in Table 9.

Table 9. Relative values of the alternatives depending on the value of the coefficient λ.

λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 1.0

A1 0.033 0.267 0.501 0.735 0.969 1.203 1.437 1.671 1.905 2.139 2.374
A2 0.100 0.389 0.678 0.967 1.255 1.544 1.833 2.122 2.411 2.699 2.989
A3 0.090 0.374 0.658 0.942 1.225 1.509 1.792 2.076 2.359 2.643 2.927
A4 0.040 0.287 0.534 0.781 1.028 1.275 1.521 1.768 2.015 2.262 2.509
A5 0.131 0.449 0.768 1.086 1.405 1.724 2.042 2.361 2.680 2.998 3.317
A6 0.048 0.296 0.545 0.793 1.041 1.289 1.537 1.785 2.034 2.282 2.530

Table 9 and Figure 1 show the relative values of the alternatives depending on the value of the
coefficient λ. It can be noted that the values of the coefficient λ do not affect the change in the rank of
the alternative, but actually retain their starting rank, as shown in Table 8. As the value of λ increases,
the relative values of the alternatives are also increased.
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Figure 1. Results of sensitivity analysis dependent on coefficient λ.

The relative value of the alternative A1 increases by 0.234 with increasing values of λ, while the
second alternative (A2) increases by 0.289. A slightly smaller increase compared to the previous
alternative is in alternative A3 (by 0.284), while in alternative A4 it is 0.247. The best alternative is A5

and it is logical that its value is increased depending on λ at most by 0.319. The last alternative, A6, is
closest to the fourth alternative (A4) and has an increase of 0.248.

The second part of the sensitivity analysis relates to the application of different MCDM methods in
combination with rough numbers that are very recently developed. The model presented in the paper
is solved by using the following methods: rough SAW [39], rough EDAS [35], rough MABAC [32],
rough VIKOR [47], rough MAIRCA [43] and rough MULTIMOORA [35]. Their results and comparison
with the rough WASPAS approach are shown in Figure 2.
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Figure 2. Results of sensitivity analysis in comparison with other rough methods.
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Figure 2 shows a comparison of the initial rank obtained by applying a newly developed rough
WASPAS approach with other similar approaches to determine the validity of the developed approach.
The best alternative does not change its ranking, it is always ranked the first, regardless of the applied
approach. The alternative A1 is at the last place in the application of all other methods, except when
using rough VIKOR when it is in fourth place. An alternative A2 is in the second position, in all cases,
except in the rough EDAS method, when it is in third place. The alternative number three (A3) also
retains its position in the ranks of the other approaches, except in the rough EDAS approach where
a rotation of position appears, so the alternative three occupy the second place. The alternative four
(A4) is three times in fifth place, three times in fourth place and at the last, sixth place, when the
rough VIKOR method is applied. Alternative six (A6) occupies the fourth place at rough SAW and
rough MULTIMOORA, while in the other methods it is in fifth position. Based on all the results and
rankings in all the approaches, stability in the rank correlation can be seen, but in order to validate them
Spearman’s coefficient of correlation (rk) for statistical comparison of ranks was applied. A comparison
of the ranks was done through a comparison of all 7 hybrid models, as shown in Table 10.

Table 10. Statistical comparison of ranks for tested models.

Methods RWASPAS RSAW REDAS RMABAC RVIKOR RMAIRCA RMULTI-MOORA Average

RWASPAS 1.000 1.000 0.886 0.943 0.829 0.943 1.000 0.943
RSAW - 1.000 0.886 0.943 0.829 0.943 1.000 0.933

REDAS - - 1.000 0.943 0.714 0.943 0.886 0.897
RMABAC - - - 1.000 0.771 1.000 0.943 0.929
RVIKOR - - - - 1.000 0.771 0.829 0.867

RMAIRCA - - - - - 1.000 0.943 0.971
RMULTI-MOORA - - - - - - 1.000 1.000

Overall average 0.934

From Table 10 it is possible to notice that there is a strong correlation of the ranges between the
considered models, since the total mean value of the correlation coefficient is rk = 0.934. The smallest
correlation of ranks is when comparing the Rough EDAS approach with Rough VIKOR, Rough
MABAC with Rough VIKOR, and Rough VIKOR with Rough MAIRCA, where the values 0.714,
0.717 and 0.717 were obtained, respectively. These are unique situations where rk < 0.80. In other
ranking comparison situations, the coefficient of correlation ranges from 0.829 to1.00. Rough WASPAS
and Rough SAW have identical ranks, and the correlation coefficient is equal to 1.00, so these two
approaches have rk = 0.829 in comparison with the Rough VIKOR approach. The same correlation
coefficient value has Rough VIKOR with Rough MULTIMOORA, while the values of 0.886 have Rough
WASPAS and Rough SAW with Rough MABAC, and Rough EDAS with Rough MULTIMOORA.
The value of the correlation coefficient of 0.943 has Rough WASPAS, Rough SAW and Rough EDAS
with Rough MABAC and with Rough MAIRCA, Rough MABAC and Rough MAIRCA with Rough
MULTIMOORA. A complete correlation of ranks, besides already mentioned Rough WASPAS and
Rough SAW interdependence, the latter methods have with Rough MULTIMOORA, and Rough
MABAC with Rough MAIRCA. It can be concluded that there is an extremely strong correlation of
ranks and that the ranks obtained by the proposed new approach are confirmed and credible.

6. Conclusions

The developed approach presented in this research refers to the integration of the rough AHP
and rough WASPAS methods, where rough AHP is used to calculate the weight values of the criteria,
and rough WASPAS is applied for the evaluation and ranking of suppliers. The model is verified
through the process of selecting suppliers in the company for the production of PVC furniture based
on nine criteria. The results obtained using the rough WASPAS approach show that the fifth alternative
is the best solution, in both parts of the sensitivity analysis, that involves changing the value of the
coefficient λ and solving the set model with various approaches developed in recent times. Analysis of
the results obtained through the calculation of Spearman’s correlation coefficient found that the rough
WASPAS approach is in complete correlation with the ranks of other approaches.
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Through the research carried out in this paper, two contributions can be distinguished, and one of
them is the development of a new rough AHP–rough WASPAS approach which provides an objective
aggregation of expert decisions with full observance of inaccuracies and subjectivity that prevails
in group decision making. The development of a new approach contributes to the improvement of
literature that considers the theoretical and practical application of MCDM methods. The approach that
has been developed allows evaluation of alternatives, regardless of imprecision and lack of quantitative
information in decision-making. Another contribution of this paper is to improve the methodology of
evaluation and selection of suppliers in the production of PVC furniture through a new approach in
the treatment of inaccuracies, because the application of this or a similar approach in the selection of
suppliers in the field of PVC furniture production has not been identified in the literature. Applying
the developed approach, it is possible in a very simple way to solve the problem of MCDM and
perform an evaluation and selection of suppliers that has a significant impact on the efficiency of the
complete supply chain. The approach developed, besides the considered problem, can also be used for
decision making in other areas. Its flexibility is reflected in the fact that verification can be carried out
by the integration of any of the multi-criteria decision-making methods for determining the weight
values of the criteria. Future research relates to the use of rough numbers in integration with other
methods and an attempt to develop a new method in this area.
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50. Stević, Ž. Integrisani Model Vrednovanja Dobavljača u Lancima Snabdevanja. Ph.D. Thesis, Univerzitet u
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Abstract: In supply chain management, selecting the right supplier is one of the most important
decision-making processes for improving corporate competitiveness. In particular, when a buyer
considers selecting multiple suppliers, one should consider the issue of order allocation with supplier
selection. In this article, an interactive multiobjective optimization approach is proposed for the
supplier selection and order allocation problem. Also, the concept of desirability is incorporated into
the optimization model to take into account the principles of diminishing marginal utility. The results
are presented by comparing them with the solutions from the weighting methods. This study shows
the advantage of the proposed method in that the decision-maker directly checks the degree of
desirability and learns his/her preference structure through improved solutions.
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desirability function

1. Introduction

With the development of the Internet and network technologies, the digital divide between
businesses is being addressed. In this situation, companies are using strategies to enhance outsourcing
to focus on core competences along with information. In particular, such rapid developments in
information technology are pushing many companies into a race that transcends time and space.
Furthermore, the global business environment surrounding corporations is changing from competition
between individual companies to competition between supply chains. In order to ensure the
competitive edge of the supply chain, companies have tried to find the right suppliers offering higher
quality, reduced costs, and shorter lead times. Therefore, in supply chain management, selecting
the right suppliers is one of the most important decision-making processes for improving corporate
competitiveness [1–3].

In many cases, a single supplier may not be able to meet the buyer’s requirements. In such cases,
selecting multiple suppliers—multiple sourcing—would be a reasonable alternative [4]. Whereas
single sourcing significantly increases the disruption risk in the supply chain, multiple sourcing
increases the fixed cost in terms of administrative and negotiating costs [5]. However, multiple
sourcing is preferred over a single sourcing, ensuring order flexibility [6]. Therefore, multiple sourcing
inevitably includes the problem of order allocation. Furthermore, the relationship between the buyer
and supplier is influenced by order allocation decisions based on strategic purchase decisions [7].
Therefore, the overall supplier selection problem should not only cover the selection of the right
supplier but also the determination of the orders assigned to the selected supplier based on the given
objectives and constraints [8]. To date, however, only a few mathematical programming models to
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analyze such decisions have been published [9–12]. In the field of supply chain management, it is
necessary to develop a precise decision support model which simultaneously considers supplier
selection and order allocation. In particular, researchers need to advance research in this direction to
guide the decision-maker (DM)’s rational choice.

Supplier selection is inherently a multi-criteria decision-making (MCDM) problem since some
conflicting performance criteria have an influence on the selection of suppliers [13,14]. It is also
considered one of the most familiar problems in MCDM [15]. This problem has been studied from a
variety of perspectives, such as green supplier selection [6,16] and global supplier selection [17].
Generally, the performance criteria involves the factors such as cost, quality, and lead time.
Each supplier has its own strengths and weaknesses, so it is very difficult to select a superior supplier
at all dimensions of criteria. Thus, supplier selection problem has made MCDM a very challenging task.
Ho et al. [18] provided comprehensive reviews for MCDM approaches to vendor selection problems
between 2000 and 2008. In addition, a more recent review from Chai et al. [19] provides guidelines for
a MCDM-based supplier selection model.

For solving a multiobjective optimization (MOO) problem in MCDM, the DM seeks a compromise
solution which provides the greatest satisfaction in the presence of conflicting objectives. Thus,
the DM’s preference information plays a critical role in finding the solution. In the literature, the DM’s
preference information can enter the solving process of MOO problems in three different ways:
(1) a priori; (2) a posteriori; and (3) progressive (interactive) articulation [20,21]. For an a priori setting,
multiple objective functions combined with preference convert into one single objective. For an a
posteriori setting, the DM’s preference information is articulated after optimization process by selecting
the most preferred one from a set of non-dominated solutions, usually called a Pareto optimal set.
For progressive optimization, the preference of the DM is incorporated into the solution search process.
Iterative dialogues between the DM and optimization model contribute to find the most satisfactory
solution in this optimization approach. For this reason, the progressive articulation approach is also
referred to as the interactive approach.

Most studies in supplier selection and order allocation are categorized into the prior approach by
the MOO categorization scheme. However, the prior approach may decrease the reliability of solutions
because of the unrealistic assumption that the DM can specify the preference information in advance.
Although the interactive approach has been broadly applied to various fields as an alternative to
overcome this limitation on the DM’s preference, it is rarely used to solve supplier selection and
order allocation problems. To the best of the author’s knowledge, Demirtas and Üstün [4]’s research
is the only material related to using the interactive MOO method to solve supplier selection and
order allocation problem. Demirtas and Üstün [4] proposed an interactive MOO method, and a
reservation level driven Tchebycheff procedure. In this model, the solution process makes the DM
express adjusting some or all of reservation values of objective functions, by generating candidate
solutions with sampling weights. The interactive method that we propose in this paper has something
in common with Demirtas and Üstün [4]’s research in terms of a kind of objective space reduction. Also,
two methods share the Tchebycheff framework to find a solution by utilizing the concept of distance
to the ideal vector. However, the proposed approach provides an integrated use of the desirability
function approach in response to surface methodology and the step method (STEM). Our model has
advantages in that it reflects the satisfaction of the DM more realistically by using the concept of
desirability function, and it reduces the burden on the DM to express preference information.

Based on the above-mentioned background, the purpose of the research is summarized as follows.
We aim to solve the multiple sourcing problem which deals with order allocation at the same time as
supplier selection by using an interactive MOO method. The devised method, which progressively
articulates the DM’s preference information, is applied to a problem with three important criteria: cost,
quality, and delivery. Also, to intuitively utilize the level of satisfaction, we borrow the concept of
desirability from the research field of product and process design. We show that our method can be
utilized effectively in the supplier selection and order allocation problem.
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The organization of this paper is as follows. Section 2 presents previous works to be addressed in
this study. The proposed interactive desirability function approach to supplier selection is presented in
Section 3. Section 4 analyzes results and provides discussions. Conclusions are provided in Section 5.

2. Literature Review

This section briefly describes the concept of desirability function that is the basis for the proposed
methodology. Then we deal with the consideration of the DM’s preference information in MOO
problems. Also, the STEM is introduced.

2.1. Desirability Function Approach

The desirability function approach is in fact designed to solve the problem of product and process
design (also called multiple response optimization). The desirability function approach, proposed by
Harrington [22] and Derringer and Suich [23], is one of the most widely used methods in product and
process design. This approach transforms an estimated response function into a scale-free function,
called the desirability function, which ranges from zero to one. Thus, the value of the desirability
function presents the degree of desirability or satisfaction for the corresponding response. If the
larger-the-better (LTB) response is the objective that has to be maximized, the individual desirability
function is defined as

di =

⎧⎪⎪⎨⎪⎪⎩
0, for ŷi(x) ≤ ŷmin

i(
ŷi(x)−ŷmin

i
ŷmax

i −ŷmin
i

)r
, for ŷmin

i < ŷi(x) < ŷmax
i

1, for ŷi(x) ≥ ŷmax
i ,

(1)

where ŷmin
i is the minimum and ŷmax

i is the maximum acceptable value of response i and r is the
parameter (r > 0) that determines the shape of desirability functions. The function is convex if r > 1,
and is concave if 0 < r < 1. If a response is of the smaller-the-better (STB) type, it is defined in a similar
way to (1). Also, for a certain response, if the specified target value has to be attained, the response
is referred to as the nominal-the-best (NTB) type. In this case, the individual desirability function is
derived in a slightly different form from STB and LTB type. For more information, readers may refer
to Derringer and Suich [23].

There are several ways to draw the optimal solution considering multiple individual desirability
functions [22–26] but the most widely used method is to optimize by converting multiple desirability
functions into single desirability. In most cases the concept of geometric means is often used for
this aggregation.

2.2. Interactive Approach and Decision Maker’s Preference Information

The supplier selection is inherently a MCDM problem, since some conflicting criteria have
influence on the selection of suppliers [13,14]. MOO is a mathematical optimization technique of
MCDM, which involves more than one objective function to be optimized simultaneously. The ultimate
goal of MOO is to find the best compromise solution from a set of the non-dominated solutions that
satisfies multiple objectives simultaneously. Thus, it necessarily requires the involvement of the DM
who provides the preference information among conflicting objectives. According to the timing of
articulating the DM’s preference information, the MOO is classified into three categories: the prior
approach, the posterior approach, and the interactive approach [20,21]. More detailed descriptions of
the theories and applications of MOO studies can be found in the classical MOO textbooks: [20,27,28].

The interactive approach (also referred as the progressive approach) allows the DM to articulate
his/her preference information progressively while solving the problem. The optimization process
is repeated until the DM has found the most preferred solution to extracting preference information
in an interactive manner. Specifically, at each iteration in an algorithm, the DM is asked to express
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some preference information given one or more solutions generated from the previous iteration.
This information reflects the judgment based on the DM’s implicit value function, and the process
updates the DM’s preference through adding the new information to an optimization model. Typically,
a general interactive method has the following three steps [27].

• Step 1: Find an initial solution.
• Step 2: Interact with the DM.
• Step 3: Generate one or some new solution(s). If the DM is satisfied with the current solution,

stop. Otherwise, go to step 2.

Over the years, a number of various interactive methods have been developed. The most
well-known interactive methods are the step method (STEM) [29], the Geoffrion-Dyer-Feinberg (GDF)
method [30], the Zionts-Wallenius (ZW) method [31], the reference direction approach (RDA) [32], and
the Nondifferentiable Interactive Multiobjective BUndle-based optimization System (NIMBUS) [27].
Each of interactive methods has a different scheme from others in terms of which type of preference
information is asked from the DM. No matter what kind of preference information is asked, an iterative
process is valuable for the DM in that he/she can learn about the structure of the problem and expect
the result of the interaction. Furthermore, each employs different computational algorithms. Therefore,
a particular interactive method may be suitable for a specified MOO problem given mathematical
properties or assumptions. In other words, there is no the sole interactive method that is decidedly
superior to the others, in a universal sense. Even though a lot of extensions and variants of the
interactive methods can be applied to the supplier selection problem, in this paper we propose an
interactive approach based on the STEM with some modifications.

2.3. STEM

The STEM is proposed by Benayoun et al. [29] and it is known as the first interactive MOO
method. Originally STEM is designed for the linear MOO problems, and it also can be applied to
integer and nonlinear MOO problems [28]. The interactive process in the STEM begins with generating
an initial feasible solution and identifying the ideal objective function values. The ideal objective
function values are obtained by optimizing each individual objective function over the initial feasible
region. At each iteration, the DM examines the current solution with the ideal objective function value,
and presents his/her preference depending on the concept of level of satisfaction. In particular, the DM
provides an amount of relaxation by which the objective function value can be sacrificed, in order to
improve some other unsatisfied objectives. From this numerical information presented from the DM,
it generates a new solution. If the DM satisfied with this new solution, this solution becomes a final
solution as a compromise and the interactive process terminates. Otherwise this process is repeated
until no further relaxation is accepted. The mathematical procedure for the STEM has been given in
the following steps.

Step 0: Construct the pay-off table. In this step, the ideal objective function vector is obtained by
maximizing each objective function individually. Let f* be the ideal solution vector of the following K
problems, f∗ = ( f ∗1 , f ∗2 , . . . , f ∗K).

f ∗i = max fi(x)

subject to
x ∈ S

(2)

Step 1: Let h be iteration counter and set be zero (h = 0). Calculate πi values for use in weighting
the objectives:

πi =

⎧⎪⎨⎪⎩
f ∗i −ni

f ∗i

[
∑n

j=1 c2
ij

]−1/2
, if f ∗i > 0,

ni− f ∗i
ni

[
∑n

j=1 c2
ij

]−1/2
, if f ∗i ≤ 0, (3)
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where cij are the coefficients of the ith objective. The first term is to place the most weight on
the objectives with the greatest relative ranges. The second term normalizes the gradients of the
objective functions.

Step 2: Let h = h + 1, and Sh+1 = S. S1 = S means the solution process begin with the original
feasible region. At this point, the relaxation index set be null (J = ∅). Compute relative weights:

λh
i =

{
0, i ∈ J
πi

∑j πj
, i /∈ J (4)

Step 3: Solve the weighted minimax program:

min α

subject to
α ≥ λh

i
[

f ∗i − fi(x)
]
, i = 1, . . . , k

x ∈ Sh

α ≥ 0

(5)

If all objective function values are satisfactory, then stop; the current solution may become the
final solution.

Step 4: Determine satisfactory objective and then specify the amount of relaxation, Δi (i ∈ J).
Step 5: Form reduced feasible region:

Sh+1 =

⎧⎪⎨⎪⎩
x ∈ S
fi(x) ≥ fi(x

h), i /∈ J
fi(x) ≥ fi(x

h)− Δi, i ∈ J
(6)

where h + 1 is increased iteration counter. Thus, Sh+1 is the feasible region in the (h + 1)th iteration.
fi(x)h is the objective function value in the hth iteration and Δi is the amount of relaxation of particular
objective function. Go to Step 2 with the reduced feasible region.

The STEM is widely used to solve not only linear but also nonlinear MOO problems for the
reason that it is simple and straightforward to generate the solution by reducing feasible regions in the
objective space. Despite these advantages, the STEM shows two major drawbacks. First, the STEM
does not take into account different degrees of satisfaction within the acceptable interval of a relaxed
objective. For example, suppose that one objective fe is determined by the DM as a satisfactory
function, and that he/she decides to relax as much as the Δe. In this case, the weight of objective
function e becomes zero since e /∈ J, so this function does not serve as an objective function in the next
iteration. Therefore, the solution of the next iteration depends on the assumption that the satisfaction
of the DM is indifferent within the interval of [fe − Δe, fe*]. This disadvantage has been pointed
out by Jeong and Kim [33]. The second drawback is in the dialogue scheme between the DM and
the optimization model. The dialogue is made mainly by asking the DM to acceptable amount of
relaxation of a satisfactory objective. However, it increases the burden on the DM because he/she must
provide specific numerical information at each iteration. In this paper, we intend to utilize the STEM to
supplier selection problem by modifying it in such a way that we enjoy its merits and complement the
shortcomings mentioned above. More specifically, we try to overcome the first limitation by applying
the concept of desirability function and the second one by proposing a modification to the DM’s
preference information representation.

3. Proposed Model

Across fifty years of evaluating suppliers, many researchers have proposed different sets
of criteria.
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The first set of criteria was proposed by Dickson [14], who identified 23 different criteria evaluated
in supplier selection. Evans [34] and Shipley [35] agreed that price, quality and delivery are the most
important criteria for evaluating suppliers. Ellram [36] proposed that the quality dimension should be
divided into product quality and service quality, and it is suggested to use them with price and delivery
time to select suppliers. Weber et al. [37] surveyed based on Dickson’s 23 criteria and concluded that
price, delivery, quality, production capacity, and localization are the most important criteria. Pi and
Low [38] proposed quality, delivery, price and service for supplier evaluation. Amid et al. [39] uses
price, quality, and service, and Jadidi et al. [11] utilized price, quality, and lead time to the supplier
selection and order allocation model. As shown by the literature, the most important criteria for
supplier selection problems are cost, quality, and delivery. We also use those criteria by using the
measures: total purchasing costs, the number of rejects, and the number of late delivery for cost, quality,
and delivery, respectively. We assume the buyer considers a single item that should be purchased
under known total demand. Also, information about criteria and production capacity is already known
for a set of potential suppliers. The notations of the proposed model are presented in Table 1.

Table 1. The notations.

k index for objectives, k = 1, 2, . . . , K
n number of suppliers
xi number of units ordered to supplier i (decision variable)
x vector of decision variables
Vi capacity of supplier i
ci unit purchasing price from supplier i
qi expected defect rate of supplier i
li percentage of items delivered late by supplier i
D demand

There are three original objective functions: f 1 (minimizing total purchasing cost), f 2 (minimizing
total number of defects), f 3 (minimizing the number of late delivery). Each objective function can be
shown as follows:

f1(x) = ∑n
i cixi

f2(x) = ∑n
i qixi

f3(x) = ∑n
i lixi

(7)

Using the functions defined above, MOO problem considering the supplier selection with order
allocation can be formulated as follows [12]:

min f1(x), f2(x), f3(x)

subject to
∑n

i xi = D
xi ≤ Vi
xi ≥ 0

(8)

The first and second constraint present demand satisfaction and capacity restriction, respectively,
and the last constraint ensures non-negativity of the decision variables. Now we transform the original
objective functions into the desirability functions. Because all original objective functions are to be
minimized (STB type), the individual desirability is defined as

di =

⎧⎪⎨⎪⎩
1, for fi(x) ≤ f ∗i(

fi(x)− f max
i

f ∗i − f max
i

)r
, for f ∗i < fi(x) ≤ f max

i

0, for fi(x) ≥ f max
i ,

(9)
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where fimax are the maximum values of the objective functions as obtained from the payoff table and
fi*(x) are the ideal points from maximizing the objective functions individually. Table 2 presents the
payoff table that includes fimax and fi*(x). For a STB type function, fimax are recognized as the nadir
points which are maximum values from each column in the payoff table, and the ideal values are on
the diagonal of the table.

Table 2. Payoff table.

Payoffs f 1 f 2 f 3

f 1 58.75 5.325 3.675
f 2 82.25 3.225 5.05
f 3 61.25 5.07 3.425

We represent the desirability-based supplier selection problem in the form of a MOO problem:

max d1( f1(x)), d2( f2(x)), d3( f3(x))

subject to
∑n

i xi = D
xi ≤ Vi
xi ≥ 0

(10)

The individual desirability functions di (i = 1, . . . , k) are objective functions to be
maximized simultaneously.

The optimization process consists of five major steps. The overall procedure is presented in
Figure 1. In addition, a pseudo code is described in Algorithm 1 to aid readers understanding.

Figure 1. The overall procedure of the proposed method.
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Algorithm 1. Pseudo code of the proposed method.

begin

initialize: h ← 0
initialize: J = ∅
calculate d* and n*
calculate πi values
compute relative weights λh

compute an initial solution dh

ask if there is a desirability function value want to relax (j)
while the preferred solution has not been found do

J = {j}
compute relative weights λh

compute potential solutions based on the preferences of the DM
present the solutions to the DM
ask the most preferred solution dh* from potential solutions
ask if there is a desirability function value want to relax (j)
h ← h + 1

endwhile

end

3.1. Case r = 1

We apply a modified STEM to supplier selection problem. In order to present how the method
works, we deal with the linear type desirability function transformation.

3.1.1. Initialization

Step 0: Construct the payoff table (Table 3) based on the desirability functions with r = 1.

Table 3. Payoff table of r = 1.

Payoffs d1 d2 d3

d1 1 0 0.846
d2 0 1 0
d3 0.894 0.119 1

Therefore, the ideal vector and nadir vector are d* = (1, 1, 1) and n* = (0, 0, 0), respectively.
Step 1: Calculate πi values for use in weighting the objectives: The coefficients cij, which reflect the

gradients of the objective functions in the weight calculation is the coefficient of desirability function,
not the original objective function. If the desirability functions are nonlinear, i.e., r �= 1, the weights
calculation is somewhat different from that of the linear case. As mentioned in Section 2.2, originally the
STEM is developed for multiobjective linear problems, but nonlinear extensions have been proposed,
for example, in Vanderpooten and Vincke [40], Eschenauer et al. [41], and Sawaragi et al. [42]. A weight
calculation scheme for the nonlinear case (r = 2) is presented in following Section 3.2. At this point,
calculated πi values are shown as

π1 =
d∗1−n1

d∗1

[
∑j c2

1j

]−1/2
= 2.1588

π2 = 2.6158
π3 = 2.3039

Step 2: Let h be iteration counter (set h as zero for the first iteration).
For h = 0, the relaxation index set be null (J = ∅).
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S0 = S, the original feasible region. Compute relative weights:

λh=0
1 = π1/(π1 + π2 + π3) = 0.3050

λ0
2 = 0.3695

λ0
3 = 0.3255

Step 3: Formulate the weighted minimax program:

min α

subject to
α ≥ 0.3050(1− d1)

α ≥ 0.3695(1− d2)

α ≥ 0.3255(1− d3)

∑n
i xi = D

xi ≤ Vi
xi ≥ 0
α ≥ 0

(11)

The obtained solution is d0* = (d1
0*, d2

0*, d3
0*) = (0.4867, 0.5755, 0.5181). We assume the DM does

not satisfied with the obtained solution. Go to Step 4.
Step 4: Determine satisfactory objective by asking the DM to express satisfactory objectives.

If h = 0, go to Step 2 by setting h = h + 1. We assume the DM satisfied with d2, so relax d2.

3.1.2. First Iteration

Step 2: Compute relative weights (h = 1, S1 = S): For h = 1, the objective function to be relaxed has
been defined as d2, thus {2} = J. Accordingly, the computed weights are λ1

1 = π1/(π1 + π3) = 0.4847,
λ1

2 = 0, and λ1
3 = 0.5163.

Step 3: Formulate the weighted minimax program:

min α

subject to
α ≥ 0.4837(1− d1(x))

α ≥ 0.5163(1− d3(x))

d1(x) ≥ d0∗
1

d2(x) ≥ (1− δ)d0∗
2

d3(x) ≥ d0∗
3

∑n
i xi = D

xi ≤ Vi
xi ≥ 0
α ≥ 0

(12)

where δ is rate of relaxation.
Step 4: Present new desirability function vectors to the DM as shown in Table 4, who is asked

to select an acceptable rate of relaxation, δ. Unlike original STEM, the proposed approach does not
compel the DM to ask specified amount of relaxation from satisfactory level. Then, the optimal solution
corresponding selected rate of relaxation becomes the new vector of desirability function values.
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Table 4. Changes of desirability function values according to the rate of relaxation (h = 1).

δ = 0.05 δ = 0.10 δ = 0.15 δ = 0.20 δ = 0.25 δ = 0.30

d1 0.511 0.537 0.563 0.589 0.614 0.640
d2 0.547 0.518 0.489 0.460 0.432 0.403
d3 0.542 0.566 0.590 0.615 0.639 0.663

If the DM is satisfied with the new solution with selected rate of relaxation, δ*, then stop.
Otherwise, set h = h + 1 and set the new feasible reason Sh+1. Go to Step 2. Assume the DM choose 20%
relaxation of d2. Therefore, a new solution is d1* = (0.589, 0.460, 0.615) with f = (61.167, 5.083, 3.582).
Also, we assume the DM satisfied with d1, and relax d1.

3.1.3. Second Iteration

Step 2: Let h = 2. Compute relative weights: λ2
1 = 0, λ2

2 = 0.5317, λ2
3 = 0.4683.

Step 3: Formulate the weighted minimax program:

min α

subject to
α ≥ 0.5317(1− d2(x))

α ≥ 0.4683(1− d3(x))

d1(x) ≥ (1− δ)d1∗
1

d2(x) ≥ d1∗
2

d3(x) ≥ d1∗
3

∑n
i xi = D

xi ≤ Vi
xi ≥ 0
α ≥ 0

(13)

Step 4: As shown in Table 5, present new desirability function vectors as δ increases, then ask to
the DM an acceptable rate of relaxation, δ.

Table 5. Changes of desirability function values according to the rate of relaxation (h = 2).

δ = 0.05 δ = 0.10 δ = 0.15 δ = 0.20 δ = 0.25 δ = 0.30

d1 0.559 0.530 0.500 0.471 0.441 0.412
d2 0.493 0.526 0.550 0.573 0.596 0.619
d3 0.626 0.614 0.614 0.614 0.614 0.614

Assume the DM choose 15% relaxation of d1. Accordingly, a new solution is d2* = (0.500, 0.550,
0.614) with f = (70.494, 4.170, 4.052). This interactive process can be repeated until the final solution
satisfies the DM. At this stage, we assume that the DM is satisfied with the current solution and
terminate the iterative procedure.

3.2. Case r = 2

All three original objective functions considered in the supplier selection model are linear, and
the defined desirability functions in Section 3.1 are also linear. This sub-section discusses the need for
nonlinear desirability functions and presents a problem-solving process in r = 2 case.

The weighted sum method assumes that the DM’s overall desirability (utility) is determined
by the weighted sum of multiple objective functions. Thus, the marginal contribution to utility of
each linear objective function is constant (see Figure 2a). Therefore, the optimization result is highly
dependent upon the predetermined weights, although the objective functions are normalized by using
the ideal points and the nadir points. On the other hand, the STEM modifies the concept of satisfaction
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by accepting the DM’s preference information in the problem-solving process. In particular, the STEM
assumes that the desirability of the DM is the same up to the acceptable level, i.e., fi(x) + Δi for a STB
type objective function (see Figure 2b). Namely, the STEM considers that the DM’s satisfaction is
indifferent within the interval of [fi*, fi(x) + Δi]. With this concept the STEM improves the other objective
functions at a level that does not impair the satisfaction of the satisfactory objective. However, we
need to consider the principles of diminishing marginal utility, overlooked in the STEM. The principles
of diminishing marginal utility explain that the closer the objective function value is to the optimum
value, the less contribution it will make. In this study, the desirability function enables the proposed
model to consider the principles of diminishing marginal utility. If the parameter r of desirability
functions is not equal to 1, the functions become nonlinear. The parameter r exhibits a diminishing
marginal contribution to the maximum cumulative desirability. The nonlinearity of desirability
function provides a clue to successfully deal with the principles of diminishing marginal utility in the
proposed model. This characteristic is also highlighted in Jeong and Kim [33]’s STEM based on the
desirability function. Figure 2c shows an example of a nonlinear desirability function.

Figure 2. Examples of perceived satisfaction: (a) Constant marginal contribution; (b) Perceived
satisfaction of STEM; (c) Nonlinear desirability function.

3.2.1. Initialization

Step 0: Construct the payoff table (Table 6) based on the desirability functions with r = 2.

Table 6. Payoff table of r = 2.

Payoffs d1 d2 d3

d1 1 0 0.799
d2 0 1 0.014
d3 0.716 0 1

Therefore, the ideal vector and nadir vector are d* = (1, 1, 1) and n* = (0, 0, 0.014), respectively.
Step 1: Calculate πi values for use in weighting the objectives. The several weight schemes

used to extend the STEM to nonlinear MOO problems were suggested by various researchers
(Eschenauer et al. [41]; Sawaragi et al. [42]; Vanderpooten and Vincke [40]). In this study, we utilize
Vanderpooten and Vincke [40]’s calculation (assume that the denominators are not equal to zero)
as follows:

πi =
d∗i − ni

max
{

d∗i , ni
} , (14)

By (14), the determined weights are π1 = π2 = 1 and π3 = 0.986.
Step 2: Compute relative weights: λ0

1 = λ0
2 = 0.3349, λ0

3 = 0.3302
Step 3: Solve the weighted minimax program: d0* = (0.2789, 0.2789, 0.3622).
Step 4: We assume the DM satisfied with d2, so relax d2. Go to Step 2.

3.2.2. First Iteration

Step 2: Compute relative weights (h = 1, S1 = S): For h = 1, the objective function to be relaxed has
been defined as a d2, {2} = J. Thus, the computed weights are λ1

1 = 0.5035, λ1
2 = 0, and λ1

3 = 0.4965.
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Step 3 and Step 4: Solve the weighted minimax program and present new desirability function
vectors as δ increases, then ask to the DM an acceptable rate of relaxation, δ. Use the computation
results as shown in Table 7.

Table 7. Changes of desirability function values according to the rate of relaxation (h = 1).

δ = 0.05 δ = 0.10 δ = 0.15 δ = 0.20 δ = 0.25 δ = 0.30

d1 0.292 0.305 0.319 0.334 0.350 0.366
d2 0.265 0.251 0.237 0.223 0.209 0.195
d3 0.362 0.362 0.362 0.362 0. 362 0.362

Assume the DM choose 10% relaxation of d2. Therefore, a new solution is d1* = (0.305, 0.251, 0.362)
with f = (69.271, 4.273, 4.072). We assume the DM satisfied with the current solution, and terminate
the procedure.

4. Summary of Results and Discussion

This study successfully applied the concept of desirability function in response surface
methodology, which is used in product and process design, to supplier selection problems.
The desirability function diverts the DM’s recognition system for each objective function from linear
coupling and realistically reflects the degree of satisfaction for each objective function. Since the
proposed method assumes that the DM’s preference information is not completely known, it is difficult
to discuss the superiority of solutions by directly comparing the results with other methods. However,
we explain the advantages of the proposed method by comparing them with the solutions from two
weighting methods: the weighted sum method and weighted geometric method. Several weighting
vectors are assumed for the purpose of comparing solutions. We adopted three sets of weighting
parameter w, proposed be Jadidi et al. [11] for the same supplier selection problem. The results are
shown in Table 8.

The results of the weighted sum method show that the more weights are assigned to the first
objective function (minimizing total purchasing costs), the larger the contribution is made to the value
of the first desirability function. However, when w1 is larger than 0.6, the individual desirability value
for f 2 equals to 0. Namely, the second objective function, the number of late delivery, has the worst
value. Furthermore, there is no differences between w = (0.6, 0.2, 0.2) and w = (0.8, 0.1, 0.1), although
the overall objective function values ∑widi differ. These extreme results show that the DM may not
satisfied with the results.

Table 8. Comparison with some weighting methods.

w d x f

Weighted sum
0.33, 0.33, 0.33 0.894, 0.119, 1.000 5, 1.5, 3.5, 6, 0, 0 61.250, 5.075, 3.425
0.60, 0.20, 0.20 1.000, 0.000, 0.846 5, 4, 3.5, 3.5, 0, 0 58.750, 5.325, 3.675
0.80, 0.10, 0.10 1.000, 0.000, 0.846 5, 4, 3.5, 3.5, 0, 0 58.750, 5.325, 3.675

Weighted geometric mean
0.33, 0.33, 0.33 0.577, 0.409, 0.878 3.8, 0, 3.5, 6, 0, 2.7 68.695, 4.467, 3.623
0.60, 0.20, 0.20 0.798, 0.226, 0.908 5, 0, 3.5, 6, 1.5, 0 63.500, 4.850, 3.575
0.80, 0.10, 0.10 0.894, 0.119, 1.000 5, 1.5, 3.5, 6, 0, 0 61.250, 5.075, 3.425

Overall desirability function 1 r = 1 0.577, 0.409, 0.878 3.8, 0, 3.5, 6, 0, 2.7 68.695, 4.467, 3.623
r = 2 0.333, 0.167, 0.771 3.8, 0, 3.5, 6, 0, 2.7 68.695, 4.467, 3.623

Proposed method

r = 1, h = 0 0.487, 0.576, 0.518 1.4, 0, 3.5, 5.6, 5.5, 0 70.836, 4.116, 4.197
r = 1, h = 1 0.589, 0.460, 0.615 2.5, 0, 3.5, 6, 4, 0 68.419, 4.358, 3.943
r = 1, h = 2 0.500, 0.550, 0.614 1.7, 0, 3.5, 6, 4.4, 0.4 70.494, 4.170, 4.052
r = 2, h = 0 0.279, 0.279, 0.363 0.5, 1.7, 3.5, 6, 4.2, 0 69.840, 4.216, 4.072
r = 2, h = 1 0.305, 0.251, 0.362 2.2, 0, 3.4, 5.8, 4.6, 0 69.271, 4.273, 4.072

1 A special case of weighted geometric mean with equal weights.

Next, we also tested the weighted geometric model using the same set of w. In fact, the weighted
geometric mean is a popular method for unifying individual desirability functions to a single
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function in desirability function approach. The weighted geometric method results in a somewhat
balanced solution avoiding extreme values in one objective function, even if the weight is to one
side. This method, however, also may result in a controversial solution. In Table 8, we found the
third desirability value for late delivery increases as w3 decreases. Thus, the results do not necessarily
guarantee that the DM can find the most satisfactory solution even if he/she can decide preference
information in advance at one time. The proposed method can complement the shortcomings of these
methods because the DM directly checks the degree of desirability and learns a preference structure
through improved solutions. In other words, the advantage of the proposed method is that the solution
changes in the object function space can be detected through the DM’s preference information.

The last row section in Table 8 summarizes the solutions from the proposed method. The results
show that the proposed method prevents the emergence of extreme values in two ways. First, the
initial solution d0 describes this characteristic. In each case, for r, the initial solution is a neutral
compromise solution because it is calculated by using the Tchebycheff metric without preference
information. This setting eliminates the unnecessary iteration that causes a desirability function value
to deviate from an extreme value. The results in the 12th and 15th row show reasonable levels of
desirability functions, for both cases, r = 1 and r = 2. Second, the proposed method also prevents
the extreme value in the problem-solving process. The original STEM allows the DM to relax one
objective function, which may lead to significantly improved values than expected. In such a case,
the DM might want to relax an excessively improved value for the purpose of adjustment. However,
the proposed method does not ask the DM directly for the amount of relaxation, so it induces the
satisfactory solution to find the change of desirability functions according to the rate of relaxation.
Accordingly, the DM can choose the most satisfactory solution among the various possible solutions.
Therefore, it helps to avoid occurrence of an extreme value by showing the alternatives that the DM
can choose.

The proposed method presents the changes of the desirability function values to the DM according
to the rate of relaxation of a particular desirability function in the form of a table. If a MOO method
requires preference information that is difficult for the DM to express—for example, specific numerical
information—it may be difficult to find the satisfactory solution. In this regard, the information
presentation of the proposed method provides an additional advantage in that it can ease the burden
of the DM by showing a set of expected candidate solutions and selecting the most satisfactory
solution rather than requiring specific values. If the number of desirability functions increases, it is
recommended to use the graph form. The graph form may also be more useful because the scales of
the desirability are all the same. An alternative interactive MOO approach to supplier selection and
order allocation is Demirtas and Üstün [4]. In this interactive method, the DM can control objective
values directly in a similar way to our research. The authors uses the reservation level that represents
an objective function value which must be equaled or exceeded to be considered acceptable, in the
maximization context. The method repeatedly reduces the objective space by adjusting reservations
level from the DM’s preference information. Although there are differences in, for example, how local
weights are used and how the DM expresses preference information, both studies show that interactive
MOO approaches can help supplier selection and order allocation problems. We expect that a variety
of interactive MOO methods can be used for supplier selection and order allocation problems.

5. Conclusions

In this study, a new interactive MOO approach is proposed for supplier selection and order
allocation problems with the concept of desirability. The multiple objectives for this problem are
defined as purchasing costs, quality, and lead time. Then, we applied an interactive MOO method
based on STEM to this problem. We presented how to solve the problem step by step to deliver the
problem-solving procedure. It is also shown that the principles of diminishing marginal utility can
be used to determine the level of the satisfaction through the use of desirability function. Two cases
involving linear and nonlinear desirability function are described to explain the detailed procedure of
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the proposed method. The obtained results are presented along with results from a prioiri methods
and have been discussed accordingly.

This study has following salient features that contribute to the research stream on supplier
selection and order allocation.

1. The use of desirability concept was shown to be an excellent tool for reflecting the level of
satisfaction and has advantages in that the sensitivity of satisfaction can be adjusted by using
desirability parameter.

2. The proposed method alleviates the appearance of extreme values that can be derived when the
model uses pre-determined weights.

3. The interactive MOO method, which progressively articulates the DM’s preference information
to deal with supplier selection problem, may be an alternative.

4. Modification of the original STEM allowed us to relieve the DM’s burden in terms of presenting
preference information and reduce unnecessary iteration in the optimization process.

This study tried to deal with the concept of desirability more intuitively by repeatedly articulating
the preference information of the DM. However, our model will also require the parameter value of
the desirability function, in advance, to determine its shape. Therefore, it is necessary to develop a
method that progressively reflects the information of this parameter, since the shape of the desirability
function plays a critical role in deriving the solution. It is possible to complement this shortcoming
if a method is developed that can estimate this parameter for each objective function utilized for the
supplier selection and order allocation problems. Also, as stated in Section 4, we could not directly
compare the solution quality of the developed method with solutions of other methods. Nonetheless,
in order to compare the solution quality, we suggest that setting the proxy on the premise that the DM’s
preference information is known and comparing the posteriorly derived results is an alternative that
can also improve the method’s validation. Finally, developing an interactive method under incomplete
information and applying it to supplier selection problems would also be a challenging work for
practical application. Recent research considering incomplete weights presented by Liao and Xu [43] is
expected to be useful in these respects.
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Abstract: As a generalization of the intuitionistic fuzzy set (IFS), a Pythagorean fuzzy set has more
flexibility than IFS in expressing uncertainty and fuzziness in the process of multiple criteria group
decision-making (MCGDM). Meanwhile, the prominent advantage of the Muirhead mean (MM)
operator is that it can reflect the relationships among the various input arguments through changing
a parameter vector. Motivated by these primary characters, in this study, we introduced the MM
operator into the Pythagorean fuzzy context to expand its applied fields. To do so, we presented the
Pythagorean fuzzy MM (PFMM) operators and Pythagorean fuzzy dual MM (PFDMM) operator
to fuse the Pythagorean fuzzy information. Then, we investigated their some properties and gave
some special cases related to the parameter vector. In addition, based on the developed operators,
two MCGDM methods under the Pythagorean fuzzy environment are proposed. An example is
given to verify the validity and feasibility of our proposed methods, and a comparative analysis is
provided to show their advantages.

Keywords: Pythagorean fuzzy set; Muirhead mean; multiple criteria group decision-making

1. Introduction

Multi-criteria group decision-making (MCGDM), a sub-field of decision-making, is a common
and important activity in the real world, and is especially useful in the fields of engineering, economic,
management, and the military. In practical applications, a critical problem is how to express the
valuation information provided by decision makers. Due to the complexity and fuzziness of MCGDM
problems, it is difficult for decision makers to give precise valuation information through employing
crisp numbers. Fuzzy set (FS) theory, originally developed by Zadeh [1], is a particularly effective tool
to capture uncertain and fuzzy information. However, due to the FS having only one membership
degree, it cannot deal effectively with some complicated fuzzy information. Therefore, Atanassov
and Rangasamy [2] developed intuitionistic fuzzy set (IFS) through introducing the non-membership
degree into the FS. In IFS, the sum of the membership degree and non-membership degree needs to be
equal to or less than 1. However, in some practical applications, IFS cannot solve the problem that
the sum of the membership and non-membership is bigger than 1, but the square sum is equal to or
less than 1. To overcome this drawback of IFS, Pythagorean fuzzy set (PFS), as a generalization of IFS,
was introduced by Yager [3,4], of which the square sum of the membership degree and non-membership
degree is less than or equal to 1. In other words, when we treat uncertainty and fuzziness in practical
MCGDM problems, PFS is a more effective and flexible tool compared with IFS.

Based on some existing aggregation operators, various aggregation operators of Pythagorean
fuzzy set have been developed by a number of researchers to solve multi-criteria decision-making
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(MCDM) problems with Pythagorean fuzzy information. Depending on whether the input argument is
independent, these operators can be divided into two categories: (1) the input argument is independent;
(2) any two input arguments are correlated. Many operators fall into the former category. For example,
Yager [3,4] developed the Pythagorean fuzzy weighted averaging (PFWA) and Pythagorean fuzzy
weighted geometric (PFWG) operators, and used these to solve Pythagorean fuzzy MCDM problems.
Based on the operational laws proposed by Zhang and Xu [5], Ma and Xu [6] presented two
new PFWA and PFWG operators, symmetric Pythagorean fuzzy weighted geometric/averaging
operators, and examined the relationships between these operators and the operators proposed by
Yager. Rahman et al. [7] proposed the Pythagorean fuzzy Einstein weighted geometric operator and
discussed its desirable properties and special cases. Garg [8] introduced the Einstein operational laws
into the Pythagorean fuzzy environment to develop two generalized averaging aggregation operators,
and utilized these operators to solve MCDM problems. Through incorporating the confidence level
into each Pythagorean fuzzy number, Garg [9] presented a series of novel averaging and geometric
operators. Zeng et al. [10] proposed the Pythagorean fuzzy ordered weighted averaging weighted
averaging distance operator. On the other hand, Peng and Yang [11] extended the Choquet integral
into the Pythagorean fuzzy environment to propose a Pythagorean fuzzy Choquet integral operator.
Wei and Lu [12] presented some Pythagorean fuzzy power aggregation operators based on the power
aggregation operator, and investigated the main characteristics of these operators. Liang et al. [13]
developed the Pythagorean fuzzy Bonferroni mean operator and their weighted form. Moreover, some
properties and cases of the proposed operators are explored and an accelerative calculating algorithm is
designed to simplify the computation process of the presented operators. Liang et al. [14] proposed the
Pythagorean fuzzy weighted geometric Bonferroni mean operator and applied it to handle MCGDM
problems with Pythagorean fuzzy information. In real decision-making, however, a relationship may
exist among more than two input arguments due to the complexity of decision-making problems.
Thus it can be seen that it is difficult for the above operators to capture the relationships between three
or more Pythagorean fuzzy input arguments.

The Muirhead mean (MM) operator, originally presented by Muirhead [15], is a well-known
information fusion operator and provides us with a new fusion method for the correlation information.
The primary characteristic of the MM operator is that it can reflect the relationship among any
number of input arguments. In addition, some existing operators including the arithmetic and
geometric averaging, Bonferroni mean [16] and Maclaurin symmetric mean [17] are special cases of it.
Consequently, some researchers have extended the MM operator into various fuzzy environments.
For instance, Qin and Liu [18] presented some 2-tuple linguistic MM operators by introducing the
MM operator into the 2-tuple linguistic context, and utilized them to solve the supplier selection
problems. Liu and You [19] developed some interval neutrosophic MM operators based on the MM
operator, and presented two novel approaches to handle multiple attribute group decision-making
problems in light of the proposed operators. Liu and Li [20] explored the MM operator under the
intuitionistic fuzzy environment, and proposed some intuitionistic fuzzy MM operators. Liu et al. [21]
introduced the MM operator into a hesitant fuzzy linguistic environment, and developed a hesitant
fuzzy linguistic MM operator and its weighted form. Wang et al. [22] extended the MM operator to
a hesitant fuzzy linguistic set, and proposed the hesitant fuzzy linguistic MM operator and hesitant
fuzzy linguistic dual MM operator and their weighted forms. Based on the Archimedean t-norm and
t-conorm, Liu and Teng [23] put forward some probabilistic linguistic Archimedean MM operators
and further explored some special cases. Liu et al. [24] proposed an interval 2-tuple weighted MM
operator by enlarging the scope of MM operator to the interval 2-tuple linguistic environment, and
applied the proposed operator to present a large group dependence evaluation model for human
reliability analysis. When we consider the relationship among any number of input arguments,
however, the above operators fail to deal with the Pythagorean fuzzy information.

According to the above analysis, we know that the existing aggregation operators of Pythagorean
fuzzy cannot capture the relationships between any number of input arguments in the information
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fusion process. At the same time, the MM operator can reflect the relationships between input
arguments, so it is necessary to extend it to handle Pythagorean fuzzy information. Hence, inspired
by the ideal characteristics of the MM operator, the present paper aims at developing some new
aggregation operators of Pythagorean fuzzy to solve MCGDM problems in which we consider the
interrelationship among any number of input arguments.

In order to accomplish this goal, the remainder of this paper is arranged as follows. In Section 2,
we describe some basic concepts and operational laws of PFS. Based on the MM operator, we develop
the Pythagorean fuzzy MM operator and Pythagorean fuzzy weighted MM operator, and the
Pythagorean fuzzy dual MM operator and Pythagorean fuzzy dual weighted MM operator in Sections 3
and 4, respectively. In Section 5, we utilize these operators to present two MCGDM methods for the
MCGDM problem with Pythagorean fuzzy information. In Section 6, an example is provided to
demonstrate the effectiveness and feasibility of the developed approaches, and the advantages of the
proposed operators are illustrated by comparing them with the existing operators. Finally, a brief
conclusion and future work directions are given in Section 7.

2. Preliminaries

In this section, some fundamental concepts related to the Pythagorean fuzzy number (PFN) are
briefly introduced below, which will be used in the following sections.

Definition 1 [3,4]. Let X = {x1, x2, · · ·, xn} be a finite nonempty set, and a PFS P in X is defined as follows

X = {< x, μP(x), νP(x) >|x ∈ X} (1)

where μP(x) ∈ [0, 1] and νP(x) ∈ [0, 1] are defined as the degree of membership and non-membership of the
element x ∈ X to P, respectively, and satisfy μ2

P(x) + ν2
P(x) ≤ 1. For every x ∈ X, we designate πP(x) as the

degree of indeterminacy of the PFS, where πP(x) =
√

1− μ2
P(x)− ν2

P(x). For convenience, α = (μP, νP) is

called as a PFN, and μ2
P + ν2

P ≤ 1 and πP =
√

1− μ2
P − ν2

P.

Definition 2 [5]. Let α1 = (μP1 , νP1), α2 = (μP2 , νP2) and α = (μP, νP) be three PFNs, and λ > 0. Then the
basic operational laws of PFN can be defined as follows:

(1) α1 ⊕ α2 =
(√

μ2
P1
+ μ2

P2
− μ2

P1
μ2

P2
, νP1 νP2

)
;

(2) α1 ⊗ α2 =
(

μP1 μP2 ,
√

ν2
P1
+ ν2

P2
− ν2

P1
ν2

P2

)
;

(3) λα =

(√
1− (1− μ2

P)
λ, (νP)

λ
)

;

(4) αλ =

(
(μP)

λ,
√

1− (1− μ2
P)

λ
)

.

Definition 3 [25]. Let α = (μP, νP) be a PFN, then the score and accuracy function of α is defined respectively
as follows

S(α) =
1
2
(1 + μ2

P − ν2
P), (2)

H(α) = μ2
P + ν2

P. (3)

Definition 4 [25]. Let α = (μP1 , νP1) and β = (μP2 , νP2) be any two PFNs, S(α) and H(α) be the score and
accuracy function of α, and S(β) and H(β) be the score and accuracy function of β, then

(1) If S(α) > S(β), then α is superior to β, α > β;
(2) If S(α) = S(β), then
(a) If H(α) > H(β), then α is superior to β, α > β;
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(b) If H(α) = H(β), then α is equivalent to β α = β.

Definition 5 [4,5]. Let α1 = (μP1 , νP1) and α2 = (μP2 , νP2) be two PFNs, the ordering relationship on the
PFNs is defined as follows: α1 ≥ α2 if and only if μP1 ≥ μP2 and νP1 ≤ νP2 .

3. Some Pythagorean Fuzzy Muirhead Operators

The Pythagorean fuzzy MM (PFMM) operator and Pythagorean fuzzy weighted MM (PFWMM)
operator are defined in Sections 3.1 and 3.2, respectively.

3.1. The PFMM Operator

Definition 6 [15]. Let Q = (q1, q2, · · ·, qn) ∈ Rn be a parameter vector, and αi(i = 1, 2, · · ·, n) be a collection
of nonnegative real numbers. If

MMQ(α1, α2, · · ·, αn) =

(
1
n! ∑

θ∈Sn

n

∏
j=1

α
qj
θ(j)

) 1
n
∑

j=1
qj

, (4)

where MMQ is called the Muirhead mean (MM) operator and θ(j) (j = 1, 2, · · ·, n) is any a permutation of
(1, 2, · · ·, n), and Sn is the collection of all permutation of (1, 2, · · ·, n).

Definition 7. Let Q = (q1, q2, · · ·, qn) ∈ Rn be a parameter vector, and αi = (μPi , νPi ), (i = 1, 2, · · ·, n) be a
collection of PFNs. If

PFMMQ(α1, α2, · · ·, αn) =

(
1
n! ∑

θ∈Sn

n

∏
j=1

α
qj
θ(j)

) 1
n
∑

j=1
qj

. (5)

where PFMMQ is called the PFMM operator and θ(j) (j = 1, 2, · · ·, n) is any a permutation of (1, 2, · · ·, n),
and Sn is the collection of all permutation of (1, 2, · · ·, n).

Theorem 1. Let αi = (μPi , νPi ), (i = 1, 2, · · ·, n) be a collection of PFNs, then the aggregated value by using
the PFMM operator is also a PFN, and

PFMMQ(α1, α2, · · ·, αn) =

⎛⎜⎜⎜⎝
⎛⎜⎝
√√√√1−

(
∏

θ∈Sn

(1− n
∏
j=1

μ
2qj
θ(j))

) 1
n!

⎞⎟⎠
1

n
∑

j=1
qj

,

√√√√√√1−
⎛⎝1−

(
∏

θ∈Sn

(
1− n

∏
j=1

(1− ν2
θ(j))

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj

⎞⎟⎟⎟⎠ (6)

Proof. We need to prove that Equation (6) holds and is a PFN.

(1) Firstly, we prove that Equation (6) holds.
According to the operational laws (4) and (2) of Definition 2,

α
qj
θ(j) =

(
μ

qj
θ(j),

√
1− (1− ν2

θ(j))
qj
)

, and,
n

∏
j=1

α
qj
θ(j) =

⎛⎝ n

∏
j=1

μ
qj
θ(j),

√√√√1−
n

∏
j=1

(1− ν2
θ(j))

qj

⎞⎠,

then

∑
θ∈Sn

n

∏
j=1

α
qj
θ(j) =

⎛⎝√√√√1− ∏
θ∈Sn

(1−
n

∏
j=1

μ
2qj
θ(j)), ∏

θ∈Sn

√√√√1−
n

∏
j=1

(1− ν2
θ(j))

qj

⎞⎠,
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further, based on operational law (3), we can get

1
n! ∑

θ∈Sn

n

∏
j=1

α
qj
θ(j) =

⎛⎜⎜⎝
√√√√√1−

(
∏

θ∈Sn

(1−
n

∏
j=1

μ
2qj
θ(j))

) 1
n!

,

⎛⎝ ∏
θ∈Sn

√√√√1−
n

∏
j=1

(1− ν2
θ(j))

qj

⎞⎠ 1
n!

⎞⎟⎟⎠.

Consequently, we have

(
1
n! ∑

θ∈Sn

n
∏
j=1

α
qj
θ(j)

) 1
n
∑

j=1
qj
=

⎛⎜⎜⎜⎝
⎛⎜⎝
√√√√1−

(
∏

θ∈Sn

(1− n
∏
j=1

μ
2qj
θ(j))

) 1
n!

⎞⎟⎠
1

n
∑

j=1
qj

,

√√√√√√1−
⎛⎝1−

(
∏

θ∈Sn

(
1− n

∏
j=1

(1− ν2
θ(j))

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj

⎞⎟⎟⎟⎠,

which illustrates that Equation (6) holds.
(2) In what follows, we will prove that Equation (6) is a PFN.

Let μP =

⎛⎜⎝
√√√√1−

(
∏

θ∈Sn

(1− n
∏
j=1

μ
2qj
θ(j))

) 1
n!

⎞⎟⎠
1

n
∑

j=1
qj

, νP =

√√√√√√1−
⎛⎝1−

(
∏

θ∈Sn

(
1− n

∏
j=1

(1− ν2
θ(j))

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj

.

Then we need to prove that Equation (6) satisfies the following two conditions.
(a) 0 ≤ μP ≤ 1, and 0 ≤ νP ≤ 1;
(b) μ2

P + ν2
P ≤ 1.

(a) According to Definition 1,

μ
2qj
θ(j) ∈ [0, 1] and

n

∏
j=1

μ
2qj
θ(j) ∈ [0, 1],

then we have

∏
θ∈Sn

(
1− n

∏
j=1

μ
2qj
θ(j)

)
∈ [0, 1],

(
∏

θ∈Sn

(
1− n

∏
j=1

μ
2qj
θ(j)

)) 1
n!

∈ [0, 1], and

√√√√1−
(

∏
θ∈Sn

(
1− n

∏
j=1

μ
2qj
θ(j)

)) 1
n!

∈ [0, 1],

further ⎛⎜⎜⎝
√√√√√1−

(
∏

θ∈Sn

(
1−

n

∏
j=1

μ
2qj
θ(j)

)) 1
n!

⎞⎟⎟⎠
1

n
∑

j=1
qj

∈ [0, 1], i.e., 0 ≤ μP ≤ 1.

Similarly, we can get 0 ≤ νP ≤ 1. So condition (a) is satisfied.
(b) Based on μ2

θ(j) + ν2
θ(j) ≤ 1, then μ2

θ(j) ≤ 1− ν2
θ(j), we yield the inequality as follows:

μ2
P + ν2

P =

⎛⎝1−
(

∏
θ∈Sn

(1− n
∏
j=1

μ
2qj
θ(j))

) 1
n!
⎞⎠

1
n
∑

j=1
qj
+ 1−

⎛⎝1−
(

∏
θ∈Sn

(
1− n

∏
j=1

(1− ν2
θ(j))

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj

≤
⎛⎝1−

(
∏

θ∈Sn

(
1− n

∏
j=1

(1− ν2
θ(j))

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj
+ 1−

⎛⎝1−
(

∏
θ∈Sn

(
1− n

∏
j=1

(1− ν2
θ(j))

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj
= 1,

i.e., μ2
P + ν2

P ≤ 1. Consequently, condition (b) is satisfied.
Based on the proof above, we know that theorem 1 holds. �
In what follows, we will explore some properties of the PFMM operator.
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Property 1 (Idempotency). Let αi = (μPi , νPi ), (i = 1, 2, · · ·, n) are equal, i.e., αi = α = (μP, νP) for all
i, then

PFMMQ(α1, α2, · · ·, αn) = α = (μP, νP).

Proof. Since αi = α = (μP, νP), according to the Theorem 1 yields

PFMMQ(α1, α2, · · ·, αn) =

⎛⎜⎜⎜⎝
⎛⎜⎝
√√√√1−

(
∏

θ∈Sn

(1− n
∏
j=1

μ
2qj
P )

) 1
n!

⎞⎟⎠
1

n
∑

j=1
qj

,

√√√√√√1−
⎛⎝1−

(
∏

θ∈Sn

(
1− n

∏
j=1

(1− ν2
P)

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj

⎞⎟⎟⎟⎠,

=

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎝
√√√√√√1−

⎛⎜⎝ ∏
θ∈Sn

(1− μ

2
n
∑

j=1
qj

P )

⎞⎟⎠
1
n!

⎞⎟⎟⎟⎠
1

n
∑

j=1
qj

,

√√√√√√√1−

⎛⎜⎝1−
⎛⎝ ∏

θ∈Sn

⎛⎝1− (1− ν2
P)

n
∑

j=1
qj

⎞⎠⎞⎠
1
n!
⎞⎟⎠

1
n
∑

j=1
qj

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝
√√√√√√√1−

⎛⎜⎝(1− μ

2
n
∑

j=1
qj

P )

n!⎞⎟⎠
1
n!

⎞⎟⎟⎟⎟⎠
1

n
∑

j=1
qj

,

√√√√√√√√1−

⎛⎜⎜⎝1−

⎛⎜⎝
⎛⎝1− (1− ν2

P)

n
∑

j=1
qj

⎞⎠n!
⎞⎟⎠

1
n!
⎞⎟⎟⎠

1
n
∑

j=1
qj

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
⎛⎜⎜⎝
√

μ

2
n
∑

j=1
qj

P

⎞⎟⎟⎠
1

n
∑

j=1
qj

,

√√√√√1−
⎛⎝(1− ν2

P)

n
∑

j=1
qj

⎞⎠
1

n
∑

j=1
qj

⎞⎟⎟⎟⎠= (μP, νP).

�

Property 2 (Monotonicity). Let αi = (μPi , νPi ) and α̂i = (μ̂Pi , ν̂Pi ), (i = 1, 2, · · ·, n) be two collections of
PFNs. Through using the PFMM operator, if μPi ≥ μ̂Pi and νPi ≤ ν̂Pi ,

PFMMQ(α1, α2, · · ·, αn) ≥ PFMMQ(α̂1, α̂2, · · ·, α̂n).

Proof. Let

PFMMQ(α1, α2, · · ·, αn)

=

⎛⎜⎜⎜⎝
⎛⎜⎝
√√√√1−

(
∏

θ∈Sn

(
1− n

∏
j=1

μ
2qj
θ(j)

)) 1
n!

⎞⎟⎠
1

n
∑

j=1
qj

,

√√√√√√1−
⎛⎝1−

(
∏

θ∈Sn

(
1− n

∏
j=1

(1− ν2
θ(j))

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj

⎞⎟⎟⎟⎠ = (μP, νP), and

PFMMQ(α̂1, α̂2, · · ·, α̂n)

=

⎛⎜⎜⎜⎝
⎛⎜⎝
√√√√1−

(
∏

θ∈Sn

(
1− n

∏
j=1

μ̂
2qj
θ(j)

)) 1
n!

⎞⎟⎠
1

n
∑

j=1
qj

,

√√√√√√1−
⎛⎝1−

(
∏

θ∈Sn

(
1− n

∏
j=1

(1− ν̂2
θ(j))

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj

⎞⎟⎟⎟⎠ = (μ̂P, ν̂P).

Since μPi ≥ μ̂Pi , based on the operational laws of Definition 2, we have

μ
2qj
θ(j) ≥ μ̂

2qj
θ(j) and

n

∏
j=1

μ
2qj
θ(j) ≥

n

∏
j=1

μ̂
2qj
θ(j) then ∏

θ∈Sn

(
1−

n

∏
j=1

μ
2qj
θ(j)

)
≤ ∏

θ∈Sn

(
1−

n

∏
j=1

μ̂
2qj
θ(j)

)
,

and (
∏

θ∈Sn

(
1−

n

∏
j=1

μ
2qj
θ(j)

)) 1
n!

≤
(

∏
θ∈Sn

(
1−

n

∏
j=1

μ̂
2qj
θ(j)

)) 1
n!

.
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Further,

1−
(

∏
θ∈Sn

(
1− n

∏
j=1

μ
2qj
θ(j)

)) 1
n!

≥ 1−
(

∏
θ∈Sn

(
1− n

∏
j=1

μ̂
2qj
θ(j)

)) 1
n!

,

√√√√1−
(

∏
θ∈Sn

(
1− n

∏
j=1

μ
2qj
θ(j)

)) 1
n!

≥

√√√√1−
(

∏
θ∈Sn

(
1− n

∏
j=1

μ̂
2qj
θ(j)

)) 1
n!

,

and ⎛⎜⎜⎝
√√√√√1−

(
∏

θ∈Sn

(
1−

n

∏
j=1

μ
2qj
θ(j)

)) 1
n!

⎞⎟⎟⎠
1

n
∑

j=1
qj

≥

⎛⎜⎜⎝
√√√√√1−

(
∏

θ∈Sn

(
1−

n

∏
j=1

μ̂
2qj
θ(j)

)) 1
n!

⎞⎟⎟⎠
1

n
∑

j=1
qj

.

i.e., μP ≥ μ̂P. Similarly, we also yield νP ≤ ν̂P.
Consequently, PFMMQ(α1, α2, · · ·, αn) ≥ PFMMQ(α̂1, α̂2, · · ·, α̂n) holds. �

Property 3 (Boundedness). Let αi = (μPi , νPi ), (i = 1, 2, · · ·, n) be a collections of PFNs, α+ =

(max(μPi ), min(νPi )) and α− = (min(μPi ), max(νPi )), then

α+ ≥ PFMMQ(α1, α2, · · ·, αn) ≥ α−.

Proof. Based on Properties 1 and 2,
PFMMQ(α1, α2, · · ·, αn) ≤ PFMMQ(α+, α+, · · ·, α+) = α+,
PFMMQ(α1, α2, · · ·, αn) ≥ PFMMQ(α−, α−, · · ·, α−) = α−.
So, we can get α+ ≥ PFMMQ(α1, α2, · · ·, αn) ≥ α−.�

In what follows, we will discuss some special cases of the PFMM operator through changing the
values of parameter vector Q.

(1) When Q = (1, 0, · · ·, 0), Equation (6) is transformed into a Pythagorean fuzzy arithmetic
averaging operator.

PFMM(1,0,···,0)(α1, α2, · · ·, αn) =
1
n

n

∑
i=1

αi =

(√
1−

n

∏
i=1

(1− μ2
Pi
)

1
n ,

n

∏
i=1

(νPi )
1
n

)
. (7)

(2) When Q = (λ, 0, · · ·, 0), Equation (6) is transformed into a Pythagorean fuzzy generalized
arithmetic averaging operator:

PFMM(λ,0,···,0)(α1, α2, · · ·, αn) =

⎛⎜⎝(√1− n
∏
i=1

(1− μ2λ
Pi
)

1
n

) 1
λ

,

√√√√1−
(

1− n
∏
i=1

(
1− (1− ν2

Pi
)

λ
) 1

n
) 1

λ

⎞⎟⎠. (8)

(3) When Q = (1, 1, 0, 0 · ··, 0), Equation (6) is transformed into a Pythagorean fuzzy BM operator:

PFMM(1,1,0,0···,0)(α1, α2, · · ·, αn) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√√√√1−

⎛⎜⎜⎜⎜⎜⎝
n
∏

i, j = 1
i �= j

(1− μ2
Pi

μ2
Pj
)

⎞⎟⎟⎟⎟⎟⎠

1
n(n−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
2

,

√√√√√√√√√√√1−

⎛⎜⎜⎜⎜⎜⎝1− n
∏

i, j = 1
i �= j

(
1− (1− ν2

Pi
)(1− ν2

Pj
)
) 1

n(n−1)

⎞⎟⎟⎟⎟⎟⎠

1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (9)
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(4) When Q = (1, 1, · · ·, 1︸ ︷︷ ︸
k

, 0, 0, · · ·, 0︸ ︷︷ ︸
n−k

), Equation (6) is transformed into a Pythagorean fuzzy MSM

operator [25]:

PFMM

(1, 1, · · ·, 1︸ ︷︷ ︸
k

,0, 0, · · ·, 0︸ ︷︷ ︸
n−k

)

(α1, α2, · · ·, αn) =

⎛⎜⎜⎜⎝
⎛⎜⎝
√√√√1−

(
∏

1≤i1≺···≺ik≤n
(1− k

∏
j=1

μ2
Pij
)

) 1
Ck

n

⎞⎟⎠
1
k

,

√√√√√√1−
⎛⎝1−

(
∏

1≤i1≺···≺ik≤n

(
1− k

∏
j=1

(1− ν2
Pij
)

)) 1
Ck

n

⎞⎠
1
k

⎞⎟⎟⎟⎠. (10)

(5) When Q = (1, 1, · · ·, 1), Equation (6) is transformed into a Pythagorean fuzzy geometric
averaging operator:

PFMM(1,1,···,1)(α1, α2, · · ·, αn) =

(
n

∏
i=1

αi

) 1
n

=

⎛⎝( n

∏
i=1

μPi

) 1
n

,

√
1−

n

∏
i=1

(1− ν2
Pi
)

1
n

⎞⎠. (11)

(6) When Q = (1/n, 1/n, · · ·, 1/n), Equation (6) is transformed into a Pythagorean fuzzy
geometric averaging operator:

PFMM(1/n,1/n,···,1/n)(α1, α2, · · ·, αn) =
n

∏
i=1

α
1
n
i =

⎛⎝( n

∏
i=1

μPi

) 1
n

,

√
1−

n

∏
i=1

(1− ν2
Pi
)

1
n

⎞⎠. (12)

3.2. The PFWMM Operator

Definition 8. Let Q = (q1, q2, · · ·, qn) ∈ Rn be a parameter vector, αi = (μPi , νPi ), (i = 1, 2, · · ·, n) be a
collection of PFNs, and w = (w1, w2, · · ·, wn)

T be the weight vector of αi, where wi indicates the importance

degree of αi, satisfying wi ∈ [0, 1] and
n
∑

i=1
wi = 1. If

PFWMMQ(α1, α2, · · ·, αn) =

(
1
n! ∑

θ∈Sn

n

∏
j=1

(nwθ(j)αθ(j))
qj

) 1
n
∑

j=1
qj

, (13)

where PFWMMQ is called the PFWMM operator and θ(j)(j = 1, 2, · · ·, n) is any a permutation of (1, 2, · · ·, n),
and Sn is the collection of all permutation of (1, 2, · · ·, n).

Theorem 2. Let Q = (q1, q2, · · ·, qn) ∈ Rn be a parameter vector, αi = (μPi , νPi ), (i = 1, 2, · · ·, n) be a
collection of PFNs, and w = (w1, w2, · · ·, wn)

T be the weight vector of αi, where wi indicates the importance

degree of αi, satisfying wi ∈ [0, 1] and
n
∑

i=1
wi = 1. Then, the aggregated value by using the PFWMM operator

is also a PFN, and

PFWMMQ(α1, α2, · · ·, αn)

=

⎛⎜⎜⎜⎝
⎛⎜⎝
√√√√1−

(
∏

θ∈Sn

(
1− n

∏
j=1

(1− (1− μ2
θ(j))

nwθ(j) )
qj

)) 1
n!

⎞⎟⎠
1

n
∑

j=1
qj

,

√√√√√√1−
⎛⎝1−

(
∏

θ∈Sn

(
1− n

∏
j=1

(1− ν
2nwθ(j)
θ(j) )

qj
)) 1

n!
⎞⎠

1
n
∑

j=1
qj

⎞⎟⎟⎟⎠.
(14)

Proof. Based on the operational law (3) in Definition 2, nwθ(j)αθ(j) =
(√

1− (1− μ2
θ(j))

nwθ(j) , ν
nwθ(j)
θ(j)

)
,

and we can replace μθ(j) and νθ(j) with
√

1− (1− μ2
θ(j))

nwθ(j) and ν
nwθ(j)
θ(j) , respectively, in Equation (6),

thus obtaining Equation (14). Since αθ(j) is a PFN, then nwθ(j)αθ(j) is also a PFN. Similar to the proof of
Theorem 1, we know Equation (14) is also a PFN. �
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In the following, we will discuss some desirable properties of the PFWMM operator.

Property 4 (Monotonicity). Let αi = (μPi , νPi ) and α̂i = (μ̂Pi , ν̂Pi ), (i = 1, 2, · · ·, n) be two collections of
PFNs. Through using the PFMM operator, if μPi ≥ μ̂Pi and νPi ≤ ν̂Pi , then

PFWMMQ(α1, α2, · · ·, αn) ≥ PFWMMQ(α̂1, α̂2, · · ·, α̂n).

The Proof of Property 4 is similar to that of Property 2, so is omitted here.

Property 5 (Boundedness). Let αi = (μPi , νPi ), (i = 1, 2, · · ·, n) be a collections of PFNs, α+ =

(max(μPi ), min(νPi )) and α− = (min(μPi ), max(νPi )), then

α+ ≥ PFWMMQ(α1, α2, · · ·, αn) ≥ α−.

The Proof of Property 5 is similar to that of Property 3, so is omitted here.

Theorem 3. The PFMM operator is a special case of the PFWMM operator.

Proof. When w = (1/n, 1/n, · · ·, 1/n)T

PFWMMQ(α1, α2, · · ·, αn)

=

⎛⎜⎜⎜⎝
⎛⎜⎝
√√√√1−

(
∏

θ∈Sn

(
1− n

∏
j=1

(1− (1− μ2
θ(j))

n× 1
n )

qj
)) 1

n!

⎞⎟⎠
1

n
∑

j=1
qj

,

√√√√√√1−
⎛⎝1−

(
∏

θ∈Sn

(
1− n

∏
j=1

(1− ν
2n× 1

n
θ(j) )

qj
)) 1

n!
⎞⎠

1
n
∑

j=1
qj

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
⎛⎜⎝
√√√√1−

(
∏

θ∈Sn

(1− n
∏
j=1

μ
2qj
θ(j))

) 1
n!

⎞⎟⎠
1

n
∑

j=1
qj

,

√√√√√√1−
⎛⎝1−

(
∏

θ∈Sn

(
1− n

∏
j=1

(1− ν2
θ(j))

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj

⎞⎟⎟⎟⎠.

�

Theorem 4. The Pythagorean fuzzy weighted averaging operator [6] is a special case of the
PFWMM operator.

Proof. When Q = (1, 0, · · ·, 0),

PFWMM(1,0,··· ,0)(α1, α2, · · ·, αn)

=

⎛⎜⎜⎜⎝
⎛⎜⎝
√√√√1−

(
∏

θ∈Sn

(
1− n

∏
j=1

(1− (1− μ2
θ(j))

nwθ(j) )
qj

)) 1
n!

⎞⎟⎠
1

n
∑

j=1
qj

,

√√√√√√1−
⎛⎝1−

(
∏

θ∈Sn

(
1− n

∏
j=1

(1− ν
2nwθ(j)
θ(j) )

qj
)) 1

n!
⎞⎠

1
n
∑

j=1
qj

⎞⎟⎟⎟⎠
=

⎛⎜⎝
√√√√1−

(
n
∏
j=1

(1− μ2
Pj
)

nwj

) 1
n

,

√√√√√1−
⎛⎝1−

(
n
∏
j=1

ν
2nwj
Pj

) 1
n
⎞⎠
⎞⎟⎠

=

(√
1− n

∏
j=1

(1− μ2
Pj
)

wj ,
n
∏
j=1

ν
wj
Pj

)
.

�

4. Some Pythagorean Fuzzy Dual MM Operators

In this section, we will define the Pythagorean fuzzy dual MM (PFDMM) operator and
Pythagorean fuzzy dual weighted MM (PFDWMM) operator.
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4.1. The PFDMM Operator

Definition 9. Let Q = (q1, q2, · · ·, qn) ∈ Rn be a parameter vector, and αi = (μPi , νPi ), (i = 1, 2, · · ·, n) be a
collection of PFNs. If

PFDMMQ(α1, α2, · · ·, αn) =
1

n
∑

j=1
qj

(
∏

θ∈Sn

n

∑
j=1

(qjαθ(j))

) 1
n!

, (15)

where PFDMMQ is called the PFDMM operator and θ(j)(j = 1, 2, · · ·, n) is any a permutation of (1, 2, · · ·, n),
and Sn is the collection of all permutations of (1, 2, · · ·, n).

Theorem 5. Let αi = (μPi , νPi ), (i = 1, 2, · · ·, n) be a collection of PFNs, then the aggregated value by using
the PFDMM operator is also a PFN, and

PFDMMQ(α1, α2, · · ·, αn) =

⎛⎜⎜⎜⎝
√√√√√√1−

⎛⎝1−
(

∏
θ∈Sn

(
1− n

∏
j=1

(1− μ2
θ(j))

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj

,

⎛⎜⎝
√√√√1−

(
∏

θ∈Sn

(1− n
∏
j=1

ν
2qj
θ(j))

) 1
n!

⎞⎟⎠
1

n
∑

j=1
qj

⎞⎟⎟⎟⎠. (16)

Proof. We need to prove that Equation (16) holds and is a PFN.
(1) Firstly, we will prove that Equation (16) holds.
According to laws (3) and (1) in Definition 2,

qjαθ(j) =
(√

1− (1− μ2
θ(j))

qj , ν
qj
θ(j)

)
and

n

∑
j=1

(qjαθ(j)) =

⎛⎝√√√√1−
n

∏
j=1

(1− μ2
θ(j))

qj ,
n

∏
j=1

ν
qj
θ(j)

⎞⎠.

then, based on laws (1) and (3) in Definition 2, we can obtain

∏
θ∈Sn

n

∑
j=1

(qjαθ(j)) =

⎛⎝ ∏
θ∈Sn

√√√√1−
n

∏
j=1

(1− μ2
θ(j))

qj ,

√√√√1− ∏
θ∈Sn

(1−
n

∏
j=1

ν
2qj
θ(j))

⎞⎠
and

(
∏

θ∈Sn

n

∑
j=1

(qjαθ(j))

) 1
n!

=

⎛⎜⎜⎝
⎛⎝ ∏

θ∈Sn

√√√√1−
n

∏
j=1

(1− μ2
θ(j))

qj

⎞⎠ 1
n!

,

√√√√√1−
(

∏
θ∈Sn

(1−
n

∏
j=1

ν
2qj
θ(j))

) 1
n!

⎞⎟⎟⎠.

Further,

1
n
∑

j=1
qj

(
∏

θ∈Sn

n
∑

j=1
(qjαθ(j))

) 1
n!

=

⎛⎜⎜⎜⎝
√√√√√√1−

⎛⎝1−
(

∏
θ∈Sn

(
1− n

∏
j=1

(1− μ2
θ(j))

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj

,

⎛⎜⎝
√√√√1−

(
∏

θ∈Sn

(1− n
∏
j=1

ν
2qj
θ(j))

) 1
n!

⎞⎟⎠
1

n
∑

j=1
qj

⎞⎟⎟⎟⎠,

which illustrates that Equation (16) holds.
(2) In the following, we will prove that Equation (16) is a PFN.

Let μP =

√√√√√√1−
⎛⎝1−

(
∏

θ∈Sn

(
1− n

∏
j=1

(1− μ2
θ(j))

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj

,
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νP =

⎛⎜⎝
√√√√1−

(
∏

θ∈Sn

(1− n
∏
j=1

ν
2qj
θ(j))

) 1
n!

⎞⎟⎠
1

n
∑

j=1
qj

.

Then we also need to prove that Equation (16) satisfies the following two conditions.
(a) 0 ≤ μP ≤ 1, and 0 ≤ νP ≤ 1;
(b) μ2

P + ν2
P ≤ 1.

(a) Based on Definition 1,

1− μ2
θ(j) ∈ [0, 1] and (1− μ2

θ(j))
qj ∈ [0, 1],

we get
n

∏
j=1

(1− μ2
θ(j))

qj ∈ [0, 1] and ∏
θ∈Sn

(
1−

n

∏
j=1

(1− μ2
θ(j))

qj

)
∈ [0, 1].

Further,

(
∏

θ∈Sn

(
1−

n

∏
j=1

(1− μ2
θ(j))

qj

)) 1
n!

∈ [0, 1] and

⎛⎝1−
(

∏
θ∈Sn

(
1−

n

∏
j=1

(1− μ2
θ(j))

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj
∈ [0, 1],

then √√√√√√1−
⎛⎝1−

(
∏

θ∈Sn

(
1−

n

∏
j=1

(1− μ2
θ(j))

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj
∈ [0, 1],

i.e., 0 ≤ μP ≤ 1. Similarly, we can yield 0 ≤ νP ≤ 1. Therefore, condition (a) is satisfied.
(b) Because μ2

θ(j) + ν2
θ(j) ≤ 1, then ν2

θ(j) ≤ 1− μ2
θ(j), we can obtain the inequality as follows:

μ2
Pi
+ ν2

Pi
= 1−

⎛⎝1−
(

∏
θ∈Sn

(
1− n

∏
j=1

(1− μ2
θ(j))

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj
+

⎛⎝1−
(

∏
θ∈Sn

(1− n
∏
j=1

ν
2qj
θ(j))

) 1
n!
⎞⎠

1
n
∑

j=1
qj

≤ 1−
⎛⎝1−

(
∏

θ∈Sn

(
1− n

∏
j=1

(1− μ2
θ(j))

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj
+

⎛⎝1−
(

∏
θ∈Sn

(
1− n

∏
j=1

(1− μ2
θ(j))

qj

)) 1
n!
⎞⎠

1
n
∑

j=1
qj
= 1,

i.e., μ2
P + ν2

P ≤ 1. Consequently, condition (b) is satisfied.
Based on the proof above, we know that Theorem 5 holds. �

Similar to the properties of the PFMM operator, we can easily obtain some properties of the
PFDMM operator as follows.

Property 6 (Idempotency). Let αi = (μPi , νPi ), (i = 1, 2, · · ·, n) are equal, i.e., αi = α = (μP, νP) for all
i, then

PFDMMQ(α1, α2, · · ·, αn) = α = (μP, νP).

The Proof of Property 6 is similar to that of Property 1, so is omitted here.

Property 7 (Monotonicity). Let αi = (μPi , νPi ) and α̂i = (μ̂Pi , ν̂Pi ), (i = 1, 2, · · ·, n) be two collections of
PFNs. If μPi ≥ μ̂Pi and νPi ≤ ν̂Pi for all i, then

PFDMMQ(α1, α2, · · ·, αn) ≥ PFDMMQ(α̂1, α̂2, · · ·, α̂n).

77



Information 2018, 9, 142

The Proof of Property 7 is similar to that of Property 2, so is omitted here.

Property 8 (Boundedness). Let αi = (μPi , νPi ), (i = 1, 2, · · ·, n) be a collections of PFNs, α+ =

(max(μPi ), min(νPi )) and α− = (min(μPi ), max(νPi )), then

α+ ≥ PFDMMQ(α1, α2, · · ·, αn) ≥ α−.

The Proof of Property 8 is similar to that of Property 3, so is omitted here.
In what follows, we will discuss some special cases of the PFDMM operator through changing

the values of parameter vector Q.
(1). When Q = (1, 0, · · ·, 0), Equation (16) is transformed into a Pythagorean fuzzy geometric

averaging operator:

PFDMM(1,0,···,0)(α1, α2, · · ·, αn) =

(
n

∏
i=1

(μPi )
1
n ,

√
1−

n

∏
i=1

(1− ν2
Pi
)

1
n

)
. (17)

(2). When Q = (λ, 0, · · ·, 0), Equation (16) is transformed into a Pythagorean fuzzy generalized
geometric averaging operator:

PFDMM(λ,0,···,0)(α1, α2, · · ·, αn) =

⎛⎜⎝
√√√√1−

(
1− n

∏
i=1

(
1− (1− μ2

Pi
)

λ
) 1

n
) 1

λ

,

(√
1− n

∏
i=1

(1− ν2λ
Pi
)

1
n

) 1
λ

⎞⎟⎠. (18)

(3). When Q = (1, 1, 0, 0 · ··, 0), Equation (16) is transformed into a Pythagorean fuzzy geometric
BM operator:

PFDMM(1,1,0,0,···,0)(α1, α2, · · ·, αn) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√√√√1−

⎛⎜⎜⎜⎜⎜⎝1− n
∏

i, j = 1
i �= j

(
1− (1− μ2

Pi
)(1− μ2

Pj
)
) 1

n(n−1)

⎞⎟⎟⎟⎟⎟⎠

1
2

,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√√√√1−

⎛⎜⎜⎜⎜⎜⎝
n
∏

i, j = 1
i �= j

(1− ν2
Pi

ν2
Pj
)

⎞⎟⎟⎟⎟⎟⎠

1
n(n−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

(4). When Q = (1, 1, · · ·, 1︸ ︷︷ ︸
k

, 0, 0, · · ·, 0︸ ︷︷ ︸
n−k

), Equation (16) is transformed into a Pythagorean fuzzy

geometric MSM operator:

PFDMM

(1, 1, · · ·, 1︸ ︷︷ ︸
k

,0, 0, · · ·, 0︸ ︷︷ ︸
n−k

)

(α1, α2, · · ·, αn)=

⎛⎜⎜⎜⎝
√√√√√√1−

⎛⎝1−
(

∏
1≤i1≺···≺ik≤n

(
1− k

∏
j=1

(1− μ2
Pij
)

)) 1
Ck

n

⎞⎠
1
k

,

⎛⎜⎝
√√√√1−

(
∏

1≤i1≺···≺ik≤n
(1− k

∏
j=1

ν2
Pij
)

) 1
Ck

n

⎞⎟⎠
1
k

⎞⎟⎟⎟⎠. (20)

(5). When Q = (1, 1, · · ·, 1), Equation (16) is transformed into a Pythagorean fuzzy arithmetic
averaging operator:

PFDMM(1,1,···,1)(α1, α2, · · ·, αn) =

⎛⎝√1−
n

∏
i=1

(1− μ2
Pi
)

1
n ,

(
n

∏
i=1

νPi

) 1
n
⎞⎠. (21)

(6). When Q = (1/n, 1/n, · · ·, 1/n), Equation (16) is transformed into a Pythagorean fuzzy
arithmetic averaging operator:

PFDMM(1/n,1/n,···,1/n)(α1, α2, · · ·, αn) =

⎛⎝√1−
n

∏
i=1

(1− μ2
Pi
)

1
n ,

(
n

∏
i=1

νPi

) 1
n
⎞⎠. (22)
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4.2. The PFDWMM Operator

Definition 10. Let Q = (q1, q2, · · ·, qn) ∈ Rn is parameter vector, αi = (μPi , νPi ), (i = 1, 2, · · ·, n) be a
collection of PFNs, and w = (w1, w2, · · ·, wn)

T be the weighted vector of αi, where wi indicates the importance

degree of αi, satisfying wi ∈ [0, 1] and
n
∑

i=1
wi = 1, If

PFDWMMQ(α1, α2, · · ·, αn) =
1

n
∑

j=1
qj

(
∏

θ∈Sn

n

∑
j=1

(qjα
nwθ(j)
θ(j) )

) 1
n!

. (23)

then PFDWMMQ is called the PFDWMM operator.

Theorem 6. Let Q = (q1, q2, · · ·, qn) ∈ Rn be a parameter vector, αi = (μPi , νPi ), (i = 1, 2, · · ·, n) be a
collection of PFNs, and w = (w1, w2, · · ·, wn)

T be the weight vector of αi, where wi indicates the importance

degree of αi, satisfying wi ∈ [0, 1] and
n
∑

i=1
wi = 1. Then, the aggregated value by using the PFDWMM operator

is also a PFN, and

PFDWMMQ(α1, α2, · · ·, αn)

=

⎛⎜⎜⎜⎝
√√√√√√1−

⎛⎝1−
(

∏
θ∈Sn

(
1− n

∏
j=1

(1− μ
2nwθ(j)
θ(j) )

qj
)) 1

n!
⎞⎠

1
n
∑

j=1
qj

,

⎛⎜⎝
√√√√1−

(
∏

θ∈Sn

(
1− n

∏
j=1

(1− (1− v2
θ(j))

nwθ(j) )
qj

)) 1
n!

⎞⎟⎠
1

n
∑

j=1
qj

⎞⎟⎟⎟⎠.
(24)

Proof. According to operational law (4) in Definition 2, then α
nwθ(j)
θ(j) =

(
μ

nwθ(j)
θ(j) ,

√
1− (1− ν2

θ(j))
nwθ(j)

)
,

and we can replace μθ(j) and νθ(j) with μ
nwθ(j)
θ(j) and

√
1− (1− ν2

θ(j))
nwθ(j) , respectively, in Equation (16),

to obtain Equation (24). Since αθ(j) is a PFN, α
nwθ(j)
θ(j) is also a PFN. Similar to the proof of Theorem 5, we

know Equation (24) is also a PFN. �

In the following, we will discuss some desirable properties of the PFDWMM operator.

Property 9 (Monotonicicty). Let αi = (μPi , νPi ) and α̂i = (μ̂Pi , ν̂Pi ), (i = 1, 2, · · ·, n) be two collections of
PFNs. Through using the PFDWMM operator, if μPi ≥ μ̂Pi and νPi ≤ ν̂Pi , then

PFDWMMQ(α1, α2, · · ·, αn) ≥ PFDWMMQ(α̂1, α̂2, · · ·, α̂n).

The Proof of Property 9 is similar to that of Property 2, so is omitted here.

Property 10 (Boundedness). Let αi = (μPi , νPi ), (i = 1, 2, · · ·, n) be a collections of PFNs, α+ =

(max(μPi ), min(νPi )) and α− = (min(μPi ), max(νPi )), then

α+ ≥ PFDWMMQ(α1, α2, · · ·, αn) ≥ α−.

The Proof Property 10 is similar to that of Property 3, so is omitted here.

Theorem 7. The PFDMM operator is a special case of the PFDWMM operator.
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Proof. When w = (1/n, 1/n, · · ·, 1/n)T ,

PFDWMMQ(α1, α2, · · ·, αn)

=

⎛⎜⎜⎜⎝
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�

Theorem 8. The Pythagorean fuzzy weighted geometric averaging operator [6] is a special case of the
PFDWMM operator.

Proof. When Q = (1, 0, · · ·, 0),

PFDWMM(1,0,··· ,0)(α1, α2, · · ·, αn)

=

⎛⎜⎜⎜⎝
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�

5. New Approach to MCGDM with Pythagorean Fuzzy Information

In this section, we propose a new MCGDM method under the Pythagorean fuzzy environment
based on the PFWMM operator or PFDWMM operator. A typical MCGDM problem with Pythagorean
fuzzy information can be described as follows. Let A = {A1, A2, · · ·, Am} be a discrete set
of alternatives, and C = {C1, C2, · · ·, Cn} be a finite set of criteria with the weight vector is

w = {w1, w2, · · ·, wn}, satisfying wj ∈ [0, 1] (j = 1, 2, · · ·, n) and
n
∑

j=1
wj = 1. Assume that

E =
{

E1, E2, · · ·, Ep
}

be a finite set of experts with the weight vector is η =
{

η1, η2, · · ·, ηp
}

, satisfying

ηk ∈ [0, 1](k = 1, 2, · · ·, p) and
p
∑

k=1
ηk = 1. The evaluation information of alternative Ai(i = 1, 2, · · ·, m)

with respect to criteria Cj(j = 1, 2, · · ·, n) provided by the expert Ek(k = 1, 2, · · ·, p) can be denoted as
αk

ij = (μk
Pij

, νk
Pij
), where αk

ij is a PFN. Therefore, the Pythagorean fuzzy evaluation matrix Rk = (αk
ij)m×n

provided by the expert Ek is obtained.
In what follows, a novel approach based on the PFWMM operator or PFDWMM operator is

proposed to solve the MCGDM problem with Pythagorean fuzzy information, and the detailed steps
are depicted as follows.

Step 1: Generally, there are two types of criteria, i.e., benefit criterion and cost criterion. Therefore,
the Pythagorean fuzzy evaluation matrix should be normalized by

αk
ij =

{
(μk

Pij
, νk

Pij
), for benefit criterion.

(νk
Pij

, μk
Pij
), for cos t criterion.
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Step 2: Construct the group decision matrix R = (αij)m×n by applying the PFWMM operator or
PFDWMM operators to aggregate all individual evaluation matrix Rk.

αij = PFWMM(α1
ij, α2

ij, · · ·, α
p
ij),αij = PFDWMM(α1

ij, α2
ij, · · ·, α

p
ij).

Step 3: Calculate the comprehensive evaluation value αi by using the PFWMM or PFDWMM
operators to aggregate all the performance values of alternative with regard to each criterion.

αi = PFWMM(αi1, αi2, · · ·, αin),αi = PFDWMM(αi1, αi2, · · ·, αin).

Step 4: Determine the priority of alternatives according to the score value S(αi).

6. An Example

To validate the effectiveness and feasibility of the proposed method, we adopt a numerical
example that is about the selection decision of enterprise resource planning (ERP) system. An enterprise
wants to select a suitable ERP system to improve the competitive capability of the company.
In order to make a scientific decision, three experts are selected to form the expert team, denoted
as E = {E1, E2, E3}, where E1 is a CIO, E2 and E3 are two senior representatives from the user
department. Suppose that the importance of experts is equal, namely, η = (1/3, 1/3, 1/3)T . Through
analyzing the ERP system, the expert team determines the assessment criteria including function and
technology (C1), strategic fitness (C2), vendor ability (C3), and vendor reputation (C4). According
to the existing experience and knowledge, the weight vector of the criteria is assigned by experts
as w = (0.2, 0.1, 0.3, 0.4)T . Five potential ERP systems A = {A1, A2, A3, A4, A5} are chosen by
the expert team as candidates. Subsequently, the experts adopt PFNs to provide the assessment
information of the alternatives with regard to each criterion. The Pythagorean fuzzy decision matrices
are provided by three experts, shown in Tables 1–3, respectively. In what follows, we apply the
proposed method to obtain the best ERP system for the enterprise.

Table 1. The Pythagorean fuzzy decision matrix provided by the E1.

Alternatives C1 C2 C3 C4

A1 (0.4, 0.8) (0.8, 0.6) (0.6, 0.7) (0.3, 0.8)
A2 (0.7, 0.5) (0.8, 0.4) (0.8, 0.5) (0.3, 0.6)
A3 (0.3, 0.4) (0.3, 0.7) (0.7, 0.4) (0.6, 0.4)
A4 (0.6, 0.6) (0.7, 0.5) (0.7, 0.2) (0.4, 0.6)
A5 (0.5, 0.7) (0.6, 0.4) (0.9, 0.3) (0.6, 0.7)

Table 2. The Pythagorean fuzzy decision matrix provided by the E2.

Alternatives C1 C2 C3 C4

A1 (0.3, 0.9) (0.7, 0.6) (0.5, 0.8) (0.3, 0.6)
A2 (0.7, 0.4) (0.9, 0.2) (0.8, 0.1) (0.3, 0.5)
A3 (0.3, 0.6) (0.7, 0.7) (0.7, 0.6) (0.4, 0.4)
A4 (0.4, 0.8) (0.7, 0.5) (0.6, 0.2) (0.4, 0.7)
A5 (0.2, 0.7) (0.8, 0.2) (0.8, 0.4) (0.6, 0.6)

Table 3. The Pythagorean fuzzy decision matrix provided by the E3.

Alternatives C1 C2 C3 C4

A1 (0.6, 0.8) (0.7, 0.6) (0.5, 0.8) (0.5, 0.5)
A2 (0.6, 0.5) (0.9, 0.2) (0.8, 0.1) (0.3, 0.5)
A3 (0.4, 0.7) (0.7, 0.5) (0.6, 0.1) (0.2, 0.9)
A4 (0.2, 0.9) (0.5, 0.6) (0.6, 0.2) (0.1, 0.6)
A5 (0.1, 0.6) (0.8, 0.2) (0.9, 0.2) (0.6, 0.5)
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6.1. Implementation of the Proposed Method

To obtain the best ERP system, the computation steps are shown in the following:
Step 1: The criterion value of the ERP system does not require normalization because all the

criteria are benefit type.
Step 2: Based on the individual evaluation matrix Rk(k = 1, 2, 3), we employ the PFWMM

operator or PFDWMM operator (Suppose Q = (1, 1, 1)) to obtain the group decision matrix R, and the
results are shown in Tables 4 and 5, respectively.

Table 4. The collective decision matrix obtained by the PFWMM operator.

Alternatives C1 C2 C3 C4

A1 (0.4160, 0.8421) (0.7319, 0.6000) (0.5313, 0.7718) (0.3557, 0.6656)
A2 (0.6649, 0.4702) (0.8653, 0.2860) (0.8000, 0.3123) (0.3000, 0.5372)
A3 (0.3302, 0.5919) (0.5278, 0.6481) (0.6649, 0.4354) (0.3634, 0.6987)
A4 (0.3634, 0.8047) (0.6257, 0.5372) (0.6316, 0.2000) (0.2520, 0.6377)
A5 (0.2154, 0.6707) (0.7268, 0.2860) (0.8653, 0.3131) (0.6000, 0.6119)

Table 5. The collective decision matrix obtained by the PFDWMM operator.

Alternatives C1 C2 C3 C4

A1 (0.4605, 0.8320) (0.7389, 0.6000) (0.5372, 0.7652) (0.3832, 0.6214)
A2 (0.6707, 0.4642) (0.8746, 0.2520) (0.8000, 0.1710) (0.3000, 0.5313)
A3 (0.3376, 0.5518) (0.6176, 0.6257) (0.6707, 0.2884) (0.4448, 0.5241)
A4 (0.4448, 0.7560) (0.6481, 0.5313) (0.6377, 0.2000) (0.3357, 0.6316)
A5 (0.3267, 0.6649) (0.7509, 0.2520) (0.8746, 0.2884) (0.6000, 0.5944)

Step 3: With the aid of the PFWMM operator or PFDWMM operator (suppose Q = (1, 1, 1, 1)),
the comprehensive evaluation value αi of the ERP system can be obtained. The calculated results are
shown in Table 6.

