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Preface

The Reprint “Computational Methods in Structural Engineering” presents a focused collection

of contributions that reflect the evolving role of computation in structural analysis, design, and

assessment. The subject of this Reprint is the integration of advanced numerical techniques,

optimization strategies, and artificial intelligence into the practice of structural engineering. Its scope

extends from traditional finite element modeling and stochastic simulations to innovative data-driven

approaches for health monitoring and predictive performance evaluation.

The aim of this Reprint is to highlight recent progress in the field, showcase diverse applications,

and provide a resource that supports both academic research and professional practice. The

motivation behind this effort is the recognition that modern engineering challenges, ranging from

extreme loading events to sustainable design, cannot be addressed without powerful computational

tools. By compiling high-quality studies from international researchers, this Reprint seeks to offer a

consolidated view of current trends and to stimulate further exploration in areas where computation

and engineering intersect.

This Reprint is addressed to scholars, engineers, and graduate students who are engaged in

advancing the theory and application of structural engineering. It is also intended for practitioners

who wish to gain deeper insight into computational strategies that increasingly shape engineering

decision-making. We hope that the contributions gathered here will inspire further innovation and

collaboration, while also serving as a valuable reference for those committed to the advancement of

structural engineering through computation.

Manolis Georgioudakis, Vagelis Plevris, and Mahdi Kioumarsi

Guest Editors

ix





Editorial

Computational Methods in Structural Engineering: Current
Advances and Future Perspectives

Vagelis Plevris 1,*, Manolis Georgioudakis 2 and Mahdi Kioumarsi 3

1 Department of Civil and Environmental Engineering, College of Engineering, Qatar University,
Doha P.O. Box 2713, Qatar

2 Institute of Structural Analysis & Antiseismic Research, School of Civil Engineering, National Technical
University of Athens, Zografou Campus, 15780 Athens, GR, Greece; geoem@mail.ntua.gr

3 Department of Built Environment, OsloMet—Oslo Metropolitan University, 0166 Oslo, Norway;
mahdi.kioumarsi@oslomet.no

* Correspondence: vplevris@qu.edu.qa

Abstract

This brief editorial introduces the Special Issue “Computational Methods in Structural
Engineering”. This Special Issue brings together recent advances in computational
approaches—including finite element modeling, machine learning applications, stochastic
analysis, and high-precision numerical methods— highlighting their increasing influence
on the analysis, design, and assessment of modern structural systems. The published
contributions cover topics such as the nonlinear finite element method (FEM) for structural
response under extreme loading, advanced plate and composite modeling, explainable
AI for material characterization, machine learning for predictive performance modeling,
data-driven signal processing for structural health monitoring, and stochastic analysis of
dynamic inputs. Through this collection of studies, this Special Issue underscores both the
opportunities and the challenges of applying advanced computational methods to enhance
the resilience, efficiency, and understanding of structural engineering systems.

Keywords: structural engineering; computational methods; finite element method; ma-
chine learning; explainable AI; structural health monitoring

1. Introduction

Structural engineering has undergone a profound transformation with the rapid ad-
vancement and widespread availability of computers. In the past, engineers relied on hand
calculations and simplified models, but modern computational methods have now become
indispensable in structural analysis and design [1]. The finite element method (FEM),
in particular, emerged as a cornerstone of this revolution, providing the “computational
workhorse” for simulating complex structures and physics [2]. Introduced in the mid-20th
century, the FEM is regarded as one of the most significant engineering advances of the
last century, fundamentally changing how engineers model and design structures [3,4].
By discretizing structures into elements, the FEM enables rigorous analysis of stresses,
deformations, and failure mechanisms in everything from bridges and high-rise build-
ings to aerospace and offshore structures. Its development also gave rise to the field of
computational mechanics, integrating physics, numerical methods, and computer science
in engineering [2]. The result has been a paradigm shift: many structural engineering
problems once intractable or oversimplified can now be tackled with high fidelity, leading
to safer and more efficient designs in practice [1].