Table 6. The comprehensive evaluation value by PFWMM and PFDWMM operators.

Operator A1 A2 A3 A4 A5

PFWMM (0.4700, 0.7707) (0.5948, 0.4751) (0.4150, 0.6672) (0.5015, 0.5599) (0.4269, 0.6635)
PFDWMM (0.6483, 0.6583) (0.7915, 0.3001) (0.6264, 0.4482) (0.7478, 0.3847) (0.6142, 0.4285)

Step 4: Calculate the scores of the comprehensive evaluation value αi of each ERP system
(results shown in Table 7). The ranking of the ERP systems can be obtained according to the scores in
descending order. The obtained rankings are shown in Table 7.

Table 7. The score values and the ranking results of five alternatives by two operators.

Operator S(α1) S(α2) S(α3) S(α4) S(α5) Ranking Order

PFWMM 0.3135 0.5640 0.3710 0.3568 0.4690 A2 � A5 � A3 � A4 � A1
PFDWMM 0.4935 0.7682 0.5968 0.5957 0.7056 A2 � A5 � A3 � A4 � A1

Based on the ranking results in Table 7, we know that the ranking order obtained by the PFWMM
operator and PFDWMM operator are the same, and the best ERP system is A2.

To further demonstrate the effectiveness and applicability of the presented approach, we employ
the proposed method to solve two practical MCDM problems concerned with the investment decision
respecting Internet stocks [11] and investment decision respecting R&D projects [11]. This paper
refers to individual decision-making, while these two investment decision problems are group
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decision-making problems. Hence, the implementation of the presented approach is performed
based on the comprehensive evaluation matrix that is obtained by employing the PFWA operator to
aggregate the individual evaluation matrix.

The investment decision problem of Internet stocks involves four Internet stocks (A1, A2, A3, A4)
and three benefit criteria (C1, C2, C3), and the weight vector of the criterion is w = (0.5, 0.2, 0.3).
The comprehensive evaluation matrix of Internet stocks with respect to each criterion is shown in
Table 8. The obtained results and ranking orders are shown in Table 9. From Table 9, we can see that
the ranking order obtained by the proposed method and algorithm 1 is totally identical. The best and
worst Internet stocks are A1 and A4, respectively.

Table 8. The collective evaluation matrix of Internet stocks regarding each criterion [11].

Alternatives C1 C2 C3

A1 (0.77, 0.19) (0.88, 0.18) (0.77, 0.17)
A2 (0.61, 0.67) (0.51, 0.56) (0.67, 0.18)
A3 (0.68, 0.27) (0.70, 0.51) (0.67, 0.48)
A4 (0.66, 0.62) (0.56, 0.67) (0.56, 0.36)

weight 0.5 0.2 0.3

Table 9. The score values and ranking results of four Internet stocks.

Operator S(A1) S(A2) S(A3) S(A4) Ranking Order

Algorithm 1 [11] 0.5944 0.1183 0.3195 0.0807 A1 � A3 � A2 � A4
PFWMM 0.7818 0.5098 0.5865 0.4737 A1 � A3 � A2 � A4

PFDWMM 0.8313 0.6223 0.6741 0.5614 A1 � A3 � A2 � A4

The investment decision problem of the R&D project includes three potential R&D projects
(A1, A2, A3) and five benefit criteria (C1, C2, C3, C4, C5); the weight vector of the criterion is
w = (0.2, 0.1, 0.3, 0.15, 0.25). The comprehensive evaluation matrix of R&D projects based on each
criterion is shown in Table 10, and the ranking index and ranking results of three R&D projects are
presented in Table 11. From Table 11, we know that the ranking order of R&D projects obtained in the
developed approach is the same as that determined by algorithm 2. The preferred R&D project is A1,
and the worst one is A3.

Table 10. The collective evaluation matrix of R&D project regarding each criterion [11].

Alternatives C1 C2 C3 C4 C5

A1 (0.77, 0.21) (0.71, 0.18) (0.77, 0.17) (0.75, 0.10) (0.76, 0.20)
A2 (0.59, 0.64) (0.53, 0.46) (0.67, 0.29) (0.45, 0.65) (0.80, 0.24)
A3 (0.68, 0.34) (0.68, 0.51) (0.67, 0.51) (0.80, 0.45) (0.45, 0.77)

weight 0.2 0.1 0.3 0.15 0.25

Table 11. The ranking index and ranking results of three R&D projects.

Operator S(A1) S(A2) S(A3) Ranking Order

Algorithm 2 [11] 0.9083 −1.1927 −2.2731 A1 � A2 � A3
PFWMM 0.7331 0.5008 0.5279 A1 � A2 � A3

PFDWMM 0.5931 0.4230 0.3449 A1 � A2 � A3

Based on the above analysis on two investment decision problems, we can conclude that the
method presented in this paper is effective and feasible.
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6.2. Sensitivity Analysis

To illustrate the influence of different values of parameter vector Q, we change the values of
parameter vector Q in our proposed method to rank the alternatives. The results are shown in Table 12.

Table 12. Ranking order of alternatives determined by different parameter vector Q.

Parameter Vector Q Ranking Order by PFWMM Ranking Order by PFDWMM

Q = (3, 0, 0, 0) A5 � A2 � A4 � A3 � A1 A5 � A3 � A2 � A4 � A1
Q = (2, 0, 0, 0) A5 � A2 � A4 � A3 � A1 A5 � A2 � A3 � A4 � A1
Q = (1, 0, 0, 0) A2 � A5 � A4 � A3 � A1 A2 � A5 � A3 � A4 � A1
Q = (1, 1, 0, 0) A2 � A5 � A3 � A4 � A1 A2 � A5 � A3 � A4 � A1
Q = (1, 1, 1, 0) A2 � A5 � A3 � A4 � A1 A2 � A5 � A3 � A4 � A1
Q = (1, 1, 1, 1) A2 � A5 � A3 � A4 � A1 A2 � A5 � A3 � A4 � A1

Q = (0.25, 0.25, 0.25, 0.25) A2 � A5 � A3 � A4 � A1 A2 � A5 � A3 � A4 � A1

From Table 12, we know the ERP systems obtained with different parameter vectors Q are slightly
different. The main reason is that the PFWMM operator highlights the impact of overall arguments, but
the PFDWMM operator emphasizes the role of individual arguments. When Q = (1, 0, 0, 0), it is worth
noting that the PFWMM operator and PFDWMM operator will reduce to Pythagorean fuzzy weighted
averaging operator and Pythagorean fuzzy weighted geometric operator, respectively. In addition,
from Figures 1 and 2 we can make the following conclusions. For the PFWMM operator, when the
parameter vector Q has only one real number and the rest are 0, we discover that the larger the real
number of parameter vector Q, the greater the value of the score function will become. The more
interdependent relationships of criteria we consider, the smaller the score function will become.
Nevertheless, for the PFDWMM operator, the conclusion is just the opposite: that is, the greater
the real number of parameter vector Q, the smaller the value of the score function will become.
The more relationships between attributes we consider, the larger the value of the score function will
become. Therefore, the experts can select different values of parameter vector Q based on different
risk preferences.

 

Figure 1. Scores of alternatives for different parameter vector Q.
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Figure 2. Scores of alternatives for interrelationship of different arguments.

6.3. Comparative Analysis

In order to further verify the validity and illustrate the advantage of the proposed approach, we
compare our developed method with other existing MCGDM methods including the Pythagorean
fuzzy weighted averaging (PFWA) operator and Pythagorean fuzzy weighted geometric (PFWG)
operator [6], the symmetric Pythagorean fuzzy weighted averaging (SPFWA) operator and symmetric
Pythagorean fuzzy weighted geometric (SPFWG) operator [6], the Pythagorean fuzzy weighted
geometric Bonferroni mean (PFWGBM) operator [14], and the Pythagorean fuzzy weighted Maclaurin
symmetric mean (PFWMSM) operator [25]. The ranking results are shown in Table 13.

Table 13. Ranking order of alternatives obtained by different methods.

Operator Parameter Ranking Order

PFWA No A2 � A5 � A3 � A4 � A1
PFWG No A2 � A5 � A4 � A3 � A1
SPFWA No A2 � A5 � A3 � A4 � A1
SPFWG No A2 � A5 � A3 � A4 � A1

PFWGBM p = q = 1 A2 � A5 � A3 � A4 � A1
PFWMSM k = 2 A2 � A5 � A3 � A4 � A1
PFWMM Q = (1, 1, 1, 1) A2 � A5 � A3 � A4 � A1

PFDWMM Q = (1, 1, 1, 1) A2 � A5 � A3 � A4 � A1

As we can see from Table 13, the ranking order of the ERP systems by the PFWG operator
is slightly different with the other methods, but the best and worst ERP systems are A2 and A1,
respectively. This verifies that the PFWMM and PFDWMM operators we developed are reasonable
and valid for MCGDM problems with Pythagorean fuzzy information.

In what follows, the comparisons of proposed approaches and the other methods with regard
to some characteristics are shown in Table 14. In light of Table 14, some conclusions are summarized
as follows:

(1) The two methods developed by Ma and Xu [6] aggregate fuzzy information easily.
The drawbacks of Ma and Xu’s method are they assume that the input arguments are
not correlated, that is, they fail to consider the relationships between the input arguments.
Nevertheless, our developed operators can capture the correlations among all the input arguments,
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and fuse fuzzy information more flexibly by the parameter vector. Furthermore, the PFWA and PFWG
operators are a special case of PFWMM and PFDWMM operators, respectively, when the parameter
vector Q = (1, 0, 0, 0). Therefore, our developed approaches are more general and flexible comparing
with that proposed by Ma and Xu.

(2) The primary advantage of our proposed operators is that they can capture the relationships
between the multi-input arguments, while the method proposed by Liang et al. [14] can only deal with
a correlation between any two input arguments. In reality, interdependent relationships may exist
between more than two input arguments. Apparently, the PFWGBM operator is unable to handle this
situation because it only captures the relationship between any two arguments. Furthermore, we also
find that the PFDMM operator can transform into the PFGBM operator when the parameter vector
is set to Q = (1, 1, 0, · · ·, 0). Therefore, our approach can overcome the weakness of the PFWGBM
operator because our operators can deal with any number of input arguments being interdependent.

(3) Compared with our developed operators, although the PFWMSM operator can also deal with
relationships between multi-input arguments, our methods can provide a more flexible information
aggregation process through setting different parameter vector Q. Similarly, we can obtain the PFMSM
operator when the parameter vector is set to Q = (1, 1, · · ·, 1︸ ︷︷ ︸

k

, 0, 0, · · ·, 0︸ ︷︷ ︸
n−k

). Thus, our developed operators

are more general.
In short, based on the above comparisons and discussion, we can conclude that there are

advantages to the PFWMM operator and PFDWMM operator compared with the existing other
operators, including (a) they can capture the relationships between the multi-input arguments;
and (b) they are more robust and it is more convenient to fuse the Pythagorean fuzzy information by
the parameter vector Q.

Table 14. A comparison of the different approaches.

Approaches
Captures Correlation of

Two Criteria
Captures Correlation of

Multiple Criteria
Makes Method Flexible
by the Parameter Vector

PFWA No No No
PFWG No No No
SPFWA No No No
SPFWG No No No

PFWGBM Yes No No
PFWMSM Yes Yes No
PFWMM Yes Yes Yes

PFDWMM Yes Yes Yes

7. Conclusions

In recent years, a number of researchers have developed aggregation operators under various
fuzzy environments and applied these to solve different decision-making problems. However, these
aggregation operators have some drawbacks in actual applications, such as being unable to reflect
the correlation of all input arguments. The MM operator has an apparent advantage in that it can
deal with the relationships between all the input arguments according to the parameter vector Q.
Motivated by the ideal characteristic of the MM operator, in this paper we extended the MM operator
into the Pythagorean fuzzy environment to deal with MCGDM problems with relationships between
any number of arguments. We proposed some aggregation operators, including the PFMM operator,
PFWMM operator, PFDMM operator, and PFDWMM operator. Then, some desirable properties and
special cases of the proposed operators were investigated and discussed in detail. In addition, we have
used the PFWMM and PFDWMM operators to present two methods to solve MCGDM problems with
PFNs. Finally, we gave an example to demonstrate the effectiveness and feasibility of the presented
methods through comparing with other existing approaches.
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In future research, it is necessary to verify the validity of the proposed methods by solving other
MCGDM problems such as supplier selection, risk assessment, and environment evaluation. Moreover,
based on the prominent characteristics of the MM operator, we shall extend the MM operator into
other fuzzy contexts such as the interval-valued 2-tuple linguistic environment, the interval-valued
Pythagorean fuzzy environment, and the triangle intuitionistic fuzzy context.
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PFDWMM Pythagorean fuzzy dual weighted Muirhead mean
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PFWG Pythagorean fuzzy weighted geometric
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PFWMM Pythagorean fuzzy weighted Muirhead mean
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SPFWA Symmetric Pythagorean fuzzy weighted averaging
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Abstract: Aiming at a special type of ill-defined complicate multiple attributes group decision-making
(MAGDM) problem, which exhibits hybrid complexity features of decision hesitancy, prioritized
evaluative attributes, and unknown decision-makers’ weights, we investigate an effective approach
in this paper. To accommodate decision hesitancy, we employ a compound expression tool of
interval-valued dual hesitant fuzzy unbalanced linguistic set (IVDHFUBLS) to help decision-makers
elicit their assessments more comprehensively and completely. To exploit prioritization relations
among evaluating attributes, we develop a prioritized weighted aggregation operator for
IVDHFUBLS-based decision-making scenarios and then analyze its properties and special cases.
To objectively derive unknown decision-makers’ weighting vector, we next develop a hybrid model
that simultaneously takes into account the overall accuracy measure of the individual decision matrix
and maximizing deviation among all decision matrices. Furthermore, on the strength of the above
methods, we construct an MAGDM approach and demonstrate its practicality and effectiveness using
applied study on a green supplier selection problem.

Keywords: multiple attributes decision-making; group decision-making; unbalanced linguistic set;
prioritized average operator; maximizing deviation model

1. Introduction

After decades of extension and exploitation research [1], multiple attributes decision-making
(MADM) approaches have been widely applied to many practical problems in social and technical
systems, such as supply chain management [2–5], business intelligence evaluation [6,7], emergency
management [8–10], teaching evaluation [11], product design evaluation [12], energy management [13],
and waste management [14], among others. Due to increasing complexity in socioeconomic scenarios,
and limitedness and uncertainty in human cognition, a single decision-maker is quite often incompetent
when confronted with complicated decision-making scenarios. Therefore, multiple attributes group
decision-making (MAGDM) methodologies have been developed and deeply studied regarding
the strength of fuzzy tools for preferences expression [15–23], such as fuzzy sets [24], intuitionistic
fuzzy sets [25,26], hesitant fuzzy sets (HFS) [27,28], dual-hesitant fuzzy sets (DHFS) [29–32],
etc. Especially, HFS and DHFS are capable of addressing the common phenomena of decision
hesitancy, that is, decision-makers are often irresolute about possible membership degrees to a fuzzy
set [27,28]; comparatively, DHFS manages to reflect decision hesitancy more completely than HFS by
accommodating both membership degrees and non-membership degrees when depicting decision
hesitancy [29].
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Regarding ill-structured decision-making problems with higher complexity that cannot be
quantified by the above-mentioned fuzzy tools, effective MAGDM approaches have also been put
forward by employing the linguistic term set [33] to qualitatively express decision-makers’ opinions
directly [34,35]. However, decision-makers quite often approximate the most-preferred linguistic label
in a certain linguistic term set but still hesitate about possible membership degrees or non-membership
degrees with regard to that linguistic label [36]. Consequently, by fusing the merits of both the linguistic
term set and the hesitant fuzzy set, more effective and comprehensive expression tools have been
further introduced and exploited to construct multiple attributes decision-making approaches, such as
hesitant fuzzy linguistic set [37,38], interval-valued hesitant fuzzy linguistic set [36,39], dual-hesitant
fuzzy linguistic set [40], interval-valued dual hesitant fuzzy linguistic set [41], etc. As can be seen,
nearly all the above approaches drew on the presumption that linguistic labels must be distributed in
a symmetrical and balanced manner [34,35]. However, practical investigations [42,43] have indicated
that decision-makers preferred non-uniform or asymmetric linguistic term sets, i.e., the unbalanced
linguistic term set (ULTS) [44], to express their complicate assessments more precisely and objectively.
Most recent studies [45,46] also verified that ULTS attains better adaptability and flexibility. So,
coherently, to tackle complex decision-making more effectively under ill-structured scenarios with
decision hesitancy, there are actual needs to develop hybrid hesitant fuzzy linguistic expression tools
that are capable of inheriting advantages of both ULTS and hesitant fuzzy sets. However, thus far,
to the best of our knowledge, only Qi et al. [47] developed the interval-valued dual hesitant fuzzy
unbalanced linguistic set (IVDHFUBLS) and its power aggregation operators. Although IVDHFUBLS
manages to be more effective and flexible in depicting complicated assessments with interval values
for both membership degrees and non-membership degrees to a designated unbalanced linguistic
label, their MAGDM approaches were only developed to cope with the special type of decision-making
problems with mutually supportive assessments in decision matrices. Obviously, it is still substantively
necessary to investigate various hesitant fuzzy unbalanced linguistic expression tools and exploit their
derivative multiple attributes decision-making approaches to resolve practical complex problems.

In fact, in determination of appropriate weights for attributes in MAGDM, decision-makers are
generally required to reciprocally compare evaluating attributes so that AHP-like method can be used
to derive attributes weights [48]. However, quite often, due to limited expertise on ill-structured
problems, decision-makers need many iterations to achieve acceptable consistency or are even
unwilling to fulfill the reciprocal comparisons, while on the contrary, for difficulties of high uncertainty,
Delphi-like analytical processes provide decision-makers with ways of utilizing collective knowledge
to approximate fairly accurate prioritization relations among evaluating attributes [49,50]. For instance,
considering four indicators to select emergency response plans for chemical spills events: response
efficiency (A1), environmental impact (A2), social impact (A3) and cost (A4). If the event location
L1 was in districts with scarce any residence but freeways, decision-makers would naturally deduce
the prioritization relation among the indicators as A1 � A4 � A3 � A2, while if L1 was nearby
a residence district, decision-makers would derive different prioritization as A1 � A3 � A2 �
A4. In viewing of the common existence of prioritization relations among assessing attributes in
multiple attributes decision-making, ref. [49,51] introduced the prioritized average (PA) operator
and the prioritized ordered weighted average (POWA) operator, which provide effective ways with
which to consider decision information from both assessments under attributes and prioritization
relation among the attributes. Since then, prioritized operators have been extended to complicated
decision environments of high uncertainty, such as prioritized operators for decision-making under
intuitionistic fuzzy environments [52–55], multi-granular uncertain linguistic environments [56],
hesitant fuzzy environments [50], dual hesitant fuzzy environments [57], and hesitant fuzzy linguistic
environments [58]. Nevertheless, there is still a lack of investigation on prioritized operators in hesitant
fuzzy unbalanced linguistic environments. Therefore, aiming at resolving these types of practical
multiple attributes decision-making problems with prioritization relation among evaluating attributes,
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on the basis of IVDHFUBLS [47], we focus on studying prioritized average operators for IVDHFUBLS
and corresponding effective MAGDM approaches.

To do so, in this paper, we first propose a fundamental prioritized aggregation operator for fusing
preferences in the form of IVDHFUBLS and simultaneously considering prioritization relation among
evaluative attributes, i.e., the interval-valued dual hesitant fuzzy unbalanced linguistic prioritized
weighted aggregation (IVDHFUBLPWA) operator. We then investigate its desirable properties and
discuss its special cases. Further, to objectively determine decision-makers’ weights, which cannot be
obtained up-front in complex problem scenarios, we develop a hybrid model that takes into account
overall accuracy measure of the individual decision matrix and the maximizing deviation among all
decision matrices. Subsequently, on the strength of the above-developed aggregation operator and
decision-makers’ weighting model, an effective approach is constructed to tackle practical MAGDM
problems that take features of decision-makers’ decision hesitancy, prioritization relationships among
evaluative attributes, and unknown decision-makers’ weights.

The remainder of this paper unfolds as follows. Section 2 presents a literature review to discuss the
limitations of existing approaches, thereby showing the motivation of this paper. In Section 3, necessary
preliminaries for the interval-valued dual hesitant fuzzy unbalanced linguistic set (IVDHFUBLS)
are detailed. In Section 4, we firstly define the interval-valued dual hesitant fuzzy unbalanced
linguistic prioritized weighted aggregation (IVDHFUBLPWA) operator and discuss its properties,
as well as special cases; next, the hybrid model is developed for determining unknown weights for
decision-makers; then, an effective MAGDM approach based on the above methods is constructed
in detail. In Section 5, an illustrative example of the green supplier selection problem is given to
demonstrate the effectiveness and practicality of our proposed approach. Finally, conclusions and
future research directions are given in Section 6.

2. Literature Review on Hesitant Fuzzy Linguistic MADM Approaches

With support of fuzzy set and its extensions, classic MADM methodologies have been successfully
extended and enhanced to accommodate complicated decision-making environments in which
decision-makers have imprecise, uncertain, or vague assessments [15], while for those decision
scenarios of ill-structured definition, fuzzy expression tools cannot directly apply. Zadeh [59] thus
suggested employing linguistic variables to facilitate expression of judgments. However, no matter
whether assigning membership degrees to given fuzzy set or utilizing linguistic labels to depict
decision-makers’ complicate judgments, there is a common phenomenon that decision-makers quite
often hesitate among possible values [27,28]. Torra and Narukawa [27] and Torra [28] thus use hesitant
fuzzy set (HFS) to describe the decision hesitancy. In viewing of same importance of membership
degrees and non-membership degrees in depicturing decision hesitancy, Zhu et al. [29] further extended
HFS to dual hesitant fuzzy set (DHFS).

Regarding linguistic decision-making scenarios, Rodríguez et al. [60] introduced the hesitant fuzzy
linguistic term sets (HFLTSs) to allow decision-makers to directly express their uncertain opinions
with possible linguistic labels, based on which the authors then developed a group decision-making
model through comparative linguistic expressions [61]. Using HFLTSs, Beg and Rashid [62] endowed
conventional TOPSIS with the ability to deal with decision hesitancy. From another perspective,
when using linguistic variables to denote their judgments, decision-makers commonly are capable of
efficiently determining the most approximate linguistic term while having decision hesitancy with
regard to the one selected. Therefore, Lin et al. [37] proposed the effective compound expression tool of
hesitant fuzzy linguistic set (HFLS) that employs hesitant fuzzy set to describe decision hesitancy with
regard to the selected linguistic label. Wang et al. [36] then introduced the interval-valued hesitant
fuzzy linguistic set (IVHFLS) to help decision-makers express their decision hesitancy with possible
interval values, on the basis of which they developed a single-person MADM approach. Be aware
that above hybrid linguistic expression tools only took into account possible membership degrees
but neglected same importance of non-membership degrees; Yang and Ju [40] introduced the dual
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hesitant fuzzy linguistic set (DHFLS) by incorporating both possible membership degrees and possible
non-membership degrees. However, in Yang and Ju [40], they also yet investigated a single-person
MADM approach. Qi et al. [41] took a step further to study the interval-valued dual hesitant fuzzy
linguistic set (IVDHFLS) and constructed a multiple attributes group decision-making approach based
on a family of generalized power aggregation operators. Recently, researchers have started to extend
classic MADM methodologies by utilizing the above compound hesitant fuzzy linguistic tools; for
example, Wang et al. [63] developed a MADM approach based on TOPSIS and TODIM methods in
which attribute values take the form of hesitant fuzzy linguistic numbers. As can be seen, recent
studies have verified effectiveness of the compound hesitant fuzzy linguistic expression tools at
eliciting complicate uncertain assessments under ill-structured decision situations.

Unfortunately, all the formerly discussed hesitant fuzzy linguistic decision-making models
presumed that linguistic labels must be distributed in a symmetrical and balanced manner [34,35].
However, Herrera-Viedma and López-Herrera [42] revealed from their studies on information retrieval
system that users (decision-makers) preferred more labels on the right side of a non-uniform or
asymmetric linguistic scale, which further was verified by the experiments of olive sensory evaluation
in Martínez et al. [43]. Herrera et al. [44] thus defined this special type of linguistic variable as the
unbalanced linguistic term set (ULTS) and studied its operations. To a deeper extent, Meng and Pei [45]
developed some weighted, unbalanced linguistic aggregation operators and applied them to a multiple
attributes group decision-making problem; Dong, et al. [46] investigated group decision-making
based on unbalanced linguistic preference relations and proposed a consistency reaching method.
Generally speaking, ULTS attains better adaptability and flexibility than strictly symmetrical or
balanced linguistic term set. However, till now, regarding MADM based on compound hesitant fuzzy
linguistic expressions, only Qi et al. [47] introduced the expression tool of interval-valued dual hesitant
fuzzy unbalanced linguistic set (IVDHFUBLS) and investigated its power aggregation operators.
Despite merits of ULTS into IVDHFUBLS, the group decision-making approach in Qi et al. [47] only
applies to decision scenarios with mutually supportive assessments in decision matrices; nevertheless,
the weighting methods for both attributes and decision-makers were derived from and specific to
the mutually supportive relations. For more clarity, representative hesitant fuzzy linguistic MADM
methods from above discussion and their properties have been compared in Table 1.

Table 1. Representative hesitant fuzzy linguistic MADM methods and their properties.

Authors

Methodology Properties

Linguistic Variable Description of Hesitancy Prioritized
Attributes

Unknown
Decision-Makers’ Weights

Balanced Unbalanced
Hesitant

Fuzzy Set
Dual Hesitant

Fuzzy Set

Lin, et al. [37]
√ × √ × × Single-person MADM

Wang, et al. [36]
√ × √ × √

Single-person MADM
Yang and Ju [40]

√ × × √ √
Single-person MADM

Qi, et al. [41]
√ × × √ × √

Wang, et al. [63]
√ × √ × × ×

Qi, et al. [47]
√ √ √ √ × Power aggregation-based

method

This paper
√ √ √ √ √ Deviation-maximizing

method

Furthermore, to determine unknown attributes’ weights in complex decision problems, analytical
hierarchy process (AHP) generally exhibits an effective way with which to obtain relative importance
among attributes [64]. However, AHP method requires precisely consistent judgments for reciprocal
comparisons to proceed, which quite often cannot be guaranteed for complex problems and thus
result in multiple rounds of adjustments or even failure in decision-making, that is, lack of efficiency
to some extent, while, in fact, decision-makers are generally capable of obtaining rather accurate
prioritization relations among evaluative attributes thanks to their group intelligence and expertise [49].
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For example, suppose we choose the following eight attributes to evaluate alterative response solutions
to specific emergency event: response time to start emergency response solution (C1) [9,48], reasonable
organizational structure and clear awareness of responsibilities (C2) [9,48], economic cost (C3) [65],
operability of the response solution (C4) [9,66], monitoring and forecasting potential hazards (C5) [9,48],
reconstruction ability (C6) [9,48], social impact (C7) [67], and environmental impact (C8) [68,69].
Additionally, features of the target emergency event have already been identified as follows: (i) Located
on an intersection of two highways in a sandstorm desert area where no residences are nearby; (ii)
Truck drivers were injured; (iii) A large amount of highly corrosive fluid materials in both trucks
are leaking; (iv) Accident trucks destroyed a critical sand control dam. Then, decision-makers will
efficiently arrive at the prioritization relations among the eight evaluative attributes (C1) � (C4) �
(C2) � (C5) � (C6) � (C3) � (C7) � (C8). Apparently, there is a practical need to further investigate
IVDHFUBLS-based decision-making approaches that exploit the prioritization relations. Therefore,
based on the prioritized average (PA) operator [49], in the following, we firstly develop PA operator
for IVDHFUBLS to address prioritization relations among attributes. To gain more generality of
decision-makers’ weighting method rather than the problem-specific limitedness of the one devised in
Qi et al. [47], we then develop a deviation-maximizing method to objectively derive decision-makers’
weights. Finally, on the strength of these methods, we manage to construct a practical and effective
IVDHFUBLS-based multiple attributes group decision-making approach.

3. Preliminaries for IVDHFUBLS

By fusing the merits of both unbalanced linguistic term set [44] and interval-valued dual hesitant
fuzzy set (IVDHFS) [32], most recently, Qi et al. [47] introduced the effective hybrid expression
tool called interval-valued dual hesitant fuzzy unbalanced linguistic set (IVDHFUBLS), as shown in
following definition.

Definition 1 [47]. Let X be a fixed set and S be a finite and continuous linguistic label set; then,
an interval-valued dual hesitant fuzzy unbalanced linguistic set (IVDHFUBLS) SD on X is defined as

SD =
{〈

x, si, h̃(x), g̃(x)
〉
|x ∈ X

}
, (1)

in which si is an unbalanced linguistic variable from predefined unbalanced linguistic label set S, which represents
decision-makers’ judgments of an evaluated object x; h̃(x) = ∪

[μL ,μU ]∈h̃(x){μ̃} = ∪
[μL ,μU ]∈h̃(x)

{
[μL, μU ]

}
is a set of closed interval values in [0, 1], denoting possible membership degrees to which x belongs to si;
g̃(x) = ∪[νL ,νU ]∈g̃(x){ν̃}= ∪[νL ,νU ]∈g̃(x)

{
[νL, νU ]

}
is a set of closed interval values in [0, 1], denoting possible

non-membership degrees to which x belongs to si. In h̃(x) and g̃(x), μ̃, ν̃ ∈ [0, 1] and 0 ≤ (μU)
+
+ (νU)

+ ≤ 1,
in which (μU)

+ ∈ h̃+(x) = ∪
[μL ,μU ]∈h̃(x)max

{
μU} and (νU)

+ ∈ g̃+(x) =∪[νL ,νU ]∈g̃(x)max
{

νU} for
all x ∈ X.

Generally, sd =
(

si, h̃, g̃
)

is called an interval-valued dual hesitant fuzzy unbalanced linguistic
number (IVDHFUBLN) and IVDHFUBLNs are all elements of IVDHFUBLS.

Definition 2 [47]. Let sd =
(

sk, h̃, g̃
)

, sd1 =
(

si, h̃1, g̃1

)
, and sd2 =

(
sj, h̃2, g̃2

)
be any three IVDHFUBLNs,

λ ∈ [0, 1]; some operations on these IVDHFUBLNs are defined by

(1) λsd = ∪
(sk ,h̃,g̃)∈sd

(
s

λΔ−1
t0

(TF
tk
t0
(ψ(sk)))

,

∪
[μL ,μU ]∈h̃,[νL ,νU ]∈g̃

{{
[1− (1− μL)

λ, 1− (1− μU)
λ
]
}

,
{
[(νL)

λ, (νU)
λ
]
}})

;

(2) sdλ = ∪
(sk ,h̃,g̃)∈sd

(
s
(Δ−1

t0
(TF

tk
t0
(ψ(sk))))

λ ,

∪
[μL ,μU ]∈h̃,[νL ,νU ]∈g̃

{{
[(μL)

λ, (μU)
λ
]
}

,
{
[1− (1− νL)

λ, 1− (1− νU)
λ
]
}})

;
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(3) sd1 ⊕ sd2 = ∪
(si ,h̃1,g̃1)∈sd1,(sj ,h̃2,g̃2)∈sd2

(
s

Δ−1
t0

(TF
ti
t0
(ψ(si)))+Δ−1

t0
(TF

tj
t0
(ψ(sj)))

,

∪
[μL

1 ,μU
1 ]∈h̃1,[μL

2 ,μU
2 ]∈h̃2,[νL

1 ,νU
1 ]∈g̃1,[νL

2 ,νU
2 ]∈g̃2

{{
[μL

1 + μL
2 − μL

1 μL
2 , μU

1 + μU
2 − μU

1 μU
2 ]
}

,
{
[νL

1 νL
2 , νU

1 νU
2 ]
}})

;

(4) sd1 ⊗ sd2 = ∪
(si ,h̃1,g̃1)∈sd1,(sj ,h̃2,g̃2)∈sd2

(
s

Δ−1
t0

(TF
ti
t0
(ψ(si)))×Δ−1

t0
(TF

tj
t0
(ψ(sj)))

,

∪
[μL

1 ,μU
1 ]∈h̃1,[μL

2 ,μU
2 ]∈h̃2,[νL

1 ,νU
1 ]∈g̃1,[νL

2 ,νU
2 ]∈g̃2

{{
[μL

1 μL
2 , μU

1 μU
2 ]
}

,
{
[νL

1 + νL
2 − νL

1 νL
2 , νU

1 + νU
2 − νU

1 νU
2 ]
}})

.

In Definition 2, tk, ti, tj are the corresponding levels of unbalanced linguistic terms sk, si, sj in
the linguistic hierarchy (LH) [44], respectively; t0 is the maximum level of sk, si, sj in LH. Using the
transformation function defined in following Definition 3, any 2-tuple linguistic representation format
can be transformed into a term in LH.

Definition 3 [44]. In linguistic hierarchies LH = ∪tl(t, n(t)), whose linguistic term sets are represented
by Sn(t) =

{
sn(t)

0 , . . . , sn(t)
n(t)−1

}
, the transformation function from a linguistic label in level t to a label in

consecutive level t′ is defined as TFt
t′ : l(t, n(t))→ l(t′, n(t′)) , such that

TFt
t′
(

sn(t)
i , αn(t)

)
= Δt′

⎛⎝Δ−1
t

(
sn(t)

i , αn(t)
)
(n(t′)− 1)

n(t)− 1

⎞⎠. (2)

In order to compare any two IVDHFUBLNs, following Definition 4 introduces comparison
rules based on a score function and accuracy function. Taking a step further, Definition 5 defines a
fundamental distance measure to calculate separation degree between any two IVDHFUBLNs.

Definition 4 [47]. Let sd =
(

si, h̃, g̃
)

be an IVDHFUBLN, and then a score function S(sd) can be denoted as

S(sd) = Δ−1
t0

(
TFti

t0
(ψ(si))

)
× 1

2

⎛⎝ 1

l(h̃)
∑

[μL ,μU ]∈h̃

μL − 1
l(g̃) ∑

[νL ,νU ]∈g̃
νL +

1

l(h̃)
∑

[μL ,μU ]∈h̃

μU − 1
l(g̃) ∑

[νL ,νU ]∈g̃
νU

⎞⎠, (3)

and an accuracy function P(sd) can be denoted as

P(sd) = Δ−1
t0

(
TFti

t0
(ψ(si))

)
× 1

2

⎛⎝ 1

l(h̃)
∑

[μL ,μU ]∈h̃

μL +
1

l(g̃) ∑
[νL ,νU ]∈g̃

νL +
1

l(h̃)
∑

[μL ,μU ]∈h̃

μU +
1

l(g̃) ∑
[νL ,νU ]∈g̃

νU

⎞⎠. (4)

Here, l(h̃) and l(g̃) are numbers of interval values in h̃ and g̃, respectively, and ti is the
corresponding level of unbalanced linguistic term si in the LH; t0 is the maximum level of ti in
LH. Subsequently, given any two sd1 =

(
si, h̃1, g̃1

)
and sd2 =

(
sj, h̃2, g̃2

)
, based on S(sd) and P(sd),

we have following comparison rules:

(1) If S(sd1) < S(sd2), then sd1 < sd2.
(2) If S(sd1) = S(sd2), then

(a) If P(sd1) = P(sd2), then sd1 = sd2;
(b) If P(sd1) < P(sd2), then sd1 < sd2.

Definition 5 [47]. Let two IVDHFUBLNs sd1 =
(

si, h̃1, g̃1

)
and sd2 =

(
sj, h̃2, g̃2

)
, lh̃1

, lh̃2
, lg̃1

, and lg̃2

are the lengths of h̃1, h̃2, g̃1, and g̃2, respectively, which represent number of elements in the sets of h̃1, h̃2,

g̃1, and g̃2. Suppose I1 = 1
n(ti)−1 Δ−1

t0

(
TFti

t0
(ψ(si))

)
, I2 = 1

n(tj)−1 Δ−1
t0

(
TF

tj
t0
(ψ(sj))

)
, in whiche ti and tj are
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the corresponding levels of unbalanced linguistic terms si and sj in the linguistic hierarchy LH, and t0 is the
maximum level of si and sj in LH. Then, a distance measure d based on the normalized Euclidean distance can
be defined as follows:

Situation 1. When lh̃1
= lh̃2

= l1 and lg̃1
= lg̃2 = l2, then d(sd1, sd2) =

(
1
2

(
1
l1

l1

∑
k=1

(∣∣∣I1μ
Lj

h̃1
− I2μ

Lk
h̃2

∣∣∣2 + ∣∣∣I1μ
Uj

h̃1
− I2μ

Uk
h̃2

∣∣∣2)+
1
l2

l2

∑
k=1

(∣∣∣I1ν
Lj
g̃1
− I2ν

Lk
g̃2

∣∣∣2 + ∣∣∣I1ν
Uj
g̃1
− I2ν

Uk
g̃2

∣∣∣2)))
1
2

. (5)

Situation 2. When lh̃1
�= lh̃2

or lg̃1
�= lg̃2 , then d(sd1, sd2) =

⎛⎝ 1
2

⎛⎝ 1
lh̃1

lh̃2

lh̃1

∑
j=1

lh̃2

∑
k=1

(∣∣∣I1μ
Lj

h̃1
− I2μ

Lk
h̃2

∣∣∣2 + ∣∣∣I1μ
Uj

h̃1
− I2μ

Uk
h̃2

∣∣∣2) +
1

lg̃1
lg̃2

lg̃1

∑
j=1

lg̃2

∑
k=1

(∣∣∣I1ν
Lj
g̃1
− I2ν

Lk
g̃2

∣∣∣2 + ∣∣∣I1ν
Uj
g̃1
− I2ν

Uk
g̃2

∣∣∣2)
⎞⎠ 1

2

. (6)

Example 1. Suppose we utilize an unbalanced linguistic term set S0 for evaluation, in which S0 =

{N, L, M, AH, H, QH, VH, AT, T}. Figure 1 demonstrates S0 and its mapping in a linguistic hierarchy.
Then, we got two IVDHFUBLNs sd1 and sd2. Let sd1 = (L,{[0.2,0.3],[0.4,0.5],[0.5,0.6]},{[0.1,0.2],[0.3,0.4]})
and sd2 = (VH,{[0.1,0.4],[0.5,0.6]},{[0.2,0.3]}).

Then, by use of Definition 5, we can directly calculate the distance between sd1 and sd2 without
adding any elements into sd2, and we get d(sd1, sd2) = 0.4771.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N L AH H QH VH AT TM

Balanced linguisistc 
term set with 17 

granularity

Unbalanced linguistic 
term set S0

Figure 1. Unbalanced linguistic term set S0 and its mapping in linguistic hierarchy.

4. Proposed Approach for MAGDM Based on IVDHFUBLS

When confronted with complicate practical MAGDM scenarios, decision-makers usually are
inadequate in determining exact weighting information for evaluative attributes due to time limit
or lack of domain knowledge, while they are capable of deriving relatively exact prioritization
relation among evaluative attributes, such as the talent introduction decision-making problem [70],
teaching quality evaluation problem [54], software selection problem [71], etc. In actuality, Yager [49]
acutely noticed the real-world prioritization phenomena among assessing criteria and thus developed
the prioritized average (PA) operator. PA operator has been verified as a fundamentally effective
aggregation operator that enables classic multiple criteria decision-making methodologies to include
prioritization relations among indicators as decision information in their mechanisms [54,70–72].

Therefore, firstly in this section, we develop the fundamental prioritized average aggregation
operator for IVDHFUBLS and study its desirable properties. Next, considering that decision-makers’
weighting information also quite often cannot be subjectively obtained in advance under complex
decision-making environments, we develop a programming model based on deviation maximizing
method to objectively derive weighting vector for decision-makers. Furthermore, based on the
developed prioritized average aggregation operator and the programming model, we propose an
algorithm for MAGDM under IVDHFUBLS environment in which prioritization relation among
evaluating attributes exists and decision-makers’ weighting vector is unknown.
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4.1. Prioritized Average Aggregation Operator for IVDHFUBLS

Definition 6. For a collection of IVDHFUBLNs sdj(j = 1, 2, . . . , n), which are prioritized such that sdj ≺
sdj−1, the IVDHFUBLPWA operator is defined as follows:

IVDHFUBLPWA(sd1, sd2, . . . , sdn) =
T1

∑n
j=1 Tj

sd1 ⊕ T2

∑n
j=1 Tj

sd2 ⊕ . . .⊕ Tn

∑n
j=1 Tj

sdn (7)

=
n⊕

j=1

(
Tjsdj

∑n
j=1 Tj

)
(8)

in which T1 = 1, Tj = ∏
j−1
k=1 P(sdk) = P(sdj−1)Tj−1 and P(sdk) is the accuracy value of sdk calculated by

Definition 4.

IVDHFUBLPWA operator also can be rewritten as following Theorem 1.

Theorem 1. Let sdj =
(

sj, h̃j, g̃j

)
be a collection of IVDHFUBLNs. By noticing that aggregation results

obtained from Definition 6 have been transformed to the form of interval-valued dual hesitant fuzzy balanced
linguistic numbers (IVDHFBLNs), we have

IVDHFUBLPWA(sd1, sd2, . . . , sdn) = ∪
(sj ,h̃j ,g̃j)∈sdj

⎛⎝s n
∑

j=1

T(sdj)

∑n
i=1 T(sdi)

Δ−1
t0

(TF
tj
t0
(ψ(sj)))

,

∪
[μL

j ,μU
j ]∈h̃j ,[νL

j ,νU
j ]∈g̃j

{{[
1− n

∏
j=1

(1− μL
j )

T(sdj)

∑n
i=1 T(sdi) , 1− n

∏
j=1

(1− μU
j )

T(sdj)

∑n
i=1 T(sdi)

]}
,{[

n
∏
j=1

(νL
j )

T(sdj)

∑n
i=1 T(sdi) ,

n
∏
j=1

(νU
j )

T(sdj)

∑n
i=1 T(sdi)

]}})
.

(9)

Proof.

(1) When n = 1, obviously, it is right.

IVDHFUBLPWA(sd) = ∪
(s0,h̃,g̃)∈sd

(
s

Δ−1
t0

(TF
t0
t0
(ψ(s0)))

,∪
[μL ,μU ]∈h̃,[νL ,νU ]∈g̃

{{
[μL, μU ]

}
,
{
[νL, νU ]

}})
;

(2) When n = 2, T(sd1)

∑2
i=1 T(sdi)

sd1 = ∪
(s1,h̃,g̃)∈sd1

(
s T(sd1)

∑2
i=1 T(sdi)

(Δ−1
t0

(TF
t1
t0
(ψ(s1))))

,

∪
[μL

1 ,μU
1 ]∈h̃1,[νL

1 ,νU
1 ]∈g̃1

{{[
1− (1− μL

1 )

T(sd1)

∑2
i=1 T(sdi ) , 1− (1− μU

1 )

T(sd1)

∑2
i=1 T(sdi )

]}
,

{[
(νL

1 )

T(sd1)

∑2
i=1 T(sdi ) , (νU

1 )

T(sd1)

∑2
i=1 T(sdi )

]}})
,

T(sd2)

∑2
i=1 T(sdi)

sd2 = ∪
(s2,h̃,g̃)∈sd2

(
s T(sd2)

∑2
i=1 T(sdi )

(Δ−1
t0

(TFt2
t0
(ψ(s2))))

,

∪
[μL

2 ,μU
2 ]∈h̃2,[νL

2 ,νU
2 ]∈g̃2

{{[
1− (1− μL

2 )

T(sd2)

∑2
i=1 T(sdi ) , 1− (1− μU

2 )

T(sd2)

∑2
i=1 T(sdi )

]}
,

{[
(νL

2 )

T(sd2)

∑2
i=1 T(sdi ) , (νU

2 )

T(sd2)

∑2
i=1 T(sdi )

]}})
,

T(sd1)

∑2
i=1 T(sdi)

sd1 +
T(sd2)

∑2
i=1 T(sdi)

sd2 =

∪
(s1,h̃1,g̃1)∈sd1,(s2,h̃2,g̃2)∈sd2

⎛⎜⎝s 2
∑

j=1

T(sdj )

∑2
i=1 T(sdi )

(Δ−1
t0

(TF
tj
t0
(ψ(sj))))

,∪
[μL

1 ,μU
1 ]∈h̃1,[μL

2 ,μU
2 ]∈h̃2,[νL

1 ,νU
1 ]∈g̃1,[νL

2 ,νU
2 ]∈g̃2{{[

1− (1− μL
1 )

T(sd1)

∑2
i=1 T(sdi ) (1− μL

2 )

T(sd2)

∑2
i=1 T(sdi ) , 1− (1− μU

1 )

T(sd1)

∑2
i=1 T(sdi ) (1− μU

2 )

T(sd2)

∑2
i=1 T(sdi )

]}
,{[

(νL
1 )

T(sd1)

∑2
i=1 T(sdi ) (νL

2 )

T(sd2)

∑2
i=1 T(sdi ) , (νU

1 )

T(sd1)

∑2
i=1 T(sdi ) (νU

2 )

T(sd2)

∑2
i=1 T(sdi )

]}})
.
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So, when n = 2, Theorem 1 also is right.
(3) Suppose that when n = k, Theorem 1 is right; then, we have

IVDHFULPWA(sd1, sd2, . . . , sdk) = ∪
(sj ,h̃j ,g̃j)∈sdj

⎛⎜⎝s k
∑

j=1

T(sdj)

∑n
i=1 T(sdi)

Δ−1
t0

(TF
tj
t0
(ψ(sj)))

,

∪
[μL

j ,μU
j ]∈h̃j ,[νL

j ,νU
j ]∈g̃j

{{[
1− k

∏
j=1

(1− μL
j )

T(sdj)

∑n
i=1 T(sdi) , 1− k

∏
j=1

(1− μU
j )

T(sdj)

∑n
i=1 T(sdi)

]}
,{[

k
∏
j=1

(νL
j )

T(sdj)

∑n
i=1 T(sdi) ,

k
∏
j=1

(νU
j )

T(sdj)

∑n
i=1 T(sdi)

]}})
.

Then, when n = k + 1,

IVDHFUBLPWA(sd1, sd2, . . . , sdk, sdk+1) =(
k⊕

j=1

T(sdj)

∑n
i=1 T(sdi)

sdj

)
⊕ T(sdk+1)

∑n
i=1 T(sdi)

sdk+1 = ∪
(sj ,h̃j ,g̃j)∈sdj

⎛⎜⎝sk+1
∑

j=1

T(sdj)

∑n
i=1 T(sdi)

Δ−1
t0

(TF
tj
t0
(ψ(sj)))

,

∪
[μL

j ,μU
j ]∈h̃j ,[νL

j ,νU
j ]∈g̃j

{{[
1− k+1

∏
j=1

(1− μL
j )

T(sdj)

∑n
i=1 T(sdi) , 1− k+1

∏
j=1

(1− μU
j )

T(sdj)

∑n
i=1 T(sdi)

]}
,{[

k+1
∏
j=1

(νL
j )

T(sdj)

∑n
i=1 T(sdi) ,

k+1
∏
j=1

(νU
j )

T(sdj)

∑n
i=1 T(sdi)

]}})
.

So, when n = k + 1, Theorem 1 is right too.

According to steps (1), (2), and (3), we get that Theorem 1 is right for all n. �

Theorem 2. IVDHFUBLPWA operator holds following properties:

(1) Commutativity: Let (sd1
∗, sd2

∗, . . . , sdn
∗) be any permutation of (sd1, sd2, . . . , sdn), then

IVDHFUBLPWA(sd1
∗, sd2

∗, . . . , sdn
∗) = IVDHFUBLPWA(sd1, sd2, . . . , sdn).

(2) Idempotency: Let sdj = sd, for all j = 1, 2, . . . , n, then

IVDHFUBLPWA(sd1, sd2, . . . , sdn) = sd.

(3) Boundedness: the IVDHFUBLPWA operator lies between the max and min operators,

sd− ≤ IVDHFUBLPWA(sd1, sd2, . . . , sdn) ≤ sd+.

Proof.

(1) Assume that (sd1
∗, sd2

∗, . . . , sdn
∗) is any permutation of (sd1, sd2, . . . , sdn); then, for each sdj,

there exists one and only one sdk
∗, such that sdk

∗ = sdj and vice versa. Additionally, also we
have T(sdj) = T(sdk

∗). Thus, based on Theorem 1, we have

IVDHFUBLPWA(sd1, sd2, . . . , sdn) =

n⊕
j=1

T(sdj)sdj

∑n
i=1 T(sdi)

=

n⊕
j=1

T(sdk
∗)sdk

∗)

∑n
i=1 T(sdi)

= IVDHFULPWA(sd1
∗, sd2

∗, . . . , sdn
∗).
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(2) Since sdj = sd for all j = 1, 2, . . . , n, then IVDHFUBLPWA(sd1, sd2, . . . , sdn)

= ∪
(s0,h̃j ,g̃j)∈sd

(
s0,∪

[μL ,μU ]∈h̃,[νL ,νU ]∈g̃

{{[
μL, μU

]}
,
{[

νL, νU
]}})

= sd.

(3) Suppose sd− =
(

s−0 , h̃−, g̃−
)

, sd+ =
(

s+0 , h̃+, g̃+
)

, in which

s−0 = min
j

(
s

Δ−1
t0

(TF
tj
t0
(ψ(sj)))

)
, s+0 = max

j

(
s

Δ−1
t0

(TF
tj
t0
(ψ(sj)))

)
,

h̃− = ∪
[μL

j ,μU
j ]∈h̃j

{
[μL−, μU−]

}
= ∪

[μL
j ,μU

j ]∈h̃j

{
[ min
1≤j≤n

μL
j , min

1≤j≤n
μU

j ]

}
,

h̃+ = ∪
[μL

j ,μU
j ]∈h̃j

{
[μL+, μU+]

}
= ∪

[μL
j ,μU

j ]∈h̃j

{
[ max
1≤j≤n

μL
j , max

1≤j≤n
μU

j ]

}
,

g̃− = ∪[νL
j ,νU

j ]∈g̃j

{
[νL−, νU−]

}
= ∪[νL

j ,νU
j ]∈g̃j

{
[ max
1≤j≤n

νL
j , max

1≤j≤n
νU

j ]

}
,

g̃+ = ∪[νL
j ,νU

j ]∈g̃j

{
[νL+, νU+]

}
= ∪[νL

j ,νU
j ]∈g̃j

{
[ min
1≤j≤n

νL
j , min

1≤j≤n
νU

j ]

}
.

Obviously,

s−0 = min
j

(
s

Δ−1
t0

(TF
tj
t0
(ψ(sj)))

)
≤ s n

∑
j=1

T(sdj)

∑n
i=1 T(sdi)

Δ−1
t0

(TF
tj
t0
(ψ(sj)))

≤ max
j

(
s

Δ−1
t0

(TF
tj
t0
(ψ(sj)))

)
= s+0 .

Additionally, for all j = 1, 2, . . . , n, we have(
1− n

∏
j=1

(1− μL+)

T(sdj)

∑n
i=1 T(sdi)

)
+

(
1− n

∏
j=1

(1− μU+)

T(sdj)

∑n
i=1 T(sdi)

)
≥(

1− n
∏
j=1

(1− μL
j )

T(sdj)

∑n
i=1 T(sdi)

)
+

(
1− n

∏
j=1

(1− μU
j )

T(sdj)

∑n
i=1 T(sdi)

)
≥(

1− n
∏
j=1

(1− μL−)
T(sdj)

∑n
i=1 T(sdi)

)
+

(
1− n

∏
j=1

(1− μU−)
T(sdj)

∑n
i=1 T(sdi)

)
;

Meanwhile, we have

(
n
∏
j=1

(νL−)
T(sdj)

∑n
i=1 T(sdi)

)
+

(
n
∏
j=1

(νU−)
T(sdj)

∑n
i=1 T(sdi)

)
≥
(

n
∏
j=1

(νL)

T(sdj)

∑n
i=1 T(sdi)

)
+

(
n
∏
j=1

(νU)

T(sdj)

∑n
i=1 T(sdi)

)

≥
(

n
∏
j=1

(νL+)

T(sdj)

∑n
i=1 T(sdi)

)
+

(
n
∏
j=1

(νU+)

T(sdj)

∑n
i=1 T(sdi)

)
.
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Then(
1− n

∏
j=1

(1− μL+)

T(sdj)

∑n
i=1 T(sdi)

)
+

(
1− n

∏
j=1

(1− μU+)

T(sdj)

∑n
i=1 T(sdi)

)
−
(

n
∏
j=1

(νL+)

T(sdj)

∑n
i=1 T(sdi)

)

−
(

n
∏
j=1

(νU+)

T(sdj)

∑n
i=1 T(sdi)

)
≥
(

1− n
∏
j=1

(1− μL
j )

T(sdj)

∑n
i=1 T(sdi)

)
+

(
1− n

∏
j=1

(1− μU
j )

T(sdj)

∑n
i=1 T(sdi)

)

−
(

n
∏
j=1

(νL)

T(sdj)

∑n
i=1 T(sdi)

)
−
(

n
∏
j=1

(νU)

T(sdj)

∑n
i=1 T(sdi)

)
≥
(

1− n
∏
j=1

(1− μL−)
T(sdj)

∑n
i=1 T(sdi)

)
+(

1− n
∏
j=1

(1− μU−)
T(sdj)

∑n
i=1 T(sdi)

)
−
(

n
∏
j=1

(νL−)
T(sdj)

∑n
i=1 T(sdi)

)
−
(

n
∏
j=1

(νU−)
T(sdj)

∑n
i=1 T(sdi)

)
.

According to Definition 4 and Theorem 1, we have

sd− ≤ IVDHFUBLPWA(sd1, sd2, . . . , sdn) ≤ sd+,

which completes the proof. �

Theorem 3. For a collection of IVDHFUBLNs sdj(j = 1, 2, . . . , n), if there is no prioritized relationship
between theme, then IVDHFUBLPWA operator reduces to the interval-valued dual hesitant fuzzy unbalanced
linguistic weighted average (IVDHFUBLWA) operator, in which

IVDHFUBLWA(sd1, sd2, . . . , sdn) =

n⊕
j=1

(ωjsdj)

∑n
i=1 ωi

(10)

in which ω = (ω1, ω2, . . . , ωn)
T is the weighting vector for sdj(j = 1, 2, . . . , n) with ωj ∈ [0, 1] and

∑n
j=1 ωj = 1.

4.2. A Hybrid Model for Determining the Unknown Experts’ Weights

Generally, when the weighting information for decision-makers cannot be subjectively acquired
in advance, decision matrices given by decision-makers should be taken into account to derive the
unknown weighting vector objectively.

Basically, there are two indispensible aspects with which to exploit assessments in decision
matrices objectively. On one side, the accuracy function for hesitant fuzzy elements [32] can be utilized
to measure the overall fuzziness of individual decision matrix given by each decision-maker; hence,
the less fuzziness there is in a decision matrix, the bigger the weight that should be configured to the
corresponding decision-maker. On the other side, according to deviation maximizing methodology [73],
the smaller the difference between the assessments offered by one specific decision-maker with those
offered by the other decision-makers, the more precise the evaluation information given that specific
decision-maker; a larger weight thus should be correspondingly assigned to the decision-maker.

Therefore, firstly, we apply the accuracy function P(sd) in Definition 4 to indicate information
fuzziness in IVDHFUBL individual decision matrix Rk. There is less fuzzy information contained in
individual decision matrix Rk than other IVDHFUBL decision matrix, so the kth decision-maker plays
an important role in prioritization process and should be assigned a bigger weight. Then, specifically
from this aspect, we naturally can obtain type of experts’ weights λ̃k(k = 1, 2, . . . , t) by

λ̃k =

1
mn ∑n

i=1 ∑m
j=1 P(rk

ij)

∑t
k=1

(
1

mn ∑n
i=1 ∑m

j=1 P(rk
ij)
) . (11)
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Secondly, we here take the divergence degree measure DD(Rk, Rl) = 1− 1
mn

n
∑

i=1

m
∑

j=1
d(rk

ij, rl
ij) to

calculate the deviation between IVDHFUBL decision matrix Rk given by the kth decision-maker and
IVDHFUBL decision matrix Rl given by the lth decision-maker. If the overall divergence of Rk appears
to be larger than other decision matrices, then the kth decision-maker should be assigned a smaller
weight. On the contrary, overall divergence of evaluations in IVDHFUBL decision matrix Rk comes
to be smaller than other decision matrices; then, it can be seen that the kth decision-maker should
be assigned a larger weight. As a result, we establish the following programming model (M-1) for

calculating the divergence-based weighting vector λ
k
(k = 1, 2, . . . , t) for decision-makers.

(M− 1)

⎧⎪⎪⎨⎪⎪⎩
maxF(λk

) =
t

∑
k=1

1
t

(
t

∑
l=1,l �=k

DD(Rk, Rl)λ
k
)

s.t ∑t
k=1 (λ

k
)

2
= 1, λ

k ≥ 0, k = 1, 2, . . . , t

.

Because of DD(Rk, Rl) = 1− 1
mn

n
∑

i=1

m
∑

j=1
d(rk

ij, rl
ij), we rewrite the above model (M-1) to following

model (M-2).

(M− 2)

⎧⎪⎪⎨⎪⎪⎩
maxF(λk

) =
t

∑
k=1

1
t

(
t

∑
l=1,l �=k

(
1− 1

mn

n
∑

i=1

m
∑

j=1
d(rk

ij, rl
ij)

)
λ

k
)

s.t ∑t
k=1 (λ

k
)

2
= 1, λ

k ≥ 0, k = 1, 2, . . . , t

,

in which d(rk
ij, rl

ij) is applied according to Definition 5.
Regarding the model (M-2), we have following Theorems 4 and 5.

Theorem 4. The optimal solution to (M-2) is

λ
k
=

∑t
l=1,l �=k

(
1− 1

mn ∑n
i=1 ∑m

j=1 d(rk
ij, rl

ij)
)

∑t
k=1

(
∑t

l=1,l �=k

(
1− 1

mn ∑n
i=1 ∑m

j=1 d(rk
ij, rl

ij)
)) . (12)

Proof. To solve this model, we construct the Lagrange function as follows:

L(λk
, ζ) =

t

∑
k=1

1
t

(
t

∑
l=1,l �=k

(
1− 1

mn

n

∑
i=1

m

∑
j=1

d(rk
ij, rl

ij)

))
λ

k
+

1
2

ζ
t

∑
k=1

((
λ

k
)2 − 1

)
, (13)

By differentiation on Equation (13) with respect to λ
k
(k = 1, 2, . . . , t) and ζ, and setting these

partial derivatives equal to zero, the following set of equations is obtained:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂L
∂λ

k = 1
t

(
t

∑
l=1,l �=k

(
1− 1

mn

n
∑

i=1

m
∑

j=1
d(rk

ij, rl
ij)

))
+ ζλ

k
= 0

∂L
∂ζ =

t
∑

k=1

((
λ

k
)2 − 1

)
= 0

. (14)

By solving Equation (14), we get a simple and exact formula for determining the weights of
decision-makers, as follows:

λ
k
=

1
t ∑t

l=1,l �=k

(
1− 1

mn ∑n
i=1 ∑m

j=1 d(rk
ij, rl

ij)
)

√
∑t

k=1

(
1
t ∑t

l=1,l �=k

(
1− 1

mn ∑n
i=1 ∑m

j=1 d(rk
ij, rl

ij)
))2

. (15)
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Then, by normalizing λ
k
(k = 1, 2, . . . , t) be a unit, we have the optimal solution:

λ
k
=

∑t
l=1,l �=k

(
1− 1

mn ∑n
i=1 ∑m

j=1 d(rk
ij, rl

ij)
)

∑t
k=1

(
∑t

l=1,l �=k

(
1− 1

mn ∑n
i=1 ∑m

j=1 d(rk
ij, rl

ij)
)) . (16)

As can be seen, λ
k
(k = 1, 2, . . . , t) is the unique solution to (M-2) and applies to determine DMs’

weights for MAGDM under IVDHFUBLS environment, which completes the proof. �

Theorem 5. If DD(Rk, Rl) = 1, then it is reasonable to assign the experts λ
k
(k = 1, 2, . . . , t) the same weight.

Proof. If DD(Rk, Rl) = 1, then we have d(rk
ij, rl

ij) = 0. By solving the programming model (M-2),

we will obtain the experts weights λ
k
= 1

t (k = 1, 2, . . . , t), which completes the proof. �

Now, to simultaneously consider the fuzziness of individual decision matrix and deviation
measures between decision matrices, based on Equations (11) and (16), we can get the overall experts’
weights λk(k = 1, 2, . . . , t) according to a hybrid model, as follows:

λk = αλ
k
+ βλ̃k(k = 1, 2, . . . , t), (17)

in which α + β = 1, generally α = β = 0.5, or α and β depend on real decision situations.

4.3. Algorithm for MAGDM Based on IVDHFUBLS with Prioritization Relation among Evaluative Attributes
and Unknown Decision-Makers’ Weights

Let X = {x1, . . . , xi, . . . , xn} be the set of response solutions, A =
{

A1, . . . , Aj, . . . , Am
}

be the
set of attributes, E = {E1, . . . , Ek, . . . , Et} be the set of decision-makers. Suppose that, according to
knowledge from decision contexts and Delphi method, decision-makers are capable of determining a
prioritization relation, Aσ(1) � . . . � Aσ(j) � . . . � Aσ(m), among evaluative attributes, which means
the attribute Aσ(j−1) has a higher priority level than the attribute Aσ(j). Suppose Rk = (rk

ij)n×m
(k =

1, 2, . . . , t) constitutes the IVDHFUBL decision matrices given by all t decision-makers, among which
rk

ij denotes assessments presented by the kth decision-maker based on an unbalanced linguistic term

set Sk with respect to alternative xi under attribute Aj, and rk
ij =

(
sk

αij
, h̃k

ij, g̃k
ij

)
and sk

αij
∈ Sk take

the form of IVDHFUBLNs. Then, on the strength of above-developed methods, we here construct
the following Procedure I for MAGDM based on IVDHFUBLS with prioritization relation among
evaluative attributes and unknown decision-makers’ weights.

Procedure I. MAGDM based on IVDHFUBLS with prioritization relation among evaluative
attributes and unknown decision-makers’ weights.

Step I-1. Compute the weight vector λ = (λ1, . . . , λk, . . . , λt) for decision-makers by applying
Equation (17).

Step I-2. According to the prioritization relation, Aσ(1) � . . . � Aσ(j) � . . . � Aσ(m), among

attributes, transform each individual decision matrix Rk =
(

rk
ij

)
n×m

=
(

sk
αij

, h̃k
ij, g̃k

ij

)
n×m

to the prioritized individual decision matrix Rk
= (rk

ij)n×m
=

(
sk

αij
, h̃

k
ij, g̃

k
ij

)
n×m

,k = 1, 2, . . . , t,

in which h̃
k
ij = ∪

μ̃
k
ij∈h̃

(k)
ij

{
μ̃

k
ij

}
, g̃

k
ij = ∪

ν̃
k
ij∈g̃

(k)
ij

{
ν̃

k
ij

}
.

Step I-3. Calculate prioritized levels in prioritized individual IVDHFUBL decision matrices: Rk
=

(rk
ij)n×m

=

(
sk

αij
, h̃

k
ij, g̃

k
ij

)
n×m

, k = 1, 2, . . . , t.
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Calculate the score values of rk
ij according to Equation (3) in Definition 4, then compute

the numerical prioritized levels Tk
ij(i = 1, 2, . . . , n; j = 1, 2, . . . , m; k = 1, 2, . . . , t) in each

prioritized individual IVDHFUBL decision matrix, in which

Tk
ij =

j−1

∏
l=1

S(rk
il) = (S(rk

i(j−1)))T
k
i(j−1) (18)

Tk
i1 = 1 (19)

Step I-4. Obtain aggregated results in prioritized individual decision matrices, Rk
= (rk

ij)n×m
=(

sk
αij

, h̃
k
ij, g̃

k
ij

)
n×m

, k = 1, 2, . . . , t, by applying operator IVDHFUBLPWA.

Utilize the IVDHFUBLPWA operator described in Definition 6 to aggregate rk
ij so that we get

the k decision-maker’s decision result rk
i on the alternative xi, in which

rk
i = IVDHFUBLPWA(rk

i1, . . . , rk
ij, . . . , rk

im) = ∪(sk
αij ,hk

ij ,g
k
ij)∈rk

ij

⎛⎜⎝s
∑t

k=1

Tk
ij

∑m
j=1 Tk

ij
Δ−1

tij
(TF

tkij
tij

(ψ(sk
αij )))

,

∪
[μLk

ij ,μUk
ij ]∈h̃

k
ij ,[ν

Lk
ij ,νUk

ij ]∈g̃
k
ij

⎛⎜⎝
⎧⎪⎨⎪⎩
⎡⎢⎣1− m

∏
j=1

(1− μLk
ij )

Tk
ij

∑m
j=1 Tk

ij , 1− m
∏
j=1

(1− μUk
ij )

Tk
ij

∑m
j=1 Tk

ij

⎤⎥⎦
⎫⎪⎬⎪⎭,

⎧⎪⎨⎪⎩
⎡⎢⎣ m

∏
j=1

(νLk
ij )

Tk
ij

∑m
j=1 Tk

ij ,
m
∏
j=1

(νUk
ij )

Tk
ij

∑m
j=1 Tk

ij

⎤⎥⎦
⎫⎪⎬⎪⎭
⎞⎟⎠.

(20)

Step I-5. Obtain collective results of all alternatives by applying decision-makers’ weighting vector.

Given the weighting vector λ = {λ1, . . . , λk, . . . , λt} for decision-makers, which has
been determined in Step 1, we now aggregate all the individual overall decision values
rk

i (k = 1, 2, . . . , t) into the overall group decision values ri(i = 1, 2, . . . , n) by use of the
IVDHFUBLWA operator described in Equation (10), in which

ri = IVDHFUBLWA(r1
i , . . . , rk

i , . . . , rt
i ) = ∪(sk

αi ,hk
i ,gk

i )∈rk
i

(
s

∑t
k=1 λkΔ−1

ti
(TF

tki
ti
(ψ(sk

αi )))
,

∪
[μLk

i ,μUk
i ]∈h̃

k
i ,[νLk

i ,νUk
i ]∈g̃

k
i

({[
1− t

∏
k=1

(1− μLk
ij )

λk
, 1− t

∏
k=1

(1− μUk
ij )

λk
]}

,
{[

t
∏

k=1
(νLk

i )
λk

,
t

∏
k=1

(νUk
i )

λk
]}))

.

(21)

Step I-6. According to Definition 4, calculate the score value S(ri) of the group overall assessments
ri(i = 1, 2, . . . , n) to alternatives xi(i = 1, 2, . . . , n), then rank all the alternatives xi(i =

1, 2, . . . , n) and select the most desirable one(s).

5. Illustrative Examples

5.1. Applied Case Study on Green Supplier Selection Problem

Due to increasing environmental concerns in socioeconomic activities, more and more companies
have been urged to enhance their green images so as to maintain and improve competitiveness. As a
result, leading enterprises like Dell, HP, and IBM have already turned to include green supply chains in
their business processes. Obviously, in order to construct effective green supply chains, core companies
generally are only willing to select suppliers who exhibit better practices regarding green supply chain
management [2]. Therefore, to demonstrate the practicality and effectiveness of our proposed approach,
we apply the Algorithm I to resolve the following example of green supplier selection problem.
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Suppose we are evaluating three alternative suppliers, i.e., xi, i = 1, 2, 3, according to eight
attributes Aj: (1) A1—Economic performance, (2) A2—Regulation, (3) A3—Perceived stakeholders’
pressure, (4) A4—Green design, (5) A5—Environmental performance, (6) A6—Recovery and reuse of
used products, (7) A7—Supplier/customer collaboration, and (8) A8—Green purchasing. A panel of
decision-makers, i.e., Ek, k = 1, 2, 3, have been already organized, and decision-makers also reached a
consensus opinion on the prioritization relation, i.e., (A2) � (A5) � (A1) � (A8) � (A4) � (A6) �
(A7) � (A3) among the attributes.

Next, all three decision-makers Ek(k = 1, 2, 3) were invited to provide their preferences in the
form of interval-valued dual hesitant fuzzy unbalanced linguistic numbers. The corresponding
linguistic variables are chosen from two unbalanced linguistic term sets S1 and S2, in which
S1 = {N, L, M, AH, H, QH, VH, AT, T} and S2 = {N, M, H, VH, T}. The relationship between
unbalanced linguistic term sets S1, S2, and linguistic hierarchies is shown in Figure 2. Decisionmakers
E1 and E2 evaluate the three suppliers by the unbalanced linguistic term set S1, while E3 utilizes
the unbalanced linguistic term set S2. Then, three interval-valued dual hesitant fuzzy unbalanced
linguistic (IVDHFUBL) decision matrices, i.e., Rk = (rk

ij)3×8
(k = 1, 2, 3), have been collected, as shown

in Tables 2–4.

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4

0 1 2

N L AH H QH VH AT TM

Level 1: l(1,3)

Level 2: l(2,5)

Level 3: l(3,9)

Level 4: l(4,17)

Unbalanced linguistic term set S1

N H VH TM Unbalanced linguistic term set S2

Figure 2. Unbalanced linguistic term sets (S1 and S2) and their mapping in linguistic hierarchies.

Table 2. The IVDHFUBL decision matrix R1 provided by decision-maker E1.

A1 A2 A3 A4

x1
(VH,{[0.2,0.3]},

{[0.2,0.4],[0.3,0.4]})
(H,{[0.5,0.6]},

{[0.2,0.3]})
(M,{[0.3,0.4]},

{[0.4,0.5],[0.5,0.6]})
(T,{[0.2,0.4]},
{[0.5,0.6]})

x2
(AT,{[0.4,0.5],[0.5,0.6]},

{[0.2,0.3],[0.2,0.4]})
(T,{[0.6,0.7]},
{[0.1,0.2]})

(L,{[0.6,0.7],
[0.7,0.8]},{[0.1,0.2]})

(QH,{[0.3,0.5]},
{[0.2,0.3]})

x3
(L,{[0.1,0.2],[0.1,0.3]},

{[0.6,0.7]})
(H,{[0.2,0.3]},

{[0.5,0.6],[0.6,0.7]})
(AH,{[0.4,0.5]},

{[0.2,0.3]})
(VH,{[0.6,0.7]},

{[0.1,0.2],[0.2,0.3]})

A5 A6 A7 A8

x1
(L,{[0.4,0.5]},

{[0.1,0.2],[0.4,0.5]})
(M,{[0.1,0.2],[0.3,0.5]},

{[0.3,0.5]})
(AH,{[0.4,0.5],[0.5,0.6]},

{[0.2,0.3],[0.2,0.4]})
(L,{[0.1,0.3]},
{[0.4,0.6]})

x2
(M,{[0.6,0.7]},

{[0.1,0.2]})
(VH,{[0.2,0.4],[0.5,0.6]},

{[0.2,0.3]})
(L,{[0.5,0.6],[0.7,0.8]},

{[0.1,0.2]})
(H,{[0.5,0.7]},

{[0.1,0.2],[0.2,0.3]})

x3
(M,{[0.4,0.5],[0.6,0.7]},

{[0.1,0.3]})
(H,{[0.3,0.4]},

{[0.4,0.5]})
(QH,{[0.4,0.5],[0.5,0.6]},

{[0.3,0.4]})
(VH,{[0.4,0.6]},

{[0.3,0.4]})
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Table 3. The IVDHFUBL decision matrix R2 provided by decision-maker E2.

A1 A2 A3 A4

x1
(M,{[0.3,0.5]},

{[0.1,0.2]})
(AH,{[0.1,0.4]},

{[0.2,0.3],[0.3,0.4]})
(H,{[0.2,0.4]},

{[0.4,0.5]})
(QH,{[0.2,0.4]},

{[0.5,0.6]})

x2
(AT,{[0.4,0.7]},

{[0.2,0.3] })
(L,{[0.5,0.6]},
{[0.1,0.2] })

(AH,{[0.6,0.7],[0.7,0.8]},
{[0.1,0.2]})

(M,{[0.2,0.3]},
{[0.5,0.6],[0.6,0.7]})

x3
(AT,{[0.6,0.8]},

{[0.1,0.2]})
(H,{[0.4,0.5]},

{[0.3,0.4],[0.4,0.5]})
(H,{[0.4,0.5]},

{[0.2,0.3]})
(AH,{[0.4,0.5]},

{[0.2,0.3]})

A5 A6 A7 A8

x1
(M,{[0.1,0.2],[0.2,0.3]},

{[0.1,0.2]})
(L,{[0.6,0.7]},
{[0.1,0.2]})

(H,{[0.3,0.4]},
{[0.2,0.3],[0.4,0.5]})

(M,{[0.5,0.7]},
{[0.2,0.3]})

x2
(VH,{[0.6,0.7]},

{[0.1,0.2]})
(AT,{[0.2,0.3]},

{[0.5,0.7]})
(H,{[0.5,0.8]},

{[0.1,0.2]})
(AT,{[0.3,0.5]},

{[0.3,0.4]})

x3
(QH,{[0.4,0.5]},

{[0.3,0.4]})
(L,{[0.7,0.8]},
{[0.1,0.2]})

(VH,{[0.2,0.5]},
{[0.3,0.4]})

(H,{[0.3,0.5]},
{[0.3,0.4]})

Table 4. The IVDHFUBL decision matrix R3 provided by decision-maker E3.

A1 A2 A3 A4

x1
(M,{[0.6,0.8]},

{[0.1,0.2]})
(H,{[0.4,0.5]},

{[0.4,0.5]})
(H,{[0.2,0.4],[0.3,0.4]},

{[0.2,0.3]})
(M,{[0.7,0.8]},

{[0.1,0.2]})

x2
(T,{[0.3,0.4]},
{[0.4,0.6]})

(M,{[0.4,0.5],[0.5,0.6]},
{[0.2,0.3] })

(VH,{[0.6,0.7]},
{[0.1,0.3]})

(H,{[0.1,0.3],[0.2,0.4]},
{[0.3,0.5]})

x3
(VH,{[0.4,0.5]},

{[0.1,0.2],[0.3,0.4]})
(VH,{[0.7,0.8]},

{[0.1,0.2]})
(H,{[0.6,0.8]},

{[0.1,0.2]})
(M,{[0.6,0.7]},

{[0.1,0.3]})

A5 A6 A7 A8

x1
(T,{[0.2,0.5]},
{[0.3,0.5]})

(VH,{[0.6,0.7]},
{[0.2,0.3]})

(M,{[0.1,0.2]},
{[0.5,0.8]})

(VH,{[0.3,0.4]},
{[0.1,0.3],[0.2,0.5]})

x2
(M,{[0.4,0.6],

[0.5,0.7]},{[0.1,0.2]})
(VH,{[0.3,0.6]},

{[0.1,0.3],[0.2,0.4]})
(H,{[0.4,0.6]},

{[0.3,0.4]})
(VH,{[0.7,0.8]},

{[0.1,0.2]})

x3
(VH,{[0.6,0.7]},

{[0.1,0.2]})
(M,{[0.5,0.6]},

{[0.3,0.4]})
(H,{[0.3,0.5]},

{[0.4,0.5]})
(H,{[0.6,0.7]},

{[0.1,0.3]})

Now, we apply the proposed Procedure I to solve the above green supplier selection problem.
The following are details steps in Procedure I.

Step I-1. Compute the weight vector λ = (λ
1
, λ

2
, λ

3
) for decision-makers. Firstly, by solving the

programming model (M-2), we obtain deviation-based weighting vector as

λ = (0.3259, 0.3419, 0.3286).

Then, by applying Equation (11), we get the accuracy-measure based experts’ weighting
vector λ̃ = (λ̃1, λ̃2, λ̃3) as

λ̃ = (0.3125, 0.3195, 0.368).

Finally, according to Equation (17), we here suppose α = β = 0.5; then, the hybrid experts’
weighting vector λ = (λ1, λ2, λ3) is obtained as

λ = (0.3192, 0.3307, 0.3483).

Step I-2. Transform each individual IVDHFUBL decision matrix Rk = (rk
ij)3×8

into the prioritized

individual IVDHFUBL decision matrix Rk
= (rk

ij)3×8
(k = 1, 2, 3) according to the different

priority levels of attributes, as listed in Tables 5–7.
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Step I-3. Calculate prioritized levels Tk
ij(i = 1, 2, 3; j = 1, 2, . . . , 8; k = 1, 2, 3) in each prioritized

individual IVDHFUBL decision matrix by Equations (18) and (19), and then we have

T1
11 = 1, T1

12 = 0.6, T1
13 = 0.1125, T1

14 = 0.0566, T1
15 = 0.0099, T1

16 = 0.0084, T1
17 = 0.0028,

T1
18 = 0.0014; T1

21 = 1, T1
22 = 0.8, T1

23 = 0.32, T1
24 = 0.2325, T1

25 = 0.1395,
T1

26 = 0.0737, T1
27 = 0.0435, T1

28 = 0.0087; T1
31 = 1, T1

32 = 0.6375, T1
33 = 0.2391, T1

34 = 0.0493,
T1

35 = 0.0367, T1
36 = 0.0273, T1

37 = 0.0164, T1
38 = 0.0113.

T2
11 = 1, T2

12 = 0.3438, T2
13 = 0.0602, T2

14 = 0.0165, T2
15 = 0.007, T2

16 = 0.0049,
T2

17 = 0.001, T2
18 = 0.0005; T2

21 = 1, T2
22 = 0.175, T2

23 = 0.1225, T2
24 = 0.0919, T2

25 = 0.0646,
T2

26 = 0.0275, T2
27 = 0.0219, T2

28 = 0.0131; T2
31 = 1, T2

32 = 0.6375, T2
33 = 0.4144, T2

34 = 0.3302,
T2

35 = 0.1857, T2
36 = 0.0813, T2

37 = 0.0183, T2
38 = 0.0112.

T3
11 = 1, T3

12 = 0.675, T3
13 = 0.5063, T3

14 = 0.2152, T3
15 = 0.1177, T3

16 = 0.0529, T3
17 = 0.0417,T3

18 = 0.0167;
T3

21 = 1, T3
22 = 0.375, T3

23 = 0.1312, T3
24 = 0.1116, T3

25 = 0.0879, T3
26 = 0.0428, T3

27 = 0.0262,
T3

28 = 0.0167; T3
31 = 1, T3

32 = 0.7875, T3
33 = 0.5513, T3

34 = 0.3376, T3
35 = 0.2152, T3

36 = 0.0915, T3
37 =

0.0412, T3
38 = 0.0262.

Step I-4. Utilize the IVDHFUBLPWA operator described in Definition 6 to aggregate rk
ij, so that we get

the k th expert’s decision result rk
i (k = 1, 2, 3) on alternatives xi(i = 1, 2, 3), in which

r1
1 = (s17

10.181,{[0.439,0.5428],[0.4392,0.5429],[0.4397,0.5438],[0.4399,0.5439]},{[0.1633,0.2744],
[0.1633,0.2744],[0.1633,0.2745],[0.1633,0.2746],[0.1675,0.2744],[0.1675,0.2744],[0.1675,0.2745],
[0.1675,0.2746],[0.2598,0.373],[0.2598,0.373],[0.2598,0.3731],[0.2598,0.3732],[0.2665,0.373],[0.2665,0.373],
[0.2665,0.3731],[0.2665,0.3732]}});
r1

2 = (s17
12.6218,{[0.5479,0.6638],[0.5483,0.6642],[0.5517,0.6676],[0.5521,0.6681],[0.5538,0.6676],

[0.5542,0.668],[0.5576,0.6714],[0.558,0.6718],[0.5579,0.6728],[0.5583,0.6732],[0.5616,0.6766],[0.562,0.677],
[0.5637,0.6765],[0.5641,0.677],[0.5673,0.6802],[0.5677,0.6806]},{[0.1152,0.2172],[0.1225,0.2252],
[0.1152,0.225],[0.1225,0.2333]});
r1

3 = (s17
9.8701,{[0.2778,0.383],[0.2789,0.3841],[0.2778,0.3927],[0.2789,0.3938],[0.3647,0.475],[0.3656,0.476],

[0.3647,0.4832],[0.3656,0.4842]},{[0.2911,0.4718],[0.2948,0.4753],[0.3186,0.5093],[0.3227,0.5131]});
r2

1 = (s17
9.4101,{[0.1186,0.3686],[0.1431,0.3885]},{[0.1649,0.2682],[0.165,0.2683],[0.2188,0.3278],

[0.2189,0.3279]});
r2

2 = (s17
7.2463,{[0.4817,0.6085],[0.483,0.6099]},{[0.1246,0.231],[0.1256,0.2326]});

r2
3 = (s17

12.3335,{[0.4365,0.5779]},{[0.2377,0.3445],[0.2646,0.3745]});
r3

1 = (s17
12.22,{[0.4134,0.5925],[0.4139,0.5925]},{[0.235,0.3833],[0.2487,0.3997]});

r3
2 = (s17

9.5402,{[0.4072,0.5418],[0.4106,0.5452],[0.4294,0.5685],[0.4327,0.5718],[0.4646,0.5954],[0.4676,0.5985],
[0.4846,0.6191],[0.4876,0.6219]},{[0.1748,0.2911],[0.1777,0.2932]});
r3

3 = (s17
13.3978,{[0.6027,0.7085]},{[0.1053,0.2225],[0.1284,0.2522]}).

Step I-5. Aggregate all the individual overall decision values rk
i (k = 1, 2, 3) into the overall group

decision values ri(i = 1, 2, . . . , n) by use of the IVDHFUBLWA operator described in Equation
(10) and experts’ weighting vector λ = (0.3192, 0.3307, 0.3483) determined in Step 1. Taking
r3 as an example, we have

r3 = (s17
11.8957,{[0.4597,0.5809],[0.46,0.5811],[0.4597,0.583],[0.46,0.5833], [0.4815,0.6021],[0.4817,0.6023],

[0.4815,0.6041],[0.4817,0.6043]},{[0.191,0.3273],[0.2047,0.3419],[0.1979,0.3364],[0.2121,0.3514],
[0.1918,0.328],[0.2055,0.3427],[0.1987,0.3372],[0.2129,0.3522],[0.1966,0.3354],[0.2107,0.3504],
[0.2037,0.3448],[0.2183,0.3601],[0.1974,0.3362],[0.2116,0.3512],[0.2046,0.3456],[0.2192,0.361]}}).

Step I-6. Calculating scores S(ri) of the alternatives ri(i = 1, 2, 3), we have

S(r1) = 0.1019, S(r2) = 0.2234, S(r3) = 0.1916.
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Accordingly, then the ranking order of all the alternatives is determined as

x2 � x3 � x1.

Therefore, solution x2 is the most desirable green supplier.

Table 5. The prioritized individual IVDHFUBL decision matrix R1.

Aσ(1) Aσ(2) Aσ(3) Aσ(4)

x1
(H,{[0.5,0.6]},

{[0.2,0.3]})
(L,{[0.4,0.5]},

{[0.1,0.2],[0.4,0.5]})
(VH,{[0.2,0.3

0.2,0.4],[0.3,0.4]})
(L,{[0.1,0.3]},
{[0.4,0.6]})

x2
(T,{[0.6,0.7]},
{[0.1,0.2]})

(M,{[0.6,0.7]},
{[0.1,0.2]})

(AT,{[0.4,0.5],[0.5,0.6]},
{[0.2,0.3],[0.2,0.4]})

(H,{[0.5,0.7]},
{[0.1,0.2],[0.2,0.3]})

x3
(H,{[0.2,0.3]},

{[0.5,0.6],[0.6,0.7]})
(M,{[0.4,0.5],[0.6,0.7]},

{[0.1,0.3]})
(L,{[0.1,0.2],[0.1,0.3]},

{[0.6,0.7]})
(VH,{[0.4,0.6]},

{[0.3,0.4]})

Aσ(5) Aσ(6) Aσ(7) Aσ(8)

x1
(T,{[0.2,0.4]},
{[0.5,0.6]})

(M,{[0.1,0.2],[0.3,0.5]},
{[0.3,0.5]})

(AH,{[0.4,0.5],[0.5,0.6]},
{[0.2,0.3],[0.2,0.4]})

(M,{[0.3,0.4]},
{[0.4,0.5],[0.5,0.6]})

x2
(QH,{[0.3,0.5]},

{[0.2,0.3]})
(VH,{[0.2,0.4],[0.5,0.6]},

{[0.2,0.3]})
(L,{[0.5,0.6],[0.7,0.8]},

{[0.1,0.2]})
(L,{[0.6,0.7],[0.7,0.8]},

{[0.1,0.2]})

x3
(VH,{[0.6,0.7]},

{[0.1,0.2],[0.2,0.3]})
(H,{[0.3,0.4]},

{[0.4,0.5]})
(QH,{[0.4,0.5],[0.5,0.6]},

{[0.3,0.4]})
(AH,{[0.4,0.5]},

{[0.2,0.3]})

Table 6. The prioritized individual IVDHFUBL decision matrix R2.

Aσ(1) Aσ(2) Aσ(3) Aσ(4)

x1
(AH,{[0.1,0.4]},

{[0.2,0.3],[0.3,0.4]})
(M,{[0.1,0.2],

[0.2,0.3]},{[0.1,0.2]})
(M,{[0.3,0.5]},

{[0.1,0.2]})
(M,{[0.5,0.7]},

{[0.2,0.3]})

x2
(L,{[0.5,0.6]},
{[0.1,0.2] })

(VH,{[0.6,0.7]},
{[0.1,0.2]})

(AT,{[0.4,0.7]},
{[0.2,0.3] })

(AT,{[0.3,0.5]},
{[0.3,0.4]})

x3
(H,{[0.4,0.5]},

{[0.3,0.4],[0.4,0.5]})
(QH,{[0.4,0.5]},

{[0.3,0.4]})
(AT,{[0.6,0.8]},

{[0.1,0.2]})
(H,{[0.3,0.5]},

{[0.3,0.4]})

Aσ(5) Aσ(6) Aσ(7) Aσ(8)

x1
(QH,{[0.2,0.4]},

{[0.5,0.6]})
(L,{[0.6,0.7]},
{[0.1,0.2]})

(H,{[0.3,0.4]},
{[0.2,0.3],[0.4,0.5]})

(H,{[0.2,0.4]},
{[0.4,0.5]})

x2
(M,{[0.2,0.3]},

{[0.5,0.6],[0.6,0.7]})
(AT,{[0.2,0.3]},

{[0.5,0.7]})
(H,{[0.5,0.8]},

{[0.1,0.2]})
(AH,{[0.6,0.7],[0.7,0.8]},

{[0.1,0.2]})

x3
(AH,{[0.4,0.5]},

{[0.2,0.3]})
(L,{[0.7,0.8]},
{[0.1,0.2]})

(VH,{[0.2,0.5]},
{[0.3,0.4]})

(H,{[0.4,0.5]},
{[0.2,0.3]})
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Table 7. The prioritized individual IVDHFUBL decision matrix R3.

Aσ(1) Aσ(2) Aσ(3) Aσ(4)

x1
(H,{[0.4,0.5]},

{[0.4,0.5]})
(T,{[0.2,0.5]},
{[0.3,0.5]})

(M,{[0.6,0.8]},
{[0.1,0.2]})

(VH,{[0.3,0.4]},
{[0.1,0.3],[0.2,0.5]})

x2
(M,{[0.4,0.5],[0.5,0.6]},

{[0.2,0.3] })
(M,{[0.4,0.6],

[0.5,0.7]},{[0.1,0.2]})
(T,{[0.3,0.4]},
{[0.4,0.6]})

(VH,{[0.7,0.8]},
{[0.1,0.2]})

x3
(VH,{[0.7,0.8]},

{[0.1,0.2]})
(VH,{[0.6,0.7]},

{[0.1,0.2]})
(VH,{[0.4,0.5]},

{[0.1,0.2],[0.3,0.4]})
(H,{[0.6,0.7]},

{[0.1,0.3]})

Aσ(5) Aσ(6) Aσ(7) Aσ(8)

x1
(M,{[0.7,0.8]},

{[0.1,0.2]})
(VH,{[0.6,0.7]},

{[0.2,0.3]})
(M,{[0.1,0.2]},

{[0.5,0.8]})
(H,{[0.2,0.4],[0.3,0.4]},

{[0.2,0.3]})

x2
(H,{[0.1,0.3],[0.2,0.4]},

{[0.3,0.5]})
(VH,{[0.3,0.6]},

{[0.1,0.3],[0.2,0.4]})
(H,{[0.4,0.6]},

{[0.3,0.4]})
(VH,{[0.6,0.7]},

{[0.1,0.3]})

x3
(M,{[0.6,0.7]},

{[0.1,0.3]})
(M,{[0.5,0.6]},

{[0.3,0.4]})
(H,{[0.3,0.5]},

{[0.4,0.5]})
(H,{[0.6,0.8]},

{[0.1,0.2]})

5.2. Comparison with IVDHFUBLS-Based TOPSIS Method

Due to the fact that there are no directly related decision-making approaches based on
IVDHFUBLS for comparison with our proposed Procedure I, in this section, we firstly develop a
IVDHFUBLS-based TOPSIS method as shown in following Procedure II, in which conventional TOPSIS
method is endowed the ability to address linguistic decision hesitancy and to accommodate group
decision-making scenarios by use of the interval-valued dual hesitant fuzzy unbalanced linguistic
weighted aggregation (IVDHFULWA) operator, which was defined in Section 3. We then apply
the following Procedure II to solve the same problem adopted in Section 5.1 and discuss their
ranking results.

Procedure II. IVDHFUBLS-based TOPSIS method for group decision-making.

Step II-1. Obtaining individual decision matrices from decision-makers, we get Rk =
(

rk
ij

)
n×m

=(
sk

αij
, h̃k

ij, g̃k
ij

)
n×m

.

Step II-2. Aggregate individual decision matrices Rk = (rk
ij)n×m

, k = 1, 2, . . . , t, into individual overall

evaluation values rk
i , i = 1, 2, . . . , n, k = 1, 2, . . . , t, corresponding to each alternative xi

according to IVDHFULWA operator. Here, assume ω = ( 1
m )1×m, and

rk
i = IVDHFULWA(r1

ij, . . . , rk
ij, . . . , rt

ij) = ∪(sk
αij

,hk
ij ,g

k
ij)∈rk

ij

⎛⎜⎝s
∑m

j=1
1
m Δ−1

tij
(TF

tkij
tij

(ψ(sk
αij

)))

,

∪
[μLk

ij ,μUk
ij ]∈h̃

k
ij ,[νLk

ij ,νUk
ij ]∈g̃k

ij

({[
1− m

∏
j=1

(1− μLk
ij )

1
m , 1− m

∏
j=1

(1− μUk
ij )

1
m

]}
,

{[
m
∏
j=1

(νLk
i )

1
m ,

m
∏
j=1

(νUk
i )

1
m

]}))
.

(22)

Step II-3. Calculate separating measure from positive and negative ideal solutions.

Determine positive ideal solution (PIS) r+ = (r+1 , r+2 , . . . , r+i , . . . , r+n ) and negative ideal
solution (NIS) r− = (r−1 , r−2 , . . . , r−i , . . . , r−n ), in which r+i = ({[1, 1]}, {[0, 0]}), r−i =

({[0, 0]}, {[1, 1]}).
Then, we calculate the separating measure from the PIS and NIS for each alternative
according to the distance measure introduced in Equation (5), in which

d(r̃ij, r̃+i ) =

(
1
2

(
1
l1

l1

∑
k=1

(∣∣∣I1μ
Lj

h̃1
− 1

∣∣∣2 + ∣∣∣I1μ
Uj

h̃1
− 1

∣∣∣2)+
1
l2

l2

∑
k=1

(∣∣∣I1ν
Lj
g̃1
− 0

∣∣∣2 + ∣∣∣I1ν
Uj
g̃1
− 0

∣∣∣2)))
1
2

, (23)
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d(r̃ij, r̃−i ) =

(
1
2

(
1
l1

l1

∑
k=1

(∣∣∣I1μ
Lj

h̃1
− 0

∣∣∣2 + ∣∣∣I1μ
Uj

h̃1
− 0

∣∣∣2)+
1
l2

l2

∑
k=1

(∣∣∣I1ν
Lj
g̃1
− 1

∣∣∣2 + ∣∣∣I1ν
Uj
g̃1
− 1

∣∣∣2)))
1
2

. (24)

Next, we can obtain

d+i =
m

∑
j=1

d(r̃ij, r̃+i ), d−i =
m

∑
j=1

d(r̃ij, r̃−i ).

Step II-4. Calculate the relative closeness to the ideal solution by

ci =
d−i

d−i + d+i
. (25)

Step II-5. Rank the green suppliers according to the descending order of ci; then, we get the most
desirable supplier.

Now we can apply Procedure II to the same problem adopted in Section 5.1 and compare their
ranking results.

In Step II-1, we directly accept the decision matrices in Section 5.1. In Step II-2, we adopt

ω = ( 1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

8 )
T

. Then, according to Equations (23) and (24), in Step II-3, we calculate the
separating measure from the PIS and NIS for each alternative, and we get d+1 = 2.1661, d−1 = 2.6042,
d+2 = 2.0799, d−2 = 2.6879, d+3 = 1.8427, and d−3 = 2.7484. Subsequently, in Step II-4, according to
Equation (24), we obtain the relative closeness to the ideal solution: c1 = 0.5459, c2 = 0.5638, and
c3 = 0.5986. Therefore, Step II-5 generates the ranking result of x3 � x2 � x1, which means the most
desirable alternative is x3.

By comparing the ranking results obtained by Procedure I and Procedure II, we find out that
the two algorithms unanimously identify that the supplier x1 is the worst alternative. However,
the permutation of suppliers x2 and x3 changes in the ranking results. The reasons are that Algorithm
II takes equal weights for both attributes and decision-makers and obviously is incapable of more
completely including decision information in complicated decision-making scenarios. Contrariwise,
Procedure I manages to exploit prioritization relations among attributes and objectively deduce relative
importance among decision-makers, thus producing a different result.

In sum, when tackling ill-structured MAGDM problems, our proposed Procedure I provides
decision-makers with an effective expression tool with which to depict their complicated assessments
more comprehensively. Using the developed prioritized aggregation operator, Procedure I manages to
exploit more efficiently group opinions on prioritization relations among evaluative attributes, rather
than multiple rounds adjustments in conventional AHP-based methodologies under decision-making
environments of high complexity. Additionally, the maximizing deviation model help Procedure
I achieves more generality and objectivity in deriving unknown weights for decision-makers.
Therefore, the proposed Procedure I performs an effective and efficient approach to complicate
decision-making problems.

6. Conclusions

Focusing on the special type of ill-structured complex multiple attributes group decision-making
problems, which characterize facets of decision-makers’ decision hesitancy and prioritization
relationships among evaluative attributes and unknown weighting information for decision-makers,
we have developed an effective approach by employing IVDHFUBLS to elicit hesitant assessments
more precisely and completely. To accommodate prioritization relationships among evaluative
attributes, the proposed interval-valued dual hesitant fuzzy unbalanced linguistic prioritized
weighted aggregation (IVDHFUBLPWA) operator is capable of simultaneously considering both
assessments given by decision-makers and prioritization relationships. As for deducing unknown
weights for decision-makers, the devised hybrid model succeeds in objectively determining rational
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decision-makers’ weights by exploiting the overall accuracy measure of the individual decision matrix
and maximizing the deviation among all decision matrices. Applied study on a green supplier selection
problem has demonstrated the effectiveness and practicality of our approach.

Although we have constructed an effective approach for MAGDM under IVDHFUBLS
environments, the approach applies to only the homogeneous format of assessments in group
decision-making scenarios. However, sophisticated MAGDM approaches for tackling more complex
practical problems should allow decision-makers to denote their specific preferences with various
expression tools so as to attain better flexibility and adaptability. Therefore, future research should be
firstly directed to investigate heterogeneous MAGDM approaches under IVDHFUBLS environments
to deep depth, and more application studies on real problems as well, such as sustainable supplier
selection, risk evaluation, etc.
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Abstract: Due to the increased complexity of real decision-making problems, representing attribute
values correctly and appropriately is always a challenge. The recently proposed Pythagorean fuzzy
set (PFS) is a powerful and useful tool for handling fuzziness and vagueness. The feature of PFS that
the square sum of membership and non-membership degrees should be less than or equal to one
provides more freedom for decision makers to express their assessments and further results in less
information loss. The aim of this paper is to develop some Pythagorean fuzzy aggregation operators
to aggregate Pythagorean fuzzy numbers (PFNs). Additionally, we propose a novel approach to
multi-attribute group decision-making (MAGDM) based on the proposed operators. Considering the
Muirhead mean (MM) can capture the interrelationship among all arguments, and the interaction
operational rules for PFNs can make calculation results more reasonable, to take full advantage
of both, we extend MM to PFSs and propose a family of Pythagorean fuzzy interaction Muirhead
mean operators. Some desirable properties and special cases of the proposed operators are also
investigated. Further, we present a novel approach to MAGDM with Pythagorean fuzzy information.
Finally, we provide a numerical instance to illustrate the validity of the proposed model. In addition,
we perform a comparative analysis to show the superiorities of the proposed method.