Computation 2025, 13, 224 https://doi.org/10.3390/computation13090224
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Equally transformative has been the rise of computational optimization techniques
in structural engineering [5–7]. Optimization algorithms allow engineers to automatically
search for designs that minimize the weight, cost, or environmental impact, while satisfying
the safety constraints. Early applications involved sizing or shape optimization, but the
field truly accelerated with topology optimization—a method that optimizes the material
layout within a design space. Topology optimization techniques, pioneered in the 1980s
and 1990s, have enabled the creation of lightweight yet strong structural forms by removing
unnecessary material [8]. Bendsøe and Sigmund’s foundational work introduced general
methods to optimize structural layouts, achieving minimum-weight designs without com-
promising performance [8,9]. Over the past two decades, numerous advances have made
such techniques more powerful and practical [5,10]. Comprehensive surveys have shown
that modern topology and shape optimization methods—ranging from gradient-based
approaches to evolutionary algorithms—are now successfully applied to real-world struc-
tures across domains such as aerospace engineering and civil infrastructure [5,6]. These
computational design tools improve the efficiency and material usage in structures and
also open up innovative architectural forms that would be impossible to realize via manual
trial and error [11].

In parallel, performance-based design has emerged as a modern paradigm, partic-
ularly in earthquake [12,13] and fire engineering [14], in which structures are iteratively
engineered to meet explicit performance targets (e.g., life safety or immediate occupancy)
under extreme loads. Such design approaches rely heavily on nonlinear finite element sim-
ulations and probabilistic analyses, which are only feasible thanks to today’s computational
power [14,15]. Advanced numerical models also tackle complex materials and geometries.
For instance, refined finite element formulations allow the analysis of composite structures
and unconventional shapes that exhibit behaviors beyond the scope of classical beam or
plate theory. From multi-directional functionally graded materials to long-span free-form
shells, computational methods provide the means to predict structural responses with
confidence where analytical solutions are unavailable [16].

In recent years, the rapid development of machine learning (ML) and artificial in-
telligence has further expanded the computational toolkit of structural engineers. ML
techniques are now being used as powerful supplements (and sometimes alternatives) to
physics-based simulations in various structural applications [17,18]. In the last decade,
there has been a boom in implementing data-driven models for tasks such as structural
health monitoring, damage detection, predictive modeling of structural behavior, and even
design automation [17,19,20]. Unlike traditional programs written from first principles, ML
algorithms can learn complex nonlinear relationships directly from data—a capability espe-
cially useful for problems where accurate analytical modeling is difficult [21]. For example,
researchers have trained neural networks and ensemble methods to predict structural re-
sponses (deflections, stresses, failures) under loads, bypassing more time-consuming finite
element analyses in specific scenarios [17]. Likewise, ML-driven models have achieved re-
markable accuracy in estimating material properties (e.g., concrete strength, bond capacity
of novel materials) by mining large experimental datasets [22,23]. These approaches can
handle high-dimensional data (e.g., vibration signals, monitoring sensor streams) and filter
out noise or detect patterns that elude conventional methods [17,24]. While data-driven
models do not replace the need for fundamental mechanics, they complement traditional
simulations—for instance, hybrid approaches use ML as fast surrogates for costly compu-
tations or to optimize structural systems in real time [25]. The net effect is that structural
engineering is becoming more predictive and adaptive [17]. Of course, challenges remain
in ensuring the reliability, interpretability, and adequate training of these models, but
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ongoing research is quickly advancing the integration of AI into structural engineering
workflows [24].

Structural health monitoring (SHM) deserves special mention as one of the most
active areas of computational innovation in structural engineering. Modern SHM frame-
works combine vibration-based testing, dense sensor networks, and advanced data an-
alytics to assess the integrity and performance of structures in real time [26]. With the
integration of machine learning, SHM systems can process high-dimensional and noisy
monitoring data, enabling more reliable detection of anomalies and early identification
of damage [21,22]. These advances support the development of predictive maintenance
and early-warning systems that enhance the safety, resilience, and lifecycle management
of critical infrastructure [27]. The inclusion of SHM-related contributions in this Special
Issue reflects its growing significance in bridging advanced computational methods with
practical asset management.

Another frontier in computational structural engineering lies in the advancement of
stochastic methods and high-precision numerical techniques. Real-world structures are
inherently affected by uncertainties in loads, materials, and environmental conditions,
which makes uncertainty quantification and probabilistic modeling essential [28]. Modern
approaches such as reliability-based design [29], stochastic dynamic analysis [30], and
covariance evaluation provide rigorous tools to capture the variability and assess the struc-
tural safety under realistic time-varying conditions. In parallel, progress in high-precision
numerical methods has expanded the accuracy and stability of classical formulations, al-
lowing engineers to tackle nonlinear, multi-scale, and multi-physics problems with greater
fidelity [31,32]. Together, these developments highlight how computational innovation—
both in handling uncertainty and in refining numerical precision—continues to broaden
the scope and reliability of structural engineering analysis.

Motivated by these advancements, this Special Issue, “Computational Methods in
Structural Engineering”, was conceived to showcase recent developments and applications
at the forefront of the field. The call for papers solicited contributions across a wide range
of topics—including finite element analysis, optimization techniques, dynamic simulation,
novel numerical methods for materials and forms, and machine learning applications—
reflecting the broad impact of computation in modern structural engineering. The response
to the call has been satisfactory, leading to eight high-quality peer-reviewed papers that
collectively showcase some of the most relevant research trends. These contributions span
from high-fidelity nonlinear finite element modeling of structural failure under extreme
loads to data-driven approaches for processing structural response signals and predicting
structural performance, to advanced analytical and numerical techniques for innovative
materials and systems. In the following sections, we summarize each contribution to this
Special Issue, emphasizing its context and key findings within the broader evolution of
computational structural engineering.

2. Contributions

Thango et al. (Contribution 1) investigate the failure response of masonry walls
subjected to blast loading using nonlinear finite element analysis (FEM). Masonry struc-
tures, widely used in many regions, are highly vulnerable to extreme dynamic loads
such as explosions. The authors employ advanced nonlinear FEM models to simulate
the blast-induced behavior of masonry walls, capturing complex phenomena including
the material nonlinearity, cracking, and progressive failure. The study provides detailed
insights into how different parameters, such as loading intensity and boundary conditions,
influence wall performance under blast effects. The findings highlight the capability of
computational modeling to replicate failure mechanisms that are otherwise difficult to
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observe experimentally due to safety and cost constraints. This contribution emphasizes
the importance of nonlinear FEM in understanding structural resilience under extreme
events, offering valuable guidance for protective design and retrofitting strategies.

Damikoukas and Lagaros (Contribution 2) propose the MLDAR model, a machine
learning-based framework for denoising structural response signals generated by ambient
vibration testing. Structural health monitoring (SHM) often relies on ambient vibration
data, but such signals are prone to noise, which can hinder accurate modal identification
and damage detection. Traditional filtering methods, such as Fourier or wavelet transforms,
have been widely used to address this issue; however, modern machine learning techniques
increasingly outperform them. In this work, the authors develop a denoising method that
integrates ML algorithms to separate meaningful structural response components from
background noise. Their results show that the proposed MLDAR model significantly
improves the signal clarity compared to conventional filtering approaches, enabling more
reliable extraction of modal parameters. By enhancing the quality of vibration-based data,
this study contributes to more robust SHM applications and demonstrates the effectiveness
of data-driven approaches in complementing traditional signal processing. The work
underscores the growing role of machine learning in improving data quality for structural
assessment and monitoring.

Domaneschi et al. (Contribution 3) address the challenge of evaluating covariance
in linear structural systems subjected to non-stationary random inputs. Many real-world
structural systems are influenced by time-varying dynamic loads, such as earthquakes,
wind gusts, or traffic, where classical stationary assumptions no longer hold. The au-
thors propose a numerical method for efficiently computing covariance responses under
such non-stationary excitations, providing a valuable tool for uncertainty quantification
and reliability analysis. The framework allows for the accurate characterization of struc-
tural response statistics without resorting to prohibitively large Monte Carlo simulations.
Applications of the method demonstrate its potential for analyzing the safety and ser-
viceability of engineering structures under realistic loading conditions. This contribution
reinforces the importance of advanced stochastic analysis in structural engineering, of-
fering a computationally efficient approach to assess performance under complex and
uncertain environments.