Keywords: Pythagorean fuzzy set; Muirhead mean; interaction operational laws; multi-attribute
group decision-making

1. Introduction

As one of the most important branches of modern decision-making theory, multi-attribute group
decision-making (MAGDM) has been widely investigated and successfully applied to many fields,
owing to its high capacity of modelling the process of real decision-making problems [1–6]. With the
development of management and economics, actual decision-making problems are becoming more
and more diversified and complicated. Thus, one of the most significant issues is representing and
denoting attribute values appropriately. Zadeh [7] originally introduced the fuzzy set (FS) theory,
which makes it possible to describe vagueness and uncertainty. However, the shortcoming of the FS
is that it only has a membership degree, making it insufficient to express fuzziness comprehensively.
Recently, Atanassov [3] put forward the concept of an intuitionistic fuzzy set (IFS), which can express
the complex fuzzy information effectively as it simultaneously has a membership degree and a
non-membership degree. Considering its effective vagueness information processing capabilities,
IFS has been widely investigated and applied to so many fields since its appearance. For instance,
Liu and Ren [8] proposed a novel intuitionistic fuzzy entropy and based on which a novel approach to
MAGDM was proposed. Ren and Wang [9] proposed a new similarity measure for interval-valued IFSs,
which considers not only the impacts of membership and membership degrees but also the median
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point of interval-valued IFSs. Kaur and Garg [10] extended IFSs and proposed cubic intuitionistic fuzzy
sets as well as their aggregation operators. P. Liu and X. Liu [11] proposed the concept of linguistic
intuitionistic fuzzy sets based on the combination of IFSs and linguistic terms sets and applied them to
MAGDM. Liu and Wang [12] extend partitioned Heronian mean operator to linguistic intuitionistic
fuzzy sets and applied it to MAGDM. Lakshmana et al. [13] proposed a total order on the entire class
of intuitionistic fuzzy numbers using an upper lower dense sequence in the interval [1]. Liu and
Teng [14] proposed the concept of normal interval-valued intuitionistic fuzzy numbers and applied it
to decision-making. Liu and Chen [15] introduced some intuitionistic fuzzy Heronian mean operators
based on the Archimedean t-conorm and t-norm and applied them to dealing with MAGDM problems.

Recently, as an extension of the IFS, the Pythagorean fuzzy set (PFS) [16], which is also
characterized by a membership degree and a non-membership degree, has been proposed.
The prominent feature of the PFS that the sum of membership and non-membership degrees may be
greater than one and their square sum should be less than or equal to one, makes the PFS more powerful
and useful than the IFS. Since its appearance, it has drawn much attention. For example, Zhang [17]
proposed a novel similarity measure for PFSs and based on which a new method to Pythagorean
fuzzy MAGDM problems was developed. Zhang and Xu [18] and Ren et al. [19] respectively extended
the traditional TOPSIS (technique for order preference by similarity to ideal solution) method and
the TODIM (an acronym in Portuguese for interactive multi-criteria decision-making) approach to
solve MAGDM in a Pythagorean fuzzy context. Aggregation operators are a central topic in MAGDM,
as they can ingrate individual input data into collective ones, and rank the alternatives based on the
collective value. In the past years, quite a few Pythagorean fuzzy operators have been proposed and
been applied to MAGDM successfully [20–26]. However, the main shortcomings of these operators are:

(1) They cannot consider the interrelationship between Pythagorean fuzzy numbers (PFNs).
In other words, these aggregation operators assume that the attributes are independent, signifying
that the correlations among attribute values are not taken into consideration when aggregating them.
Generally, the Bonferroni mean (BM) [27], Heronian mean (HM) [28], and Maclaurin symmetric
mean (MSM) [29] are aggregation technologies that consider the interrelationships among arguments.
Thus, in order to overcome the shortcoming of the aforementioned aggregation operators, some
other Pythagorean fuzzy aggregation operators have been proposed. Liang et al. [30,31] proposed
some Pythagorean fuzzy Bonferroni mean and geometric Bonferroni mean operators, respectively.
Zhang et al. [32] investigated the generalized Bonferroni mean to aggregate Pythagorean fuzzy
information and proposed a family of Pythagorean fuzzy generalized Bonferroni means. Wei and
Lu [33], and Qin [34] proposed some Pythagorean fuzzy Maclaurin symmetric mean operators,
respectively. These operators consider the interrelationships between any two or among multiple
arguments, however, they fail to capture the interrelationships among all arguments. The Muirhead
mean (MM) [35] is a useful and powerful aggregation technology that captures the interrelationships
among all arguments. Moreover, it has a parameter vector that leads to flexible aggregation processes.
Quite a few existing aggregation operators are some special cases of MM. The MM was introduced
for crisp numbers and, up to now, MM has been investigated in intuitionistic fuzzy [36] and 2-tuple
linguistic environments [37]. However, to the best of our knowledge, nothing has been done about
MM in a Pythagorean fuzzy environment. Thus, in order to aggregate Pythagorean fuzzy information,
it is necessary to extend the MM to a Pythagorean fuzzy environment

(2) The aforementioned aggregation operators are based on the traditional Pythagorean fuzzy
operational rules introduced in [18]. However, these operations cannot be used to deal with some
situations. For instance, let p1 = (μ1, v1) and p2 = (μ2, v2) be two PFNs, if μ1 = 0 and μ2 �= 0, then
according to the operational laws proposed by Zhang and Xu [18], we can obtain μp1⊕p2 = 0. It is
noted that μ2 is not accounted for at all. Similarly, if v1 = 0 and v2 �= 0, then and v2 is not accounted for
at all. It is not consistent with our intuition and the reality. To overcome the drawback of the proposed
operations, Wei [38] proposed the interaction operations for PFNs.
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Therefore, to take full advantages of MM and Wei’ [38] Pythagorean fuzzy interaction operations,
we propose a family of Pythagorean fuzzy interaction Muirhead mean operators. Thus, the proposed
operators not only capture the interrelationships among all input arguments, but also effectively
handle situations in which a membership or non-membership degree of an attribute value is equal to
one. It is worth pointing out that in [39], Zhu and Li also proposed some Pythagorean fuzzy Muirhead
mean operators. However, the proposed operators in this paper are different from those proposed by
Zhu and Li. The main difference is that Zhu and Li’s [39] operators are based on the basic operational
laws proposed in [18]. Therefore, Zhu and Li’s [39] operators do not work for situations in which one
membership degree or one non-membership degree is equal to one. Our operators are based on the
interaction operational rules of PFNs, so that the proposed operators in this study are more powerful
and flexible than Zhu and Li’s operators. Further, based on the proposed aggregation operators, we
propose a novel approach to MAGDM in which attribute values take the form of PFNs. The main
aims and motivations of this paper are: (1) to develop a family of Pythagorean fuzzy Muirhead mean
operations based on interaction operational laws; and (2) to propose a novel approach to MAGDM
with Pythagorean fuzzy information. The rest of the paper is organized as follows. Section 2 recalls
some basic concepts, such as PFS, MM, and the interaction operations of PFNs. Section 3 extends the
MM to Pythagorean fuzzy environment and proposes the Pythagorean fuzzy interaction Muirhead
mean (PFIMM) operator and the Pythagorean fuzzy interaction weighted Muirhead mean (PFIWMM)
operator. Section 4 extends the DMM to aggregating Pythagorean fuzzy information and develops
the Pythagorean fuzzy interaction dual Muirhead mean (PFIDMM) operator and the Pythagorean
fuzzy interaction weighted dual Muirhead mean (PFIDWMM) operator. Section 5 develops a novel
approach to MAGDM with Pythagorean fuzzy information based on the proposed operators. Section 6
provides a numerical example to illustrate the performance of the proposed method and the final
section summarizes the whole paper.

2. Basic Concepts

In this section, we briefly review the concepts of IFS, PFS, and MM.

2.1. IFS and PFS

Definition 1 [3]. An intuitionistic fuzzy set A with an object X is defined as follows:

A = {〈x, μA(x), vA(x)〉 |x ∈ X} (1)

where μA(x) and vA(x) represent the membership and non-membership degrees respectively, satisfying μA(x) ∈
[0, 1], vA(x) ∈ [0, 1] and μA(x) + vA(x) ∈ [0, 1], ∀x ∈ X. For convenience, (μA(x) , vA(x)) is called an
intuitionistic fuzzy number (IFN), which can be denoted by α = (μ, v).

Yager [16] extended Atanassov’s IFS and proposed the PFS.

Definition 2 [16]. A Pythagorean fuzzy set P with an object X is defined as follows:

P =
{〈

x, μp(x), vp(x)
〉∣∣x ∈ X

}
, (2)

where μp(x) and vp(x) are the membership degree the non-membership degree respectively, satisfying μp(x) ∈
[0, 1], vp(x) ∈ [0, 1] and (μP(x))2 + (vP(x))2 ≤ 1, ∀x ∈ X. Then the hesitancy degree of P is defined as

πP(x) =
√

1− (μP(x))2 − (vP(x))2, ∀x ∈ X. For convenience,
(
μp(x), vp(x)

)
is called a PFN, which can

be denoted by p = (μP, vP).

To compare two PFNs, Zhang and Xu [18] proposed a comparison law.
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Definition 3 [18]. Let p = (μ, v) be a PFN, then the score function of p is defined as S(p) = μ2 − v2. For
any two PFNs, p1 = (μ1, v1) and p2 = (μ2, v2), if S(p1) > S(p2), then p1 > p2; if S(p1) = S(p2), then
p1 = p2.

Moreover, Zhang and Xu [18] proposed some operations for PFNs.

Definition 4 [18]. Let p = (μ, v), p1 = (μ1, v1) and p2 = (μ2, v2) be any three PFNs, and λ be a positive
real number, then

(1) p1 ⊕ p2 =
(√

μ2
1 + μ2

2 − μ2
1μ2

2, v1v2

)
,

(2) p1 ⊗ p2 =
(

μ1μ2,
√

v2
1 + v2

2 − v2
1v2

2

)
,

(3) λp =

(√
1− (1− μ2)

λ, vλ

)
,

(4) pλ =

(
μλ,

√
1− (1− v2)

λ
)

.

However, the operational laws shown above cannot reflect the correlations between membership
degrees and non-membership degrees. Thus, Wei [38] proposed some interaction operations for PFNs
that are shown as the following.

Definition 5 [38]. Let p = (μ, v),p1 = (μ1, v1) and p2 = (μ2, v2) be any of the three PFNs, and λ be any
positive real number, then

(1) p1 ⊕ p2 =
(√

1− (1− μ2
1
)(

1− μ2
2
)
,
√(

1− μ2
1
)(

1− μ2
2
)− (1− μ2

1 − v2
1
)(

1− μ2
2 − v2

2
))

,

(2) p1 ⊗ p2 =
(√(

1− v2
1
)(

1− v2
2
)− (1− μ2

1 − v2
1
)(

1− μ2
2 − v2

2
)
,
√

1− (1− v2
1
)(

1− v2
2
))

,

(3) λp =

(√
1− (1− μ2)

λ,
√
(1− μ2)

λ − (1− μ2 − v2)
λ
)

,

(4) pλ =

(√
(1− v2)

λ − (1− μ2 − v2)
λ,
√

1− (1− v2)
λ
)

.

2.2. The Muirhead Mean

The MM was introduced by Muirhead [35] for crisp numbers. The prominent advantage of the
MM is that it can capture interrelationships among all of the aggregated arguments.

Definition 6 [35]. Let ai(i = 1, 2, · · · , n) be a collection of crisp numbers and R = (r1, r2, . . . , rn) ∈ Rn be a
vector of parameters, then the MM can be defined as

MMR(a1, a2, . . . , an) =

(
1
n! ∑

ϑ∈Sn

n

∏
j=1

a
rj
ϑ(j)

) 1
n
∑

j=1
rj

(3)

where ϑ(j)(j = 1, 2, · · · , n) is any permutation of (1, 2, . . . , n), Sn is the collection of ϑ(j)(j = 1, 2, · · · , n).

Liu and Li [36] proposed the dual operator of MM, which is called the DMM operator.

Definition 7 [36]. Let ai(i = 1, 2, · · · , n) be a collection of crisp numbers and P = (p1, p2, · · · , pn) ∈ Rn be
a vector of parameters. If

DMMP(a1, a2, . . . , an) =
1

n
∑

j=1
pj

(
∏

ϑ∈Sn

n

∑
j=1

(
pjaϑ(j)

)) 1
n!

(4)
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Then DMMP is called the DMM, where ϑ(j)(j = 1, 2, · · · , n) is any permutation of (1, 2, . . . , n) and Sn is
the collection of ϑ(j)(j = 1, 2, · · · , n).

3. The Pythagorean Fuzzy Interaction Muirhead Mean and the Pythagorean Fuzzy Interaction
Weighted Muirhead Mean

In this section, we extend the MM to Pythagorean fuzzy environment and propose some new
Pythagorean fuzzy aggregation operators.

3.1. The Pythagorean Fuzzy Interaction Muirhead Mean

Definition 8 . Let pi(i = 1, 2, . . . , n) be a collection of PFNs and R = (r1, r2, . . . , rn) ∈ Rn be a vector of
parameters. If

PFIMMR(p1, p2, . . . , pn) =

(
1
n! ∑

ϑ∈Sn

n

∏
j=1

p
rj
ϑ(j)

) 1
n
∑

j=1
rj

(5)

then PFIMMR is called the PFIMM, where ϑ(j)(j = 1, 2, · · · , n) is any a permutation of (1, 2, · · · , n), and
Sn is the collection of ϑ(j)(j = 1, 2, · · · , n).

According to the interaction operations for PFNs presented in Definition 5, the following theorem
can be obtained.

Theorem 1. Let pi = (μi, vi)(i = 1, 2, · · · , n) be a collection of PFNs, the aggregated value by using the
PFIMM is still a PFN and

PFIMMR(p1, p2, . . . , pn) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝1− ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

⎞⎟⎠
1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

,

⎛⎜⎜⎝1−

⎛⎜⎝1− ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

(
n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

⎞⎟⎠
1

n
∑

j=1
rj

⎞⎟⎟⎠
1
2
⎞⎟⎟⎟⎟⎠

(6)

Proof. According to the Definition 5, we have

p
rj
ϑ(j) =

(√(
1− v2

ϑ(j)

)rj −
(

1− μ2
ϑ(j) − v2

ϑ(j)

)rj
,

√
1−

(
1− v2

ϑ(j)

)rj

)
(7)

and,
n

∏
j=1

p
rj
ϑ(j) =

⎛⎝√√√√ n

∏
j=1

(
1− v2

ϑ(j)

)rj −
n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
,

√√√√1−
n

∏
j=1

(
1− v2

ϑ(j)

)rj

⎞⎠ (8)
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Then,

∑
ϑ∈Sn

n
∏
j=1

p
rj
ϑ(j) =

⎛⎝√√√√1− ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj

)
,

√√√√ ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj

)
− ∏

ϑ∈Sn

(
n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj

)⎞⎠
(9)

Further,

1
n! ∑

ϑ∈Sn

n
∏
j=1

p
rj
ϑ(j) =

⎛⎜⎝
√√√√1− ∏

ϑ∈Sn

(
1− n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

,

√√√√ ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

− ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

⎞⎟⎠
(10)

Moreover,

(
1
n! ∑

ϑ∈Sn

n
∏
j=1

p
rj
ϑ(j)

) 1
n
∑

j=1
rj

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝1− ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

⎞⎟⎠
1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

,

⎛⎜⎜⎝1−

⎛⎜⎝1− ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

⎞⎟⎠
1

n
∑

j=1
rj

⎞⎟⎟⎠
1
2
⎞⎟⎟⎟⎟⎠

(11)

Hence, Equation (6) is maintained.
For convenience, let

μ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝1− ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

⎞⎠
1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
2

and

v =

⎛⎜⎜⎝1−
⎛⎝1− ∏

ϑ∈Sn

(
1−

n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

+ ∏
ϑ∈Sn

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

⎞⎠
1

n
∑

j=1
rj

⎞⎟⎟⎠
1
2

Evidently,
0 ≤ μϑ(j) ≤ 1, 0 ≤ vϑ(j) ≤ 1, 0 ≤ μ2

ϑ(j) + v2
ϑ(j) ≤ 1, (12)

and,

0 ≤
n

∏
j=1

(
1− v2

ϑ(j)

)rj ≤ 1, and 0 ≤
n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj ≤ 1. (13)
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Then,

0 ≤ 1−
(

n

∏
j=1

(
1− v2

ϑ(j)

)rj −
n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj

)
≤ 1 (14)

Further,

0 ≤ 1−
n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj ≤ 1 (15)

and,

0 ≤ ∏
ϑ∈Sn

(
1−

n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

≤ 1, 0 ≤ ∏
ϑ∈Sn

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

≤ 1. (16)

Moreover,

0 ≤
⎛⎝1− ∏

ϑ∈Sn

(
1−

n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

+ ∏
ϑ∈Sn

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

⎞⎠
1

n
∑

j=1
rj ≤ 1 (17)

and,

0 ≤ ∏
ϑ∈Sn

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj ≤ 1 (18)

Therefore,

0 ≤

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝1− ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

⎞⎠
1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
2

≤ 1

Therefore, 0 ≤ μ ≤ 1. Similarly, we can get 0 ≤ v ≤ 1.
Then,

μ2 + v2 = 1− ∏
ϑ∈Sn

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj

We have proved that

0 ≤ ∏
ϑ∈Sn

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

≤ 1

Thus,

0 ≤ ∏
ϑ∈Sn

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj ≤ 1, and 0 ≤ 1− ∏

ϑ∈Sn

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj ≤ 1

Therefore, 0 ≤ μ2 + v2 ≤ 1, which completes the proof. �

Moreover, the PFIMM has the following properties.
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Theorem 2. (Idempotency) If all of the pi(i = 1, 2, · · · , n) are equal, i.e., pi = p = (μ, v), then

PFIMMR(p1, p2, · · · , pn) = p (19)

Proof. According to Theorem 1, we can get

PFIMMR(p, p, · · · , p)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝1− ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− v2)rj +

n
∏
j=1

(
1− μ2 − v2)rj

) 1
n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2 − v2) rj

n!

⎞⎠
1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2 − v2)

rj

n!
n
∑

j=1
rj

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
2

,

⎛⎜⎜⎝ 1−
⎛⎝1− ∏

ϑ∈Sn

(
1− n

∏
j=1

(
1− v2)rj +

n
∏
j=1

(
1− μ2 − v2)rj

) 1
n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2 − v2) rj

n!

⎞⎠
1

n
∑

j=1
rj

⎞⎟⎟⎠
⎞⎟⎟⎠

1
2
⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
√√√√√√√
⎛⎜⎜⎝1− ∏

ϑ∈Sn

⎛⎝1− (1− v2)

n
∑

j=1
rj
+ (1− μ2 − v2)

n
∑

j=1
rj

⎞⎠
1
n!

+ ∏
ϑ∈Sn

(1− μ2 − v2)

n
∑

j=1
rj

n!

⎞⎟⎟⎠
1

n
∑

j=1
rj

− ∏
ϑ∈Sn

(1− μ2 − v2)
1
n! ,

√√√√√√√1−

⎛⎜⎜⎝1− ∏
ϑ∈Sn

⎛⎝1− (1− v2)

n
∑

j=1
rj
+ (1− μ2 − v2)

n
∑

j=1
rj

⎞⎠
1
n!

+ ∏
ϑ∈Sn

(1− μ2 − v2)

n
∑

j=1
rj

n!

⎞⎟⎟⎠
1

n
∑

j=1
rj

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
√√√√√√
⎛⎝1−

⎛⎝1− (1− v2)

n
∑

j=1
rj
+ (1− μ2 − v2)

n
∑

j=1
rj

⎞⎠+ (1− μ2 − v2)

n
∑

j=1
rj

⎞⎠
1

n
∑

j=1
rj −

⎛⎝(1− μ2 − v2)

n
∑

j=1
rj

⎞⎠
1

n
∑

j=1
rj

,

√√√√√√1−
⎛⎝1−

⎛⎝1− (1− v2)

n
∑

j=1
rj
+ (1− μ2 − v2)

n
∑

j=1
rj

⎞⎠+ (1− μ2 − v2)

n
∑

j=1
rj

⎞⎠
1

n
∑

j=1
rj

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
√√√√√√
⎛⎝(1− v2)

n
∑

j=1
rj

⎞⎠
1

n
∑

j=1
rj −

⎛⎝(1− μ2 − v2)

n
∑

j=1
rj

⎞⎠
1

n
∑

j=1
rj

,

√√√√√√1−
⎛⎝(1− v2)

n
∑

j=1
rj

⎞⎠
1

n
∑

j=1
rj

⎞⎟⎟⎟⎠
=
(√

(1− v2)− (1− μ2 − v2),
√

1− (1− v2)
)
=
(√

μ2,
√

v2
)
= (μ, v).

The parameter vector R of PFIMM plays an important role in the final result. In the following, we
explore some special cases of PFIMM. �

Case 1: If R = (1, 0, . . . , 0), then the PFIMM is reduced to the following

PFIMM(1,0,0,...,0)(p1, p2, · · · , pn) =

⎛⎝
√√√√1−

n

∏
j=1

(
1− μ2

i
) 1

n

,

√√√√ n

∏
j=1

(
1− μ2

i
) 1

n

−
n

∏
j=1

(
1− μ2

i − v2
i
) 1

n

⎞⎠ =
1
n

n

∑
i=1

pi (20)

which is the Pythagorean fuzzy interaction averaging (PFIA) operator.
Case 2: If R = (λ, 0, . . . , 0), then the PFIMM is reduced to the following

PFIMM(λ,0,0,...,0)(p1, p2, . . . , pn) =

⎛⎜⎜⎜⎝
√√√√√√
⎛⎜⎝1−

(
1− n

∏
j=1

(
1− v2

i

)λ
+

n
∏
j=1

(
1− μ2

i − v2
i

)λ

) 1
n
⎞⎟⎠

1
λ

− n
∏
j=1

(
1− μ2

i − v2
i

) 1
n

,

√√√√√√1−

⎛⎜⎝1−
(

1− n
∏
j=1

(
1− v2

i

)λ
+

n
∏
j=1

(
1− μ2

i − v2
i

)λ

) 1
n

+
n
∏
j=1

(
1− μ2

i − v2
i

) λ
n

⎞⎟⎠
1
λ

⎞⎟⎟⎟⎠ =

(
1
n

n
∑

i=1
pi

λ

) 1
λ

,

(21)
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which is the generalized Pythagorean fuzzy interaction averaging (GPFIA) operator.
Case 3: If R = (1, 1, 0, 0, · · · , 0), then the PFIMM is reduced to the following

PFIMM(1,1,0,0,...,0)(p1, p2, . . . , pn) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝1− n
∏

i,j=1
i �=j

(
1− (1− v2

i

)(
1− v2

j

)
+
(

1− μ2
i − v2

j

)(
1− μ2

j − v2
j

)) 1
n(n−1)

+
n
∏

i,j=1
i �=j

((
1− μ2

i − v2
j

)(
1− μ2

j − v2
j

)) 1
n(n−1)

⎞⎟⎠
1
2

− n
∏

i,j=1
i �=j

((
1− μ2

i − v2
j

)(
1− μ2

j − v2
j

)) 1
2n(n−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

,

⎛⎜⎜⎝1−

⎛⎜⎝1− n
∏

i,j=1
i �=j

(
1− (1− v2

i

)(
1− v2

j

)
+
(
1− μ2

i − v2
i

)(
1− μ2

j − v2
j

)) 1
n(n−1) +

n
∏

i,j=1
i �=j

((
1− μ2

i − v2
i

)(
1− μ2

j − v2
j

)) 1
n(n−1)

⎞⎟⎠
1
2
⎞⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎠

=

⎛⎜⎝ 1
n(n−1)

n
∑

i,j=1
i �=j

pi pj

⎞⎟⎠
1
2

,

(22)

which is the Pythagorean fuzzy interaction BM (PFIBM) operator.

Case 4: If R =

⎛⎜⎝ k︷ ︸︸ ︷
1, 1, · · · , 1,

n−k︷ ︸︸ ︷
0, 0, · · · , 0

⎞⎟⎠, then the PFIMM is reduced to the following

PFIMM

⎛⎜⎜⎜⎝
k︷ ︸︸ ︷

1, 1, · · · , 1,

n−k︷ ︸︸ ︷
0, 0, · · · , 0

⎞⎟⎟⎟⎠
(p1, p2, . . . , pn) =⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
⎛⎝1− ∏

1≤i1≺···≺ik≤n

(
1− k

∏
j=1

(
1− vij

)2
+

n
∏
j=1

(
1− μij − vij

)2
) 1

Ck
n
+ ∏

1≤i1≺···≺ik≤n

n
∏
j=1

(
1− μij − vij

) 2
Ck

n

⎞⎠
1
k

− ∏
1≤i1≺···≺ik≤n

n
∏
j=1

(
1− μij − vij

) 2
kCk

n

⎞⎟⎟⎟⎟⎟⎠

1
2

,

⎛⎜⎜⎝1−
⎛⎝1− ∏

1≤i1≺···≺ik≤n

(
1− k

∏
j=1

(
1− vij

)2
+

n
∏
j=1

(
1− μij − vij

)2
) 1

Ck
n
+ ∏

1≤i1≺···≺ik≤n

n
∏
j=1

(
1− μij − vij

) 2
Ck

n

⎞⎠
1
k

⎞⎟⎟⎠
1
2
⎞⎟⎟⎟⎠

=

⎛⎜⎝ ⊕
1≤i1≺...≺ik≤n

k⊗
j=1

pij

Ck
n

⎞⎟⎠
1
k

,

(23)

which is the Pythagorean fuzzy interaction Maclaurin symmetric mean (PFIMSM) operator.
Case 5: If R = (1, 1, · · · , 1), then the PFIMM is reduced to the following

PFIMM(1,1,··· ,1)(p1, p2, · · · , pn) =

(√
n

∏
i=1

(
1− v2

i
) 1

n −
n

∏
i=1

(
1− μ2

i − v2
i
) 1

n ,

√
1−

n

∏
i=1

(
1− v2

i
) 1

n

)
=

(
n

∏
i=1

pi

) 1
n

(24)

which is the Pythagorean fuzzy interaction geometric averaging (PFIGA) operator.
Case 6: If R = (1/n, 1/n, . . . , 1/n), then the PFIMM is reduced to the PFIGA operator, which is shown
as Equation (24).

3.2. The Pythagorean Fuzzy Interaction Weighted Muirhead Mean

Evidently, the main drawback of the PFIMM is that it cannot take the weights of arguments into
consideration. Therefore, we propose the PFIWMM.
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Definition 9 . Let pi = (μi, vi)(i = 1, 2, · · · , n) be a collection of PFNs, w = (w1, w2, · · · , wn)
T be the

weight vector of pi(i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and
n
∑

i=1
wi = 1. Let R = (r1, r2, . . . , rn) ∈ Rn be a

vector of parameter. If

PFIWMMR(r1, r2, . . . , rn) =

(
1
n! ∑

ϑ∈Sn

n

∏
j=1

(
nwϑ(j)pϑ(j)

)rj

) 1
n
∑

j=1
rj

(25)

then we call PFIWMMR the PFIWMM operator, where ϑ(j) = (j = 1, 2, . . . , n) is any a permutation of
(1, 2, . . . , n), and Sn is the collection of all permutations of (1, 2, . . . , n).

According to Definition 5, we can get the following theorem.

Theorem 3. Let pi = (μi, vi)(i = 1, 2, · · · , n) be a collection of PFNs, then the aggregated value by the
PFIWMM is still a PFN and

PFIWMMR(p1, p2, · · · , pn) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
1− ∏

ϑ∈Sn

(
1− n

∏
j=1

(
1−

(
1− μ2

ϑ(j)

)nwϑ(j)
+
(

1− μ2
ϑ(j) − v2

ϑ(j)

)nwϑ(j)
)rj

+
n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)nwϑ(j) rj

) 1
n!

+

∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) nwϑ(j)rj
n!

⎞⎟⎟⎟⎟⎟⎠

1
n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) nwϑ(j)rj

n!
n
∑

j=1
rj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

,

⎛⎜⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎜⎝
1−

(
∏

ϑ∈Sn

(
1− n

∏
j=1

(
1−

(
1− μ2

ϑ(j)

)nwϑ(j)
+
(

1− μ2
ϑ(j) − v2

ϑ(j)

)nwϑ(j)
)rj

+
n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)nwϑ(j) rj

)) 1
n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) nwϑ(j)rj
n!

⎞⎟⎟⎟⎟⎟⎠

1
n
∑

j=1
rj

⎞⎟⎟⎟⎟⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)

The proof of Theorem 3 is similar to that of Theorem 1, which is omitted here in order to save space.

4. The Pythagorean Fuzzy Interaction Dual Muirhead Mean and the Pythagorean Fuzzy
Interaction Weighted Dual Muirhead Mean

4.1. The Pythagorean Fuzzy Interaction Dual Muirhead Mean Operator

Definition 10 . Let pi = (μi, vi)(i = 1, 2, · · · , n) be a collection of PFNs, and R = (r1, r2, . . . , rn) ∈ Rn be a
vector of parameters. If

PFIDMMR(p1, p2, · · · , pn) =
1

n
∑

j=1
rj

(
∏

ϑ∈Sn

n

∑
j=1

(
rj pϑ(j)

)) 1
n!

(27)

then we call PFIDMMR the PFIDMM operator, where ϑ(j) = (j = 1, 2, . . . , n) is any a permutation of
(1, 2, . . . , n) and Sn is the collection of all permutations of (1, 2, . . . , n).

Theorem 4. Let pi = (μi, vi)(i = 1, 2, . . . , n) be a collection of all permutations of PFNs, the aggregated value
by the PFIDMM is also a PFN and
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PFIDMMR(p1, p2, · · · , pn) =⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎝1−

⎛⎜⎝1− ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− μ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

⎞⎟⎠
1

n
∑

j=1
rj

⎞⎟⎟⎠
1
2

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝1− ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− μ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

⎞⎟⎠
1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(28)

Proof. According to the operational laws of PFNs in Definition 5, we can get

rj pϑ(j) =

(√
1−

(
1− μ2

ϑ(j)

)rj
,

√(
1− μ2

ϑ(j)

)rj −
(

1− μ2
ϑ(j) − v2

ϑ(j)

)rj

)
(29)

and,
n

∑
j=1

(
rj pϑ(j)

)
=

⎛⎝√√√√1−
n

∏
j=1

(
1− μ2

ϑ(j)

)rj ,

√√√√ n

∏
j=1

(
1− μ2

ϑ(j)

)rj −
n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj

⎞⎠ (30)

Therefore,

∏
ϑ∈Sn

n
∑

j=1

(
rj pϑ(j)

)
=

⎛⎝√√√√ ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− μ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
)
− ∏

ϑ∈Sn

(
n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
)

,√√√√1− ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− μ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
)⎞⎠.

(31)

Further,

(
∏

ϑ∈Sn

n
∑

j=1

(
rj pϑ(j)

)) 1
n!

=⎛⎜⎝
√√√√ ∏

ϑ∈Sn

(
1− n

∏
j=1

(
1− μ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

− ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

,

√√√√1− ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− μ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

⎞⎟⎠.

(32)

Therefore,

1
n
∑

j=1
rj

(
∏

ϑ∈Sn

n
∑

j=1

(
rj pϑ(j)

)) 1
n!

=

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎝1−

⎛⎜⎝1− ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− μ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

⎞⎟⎠
1

n
∑

j=1
rj

⎞⎟⎟⎠
1
2

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝1− ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− μ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

⎞⎟⎠
1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(33)
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Therefore, Equation (28) is kept.
In the following, we prove the aggregated value is a PFN. For convenience, let

μ =

⎛⎜⎜⎝1−

⎛⎜⎝1− ∏
ϑ∈Sn

(
1−

n

∏
j=1

(
1− μ2

ϑ(j)

)rj
+

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

⎞⎟⎠
1

n
∑

j=1
rj

⎞⎟⎟⎠
1
2

v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝1− ∏
ϑ∈Sn

(
1− n

∏
j=1

(
1− μ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

⎞⎟⎠
1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

.

Evidently,
μϑ(j) ∈ [0, 1], vϑ(j) ∈ [0, 1], 0 ≤ μ2

ϑ(j) + v2
ϑ(j) ≤ 1. (34)

Therefore,

0 ≤
(

1− μ2
ϑ(j)

)rj ≤ 1, 0 ≤
(

1− v2
ϑ(j)

)rj ≤ 1, 0 ≤
(

1− μ2
ϑ(j) − v2

ϑ(j)

)rj ≤ 1 (35)

Further,
0 ≤

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj ≤ 1, 0 ≤
n

∏
j=1

(
1− μ2

ϑ(j)

)rj −
n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj ≤ 1. (36)

Thus,
0 ≤ 1−

n

∏
j=1

(
1− μ2

ϑ(j)

)rj
+

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj ≤ 1. (37)

Further,

0 ≤ ∏
ϑ∈Sn

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n! ≤ 1,0 ≤ ∏

ϑ∈Sn

(
1−

n

∏
j=1

(
1− μ2

ϑ(j)

)rj
+

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

≤ 1. (38)

Moreover,

0 ≤

⎛⎜⎝1− ∏
ϑ∈Sn

(
1−

n

∏
j=1

(
1− μ2

ϑ(j)

)rj
+

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

⎞⎟⎠ ≤ 1. (39)

Therefore,

0 ≤ 1−

⎛⎜⎝1− ∏
ϑ∈Sn

(
1−

n

∏
j=1

(
1− μ2

ϑ(j)

)rj
+

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

⎞⎟⎠
1

n
∑

j=1
rj ≤ 1 (40)

i.e., 0 ≤ μ ≤ 1. Similarly, we can get 0 ≤ v ≤ 1.
Moreover,

μ2 + v2 = 1− ∏
ϑ∈Sn

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj

(41)

As we have proved that

0 ≤ ∏
ϑ∈Sn

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj
n!

≤ 1 (42)
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Therefore,

∏
ϑ∈Sn

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj

, 0 ≤ 1− ∏
ϑ∈Sn

n

∏
j=1

(
1− μ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj ≤ 1. (43)

Therefore, 0 ≤ μ2 + v2 ≤ 1, which completes the proof. �

Moreover, the PFIDMM has the following properties.

Theorem 5. (Idempotency) If all pi = (i = 1, 2, . . . , n) are equal, i.e., pi = p = (μ, v), then

PFIDMMR = (p1, p2, . . . , pn) = p (44)

In the following, we investigate some special cases of PFIDMM with respect to R.
Case 1: If R = (1, 0, · · · , 0), the PFIDMM is reduced to the following

PFIDMM(1,0,··· ,0)(p1, p2, . . . , pn) =

⎛⎝
√√√√ n

∏
j=1

(
1− v2

i
) 1

n

−
n

∏
j=1

(
1− μ2

i − v2
i
) 1

n

,

√√√√1−
n

∏
j=1

(
1− v2

i
) 1

n

⎞⎠ (45)

which is the Pythagorean fuzzy interaction arithmetic averaging operator.
Case 2: If R = (λ, 0, · · · , 0), the PFIDMM is reduced to the following

PFIDMM(λ,0,··· ,0)(p1, p2, . . . , pn) =

⎛⎜⎜⎜⎝
√√√√√√1−

⎛⎜⎝1−
(

1− n
∏
j=1

(
1− μ2

i

)λ
+

n
∏
j=1

(
1− μ2

i − v2
i

)λ

) 1
n

+
n
∏
j=1

(
1− μ2

i − v2
i

) λ
n

⎞⎟⎠
1
λ

,

√√√√√√
⎛⎜⎝1−

(
1− n

∏
j=1

(
1− μ2

i

)λ
+

n
∏
j=1

(
1− μ2

i − v2
i

)λ

) 1
n
⎞⎟⎠

1
λ

− n
∏
j=1

(
1− μ2

i − v2
i

) 1
n

⎞⎟⎟⎟⎠,

(46)

which is the Pythagorean fuzzy interaction generalized arithmetic averaging operator.
Case 3: If R = (1, 1, 0, 0, · · · , 0), the PFIDMM is reduced to the following

PFIDMM(1,1,0,0,··· ,0)(p1, p2, . . . , pn) =⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎝
⎛⎜⎜⎝1−

⎛⎜⎝1− n
∏
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i �=j
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i

)(
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j

)
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i − v2
i

)(
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j

)) 1
n(n−1) +

n
∏

i,j=1
i �=j

((
1− μ2

i − v2
i

)(
1− μ2

j − v2
j

)) 1
n(n−1)

⎞⎟⎠
1
2
⎞⎟⎟⎠

1
2

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝1− n
∏

i,j=1
i �=j

(
1− (1− μ2

i

)(
1− μ2

j

)
+
(

1− μ2
i − v2

j

)(
1− μ2

j − v2
j

)) 1
n(n−1)

+
n
∏

i,j=1
i �=j

((
1− μ2

i − v2
j

)(
1− μ2

j − v2
j

)) 1
n(n−1)

⎞⎟⎠
1
2

− n
∏

i,j=1
i �=j

((
1− μ2

i − v2
j

)(
1− μ2

j − v2
j

)) 1
2n(n−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(47)

which is the Pythagorean fuzzy interaction arithmetic BM operator.

Case 4: If R =

⎛⎜⎝ k︷ ︸︸ ︷
1, 1, · · · , 1,

n−k︷ ︸︸ ︷
0, 0, · · · , 0

⎞⎟⎠, the PFIDMM is reduced to the following
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PFIDMM

⎛⎜⎜⎜⎝
k︷ ︸︸ ︷

1, 1, · · · , 1,

n−k︷ ︸︸ ︷
0, 0, · · · , 0
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(
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+

n
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(
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) 1

Ck
n + ∏

1≤i1≺···≺ik≤n

n
∏

j=1

(
1− μij

− vij

) 2
Ck

n

⎞⎟⎠
1
k

− ∏
1≤i1≺···≺ik≤n
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) 2
kCk
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⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(48)

which is the Pythagorean fuzzy interaction Maclaurin symmetric mean operator.
Case 5: If R = (1, 1, · · · , 1), the PFIDMM is reduced to the following

PFIDMM(1,1,··· ,1)(p1, p2, . . . , pn) =

(√
1−

n

∏
i=1

(
1− μ2

i

) 1
n ,

√
n

∏
i=1

(
1− μ2

i

) 1
n −

n

∏
i=1

(
1− μ2

i − v2
i

) 1
n

)
(49)

which is the Pythagorean fuzzy interaction arithmetic averaging operator.
Case 6: If R =

(
1
n , 1

n , · · · , 1
n

)
, the PFIDMM is reduced to the Pythagorean fuzzy interaction arithmetic

averaging operator, which is shown as Equation (49).

4.2. The Pythagorean Fuzzy Interaction Dual Weighted Muirhead Mean Operator

In the following, we introduce the PFIDWMM operator so as to consider the weights vector of the
attribute values.

Definition 11 . Let pi = (μi, vi)(i = 1, 2, · · · , n) be a collection of PFNs, w = (w1, w2, · · · , wn)
T be the

weight vector of pi(i = 1, 2, · · · , n), which satisfies wi ∈ [0, 1] and
n
∑

i=1
wi = 1, and let R = (r1, r2, . . . , rn) ∈

Rn be a vector of parameters. If

PFIDWMMR(p1, p2, . . . , pn) =
1

n
∑

j=1
rj

(
∏

ϑ∈Sn

n

∑
j=1

(
rj pϑ(j)

nwϑ(j)
)) 1

n!

(50)

then we call PFIDWMMR the PFIDWMM operator, where ϑ(j) = (j = 1, 2, . . . , n) is any a permutation of
(1, 2, . . . , n), and Sn is the collection of all permutations of (1, 2, . . . , n).

Theorem 6. Let pi = (μi, vi)(i = 1, 2, · · · , n) be a collection of PFNs, we can see that the aggregation result
from by the PFIDWMM is still a PFN, it can be obtained as follows:

PFIDWMMR(p1, p2, . . . , pn) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎝
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1
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.

(51)
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Proof. Because p
nwϑ(j)
ϑ(j) =

(√(
1− v2

ϑ(j)

)nwϑ(j) −
(

1− μ2
ϑ(j) − v2

ϑ(j)

)nwϑ(j)
,
√

1−
(

1− v2
ϑ(j)

)nwϑ(j)
)

, we

can replace μϑ(j) in Equation (28) with
√
(1− v2)

nwϑ(j) − (1− μ2 − v2)
nwϑ(j) , and vϑ(j) in Equation (28)

with
√

1− (1− v2)
nwϑ(j) , then we can get Equation (51).

Because pϑ(j) is a PFN, p
nwϑ(j)
ϑ(j) is also a PFN. By Equation (28), we have

PFIDWMMR(p1, p2, . . . , pn) is a PFN.
Just the same as the PFIDMM operator, the PFIDWMM operator still does not have the

monotonicity and the boundedness. �

Theorem 7. The PFIDMM operator is a special case of the PFIDWMM operator.

Proof. When w =
(

1
n , 1

n , · · · , 1
n

)
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= PFIDMMR(p1, p2, . . . , pn).

5. A Novel Approach to MAGDM with Pythagorean Fuzzy Information

Based on the proposed operators, this section provides a novel approach to MAGDM problems
in which attribute values take the form of PFNs and the weights of attributes take the form of crisp
numbers. The description of a typical MAGDM problem with Pythagorean fuzzy information is
shown as follows. Let X = {x1, x2, · · · , xm} be a set of alternatives and G = {G1, G2, · · · , Gn} be
a set of attributes with the weights vector being w = (w1, w2, · · · , wn)

T , satisfying wi ∈ [0, 1] and
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n
∑

i=1
wi = 1. For attribute Gj(j = 1, 2, · · · , n) of alternative xi(i = 1, 2, . . . , m), a PFN pij =

(
μij, vij

)
(i = 1, 2, · · · , m; j = 1, 2, · · · , n) is utilized to represent decision makers’ preference information, in
which μij denotes that degree that alternative xi satisfies the criteria Gj and vij represents the degree
that alternative xi dissatisfies the criteria Gj. Therefore, we can get a Pythagorean fuzzy decision matrix
finally, which and be denoted by P =

(
pij
)

m×n. In the followings, we introduce an algorithm to solve
this problem based on the proposed operators.

Step 1. Standardized the original decision matrix. In real decision-making problems, there exists
two kinds of attributes: benefit attributes and cost attributes. Therefore, the original decision
matrix should be normalized by

pij =

{ (
μij, vij

)(
vij, μij

) Gj ∈ I1

Gj ∈ I2
(52)

where I1 represents benefit attributes and I2 represents cost attributes.
Step 2. For alternative xi(i = 1, 2, . . . , m), utilize the PFIWMM operator

pi = PFIWMMR(pi1, pi2, · · · , pin) (53)

or the PFIDWMM operator

pi = PFIDWMMR(pi1, pi2, · · · , pin) (54)

to aggregate all the attributes values, so that a series of comprehensive preference value can
be obtained.

Step 3. Rank the overall values pi(i = 1, 2, . . . , m) based on their scores according to Definition 3.
Step 4. Rank the corresponding alternatives according to the rank of overall values and select the

best alternative.

6. Numerical Example

In the following, we provide a numerical example that is adopted from [21] to illustrate the
application of the proposed method. In order to know the best airline in Taiwan, the civil aviation
administration of Taiwan (CAAT) organizes several experts to form a committee to assess the four
major domestic airlines. The four airlines are the UNI Air (x1), Transasia (x2), Mandarin (x3), and
Daily Air (x4).The alternatives are assessed from four attributes: (1) the booking and ticketing service
(G1); (2) the check-in and boarding process (G2); (3) the cabin service (G3); (4) the responsiveness (G4).
Weight vector of the attributes is w = (0.15, 0.25, 0.35, 0.25)T . Experts are required to utilize a PFN
pij =

(
μij, vij

)
to express their assessments for attributes Gj(j = 1, 2, 3, 4) of airline xi(i = 1, 2, 3, 4),

and a Pythagorean fuzzy decision matrix P =
(

pij
)

4×4(i, j = 1, 2, 3, 4) is shown in Table 1. In the
following, we will solve this problem based on the proposed method.

Table 1. The Pythagorean fuzzy decision matrix.

G1 G2 G3 G4

x1 (0.9, 0.3) (0.7, 0.6) (0.5, 0.8) (0.6, 0.3)
x2 (0.4, 0.7) (0.9, 0.2) (0.8, 0.1) (0.5, 0.3)
x3 (0.8, 0.4) (0.7, 0.5) (0.6, 0.2) (0.7, 0.4)
x4 (0.7, 0.2) (0.8, 0.2) (0.8, 0.4) (0.6, 0.6)
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6.1. The Decision-Making Process

Step 1. As all of the attribute values are the same type, the original decision matrix does not need to
be standardized.

Step 2. For each alternative, utilize Equation (53) to aggregate the assessments. Here, we assume
R = (1, 1, 1, 1). Therefore, we can obtain

p1 = (0.3895, 0.2816) p2 = (0.3526, 0.1679) p3 = (0.3415, 0.1979) p4 = (0.3588, 0.1878).

Step 3. Based on Definition 3, we can calculate the score function S(pi)(i = 1, 2, 3, 4) as follows

s(p1) = 0.0724 s(p2) = 0.0961 s(p3) = 0.0775 s(p4) = 0.0935.

Therefore, the ranking order of the overall values is p2 > p4 > p3 > p1.
Step 4. According to the ranking order of the overall values, we can get the ranking order of the

corresponding alternatives. That is x2 � x4 � x3 � x1. Therefore, x2 is the best alternative,
which means Transasia is the best airline of Taiwan.

In [14], the ranking results by using the Pythagorean fuzzy weighted averaging (PFWA)
operator, the symmetric Pythagorean fuzzy weighted averaging (SPFWA) operator and the symmetric
Pythagorean fuzzy weighted geometric (SPFWG) operator are also x2 � x4 � x3 � x1, which proves
the validity of the proposed method.

In step 2, if we utilize the PFIWDMM operator to aggregate the decision makers’ preference
information, we can obtain

p1 = (0.3622, 0.3159) p2 = (0.3295, 0.2096) p3 = (0.3439, 0.1938) p4 = (0.3524, 0.1996).

Therefore, the scores of the overall values are

s(p1) = 0.0314 s(p2) = 0.0647 s(p3) = 0.0807 s(p4) = 0.0843

Thus, the ranking order of the alternatives is x4 � x3 � x2 � x1. In Ref [11], the ranking result by
utilizing the Pythagorean fuzzy weighted geometric is also x4 � x3 � x2 � x1, which also illustrate
the validity of the proposed approach.

6.2. Further Discussion

The prominent advantage of the proposed aggregation operators is that the interrelationship
among all PFNs can be taken into consideration. Moreover, it has a parameter vector that leads to
flexible aggregation operators. To show the validity and superiorities of the proposed operators,
we conduct a comparative analysis. We solve the same problem by some existing MAGDM
approaches including the SPFWA and the SPFWG operators in [22], the Pythagorean fuzzy ordered
weighted averaging weighted averaging distance (PFOWAWAD) operator in [22], the Pythagorean
fuzzy point (PFP) operator and generalized Pythagorean fuzzy point ordered weighted averaging
(GPFPOWA) in [23], the Pythagorean fuzzy Einstein ordered weighted averaging (PFEOWA) operator
in [24], the Pythagorean fuzzy Einstein ordered weighted geometric (PFEOWG) operator in [25,26],
the Pythagorean fuzzy weighted Bonferroni mean (PFWBM) operator in [30], the Pythagorean fuzzy
weighted geometric Bonferroni mean (PFWGBM) operator in [31], the generalized Pythagorean
fuzzy weighted Bonferroni mean (GPFWBM) operator and generalized Pythagorean fuzzy Bonferroni
geometric mean (GPFBGM) operator in [32], the dual generalized Pythagorean fuzzy weighted
Bonferroni mean (DGPFWBM) operator and dual generalized Pythagorean fuzzy weighted Bonferroni
geometric mean (DGPFWBGM) operator in [32], the Pythagorean fuzzy weighted Maclaurin
symmetric mean (PFWMSM) operator in [33], the generalized Pythagorean fuzzy weighted Maclaurin
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symmetric mean (GPFWMSM) operator in [34], the Pythagorean fuzzy interaction ordered weighted
averaging (PFIOWA) operator and the Pythagorean fuzzy interaction ordered weighted geometric
(PFIOWG) operator in [38], the Pythagorean fuzzy weighted Muirhead mean (PFWMM) operator,
and Pythagorean fuzzy weighted dual Muirhead mean (PFWDMM) operator [39]. Details can be
found in Table 2.

The approaches in [11–26] are based on a simple weighted averaging operator. The weaknesses of
these approaches are (1) they assume that all the input arguments are independent, which is somewhat
inconsistent with reality; (2) they cannot consider the interrelationship among input arguments;
(3) they cannot capture the interrelationship between membership degree and non-membership
degrees. However, on the contrary, the method in the present paper can capture the interrelationship
among input arguments. In addition, it provides a feasible aggregation process as it has a parameter
vector R. Quite a few existing aggregation operators are special cases of the proposed operators.
Moreover, the method is based on the interaction operations for the PFNs. Thus, the proposed
method can consider the relationship among membership and non-membership degrees. In other
words, the proposed method can effectively handle situations in which a membership degree or a
non-membership degree is zero. Thus, the proposed method is more powerful and flexible than the
methods in [21–26].

Table 2. Comparison of different aggregation operators.

Approaches
Whether Captures
Interrelationship
of Two Attributes

Whether Captures
Interrelationship

of Multiple
Attributes

Whether Captures
Interrelationship
of All Attributes

Whether Captures
Relationship of

Membership and
Non-Membership

Degrees

Whether Makes
the Method

Flexible by the
Parameter Vector

SPFWA [21] No No No No No
SPFWG [21] No No No No No

PFOWAWAD [22] No No No No No
PFP [23] No No No No No

GPFPOWA [23] No No No No No
PFEOWA [24] No No No No No

PFEOWG [25,26] No No No No No
PFWBM [30] Yes No No No No

PFWGBM [31] Yes No No No No
GPFWBM [32] Yes No No No No

GPFWBGM [32] Yes No No No No
DGPFWBM [32] Yes Yes Yes No Yes

DGPFWBGM [32] Yes Yes Yes No Yes
PFWMSM [33] Yes Yes No No No

GPFWMSM [34] Yes Yes No No No
PFIOWA [38] No No No Yes No
PFIOWG [38] No No No Yes No
PFWMM [39] Yes Yes Yes No Yes

PFWDMM [39] Yes Yes Yes No Yes
PFIWMM Yes Yes Yes Yes Yes

PFIWDMM Yes Yes Yes Yes Yes

Approaches in [30,31] are based on BM, so that they consider the interrelationships between
arguments. However, the main flaw is that they can only capture the interrelationship between any
two arguments. Approaches based on GPFWBM and GPFWBGM operators are better than approaches
in [32], as the former approaches can capture the interrelationship between any three approaches.
Approaches in [33,34] can consider the interrelationship among multiple arguments; however, all the
methods [30–34] fail to reflect the interrelationship among all input arguments. Additionally, these
methods do not consider the interrelationship among membership degree and non-membership degree.
The proposed method in this paper not only captures the interrelationship between all input arguments
but also takes the relationship between membership and non-membership degrees.

The approaches in [32] based on the DGPFWBM and GPFWBGM operators are much better than
the methods in [30–34], as they can consider the interrelationship among all arguments. Additionally,
they have vectors of the parameters, leading to a flexible and feasible aggregation process. However,
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the main drawback of these operators is that they do not consider the relationship between membership
degree and non-membership degree. The proposed method in this paper takes the interrelationships of
all arguments into consideration and simultaneously considers the relationship between membership
and non-membership degrees. Thus, our method in this paper is more powerful than the method
based on the DGPFWBM or GPFWBGM operators.

Compared with the approach based on the PFIOWA and PFIOWG operators, the merit of the
proposed approach is that it can reflect the membership and non-membership degrees, as it is based
on the interaction operations for PFNs. However, it cannot reflect of the interrelationship among PFNs.
Moreover, it is not as flexible as the proposed method. In addition, the Pythagorean fuzzy Muirhead
mean operators in [39] are based on basic operational laws, so that the relationship among membership
and non-membership degrees is overlooked. In other words, the operators in [39] do not work for the
situations in which one membership or non-membership degree is equal to one.

All in all, the proposed method in this paper can reflect the interrelationships among all input
arguments. In addition, it works for situations in which a membership degree or a non-membership
degree is zero, leading to less information loss and consequently making decision-making results more
reasonable. Therefore, the proposed method is more powerful and flexible than others.

It is noted that there exists a vector of parameter R in the proposed method. The parameter vector
R plays a significant role in the final ranking results. Some existing Pythagorean fuzzy aggregation
operators are special cases of the proposed operators. By assigning different parameter vectors in the
proposed operators, different overall values as well as the final ranking results can be obtained. Thus,
in the following, we investigate the influence of the vector of parameters R on the score functions and
the ranking results. We assign different values to R in the PFIWMM and PFIWDMM operators, and the
score function and ranking orders are presented in Tables 3 and 4.

Table 3. Ranking results by utilizing the different parameter vector R in the Pythagorean fuzzy
interaction weighted Muirhead mean (PFIWMM) operator.

Parameter Vector R The Scores of s(pi)(i = 1, 2, 3, 4) Ranking Results

R = (1, 0, 0, 0)
s(p1) = 0.0874 s(p2) = 0.2680
s(p3) = 0.1966 s(p4) = 0.2440 x2 � x4 � x3 � x1

R = (1, 1, 0, 0)
s(p1) = 0.1040 s(p2) = 0.1706
s(p3) = 0.1337 s(p4) = 0.1625 x2 � x4 � x3 � x1

R = (1, 1, 1, 0)
s(p1) = 0.0868 s(p2) = 0.1232
s(p3) = 0.0984 s(p4) = 0.1190 x2 � x4 � x3 � x1

R = (1, 1, 1, 1)
s(p1) = 0.0724 s(p2) = 0.0961
s(p3) = 0.0775 s(p4) = 0.0935 x2 � x4 � x3 � x1

R = (2, 0, 0, 0)
s(p1) = 0.1423 s(p2) = 0.2989
s(p3) = 0.1888 s(p4) = 0.2646 x2 � x4 � x3 � x1

As we can see in Table 3, by assigning different vector R to the PFIWMM operator, different
scores of the overall assessments can be obtained. However, the ranking results are always the same.
In addition, the more interrelationships between PFNs are taken into consideration, the smaller the
value of score functions will become. Similarly, as we can see in Table 4, different scores of the overall
assessments are obtained with different parameter vector R in the PFIWDMM operator. Similar to the
PFIWMM operator, the more interrelationships among attributes are taken into account, the smaller
the scores of the overall assessments. However, no matter what the parameter vector is, the ranking
result is always the same. Therefore, the parameter vector can be viewed as the decision makers’
risk preference.
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Table 4. Ranking results by utilizing the different parameter vector R in the PFIWDMM operator.

Parameter Vector R The Scores of s(pi)(i = 1, 2, 3, 4) Ranking Results

R = (1, 0, 0, 0)
s(p1) = 0.2103 s(p2) = 0.2530
s(p3) = 0.2990 s(p4) = 0.3116 x4 � x3 � x2 � x1

R = (1, 1, 0, 0)
s(p1) = 0.0818 s(p2) = 0.1290
s(p3) = 0.1577 s(p4) = 0.1647 x4 � x3 � x2 � x1

R = (1, 1, 1, 0)
s(p1) = 0.0465 s(p2) = 0.0862
s(p3) = 0.1068 s(p4) = 0.1116 x4 � x3 � x2 � x1

R = (1, 1, 1, 1)
s(p1) = 0.0314 s(p2) = 0.0647
s(p3) = 0.0807 s(p4) = 0.0843 x4 � x3 � x2 � x1

R = (2, 0, 0, 0)
s(p1) = 0.0807 s(p2) = 0.1966
s(p3) = 0.3076 s(p4) = 0.3078 x4 � x3 � x2 � x1

7. Conclusions

In the field of aggregation operators, more and more operators have been proposed. However,
some operators do not take the correlations among attributes into consideration, which cannot
satisfy the needs of real decision-making problems. The MM operator can consider the interaction
relationships among any number of attributes with a parameter R. In this paper, we extend the
MM operator to PFNs and propose some new Pythagorean fuzzy operators, including the PFIMM,
PFIWMM, and PFIDWMM operators. These operators can reflect the correlations among all
Pythagorean fuzzy elements. Further, we propose a novel approach to MAGDM by using these
operators. Moreover, in order to show the application of the proposed method in this paper, we provide
a numerical example and the advantages of the new operator are more obvious by comparing the
new operator with the existing ones. Finally, we give the parameter vector R some different values to
discuss the advantages of the new approach on the ranking results of the numerical example. In further
works, we will apply the proposed method in more practical decision-making problems, such as
low carbon supplier selection, hospital-based post-acute care, risk management, medical diagnosis,
and resource evaluation, etc. In addition, we will investigate more aggregation operators for fusing
Pythagorean fuzzy information.
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Abstract: Within the context of increasingly serious global environmental problems, green supplier
assessment has become one of the key links in modern green supply chain management. In the actual
work of green supplier assessment, the information of potential suppliers is often ambiguous or
even absent, and there are interrelationships and feedback-like effects among assessment indexes.
Additionally, the thinking of experts in index importance judgment is always ambiguous and
subjective. To handle the uncertainty and incompleteness in green supplier assessment, we propose
a green supplier assessment method based on rough ANP and evidence theory. The uncertain
index value is processed by membership degree. Trapezoidal fuzzy number is adopted to express
experts’ judgment on the relative importance of the indexes, and rough boundary interval is used
to integrate the judgment opinions of multiple experts. The ANP structure is built to deal with the
interrelationship and feedback-like effects among indexes. Then, the index weight is calculated by
ANP method. Finally, the green suppliers are assessed by a trust interval, based on evidence theory.
The feasibility and effectiveness of the proposed method is verified by an application of a bearing
cage supplier assessment.

Keywords: green supplier; rough ANP; trapezoidal fuzzy number; rough boundary interval;
evidence theory; trust interval

1. Introduction

With the increasing awareness of global environmental protection and the increasing number of
related environmental regulations, manufacturing enterprises are facing more stringent environmental
requirements. Nowadays, green supply chains have become inevitable choices for manufacturing
enterprises who wish to deal with environmental problems. Green supply chain management includes
many links, such as green supplier assessment, green product design, green production, green
marketing and waste recovery [1–3]. Green supplier assessment is in the upstream of the whole
supply chain, and its effect on environmental protection and cost saving can be transmitted to every
part of the downstream through the supply chain.

In the process of green supply chain management, various factors make the relationship between
suppliers and manufacturing enterprises complicated and vague. However, competitors constantly
adjust their strategies, and the supply chain must constantly improve to adapt to the complex
environment which changes rapidly. In this context, green supplier assessment plays a very important
role in reducing costs, and improving product quality and market competitiveness. Through effective
assessment and supervisions of suppliers, problems can be found and solved in time, and the green
and healthy development of the entire supply chain can be promoted [4–9]. It can be seen that
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green supplier assessment plays a decisive role in green supply chain management, which directly
determines the competitiveness of the entire supply chain. The rise of the internet has provided
convenience for manufacturing enterprises to assess green suppliers, but enterprises cannot quickly
choose suppliers which meet their needs in the face of so many uneven suppliers. Considering finances
and the effective utilization of resources, how to assess green supplier quickly and effectively becomes
the key problem in modern green supply chain.

As seen in the present literature, there are many significant works on green supplier assessment.
On the whole, the existing research mainly includes the following aspects.

(1) Supplier assessment models based on Analytic Hierarchy Process (AHP) [10] or Analytic
Network Process (ANP) [11]. Noci [12] used AHP to evaluate supplier’s environmental efficiency.
Lee et al. [13] used the Delphi technique to distinguish the evaluation criterion difference between
the traditional supplier and the green supplier, and then used Fuzzy Analytic Hierarchy
Process (FAHP) to solve the green supplier selection process. Hsu and Hu [14] contained the
interdependence between components of decision structure and used ANP for green supplier
selection which reflected a more realistic result.

(2) Supplier assessment model based on mathematical Programming. Yeh and Chuang [15] put
forward a mathematical programming model of green partner selection, which includes four
goals: cost, time, product quality, and green score. They adopted two multi-objective genetic
algorithms (MOGA) to find a set of Pareto optimal solutions, and used weighted summation
to generate more solutions. Yousefi et al. [16] used Dynamic Data Envelopment Analysis
(D-DEA) and scenario-based robust model for supplier selection. In this supplier selection
model, the shortcomings of the DEA model (the benchmarks were determined based on previous
performance) were overcome, and the disadvantages of the D-DEA model (the decision unit
couldn’t get a unified efficiency score) were avoided.

(3) Supplier assessment model based on Technique for Order Preference by Similarity to an Ideal
Solution (TOPSIS). Awasthi et al. [17] proposed a three-step method for green supplier evaluation:
identification standard, expert score, evaluate expert score by fuzzy TOPSIS. The fuzzy TOPSIS
method integrated profit and cost standard, and this method is suitable for the situation of lack
of partial quantitative information. Kannan and Jabbour [18] used fuzzy TOPSIS to solve the
problem of green supplier selection, and applies three types of fuzzy TOPSIS method to sort
green suppliers.

(4) Other hybrid models for supplier assessment. Gandhi et al. [5] proposed a combined approach
using AHP and Decision-Making and Trial Evaluation Laboratory (DEMATEL) for evaluating
success factors in implementation of green supply chain management and gave a case study
in Indian manufacturing industries. Chatterjee et al. [19] combined DEMATEL and ANP in a
rough context, and then proposed a rough DEMATEL-ANP (R’AMATEL) method to evaluate
the performance of suppliers for green supply chain implementation in electronics industry. Wu
et al. [20] used the Continuous Ordered Weighted Averaging (COWA) operator to transform
the trapezoid fuzzy number into the exact real number to select the green supplier, and make a
sensitivity analysis according to the degree of risk of decision-maker to rank the suppliers. Luo
and Peng [21] proposed a multi-level supplier evaluation and selection model. In this model,
AHP is used to determine the weights, and then TOPSIS is used for supplier evaluation. Kuo
and Lin [22] integrated ANP and DEA and proposed a green supplier evaluation method. The
interdependence between standards were considered by ANP, which allowed users to choose
their own weight preferences to limit weights, expanded DEA method, and allowed more flexible
number of decision units. Shi et al. [23] used the improved attribute reduction algorithm based on
rough set to reduce the index of the green supplier evaluation index system, and then evaluated
the data by RBF neural network training. Akman [24] identified the suppliers that should be
included in the green supplier development plan through the C mean clustering algorithm and
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the VIKOR method. This method can be used to solve the problem of supplier classification
and evaluation.

The study of green supplier assessment, which is of great theoretical and practical significance,
has been a hot topic all along. However, the existing research has obvious shortcomings and the
research gaps are mainly as follows:

(1) The information of the suppliers to be assessed is not clear enough in the actual work of
green supplier assessment. There is often no information sharing between manufacturing
enterprise and suppliers, and the information between them is often ambiguous or even absent.
The deterministic assessing model can no longer meet the needs of the increasingly complex
decision-making environment.

(2) Green supplier assessment is a complex decision problem and its indexes are interrelated. When
calculating the index weight, the core idea of traditional AHP is to divide the index system into
isolated and hierarchical levels. Only the upper level elements’ dominating effect on the lower
level elements is considered and the elements in the same level are deemed to be independent
of each other. However, the relationships among the indexes are often interdependent and
sometimes provide feedback-like effects in green supplier assessment. Therefore, traditional
AHP cannot solve the complex relationships among indexes to obtain the weight in green
supplier assessment.

(3) The accurate number is used to describe the relative importance of the indexes in the expression
of experts’ judgment in most of the existing research, which cannot reflect the ambiguities and
subjectivity of the actual thinking. It is more reasonable to use fuzzy numbers [25] to express the
experts’ judgment. After introducing fuzzy numbers to express experts’ judgment, analyzing
and processing the imprecise and inconsistent information becomes a difficult problem.

To fill the research gaps in green supplier assessment, a green supplier assessment method for
manufacturing enterprises based on rough ANP and evidence theory is proposed. We process the
uncertain index value by membership degree, adopt trapezoidal fuzzy number to express experts’
judgment on the relative importance of the indexes, use rough boundary interval to integrate the
judgment opinions of multiple experts, set up the ANP structure to deal with the interrelationship
and the feedback-like effects among indexes and then calculate the index weight by ANP method, and
finally solve the incomplete information problem by evidence theory and assess the green suppliers by
trust interval.

The rest of this paper is organized as follows. Section 2 establishes the index system of green
supplier assessment; Section 3 uses membership degree method to process the uncertain index value
of suppliers to be assessed; Section 4 adopts rough ANP to calculate the index weight; Section 5 gives
the green supplier assessment procedure based on evidence theory; Section 6 provides an application
case of bearing cage supplier assessment and discusses the feasibility and effectiveness of the proposed
method for green supplier assessment. We conclude this paper in Section 7.

2. Index System

The first and very important segment of green supplier assessment is the establishment of a
complete and overall index system. The attribute of the supplier’s product is the main representative
of its ability, and the comprehensive ability of supplier can provide a strong support to its product. The
comprehensive ability of supplier mainly includes internal competitiveness, external competitiveness
and cooperation ability. Internal competitiveness of a supplier can be subdivided into its innovation
capacity, manufacturing capacity and agility capacity. Furthermore, a supplier is not isolated and
is inevitably restricted by its external competitiveness. External competitiveness of a supplier
mainly includes its economic environment, geographical environment, social environment and legal
environment. Additionally, cooperation ability of a supplier is affected by its technical compatibility
degree, cultural compatibility degree, information platform compatibility degree, and reputation.
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As shown in Figure 1, we establish the index system of green supplier assessment.

 

Figure 1. The index system.

The green supplier assessment objective (AO) includes four first-level indexes: product attribute
(C1), internal competitiveness (C2), external competitiveness (C3) and cooperation ability (C4).

• C1 is decomposed into four second-level indexes: cost (C1,1), quality (C1,2), service (C1,3)
and flexibility (C1,4). C1,1 and C1,2 belong to quantitative type, and C1,3 and C1,4 belong to
qualitative type.

• C2 is decomposed into three second-level indexes: innovation capacity (C2,1), manufacturing
capacity (C2,2) and agility capacity (C2,3). C2,1, C2,2 and C2,3 all belong to qualitative type.

• C3 is decomposed into four second-level indexes: economic environment (C3,1), geographical
environment (C3,2), social environment (C3,3) and legal environment (C3,4). C3,1, C3,2, C3,3 and C3,4

all belong to qualitative type.
• C4 is decomposed into four second-level indexes: technical compatibility degree (C4,1), cultural

compatibility degree (C4,2), information platform compatibility degree (C4,3) and reputation (C4,4).
C4,1, C4,2, C4,3 and C4,4 all belong to qualitative type.

3. Index Value Processing

For different types of indexes, different methods are used to get their values. To quantitative type
index (i.e., C1,1 and C1,2), its value is obtained directly. To qualitative type index (i.e., C1,3, C1,4, C2,1,
C2,2, C2,3 C3,1, C3,2, C3,3, C3,4, C4,1, C4,2, C4,3 and C4,4), its value, which is a score, is given by manager.
If an index value can be accurately determined, it is a point value. If an index value is relatively fuzzy,
it is an interval value. If an index value is completely unknown, it is a null value.

The suppliers to be assessed are x1, x2, . . . , xM. For the supplier xr (r = 1, 2, . . . , M),
the value on the index Cj,l(j = 1, 2, . . . , N and l = 1, 2, . . . , nj) is represented as vr,(j,l).
Then, the normalized index value v′r,(j,l) is calculated as follows. If the index belongs to

benefit-type, v′r,(j,l) = vr,(j,l)/max
{

v1,(j,l), v2,(j,l), . . . , vM,(j,l)

}
. If the index belongs to cost-type,

v′r,(j,l) = min
{

v1,(j,l), v2,(j,l), . . . , vM,(j,l)

}
/vr,(j,l). Here, the interval index value is replaced with its

left and right ends.
We set five comment levels which are very bad (G1), bad (G2), middle (G3), good (G4), very

good (G5). Furtherly, G1 and G5 are the comment level corresponding to the lowest normalized
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index value v′(j,l)(G1) = min
{

v′1,(j,l), v′2,(j,l), . . . , v′M,(j,l)

}
and the highest normalized index value

v′(j,l)(G5) = max
{

v′1,(j,l), v′2,(j,l), . . . , v′M,(j,l)

}
, respectively. Similarly, the interval index value is replaced

with its left and right ends. Then, a number sequence v′(j,l)(G1), v′(j,l)(G2), v′(j,l)(G3), v′(j,l)(G4), v′(j,l)(G5)

is obtained.
It is assumed that the corresponding numbers of the five comment levels are π1 = 0.1,

π2 = 0.3, π3 = 0.5, π4 = 0.7 and π5 = 0.9. βu represents the membership degree of the index
value to the comment level Gu. On the index Cj,l , the utility value of the supplier xr is represented as
τr,(j,l). The normalized index value of the supplier xr is a point-value χ1, an interval value [χ1, χ2] or a
null value. When v′p ≤ χ1 ≤ v′p+1 or v′p ≤ χ1 ≤ χ2 ≤ v′p+1(p = 1, 2, 3, 4), τr,(j,l) = βpπp + βp+1πp+1.
When v′p ≤ χ1 ≤ v′p+1 and v′p+1 ≤ χ2 ≤ v′p+2(p = 1, 2, 3), τr,(j,l) = βpπp + βp+1πp+1 + βp+2πp+2.
When v′p ≤ χ1 ≤ v′p+1 and v′o ≤ χ2 ≤ v′o+1 (p = 1, 2, 3, 4, o = 1, 2, 3, 4 and o > p + 1),
τr,(j,l) = βpπp + βp+1πp+1 + . . . + βoπo + βo+1πo+1.

4. Index Weight Calculating

In ANP [11], the system elements are divided into two parts: (1) The first is called the control layer,
including the problem objective and decision criteria. All decision criteria are considered independent
of each other and are governed only by the problem objective. There can be no decision criteria in the
control layer, but at least one objective; (2) The second part is the network layer, which is composed of
all the elements that are controlled by the control layer, and its internal network structure is interacted.

Therefore, we set up the ANP structure of green supplier assessment as shown in Figure 2. The
control layer only has one element: the green supplier assessment objective (AO), and the network layer
has four element groups: product attribute (C1), internal competitiveness (C2), external competitiveness
(C3) and cooperation ability (C4). Each element group affects each other and contains different elements.
The elements in the same element group also affect each other. For example, internal competitiveness
(C2) is affected by product attribute (C1), external competitiveness (C3) and cooperation ability (C4),
and innovation capacity (C2,1), manufacturing capacity (C2,2) and agility capacity (C2,3) also affect
each other.

Figure 2. The ANP structure of green supplier assessment.

According to the ANP structure of green supplier assessment shown in Figure 2, the control layer
has the element AO and the network layer has the element groups C1, C2, . . . , CN (here, N = 4). The
element group Ci (i = 1, 2, . . . , N) contains the elements Ci,1, Ci,2, . . . , Ci,ni . The control layer element
AO is taken as the criterion and the element Cj,l (l = 1, 2, . . . , nj) in Cj (j = 1, 2, . . . , N) is taken as the
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sub-criterion. Based on the influence of the elements in Ci on Cj,l , the indirect dominance comparison
of the elements in Ci are conducted.

Here, the influence of the elements in Ci on Cj,l are assessed according to the personal experience
and subjective judgment of experts, so using exact numbers to describe the influence of the elements
in Ci on Cj,l is unreasonable. In contrast, the fuzzy number can reflect the inherent uncertainty of
the expert’s preference. At the same time, when integrating the opinions of multiple experts, the
assessment of the influence of the elements in Ci on Cj,l by experts is obviously with indiscernibility. The
rough boundary interval in rough sets theory [26–29] can describe the indiscernibility as a set boundary
area instead of a membership function, which can better integrate the assessment of multiple experts.

Based the index weight obtaining method in Reference [30], we design a rough ANP method to
determine the index weight in green supplier assessment. The specific process of the designed rough
ANP is as follows.

Step 1: Under the control layer element AO, we conduct the indirect dominance comparison of
the elements in Ci according to their influence on Cj,l .

There are q experts participating in the indirect dominance comparison of the elements in Ci. The
fuzzy reciprocal judgement matrix Ek,i,(j,l) = (ek,i,(j,l)

g,h )
ni×ni

given by the expert k (k = 1, 2, . . . , q) is as

follows:

Ek,i,(j,l) =

Cj,l Ci,1 Ci,2 · · · Ci,ni

Ci,1 1 ek,i,(j,l)
1,2 · · · ek,i,(j,l)

1,ni

Ci,2 ek,i,(j,l)
2,1 1 · · · ek,i,(j,l)

2,ni
...

...
...

...

Ci,ni ek,i,(j,l)
ni ,1

ek,i,(j,l)
ni ,2

· · · 1

(1)

where ek,i,(j,l)
g,h represents the indirect dominance score of the element Ci,h compared to the element

Ci,g giver by the expert k, here g,h = 1, 2, . . . , ni and g �= h. ek,i,(j,l)
g,h is a trapezoidal fuzzy number

and ek,i,(j,l)
g,h = (ak,i,(j,l)

g,h , bk,i,(j,l)
g,h , ck,i,(j,l)

g,h , dk,i,(j,l)
g,h ). ak,i,(j,l)

g,h , bk,i,(j,l)
g,h , ck,i,(j,l)

g,h and dk,i,(j,l)
g,h are all positive real

numbers and ak,i,(j,l)
g,h ≤ bk,i,(j,l)

g,h ≤ ck,i,(j,l)
g,h ≤ dk,i,(j,l)

g,h . Then the consistency of the matrix given by each
expert is verified. If it is qualified, the next step will be carried out; otherwise, this step will be returned.

Then, Ek,i,(j,l) is split into Ak,i,(j,l) = (ak,i,(j,l)
g,h )

ni×ni
, Bk,i,(j,l) = (bk,i,(j,l)

g,h )
ni×ni

,

Ck,i,(j,l) = (ck,i,(j,l)
g,h )

ni×ni
and Dk,i,(j,l) = (dk,i,(j,l)

g,h )
ni×ni

. Based on A1,i,(j,l), A2,i,(j,l), . . . , Aq,i,(j,l), the rough

group decision matrix Ai,(j,l) = (ai,(j,l)
g,h )

ni×ni
is constructed where ai,(j,l)

g,h = {a1,i,(j,l)
g,h , a2,i,(j,l)

g,h , . . . , aq,i,(j,l)
g,h },

g,h = 1, 2, . . . , ni and g �= h.
The rough boundary interval of ak,i,(j,l)

g,h ∈ ai,(j,l)
g,h (k = 1, 2, . . . , q) is RN(ak,i,(j,l)

g,h ) =
[
ak,i,(j,l),−

g,h , ak,i,(j,l),+
g,h

]
where ak,i,(j,l),−

g,h , ak,i,(j,l),+
g,h are the rough lower limit and rough upper limit of ak,i,(j,l)

g,h in the set ai,(j,l)
g,h .

Thus, the rough boundary interval of ai,(j,l)
g,h can be expressed as

RN(ai,(j,l)
g,h ) =

{[
a1,i,(j,l),−

g,h , a1,i,(j,l),+
g,h

]
,
[

a2,i,(j,l),−
g,h , a2,i,(j,l),+

g,h

]
, · · · ,

[
aq,i,(j,l),−

g,h , aq,i,(j,l),+
g,h

]}
. According

to the calculation rule of rough boundary interval, the mean form of RN(ai,(j,l)
g,h ) can be obtained as

Avg_RN(ai,(j,l)
g,h ) =

[
ai,(j,l),−

g,h , ai,(j,l),+
g,h

]
=

[ q
∑

k=1
ak,i,(j,l),−

g,h /q ,
q
∑

k=1
ak,i,(j,l),+

g,h /q
]

where ai,(j,l),−
g,h , ai,(j,l),+

g,h are

the rough lower limit and rough upper limit of the set ai,(j,l)
g,h .

The rough judgement matrix is constructed as EAi,(j,l) = (Avg_RN(ai,(j,l)
g,h ))

ni×ni
. Then, EAi,(j,l) is

split into the rough lower limit matrix EAi,(j,l),− = (ai,(j,l),−
g,h )

ni×ni
and the rough upper limit matrix

EAi,(j,l),+ = (ai,(j,l),+
g,h )

ni×ni
.
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The eigenvectors corresponding to the maximum eigenvalues of EAi,(j,l),− and EAi,(j,l),+ are

VAi,(j,l),− =
[
vai,(j,l),−

1 , vai,(j,l),−
2 , · · · , vai,(j,l),−

ni

]T
and VAi,(j,l),+ =

[
vai,(j,l),+

1 , vai,(j,l),+
2 , · · · , vai,(j,l),+

ni

]T

respectively, where vai,(j,l),−
h , vai,(j,l),+

h are the value of VAi,(j,l),− and VAi,(j,l),+ on the h

(h = 1, 2, . . . , ni) dimension. Then, a set GAi,(j,l) =
{

gai,(j,l)
1 , gai,(j,l)

2 , . . . , gai,(j,l)
ni

}
can be

obtained where gai,(j,l)
h = (

∣∣∣vai,(j,l),−
h

∣∣∣+∣∣∣vai,(j,l),+
h

∣∣∣)/2. Similarly, we also get the other

sets: GBi,(j,l) =
{

gbi,(j,l)
1 , gbi,(j,l)

2 , . . . , gbi,(j,l)
ni

}
, GCi,(j,l) =

{
gci,(j,l)

1 , gci,(j,l)
2 , . . . , gci,(j,l)

ni

}
and

GDi,(j,l) =
{

gdi,(j,l)
1 , gdi,(j,l)

2 , . . . , gdi,(j,l)
ni

}
.

Thereupon, the eigenvector wi,(j,l) = [wi,(j,l)
1 , wi,(j,l)

2 , . . . , wi,(j,l)
ni ]

T
is obtained, where

wi,(j,l)
h =

[(gdi,(j,l)
h )

2
+gdi,(j,l)

h ·gci,(j,l)
h +(gci,(j,l)

h )
2
]−[(gai,(j,l)

h )
2
+gai,(j,l)

h ·gbi,(j,l)
h +(gbi,(j,l)

h )
2
]

3(gdi,(j,l)
h +gci,(j,l)

h −gai,(j,l)
h −gbi,(j,l)

h )
, h = 1, 2, . . . , ni. Then, the

eigenvector wi,(j,l) = [wi,(j,l)
1 , wi,(j,l)

2 , . . . , wi,(j,l)
ni ]

T
is normalized as ωi,(j,l) = [ω

i,(j,l)
1 , ω

i,(j,l)
2 , . . . , ω

i,(j,l)
ni ]

T

where ω
i,(j,l)
h = wi,(j,l)

h /
ni
∑

h=1
wi,(j,l)

h .

Step 2: We represent Ωi,j = (ω
i,(j,l)
h )ni×nj

as follows:

Ωi,j =

⎡⎢⎢⎢⎢⎢⎣
ω

i,(j,1)
1 ω

i,(j,2)
1 · · · ω

i,(j,nj)

1

ω
i,(j,1)
2 ω

i,(j,2)
2 · · · ω

i,(j,nj)

2
...

...
...

ω
i,(j,1)
ni ω

i,(j,2)
ni · · · ω

i,(j,nj)
ni

⎤⎥⎥⎥⎥⎥⎦ (2)

where the column vector ωi,(j,l) is the normalized influence degree sorting vector of the elements
Ci,1, Ci,2, . . . , Ci,ni in Ci on the element Cj,l in Cj. If the elements in Cj is not affected by the elements in
Ci, Ωi,j = 0.

So we get the hyper-matrix Ω under the control layer element AO as follows:

C1 C2 CN
C1,1 · · · C1,n1 C2,1 · · · C2,n2 · · · CN,1 · · · CN,nN

Ω =

C1,1

C1
...

C1,n1

C2,1

C2
...

C2,n2

...
...

CN,1

CN
...

CN,nN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω1,1 Ω1,2 · · · Ω1,N

Ω2,1 Ω2,2 · · · Ω2,N

...
...

...

ΩN,1 ΩN,2 · · · ΩN,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Step 3: The sub-block Ωi,j of Ω is column normalized, but Ω isn’t column normalized. To solve
this problem, we conduct the indirect dominance comparison of the element groups C1, C2, . . . , CN
according to their influence on Cj (j = 1, 2, . . . , N) under the control layer element AO. Here, we
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adopt a similar approach to Step 1 and get the relative importance matrix Ψ = (ψi,j)N×N of element
groups as follows:

Ψ =

⎡⎢⎢⎢⎢⎣
ψ1,1 ψ1,2 · · · ψ1,N

ψ2,1 ψ2,2 · · · ψ2,N

...
...

...
ψN,1 ψN,2 · · · ψN,N

⎤⎥⎥⎥⎥⎦ (4)

where the column vector ψ,j = [ψ1,j, ψ2,j, . . . , ψN,j]
T is the normalized influence degree sorting vector

of the element groups C1, C2, . . . , CN on Cj.

The weighted form of the hyper-matrix Ω is Ω, where Ωi,j
= ψi,jΩi,j (i = 1, 2, . . . , N, j = 1, 2, . . . , N).

Step 4: We do the square operation of the weighted hyper-matrix Ω until the result converges to a
stable limit hyper-matrix Ω∞ as follows:

Ω∞
= lim

t→∞
Ωt (5)

Any column of Ω∞ is the limit relative ranking vector of all elements in the network layer. So we
can get the weight vector of the index system shown in Figure 1 as follows:

θ = [θ1,1, θ1,2, . . . , θ1,n1 , θ2,1, θ2,2, . . . , θ2,n2 , θ3,1, θ3,2, . . . , θ3,n3 , θ4,1, θ4,2, . . . , θ4,n4 ]
T (6)

where θj,1, θj,2, . . . , θj,nj are the weights of Cj,1, Cj,2, . . . , Cj,nj , j = 1, 2, . . . , N.
Furtherly, the weight of Cj (j = 1, 2, . . . , N) is obtained as follows:

θj =

nj

∑
l=1

θj,l (7)

5. Green Supplier Assessment

5.1. Related Concepts of Evidence Theory

We assume that there are M suppliers to be assessed. Based on evidence theory [31,32], the
set of the suppliers to be assessed is defined as the identification framework Θ = {x1, x2, . . . , xM}.
All possible sets in Θ are represented by the power set 2Θ. If each element in Θ is incompatible
with each other, the number of elements in 2Θ is 2M. Then, a set function mass : 2Θ → [0, 1] , which
satisfies mass(φ) = 0 and ∑

ϕ⊂Θ
mass(ϕ) = 1, is defined. The set function mass is known as the basic

probability distribution function on Θ. Here, ϕ represents a supplier to be assessed. mass(ϕ) is the
basic probability distribution value of ϕ and represents the trust degree for Φ, Any supplier to be
assessed satisfying the condition “mass(ϕ) > 0” is called a focal element.

For ϕ, ϕ1, ϕ2, . . . , ϕn ⊆ Θ, the fusion rule of the basic probability distribution functions
mass1, mass2, . . . , massn on Θ is as follows:

mass(ϕ) =
1
K ∑

ϕ1∩ϕ2∩...∩ϕn=∅

mass1(ϕ1) ·mass2(ϕ2) · . . . ·massn(ϕn) (8)

where mass = mass1 ⊕mass2 ⊕ . . .⊕massn.
The normalization constant K is defined as follows:

K = ∑
ϕ1∩ϕ2∩...∩ϕn �=∅

mass1(ϕ1) ·mass2(ϕ2) · . . . ·massn(ϕn) (9)
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The total trust degree of ϕ on Θ can be expressed as the belief function Bel(ϕ) =

∑
φ⊂Θ,φ⊆ϕ

mass(φ), and the uncertainty degree of ϕ on Θ can be expressed as the plausible function

Pl(ϕ) = ∑
φ⊂Θ,φ∩ϕ �=∅

mass(φ). For a supplier ϕ on Θ, Bel(ϕ) represents the sum of the possibility

measurement for all subsets of ϕ, and Pl(ϕ) represents the sum of the uncertainty measurement for all
subsets of ϕ. The confirmation degree of ϕ is represented by the trust interval [Bel(ϕ), Pl(ϕ)].

Therefore, Bel(ϕ) reflects the sum of exact reliability which the evidences support ϕ, and Pl(ϕ)

reflects the sum of reliability which the evidences do not negate ϕ. As a result, Bel(ϕ) and Pl(ϕ) can
be considered as the minimum and maximum probability bounds respectively, so [Bel(ϕ), Pl(ϕ)] can
form the trust interval.

Based on the above analysis, assessing the suppliers by trust interval is more reliable than by
maximum belief function or maximum plausible function [30,31]. We assume that the supplier ϕs

is better than supplier ϕy with a degree of εs,y (0 ≤ εs,y ≤ 1). If the trust intervals of ϕs and ϕy are
[Bel(ϕs), Pl(ϕs)] and [Bel(ϕy), Pl(ϕy)] respectively, εs,y is defined as follows:

εs,y =
max

{
0, Pl(ϕs)− Bel(ϕy)

}−max
{

0, Bel(ϕs)− Pl(ϕy)
}

(Pl(ϕs)− Bel(ϕs)) + (Pl(ϕy)− Bel(ϕy))
(10)

The decision rules based on trust interval are as follows:

• If εs,y > 0.5, ϕs is better than ϕy (recorded as ]ϕs � ϕy);
• If εs,y < 0.5, ϕs is worse than ϕy (recorded as ϕs � ϕy);
• If εs,y = 0.5, ϕs and ϕy are equal (recorded as ϕs = ϕy);
• For three suppliers ϕs, ϕy and ϕz, if εs,y > 0.5 and εy,z > 0.5, ϕs is better than ϕy and ϕy is better

than ϕz, so ϕs � ϕy � ϕz.

5.2. Green Supplier Assessing Procedure

On the index Cj,l , the weighted basic probability distribution value of the focal element ϕs

(s < 2N) is represented as mass′Cj,l
(ϕs). In this paper, we use mass′Cj,l

(ϕs) as the evidence input of green
supplier assessment.

The utility value of each focal element except Θ can be calculated through index value processing.
The special focal element Θ can indicate the uncertainty of the expert on an index. If we don’t consider
the influence of Θ, the green supplier assessment problem will become a simple probability distribution
problem, and the advantages of evidence theory will not be applied. Meanwhile, the trust degree of
expert in each index is different and the uncertainty of index is reflected by the probability distribution
of Θ. Thus the probability distribution value of Θ on different indexes should also be treated differently.

In the green supplier assessment problem, the index weight is obviously not fixed in the case
of different requirements. When costs need to be reduced, C11 is more important than other indexes
and its weight must be higher than other indexes, and the basic probability distribution value of Θ on
C11 should be smaller than other indexes. Therefore, the index weight calculated by rough ANP is
introduced to adjust the preference of experts and solve the probability distribution problem of Θ on
different indexes. Then, the weighted basic probability distribution value of each focal element on
each index is obtained as mass′Cj,l

(ϕs).
We take a weighted normalization treatment for the basic probability distribution values of all

focal elements and calculate mass′Cj,l
(ϕs), as follows:

⎧⎪⎨⎪⎩
mass′Cj,l

(ϕs) = θj,l
τs,(j,l)

l−1
∑

s=1
τs,(j,l)

, ϕs �= Θ

mass′Cj,l
(ϕs) = 1− θj,l , ϕs = Θ

(11)
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Based on the two-level index system shown in Figure 1, we establish a two-order fusion evidence
theory model for green supplier assessment. The procedure is shown in Figure 3.

 

Figure 3. The green supplier assessment procedure.

6. Case Study

6.1. An Application Case of Bearing Cage Supplier Assessment

For a bearing manufacturing enterprise, there are three bearing cage suppliers to be assessed. The
set of suppliers to be assessed is {ϕ1, ϕ2, ϕ3}. The best bearing cage supplier need to be selected after
green supplier assessment. The index value of quantitative type (C11 and C12) is obtained directly from
the enterprise resources planning system (ERP) of the bearing manufacturing enterprise, and the index
value of qualitative type (other indexes) is obtained by the method of expert’s scoring (i.e., 0.1, 0.3, 0.5,
0.7 and 0.9). The index values of three bearing cage suppliers are shown in Table 1. The units of the
index value on C1,1 and C1,2 are RMB and mm (error value) respectively.

Then, the normalized index values of three bearing cage suppliers are shown in Table 2.
Five comment levels: very bad (G1), bad (G2), middle (G3), good (G4) and very good (G5) are

set. Taking the normalized index values v′1,(1,1) = 0.0023, v′2,(1,1) = 0.0669 and v′3,(1,1) = 1.0000
for an example, we can get v′(1,1)(G1) = 0.0023 and v′(1,1)(G5) = 1.0000, so v′(1,1)(G2) = 0.2517,
v′(1,1)(G3) = 0.5011 and v′(1,1)(G4) = 0.7506. The corresponding numbers of the five comment levels are
π1 = 0.1, π2 = 0.3, π3 = 0.5, π4 = 0.7 and π5 = 0.9. To the normalized index value v′2,(1,1) = 0.0669,
the membership degrees are β1 = 0.7410 and β2 = 0.2590, so τ2,(1,1) = β1π1 + β2π2 = 0.0648. The
utility values of three bearing cage suppliers are shown in Table 3.
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Next, the index weight is calculated by rough ANP. There are four experts: expert 1, expert 2,
expert 3 and expert 4.

Taking the indirect dominance comparison of the elements in C1 according to their influence on
C2,1 under the control layer element AO for an example, the fuzzy reciprocal judgement matrices given
by the four experts are shown as follows:

E1,1,(2,1) =

C2,1 C1,1 C1,2 C1,3 C1,4

C1,1 (1, 1, 1, 1) (1, 11/9, 13/7, 7/3) (1, 11/9, 13/7, 7/3) (3/2, 13/7, 3, 4)
C1,2 (3/7, 7/13, 9/11, 1) (1, 1, 1, 1) (1, 11/9, 13/7, 7/3) (1, 11/9, 13/7, 7/3)
C1,3 (3/7, 7/13, 9/11, 1) (3/7, 7/13, 9/11, 1) (1, 1, 1, 1) (1, 11/9, 13/7, 7/3)
C1,4 (1/4, 1/3, 7/13, 2/3) (3/7, 7/13, 9/11, 1) (3/7, 7/13, 9/11, 1) (1, 1, 1, 1)

,

E2,1,(2,1) =

C2,1 C1,1 C1,2 C1,3 C1,4

C1,1 (1, 1, 1, 1) (1, 1, 1, 1) (1, 11/9, 13/7, 7/3) (1, 11/9, 13/7, 7/3)
C1,2 (1, 1, 1, 1) (1, 1, 1, 1) (1, 11/9, 13/7, 7/3) (1, 11/9, 13/7, 7/3)
C1,3 (3/7, 7/13, 9/11, 1) (3/7, 7/13, 9/11, 1) (1, 1, 1, 1) (1, 1, 1, 1)
C1,4 (3/7, 7/13, 9/11, 1) (3/7, 7/13, 9/11, 1) (1, 1, 1, 1) (1, 1, 1, 1)

,

E3,1,(2,1) =

C2,1 C1,1 C1,2 C1,3 C1,4

C1,1 (1, 1, 1, 1) (3/2, 13/7, 3, 4) (1, 1, 1, 1) (1, 11/9, 13/7, 7/3)
C1,2 (1/4, 1/3, 7/13, 2/3) (1, 1, 1, 1) (1/4, 1/3, 7/13, 2/3) (3/7, 7/13, 9/11, 1)
C1,3 (1, 1, 1, 1) (3/2, 13/7, 3, 4) (1, 1, 1, 1) (1, 11/9, 13/7, 7/3)
C1,4 (3/7, 7/13, 9/11, 1) (1, 11/9, 13/7, 7/3) (3/7, 7/13, 9/11, 1) (1, 1, 1, 1)

,

E4,1,(2,1) =

C2,1 C1,1 C1,2 C1,3 C1,4

C1,1 (1, 1, 1, 1) (1, 11/9, 13/7, 7/3) (3/2, 13/7, 3, 4) (7/3, 3, 17/3, 9)
C1,2 (3/7, 7/13, 9/11, 1) (1, 1, 1, 1) (1, 11/9, 13/7, 7/3) (3/2, 13/7, 3, 4)
C1,3 (1/4, 1/3, 7/13, 2/3) (3/7, 7/13, 9/11, 1) (1, 1, 1, 1) (1, 11/9, 13/7, 7/3)
C1,4 (1/9, 3/17, 1/3, 3/7) (1/4, 1/3, 7/13, 2/3) (3/7, 7/13, 9/11, 1) (1, 1, 1, 1)

.

We check the consistency of E1,1,(2,1), E2,1,(2,1), E3,1,(2,1) and E4,1,(2,1) and all of them are qualified.
Then, Ek,1,(2,1)(k = 1, 2, 3, 4) is split into Ak,1,(2,1) = (ak,1,(2,1)

g,h )
4×4

, Bk,1,(2,1) = (bk,1,(2,1)
g,h )

4×4
,

Ck,1,(2,1) = (ck,1,(2,1)
g,h )

4×4
and Dk,1,(2,1) = (dk,1,(2,1)

g,h )
4×4

. For example, A1,1,(2,1) = (a1,1,(2,1)
g,h )

4×4
is as follows:

A1,1,(2,1) =

⎡⎢⎢⎢⎣
1 1 1 3/2

3/7 1 1 1
3/7 3/7 1 1
1/4 3/7 3/7 1

⎤⎥⎥⎥⎦.

Based on A1,1,(2,1), A2,1,(2,1), A3,1,(2,1), A4,1,(2,1), the rough group decision matrix A1,(2,1) = (a1,(2,1)
g,h )

4×4
is constructed as follows:

A1,(2,1) =

⎡⎢⎢⎢⎣
{1, 1, 1, 1} {1, 1, 3/2, 1} {1, 1, 1, 3/2} {3/2, 1, 1, 7/3}

{3/7, 1, 1/4, 3/7} {1, 1, 1, 1} {1, 1, 1/4, 1} {1, 1, 3/7, 3/2}
{3/7, 3/7, 1, 1/4} {3/7, 3/7, 3/2, 3/7} {1, 1, 1, 1} {1, 1, 1, 1}
{1/4, 3/7, 3/7, 1/9} {3/7, 3/7, 1, 1/4} {3/7, 1, 3/7, 3/7} {1, 1, 1, 1}

⎤⎥⎥⎥⎦.

For the partition a1,1,(2,1)
1,4 = 3/2 in the element a1,(2,1)

1,4 = {3/2, 1, 1, 7/3}, its upper approximation set is

{3/2, 7/3} and lower approximation set is {3/2, 1, 1}, then L(a1,1,(2,1)
1,4 ) = (3/2 + 1 + 1)/3 = 1.17, L(a1,1,(2,1)

1,4 ) =
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(3/2 + 7/3)/2 = 1.92 and RN(a1,1,(2,1)
1,4 ) = [1.17, 1.92]. Similarly, RN(a2,1,(2,1)

1,4 ) = RN(a3,1,(2,1)
1,4 ) = [1, 1.46],

RN(a4,1,(2,1)
1,4 ) = [1.46, 2.33]. So RN(a1,(2,1)

1,4 ) = {[1.17, 1.92], [1, 1.46], [1, 1.46], [1.46, 2.33]}.
According to the calculation rule of rough boundary interval, the mean form of

RN(a1,(2,1)
1,4 ) is obtained as Avg_RN(a1,(2,1)

1,4 ) = [1.16, 1.79]. Then, the rough judgement matrix

EA1,(2,1) = (Avg_RN(a1,(2,1)
g,h ))

4×4
is constructed as follows:

EA1,(2,1) =

⎡⎢⎢⎢⎣
[1, 1] [1.03, 1.22] [1.03, 1.22] [1.16, 1.79]

[0.38, 0.74] [1, 1] [0.67, 0.95] [0.72, 1.17]
[0.38, 0.74] [0.50, 0.90] [1, 1] [1, 1]
[0.23, 0.38] [0.38, 0.74] [0.46, 0.68] [1, 1]

⎤⎥⎥⎥⎦.

EA1,(2,1) is split into the rough lower limit matrix EA1,(2,1),− = (a1,(2,1),−
g,h )

4×4
and the rough upper

limit matrix EA1,(2,1),+ = (a1,(2,1),+
g,h )

4×4
. The eigenvectors corresponding to the maximum eigenvalues

of EA1,(2,1),− and EA1,(2,1),+ are VA1,(2,1),− = [0.71, 0.44, 0.45, 0.30]T and VA1,(2,1),+ = [0.65, 0.49, 0.47, 0.34]T

respectively. Then, we get a set GA1,(2,1) = {0.68, 0.47, 0.46, 0.32}. Similarly, we also get the other sets:
GB1,(2,1) = {0.73, 0.51, 0.66, 0.58}, GC1,(2,1) = {0.82, 0.67, 0.73, 0.69} and GD1,(2,1) = {0.95, 0.77, 0.83, 0.75}.

Thereupon, we obtain the normalized eigenvector ω1,(2,1) = [0.30, 0.23, 0.25, 0.22]T.
Similarly, we obtain the normalized eigenvector ω1,(2,2) = [0.28, 0.41, 0.17, 0.14]T and ω1,(2,3) =

[0.33, 0.34, 0.13, 0.20]T. So we obtain Ω1,2 = (ω
1,(2,l)
h )4×4 as follows:

Ω1,2 =

⎡⎢⎢⎢⎣
0.30 0.28 0.33
0.23 0.41 0.34
0.25 0.17 0.13
0.22 0.14 0.20

⎤⎥⎥⎥⎦.