Bakas (Contribution 4) investigates using Taylor polynomials under high arithmetic
precision as universal function approximators. The study revisits the classical concept
of Taylor series expansion and explores its potential in modern computational contexts,
particularly where high numerical precision is required. By employing advanced numerical
techniques, the work demonstrates that Taylor polynomials can serve as reliable universal
approximators, effectively capturing complex nonlinear behaviors with enhanced stability
and accuracy. This approach offers a promising alternative to more computationally inten-
sive approximation schemes, such as spectral or mesh-based methods, particularly in cases
where analytical solutions are intractable or conventional numerical techniques may suffer
from precision loss. This contribution highlights how fundamental mathematical tools,
combined with high-precision computing, can provide robust and efficient approximation
strategies for diverse engineering and scientific applications.

Hadji et al. (Contribution 5) focus on the buckling and free vibration behavior of multi-
directional functionally graded (FG) sandwich plates, analyzed using refined plate theories
under various boundary conditions. Functionally graded sandwich plates, which combine
the advantages of FG materials and sandwich structures, are increasingly studied for their
superior mechanical performance in aerospace, civil, and mechanical applications. The
authors employ advanced refined plate models to capture the effect of material gradation
in multiple directions, allowing for a more realistic representation of the stiffness and mass
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distribution. Their analysis explores how different boundary conditions influence both
the critical buckling loads and natural frequencies of these innovative structures. The
findings provide valuable insights into the stability and dynamic characteristics of FG
sandwich plates, emphasizing the importance of considering material gradation patterns
in both directions. This research extends the applicability of computational modeling to
advanced composite structures and contributes to the broader field of multi-scale modeling
of innovative structural systems.

Ababu et al. (Contribution 6) present a study on the use of machine learning algo-
rithms to develop predictive models for estimating the maximum deflection of horizontally
curved steel I-beams. Curved I-beams are widely used in bridges and other infrastructures
where alignment requires nonlinear geometry. Still, their structural response under load-
ing is significantly more complex than straight beams. Accurate traditional analytical or
numerical methods can be computationally intensive and require specialized expertise. In
this work, the authors apply supervised ML algorithms to experimental and simulation
datasets, creating models that accurately predict the maximum deflections. The study
highlights the efficiency of data-driven approaches in capturing the nonlinear relationships
inherent in curved beam mechanics. Beyond predictive accuracy, the results demonstrate
the potential of ML-based surrogates to reduce the computational costs in design and as-
sessment processes. This contribution illustrates how modern data science can complement
classical structural mechanics, offering engineers faster and more accessible predictive tools
for complex structural elements.

Mahmoudian et al. (Contribution 7) investigate the use of explainable boosting
machine (EBM) models to predict the bond strength of fiber-reinforced polymer (FRP)
rebars embedded in ultra-high-performance concrete (UHPC). The bond strength between
FRP reinforcement and concrete is a key factor influencing the structural performance,
durability, and service life, especially given the increasing use of FRP bars as corrosion-
resistant alternatives to steel. In this study, the authors apply EBM, a state-of-the-art
machine learning approach that combines predictive power with interpretability, allowing
the identification of the most influential parameters affecting bond strength. The model
demonstrates excellent predictive accuracy compared to traditional regression methods
and provides transparent insights into the relative importance of input variables such as
the concrete compressive strength, rebar surface characteristics, and embedment length.
By offering accurate predictions and clear explanations of the underlying data-driven
relationships, the work advances the integration of trustworthy AI tools in structural
engineering practice. This contribution is particularly valuable for guiding design decisions
and developing future design codes involving FRP-reinforced UHPC structures.

Hamdia (Contribution 8) presents a study on the application of a numerical homoge-
nization method to evaluate the effective converse flexoelectric coefficients of composite
materials. Flexoelectricity, a size-dependent electromechanical coupling phenomenon, is
particularly significant in small-scale materials, where strain gradients can induce electric
polarization. This work employs a computational framework to bridge the gap between
microscale material behavior and effective macroscale properties, enabling accurate predic-
tion of converse flexoelectric coefficients. The study emphasizes the versatility of numerical
homogenization techniques in handling complex material microstructures, which are often
challenging to address analytically. The results highlight the capacity of this approach to
capture essential electromechanical interactions, providing insights into the design and op-
timization of advanced multifunctional materials. The findings expand the understanding
of flexoelectric phenomena and open opportunities for developing innovative smart struc-
tures and devices where electromechanical coupling plays a central role. This contribution
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underscores the growing role of computational homogenization in linking material science
with structural engineering applications.
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Abstract: A numerical investigation of masonry walls subjected to blast loads is presented in this
article. A non-linear finite element model is proposed to describe the structural response of the
walls. A unilateral contact–friction law is used in the interfaces of the masonry blocks to provide the
discrete failure between the blocks. A continuum damage plasticity model is also used to account for
the compressive and tensile failure of the blocks. The main goal of this article is to investigate the
different collapse mechanisms that arise as an effect of the blast load parameters and the static load
of the wall. Parametric studies are conducted to evaluate the effect of the blast source–wall (standoff)
distance and the blast weight on the structural response of the system. It is shown that the traditional
in-plane diagonal cracking failure mode may still dominate when a blast action is present, depending
on the considered standoff distance and the blast weight when in-plane static loading is also applied
to the wall. It is also highlighted that the presence of an opening in the wall may significantly reduce
the effect of the blasting action.

Keywords: masonry; collapse mechanism; blast actions; unilateral contact; dynamic analysis; finite
element analysis

1. Introduction

Over the years, increasing research efforts have been developed focusing on analyzing
the structural behavior of masonry walls. Masonry is defined as a set of stone units that are
connected using mortar joints that are organized to form a regular pattern [1]. Masonry is
commonly used in monuments, masonry arches, and also in low-cost houses. For these
structural systems, the low tensile resistance of masonry or mortar interfaces may lead to a
compromised response when in- and out-of-plane lateral forces reach high values.

Among several loading conditions, ongoing research aims to investigate the impact
of blasting forces on masonry structures. In particular, research on this type of loading
focuses on mining activities using blasting operations, which comprise the first phase of
the production cycle in most of the mining processes. Blasting is used to fragment the
rock overlying the coal seams in most mines. When the explosives are detonated, most of
the energy is consumed in rock fragmentation [2]. According to [3], energy not used to
break rock radiates out from the blast site in the form of ground vibrations and air blasts.
Additionally, when explosives are ignited in rock, a shock wave is produced that breaks
the rock and then a force in the form of gas pressure is formed [4]. An explosion or blast
activity is defined as the release of a significant amount of energy that takes place in a short
time period.

Computer advancement in the past decades has enabled researchers to model masonry
with its complexities using finite element analysis. The finite element (FE) method is one of
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the advanced numerical techniques that is commonly applied to analyze complex structural
engineering problems. Research work presented in [5–9] and others indicate that by using
the FE method, the failure modes that occur in masonry due to blast loading can be
successfully analyzed.

According to [10], the collapse modes of masonry walls that are exposed to blast
actions may include flexural failure, direct shear failure, and flexural–shear failure. Collapse
modes are further discussed in this section and elaborated in the analysis section of this
article. It is noted that these collapse modes were used for the validation of the proposed
numerical model.

D’Altri et al. [11] considered a masonry wall with dimensions of 1190 mm × 795 mm
with a brick size of 112 mm × 53 mm × 36 mm. The boundary conditions were taken as
fixed on all four sizes of the wall. The wall was loaded with a 20 KN/m2 out-of-plane
load. Their research aimed to assess the effectiveness of the micro-modeling approach
and assess the out-of-plane response of the masonry walls. As defined by Lourenço [12],
micro-modeling is where “masonry units and mortar joints are represented by continuum
elements, where the unit-mortar interface is represented by a discontinuous constitutive
description”. A quasi-static (transient dynamic) procedure was used for the numerical
study. Furthermore, the brick–mortar bond failures were accounted for using brick–mortar
nonlinear cohesive interfaces. The failure pattern in the wall indicated that the maximum
displacement often occurs at the center of the wall.