After the similar calculating, we get the hyper-matrix Ω under the control layer element G
as follows:

Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.31 0.19 0.22 0.33 0.30 0.28 0.33 0.18 0.30 0.41 0.38 0.22 0.19 0.33 0.40
0.24 0.25 0.33 0.31 0.23 0.41 0.34 0.32 0.33 0.22 0.19 0.31 0.17 0.18 0.10
0.29 0.25 0.24 0.18 0.25 0.17 0.13 0.23 0.10 0.20 0.22 0.40 0.33 0.27 0.29
0.16 0.31 0.21 0.18 0.22 0.14 0.20 0.27 0.27 0.17 0.21 0.07 0.31 0.22 0.21

0.24 0.35 0.48 0.20 0.13 0.11 0.51 0.43 0.29 0.35 0.36 0.28 0.51 0.40 0.35
0.25 0.30 0.31 0.41 0.29 0.40 0.24 0.16 0.13 0.45 0.40 0.33 0.30 0.49 0.35
0.51 0.35 0.21 0.39 0.58 0.49 0.25 0.41 0.58 0.20 0.24 0.39 0.19 0.11 0.30

0.33 0.28 0.31 0.25 0.17 0.29 0.18 0.10 0.33 0.30 0.15 0.44 0.32 0.30 0.33
0.32 0.20 0.25 0.31 0.44 0.20 0.25 0.30 0.18 0.19 0.25 0.18 0.28 0.39 0.33
0.25 0.28 0.09 0.25 0.16 0.20 0.32 0.27 0.18 0.31 0.24 0.26 0.30 0.11 0.20
0.10 0.24 0.35 0.19 0.23 0.31 0.25 0.33 0.31 0.20 0.36 0.12 0.10 0.20 0.14

0.22 0.30 0.18 0.41 0.15 0.29 0.19 0.33 0.23 0.25 0.28 0.38 0.41 0.25 0.33
0.28 0.20 0.41 0.13 0.30 0.17 0.22 0.36 0.18 0.19 0.30 0.21 0.12 0.28 0.16
0.40 0.19 0.19 0.17 0.30 0.21 0.08 0.17 0.22 0.25 0.10 0.19 0.17 0.19 0.31
0.10 0.31 0.22 0.29 0.25 0.33 0.51 0.14 0.37 0.31 0.32 0.22 0.30 0.28 0.20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Then we conduct the indirect dominance comparison of the element groups C1, C2, C3, C4

according to their influence on Cj(j = 1, 2, 3, 4) under the control layer element AO. As a result, we
get the relative importance matrix Ψ = (ψi,j)4×4 of element groups as follows:

Ψ =

⎡⎢⎢⎢⎣
0.51 0.38 0.42 0.29
0.12 0.28 0.20 0.21
0.23 0.19 0.15 0.10
0.14 0.15 0.23 0.40

⎤⎥⎥⎥⎦.

The weighted form of the hyper-matrix Ω is Ω, where Ωi,j
= ψi,jΩi,j (i = 1, 2, 3, 4 and j = 1, 2, 3, 4).

The square operation of the weighted hyper-matrix Ω is done continuously and Ω4 converges to a
stable limit hyper-matrix. So we get the weight vector of the index system shown in Figure 1 as follows:
θ = [0.12, 0.11, 0.10, 0.09, 0.06, 0.06, 0.07, 0.05, 0.04, 0.04, 0.04, 0.06, 0.05, 0.05, 0.06]T. In the case of
ensuring the weight proportional relationship among C1,1, C1,2, C1,3, C1,4, we expand the weight vector
of C1,1, C1,2, C1,3, C1,4 to [0.95, 0.87, 0.79, 0.71]T. Similarly, the weight vector of C2,1, C2,2, C2,3 is expanded
to [0.81, 0.81, 0.95]T, the weight vector of C3,1, C3,2, C3,3, C3,4 is expanded to [0.95, 0.76, 0.76, 0.76]T, and
the weight vector of C4,1, C4,2, C4,3, C4,4 is expanded to [0.95, 0.79, 0.79, 0.95]T. Furtherly, the weight
vector of C1, C2, C3, C4 is obtained as [0.42, 0.19, 0.17, 0.22]T. The relative weight vector of the index
C1, C2, C3, C4 is [0.95, 0.43, 0.38, 0.50]T.

Based on evidence theory, the set of the three suppliers to be assessed is defined as the
identification framework: Θ = {ϕ1, ϕ2, ϕ3}. According to Equation (11), the weighted basic
probability distribution values of all focal elements are calculated based on the utility values of
three bearing cage suppliers shown in Table 3 and the above relative weight vector as follows:

(1) mass′C1,1
(ϕ1) = 0.0825, mass′C1,1

(ϕ2) = 0.1252, mass′C1,1
(ϕ3) = 0.7423, mass′C1,1

(Θ) = 0.0500;

(2) mass′C1,2
(ϕ1) = 0.4121, mass′C1,2

(ϕ2) = 0.4121, mass′C1,2
(ϕ3) = 0.0458, mass′C1,2

(Θ) = 0.1300;

(3) mass′C1,3
(ϕ1) = 0.3456, mass′C1,3

(ϕ2) = 0.3999, mass′C1,3
(ϕ3) = 0.0444, mass′C1,3

(Θ) = 0.2100;

(4) mass′C1,4
(ϕ1) = 0.0374, mass′C1,4

(ϕ2) = 0.3363, mass′C1,4
(ϕ3) = 0.3363, mass′C1,4

(Θ) = 0.2900;

(5) mass′C2,1
(ϕ1) = 0.1272, mass′C2,1

(ϕ2) = 0.2820, mass′C2,1
(ϕ3) = 0.4008, mass′C2,1

(Θ) = 0.1900;

(6) mass′C2,2
(ϕ1) = 0.3141, mass′C2,2

(ϕ2) = 0.4463, mass′C2,2
(ϕ3) = 0.0496, mass′C2,2

(Θ) = 0.1900;

(7) mass′C2,3
(ϕ1) = 0.3684, mass′C2,3

(ϕ2) = 0.5234, mass′C2,3
(ϕ3) = 0.0582, mass′C2,3

(Θ) = 0.0500;

(8) mass′C3,1
(ϕ1) = 0.8550, mass′C3,1

(ϕ3) = 0.0950, mass′C3,1
(Θ) = 0.0500;

(9) mass′C3,2
(ϕ1) = 0.0691, mass′C3,2

(ϕ2) = 0.6218, mass′C3,2
(ϕ3) = 0.0691, mass′C3,2

(Θ) = 0.2400;

(10) mass′C3,3
(ϕ1) = 0.3683, mass′C3,3

(ϕ2) = 0.3508, mass′C3,3
(ϕ3) = 0.0409, mass′C3,3

(Θ) = 0.2400;

(11) mass′C3,4
(ϕ1) = 0.2947, mass′C3,4

(ϕ2) = 0.4188, mass′C3,4
(ϕ3) = 0.0465, mass′C3,4

(Θ) = 0.2400;

(12) mass′C4,1
(ϕ2) = 0.8550, mass′C4,1

(ϕ3) = 0.0950, mass′C4,1
(Θ) = 0.0500;

(13) mass′C4,2
(ϕ1) = 0.6449, mass′C4,2

(ϕ2) = 0.0726, mass′C4,2
(ϕ3) = 0.0726, mass′C4,2

(Θ) = 0.2100;

(14) mass′C4,3
(ϕ1) = 0.0790, mass′C4,3

(ϕ2) = 0.7110, mass′C4,3
(Θ) = 0.2100;

(15) mass′C4,4
(ϕ1) = 0.3912, mass′C4,4

(ϕ2) = 0.5029, mass′C4,4
(ϕ3) = 0.0559, mass′C4,4

(Θ) = 0.0500.

Then we make {mass′C1,1
(ϕs), mass′C1,2

(ϕs), mass′C1,3
(ϕs), mass′C1,4

(ϕs)},
{mass′C2,1

(ϕs), mass′C2,2
(ϕs), mass′C2,3

(ϕs)}, {mass′C3,1
(ϕs), mass′C3,2

(ϕs), mass′C3,3
(ϕs), mass′C3,4

(ϕs)}
and {mass′C4,1

(ϕs), mass′C4,2
(ϕs), mass′C4,3

(ϕs), mass′C4,4
(ϕs)} as the evidence input and execute

the first evidence fusion respectively. Here, massC1 = mass′C1,1
⊕ mass′C1,2

⊕ mass′C1,3
⊕ mass′C1,4

,
massC2 = mass′C2,1

⊕ mass′C2,2
⊕ mass′C2,3

, massC3 = mass′C3,1
⊕ mass′C3,2

⊕ mass′C3,3
⊕ mass′C3,4

,
massC4 = mass′C4,1

⊕ mass′C4,2
⊕ mass′C4,3

⊕ mass′C4,4
. The basic probability distribution values

massC1(ϕs), massC2(ϕs), massC3(ϕs), massC4(ϕs) of all focal elements are calculated as follows:
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(1) massC1(ϕ1) = 0.0491, massC1(ϕ2) = 0.6871, massC1(ϕ3) = 0.1938, massC1(Θ) = 0.0700;
(2) massC2(ϕ1) = 0.2305, massC2(ϕ2) = 0.7000, massC2(ϕ3) = 0.0345, massC2(Θ) = 0.0350;
(3) massC3(ϕ1) = 0.8165, massC3(ϕ2) = 0.1122, massC3(ϕ3) = 0.0033, massC3(Θ) = 0.0679;
(4) massC4(ϕ1) = 0.0104, massC4(ϕ2) = 0.9841, massC4(ϕ3) = 0.0008, massC4(Θ) = 0.0046.

With the consideration of the relative weight vector of the index C1, C2, C3, C4, we normalize
the basic probability distribution values

{
massC1(ϕ1), massC1(ϕ2), massC1(ϕ3), massC1(Θ)

}
,{

massC2(ϕ1), massC2(ϕ2), massC2(ϕ3), massC2(Θ)
}

,
{

massC3(ϕ1), massC3(ϕ2), massC3(ϕ3), massC3(Θ)
}

and
{

massC3(ϕ1), massC3(ϕ2), massC3(ϕ3), massC3(Θ)
}

. The weighted basic probability distribution
values mass′C1

(ϕs), mass′C2
(ϕs), mass′C3

(ϕs), mass′C4
(ϕs) of all focal elements are calculated as follows:

(1) mass′C1
(ϕ1) = 0.0466, mass′C1

(ϕ2) = 0.6527, mass′C1
(ϕ3) = 0.1841, mass′C1

(Θ) = 0.1165;

(2) mass′C2
(ϕ1) = 0.0991, mass′C2

(ϕ2) = 0.3010, mass′C2
(ϕ3) = 0.0148, mass′C2

(Θ) = 0.5851;

(3) mass′C3
(ϕ1) = 0.3103, mass′C3

(ϕ2) = 0.0426, mass′C3
(ϕ3) = 0.0013, mass′C3

(Θ) = 0.6458;

(4) mass′C4
(ϕ1) = 0.0052, mass′C4

(ϕ2) = 0.4921, mass′C4
(ϕ3) = 0.0004, mass′C4

(Θ) = 0.5023.

Then, we make mass′C1
(ϕs), mass′C2

(ϕs), mass′C3
(ϕs), mass′C4

(ϕs) m̃4(Ai) as the evidence input
and execute the second evidence fusion. The basic probability distribution values mass(ϕs) are
calculated as follows:

(1) mass(ϕ1) = 0.0042;
(2) mass(ϕ2) = 0.4160;
(3) mass(ϕ3) = 0.0006;
(4) mass(Θ) = 0.5792;

Therefore, the belief function Bel(ϕs) and plausible function Pl(ϕs) of the three suppliers are
calculated, and then the trust interval [Bel(ϕs), Pl(ϕs)] are obtained as follows:

(1) [Bel(ϕ1), Pl(ϕ1)] = [0.0042, 0.5834];
(2) [Bel(ϕ2), Pl(ϕ2)] = [0.4160, 0.9952];
(3) [Bel(ϕ3), Pl(ϕ3)] = [0.0006, 0.5798].

According to the decision rules based on trust interval in Section 5.1, we obtain the results
as follows:

(1) P(x1 > x2) = 0, so ϕ1 � ϕ2;
(2) P(x1 > x3) = 1, so ϕ3 � ϕ1.

Finally, we get the green supplier assessing results that are ϕ3 � ϕ1 � ϕ2 and the best bearing
cage supplier is ϕ2.

6.2. Discussion

In this paper, the index system, which contains four first-level indexes and fifteen second-level
indexes, is established. The indexes in the index system are interrelated and sometimes provide
feedback-like effects. Since the suppliers to be assessed are independent, we calculate the index weight
by rough ANP. Then we process the uncertain index value by membership degree and get the utility
value of a supplier on each index. At last, we solve the information incomplete problem in green
supplier assessing by evidence theory.

From the case study in Section 6, the green supplier assessment result is ϕ3 � ϕ1 � ϕ2. Based on
the Overall view of Table 1, it is also known that ϕ2 is the best, ϕ3 is the worst and ϕ1 is middle. The
details are as follows:
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• To ϕ2, the performance is the best on ten of the fifteen indexes (i.e., quality (C1,2), service (C1,3),
flexibility (C1,4), manufacturing capacity (C2,2), agility capacity (C2,3), geographical environment
(C3,2), legal environment (C3,4), technical compatibility degree (C4,1), information platform
compatibility degree (C4,3) and reputation (C4,4)).

• To ϕ3, the performance is the worst on twelve of the fifteen indexes (i.e., cost (C1,1), quality (C1,2),
service (C1,3), manufacturing capacity (C2,2), agility capacity (C2,3), economic environment (C3,1),
geographical environment (C3,2), social environment (C3,3), legal environment (C3,4), technical
compatibility degree (C4,1), cultural compatibility degree (C4,2) and reputation (C4,4)).

• To ϕ1, the performance is the worst on four indexes (i.e., flexibility (C1,4), innovation capacity
(C2,1), geographical environment (C3,2) and information platform compatibility degree (C4,3)), and
the performance is the best on five indexes (i.e., cost (C1,1), quality (C1,2), economic environment
(C3,1), social environment (C3,3), cultural compatibility degree (C4,2) and reputation (C4,4)).

Thus, it can be seen that the assessing results are in accordance with the actual situation.
According to the utility value in Table 3, we compare the results of the proposed method with

those based on Fuzzy Synthetic Evaluation (FSE) [33–35] and Fuzzy Analytic Hierarchy Process
(FAHP) [36–38] as shown in Table 4.

Table 4. The comparison of assessing results of the proposed method, FSE and FAHP.

Supplier
Ranking of Three Suppliers

Proposed Method FSE FAHP

ϕ1 2 3 3
ϕ2 1 1 1
ϕ3 3 2 2

As shown in Table 4, the results of the three methods, which all shows ϕ2 is the best supplier,
are generally consistent. However, there are differences in the ranking between ϕ1 and ϕ3. By FSE
method and FAHP method, the complex and interrelated index system is simplified and the index
interrelationship information is partially lost. By the proposed method, the weights of the indexes are
processed by rough ANP and the index interrelationship information is successfully translated into
the hyper-matrix through comparison among indexes.

In addition, green supplier assessment based on rough ANP and evidence theory can
provide group decision-making information for enterprise managers, and the index weight can
accurately reflect which index has the greatest impact on the supplier selection, thus providing the
decision-making basis for the enterprise to reduce the cost and improve the competitiveness. The
above analysis and the comparison in Table 4 verify the feasibility and effectiveness of the proposed
method for green supplier assessing.

7. Conclusions

In the context of increasingly serious global environmental problems, an ideal manufacturer
requires efficient, green suppliers. To handle the uncertainty and incompleteness in green supplier
assessment, we propose a green supplier assessment method based on rough ANP and evidence
theory. To the best of our knowledge, this is the first attempt to deal with green supplier assessment in
a manufacturing enterprise using the hybrid method of rough ANP and evidence theory. The most
prominent advantage of the proposed method is that it overcomes the shortcomings of traditional
AHP by considering the dependencies and uncertainty across the indexes and processing experts’
judgment on the relative importance of the indexes by fuzzy number and rough boundary interval. It
can provide a simple and effective way for weight calculating. By comparing our method with FSE
and FAHP approach, we have shown that the proposed method provides a systematic and optimal
tool of decision-making for green supplier assessment.
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The proposed method provides a way for simplified modeling of complex Multi-criteria Decision
Making (MCDM) problems. The decision-making systems are becoming more and more complex
nowadays, filled with imprecise and vague information. Evidence theory is adept in capturing such
kind of uncertain information, and it provides us with a flexible and effective tool to deal with the
green supplier selection problem under uncertain environment. Although the model has been verified
on a small case including three potential suppliers and fifteen indexes, it is capable for solving more
similar complex problems.

The method proposed in this paper could help us to reduce the risks of making poor investment
decisions when dealing with complex networks of green suppliers. In future studies, we will
demonstrate on the application of large-scale data sets and the consideration of experts’ reliability.

Author Contributions: Conceptualization, L.L. and H.W.; Methodology, L.L.; Validation, L.L.; Formal Analysis,
L.L.; Investigation, L.L.; Writing-Original Draft Preparation, L.L. and H.W.

Funding: This research was funded by Ningxia Natural Science Fund, Grant No. NZ17113 and Ningxia first-class
discipline and scientific research projects (electronic science and technology), Grant No. NXYLXK2017A07.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jiang, W.; Huang, C. A Multi-criteria Decision-making Model for Evaluating Suppliers in Green SCM. Int. J.
Comput. Commun. Control 2018, 13, 337–352. [CrossRef]

2. Mangla, S.K.; Kumar, P.; Barua, M.K. Flexible Decision Modeling for Evaluating the Risks in Green Supply
Chain Using Fuzzy AHP and IRP Methodologies. Glob. J. Flex. Syst. Manag. 2015, 16, 19–35. [CrossRef]

3. Banaeian, N.; Mobli, H.; Fahimnia, B.; Nielsen, I.E.; Omid, M. Green Supplier Selection Using Fuzzy Group
Decision Making Methods: A Case Study from the Agri-Food Industry. Comput. Oper. Res. 2016, 89, 337–347.
[CrossRef]

4. Yu, F.; Yang, Y.; Chang, D. Carbon footprint based green supplier selection under dynamic environment. J.
Clean. Prod. 2018, 170, 880–889. [CrossRef]

5. Gandhi, S.; Mangla, S.K.; Kumar, P.; Kumar, D. A combined approach using AHP and DEMATEL for
evaluating success factors in implementation of green supply chain management in Indian manufacturing
industries. Int. J. Logist. Res. Appl. 2016, 19, 537–561. [CrossRef]

6. Mangla, S.K.; Kumar, P.; Barua, M.K. Risk analysis in green supply chain using fuzzy AHP approach: A case
study. Resour. Conserv. Recycl. 2015, 104, 375–390. [CrossRef]

7. Mangla, S.K.; Kumar, P.; Barua, M.K. Prioritizing the responses to manage risks in green supply chain: An
Indian plastic manufacturer perspective. Sustain. Prod. Consum. 2015, 1, 67–86. [CrossRef]

8. Tang, X.; Wei, G. Models for Green Supplier Selection in Green Supply Chain Management with Pythagorean
2-Tuple Linguistic Information. IEEE Access 2018, 6, 18042–18060. [CrossRef]

9. Mangla, S.K.; Govindan, K.; Luthra, S. Critical success factors for reverse logistics in Indian industries: A
structural model. J. Clean. Prod. 2016, 129, 608–621. [CrossRef]

10. Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980.
11. Saaty, T.L. Fundamentals of the analytic network process—Dependence and feedback in decision-making

with a single network. J. Syst. Sci. Syst. Eng. 2004, 13, 129–157. [CrossRef]
12. Noci, G. Designing ‘green’ vendor rating systems for the assessment of a supplier’s environmental

performance. Eur. J. Purch. Supply Manag. 1997, 3, 103–114. [CrossRef]
13. Lee, A.H.I.; Kang, H.Y.; Hsu, C.F.; Hung, H.C. A green supplier selection model for high-tech industry. Expert

Syst. Appl. 2009, 36, 7917–7927. [CrossRef]
14. Hsu, C.W.; Hu, A.H. Applying hazardous substance management to supplier selection using analytic

network process. J. Clean. Prod. 2009, 17, 255–264. [CrossRef]
15. Yeh, W.C.; Chuang, M.C. Using multi-objective genetic algorithm for partner selection in green supply chain

problems. Expert Syst. Appl. 2011, 38, 4244–4253. [CrossRef]
16. Yousefi, S.; Shabanpour, H.; Fisher, R.; Saen, R.F. Evaluating and ranking sustainable suppliers by robust

dynamic data envelopment analysis. Measurement 2016, 83, 72–85. [CrossRef]

151



Information 2018, 9, 162

17. Awasthi, A.; Chauhan, S.S.; Goyal, S.K. A fuzzy multicriteria approach for evaluating environmental
performance of suppliers. Int. J. Prod. Econ. 2010, 126, 370–378. [CrossRef]

18. Kannan, D.; Jabbour, C.J.C. Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied
to a Brazilian electronics company. Eur. J. Oper. Res. 2014, 233, 432–447. [CrossRef]

19. Chatterjee, K.; Pamucar, D.; Zavadskas, E.K. Evaluating the performance of suppliers based on using the
R’AMATEL-MAIRCA method for green supply chain implementation in electronics industry. J. Clean. Prod.
2018, 184, 101–129. [CrossRef]

20. Wu, J.; Cao, Q.W.; Li, H. A Method for Choosing Green Supplier Based on COWA Operator under Fuzzy
Linguistic Decision-Making. J. Ind. Eng. Eng. Manag. 2010, 24, 61–65.

21. Luo, X.X.; Peng, S.H. Research on the Vendor Evaluation and Selection Based on AHP and TOPSIS in Green
Supply Chain. Soft Sci. 2011, 25, 53–56.

22. Kuo, R.J.; Lin, Y.J. Supplier selection using analytic network process and data envelopment analysis. Int. J.
Prod. Res. 2012, 50, 2852–2863. [CrossRef]

23. Shi, L. Green Supplier Evaluation of RS-RBF Neural Network Model. Sci. Technol. Manag. Res. 2012, 32,
198–201.

24. Akman, G. Evaluating suppliers to include green supplier development programs via fuzzy c-means and
VIKOR methods. Comput. Ind. Eng. 2015, 86, 69–82. [CrossRef]
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Abstract: A linguistic cubic variable (LCV) is comprised of interval linguistic variable and
single-valued linguistic variable. An LCV contains decision-makers’ uncertain and certain linguistic
judgments simultaneously. The advantage of the Dombi operators contains flexibility due to its
changeable operational parameter. Although the Dombi operations have been extended to many
studies to solve decision-making problems; the Dombi operations are not used for linguistic cubic
variables (LCVs) so far. Hence, the Dombi operations of LCVs are firstly presented in this paper.
A linguistic cubic variable Dombi weighted arithmetic average (LCVDWAA) operator and a linguistic
cubic variable Dombi weighted geometric average (LCVDWGA) operator are proposed to aggregate
LCVs. Then a multiple attribute decision making (MADM) method is developed in LCV setting
on the basis of LCVDWAA and LCVDWGA operators. Finally, two illustrative examples about the
optimal choice problems demonstrate the validity and the application of this method.

Keywords: multiple attribute decision making; linguistic cubic variable; Dombi operations; linguistic
cubic variable Dombi weighted arithmetic average (LCVDWAA) operator; linguistic cubic variable
Dombi weighted geometric average (LCVDWGA) operator

1. Introduction

With the development of society and science, decision-making problems become more and more
complex, and they involve more and more fields, such as manufacturing domain [1,2], hospital service
quality management [3], evaluation of the supplier criterions [4], and disaster assessment [5]. Since
Zadeh [6] firstly proposed that linguistic variable (LV) could evaluate the assessment for objects, many
scholars put forward various linguistic aggregation operators and developed corresponding methods
to handle decision-making problems with linguistic information in diversified fields [7–12]. So far
language variables have come in many forms, which are classified into two types: certain linguistic
evaluations and uncertain linguistic evaluations. One of the forms can be used in one decision-making
problem and one linguistic variable can represent the evaluation of a decision maker. With respect
to an attribute over an alternative, one of the decision makers could give an uncertain evaluation,
but another could give a certain evaluation. The pre-proposed LV forms could not express uncertain
evaluation and certain evaluation simultaneously. In this study we will use a new linguistic evaluation
form which was defined as linguistic cubic variable (LCV) in Ye [13]. An LCV is composed of a certain
linguistic variable and an uncertain linguistic variable. An LCV can represent a group of linguistic
evaluations over an attribute. Thus, the multiple attribute group decision making (MAGDM) process
will be much simpler. We will introduce the development of LV below.

Since single-value linguistic variable was proposed, decision makers thought only one linguistic
variable could not accurately provide judgments in some uncertain environments. Xu [14] proposed
that decision makers could express their opinions with a linguistic interval. The interval linguistic

Information 2018, 9, 188; doi:10.3390/info9080188 www.mdpi.com/journal/information153



Information 2018, 9, 188

variable was defined as an uncertain linguistic variable (ULV). They introduced a ULV hybrid
aggregation (ULHA) operator and a ULV ordered weighted averaging operator (ULOWA) for MADM
under an uncertain environment. Further, some other UL operators were introduced, such as UL hybrid
geometric mean operator (ULHGM) [15], UL ordered weighted averaging operator (IULOWA) [16],
UL Bonferroni mean operator (ULBM) [17], UL harmonic mean operator (ULHM) [18], and UL power
geometric operator (ULPG) [19]. Later, intuitionistic fuzzy sets and linguistic variables were integrated.
The concept of linguistic intuitionistic fuzzy numbers was proposed. Liu [20,21] and Li et al. [22]
introduced several linguistic intuitionistic MADM methods. Recently, a changeable uncertain linguistic
number was defined as a neutrosophic linguistic number (NLN). Some aggregation operators of NLNs
were developed to handle MADM problems with NLN information in References [23–25].

Linguistic variable forms, as introduced above, are either certain linguistic evaluations or
uncertain linguistic evaluations used to describe evaluation information in the same decision-making
problem simultaneously. However, in reality, uncertain linguistic evaluations and certain linguistic
evaluations may exist simultaneously. Thus, Ye [13] combined a linguistic variable with a cubic set [26]
and proposed a hybrid linguistic form. The hybrid linguistic form was defined as a linguistic cubic
variable (LCV). An uncertain linguistic variable and a certain linguistic variable composed an LCV.
Meanwhile Ye [13] developed an LCV weighted geometric averaging (LCVWGA) operator and an
LCV weighted arithmetic averaging (LCVWAA) operator and further developed a MADM method on
the basis of the LCVWGA operator or LCVWAA operator.

Information aggregation operators are effective and powerful tools to handle decision-making
problems. Researchers have developed various operators to aggregate evaluation information.
Dombi [27] firstly proposed Dombi T-conorm and T-norm operations in 1982. The operations are
developed into many information aggregations to deal with various application problems; for instance,
Dombi hesitant fuzzy information aggregation operators [5] for disaster assessment, or intuitionistic
fuzzy set Dombi Bonferroni mean operators [28] for MADM problems. Then, the advantage of the
Dombi operators contains flexibility due to its changeable operational parameter. Up to now, the Dombi
operations have not been extended to LCVs. Hence, aggregation operators based the Dombi operations
will be developed to handle LCV decision-making problems. So Dombi operational laws of LCVs
are proposed in this study. Then an LCV Dombi weighted arithmetic average (LCVDWAA) operator
and an LCV Dombi weighted geometric average (LCVDWGA) operator are presented. Further the
decision-making approach on basis of the LCVDWAA or LCVDWGA operator is developed for LCV
MADM problems.

The remainder of this paper is organized by following six sections. Some concepts of LCVs
are introduced in Section 2, and Section 3 defines several Dombi operations of LCVs. LCVDWAA
and LCVDWGA operators and some of their properties are presented in Section 4. The MADM
approach based on the LCVDWAA or LCVDWGA operator is introduced in Section 5. In Section 6,
two application examples are illustrated, and we discuss the validity, the influence of the operational
parameter, and the sensitivity of weights. Section 7 gives the conclusions and expectations of
the research.

2. Several Concepts of LCVs

Definition 1 [13]. Set L = {L0, L1, L2, . . . , LT} as a linguistic term set, in which T is even. A linguistic cubic
variable V is constructed by V = (L, LM), where L = [LG, LH ] is a ULV and LM is an LV for H ≥ G and LG,
LH, LM ∈ L. If G ≤ M ≤ H, V = ([LG, LH ], LM) is an internal LCV. If M < G or M > H, V = ([LG, LH ], LM)

is an external LCV.

Definition 2 [13]. Set V = ([LG, LH ], LM) as an LCV in L = {L0, L1, L2, . . . , LT} for LG, LH, LM ∈ L. Then
the expected value of the LCV is calculated as below:

E(V) = (G + H + M)/3T f or E(V) ∈ [0, 1] . (1)

154



Information 2018, 9, 188

Definition 3 [13]. Set V1 = ([LG1, LH1], LM1) and V2 = ([LG2, LH2], LM2) as two LCVs, their expected
values are E(V1) and E(V2), then their relations are as follows:

(a) If E(V1) � E(V2), then V1 � V2;
(b) If E(V1) ≺ E(V2), then V1 ≺ V2;
(c) If E(V1) = E(V2), then V1 = V2.

3. Some Dombi Operations of LCVs

Dombi T-conorm operation and T-norm operation between two real numbers will be introduced
in this section. Then some Dombi operations of LCVs will be proposed.

Definition 4 [27]. Let Y and X be any two real numbers. If (Y, X) ∈ [0, 1] × [0, 1], the Dombi T-norm and
Dombi T-conorm between them are defined as Equations (2) and (3):

D(Y, X) =
1

1 +
{(

1−Y
Y

)ρ
+
(

1−X
X

)ρ} 1
ρ

, (2)

DC(Y, X) = 1− 1

1 +
{(
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1−Y

)ρ
+
(

X
1−X

)ρ} 1
ρ

. (3)

If ρ > 0, the above equations satisfy D(Y, X) ∈ [0, 1] and Dc(Y, X) ∈ [0, 1].
According to the above Dombi operations, the following Dombi operational laws of LCVs

are defined.

Definition 5. Let V1 = ([LG1, LH1], LM1) and V2 = ([LG2, LH2], LM2) be two LCVs, where (G1, H1, M1, G2,
H2, M2) ∈ [0, T], ρ > 0, then their Dombi operations are proposed as follows:
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(5)
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KV1 = K([LG1, LH1], LM1)
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(7)

Due to functions (G1/T, H1/T, M1/T, G2/T, H2/T, M2/T) ∈ [0, 1], they satisfy the parameter
requirements of Dombi operations. If p > 0, (Y, X) ∈ [0, 1] × [0, 1], then D(Y, X) ∈ [0, 1] and Dc(Y,
X) ∈ [0, 1]. Thus we can get T*Dc(Y, X) ∈ [0, T] and T*D(Y, X) ∈ [0, T]. Obviously the results
of Equations (4)–(7) are also LCVs according to the Dombi operations as in Equations (2) and (3).
In Equations (4)–(7), we presented Dombi operations of LCVs in the first step and simplified the
equations in the second step.

Example 1. Let V1 and V2 be two LCVs in the linguistic term set L = {Li|i∈ [0, 8]}. Assume that V1 =

([L4, L6], L5), V2 = ([L2, L7], L2), k = 0.5, and ρ = 1. According to Equations (4)–(7), the results are calculated
respectively as follows:

V1 ⊕V2 = ([L4, L6], L5)⊕ ([L2, L7], L2)

=

⎛⎜⎝
⎡⎢⎣ L8− 8

1+{( 4
8−4 )

1
+( 2

8−2 )
1}

1
1

, L8− 8

1+{( 6
8−6 )

1
+( 7

8−7 )
1}

1
1

⎤⎥⎦ ,
L8− 8

1+{( 5
8−5 )

1
+( 2

8−2 )
1}

1
1

⎞⎟⎠
= ([L4.5714, L7.2727], L5.3333);

V1 ⊗V2 = ([L4, L6], L5)⊗ ([L2, L7], L2)

=

⎛⎜⎝
⎡⎢⎣ L 8

1+{( 8−4
4 )

1
+( 8−2

2 )
1}

1
1

, L 8

1+{( 8−6
6 )

1
+( 8−7

7 )
ρ}

1
1

⎤⎥⎦ , L 8

1+{( 8−5
5 )

1
+( 8−2

2 )
1}

1
1

⎞⎟⎠
= ([L1.6, L5.4193], L1.7391);

KV1 = K([L4, L6], L5)

=

⎛⎜⎝
⎡⎢⎣ L

8− 8

1+{0.5( 4
8−4 )

1}
1
1

, L
8− 8

1+{0.5( 6
8−6 )

1}
1
1

⎤⎥⎦ , L
8− 8

1+{0.5( 5
8−5 )

1}
1
1

⎞⎟⎠
= ([L2.6667, L4.8], L3.6363);
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V1
K =

([
LK

4 , LK
6
]
, LK

5
)

=

⎛⎝⎡⎣ L 8

1+{0.5( 8−4
4 )

1}
1/1

, L 8

1+{0.5( 8−6
6 )

1}
1/1

⎤⎦ , L 8

1+{0.5( 8−5
5 )

1}
1/1

⎞⎠
= ([L5.3333, L6.8571], L6.1538).

4. Dombi Weighted Aggregation Operators of LCVs

4.1. Dombi Weighted Arithmetic Average Operator of LCVs

Definition 6. Let V = {V1, V2, V3, . . . , Vn} be an LCV set, then the Dombi weighted arithmetic average
operator of LCVS can be defined as follows:

LCVDWAA(V1, V2, . . . , Vn) =
n⊕

i=1
wiVi (8)

where the weight vector wi satisfies
i=n
∑

i=1
wi = 1 and wi ∈ [0, 1].

The following Theorem 1 can be induced and proved according to Definitions 4 and 6.

Theorem 1. Let Vi = ([LGi, LHi], LMi) (i = 1, 2, . . . , n) be a set of LCVs and the corresponding weight vector

is w = (w1, w2, . . . , wn), where
i=n
∑

i=1
wi = 1 and wi ∈ [0, 1], then we can calculate Equation (8) on basis of the

predefined operational laws and get the following formula:

LCVDWAA(V1, V2, . . . , Vn)

=

⎛⎜⎜⎝
⎡⎢⎢⎣

LT− T

1+{i=n
∑

i=1
wi(

Gi
T−Gi )

ρ}
1/ρ

, L
T− T

1+{i=n
∑

i=1
wi(

Hi
T−Hi )

ρ}
1/ρ

⎤⎥⎥⎦
, L

T− T

1+{i=n
∑

i=1
wi(

Mi
T−Mi )

ρ}
1/ρ

⎞⎟⎟⎠.
(9)

Proof:

(1) If n = 2, by the Equations (4) and (6) we can get:

LCVDWAA(V1, V2) = w1V1 ⊕ w2V2

=

⎛⎜⎝
⎡⎢⎣ L

T− T

1+{w1(
G1

T−G1 )
ρ}

1
ρ

, L
T− T

1+{w1(
H1

T−H1 )
ρ}

1
ρ

⎤⎥⎦ , L
T− T

1+{w1(
M1

T−M1 )
ρ}

1
ρ

⎞⎟⎠⊕
⎛⎜⎝
⎡⎢⎣ L

T− T

1+{w2(
G2

T−G2 )
ρ}

1
ρ

, L
T− T

1+{w2(
H2

T−H2 )
ρ}

1
ρ

⎤⎥⎦ , L
T− T

1+{w2( M2
T−M2 )

ρ}
1
ρ

⎞⎟⎠
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

LT− T

1+{(

T− T

1+{w1(
G1

T−G1 )
ρ}

1
ρ

T−(T− T

1+{w1(
G1

T−G1 )
ρ}

1
ρ
)
)

ρ

+(

T− T

1+{w2(
G2

T−G2 )
ρ}

1
ρ

T−(T− T

1+{w2(
G2

T−G2 )
ρ}

1
ρ
)
)

ρ

}

1
ρ

,

LT− T

1+{(

T− T

1+{w1(
H1

T−H1 )
ρ}

1
ρ

T−(T− T

1+{w1(
H1

T−H1 )
ρ}

1
ρ
)
)

ρ

+(

T− T

1+{w2(
H2

T−H2 )
ρ}

1
ρ

T−(T− T

1+{w2(
H2

T−H2 )
ρ}

1
ρ
)
)

ρ

}

1
ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

LT− T

1+{(

T− T

1+{w1(
M1

T−M1 )
ρ}

1
ρ

T−(T− T

1+{w1(
M1

T−M1 )
ρ}

1
ρ
)
)

ρ

+(

T− T

1+{w2(
M2

T−M2 )
ρ}

1
ρ

T−(T− T

1+{w2(
M2

T−M2 )
ρ}

1
ρ
)
)

ρ

}

1
ρ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎝
⎡⎢⎣ LT− T

1+{w1 (
G1

T−G1 )
ρ
+w2 (

G2
T−G2 )

ρ}1/ρ
, L

T− T

1+{w1 (
H1

T−H1 )
ρ
+w2 (

H2
T−H2 )

ρ}1/ρ

⎤⎥⎦ , L
T− T

1+{w1(
M1

T−M1 )
ρ
+w2(

M2
T−M2 )

ρ}1/ρ

⎞⎟⎠

=

⎛⎜⎜⎝
⎡⎢⎢⎣

LT− T

1+{i=2
∑

i=1
wi(

Gi
T−Gi )

ρ}
1/ρ

, L
T− T

1+{i=2
∑

i=1
wi(

Hi
T−Hi )

ρ}
1/ρ

⎤⎥⎥⎦
, L

T− T

1+{i=2
∑

i=1
wi(

Mi
T−Mi )

ρ}
1/ρ

⎞⎟⎟⎠.

(2) Assume n = k, the result is as follows:

LCVDWAA(V1, V2, . . . , Vk) =
k⊕

i=1
wiVi

=

⎛⎜⎜⎝
⎡⎢⎢⎣

LT− T

1+{i=k
∑

i=1
wi(

Gi
T−Gi )

ρ}
1/ρ

, L
T− T

1+{i=k
∑

i=1
wi(

Hi
T−Hi )

ρ}
1/ρ

⎤⎥⎥⎦
, L

T− T

1+{i=k
∑

i=1
wi(

Mi
T−Mi )

ρ}
1/ρ

⎞⎟⎟⎠.

(3) If n = k + 1, we have:

LCVDWAA(V1, V2, . . . , Vk, Vk+1) = LCVDWAA(V1, V2, . . . , Vk)⊕ wk+1Vk+1

=

⎛⎜⎜⎝
⎡⎢⎢⎣

LT− T

1+{i=k
∑

i=1
wi(

Gi
T−Gi )

ρ}
1/ρ

, L
T− T

1+{i=k
∑

i=1
wi(

Hi
T−Hi )

ρ}
1/ρ

⎤⎥⎥⎦
, L

T− T

1+{i=k
∑

i=1
wi(

Mi
T−Mi )

ρ}
1/ρ

⎞⎟⎟⎠
⊕

⎛⎜⎜⎝
⎡⎢⎢⎣

L
T− T

1+{wk+1(
Gk+1

T−Gk+1
)
ρ
}

1
ρ

, L
T− T

1+{wk+1(
Hk+1

T−Hk+1
)
ρ
}

1
ρ

⎤⎥⎥⎦
, L

T− T

1+{wk+1(
Mk+1

T−Mk+1
)
ρ
}

1
ρ

⎞⎟⎟⎠
=

⎛⎜⎜⎝
⎡⎢⎢⎣

LT− T

1+{i=k+1
∑

i=1
wi(

Gi
T−Gi )

ρ}
1/ρ

, L
T− T

1+{i=k+1
∑

i=1
wi(

Hi
T−Hi )

ρ}
1/ρ

⎤⎥⎥⎦
, L

T− T

1+{i=k+1
∑

i=1
wi(

Mi
T−Mi )

ρ}
1/ρ

⎞⎟⎟⎠.

Thus, we have proved that Equation (9) is correct for any n. The properties of the LCVDWAA
operator are as follows:

(1) Idempotency: If there is LCVs collection Vi = ([LGi, LHi], LMi) for Vi = V (i = 1, 2, . . . , n) then
LCVDWAA (V1, V2, . . . , Vn) = V.

(2) Commutativity: Assume that the LCV set (V’
1, V’2, V’3, . . . , V’n) is any permutation of (V1, V2,

. . . , Vn). Then, there is LCVDWAA (V’
1, V’

2, . . . , V’
n) = LCVDWAA (V1, V2, . . . , Vn).
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(3) Boundedness: If there is LCVs collection Vi = ([LGi, LHi], LMi) (i = 1, 2, . . . , n)
Vmin = ([Lmin

i
(Gi), Lmin

i
(Hi)], Lmin

i
(Mi)), Vmax = ([Lmax

i
(Gi), Lmax

i
(Hi)], Lmax

i
(Mi)). Then, Vmin ≤

LCVDWAA(V1, V2, . . . , Vn) ≤ Vmax. �
Proof:

(1) Let Vi = ([LGi, LHi], LMi) = ([LG, LH ], LM), then we can get the result:

LCVDWAA(V1, V2, . . . , Vn)

=

⎛⎜⎜⎝
⎡⎢⎢⎣

LT− T

1+{i=n
∑

i=1
wi(

Gi
T−Gi )

ρ}
1/ρ

, L
T− T

1+{i=n
∑

i=1
wi(

Hi
T−Hi )

ρ}
1/ρ

⎤⎥⎥⎦
, L

T− T

1+{i=n
∑

i=1
wi(

Mi
T−Mi )

ρ}
1/ρ

⎞⎟⎟⎠

=

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

LT− T

1+{( G
T−G )

ρ
i=n

∑
i=1

wi}

1/ρ
, L

T− T

1+{( H
T−H )

ρ i=n
∑

i=1
wi}

1/ρ

⎤⎥⎥⎥⎦
, L

T− T

1+{( M
T−M )

ρ i=n
∑

i=1
wi}

1/ρ

⎞⎟⎟⎠

=

⎛⎜⎜⎝
⎡⎢⎢⎣

LT− T

1+{( G
T−G )

ρ}1/ρ
, L

T− T

1+{( H
T−H )

ρ
}

1/ρ

⎤⎥⎥⎦
, L

T− T

1+{( M
T−M )

ρ
}

1/ρ

⎞⎟⎟⎠
= ([LG, LH ], LM) = V.

(2) The proof is obvious.
(3) Since min

i
(Gi) ≤ Gi ≤ max

i
(Gi), min

i
(Hi) ≤ Hi ≤ max

i
(Hi), min

i
(Mi) ≤ Mi ≤ max

i
(Mi). Then

the following inequalities can be induced as:

T − T

1+

{
i=n
∑

i=1
wi

(
min

i
(Gi)

T−min
i
(Gi)

)ρ}1/ρ = min
i
(Gi) ≤T − T

1+
{

i=n
∑

i=1
wi( Gi

T−Gi )
ρ
}1/ρ ≤max

i
(Gi) = T − T

1+

{
i=n
∑

i=1
wi

(
max

i
(Gi)

T−max
i

(Gi)

)ρ}1/ρ

T − T

1+

{
i=n
∑

i=1
wi

(
min

i
(Hi)

T−min
i
(Hi)

)ρ}1/ρ = min
i
(Hi) ≤T − T

1+
{

i=n
∑

i=1
wi( Hi

T−Hi )
ρ
}1/ρ ≤max

i
(Hi) = T − T

1+

{
i=n
∑

i=1
wi

(
max

i
(Hi)

T−max
i

(Hi)

)ρ}1/ρ

T − T

1+

{
i=n
∑

i=1
wi

(
min

i
(Mi)

T−min
i
(Mi)

)ρ}1/ρ = min
i
(Mi) ≤T − T

1+
{

i=n
∑

i=1
wi( Mi

T−Mi )
ρ
}1/ρ ≤max

i
(Mi) = T − T

1+

{
i=n
∑

i=1
wi

(
max

i
(Mi)

T−max
i

(Mi)

)ρ}1/ρ

Hence, Vmin ≤ LCVDWAA(V1, V2, . . . , Vn ) ≤ Vmax holds. �

4.2. Dombi Weighted Geometric Average Operator of LCVs

Definition 7. Let V = {V1, V2, . . . , Vn} be an LCV set, then the Dombi weighted geometric average operator
of the LCVS can be defined as:

LCVDWGA(V1, V2, . . . , Vn) =
n⊗

i=1
wiVi (10)

where the weight vector wi satisfies
i=n
∑

i=1
wi = 1 and wi ∈ [0, 1].

According to Definitions 5 and 7, the following theorem can be induced and proved.
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Theorem 2. Let Vi = ([LGi, LHi], LMi) (i = 1, 2, . . . , n) be a set of LCVs and the corresponding weight vector

is w = (w1, w2, . . . , wn), where
i=n
∑

i=1
wi = 1 and wi ∈ [0, 1], we can calculate Equation (10) on basis of the

predefined operational laws and have:

LCVDWGA(V1, V2, . . . , Vn) =

⎛⎜⎜⎝
⎡⎢⎢⎣

L T

1+{i=n
∑

i=1
wi(

T−Gi
Gi )

ρ}
1/ρ

, L T

1+{i=n
∑

i=1
wi(

T−Hi
Hi )

ρ}
1/ρ

⎤⎥⎥⎦
⎞⎟⎟⎠

, L T

1+{i=n
∑

i=1
wi(

T−Mi
Mi )

ρ}
1/ρ

⎞⎟⎟⎠. (11)

Theorem 2 is the same proof as Theorem 1. Hence, we do not prove it repeatedly.
The LCVDWGA operator also has Properties (1)–(3) as follows:

(1) Idempotency: If there is LCVs collection Vi = ([LGi, LHi], LMi) for Vi = V (i = 1, 2, . . . , n). Then
LCVDWGA (V1, V2, . . . , Vn) = V.

(2) Commutativity: If the LCV set (V’
1, V’2, . . . , V’n) is any permutation of (V1, V2, . . . , Vn). Then,

there is LCVDWGA (V’
1, V’

2, . . . , V’
n) = LCVDWGA (V1, V2, . . . , Vn).

(3) Boundedness: If there is LCVs collection Vi = ([LGi, LHi], LMi) (i = 1,2, . . . , n) Vmin =

([Lmin
i

(Gi), Lmin
i

(Hi)], Lmin
i

(Mi)), Vmax = ([Lmax
i

(Gi), Lmax
i

(Hi)], Lmax
i

(Mi)). Then, Vmin ≤
LCVDWGA(V1, V2, . . . , Vn) ≤ Vmax.

The proofs of the above properties are omitted which are similar with the properties of the
LCVDWAA operator.

5. MADM Method on Basis of the LCVDWAA or LCVDWGA Operator

If a MADM problem is described by LCV information, V = {V1, V2, . . . , Vm} and P =

{P1, P2, . . . , Pn} are the sets of alternatives and attributes, respectively. w = {w1, w2, . . . , wn} is the
set of weight, where wj is corresponding to the importance of attribute Pj with wj ∈ [0, 1] and
∑n

j=1 wj = 1. The LCV Vij is the evaluation of the alternatives Vi(i = 1, 2, . . . , m) over the attributes
Pj(j = 1, 2, . . . , n). Each LCV includes uncertain linguistic argument and certain linguistic argument.
Thus, all the LCVs given by decision makers are constructed as an LCV decision matrix V = (Vij)m×n,
where Vij = (

[
LGij, LHij

]
, LMij) is an LCV (i =1, 2, . . . , m; j = 1, 2, . . . , n) and LGij, LHij, LMij is from the

linguistic term set L = {Lk|k ∈ [0, T]} with even number T.
On basis of the LCVDWAA or LCVWDGA operator, the steps of MADM method are as follows.
Step 1. According to Equation (9) or Equation (11), we can get the collective LCV of each alterative

Vi = LCVDWAA(Vi1, Vi2, . . . , Vin) or Vi = LCVDWGA(Vi1, Vi2, . . . , Vin) (i = 1, 2, . . . , m).
Step 2. The expected values E(Vi)(i = 1, 2, . . . ., m) of each collective LCV Vi(i = 1, 2, . . . , m) are

calculated according to Equation (1).
Step 3. According to the expected values of E(Vi)(i = 1, 2, . . . ., m), we give the rank order of all

the alternatives. The best alternative Vi(i = 1, 2, . . . ., m) is with the greatest value of E(Vi).

6. Illustrative Examples and Discussions

Two application examples are illustrated below, then we discuss the validity of this proposed
MADM approach and the influence of the operational parameter.

6.1. Illustrative Examples

Example 2 [13]. A company needs to hire a soft engineer. There are four candidates (alternatives) V1, V2, V3,
and V4. The decision makers will further evaluate them over four attributes. The four attributes are soft skills,
past experience, personality, and self-confidence, in order. The corresponding weight vector of the attributes is w
= (0.35, 0.25, 0.2, 0.2). The decision makers evaluate the four candidates by using the linguistic cubic values,
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which are obtained from the linguistic term set L = {Li|i ∈ [0, 8]}, where L = {L0 = extremely poor, L1 = very
poor, L2 = poor, L3 = slightly poor, L4 = fair, L5 = slightly good, L6 = good, L7 = very good, L8 = extremely good}.
The linguistic cubic decision matrix V is described as follows:

V = (Vij)4×4 =

⎡⎢⎢⎢⎣
([L4, L6], L5) ([L4, L6], L4) ([L4, L7], L6) ([L5, L6], L6)

([L3, L5], L4) ([L5, L7], L6) ([L4, L6], L4) ([L6, L7], L6)

([L4, L7], L5) ([L6, L7], L7) ([L5, L7], L5) ([L5, L7], L7)

([L6, L7], L7) ([L5, L7], L6) ([L4, L6], L5) ([L5, L6], L5)

⎤⎥⎥⎥⎦

Now we employ the LCVDWAA operator to solve this MADM problem.
Step 1. According to Equation (9) for ρ = 1 and T = 8, we can get the following collective LCVs for

four alternatives:

V1 = LCVDWAA(V11, V12, . . . , V14)

=

⎛⎜⎜⎝
⎡⎢⎢⎣

LT− T

1+{i=4
∑

i=1
wi(

G1i
T−G1i

)
ρ
}

1/ρ
, L

T− T

1+{i=4
∑

i=1
wi(

H1i
T−H1i

)
ρ
}

1/ρ

⎤⎥⎥⎦
, L

T− T

1+{i=4
∑

i=1
wi(

M1i
T−M1i

)
ρ
}

1/ρ

⎞⎟⎟⎠
=

⎛⎜⎝
⎡⎢⎣ L8− 8

1+
i=4
∑

i=1
wi(

G1i
T−G1i

)

, L
8− 8

1+
i=4
∑

i=1
wi(

H1i
T−H1i

)

⎤⎥⎦ , L
8− 8

1+
i=4
∑

i=1
wi(

M1i
T−M1i

)

⎞⎟⎠
= ([L4.2500, L6.3333], L5.3626)

= ([LG1, LH1], LM1),

V2 = LCVDWAA(V21, V22, . . . , V24) = ([L4.7033, L6.5000], L5.2414),
V3 = LCVDWAA(V31, V32, . . . , V34) = ([L5.1084, L7.0000], L6.4211), and
V4 = LCVDWAA(V41, V42, . . . , V44) = ([L5.3333, L6.7500], L6.3562).
Step 2. The expected values E(Vi)(i = 1, 2, . . . ., m) of each collective LCV Vi(i = 1, 2, 3, 4) are

calculated according to Equation (1). The results are as follows:

E(V1) = (G1 + H1 + M1)/3T = 0.6644, E(V2) = (G2 + H2 + M2)/3T = 0.6852,
E(V3) = (G3 + H3 + M3)/3T = 0.7721, E(V4) = (G4 + H4 + M4)/3T = 0.7683.

Step 3. According to the above expected values and the rank principle, the rank order of the four
candidates is V3 � V4 � V2 � V1.

Alternatively, we use LCVDWGA operator for this MADM problem with the same decision steps.
Step 1. We aggregate the LCVs for four candidates according to Equation (11) for ρ = 1 and T = 8.

V1 = LCVDWGA(V11, V12, . . . , V14)

=

⎛⎜⎜⎝
⎡⎢⎢⎣

L T

1+{i=4
∑

i=1
wi(

T−G1i
G1i )

ρ}
1/ρ

, L T

1+{i=4
∑

i=1
wi(

T−H1i
H1i )

ρ}
1/ρ

⎤⎥⎥⎦
⎞⎟⎟⎠

, L T

1+{i=4
∑

i=1
wi(

T−M1i
M1i )

ρ}
1/ρ

⎞⎟⎟⎠
=

⎛⎜⎝
⎡⎢⎣ L 8

1+
i=4
∑

i=1
wi(

T−G1i
G1i )

, L 8

1+
i=4
∑

i=1
wi(

T−H1i
H1i )

⎤⎥⎦
⎞⎟⎠ , L 8

1+
i=4
∑

i=1
wi(

T−M1i
M1i )

⎞⎟⎠
= ([L4.1677, L6.1765], L5.0209)

V2 = LCVDWGA(V21, V22, . . . , V24) = ([L4.0000, L5.9659], L4.7059),
V3 = LCVDWGA(V31, V32, . . . , V34) = ([L4.7809, L7.0000], L5.7377), and
V4 = LCVDWGA(V41, V42, . . . , V44) = ([L5.0420, L6.5625], L5.8252).
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Step 2. The expected values E(Vi)(i = 1, 2, . . . ., m) of each collective LCV Vi(i = 1, 2, 3, 4) are
calculated according to Equation (1). The results are as follows:

E(V1) = 0.6402, E(V2) = 0.6113, E(V3) = 0.7299, E(V4) = 0.7262.
Step 3. According to the above expected values and the rank principle, the rank order of the four

candidates is V3 � V4 � V1 � V2.
By following the same steps above, we apply the LCVDWAA operator and LCVDWGA operator

to Example 2 with parameter ρ from 1 to 100, the ranking results are shown as following Tables 1 and 2.

Table 1. Ranking orders of the LCVDWAA 1 operator, ρ ∈ [1–5,10,15,20,30,50,100].

ρ E(V1) 2, E(V2) 3, E(V3) 4, E(V4) 5 Ranking Order The Best Candidate

1 0.6644, 0.6852, 0.7721, 0.7683 V3 � V4 � V2 � V1 V3
2 0.6766, 0.7139, 0.7875, 0.7843 V3 � V4 � V2 � V1 V3
3 0.6876, 0.7332, 0.7978, 0.7954 V3 � V4 � V2 � V1 V3
4 0.6969, 0.7459, 0.8049, 0.8031 V3 � V4 � V2 � V1 V3
5 0.7045, 0.7545, 0.8099, 0.8085 V3 � V4 � V2 � V1 V3

10 0.7253, 0.7731, 0.8214, 0.8207 V3 � V4 � V2 � V1 V3
15 0.7336, 0.7794, 0.8254, 0.8250 V3 � V4 � V2 � V1 V3
20 0.7377, 0.7825, 0.8274, 0.8271 V3 � V4 � V2 � V1 V3
30 0.7419, 0.7856, 0.8294, 0.8292 V3 � V4 � V2 � V1 V3
50 0.7451, 0.7881, 0.8310, 0.8309 V3 � V4 � V2 � V1 V3
100 0.7476, 0.7899, 0.8322, 0.8321 V3 � V4 � V2 � V1 V3

1 LCVDWAA = linguistic cubic variable Dombi weighted arithmetic average; 2 E(V1) = expected value of V1; 3 E(V2)
= expected value of V2; 4 E(V3) = expected value of V3; 5 E(V4) = expected value of V4.

Table 2. Ranking orders of the LCVDWGA 1 operator, ρ ∈ [1–5,10,15,20,30,50,100].

ρ E(V1), E(V2), E(V3), E(V4) Ranking Order The Best Candidate

1 0.6402, 0.6113, 0.7299, 0.7262 V3 � V4 � V1 � V2 V3
2 0.6300, 0.5827, 0.7143, 0.7076 V3 � V4 � V1 � V2 V3
3 0.6219, 0.5633, 0.7039, 0.6929 V3 � V4 � V1 � V2 V3
4 0.6155, 0.5503, 0.6968, 0.6816 V3 � V4 � V1 � V2 V3
5 0.6106, 0.5414, 0.6918, 0.6730 V3 � V4 � V1 � V2 V3

10 0.5980, 0.5213, 0.6800, 0.6509 V3 � V4 � V1 � V2 V3
15 0.5932, 0.5143, 0.6756, 0.6424 V3 � V4 � V1 � V2 V3
20 0.5907, 0.5107, 0.6734, 0.6381 V3 � V4 � V1 � V2 V3
30 0.5883, 0.5071, 0.6711, 0.6337 V3 � V4 � V1 � V2 V3
50 0.5863, 0.5043, 0.6693, 0.6303 V3 � V4 � V1 � V2 V3
100 0.5848, 0.5021, 0.6680, 0.6276 V3 � V4 � V1 � V2 V3

1 LCVDWGA = linguistic cubic variable Dombi weighted geometric average.

Example 3. Customers want to buy an air-conditioner; they choose three brands as alternatives V1, V2, V3.
Further, they need to evaluate the three alternatives from three attributes which are as follows: (i) P1 is cooling
effect; (ii) P2 is heating effect; and (iii) P3 is appearance design. Their importance lies in the weight vector w =
(1/2,1/3,1/6). The customers give their evaluations over the three attributes by the linguistic cubic values Vij
based on the uniform linguistic term set L as Example 2. The LCVs provided by the customers constitute the
decision matrix V.

V = (Vij)3×3 =

⎡⎢⎣ ([L2, L7], L3) ([L4, L7], L2) ([L2, L7], L1)

([L2, L7], L5) ([L2, L7], L3) ([L2, L7], L3)

([L2, L5], L5) ([L1, L6], L4) ([L2, L5], L2)

⎤⎥⎦
By using the same steps, we apply the LCVDWAA operator or LCVDWGA operator to this

MADM problem. The ranking results based on the LCVDWAA operator with parameters ρ from 1 to 5
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are shown in the Table 3. Similarly, the ranking orders on basis of the LCVDWGA operator are shown
in Table 4.

Table 3. Ranking orders of the LCVDWAA operator, ρ ∈ [1–5,10,15,20,30,50,100].

ρ E(V1), E(V2), E(V3) Ranking Order The Best Alterative

1 0.5117, 0.5795, 0.4804 V2 � V1 � V3 V2
2 0.5280, 0.5932, 0.4927 V2 � V1 � V3 V2
3 0.5404, 6005, 0.5016 V2 � V1 � V3 V2
4 0.5490, 0.6052, 0.5084 V2 � V1 � V3 V2
5 0.5551, 0.6085, 0.5135 V2 � V1 � V3 V2
10 0.5688, 0.6165, 0.5267 V2 � V1 � V3 V2
15 0.5736, 0.6193, 0.5317 V2 � V1 � V3 V2
20 0.5761, 0.6208, 0.5342 V2 � V1 � V3 V2
30 0.5785, 0.6222, 0.5367 V2 � V1 � V3 V2
50 0.5804, 0.6233, 0.5387 V2 � V1 � V3 V2
100 0.5819, 0.6242, 0.5402 V2 � V1 � V3 V2

Table 4. Ranking orders of the LCVDWGA operator, ρ ∈ [1–5,10,15,20,30,50,100].

ρ E(V1), E(V2), E(V3) Ranking Order The Best Alterative

1 0.4750, 0.4826, 0.4393 V2 � V1 � V3 V2
2 0.4598, 0.4353, 0.4144 V1 � V2 � V3 V1
3 0.4488, 0.4078, 0.3946 V1 � V2 � V3 V1
4 0.4414, 0.3907, 0.3810 V1 � V2 � V3 V1
5 0.4364, 0.3796, 0.3718 V1 � V2 � V3 V1
10 0.4262, 0.3563, 0.3523 V1 � V2 � V3 V1
15 0.4229, 0.3486, 0.3459 V1 � V2 � V3 V1
20 0.4213, 0.3447, 0.3427 V1 � V2 � V3 V1
30 0.4197, 0.3409, 0.3395 V1 � V2 � V3 V1
50 0.4185, 0.3379, 0.3370 V1 � V2 � V3 V1
100 0.4176, 0.3356, 0.3352 V1 � V2 � V3 V1

6.2. Discussion

6.2.1. Validity of the Method

Ye [13] firstly proposed the concept of LCVs, and then used the LCVWAA operator and LCVWGA
operator to handle the MADM problem of Example 2. As shown in Table 5, the ranking orders using the
LCVDWAA operator and LCVDWGA operator with parameters ρ from 1 to 100 are the same as those
using the LCVWAA operator [13] and LCVWGA operator [13], respectively. In Example 3, the ranking
results based on the LCVDWAA operator are the same as those based on the LCVWAA operator [13]
when parameter ρ ranges from 1 to 100. Then, the ranking orders based on the LCVDWGA operator
are the same as those based on the LCVWGA operator [13] when parameter ρ is equal to 1.

Table 5. Ranking results of different aggregation operators with different parameters.

Example MADM 1 Method Ranking Order The Best Alterative

2

LCVDWAA (ρ = 1 to 100) V3 � V4 � V2 � V1 V3
LCVWAA 2 [13] V3 � V4 � V2 � V1 V3

LCVDWGA (ρ = 1 to 100) V3 � V4 � V1 � V2 V3
LCVWGA 3 [13] V3 � V4 � V1 � V2 V3

3
LCVDWAA (ρ = 1 to 100) V2 � V1 � V3 V2

LCVWAA [13] V2 � V1 � V3 V2
LCVDWGA (ρ = 1)

LCVDWGA (ρ = 2 to 100)
LCVWGA [13]

V2 � V1 � V3
V1 � V2 � V3
V2 � V1 � V3

V2
V1
V2

1 MADM = multiple attribute decision making; 2 LCVWAA = linguistic cubic variable weighted arithmetic average;
3 LCVWGA = linguistic cubic variable weighted geometric average.
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6.2.2. The Influence of the Parameter ρ

As shown in Table 5, parameter value of ρ has no effect on the ranking results in Example 2.
In Example 3, the ranking results are not sensitive to parameters ρ for the LCVDWAA operator.
However, corresponding to the LCVDWGA operator, the ranking results are more sensitive to
parameter ρ. When ρ = 1, the ranking orders of the LCVDWGA operator are the same as those
of the LCVWAA [13], LCVWGA [13], and LCVDWAA operators (ρ = 1 to 100), and the best alternative
is V2. While the ranking orders of the LCVDWGA operator are obviously changed when ρ is from 2 to
100, the best alternative is V1. From Tables 1–4, we can see that parameter value of ρ is greater and the
expected values of E(Vi) are greater in the LCVDWAA operator. While in the LCVDWGA operator the
value of parameter ρ is greater and the expected values of E(Vi) are smaller.

In any case, by using LCVDWAA or LCVDWGA operator to aggregate decision-making
information, the presented approach is valid to handle MADM problems with LCV information.
Especially the LCVDWGA operator is more flexible in actual applications.

6.2.3. The Sensitivity Analysis of Weights

In order to demonstrate the sensitivity of weights, we change the weights of the attributes in
Examples 2 and 3. W = (0.25, 0.25, 0.25, 0.25) and w = (1/3, 1/3, 1/3) are used as the weight vectors
in Examples 2 and 3, respectively. Then we apply LCVDWAA operator and LCVDWGA operator to
the two applications again and change the parameter value of ρ from 1 to 100. The ranking results
of Example 2 are shown in Figure 1 and the ranking results of Example 3 are shown in Figure 2.
The curves of collective expected values E(Vi) were shown in Figures 1 and 2. The curves clearly
show that LCVDWAA and LCVDWGA have different effects on the expected value. Additionally,
we find that the ranking results are identical with Table 5 when the weights are changed. Especially
as Figure 2b shows, the best alternative is V2 when ρ is equal to 1, while the best alternative is V1

when ρ ranges from 2 to 100. It fits perfectly with Table 5. Thus, we can think that the LCVDWAA and
LCVDWGA are not sensitive to the changes of weights.

  
(a) (b) 

Figure 1. Ranking results with average weights in Example 2. LCVDWAA = linguistic cubic variable
Dombi weighted arithmetic average; LCVDWGA = linguistic cubic variable Dombi weighted geometric
average. (a) LCVDWAA operator; (b) LCVDWGA operator.
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(a) (b) 

Figure 2. Ranking results with average weights in Example 3. (a) LCVDWAA operator;
(b) LCVDWGA operator.

7. Conclusions

The concept of LCV was proposed by Ye [13] recently. There are few studies on LCV information
aggregation operators and MADM methods about LCV information problems. In this paper, the Dombi
operations were extended to an LCV environment. We proposed an LCVDWAA operator and an
LCVDWGA operator, then discussed their properties. Further, based on the LCVDWAA or LCVDWGA
operator, a MADM method was developed. Finally, the proposed approach was applied to two
application examples. This MADM method is very simple. There is only one decision-making
matrix with LCVs information in a MAGDM problem. The results demonstrated this approach is
feasible and valid as the method proposed in Ye [13]. Compared with the method proposed in Ye [13],
this approach not only can handle decision-making problems effectively, but also can affect the ranking
order based on the LCVDWAA or LCVDWGA operator by the changeable parameter ρ. In an actual
decision-making process, we can specify various parameter values based on the decision makers’
preferences and requirements. However, the flexibility of the LCVDWAA or LCVDWGA operator was
not fully reflected in the two examples. In order to observe the sensitivity of weights, we changed
the weight vectors of the two examples and changed parameter values from 1 to 100. We found that the
results were not changed when the weight was averaged. Although the operators were not sensitive
to the changes of weights, there were some changes in the ranking results when we changed the
weight vectors to extreme cases in the study. Thus, the ranking results are determined by weights
and parameter values together for the same decision-making matrix. In future work, we can continue
to develop more flexible aggregation operators of LCVs and use them to solve MADM problems in
various fields.
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2. Petković, D.; Madić, M.; Radovanović, M. Application of the Performance Selection Index Method for
Solving Machining MCDM Problems. Facta Univ. Ser. Mech. Eng. 2017, 15, 97–106. [CrossRef]

165



Information 2018, 9, 188

3. Roy, J.; Adhikary, K.; Kar, S. A rough strength relational DEMATEL model for analysing the key success
factors of hospital service quality. Decis. Mak. Appl. Manag. Eng. 2018, 1, 121–142. [CrossRef]
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Abstract: To comprehensively describe uncertain/interval linguistic arguments and confident
linguistic arguments in the decision making process by a linguistic form, this study first presents
the concept of a single-valued linguistic neutrosophic interval linguistic number (SVLN-ILN),
which is comprehensively composed of its uncertain/interval linguistic number (determinate
linguistic argument part) and its single-valued linguistic neutrosophic number (confident linguistic
argument part), and its basic operations. Then, the score function of SVLN-ILN based on the
attitude index and confident degree/level is presented for ranking SVLN-ILNs. After that, SVLN-ILN
weighted arithmetic averaging (SVLN-ILNWAA) and SVLN-ILN weighted geometric averaging
(SVLN-ILNWGA) operators are proposed to aggregate SVLN-ILN information and their properties
are investigated. Further, a multi-attribute decision-making (MADM) method based on the
proposed SVLN-ILNWAA or SVLN-ILNWGA operator and the score function is established
under consideration of decision makers’ preference attitudes (pessimist, moderate, and optimist).
Lastly, an actual example is given to show the applicability of the established MADM approach with
decision makers’ attitudes.

Keywords: single-valued linguistic neutrosophic interval linguistic number; score function; weighted
aggregation operator; decision making

1. Introduction

Multi-attribute decision-making (MADM) explicitly evaluates multiple conflicting attributes
in decision making to help people make optimal decisions [1–4]. There usually exists uncertainty
and vagueness in MADM problems. In this situation, it may prove difficult for decision makers
(DMs) to express their evaluation values of attributes, especially qualitative attributes, by numerical
values. Then, the expression of linguistic terms (LTs) is very fit for human thinking and expressing
habits. For instance, when the quality of some product is evaluated by LTs, we use LTs “good”,
“very good”, and so on to easily express it. Hence, linguistic decision making methods have
been wildly used for MADM problems with linguistic information. Firstly, Zadeh [5] presented
the concept of a linguistic variable (LV) for its fuzzy reasoning application. Then, Herrera et al. [6]
and Herrera and Herrera-Viedma [7] solved linguistic decision making problems using a linguistic
decision analysis. After that, many scholars [8–14] introduced different linguistic aggregation
operators for (group) decision making problems. Owing to the uncertainty and vagueness in the
linguistic decision environment, uncertain/interval linguistic numbers (ILNs) and various uncertain
linguistic aggregation operators have been also presented for uncertain linguistic (group) decision
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making problems [15–20]. Based on a neutrosophic number (i.e., a changeable interval number with
indeterminacy), Ye [21] put forward the concept of a neutrosophic linguistic number (NLN), its basic
operational laws, and two NLN weighted aggregation operators for multi-attribute group decision
making (MAGDM). To represent the hybrid linguistic information of the partial uncertain and partial
certain arguments, Ye [22] introduced linguistic cubic numbers (LCNs) and their operations and
two weighted aggregation operators for MADM problems with LCN information. To independently
depict the truth, falsity, and indeterminacy linguistic arguments in real life for an evaluated object,
Fang and Ye [23] presented linguistic neutrosophic numbers (LNNs), their operations, and two
weighted aggregation operators for MAGDM in an LNN setting.

In uncertain linguistic MADM problems, it may prove difficult for DMs to give accurate LT
values for an attribute from a predefined LT set, but can assign a certain interval linguistic range to
it. However, ILN only indicates interval/uncertain LT values of DMs for an attribute, but cannot
reflect the confident degree of their judgment. Although Wang et al. [24] proposed the concept of the
intuitionistic interval number (IIN) composed of its interval judgment (its uncertain argument) and
its intuitionistic fuzzy judgment (its confident judgment) to express the hybrid information of both,
IIN cannot express its linguistic argument information in a linguistic evaluation setting. However,
how to express the hybrid information of a single-valued LNN and an ILN simultaneously is a
difficult problem because there is no research in existing literature. For instance, suppose we give
both the ILN [l4, l6] (the uncertain/interval linguistic argument) and the single-valued LNN <l5, l3, l1>
(the confident linguistic judgment) from the given LT set L = {ls|s ∈ [0, 8]} regarding an evaluated
object. It is obvious that IIN [24] cannot express the hybrid information of both the ILN and the
single-valued LNN. To comprehensively describe an uncertain linguistic argument and a confident
linguistic judgment in the decision making process, we need the single-valued linguistic neutrosophic
ILN (SVLN-ILN), which consists of an ILN and a single-valued LNN (SVLNN), where an SVLNN
inflects the confident level/degree of decision makers indicated by the truth, indeterminacy, and falsity
LT values corresponding to its ILN judgment for an evaluated object, in order to solve the gap.
Therefore, the purposes of this study are as follows: (1) to propose the SVLN-ILN concept for expressing
the hybrid information of both the ILN and the single-valued LNN, its operations, and score function
with both attitude index and confident level/degree for ranking SVLN-ILNs; (2) to present SVLN-ILN
weighted arithmetic averaging (SVLN-ILNWAA) and SVLN-ILN weighted geometric averaging
(SVLN-ILNWGA) operators; and (3) to establish an MADM method using the SVLN-ILNWAA or
SVLN-ILNWGA operator and the score function to handle MADM problems in SVLN-ILN setting and
DMs’ attitudes (pessimist, moderate, and optimist).

This study is constructed as per the following structural framework. Section 2 proposes the
SVLN-ILN concept composed of ILN and SVLNN, the basic operations of SVLN-ILNs, and the score
function of SVLN-ILN for ranking SVLN-ILNs. In Section 3, the SVLN-ILNWAA and SVLN-ILNWGA
operators are given to aggregate SVLN-ILNs, and then their properties are discussed. In Section 4,
a MADM method with DMs’ attitudes is established based on the SVLN-ILNWAA or SVLN-ILNWGA
operator and the score function under the SVLN-ILN setting. Section 5 presents an actual example to
show the applicability of the proposed MADM method in the SVLN-ILN setting. Lastly, conclusions
and future work are indicated in Section 6.

2. Single-Valued Linguistic Neutrosophic Interval Linguistic Numbers

Based on the extension of IINs [24], this section presents the concept of SVLN-ILN, which contains
the hybrid information of both SVLNN and ILN, the basic operations of SVLN-ILNs, and the score
function of SVLN-ILN.

Definition 1. Let a LT set be L = {ls|s ∈ [0, z]}, where z + 1 is an odd number/cardinality. A SVLN-ILN g in
L is constructed as g = 〈[la, lb]; lT , lI , lF〉, where [la, lb] is the ILN part of g and la and lb are linguistic lower

169



Information 2018, 9, 196

and upper bounds of ls for la ≤ ls ≤ lb and ls ∈ L, and then <lT, lI, lF> is the SVLNN part of g. Here, the truth
linguistic function Tg(ls) of g can be defined as

Tg(ls) =

{
lT , la ≤ ls ≤ lb
l0, otherwise

The indeterminacy linguistic function Ig(ls) of g can be defined as

Ig(ls) =

{
lI , la ≤ ls ≤ lb
lz, otherwise

The falsity linguistic function Fg(ls) of g can be defined as

Fg(ls) =

{
lF, la ≤ ls ≤ lb
lz, otherwise

where l0 ≤ lT ≤ lz, l0 ≤ lI ≤ lz, and l0 ≤ lF ≤ lz.
For instance, g = <[l4, l6]; l5, l2, l3> is an SVLN-ILN, where [l4, l6] is the ILN part of g, and then

<l5, l2, l3> is the SVLNN part depicted by the truth linguistic value l5, the indeterminacy linguistic
value l2, and the falsity linguistic value l3, independently. In a decision making problem, the SVLN-ILN
indicates both DMs’ interval linguistic judgment (uncertain linguistic judgment) and confident
linguistic judgment for an evaluated object.

To express the semantics conveniently, we adopt a linguistic transformation/scale function f (ls) = s
for s ∈ [0, z], which produces the mapping f : ls → s, i.e., the mapping from a LT in L = {ls|s ∈ [0, z]} to
a numerical value.

Definition 2. Suppose g1 =
〈
[la1 , lb1 ]; lT1 , lI1 , lF1

〉
and g2 =

〈
[la2 , lb2 ]; lT2 , lI2 , lF2

〉
are two SVLN-ILNs in

L. If their arguments/expected values are m1 = [ f (la1) + f (lb1)]/2 = (a1 + b1)/2 and m2 = [ f (la2) +

f (lb2)]/2 = (a2 + b2)/2, and a positive scalar is p > 0, their basic operations can be defined below:

g1 ⊕ g2 =

〈[
la1+a2− a1 ·a2

z
, l

b1+b2− b1 ·b2
z

]
; l m1T1+m2T2

m1+m2

, l m1 I1+m2 I2
m1+m2

, l m1F1+m2F2
m1+m2

〉
(1)

g1 ⊗ g2 =

〈[
l a1 ·a2

z
, l b1 ·b2

z

]
; l T1 ·T2

z
, l

I1+I2− I1 ·I2
z

, l
F1+F2− F1 ·F2

z

〉
(2)

pg1 =

〈[
lz−z(1− a1

z )
p , l

z−z(1− b1
z )

p

]
; lT1 , lI1 , lF1

〉
(3)

gp
1 =

〈[
lz( a1

z )
p , l

z( b1
z )

p

]
; l

z( T1
z )

p , l
z−z(1− I1

z )
p , l

z−z(1− F1
z )

p

〉
(4)

Clearly, the above calculated results are still SVLN-ILNs.

Example 1. Suppose g1 = <[l4, l6]; l5, l2, l3> and g2 = <[l2, l6]; l6, l1, l2> are two SVLN-ILNs in the LT set
L = {l0, l1, . . . , l8} for z = 8 and p = 2. Then, their arguments are m1 = [f(l4) + f(l6)]/2 = (4 + 6)/2 = 5 and
m2 = [f(l2) + f(l6)]/2 = (2 + 6)/2 = 4, respectively.

Thus, using Equations (1)–(4), the operational results are yielded as follows:
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(1)

g1 ⊕ g2 =

〈[
la1+a2− a1 ·a2

z
, l

b1+b2− b1 ·b2
z

]
; l m1T1+m2T2

m1+m2

, l m1 I1+m2 I2
m1+m2

, l m1F1+m2F2
m1+m2

〉
=
〈[

l4+2− 4×2
8

, l6+6− 6×6
8

]
; l 5×5+4×6

5+4
, l 5×2+4×1

5+4
, l 5×3+4×2

5+4

〉
= 〈[l5.0000, l7.5000]; l5.4444, l1.5556, l2.5556〉;

(2)
g1 ⊗ g2 =

〈[
l a1 ·a2

z
, l b1 ·b2

z

]
; l T1 ·T2

z
, l

I1+I2− I1 ·I2
z

, l
F1+F2− F1 ·F2

z

〉
=
〈[

l 4×2
8

, l 6×6
8

]
; l 5×6

8
, l2+1− 2×1

8
, l3+2− 3×2

8

〉
= 〈[l1.0000, l4.5000]; l3.7500, l2.7500, l4.2500〉;

(3)
pg1 =

〈[
lz−z(1− a1

z )
p , l

z−z(1− b1
z )

p

]
; lT1 , lI1 , lF1

〉
=

〈[
l
8−8(1− 4

8 )
2 , l

8−8(1− 6
8 )

2

]
; l5, l2, l3

〉
= 〈[l6.0000, l7.5000]; l5, l2, l3〉;

(4)
gp

1 =

〈[
lz( a1

z )
p , l

z( b1
z )

p

]
; l

z( T1
z )

p , l
z−z(1− I1

z )
p , l

z−z(1− F1
z )

p

〉
=

〈[
l
8( 4

8 )
2 , l

8( 6
8 )

2

]
; l

8( 5
8 )

2 , l
8−8(1− 2

8 )
2 , l

8−8(1− 3
8 )

2

〉
= 〈[l2.0000, l4.5000]; l3.1250, l3.5000, l4.8750〉.

For comparison between SVLN-ILNs, both ILN and SVLNN in an SVLN-ILN g = <[la, lb]; lT, lI, lF>
should be considered as the score function containing both the attitude index of ILN and the score
value of SVLNN (the confidence level/degree) regarding DMs in the decision making process.

Based on the extension of attitude index for an interval number [25], the attitude index of an ILN
[la, lb] is defined as follows:

A =
f (la) + f (lb)

2z
+ (2α− 1)

f (lb)− f (la)

2z
=

a + b
2z

+ (2α− 1)
b− a

2z
(5)

where α ∈ [0, 1] is the attitude coefficient.
Then, the score value of SVLNN is given as follows:

S =
2z + f (lT)− f (lI)− f (lF)

3z
=

2z + T − I − F
3z

(6)

Thus, the score function of a SVLN-ILN can be given by the definition below.

Definition 3. Based on the combination of both the attitude index of ILN and the score value of SVLN
(the confidence level) for a SVLN-ILN g = <[la, lb]; lT, lI, lF>, the new score function of a SVLN-ILN can
be given as

Y(g) = A× S =

(
a + b

2z
+ (2α− 1)

b− a
2z

)
×
(

2z + T − I − F
3z

)
for Y(g) [0, 1] (7)

In the score function (7), both the attitude coefficient α and the confident level/score value of S
can indicate the pessimistic/moderate/optimistic degree and confident degree of DMs. On the one
hand, when DM believes that the linguistic evaluation value of an attribute is in an ILN [la, lb], his/her
linguistic evaluation value tends to the lower bound la for a pessimistic DM, conversely, his/her
linguistic evaluation value tends to the upper bound lb for an optimistic DM, while his/her linguistic
evaluation value tends to the moderate value [f (la) + f (lb)]/2 for a moderate DM. Obviously, the DM’s
attitude is increasingly more optimistic with increasing α from 0 to 1. Especially when α = 0, 0.5,
and 1, the three attitude coefficients reflect the pessimistic, moderate, and optimistic attitudes of DM,
respectively. On the other hand, the score value of S ∈ [0, 1] also indicates the confident level/degree
of DM. Then, the DM’s confident degree is increasingly more high with increasing S from 0 to 1.
Especially S = 1 for f (lT) = z, f (lI) = 0, and f (lF) = 0 in SVLNN is quite confident; while S = 0 for f (lT) = 0,
f (lI) = z, and f (lF) = z in SVLNN is quite unconfident.
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Example 2. Suppose g = <[l6, l7]; l6, l2, l3> is the SVLN-ILN in the LT set L = {ls|s ∈ [0, 8]} for z = 8. Then,
the pessimistic, moderate, and optimistic attitudes of DM are given by α = 0, 0.5, 1, respectively.

Thus, by Equation (7), we calculate the score value of the SVLN-ILN below:

Y(g) =
(

a+b
2z + (2α− 1) b−a

2z

)(
2z+T−I−F

3z

)
=
( 6+8

2×8 + (2α− 1) 8−6
2×8

)( 2×8+6−2−3
3×8

)
=

⎧⎪⎨⎪⎩
0.5313 for α = 0,
0.6198 for α = 0.5,
0.7083 for α = 1.

Clearly, the score values of SVLN-ILN can be changed with the pessimistic, moderate,
and optimistic attitudes of DM (i.e., α = 0, 0.5, and 1, respectively).

Definition 4. Suppose g1 =
〈
[la1 , lb1 ]; lT1 , lI1 , lF1

〉
and g2 =

〈
[la2 , lb2 ]; lT2 , lI2 , lF2

〉
are two SVLN-ILNs in L,

we give the following ranking relations:

(i) If Y(g1) > Y(g2), then g1 � g2;
(ii) If Y(g1) < Y(g2), then g1 ≺ g2;
(iii) If Y(g1) = Y(g2), then g1 = g2.

Example 3. If g1 = <[l5, l7]; l7, l2, l1> and g2 = <[l6, l8]; l5, l3, l4> are two SVLN-ILNs in the LT set L = {ls|s
∈ [0, 8]} for z = 8, they are ranked by DM with the moderate attitude α = 0.5.

By applying Equation (7), there exists Y(g1) = 0.6250 > Y(g2) = 0.5104, then g1 � g2.

3. Weighted Aggregation Operators of SVLN-ILNs

3.1. SVLN-ILNWAA Operator

Definition 5. Suppose gk =
〈
[lak , lbk

]; lTk , lIk , lFk

〉
(k =1, 2, . . . , n) is a group of SVLN-ILNs in L. Then, the

SVLN-ILNWAA operator can be given as follows:

SVLN − ILNWAA(g1, g2, ..., gn) =
n

∑
k=1

ωkgk (8)

where ωk ∈ [0, 1] is the weight of gk (k =1, 2, . . . , n) and ∑n
k=1 ωk = 1.

Thus, the following theorem can be given based on Equations (1), (3), and (8).

Theorem 1. Suppose gk =
〈
[lak , lbk

]; lTk , lIk , lFk

〉
(k =1, 2, . . . , n) is a group of SVLN-ILNs in L. Thus, the

aggregation result regarding Equation (8) is also a SVLN-ILN, which is yielded by the aggregation form:

SVLN − ILNWAA(g1, g2, ..., gn) =
n
∑

k=1
ωkgk

=

〈⎡⎣l
z−z

n
∏

k=1
(1− ak

z )
ωk

, l
z−z

n
∏

k=1
(1− bk

z )
ωk

⎤⎦; l ∑n
k=1 ωk Tkmk
∑n

k=1 ωkmk

, l ∑n
k=1 ωk Ikmk

∑n
k=1 ωkmk

, l ∑n
k=1 ωk Fkmk

∑n
k=1 ωkmk

〉 (9)

where mk = (ak + bk)/2 for ak, bk ∈ [0, z] and k = 1, 2, . . . , n.

Then, Theorem 1 can be proofed by the mathematical induction.

172



Information 2018, 9, 196

Proof:

If k = 2, by Equation (3), we have

ω1g1 =

〈[
lz−z(1− a1

z )
ω1 , l

z−z(1− b1
z )

ω1

]
; lT1 , lI1 , lF1

〉
,

ω2g2 =

〈[
lz−z(1− a2

z )
ω2 , l

z−z(1− b2
z )

ω2

]
; lT2 , lI2 , lF2

〉
.

By Equation (1), there exists the following result:

2
∑

k=1
ωkgk =

〈 [
l
z−z(1− a1

z )
ω1+z−z(1− a2

z )
ω2− [z−z(1− a1

z )
ω1 ]×[z−z(1− a2

z )
ω2 ]

z

, l
z−z(1− b1

z )
ω1

+z−z(1− b2
z )

ω2− [z−z(1− b1
z )

ω1
]×[z−z(1− b2

z )
ω2

]
z

]
;

l T1(ω1a1+ω1b1)/2+T2(ω2a2+ω2b2)/2
(ω1a1+ω1b1)/2+(ω2a2+ω2b2)/2

, l I1(ω1a1+ω1b1)/2+I2(ω2a2+ω2b2)/2
(ω1a1+ω1b1)/2+(ω2a2+ω2b2)/2

, l F1(ω1a1+ω1b1)/2+F2(ω2a2+ω2b2)/2
(ω1a1+ω1b1)/2+(ω2a2+ω2b2)/2

〉

=

〈⎡⎣l
z−z

2
∏

k=1
(1− ak

z )
ωk

, l
z−z

2
∏

k=1
(1− bk

z )
ωk

⎤⎦; l ∑2
k=1 ωk Tkmk
∑2

k=1 ωkmk

, l ∑2
k=1 ωk Ikmk

∑2
k=1 ωkmk

, l ∑2
k=1 ωk Fkmk

∑2
k=1 ωkmk

〉
.

(10)

If k = n, Equation (9) exists as the following form:

SVLN − ILNWAA(g1, g2, ..., gn) =
n
∑

k=1
ωkgk

=

〈⎡⎣l
z−z

n
∏

k=1
(1− ak

z )
ωk

, l
z−z

n
∏

k=1
(1− bk

z )
ωk

⎤⎦; l ∑n
k=1 ωk Tkmk
∑n

k=1 ωkmk

, l ∑n
k=1 ωk Ikmk

∑n
k=1 ωkmk

, l ∑n
k=1 ωk Fkmk

∑n
k=1 ωkmk

〉
.

Thus, if k = n + 1, by Equations (1), (3), and (10), we yield the result:

SVLN − ILNWAA(g1, g2, ..., gn, gk+1) =
n+1
∑

k=1
ωkgk =

n
∑

k=1
ωkgk ⊕ωn+1gn+1

=

〈⎡⎣l
z−z

n
∏

k=1
(1− ak

z )
ωk

, l
z−z

n
∏

k=1
(1− bk

z )
ωk

⎤⎦; l ∑n
k=1 ωk Tkmk
∑n

k=1 ωkmk

, l ∑n
k=1 ωk Ikmk

∑n
k=1 ωkmk

, l ∑n
k=1 ωk Fkmk

∑n
k=1 ωkmk

〉
⊕ωn+1gn+1

=

〈
⎡⎢⎢⎢⎢⎢⎣

l
z−z

n
∏

k=1
(1− ak

z )
ωk+z−z(1− an+1

z )
ωn+1−

[z−z
n
∏

k=1
(1− ak

z )
ωk ]×[z−z(1− an+1

z )
ωn+1 ]

z

,

l

z−z
n
∏

k=1
(1− bk

z )
ωk

+z−z(1− bn+1
z )

ωn+1−
[z−z

n
∏

k=1
(1− bk

z )
ωk

]×[z−z(1− bn+1
z )

ωn+1
]

z

⎤⎥⎥⎥⎥⎥⎦;

l ∑n
k=1 ωk Tkmk+ωn+1Tn+1mn+1

∑n
k=1 ωkmk+ωn+1mn+1

, l ∑n
k=1 ωk Ikmk+ωn+1 In+1mn+1

∑n
k=1 ωkmk+ωn+1mn+1

, l ∑n
k=1 ωk Fkmk+ωn+1Fn+1mn+1

∑n
k=1 ωkmk+ωn+1mn+1

〉

=

〈⎡⎣l
z−z

n+1
∏

k=1
(1− ak

z )
ωk

, l
z−z

n+1
∏

k=1
(1− bk

z )
ωk

⎤⎦; l
∑n+1

k=1 ωk Tkmk
∑n+1

k=1 ωkmk

, l
∑n+1

k=1 ωk Ikmk
∑n+1

k=1 ωkmk

, l
∑n+1

k=1 ωk Fkmk
∑n+1

k=1 ωkmk

〉
.

Corresponding to the above results, Equation (9) can hold for any k. This proof is completed. �

To illustrate the operational process of the SVLN-ILNWAA operator, we give the following example.

Example 4. Suppose g1 = <[l5, l6]; l5, l2, l1>, g2 = <[l5, l7]; l6, l3, l1>, and g3 = <[l6, l7]; l7, l3, l3> are three
SVLN-ILNs in the LT set L = {ls|s ∈ [0, 8]} for z = 8, then their weigh vector is ω = (0.32, 0.25, 0.43).

Thus, there are m1 = (5 + 6)/2 = 5.5, m2 = (5 + 7)/2 = 6, and m3 = (6 + 7)/2 = 6.5.
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Using Equation (9), their operational result of the SVLN-ILNWAA operator is given below:

SVLN − ILNWAA(g1, g2, g3) =

〈⎡⎣l
z−z

3
∏

k=1
(1− ak

z )
ωk

, l
z−z

3
∏

k=1
(1− bk

z )
ωk

⎤⎦; l ∑3
k=1 ωk Tkmk
∑n

k=1 ωkmk

, l ∑3
k=1 ωk Ikmk

∑n
k=1 ωkmk

, l ∑3
k=1 ωk Fkmk

∑n
k=1 ωkmk

〉

=

〈 [
l8−8×(1−5/8)0.32×(1−5/8)0.25×(1−6/8)0.43 , l8−8×(1−6/8)0.32×(1−7/8)0.25×(1−7/8)0.43

]
;

l 0.32×5×5.5+0.25×6×6+0.43×7×6.5
0.32×5.5+0.25×6+0.43×6.5

, l 0.32×2×5.5+0.25×3×6+0.43×3×6.5
0.32×5.5+0.25×6+0.43×6.5

, l 0.32×1×5.5+0.25×1×6+0.43×3×6.5
0.32×5.5+0.25×6+0.43×6.5

〉
= 〈[ l5.4800, l6.7517]; l6.1709, l2.7093, l1.9232〉.

Obviously, their operational result of the SVLN-ILNWAA operator is also an SVLN-ILN and all
the LT values in it still belong to L.

Theorem 2. Suppose gk =
〈
[lak , lbk

]; lTk , lIk , lFk

〉
(k =1, 2, . . . , n) is a group of SVLN-ILNs in L. Thus, the

SVLN-ILNWAA operator implies these properties:

(1) Idempotency: Set gk (k = 1, 2, . . . , n) as a group of SVLN-ILNs in L. If gk = g for k = 1, 2, . . . , n,
then there exists SVLN − ILNWAA(g1, g2, · · · , gn) = g.

(2) Boundedness: Suppose gk (k = 1, 2, . . . , n) is a group of SVLN-ILNs in L. Let the

minimum SVLN-ILN be g− =

〈[
min

k
f (lak ), min

k
(lbk

)

]
; min

k
f (lTk ), max

k
f (lIk ), max

k
f (lFk )

〉
and the

maximum SVLN-ILN be g+ =

〈[
max

k
f (lak ), max

k
f (lbk

)

]
, max

k
(lTk ), min

k
(lIk ), min

k
(lFk )

〉
. Then,

g− ≤ SVLN − ILNWAA(g1, g2, · · · , gn) ≤ g+ can hold.
(3) Monotonicity: Suppose gk (k = 1, 2, . . . , n) is a group of SVLN-ILNs in L. If gk ≤ g∗k for

k = 1, 2, . . . , n, then SVLN − ILNWAA(g1, g2, · · · , gn) ≤ SVLN − ILNWAA
(

g∗1 , g∗2 , · · · , g∗n
)

can hold.

Proof:

(1) Because gk = g for k = 1, 2, . . . , n, there is the following result:

SVLN − ILNWAA(g1, g2, ..., gn) =
n
∑

k=1
ωkgk

=

〈⎡⎣l
z−z

n
∏

k=1
(1− ak

z )
ωk

, l
z−z

n
∏

k=1
(1− bk

z )
ωk

⎤⎦; l ∑n
k=1 ωk Tkmk
∑n

k=1 ωkmk

, l ∑n
k=1 ωk Ikmk

∑n
k=1 ωkmk

, l ∑n
k=1 ωk Fkmk

∑n
k=1 ωkmk

〉

=

〈[
l
z−z(1− a

z )
∑n

k=1 ωk
, l

z−z(1− b
z )

∑n
k=1 ωk

]
; lT , lI , lF

〉
=
〈[

lz−z(1− a
z )

, lz−z(1− b
z )

]
; lT , lI , lF

〉
= 〈[la, lb]; lT , lI , lF〉 = g.

(2) Because g− is the minimum SVLN-ILN and g+ is the maximum SVLN-ILN, g− ≤ gk ≤ g+ holds.

Hence,
n
∑

k=1
ωjg− ≤

n
∑

k=1
ωkgk ≤

n
∑

k=1
ωkg+ can hold. There exists g− ≤ n

∑
k=1

ωkgk ≤ g+ according to

the property (1), that is, g− ≤ SVLN − ILNWAA(g1, g2, · · · , gn) ≤ g+.

(3) For gk ≤ g∗k (k = 1, 2, . . . , n),
n
∑

k=1
ωkgk ≤ n

∑
k=1

ωkg∗k can hold, that is, SVLN −
ILNWAA(g1, g2, · · · , gn) ≤ SVLN − ILNWAA

(
g∗1 , g∗2 , · · · , g∗n

)
.

Thus, the proof of these properties is finished. �

Especially when ωk = 1/n for k = 1, 2, . . . , n, the SVLN-ILNWAA operator reduces to the
SVLN-ILN arithmetic average operator.
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3.2. SVLN-ILNWGA Operator

Definition 6. Suppose gk =
〈
[lak , lbk

]; lTk , lIk , lFk

〉
(k = 1, 2, . . . , n) is a group of SVLN-ILNs in L. Then, we

give the following definition of the SVLN-ILNWGA operator:

SVLN − ILNWGA(g1, g2, · · · , gn) =
n

∏
k=1

gωk
k (11)

where ωk ∈ [0, 1] is the weight of gk (k = 1, 2, . . . , n) and ∑n
k=1 ωk = 1.

Then, we can give the following theorem based on Equations (2), (4), and (11).

Theorem 3. Suppose gk =
〈
[lak , lbk

]; lTk , lIk , lFk

〉
(k =1, 2, . . . , n) is a group of SVLN-ILNs in L. Thus, the

aggregation result of Equation (11) is also an SVLN-ILN, which is obtained by the aggregation form:

SVLN − ILNWGA(g1, g2, · · · , gn) =
n
∏

k=1
gωk

k

=

〈⎡⎣l
z

n
∏

k=1
(

ak
z )

ωk , l
z

n
∏

k=1
(

bk
z )

ωk

⎤⎦; l
z

n
∏

k=1
(

Tk
z )

ωk , l
z−z

n
∏

k=1
(1− Ik

z )
ωk , l

z−z
n
∏

k=1
(1− Fk

z )
ωk

〉
.

(12)

Similar to the proof of Theorem 1, Theorem 3 can also be proved below.

Proof:

If k = 2, by Equation (4) we get

gω1
1 =

〈[
l
z(

a1
z )

ω1 , l
z(

b1
z )

ω1

]
; l

z(
T1
z )

ω1 , l
z−z(1− I1

z )
ω1 , l

z−z(1− F1
z )

ω1

〉
,

gω2
2 =

〈[
l
z(

a2
z )

ω2 , l
z(

b2
z )

ω2

]
; l

z(
T2
z )

ω2 , l
z−z(1− I2

z )
ω2 , l

z−z(1− F2
z )

ω2

〉
.

Using Equation (2), there exists the following result:

2
∏

k=1
gωk

k =

〈
[

l
z(

a1
z )

ω1×z(
a2
z )

ω2

z

, l
z(

b1
z )

ω1×z(
b2
z )

ω2

z

]
; l

z(
T1
z )

ω1×z(
T2
z )

ω2

z

,

l
z−z(

I1
z )

ω1
+z−z(

I2
z )

ω2− [z−z(1− I1
z )

ω1
]×[z−z(1− I2

z )
ω2

]
z

,

l
z−z(

F1
z )

ω1
+z−z(

F2
z )

ω2− [z−z(1− F1
z )

ω1
]×[z−z(1− F2

z )
ω2

]
z

〉

=

〈⎡⎣l
z

2
∏

k=1
(

ak
z )

ωk
, l

z
2
∏

k=1
(

bk
z )

ωk

⎤⎦; l
z

2
∏

k=1
(

Tk
z )

ωk , l
z−z(1− I1

z )
ω1×(1− I2

z )
ω2 , l

z−z(1− F1
z )

ω1×(1− F2
z )

ω2

〉

=

〈⎡⎣l
z

2
∏

k=1
(

ak
z )

ωk
, l

z
2
∏

k=1
(

bk
z )

ωk

⎤⎦; l
z

2
∏

k=1
(

Tk
z )

ωk , l
z−z

2
∏

k=1
(1− Ik

z )
ωk , l

z−z
2
∏

k=1
(1− Fk

z )
ω1

〉
.

(13)

If k = n, Equation (12) exists as the following result:

SVLN − ILNWGA(g1, g2, · · · , gn) =
n
∏

k=1
gωk

k

=

〈⎡⎣l
z

n
∏

k=1
(

ak
z )

ωk , l
z

n
∏

k=1
(

bk
z )

ωk

⎤⎦; l
z

n
∏

k=1
(

Tk
z )

ωk , l
z−z

n
∏

k=1
(1− Ik

z )
ωk , l

z−z
n
∏

k=1
(1− Fk

z )
ωk

〉
.
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Thus if k = n + 1, by Equations (2), (4), and (13), we yield the following result:

SVLN − ILNWGA(g1, g2, ..., gn, gn+1) =
n+1
∏

k=1
gωk

k =
n
∏

k=1
gωk

k ⊗ gωn+1
n+1

=

〈
⎡⎢⎣l

z
n
∏

k=1
(

ak
z )

ωk×z(
an+1

z )
ωn+1

z

, l
z

n
∏

k=1
(

bk
z )

ωk×z(
bn+1

z )
ωn+1

z

⎤⎥⎦; l
z

n
∏

k=1
(

Tk
z )

ωk×z(
Tn+1

z )
ωn+1

z

,

l
(z−z

n
∏

k=1
(1− Ik

z )
ωk

)+(z−z(1− In+1
z )

ωn+1
)−(z−z

n
∏

k=1
(1− Ik

z )
ωk

)×(z−z(1− In+1
z )

wn+1
)
,

l
(z−z

n
∏

k=1
(1− Fk

z )
ωk

)+(z−z(1− Fn+1
z )

ωn+1
)−(z−z

n
∏

k=1
(1− Fk

z )
ωk

)×(z−z(1− Fn+1
z )

wn+1
)

〉

=

〈 ⎡⎣l
z

n+1
∏

k=1
(

ak
z )

ωk
, l

z
n+1
∏

k=1
(

bk
z )

ωk

⎤⎦; l
z

n+1
∏

k=1
(

Tk
z )

ωk ,

l
(z−z

n
∏

k=1
(1− Ik

z )
ωk×(1− In+1

z )
ωn+1

)
, l
(z−z

n
∏

k=1
(1− Fk

z )
ωk

(1− Fn+1
z )

ωn+1
)

〉

=

〈⎡⎣l
z

n+1
∏

k=1
(

ak
z )

ωk
, l

z
n+1
∏

k=1
(

bk
z )

ωk

⎤⎦; l
z

n+1
∏

k=1
(

Tk
z )

ωk , l
z−z

n+1
∏

k=1
(1− Ik

z )
ωk , l

z−z
n+1
∏

k=1
(1− Fk

z )
ωk

〉
.