The discrete element method was used in [13] to investigate the behavior of masonry
structures under blast actions. A 2400 mm × 2400 mm wall, fixed on all sides, was
simulated, and typical modes of failure, including out-of-plane failure, were observed.
Furthermore, the study depicted the complete failure of the wall under a load of 810 kg TNT
explosive weight at a standoff distance of 37 m. According to Masi et al. [13], the geometry
of the blocks and the interfaces may be directly modeled using the discrete element method.
Their study was conducted using 3DEC software and the empirical model CONWEP to
simulate the blast action. They used a soft-contact technique to simulate joint interactions
between adjacent blocks. It is worth mentioning that the magnitude of the wall failure is
dependent on various factors such as standoff distance, wall dimensions/properties, and
boundary conditions.

Hao [5] conducted a numerical analysis of a 2880 mm× 2820 mm masonry wall subject
to blast load corresponding to a TNT explosive weight W = 2000 kg using AUTODYN
software. In that study, the four sides of the wall were modeled as fixed, with a mortar
layer between the fixed boundary and the masonry units of the wall, which, in turn, was
assigned homogenized material properties. It was shown that for higher explosive weight
and shorter standoff distances, the wall would collapse, and the center portion of the wall
failed out-of-plane as one brick flew out as a single piece. The wall was also observed to be
damaged near the boundary.

Shamim et al. [14] conducted a numerical study investigating the effect of a blast on
a 3000 mm × 3000 mm × 230 mm masonry wall, which had a reinforced concrete frame
of 230 mm × 235 mm cross-section dimensions. In their macro-approach, masonry units,
mortar joints, and the brick–mortar interface were modeled as a single material. They
investigated the effect of 100 kg TNT explosive weight over 20 m, 30 m, and 40 m distances
from the wall. Furthermore, their study considered a wall without an opening as well as
a wall with a window opening at its center. The boundary conditions were defined such
that the top of the wall was restrained in the direction parallel to the blast, simulating the
restrain obtained from a slab due to its high in-plane stiffness. The results for the wall
without the window showed that the peak values of displacements are found at mid-span.
The peak displacement values were equal to 267.8 mm, 95.1 mm, and 59.9 mm for the three
mentioned standoff distances between the blast source and the wall, respectively. For the
wall with the window, the values of peak displacement at the top of the opening when
out-of-plane failure arose were equal to 353.6 mm, 121.9 mm, and 73.2 mm, respectively.
Overall, they observed that peak values on the wall with the window were higher than
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those of the wall without the window; however, the standoff distances were not the same
when the opening was considered.

In a similar investigation presented in [15], it was shown that a wall subjected to blast
actions developed the highest displacement in the midsection of the masonry infill panel,
while the reinforced concrete frame remained undamaged. It was shown that when the
blasting source was close to the wall, the masonry panel collapsed completely, depicting
displacements greater than the thickness of the wall (>230 mm). Their study also looked at
the effect of changing blast load sizes, considering a TNT equivalent weight of charge equal
to W1 = 25 kg, W2 = 50 kg, W3 = 75 kg, and W4 = 100 kg for a constant standoff distance of
20 m. It was observed that peak displacement increases with increasing weight of charge
(at constant standoff distance of 20 m) and decreases with increasing distance.

In [16], a numerical study was conducted on a masonry wall with dimensions of
1700 mm × 1550 mm × 100 mm. The model was constructed with 23 courses of solid clay
bricks and analyzed using a simplified micro-modeling approach within finite element
analysis. The simulation was implemented in steps, involving vertical displacements and
cyclic out-of-plane actions. The failure mode was due to the formation of diagonal cracks
caused by in-plane loading. As derived from the mentioned literature, the type of failure
modes of masonry walls under in-plane and blasting, out-of-plane loading, are influenced
by various characteristics—such as the load application, geometry, boundary conditions,
and the quality of materials.