Based on the above results, Equation (12) exists for any k. This proof is finished. �

Example 5. Consider Example 4 to calculate the aggregation result of the SVLN-ILNWGA operator.

By Equation (12), the calculation process is shown as follows:

SVLN − ILNWGA(g1, g2, g3) =

〈⎡⎣l
z

3
∏

k=1
(

ak
z )

ωk
, l

z
3
∏

k=1
(

bk
z )

ωk

⎤⎦; l
z

3
∏

k=1
(

Tk
z )

ωk , l
z−z

3
∏

k=1
(1− Ik

z )
ωk , l

z−z
3
∏

k=1
(1− Fk

z )
ωk

〉

=

〈 [
l8×(5/8)0.32×(5/8)0.25×(6/8)0.43 , l8×(6/8)0.32×(7/8)0.25×(7/8)0.43

]
;

l8×(5/8)0.32×(6/8)0.25×(7/8)0.43 , l8−8×(1−2/8)0.32×(1−3/8)0.25×(1−3/8)0.43 , l8−8×(1−1/8)0.32×(1−1/8)0.25×(1−3/8)0.43

〉
= 〈[l5.4078, l6.6631]; l6.0478, l2.6996, l1.9429〉.

Obviously, their operational result of the SVLN-ILNWGA operator is also a SVLN-ILN and all
the LT values in it still belong to L.

Theorem 4. Suppose gk =
〈
[lak , lbk

]; lTk , lIk , lFk

〉
(k =1, 2, . . . , n) is a group of SVLN-ILNs in L. Thus, the

SVLN-ILNWGA operator indicates these properties:

(1) Idempotency: Suppose gk (k = 1, 2, . . . , n) is a group of SVLN-ILNs in L. If gk = g for k = 1, 2, . . . ,
n, then there exists SVLN − ILNWGA(g1, g2, · · · , gn) = g.

(2) Boundedness: Suppose gk (k = 1, 2, . . . , n) is a group of SVLN-ILNs in L. Let the

minimum SVLN-ILN be g− =

〈[
min

k
f (lak ), min

k
(lbk

)

]
; min

k
f (lTk ), max

k
f (lIk ), max

k
f (lFk )

〉
and the

maximum SVLN-ILN be g+ =

〈[
max

k
f (lak ), max

k
f (lbk

)

]
, max

k
(lTk ), min

k
(lIk ), min

k
(lFk )

〉
. Then,

g− ≤ SVLN − ILNWGA(g1, g2, · · · , gn) ≤ g+ can hold.
(3) Monotonicity: Suppose gk (k = 1, 2, . . . , n) is a group of SVLN-ILNs in L. If gk ≤ g∗k for

k = 1, 2, . . . , n, then SVLN − ILNWGA(g1, g2, · · · , gn) ≤ SVLN − ILNWGA
(

g∗1 , g∗2 , · · · , g∗n
)

can hold.

Similar to the proof of Theorem 2, these properties of the SVLN-ILNWGA operator can be also
proved, and then the proof of these properties is not repeated here.

176



Information 2018, 9, 196

4. MADM Method Based on the SVLN-ILNWAA or SVLN-ILNWGA Operator

In the SVLN-ILN setting, we present a MADM method using the SVLN-ILNWAA or
SVLN-ILNWGA operator and the score function to handle SVLN-ILN decision making problems
corresponding to the pessimistic, moderate, and optimistic attitudes of DMs.

In an SVLN-ILN MADM problem, suppose G = {G1, G2, . . . , Gm} and Q = {Q1, Q2, . . . , Qn} are
represented as a set of alternatives and a set of attributes, respectively. The attribute weigh vector of
Qk (k = 1, 2, . . . , n) is ω = (ω1, ω2, ..., ωn) with ∑n

k=1 ωk = 1. Then, the attributes Qk (k = 1, 2, . . . , n)
over the alternatives Gj (j = 1, 2, . . . , m) will be evaluated by DMs, which are expressed by SVLN-ILNs
from some predefined LT set L = {ls|s ∈ [0, z]} regarding an even number z. In the linguistic
evaluation, DM can assign an ILN as the uncertain linguistic argument and an SVLNN as the confident
linguistic argument in each SVLN-ILN, so as to give the SVLN-ILN evaluation value of each attribute
Qk (k = 1, 2, . . . , n) over the alternatives Gj (j = 1, 2, . . . , m) regarding the LTs. Hence, all SVLN-ILNs

can be established as a SVLN-ILN decision matrix G = (gjk)m×n, where gjk =
〈
[lajk , lbjk

]; lTjk , lIjk , lFjk

〉
(j = 1, 2, . . . , m; k = 1, 2, . . . , n) is a SVLN-ILN.

Hence, the MADM method using the SVLN-ILNWAA or SVLN-ILNWGA operator and the score
function is indicated as the following decision procedure:

Step 1: Compute the aggregated SVLN-ILN gi = SVLN-ILNWAA(gj1, gj2, ..., gjn) or
gj = SVLN-ILNWGA(gj1, gj2, ..., gjn) (j = 1, 2, . . . , m) based on Equation (9) or Equation (12)
for Gj (j = 1, 2, . . . , m).

Step 2: Calculate the score value of Y(gj) for each gj (j = 1, 2, . . . , m) by Equation (7).

Step 3: Rank the alternatives regarding the score values in a descending order and choose the best one.
Step 4: End.

5. Actual Example and Discussion

In this section, an actual example is provided to illustrate the applicability of the established
MADM method in the SVLN-ILN setting, and then discuss that DMs’ attitudes can affect the ranking
orders of alternatives and the optimal choice.

5.1. Actual Example

In linguistic decision making environment, let us consider that some software company
wants to hire a software engineer, which is adapted from the literature [22]. Then, the human
resources department preliminarily chooses the four candidates (alternatives) G1, G2, G3, and G4

from all applicants, and then they require further evaluation by the four attributes: soft skill (Q1),
past experience (Q2), personality (Q3), and self-confidence (Q4). A group of experts or DMs is requested
to choose the best candidate by the interview. Then, the weigh vector ω = (0.35, 0.25, 0.2, 0.2)
indicates the importance of the four attributes. Thus, the DMs assess the four possible candidates
Gj (j = 1, 2, 3, 4) over the four attributes Qk (k = 1, 2, 3, 4) by SVLN-ILNs from the given LT set
L = {ls|s ∈ [0, z]}, where L = {l0: extremely poor, l1: very poor, l2: poor, l3: slightly poor, l4: fair,
l5: slightly good, l6: good, l7: very good, l8: extremely good}. Thus, all the evaluated SVLN-ILNs can
be constructed as the SVLN-ILN decision matrix:

G = (gjk)4×4 =

⎡⎢⎢⎢⎣
〈[l4, l6]; l5, l1, l1〉 〈[l4, l6]; l7, l1, l2〉 〈[l4, l7]; l6, l1, l2〉 〈[l5, l6]; l6, l2, l3〉
〈[l3, l5]; l7, l2, l3〉 〈[l5, l7]; l6, l3, l5〉 〈[l4, l6]; l4, l1, l1〉 〈[l6, l7]; l6, l1, l2〉
〈[l4, l7]; l6, l1, l4〉 〈[l6, l7]; l7, l3, l3〉 〈[l5, l7]; l5, l2, l1〉 〈[l5, l7]; l7, l3, l4〉
〈[l6, l7]; l7, l4, l2〉 〈[l5, l7]; l6, l2, l1〉 〈[l4, l6]; l5, l3, l4〉 〈[l5, l6]; l5, l4, l2〉

⎤⎥⎥⎥⎦.

On the one hand, the established MADM method based on the SVLN-ILNVWAA operator is used
for the MADM problem with SVLN-ILN information. Thus, the decision procedure is presented below:
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Step 1: Compute the aggregated value of g1 for G1 by Equation (9), which is shown as follows:

g1 = SVLN − ILNWAA(g11, g12, g13, g14)

=

〈⎡⎣l
z−z

4
∏

k=1
(1− a1k

z )
ωk

, l
z−z

4
∏

k=1
(1− b1k

z )
ωk

⎤⎦; l ∑4
k=1 ωk T1km1k
∑4

k=1 ωkm1k

, l ∑4
k=1 ωk I1km1k
∑4

k=1 ωkm1k

, l ∑4
k=1 ωk F1km1k
∑4

k=1 ωkm1k

〉

=

〈
[
l8−8×(1−4/8)0.35×(1−4/8)0.25×(1−4/8)0.2×(1−5/8)0.2 , l8−8×(1−6/8)0.35×(1−6/8)0.25×(1−7/8)0.2×(1−6/8)0.2

]
;

l 0.35×5×(4+6)/2+0.25×7×(4+6)/2+0.2×6×(4+7)/2+0.2×6×(5+6)/2
0.35×(4+6)/2+0.25×(4+6)/2+0.2×(4+7)/2+0.2×(5+6)/2

,

l 0.35×1×(4+6)/2+0.25×1×(4+6)/2+0.2×1×(4+7)/2+0.2×2×(5+6)/2
0.35×(4+6)/2+0.25×(4+6)/2+0.2×(4+7)/2+0.2×(5+6)/2

,

l 0.35×1×(4+6)/2+0.25×2×(4+6)/2+0.2×2×(4+7)/2+0.2×3×(5+6)/2
0.35×(4+6)/2+0.25×(4+6)/2+0.2×(4+7)/2+0.2×(5+6)/2

〉

= 〈[ l4.2236, l6.2589]; l5.9038, l1.2115, l1.8750〉.

In the similar calculation manner, we can obtain other aggregated values of gj for Gj (j = 2, 3, 4):
g2 = <[l4.4962, l6.3127], l5.8846, l1.8462, l2.9423>, g3 = <[l5.002, l7], l6.2731, l2. 1513, l3.1218>, and
g4 = <[l5.2427, l6.6805], l6.0298, l3.3191, l2.0851>.

Step 2: Calculate the score value of Y(g1) by Equation (7) for α = 0.5 (considering the moderate
attitude of DMs):

Y(g1) =
(

a1+b1
2z + (2α− 1) b1−a1

2z

)
×
(

2z+T1−I1−F1
3z

)
=
(

4.2236+6.2589
2×8 + (2× 0.5− 1) 6.2589−4.2236

2×8

)
×
(

2×8+5.9038−1.2115−1.8750
3×8

)
= 0.5137.

(14)

In the similar calculation manner, we can obtain other score values of gj for Gj (j = 2, 3, 4):
Y(g2) = 0.4812, Y(g3) = 0.5313, and Y(g4) = 0.5162.

Step 3: Rank the four alternatives as G3 � G4 � G1 � G2 based on the score values, and then
choose G3 as the best candidate among the four candidates.

On the other hand, the established MADM method based on the SVLN-ILNWGA operator is
also used for the MADM problem with SVLN-ILN information. Thus, the decision procedure is also
presented as follows:

Step 1’: Compute the aggregated value of g1 for G1 by Equation (12):

g1 = SVLN − ILNWGA(g11, g12, g13, g14) =

〈⎡⎣l
z

4
∏

k=1
(

a1k
z )

ωk
, l

z
4
∏

k=1
(

b1k
z )

ωk

⎤⎦; l
z

4
∏

k=1
(

T1k
z )

ωk , l
z−z

4
∏

k=1
(1− I1k

z )
ωk , l

z−z
4
∏

k=1
(1− F1k

z )
ωk

〉

=

〈 [
l8×(4/8)0.35×(4/8)0.25×(4/8)0.2×(5/8)0.2 , l8×(6/8)0.35×(6/8)0.25×(7/8)0.2×(6/8)0.2

]
;

l8×(5/8)0.35×(7/8)0.25×(6/8)0.2×(6/8)0.2 , l8−8×(1−1/8)0.35×(1−1/8)0.25×(1−1/8)0.2×(1−2/8)0.2 , l8−8×(1−1/8)0.35×(1−2/8)0.25×(1−2/8)0.2×(1−3/8)0.2

〉
= 〈[l4.1826, l6.1879]; l5.8503, l1.2125, l1.8941〉.

In the similar calculation manner, we can obtain other aggregated values of gj for Gj (j = 2, 3, 4):
g2 = <[l4.1474, l6.0334], l5.8393, l1.9027, l3.1183>, g3 = <[l4.84, l7], l6.2007, l2.1662, l3.2696>, and g4 = <[l5.0968, l6.5814],
l5.8872, l3.3712, l2.25>.

Step 2’: Calculate the score value of Y(g1) by Equation (7) for α = 0.5 (considering the moderate
attitude of DMs):

Y(g1) =
(

a1+b1
2z + (2α− 1) b1−a1

2z

)(
2z+T1−I1−F1

3z

)
=
(

4.1826+6.1879
2×8 + (2× 0.5− 1) 6.1879−4.1826

2×8

)(
2×8+5.8503−1.2125−1.8941

3×8

)
= 0.5062.

In the similar calculation manner, we can obtain other score values of gj for Gj (j = 2, 3, 4):
Y(g2) = 0.4459, Y(g3) = 0.5169, and Y(g4) = 0.4947.

Step 3’: Rank the four alternatives as G3 � G1 � G4 � G2 based on the score values, and then
choose G3 as the best candidate among the four candidates.
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Clearly, the best candidate G3 is identical although there exists a little difference between two
kinds of ranking orders obtained by using the SVLN-ILNWAA and SVLN-ILNWGA operators under
the DMs’ moderate attitude.

5.2. Results and Discussion

Let us consider that the pessimistic, moderate, and optimistic attitudes of DMs may affect their
ranking orders. Based on the above similar computational steps, all the decision results based on the
SVLN-ILNWAA and SVLN-ILNWGA operators and the DMs’ attitudes are shown in Tables 1 and 2.

Table 1. Decision results corresponding to the single-valued linguistic neutrosophic interval
linguistic number weighted arithmetic averaging (SVLN-ILNWAA) operator and the decision makers’
(DMs’) attitudes.

DMs’ Attitude Score Value Ranking Order

Pessimist (α = 0) Y(g1) = 0.4139, Y(g2) = 0.4004,
Y(g3) = 0.4429, Y(g4) = 0.4540 G4 � G3 � G1 � G2

Moderate (α = 0.5) Y(g1) = 0.5137, Y(g2) = 0.4812,
Y(g3) = 0.5313, Y(g4) = 0.5162 G3 � G4 � G1 � G2

Optimist (α = 1) Y(g1) = 0.6134, Y(g2) = 0.5621,
Y(g3) = 0.6198, Y(g4) = 0.5785 G3 � G1 � G4 � G2

Table 2. Decision results corresponding to the SVLN-ILN weighted geometric averaging
(SVLN-ILNWGA) operator and the DMs’ attitudes.

DMs’ Attitude Score Value Ranking Order

Pessimist (α = 0) Y(g1) = 0.4083, Y(g2) = 0.3633,
Y(g3) = 0.4226, Y(g4) = 0.4318 G4 � G3 � G1 � G2

Moderate (α = 0.5) Y(g1) = 0.5062, Y(g2) = 0.4459,
Y(g3) = 0.5169, Y(g4) = 0.4947 G3 � G1 � G4 � G2

Optimist (α = 1) Y(g1) = 0.6041, Y(g2) = 0.5285,
Y(g3) = 0.6112, Y(g4) = 0.5576 G3 � G1 � G4 � G2

Obviously, two kinds of ranking orders based on the SVLN-ILNWGA and SVLN-ILNWGA
operators in Tables 1 and 2 are identical under the DMs’ pessimistic or optimistic attitudes, but the DMs’
attitudes can affect the ranking orders. Then, the best candidate is G4 for pessimist or G3 for optimist
and the worst one is G2 in all ranking orders. Hence, the established SVLN-ILN MADM method shows
its sensitivity and flexibility regarding the DMs’ attitudes, which depend on their preference.

As the decision information in this study uses the SVLN-ILN that is composed of ILN
(uncertain/interval linguistic argument part) and SVLNN (confident linguistic argument part) for the
first time, the SVLN-ILN MADM method is established for the first time because there is no other
study in existing literature. Therefore, existing various linguistic MADM methods cannot carry out
such a decision making problem with SVLN-ILN information in this paper.

Generally, this study indicates a new concept of SVLN-ILN and a new SVLN-ILN MADM method,
and then DMs can choose one of the SVLN-ILNWAA and the SVLN-ILNWGA operators to apply the
established MADM method to MADM problems with SVLN-ILN information and their preference
attitude or actual requirements.

6. Conclusions

This study proposed the SVLN-ILN concept to express the hybrid information of both a
single-valued LNN and an ILN, the operational laws of SVLN-ILNs, and the score function of
SVLN-ILN, along with the attitude index and confident degree for ranking SVLN-ILNs. Then, the
SVLN-ILNWAA and SVLN-ILNWGA operators were presented in order to aggregate SVLN-ILN
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information, and then their advantage is that all the LT values in their aggregated SVLN-ILN can still
belong to the predefined LT set, rather than beyond the LT set in some linguistic operations [8,9]. It is
well known that the two weighted aggregation operators are not only the most basic and simplest
operations, but also two main mathematical tools in MADM problems. Hence, an MADM method was
established based on the SVLN-ILNWAA or SVLN-ILNWGA operator and the score function so as to
handle MADM problems with SVLN-ILN information and DMs’ attitudes, which existing MADM
methods cannot handle. By an actual example, the decision results illustrated the applicability of the
established MADM method in the SVLN-ILN setting.

This study proposed for the first time the expression and score problems of hybrid information
of both the SVLN number and ILN using the SVLN-ILN and the weighted aggregation problems of
SVLN-ILNs to realize MADM problems with both interval/uncertain linguistic arguments (linguistic
uncertainty) and linguistic neutrosophic arguments (confident level/degree). Then, the established
SVLN-ILN MADM method contains much more linguistic information (interval/uncertain linguistic
arguments and confident linguistic arguments) and indicates its flexibility for DMs’ preference attitudes
along with pessimist, moderate, and optimist in linguistic the decision making process, which are
the main advantages in this study. From the viewpoint of scientific potential impact, the proposed
technologies will be extended to medical diagnosis, hospital service quality evaluation, selection of
suppliers, machining process selection, and so on.

Author Contributions: J.Y. proposed the SVLN-ILN concept, the SVLN-ILNWAA and SVLN-ILNWGA operators,
the score function, and the MADM method. W.C. provided the calculation of examples and comparative analysis.
All authors wrote the paper together.

Funding: This research received no external funding.

Acknowledgments: This study was supported by the National Natural Science Foundation of China
(Nos. 71471172, 61703280).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chatterjee, P.; Mondal, S.; Boral, S.; Banerjee, A.; Chakraborty, S. A novel hybrid method for non-traditional
machining process selection using factor relationship and multi-attributive border approximation method.
Facta Univ. Ser. Mech. Eng. 2017, 15, 439–456. [CrossRef]
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Abstract: For multiple attribute decision making, ranking and information aggregation problems
are increasingly receiving attention. In a normal neutrosophic number, the ranking method does
not satisfy the ranking principle. Moreover, the proposed operators do not take into account the
correlation between any aggregation arguments. In order to overcome the deficiencies of the existing
ranking method, based on the nonnegative normal neutrosophic number, this paper redefines the
score function, the accuracy function, and partial operational laws. Considering the correlation
between any aggregation arguments, the dual generalized nonnegative normal neutrosophic
weighted Bonferroni mean operator and dual generalized nonnegative normal neutrosophic weighted
geometric Bonferroni mean operator were investigated, and their properties are presented. Here, these
two operators are applied to deal with a multiple attribute decision making problem. Example results
show that the proposed method is effective and superior.

Keywords: multiple attribute decision making; nonnegative normal neutrosophic number;
aggregation operator

1. Introduction

During the decision making process, the evaluation information given by decision makers is
often incomplete, indeterminate, and inconsistent. To deal with this uncertain information, fuzzy
set (FS) was proposed by Zadeh [1] in 1965. On the basis of FS, intuitionistic fuzzy set (IFS) was
introduced by Atanassov [2] in 1986. However, IFS can not deal with all types of indeterminate
and inconsistent information. Hence, considering the indeterminacy-membership based on IFS,
Smarandache [3] developed the neutrosophic set (NS) in 1995. In NS, the truth-membership function,
indeterminacy-membership function, and false-membership function are independent of each other.
In real life, normal distribution is widely applied. Nevertheless, FS, IFS, and NS do not take the normal
distribution into account. Therefore, the normal fuzzy number (NFN) was firstly introduced by Yang
and Ko [4] in 1996, and NFN can deal with normal fuzzy information. Based on IFS and NFN, normal
intuitionistic fuzzy number (NIFN) was defined by Wang and Li [5] in 2002. Further, combining NFN
with NS, Liu [6] proposed the normal neutrosophic number (NNN).

With the development of society, many achievements have been made in the research of multiple
attribute decision making (MADM) [7–10]. Chatterjee et al. [7] proposed a novel hybrid method
encompassing factor relationship (FARE) and multi-attributive border approximation area comparison
(MABAC) methods. Petković et al. [8] introduced the performance selection index (PSI) method for
solving machining MADM problems. Roy et al. [9] developed a rough strength relational-decision
making and trial evaluation laboratory model. Badi et al. [10] used a new combinative distance-based
assessment (CODAS) method to handle MADM problems. Lee et al. [11] developed fuzzy entropy,
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which determined for an FS, by using the distance measure. Based on IFS, some authors [12–14]
investigated the distance-based technique for order preference by similarity to an ideal solution
(TOPSIS)method, entropy, and similarity measures of IFS, and applied them to MADM. Atanassov and
Gargov [15] extended IFS to interval valued intuitionistic fuzzy set (IVIFS). Huang [16] proposed
a (T, S)-based IVIF composition matrix and its application. Chen et al. [17] and Biswas et al. [18]
introduced a linear programming methodology and integrated the TOPSIS approach for MADM
in IVIFS. Because NS—a generalization of IFS and FS—can better describe uncertain information,
NS now attracts great attention. An outranking method, COPRAS method, and entropy with NS
for MADM has been developed in [19–21]. Wang et al. [22,23] introduced interval neutrosophic set
(INS) and single-valued neutrosophic set (SVNN). Zhang et al. [24,25] and Tian et al. [26] proposed
an outranking approach and weighted correlation coefficient: cross-entropy with INS for MADM.
Further, Huang [27] and Ye [28] presented a new distance measure—cross-entropy and its application
to MADM in SVNN.

Presently, information aggregation operators are attracting an increasing amount of attention
for dealing with MADM. Many aggregation operators have been developed in intuitionistic fuzzy
MADM [29–31]. Wang and Li [32,33] and Wang et al. [34] developed some intuitionistic normal
aggregation operators and proposed some MADM methods based on these operators, while
Wang et al. [5] developed some aggregation operators for NIFN. For NS and INS, some aggregation
operators were proposed, such as power aggregation operators [35], generalized weighted power
averaging operator [36], order weighted aggregation operators [37], generalized weighted power
averaging operator [38], etc. Liu [39–41] developed Frank operators, generalized weighted power
averaging operators, and Heronian mean operators for application with NNN; Şahin [42] introduced
generalized prioritized aggregation operators with NNN.

However, these operators do not consider the relationship between attributes. Considering the
interrelation between attributes, Bonferroni mean (BM) operator was first defined by Bonferroni
[43]. Liu [6] introduced normal neutrosophic weighted Bonferroni mean (NNWBM) operator and
normal neutrosophic weighted geometric Bonferroni mean (NNWGBM) operator. However, these
operators only take into account correlations between any two aggregation arguments, and they do
not consider the connections among any three or more than three aggregation arguments. The score
function and accuracy function of the NNN and their ranking method were proposed also. However,
the score function and accuracy function do not satisfy the ranking principle and are counterintuitive
(see Example 1 for details).

The main contribution of this paper is (1) the proposal of a score function and accuracy function
that satisfy the ranking principle, and (2) the extension of the operators in Liu [6]. First, we introduce the
nonnegative normal neutrosophic number (NNNN). Then, a new score function and accuracy function
are defined to solve the problem of the original function. Furthermore, considering the connections
between any two or more than two aggregation arguments, the operator in [6] is generalized and some
new operators are defined. For MADM, it is more reasonable to consider the relationship between each
attribute, and the example in this paper further illustrates the advantages of the proposed MADM
method compared with Liu [6]. The example in this paper further shows that when the relationship
between more aggregation arguments is considered, the aggregation result is more stable; when the
parameter value is larger, the aggregation result is more sensitive.

The structure of this paper as follows. Section 2 reviews the NNN, some operational laws, the score
function, accuracy function, and the ranking method. Section 3 proposes the basic concept of the NNNN,
and the new score function and accuracy function are introduced. Some generalized aggregation
operators are developed, which are the dual generalized nonnegative normal neutrosophic weighted
Bonferroni mean (DGNNNWBM) operator and dual generalized nonnegative normal neutrosophic
weighted geometric Bonferroni mean (DGNNNWGBM) operator. Their properties are discussed.
In Section 4, based on the DGNNNWBM operator and DGNNNWGBM operator, a MADM method is
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established. Section 5 gives a numerical example to explain the application of the proposed MADM
method, and compares it with the method presented in [6]. Section 6 concludes this paper.

2. Preliminaries

Yang and Ko (1996) introduced the concept of the normal fuzzy number (NFN).

Definition 1. [4] A = (a, σ) is an NFN if its membership function is defined by:
A(x) = e−( x−a

σ )2
(x ∈ X, σ > 0),

where X is the set of real numbers, and the set of NFNs is denoted as Ñ.

The neutrosophic number (NN) and single-valued neutrosophic number (SVNN) were proposed
in 1995 and 2005.

Definition 2. [3] Let X be a universe of discourse, with a generic element in X denoted by x. An NN A in X is
A(x) = 〈x|(TA(x), IA(x), FA(x))〉,

where TA(x) denotes the truth-membership function, IA(x) denotes the indeterminacy-membership function,
and FA(x) denotes the falsity-membership function. TA(x),IA(x), and FA(x) are real standard or nonstandard
subsets of ]−0, 1+[.

There is no limitation on the sum of TA(x), IA(x), and FA(x), so −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Definition 3. [23] Let X be a universe of discourse, with a generic element in X denoted by x. An SVNN A in
X is depicted by the following:

A(x) = 〈x|(TA(x), IA(x), FA(x))〉,
where TA(x) denotes the truth-membership function, IA(x) denotes the indeterminacy-membership function,
and FA(x) denotes the falsity-membership function. For each point x in X, we have TA(x), IA(x), FA(x) ∈ [0, 1]
and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Based on NFN and NN, Liu (2017) defined the normal neutrosophic number (NNN).

Definition 4. [6] Let X be a universe of discourse, with a generic element in X denoted by x, and (a, σ) ∈ Ñ;
then, an NNN A in X is expressed as:

A(x) = 〈x|(a, σ), (TA(x), IA(x), FA(x))〉 , x ∈ X,
where the truth-membership function TA(x) satisfies:

TA(x) = TAe−( x−a
σ )2

, x ∈ X,
where the indeterminacy-membership function IA(x) satisfies:

IA(x) = 1− (1− IA)e−( x−a
σ )2

, x ∈ X,
where the falsity-membership function FA(x) satisfies:

FA(x) = 1− (1− FA)e−( x−a
σ )2

, x ∈ X.
For each point x in X, we have TA(x), IA(x), FA(x) ∈ [0, 1], and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Then, we denote ã = 〈(a, σ), (T, I, F)〉 as an NNN.

Some operational laws are shown in the following.

Definition 5. [6] Let ã1 = 〈(a1, σ1), (T1, I1, F1)〉 and ã2 = 〈(a2, σ2), (T2, I2, F2)〉 be two NNNs; then, the
operational rules are defined as follows:
(1) ã1

⊕
ã2 =

〈
(a1 + a2, σ1 + σ2), (T1 + T2 − T1T2, I1 I2, F1F2)

〉
;

(2) ã1
⊗

ã2 =
〈(

a1a2, a1a2

√
σ2

1
a2

1
+

σ2
2

a2
2

)
, (T1T2, I1 + I2 − I1 I2, F1 + F2 − F1F2)

〉
;

(3) λã1 =
〈
(λa1, λσ1), (1− (1− T1)

λ, Iλ
1 , Fλ

1 )
〉
(λ > 0);

(4) ãλ
1 =

〈
(aλ

1 , λ
1
2 aλ−1

1 σ1), (Tλ
1 , 1− (1− I1)

λ, 1− (1− F1)
λ)
〉
(λ > 0).
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Theorem 1. [6] Let ã1 = 〈(a1, σ1), (T1, I1, F1)〉 and ã2 = 〈(a2, σ2), (T2, I2, F2)〉 be two NNNs, and
η, η1, η2 > 0; then, we have
(1) ã1

⊕
ã2 = ã2

⊕
ã1;

(2) ã1
⊗

ã2 = ã2
⊗

ã1;
(3) η(ã1

⊕
ã2) = η ã1

⊕
η ã2;

(4) η1 ã1
⊕

η2 ã1 = (η1 + η2)ã1;
(5) ãη

1
⊗

ãη
2 = (ã1

⊗
ã2)

η ;
(6) ãη1

1
⊗

ãη2
1 = ãη1+η2

1 .

Liu (2017) proposed the score function and accuracy function for an NNN.

Definition 6. [41] Let ãk = 〈(ak, σk), (Tk, Ik, Fk)〉 be an NNN, then its score function is
s1(ãk) = ak(2 + Tk − Ik − Fk),
s2(ãk) = σk(2 + Tk − Ik − Fk);

and its accuracy function is
h1(ãk) = ak(2 + Tk − Ik + Fk),
h2(ãk) = σk(2 + Tk − Ik + Fk).

Zhang et al. (2017) proposed the dual generalized weighted Bonferroni mean (DGWBM) operator
and dual generalized weighted geometric Bonferroni mean (DGWGBM) operator.

Definition 7. [44] Let ai(i = 1, 2, ..., n) be a collection of nonnegative crisp numbers with the weight ω =

(ω1, ω2, ..., ωn)T , ωi ∈ [0, 1](i = 1, 2, ..., n) and ∑n
i=1 ωi = 1. If

DGWBMR(a1, a2, ..., an) =

(
n
∑

i1,i2,...,in=1

(
n
∏
j=1

ωij a
rj
ij

))1/ ∑n
j=1 rj

,

where R = (r1, r2, ..., rn)T is the parameter vector with rj ≥ 0 (i = 1, 2, ..., n).

Definition 8. [44] Let ai(i = 1, 2, ..., n) be a collection of nonnegative crisp numbers with the weight ω =

(ω1, ω2, ..., ωn)T, where ωi ∈ [0, 1] (i = 1, 2, ..., n) and ∑n
i=1 ωi = 1. if

DGWBMR(a1, a2, ..., an) =
1

∑n
j=1 rj

(
n
∏

i1,i2,...,in

(
n
∑

j=1

(
rjaij

)))∏n
j=1 ωij

,

where R = (r1, r2, ..., rn)T is the parameter vector with ri ≥ 0 (i = 1, 2, ..., n).

3. Main Results

3.1. Ranking of Nonnegative Normal Neutrosophic Number

Liu and Li (2017) [6] introduced the concept of the score function s1 and s2, and the accuracy
function h1 and h2, as shown in Definition 6. We found some deficiencies with the ranking of these
functions, as shown below.

Let ãk = 〈(ak, σk), (Tk, Ik, Fk)〉 (k = 1, 2) be any two NNNs. When T1 < T2, I1 > I2, F1 > F2,
a1 ≤ a2, and σ1 ≥ σ2:

(1) If ak > 0 or ak < 0, then ranking results may be completely opposite;
(2) When s1 can determine the ranking result of ak, the influence of σk is not considered;
(3) Neither the score function nor the accuracy function satisfy the monotonicity.

We use the following example to illustrate problems (1) and (3) mentioned above.

Example 1. Let ã1 and ã2 be two NNNs, where the specific values are as shown in Table 1. According to
s1(ãk) = ak(2 + Tk − Ik − Fk),
s2(ãk) = σk(2 + Tk − Ik − Fk),
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h1(ãk) = ak(2 + Tk − Ik + Fk),
h2(ãk) = σk(2 + Tk − Ik + Fk),

we can get its score function and accuracy function from Table 1. For number 1,
s1(ã1) = 1× (2 + 0.5− 0.2− 0.2) = 2.1, s1(ã2) = 2× (2 + 0.6− 0.1− 0.1) = 4.8,

by 2.1 < 4.8, we have ã1 < ã2. For number 2,
s1(ã1) = (−1)× (2 + 0.5− 0.2− 0.2) = −2.1, s1(ã2) = (−0.95)× (2 + 0.6− 0.1− 0.1) = −2.28,

by −2.1 > −2.28, we have ã1 > ã2 for the numerical results, which are shown in Table 2.
From Table 2, when T1 < T2, I1 > I2, F1 > F2, a1 ≤ a2, and σ1 ≥ σ2 are satisfied, we can intuitively see

that the score function and accuracy function will be ranked differently if different values are taken. For example,
the number 1 satisfies 0.5 < 0.6, 0.2 > 0.1, 0.2 > 0.1, 1 < 2, 0.3 > 0.1; the number 2 satisfies 0.5 < 0.6, 0.2 > 0.1,
0.2 > 0.1, −1 < −0.95, 0.2 > 0.1. However, their ranking results are completely different. The ranking results of
numbers 2, 4, 6, 8 in Table 2 are counterintuitive. For example, the number 2 satisfies 0.5 < 0.6, 0.2 > 0.1, 0.2 >
0.1, −1 < −0.95, 0.2 > 0.1, and the ranking result are ã1 > ã2. However, intuitively, ã2 should be ranked first.

Table 1. The numerical example.

Number ã1 ã2

1 〈(1, 0.3), (0.5, 0.2, 0.2)〉 〈(2, 0.1), (0.6, 0.1, 0.1)〉
2 〈(−1, 0.2), (0.5, 0.2, 0.2)〉 〈(−0.95, 0.1), (0.6, 0.1, 0.1)〉
3 〈(2, 0.4), (0.6, 0.2, 0.3)〉 〈(2.5, 0.2), (0.7, 0.1, 0.1)〉
4 〈(2, 0.4), (0.6, 0.2, 1)〉 〈(2.5, 0.2), (0.7, 0.1, 0.1)〉
5 〈(0, 1), (0.6, 0.3, 0.2)〉 〈(0, 0.5), (0.7, 0.05, 0.05)〉
6 〈(0, 1), (0.6, 0.3, 0.2)〉 〈(0, 0.9), (0.7, 0.05, 0.05)〉
7 〈(2, 2), (0.6, 0.8, 0.2)〉 〈(2, 1), (0.7, 0, 0.1)〉
8 〈(2, 2), (0.6, 0.8, 0.2)〉 〈(2, 1.5), (0.7, 0, 0.1)〉

Table 2. The score function and accuracy function of the numerical example.

Number s1(ã1) s1(ã2) h1(ã1) h1(ã2) s2(ã1) s2(ã2) h2(ã1) h2(ã2) Ranking

1 2.1 4.8 - - - - - - ã1 < ã2
2 −2.1 −2.28 - - - - - - ã1 > ã2
3 - - 5.4 6.75 - - - - ã1 < ã2
4 - - 6.8 6.75 - - - - ã1 > ã2
5 - - - - 2.1 1.3 - - ã1 < ã2
6 - - - - 2.1 2.34 - - ã1 > ã2
7 - - - - - - 4 2.8 ã1 < ã2
8 - - - - - - 4 4.2 ã1 > ã2

In order to avoid the disadvantages of the ranking, we propose the nonnegative normal
neutrosophic number (NNNN). Additionally, we take σ into account and introduce the score function
and accuracy function of the NNNN.

Definition 9. A(x) =
〈

x|(a, σ), (TA(x), IA(x), FA(x))
〉

is an NNNN if it has satisfied Definition 4 and
a ≥ 0.

Based on the NNNN, the new score function S and accuracy function H are proposed.

Definition 10. Suppose ã = 〈(a, σ), (T, I, F)〉 is an NNNN, then its score function is
S(ã) = (a + 1

σ )(2 + T − I − F);
and its accuracy function is

H(ã) = (a + 1
σ )(1 + T − F).

According to the score function and accuracy function, the following propositions are derived.
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Proposition 1. Let ãk = 〈(ak, σk), (Tk, Ik, Fk)〉 (k = 1, 2) be any two NNNNs, then the following conclusions
are obtained.
(1) If a1 ≤ a2, σ1 ≥ σ2, T1 < T2 and I1 > I2 and F1 > F2, then S(ã1) < S(ã2);
(2) If a1 ≤ a2,σ1 ≥ σ2,T1 < T2, and F1 > F2, then H(ã1) < H(ã2).

Therefore, we have the following ranking principles.

Definition 11. Let ãk = 〈(ak, σk), (Tk, Ik, Fk)〉 (k = 1, 2) be any two NNNNs, then we have the following
method for ranking an NNNN:
(1) If S(ã1) < S(ã2), then ã1 < ã2;
(2) If S(ã1) = S(ã2), then

(a) If H(ã1) < H(ã2), then ã1 < ã2;
(b) If H(ã1) = H(ã2), then ã1 ∼ ã2.

We introduce some operational laws as follows:

Definition 12. Let ãk = 〈(ak, σk), (Tk, Ik, Fk)〉 (k = 1, 2) be any two NNNNs, then the operational rules are
defined as follows:
(1) ã1

⊗̂
ã2 =

〈
(a1a2, σ1σ2), (T1T2, I1 + I2 − I1 I2, F1 + F2 − F1F2)

〉
;

(2) ã∗λ
1 =

〈
(aλ

1 , σλ
1 ), (T

λ
1 , 1− (1− I1)

λ, 1− (1− F1)
λ)
〉
(λ > 0).

Moreover, the relations of the operational laws are given as below, and these properties are obvious.

Proposition 2. Let ã1 = 〈(a1, σ1), (T1, I1, F1)〉 and ã2 = 〈(a2, σ2), (T2, I2, F2)〉 be two NNNNs, and
η, η1, η2 > 0; then
(1) ã1

⊗̂
ã2 = ã2

⊗̂
ã1;

(2) ã∗η
1
⊗̂

ã∗η
2 = (ã1

⊗̂
ã2)

∗η ;

(3) ã∗η1
1
⊗̂

ã∗η2
1 = ã∗(η1+η2)

1 .

3.2. DGNNNWBM Operator and DGNNNWGBM Operator

This section extends the DGWBM and DGWGBM to NNNN, and proposes the dual
generalized nonnegative normal neutrosophic weighted Bonferroni mean (DGNNNWBM) operator
and dual generalized nonnegative normal neutrosophic weighted geometric Bonferroni mean
(DGNNNWGBM) operator.

Definition 13. Suppose {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} is a set of NNNNs, with their weight
vector being ωi = (ω1, ω2, ..., ωn)T, where ωi ∈ [0, 1] and ∑n

i=1 ωi = 1. The DGNNNWBM operator is
defined as

DGNNNWBMR
ω(ã1, ã2, ..., ãn) =

(
n⊕

i1,i2,...,in=1

(⊗̂n
j=1ωij ã

∗rj
ij

))∗1/ ∑n
j=1 rj

,

where R = (r1, r2, ..., rn)T is the parameter vector with ri ≥ 0(i = 1, 2, ..., n).

The DGNNNWBM operator can consider the relationship between any elements. Here are some
special cases of it.

Remark 1. If R = (λ, 0, 0, ..., 0)T, that is, consider the relationship of a single element, then the DGNNNWBM
reduces to:

DGNNNWBMR
ω(ã1, ã2, ..., ãn) =

(
n⊕

i=1
λãi

)∗ 1
λ

,

which is called a generalized nonnegative normal neutrosophic weighted averaging (GNNNWA) operator.
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If R = (s, t, 0, 0, ..., 0)T, that is, consider the relationship between any two elements, then the
DGNNNWBM reduces to:

DGNNNWBMR
ω(ã1, ã2, ..., ãn) =

(
n⊕

i,j=1

(
ωi ã∗s

i
⊗̂

ωj ã∗t
j

))∗ 1
s+t

,

which is the nonnegative normal neutrosophic weighted Bonferroni mean(NNNWBM) operator.
If R = (s, t, r, 0, 0, ..., 0)T, that is, consider the relationship between any three elements, then the

DGNNNWBM reduces to:

DGNNNWBMR
ω(ã1, ã2, ..., ãn) =

(
n⊕

i,j,k=1

(
ωi ã∗s

i
⊗̂

ωj ã∗t
j
⊗̂

ωk ã∗r
k

))∗ 1
s+t+r

,

which is called a generalized nonnegative normal neutrosophic weighted Bonferroni mean (GNNNWBM) operator.

Theorem 2. Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} be a set of NNNNs, then the aggregated result
of the DGNNNWBM is also an NNNN and

DGNNNWBMR
ω(ã1, ã2, ..., ãn) =

〈
(a, σ), (T, I, F)

〉
,

where

a =
( n

∑
i1,i2,...,in=1

( n
∏
j=1

ωij a
rj
ij

)) 1
∑n

j=1 rj ,

σ =
( n

∑
i1,i2,...,in=1

( n
∏
j=1

ωij σ
rj
ij

)) 1
∑n

j=1 rj ,

T =
(

1− n
∏

i1,i2,...,in=1

(
1− n

∏
j=1

(
1−

(
1− T

rj
ij

)ωij
))) 1

∑n
j=1 rj ,

I = 1−
(

1− n
∏

i1,i2,...,in=1

(
1− n

∏
j=1

(
1−

(
1−

(
1− Iij

)rj
)ωij

))) 1
∑n

j=1 rj ,

F = 1−
(

1− n
∏

i1,i2,...,in=1

(
1− n

∏
j=1

(
1−

(
1−

(
1− Fij

)rj
)ωij

))) 1
∑n

j=1 rj .

Proof. By Definition 5 and 12, we have

ã
∗rj
ij

=
〈(

a
rj
ij

, σ
rj
ij

)
,
(

T
rj
ij

, 1− (1− Iij

)rj , 1− (1− Fij

)rj
)〉

,
and
ωij ã

∗rj

ij
=
〈(

ωij a
rj

ij
, ωij σ

rj

ij

)
,
(

1− (1− T
rj

ij
)

ωij , (1− (1− Iij )
rj )

ωij , (1− (1− Fij )
rj )

ωij
)〉

,
so⊗̂n

j=1ωij ã
∗rj

ij
=〈(

n
∏
j=1

ωij a
rj
ij

,
n
∏
j=1

ωij σ
rj
ij

)
,

(
n
∏
j=1

(
1−

(
1− T

rj
ij

)ωij
)

,

n
∑

j=1
(1− (1− Iij)

rj)
ωij − n

∏
j=1

(1− (1− Iij)
rj)

ωij ,
n
∑

j=1
(1− (1− Fij)

rj)
ωij − n

∏
j=1

(1− (1− Fij)
rj)

ωij

)〉

=

〈(
n
∏
j=1

ωij a
rj
ij

,
n
∏
j=1

ωij σ
rj
ij

)
,

(
n
∏
j=1

(
1−

(
1− T

rj
ij

)ωij
)

,

1− n
∏
j=1

(
1−

(
1−

(
1− Iij

)rj
)ωij

)
, 1− n

∏
j=1

(
1−

(
1−

(
1− Fij

)rj
)ωij

))〉
,

then
n⊕

i1,i2,...,in=1

(⊗̂n
j=1ωij ã

∗rj
ij

)
=

〈(
n
∑

i1,i2,...,in=1

( n
∏
j=1

ωij a
rj
ij

)
,

n
∑

i1,i2,...,in=1

( n
∏
j=1

ωij σ
rj
ij

))
,(

n
∑

i1,i2,...,in=1

n
∏
j=1

(
1−

(
1− T

rj
ij

)ωij
)
− n

∏
i1,i2,...,in=1

n
∏
j=1

(
1−

(
1− T

rj
ij

)ωij
)

,
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n
∏

i1,i2,...in=1

(
1− n

∏
j=1

(
1−

(
1−

(
1− Iij

)rj
)ωij

))
,

n
∏

i1,i2,...in=1

(
1− n

∏
j=1

(
1−

(
1−

(
1− Fij

)rj
)ωij

)))〉
,

=

〈(
n
∑

i1,i2,...,in=1

( n
∏
j=1

ωij a
rj
ij

)
,

n
∑

i1,i2,...,in=1

( n
∏
j=1

ωij σ
rj
ij

))
,

(
1− n

∏
i1,i2,...,in=1

(
1− n

∏
j=1

(
1−

(
1− T

rj
ij

)ωij
))

,

n
∏

i1,i2,...in=1

(
1− n

∏
j=1

(
1−

(
1−

(
1− Iij

)rj
)ωij

))
,

n
∏

i1,i2,...in=1

(
1− n

∏
j=1

(
1−

(
1−

(
1− Fij

)rj
)ωij

)))〉
,

Let

a =
( n

∑
i1,i2,...,in=1

( n
∏
j=1

ωij a
rj
ij

)) 1
∑n

j=1 rj ,

σ =
( n

∑
i1,i2,...,in=1

( n
∏
j=1

ωij σ
rj
ij

)) 1
∑n

j=1 rj ,

T =
(

1− n
∏

i1,i2,...,in=1

(
1− n

∏
j=1

(
1−

(
1− T

rj
ij

)ωij
))) 1

∑n
j=1 rj ,

I = 1−
(

1− n
∏

i1,i2,...,in=1

(
1− n

∏
j=1

(
1−

(
1−

(
1− Iij

)rj
)ωij

))) 1
∑n

j=1 rj ,

F = 1−
(

1− n
∏

i1,i2,...,in=1

(
1− n

∏
j=1

(
1−

(
1−

(
1− Fij

)rj
)ωij

))) 1
∑n

j=1 rj .

thus (
n⊕

i1,i2,...,in=1

(⊗̂n
j=1ωij a

∗rj
ij

))∗1/ ∑n
j=1 rj

=
〈
(a, σ), (T, I, F)

〉
.

Thereafter
a ≥ 0, σ > 0, 0 ≤ T ≤ 1, 0 ≤ I ≤ 1, 0 ≤ F ≤ 1.

Hence
0 ≤ T + I + F ≤ 3.

which completes the proof.

The following example is used to explain the calculation of the DGNNNWBM operator.

Example 2. Let ã1 =
〈
(0.7, 0.01), (0.6, 0.2, 0.1)

〉
, ã2 =

〈
(0.4, 0.02), (0.8, 0.1, 0.3)

〉
be two NNNNs. With the

weighted vector ω = (0.7, 0.3)T, and the parameter vector R = (2, 3)T, then, according to Theorem 2, we have

a = (
2
∑

ii ,i2=1
(ωi1 ωi2))

1
2+3

= (ω1a
r1ω1ar2

1
1 + ω1ar1ω2ar2

2
1 + ω2a

r1ω1ar2
1

2 + ω2ar1ω2ar2
2

2 )
1
5

= (0.7× 0.72 × 0.7× 0.73 + 0.7× 0.72 × 0.3× 0.43 + 0.3× 0.42 × 0.7× 0.73 + 0.3× 0.42 × 0.3× 0.43)
1
5

= 0.6327
Similarly, we can obtain σ = 0.0143.

T =
(

1− 2
∏

ii ,i2=1
(1− (1− (1− Tr1

i1
)ωi1 )(1− (1− Tr2

i2
)ωi2 ))

) 1
2+3

= (1− (1− (1− (1− Tr1
1 )ω1)(1− (1− Tr2

1 )ω1))(1− (1− (1− Tr1
1 )ω1)(1− (1− Tr2

2 )ω2))(1− (1− (1−
Tr1

2 )ω2)(1− (1− Tr2
1 )ω1))(1− (1− (1− Tr1

2 )ω2)(1− (1− Tr2
2 )ω2)))

1
5

= (1− (1− (1− (1− 0.62)0.7)(1− (1− 0.63)0.7))× (1− (1− (1− 0.62)0.7)(1− (1− 0.83)0.3))× (1−
(1− (1− 0.82)0.3)(1− (1− 0.63)0.7))× (1− (1− (1− 0.82)0.3)(1− (1− 0.83)0.4)))

1
5

= 0.64

I = 1− (1− 2
∏

ii ,i2=1
(1− (1− (1− (1− Ii1)

r1)ωi1 )(1− (1− (1− Ii2)
r2)ωi2 )))

1
2+3

= 1− (1− (1− (1− (1− (1− I1)
r1)ω1)(1− (1− (1− I1)

r2)ω1))(1− (1− (1− (1− I1)
r1)ω1)(1− (1−

(1− I2)
r2)ω2))(1− (1− (1− (1− I2)

r1)ω2)(1− (1− (1− I1)
r2)ω1))(1− (1− (1− (1− I2)

r1)ω2)(1−
(1− (1− I2)

r2)ω2)))
1
5
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= 1− (1− (1− (1− (1− (1− 0.2)2)0.7)(1− (1− (1− 0.2)3)0.7))(1− (1− (1− (1− 0.2)2)0.7)(1− (1−
(1− 0.1)3)0.3))(1− (1− (1− (1− 0.1)2)0.3)(1− (1− (1− 0.2)3)0.7))(1− (1− (1− (1− 0.1)2)0.3)(1−
(1− (1− 0.1)3)0.3)))

1
5

= 0.1265
Similarly, we can obtain F = 0.1195.
So, DGNNNWBMR

ω(ã1, ã2) =
〈
(0.6327, 0.0143), (0.64, 0.1265, 0.1195)

〉
Next, we discuss some properties of the DGNNNWBM operator.

Theorem 3. (Monotonicity) Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} and {b̃i|b̃i =
〈
(bi, δi),

(Tbi
, Ibi

, Fbi
)
〉
, i = 1, 2, ..., n} be two sets of NNNNs. If ai ≤ bi, σi ≥ δi and Tai < Tbi

and Iai > Ibi

and Fai > Fbi
hold for all i, then

DGNNNWBMR
ω(ã1, ã2, ..., ãn) < DGNNNWBMR

ω(b̃1, b̃2, ..., b̃n),
where R = (r1, r2, ..., rn)T is the parameter vector with ri ≥ 0(i = 1, 2, ..., n).

Proof. Let
DGNNNWBMR

ω(ã1, ã2, ..., ãn) = 〈(a, σ), (Ta, Ia, Fa)〉,
DGNNNWBMR

ω(b̃1, b̃2, ..., b̃n) = 〈(b, δ), (Tb, Ib, Fb)〉.
According to the DGNNNWBM operator, we have

a =
( n

∑
i1,i2,...,in=1

( n
∏
j=1

ωij a
rj
ij

))1/ ∑n
j=1 rj

, b =
( n

∑
i1,i2,...,in=1

( n
∏
j=1

ωij b
rj
ij

))1/ ∑n
j=1 rj

,

σ =
( n

∑
i1,i2,...,in=1

( n
∏
j=1

ωij σ
rj
ij

))1/ ∑n
j=1 rj

, δ =
( n

∑
i1,i2,...,in=1

( n
∏
j=1

ωij δ
rj
ij

))1/ ∑n
j=1 rj

.

By ai ≤ bi, σi ≥ δi we get a ≤ b, σ ≥ δ.
Let

Ta =

(
1− n

∏
i1,i2,...,in=1

(
1− n

∏
j=1

(
1− (1− T

rj
aij

)ωij
))) 1

∑n
j=1 rj

,

Tb =

(
1− n

∏
i1,i2,...,in=1

(
1− n

∏
j=1

(
1− (1− T

rj
bij

)ωij
))) 1

∑n
j=1 rj

when Tai < Tbi
, we can obtain

(1− T
rj
aij
)

ωij > (1− T
rj
bij
)

ωij ,

and
1− (1− T

rj
aij
)

ωij < 1− (1− T
rj
bij
)

ωij ,

therefore
1− n

∏
j=1

(
1− (1− T

rj
aij

)ωij
)
> 1− n

∏
j=1

(
1− (1− T

rj
bij

)ωij
)

,

thus

1− n
∏

i1,i2,...,in=1

(
1− n

∏
j=1

(
1− (1− T

rj
aij

)ωij
))

< 1− n
∏

i1,i2,...,in=1

(
1− n

∏
j=1

(
1− (1− T

rj
bij

)ωij
))

,

then Ta < Tb.
Similarly, we can obtain Ia > Ib and Fa > Fb.
According to Definition 11,

S(DGNNNWBMR
ω(ã1, ã2, ..., ãn)) = (a + 1

σ )(2 + Ta − Ia − Fa)

< (b + 1
δ )(2 + Tb − Ib − Fb) = S(DGNNNWBMR

ω(b̃1, b̃2, ..., b̃n)).
Therefore, the proof is completed.

Remark 2. If ai ≤ bi, σi ≥ δi, Tai ≤ Tbi
, Iai ≥ Ibi

, Fai ≥ Fbi
and (Tai −Tbi

)2 +(Iai − Ibi
)2 +(Fai − Fbi

)2 �= 0
hold for any i, Theorem 3 is still holds.
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Theorem 4. (Boundedness) Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} be a set of NNNNs.
If a+ =

〈
(maxi(ai), mini(σi)), (maxi(Ti), mini(Ii), mini(Fi)

〉
=

〈
(a+i , σ+

i ), (T+
ai

, I+ai
, F+

ai
)
〉

and a− =〈
(mini(ai), maxi(σi)), (mini(Ti), maxi(Ii), maxi(Fi)

〉
=
〈
(a−i , σ−i ), (T−ai

, I−ai
, F−ai

)
〉
, then

DGNNNWBMR
ω(ã−, ã−, ..., ã−) ≤ DGNNNWBMR

ω(ã1, ã2, ..., ãn) ≤ DGNNNWBMR
ω(ã+, ã+, ..., ã+).

Proof. By a−i ≤ ai ≤ a+i , σ+
i ≤ σi ≤ σ−i , T−i ≤ Ti ≤ T+

i , I+i ≤ Ii ≤ I−i , F+
i ≤ Fi ≤ F−i , according to

Theorem 3 and Remark 2, we get
DGNNNWBMR

ω(ã−, ã−, ..., ã−) ≤ DGNNNWBMR
ω(ã1, ã2, ..., ãn) ≤ DGNNNWBMR

ω(ã+, ã+, ..., ã+).

Theorem 5. (Commutativity) Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} be a set of NNNNs. If ã′i is
any permutation of ãi, then

DGNNNWBMR
ω(ã1, ã2, ..., ãn) = DGNNNWBMR

ω(ã′1, ã′2, ..., ã′n).

Unfortunately, the DGNNNWBM operator is not satisfied with idempotency, i.e.,
DGNNNWBMR

ω(ã, ã, ..., ã) �= a.

Example 3. Let ã = 〈(4, 0.2), (0.8, 0.2, 0.3)〉 be an NNNN. The weighted vector ω = (0.25, 0.25, 0.25, 0.25)T,
and the parameter vector R = (2, 2, 2, 2)T, if all ãi = ã(i = 1, 2, 3, 4). Similar to Example 2, the following
results can be obtained

DGNNNWBMR
ω(ã, ã, ã, ã) = 〈(4, 0.2), (0.9886, 0.0114, 0.0886)〉 �= ã.

Furthermore, we extend the DGWBGM to NNNNs and propose the dual generalized nonnegative
normal neutrosophic weighted geometric Bonferroni mean (DGNNNWGBM) operator.

Definition 14. Suppose {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} is a set of NNNNs with their weight
vector being ωi = (ω1, ω2, ..., ωn)T, where ωi ∈ [0, 1] and ∑n

i=1 ωi = 1. The DGNNNWGBM operator is
defined as

DGNNNWGBMR
ω(ã1, ã2, ..., ãn) =

1
∑n

j=1 rj

(⊗̂n
i1,i2,...in=1

( n⊕
j=1

(rj ãij)
)∗∏n

j=1 ωij

)
,

where R = (r1, r2, ..., rn)T is the parameter vector with ri ≥ 0(i = 1, 2, ..., n).

The DGNNNWGBM operator can consider the relationship between any elements. Here are some
special cases of it.

Remark 3. If R = (λ, 0, 0, ..., 0)T, that is, consider the relationship of a single element, then the
DGNNNWGBM reduces to:

DGNNNWGBMR
ω(ã1, ã2, ..., ãn) =

1
λ

(⊗̂n
i=1

(
λãi

)∗ωi

)
which is called a generalized nonnegative normal neutrosophic weighted geometric averaging
(GNNNWGA) operator.

If R = (s, t, 0, 0, ..., 0)T, that is, consider the relationship between any two elements, then the
DGNNNWGBM reduces to:

DGNNNWGBMR
ω(ã1, ã2, ..., ãn) =

1
s+t
⊗̂n

i,j=1

(
sãi
⊕

tãj

)∗ωiωj

which is called a nonnegative normal neutrosophic weighted Bonferroni geometric (NNNWBG) operator.
If R = (s, t, r, 0, 0, ..., 0)T, that is, consider the relationship between any three elements, then the

DGNNNWGBM reduces to:
DGNNNWGBMR

ω(ã1, ã2, ..., ãn) =
1

s+t+r
⊗̂n

i,j,k=1

(
sãi
⊕

tãj
⊕

tãk

)∗ωiωjωk

which is called a generalized nonnegative normal neutrosophic weighted Bonferroni geometric
(GNNNWBG) operator.
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Theorem 6. Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} be a set of NNNNs, then the aggregated result
of DGNNNWGBM is also an NNNN and

DGNNNWGBMR
ω(ã1, ã2, ..., ãn) =

〈
(â, σ̂), (T̂, Î, F̂)

〉
,

where

â = 1
∑n

j=1 rj

n
∏

i1,i2,...in=1

( n
∑

j=1
(rjaij)

)∏n
j=1 ωij ,

σ̂ = 1
∑n

j=1 rj

n
∏

i1,i2,...in=1

( n
∑

j=1
(rjσij)

)∏n
j=1 ωij ,

T̂ = 1−
(

1− n
∏

i1,i2,...,in=1

(
1− n

∏
j=1

(
1− Tij

)rj
)∏n

j=1 ωij
) 1

∑n
j=1 rj ,

Î =
(

1− n
∏

i1,i2,...,in=1

((
1− n

∏
j=1

I
rj
ij

)∏n
j=1 ωij

)) 1
∑n

j=1 rj ,

F̂ =
(

1− n
∏

i1,i2,...,in=1

((
1− n

∏
j=1

F
rj
ij

)∏n
j=1 ωij

)) 1
∑n

j=1 rj .

The proof of Theorem 6 is similar to that of Theorem 2.
Likewise, an example is used to explain the calculation of the DGNNNWGBM operator.

Example 4. Let ã1 =
〈
(0.5, 0.03), (0.5, 0.4, 0.1)

〉
, ã2 =

〈
(0.8, 0.015), (0.9, 0.2, 0.2)

〉
be two NNNNs.

The weighted vector ω = (0.6, 0.4)T, and the parameter vector R = (3, 4)T, then, according to Theorem 6,
we have

â = 1
3+4

2
∏

i1,i2=1
(r1ai1 + r2ai2)

ωi1
ωi2

= 1
7 (r1a1 + r2a1)

ω1ω1(r1a1 + r2a2)
ω1ω2(r1a2 + r2a1)

ω2ω1(r1a2 + r2a2)
ω2ω2

= 1
7 (3× 0.5 + 4× 0.5)0.6×0.6(3× 0.5 + 4× 0.8)0.6×0.4(3× 0.8 + 4× 0.5)0.4×0.6(3× 0.8 + 4× 0.8)0.4×0.4

= 0.6112
Similarly, we can obtain σ̂ = 0.0234.

T̂ = 1− (1− 2
∏

i1,i2=1
(1− (1− Ti1)

r1(1− Ti2)
r2)ωi1

ωi2 )
1

3+4

= 1 − (1 − (1 − (1 − T1)
r1(1 − T1)

r2)ω1ω1(1 − (1 − T1)
r1(1 − T2)

r2)ω1ω2(1 − (1 − T2)
r1(1 −

T1)
r2)ω2ω1(1− (1− T2)

r1(1− T2)
r2)ω2ω2)

1
7

= 1 − (1 − (1 − (1 − 0.5)3(1 − 0.5)4)0.6×0.6 × (1 − (1 − 0.5)3(1 − 0.9)4)0.6×0.4 × (1 − (1 − 0.9)3(1 −
0.5)4)0.4×0.6(1− (1− 0.9)3(1− 0.9)4)0.4×0.4)

1
7

= 0.5674

Î = (1− 2
∏

i1,i2=1
(1− Ir1

i1
Ir2
i2
)ωi1

ωi2 )
1

3+4

= (1− (1− Ir1
1 Ir2

1 )ω1ω1(1− Ir1
1 Ir2

2 )ω1ω2(1− Ir1
2 Ir2

1 )ω2ω1(1− Ir1
2 Ir2

2 )ω2ω2)
1
7

= (1− (1− 0.43 × 0.44)0.6×0.6(1− 0.43 × 0.24)0.6×0.4(1− 0.23 × 0.44)0.4×0.6(1− 0.23 × 0.24)0.4×0.4)
1
7

= 0.3517
Similarly, we can obtain Î = 0.1598.
So, DGNNNWGBMR

ω(ã1, ã2) = 〈(0.6112, 0.0234), (0.5674, 0.3517, 0.1598)〉 .

The DGNNNWGBM operator has the same properties as the DGNNNWBM operator. The proof
is also similar to that of the DGNNNWBM operator. Of particular note, the DGNNNWGBM operator
satisfies the property of idempotency.

Theorem 7. (Idempotency) Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} be a set of NNNNs. If all
ãi = ã, then

DGNNNWGBMR
ω(ã1, ã2, ..., ãn) = ã.
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Proof. Since ãi = ã(i = 1, 2, ..., n), according to operational rules,
DGNNNWGBMR

ω(ã1, ã2, ..., ãn)

= 1
∑n

j=1 rj

(⊗̂n
i1,i2,...in=1

( n⊕
j=1

(rj ãij)
)∗∏n

j=1 ωij

)

= 1
∑n

j=1 rj

(⊗̂n
i1,i2,...,in=1

(
n
∑

j=1
rj ã

)∗∏n
j=1 ωij

)

= 1
∑n

j=1 rj

(
n
∑

j=1
rj ã

)∗ n
∑

i1,i2,...,in=1

n
∏
j=1

ωij

Here,
n
∑

i1,i2,...,in=1

m
∏
j=1

ωij = 1 is proved by mathematical induction.

When m = 2, we have
n
∑

i1,i2=1
ωi1 ωi2 =

n
∑

i1=1
ωi1

n
∑

i2=1
ωi2 = 1.

Suppose m = k− 1, and
n
∑

i1,i2,...,ik−1=1

k−1
∏
j=1

ωij = 1,

so when m = k, we get
n
∑

i1,i2,...,ik=1

k
∏
j=1

ωij =
n
∑

i1,i2,...,ik=1

k−1
∏
j=1

ωij ωik =
n
∑

i1,i2,...,ik−1=1

k−1
∏
j=1

ωij

k
∑

ik=1
ωik = 1.

Then
DGNNNWGBMR

ω(ã1, ã2, ..., ãn) = ã.
That completes the proof.

Theorem 8. (Monotonicity) Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} and {b̃i|b̃i =
〈
(bi, δi),

(Tbi
, Ibi

, Fbi
)
〉
, i = 1, 2, ..., n} be two sets of NNNNs. If ai ≤ bi, σi ≥ δi, Tai ≤ Tbi

, Iai ≥ Ibi
, Fai ≥ Fbi

, and
(Tai − Tbi

)2 + (Iai − Ibi
)2 + (Fai − Fbi

)2 �= 0 hold for any i, then
DGNNNWGBMR

ω(ã1, ã2, ..., ãn) < DGNNNWGBMR
ω(b̃1, b̃2, ..., b̃n).

Theorem 9. (Boundedness) Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} be a set of NNNNs. If ã+ =

〈(maxi(ai), mini(σi)), (maxi(Ti), mini(Ii), mini(Fi)〉 and ã− =
〈
(mini(ai), maxi(σi)), (mini(Ti), maxi(Ii),

maxi(Fi)
〉
, then

ã− ≤ DGNNNWGBMR
ω(ã1, ã2, ..., ãn) ≤ ã+

Theorem 10. (Commutativity) Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} be a set of NNNNs. ã′i is any
permutation of ãi, then

DGNNNWGBMR
ω(ã1, ã2, ..., ãn) = DGNNNWGBMR

ω(ã′1, ã′2, ..., ã′n).

4. A Multiple Attribute Decision-Making Method on the Basis of the DGNNNWBM Operator
and DGNNNWGBM Operator

In this section, based on the NNNN, we utilize the DGNNNWBM operator or DGNNNWGBM
operator to solve the MADM problem.

Let A = {A1, A2, ..., Am} be a set of the alternatives, and C = {C1, C2, ..., Cn} be a set of the
attributes; the weight vector of the attribute is ω = (ω1, ω2, ..., ωn)T , where ωj ∈ [0, 1] and ∑n

j=1 ωj = 1.
Let D = (ãij)m×n be the decision matrix, and ãij =

〈
(aij, σij), (Tij, Iij, Fij)

〉
be the evaluation value of

the alternative Ai with respect to attribute Cj, denoted by the form of NNNN.
The DGNNNWBM operator or DGNNNWGBM operator can be used to handle the MADM

problem, and the steps are shown as follows:

Step 1. Standardize the decision matrix.
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If all the attributes Ci are of the same type, then the attribute values do not need standardization.
If there is a different type, the attributes should be converted so they are of the same type. Suppose the
decision matrix D = (ãij)m×n transforms to the standardized matrix D̃ = (ã′ij)m×n.

According to [6], we have the following standardization method. For the benefit attribute:

ã′ij =
〈( aij

max1≤i≤m(aij)
,

σij
max1≤i≤m(σij)

σij
aij

)
,
(
Tij, Iij, Fij

)〉
.

For the cost attribute:
ã′ij =

〈(min1≤i≤m(aij)
aij

,
σij

max1≤i≤m(σij)

σij
aij

)
,
(

Fij, 1− Iij, Tij
)〉

.

Step 2. Utilize the DGNNNWBM operator

ãi = DGNNNWBMR
ω(ãi1, ãi2, ..., ãin) =

〈
(ai, σi), (Ti, Ii, Fi)

〉
or the DGNNNWGBM operator

ãi = DGNNNWGBMR
ω(ãi1, ãi2, ..., ãin) = 〈(ai, σi), (Ti, Ii, Fi)〉

for comprehensive evaluation.

Step 3. According to rank principles, which are shown in Definitions 10 and 11, rank the alternatives
A1, A2, ..., Am and choose the best one.

5. Numerical Example and Comparative Analysis

In this section, the effectiveness of the proposed MADM method is illustrated, demonstrating the
effect of different parameter values on the final ranking results. Finally, the advantages of the proposed
method are illustrated by comparison.

5.1. The Numerical Example

In the following, the application of the proposed method is illustrated by a numerical example.

Example 5. Patients choose a hospital according to their own needs. There are five alternatives hospitals to
choose from: (1) A1 is a people’s hospital; (2) A2 is a city hospital; (3) A3 is a second city hospital; (4) A4 is the
first affiliated hospital; and (5) A5 is the second affiliated hospital. There are four evaluation attributes: (1) C1 is
the hardware and software facilities; (2) C2 is the physician team; (3) C3 is the consumption index; and (4) C4 is
the service quality. We know the attributes C1,C2, and C4 are benefit criteria, and C3 is cost. The weight vector
of the attributes is ω = (0.2, 0.4, 0.3, 0.1)T. The final evaluation outcomes are expressed by the NNNN, which
is shown in Table 3.

Table 3. The nonnegative normal neutrosophic decision matrix D.

C1 C2 C3 C4

A1 〈(4, 0.3), (0.7, 0.2, 0.3)〉 〈(7, 0.7), (0.6, 0.1, 0.1)〉 〈(5.5, 0.6), (0.3, 0.3, 0.6)〉 〈(6, 0.4), (0.7, 0.2, 0.4)〉
A2 〈(5, 0.2), (0.5, 0.4, 0.5)〉 〈(8, 0.5), (0.7, 0.2, 0.3)〉 〈(6, 0.2), (0.2, 0.1, 0.7)〉 〈(7, 0.6), (0.4, 0.2, 0.7)〉
A3 〈(3, 0.5), (0.3, 0.3, 0.4)〉 〈(6, 0.2), (0.4, 0.5, 0.3)〉 〈(4, 0.7), (0.3, 0.5, 0.5)〉 〈(5.5, 0.4), (0.5, 0.4, 0.2)〉
A4 〈(4.5, 0.6), (0.3, 0.5, 0.3)〉 〈(5, 0.4), (0.6, 0.4, 0.5)〉 〈(7, 0.4), (0.3, 0.3, 0.5)〉 〈(4, 0.5), (0.8, 0.2, 0.5)〉
A5 〈(6, 0.5), (0.8, 0.1, 0.2)〉 〈(6.5, 0.6), (0.8, 0.2, 0.4)〉 〈(5, 0.3), (0.4, 0.2, 0.6)〉 〈(5, 0.6), (0.5, 0.5, 0.2)〉

Step 1. Since C1,C2, and C4 are benefit attributes, we have
a′11 = a11

max1≤i≤5ai1
= 4

6 = 0.6667, σ′11 = σ11
max1≤i≤5σi1

σ11
a11

= 0.3
0.6

0.3
4 = 0.0375, T′11 = T11, I′11 = I11, I′11 = I11,

and C3 is the cost attribute, so we have
a′13 =

min1≤i≤5
a13

= 4
5.5 = 0.7273, σ13 = σ13

max1≤i≤5σi1

σ13
a13

= 0.6
0.7

0.6
5.5 = 0.0935,

T′13 = F13 = 0.6, I′13 = 1− I13 = 0.7, F′13 = T13 = 0.3. .
The normalized decision matrix is shown in Table 4.
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Table 4. Normalized decision matrix D̃.

C1 C2

A1 〈(0.6667, 0.0375), (0.7, 0.2, 0.3)〉 〈(0.85, 0.1), (0.6, 0.1, 0.1)〉
A2 〈(0.8333, 0.0133), (0.5, 0.4, 0.5)〉 〈(1, 0.0446), (0.7, 0.2, 0.3)〉
A3 〈(0.5, 0.1389), (0.3, 0.3, 0.4)〉 〈(0.75, 0.0095), (0.4, 0.5, 0.3)〉
A4 〈(0.75, 0.1333), (0.3, 0.5, 0.3)〉 〈(0.625, 0.0457), (0.6, 0.4, 0.5)〉
A5 〈(1, 0.0694), (0.8, 0.1, 0.2)〉 〈(0.8125, 0.0791), (0.8, 0.2, 0.4)〉

C3 C4

A1 〈(0.7273, 0.0935), (0.6, 0.7, 0.3)〉 〈(0.8571, 0.0444), (0.7, 0.2, 0.4)〉
A2 〈(0.6667, 0.0095), (0.7, 0.9, 0.2)〉 〈(1, 0.0857), (0.4, 0.2, 0.7)〉
A3 〈(1, 0.1750), (0.5, 0.5, 0.3)〉 〈(0.7857, 0.0485), (0.5, 0.4, 0.2)〉
A4 〈(0.5714, 0.0327), (0.5, 0.7, 0.3)〉 〈(0.5714, 0.1042), (0.8, 0.2, 0.5)〉
A5 〈(0.8, 0.0257), (0.6, 0.8, 0.4)〉 〈(0.7143, 0.12), (0.5, 0.5, 0.2)〉

Step 2. Calculate the comprehensive evaluation value of each alternative by using the
DGNNNWBM (DGNNNWGBM) operator (suppose R = (1, 1, 1, 1)T), which is shown in Table 5. (There
are 256 cases in this example, which are not listed here. MATLAB can be used for the calculations.)

Table 5. Utilization of the dual generalized nonnegative normal neutrosophic weighted Bonferroni
mean (DGNNNWBM) operator and dual generalized nonnegative normal neutrosophic weighted
geometric Bonferroni mean (DGNNNWGBM) operator R = (1,1,1,1).

DGNNNWBM DGNNNWGBM

A1 〈(0.7772, 0.08), (0.8161, 0.0525, 0, 0303)〉 〈(0.7763, 0.0788), (0.6299, 0.313, 0.2301)〉
A2 〈(0.8667, 0.0319), (0.8095, 0.2210, 0.1474)〉 〈(0.8636, 0.0295), (0.6296, 0.4622, 0.3507)〉
A3 〈(0.7786, 0.0889), (0.5042, 0.2935, 0.1071)〉 〈(0.7736, 0.0788), (0.4194, 0.4503, 0.31)〉
A4 〈(0.6286, 0.0652), (0.6902, 0.3319, 0.2185)〉 〈(0.6277, 0.0622), (0.5287, 0.4919, 0.4004)〉
A5 〈(0.8364, 0.0652), (0.9198, 0.1201, 0.1236)〉 〈(0.8353, 0.0635), (0.7098, 0.3965, 0.3402)〉

Step 3. According to Definition 10, for the DGNNNWBM operator,
S(A1) = (0.7772 + 1

0.08 )(2 + 0.8161− 0.0525− 0.0303),
S(A2) = 78.59, S(A3) = 25.29, S(A4) = 34.18, S(A5) = 43.26.

By the ranking principle of Definition 11, we obtain A2 > A5 > A1 > A4 > A3, which is shown
in Table 6. The best alternative is A2.

Table 6. The score of the alternatives.

S(A1) S(A2) S(A3) S(A4) S(A5) Ranking

DGNNNWBM 36.29 78.59 25.29 34.18 43.26 A2 > A5 > A1 > A4 > A3
DGNNNWGBM 28.10 63.07 22.34 27.33 32.73 A2 > A5 > A4 > A1 > A3

5.2. Influence Analysis

To show the effects on the ranking results by altering the parameters of the DGNNNWBM and
DGNNNWGBM operators, according to Definition 10 and 11, we can get the results by using MATLAB,
which is shown in Tables 7 and 8.
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Table 7. Ranking for different parameters of DGNNNWBM.

R S(A1) S(A2) S(A3) S(A4) S(A5) Ranking

(1, 1, 1, 1) 36.29 78.59 25.29 34.18 43.26 A2 > A5 > A1 > A4 > A3
(3, 3, 3, 3) 28.85 47.48 14.96 22.25 31.82 A2 > A5 > A1 > A4 > A3
(4, 4, 4, 4) 27.84 42.48 14.06 20.61 30.08 A2 > A5 > A1 > A4 > A3
(6, 6, 6, 6) 27.00 37.80 13.34 19.18 28.06 A2 > A5 > A1 > A4 > A3

(10, 1, 1, 1) 29.45 41.52 15.29 21.46 29.89 A2 > A5 > A1 > A4 > A3
(10, 10, 1, 1) 27.77 36.63 13.95 19.62 27.49 A2 > A1 > A5 > A4 > A3

(10, 10, 10, 1) 27.04 30.94 12.34 16.30 23.70 A2 > A1 > A5 > A4 > A3
(14, 15, 1, 1) 26.79 32.35 9.60 18.47 25.12 A2 > A1 > A5 > A4 > A3

(16, 17, 18, 19) 26.70 31.51 9.61 18.52 24.59 A2 > A1 > A5 > A4 > A3
(20, 20, 20, 20) 26.72 31.17 9.63 18.56 24.38 A2 > A1 > A5 > A4 > A3

Table 8. Ranking for different parameters of DGNNNWGBM.

R S(A1) S(A2) S(A3) S(A4) S(A5) Ranking

(1, 1, 1, 1) 28.10 63.07 22.34 27.33 32.73 A2 > A5 > A4 > A1 > A3
(3, 3, 3, 3) 25.29 54.01 21.92 25.55 29.07 A2 > A5 > A4 > A1 > A3
(4, 4, 4, 4) 24.47 50.6 21.74 24.80 27.89 A2 > A5 > A4 > A1 > A3
(6, 6, 6, 6) 23.46 45.62 21.40 23.53 26.40 A2 > A5 > A4 > A1 > A3

(10, 1, 1, 1) 24.07 46.39 21.22 23.28 27.02 A2 > A5 > A1 > A4 > A3
(10, 10, 1, 1) 23.11 42.60 21.01 22.45 25.72 A2 > A5 > A1 > A4 > A3

(10, 10, 10, 1) 22.81 40.93 20.92 22.10 25.14 A2 > A5 > A1 > A4 > A3
(14, 15, 1, 1) 22.68 40.98 22.63 22.03 25.23 A2 > A5 > A1 > A3 > A4

(16, 17, 18, 19) 31.59 53.67 31.74 28.52 37.37 A2 > A5 > A3 > A1 > A4
(20, 20, 20, 20) 31.52 74.73 31.64 28.30 37.27 A2 > A5 > A3 > A1 > A4

As shown in Table 7, when the parameter values are small, the ranking of the alternatives may
be of little influence. When the parameter values are large, the ordering of A1 and A5 changes.
However, the best alternative is the same, i.e., A2. As shown in Table 8, when the parameter values
are small, the ranking of the alternatives may be of little influence, but when the parameter values
are large, it has a great impact on the ranking results. Although the ranking changes greatly, the best
alternative is still A2. In practical applications, we usually take R = (1, 1, .., 1)T , which is not only
intuitive but also takes into account the effect of multiple parameters.

5.3. Comparison Analysis

In this section, we compare the DGNNNWBM and DGNNNWGBM operators proposed in this
paper with the normal neutrosophic weighted Bonferroni mean (NNWBM) operator and normal
neutrosophic weighted geometric Bonferroni mean (NNWGBM) operator proposed by Liu P and
Li H [6] for dealing with Example 5.1. The results are shown in Tables 8–14, where we take the first
two values of the parameter R in the DGNNNWBM and DGNNNWGBM operators as the parameter
values p, q in the NNWBM and NNWGBM operators.

According to the result, we conclude the following:
(1) From Tables 7 and 9, when p, q take different values and the values are small, the NNWBM

operator has three different ranking results, while the DGNNNWBM operator has only one. It shows
that the stability of the DGNNNWBM operator is better than that of the NNWBM operator.

(2) From Tables 8 and 10, there is only one ranking result of the NNWGBM operaotr.
However, Tables 11–14 show that when the parameter values p, q are taken as (10, 10) and (14, 15),
the result of the NNWBM operator is T = 0, I = 1, F = 1, and the NNWGBM operator result is
T = 1, I = 0, F = 0. Regardless of whether the parameters p, q change, the values of a and δ in the
NNWGBM operator are invariant. However, in this case, the DGNNNWBM and DGNNNWGBM
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operators consider more parameters, so they can overcome these problems that arise in the NNWBM
and NNWGBM operators.

From this, we know that the NNWBM and NNWGBM operators lack stability and sensitivity.
Compared to the NNWBM and NNWGBM operators, the DGNNNWBM and DGNNNWGBM are not
only more general, but they are also more flexible.

Table 9. Liu and Li’s method [6] (ranking for different parameters of the normal neutrosophic weighted
Bonferroni mean (NNWBM)).

(p, q) S(A1) S(A2) S(A3) S(A4) S(A5) Ranking

(1, 1) 69.31 126.23 24.29 52.83 72.66 A2 > A5 > A1 > A4 > A3
(3, 3) 78.69 209.45 57.12 77.09 108.89 A2 > A5 > A1 > A4 > A3
(4, 4) 70.23 200.1 54.65 74.78 102.21 A2 > A5 > A4 > A1 > A3
(6, 6) 58.8 182.3 44.67 68.65 88.42 A2 > A5 > A4 > A1 > A3
(10, 1) 67.93 127.63 43.67 80.84 74.68 A2 > A4 > A5 > A1 > A3

Table 10. Liu and Li’s method [6] (ranking for different parameters of the normal neutrosophic
weighted geometric Bonferroni mean (NNWGBM)).

(p, q) S(A1) S(A2) S(A3) S(A4) S(A5) Ranking

(1, 1) 62.89 149.2 14.17 54.77 70.31 A2 > A5 > A1 > A4 > A3
(3, 3) 61.89 146.55 13.78 53.1 68.49 A2 > A5 > A1 > A4 > A3
(4, 4) 61.6 145.91 13.66 52.71 68.02 A2 > A5 > A1 > A4 > A3
(6, 6) 61.24 145.12 13.78 52.23 67.45 A2 > A5 > A1 > A4 > A3
(10, 1) 58.03 128.07 9.32 49.42 61.20 A2 > A5 > A1 > A4 > A3

Table 11. The DGNNNWBM operator and DGNNWGBM operator R = (10, 10, 10, 1).

DGNNNWBM DGNNWGBM

A1 〈(0.8053, 0.0938), (0.6119, 0.1447, 0.1513)〉 〈(0.776, 0.0785), (0.6137, 0.6069, 0.3126)〉
A2 〈(0.9374, 0.0665), (0.5108, 0.247, 0.2609)〉 〈(0.8628, 0.0289), (0.5141, 0.7837, 0.5514)〉
A3 〈(0.7006, 0.1533), (0.3745, 0.3875, 0.2823)〉 〈(0.4772, 0.0757), (0.3809, 0.4822, 0.3454)〉
A4 〈(0.6559, 0.1119), (0.3997, 0.3468, 0.3391)〉 〈(0.6256, 0.0615), (0.4053, 0.6176, 0.4645)〉
A5 〈(0.8808, 0.0948), (0.5941, 0.1819, 0.272)〉 〈(0.8351, 0.063), (0.5961, 0.6959, 0.3844)〉

Table 12. Liu and Li’s method [6] (the NNWBM operator and NNWGBM operator p = 10, q = 10).

NNWBM NNWGBM

A1 〈(0.2491, 0.0223), (0.252, 0.6278, 0.6089)〉 〈(0.938, 0.0457), (1, 0, 0)〉
A2 〈(0.2608, 0.0063), (0.3112, 0.7388, 0.6502)〉 〈(0.962, 0.018), (1, 0.2037, 0)〉
A3 〈(0.159, 0.0213), (0.1708, 0.7887, 0.6887)〉 〈(0.8029, 0.2152), (0.7628, 0.1948, 0)〉
A4 〈(0.1913, 0.011), (0.2205, 0.8023, 0.7488)〉 〈(0.8898, 0.0494), (0.81, 0.2168, 0)〉
A5 〈(0.2574, 0.0138), (0.3343, 0.6173, 0.7303)〉 〈(0.9555, 0.0401), (1, 0.1649, 0)〉

Table 13. The DGNNNWBM operator and DGNNNWGBM operator R = (14, 15, 1, 1).

DGNNNWBM DGNNNWGBM

A1 〈(0.8131, 0.0944), (0.6071, 0.1287, 0.1299)〉 〈(0.7755, 0.0778), (0.611, 0.6145, 0.3321)〉
A2 〈(0.9493, 0.0693), (0.4878, 0.2317, 0.2434)〉 〈(0.8611, 0.0278), (0.4944, 0.7966, 0.5776)〉
A3 〈(0.7075, 0.1552), (0.3562, 0.364, 0.2669)〉 〈(0.4607, 0.0697), (0.3683, 0.4855, 0.3546)〉
A4 〈(0.6684, 0.1148), (0.3741, 0.3137, 0.323)〉 〈(0.6253, 0.0603), (0.3846, 0.6332, 0.4713)〉
A5 〈(0.8997, 0.0995), (0.5762, 0.1641, 0.248)〉 〈(0.8345, 0.062), (0.5809, 0.7067, 0.3868)〉
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Table 14. Liu and Li’s method [6] (the NNWBM operator and NNWGBM operator p = 14, q = 15).

NNWBM NNWGBM

A1 〈(0.2563, 0.0275), (0, 0.6164, 0.5947)〉 〈(0.938, 0.0457), (1, 0, 0)〉
A2 〈(0.2671, 0.0077), (0.3202, 1, 0.6403)〉 〈(0.962, 0.018), (1, 0, 0)〉
A3 〈(0.1638, 0.0271), (0, 1, 0.6798)〉 〈(0.8029, 0.2152), (1, 0, 0)〉
A4 〈(0.1955, 0.0125), (0, 1, 1)〉 〈(0.8898, 0.0494), (1, 0, 0)〉
A5 〈(0.2633, 0.0168), (0.3418, 0.6064, 1)〉 〈(0.9555, 0.0401), (1, 0, 0)〉

6. Conclusions

The multiple attribute decision-making method has a wide range of applications in many domains.
The nonnegative normal neutrosophic number is more suitable for dealing with uncertain information,
and the dual generalized weighted Bonferroni mean operator and dual generalized weighted geometric
Bonferroni mean operator take into account the relationship between arbitrary aggregation arguments.
Therefore, in this paper, the definition of nonnegative normal neutrosophic number has been proposed.
The score function and accuracy function have been developed to overcome the deficiency, i.e.,
that the original function does not satisfy the ranking principle. Considering the connections
between any two or more than two aggregation arguments, the dual generalized nonnegative
normal neutrosophic weighted Bonferroni mean operator and dual generalized nonnegative normal
neutrosophic weighted geometric Bonferroni mean operator were discussed. Meanwhile, some
properties were investigated, such as idempotency, monotonicity, boundedness, and commutativity.
Based on the dual generalized nonnegative normal neutrosophic weighted Bonferroni mean operator
and dual generalized nonnegative normal neutrosophic weighted geometric Bonferroni mean operator,
a method was developed to deal with a multiple attribute decision-making problem with nonnegative
normal neutrosophic number. Further, we used the dual generalized nonnegative normal neutrosophic
weighted Bonferroni mean and dual generalized nonnegative normal neutrosophic weighted geometric
Bonferroni mean operators for aggregative information. Decision making obtain the satisfactory
alternative according to actual need and preference by changing the values of R, which makes our
proposed multiple attribute decision-making method more flexible and reliable. Further, compared
with the method in Liu [6], our method shows that when the relationship between more aggregation
arguments are considered, the aggregation result is more stable; when the parameter value is larger,
the aggregation result is more sensitive.
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Abstract: Hesitant fuzzy sets (HFSs), which were generalized from fuzzy sets, constrain the membership
degree of an element to be a set of possible values between zero and one; furthermore, if two or
more decision-makers select the same value, it is only counted once. However, a situation where
the evaluation value is repeated several times differs from one where the value appears only once.
Multi-hesitant fuzzy sets (MHFSs) can deal effectively with a case where some values are repeated more
than once in a MHFS. In this paper, the novel convex combination of multi-hesitant fuzzy numbers
(MHFNs) is introduced. Some aggregation operators based on convex operation, such as generalized
multi-hesitant fuzzy ordered weighted average (GMHFOWA) operator, generalized multi-hesitant
fuzzy hybrid weighted average (GMHFHWA) operator, generalized multi-hesitant fuzzy prioritized
weighted average (GMHFPWA) operator and generalized multi-hesitant fuzzy Choquet integral
weighted average (GMHFCIWA) operator, are developed and corresponding properties are discussed
in detail. Then, based on the proposed aggregation operators, a novel approach for multi-criteria
decision-making (MCDM) problem is proposed for ranking alternatives. Finally, an example is provided
to verify the developed approach and demonstrate its validity and feasibility and the study is supported
by a sensitivity analysis and a comparison analysis.

Keywords: multi-criteria decision-making; multi-hesitant fuzzy sets; aggregation operators

1. Introduction

Hesitant fuzzy sets (HFSs) and multi-hesitant fuzzy sets (MHFSs), which were originally defined
by Torra [1,2], are an extension of Zadeh’s fuzzy sets (FSs) [3]. They allow a membership degree to have
different possible precise values between zero and one. Recently, HFSs and its extensions has been
the subject of a great deal of research and have been widely applied to multi-criteria decision-making
(MCDM) problems [4–20]. For example, some works on the aggregation operators of HFSs have
been undertaken [9–15] and the correlation coefficient, distance and correlation measures for HFSs
were developed [16–20]. For example, Zhang et al. [13] developed some induced generalized hesitant
fuzzy operators and applied them to multi-criteria group decision-making (MCGDM) problems.
Zhou [14] proposed hesitant fuzzy ordered accurate weighted averaging (HFOAWA) operator and
hesitant fuzzy ordered accurate weighted geometric (HFOAWG) operators and applied them to project
investment. Zhang [15] defined generalized hesitant fuzzy power average (GHFPA) operator and
generalized hesitant fuzzy power geometric (GHFPG) operator and applied them to MCGDM problems.
Yu [16] proposed some aggregation operators based on Einstein operations and applied them to MCDM
problems. Wang et al. [21] proposed a wide range of hesitant multiplicative fuzzy power aggregation
geometric operators on MCGDM problems for hesitant multiplicative information. Torres et al. [22]
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propose a prioritized aggregation operator to combine a time sequence of hesitant fuzzy information,
and applied them to the service selection problem in service-based systems. Qian and Wang [23]
generalized HFSs and utilized the aggregation operators to solve MCDM problems. Meng et al. [24]
developed some induced generalized hesitant fuzzy Shapley hybrid operators and applied them
to MCDM problems. Zhou and Xu [25] developed an optimal discrete fitting aggregation MCDM
method with HFSs. Tan et al. [26] defined some hesitant fuzzy Hamacher aggregation operators and
applied them to MCDM problems. Meng and Chen [27] and Liao et al. [28] defined novel correlation
coefficients between HFSs and applied them to MCDM problems. Li et al. [29] and Hu et al. [30]
defined some new distance and similarity measures of HFSs and applied them to MCDM problems.
Furthermore, Zhang and Wei [31] developed the E-VIKOR method to solve MCDM problems with HFSs.
Zhang and Xu [32] proposed the TODIM method, which was based on measured functions with HFSs.
Farhadinia [33,34] developed some information measures of HFSs and a novel method of ranking hesitant
fuzzy values. Moreover, Peng et al. [35] developed an extension of ELECTRE III method to handle MCDM
problems with MHFSs.

However, two main shortcomings of the existing methods of dealing with HFSs have emerged from
the research to date. (1) Both distance measures, similarity measures and some comparison methods
should satisfy the condition that all hesitant fuzzy numbers (HFN) must be arranged in ascending order
and be of equal length. If the two HFNs being compared have different lengths, then the value of
the shorter one should be increased until both are equal. However, in such cases, different methods of
extension could produce different results. (2) The existing methods do not clarify: how to solve
a situation where there is a repeated value in the evaluation of alternatives; and, in particular,
whether decision-makers can give more than one value (possible membership degrees of an element)
for each criterion or not. At the same time, the situation where the evaluation value is repeated more
than once is actually different from that where a value appears only once. For example, decision-makers
can determine that the possible degrees of membership by which an alternative is assessed relative to
the criterion “excellence” are 0.7, 0.8, and 0.8, which is expressed in the form of an HFN as {0.7, 0.8}.
However, the nature of the evaluation {0.7, 0.8} substantially differs from that expressed in the form
of an MHFS as {0.7, 0.8, 0.8}, which can lead to loss of information during the data collection process.
Therefore, MHFSs can overcome these shortcomings and deal with the case where some values may be
repeated more than once in an HFS. In this paper, the novel MCDM approach is developed based on some
convex aggregation operators of multi-hesitant fuzzy sets (MHFNs). Moreover, the proposed approach
based on convex operators distinguished from other methods for MCDM method not only because
the proposed approach uses MHFSs, but also due to the consideration the inter-dependent phenomena
among the criteria, which makes it more consistent with the practical decision-making environment.

The remainder of this paper is organized as follows. In Section 2, the definition, as well as
the comparison method, of HFSs and MHFSs is provided. In Section 3, some aggregation operators of
multi-hesitant fuzzy numbers (MHFNs) based on convex operation are developed and corresponding
properties are discussed. In Section 4, an MCDM method based on convex aggregation operators is
proposed. In Section 5, an example to illustrate the practical application of the developed approach is
provided as well as sensitivity analysis and comparison analysis. Finally, some conclusions are drawn
in Section 6.

2. Hesitant Fuzzy Sets and Multi-Hesitant Fuzzy Sets

In this section, the definition of HFSs and MHFSs are reviewed. The comparison method of HFSs,
which will be utilized in the latter analysis, are also presented.

Definition 1. Let X be a reference set, and a HFS E on X be in terms of a function which will return a subset of
[0, 1] in the case of it being applied to X [1,2].

202



Information 2018, 9, 207

In order that it would be easily understood, Xia and Xu [9] expressed the HFS as
a mathematical symbol:

E = { 〈x, hE(x) 〉|x ∈ X} (1)

where hE(x) is a set of values in [0, 1], denoting the possible membership degrees of the element
x ∈ X to the set E. E is called HFSs, hE(x) is called a hesitant fuzzy element (HFE) [4], and H is the set
of all HFEs. In particular, if X has only one element, E is called a HFN, which can be denoted by
E = {hE(x)}. The set of all HFNs is represented by HFNS.

Torra [1,2] defined some operations on HFNs, and Xia and Xu [4] defined some new operations
on HFNs as well as the score functions.

Definition 2. Let X be a reference set, and MHFSs be defined as EM in terms of a function HEM that returns
a multi-subset of [0, 1] when applied to X [1].

Based on Definition 1, MHFSs can be expressed by the mathematical equation:

EM =
{〈

x, HEM (x)
〉∣∣x ∈ X

}
(2)

Here, HEM (x) is a set of values in [0, 1] denoting the possible degrees of membership of
the element x ∈ X to the set EM. In any HEM (x), the values can be repeated multiple times. HEM (x)
is a multi-hesitant fuzzy element (MHFE), and HEM is the set of all MHFEs. It is noteworthy that,
if X contains only a single element, EM is called a MHFN, briefly denoted by EM =

{
HEM (x)

}
. The set

of all MHFNs is represented by MHFNS. Any HFS is a special case of an MHFS.
Moreover, the operations of HFNs between two HFNs HA and HB on X was defined as below [1]:

(1) λHA =
{

1− (1− γHA

)λ
}
(λ > 0);

(2) HA
λ =

{(
γHA

)λ
}

(λ > 0);

(3) HA ⊕ HB =
{

γHA + γHB − γHA · γHB

}
;

(4) HA ⊗ HB =
{

γHA · γHB

}
.

Apparently, the operations on HFNs presented in Definition 2 also can be suitable for MHFNs.
The ranking of two HFNs can be obtained by combining the score function and the accuracy

function [9,36].

Definition 3. Let HA and HB be two HFNs on X, and then the novel ranking method for MHFNs can be
defined as follows [36]:

(1) if s(HA) < s(HB), then HA ≺ HB;
(2) if s(HA) = s(HB), then:

- if f (HA) = f (HB), then HA ∼ HB;
- if f (HA) < f (HB), then HA � HB;
- if f (HA) > f (HB), then HA ≺ HB.

where s(Hi) =
1

lHi
∑γi∈Hi

γi and f (Hi) =
1

lHi
−1 ∑γi∈Hi

(s(Hi)− γi)
2 (i = A, B) represents the score function

and accuracy function of Hi respectively [4,31], and lHi is the number of elements in Hi. Please note that “≺”
means “inferior to”. The score function is similar to the mean value; the greater the value of the mean,
the larger the hesitant degree. The accuracy function is similar to the sample variance in statistics and
can reflect the fluctuation of evaluation values of HFNs; the greater the amplitude of fluctuation, the larger
the hesitant degree.
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Example 1. Let h1 = {0.2, 0.5} and h2 = {0.3, 0.4} be two HFNs. According to Definition 3, we have
s(h1) = s(h2) = 0.35 and f (h1) = 0.045 > f (h2) = 0.005. Apparently, H1 ≺ H2 can be obtained, which is
consistent with our intuitive.

3. The Convex Combination Operation and Some Aggregation Operators of MHFNs

In this section, the convex combination operation with MHFNs is developed, and corresponding
properties and aggregation operators are presented.

Definition 4. Let H1 and H2 be two MHFNs. A convex combination of H1 and H2 is defined as

C2(w1, H1, w2, H2 ) = w1 ⊗ H1 ⊕ w2 ⊗ H2 =

{(
w1γλ

1 + w2γλ
2

)1/λ
∣∣∣∣γ1 ∈ H1, γ2 ∈ H2

}
, λ > 0 (3)

where w1 ≥ 0, w2 ≥ 0 and w1 + w2 = 1.

Proposition 1. Let H1 and H2 be two MHFNs. For 0 ≤ w ≤ 1, the convex combination C2(w, H1, 1− w, H2)

of H1 and H2 is also a MHFNs.

Proof. Based on Definition 4, we just need to prove that 0 <
(
wγλ

1 + (1− w)γλ
2
)1/λ ≤ 1. It is

obvious that
(
wγλ

1 + (1− w)γλ
2
)1/λ

> 0. Assume γ′1 ∈ H1 and γ′2 ∈ H2 do exist, so to make(
wγ′λ1 + (1− w)γ′λ2

)1/λ ≥ 1 i.e., wγ′λ1 + (1− w)γ′λ2 ≥ 1. If γ′1 > γ′2, then wγ′λ1 + (1− w)γ′λ2 ≥ 1 i.e.,

w >
1−γ′λ2

γ′λ1 −γ′λ2
> 1 which obviously contradicts 0 ≤ w ≤ 1; if γ′1 = γ′2, then wγ′λ1 + (1− w)γ′λ1 = γ′λ1 > 1

which contradicts 0 < γ′λ1 ≤ 1; if γ′1 ≤ γ′2, then wγ′λ1 + (1− w)γ′λ2 ≥ 1 i.e., w <
1−γ′λ2

γ′λ1 −γ′λ2
< 0 which

obviously contradicts 0 ≤ w ≤ 1. Therefore, the hypothesis is not supported. For any γ1 ∈ H1 and

γ2 ∈ H2, we have
(
wγλ

1 + (1− w)γλ
2
)1/λ ≤ 1. Thus, the convex combination C2(w, H1, 1− w, H2)

of H1 and H2 is also a MHFNs. �
Definition 5. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs. Then the generalized
multi-hesitant fuzzy ordered weighted average (GMHFOWA) operator of dimension n is a mapping
GMHFOWA : MHFNn → MHFN that has an associated weight vector w = (w1, w2, . . . , wn) with wi ≥ 0

(i = 1, 2, . . . , n) and
n
∑

i=1
wi = 1, and

GMHFOWA(H1, H2, . . . , Hn )

= Cn
(

wk, Hσ(k), k = 1, 2, . . . , n
)
= w1 ⊗ Hσ(1) ⊕ (1− w1)⊗ Cn−1

{
wi/

n
∑

k=2
wk, Hσ(i), i = 2, 3, . . . , n

}
.

(4)

Here (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n), and such that Hσ(1) ≤ Hσ(2) ≤ . . . ≤
Hσ(n).

Theorem 1. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs. Then their aggregated value by using
the GMHFOWA operator is also a MHFN, and

GMHFOWA(H1, H2, . . . , Hn ) =

{(
w1γλ

σ(1) + w2γλ
σ(2) + . . . + wnγλ

σ(n)

)1/λ
∣∣∣∣γσ(i) ∈ Hσ(i), i = 1, 2, . . . , n

}
(5)

Here (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n), and such that Hσ(1) ≤ Hσ(2) ≤ . . . ≤
Hσ(n).
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Example 2. Let H1 = {0.2, 0.2, 0.3}, H2 = {0.1, 0.2} and H3 = {0.4} be three MHFNs, w = (0.3, 0.4, 0.3)
be the weight vector of them, and λ = 1. Based on Definition 5 and Theorem 1, if the associated vector is
w = (0.3, 0.4, 0.3), then H3 > H1 > H2, Hσ(1) = H2, Hσ(2) = H1 and Hσ(3) = H3 can be obtained. So

GMHFOWA(H1, H2, H3 )

= {w1γ2 + w2γ1 + w3γ3|γ1 ∈ H1, γ2 ∈ H2, γ3 ∈ H3 } = {0.23, 0.23, 0.27, 0.26, 0.26, 0.30}.

It can be easily proved that the GMHFOWA operator is monotonicity, commutativity and bounded,
which are presented in the following.

Proposition 2. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs, the following prosperities can be true.

(1) (Monotonicity) Let H′
i (i = 1, 2, . . . , n) be a collection of MHFNs. If for all i, Hi ≤ H′

i , then

GMHFOWA(H1, H2, . . . , Hn ) ≤ GMHFOWA
(

H′
1, H′

2, . . . , H′
n
)

(2) (Commutativity) If H∗
1 , . . . , H∗

n is a permutation of H1, . . . , Hn, then

GMHFOWA(H∗
1 , H∗

2 , . . . , H∗
n ) = GMHFOWA(H1, H2, . . . , Hn)

(3) (Boundedness) If H− =
{

γ−1 , γ−2 , . . . , γ−n
}

and H+ =
{

γ+
1 , γ+

2 , . . . , γ+
n
}

, where γ−i = min
γi∈Hi

γi and

γ+
i = max

γi∈Hi
γi, then

H− ≤ GMHFOWA(H1, H2, . . . , Hn ) ≤ H+

Definition 6. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs. Then the generalized
multi-hesitant fuzzy hybrid weighted average (GMHFHWA) operator of dimension n is a mapping
GMHFHWA : MHFNn → MHFN that have the weighting vector w = (w1, w2, . . . , wn) of

Hi(i = 1, 2, . . . , n) with wi ≥ 0 (i = 1, 2, . . . , n) and
n
∑

i=1
wi = 1, the aggregation-associated vector is

ω = (ω1, ω2, . . . , ωn) with ωi ≥ 0 (i = 1, 2, . . . , n) and
n
∑

i=1
ωi = 1, and

GMHFHWA(H1, H2, . . . , Hn )

= Cn
(

ωk,
.

Hσ(k), k = 1, 2, . . . , n
)
= ω1 ⊗

.
Hσ(1) ⊕ (1−ω1)⊗ Cn−1

{
ωi/

n
∑

k=2
ωk,

.
Hσ(i), i = 2, 3, . . . , n

}
.

(6)

Here (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n), and
.

Hσ(i) = nwi Hi(i = 1, 2, . . . , n) is
the i-th largest of the weighted multi-hesitant fuzzy values. n is the balancing coefficient which plays a role of
balance. If ω = (1/n, 1/n, . . . , 1/n), then the GMHFHWA operator is reduced to the GMHFOWA operator.
If w = (1/n, 1/n, . . . , 1/n), then the GMHFHWA operator is reduced to the GMHFWA operator.

Theorem 2. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs. Then their aggregated value by using
GMHFHWA operator is also a MHFN, and

GMHFHWA(H1, H2, . . . , Hn ) =

{(
ω1

.
γ

λ
σ(1) + ω2

.
γ

λ
σ(2) + . . . + ωn

.
γ

λ
σ(n)

)1/λ
∣∣∣∣ .
γσ(i) ∈

.
Hσ(i), i = 1, 2, . . . , n

}
(7)

Here (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n), and
.

Hσ(i) = nwi Hi(i = 1, 2, . . . , n) is
the i-th largest of the weighted multi-hesitant fuzzy values. n is the balancing coefficient which plays a role
of balance.
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Example 3. Let H1 = {0.2, 0.2}, H2 = {0.1, 0.3} and H3 = {0.4} be three MHFNs. The weight vector is
w = (0.3, 0.4, 0.3) and aggregation-associated vector is also ω = (0.2, 0.4, 0.4), and λ = 1, then

.
H1 = 3× 0.3 ·H1 = {0.1819, 0.1819 };

.
H2 = 3× 0.4 ·H2 = {0.0126, 0.0419};

.
H3 = 3× 0.3 ·H3 = {0.3686}.

Obviously, s
( .

H3

)
> s

( .
H1

)
> s

( .
H2

)
. By using Theorem 3, we have

GMHFWA(H1, H2, H3 ) =
{(

ω1
.
γσ(1) + ω2

.
γσ(2) + . . . + ωn

.
γσ(n)

)∣∣∣ .
γσ(i) ∈

.
Hσ(i), i = 1, 2, 3

}
= {0.1512, 0.1632, 0.1512, 0.1632}.

Proposition 3. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs, the following prosperities can be true.

(1) (Monotonicity) Let H′
i (i = 1, 2, . . . , n) be a collection of MHFNs. If for all i, Hi ≤ H′

i , then

GMHFHWA(H1, H2, . . . , Hn ) ≤ GMHFHWA
(

H′
1, H′

2, . . . , H′
n
)

(2) (Commutativity) If H∗
1 , . . . , H∗

n is a permutation of H1, . . . , Hn, then

GMHFHWA(H∗
1 , H∗

2 , . . . , H∗
n ) = GMHFHWA(H1, H2, . . . , Hn)

(3) (Boundedness) If H− =
{

γ−1 , γ−2 , . . . , γ−n
}

and H+ =
{

γ+
1 , γ+

2 , . . . , γ+
n
}

, where γ−i = min
γi∈Hi

γi and

γ+
i = max

γi∈Hi
γi, then

H− ≤ GMHFHWA(H1, H2, . . . , Hn ) ≤ H+

Based on the prioritization between the criteria discussed in [37], the prioritized aggregation operator can
be obtained.

Definition 7. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs. Then the generalized
multi-hesitant fuzzy prioritized weighted average (GMHFPWA) operator of dimension n is a mapping
GMHFPWA : MHFNn → MHFN , and

GMHFPWA(H1, H2, . . . , Hn )

= Cn
(

Tk
∑n

j=1 Tj
, Hk, k = 1, 2, . . . , n

)
= T1

∑n
j=1 Tj

⊗ H1 ⊕
(

1− T1
∑n

j=1 Tj

)
⊗ Cn−1

{
Ti

∑n
j=1 Tj

/
n
∑

k=2

Tk
∑n

j=1 Tj
, Hi, i = 2, 3, . . . , n

}
.

(8)

Here Tj = ∏
j−1
k=1 s(Hk)(j = 2, . . . , n), T1 = 1 and s(Hk) is the score values of Hk(k = 1, 2, . . . , n).

Theorem 3. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs. Then their aggregated value by using
the GMHFPWA operator is also a MHFN, and

GMHFPWA(H1, H2, . . . , Hn ) =

{(
T1

∑n
j=1 Tj

γλ
1 + T2

∑n
j=1 Tj

γλ
2 + . . . + Tn

∑n
j=1 Tj

γλ
n

)1/λ
∣∣∣∣∣γi ∈ Hi, i = 1, 2, . . . , n

}
(9)

Here Tj = ∏
j−1
k=1 s(Hk)(j = 2, . . . , n), T1 = 1 and s(Hk) is the score values of Hk(k = 1, 2, . . . , n).

Example 4. Let H1 = {0.5, 0.5, 0.7}, H2 = {0.4, 0.5}, H3 = {0.8, 0.9} and H4 = {0.3, 0.4, 0.5} be four
MHFNs and λ = 1. Based on Definition 3, then s(H1) = 0.567, s(H2) = 0.45 and s(H3) = 0.85 can be
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obtained. If the prioritization during four MHFNs is H1 � H2 � H3 � H4, then according to Definition 7 and
Theorem 3,

T41 = 1, T2 = s(H1) = 0.567, T3 = s(H1)× s(H2) = 0.2552, T4 = 0.2169,
4

∑
j=1

Tj = 2.0391.

So

GMHFPWA(H1, H2, H3, H4 ) =
{(

1
2.0391 γ1 +

0.567
2.0391 γ2 +

0.2552
2.0391 γ3 +

0.2169
2.0391 γ4

)∣∣∣γi ∈ Hi, i = 1, 2, 3, 4
}

= {0.4885 , 0.4991, 0.5097, 0.5010, 0.5116, 0.5223, 0.5163, 0.5269, 0.5375, 0.5288, 0.5394, 0.5501, 0.4885, 0.4991,
0.5097, 0.5010, 0.5116, 0.5223, 0.5163, 0.5269, 0.5375, 0.5288, 0.5394, 0.5501, 0.5865, 0.5972, 0.6078, 0.5991,
0.6097, 0.6203, 0.6144, 0.6250, 0.6356, 0.6269, 0.6375, 0.6481}.

Similarly, it can be easily proved that the GMHFPWA operator is monotonicity, commutativity and
bounded, which are presented in the following.

Proposition 4. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs, then the following properties can be true.

(1) (Monotonicity) Let H′
i (i = 1, 2, . . . , n) be a collection of MHFNs. If for all i, Hi ≤ H′

i , then

GMHFPWA(H1, H2, . . . , Hn ) ≤ GMHFPWA
(

H′
1, H′

2, . . . , H′
n
)

(2) (Commutativity) If H∗
1 , . . . , H∗

n is a permutation of H1, . . . , Hn, then

GMHFPWA(H∗
1 , H∗

2 , . . . , H∗
n ) = GMHFPWA(H1, H2, . . . , Hn)

(3) (Boundedness) If H− =
{

γ−1 , γ−2 , . . . , γ−n
}

and H+ =
{

γ+
1 , γ+

2 , . . . , γ+
n
}

, where γ−i = min
γi∈Hi

γi and

γ+
i = max

γi∈Hi
γi, then

H− ≤ GMHFPWA(H1, H2, . . . , Hn ) ≤ H+

According to the fuzzy measure (more details can be founded in [38]), the Choquet integral aggregation
operator can be obtained.

Definition 8. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs. Then the generalized multi-hesitant
fuzzy Choquet integral weighted average (GMHFCIWA) operator of dimension n is a mapping
GMHFCIWA : MHFNn → MHFN , and

GMHFCIWA(H1, H2, . . . , Hn )

= Cn
((

μ
(

Aσ(k)

)
− μ

(
Aσ(k+1)

))
, Hσ(k), k = 1, 2, . . . , n

)
=
(

μ
(

Aσ(1)

)
− μ

(
Aσ(2)

))
⊗ Hσ(1) ⊕

(
1−

(
μ
(

Aσ(1)

)
− μ

(
Aσ(2)

)))
⊗Cn−1

{((
μ
(

Aσ(i)

)
− μ

(
Aσ(i+1)

))
/

n
∑

k=2

(
μ
(

Aσ(k)

)
− μ

(
Aσ(k+1)

))
, Hσ(i), i = 2, 3, . . . , n

)}
.

(10)

Here μ is a fuzzy measure on X, (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n), and such that
Hσ(1) ≤ Hσ(2) ≤ . . . ≤ Hσ(n). Aσ(i) =

{
xσ(k)

∣∣∣k ≥ i
}

, and xσ(i) is the criterion corresponding to Hσ(i).

Theorem 4. Let Hi(i = 1, 2, . . . , n) be a collection of MHFNs, then their aggregated value by using
the GMHFCIWA operator is also a MHFN, and

GMHFCIWA(H1, H2, . . . , Hn )

=

{((
μ
(

Aσ(1)

)
− μ

(
Aσ(2)

))
γλ

σ(1) +
(

μ
(

Aσ(2)

)
− μ

(
Aσ(3)

))
γλ

σ(2) + . . . +
(

μ
(

Aσ(n)

)
− μ

(
Aσ(n+1)

))
γλ

σ(n)

)1/λ∣∣∣γσ(i) ∈ Hσ(i), i = 1, 2, . . . , n
}

.

(11)
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Here (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n), and such that Hσ(1) ≤ Hσ(2) ≤ . . . ≤
Hσ(n) . Aσ(i) =

{
xσ(k)

∣∣∣k ≥ i
}

, and xσ(i) is the criterion corresponding to Hσ(i).

Example 5. Suppose a Venture Capital Company is going to evaluate the existed investment projects from
the financial perspective. Three criteria could be considered: c1 : operating capacity; c2: solvency; c3: profitability.
Suppose three criteria are inter-dependent. The decision-makers could give the evaluation values in form of
MHFNs and denoted as follows: H1 = {0.1, 0.1}, H2 = {0.2, 0.4} and H3 = {0.5}.

Suppose that μ(c1) = 0.30, μ(c2) = 0.30, μ(c3) = 0.20, μ(c1, c2) = 0.90, μ(c1, c3) = 0.80,
μ(c2, c3 ) = 0.60 , μ(c1, c2, c3) = 1, then the following results can be obtained.

wσ(1) = μ
(

Aσ(1)

)
− μ

(
Aσ(2)

)
= μ

(
cσ(1), cσ(2), cσ(3)

)
− μ

(
cσ(2), cσ(3)

)
= μ(c1, c2, c3)− μ(c1, c3) = 1− 0.80 = 0.20;

wσ(2) = 0.60;wσ(3) = 0.20.
Then Hσ(1) = H2, Hσ(2) = H1, Hσ(3) = H3.
Thus, the overall evaluation value can be calculated.

GMHFCIWA(H1, H2, H3 )

= C4
(

μ
(

Aσ(k)

)
− μ

(
Aσ(k+1)

)
, Hσ(k), k = 1, 2, 3

)
=
{

wσ(1)γσ(1) + wσ(2)γσ(2) + wσ(3)γσ(3)

∣∣∣γσ(i) ∈ Hσ(i), i = 1, 2, 3
}

= {0.20, 0.20, 0.24, 0.24}.

Similarly, the GMHFCIWA operator is monotonicity, commutativity and bounded, which are presented in
the following.

Proposition 5. Let Hi (i = 1, 2, . . . , n) be a collection of MHFNs, and μ be the fuzzy measure on X,
then the following properties can be true.

(1) (Monotonicity) Let H′
i (i = 1, 2, . . . , n) be a collection of MHFNs. If for all i, Hi ≤ H′

i , then

GMHFCIWAμ(H1, H2, . . . , Hn ) ≤ GMHFCIWAμ

(
H′

1, H′
2, . . . , H′

n
)

(2) (Commutativity) If H∗
1 , . . . , H∗

n is a permutation of H1, . . . , Hn, then

GMHFCIWAμ(H∗
1 , H∗

2 , . . . , H∗
n ) = GMHFCIWAμ(H1, H2, . . . , Hn)

(3) (Boundedness) If H− =
{

γ−1 , γ−2 , . . . , γ−n
}

and H+ =
{

γ+
1 , γ+

2 , . . . , γ+
n
}

, where γ−i = min
γi∈Hi

γi and

γ+
i = max

γi∈Hi
γi, then

H− ≤ GMHFCIWAμ(H1, H2, . . . , Hn ) ≤ H+

4. The MCDM Method Based on Aggregation Operators with MHFNs

The MCDM ranking/selection problems with multi-hesitant fuzzy information consists of
a group of alternatives, denoted by A = {a1, a2, . . . , an}. The alternatives are evaluated based on
the criteria denoted by C = {c1, c2, . . . , cm}. aij is the value of the alternative ai for the criterion cj,

and aij =
{

γk
ij, k = 1, 2, . . . , l

(
aij
)}

(i = 1, . . . , n; j = 1, . . . , m) are in the form of MHFNs, which are

given by several decision-makers. Furthermore, l
(
aij
)

represents the number of elements in aij and
the corresponding weight vector w = (w1, w2, . . . , wm). This method is suitable if the number of
decision-makers is small. A situation could arise where decision-makers evaluate these alternatives

208



Information 2018, 9, 207

based on the given criteria, and one decision-maker could give several evaluation values. In particular,
in the case where two or more decision-makers give the same value, it is counted repeatedly. aij is
the set of evaluation values for all decision-makers.

The approach is an integration of MHFNs and aggregation operators to solve MCDM problems
mentioned above. It is noted that different operators have different characteristic. The decision-makers
can choose different operators according to their preference. The GMHFOWA operator mainly weights
the ordered positions of the multi-hesitant fuzzy values instead of weighting the multi-hesitant
fuzzy values themselves. The GMHFHWA operator reflects the importance degrees of both
multi-hesitant fuzzy values and their ordered positions. Furthermore, most MCDM methods are
under the assumption that the criteria are at the same priority level, and the prominent of characteristic
of the GMHFPWA is that it considers prioritization among the criteria. The GMHFCIWA operator can
better reflect the correlations among the elements to handle MCDM problems where the criteria
are inter-dependent or interactive. Therefore, four aggregation operators can be used to deal
with different relationships among the aggregated arguments, could handle MCDM problems in
a flexible and objective manner under multi-hesitant fuzzy environment, and can provide more choices
for decision-makers.

The procedure of this approach is shown as follows.
Step 1. Normalize the decision matrix.
For MCDM problems, the most common criteria are of maximizing and minimizing types.

To unify all criteria, it is necessary to normalize the evaluation values. (Note: if all the criteria
are of the maximizing type and have the same measurement unit, then there is no need to
normalize them). Suppose that the matrix R =

(
aij
)

n×m, where aij =
{

γ1
ij, γ2

ij, . . . , γk
ij

}
(
i = 1, 2, . . . , n; j = 1, 2, . . . , m; k = 1, 2, . . . , l

(
aij
))

, are MHFNs, is normalized into the corresponding

matrix R̃ =
(
ãij
)

n×m. Where ãij =
{

γ̃1
ij, γ̃2

ij, . . . , γ̃k
ij

} (
i = 1, 2, . . . , n; j = 1, 2, . . . , m; k = 1, 2, . . . , l

(
aij
))

.

l
(
aij
)

is the number of the elements of aij.
For the maximizing criteria, the normalization formula is

γ̃k
ij = γk

ij, k = 1, 2, . . . , l
(
aij
)

(12)

for the minimizing criteria,
γ̃k

ij = 1− γk
ij, k = 1, 2, . . . , l

(
aij
)

(13)

Seemingly, the normalization values ãij =
{

γ̃1
ij, γ̃2

ij, . . . , γ̃k
ij

}
{i = 1, 2, . . . , n; j = 1, 2, . . . , m} are

also MHFNs.
Step 2. Aggregate the MHFNs of each decision-maker.
Utilize the GMHFOWA, GMHFHWA, GMHPWA or GMHCIWA operator to aggregate

the MHFNs of each decision-maker, and the individual aggregated value yi of the alternative ai
(i = 1, 2, . . . , n) can be obtained.

Step 3. Calculate the score function value s(yi) and the accuracy function value a(yi) of yi
(i = 1, 2, . . . , m) using Definition 3.

Step 4. Rank the alternatives.

5. An Illustrative Example

In this section, an example is adapted from Schmeidler [39] for further illustration of the feasibility
of the proposed approach.

There is an investment company, which wants to invest in a project. There are five possible
alternatives in which to invest: a1 is a car company; a2 is a food company; a3 is a computer company; a4

is an arms company; and a5 is a TV company. The investment company must make a decision according
to the following four criteria: c1 is the environment impact; c2 is the risk; c3 are the growth prospects;
and c4 is the social-political impact. The environmental impact refers to the impact on the company’s
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environment and the processes used in making the product, such as the management methods and
work environment. The risk involves more than one risk factor, including product risk and development
environment risk. The growth prospects include increased profitability and returns. The social-political
impact refers to the government’s and local residents’ support for company. The four criteria are
correlated with each other in the assessment process. The five possible alternatives ai(i = 1, 2, . . . , 5)
are to be evaluated using the multi-hesitant fuzzy information of two decision-makers as presented in
Table 1. The evaluation values aij(i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4) should be in the form of MHFNs which
are provided by two decision-makers based on their knowledge and experience. In the case where
decision-makers give the same value, then it is counted repeatedly, and aij is the set of evaluation values
for two decision-makers.

Table 1. Multi-hesitant fuzzy decision matrix.

c1 c2 c3 c4

a1 {0.4, 0.5, 0.7} {0.5, 0.5, 0.8} {0.6, 0.6, 0.9} {0.5, 0.6}
a2 {0.6, 0.7, 0.8} {0.5, 0.6} {0.6, 0.7, 0.7} {0.4, 0.5}
a3 {0.6, 0.8} {0.2, 0.3, 0.5} {0.6, 0.6} {0.5, 0.7}
a4 {0.5, 0.5, 0.7} {0.4, 0.5} {0.8, 0.9} {0.3, 0.4, 0.5}
a5 {0.6, 0.7} {0.5, 0.7} {0.7, 0.8} {0.3, 0.3, 0.4}

5.1. An Illustration of the Proposed Approach

There are four cases that the proposed approach is used to handle the MCDM problems where
the weight of criteria is known or unknown. The procedures of obtaining the optimal alternative,
by using the developed approach, are shown as follows.

Case 1. If the ordered positions of the multi-hesitant fuzzy values of criteria are considered,
then the GMHFOWA operator is utilized and the associated weight is w = (0.33, 0.18, 0.37, 0.12).
The procedures of the proposed approach can be obtained.

Step 1. Normalize the data in Table 1.
Because all the criteria are of the maximizing type and have the same measurement unit, there is

no need for normalization and R̃ =
(
ãij
)

5×4 =
(
aij
)

5×4.
Steps 2–3. Aggregate the MHFNs of each decision-maker and calculate the score function value

and accuracy function value.
According to Definition 5 and Theorem 1, the following results can be obtained:

s(y1 ) = 0.5810; s(y2) = 0.5782; s(y3) = 0.5240; s(y4) = 0.5247; s(y5) = 0.5485

Since the score function values are different, so there is no need to compute the accuracy
function value.

Step 4. Rank the alternatives.
Based on Step 3, since s(y3) < s(y4) < s(y5) < s(y2) < s(y1), so the final ranking is a3 ≺ a4 ≺

a5 ≺ a2 ≺ a1. The best alternative is a1 while the worst alternative is a3.
Case 2. If both the multi-hesitant fuzzy values of criteria and their ordered positions are

considered, then the GMHFHWA operator is utilized. If the corresponding vector of criteria is
w = (0.33, 0.18, 0.37, 0.12) and the aggregation-associated vector is ω = (0.3, 0.25, 0.2, 0.25), according
Definition 6 and Theorem 2, the following results can be obtained:

s(y1 ) = 0.3207; s(y2) = 0.3583; s(y3) = 0.2940; s(y4) = 0.3098; s(y5) = 0.3750

Since s(y3) < s(y4) < s(y1) < s(y2) < s(y5), so the final ranking is a3 ≺ a4 ≺ a1 ≺ a2 ≺ a5.
The best alternative is a5 while the worst alternative is a3.
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Case 3. If the prioritization among the multi-hesitant fuzzy values of criteria is taken into account,
then the GMHFPWA operator is used and the prioritization relation for criteria is c1 � c2 � c3 � c4.
Based on Definition 7 and Theorem 3,

T11 = 1, T12 = s(a11) = 0.5300, T13 = 0.3180, T14 = 0.2226, ∑4
j=1 Tj = 2.0706;

T21 = 1, T22 = s(a21) = 0.7000, T23 = 0.3850, T24 = 0.2568, ∑4
j=1 Tj = 2.3418;

T31 = 1, T32 = s(a31) = 0.7000, T33 = 0.2310, T34 = 0.1386, ∑4
j=1 Tj = 2.0696;

T41 = 1, T42 = s(a41) = 0.5670, T43 = s(a41)× s(a42) = 0.5670× 0.4500 = 0.2552,
T44 = s(a41)× s(a42)× s(a44) = 0.5670× 0.4500× 0.8500 = 0.2169, ∑4

j=1 Tj = 2.0391;
T51 = 1, T52 = s(a51) = 0.6500, T53 = 0.3900, T54 = 0.2925, ∑4

j=1 Tj = 2.3325.

Therefore, the following results can be obtained:

s(y1 ) = 0.5787; s(y2) = 0.6223; s(y3) = 0.5581; s(y4) = 0.5520; s(y5) = 0.6131

Since s(y4) < s(y3) < s(y1) < s(y5) < s(y2), so the final ranking is a4 ≺ a3 ≺ a1 ≺ a5 ≺ a2.
The best alternative is a2 while the worst alternative is a4.

Case 4. If the correlations among the multi-hesitant fuzzy values of criteria are considered, then
the GMHFCIWA operator can be used. Based on Definition 8 and Theorem 4, suppose μ(c1) = 0.40,
μ(c2) = 0.25, μ(c3) = 0.37, μ(c4) = 0.20, μ(c1, c2) = 0.60, μ(c1, c3) = 0.70, μ(c1, c4) = 0.56,
μ(c2, c3) = 0.68, μ(c2, c4) = 0.43, μ(c3, c4) = 0.54, μ(c1, c2, c3) = 0.88, μ(c1, c2, c4) = 0.75,
μ(c2, c3, c4) = 0.73, μ(c1, c3, c4) = 0.84, and μ(c1, c2, c3, c4) = 1, then the following results can
be obtained.

s(y1 ) = 0.6200; s(y2) = 0.6320; s(y3) = 0.6050; s(y4) = 0.6305; s(y5) = 0.6400

Since s(y3) < s(y1) < s(y4) < s(y2) < s(y5), so the final ranking is a3 ≺ a1 ≺ a4 ≺ a2 ≺ a5.
The best alternative is a5 while the worst alternative is a3.

5.2. Sensitivity Analysis

In Step 2, four aggregation operators can be used, and the sensitivity analysis will be conducted
in these cases. Since the aggregation parameter λ is a balance factor, which can be determined by
decision-makers based on their preference. To investigate the influence of different λ on the ranking
of alternatives, various λ are utilized. If the GMHFOWA operator, the GMHFHWA operator,
the GMHPWA operator and the GMHCIWA operator are used respectively, then the ranking results
are shown in Tables 2 and 3.

Table 2. Rankings obtained using the GMHFOWA operator and the GMHFHWA operator.

λ
Rankings

GMHFOWA GMHFHWA

λ = 1 a3 ≺ a4 ≺ a5 ≺ a2 ≺ a1 a3 ≺ a4 ≺ a1 ≺ a2 ≺ a5
λ = 2 a3 ≺ a4 ≺ a5 ≺ a2 ≺ a1 a3 ≺ a4 ≺ a1 ≺ a2 ≺ a5
λ = 5 a3 ≺ a4 ≺ a5 ≺ a2 ≺ a1 a3 ≺ a4 ≺ a1 ≺ a2 ≺ a5
λ = 10 a3 ≺ a4 ≺ a5 ≺ a2 ≺ a1 a3 ≺ a4 ≺ a1 ≺ a2 ≺ a5
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Table 3. Rankings obtained using the GMHFPWA and the GMHFCIWA operators.

λ
Rankings

GMHFPWA GMHFCIWA

λ = 1 a4 ≺ a3 ≺ a1 ≺ a5 ≺ a2 a3 ≺ a1 ≺ a4 ≺ a2 ≺ a5
λ = 2 a4 ≺ a3 ≺ a1 ≺ a5 ≺ a2 a3 ≺ a1 ≺ a4 ≺ a2 ≺ a5
λ = 5 a4 ≺ a3 ≺ a1 ≺ a5 ≺ a2 a3 ≺ a1 ≺ a4 ≺ a2 ≺ a5
λ = 10 a4 ≺ a3 ≺ a1 ≺ a5 ≺ a2 a3 ≺ a1 ≺ a4 ≺ a2 ≺ a5

From Tables 2 and 3, it can be seen that if the GMHFCIWA operator and the GMHFHWA operator
are used respectively in Step 2, then the final ranking is a3 ≺ a1 ≺ a4 ≺ a2 ≺ a5 or a3 ≺ a4 ≺
a1 ≺ a2 ≺ a5. The best alternative is always a5 while the worst alternative is a3. If the GMHFOWA
operator, the GMHFPWA operator are used respectively in Step 2, then the final ranking is a3 ≺ a4 ≺
a5 ≺ a2 ≺ a1 and a4 ≺ a3 ≺ a1 ≺ a5 ≺ a2. The best alternative is a1 or a2 while the worst
alternative is a3 or a4. However, for each operator, the rankings obtained are consistent as λ changes.
Moreover, for different operator, the aggregation parameter λ also lead to different aggregation results,
but the final rankings of alternatives are the same as the parameter changes. Moreover, different
aggregation operators can be chosen according to the practical necessity of MCDM problems, which can
represent the decision-makers’ preference.

5.3. A Comparison Analysis and Discussion

In this section, to validate the feasibility of the proposed multi-hesitant fuzzy MCDM approach
based on convex operators, a comparative study was conducted with other methods as shown in
Xu [9,10], Zhang et al. [13], Yu [16], Zhang and Wei [31], Zhang and Xu [32], and Peng et al. [35].
Moreover, the method in Wei [11] considering the prioritization among criteria is also compared.

The method presented in Peng et al. [35] can deal with multi-hesitant fuzzy information directly.
However, in other compared methods, they all do not clarify that how to solve a situation where there
is a repeated value in the evaluation of alternatives. The comparison analysis was based on the same
illustrative example, but the same value will be counted only once in Table 1. Suppose the weight vector
of criteria is w = (0.33, 0.18, 0.37, 0.12), then the compared results can be obtained as shown in Table 4.

Table 4. Comparison of different methods.

Methods Ranking of Alternatives

Xu [9,10] a3 ≺ a2 ≺ a1 ≺ a5 ≺ a4
Wei [11] a3 ≺ a1 ≺ a4 ≺ a5 ≺ a2

Zhang [13] a3 ≺ a4 ≺ a1 ≺ a2 ≺ a5
Yu [16] a3 ≺ a2 ≺ a5 ≺ a4 ≺ a1

Zhang and Wei [31] a3 ≺ a4 ≺ a2 ≺ a1 ≺ a5
Zhang and Xu [32] a4 ≺ a3 ≺ a2 ≺ a1 ≺ a5

Peng et al. [35] a4 ≺ a3 ≺ a2 ≺ a1 ≺ a5

Proposed
methods:

GMHFOWA a3 ≺ a4 ≺ a5 ≺ a2 ≺ a1
GMHFHWA a3 ≺ a4 ≺ a1 ≺ a2 ≺ a5
GMHFPWA a4 ≺ a3 ≺ a1 ≺ a5 ≺ a2

According to the results presented in Table 4, the following conclusions can be categorically
drawn. Firstly, the repetitive values in HFSs are not taken into consideration in the existing methods.
Secondly, compared with the methods relying on aggregation operators, the result of using the
GMHFHWA operator is the same as that using the method of Zhang [13], and the best alternative
is always a5 while the worst alternative is always a3; the result of using the GMHFOWA operator is
the same as that using the method of Yu [16] and the best alternative is a1 while the worst alternative
is a3; However, the results of the proposed approach are different from that using the method of

212



Information 2018, 9, 207

Xu [9,10]. Furthermore, the method of Wei [11] and the proposed GMHFPWA operator are all
considered the prioritization among criteria. However, there exist a litter difference between the result
of using GMHFPWA operator and the result of using the method of Wei [11], the final ranking is
a4 ≺ a3 ≺ a1 ≺ a5 ≺ a2 or a3 ≺ a1 ≺ a4 ≺ a5 ≺ a2. The best alternative is always a2 while
the worst alternative is a4 or a3. Apparently, different operations and aggregation operators being
involved in those methods can interpret the differences existing in the final rankings to some extent.
Thirdly, compared with the methods relying on distance measures, the result of using the GMHFWA
operator or the GMHFHWA operator is the same as that using the method of Zhang and Wei [31]
and the best alternative is always a5 while the worst alternative is always a3. However, it is different
from that using of Zhang and Xu [32] that the best alternative is a5 while the worst alternative
is a4. Furthermore, the methods using distance measures have certain shortcomings because the
condition should be satisfied that all HFNs must be arranged in ascending order and be of equal
length. If two HFNs being compared have different lengths, then the value of the shorter one should
be increased subjectively until both are equal. Finally, the result using the method of Peng et al. [35] is
the same as that of the proposed approach. Therefore, the proposed method can effectively overcome
the shortcomings of the compared methods and the computation is very simple.

From the analysis above, it can be seen that the main advantages of the approach developed in
this paper over the other methods are not only due to its ability to effectively deal with the preference
information expressed by MHFNs, but also due to its consideration that the weight of criteria is known
or unknown. This can avoid losing and distorting the preference information provided, which makes
the results better correspond with real life decision-making problems.

6. Conclusions

HFSs are considered useful in handling decision-making problems under uncertain situations where
decision-makers hesitate when choosing between several values before expressing their preferences about
weights and data. MHFSs can deal effectively with the case where some values are repeated more than
once in an HFS. In this paper, the convex combination of MHFNs was discussed and some aggregation
operators based on convex operation, such as GMHFOWA operator, GMHFHWA operator, GMHFPWA
operator and GMHFCIWA operator, were developed as well. Moreover, a novel approach based on convex
operators was developed to deal with MCDM problems where the data are MHFNs. Finally, an illustrative
example was given to verify the proposed approach. The primary characteristic of the proposed approach
is that those aggregation operators can provide more choices for decision-makers according to the actual
decision-making environment. Moreover, MHFSs could overcome the shortcomings in HFSs where if two
or more decision-makers set the same value, it is only counted once. Further research will investigate how
to obtain the optimal values of criteria by a specified model within a multi-hesitant fuzzy environment.
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Abstract: In this paper, a hesitant probabilistic fuzzy multiple attribute group decision making is
studied. First, some Einstein operations on hesitant probability fuzzy elements such as the Einstein
sum, Einstein product, and Einstein scalar multiplication are presented and their properties are
discussed. Then, several hesitant probabilistic fuzzy Einstein aggregation operators, including the
hesitant probabilistic fuzzy Einstein weighted averaging operator and the hesitant probabilistic fuzzy
Einstein weighted geometric operator and so on, are introduced. Moreover, some desirable properties
and special cases are investigated. It is shown that some existing hesitant fuzzy aggregation operators
and hesitant probabilistic fuzzy aggregation operators are special cases of the proposed operators.
Further, based on the proposed operators, a new approach of hesitant probabilistic fuzzy multiple
attribute decision making is developed. Finally, a practical example is provided to illustrate the
developed approach.

Keywords: hesitant probabilistic fuzzy element (HPFE); Einstein operations; hesitant probabilistic
fuzzy Einstein aggregation operators; multiple attribute decision making (MADM).

1. Introduction

Decision making problems typically consist of finding the most desirable alternative(s) out of a
given set of alternatives. So far, there are applications of decision making into different disciplines,
such as railroad container terminal selection, pharmaceutical supplying, hospital service quality, and
so on [1–3]. Due to the increasing ambiguity and complexity of the socio-economic environment, it is
difficult to obtain accurate and sufficient data for practical decision making. Therefore, uncertainty
data needs to be addressed in the actual decision making process, and several other methodologies
and theories have been proposed. Among them, the fuzzy set theory [4] is excellent and has been
widely used in many areas of real life [5–8]. Since Zadeh [4] introduced the fuzzy set (FS) in 1965, many
researchers have developed extended forms of FS, such as the intuitive fuzzy set (IFS) [9], the type-2
fuzzy set [10], the type-n fuzzy set [10], the fuzzy multiset [11] and the fuzzy hesitant set (HFS) [12].
Among these, the HFS was broadly applied to the practical decision making process. In fact, the HFS
is widely used in decision making problems with the aim of resolving the difficulty of explaining
hesitation in the actual assessment. The main reason is that experts may face situations in which
people are hesitant to provide their preferences in the decision making process by allowing them
to prefer several possible values between 0 and 1. Torra [12] introduced some basic operations of
HFSs. Xia and Xu [13] defined the hesitant fuzzy element (HFE), which is the basic component of
the HFS, and proposed and investigated the score function and comparison law of HFEs as the basis
for its calculation and application. Li et al. [14] and Meng and Chen [15] proposed various distance
measures and some correlation coefficients for HFSs. They also investigated applications based on the
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distance measures and correlation coefficients. Over the past decade, there many researchers [16–23]
have studied the aggregation operators, one of the core issues of HFSs. Thus, many researchers have
worked hard to develop the HFS theory and have helped to develop it in uncertain decision making
problems [24–26].

However, there is one obvious weakness in the current approaches; namely, each of the possible
values in the HFE provided by the experts has the same weight. To overcome this weakness, Xu
and Zhou [27] proposed the hesitant probabilistic fuzzy set (HPFS) and hesitant probabilistic fuzzy
element (HPFE) developed by introducing probabilities to HFS and HFE respectively. For example,
experts evaluate a house’s “comfort” using an HFE (0.3, 0.4, 0.5) because they hesitate to evaluate
it. However, they believe that 0.4 is appropriate and 0.3 is less appropriate than the other values in
the HFE. Therefore, although the HFE (0.3, 0.4, 0.5) cannot fully represent the evaluation, the HPFE
(0.3|0.2, 0.4|0.5, 0.5|0.3) can present this issue vividly and is more convenient than HFE. Consequently,
the HPFS can overcome the defect of HFS to great extent, so it can remain the experts’ evaluation
information and describe their preferences better. In Ref. [27], the HPFE was combined with
weighted operators to develop basic weighted operators, such as hesitant probabilistic fuzzy weighted
average/geometric (HPFWA or HPFWG) operators and the hesitant probabilistic fuzzy ordered
weighted averaging/geometric (HPFOWA or HPFOWG) operators. Based on the perspective of the
aggregation operators, they established the consensus among decision makers in group decision
making. Zhang and Wu [28] investigated some operations of HPFE and applied them to multicriteria
decision making (MCDM). In another way, some scholars recently tried to solve the problem of HFSs.
Bedregal et al. [29] tried to use fuzzy multisets to improve the HFSs. This method has been worked out
to some extent. Wang and Li [30] proposed the picture hesitant fuzzy set to express the uncertainty and
complexity of experts’ opinions and applied them to solve diverse situations during MCDM processes.
Interval-valued HFSs have been used in the applications of group decision making in [31]. Multiple
attribute decision making (MADM) using the trapezoidal valued HFSs is discussed in [32]. Yu [33]
gave the concept of triangular hesitant fuzzy sets and used it for the solution of decision making
problems. Mahmood et al. [34] introduced the cubic hesitant fuzzy set and applied it to MCDM.

The study on aggregation operators to fuse hesitant probabilistic information is one of the core
issues in HPFS theory. The all aggregation operators introduced previously, such as the HPFWA,
HPFWG, HPFOWA, and HPFOWG operators, are based on the algebraic product and algebraic sum
of HPFEs, which are a pair of the special dual t-norm and t-conorm [35]. Although the algebraic
product and algebraic sum are the basic algebraic operations of HPFEs, they are not the only ones.
The Einstein product and Einstein sum are good alternatives to the algebraic product and algebraic
sum for structuring aggregation operators, respectively, and they have been used to aggregate the
intuitionistic fuzzy values or the HFEs by many researchers [21–23,36–38]. However, it seems that
in the literature, there has been little investigation on aggregation techniques using the Einstein
operations to aggregate hesitant probabilistic fuzzy information. Thus, it is meaningful to research
the hesitant probabilistic fuzzy information aggregation methods based on the Einstein operations.
In this paper, motivated by the works of Xu and Zhou [27] and Yu [21], we propose the hesitant
probabilistic fuzzy Einstein weighted aggregation operators with the help of Einstein operations, and
apply them to MADM under a hesitant probabilistic fuzzy environment. To do this, the remainder
of this paper is organized as follows: The following section recalls briefly some basic concepts and
notions related to the HPFSs and HPFEs. In Section 3, based on the hesitant probabilistic fuzzy
weighted aggregation operator and the Einstein operations, we propose the hesitant probabilistic fuzzy
Einstein weighted aggregation operators including the hesitant probabilistic fuzzy Einstein weighted
averaging/geometric (HPFEWA or HPFEWG) operators and the hesitant probabilistic fuzzy Einstein
ordered weighted averaging/geometric (HPFEOWA or HPFEOWG) operators. Section 4 develops an
approach to MADM with hesitant probabilistic fuzzy information based on the proposed operators.
An example is given to demonstrate the practicality and effectiveness of the proposed approach in
Section 4. Section 5 gives some concluding remarks.
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2. Hesitant Fuzzy Information with Probabilities

2.1. HPFS and HPFE

The HPFS and HPFE represent hesitant fuzzy information with the following probabilities.

Definition 1. [27] Let R be a fixed set, then an HPFS on R is expressed by a mathematical symbol:

HP =
{

h̄(γi|pi)|γi, pi
}

, (1)

where h̄(γi|pi) is a set of some elements (γi|pi) denoting the hesitant fuzzy information with probabilities to
the set HP, γi ∈ R, 0 ≤ γi ≤ 1, i = 1, 2, . . . , #h̄, where #h̄ is the number of possible elements in h̄(γi|pi),
pi ∈ [0, 1] is the hesitant probability of γi, and ∑#h̄

i=1 pi = 1.

For convenience, Xu and Zhou [27] called h̄(γi|pi) a HPFE, and HP the set of HPFSs. In addition,
they gave the following score function, deviation function, and comparison law to compare
different HPFEs.

Definition 2. [27] Let h̄(γi|pi) (i = 1, 2, , . . . , #h̄) be a HPFE, then
(1) s(h̄) = ∑#h̄

i=1 γi pi is called the score function of h̄(γi|pi), where #h̄ is the number of possible elements
in h̄(γi|pi);

(2) d(h̄) = ∑#h̄
i=1(γi − s(h̄))2 pi is called the deviation function of h̄(γi|pi), where s(h̄) = ∑#h̄

i=1 γi pi is
the score function of h̄(γi|pi), and #h̄ is the number of possible elements in h̄(γi|pi).

If all probabilities are equal, i.e., p1 = p2 = · · · = p#h̄, then the HPFE is reduced to the HFE. So,
in this case, the score function of the HPFE is consistent with that of the HFE.

Definition 3. [27] Let h̄1(γi|pi) (i = 1, 2, , . . . , #h̄1) and h̄2(γj|pj) (j = 1, 2, , . . . , #h̄2) be two HPFEs, s(h̄1)

and s(h̄2) are the score functions of h̄1 and h̄2, respectively, and d(h̄1) and d(h̄2) are the deviation functions of
h̄1 and h̄2, respectively, then

(1) If s(h̄1) < s(h̄2), then h̄1 is smaller than h̄2 which is denoted by h̄1 < h̄2;
(2) If s(h̄1) = s(h̄2), then

(a) If d(h̄1) > d(h̄2), then h̄1 is smaller than h̄2, denoted by h̄1 < h̄2;
(b) If d(h̄1) = d(h̄2), then h̄1 and h̄2 represent the same information, denoted by h̄1 = h̄2.

Some operations to aggregate HPFEs based on the operations of HFEs [12,13] are defined
as follows:

Definition 4. [27] Let h̄(γi|pi), h̄1(γ̇j| ṗj) and h̄2(γ̈k| p̈k) be three HPFEs, i = 1, 2, . . . , #h̄, j = 1, 2, . . . , #h̄1,
k = 1, 2, . . . , #h̄2, and λ > 0, then

(1) (h̄)c = ∪i=1,2,...,#h̄ {(1− γi)|pi};
(2) λh̄ = ∪i=1,2,...,#h̄

{
1− (1− γi)

λ|pi
}

;
(3) h̄λ = ∪i=1,2,...,#h̄

{
(γi)

λ|pi
}

;
(4) h̄1 ⊕ h̄2 = ∪j=1,2,...,#h̄1,k=1,2,...,#h̄2

{
(γ̇j + γ̈k − γ̇jγ̈k)| ṗj p̈k

}
;

(5) h̄1 ⊗ h̄2 = ∪j=1,2,...,#h̄1,k=1,2,...,#h̄2

{
γ̇jγ̈k| ṗj p̈k

}
.

Theorem 1. Let h̄(γi|pi), h̄1(γ̇j| ṗj) and h̄2(γ̈k| p̈k) be three HPFEs, i = 1, 2, . . . , #h̄, j = 1, 2, . . . , #h̄1,
k = 1, 2, . . . , #h̄2, λ > 0, λ1 > 0, and λ2 > 0, then

(1) h̄1 ⊕ h̄2 = h̄2 ⊕ h̄1;
(2) h̄⊕ (h̄1 ⊕ h̄2) = (h̄⊕ h̄1)⊕ h̄2;
(3) λ(h̄1 ⊕ h̄2) = (λh̄1)⊕ (λh̄2);
(4) λ1(λ2h̄) = (λ1λ2)h̄;

218



Information 2018, 9, 226

(5) h̄1 ⊗ h̄2 = h̄2 ⊗ h̄1;
(6) h̄⊗ (h̄1 ⊗ h̄2) = (h̄⊗ h̄1)⊗ h̄2;
(7) (h̄1 ⊗ h̄2)

λ = h̄λ
1 ⊗ h̄λ

2 ;
(8) (h̄λ1)λ2 = h̄(λ1λ2).

Proof. We only prove (3) and the other are trivial or similar to (3).
(3) Since h̄1 ⊕ h̄2 = ∪j=1,2,...,#h̄1,k=1,2,...,#h̄2

{
γ̇j + γ̈k − γ̇jγ̈k| ṗj p̈k

}
, according to the operational

law (2) in Definition 4, we have

λ(h̄1 ⊕ h̄2) = ∪ j=1,2,...,#h̄1,
k=1,2,...,#h̄2

{
1− (1− (γ̇j + γ̈k − γ̇jγ̈k)

)λ ∣∣ ṗj p̈k

}
= ∪ j=1,2,...,#h̄1,

k=1,2,...,#h̄2

{
1− ((1− γ̇j)(1− γ̈k)

)λ ∣∣ ṗj p̈k

}
.

Since λh̄1 = ∪j=1,2,...,#h̄1

{
1− (1− γ̇j)

λ| ṗj
}

and λh̄2 = ∪k=1,2,...,#h̄2

{
1− (1− γ̇k)

λ| p̈k
}

, we have

(λh̄1)⊕ (λh̄2) = ∪ j=1,2,...,#h̄1,
k=1,2,...,#h̄2

{
1− (1− γ̇j)

λ + 1− (1− γ̇k)
λ − (1− (1− γ̇j)

λ)(1− (1− γ̇k)
λ)| ṗj p̈k

}
= ∪ j=1,2,...,#h̄1,

k=1,2,...,#h̄2

{
1− (1− γ̇j)

λ(1− γ̈k)
λ| ṗj p̈k

}
.

Hence, λ(h̄1 ⊕ h̄2) = (λh̄1)⊕ (λh̄2).

However, for an HPFE h̄(γi|pi), i = 1, 2, . . . , #h̄, λ1 > 0 and λ2 > 0, the operational laws
(λ1h̄)⊕ (λ2h̄) = (λ1 + λ2)h̄ and h̄λ1 ⊗ h̄λ2 = h̄(λ1+λ2) do not hold in general. To illustrate this case, we
give the following example.

Example 1. Let h̄(γi|pi) = (0.7|0.5, 0.2|0.5) and λ1 = λ2 = 1, then

(λ1h̄)⊕ (λ2h̄) = h̄⊕ h̄ = ∪i,j=1,2
{

γi + γj − γiγj|0.25
}

= (0.91|0.25, 0.76|0.25, 0.76|0.25, 0.36|0.25),

(λ1 + λ2)h̄ = 2h̄ = ∪i=1,2

{
1− (1− γi)

2|0.5
}
= (0.91|0.5, 0.36|0.5)

and s((λ1h̄) ⊕ (λ2h̄)) = 0.6975 > 0.635 = s((λ1 + λ2)h̄) and hence, (λ1h̄) ⊕ (λ2h̄) > (λ1 + λ2)h̄.
Similarly, we have s(h̄λ1 ⊗ h̄λ2) = 0.2025 < 0.265 = s(h̄(λ1+λ2)) and thus, h̄λ1 ⊗ h̄λ2 < h̄(λ1+λ2).

Based on Definition 4, in order to aggregate the HPFEs, Xu and Zhou [27] developed some hesitant
probabilistic fuzzy aggregation operators, as follows:

Definition 5. [27] Let h̄t (t = 1, 2, . . . , T) be a collection of HPFEs, w = (w1, w2, . . . , wT)
T be the weight

vector of h̄t with wt ∈ [0, 1], and ∑T
t=1 wt = 1, and pt be the probability of γt in the HPFE h̄t, then

(1) the hesitant probabilistic fuzzy weighted averaging (HPFWA) operator is

HPFWA(h̄1, h̄2, . . . , h̄T) = (w1h̄1)⊕ (w2h̄2)⊕ · · · ⊕ (wTh̄T)

= ∪γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
1−

T

∏
t=1

(1− γt)
wt
∣∣p1 p2 · · · pT

}
. (2)
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(2) the hesitant probabilistic fuzzy weighted geometric (HPFWG) operator is

HPFWG(h̄1, h̄2, . . . , h̄T) = (h̄1)
w1 ⊗ (h̄2)

w2 ⊗ · · · ⊗ (h̄T)
wT

= ∪γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
T

∏
t=1

(γt)
wt
∣∣p1 p2 · · · pT

}
. (3)

Definition 6. [27] Let h̄t (t = 1, 2, . . . , T) be a collection of HPFEs, h̄σ(t) be the tth largest of h̄t

(t = 1, 2, . . . , T), and pσ(t) be the probability of γσ(t) in the HPFE h̄σ(t), then the following two aggregation
operators, which are based on the mapping HT

P → HP with an associated vector ω = (ω1, ω2, . . . , ωT)
T such

that ωt ∈ [0, 1] and ∑T
t=1 ωt = 1, are given by

(1) the hesitant probabilistic fuzzy ordered weighted averaging (HPFOWA) operator:

HPFOWA(h̄1, h̄2, . . . , h̄T) = (ω1h̄σ(1))⊕ (ω2h̄σ(2))⊕ · · · ⊕ (ωTh̄σ(T))

= ∪γσ(1)∈h̄σ(1) ,γσ(2)∈h̄σ(2) ,...,γσ(T)∈h̄σ(T)

{
1−

T

∏
t=1

(1− γσ(t))
wt
∣∣∣pσ(1)pσ(2) · · · pσ(T)

}
. (4)

(2) the hesitant probabilistic fuzzy ordered weighted geometric (HPFOWG) operator:

HPFOWG(h̄1, h̄2, . . . , h̄T) = (h̄σ(1))
ω1 ⊗ (h̄σ(2))

ω2 ⊗ · · · ⊗ (h̄σ(T))
ωT

= ∪γσ(1)∈h̄σ(1) ,γσ(2)∈h̄σ(2) ,...,γσ(T)∈h̄σ(T)

{
T

∏
t=1

(γσ(t))
wt
∣∣∣pσ(1)pσ(2) · · · pσ(T)

}
. (5)

2.2. Einstein Operations on HPFEs

It is well known that the t-norms and t-conorms are general concepts satisfying the requirements
of the conjunction and disjunction operators. Einstein operations include the Einstein sum (⊕ε) and
Einstein product (⊗ε) which are examples of t-conorms and t-norms, respectively. They were defined
by Klement et al. [35] as follows:

x⊗ε y =
xy

1 + (1− x)(1− y)
, x⊕ε y =

x + y
1 + xy

, x, y ∈ [0, 1].

Based on the above Einstein operations, we give the following new operations on HPFEs:

Definition 7. Let h̄(γi|pi), h̄1(γ̇j| ṗj) and h̄2(γ̈k| p̈k) be three HPFEs, i = 1, 2, . . . , #h̄, j = 1, 2, . . . , #h̄1,
k = 1, 2, . . . , #h̄2, and λ > 0, then

(1) h̄1 ⊕ε h̄2 = ∪j=1,2,...,#h̄1,k=1,2,...,#h̄2

{
γ̇j+γ̈k

1+γ̇jγ̈k

∣∣ ṗj p̈k

}
;

(2) h̄1 ⊗ε h̄2 = ∪j=1,2,...,#h̄1,k=1,2,...,#h̄2

{
γ̇jγ̈k

1+(1−γ̇j)(1−γ̈k)

∣∣ ṗj p̈k

}
;

(3) λ ·ε h̄ = ∪i=1,2,...,#h̄

{
(1+γi)

λ−(1−γi)
λ

(1+γi)λ+(1−γi)λ

∣∣pi

}
;

(4) h̄∧ελ = ∪i=1,2,...,#h̄

{
2γλ

i
(2−γi)λ+γλ

i

∣∣pi

}
.

Thus, the above four operations on the HPFEs can be suitable for the HPFSs. Moreover, some
relationships are discussed for the operations on HPFEs given in Definitions 4 and 7 as follows:

Theorem 2. Let h̄(γi|pi), h̄1(γ̇j| ṗj) and h̄2(γ̈k| p̈k) be three HPFEs, i = 1, 2, . . . , #h̄, j = 1, 2, . . . , #h̄1,
k = 1, 2, . . . , #h̄2, and λ > 0, then

(1) ((h̄)c)∧ελ = (λ ·ε h̄)c;
(2) λ ·ε (h̄)c = (h̄∧ελ)c;
(3) (h̄1)

c ⊕ε (h̄2)
c = (h̄1 ⊗ε h̄2)

c;
(4) (h̄1)

c ⊗ε (h̄2)
c = (h̄1 ⊕ε h̄2)

c.
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Proof. (1)

((h̄)c)∧ελ = ∪i=1,2,...,#h̄

{
2(1− γi)

λ

(2− (1− γi))λ + (1− γi)λ

∣∣∣pi

}
= ∪i=1,2,...,#h̄

{
2(1− γi)

λ

(1 + γi))λ + (1− γi)λ

∣∣∣pi

}
=

(
∪i=1,2,...,#h̄

{
(1 + γi)

λ − (1− γi)
λ

(1 + γi))λ + (1− γi)λ

∣∣∣pi

})c

= (λ ·ε h̄)c.

(2)

λ ·ε (h̄)c = ∪i=1,2,...,#h̄

{
(1 + (1− γi))

λ − (1− (1− γi))
λ

(1 + (1− γi))λ + (1− (1− γi))λ

∣∣∣pi

}
= ∪i=1,2,...,#h̄

{
1− 2γλ

i
(2− γi)λ + γλ

i

∣∣∣pi

}

=

(
∪i=1,2,...,#h̄

{
2γλ

i
(2− γi)λ + γλ

i

∣∣∣pi

})c

= (h̄∧ελ)c.

(3)

(h̄1)
c ⊕ε (h̄2)

c = ∪i=1,2,...,#h̄1

{
(1− γ̇j)| ṗj

}⊕ε ∪i=1,2,...,#h̄2
{(1− γ̈k)| p̈k}

= ∪ j=1,2,...,#h̄1,
k=1,2,...,#h̄2

{
(1− γ̇j) + (1− γ̈k)

1 + (1− γ̇j)(1− γ̈k)

∣∣∣ ṗj p̈k

}

=

(
∪ j=1,2,...,#h̄1,

k=1,2,...,#h̄2

{
γ̇jγ̈k

1 + (1− γ̇j)(1− γ̈k)

∣∣∣ ṗj p̈k

})c

= (h̄1 ⊗ε h̄2)
c.

(4)

(h̄1)
c ⊗ε (h̄2)

c = ∪i=1,2,...,#h̄1

{
(1− γ̇j)| ṗj

}⊗ε ∪i=1,2,...,#h̄2
{(1− γ̈k)| p̈k}

= ∪ j=1,2,...,#h̄1,
k=1,2,...,#h̄2

{
(1− γ̇j)(1− γ̈k)

1− γ̇jγ̈k

∣∣∣ ṗj p̈k

}

=

(
∪ j=1,2,...,#h̄1,

k=1,2,...,#h̄2

{
γ̇j + γ̈k

1 + γ̇jγ̈k

∣∣ ṗj p̈k

})c

= (h̄1 ⊕ε h̄2)
c.

Theorem 3. Let h̄(γi|pi), h̄1(γ̇j| ṗj) and h̄2(γ̈k| p̈k) be three HPFEs, i = 1, 2, . . . , #h̄, j = 1, 2, . . . , #h̄1,
k = 1, 2, . . . , #h̄2, λ > 0, λ1 > 0, and λ2 > 0, then

(1) h̄1 ⊕ε h̄2 = h̄2 ⊕ε h̄1;
(2) h̄⊕ε (h̄1 ⊕ε h̄2) = (h̄⊕ε h̄1)⊕ε h̄2;
(3) λ ·ε (h̄1 ⊕ε h̄2) = (λ ·ε h̄1)⊕ε (λ ·ε h̄2);
(4) λ1 ·ε (λ2 ·ε h̄) = (λ1λ2) ·ε h̄;
(5) h̄1 ⊗ε h̄2 = h̄2 ⊗ε h̄1;
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(6) h̄⊗ε (h̄1 ⊗ε h̄2) = (h̄⊗ε h̄1)⊗ε h̄2;
(7) (h̄1 ⊗ε h̄2)

∧ελ = h̄∧ελ
1 ⊗ε h̄∧ελ

2 ;
(8) (h̄∧ελ1)∧ελ2 = h̄∧ε(λ1λ2).

Proof. Since (1), (2), (5) and (6) are trivial, and (7) and (8) are similar to (3) and (4), respectively, we
only prove (3) and (4).

(3) Since h̄1 ⊕ε h̄2 = ∪j=1,2,...,#h̄1,k=1,2,...,#h̄2

{
γ̇j+γ̈k

1+γ̇jγ̈k

∣∣ ṗj p̈k

}
, by the operational law (3) in Definition 7,

we have

λ ·ε (h̄1 ⊕ε h̄2) =
⋃

j=1,2,...,#h̄1,
k=1,2,...,#h̄2

⎧⎪⎨⎪⎩
(

1 +
γ̇j+γ̈k

1+γ̇jγ̈k

)λ −
(

1− γ̇j+γ̈k
1+γ̇jγ̈k

)λ

(
1 +

γ̇j+γ̈k
1+γ̇jγ̈k

)λ
+
(

1− γ̇j+γ̈k
1+γ̇jγ̈k

)λ

∣∣∣ ṗj p̈k

⎫⎪⎬⎪⎭
=

⋃
j=1,2,...,#h̄1,
k=1,2,...,#h̄2

{
(1 + γ̇j)

λ(1 + γ̈k)
λ − (1− γ̇j)

λ(1− γ̈k)
λ

(1 + γ̇j)λ(1 + γ̈k)λ + (1− γ̇j)λ(1− γ̈k)λ

∣∣∣ ṗj p̈k

}
.

Since λ ·ε h̄1 = ∪i=1,2,...,#h̄1

{
(1+γ̇j)

λ−(1−γ̇j)
λ

(1+γ̇j)λ+(1−γ̇j)λ

∣∣ ṗj

}
and λ ·ε h̄2 = ∪i=1,2,...,#h̄2

{
(1+γ̈k)

λ−(1−γ̈k)
λ

(1+γ̈k)λ+(1−γ̈k)λ

∣∣ p̈k

}
,

we have

(λ ·ε h̄1)⊕ε (λ ·ε h̄2) =
⋃

j=1,2,...,#h̄1,
k=1,2,...,#h̄2

⎧⎪⎨⎪⎩
(1+γ̇j)

λ−(1−γ̇j)
λ

(1+γ̇j)λ+(1−γ̇j)λ + (1+γ̈k)
λ−(1−γ̈k)

λ

(1+γ̈k)λ+(1−γ̈k)λ

1 +
(1+γ̇j)λ−(1−γ̇j)λ

(1+γ̇j)λ+(1−γ̇j)λ · (1+γ̈k)λ−(1−γ̈k)λ

(1+γ̈k)λ+(1−γ̈k)λ

∣∣∣ ṗj p̈k

⎫⎪⎬⎪⎭
=

⋃
j=1,2,...,#h̄1,
k=1,2,...,#h̄2

{
(1 + γ̇j)

λ(1 + γ̈k)
λ − (1− γ̇j)

λ(1− γ̈k)
λ

(1 + γ̇j)λ(1 + γ̈k)λ + (1− γ̇j)λ(1− γ̈k)λ

∣∣∣ ṗj p̈k

}
.

Hence λ ·ε (h̄1 ⊕ε h̄2) = (λ ·ε h̄1)⊕ε (λ ·ε h̄2).

(4) Since λ2 ·ε h̄ = ∪i=1,2,...,#h̄

{
(1+γi)

λ2−(1−γi)
λ2

(1+γi)
λ2+(1−γi)

λ2

∣∣pi

}
, then we have

λ1 ·ε (λ2 ·ε h̄) = ∪i=1,2,...,#h̄

⎧⎪⎪⎨⎪⎪⎩
(

1 + (1+γi)
λ2−(1−γi)

λ2

(1+γi)
λ2+(1−γi)

λ2

)λ1 −
(

1− (1+γi)
λ2−(1−γi)

λ2

(1+γi)
λ2+(1−γi)

λ2

)λ1

(
1 + (1+γi)

λ2−(1−γi)
λ2

(1+γi)
λ2+(1−γi)

λ2

)λ1
+
(

1− (1+γi)
λ2−(1−γi)

λ2

(1+γi)
λ2+(1−γi)

λ2

)λ1

∣∣∣pi

⎫⎪⎪⎬⎪⎪⎭
= ∪i=1,2,...,#h̄

{
(1 + γi)

(λ1λ2) − (1− γi)
(λ1λ2)

(1 + γi)(λ1λ2) + (1− γi)(λ1λ2)

∣∣∣pi

}
= (λ1λ2) ·ε h̄.

For an HPFE, h̄(γi|pi), i = 1, 2, . . . , #h̄, λ1 > 0, and λ2 > 0, the operational laws (λ1 ·ε h̄)⊕ε (λ2 ·ε
h̄) = (λ1 + λ2) ·ε h̄ and h̄∧ελ1 ⊗ε h̄∧ελ2 = h̄∧ε(λ1+λ2) do not hold in general. To illustrate this case, we
give the following example.

Example 2. Let h̄(γi|pi) = (0.3|0.5, 0.5|0.5) and λ1 = λ2 = 1, then

(λ1 ·ε h̄)⊕ε (λ2 ·ε h̄) = h̄⊕ε h̄ = ∪i,j=1,2

{
γi + γj

1 + γiγj

∣∣∣0.25

}
= (0.5505|0.25, 0.6957|0.25, 0.6957|0.25, 0.8|0.25),
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(λ1 + λ2) ·ε h̄ = 2 ·ε h̄ = ∪i=1,2

{
(1 + γi)

2 − (1− γi)
2

(1 + γi)2 + (1− γi)2

∣∣∣0.5
}

= (0.5505|0.5, 0.8|0.5).

Clearly, s((λ1 ·ε h̄)⊕ε (λ2 ·ε h̄)) = 0.6856 > 0.6752 = s((λ1 + λ2) ·ε h̄). Hence, (λ1 ·ε h̄)⊕ε (λ2 ·ε
h̄) < (λ1 + λ2) ·ε h̄. Similarly, we have s(h̄∧ελ1 ⊗ε h̄∧ελ2) = 0.2566 > 0.13 = s(h̄∧ε(λ1+λ2)) and thus
h̄∧ελ1 ⊗ε h̄∧ελ2 < h̄∧ε(λ1+λ2).

3. Some HPFE Weighted Aggregation Operators Based on Einstein Operation

One important issue is the question of how to extend Einstein operations to aggregate the HPFE
information provided by the decision makers. The optimal approach is weighted aggregation operators,
in which the widely used technologies are the weighted averaging (WA) operator, the ordered
weighted averaging (OWA) operator, and their extended forms [39,40]. Yu [21] proposed the
hesitant fuzzy Einstein weighted averaging (HFEWA) operator, the hesitant fuzzy Einstein ordered
weighted averaging (HFEOWA) operator, the hesitant fuzzy Einstein weighted geometric (HFEWG)
operator, and the hesitant fuzzy Einstein ordered weighted geometric (HFEOWG) operator based
on those operators. Similar to these hesitant fuzzy information aggregation operators, we propose
the corresponding hesitant probabilistic fuzzy Einstein weighted and ordered operators to aggregate
the HPFEs.

Definition 8. Let h̄t (t = 1, 2, . . . , T) be a collection of HPFEs; then, a hesitant probabilistic fuzzy Einstein
weighted averaging (HPFEWA) operator is a mapping HT

P → HP such that

HPFEWA(h̄1, h̄2, . . . , h̄T) = (w1 ·ε h̄1)⊕ε (w2 ·ε h̄2)⊕ε · · · ⊕ε (wT ·ε h̄T), (6)

where w = (w1, w2, . . . , wT)
T is the weight vector of h̄t (t = 1, 2, . . . , T) with wt ∈ [0, 1] and ∑T

t=1 wt = 1,

and pt is the probability of γt in HPFE h̄t. In particular, if w =
(

1
T , 1

T , . . . , 1
T

)T
, then the HPFEWA operator

is reduced to the hesitant probabilistic fuzzy Einstein averaging (HPFEA) operator:

HPFEA(h̄1, h̄2, . . . , h̄T) = (
1
T
·ε h̄1)⊕ε (

1
T
·ε h̄2)⊕ε · · · ⊕ε (

1
T
·ε h̄T). (7)

From Definitions 7 and 8, we can get the following result by using mathematical induction.

Theorem 4. Let h̄t (t = 1, 2, . . . , T) be a collection of HPFEs; then, their aggregated value obtained using the
HPFEWA operator is also a HPFE, and

HPFEWA(h̄1, h̄2, . . . , h̄T) =
⋃

γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
∏T

t=1(1 + γt)wt −∏T
t=1(1− γt)wt

∏T
t=1(1 + γt)wt + ∏T

t=1(1− γt)wt

∣∣∣p1 p2 · · · pT

}
, (8)

where w = (w1, w2, . . . , wT)
T is the weight vector of h̄t (t = 1, 2, . . . , T) with wt ∈ [0, 1] and ∑T

t=1 wt = 1,
and pt is the probability of γt in HPFE h̄t.

Proof. We prove Equation (8) by mathematical induction. For T = 2, since w1 ·ε h̄1 =

∪γ1∈h̄1

{
(1+γ1)

w1−(1−γ1)
w1

(1+γ1)
w1+(1−γ1)

w1

∣∣p1

}
and w2 ·ε h̄2 = ∪γ2∈h̄2

{
(1+γ2)

w2−(1−γ2)
w2

(1+γ2)
w2+(1−γ2)

w2

∣∣p2

}
, then

(w1 ·ε h̄1)⊕ε (w2 ·ε h̄2) =
⋃

γ1∈h̄1,γ2∈h̄2

⎧⎨⎩
(1+γ1)

w1−(1−γ1)
w1

(1+γ1)
w1+(1−γ1)

w1 + (1+γ2)
w2−(1−γ2)

w2

(1+γ2)
w2+(1−γ2)

w2

1 + (1+γ1)
w1−(1−γ1)

w1

(1+γ1)
w1+(1−γ1)

w1 · (1+γ2)
w2−(1−γ2)

w2

(1+γ2)
w2+(1−γ2)

w2

∣∣∣p1 p2

⎫⎬⎭
=

⋃
γ1∈h̄1,γ2∈h̄2

{
∏2

t=1(1 + γt)wt −∏2
t=1(1− γt)wt

∏2
t=1(1 + γt)wt + ∏2

t=1(1− γt)wt

∣∣∣p1 p2

}
.
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If Equation (8) holds for T = k, that is

(w1 ·ε h̄1)⊕ε (w2 ·ε h̄2)⊕ε · · · ⊕ε (wk ·ε h̄k)

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γk∈h̄k

{
∏k

t=1(1 + γt)wt −∏k
t=1(1− γt)wt

∏k
t=1(1 + γt)wt + ∏k

t=1(1− γt)wt

∣∣∣p1 p2 · · · pk

}
,

then, when T = k + 1, according to the Einstein operations of HPFEs, we have

(w1 ·ε h̄1)⊕ε (w2 ·ε h̄2)⊕ε · · · ⊕ε (wk+1 ·ε h̄k+1)

=
(
(w1 ·ε h̄1)⊕ε (w2 ·ε h̄2)⊕ε · · · ⊕ε (wk ·ε h̄k)

)⊕ε (wk+1 ·ε h̄k+1)

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γk∈h̄k

{
∏k

t=1(1 + γt)wt −∏k
t=1(1− γt)wt

∏k
t=1(1 + γt)wt + ∏k

t=1(1− γt)wt

∣∣∣p1 p2 · · · pk

}

⊕ε

⋃
γk+1∈h̄k+1

{
(1 + γk+1)

wk+1 − (1− γk+1)
wk+1

(1 + γk+1)
wk+1 + (1− γk+1)

wk+1

∣∣pk+1

}

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γk∈h̄k ,γk+1∈h̄k+1

{
∏k+1

t=1 (1 + γt)wt −∏k+1
t=1 (1− γt)wt

∏k+1
t=1 (1 + γt)wt + ∏k+1

t=1 (1− γt)wt

∣∣∣p1 p2 · · · pk pk+1

}
,

i.e., Equation (8) holds for T = k + 1. Hence, Equation (8) holds for all T. Thus,

HPFEWA(h̄1, h̄2, . . . , h̄T) =
⋃

γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
∏T

t=1(1 + γt)wt −∏T
t=1(1− γt)wt

∏T
t=1(1 + γt)wt + ∏T

t=1(1− γt)wt

∣∣∣p1 p2 · · · pT

}
,

which completes the proof of theorem.

Based on Theorem 4, we have basic properties of the HPFEWA operator, as follows:

Theorem 5. Let h̄t(γ
(t)
i |pt) (t = 1, 2, . . . , T) be a collection of HPFEs, w = (w1, w2, . . . , wT)

T be the weight
vector of h̄t (t = 1, 2, . . . , T) such that wt ∈ [0, 1] and ∑T

t=1 wt = 1, and pt be the corresponding probability of
γ
(t)
i in HPFE h̄t; then, we have the following:

(1) (Boundary):

h̄− ≤ HPFEWA(h̄1, h̄2, . . . , h̄T) ≤ h̄+, (9)

where h̄− = (min1≤t≤T minγt∈h̄t
γt|p1 p2 · · · pT) and h̄+ = (max1≤t≤T maxγt∈h̄t

γt|p1 p2 · · · pT).

(2) (Monotonicity): Let h̄∗t (γ̇
(t)
i |pt) (t = 1, 2, . . . , T) be a collection of HPFEs with #t = #h̄t = #h̄∗t for

t = 1, 2, . . . , T, w = (w1, w2, . . . , wT)
T be the weight vector of h̄∗t (t = 1, 2, . . . , T), such that wt ∈ [0, 1]

and ∑T
t=1 wt = 1, and pt is the probability of γ̇

(t)
i in HPFE h̄∗t . If γ

(t)
i ≤ γ̇

(t)
i for each i = 1, 2, . . . , #t,

t = 1, 2, . . . , T; then,

HPFEWA(h̄1, h̄2, . . . , h̄T) ≤ HPFEWA(h̄∗1, h̄∗2, . . . , h̄∗T). (10)

Proof. (1) Let f (x) = 1−x
1+x , x ∈ [0, 1], then f ′(x) = −2

(1+x)2 < 0, i.e., f (x) is a decreasing function. Let

max γt = max1≤t≤T maxγt∈h̄t
γt and min γt = min1≤t≤T minγt∈h̄t

γt. For any γt ∈ h̄t (t = 1, 2, . . . , T),
since minγt∈h̄t

γt ≤ γt ≤ maxγt∈h̄t
γt, then f (maxγt∈h̄t

γt) ≤ f (γt) ≤ f (minγt∈h̄t
γt), and so

1−max γt

1 + max γt
≤ 1−maxγt∈h̄t

γt

1 + maxγt∈h̄t
γt
≤ 1− γt

1 + γt
≤ 1−minγt∈h̄t

γt

1 + minγt∈h̄t
γt
≤ 1−min γt

1 + min γt
.
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Since w = (w1, w2, . . . , wT)
T is the weight vector of h̄t (t = 1, 2, . . . , T) with wt ∈ [0, 1] and

∑T
t=1 wt = 1, we have

T

∏
t=1

(
1−max γt

1 + max γt

)wt

≤
T

∏
t=1

(
1− γt

1 + γt

)wt

≤
T

∏
t=1

(
1−min γt

1 + min γt

)wt

.

Since ∏T
t=1

(
1−max γt
1+max γt

)wt
=

(
1−max γt
1+max γt

)∑T
t=1 wt

= 1−max γt
1+max γt

and ∏T
t=1

(
1−min γt
1+min γt

)wt
=(

1−min γt
1+min γt

)∑T
t=1 wt

= 1−min γt
1+min γt

, we get

1−max γt

1 + max γt
≤

T

∏
t=1

(
1− γt

1 + γt

)wt

≤ 1−min γt

1 + min γt

⇔ 2
1 + max γt

≤ 1 +
T

∏
t=1

(
1− γt

1 + γt

)wt

≤ 2
1 + min γt

⇔ 1 + min γt

2
≤ 1

1 + ∏T
t=1

(
1−γt
1+γt

)wt
≤ 1 + max γt

2

⇔ min γt ≤ 2

1 + ∏T
t=1

(
1−γt
1+γt

)wt
− 1 ≤ max γt,

i.e.,

min γt ≤ ∏T
t=1(1 + γt)wt −∏T

t=1(1− γt)wt

∏T
t=1(1 + γt)wt + ∏T

t=1(1− γt)wt
≤ max γt. (11)

Let HPFEWA(h̄1, h̄2, . . . , h̄T) = h̄(γi|p1 p2 · · · pT), i = 1, 2, . . . , #h̄, where #h̄ = #h̄1 × #h̄2 × · · · ×
#h̄T , h̄− = (min γt|p1 p2 · · · pT) and h̄+ = (max γt|p1 p2 · · · pT); then, Equation (11) is transformed into
the following form: min γt ≤ γi ≤ max γt for all i = 1, 2, . . . , #h̄. Thus, s(h̄−) = min γt p1 p2 · · · pT ≤
∑#h̄

i=1 γi p1 p2 · · · pT = s(h̄) and s(h̄) = ∑#h̄
i=1 γi p1 p2 · · · pT ≤ max γt p1 p2 · · · pT = s(h̄+).

If s(h̄−) < s(h̄) and s(h̄) < s(h̄+), then by Definition 3, we have h̄− < HPFEWA(h̄1, h̄2, . . . , h̄T) <

h̄+. If s(h̄) = s(h̄+), i.e., max γt = ∑#h̄
i=1 γi, then d(h̄) = ∑#h̄

i=1(γi − s(h̄))2 p1 p2 · · · pT =

(max γt − s(h̄))2 p1 p2 · · · pT = d(h̄+). In this case, in accordance with Definition 3, it follows that
HPFEWA(h̄1, h̄2, . . . , h̄T) = h̄+. If s(h̄) = s(h̄−), then similarly, we have HPFEWA(h̄1, h̄2, . . . , h̄T) = h̄−.

(2) Let f (x) = 1−x
1+x , x ∈ [0, 1]; then, f (x) is a decreasing function. If γ

(t)
i ≤ γ̇

(t)
i for each

i = 1, 2, . . . , #t, t = 1, 2, . . . , T; then, f (γ(t)
i ) ≥ f (γ̇(t)

i ), for each i = 1, 2, . . . , #t, t = 1, 2, . . . , T, i.e.,
1−γ

(t)
i

1+γ
(t)
i

≥ 1−γ̇
(t)
i

1+γ̇
(t)
i

, for each i = 1, 2, . . . , #t, t = 1, 2, . . . , T. For any γ
(t)
i ∈ h̄t (t = 1, 2, . . . , T), since

w = (w1, w2, . . . , wT)
T is the weight vector of h̄t (t = 1, 2, . . . , T) such that wt ∈ [0, 1], t = 1, 2, . . . , T

and ∑T
t=1 wt = 1, we have(

1− γ
(t)
i

1 + γ
(t)
i

)wt

≥
(

1− γ̇
(t)
i

1 + γ̇
(t)
i

)wt

, t = 1, 2, . . . , T.
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Then,

T

∏
t=1

(
1− γ

(t)
i

1 + γ
(t)
i

)wt

≥
T

∏
t=1

(
1− γ̇

(t)
i

1 + γ̇
(t)
i

)wt

⇔ 1 +
T

∏
t=1

(
1− γ

(t)
i

1 + γ
(t)
i

)wt

≥ 1 +
T

∏
t=1

(
1− γ̇

(t)
i

1 + γ̇
(t)
i

)wt

⇔ 1

1 + ∏T
t=1

(
1−γ

(t)
i

1+γ
(t)
i

)wt
≤ 1

1 + ∏T
t=1

(
1−γ̇

(t)
i

1+γ̇
(t)
i

)wt

⇔ 2

1 + ∏T
t=1

(
1−γ

(t)
i

1+γ
(t)
i

)wt
− 1 ≤ 2

1 + ∏T
t=1

(
1−γ̇

(t)
i

1+γ̇
(t)
i

)wt
− 1,

i.e.,

∏T
t=1(1 + γ

(t)
i )wt −∏T

t=1(1− γ
(t)
i )wt

∏T
t=1(1 + γ

(t)
i )wt + ∏T

t=1(1− γ
(t)
i )wt

≤ ∏T
t=1(1 + γ̇

(t)
i )wt −∏T

t=1(1− γ̇
(t)
i )wt

∏T
t=1(1 + γ̇

(t)
i )wt + ∏T

t=1(1− γ̇
(t)
i )wt

. (12)

Let HPFEWA(h̄1, h̄2, . . . , h̄T) = h̄(γi|p1 p2 · · · pT) and HPFEWA(h̄∗1, h̄∗2, . . . , h̄∗T) =

h̄∗(γ̇i|p1 p2 · · · pT), where i = 1, 2, . . . , #, and # = #1 × #2 × · · · × #T is the number of possible elements
in h̄(γi|p1 p2 · · · pT) and h̄∗(γ̇i|p1 p2 · · · pT), respectively, then the Equation (12) is transformed into the
form γi ≤ γ̇i (i = 1, 2, . . . , #). Thus, s(h̄) = ∑#

i=1 γi p1 p2 · · · pT ≤ ∑#
i=1 γ̇i p1 p2 · · · pT = s(h̄∗).

If s(h̄) < s(h̄∗), then, according to Definition 3, we have HPFEWA(h̄1, h̄2, . . . , h̄T) <

HPFEWA(h̄∗1, h̄∗2, . . . , h̄∗T). If s(h̄) = s(h̄∗), i.e., ∑#
i=1 γi = ∑#

i=1 γ̇i, then d(h̄) = ∑#
i=1(γi −

s(h̄))2 p1 p2 · · · pT = ∑#
i=1(γ̇i − s(h̄∗))2 p1 p2 · · · pT = d(h̄∗). In this case, based on Definition 3, it follows

that HPFEWA(h̄1, h̄2, . . . , h̄T) = HPFEWA(h̄∗1, h̄∗2, . . . , h̄∗T).

However, the HPFEWA operator does not satisfy the idempotency. To illustrate this, we give the
following example.

Example 3. Let h̄1 = h̄2 = (0.3|0.5, 0.7|0.5), and w = (0.2, 0.8)T is the weight vector h̄t (t = 1, 2); then,

HPFEWA(h̄1, h̄2) = ∪γ1∈h̄1,γ2∈h̄2

{
∏2

t=1(1 + γt)wt −∏2
t=1(1− γt)wt

∏2
t=1(1 + γt)wt + ∏2

t=1(1− γt)wt

∣∣p1 p2

}
= (0.3|0.25, 0.398|0.25, 0.639|0.25, 0.7|0.25)

and thus HPFEWA(h̄1, h̄2) �= (0.3|0.5, 0.7|0.5).

Based on the HPFWG operator and Einstein operation, we developed the hesitant probabilistic
fuzzy Einstein weighted geometric operator as follows:

Definition 9. Let h̄t (t = 1, 2, . . . , T) be a collection of HPFEs; then, the hesitant probabilistic fuzzy Einstein
weighted geometric (HPFEWG) operator is a mapping (HT

P → HP) such that

HPFEWG(h̄1, h̄2, . . . , h̄T) = h̄∧εw1
1 ⊗ε h̄∧εw2

2 ⊗ε · · · ⊗ε h̄∧εwT
T , (13)
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where w = (w1, w2, . . . , wT)
T is the weight vector of h̄t (t = 1, 2, . . . , T) with wt ∈ [0, 1] and ∑T

t=1 wt = 1,

and pt is the probability of γt in HPFE h̄t. In particular, if w =
(

1
T , 1

T , . . . , 1
T

)T
, then the HPFEWG operator

is reduced to the hesitant probabilistic fuzzy Einstein geometric (HPFEG) operator:

HPFEG(h̄1, h̄2, . . . , h̄T) = h̄∧ε
1
T

1 ⊗ε h̄∧ε
1
T

2 ⊗ε · · · ⊗ε h̄∧ε
1
T

T . (14)

Theorem 6. Let h̄t (t = 1, 2, . . . , T) be a collection of HPFEs; then, their aggregated value obtained using the
HPFEWG operator is also a HPFE and

HPFEWG(h̄1, h̄2, . . . , h̄T) =
⋃

γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
2 ∏T

t=1 γwt
t

∏T
t=1(2− γt)wt + ∏T

t=1 γwt
t

∣∣∣p1 p2 · · · pT

}
, (15)

where w = (w1, w2, . . . , wT)
T is the weight vector of h̄t (t = 1, 2, . . . , T) with wt ∈ [0, 1] and ∑T

t=1 wt = 1,
and pt is the probability of γt in HPFE h̄t.

Proof. We prove Equation (15) by mathematical induction on T. When T = 2, since h̄∧εw1
1 =

∪γ1∈h̄1

{
2γ

w1
1

(2−γ1)
w1+γ

w1
1

∣∣p1

}
and h̄∧εw2

2 = ∪γ2∈h̄2

{
2γ

w2
2

(2−γ2)
w2+γ

w2
2

∣∣p2

}
, we have

h̄∧εw1
1 ⊗ε h̄∧εw2

2 =
⋃

γ1∈h̄1,γ2∈h̄2

⎧⎪⎪⎨⎪⎪⎩
2γ

w1
1

(2−γ1)
w1+γ

w1
1
· 2γ

w2
2

(2−γ2)
w2+γ

w2
2

1 +
(

1− 2γ
w1
1

(2−γ1)
w1+γ

w1
1

)(
1− 2γ

w2
2

(2−γ2)
w2+γ

w2
2

)∣∣∣p1 p2

⎫⎪⎪⎬⎪⎪⎭
=

⋃
γ1∈h̄1,γ2∈h̄2

{
2 ∏2

t=1 γwt
t

∏2
t=1(2− γt)wt + ∏2

t=1 γwt
t

∣∣∣p1 p2

}
.

Assume that Equation (15) holds for T = k, i.e.,

h̄∧εw1
1 ⊗ε h̄∧εw2

2 ⊗ε · · · ⊗ε h̄∧εwk
k =

⋃
γ1∈h̄1,γ2∈h̄2,··· ,γk∈h̄k

{
2 ∏k

t=1 γwt
t

∏k
t=1(2− γt)wt + ∏k

t=1 γwt
t

∣∣∣p1 p2 · · · pk

}
.

In accordance with the Einstein operational laws of HPFEs for T = k + 1, we have

h̄∧εw1
1 ⊗ε h̄∧εw2

2 ⊗ε · · · ⊗ε h̄∧εwk+1
k+1 =

(
h̄∧εw1

1 ⊗ε h̄∧εw2
2 ⊗ε · · · ⊗ε h̄∧εwk

k

)
⊗ε h̄∧εwk+1

k+1

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γk∈h̄k

{
2 ∏k

t=1 γwt
t

∏k
t=1(2− γt)wt + ∏k

t=1 γwt
t

∣∣∣p1 p2 · · · pk

}

⊗ε

⋃
γk+1∈h̄k+1

{
2γ

wk+1
k+1

(2− γk+1)
wk+1 + γ

wk+1
k+1

∣∣pk+1

}

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γk∈h̄k ,γk+1∈h̄k+1

{
2 ∏k+1

t=1 γwt
t

∏k+1
t=1 (2− γt)wt + ∏k+1

t=1 γwt
t

∣∣∣p1 p2 · · · pk pk+1

}
,

i.e., Equation (15) holds for T = k + 1. Then, Equation (15) holds for all T. Hence, we complete the
proof of the theorem.

Based on Theorem 6, we have basic properties of the HPFEWG operator, as follows:
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Theorem 7. Let h̄t(γ
(t)
i |pt) (t = 1, 2, . . . , T) be a collection of HPFEs, w = (w1, w2, . . . , wT)

T be the weight
vector of h̄t (t = 1, 2, . . . , T) such that wt ∈ [0, 1] and ∑T

t=1 wt = 1, and pt be the corresponding probability of
γ
(t)
i in HPFE h̄t. Then, we have the following.

(1) (Boundary):

h̄− ≤ HPFEWG(h̄1, h̄2, . . . , h̄T) ≤ h̄+, (16)

where h̄− = (min1≤t≤T minγt∈h̄t
γt|p1 p2 · · · pT) and h̄+ = (max1≤t≤T maxγt∈h̄t

γt|p1 p2 · · · pT).

(2) (Monotonicity): Let h̄∗t (γ̇
(t)
i |pt) (t = 1, 2, . . . , T) be a collection of HPFEs with #t = #h̄t = #h̄∗t for

t = 1, 2, . . . , T, w = (w1, w2, . . . , wT)
T be the weight vector of h̄∗t (t = 1, 2, . . . , T) such that wt ∈ [0, 1]

and ∑T
t=1 wt = 1, and pt be the probability of γ̇

(t)
i in HPFE h̄∗t . If γ

(t)
i ≤ γ̇

(t)
i for each i = 1, 2, . . . , #t,

t = 1, 2, . . . , T, then

HPFEWG(h̄1, h̄2, . . . , h̄T) ≤ HPFEWG(h̄∗1, h̄∗2, . . . , h̄∗T). (17)

Proof. (1) Let g(x) = 2−x
x , x ∈ (0, 1]; then, g′(x) = −2

x2 < 0, i.e., g(x) is a decreasing function. Let
max γt = max1≤t≤T maxγt∈h̄t

γt and min γt = min1≤t≤T minγt∈h̄t
γt. For any γt ∈ h̄t (t = 1, 2, . . . , T),

since minγt∈h̄t
γt ≤ γt ≤ maxγt∈h̄t

γt; then, g(maxγt∈h̄t
γt) ≤ g(γt) ≤ g(minγt∈h̄t

γt), and so

2−max γt

max γt
≤ 2−maxγt∈h̄t

γt

maxγt∈h̄t
γt

≤ 2− γt

γt
≤ 2−minγt∈h̄t

γt

minγt∈h̄t
γt

≤ 2−min γt

min γt
.

Since w = (w1, w2, . . . , wT)
T is the weight vector of h̄t (t = 1, 2, . . . , T) with wt ∈ [0, 1] and

∑T
t=1 wt = 1, we have

T

∏
t=1

(
2−max γt

max γt

)wt

≤
T

∏
t=1

(
2− γt

γt

)wt

≤
T

∏
t=1

(
2−min γt

min γt

)wt

.

Since ∏T
t=1

(
2−max γt

max γt

)wt
=

(
2−max γt

max γt

)∑T
t=1 wt

= 2−max γt
max γt

and ∏T
t=1

(
2−min γt

min γt

)wt
=(

2−min γt
min γt

)∑T
t=1 wt

= 2−min γt
min γt

, we obtain

2−max γt

max γt
≤

T

∏
t=1

(
2− γt

γt

)wt

≤ 2−min γt

min γt
⇔ 2

max γt
≤ 1 +

T

∏
t=1

(
2− γt

γt

)wt

≤ 2
min γt

⇔ min γt

2
≤ 1

1 + ∏T
t=1

(
2−γt

γt

)wt
≤ max γt

2

⇔ min γt ≤ 2

1 + ∏T
t=1

(
2−γt

γt

)wt
≤ max γt,

i.e.,

min γt ≤ 2 ∏T
t=1 γwt

t

∏T
t=1(2− γt)wt + ∏T

t=1 γwt
t
≤ max γt. (18)

Let HPFEWG(h̄1, h̄2, . . . , h̄T) = h̄(γi|p1 p2 · · · pT), i = 1, 2, . . . , #h̄, where #h̄ = #h̄1 × #h̄2 ×
· · · × #h̄T , h̄− = (min γt|p1 p2 · · · pT) and h̄+ = (max γt|p1 p2 · · · pT). Then, Equation (18) is
transformed into the following forms: min γt ≤ γi ≤ max γt for all i = 1, 2, . . . , #h̄. Thus,
s(h̄−) = min γt p1 p2 · · · pT ≤ ∑#h̄

i=1 γi p1 p2 · · · pT = s(h̄) and s(h̄) = ∑#h̄
i=1 γi p1 p2 · · · pT ≤

max γt p1 p2 · · · pT = s(h̄+). If s(h̄−) < s(h̄) and s(h̄) < s(h̄+). Then, based on Definition 3,
we have h̄− < HPFEWG(h̄1, h̄2, . . . , h̄T) < h̄+. If s(h̄) = s(h̄+), i.e., max γt = ∑#h̄

i=1 γi, then
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d(h̄) = ∑#h̄
i=1(γi − s(h̄))2 p1 p2 · · · pT = (max γt − s(h̄))2 p1 p2 · · · pT = d(h̄+). In this case, based on

Definition 3, it follows that HPFEWG(h̄1, h̄2, . . . , h̄T) = h̄+. If s(h̄) = s(h̄−). Then, similarly, we have
HPFEWG(h̄1, h̄2, . . . , h̄T) = h̄−.

(2) Let g(x) = 2−x
x , x ∈ (0, 1]; then, g(x) is a decreasing function. If γ

(t)
i ≤ γ̇

(t)
i for each

i = 1, 2, . . . , #t, t = 1, 2, . . . , T, then g(γ(t)
i ) ≥ g(γ̇(t)

i ), for each i = 1, 2, . . . , #t, t = 1, 2, . . . , T, i.e.,
2−γ

(t)
i

γ
(t)
i

≥ 2−γ̇
(t)
i

γ̇
(t)
i

, for each i = 1, 2, . . . , #t, t = 1, 2, . . . , T. For any γ
(t)
i ∈ h̄t (t = 1, 2, . . . , T), since

w = (w1, w2, . . . , wT)
T is the weight vector of h̄t (t = 1, 2, . . . , T) such that wt ∈ [0, 1], t = 1, 2, . . . , T

and ∑T
t=1 wt = 1, we have(

2− γ
(t)
i

γ
(t)
i

)wt

≥
(

2− γ̇
(t)
i

γ̇
(t)
i

)wt

, i = 1, 2, . . . , #t, t = 1, 2, . . . , T.

Then,

T

∏
t=1

(
2− γ

(t)
i

γ
(t)
i

)wt

≥
T

∏
t=1

(
2− γ̇

(t)
i

γ̇
(t)
i

)wt

⇔ 1 +
T

∏
t=1

(
2− γ

(t)
i

γ
(t)
i

)wt

≥ 1 +
T

∏
t=1

(
2− γ̇

(t)
i

γ̇
(t)
i

)wt

⇔ 1

1 + ∏T
t=1

(
2−γ

(t)
i

γ
(t)
i

)wt
≤ 1

1 + ∏T
t=1

(
2−γ̇

(t)
i

γ̇
(t)
i

)wt

⇔ 2

1 + ∏T
t=1

(
2−γ

(t)
i

γ
(t)
i

)wt
− 1 ≤ 2

1 + ∏T
t=1

(
2−γ̇

(t)
i

γ̇
(t)
i

)wt
− 1,

i.e.,

2 ∏T
t=1(γ

(t)
i )wt

∏T
t=1(2− γ

(t)
i )wt + ∏T

t=1(γ
(t)
i )wt

≤ 2 ∏T
t=1(γ

(t)
i )wt

∏T
t=1(2− γ

(t)
i )wt + ∏T

t=1(γ
(t)
i )wt

. (19)

Let HPFEWG(h̄1, h̄2, . . . , h̄T) = h̄(γi|p1 p2 · · · pT) and HPFEWG(h̄∗1, h̄∗2, . . . , h̄∗T) =

h̄∗(γ̇i|p1 p2 · · · pT), where i = 1, 2, . . . , #, and # = #1 × #2 × · · · × #T is the number of possible elements
in h̄(γi|p1 p2 · · · pT) and h̄∗(γ̇i|p1 p2 · · · pT), respectively. Then, the Equation (19) is transformed into
the form γi ≤ γ̇i (i = 1, 2, . . . , #). Thus, s(h̄) = ∑#

i=1 γi p1 p2 · · · pT ≤ ∑#
i=1 γ̇i p1 p2 · · · pT = s(h̄∗). If

s(h̄) < s(h̄∗), then based on Definition 3, HPFEWG(h̄1, h̄2, . . . , h̄T) < HPFEWG(h̄∗1, h̄∗2, . . . , h̄∗T).
If s(h̄) = s(h̄∗), i.e., ∑#

i=1 γi = ∑#
i=1 γ̇i, then d(h̄) = ∑#

i=1(γi − s(h̄))2 p1 p2 · · · pT =

∑#
i=1(γ̇i − s(h̄∗))2 p1 p2 · · · pT = d(h̄∗). In this case, based on Definition 3, it follows that

HPFEWG(h̄1, h̄2, . . . , h̄T) = HPFEWG(h̄∗1, h̄∗2, . . . , h̄∗T).

If all probabilities of values in each HPFE are equal, i.e., p1 = p2 = · · · = p#h̄t
(t = 1, 2, . . . , T),

then the HPFE is reduced to the HFE. In this case, the score function of the HPFEWA (resp. HPFEWG)
operator is consistent with that of the HFEWA (resp. HFEWG) operator [21]. So, we can conclude
that the HPFEWA (resp. HPFEWG) operator is reduced to the HFEWA (resp. HFEWG) operator [21].
In order to analyze the relationship between the HPFEWA (resp. HPFEWG) operator and the HPFWA
(resp. HPFWG) operator [27], we introduce the following lemma.

Lemma 1. [41,42] Let xi > 0, wi > 0, i = 1, 2, . . . , N, and ∑N
i=1 wi = 1, then ∏N

i=1 xwi
i ≤ ∑N

i=1 wixi, with
equality if and only if x1 = x2 = · · · = xN.

Theorem 8. If h̄t (t = 1, 2, . . . , T) are a collection of HPFEs and w = (w1, w2, . . . , wT)
T is the weight vector

of h̄t, with wt ∈ [0, 1] and ∑T
t=1 wt = 1, and pt is the probability of γt in HPFE h̄t, then

(1) HPFEWA(h̄1, h̄2, . . . , h̄T) ≤ HPFWA(h̄1, h̄2, . . . , h̄T);
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(2) HPFEWG(h̄1, h̄2, . . . , h̄T) ≥ HPFWG(h̄1, h̄2, . . . , h̄T).

Proof. (1) For any γt ∈ h̄t (t = 1, 2, . . . , T), based on Lemma 1, we obtain the inequality ∏T
t=1(1 +

γt)wt + ∏T
t=1(1− γt)wt ≤ ∑T

t=1 wt(1 + γt) + ∑T
t=1 wt(1− γt) = 2, and then

∏T
t=1(1 + γt)wt −∏T

t=1(1− γt)wt

∏T
t=1(1 + γt)wt + ∏T

t=1(1− γt)wt
= 1− 2 ∏T

t=1(1− γt)wt

∏T
t=1(1 + γt)wt + ∏T

t=1(1− γt)wt
≤ 1−

T

∏
t=1

(1− γt)
wt .

Hence, we can obtain the inequality

⋃
γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
∏T

t=1(1 + γt)wt −∏T
t=1(1− γt)wt

∏T
t=1(1 + γt)wt + ∏T

t=1(1− γt)wt

}
≤ (20)

⋃
γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
1−

T

∏
t=1

(1− γt)
wt

}
.

Let HPFEWA(h̄1, h̄2, . . . , h̄T) = h̄(γi|pi) and HPFWA(h̄1, h̄2, . . . , h̄T) = h̄∗(γ∗i |pi), i = 1, 2, . . . #,
where # = #h̄ = #h̄∗ is the number of possible elements in h̄(γi|pi) and h̄∗(γ̇i|pi), respectively. Then,
Equation (21) is transformed into the form γi ≤ γ∗i (i = 1, 2, . . . , #). According to s(h̄) = ∑#h̄

i=1 γi pi, we
have HPFEWA(h̄1, h̄2, . . . , h̄T) ≤ HPFWA(h̄1, h̄2, . . . , h̄T).

(2) For any γt ∈ h̄t (t = 1, 2, . . . , T), bsed on Lemma 1, we have ∏T
t=1(2− γt)wt + ∏T

t=1 γwt
t ≤

∑T
t=1 wt(2− γt) + ∑T

t=1 wtγt = 2, and then

2 ∏T
t=1 γwt

t

∏T
t=1(2− γt)wt + ∏T

t=1 γwt
t
≥

T

∏
t=1

γwt
t .

Hence, similarly to (1), we have HPFEWG(h̄1, h̄2, . . . , h̄T) ≥ HPFWG(h̄1, h̄2, . . . , h̄T).

Example 4. Let h̄1 = (0.5|0.5, 0.6|0.5) and h̄2 = (0.1|0.2, 0.3|0.3, 0.4|0.5) be two HPFEs and w = (0.6, 0.4)T

be the weight vector of them. Then, based on Equation (8), the aggregated value from the HPFEWA operator is

HPFEWA(h̄1, h̄2) = (w1 ·ε h̄1)⊕ε (w2 ·ε h̄2)

=
⋃

γ1∈h̄1,γ2∈h̄2

{
∏2

t=1(1 + γt)wt −∏2
t=1(1− γt)wt

∏2
t=1(1 + γt)wt + ∏2

t=1(1− γt)wt

∣∣∣p1 p2

}
= {0.3537|0.1, 0.4247|0.15, 0.4614|0.25, 0.4268|0.1, 0.4928|0.15, 0.5265|0.25}.