Some recent efforts aim at investigating the response of different types of reinforced
masonry walls under blast actions. In [17], a masonry wall connected with two transverse
walls, one at each end, was numerically tested using the micro-modeling technique within
non-linear finite element analysis. The work proposed numerical models to reinforce
the wall using CFRP wrapping and a steel angle-strip system. In [18], the behavior of
unreinforced masonry walls with CFRP wrapping and mild welded steel wire mesh, under
blast with low standoff distance, was investigated using non-linear finite element analysis.
In [19], a fragility analysis of masonry walls was proposed, illustrating the vulnerability
of the structures against blast load, focusing on different types of unreinforced masonry
walls and reinforced walls, using finite element analysis. In [20], for masonry walls made
of autoclaved aerated concrete and polymer-reinforced concrete that are subjected to heavy
TNT explosive loads, both experimental and numerical testing were provided. In the
numerical models, non-linear finite element analysis was used with cohesive zone models
to depict damage to the wall.

Based on this short review of recent results, it seems that there is still space for
more research investigating the collapse modes of masonry walls under blast actions. In
particular, one of the goals of this article, which also highlights its innovative points, is to
provide further insight into the way in-plane failure modes, such as diagonal cracking and
out-of-plane damage, may appear in masonry walls subjected to blast actions. From another
point of view, this article proposes a modeling technique using non-linear constitutive
descriptions, incorporating opening-sliding failure modes adopting contact mechanics,
as well as compressive/tensile damage, using continuum damage laws, all within finite
element analysis. The proposed models can be implemented in commercial software.

Within the given framework, a numerical investigation of the mechanical response of
masonry walls under blast actions, with and without openings, is presented. Non-linear
finite element models are proposed to simulate all the joints between masonry units by
introducing unilateral contact–friction interfaces. For the simulation of the blast action,
an empirical model is used, and explicit dynamic analysis is adopted implementing this
loading type. Various loading cases are tested, resulting in different failure modes.

In Section 2 of this article, failure modes of masonry walls are provided and modeling
approaches that can be used to capture these modes are briefly discussed. In Section 3, all
the details of the numerical model that is proposed in this article are presented. Among
others, the details of the blast load simulation, the material constitutive description, and the
geometry of the walls are given in this section. In Section 4, a validation of the proposed
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model is conducted using a comparison of some results with published output. In Section 5,
results and discussions derived from the suggested approach are provided, and in Section 6,
the conclusions of this investigation are presented.

2. Failure Modes and Modeling Approaches of Masonry Walls

In this section, a preliminary discussion of failure modes for masonry walls that occur
under various loading scenarios is provided. Both in-plane and out-of-plane damage
patterns are recognized. In the next sections, it will be shown that some of these modes
arise also under blast actions, depending on the load combination.

In addition, general concepts elaborating modeling approaches, which are used to
capture the mentioned failure modes, are discussed. Within this framework, the proposed
model will be identified.

2.1. In-Plane Response of Masonry Walls

Three types of failure modes of masonry walls under static loading are discussed
below, and these are sliding shear, flexural failure, and diagonal shear. These failure modes
are illustrated in Figure 1.

Figure 1. Typical Failure modes of masonry walls subjected to a vertical load and a horizontal (shear)
load. These two loads will result in (a) sliding shear failure, (b) shear failure (staircase-shaped cracks),
(c) diagonal shear, and (d) crushing, which is mainly compressive cracks [21].

According to [21], the in-plane failure of a wall is generally shear failure, as can be
seen by the diagonal cracking, and this is often ruled by the tensile resistance or capacity
of the masonry unit or mortar joints. Additionally, a wall’s failure can be observed as the
crushing of units under compression. The capacity for large displacement and average
energy dissipation is related to unit crushing [22], contrary to failure involving sliding shear,
which is more ductile as a higher amount of energy is dissipated. This energy dissipation is
more common under seismic/blast loading actions. The above modes of failure have been
proven by many researchers to be the common failure modes when horizontal displacement
and vertical pressure loading are applied to walls.