If we use the HPFWA operator (Equation (2)) to aggregate two HPFEs, then we have

HPFWA(h̄1, h̄2) = (w1h̄1)⊕ (w2h̄2)

=
⋃

γ1∈h̄1,γ2∈h̄2

{
1−

2

∏
t=1

(1− γt)
wt
∣∣∣p1 p2

}
= {0.3675|0.1, 0.4280|0.15, 0.4622|0.25, 0.4467|0.1, 0.4996|0.15, 0.5296|0.25}.

Then, s(HPFEWA(h̄1, h̄2)) = 0.4627 and s(HPFWA(h̄1, h̄2)) = 0.4685, and thus,
HPFEWA(h̄1, h̄2) < HPFWA(h̄1, h̄2).
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On the other hand, based on Equation (15), the aggregated value by HPFEWG operator is

HPFEWG(h̄1, h̄2) = h̄∧εw1
1 ⊗ε h̄∧εw2

2

=
⋃

γ1∈h̄1,γ2∈h̄2

{
2 ∏2

t=1 γwt
t

∏2
t=1(2− γt)wt + ∏2

t=1 γwt
t

∣∣∣p1 p2

}
= {0.2748|0.1, 0.4108|0.15, 0.4581|0.25, 0.3126|0.1, 0.4622|0.15, 0.5135|0.25}.

If we use the HPFWG operator (Equation (3)) to aggregate two HPFEs, then we get

HPFWG(h̄1, h̄2) = (h̄1)
w1 ⊗ (h̄2)

w2

=
⋃

γ1∈h̄1,γ2∈h̄2

{
2

∏
t=1

(γt)
wt
∣∣p1 p2

}
= {0.2627|0.1, 0.4076|0.15, 0.4573|0.25, 0.2930|0.1, 0.4547|0.15, 0.5102|0.25}.

It is clear that HPFEWG(h̄1, h̄2) > HPFWG(h̄1, h̄2).

Theorem 9. If h̄t (t = 1, 2, . . . , T) are a collection of HPFEs, w = (w1, w2, . . . , wT)
T is the weight vector of

h̄t with wt ∈ [0, 1] and ∑T
t=1 wt = 1, and pt is the probability of γt in HPFE h̄t. Then,

(1) HPFEWA((h̄1)
c, (h̄2)

c, . . . , (h̄T)
c) = (HPFEWG(h̄1, h̄2, . . . , h̄T))

c;
(2) HPFEWG((h̄1)

c, (h̄2)
c, . . . , (h̄T)

c) = (HPFEWA(h̄1, h̄2, . . . , h̄T))
c.

Proof. Since (2) is similar (1), we only prove (1).

HPFEWA((h̄1)
c, (h̄2)

c, . . . , (h̄T)
c)

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
∏T

t=1(1 + (1− γt))wt −∏T
t=1(1− (1− γt))wt

∏T
t=1(1 + (1− γt))wt + ∏T

t=1(1− (1− γt))wt

∣∣∣p1 p2 · · · pT

}

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
1− 2 ∏T

t=1 γwt
t

∏T
t=1(2− γt)wt + ∏T

t=1 γwt
t

∣∣∣p1 p2 · · · pT

}
= (HPFEWG(h̄1, h̄2, . . . , h̄T))

c.

Theorem 8 shows that (1) the values aggregated by the HPFEWA operator are not larger than
those obtained by the HPFWA operator. That is to say, the HPFEWA operator reflects the decision
maker’s pessimistic attitude rather than the HPFWA operator in the aggregation process; and (2)
the values aggregated by the HPFWG operator are not larger than those obtained by the HPFEWG
operator. Thus, the HPFEWG operator reflects the decision maker’s optimistic attitude rather than
the HPFWG operator in the aggregation process. Moreover, we developed the following ordered
weighted operators based on the HPFOWA operator [27] and the HPFOWG operator [27] to aggregate
the HPFEs.

Let h̄t (t = 1, 2, . . . , T) be a collection of HPFEs, h̄σ(t) be the tth largest of h̄t (t = 1, 2, . . . , T),
and pσ(t) be the probability of γσ(t) in the HPFE h̄σ(t); then, we have the following two aggregation
operators, which are based on the mapping HT

P → HP with an associated vector ω = (ω1, ω2, . . . , ωT)
T ,

such that ωt ∈ [0, 1] and ∑T
t=1 ωt = 1:

(1) The hesitant probabilistic fuzzy Einstein ordered weighted averaging (HPFEOWA) operator is

HPFEOWA(h̄1, h̄2, . . . , h̄T) = (ω1 ·ε h̄σ(1))⊕ε (ω2 ·ε h̄σ(2))⊕ε · · · ⊕ε (ωT ·ε h̄σ(T))

=
⋃

γσ(1)∈h̄σ(1) ,γσ(2)∈h̄σ(2) ,...,γσ(T)∈h̄σ(T)

{
∏T

t=1(1+γσ(t))
ωt−∏T

t=1(1−γσ(t))
ωt

∏T
t=1(1+γσ(t))

ωt+∏T
t=1(1−γσ(t))

ωt

∣∣∣pσ(1)pσ(2) · · · pσ(T)

}
. (21)
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(2) The hesitant probabilistic fuzzy Einstein ordered weighted geometric (HPFEOWG) operator is

HPFEOWG(h̄1, h̄2, . . . , h̄T) = (h̄∧εω1
σ(1) )⊗ε (h̄

∧εω2
σ(2) )⊗ε · · · ⊗ε (h̄

∧εωT
σ(T) )

=
⋃

γσ(1)∈h̄σ(1) ,γσ(2)∈h̄σ(2) ,...,γσ(T)∈h̄σ(T)

{
2 ∏T

t=1 γ
ωt
σ(t)

∏T
t=1(2−γσ(t))

ωt+∏T
t=1 γ

ωt
σ(t)

∣∣∣pσ(1)pσ(2) · · · pσ(T)

}
. (22)

Example 5. Let h̄1 = (0.5|0.5, 0.6|0.5) and h̄2 = (0.1|0.2, 0.3|0.3, 0.4|0.5) be two HPFEs, and suppose that
the associated aggregated vector is ω = (0.55, 0.45)T. Based on Definition 3, the score values of h̄1 and h̄2 are
s(h̄1) = 0.55 and s(h̄2) = 0.31. Since s(h̄1) > s(h̄2); then,

h̄σ(1) = h̄1 = (0.5|0.5, 0.6|0.5), h̄σ(2) = h̄2 = (0.1|0.2, 0.3|0.3, 0.4|0.5).

Based on Equation (21), the aggregated values by the HPFEOWA operator are

HPFEOWA(h̄1, h̄2) = (ω1 ·ε h̄σ(1))⊕ε (ω2 ·ε h̄σ(2))

= {0.3340|0.1, 0.4023|0.1, 0.4148|0.15, 0.4564|0.25, 0.4781|0.15, 0.5167|0.25}.

On the other hand, based on Equation (22), the aggregated values by the HPFEOWG operator are

HPFEOWG(h̄1, h̄2) = (h̄∧εω1
σ(1) )⊗ε (h̄

∧εω2
σ(2) )

= {0.2937|0.1, 0.2859|0.1, 0.4005|0.15, 0.4466|0.15, 0.4530|0.25, 0.5033|0.25}.

In the following section, we look at the HPFEOWA and HPFEOWG operators for some special
cases of the associated vector ω.

(1) If ω = (1, 0, . . . , 0)T , then

HPFEOWA(h̄1, h̄2, . . . , h̄T) = h̄σ(1) = max{h̄i},

HPFEOWG(h̄1, h̄2, . . . , h̄n) = h̄σ(1) = max{h̄t}.

(2) If ω = (0, 0, . . . , 1)T , then

HPFEOWA(h̄1, h̄2, . . . , h̄T) = h̄σ(T) = min{h̄t},

HPFEOWG(h̄1, h̄2, . . . , h̄T) = h̄σ(T) = min{h̄t}.

(3) If ωs = 1, wt = 0, s �= t, then

h̄σ(T) ≤ HPFEOWA(h̄1, h̄2, . . . , h̄T) = h̄σ(s) ≤ h̄σ(1),

h̄σ(T) ≤ HPFEOWG(h̄1, h̄2, . . . , h̄T) = h̄σ(s) ≤ h̄σ(1),

where h̄σ(s) is the sth largest h̄t (t = 1, 2, . . . , T).
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(4) If ω = ( 1
T , 1

T , . . . , 1
T )

T , then

HPFEOWA(h̄1, h̄2, . . . , h̄T)

=
⋃

γσ(1)∈h̄σ(1) ,γσ(2)∈h̄σ(2) ,...,γσ(T)∈h̄σ(T)

⎧⎨⎩∏T
t=1(1 + γσ(t))

1
T −∏T

t=1(1− γσ(t))
1
T

∏T
t=1(1 + γσ(t))

1
T + ∏T

t=1(1− γσ(t))
1
T

∣∣∣pσ(1)pσ(2) · · · pσ(T)

⎫⎬⎭
=

⋃
γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
∏T

t=1(1 + γt)
1
T −∏T

t=1(1− γt)
1
T

∏T
t=1(1 + γt)

1
T + ∏T

t=1(1− γt)
1
T

∣∣∣p1 p2 · · · pT

}
= HPFEA(h̄1, h̄2, . . . , h̄T),

HPFEOWA(h̄1, h̄2, . . . , h̄T)

=
⋃

γσ(1)∈h̄σ(1) ,γσ(2)∈h̄σ(2) ,...,γσ(T)∈h̄σ(T)

⎧⎪⎨⎪⎩
2 ∏T

t=1 γ
1
T
σ(t)

∏T
t=1(2− γσ(t))

1
T + ∏T

t=1 γ
1
T
σ(t)

∣∣∣pσ(1)pσ(2) · · · pσ(T)

⎫⎪⎬⎪⎭
=

⋃
γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

⎧⎨⎩ 2 ∏T
t=1 γ

1
T
t

∏T
t=1(2− γt)

1
T + ∏T

t=1 γ
1
T
t

∣∣∣p1 p2 · · · pT

⎫⎬⎭
= HPFEG(h̄1, h̄2, . . . , h̄T),

i.e., the HPFEOWA (resp. HPFEOWG) operator is reduced to HPFEA (resp. HPFEG) operator.

Similar to Theorems 8 and 9, the above ordered weighted operators have the relationship below.

Theorem 10. If h̄t (t = 1, 2, . . . , T) is a collection of HPFEs, ω = (ω1, ω2, . . . , ωT)
T is the associated vector

of the aggregation operator such that ωt ∈ [0, 1] and ∑T
t=1 ωt = 1. Then,

(1) HPFEOWA(h̄1, h̄2, . . . , h̄T) ≤ HPFOWA(h̄1, h̄2, . . . , h̄T);
(2) HPFEOWG(h̄1, h̄2, . . . , h̄T) ≥ HPFOWG(h̄1, h̄2, . . . , h̄T).

Theorem 11. If h̄t (t = 1, 2, . . . , T) is a collection of HPFEs, ω = (ω1, ω2, . . . , ωT)
T is the associated vector

of the aggregation operator, such that ωt ∈ [0, 1] and ∑T
t=1 ωt = 1. Then,

(1) HPFEOWA((h̄1)
c, (h̄2)

c, . . . , (h̄T)
c) = (HPFEOWG(h̄1, h̄2, . . . , h̄T))

c;
(2) HPFEOWG((h̄1)

c, (h̄2)
c, . . . , (h̄T)

c) = (HPFEOWA(h̄1, h̄2, . . . , h̄T))
c.

Clearly, the fundamental characteristic of the HPFEWA and HPFEWG operators is that they
consider the importance of each given HPFE, whereas the fundamental characteristic of the HPFEOWA
and HPFEOWG operators is the weighting of the ordered positions of the HPFEs instead of weighting
the given HPFEs themselves. By combining the advantages of the HPFEWA (resp. HPFEWG) and
HPFEOWA (resp. HPFEOWG) operators, in the following text, we develop some hesitant probabilistic
fuzzy hybrid aggregation operators that weight both the given HPFEs and their ordered positions.

Let h̄t (t = 1, 2, . . . , T) be a collection of HPFEs, w = (w1, w2, . . . , wT)
T be the weight vector of h̄t

with wt ∈ [0, 1] and ∑T
t=1 wt = 1, and pt be the probability of γt in the HPFE h̄t. Then, we have the

following two aggregation operators which are based on the mapping HT
P → HP with an associated

vector ω = (ω1, ω2, . . . , ωT)
T , such that ωt ∈ [0, 1] and ∑T

t=1 ωt = 1:
(1) The hesitant probabilistic fuzzy Einstein hybrid averaging (HPFEHA) operator is

HPFEHA(h̄1, h̄2, . . . , h̄T) = (ω1 ·ε ḣσ(1))⊕ε (ω2 ·ε ḣσ(2))⊕ε · · · ⊕ε (ωT ·ε ḣσ(T))

=
⋃

γ̇σ(1)∈ḣσ(1) ,γ̇σ(2)∈ḣσ(2) ,...,γ̇σ(T)∈ḣσ(T)

{
∏T

t=1(1+γ̇σ(t))
ωt−∏T

t=1(1−γ̇σ(t))
ωt

∏T
t=1(1+γ̇σ(t))

ωt+∏T
t=1(1−γ̇σ(t))

ωt

∣∣∣ ṗσ(1) ṗσ(2) · · · ṗσ(T)

}
, (23)
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where ḣσ(t) is the tth largest of the weighted HPFEs ḣt = Twt ·ε h̄t (t = 1, 2, . . . , T), T is the balancing
coefficient, and ṗσ(t) be the probability of γ̇σ(t) in the HPFE ḣσ(t).

(2) The hesitant probabilistic fuzzy Einstein hybrid geometric (HPFEHG) operator is

HPFEHG(h̄1, h̄2, . . . , h̄T) = (ḧ∧εω1
σ(1) )⊗ε (ḧ

∧εω2
σ(2) )⊗ε · · · ⊗ε (ḧ

∧εωT
σ(T) )

=
⋃

γ̈σ(1)∈ḧσ(1) ,γ̈σ(2)∈ḧσ(2) ,...,γ̈σ(T)∈ḧσ(T)

{
2 ∏T

t=1 γ̈
ωt
σ(t)

∏T
t=1(2−γ̈σ(t))

ωt+∏T
t=1 γ̈

ωt
σ(t)

∣∣∣ p̈σ(1) p̈σ(2) · · · p̈σ(T)

}
, (24)

where ḧσ(t) is the tth largest of the weighted HPFEs ḧt = h̄∧εTwt
t (t = 1, 2, . . . , T), T is the balancing

coefficient, and p̈σ(t) is the probability of γ̈σ(t) in the HPFE ḧσ(t).
Especially, if w = ( 1

T , 1
T , . . . , 1

T )
T , then ḣt = ḧt = h̄t (t = 1, 2, . . . , T). In this case, the

HPFEHA (resp. HPFEHG) operator is reduced to the HPFEOWA (resp. HPFEOWG) operator.

If ω = ( 1
T , 1

T , . . . , 1
T )

T , then since 1
T ·ε ḣt = 1

T ·ε (Twt ·ε h̄t) = ∪γt∈h̄t

{
(1+γt)

wt−(1−γt)
wt

(1+γt)wt+(1−γt)wt

∣∣∣pt

}
and

ḧ∧ε
1
T

t = (h̄∧εTwt
t )∧ε

1
T = ∪γt∈h̄t

{
2γ

wt
t

(2−γt)wt+γ
wt
t

∣∣∣pt

}
, we have

HPFEHA(h̄1, h̄2, . . . , h̄T) = (
1
T
·ε ḣσ(1))⊕ε (

1
T
·ε ḣσ(2))⊕ε · · · ⊕ε (

1
T
·ε ḣσ(T))

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
∏T

t=1(1 + γt)wt −∏T
t=1(1− γt)wt

∏T
t=1(1 + γt)wt + ∏T

t=1(1− γt)wt

∣∣∣p1 p2 · · · pT

}
= HPFEWA(h̄1, h̄2, . . . , h̄T),

HPFEHG(h̄1, h̄2, . . . , h̄T) = (ḧ∧ε
1
T

σ(1))⊗ε (ḧ
∧ε

1
T

σ(2))⊗ε · · · ⊗ε (ḧ
∧ε

1
T

σ(T))

=
⋃

γ1∈h̄1,γ2∈h̄2,...,γT∈h̄T

{
2 ∏T

t=1 γwt
t

∏T
t=1(2− γt)wt + ∏T

t=1 γwt
t

∣∣∣p1 p2 · · · pT

}
= HPFEWG(h̄1, h̄2, . . . , h̄T),

i.e., the HPFEHA (resp. HPFEHG) operator is reduced to the HPFEWA (resp. HPFEWG) operator.

Example 6. Let h̄1 = (0.5|0.5, 0.6|0.5) and h̄2 = (0.1|0.2, 0.3|0.3, 0.5|0.5) be two HPFEs. Suppose that the
weight vector of them is w = (0.63, 0.37)T, and the aggregation associated vector is ω = (0.3, 0.7)T. Then,

ḣ1 =

(
(1 + 0.5)2×0.63 − (1− 0.5)2×0.63

(1 + 0.5)2×0.63 + (1− 0.5)2×0.63

∣∣0.5,
(1 + 0.6)2×0.63 − (1− 0.6)2×0.63

(1 + 0.6)2×0.63 + (1− 0.6)2×0.63

∣∣0.5
)

= (0.5993|0.5, 0.7031|0.5),

ḣ2 =

(
(1 + 0.1)2×0.37 − (1− 0.1)2×0.37

(1 + 0.1)2×0.37 + (1− 0.1)2×0.37

∣∣0.2,
(1 + 0.3)2×0.37 − (1− 0.3)2×0.37

(1 + 0.3)2×0.37 + (1− 0.3)2×0.37

∣∣0.3,

(1 + 0.5)2×0.37 − (1− 0.5)2×0.37

(1 + 0.5)2×0.37 + (1− 0.5)2×0.37

∣∣0.2
)

= (0.7411|0.2, 0.2251|0.3, 0.3851|0.5)

and s(ḣ1) = 0.6512 and s(ḣ2) = 0.4083. Since s(ḣ1) > s(ḣ2), we have

ḣσ(1) = ḣ1 = (0.5993|0.5, 0.7031|0.5), ḣσ(2) = ḣ2 = (0.7411|0.2, 0.2251|0.3, 0.3851|0.5).
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From Equation (23), we have

HPFEHA(h̄1, h̄2) = (ω1 ·ε ḣσ(1))⊕ε (ω2 ·ε ḣσ(2))

=
⋃

γ̇σ(1)∈ḣσ(1) ,γ̇σ(2)∈ḣσ(2)

{
∏2

t=1(1 + γ̇σ(t))
ωt −∏2

t=1(1− γ̇σ(t))
ωt

∏2
t=1(1 + γ̇σ(t))

ωt + ∏2
t=1(1− γ̇σ(t))

ωt

∣∣∣ ṗσ(1) ṗσ(2)

}

= {0.3715|0.15, 0.4175|0.15, 0.4557|0.25, 0.4977|0.25, 0.7037|0.1, 0.7302|0.1}.

On the other hand,

ḧ1 =

(
2× 0.52×0.63

(2− 0.5)2×0.63 + 0.52×0.63

∣∣0.5,
2× 0.62×0.63

(2− 0.6)2×0.63 + 0.62×0.63

∣∣0.5
)

= (0.4007|0.5, 0.5117|0.5),

ḧ2 =

(
2× 0.12×0.37

(2− 0.1)2×0.37 + 0.12×0.37

∣∣0.2,
2× 0.32×0.37

(2− 0.3)2×0.37 + 0.32×0.37

∣∣0.3,
2× 0.52×0.37

(2− 0.5)2×0.37 + 0.52×0.37

∣∣0.5
)

= (0.2033|0.2, 0.4339|0.3, 0.6145|0.5)

and since s(ḧ1) = 0.4562 > 0.4465 = s(ḧ2), we have ḧσ(1) = ḧ1 and ḧσ(2) = ḧ2. From Equation (24),
we have

HPFEHG(h̄1, h̄2) = (ḧ∧εω1
σ(1) )⊗ε (ḧ

∧εω2
σ(2) )

=
⋃

γ̈σ(1)∈ḧσ(1) ,γ̈σ(2)∈ḧσ(2)

⎧⎨⎩ 2 ∏2
t=1 γωt

σ(t)

∏2
t=1(2− γσ(t))

ωt + ∏2
t=1 γωt

σ(t)

∣∣∣ p̈σ(1) p̈σ(2)

⎫⎬⎭
= {0.2512|0.1, 0.2728|0.1, 0.4237|0.15, 0.4563|0.25, 0.5441|0.15, 0.5825|0.25}.

4. An Approach to MADM with Hesitant Probabilistic Fuzzy Information

In this section, we utilize the proposed aggregation operators to develop an approach for MADM
with hesitant probabilistic fuzzy information.

Let X = {x1, x2, . . . , xn} be a set of n alternatives and G = {g1, g2, . . . , gm} be a set of m attributes
whose weight vector is w = (w1, w2, . . . , wm)T , satisfying wi > 0 (i = 1, 2, . . . , m) and ∑m

i=1 wi = 1,
where wi denotes the importance degree of attribute gi. Suppose the decision makers provide the
evaluating values that the alternatives xj (i = 1, 2, . . . , n) satisfy the attributes gi (j = 1, 2, . . . , m)
represented by the HPFEs h̄ij(γij|pij) (i = 1, 2, . . . , m; j = 1, 2, . . . , n). All of these HPFEs are contained
in the hesitant probabilistic fuzzy decision matrix D =

(
h̄ij(γij|pij)

)
m×n (see Table 1).

Table 1. Hesitant probabilistic fuzzy decision matrix (D).

x1 x2 · · · xn

g1 h̄11(γ11|p11) h̄12(γ12|p12) · · · h̄1n(γ1n|p1n)
g2 h̄21(γ21|p21) h̄22(γ22|p22) · · · h̄2n(γ11|p2n)
...

...
...

. . .
...

gm h̄m1(γm1|pm1) h̄m2(γm2|pm2) · · · h̄mn(γmn|pmn)

The following steps can be used to solve the MADM problem under the hesitant probabilistic
fuzzy environment and obtain an optimal alternative.

Step 1: Obtain the normalized hesitant probabilistic fuzzy decision matrix. In general, the attribute
set (G) can be divided two subsets, G1 and G2, where G1 and G2 are the set of benefit attributes and
cost attributes, respectively. If all of the attributes are of the same type, then the evaluation values do
not need normalization, whereas if there are benefit attributes and cost attributes in MADM, in such
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cases, we may transform the evaluation values of cost type into the evaluation values of the benefit
type by the following normalization formula:

r̄ij(βij|pij) =

{
h̄ij, i ∈ G1

h̄c
ij, i ∈ G2,

(25)

where h̄c
ij = ∪γij∈h̄ij

{(1− γij)|pij} is the complement of h̄ij. Then, we obtain the normalized hesitant

probabilistic fuzzy decision matrix H =
(
r̄ij(βij|pij)

)
m×n (see Table 2).

Table 2. Normalized hesitant probabilistic fuzzy decision matrix (H).

x1 x2 · · · xn

g1 r̄11(β11|p11) r̄12(β12|p12) · · · r̄1n(β1n|p1n)
g2 r̄21(β21|p21) r̄22(β22|p22) · · · r̄2n(β11|p2n)
...

...
...

. . .
...

gm r̄m1(βm1|pm1) r̄m2(βm2|pm2) · · · r̄mn(βmn|pmn)

Step 2: Compute the overall assessment of alternatives. Utilize the HPFEWA operator

r̄j = HPFEWA(r̄1j, r̄2j, . . . , r̄mj)

=
⋃

β1j∈r̄1j ,β2j∈r̄2j ,...,βmj∈r̄mj

{
∏m

i=1(1 + βij)
wi −∏m

i=1(1− βij)
wi

∏m
i=1(1 + βij)wi + ∏m

i=1(1− βij)wi

∣∣∣p1j p2j · · · pmj

}
(26)

or the HPFEWG operator

r̄j = HPFEWG(r̄1j, r̄2j, . . . , r̄mj)

=
⋃

β1j∈r̄1j ,β2j∈r̄2j ,...,βmj∈r̄mj

{
2 ∏m

i=1(βij)
wi

∏m
i=1(2− βij)wi + ∏m

i=1(βij)wi

∣∣∣p1j p2j · · · pmj

}
(27)

to aggregate all the evaluating values r̄ij (1 = 1, 2, . . . , m) of the jth column and get the overall rating
value r̄j corresponding to the alternative (xj (j = 1, 2, . . . , n)).

Step 3: Rank the order of all alternatives. Utilize the method in Definition 3 to rank the overall
rating values r̄j (j = 1, 2, . . . , n). Rank all the alternatives( xj (j = 1, 2, . . . , n)) in accordance with r̄j
(j = 1, 2, . . . , n) in descending order, and finally, select the most desirable alternative(s) with the largest
overall evaluation value(s).

Step 4: End.

In the above-mentioned procedure, the HPFEWA (or HPFEWG) operator is utilized to aggregate
the evaluating values of each alternative with respect to a collection of the attributes to rank and
select the alternative(s). So we give a detail illustration of the decision making procedure with a
propulsion/manoeuvring system selection problem.

Example 7. The propulsion/manoeuvring system selection is based on a study that was conducted
for the selection of propulsion/manoeuvring system of a double ended passenger ferry to operate
across the Bosphorus in Istanbul with the aim of reducing the journey time in highly congested seaway
traffic (adopted from Ölçer and Odabaşi [43] and Wang and Liu [37]).

The propulsion/manoeuvring system alternatives are given as the set of alternatives X =

{x1, x2, x3}. (1) x1 is the conventional propeller and high lift rudder; (2) x2 is the Z drive; and
(3) x3 is the cycloidal propeller. The selection decision is made on the basis of one objective and seven
subjective attributes, which are the following: (1) g1 is the investment cost; (2) g2 is the operating cost;
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(3) g3 is the manoeuvrability; (4) g4 is the propulsive power requirement; (5) g5 is the reliability.; (6) g6

is the propulsive power requirement; and (7) g7 is the propulsive arrangement requirement. Note that
the attributes are cost attributes, except for attributes g3 and g5, and the corresponding weight vector
is w = (0.15, 0.2, 0.3, 0.2, 0.15)T .

Assume that the decision makers use the linguistic terms shown in Table 3 to represent the
evaluating values of the alternatives with respect to different attributes, respectively, and they provide
their linguistic decision matrices (D) as listed in Tables 4.

Table 3. Linguistic terms and their corresponding hesitant probabilistic fuzzy elements (HPFEs).

Linguistic Terms HPFEs

Very low (VL) (0|0.7, 0.1|0.3)
Low (L) (0.15|0.6, 0.25|0.4)

Medium low (ML) (0.3|0.6, 0.4|0.4)
Medium (M) (0.45|0.5, 0.55|0.5)

Medium high (MH) (0.6|0.45, 0.7|0.55)
High (H) (0.75|0.4, 0.85|0.6)

Very high (VH) (0.9|0.4, 1|0.6)

Table 4. Linguistic decision matrix (D).

x1 x2 x3

g1 ML M H
g2 M ML H
g3 MH M MH
g4 H H L
g5 MH MH M
g6 H M M
g7 L MH MH

Step 1: Based on Tables 3 and 4, we can get the hesitant probabilistic fuzzy decision matrix
D =

(
h̄ij
)

7×3 (see Table 5).

Table 5. Hesitant probabilistic fuzzy decision matrix (D).

x1 x2 x3

g1 (0.3|0.6, 0.4|0.4) (0.45|0.5, 0.55|0.5) (0.75|0.4, 0.85|0.6)
g2 (0.45|0.5, 0.55|0.5) (0.3|0.6, 0.4|0.4) (0.75|0.4, 0.85|0.6)
g3 (0.6|0.45, 0.7|0.55) (0.45|0.5, 0.55|0.5) (0.6|0.45, 0.7|0.55)
g4 (0.75|0.4, 0.85|0.6) (0.75|0.4, 0.85|0.6) (0.15|0.6, 0.25|0.4)
g5 (0.6|0.45, 0.7|0.55) (0.6|0.45, 0.7|0.55) (0.45|0.5, 0.55|0.5)
g6 (0.75|0.4, 0.85|0.6) (0.45|0.5, 0.55|0.5) (0.45|0.5, 0.55|0.5)
g7 (0.15|0.6, 0.25|0.4) (0.6|0.45, 0.7|0.55) (0.6|0.45, 0.7|0.55)

Then, considering that the attributes are cost attributes, except for attributes g3 and g5, based
on Equation (25), the hesitant probabilistic fuzzy decision matrix (D) can be transformed into the
following normalized hesitant probabilistic fuzzy decision matrix: H =

(
r̄ij
)

7×3 (see Table 6).
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Table 6. Normalized hesitant probabilistic fuzzy decision matrix (H).

x1 x2 x3

g1 (0.6|0.4, 0.7|0.6) (0.45|0.5, 0.55|0.5) (0.15|0.6, 0.25|0.4)
g2 (0.45|0.5, 0.55|0.5) (0.6|0.4, 0.7|0.6) (0.15|0.6, 0.25|0.4)
g3 (0.6|0.45, 0.7|0.55) (0.45|0.5, 0.55|0.5) (0.6|0.45, 0.7|0.55)
g4 (0.15|0.6, 0.25|0.4) (0.15|0.6, 0.25|0.4) (0.75|0.4, 0.85|0.6)
g5 (0.6|0.45, 0.7|0.55) (0.6|0.45, 0.7|0.55) (0.45|0.5, 0.55|0.5)
g6 (0.15|0.6, 0.25|0.4) (0.45|0.5, 0.55|0.5) (0.45|0.5, 0.55|0.5)
g7 (0.75|0.4, 0.85|0.6) (0.3|0.55, 0.4|0.45) (0.3|0.55, 0.4|0.45)

Step 2: Utilize the decision information given in matrix H and the HPFEWA operator (26) to
derive the overall rating values (r̄j) of the alternative xj (j = 1, 2, 3):

r̄1 =
{

0.4953|0.0243, 0.5148|0.0297, 0.5109|0.0162, 0.5299|0.0198, 0.5337|0.0297, 0.5521|0.0363,

0.5484|0.0198, 0.5664|0.0242, 0.5152|0.0243, 0.5341|0.0297, 0.5304|0.0162, 0.5489|0.0198,

0.5525|0.0297, 0.5704|0.0363, 0.5669|0.0198, 0.5843|0.0242, 0.5148|0.0365, 0.5337|0.0446,

0.5299|0.0243, 0.5484|0.0297, 0.5521|0.0446, 0.5700|0.0545, 0.5664|0.0297, 0.5839|0.0363,

0.5341|0.0365, 0.5525|0.0446, 0.5489|0.0243, 0.5669|0.0297, 0.5704|0.0446, 0.5878|0.0545,

0.5843|0.0297, 0.6013|0.0363
}

,

r̄2 =
{

0.4550|0.0270, 0.4754|0.0330, 0.4713|0.0180, 0.4914|0.0220, 0.4862|0.0270, 0.5059|0.0330,

0.5019|0.0180, 0.5212|0.0220, 0.4821|0.0405, 0.5019|0.0495, 0.4980|0.0270, 0.5174|0.0330,

0.5123|0.0405, 0.5313|0.0495, 0.5275|0.0270, 0.5461|0.0330, 0.4707|0.0270, 0.4908|0.0330,

0.4868|0.0180, 0.5065|0.0220, 0.5013|0.0270, 0.5206|0.0330, 0.5168|0.0180, 0.5357|0.0220,

0.4974|0.0405, 0.5168|0.0495, 0.5129|0.0270, 0.5319|0.0330, 0.5270|0.0405, 0.5456|0.0495,

0.5419|0.0270, 0.5601|0.0330
}

,

r̄3 =
{

0.4840|0.0324, 0.4992|0.0324, 0.5261|0.0486, 0.5404|0.0486, 0.5230|0.0396, 0.5374|0.0396,

0.5629|0.0594, 0.5764|0.0594, 0.4997|0.0216, 0.5146|0.0216, 0.5410|0.0324, 0.5550|0.0324,

0.5379|0.0264, 0.5520|0.0264, 0.5769|0.0396, 0.5902|0.0396, 0.4958|0.0216, 0.5108|0.0216,

0.5373|0.0324, 0.5514|0.0324, 0.5342|0.0264, 0.5484|0.0264, 0.5734|0.0396, 0.5867|0.0396,

0.5114|0.0144, 0.5260|0.0144, 0.5519|0.0216, 0.5657|0.0216, 0.5489|0.0176, 0.5628|0.0176,

0.5873|0.0264, 0.6002|0.0264
}

.

Step 3: Calculate the score values of the overall rating values (r̄j) of the alternatives (xj (j = 1, 2, 3)):

s(r̄1) = 0.5533, s(r̄2) = 0.5110, s(r̄3) = 0.5473.

Since s(r̄1) > s(r̄3) > s(r̄2), the ranking order of the alternatives xj (j = 1, 2, 3) is

x1 � x3 � x2.

Therefore, the best alternative is x1.
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If we utilize the HPFEWG operator (27) in Step 2 to get the overall rating values (r̄j) of the
alternatives (xj (j = 1, 2, 3)), we obtain

r̄1 =
{

0.4426|0.0243, 0.4545|0.0297, 0.4828|0.0162, 0.4955|0.0198, 0.4666|0.0297, 0.4790|0.0363,

0.5083|0.0198, 0.5215|0.0242, 0.4613|0.0243, 0.4736|0.0297, 0.5027|0.0162, 0.5127|0.0198,

0.4860|0.0297, 0.4987|0.0363, 0.5289|0.0198, 0.5423|0.0242, 0.4545|0.0365, 0.4667|0.0446,

0.4955|0.0243, 0.5084|0.0297, 0.4790|0.0446, 0.4916|0.0545, 0.5215|0.0297, 0.5348|0.0363,

0.4726|0.0365, 0.4861|0.0446, 0.5157|0.0243, 0.5290|0.0297, 0.4987|0.0446, 0.5117|0.0545,

0.5423|0.0297, 0.5560|0.0363
}

,

r̄2 =
{

0.4100|0.0270, 0.4213|0.0330, 0.4481|0.0180, 0.4602|0.0220, 0.4367|0.0270, 0.4485|0.0330,

0.4766|0.0180, 0.4892|0.0220, 0.4250|0.0405, 0.4366|0.0495, 0.4641|0.0270, 0.4765|0.0330,

0.4525|0.0405, 0.4646|0.0495, 0.4933|0.0270, 0.5062|0.0330, 0.4232|0.0270, 0.4347|0.0330,

0.4622|0.0180, 0.4745|0.0220, 0.4505|0.0270, 0.4626|0.0330, 0.4913|0.0180, 0.5041|0.0220,

0.4386|0.0405, 0.4505|0.0495, 0.4786|0.0270, 0.4912|0.0330, 0.4666|0.0405, 0.4790|0.0495,

0.5084|0.0270, 0.5215|0.0330
}

,

r̄3 =
{

0.3890|0.0324, 0.4017|0.0324, 0.4022|0.0486, 0.4152|0.0486, 0.4109|0.0396, 0.4241|0.0396,

0.4246|0.0594, 0.4382|0.0594, 0.4257|0.0216, 0.4393|0.0216, 0.4398|0.0324, 0.4537|0.0324,

0.4491|0.0264, 0.4632|0.0264, 0.4638|0.0396, 0.4782|0.0396, 0.4163|0.0216, 0.4297|0.0216,

0.4302|0.0324, 0.4439|0.0324, 0.4393|0.0264, 0.4532|0.0264, 0.4538|0.0396, 0.4680|0.0396,

0.4549|0.0144, 0.4691|0.0144, 0.4697|0.0216, 0.4843|0.0216, 0.4794|0.0176, 0.49421|0.0176,

0.4948|0.0264, 0.5098|0.0264
}

.

Then, we calculate the scores of the overall rating values r̄j of the alternatives:

s(r̄1) = 0.4968, s(r̄2) = 0.4621, s(r̄3) = 0.4429.

Since s(r̄1) > s(r̄2) > s(r̄3), the ranking order of the alternatives xj (j = 1, 2, 3) is

x1 � x2 � x3.

Then, the best alternative is also x1.

In order to compare the performance with the existing operators, in the following text, the HPFWA
operator (2) and HPFWG operator (3) proposed by Xu and Zhou [27] are used to computing the overall
rating values. If we first utilize the HPFWA operator (2) presented in Step 2, then we get the overall
rating values r̄j of the alternatives (xj (j = 1, 2, 3)):

r̄1 =
{

0.5043|0.0243, 0.5252|0.0297, 0.5165|0.0162, 0.5369|0.0198, 0.5453|0.0297, 0.5645|0.0363,

0.5566|0.0198, 0.5753|0.0242, 0.5238|0.0243, 0.5439|0.0297, 0.5356|0.0162, 0.5552|0.0198,

0.5632|0.0297, 0.5817|0.0363, 0.5740|0.0198, 0.5920|0.0242, 0.5252|0.0365, 0.5453|0.0446,

0.5369|0.0243, 0.5565|0.0297, 0.5645|0.0446, 0.5829|0.0545, 0.5753|0.0297, 0.5932|0.0363,

0.5439|0.0365, 0.5632|0.0446, 0.5552|0.0243, 0.5739|0.0297, 0.5817|0.0446, 0.5993|0.0545,

0.5920|0.0297, 0.6092|0.0363
}

,
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r̄2 =
{

0.4632|0.0270, 0.4859|0.0330, 0.4765|0.0180, 0.4986|0.0220, 0.4946|0.0270, 0.5159|0.0330,

0.5071|0.0180, 0.5279|0.0220, 0.4933|0.0405, 0.5147|0.0495, 0.5058|0.0270, 0.5267|0.0330,

0.5229|0.0405, 0.5430|0.0495, 0.5347|0.0270, 0.5543|0.0330, 0.4792|0.0270, 0.5012|0.0330,

0.4920|0.0180, 0.5135|0.0220, 0.5096|0.0270, 0.5303|0.0330, 0.5217|0.0180, 0.5419|0.0220,

0.5083|0.0405, 0.5291|0.0495, 0.5205|0.0270, 0.5407|0.0330, 0.5370|0.0405, 0.5566|0.0495,

0.5485|0.0270, 0.5675|0.0330
}

,

r̄3 =
{

0.5027|0.0324, 0.5175|0.0324, 0.5510|0.0486, 0.5643|0.0486, 0.5439|0.0396, 0.5574|0.0396,

0.5882|0.0594, 0.6004|0.0594, 0.5150|0.0216, 0.5294|0.0216, 0.5621|0.0324, 0.5751|0.0324,

0.5552|0.0264, 0.5684|0.0264, 0.5984|0.0396, 0.6103|0.0396, 0.5120|0.0216, 0.5264|0.0216,

0.5594|0.0324, 0.5724|0.0324, 0.5524|0.0264, 0.5656|0.0264, 0.5958|0.0396, 0.6078|0.0396,

0.5240|0.0144, 0.5381|0.0144, 0.5702|0.0216, 0.5810|0.0216, 0.5634|0.0176, 0.5764|0.0176,

0.6058|0.0264, 0.6175|0.0264
}

.

Then, the scores of the overall rating values (r̄j (j = 1, 2, 3)) are s(r̄1) = 0.5630, s(r̄2) = 0.5202, and
s(r̄3) = 0.5672, and so, the ranking order of the alternatives (xj (j = 1, 2, 3)) is x3 � x1 � x2. Thus, the
best alternative is x3.

Next, if we utilize the HPFWG operator (3) presented in Step 2, we get the overall rating values
(r̄j) of the alternatives xj (j = 1, 2, 3):

r̄1 =
{

0.4293|0.0243, 0.4393|0.0297, 0.4754|0.0162, 0.4866|0.0198, 0.4496|0.0297, 0.4601|0.0363,

0.4979|0.0198, 0.5096|0.0242, 0.4469|0.0243, 0.4573|0.0297, 0.4949|0.0162, 0.5065|0.0198,

0.4680|0.0297, 0.4790|0.0363, 0.5183|0.0198, 0.5305|0.0242, 0.4393|0.0365, 0.4496|0.0446,

0.4866|0.0243, 0.4980|0.0297, 0.4601|0.0446, 0.4709|0.0545, 0.5096|0.0297, 0.5216|0.0363,

0.4573|0.0365, 0.4680|0.0446, 0.5065|0.0243, 0.5184|0.0297, 0.4790|0.0446, 0.4902|0.0545,

0.5305|0.0297, 0.5429|0.0363
}

,

r̄2 =
{

0.3995|0.0270, 0.4089|0.0330, 0.4425|0.0180, 0.4529|0.0220, 0.4243|0.0270, 0.4342|0.0330,

0.4699|0.0180, 0.4809|0.0220, 0.4120|0.0405, 0.4217|0.0495, 0.4563|0.0270, 0.4670|0.0330,

0.4375|0.0405, 0.4478|0.0495, 0.4846|0.0270, 0.4960|0.0330, 0.4117|0.0270, 0.4214|0.0330,

0.4560|0.0180, 0.4667|0.0220, 0.4373|0.0270, 0.4475|0.0330, 0.4843|0.0180, 0.4956|0.0220,

0.4246|0.0405, 0.4345|0.0495, 0.4703|0.0270, 0.4813|0.0330, 0.4509|0.0405, 0.4615|0.0495,

0.4994|0.0270, 0.5111|0.0330
}

,

r̄3 =
{

0.3699|0.0324, 0.3812|0.0324, 0.3792|0.0486, 0.3908|0.0486, 0.3874|0.0396, 0.3992|0.0396,

0.3972|0.0594, 0.4093|0.0594, 0.4097|0.0216, 0.4222|0.0216, 0.4200|0.0324, 0.4329|0.0324,

0.4291|0.0264, 0.4422|0.0264, 0.4399|0.0396, 0.4534|0.0396, 0.3994|0.0216, 0.4116|0.0216,

0.4095|0.0324, 0.4220|0.0324, 0.4183|0.0264, 0.4311|0.0264, 0.4289|0.0396, 0.4420|0.0396,

0.4423|0.0144, 0.4559|0.0144, 0.4535|0.0216, 0.4674|0.0216, 0.4633|0.0176, 0.4774|0.0176,

0.4750|0.0264, 0.4895|0.0264
}

.
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Then, the scores of the overall rating values (r̄j (j = 1, 2, 3)) are s(r̄1) = 0.4817, s(r̄2) = 0.4501, and
s(r̄3) = 0.4210, and so the ranking order of the alternatives (xj (j = 1, 2, 3)) is x1 � x2 � x3. Thus, the
best alternative is x1.

The relative comparison of the methods using different operators proposed by Xu and Zhou [27] is
shown in Table 7. From Table 7, we can see that the obtained overall rating values of the alternatives are
different with each of the four operators, respectively, and then, the ranking orders of the alternatives
also are different. Each of the methods using different hesitant probabilistic fuzzy operators has
its advantages and disadvantages, and none of them always perform better than the others in any
situation. It depends on how we look at things, and not on how they are themselves.

Table 7. Comparison of overall rating values and ranking orders of alternatives.

Aggregation Operator Overall Rating Values Ranking Orders

HPFWA operator [27] s(r̄1) = 0.5630, s(r̄2) = 0.5202, s(r̄3) = 0.5672 x3 � x1 � x2
HPFWG operator [27] s(r̄1) = 0.4817, s(r̄2) = 0.4501, s(r̄3) = 0.4210 x1 � x2 � x3

HPFEWA operator s(r̄1) = 0.5533, s(r̄2) = 0.5110, s(r̄3) = 0.5473 x1 � x3 � x2
HPFEWG operator s(r̄1) = 0.4968, s(r̄2) = 0.4621, s(r̄3) = 0.4429 x1 � x2 � x3

Consequently, the use of different hesitant probabilistic fuzzy aggregation operators reflects the
decision maker’s pessimistic (or optimistic) attribute. For example, the proposed HPFEWA operator
shows that the decision maker has a more pessimistic attribute than the HPFWA operator [27], and the
proposed HPFEWG operator shows that the decision maker has a more optimistic attribute than the
HPFWG operator [27] in the aggregation process.

5. Conclusions

The hesitant probabilistic fuzzy MADM is an important research topic in HPFS theory and decision
science with uncertain information. Information aggregation is one of the core issues. Based on the
Einstein operational rules of HPFEs, in this paper, we developed a series of hesitant probabilistic fuzzy
Einstein aggregation operators, including the HPFEWA, HPFEWG, HPFEOWA, HPFEOWG, HPFEHA,
and HPFEHG operators. Some basic properties of the proposed aggregation operators, such as
boundedness and monotonicity, and the relationships between them were investigated. We compared
the proposed operators with the existing hesitant probabilistic fuzzy aggregation operators proposed
by Xu and Zhou [27] and presented corresponding relations. These proposed hesitant probabilistic
Einstein aggregation operators provide a fine supplement to the existing work on HPFSs. Based on the
HPFEWA and HPFEWG operators, a new method for MADM was developed in hesitant probabilistic
fuzzy environments. A practical example was provided to illustrate the hesitant probabilistic fuzzy
MADM process. Through a comparison between the proposed method with the previously proposed
hesitant probabilistic fuzzy MADM method [27], we showed some advantages of the proposed hesitant
probabilistic fuzzy MADM method.

This paper only considered decision makers with equl weights in the decision making process,
but further studies on unequal weights are needed. Moreover, research using other operations, such as
Hamacher and Frank t-conoms and t-norms instead of the Einstein t-conorm and t-norm, should be
discussed in future studies.
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Bosnia and Herzegovina; mirkostojcic1@hotmail.com (M.S.); zeljkostevic88@yahoo.com (Ž.S.)

2 Department of Logistics, Military academy, University of Defence in Belgrade, Pavla Jurisica Sturma 33,
11000 Belgrade, Serbia

3 NERI d.o.o. Ljesnica bb 74250 Maglaj, Bosnia and Herzegovina; mahmutagiceldina24@gmail.com
* Correspondence: dpamucar@gmail.com; Tel: +381113603932

Received: 3 September 2018; Accepted: 21 September 2018; Published: 22 September 2018

Abstract: Queuing systems (QS) represent everyday life in all business and economic systems.
On the one hand, and there is a tendency for their time and cost optimization, but on the other
hand, they have not been sufficiently explored. This especially applies to logistics systems, where
a large number of transportation and storage units appear. Therefore, the aim of this paper is to
develop an ANFIS (Adaptive neuro-fuzzy inference system) model in a warehouse system with two
servers for defining QS optimization parameters. The research was conducted in a company for the
manufacturing of brown paper located in the territory of Bosnia and Herzegovina, which represents
a significant share of the total export production of the country. In this paper, the optimization
criterion is the time spent in the system, which is important both from the aspect of all customers of
the system, and from that of the owner of the company. The time criterion directly affects the
efficiency of the system, but also the overall costs that this system causes. The developed ANFIS
model was compared with a mathematical model through a sensitivity analysis. The mathematical
model showed outstanding results, which justifies its development and application.

Keywords: ANFIS; warehouse; queuing systems; logistics

1. Introduction

In the daily performance of various activities and processes, logistics, as an integral and
indispensable part of every business system, plays a very important role. It is necessary to
rationalize the activities and processes that can significantly affect a competitive position of a company.
A warehouse, as an individual logistics subsystem, together with transportation, represent the biggest
causes of logistics costs, and there is a constant search for potential places of savings in these subsystems.
Long ago, a warehouse was just a place used to separate surplus products, while its function today is
completely different. Compared to the former static function, today’s warehouses represent a dynamic
system in which the movement of goods is dominant. Therefore, in this paper, the emphasis is on
the storage system of Natron-Hayat company, which is one of the largest companies in Bosnia and
Herzegovina; this is sufficiently proved by the fact that it is one of the top five exporters of Bosnia
and Herzegovina [1]. The current storage system of the company is decentralized, whereby each
manufacturing facility has its own warehouse. Under such circumstances, there is the accumulation of
demands for loading goods into vehicles and queuing, which again causes certain costs. In order to
be successful in conditions of great competition, one of the most important segments is to satisfy the
needs of customers, which is an integral part of a supply chain. Thus, it is necessary, according to
Stević et al. [2], to optimize from the perspective of all participants in the complete supply chain. Today,
customers pay more attention to the time they spend queuing; this time affects their decision about
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whether they will use the service again. This paper considers and analyzes the storage system of
Natron-Hayat, a working group-warehouse paper machine (PM4), where arrivals of transportation
means, queues, and service time depend on a number of factors. Throughout the research carried out
in this paper, data on the arrivals of transportation means, which are registered at the weighing
scale for loading in the PM4 warehouse, and the loading time for each vehicle, have been collected.
Taking into account the capacities of all manufacturing machines in the company, the calculation of
the basic parameters of the queuing system was conducted only for the PM4 warehouse, while the
warehouses of the other manufacturing facilities were not taken into consideration at the moment.
The PM4 storage system was into consideration, since it is a manufacturing machine with the largest
capacity in the company; the company’s operations largely depends on its work, as can be seen in
more detail in [3].

This paper has several goals. The first is to determine the state of the queuing systems of the
company i.e., warehouse paper machine (PM4), which is the object of the research, by observing
the system on a monthly basis. The second goal relates to the calculation of the system’s
indicators by using a mathematical model. The third and most important goal of this research,
which also represents a research contribution, is the development of an ANFIS model with three
input variables: the inter-arrival time of trucks, the cumulative arrival time, and the service time
(transloading-manipulative operations). The developed model provides meaningful information to all
participants in the complete queuing system about the time in the system and the possibilities of its
deviation, which can play an important role in planning and modeling the most important processes
and business activities.

The proposed ANFIS model implies the union of all the advantages that the two artificial
intelligence areas possess; the most important is the possibility of adaptation or learning from
the example, and an approximate reasoning. Previous works provide an insight into the use of
ANFIS in the field of traffic and transport, but in this paper, it is used in combination with the
principles of queuing theory. Also, queuing theory is mainly based on analytical optimization
models whose resolution can be complex. Numerous studies show the low sensitivity of ANFIS to
inaccurate and incomplete input data, and its good ability to model non-linear dependencies, which is
a characteristic of queuing systems.

In addition to introductory considerations where the basic reasons for the research are presented,
the work is structured in five other sections. The second section provides a review of the literature
referring to queuing systems and their optimization in different areas, as well as the application of
ANFIS. Also, this section provides a literature review referring to multi-criteria decision-making
methods (MCDM). The third section presents the methods in which a complete research algorithm
is shown, by recognizing a need to perform it to the final goal. In addition, the basic settings of the
QS and ANFIS models have been given. The fourth section provides a case study which consists of
data collection and creation, and training of the model. Also, in this section the statistical inference of
the distributions of input flow into the system and service time was determined. The fifth section
contains the results and discussion. The sixth section provides a sensitivity analysis related to the QS
mathematical model. The paper ends with conclusions in which the directions for future research
are given.

2. Literature Review

This section is divided into three parts. The first is related to the application of the queuing systems
theory and associated models in traffic and transportation. The second is oriented towards ANFIS
models in this specific field, while the third refers to the overview of the application of multi-criteria
analysis methods in traffic and transport.
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2.1. Models of Queuing System Theory in Traffic And Transportation

Queues can occur wherever there is a need for the service of a large number of customers
and the number of servers is limited. We encounter such situations in our lives every day,
and taking into account that traffic and transportation affect the lives of every individual, queuing
systems theory has a significant potential for application in this field. Every day, the number of
transportation means is increasing on the streets, while the existing infrastructure, i.e., roads,
does not undergo such a rapid expansion; consequently, traffic jams, waiting times on roads,
travel time, costs increase, etc. In addition to these negative phenomena, from the ecological
aspect, environmental pollution is also increasing. In order to optimize traffic flows, according to
Guerrouahane et al. [4] and Raheja [5], exponential distribution of the inter-arrival time/general
distribution of the service time/number of servers/system capacity systems are used for modeling.
In [6], it is stated that highway flows are modeled as exponential distribution of the inter-arrival
time/general distribution of the service time/one server, when there is no congestion, and as general
distribution of the inter-arrival time/general distribution of the service time/number of servers
in cases of congestion. The study [7] describes several different models for a traffic flow analysis,
including exponential distribution of the inter-arrival time/exponential distribution of the service
time/one server, in addition to those previously mentioned. Although queuing system theory is
mainly used to model traffic flow on highways, intersections in large cities are bottlenecks, and can be
modeled as exponential distributions of the inter-arrival time/exponential distribution of the service
time/one server systems [8–10]. No matter which model is used, they all include a certain mathematical
apparatus, i.e., mathematical models that are selected based on the system functioning (input flow,
service flow). Therefore, not all are equally adequate for a particular system. Another example of
applying the queuing system theory in traffic and transportation relates to the routing of transportation
means in real-time. According to Chen [11], two strategies are given: FCFS (First Come First Served)
and Median Repositioning, where the second one shows better results. The modeling of queues
is also applicable to supply chains, where each sub-process is a queuing system. It is particularly
important to optimize green supply chains by reducing fuel consumption, transportation time, and
waiting time [12,13]. Warehouses can also be modeled using queuing theory. Some of the requirements
that are imposed on optimization are shorter time of the implementation of operations, work with
larger number of units of goods, the provision of the required quality of service, minimum costs.
In addition, the application of queuing systems theory can be used to determine the size and capacity of
a warehouse, and therefore, the necessary equipment within it [14,15]. Since the automation of
warehouses is a trend nowadays, the AS/RS system (Automated Storage and Retrieval System) sets
complex synchronization requirements that are resolved by queuing theory [16].

2.2. ANFIS Models in Traffic And Transportation

Intelligent transportation systems involve the application of various technologies, including
artificial neural networks and fuzzy logic, i.e., neuro-fuzzy systems. Some of the basic objectives are to
increase passenger safety, optimize routes, optimize the choice of means of transportation, reduce travel
time, reduce costs, reduce traffic jams, waiting, etc. Using ANFIS models, a prediction of traffic flows
in intelligent transportation systems can be performed. According to Bao-ping and Zeng-Qiang [17],
the prediction model consists of 104 parameters that are adjusted during a training process. In order to
increase safety, in research [18], ANFIS is used to assess the impact of intelligent transportation system
technologies—such as video surveillance and drowsiness warnings—on the number of fatalities
due to traffic accidents. Similarly, in [19], critical points on a road in rural areas are identified on the
basis of collected data on traffic accidents. Traffic control at intersections with traffic lights can also be
carried out using ANFIS models [20,21]. This involves reading out external data on the current state of
the intersection, and forwarding them to the model that processes them and reacts in accordance
with the learned rules [22]. From an ecological point of view, it is possible to estimate the noise level,
as indicated in [23]. Traffic flow density, vehicle speed, and the noise level of horns can be taken as
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input independent variables. The selection of an optimum transportation route using the ANFIS model,
based on the criteria specified by the dispatcher, is considered in [24], while [25] deals with a choice of
an optimum mode of transportation. Warehousing is an important part of the entire supply chain.
It can be said that the efficiency of a warehouse affects the overall efficiency of the chain, and therefore,
requires intelligent optimization solutions. [26] deals with determining the number of forklifts in a
warehouse which are required for loading goods using an ANFIS model, based on a given number of
pallets and time available. Another example of the implementation of expert knowledge in an ANFIS
model for using forklifts is presented in [27].

2.3. Methods of Multi-Criteria Decision-Making in Traffic And Transportation

Multi-criteria decision-making can be used as an adequate tool for making valid decisions. In [28],
the EMDS (Ecosystem Management Decision Support System) and SADfLOR (Web-Based Forest and
Natural Resources Decision Support System) imply the integration of multiple approaches to determine
optimal bundles of ecosystem services. In traffic and transport, the role of MCDM (Multi-Criteria
Decision Making) is of paramount importance. For the determination of optimal locations, spatial
information obtained by the GIS (Geographic Information System) is often used with multi-criteria
decision making [29]. Karczmarczyk et al. [30] represents the application of the novel method, COMET
(Characteristic Objects Method) to determine the best model of the electric car for sustainable city
transport with respect to increasing pollution in cities. The same method was used in [31] for the
selection of the best scenarios for the transport of dangerous goods. With the aforementioned COMET
method, the theory of the fuzzy sets for the modeling of imprecise data is used. The supply chain
involves a large number of participants, and with the correct choice of suppliers, at the initial stage,
good conditions for optimizing the entire process are created. Stevic et al. [2] developed a new
approach: Rough EDAS (Evaluation based on Distance from Average Solution), Rough COPRAS
(Complex Proportional Assessment) and Rough MULTIMOORA (Multi-Objective Optimization by
Ratio Analysis Plus the Full Multiplicative Form) to solve the problem of correct choice of suppliers.
In [32], a model of dynamic or temporal choice of a supplier is proposed using multi-criteria decision
making. The observed neuro-fuzzy system, ANFIS, finds its application in the field of decision-making
on the basis of several criteria. Khalili-Damghani et al. [33] divides the process of selecting suppliers in
two phases, the first of which involves the application of ANFIS to determine the overall usefulness of
the supplier based on expert knowledge. According to Torquaybade [34], in the supply chain
optimization, ANFIS has the role of assessing the performance of each of the Pull Control Policies
based on the input variables. A multi-criteria approach was also applied in [35] for the identification of
priority black spots in order to increase the safety in traffic. The applicability in the field of traffic
engineering of the MCDM methods is also confirmed in paper [36], where it is used for the evaluation
and selection of roundabouts in an urban area.

3. Methods

The first step of the research is data collection, i.e., the values of selected variables that will be used
first for statistical analyses, and then for the creation and training of the model based on fuzzy logic
and artificial neural networks. The basic method used for the realization of the research is modeling.
In addition, a statistical method is used, as well as theoretical analysis explaining basic concepts and
principles of queuing systems and the ANFIS model. Used software packages, such as MATLAB,
Minitab, and EasyFit, make the application of these methods much easier.

Figure 1 shows the proposed model in the study. It consists of a total of three phases and 11 steps.
The first phase includes four steps: the first relates to the recognition of the need to conduct research
that will help both customers (transportation companies) and the company’s management increase the
efficiency of their business. The second step is the formation of a team and the distribution of tasks,
as well as counseling with staff at a tactical level on how to interact with the system, i.e. collect data,
which is the third step of this phase. In the final step of the first phase, the sorting of data collected,
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and their processing, are performed. The second phase consists of three steps. The first two relate to
determining the distribution of the input flow and the flow of service, respectively, while the third
involves the formation of a mathematical model in the Minitab software for the calculation of the basic
parameters of the system. The third phase includes the development of the ANFIS model, discussion of
the obtained results, and a comparison with a mathematical model.

 

Figure 1. Diagram of the research flow.

3.1. Basic Principles of Queuing Systems Theory

Today, queuing theory has a very wide range of applications in many branches of human activity
where customers come into a system, by some mathematical distribution, due to a particular service,
and in the case of occupied servers, form one or more queues. Upon the completion of service, where
its time also corresponds to some distribution, the customer leaves the system. Such examples can be
seen daily in traffic, logistics systems, banks, post offices, in telecommunications traffic, at a gas station,
etc. Naturally, situations that are more complex are possible when a customer passes throughout a
network of interconnected queuing systems. The task of queuing systems theory is to explain and
model the behavior of such systems using a mathematical apparatus. In addition to other methods,
it is widely applicable to operational research [37]. Modeling a queuing system enables the analysis
and optimization of its performance.

As the basic features of the queuing systems model, the following can be identified: the input
process, service mechanism, and queue discipline [38]. According to Maragatha and Srinivasan [39],
every model can be described using the following features:

• The distribution of inter-arrival time; this most often corresponds to a Poisson, exponential or
general distribution. Arrivals can be individual or in groups [40].

• The distribution of service time: exponential, hyper-exponential, hypo-exponential,
constant, general.

• The number of servers can be one or more.
• The length of queue can be precisely defined or infinite. In case of arrival when the queue

capacity is maximally filled, the costumer is denied, which is known as ‘balking’.
• System capacity implies the maximum number of customers in the system, being served or in

the queue.
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System disciplines:

• FIFO (First in, First out)—in the order of arrival,
• LIFO (Last in, First out)—a customer that comes last will be served first,
• Random Service—customers are served in random order,
• Round Robin—a customer gets a time slot within which he/she will be served. If the service is not

completed, the customer returns to the beginning of the queue,
• Priority Disciplines—the order of customer service is determined according to the priority that

each one receives [37].

The Kendall notation uses these six features to describe the queuing system:

A/B/m/K/n/D

where

• A—the distribution of the inter-arrival time,
• B—the distribution of the service time. Positions A and B can be replaced by M (Markov

processes, exponential distribution); D (deterministic distribution); E (Erlang distribution);
H (hyper-exponential distribution); G (general distribution),

• m—the number of servers,
• K—system capacity,
• n—population size,
• D—queuing discipline [40]. Unless stated, it is assumed that it is the FIFO [41].

The most common and simplest queuing systems are of M/M/m type.

3.2. Adaptive Neuro-Fuzzy Inference Model

Unlike biological neural networks, artificial neural networks represent an attempt to model
the human brain through modern computing. They consist of a number of process elements,
or artificial neurons, which are analogous to the brain, in which the basic elements are nerve cells.
Artificial neurons, as well as nerve cells, are characterized by parallel work in the processing of
various types of information [42]. Their basic feature is the ability to learn, which means that it is
necessary to first train the network to efficiently perform tasks such as recognizing shapes, images,
speech, function approximation, prediction, optimization, data clustering, processing inaccurate
and incomplete data, etc. Accordingly, the basic task of an artificial neural network is to combine
different inputs, and to process and forward signals to one or more outputs. There are various types of
artificial neural networks depending on the number of neurons, i.e., layers, network training methods,
the way to transmit signals throughout the network, etc.

Fuzzy technologies allow the computer to work with uncertainties, thereby achieving a similarity
with the human way of thinking. Fuzzy logic is an extension of classical logic in which variables
can have only two values: correct (1) and incorrect (0). In this way, variables can occupy any real
value between 0 and 1. Fuzzy sets are basic elements for presenting and processing unclear things
and uncertainties in fuzzy logic, and they are mathematically presented by membership functions.
The inference system in fuzzy logic implies defined membership functions of individual variables and
inference rules, which connect input variables with an inference; they are called IF-THEN rules.

The systems that integrate the principles of artificial neural networks and fuzzy logic are called
neuro-fuzzy systems. They use a learning ability of artificial neural networks based on training data
in order to adapt the forms of membership fuzzy functions and inference fuzzy rules. In this way,
in one system, the advantages of logical inference and learning are combined. One of the most
commonly used neuro-fuzzy systems is ANFIS (Adaptive Neuro-Fuzzy Inference System). ANFIS is a
multilayer neural network that, based on data (input-output vector) for training, provides a certain
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value of an output variable for certain inputs. An important feature is that ANFIS can effectively
model nonlinear connections of inputs and outputs [43]. ANFIS training is based on the application
of an algorithm of error propagation backward, either alone or in combination with the method of
least squared error, i.e., hybrid algorithm [44]. ANFIS uses the Takagi-Sugeno method of inference,
and a typical fuzzy rule, assuming two inputs (x and y) and a logical AND operation, can be written
as follows:

IF x is A AND y is B, THEN z = f(x,y)

A and B denote fuzzy sets of input variables x and y, while z is an output function.
The ANFIS structure consists of five layers, as shown in Figure 2. The nodes of the first layer

define fuzzy sets, i.e., membership fuzzy functions corresponding to input variables. This layer is often
called a fuzzification layer, because it determines the membership degree of the value of a variable to a
particular fuzzy set [45]. The nodes of this layer are adaptive, which means that their parameters are
adjusted during a training period [44]. The first-layer nodes that represent the membership functions of
the input variable X can be defined as μAj(x), where j (j = 1 ,..., 2) denotes the number of membership
functions [46].

 
Figure 2. The ANFIS structure with two inputs.

The second-layer nodes are fixed and perform an operation of multiplying the input signals
(operation AND). The ith neuron has the output of the form: wi = μAi (x)× μBi (y). The output of the
second layer is equal to the minimum value of the two inputs [47].

The third layer normalizes the values obtained at the output of the nodes of the second hidden
layer. In the case shown in Figure 2, with two nodes in the second layer, the normalized value at the
output of the ith node of the third hidden layer has the following mathematical form:

wi =
wi

w1 + w2
(1)

Each node of the fourth layer is an adaptive node with the function it completes, which can be
written as follows [48]:

wi fi = wi(pix + qiy + ri) (2)

where pi, qi and ri are inference parameters. The fifth layer calculates the output as a sum of all
input signals:

f = ∑
i

wi fi =
∑i wi fi

∑i wi
(3)
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The set of fuzzy inference rules that apply to the structure given in Figure 2 consists of two rules:

IF x is A1 AND y is B1, THEN f 1 = p1x + q1y + r1

IF x is A2 AND y is B2, THEN f 2 = p2x + q2y + r2

ANFIS is most often trained with a hybrid algorithm. It requires two passes through the network in
each epoch. In the forward pass, a method of least squares is used to modify the parameters of the linear
functions of rule inferences (layer 4) [34]. When going backward, the parameters of fuzzy membership
functions of input variables (layer 1) are modified by the algorithm of error back-propagation.

4. Case Study

Figure 3 shows the basic processes of the QS at Natron-Hayat for the PM4 storage system.
The road freight transportation means of different companies represent customers of the system.
They enter the system with a certain intensity. Upon entering the company’s property, they form a
queue depending on the current service intensity. There are a total of two transloading fronts (servers)
where forklifts are engaged in the loading of goods. The queue formed and servers represent the
service system, while loaded vehicles are serviced customers.

 

Figure 3. The basic process of the queuing system for the PM4 warehouse4.1. Data collection.

4.1. Data Collection

In order to model the queuing system of the PM4 working group of Natron-Hayat,
it was necessary to collect data on the basic features of the system. The values of the following
variables were monitored:

• the inter-arrival time of trucks,
• the cumulative arrival time since an initial time (for each day),
• the service time (transloading-manipulative operations) and
• the time in the system.

The first three listed variables represent the input variables of the ANFIS model that predicts the
time spent in the system. Therefore, it is clear that time represents the output variable, taking into
account the well-known fact that the time in queuing systems is one of the most important criteria for
optimizing and modeling them.
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The data collection period lasted 11 working days in two shifts of 8 h, based on which a monthly
report was received for 22 working days, which means a total of 352 h. A total of 237 trucks entered
the system. Out of the total set of data, the values of the seventh day of monitoring are excluded,
after 2 p.m. to the end of working hours. The reason is the emergence of unusual and extremely
high values of time spent in the system during the arrival of trucks at the end of the first and the
beginning of the second shift. Such values adversely affect the performance of the ANFIS model.
Figure 4 graphically shows the time spent in the system and the cumulative arrival time for each truck,
as well as the given deviations occurring from the arrivals of the 65th to the 76th truck.
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Figure 4. Time in the system and cumulative arrival time for 237 trucks.

In addition to the extreme deviations, the values of variables for the 122nd truck that entered the
system due to the extreme value of the service time of 240 min were neglected. The time of its arrival
in the system is in the 8th hour on the last day of data collection, so that period was also omitted.
The final set of data, which is statistically analyzed and used to create the ANFIS model, is reduced to
the time of 352 h, during which 224 trucks entered the system.

The examination of the input flow, i.e. the arrivals of trucks in the system, is essential
for determining the distribution of the probabilities of inter-arrival time and the distribution of
probabilities of the arrival of certain number of trucks at a given interval. Table 1 gives frequencies
related to the number of trucks that arrived in a period of one hour. The biggest frequency is 214,
when no truck entered the system during one hour. For a larger number of trucks that arrived in
one hour, frequencies of hours were reduced, so in the end, the largest number of trucks that arrived
during one hour was five, and with a frequency of two.

Based on Table 1, a statistical procedure is used to determine the distribution of the input flow.
The EasyFit software provides graphical and tabular results for the procedure to determine the best
fitting of data with a particular distribution. Figure 5 shows the Poisson distribution that best fits
the input flow. The distribution parameter is λ = 0.6747, which represents the arrival intensity of the
number of trucks within one hour.

Table 1. Frequencies of the input flow for a period of one hour.

Number of Trucks Frequency

0 214
1 48
2 46
3 14
4 8
5 2
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Figure 5. Poisson distribution of the input flow.

Table 2 gives an overview of the completed statistics of the Anderson Darling (AD) test for
determining data fitting to a particular distribution. The Poisson distribution is ranked as the best
in the Anderson Darling test with the statistic of 88.26. A total of 8 distributions are given, but it is
possible to determine the fitting only for Poisson, Geometric, and D. Uniform.

Table 2. The results of statistical tests for determining the fitting of the input flow to a
certain distribution.

Distribution
Anderson Darling

Statistic Rank

Poisson 88.26 1
Geometric 112.79 2
D. Uniform 197.01 3
Bernoulli No fit (data max > 1)
Binomial No fit

Hyper-geometric No fit
Logarithmic No fit (data min < 1)

Neg. Binomial No fit

In order to determine the distribution of service time, it is necessary to divide the data into classes.
Taking into account that the maximum value of service time is 95 min, and the minimum is 15 min,
a division into 8 classes per 11 min of duration is performed. Table 3 shows the number of trucks that
is served within a certain interval (class). The largest number of trucks is served within the class with
the limits between 26 and 36 min, while no truck is served from 70 to 80 min.

Table 3. Frequencies of the service time.

Class Limits Arithmetic Mean of Class-Interval Frequency (Number of Trucks)

15–25 20 46
26–36 31 72
37–47 42 68
48–58 53 22
59–69 64 6
70–80 75 0
81–91 83 6

92–102 97 4
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Figure 6 shows the Levy distribution curve that best fits the service time frequencies presented in
Table 3. The probability density function of the shown distribution can be expressed as follows:

f (x) =
√

σ

γ

exp(−0, 5σ/(x− γ))

(x− γ)3/2 (4)

where the parameters, in this specific case, are σ = 32.634 and γ = 0. The average service time is
38.62 min, which means that the service intensity is μ = 1.55 trucks/hour.

Figure 6. Distribution of the service time.

Table 4 presents the values of ranges and the statistics of the Anderson Darling test for testing
the fitting of service times to certain distributions. Results are given for 8 distributions, and Levy is
ranked as first, with a statistic of 1.5611.

Table 4. Results of statistical tests for determining the fitting of service times to a certain distribution.

Distribution
Anderson Darling

Statistic Rank

Levy 1.5611 1
Levy (2P) 1.6041 2
Pareto 2 2.3671 3

Exponential 2.9128 4
Rayleigh 3.6386 5

Reciprocal 3.8271 6
Log-Logistic (3P) 4.2251 7
Fatigue Life (3P) 4.4674 8

As mentioned, we used the software Easyfit to obtain the statistical distributions. This software
supports Kolmogorov-Smirnov (KS) and AD tests. We used the AD test, because it is better,
and according to Engmann and Cousineau [49], it has two extra advantages over the KS test. First,
it is especially sensitive to differences at the tails of distributions. Second, there is evidence that
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the AD test is more capable of detecting very small differences, even between large sample sizes.
This is one of its main advantages in the field of engineering. Also, the KS test is less able to detect
changes in asymmetry, requiring almost twice as many data compared to the AD test. Finally, this test,
according to Stephens [50], is a good all-purpose test. The AD test is also used in [51,52].

4.2. Creation and Training of the Model

Creation, training and testing of the ANFIS model is performed in the MATLAB software package,
which, thanks to the graphical user interface of the ANFIS editor, allows easy manipulation of the
model’s parameters and variables. As a result, a large number of graphic displays of parameters and
performance are obtained.

The total set of data on the inter-arrival time, cumulative arrival time, service time, and the time
spent in the system for each truck that enters the system, is divided into three parts:

• Training data, consisting of 73.21% or 164 input-output vectors, providing the so-called “Learning
with a teacher”, where the outputs from the network are known in advance for appropriate inputs.

• Checking data, which is primarily aimed at preventing the occurrence of training data
overfitting. The ANFIS model monitors the value of the checking error in each training epoch
and retains learned parameters at its minimum value. Checking data consists of 13.39% or
30 input-output vectors.

• Testing data enables us to perform an evaluation of the abilities of the ANFIS model to perform a
prediction of the time spent in the system as accurately as possible. The outputs of the ANFIS
model are compared with known values, and the goal is to select a model that makes a minimum
error. As well as checking data, testing data consists of 13.39% of the total set of data.

The process, from creation to model testing, can be summarized by the algorithmic steps given in
Figure 7.

Figure 7. Steps of the process from creation to testing of the ANFIS model.

5. Results and discussion

The ANFIS model performance is estimated based on an average testing error, which in fact is an
average square error-RMSE (Root Mean Square Error), and is calculated as:

RMSE =

√√√√ 1
N

N

∑
k=1

[n(k)− n̂(k)]
2

(5)
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where N is a number of testing vectors, n(k) is expected (measured) value, and n̂(k) is the value
obtained by the model. Table 5 gives an overview of RMSE values depending on the shape and
number of fuzzy membership functions for each of the three input variables for the constant shape of
the output function. The values of the average testing error for different ANFIS models in the case of
a linear shape of the output function are given in Table 6. The model training was carried out in
1000 epochs. With a larger number of membership functions, the average testing error increases, so that
a maximum of three are considered here. Table 5 gives an overview of RMSE values depending on
the shape and number of the membership fuzzy functions for each of the three input variables for the
constant shape of the output function.

Table 5. The values of average testing errors of different ANFIS models with constant output.

Shape of Fuzzy
Membership Functions

Number of Fuzzy Membership Functions for Each of Three Input Variables

2 2 2 3 3 3 2 2 3 2 3 2 2 3 3 3 3 2 3 2 3 3 2 2

Trimf 18.66 64.64 21.53 22.94 30.46 66.73 23.30 20.72
Trapmf 14.23 27.72 16.16 14.33 16.64 16.46 20.55 18.11

Gbellmf 19.46 47.00 19.66 21.42 58.65 17.34 46.14 16.29
Gaussmf 16.91 307.84 20.26 17.81 26.91 31.49 22.64 17.79

Gauss2mf 14.30 20.50 63.56 15.70 22.40 26.89 19.16 17.83
Pimf 14.78 23.21 17.10 14.05 17.19 15.07 21.25 17.42

Dsigmf 13.67 64.43 24.38 17.09 60.50 28.00 19.29 17.46
Psigmf 13.67 64.43 24.38 17.09 60.50 28.00 19.29 17.46

Table 6. The values of average testing errors of different ANFIS models with linear output.

Shape of Fuzzy
Membership Functions

Number of Fuzzy Membership Functions for Each of Three Input Variables

2 2 2 3 3 3 2 2 3 2 3 2 2 3 3 3 3 2 3 2 3 3 2 2

Trimf 217.63 13557.47 577.56 836.02 1726.74 35925.48 19459.66 1219.73
Trapmf 116.57 318.80 219.14 38.82 25.42 60.76 294.55 44.87

Gbellmf 22.19 34006.56 187.06 5305.95 23183.85 14176.49 50418.31 6937.78
Gaussmf 33.02 24328.30 257.99 3293.97 11566.52 5466.29 51114.92 108.12

Gauss2mf 253.78 3727.55 319.52 9477.00 34019.82 3765.83 14012.94 2537.84
Pimf 841.49 597.19 2104.52 222.63 23.77 44.86 415.37 190.11

Dsigmf 588.50 4961.53 2289.36 774.68 65680.67 2563.84 19890.09 449.44
Psigmf 427.85 5027.61 1118.50 1120.38 62986.63 7788.29 15398.09 4170.70

By comparing the values in Tables 5 and 6, it is concluded that the linear output model gives
drastically higher error values than the constant output shape. The least average testing error from
Table 6 is 25.42 min, and from Table 5, 13.67 min. Therefore, a model with a lower error is selected from
Table 5, which has two fuzzy membership functions for each input variable. The functions are in the
shape of dsig, and represent the difference of two sigmoid functions, which can be written as follows:

f (x; a, c) =
1

1 + e−a(x−c)
(6)

Since it relates to the difference, the dsig function has four parameters: a1, a2, c1, and c2. Figure 8
shows the certain membership functions for the first input variable-inter-arrival time. The learned
parameters of the first function marked by red color in Figure 8 are 0.0578, −172, 0.0572, 174.

The values of the prediction of time spent in the system, based on the input values of checking
data of the selected model, are given in Table 7.
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Figure 8. Fuzzy functions of membership for the input variable of inter-arrival time.

Table 7. The values of the prediction of the time spent in the system and checking data.

Ordinal
Number

Checking Data
ANFIS
OutputInter-Arrival

Interval
Arrival
Time

Service
Time

Time Spent in
the System

1st 2 357 30 42 58.36
2nd 272 629 25 40 37.84
3rd 1 1 40 63 83.49
4th 24 25 45 64 85.68
5th 8 33 30 71 82.53
6th 1 1 30 50 82.54
7th 11 12 30 66 82.54
8th 2 14 25 73 82.47
9th 77 91 30 46 82.34

10th 40 109 40 99 83.34
11th 20 129 65 109 118.59
12th 170 299 30 52 66.57
13th 1 300 45 79 74.73
14th 83 383 30 55 52.54
15th 1 1 35 48 82.77
16th 54 55 35 73 82.70
17th 3 58 30 50 82.51
18th 35 93 40 78 83.39
19th 60 153 15 118 82.03
20th 3 156 55 80 101.73
21st 12 168 50 73 90.92
22nd 21 189 15 44 81.54
23rd 1 190 30 42 81.62
24th 50 240 95 125 118.06
25th 1 1 40 107 83.49
26th 2 3 35 45 82.77
27th 1 4 45 79 85.69
28th 34 38 45 71 85.66
29th 7 45 85 134 121.85
30th 20 65 65 109 118.79

In addition to the tabular overview, the accuracy of the prediction can also be shown graphically,
as in Figure 9. Red asterisks denote the outputs of the ANFIS model, while blue points denote
measured checking data. The RMSE for such a set of data is 22.06. Although while testing the model
it showed the least error of 13.67 over the testing data, the set of checking data is different from it,
and that is the reason why, in this case, the RMSE has the given value.
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Figure 9. Deviations of the ANFIS model output from the measured testing data.

The structure of the selected model is shown in Figure 10, where the number of nodes in each
layer of the neural network can be seen. It is obvious that in all fuzzy inference rules, of which there
are 8 (the number of nodes in the third layer), the logical operator (AND) figures.

 
Figure 10. The structure of the selected ANFIS model.

Figure 11 shows the surface of dependence, i.e. a portable function of the selected model.
Taking into account that there are three input variables, the dependence of the output from the input is
given for all three combinations. It is evident that the time spent in the system has a greater value in
reducing inter-arrival times and the cumulative arrival time of trucks. Regarding the influence of the
service time on the observed output, it is concluded that the time spent in the system increases with
the increase of the specified variable and the decrease in inter-arrival times. An increase in the value of
the output variable is also caused by an increase in the service time and simultaneous reduction in the
cumulative arrival time.
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A) B)

C)

Figure 11. The surface of the dependence of the time spent in the system from: (a) inter-arrival time
and arrival time; (b) inter-arrival time and service time; (c) arrival time and service time.

6. Sensitivity Analysis

In order to validate the developed ANFIS model, it was compared with a mathematical model
developed by regression analysis of training data. A polynomial mathematical model with the highest
correlation index R2 = 15.58 was selected. The model is of the second degree and has the following form:

Time in system = 61.52− 0.094 Inter Arrival time + 0.683 Service time− 7.834
∗10−5 Arrival time2 (7)

Table 8 gives an overview of the measured values of the time spent in the system and predicted
values determined by the mathematical model and ANFIS for the same input data set. The RMSE
value, in the case of the mathematical model, is 22.96, which means that the ANFIS model shows
better performance.

Figure 12 gives a graphic display of the values shown in Table 8. The red squares represent the
real or measured values of the time spent in the system. Blue rhombuses represent the predicted values
obtained by the mathematical model of second degree, which is given by the expression (7). Predicted
values obtained by the ANFIS model are marked with green triangles. The figure provides a visual
performance analysis of the two models compared to the real values of the time spent in the system.
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Table 8. Measured values of time in the system and predicted values determined by the mathematical
and ANFIS model.

Measured, Real Values Mathematical Model ANFIS Model

42 71.84 58.36
40 22.03 37.84
63 88.75 83.49
64 89.95 85.68
71 81.17 82.53
50 81.92 82.54
66 80.96 82.54
73 78.39 82.47
46 74.12 82.34
99 84.15 83.34

109 102.73 118.59
52 59.03 66.57
79 85.11 74.73
55 62.72 52.54
48 85.33 82.77
73 80.11 82.70
50 81.46 82.51
78 84.87 83.39

118 64.29 82.03
80 96.90 101.73
73 92.33 90.92
44 66.99 81.54
42 79.09 81.62

125 117.19 118.06
107 88.75 83.49
45 85.24 82.77
79 92.16 85.69
71 88.95 85.66

134 118.76 121.85
109 103.70 118.79
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Figure 12. Values obtained by the mathematical and ANFIS model and the actual measured ones.
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7. Conclusion

In this paper, a study on the modeling of a queuing system in a logistics company for the
manufacturing of brown paper was conducted. An ANFIS model for modeling a time component of
the system was developed as a criterion for optimization. The contributions of this research
can be described in the following ways. The proposed neuro-fuzzy model extends the theoretical
framework of knowledge in the field of QS. The QS problem is considered by a new methodology,
and thus, a basis for further theoretical and practical upgrading is formed. In addition, the presented
model emphasizes the unique practical parameters (the inter-arrival time of trucks, the cumulative
time of arrival since an initial time, the service time), which, in former MSS models, have not been
considered as unified, despite being of importance for this logistics company and its customers.

The proposed neuro-fuzzy model has four main advantages over other methods. First,
in comparison with classical QS, it has an adaptability feature, which is reflected in its ability to
adjust a fuzzy rule base. Fuzzy rules are very important for managing queuing systems, especially
for a descriptive approach that prefers intuitive, heuristic searches of solutions in a queuing system
process. This flexibility allows us to overcome the limitations of conventional QS models that perform
a prediction of the flow throughout statistical consideration of parameters without intuitiveness.
Second, the neuro-fuzzy model is effective under conditions of uncertainty, and can provide support to
decision-makers when there is uncertainty in logistics processes. Third, it can be implemented
as a computer system that supports a dynamic decision-making process in the QS. And fourth,
the proposed model allows relatively fast and objective estimates to be made of serving the vehicles
in a transportation company, under conditions of a changing environment. The continuation of this
research may also include the optimization of other, smaller queuing systems for the decentralized
storage system of this company.
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3. Stević, Ž.; Mulalić, E.; Božičković, Z.; Vesković, S.; Đalić, I. Economic analysis of the project of warehouse
centralization in the paper production company. Serbian J. Manag. 2018, 13, 47–62. [CrossRef]

4. Guerrouahane, N.; Aissani, D.; Bouallouche-Medjkoune, L.; Farhi, N. M/g/c/c state dependent queueing
model for road traffic simulation. arXiv, 2016; arXiv:1612.09532.

5. Raheja, T. Modelling traffic congestion using queuing networks. Sadhana 2010, 35, 427–431. [CrossRef]
6. Van Woensel, T.; Vandaele, N. Queueing models for uninterrupted traffic flows. In Proceedings of the 13th

Mini-EURO Conference Handling Uncertainty in the Analysis of Traffic and Transportation Systems, Bari,
Italy, 2002; pp. 636–640.

7. Vandaele, N.; Van Woensel, T.; Verbruggen, A. A queueing based traffic flow model. Transport. Res. D-Tr. E.
2000, 5, 121–135. [CrossRef]

8. Osorio, C.; Bierlaire, M. Network performance optimization using a queueing network model.
In Proceedings of the European Transport Conference, Langelaan, The Netherlands, 6–8 October 2008.

9. Anokye, M.; Abdul-Aziz, A.R.; Annin, K.; Oduro, F.T. Application of queuing theory to vehicular traffic at
signalized intersection in Kumasi-Ashanti region, Ghana. Am. Int. J. Cont. Res. 2013, 3, 23–29.

10. Wang, F.; Ye, C.; Zhang, Y.; Li, Y. Simulation analysis and improvement of the vehicle queuing system on
intersections based on MATLAB. Open Cybernet. Syst. J. 2014, 8, 217–223. [CrossRef]

261



Information 2018, 9, 240

11. Chen, W.N. Application of queuing theory to dynamic vehicle routing problem. Glob. J. Bus. Res. 2009, 3,
85–91.

12. Azizi, A.; Yarmohammadi, Y.; Yasini, A.; Sadeghifard, A. A queuing model to reduce energy consumption
and pollutants production through transportation vehicles in green supply chain management. J. Sci. Res.
Rep. 2015, 5, 571–581. [CrossRef]

13. Aziziankohan, A.; Jolai, F.; Khalilzadeh, M.; Soltani, R.; Tavakkoli-Moghaddam, R. Green supply chain
management using the queuing theory to handle congestion and reduce energy consumption and emissions
from supply chain transportation fleet. J. Ind. Eng. Manag. 2017, 10, 213–236. [CrossRef]

14. Gong, Y.; De Koster, R.B. A review on stochastic models and analysis of warehouse operations. Log. Res.
2011, 3, 191–205. [CrossRef]

15. Masek, J.; Camaj, J.; Nedeliakova, E. Application the queuing theory in the warehouse optimization. Int. J.
Soc. Behav. Educ. Econ. Bus. Ind. Eng. 2015, 9, 3744–3748.

16. Cai, X.; Heragu, S.S.; Liu, Y. Modeling automated warehouses using semi-open queueing networks.
In Handbook of Stochastic Models and Analysis of Manufacturing System Operations; Smith, J.M., Tan, B., Eds.;
Springer-Verlag: New York, NY, USA, 2013; pp. 29–71.

17. Bao-ping, C.; Zeng-Qiang, M. Short-term traffic flow prediction based on ANFIS. In Proceedings of the
International Conference on Communication Software and Networks, Sichuan, China, 27–28 February 2009;
pp. 791–793.

18. Rahimi, A.M. Neuro-fuzzy system modelling for the effects of intelligent transportation on road accident
fatalities. Tehnički Vjesn. 2017, 24, 1165–1171.

19. Hosseinlou, M.H.; Sohrabi, M. Predicting and identifying traffic hot spots applying neuro-fuzzy systems in
intercity roads. Int. J. Environ. Sci. Technol. 2009, 6, 309–314. [CrossRef]

20. Suraj, S.; Jagrut, G. Smart traffic control using adaptive neuro-fuzzy Inference system (ANFIS). Int. J. Adv.
Eng. Res. Dev. 2015, 2, 295–302.

21. Araghi, S.; Khosravi, A.; Creighton, D. ANFIS traffic signal controller for an isolated intersection.
In Proceedings of the International Conference on Fuzzy Computation Theory and Applications, Rome, Italy,
22–24 October 2014; pp. 175–180.

22. Udofia, K.M.; Emagbetere, J.O.; Edeko, F.O. Dynamic traffic signal phase sequencing for an isolated
intersection using ANFIS. Auto. Control Intell. Syst. 2014, 2, 21–26.

23. Sharma, A.; Vijay, R.; Bodhe, G.L.; Malik, L.G. Adoptive neuro-fuzzy inference system for traffic noise
prediction. Int. J. Comput. Appl. 2014, 98, 14–19. [CrossRef]
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Abstract: In commercial organizations operations, frequently some dynamic events occur which
involve operational, managerial, and valuable information aspects. Then, in order to make a sound
decision, the business professional could be supported by a Multi Criteria Decision-Making (MCDM)
system for taking an external course of action, as, for instance, forecasting a new market or product,
up to an inner decision concerning for instance, the volume of manufacture. Thus, managers need,
in a collective manner, to analyze the actual problems, to evaluate various options according to
diverse criteria, and finally choose the best solution from a set of various alternatives. Throughout
these processes, uncertainty and hesitancy easily arise, when it comes to define and judge criteria
or alternatives. Several approaches have been introduced to allow Decision Makers (DMs) to deal
with. The Interval Multiplicative Preference Relations (IMPRs) approach is a useful technique and
the basis of our proposed methodology to provide reliable consistent and in consensus IMPRs. In this
manner, DMs’ choices are implicitly including their uncertainty while maintaining both an acceptable
individual consistency, as well as group consensus levels. The present method is based on some
recent results and an optimization algorithm to derive reliable consistent and in consensus IMPRs.
In order to illustrate our results and compare them with other methodologies, a few examples are
addressed and solved.

Keywords: uncertain group decision-making support systems; multiple criteria decision-making;
reliable group decision-making; interval multiplicative preference relations

1. Introduction

Among the vast world of commercial operations organizations and despite their differences,
they have common business operations or activities such as acquiring inventory, hiring employees
and cashing from customers. Nowadays, inside each modern organization, we can frequently
find an information system working in synchrony with these business operations. Furthermore,
several important information systems are fed by operating departments (work centers of the
organization), and, as a result, these systems’ outcomes can be used to manage these operations. As a
consequence, managers analyze their corresponding information system in light of the work that the
organization performs. For instance, when a marketing manager is required to advise management and
to have some reports for management decision-making, she/he must understand the organization’s
product cycles.

There are various events which occur while organizations engage their business operations as,
for instance, diverse trends in purchases and sales. This dynamic data coming from these events
are frequently recorded and kept up in a database to mirror and supervise business operations.
These records include operational, managerial, and valuable information details. Thus, in order to
design and use a group decision-making system, the business professional must previously consider
what kind of event data is needed and the necessary process to extract the useful information.
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In essence, the type of decision under consideration rules what kind, amount and quality of the
information must be used to make a sound decision. Furthermore, information is more valuable
when it recognizes and doesn’t disregard the personal management styles, the main choices of the
the decision maker, the weighting of each decision maker with respect to the entire decision-making
process, and managers’ uncertainty and hesitancy when a heterogenous group tries to achieve an
integral decision.

Multi criteria decision-making then could support human-centered management in taking
a course of action for a sound decision-making to elucidate several management problems. For instance,
what products to sell and the suitable targeted market to sell them, or the structure of the organization
better suited for this process or even the direction and motivation of employees based on some
known standards. Another type of management problem can be an inner decision as for instance,
human resources information, volume of manufacture and the available delivering chains, which is
useful to develop alternative methods for manufacturing and delivering a new product.

On the other hand, the essence of the information provided to managers must be according to
the management level. For example, strategic level managers need information allowing them to
assess the environment to forecast future events and conditions, where s/he may not be as concerned
with the timeliness or accuracy of the information as her/his interest is in the trends. In this case,
most of the information is exogenous to the organization, or tactical management needs information
mainly coming from pertinent operational units. Some exogenous information is needed, as well as
more detailed and accurate information than the information required at the strategic level. Finally,
operational management unit usually requires exogenous narrower information but more detailed
and accurate information. It comes largely from within the organization where frequent decisions are
made, with shorter lead times to respond in a timely manner to current variations as, for instance,
in sales patterns.

As we noted in this section, managers support the entire firms’ making decision to achieve diverse
kind of goals. They have basically different kinds of perspectives and local goals to reach a high
efficiency level at their respective departments. However, the main goal of the firm needs, at certain
moments, to combine local goals and perspectives of the work centers, with particular global targets.

In this scenario of heterogeneous managers group, an MCDM system for supporting the
management for group decision-making becomes paramount.

Fortunately, there are a vast variety of MCDM techniques ranging from: analytic hierarchy
process (AHP) [1], multi attribute utility theory (MAUT) [2], simple multi attribute rating technique
(SMART) [3], fuzzy set theory (FST) [4], data envelopment analysis (DEA) [5], case-based reasoning
(CBR) [6], simple additive weighting (SAW) [7], elimination et choice translating reality (ELECTRE) [8],
technique for order of preference by similarity to ideal solution (TOPSIS) [9], preference ranking and
organization method for enrichment evaluation (PROMETHEE) [10], and goal programming (GP) [11].
Another interesting method for addressing uncertainty is the Hesitant Fuzzy Sets (HFS) [12] where
some recent contributions for heterogeneous information are found [13–18]. These methods are
appropriate for uncertainty problems, since fuzzy logic aims to represent human preferences based on
individual opinions expressed through a linguistic setting. Its major drawback is that membership
functions (which can be seen as intervals) are fixed and also, until now, there does not exist detailed
work related to an appropriate analytical tool (norms, aggregation operators, etc.) for a particular
study case. Thus, it results in a greater uncertainty and vagueness to the problem.

Recently, several frameworks have been employed and successfully applied to solve decision
problems in many areas, including international politics and laws [19], transportation [20–23],
business intelligence [24], information and communication technologies [25], water resources
management [26], environmental risk analysis [27], flood risk management [28], environmental impact
assessment and environmental sciences [14,29], solid waste management [30], climate change [31],
remote sensing [32], energy [33], health technology assessment [34] and nanotechnology research [35].
Furthermore, MCDM techniques have been integrated with known systems such as genetic algorithms,
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geographic information systems, fuzzy logic and intelligent systems, automatic control systems and
neural networks which recently are being applied.

Group Decision Making (GDM) is a main MCDM issue, where multiple DMs (managers in our
case) act collaboratively and collectively, analyze decision-making problems, evaluate goals according
to a set of criteria, and finally choose the best solution from a set of alternatives [36]. As noted in [37],
when organizations gather specialized groups or larger groups, and the number of alternatives increase,
unanimity may be difficult to attain. For this reason, flexible or milder benchmarks (definitions) of
Group Consensus and Individual Consistency have been employed.

Group Consensus (GC) has to do with group cooperation and agreement since the alternative,
option, or goal to be achieved is the best course of action for the whole organization. On the other
hand, Individual Consistency (IC) concerns each DM to have her/his information, and, consequently,
her/his judgments, free of contradictions.

Derived of the blend of heterogenous DM group, a common problem in big organizations is that
managers often can accurately state definitions and assessments on the priority rate of the set of criteria
or alternatives, when it concerns their own operating departments. However, when it comes to define
and judge any other set of criteria or alternatives, they face uncertainty and hesitation problems.

In this paper, we address and solve these problems by allowing the DM to utilize blended
assessments. For example, DMs can use crisp values for her/his ratio judgments of criteria or
alternatives when s/he is confident; and then they can use intervals where these are used to express
her/his uncertainty and hesitant assessments.

The aim of this paper is to synthesize a novel approach in order to provide a reliable measure of
both the IC and the GC of a set of these blended assessments, which we called Interval-Multiplicative
Preference Relations (I-MPRs). Then, in the next step, the approach is verified by a constrained
optimization algorithm where the improved I-MPRs will finally fulfill the Individual Consistency and
Group Consensus Indices since both restrictions are involved in the constraints.

In order to verify the requirements of acceptable IC and GC levels, we use the Hadamard’s
operator. As soon as IC and then GC are validated, an Interval Priority Vector can be obtained from this
set of ordered judgment I-MPRs, in order to rank the alternatives as a final result of the DM analysis.
Various techniques are revised and the prioritization method which indicates the entire order of the
intervals and the preference degrees, is addressed according to our results.

The main advantages of our approach follow:

• It is provided through a couple of algorithms and a nonlinear optimization approach
concurrently applied.

• Through the Hadamard’s operator and some easy algebraic manipulations, objective functionals
are synthesized (as it will be detailed further on), to be used in the optimization algorithm.

• When the I-MPRs improved by the methodology are reduced into an MPR (defined in the I-MPR),
our approach can still give reliable results. For example, for this MPR, we can verify the results of
IC or GC, with an alternative method.

• The IC or the GC accepted indices (threshold values) have been previously investigated and
fixed. Nevertheless, the project designer could assign a different value depending on the
project requirements.

• Obtained results are independent of the method of prioritization utilized in the consensus operation.

This paper is organized as follows: In Section 2, some preliminaries (Definitions, Theorems
and Lemmata) are given to support a basis of the main methodologies and techniques previously
described above and the approach introduced here. In Section 3, an extension of analysis and
results derived in the former section is used in the I-MPR framework for obtaining our main results.
Then, in Section 4, a slight modification of a prioritization method is given in light of the results.
In Section 5, some numerical examples are solved and compared with other methodologies. Finally,
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in Section 6, concluding remarks are given about the main advantages, drawbacks and future research
of our methodology.

2. Preliminaries

Let us consider a Group Decision-Making problem and let D = {d1, d2, · · · , dm} be the set of DMs,
and C = {c1, c2, · · · , cn} be a finite set of criteria (or alternatives), where ci denotes the ith criteria.

In the AHP framework [1], a pairwise comparison matrix or an MPR is given by a DM where
s/he provides judgments through a ratio (ci/cj) for every pair of criteria (or alternatives) (ci and cj) to
represent the preference degree of the first criteria (or alternative) over the second. A Saaty’s Scale is
frequently used to pick up a value for this preference ratio where SS = [1/9 9].

Thus, an MPR for instance A = (aij)n×n, is a positive reciprocal n× n matrix, aij > 0, such that
aji = 1/aij, aii = 1, ∀i, j ∈ N. Note that aij ∈ [1/9 9].

Let λ = {λ1, · · · , λm} be the weight vector of the m− th DM, where λs > 0, s ∈ M, ∑m
s=1 λs = 1,

which can be derived with several techniques (see for instance [38] and the references cited therein).
An MPR n× n matrix is called a completely consistent MPR (cf. [1]) if

aij = ail alj, ∀i, j, l ∈ N. (1)

Thus, their corresponding completely consistent MPR K = (kij)n×n can be constructed from each
MPR n× n matrix as follows:

kij = ∏n
l=1

(
ail alj

)1/n
= a2/n

ij ∏n
l=1

i �=l, j �=l
(ail alj)

1/n, (2)

where i = 1, 2, · · · , n− 1, j = i + 1, · · · , n.
Furthermore, let Ac be the group MPR (cf. [39]) which represents the group opinion utilizing the

geometric average operator:

Ac = (ac
ij)n×n =

m

∏
t=1

(
a(t)ij

)λt
, i, j ∈ N; t ∈ M. (3)

Let us denote (cf. [40]), an I-MPR At given by the t− th expert as

At = (a(t)ij )n×n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
[
−
a
(t)

12
+
a
(t)

12

]
· · ·

[
−
a
(t)

1n
+
a
(t)

1n

]
[
−
a
(t)

21
+
a
(t)

21

]
1 · · ·

[
−
a
(t)

2n
+
a
(t)

2n

]
... · · · . . .

...[
−
a
(t)

n1
+
a
(t)

n1

] [
−
a
(t)

n2
+
a
(t)

n2

]
· · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4)

where
−
a
(t)

ij ,
+
a
(t)

ij > 0,
−
a
(t)

ij ≤ +
a
(t)

ij ,
−
a
(t)

ij = 1/
+
a
(t)

ji and
+
a
(t)

ij = 1/
−
a
(t)

ji . Furthermore, At = [
−
At

+
At].

For example,

−
At = (

−
a
(t)

ij )n×n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
a
(t)

ij , i < j,
1, i = j,
+
a
(t)

ij , i > j,

+
At = (

+
a
(t)

ij )n×n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+
a
(t)

ij , i < j,
1, i = j,
−
a
(t)

ij , i > j.

(5)
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2.1. Measuring the Dissimilarity between Matrices

A useful operator to measure the degree of dissimilarity between two MPRs is the Hadamard
Product (HP). The HP of A = (aij)n×n and B = (bij)n×n is defined by

C = (cij)n×n = A ◦ B = aijbij. (6)

Consequently, the degree of dissimilarity between A and B is defined as d(A, B) = 1
n2 eT A ◦

BTe or:
1
n2 Σn

i=1Σn
j=1aijbji =

1
n

[
1
n

Σn−1
i=1 Σn

j=i+1
(
aijbji + ajibij

)
+ 1

]
, (7)

where e = (1, 1, · · · , 1)T
n×1. Note that d(A, B) ≥ 1, d(A, B) = d(B, A) and d(A, B) = 1 if and only if

A = B.
In order to have an assessment of Individual Consistency (CI), one can measure the compatibility

of Al with respect to (w.r.t.) its own completely consistent matrix K given by Equation (2). Thus,

CIK(Al) = d(Al , K) ≤ CI, (8)

where CI = 1.1, Al , l = 1, 2, · · · , m is an individual MPR.
In a similar manner, the group consensus index of each MPR, i.e., GCIAc(Al), l = 1, 2, · · · , m,

is based on the compatibility of Al w.r.t. the group opinion given by Ac in Equation (3). Thus,
the assessment of group consensus for each MPR Al given by GCIAc(Al) read as:

GCIAc(Al) = d(Al , Ac) ≤ GCI, (9)

where the index is usually set at GCI = 1.1 and Al is an individual MPR.
From Equations (7) and (8), for CIK, it follows

d(Al , K) ≤ CI ⇒
1.0 ≤ 1

n

[
1
n Σn−1

i=1 Σn
j=i+1

(
aij ∏n

k=1(aikakj) + aji ∏n
k=1(ajkaki)

)
+ 1

]
≤ CI.

(10)

Respectively from Equations (7) and (9), for GCIAc evaluated for an Al follows:

d(Al , Ac) ≤ GCI ⇒ 1.0 ≤ 1
n

[
1
n

Σn−1
i=1 Σn

j=i+1

(
aij,l ac

ji + aji,l ac
ij

)
+ 1

]
≤ GCI. (11)

An MPR At is completely consistent if and only if CIK(At) = 1. Thus, a threshold useful to
measure the similarity of two MPRs up to an acceptable level of consistency was suggested by [41,42]
as CI = 1.1. Similarly, an MPR At is completely in consensus if and only if GCIAc(At) = 1 and
an acceptable level of consensus is GCI = 1.1.

In the following up to the end of the section, we utilize Definitions and Theorems recently
introduced to measure the Individual Consistency Index and Group Consensus Index of a set of
I-MPRs (cf. [43,44]). For details and proofs, please refer to these works.

Definition 1. Let {
o

At}n×n = {a(t)ij }n×n be the set of MPRs generated by the combinations of
−
a
(t)

ij and
+
a
(t)

ij

entries of At given by Equation (5), where o = 1, 2, · · · , μ and μ = 2
n(n−1)

2 .

Definition 2. The Individual Consistency Index of the I-MPRs (At)n×n given by Equation (4) when one has

generated the set of MPRs {
o

At}n×n given by Definition 1, is defined by

CI ∗
K
(
∗

At) ≡ max{CI 1
K
(

1
At), CI 2

K
(

2
At), · · · , CIμ−1

K
(

μ−1
At ), CIμ

K
(

μ

At)}. (12)
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Definition 3. The smallest Individual Consistency Index of the I-MPRs (At)n×n given by Equation (4) when

one has generated the set of MPR { o
At}n×n given by Definition 1, is defined by

CIK̃(Ãt) ≡ min{CI 1
K
(

1
At), CI 2

K
(

2
At), · · · , CIμ−1

K
(

μ−1
A t), CIμ

K
(

μ

At)}. (13)

From Definition 2, the next theorem is set forth.

Theorem 1. Let (At)n×n = (a(t)ij )n×n be an I-MPR given by Equation (4) and generate the set of μ MPRs

{ o
At}n×n by using the Definition 1. If one has an MPR, (Ax)n×n = (a(x)

ij )n×n within the intervals
[−

At
+
At

]
given by the I-MPRs (At)n×n, then

CIK(Ax) ≤ CI ∗
K
(
∗
At). (14)

In order to illustrate how useful are these Definitions and Theorem, we apply them on two I-MPRs
given by two experts to assessing three criteria.

Example 1. Let us consider two experts evaluating a set of three criteria through:

A1 =

⎛⎜⎝ 1 [1 2] [3 4]
[1/2 1] 1 [5 6]

[1/4 1/3] [1/6 1/5] 1

⎞⎟⎠ , A2 =

⎛⎜⎝ 1 [1.1 1.2] [1.3 1.4]
[1/1.2 1/1.1] 1 [1.5 1.6]
[1/1.4 1/1.3] [1/1.6 1/1.5] 1

⎞⎟⎠ , (15)

where for A1 it implies w1� w2� w3, and for A2 one gets w1� w2� w3.
Note: Experts coincide in their rankings of the three criteria. Nevertheless, the assessment ratios are

different.
In the following, the Definitions 1–3 are figured out for these two I-MPRs.
From Definition 1 applied to A1:

1
A1 =

⎛⎜⎝ 1 1 3
1 1 5

1/3 1/5 1

⎞⎟⎠ ,
2
A1 =

⎛⎜⎝ 1 1 3
1 1 6

1/3 1/6 1

⎞⎟⎠ ,
3
A1 =

⎛⎜⎝ 1 1 4
1 1 5

1/4 1/5 1

⎞⎟⎠ , · · · ,

8
A1 =

⎛⎜⎝ 1 2 4
1/2 1 6
1/4 1/6 1

⎞⎟⎠ .

(16)

In a similar manner, from Definition 1 applied to A2:

1
A2 =

⎛⎜⎝ 1 1.1 1.3
∗ 1 1.5
∗ ∗ 1

⎞⎟⎠ ,
2
A2 =

⎛⎜⎝ 1 1.1 1.3
∗ 1 1.6
∗ ∗ 1

⎞⎟⎠ ,
3
A2 =

⎛⎜⎝ 1 1.1 1.4
∗ 1 1.5
∗ ∗ 1

⎞⎟⎠ , · · · ,

8
A2 =

⎛⎜⎝ 1 1.2 1.4
∗ 1 1.6
∗ ∗ 1

⎞⎟⎠ ,

(17)

where, from now on, symbol ∗ corresponds to the inverted entries, respectively.

From Definition 2 applied to A1 and A2, it read as:

CI ∗
K
(
∗

A1) = 1.072454, CIK̃(Ã1) = 1.0018; CI ∗
K
(
∗

A2) = 1.005640, CIK̃(Ã2) = 1.0010. (18)
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The first expert has the higher Individual Consistency Index which means that s/he has a weaker consistency
in her/his judgments. It coincides with our logical expectations by analyzing and comparing both I-MPRs.

By defining for A1 and A2 an MPR within their own intervals, for instance

A1x =

⎛⎜⎝ 1 1.5 3.7
∗ 1 5.6
∗ ∗ 1

⎞⎟⎠ , A2x =

⎛⎜⎝ 1 1.15 1.37
∗ 1 1.56
∗ ∗ 1

⎞⎟⎠ , (19)

and by applying Theorem 1 to both MPR, one has:

CIK1x (A1x) = 1.0251 ≤ CI ∗
K
(
∗

A1); CIK2x (A2x) = 1.0027 ≤ CI ∗
K
(
∗

A2). (20)

In order to reach a Group Consensus solution, the experts are supposed to participate in rounds of
discussion to meet a common goal. Then, definitions are next introduced to compute the dissimilarity
amongst DM’ assessments for finally obtaining the GCI level.

In a similar manner as Definition 1, one can compute the whole combination of the values given
by the set of I-MPRs through:

Definition 4. From the m I-MPRs given as in Equation (4), (At)n×n, t = 1, 2, · · · , m, their set of MPRs

{Ǎ}n×n which is the whole combination of the interval values of the set of (At)n×n I-MPRs with
−
a
(t)

ij and
+
a
(t)

ij ,

where r = 1, 2, · · · , ν and ν = 2m·μ = 2
m(n)(n−1)

2 , is given by

{Ǎ}n×n = {
1
Ǎ,

2
Ǎ, · · · ,

ν

Ǎ}. (21)

Furthermore, a set of {Ǎc}n×n which represents each group opinion utilizing the geometric
average operator corresponding to each element of the set {Ǎ}n×n, can be defined.

Definition 5. Based on Definition 4, one can compute for the set of I-MPRs (At)n×n and {Ǎ}n×n,
t = 1, 2, · · · , m, its set of MPR {Ǎc}n×n. Then, the corresponding set of {Ǎc}n×n which is the Group
I-MPRs Opinion utilizing the geometric operator is given by

{Ǎc}n×n = {ǎc
ij}n×n = {

m

∏
t=1

(
Ǎ
)λt}, t ∈ M, (22)

where {ǎc
ij}n×n is the combination of the whole set of values (2m·μ=2

m·n·(n−1)
2 ).

Definition 6. The Group Consensus Index of a set of I-MPRs (At)n×n, t = 1, 2, · · · , m, given by Equation (4)

when one has generated the set of MPRs {Ǎc}n×n = {
1

Ǎc,
2

Ǎc, · · · ,
ν

Ǎc}, given by Definition 5, is defined by

GCIȞt

(
Ǎt
)

n×n ≡ max{GCI 1
Ǎc
(

1
Ǎ), GCI 2

Ǎc
(

2
Ǎ), · · · , GCIν−1

Ǎc
(

ν−1
Ǎ ), GCI ν

Ǎc
(

ν

Ǎ)}, (23)

where ν = 2
m·n·(n−1)

2 and Ȟt is associated with the corresponding
p

Ǎc matrix and p ∈ {1, 2, · · · , ν}.

Definition 7. The smallest Group Consensus Index of a set of I-MPRs (At)n×n, t = 1, 2, · · · , m, given by

Equation (4) when one has generated the set of MPRs {Ǎc}n×n = {
1

Ǎc,
2

Ǎc, · · · ,
ν

Ǎc}, given by Definition 5,
is defined by
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GCI−
Ht

(−
At

)
n×n

≡ min{GCI 1
Ǎc
(

1
Ǎ), GCI 2

Ǎc
(

2
Ǎ), · · · , GCIν−1

Ǎc
(

ν−1
Ǎ ), GCI ν

Ǎc
(

ν

Ǎ)}, (24)

where ν = 2
m·n·(n−1)

2 and
−
Ht is associated with the corresponding

p

Ǎc
n×n matrix and p ∈ {1, 2, · · · , ν}.

Example 2. Let us consider the confidence weight of the two experts through the following weight vector
λ = [2/7 5/7]. Then, from Definition 4, Equations (16) and (17), it follows:

1
Ǎ = { 1

A1,
1
A2};

2
Ǎ = { 1

A1,
2
A2};

3
Ǎ = { 1

A1,
3
A2}; · · · ;

64
Ǎ = { 8

A1,
8
A2}. (25)

From Definition 5 applied to Equation (25), one has:

{Ǎc} = {
1

Ǎc,
2

Ǎc, · · · ,
64
Ǎc}, (26)

where, from Equation (3), it implies:

1
Ǎc = (

1
ǎc

ij) =

(
1
a
(1)

ij

)2/7

∗
(

1
a
(2)

ij

)5/7

;
2

Ǎc = (
2
ǎc

ij) =

(
1
a
(1)

ij

)2/7

∗
(

2
a
(2)

ij

)5/7

;

3
Ǎc = (

3
ǎc

ij) =

(
1
a
(1)

ij

)2/7

∗
(

3
a
(2)

ij

)5/7

; · · · ;
64
Ǎc = (

64
ǎc

ij) =

(
8
a
(1)

ij

)2/7

∗
(

8
a
(2)

ij

)5/7

.

(27)

From Definition 6, it results:

GCIȞ1

(
Ǎ1
)
= 1.2143; GCIȞ2

(
Ǎ2
)
= 1.0325. (28)

These results indicate that the first expert A1, which has the lowest weight (λ1 = 2/7), is not in consensus.
In addition, from Definition 7, it follows:

GCI−
H1

(−
A1

)
= 1.1120; GCI−

H2

(−
A2

)
= 1.0173. (29)

As soon as we obtain ICI and GCI of a set of I-MPRs, the accepted threshold values (ICI and
GCI respectively) give how acceptable in Consistency and Consensus the assessments of the DMs are.
Whenever some I-MPRs are over their index values, we can apply the following strategy to improve
their Individual Consistency and/or their Group Consensus Indices.

3. Reliable Intervals for Individual Consistency and Group Consensus

Once the ICI has been calculated, it may happen that one or more I-MPRs are not consistent.
For example, r I-MPRs were not consistent. In that case, we need to improve the Individual Consistency
of those I-MPRs and then let us define this set of MPRs as:

Ao
I ≡

[
−
a
(o)

ij
+
a
(o)

ij

]
n×n

, i, j ∈ N, o = 1, 2, · · · , r. (30)

Naturally, each one of the Ao
I , I = 1, 2, · · · , r doesn’t verify for a special combination of its values

(given by Equation (12)), the inequality given in Equation (10).

In a similar manner, once the GCI has been calculated, it may happen that one or more I-MPRs
are not in consensus. For example, for instance y I-MPRs were not in consensus. In that case, we need
to improve the Group Consensus of those I-MPRs and then let us define this set of MPRs as
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Ap
J ≡

[
−
a
(p)

ij
−
a
(p)

ij

]
n×n

, i, j ∈ N, p = 1, 2, · · · , y. (31)

Once again, each one of the AP
J , J = 1, 2, · · · , y doesn’t verify, for a special combination of values

(given by Equation (23)), the inequality given in Equation (11).

3.1. Sequential Quadratic Programming Methodology

When one has a constrained nonlinear optimization problem (NLP) and wants a numerical
solution, the Sequential Quadratic Programming (SQP) [45] is a useful approach. Let us consider the
implementation of the sequential quadratic programming methodology to NLP of the form:

minimize f (x),
over x ∈ Rn,

subject to h(x) = 0,
g(x) ≤ 0,

(32)

where f : Rn −→ R is the objective functional, the functions h : Rn −→ Rm and g : Rn −→ Rp describe
the equality and inequality constraints. The sequential quadratic programming is an iterative method
for modelling the NLP for a given iterate xk, k ∈ N0, by a Quadratic Programming (QP) subproblem.
As soon as the method solves that QP subproblem, the solution is used to build a new iterate xk+1.
This is figured out in such a way that the sequence (xk)k∈N0 converges to a local minimum x∗ of the
NLP Equation (32) as k → ∞.

Then, as we can observe, the problem of minimizing an objective functional (given in our case by
Equation (7)), where one has some inequalities constraints from Equation (10), (related to g(x)) with
the additional observation of constraints imposed by Equation (30) (related to h(x)), defines an NLP to
improve the Individual Consistency Index of an I-MPR.

In a similar manner, the problem of minimizing an objective functional (given by Equation (7))
providing some inequalities constraints from Equation (11), (related to g(x)) with the additional
observation of constraints imposed by Equation (31) (related to h(x)), defines an NLP to improve the
Group Consensus Index of a set of I-MPRs.

An additional observation is that since we have interval judgments in I-MPRs, we should apply
the SQP to minimize the objective functional to found the minimal values verifying the required
constraints. After that, we should then apply the SQP to maximize the objective functional to found the
maximal values. In this manner, we will finally find reliable intervals where are fulfilled inequalities
and equalities constraints and conditions of Equations (10) and (11), to obtain acceptable Individual
Consistency and Group Consensus, respectively.

3.2. Matching the Problem with the SQP for Improving I-MPRs

From Equation (30) (Equation (31) resp.), the following inequalities can be stated in terms of
optimization variables xi, as follows:

aδ
12 ≤ x1 ≤ +

a
δ

12,
...

aδ
1n ≤ xn−1 ≤ +

a
δ

1n,
...

aδ
(n−1)n ≤ x n2−n

2
≤ +

a
δ

(n−1)n,

(33)

where δ stands for o in the Individual Consistency assessments and for p in the Group Consensus
assessments. For the Individual Consistency, the inequalities given from Equation (10) are

272



Information 2018, 9, 300

1.0 ≤ d(
∗
AI ,

∗
K) ≤ 1.1 which impose some inequality constraints to be fulfilled. For Group Consensus

improvement, they are given from Equation (11) as 1.0 ≤ d(ǍJ , ȞJ) ≤ 1.1.
The relationship between xk, k = 1, 2, · · · , n2−n

2 and the set of I-MPRs (At)n×n, t = 1, 2, · · · , m
under analysis is given by:

At =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−+
a

(t)

12
−+
a

(t)

13 · · · −+
a

(t)

1(n−1)
−+
a

(t)

1n

∗ 1
−+
a

(t)

23 · · · −+
a

(t)

2(n−1)
−+
a

(t)

2n

∗ ∗ 1 · · · −+
a

(l)

3(n−1)
−+
a

(t)

3n
... · · · · · · . . .

...
...

∗ ∗ · · · · · · 1
−+
a

(t)

(n−1)n
∗ ∗ · · · · · · ∗ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡

Xt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x
1+ n(n−1)

2 (t−1)
x

2+ n(n−1)
2 (t−1)

· · · x
n−1+ n(n−1)

2 (t−1)

∗ 1 x
n+ n(n−1)

2 (t−1)
· · · x

2(n−1)−1+ n(n−1)
2 (t−1)

∗ ∗ 1 · · · x
3(n−1)−3+ n(n−1)

2 (t−1)
... · · · · · · . . .

...
∗ ∗ · · · · · · x n(n−1)

2 t

∗ ∗ · · · · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(34)

where
−+
a

(t)

ij stands for the corresponding crisp or interval value of the I-MPR.
From the definition of constrained nonlinear optimization problem, we note that when the I-MPR

is in fact just an MPR (when the respective expert has a high confidence in her/his assessments),
the SQP could not give any different solution. This is because the optimization variables will
remain unchanged since the variables xi, i = 1, 2, 3, · · · , (n2 − n)/2 will be defined as a crisp values
(cf. Equation (33)).

Thus, in order to provide a general benchmark to address and solve any possible case of
assessments given through I-MPRs, we will modify slightly the SQP. We introduce a design parameter
ε which will be used as an additive or subtractive element, for high and low bounds, respectively,
of the I-MPRs to be improved.

For example, we modify Equation (33) as follows:

aδ
12 − ε ≤ x1 ≤ +

a
δ

12 + ε,
...

aδ
1n − ε ≤ xn−1 ≤ +

a
δ

1n + ε,
...

aδ
(n−1)n − ε ≤ x n2−n

2
≤ +

a
δ

(n−1)n + ε,

(35)

where ε > 0. For the sake of compactness, let us integrate in the same terms the parameter ε.

For example, a(o)ij ≡ ao
ij − ε and

+
a
(o)

ij ≡ +
a

o

ij + ε for Individual Consistency analysis, and a(p)
ij ≡ ap

ij − ε

and
+
a
(p)

ij ≡ +
a

p

ij + ε, for Group Consensus analysis.
In that manner, when the SQP does not provide a feasible solution, we will again iterate with

an incremental ε-value, until a solution is found.
It is worth mentioning that ε must be initialized, with a small value, to keep the maximum of the

information provided by the expert.
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3.2.1. Individual Consistency Objective Functional

Thus, when an I-MPR is inconsistent, we need to synthesize the objective functional. For example,
from Equations (7) and (10), one obtains:

1.0 ≤ 1
n

[
1
n Σn−1

i=1 Σn
j=i+1

(
aij ∏n

k=1(aikakj) + aji ∏n
k=1(ajkaki)

)
+ 1

]
≤ CI. (36)

After some algebraic manipulations, it implies:

1.0 ≤ 1
n2

[
Σn−1

i=1 Σn
j=i+1

(
a

n−2
n

ij ∏n
l=1

i �=l,l �=j
(ajl ali) + a

n−2
n

ji ∏n
l=1

i �=l,l �=j
(ail alj)

)]
+ 1

n ≤ CI. (37)

3.2.2. Group Consensus Objective Functional

In a similar manner, when an I-MPR (Ao
J)n×n is not in consensus, we need to synthesize the

objective functional. For example, from Equation (11), one obtains:

1.0 ≤ 1
n2

[
Σn−1

i=1 Σn
j=i+1

(
a(J)

ij ∏m
t=1(a(t)ji )λt + a(J)

ji ∏m
t=1(a(t)ij )λt

)]
+ 1

n ≤ GCI. (38)

After some algebraic manipulations, it implies for (AJ)n×n:

1.0 ≤ 1
n2

⎛⎜⎜⎝ a(J)(1−λJ)
12

a(1)(λ1)
12 · a(2)(λ2)

12 · · · a(m)(λm)
12︸ ︷︷ ︸ + 1

α1
+

a(J)(1−λJ)
13

a(1)(λ1)
13 · a(2)(λ2)

13 · · · a(m)(λm)
13︸ ︷︷ ︸+

1
α2
+

· · ·+
a(J)(1−λJ)

(n−1)n

a(1)(λ1)
(n−1)n · a(2)(λ2)

(n−1)n · · · a(m)(λm)
(n−1)n︸ ︷︷ ︸

+ 1
αm

⎞⎟⎟⎠+ 1
n ≤ GCI,

(39)

where α1 equals to the term over the first brace, α2 equals to the term over the second brace, and so

on. Furthermore, note that the term a(1)(λ1)
12 · a(2)(λ2)

12 · · · a(m)(λm)
12 excepts the term a(J)(λJ)

12 , the term

a(1)(λ1)
13 · a(2)(λ2)

13 · · · a(m)(λm)
13 excepts the term a(J)(λJ)

13 , and so on.

Finally, the initialization point x0 used in the NLP can be set at any point within the corresponding
interval given by Equation (33).

In the following, an algorithm based on an NLP is used to obtain reliable intervals for the
assessment of based decision models such as those given by the set of I-MPRs for both indices (CI and
GCI). Two similar methods are blended to obtain both reliable I-MPR Consistency and Consensus
levels. For example, for Individual Consistency improvement, we can find an I-MPR verifying
Individual Consistency. For the other case, for Group Consensus improvement, a reliable Consensus
Index for I-MPRs is obtained. In order to use an NLP, an SQP algorithm can be found in [45]. In the
following, our algorithm is described in detail.

3.3. Improving the Individual Consistency of an I-MPR

A scheme of the Algorithm 1 implementation is depicted in Figure 1. Once the set of I-MPRs are
all acceptably consistent, we can improve the Group Consensus level through the following algorithm.
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Algorithm 1: Algorithm IC-I-MPR

Input: Ao
I = (

−
a
(o)

ij
+
a
(o)

ij )n×n: the initial interval I-MPR; x0: the initialization value for the
nonlinear optimization, which is to be defined within the corresponding interval or as the
corresponding crisp value; the threshold value of CI for the Individual Consistency
assessment; εc : Design parameter value allowing the enlargement pace of the searching space
of the algorithm.

Output: Ao
I : the consistency interval matrix computed and verifying interval conditions given

by Equation (10).
Step 1: Get the function for the assessment of Individual Consistency given by Equation (37).
Step 2: Define for the nonlinear optimization algorithm, the allowed intervals:

−
a
(o)

ij ≤ xi ≤ +
a
(o)

ij ; j > i, i, j = 1, 2, · · · , n. (40)

Thus, assign the former linear inequality constraints as follows:

c(2k + 1) = xi − +
a
(o)

ij ; c(2(k + 1)) =
−
a
(o)

ij − xi,

j > i, i, j = 1, 2, · · · , n, k = 0, 1, 2, · · · , n2−n
2 .

(41)

Step 3: Obtain the acceptable index of Individual Consistency, 1.0 ≤ d(
∗
AI ,

∗
K) ≤ CI. Thus,

based on matrix K given by Equation (2), the nonlinear inequality constraints imposed are
given by Equation (10).

Step 4: Solve the former nonlinear optimization problem using the SQP algorithm to
minimize it.

Step 5: If an unfeasible solution is obtained, assign εc = β ∗ εc, where β = 1, 2, 3, · · · ,
increments at each iteration and return to Step 4. Otherwise, continue to the next step.

Step 6: Obtain Ao
Imin = (

−
a
(o)

ij )n×n. Solve again the same nonlinear optimization problem but
this time in order to maximize it. In order to do so, assign the objective functional as − f (x).

Obtain Ao
Imax = (

+
a
(o)

ij )n×n.

Step 7: Compose the Consistency Interval Matrix Ao
I as follows:

Ao
I =

[
−
a
(o)

ij
+
a
(o)

ij

]
n×n

, (42)

where
[
−
a
(o)

ij
+
a
(o)

ij

]
, stands for the interval or crisp value obtained.

Step 8: end.
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+
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Define the NLP.
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Figure 1. Process flowchart for improving consistency of an I-MPR.

3.4. Improving the Group Consensus of a Set of I-MPRs

A scheme of the Algorithm 2 implementation is depicted in Figure 2.
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Algorithm 2: Algorithm GC-I-MPR

Input: AP
J = (

−
a
(p)

ij
+
a
(p)

ij )n×n: the initial interval I-MPRs; x0: the initialization value for the
nonlinear optimization, which is to be defined within the corresponding interval or as the
corresponding crisp value; GCI for the Group consensus assessment; εg : design parameter
allowing the enlargement of the searching space of the algorithm.

Output: AP
J : the I-MPRs computed and verifying interval conditions given by Equation (11).

Step 1: Get the function for the assessment of Group Consensus given by Equation (39).
Step 2: Define for the nonlinear optimization algorithm, the allowed intervals:

−
a
(p)

ij ≤ xi ≤ +
a
(p)

ij ; j > i, i, j = 1, 2, · · · , n. (43)

Thus, assign the former linear inequality constraints as follows:

c(2k + 1) = xi − +
a
(p)

ij ; c(2(k + 1)) =
−
a
(p)

ij − xi;

j > i, i, j = 1, 2, · · · , n, k = 0, 1, 2, · · · , n2−n
2 .

(44)

Step 3: Obtain the acceptable Group Consensus Index d(ǍJ , ȞJ). Thus, based on the set of
{Ǎc}n×n given by Equation (22), the nonlinear inequality constraints imposed is given by
1.0 ≤ d(ǍJ , ȞJ) ≤ 1.1.

Step 4: If GCI(At) ≤ GCI, t = 1, 2, · · · , m, then goto Step 9. Otherwise, continue with the
next step.

Step 5: Solve the former nonlinear optimization problem (NLP) using the SQP algorithm to
minimize it.

Step 6: If an unfeasible solution is obtained, assign εg = θ ∗ ε, where θ = 1, 2, 3, · · · , increments
at each iteration and return to Step 4. Otherwise, continue to the next step.

Step 7: Obtain the matrix AP
Jmin = (

−
a
(p)

ij )n×n. Solve again the same nonlinear optimization

problem but this time in order to maximize it. Obtain AP
Jmax = (

+
a
(p)

ij )n×n.
Step 8: Goto to Step 2.
Step 9: Compose the J − th Group Consensus Interval Matrix AP

J as follows:

AP
J =

[
−
a
(p)

ij
+
a
(p)

ij

]
n×n

, (45)

where
[
−
a
(p)

ij
+
a
(p)

ij

]
, stands for the interval or crisp value obtained.

Step 10: end.

Section Remarks:

- In the case that an expert has provided a crisp value(s) in her/his judgement(s), this value(s)
drives the process of nonlinear optimization since they will slightly change with the pace of ε. It is
very useful since precisely in that value(s), the expert has shown her/his highest confidence level.

- At the end of both algorithms, one gets reliable I-MPRs, i.e., where the consistency and consensus
constraints are fulfilled.
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(
ǍJ
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Figure 2. Process flowchart for improving consensus of I-MPRs.

4. Prioritization Method and Methodology Application

The process of deriving a priority weight vector of the alternatives, wi = (w1, w2, · · · , wn)T from
an I-MPR, for instance an At, is called a prioritization method, where wl ≥ 0 and ∑n

l=1 wl = 1. Then,
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when one has the evaluation for Ǎ which is associated to the maximum value (cf. Equation (23)) of the
Group Consensus Index of I-MPRs At, it follows from Equation (9):

w̌i =

⎛⎝( n

∏
j=1

∗
aij

)1/n
⎞⎠ ·

⎛⎝( n

∏
j=1

Ȟt

)1/n
⎞⎠ = wi(Ǎ)wi(Ȟt), (46)

where wi(Ǎ) and wi(Ȟt) are the weights of Ǎ and Ȟt, respectively.
In a similar manner, for A which is associated to the minimum value (cf. Equation (13)) of the

Group Consensus Index of I-MPRs At, one has:

wi(θ) =

⎛⎝( n

∏
j=1

aij

)1/n
⎞⎠ ·

⎛⎝( n

∏
j=1

Ht

)1/n
⎞⎠ = wi(A)wi(Ht), (47)

where wi(A) and wi(Ht) are the weights of A and Ht, respectively.
Consequently:

wi = [wi, w̌i] . (48)

As soon as the set of I-MPRs is acceptably consistent and in consensus, the interval priority vector
to rank alternatives is obtained. To do so, an interval ranking is used.

Interval Priority Vector Synthesis

An interval priority vector should reflect different expert’s risk preferences for her/his interval
judgments. There are mainly two prioritization methods: (among others cf. [46] and the references
therein) Eigenvalue-based Methods (EM), (cf. [1,47]) and the Row Geometric Mean Method (RGMM),
(cf. [48]) that are utilized to derive a priority weight vector from an ordered judgment matrix which is
the method here utilized.

Based on the results given in [49], a slight modification of their method is addressed below.

Let us consider for instance two intervals a =

[
−
a ,

+
a
]

and b =

[−
b ,

+
b
]

where
−
a ,
−
b > 0 and a, b are

positioned on the x and y axis, respectively. A uniform probability distribution is assumed on the
constrained area composed of a and b. For upper left points on y = x, the y values are larger than x
values and viceversa for the lower right points (cf. Figure 3 where one possible case is shown).

Then, the preference degree of P(a > b) is equal to S1
d(a)d(b) , where d(a) =

+
a −−

a and d(b) =
+
b −

−
b

and the following ranking interval method can be stated.

Definition 8.

P(a > b) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

−
a ≥ +

b ,

1− (
+
b−−a)2

2d(a)d(b)

−
b ≤ −

a <
+
b ≤ +

a ,

2
+
a−(

+
b+

−
b)

2d(a)
−
a <

−
b <

+
b ≤ +

a ,

(49)

where if P(a > b) > 0.5, then a > b; if P(a > b) = 0.5, then a = b and if P(a > b) < 0.5, then a < b; and in
this manner Equation (49) indicates the total order of intervals and their preference degrees [50].

In order to provide access to the public as on-line security and resource conditions allow,
these complete methodology (definitions, applied theorems, algorithms and interval priority vector
synthesis) will be soon available in a site. Then, this benchmark will be useful to test a submitted set of
I-MPRs for assessment on their Individual Consistency (ICI) and the Group Consensus Indices (GCI).
This site will test different data on various based decision models.
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In the following, our main methodology is applied to numerical examples under diverse
considerations in order to test different situations when the system is working in a real scenario.

x

y

y = x

−
a

+
a

−
b

+
b

S1

Figure 3. One case for the interval analysis.

5. Illustration of the Methodology through Numerical Examples

In the following example, let us suppose that three managers from different operating departments
are participating in a group decision about the evaluation of a new market to have the best return of
investment of a set of products. There are four decision criteria which involve the details of judgments,
which are: development, legal restrictions for economic activities, society and infrastructure denoted
as C1, C2, C3, and C4, respectively. The three mangers state their preferences over the four criteria and,
since they are confident on the analysis carried out by their operating department, they have a crisp
value for criteria judgments related to their department. Nevertheless, they provide an interval for
others criteria assessments. Their associated weight vector is λ = [1/3, 1/3, 1/3].

Example 3. The three managers provide their I-MPRs through

A1 =

⎛⎜⎜⎜⎝
1 [1 2] 1/5 [1/3 1/2]
∗ 1 1/7 [5 6]
∗ ∗ 1 1/2
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ , A2 =

⎛⎜⎜⎜⎝
1 5/2 1/3 3/4
∗ 1 [1/2 3/2] [2 3]
∗ ∗ 1 [1 2]
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ ,

A3 =

⎛⎜⎜⎜⎝
1 2 [1/2 3/2] [1 3/2]
∗ 1 3/4 3
∗ ∗ 1 [2 3]
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ ,

(50)

where the initial ranking given by expert 1 is w3
1
> w2

0.3724
> w4

1
> w1, by expert 2 is: w3

1
> w2

0.967
> w1

1
> w4,

and by expert 3 is: w3
0.8179
> w1

1
> w2

1
> w4.

Note that the first manager has more information and expertise on the third criteria. On the other hand,
the second manager is focused on the first criteria and finally the third manager is focused on the second criteria.

Let us now apply Definition 1 to A1, A2 and A3 as follows:

{
o

A1} = { 1
A1,

2
A1, · · · ,

63
A1,

64
A1}; {

o
A2} = { 1

A2,
2
A2, · · · ,

63
A2,

64
A2}; {

o
A3} = { 1

A3,
2
A3, · · · ,

63
A3,

64
A3}, (51)
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where { 1
Ar,

2
Ar, · · · ,

64
Ar}, r = 1, 2, 3 are obtained in a similar manner as in Example 1.

Then, CI ∗
K
(
∗
Ai), i = 1, 2, 3 is calculated through Equation (2) where, for the first expert, one obtains:

∗
A1 =

⎛⎜⎜⎜⎝
1 2 1/5 1/3
∗ 1 1/7 6
∗ ∗ 1 1/2
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ , (52)

and its corresponding consistent MPR (calculated by Equation (2)) is

∗
K1 =

⎛⎜⎜⎜⎝
1 0.7468 0.2954 0.6043
∗ 1 0.3956 0.8091
∗ ∗ 1 2.0453
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ . (53)

Similar calculations are carried out for A2 and A3.
Then, from Definition 3, CIK̃(Ãi), i = 1, 2, 3 is calculated through Equation (13) where for the first expert

one obtains:

Ã1 =

⎛⎜⎜⎜⎝
1 1 1/5 1/2
∗ 1 1/7 5
∗ ∗ 1 1/2
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ , (54)

and its corresponding consistent MPR (calculated by Equation (2)) is

K̃1 =

⎛⎜⎜⎜⎝
1 0.6117 0.2749 0.5946
∗ 1 0.4495 0.9721
∗ ∗ 1 2.1627
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ . (55)

Similar calculations are carried out for A2 and A3.

From Equation (10), one obtains: CI ∗
K1
(
∗
A1) = 1.66161, CI ∗

K2
(
∗
A2) = 1.207088 and CI ∗

K3
(
∗
A3) = 1.09.

As a consequence, A1 and A2 are not consistent and A3 is acceptably consistent.
We apply Algorithm IC-I-MPR to A(1)

1 = A1 and A(2)
2 = A2 with initialization points x(1)0 =

[3/2, 1/5, 1/3, 1/7, 11/2, 1/2] and x(2)0 = [5/2, 1/3, 3/4, 1, 5/2, 3/2] which are the midpoints of A1 and
A2, respectively.

From Equation (30),
o
A1 = A1 and

o
A2 = A2.

Let us provide the solution for A1 which has the highest CI. Then, from Equation (33) and the first expert,
the following inequalities will be utilized in the optimization process:

1− εc ≤ x1 ≤ 2 + εc,
1/5− εc ≤ x2 ≤ 1/5 + εc,
1/3− εc ≤ x3 ≤ 1/2 + εc,
1/7− εc ≤ x4 ≤ 1/7 + εc,

5− εc ≤ x5 ≤ 6 + εc,
1/2− εc ≤ x6 ≤ 1/2 + εc,

(56)

where εc = 0.001, but for the first iteration εc = 0.0.
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From Equation (37) and variable’s definition given by Equation (34), the objective functional is obtained by
replacing a12 = x1, a13 = x2, a14 = x3, a23 = x4, a24 = x5 and a34 = x6. Thus, one obtains:

f (x) = sign ∗

⎡⎢⎣ 1
16

⎡⎢⎣( x2x3

x2
1x4x5

)1/4

︸ ︷︷ ︸+
1
β1

+

(
x2

2x6

x1x3x4

)1/4

︸ ︷︷ ︸+
1
β2

+

(
x2

3
x1x2x5x6

)1/4

︸ ︷︷ ︸+
1
β3

+

(
x2

4x1x6

x2x5

)1/4

︸ ︷︷ ︸+
1
β4
+

(
x2

5x1

x3x4x6

)1/4

︸ ︷︷ ︸+
1
β5

+

(
x2

6x2x4

x3x5

)1/4

︸ ︷︷ ︸+
1
β6

⎤⎥⎦+ 1
4

⎤⎥⎦ ;

(57)

where β1 equals the term over the first brace, β2 equals the term over the second brace, and so on. In addition,
sign = 1 is defined to obtain the minimization and sign = −1 for the maximization.

The same procedure is used for the second expert (A2). After applying the SQP, the results follow:

A1 =

⎛⎜⎜⎜⎝
1 0.5610 [0.5713 0.5890] 0.9390
∗ 1 0.5819 4.5610
∗ ∗ 1 0.9390
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ , A2 =

⎛⎜⎜⎜⎝
1 2.5 1/3 3/4
∗ 1 1/2 [2 2.0303]
∗ ∗ 1 [1.7628 2]
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ . (58)

Now that we have the set of I-MPRs in acceptable Individual Consistency, we can proceed with solving the
Group Consensus for A1, A2 and A3.

Let us now apply Definition 4 to these I-MPRs. The set {
1
Ǎ} is calculated as in Equation (25). For example,

1
Ǎ = { 1

A1,
1
A2,

1
A3};

2
Ǎ = { 1

A1,
1
A2,

2
A3};

3
Ǎ = { 1

A1,
2
A2,

1
A3}; · · · ;

262143
Ǎ = {64

A1,
64
A2,

63
A3},

262144
Ǎ = {64

A1,
64
A2,

64
A3}. (59)

From Definition 5, let us apply it to A1, A2 and A3 where, by Equation (3), one obtains:

1
Ǎc =

[(
a(1)ij

)λ1 ·
(

a(2)ij

)λ2 ·
(

a(3)ij

)λ3
]

, i, j = 1, 2, 3, 4, (60)

where (a(x)
ij )λx , x = 1, 2, 3 comes from

1
Ǎ1 (cf. Equation (59)), for

2
Ǎc it comes from

2
Ǎ1, and so on. Note that,

in this example, λ1 = λ2 = λ3 = 1/3.
From Definition 6, we note that the Group Consensus of each DM gives the following result.

Since GCIȞt

(
Ǎ1
)
= 1.0985, GCIȞt

(
Ǎ2
)
= 1.0473 and GCIȞt

(
Ǎ3
)
= 1.0381, all the experts are in

acceptable consensus with a global ranking order w3
0.9524� w2

0.8081� w1
1� w4.

Since we have detailed the calculations of the Algorithm 1, in the next example, we provide details of the
Algorithm 2.

In the next example, we address and solve a problem of partner selection that is determined for
the formation of a virtual enterprise already considered in [51,52].

A virtual enterprise is a dynamic association of enterprises, working together to benefit from
a market opportunity by giving a solution that could not be delivered individually. Naturally, it comes
with a market opportunity and then it is stopped after that market particular event. Thus, a virtual
enterprise is, by definition, a non-permanent alliance of diverse, autonomous, and in some cases
geographically distributed organizations sharing resources and skills having common objectives and
profiting from a benefit window in the market opportunities [51].

Example 4. In this example, the main enterprise needs to select a partner to grasp a new market opportunity
where four candidates (alternatives) must be analyzed by four DMs. The CEO’s management staff (DMs) is
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involved in the partner selection process which should select the most suitable partner. Then, each DM compares
each pair of alternatives ci and cj, and gives her/his preference assessment through the next I-MPRs:

A1 =

⎛⎜⎜⎜⎝
1 [2/3 1] [3/2 2] [5/3 2]
∗ 1 [1 3] [1 2]
∗ ∗ 1 [1/2 1]
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ , A2 =

⎛⎜⎜⎜⎝
1 [2 3] [3 4] [2 6]
∗ 1 [3/2 3] [3 4]
∗ ∗ 1 [9/10 1]
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ ,

A3 =

⎛⎜⎜⎜⎝
1 [1/2 1] [2 3] [1 3]
∗ 1 [3 4] [2 4]
∗ ∗ 1 [1/4 1/2]
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ , A4 =

⎛⎜⎜⎜⎝
1 [1 2] [2/3 2] [2 3]
∗ 1 [2/3 6/5] [2 5]
∗ ∗ 1 [3 7/2]
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ ,

(61)

where the initial individual order of intervals for each DM is given by

DM1:x2
1� x1

1� x4
1� x3; DM2:x1

1� x2
1� x3

.6698� x4; DM3:x2
1� x1

1� x4
1� x3 & DM4:x3

.6382� x1
.9904� x2

1� x4.
In [52], it is found that the third expert is more consistent and then it is assigned a higher weight.

They obtained the final ranking of the alternatives as: x2 � x1 � x4 � x3. On the other hand, when all experts
are considered equally weighted, they obtained the final ranking of the alternatives as x1 � x2 � x3 � x4.

Let us apply our method to check for consistency and consensus indices.
By applying the first part of our Definitions, the Individual Consistency of each DM (by using

Equation (12)) is given by:

CIA1 = 1.060286, CIA2 = 1.076585, CIA3 = 1.101763, CIA4 = 1.078917, (62)

where it is noted that the third DM (A3) has provided a slightly inconsistent I-MPR.
Since the third expert’s judgments A3 are not consistent, let us apply the Algorithm IC-I-MPR.
Take an initialization point x(1)0 = [3/4, 5/2, 2, 7/2, 3, 3/4] and εc = 0.001 and the result follows:

A3 =

⎛⎜⎜⎜⎝
1 [0.7413 1] [2 2.9656] [1.4825 2.9962]
∗ 1 [3 4] [2 3.8970]
∗ ∗ 1 [1/4 1/2]
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ . (63)

Now that we have the whole set of I-MPRs (A1, A2, A3 and A4) in acceptable consistency, we can proceed
to address the group consensus analysis.

First case: Although the first expert has the most consistent I-MPR (cf. Equation (62)), let us
consider that the third expert A3 is the more relevant, by assigning the next following experts’ weighting
λ = [1/5, 1/5, 2/5, 1/5].

From Definition 6 applied to the first DM (A1), it follows:

GCIȞ1

(
Ǎ1
)
= max{GCI 1

Ǎc
(

1
Ǎ), GCI 2

Ǎc
(

2
Ǎ), · · · , GCIν−1

Ǎc
(

ν−1
Ǎ ), GCI ν

Ǎc
(

ν

Ǎ)}, (64)

where in this case ν = 16777216. Similar calculations are carried out for A2, A3 and A4.
Then, we obtain GCIȞ1

(
Ǎ1
)
= 1.0657, GCIȞ2

(
Ǎ2
)
= 1.0646, GCIȞ3

(
Ǎ3
)
= 1.0908, and finally

GCIȞ4

(
Ǎ4
)
= 1.5364. Thus, the fourth expert is not in acceptable consensus.
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From Equation (31) Ap
1 = A4 and from Equation (33) the following inequalities will be utilized in the

optimization process:
1− εg ≤ x1 ≤ 2 + εg,

2/3− εg ≤ x2 ≤ 2 + εg,
2− εg ≤ x3 ≤ 3 + εg,

2/3− εg ≤ x4 ≤ 6/5 + εg,
2− εg ≤ x5 ≤ 5 + εg,
3− εg ≤ x6 ≤ 7/2 + εg,

(65)

where εg = 0.001, but for the first iteration εg = 0.0.
From Equation (39) and variable’s definition given by Equation (34), the objective functional is obtained by

replacing in it a(4)12 , a(4)13 , a(4)14 , a(4)23 , a(4)24 and a(4)34 . Then, one obtains:

f (x) = sign ∗

⎡⎢⎢⎣ 1
16

⎡⎢⎢⎣
⎛⎜⎜⎝ x(1−λ4)

19

a(1)λ1
12 a(2)λ2

12 a(3)λ3
12︸ ︷︷ ︸

⎞⎟⎟⎠+ 1
α1

+

⎛⎜⎜⎝ x(1−λ4)
20

a(1)λ1
13 a(2)λ2

13 a(3)λ3
13︸ ︷︷ ︸

⎞⎟⎟⎠+ 1
α2

+

⎛⎜⎜⎝ x(1−λ4)
21

a(1)λ1
14 a(2)λ2

14 a(3)λ3
14︸ ︷︷ ︸

⎞⎟⎟⎠+ 1
α3
+

⎛⎜⎜⎝ x(1−λ4)
22

a(1)λ1
23 a(2)λ2

23 a(3)λ3
23︸ ︷︷ ︸

⎞⎟⎟⎠+ 1
α4

+

⎛⎜⎜⎝ x(1−λ4)
23

a(1)λ1
24 a(2)λ2

24 a(3)λ3
24︸ ︷︷ ︸

⎞⎟⎟⎠+ 1
α5

+

⎛⎜⎜⎝ x(1−λ4)
24

a(1)λ1
34 a(2)λ2

34 a(3)λ3
34︸ ︷︷ ︸

⎞⎟⎟⎠+ 1
α6

⎤⎥⎥⎦+ 1
4

⎤⎥⎥⎦ ,

(66)

where α1 equals the term over the first brace, α2 equals the term over the second brace, and so on. In addition,
sign = 1 is defined to obtain the minimization and sign = −1 for the maximization.

Let us then apply the SQP algorithm for A4
4 = (

−
a
(4)

ij
+
a
(4)

ij ) with GCI = 1.1 and ε = 0.001.
As soon as the optimization algorithm converges, the new Group Consensus Indices from Equation (23) is

read as:

GCIǍ1
= 1.0132, GCIǍ2

= 1.0921, GCIǍ3
= 1.0508, GCIǍ4

= 1.0697. (67)

In addition, from Equation (24):

GCIA1
= 1.0008, GCIA2

= 1.0722, GCIA3
= 1.0495, GCIA4

= 1.0777. (68)

The priority vector is w1 = [0.268889 0.459874], w2 = [0.284454 0.400261], w3 = [0.09285 0.186909],

w4 = [0.123878 0.2380], and the final ranking of priorities is given by w1
.6153� w2

1� w4
0.8149� w3, or x1 > x2 >

x4 > x3.
Second case: For an equal experts’ weighting (For example, λ = [1/4, 1/4, 1/4, 1/4]), one has that the

Group Consensus Indices for each decision maker (by using Equation (23)) are:

GCIǍ1
= 1.0902, GCIǍ2

= 1.0597, GCIǍ3
= 1.1458, GCIǍ4

= 1.4162, (69)

where the third and fourth DM have provided their I-MPRs not in consensus.
Then, apply again Algorithm GC-I-MPR for A3

3, A4
4, GCI = 1.1 and ε = 0.001, but this time with the

new λ = [1/4, 1/4, 1/4, 1/4].
As soon as the optimization algorithm converges, the new Group Consensus Indices from Equation (23) is

read as:

GCIǍ1
= 1.0436, GCIǍ2

= 1.0528, GCIǍ3
= 1.0983, GCIǍ4

= 1.0463. (70)

In addition, from Equation (24):

GCIA1
= 1.0058, GCIA2

= 1.0348, GCIA3
= 1.0365, GCIA4

= 1.0590, (71)

where the set of I-MPRs are Individually Consistent and in an acceptable Group Consensus. They are read as:
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A1 =

⎛⎜⎜⎜⎝
1 [0.7507 1.0] [1.6237 2.0] [1.8408 2.0]
∗ 1 [1.1212 3.0] [1.1860 2.0]
∗ ∗ 1 [0.5505 1.0]
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ ,

A2 =

⎛⎜⎜⎜⎝
1 [2.0 2.1349] [3 3.1074] [2.0 4.3848]
∗ 1 [3/2 2.5193] [3.0 3.1426]
∗ ∗ 1 [9/10 0.9112]
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ ,

A3 =

⎛⎜⎜⎜⎝
1 [0.9092 1.0] [2.0 2.5686] [1.7908 2.9962]
∗ 1 [2.9035 3.0] [2.0 3.1838]
∗ ∗ 1 [0.388 1/2]
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ ,

A4 =

⎛⎜⎜⎜⎝
1 [1.0 1.4055] [1.4248 2.0] [2.2640 2.4575]
∗ 1 [1.3641 1.3654] [2.0 2.9146]
∗ ∗ 1 [1.7183 1.8753]
∗ ∗ ∗ 1

⎞⎟⎟⎟⎠ .

(72)

Their priority vector is w1 = [0.308967 0.488215] w2 = [0.25554 0.397948], w3 = [0.104711 0.235793],

w4 = [0.113979 0.198821], and the final ranking of priorities is given by w1
0.8449� w2

1� w3
0.6057� w4, or x1 >

x2 > x3 > x4.
We note that, through Definitions, Theorem and Algorithms introduced here, we obtain the same results

of [51,52] when the experts’ weight is the same. However, when the weighting of the experts is different,
some small differences are found. The above is due to the variation in the weighting provided here and in
those articles.

Case Study Discussions and Managerial Implications

In the first example, the second and third DMs have provided inconsistent I-MPRs, and it was
sufficient to improve their Individual Consistency to have the three I-MPRs in Group Consensus.
Note that the ranking order of each DM was initially slightly different among them; nevertheless,
at the end of the process, the Group Consensus points to an acceptable and analytic decision.

As we have have seen along the first example, when a group of DMs needs to state a point of
agreement, they can define their assessments through I-MPRs which do not necessarily need to be
exactly in the same judgment direction. Sometimes, they only need to be confident in the quality of
their decisions based on an MCDM system which analyzes them through a well-known decision model.

For the second example, only two DMs evaluate in the same direction the set of criteria
(alternatives). The other two experts are even in clear contradiction, since the first DM states that
the third criteria is lesser in importance and the second DM states that this criteria is the most
important. Furthermore, by assigning to the third expert a highest evaluation confidence (weight),
the methodology produced a very interesting result, by selecting a global ranking order that none of
them had chosen.

On the other hand, when every DM has the same weight, the methodology produced also
a different global ranking order that none of them had chosen. The DMs A1, A2 and A3, have preserved
their individual ranking order at the end of the process, and only the fourth DM has had his individual
ranking order changed. This result can be used in his/her operating department as an internal feedback
to reconsider their position with respect to the other departments and the organization objectives.

As soon as a DM obtains the results, s/he can use them so that, with this information, he can state
new ways of organizing her/his operating department. For example, this method can also be carried
out within the operating departments since each one of their business operations have criteria and
alternatives that can be better emphasized.
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In summary, the MCDM methodology can provide results which could reinforce the position of
a set of DMs or point out to a new direction.

6. Concluding Remarks and Future Work

In this paper, we provide a methodology based on a couple of algorithms and a nonlinear optimization
approach to be used when a heterogeneous managers group needs to solve an MCDM problem.

Our approach can use Interval Multiplicative Preference Relations or Multiplicative Preference
Relations, and demonstrates the utilization of the methodology to synthesize reliable intervals where
consistency and consensus constraints hold. Once decision makers have proposed their I-MPRs,
our method can solve for these I-MPRs from well-known decision support models. One advantage of
our algorithm is that DM can re-express their preferences within an interval where, usually, they have
to observe some constraints based on decision targets, framework rules and advice. When the DM
is confident on the pair of criteria (o alternatives) under evaluation, s/he can utilize a crisp value.
On other other hand, when s/he is hesitant or uncertain about the assessment, s/he could use
an interval. Our algorithm can solve independently of the used approach.

In this work, reliable I-MPRs provide a distinct advantage in interpretation of hesitancy and
uncertainty about the final consistency and consensus.

Main advantages of the present approach:

• It is provided through a couple of algorithms and a nonlinear optimization approach (Sequential
Quadratic Programming) concurrently applied.

• Through the Hadamard’s operator and some easy algebraic manipulations, objective functionals
were synthesized to be used in the optimization algorithm.

• When the I-MPRs improved by the methodology are reduced into an MPR (defined in the I-MPR),
our approach can still give reliable results. For example, for this MPR, we can verify the results of
IC or GC with an alternative method.

• The IC or the GC accepted indices (threshold values) have been previously investigated and
fixed. Nevertheless, the project designer could assign a different value depending on the
project requirements.

• Obtained results are independent of the method of prioritization utilized in the consensus operation.

Main drawbacks of the present approach:

• The computational cost increases as the I-MPRs dimension and the number of DMs involved in
the evaluation process are increased.

• For a real project where a high number of criteria and experts participate, it can be necessary to
program this method through an exhaustive parallel computation system.

• For a real project where a high number of criteria and experts participate, the notation can
be cumbersome.

Future works aim to make an implementation on:

• The application of our approach to various study cases where heterogenous groups of DMs with
different weights participate in a collaborative manner.

• The integration of the complete methodology in a benchmark to compare the results of a diverse
set of MCDM tools.

• The definition or employment of this methodology on different frameworks, v.gr. fuzzy or
hesitant MCDM.
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Abstract: The binary discernibility matrix, originally introduced by Felix and Ushio, is a binary matrix
representation for storing discernible attributes that can distinguish different objects in decision
systems. It is an effective approach for feature selection, knowledge representation and uncertainty
reasoning. An original binary discernibility matrix usually contains redundant objects and attributes.
These redundant objects and attributes may deteriorate the performance of feature selection and
knowledge acquisition. To overcome this shortcoming, row relations and column relations in a binary
discernibility matrix are defined in this paper. To compare the relationships of different rows (columns)
quickly, we construct deterministic finite automata for a binary discernibility matrix. On this basis,
a quick algorithm for binary discernibility matrix simplification using deterministic finite automata
(BDMSDFA) is proposed. We make a comparison of BDMR (an algorithm of binary discernibility
matrix reduction), IBDMR (an improved algorithm of binary discernibility matrix reduction) and
BDMSDFA. Finally, theoretical analyses and experimental results indicate that the algorithm of
BDMSDFA is effective and efficient.

Keywords: rough sets; binary discernibility matrices; deterministic finite automata

1. Introduction

Decision making can be considered as the process of choosing the best alternative from the feasible
alternatives. With the development of research, decision making is extended from one attribute to
multiple attributes. To solve problems in multiple attribute decision making, various theories such as
fuzzy sets, rough sets and utility theory, etc. have been used. Many of significant results [1–8] have
been achieved in multiple attribute decision making. Researchers in rough set theory [9] are usually
concerned with attribute reduction (or feature selection) problems of multiple attribute decision
making. The binary discernibility matrix, proposed by Felix and Ushio [10], is a useful tool for
attribute reduction and knowledge acquisition. Recently, many algorithms of attribute reduction
based on binary discernibility matrices have been developed [11–13]. In 2014, Zhang et al. [14]
proposed a binary discernibility matrix for an incomplete information system, and designed
a novel algorithm of attribute reduction based on the proposed binary discernibility matrix. In the
paper [15], Li et al. developed an attribute reduction algorithm in terms of the improved binary
discernibility matrix, and applied the algorithm in customer relationship management. Tiwari et al. [16]
developed hardware for a binary discernibility matrix which can be used for attribute reduction
and rule acquisition in an information system. Considering mathematical properties of a binary
discernibility matrix, Zhi and Miao [17] introduced the so-called binary discernibility matrix reduction
(BDMR), which was actually an algorithm for binary discernibility matrix simplification. On the
basis of BDMR, two algorithms for attribute reduction and reduction judgement were presented.
A binary discernibility matrix with a vertical partition [18] was proposed to deal with big data in
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attribute reduction. Ren et al. [19] constructed an improved binary discernibility matrix which can
be used in an inconsistent information system. Ding et al. [20] discussed several problems about
a binary discernibility matrix in an incomplete system. Combining the binary discernibility matrix in
an incomplete system, an algorithm of incremental attribute reduction was proposed. In the paper [20],
a novel method for calculation of incremental core attribute was introduced firstly. On this basis,
an algorithm of attribute reduction was proposed. As is well known that core attributes play a crucial
role in heuristic attribute reduction algorithms. Core attributes are computationally expensive in
attribute reduction. Hu et al. [21] gave a quick algorithm of the core attribute calculation using a binary
discernibility matrix. The computational complexity of the algorithm is O(|C||U|), where |C| is the
number of condition attributes and |U| is the number of objects in the universe.

An original binary discernibility matrix usually contains redundant objects and attributes.
These redundant objects and attributes may deteriorate the performance of feature selection (attribute
reduction) and knowledge acquisition based on binary discernibility matrices. In other words,
storing or processing all objects and attributes in an original binary discernibility matrix could be
computationally expensive, especially in dealing with large scale data sets with high dimensions.
So far, however, few works about the binary discernibility matrix simplification have been investigated.
The existing algorithms regarding binary discernibility matrix simplification are time-consuming.
To tackle this problem, our works in this paper concern on how to improve the time efficiency of
algorithms of binary discernibility matrix simplification. On this purpose, we construct deterministic
finite automata in a binary discernibility matrix to compare the relationships of different rows
(or columns) quickly. By using deterministic finite automata, we develop a quick algorithm of
binary discernibility matrix simplification. Experimental results show that the proposed algorithm
is effective and efficient. The contributions of this paper are summarized as follows: First, we define
row and column relations which can be used for constructing deterministic finite automata in a binary
discernibility matrix. Second, deterministic finite automata in a binary discernibility matrix are
proposed to compare the relationships of different rows (or columns) quickly. Third, based on this
method, a quick algorithm for binary discernibility matrix simplification (BDMSDFA) is proposed.
The proposed method in this paper is meaningful in practical applications. First, by using BDMSDFA,
we obtain the simplified binary discernibility matrices quickly. These simplified binary discernibility
matrices can significantly improve the efficiency of attribute reduction (feature selection) in decision
systems. Second, a binary discernibility matrix without redundant objects and attributes will have the
high performance of learning algorithms, and need less space for data storage.

The rest of this paper is structured as follows. We review basic notions about rough set theory
in the next section. In Section 3, we propose a general binary discernibility matrix, and define row
relations and column relations in a binary discernibility matrix. In Section 4, we develop a quick
algorithm for binary discernibility matrix simplification which is called BDMSDFA. Experimental
results in Section 5 show that the algorithm of BDMSDFA is effective and efficient, it can be applicable
to simplification of large-scale binary discernibility matrices. Finally, the whole paper is summarized
in Section 6.

2. Preliminaries

Basic notions about rough set theory are briefly reviewed in this section. Some further details
about rough set theory can be found in the paper [9]. A Pawlak decision system can be regarded as an
original information system with decision attributes which give decision classes for objects.

A Pawlak decision system [9] can be denoted by 4-tuple DS = (U, AT, V, f ), where universe
U = {x1, x2, ..., x|U|} is a finite non-empty set of objects; attribute set AT = C ∪ D, C ∩ D = ∅,
where C = {a1, a2, ..., a|C|} is called a condition attribute set and D = {d} is called a decision attribute
set in a decision system; Vam is the domain of a condition attribute am ∈ AT, V = ∪am∈ATVam and
f : U × AT → V is a function such that f (xi, am) = am(xi) ∈ Vam∈AT , f (xi, d) = d(xi) ∈ Vd∈AT ,
where xi ∈ U.
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Given a Pawlak decision system DS = (U, C ∪ D, V, f ), for ∀xi, xj ∈ U, an indiscernibility
relation regarding attribute set B ⊆ C is defined as IND(B) = {(xi, xj) : ∀b ∈ B, f (xi, b) = f (xj, b)}.
Therefore, the discernibility relation regarding attribute set B ⊆ C is given by DIS(B) = {(xi, xj) :
∃b ∈ B, f (xi, b) �= f (xj, b)}. The indiscernibility relation regarding B ⊆ C is reflexive, symmetric
and transitive. Meanwhile, the discernibility relation is irreflexive, symmetric, but not transitive.
A partition of U derived from IND(B) is denoted by U/IND(B). The equivalence class in U/IND(B)
containing object xi is defined as [xi]IND(B) = [xi]B = {xj ∈ U : (xi, xj) ∈ IND(B)}.

For ∀B ⊆ C, the relative indiscernibility relation and discernibility relation with respect to decision
attribute set [9] are defined by:

IND(B|D) = {(xi, xj) : xi, xj ∈ U, (∀b ∈ B → ( f (xi, b) = f (xj, b)) ∨ ( f (xi, d) = f (xj, d))},

DIS(B|D) = {(xi, xj) : xi, xj ∈ U, (∃b ∈ B → ( f (xi, b) �= f (xj, b)) ∧ ( f (xi, d) �= f (xj, d))}.

A relative indiscernibility relation IND(B|D) with respect to B ⊆ C is reflexive, symmetric,
but not transitive. A relative discernibility relation DIS(B|D) with respect to B ⊆ C is irreflexive,
symmetric, but not transitive.

A discernibility matrix, proposed by Skowron and Rauszer [22], suggests a matrix representation
for storing condition attribute sets which can discern objects in the universe. Discernibility matrix
is an effective method in reduct construction, data representation and rough logic reasoning, and it
is also useful mathematical tool in data mining, machine learning, etc. Many extended models of
dicernibility matrices have been studied in recent years [23–30]. Considering the classification property
Δ, Miao et al. [31] constructed a general discernibility matrix MΔ = (mΔ(xi, xj)), where mΔ(xi, xj) is
denoted by:

mΔ(xi, xj) =

{
{a ∈ C : f (xi, a) �= f (xj, a)}, (xi, xj) ∈ DISΔ(C|D)

∅ otherwise
,

where (xi, xj) ∈ DISΔ(C|D) denotes objects xi and xj are discernible with respect to the classification
property Δ in a decision system DS. It should be noted that Δ is a general definition on classification
property. A general discernibility matrix provides a common solution to attribute reduction algorithms
based on discernibility matrices. By constructing different discernibility matrices, the relative attribute
reducts with different reduction targets can be obtained. Based on the relative discernibility relation
DIS(C|D), Miao et al. [31] introduced a relationship preservation discernibility matrix which can be
denoted as follows:

Definition 1. [31] Let DS = (U, C ∪ D, V, f ) be a decision system, for ∀xi, xj ∈ U, ∀a ∈ C, 1 ≤
i < j ≤ |U|, Mrelationship = (mrelationship(xi, xj)) is a relationship preservation discernibility matrix,
where mrelationship(xi, xj) is defined by:

mrelationship(xi, xj) =

{
{a ∈ C : f (xi, a) �= f (xj, a)} (xi, xj) ∈ DIS(C|D)

∅ otherwise
.

3. Binary Discernibility Matrices and Their Simplifications

The binary discernibility matrix, initiated by Felix and Ushio [10], is a binary presentation of
original discernibility matrix. In this section, we suggest a general binary discernibility matrix.
Relations of row pairs and column pairs are discussed respectively. Formally, a binary discernibility
matrix [10] is introduced as follows:
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Definition 2. [10] Given a decision system DS = (U, C ∪D, V, f ), for ∀xi, xj ∈ U and ∀am ∈ C. MBDM =

(mBDM(xi, xj)) is a binary discernibility matrix, where the element mBDM(xi, xj) is denoted by:

mBDM(xi, xj) =

{
1 f (xi, am) �= f (xj, am) ∧ d(xi) �= d(xj)

0 otherwise
.

Based on a binary discernibility matrix, discernible attributes about xi and xj can be easily
obtained. A binary discernibility matrix brings us an understandable approach for representations of
discernible attributes, and can be used for designing reduction algorithms. To satisfy more application
requirements, we extend original binary discernibility matrix to general binary discernibility matrix
as follows:

Definition 3. Given a decision system DS = (U, C ∪ D, V, f ), for ∀xi, xj ∈ U, ∀am ∈ C, MΔ
BDM

=

(mΔ
BDM

(xi, xj)) regarding Δ is a general binary discernibility matrix, in which mΔ
BDM

(xi, xj) is defined by:

mΔ
BDM

(xi, xj) =

{
1 (xi, xj) ∈ DISΔ(C|D)

0 otherwise
.

DISΔ(C|D) is the discernibility relation regarding classification property Δ. The set of rows in MΔ
BDM

is presented by R = {r1, r2, ..., r|R|}, where |R| = (|U| × (|U| − 1))/2. The set of columns in MΔ
BDM

is presented by C = {a1, a2, ..., a|C|}, where |C| is the cardinality of attribute sets in a decision system.
For convenience, a general binary discernibility matrix MΔ

BDM
= (mΔ

BDM
(xi, xj)) can be also denoted by

MΔ
BDM

= (mΔ
BDM

(em
p , em

q )). For ∀am ∈ C, ∀rp, rq ∈ R, em
P

is the matrix element at row rp and column
am in MΔ

BDM
, and em

q is the matrix element at row rq and column am in MΔ
BDM

, where 1 ≤ p < q ≤
(|U| × (|U| − 1))/2, 1 ≤ m ≤ |C|.

Since a general binary discernibility matrix provides a common structure of binary discernibility
matrices in rough set theory, one can construct a binary discernibility matrix according to a given
classification property. Any binary discernibility matrix can be also regarded as the special case of the
general binary discernibility matrix. Therefore, a general definition of binary discernibility matrix is
necessary and important. Based on the relative discernibility relation with respect to D, Definition 2
can be also rewritten as follows:

Definition 4. Given a decision system DS = (U, C ∪ D, V, f ), for ∀xi, xj ∈ U, ∀am ∈ C, DIS(C|D) is the
relative discernibility relation with respect to a condition attribute set C. MBDM = (mBDM(xi, xj)) is a binary
discernibility matrix, in which the element mBDM(xi, xj) is denoted by:

mBDM(xi, xj) =

{
1 (xi, xj) ∈ DIS(C|D)

0 otherwise
.

This definition is equivalent to Definition 2 [10]. It is noted that we calculate binary discernibility
matrix in this paper by using the relationship preservation discernibility matrix.

Definition 5. For ∀am ∈ C, ∀rp, rq ∈ R, em
P

and em
q are elements in a binary discernibility matrix M

BDM
=

(mBDM(xi, xj)), a row pair with respect to attribute am is denoted by < em
p , em

q >∈ {< 0,0 >, < 0,1 >, < 1,0 >,
< 1,1 >}, a binary relation between row rp and rq is defined as Rrow = {< em

p , em
q >: 1 ≤ p < q ≤ |R|}.

Similar to Definition 5, we define a column pair and a binary relation with respect to columns
as follows.
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Definition 6. For ∀am, an ∈ C, ∀rp ∈ R, elements em
P

and en
p in a binary discernibility matrix M

BDM
=

(mBDM(xi, xj)), a column pair with respect to row rp is denoted by < em
p , en

p >∈ { < 0,0 >, < 0,1 >, < 1,0 >,
< 1,1 >}, a binary relation between column am and an is defined as Rcol = {< em

p , en
p >: 1 ≤ m < n ≤ |C|}.

For the matrix element em
p and em

q in the same column am, we define three row relations in a binary
discernibility matrix as follows.

Definition 7. Given a binary discernibility matrix M
BDM

= (mBDM(xi, xj)), ∀rp, rq ∈ R,

(1) for ∀am ∈ C, ∃an ∈ C, rp ⊃ rq if and only if em
p + em

q = em
p and en

p �= en
q ; for ∀am ∈ C, ∃an ∈ C,

rq ⊃ rp if and only if em
q + em

p = em
q and en

q �= en
p;

(2) for ∀am ∈ C, rp = rq if and only if em
p = em

q ;
(3) for ∃am, an ∈ C, rp �= rq if and only if em

p + em
q = em

q (em
p �= em

q ) and en
p + en

q = en
p (en

p �= en
q ).

Analogous to Definition 7, for matrix elements em
p and en

p in the same row rp, we define column
relations in a binary discernibility matrix as follows.

Definition 8. Given a binary discernibility matrix M
BDM

= (mBDM(xi, xj)), ∀am, an ∈ C,

(1) for ∀rp ∈ R, ∃rq ∈ R, am ⊃ an if and only if em
p + en

p = em
p and em

q �= en
q ; for ∀rp ∈ R, ∃rq ∈ R,

an ⊃ am if and only if en
p + em

p = en
p and en

q �= em
q ;

(2) for ∀rp ∈ R, am = an if and only if em
p = en

p;
(3) for ∃rp, rq ∈ R, am �= an if and only if em

p + en
p = em

p (em
p �= en

p) and em
q + en

q = en
q (em

q �= en
q ).

Let Ap be the elements’ set of a prime implicant in a disjunctive normal form with row rp and
Aq be the elements’ set of a prime implicant in a disjunctive normal form with row rq, then rp ⊃ rq

means that Ap is the superset of Aq. For ∀am, an ∈ C, am ⊃ an indicates attribute am can distinguish
more objects in the universe. In a binary discernibility matrix, the row in which all elements are 0s
indicates there are no attribute can discern the related objects, and the column in which all elements
are 0s indicates that this attribute cannot discern objects in the universe.

In [17], Zhi and Miao first proposed an algorithm of a binary discernibility matrix simplification
shown in Algorithm 1. To improve the efficiency of BDMR, Wang et al. [32] introduced an improved
algorithm of binary discernibility matrix reduction shown in Algorithm 2.

Algorithm 1 : An algorithm of binary discernibility matrix reduction, BDMR.

Input: Original binary discernibility matrix MBDM;
Output: Simplified binary discernibility matrix M

′
BDM

1: delete the row in which all elements are 0 s;
2: for p = 1 to |R| do
3: for q = 1 to |R| do
4: if rp ⊃ rq then
5: delete row rp
6: break
7: end if
8: end for
9: end for

10: delete the column in which all elements are 0 s;
11: for m = 1 to |C| do
12: for n = 1 to |C| do
13: if an ⊃ am then
14: delete column am
15: break
16: end if
17: end for
18: end for
19: output a simplified binary discernibility matrix M′

BDM;

294



Information 2018, 9, 314

Algorithm 2 : An improved algorithm of binary discernibility matrix reduction, IBDMR.

Input: Original binary discernibility matrix MBDM;
Output: Simplified binary discernibility matrix M

′
BDM

1: delete the row in which all elements are 0 s;
2: sort rows in ascending order by the quantity of the number ‘1’ in each row
3: for p = 1 to |R| do

4: for q = 1 to |R| do

5: if rp ⊃ rq then

6: delete row rp
7: break
8: end if

9: end for

10: end for

11: delete the column in which all elements are 0 s;
12: for m = 1 to |C| do

13: for n = 1 to |C| do

14: if an ⊃ am then

15: delete column am
16: break
17: end if

18: end for

19: end for

20: output a simplified binary discernibility matrix M′
BDM;

4. A Quick Algorithm for Binary Discernibility Matrix Simplification

In this section, we investigate two theorems related to row relations and column relations
respectively. Based on the two theorems, deterministic finite automata for row and column relations
are introduced. Deterministic finite automata can be carried out to obtain the row relations and
column relations quickly. By using deterministic finite automata, we propose an algorithm of binary
discernibility matrix simplification using deterministic finite automata (BDMSDFA).

Theorem 1. Let MBDM = (mBDM(xi, xj)) be a binary discernibility matrix, for ∀am ∈ C, ∀rp, rq ∈ R,
|R| = (|U| × (|U| − 1))/2, we have:

(1) if rp ⊃ rq, then there exists < 1, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|};
(2) if rq ⊃ rp, then there exists < 0, 1 >∈ {< em

p , em
q >: 1 ≤ p < q ≤ |R|};

(3) if rp = rq, then there exists < 0, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|} or
< 1, 1 >∈ {< em

p , em
q >: 1 ≤ p < q ≤ |R|};

(4) if rp �= rq, then there exists < 1, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|} and
< 0, 1 >∈ {< em

p , em
q >: 1 ≤ p < q ≤ |R|}.

Proof.

(1) If there does not exist < 1, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|}, then < 0, 0 >∈
{< em

p , em
q >: 1 ≤ p < q ≤ |R|} or < 0, 1 >∈ {< em

p , em
q >: 1 ≤ p < q ≤ |R|} or

< 1, 1 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|}. We have seven binary relations as follows: {< 0, 0 >},
{< 0, 1 >}, {< 1, 1 >}, {< 0, 0 >,< 0, 1 >}, {< 0, 0 >,< 1, 1 >}, {< 0, 1 >,< 1, 1 >} and
{< 0, 0 >,< 0, 1 >,< 1, 1 >}. From seven binary relations above, if ∀am ∈ C, ∃an ∈ C,
one cannot get em

p + em
q = em

p (en
p �= en

q ). Thus, there exists < 1, 0 >∈ {< em
p , em

q >: 1 ≤
p < q ≤ |R|} in MBDM.

(2) If there does not exist < 0, 1 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|}, then < 0, 0 >∈ {< em
p , em

q >:
1 ≤ p < q ≤ |R|} or < 1, 0 >∈ {< em

p , em
q >: 1 ≤ p < q ≤ |R|} or < 1, 1 >∈ {< em

p , em
q >:
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1 ≤ p < q ≤ |R|}. Thus, we can also have seven binary relations as follows: {< 0, 0 >},
{< 1, 0 >}, {< 1, 1 >}, {< 0, 0 >,< 1, 0 >}, {< 0, 0 >,< 1, 1 >}, {< 1, 0 >,< 1, 1 >} and
{< 0, 0 >,< 1, 0 >,< 1, 1 >}. From seven binary relations above, if ∀am ∈ C and ∃an ∈ C,
one cannot get em

p + em
q = em

q (en
q �= en

p). Thus, there exists < 0, 1 >∈ {< em
p , em

q >: 1 ≤ p < q ≤
|R|} in MBDM.

(3) If there does not exist < 0, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|} or < 1, 1 >∈ {< em
p , em

q >:
1 ≤ p < q ≤ |R|}. There must have seven binary relations as follows: {< 0, 1 >}, {< 1, 0 >},
{< 0, 1 >,< 1, 0 >}, {< 0, 0 >,< 0, 1 >}, {< 0, 0 >,< 1, 0 >}, {< 1, 1 >,< 0, 1 >},
{< 1, 1 >,< 1, 0 >}. From seven binary relations above, we cannot have em

p = em
q . Thus, there

exists < 0, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|}} or < 1, 1 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|}}
in MBDM.

(4) If there does not exist < 1, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|} and < 0, 1 >∈
{< em

p , em
q >: 1 ≤ p < q ≤ |R|}. We may obtain eleven binary relations as follows:

{< 0, 0 >}, {< 1, 1 >}, {< 0, 1 >}, {< 1, 0 >}, {< 0, 0 >,< 0, 1 >}, {< 0, 0 >,< 1, 0 >},
{< 1, 1 >,< 0, 1 >}, {< 1, 1 >,< 1, 0 >}, {< 0, 0 >,< 1, 1 >}, {< 0, 0 >,< 1, 1 >,< 0, 1 >},
{< 0, 0 >,< 1, 1 >,< 1, 0 >}. From eleven binary relations, for ∀am ∈ C, we cannot have
em

p �= em
q . Thus, there exists < 1, 0 >∈ {< em

p , em
q >: 1 ≤ p < q ≤ |R|} and < 0, 1 >∈ {<

em
p , em

q >: 1 ≤ p < q ≤ |R|} in MBDM.

This completes the proof.

Analogous to Theorem 1, we can easily obtain the following theorem as:

Theorem 2. Let MBDM = (mBDM(xi, xj)) be a binary discernibility matrix, for ∀am, an ∈ C, ∀rp ∈ R,
we can have:

(1) if am ⊃ an, then there exists < 1, 0 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|};
(2) if an ⊃ am, then there exists < 0, 1 >∈ {< em

p , en
p >: 1 ≤ m < n ≤ |C|};

(3) if am = an, then there exists < 0, 0 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|} or
< 1, 1 >∈ {< em

p , en
p >: 1 ≤ m < n ≤ |C|};

(4) if am �= an, then there exists < 1, 0 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|} and
< 0, 1 >∈ {< em

p , en
p >: 1 ≤ m < n ≤ |C|}.

Proof.

(1) If there does not exist < 1, 0 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|}, then < 0, 0 >∈ {<
em

p , en
p >: 1 ≤ m < n ≤ |C|} or < 0, 1 >∈ {< em

p , en
p >: 1 ≤ m < n ≤ |C|} or < 1, 1 >∈

{< em
p , en

p >: 1 ≤ m < n ≤ |C|}. We have seven binary relations as follows: {< 0, 0 >},
{< 0, 1 >}, {< 1, 1 >}, {< 0, 0 >,< 0, 1 >}, {< 0, 0 >,< 1, 1 >}, {< 0, 1 >,< 1, 1 >} and
{< 0, 0 >,< 0, 1 >,< 1, 1 >}. From seven binary relations above, if ∀rp ∈ R, ∃rq ∈ R, one cannot
get em

p + en
p = em

p (em
q �= en

q ). Thus, there exists < 1, 0 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|}
in MBDM.

(2) If there does not exist < 0, 1 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|}, then < 0, 0 >∈ {< em
p , en

p >:
1 ≤ m < n ≤ |C|} or < 1, 0 >∈ {< em

p , en
p >: 1 ≤ m < n ≤ |C|} or < 1, 1 >∈ {< em

p , en
p >:

1 ≤ m < n ≤ |C|}. Thus, we can also have seven binary relations as follows: {< 0, 0 >},
{< 1, 0 >}, {< 1, 1 >}, {< 0, 0 >,< 1, 0 >}, {< 0, 0 >,< 1, 1 >}, {< 1, 0 >,< 1, 1 >}
and {< 0, 0 >,< 1, 0 >,< 1, 1 >}. From seven binary relations above, if ∀rp ∈ R and ∃rq ∈ R,
one cannot get em

p + en
p = en

p(em
q �= en

q ). Thus, there exists < 0, 1 >∈ {< em
p , en

p >: 1 ≤ m < n ≤
|C|} in MBDM.

(3) If there does not exist < 0, 0 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|} or < 1, 1 >∈ {< em
p , en

p >:
1 ≤ m < n ≤ |C|}. There must have seven binary relations as follows: {< 0, 1 >}, {< 1, 0 >},
{< 0, 1 >,< 1, 0 >}, {< 0, 0 >,< 0, 1 >}, {< 0, 0 >,< 1, 0 >}, {< 1, 1 >,< 0, 1 >},
{< 1, 1 >,< 1, 0 >}. From seven binary relations above, we cannot have em

p = en
p. Thus,
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there must exists < 0, 0 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|} or < 1, 1 >∈ {< em
p , en

p >:
1 ≤ m < n ≤ |C|} in MBDM.

(4) If there does not exist < 1, 0 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|} and < 0, 1 >∈
{< em

p , en
p >: 1 ≤ m < n ≤ |C|}. We may obtain eleven binary relations as follows:

{< 0, 0 >}, {< 1, 1 >}, {< 0, 1 >}, {< 1, 0 >}, {< 0, 0 >,< 0, 1 >}, {< 0, 0 >,< 1, 0 >},
{< 1, 1 >,< 0, 1 >}, {< 1, 1 >,< 1, 0 >}, {< 0, 0 >,< 1, 1 >}, {< 0, 0 >,< 1, 1 >,< 0, 1 >},
{< 0, 0 >,< 1, 1 >,< 1, 0 >}. From eleven binary relations, for ∀rp ∈ R, we cannot have
em

p �= en
p. Thus, there exists < 1, 0 >∈ {< em

p , en
p >: 1 ≤ m < n ≤ |C|} and < 0, 1 >∈ {<

em
p , en

p >: 1 ≤ m < n ≤ |C|} in MBDM.

This completes the proof.

Deterministic finite automaton, also called deterministic finite acceptor, is an important concept
in theory of computation. A deterministic finite automaton constructs a finite-state machine which
can accept or reject symbol strings, and produce a computation of automation for each input string.
In what follows, we adopt deterministic finite automata to obtain row relations and column relations
in a binary discernibility matrix. Here, we first review the definition of deterministic finite automaton
as follows.

Definition 9. A deterministic finite automaton is a 5-tuple (Q, ∑, δ, S0, F), where Q is a finite nonempty set
of states, ∑ is a finite set of input symbols, δ is a transition function, S0 ∈ Q is a start state, F is a set of
accept states.

Regarding object pair ‘em
p em

q ’ as the basic granule in input symbols, a deterministic finite automaton
for row relations in a binary discernibility matrix is illustrated by the following theorem:

Theorem 3. A deterministic finite automaton for row relations, denoted by DFArow, is a 5-tuple
(Q, ∑, δ, S0, F), where Q = {S0, S1, S2, S3, S4} is a finite set of states, ∑ = {e0

pe0
qe1

pe1
q . . . em

p em
q em+1

p em+1
q . . .

e|C|p e|C|q }(1 < m < |C|, rp, rq ∈ R) is an input binary character string, δ is a transition function, S0 ∈ Q is a
start state, F = {S1, S2, S3, S4} is a set of accept states. A deterministic finite automaton for row relations can
be illustrated in Figure 1 as follows.

Figure 1. A Deterministic Finite Automaton for Row Relations.

Proof. In a binary discernibility matrix, relations between rp and rq can be concluded as rq ⊃ rp,
rp = rq, rp ⊃ rq and rp �= rq.

We discuss a deterministic finite automaton for row relations from four parts separately, as follows.

(1) According to Definition 5 and Theorem 1, for ∀am ∈ C, ∀rp, rq ∈ R, there must be < 0, 1 >∈
{< em

p , em
q >: 1 ≤ p < q ≤ |R|}. Thus, the regular expression for rq ⊃ rp can be defined as
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[(00/11)∗(01)+(00/11)∗]+. We can easily have the corresponding deterministic finite automaton
in Figure 2 as:

Figure 2. A Deterministic Finite Automaton for rq ⊃ rp.

(2) For rp = rq, there must be < 0, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|} or < 1, 1 >∈ {<
em

p , em
q >: 1 ≤ p < q ≤ |R|}. The regular expression for rp = rq is denoted by (00/11)+.

So, the corresponding deterministic finite automaton can be illustrated in Figure 3 as:

Figure 3. A Deterministic Finite Automaton for rp = rq.

(3) Analogous to rp ⊃ rq, for rp, rq ∈ R, there must be < 1, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|}.
Therefore, the regular expression for rp ⊃ rq can be obtained as [(00/11)∗(10)+(00/11)∗]+.
We can easily have the corresponding deterministic finite automaton in Figure 4 as:

Figure 4. A Deterministic Finite Automaton for rp ⊃ rq.

(4) For rp �= rq, there must be < 1, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|} and < 0, 1 >∈
{< em

p , em
q >: 1 ≤ p < q ≤ |R|}. The regular expression for rp �= rq is denoted

by [(00/11)∗(01)+(00/11)∗(10)+(00/11)∗]+/[(00/11)∗(10)+(00/11)∗(01)+(00/11)∗]+. Hence,
the corresponding deterministic finite automaton can be illustrated in Figure 5 as:

Figure 5. A Deterministic Finite Automaton for rp �= rq.

One can construct a deterministic finite automaton for row relations by four deterministic finite
automata shown in Figure 1.

This completes the proof.

Similar to the deterministic finite automaton for row relations, we present the deterministic finite
automaton for column relations in a binary discernibility matrix as follows.
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Theorem 4. A deterministic finite automaton for column relations DFAcol is a 5-tuple (Q, ∑, δ, S0, F),
where Q = {S0, S1, S2, S3, S4} is a finite set of states, ∑ = {em

0 en
0 em

1 en
1 . . . em

p en
pem

p+1en
p+1 . . . em

|R|e
n
|R|} (1 <

p < |R|, ∀am, an ∈ C) is an input binary character string, δ is a transition function, S0 ∈ Q is a start state.
F = {S1, S2, S3, S4} is a set of accept states. A deterministic finite automaton for column relations can be
illustrated in Figure 6 as follows:

Figure 6. A Deterministic Finite Automaton for Column Relations.

Proof. This proof is similar to the proof of Theorem 3.

By means of the proposed deterministic finite automata for row and column relations, we propose
a quick algorithm for binary discernibility matrix simplification using deterministic finite automata
(BDMSDFA) as follows:

We present the following example to explain Algorithm 3 as follows.

Algorithm 3 : A quick algorithm for binary discernibility matrix simplification using deterministic
finite automata, BDMSDFA.
Input: Original binary discernibility matrix MBDM;
Output: Simplified binary discernibility matrix M

′
BDM

1: delete the row in which all elements are 0 s;
2: compare the row relation between rp and rq by DFArow
3: for p = 1 to |R| do

4: for q = 1 to |R| do

5: if rp ⊃ rq then

6: delete row rp from MBDM
7: break
8: end if

9: end for

10: end for

11: delete the column in which all elements are 0 s;
12: compare the column relation between am and an by DFAcol
13: for m = 1 to |C| do

14: for n = 1 to |C| do

15: if an ⊃ am then

16: delete column am from MBDM
17: break.
18: end if

19: end for

20: end for

21: output a simplified binary discernibility matrix M′
BDM;
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Example 1. Let DS = (U, C ∪ D, V, f ) be a decision system shown Table 1, where the universe
U = {x1, x2, x3, x4, x5}, the condition attribute set C = {a1, a2, a3, a4}, the decision attribute set D = {d}.

Table 1. A decision system.

a1 a2 a3 a4 d

x1 1 2 0 0 1
x2 1 2 0 0 1
x3 1 2 1 1 2
x4 1 3 1 1 3
x5 2 4 1 1 4

For the decision system above, we have the corresponding binary discernibility matrix as follows:

M1
BDM =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 1 1
0 1 1 1
1 1 1 1
0 0 1 1
0 1 1 1
1 1 1 1
0 1 0 0
1 1 0 0
1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We delete the row in which all elements are 0 s in M1
BDM , and obtain the binary discernibility matrix

M2
BDM as follows.

M2
BDM =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1
0 1 1 1
1 1 1 1
0 0 1 1
0 1 1 1
1 1 1 1
0 1 0 0
1 1 0 0
1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In the binary discernibility matrix M2
BDM, r1 : 0011, r2 : 0111, r3 : 1111, r4 : 0011, r5 : 0111, r6 : 1111,

r7 : 0100, r8 : 1100, r9 : 1100. According to the definition of the deterministic finite automaton for row
relations, we have ∑12 = 00011111, ∑13 = 01011111, ∑14 = 00001111, ∑15 = 00011111, ∑16 = 01011111,
∑17 = 00011010, ∑18 = 01011010, ∑19 = 01011010. By using the deterministic finite automaton for row
relations shown in Figure 1, we can get the row relations as follows. r2 ⊃ r1, r3 ⊃ r1, r4 = r1, r5 ⊃ r1, r6 ⊃ r1,
r7 �= r1, r8 �= r1, r9 �= r1. Therefore, we delete r2, r3, r5 and r6. Similarly, we get r8 ⊃ r7 and r9 ⊃ r7, r4 �= r7,
and then delete r8 and r9. Therefore, we have the following binary discernibility matrix:

M3
BDM =

⎛⎜⎝0 0 1 1
0 0 1 1
0 1 0 0

⎞⎟⎠ .
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We delete the column in which all elements are 0 s in M3
BDM, and have

M4
BDM =

⎛⎜⎝0 1 1
0 1 1
1 0 0

⎞⎟⎠ .

In the binary discernibility matrix M4
BDM, a1 : 001, a2 : 110, a3 : 110. According to the definition of

deterministic finite automaton for column relations, we have ∑12 = 010110, ∑13 = 010110, ∑23 = 111100.
By using the deterministic finite automaton for column relations shown in Figure 6, we have a1 �= a2, a1 �= a3,
a2 = a3. Thus, we cannot delete any column in M4

BDM, and get the following binary discernibility matrix.

M5
BDM =

⎛⎜⎝0 1 1
0 1 1
1 0 0

⎞⎟⎠ .

A 10× 4 matrix M1
BDM is compressed to a 3× 3 matrix M5

BDM. The simplified binary discernibility
matrix with fewer objects or columns will be help in improving the efficiency of attribute reduction.

Assume that t = |R| and s = |C|, the upper bound of time complexity of BDMR is 3ts(t + s− 2),
the lower bound of time complexity of BDMR is 2ts(t + s− 2). The upper bound of time complexity
of IBDMR is 3ts(t + s − 2) and the lower bound of the worst-case time complexity of IBDMR is
2ts(t + s− 2). By employing deterministic finite automata, the algorithm complexity of BDMSDFA is
ts(t + s− 2). Obviously, the time complexity of BDMSDFA is lower than that of BDMR and IBDMR.
Therefore, it is concluded that the proposed algorithm BDMSDFA reduces the computational time for
binary discernibility matrix simplification in general.

The advantages of the proposed method are expressed as follows. (1) Deterministic finite automata
in a binary discernibility matrix are constructed, it can provide an understandable approach to
comparing the relationships of different rows (columns) quickly. (2) Based on deterministic finite
automata, a high efficiency algorithm of binary discernibility matrix simplification is developed.
Theoretical analyses and experimental results indicate that the proposed algorithm is effective and
efficient. It should be noted that the proposed method is based on Pawlak decision systems, but not
suitable for generalized decision systems, such as incomplete decision systems, interval-valued
decision systems and fuzzy decision systems. Deterministic finite automata in generalized decision
systems will be investigated in the future.

5. Experimental Results and Analyses

The objective of the following experiments in this section is to demonstrate the high efficiency of
the algorithm BDMSDFA. The experiments are divided into two aspects. In one aspect, we employ
10 datasets in Table 2 to verify the performance of time consumption of BDMR, IBDMR and BDMSDFA.
In the other aspect, the computational times of algorithms BDMR, IBDMR and BDMSDFA with
the increase of the size of attributes (or objects) are calculated respectively. We carry out three
algorithms on a personal computer with Windows 8.1 (64 bit) and Inter(R) Core(TM) i5-4200U, 1.6 GHz
and 4 GB memory. The software is Microsoft Visual Studio 2017 version 15.9 and C++. Data sets
used in the experiments are all downloaded from UCI repository of machine learning data sets
(http://archive.ics.uci.edu/ml/datasets.html).

Table 2 indicates the computational time of BDMR, IBDMR and BDMSDFA on the 10 data sets.
We can see that the algorithm BDMSDFA is much faster than the algorithms BDMR and IBDMR.
The computational times of three algorithms follows this order: BDMR ≥ IBDMR > BDMSDFA.
The computational time of BDMSDFA is the minimum among the three algorithms. For the data set
Auto in Table 2, the computational times of BDMR and IBDMR are 75 ms and 68 ms, while that of
BDMSDFA is 36 ms. For the data set Credit_a, the computational times of BDMR and IBDMR are
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113 ms and 105 ms, while that of BDMSDFA is 55 ms. For some data sets in Table 2, the computational
time of BDMSDFA can reduce over half the computational time of BDMR or IBDMR. In Table 2, for the
data set Breast_w, the computational times of BDMR and IBDMR are 75 ms and 73 ms, while that of
BDMSDFA is 29 ms. For the data set Promoters, the computational times of BDMR and IBDMR are
1517 ms and 936 ms, while that of BDMSDFA is only 398 ms. For the date sets such as Lung-cancer,
Credit_a, Breast_w, Anneal, the computational time of BDMR is close to that of IBDMR. For the data
set Labor_neg, the computational time of BDMR is equivalent to that of IBDMR. For each data set in
Table 2, difference between BDMR and IBDMR is relatively smaller than difference between BDMR
(IBDMR) and BDMSDFA.

Table 2. Time consumption of BDMR, IBDMR and BDMSDFA.

Data Sets
Num. of
Objects

Num. of
Attributes

Num. of
Rows

Num. of
Columns

Time of
BDMR (ms)

Time of
IBDMR (ms)

Time of
BDMSDFA (ms)

Labor_neg 40 15 52 14 2 2 1
Lung-cancer 32 57 206 53 11 9 3
Heart_statlog 270 14 96 13 32 27 14

Autos 250 26 36 19 75 68 36
Credit_a 690 16 27 12 113 105 55
Breast_w 699 10 20 9 75 73 29
Anneal 898 39 9 9 206 194 134

Promoters 106 58 2761 57 1517 936 398
Dermatology 366 35 1347 31 3239 2638 1318

Connect_4 67,557 43 697 42 2,444,328 2,433,863 1,759,917

We compare the computational times of BDMR, IBDMR and BDMSDFA with the increase of the
size of objects. In Figure 7a–f, the x-coordinate pertains to the size of objects in the universe, while the
y-coordinate concerns the time consumption of algorithms. We employ 6 data sets (Dermatlogy,
Credit_a, Controceptive_Method_Choice, Letter, Flag and Mushroom) to verify the performance of
time consumption of BDMR, IBDMR and BDMSDFA. When dealing with the same UCI data sets,
the computational time of BDMSDFA is less than that of BDMR and IBDMR, in other words, BDMSDFA
is more efficient than BDMR and IBDMR. Figure 7 shows more detailed change trends of each algorithm
with the number of objects increasing. The computational times of three algorithms increase with the
increase of the number of objects simultaneously. It is obvious to see that the slope of the curve of
BDMSDFA is smaller than the curve of BDMR or IBDMR, and the computational time of BDMSDFA
increases slowly. The differences between BDMR (IBDMR) and BDMSDFA become distinctly larger
when the size of the objects increases. In Figure 7c, the difference of BDMR (IBDMR) and BDMSDFA
is not obviously different at the beginning. The computational time of DBMR (IBDMR) increases
distinctly when the number of objects is over 450. The computational time of algorithm BDMR
increases by 479 ms when the number of objects rises from 450 to 1473, whereas the computational
time of algorithm BDMSDFA increases by only 141 ms. In Figure 7e, the computational time of the
algorithm IBDMR increases by 104 ms when the number of objects rises from 20 to 160, whereas the
time consumption of algorithm BDMSDFA increases by only 49.
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(a) (b)

(c)
×

×

(d)

(e)

×

(f)

Figure 7. (a) Dermatlogy; (b) Credit_a; (c) Controceptive_Method_Choice; (d) Letter; (e) Flag; (f) Mushroom.

In Figure 8a–f, the x-coordinate pertains to the size of attributes, while the y-coordinate
concerns the time consumption of algorithms. We also take 6 data sets (Dermatlogy, Credit_a,
Controceptive_Method_Choice, Letter, Flag and Mushroom) to verify the performance of the
computational times of BDMR, IBDMR and BDMSDFA. The curve of BDMR is similar to that of
IBDMR. The curve of BDMSDFA is under the curves of BDMR and IBDMR. Then, the computational
time of BDMSDFA is less than that of BDMR or IBDMR. In Figure 8b, the computational time of
algorithms BDMR and IBDMR increase by 164 ms and 123 ms respectively, while the computational
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time of algorithm BDMSDFA increases by 58 ms. In Figure 8c, the curves of BDMR and IBDMR
raise profoundly when the size of the attributes increases. In Figure 8e, the computational time of
algorithm IBDMR increases from 4 ms to 105 ms when the number of objects rises from 3 to 24,
while the computational time of algorithm BDMSDFA increasedly from 2 ms to 50 ms. For Figure 8a–f,
it is concluded that the efficiency of BDMSDFA is higher than that of BDMR or IBDMR with the
increase of the number of attributes. Difference between BDMR and IBDMR is relatively smaller than
difference between BDMR (IBDMR) and BDMSDFA. The computational times of three algorithms
increase with the increase of the number of attributes monotonously. When dealing with the same
situation, the computational time of BDMSDFA is the minimum among the three algorithms.

(a) (b)

(c)

×

(d)

(e)

×

(f)

Figure 8. (a) Dermatlogy; (b) Credit_a; (c) Controceptive_Method_Choice; (d) Letter; (e) Flag; (f) Mushroom.
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Experimental analyses and results show a high efficiency of the algorithm BDMSDFA. The proposed
simplification algorithm using deterministic finite automata can be applied as a preprocessing
technique for data compression and attribute reduction in large-scale data sets.

6. Conclusions

Original binary discernibility matrices which are not simplified usually have irrelative objects
and attributes. These irrelative objects and attributes may lead to inefficiency in attribute reduction,
knowledge acquisition, etc. To tackle this problem, a quick method of comparing the relationships of
different rows (columns) are introduced in binary discernibility matrices. By using deterministic finite
automata, a quick algorithm for binary discernibility matrix simplification (BDMSDFA) is developed.
The experiment results indicate that DBMSDFA can get higher performance in the efficiency of binary
discernibility matrix simplification. The contributions of this paper can be summarized as follows.

(1) We define row (or column) relations which are used for constructing deterministic finite automata.
(2) Deterministic finite automata are firstly used for comparing the relationships of different rows

(columns) in a binary discernibility matrix.
(3) Based on deterministic finite automata, a quick algorithm for binary discernibility matrix

simplification is developed. Experimental results indicate that the relationship between the time
consumption of BDMSDFA and the number of objects (attributes) is strictly monotonic. With the
increase of the size of objects (attributes), the algorithm BDMSDFA is more efficient than BDMR
and IBDMR.

It is noted that the proposed quick simplification algorithm for discernibility matrix is only
suitable for completed decision systems. However, in practical applications, there exists many
generalized decision systems, such as incomplete decision systems, interval-valued decision systems,
etc. Researches on quick simplification algorithms in generalized decision systems will be investigated.
Combing the researches on fuzzy sets [33–36], we will propose the fuzzy binary discernibility matrix.
Some applications of the (fuzzy) binary discernibility matrix simplification will also be studied in
the future.
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