2.2. Out-of-Plane Response of Masonry Walls

Subject to blast loadings, the failure mode of masonry walls is often out-of-plane
flexural failure. This may be accompanied by a flexural cracking pattern, which consists
of horizontal cracks arising at halfway of the wall and stepped diagonal cracks toward
all corners of the wall, as can be seen in Figure 2, where a typical out-of-plane response
of a masonry wall under blast loading is shown. It is noted that these descriptions of the
failure modes will be used later in this article to verify the results that are obtained from
the proposed numerical scheme.
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Figure 2. Out-of-plane failure pattern of a wall subjected to blast loading.

2.3. General Modeling Approaches for Masonry Structures

The mechanical behavior of masonry buildings has been described using two broad
numerical approaches: macro-modeling and micro-modeling [12]. In the macro-modeling
method, masonry is analyzed as a uniform material that obtains its average (effective)
material properties by a homogenization scheme. Thus, in the macro-modeling technique,
masonry units (concrete blocks, stone units) and the mortar joints are modeled as solitary
materials using homogenization concepts. According to [23], when using the macro-
modeling approach, the detailed failure mechanisms may generally not be reproduced well.

According to micro-modeling, masonry consists of joints connecting individual units,
and using appropriate constitutive laws, simulation of such walls is conducted. Due to
the different compression or tensile strength of brick vs. mortar, it is worth noting that
mortar joints become the weakest link in masonry walls. According to [12], the unit–mortar
interface controls the nonlinear response of the joints, and this is one of the most pertinent
features of masonry wall behavior. Different modeling techniques used to simulate the
response of masonry structures are depicted schematically in Figure 3.

Figure 3. Modeling techniques for masonry walls.

The masonry units are modeled as continuum elements, while the mortar joints are
modeled as interface elements in this article. Zero tensile resistance between the joints is
introduced, using unilateral contact and friction interfaces. More details about the model
used in this article are provided in the following sections.

3. The Numerical Model Proposed in the Present Article

A non-linear finite element model is proposed for this study to simulate the response
of masonry walls to blasts. For the evaluation of the failure response that is derived from
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the masonry unit interfaces, a unilateral contact and friction constitutive description is
assigned to these interfaces. Thus, both in-plane and out-of-plane opening and/or sliding
between the masonry units can be depicted with the proposed model. Since all the contact
conditions between the blocks in the wall are simulated using principles taken from contact
mechanics, it can be stated that the micro-modeling approach is used.

The unilateral contact law, provided in Equations (1)–(3) for a single degree of freedom
system, is assigned in the interfaces between masonry blocks. Equation (1) is the non-
penetration relation, Equation (2) states that only compressive stresses (tn) can be developed
in the interfaces, and Equation (3) is the complementarity relation, stating that either contact
takes place (u − g = 0, where u is a single degree of freedom and g is an initial gap) or
separation in the interface occurs (tn = 0).

h = u− g ≤ 0 ⇒ h ≤ 0 (1)

−tn ≥ 0 (2)

tn (u− g) = 0 (3)

For the response in the tangential direction of the interfaces, a static version of
Coulomb’s friction law is considered. Thus, sliding in the interfaces is initiated when
the shear stress tt reaches the critical value τcr, according to Equation (4):

tt = τcr = ±μ|tn| (4)

where μ is the friction coefficient and tn the normal stress (contact pressure) in the interfaces.
To represent the failure response of the masonry units, a continuum concrete damage

plasticity model is used. Compressive and tensile failure modes developed at the masonry
blocks are then depicted. In the following sections, the details related to the implementation
of the blast loading, the material properties, and the dimensions of the walls that are studied
in this article are provided.

3.1. Blast Shock Wave Modeling

An explosion loading wave is defined by three parameters, namely, the shape of a
wave, the maximum pressure (Pro), and the positive wave duration (to), which is the time
that pressure reaches zero [24]. Various research efforts have shown that depending on the
source of the explosion, the generated waves are divided into shock and pressure waves.
In a shock wave, the pressure of gasses from the explosion or blasting is developed by
emission from the source of the explosion [24,25]. The pressure increases to the maximum
value Pro and decreases to the environmental pressure, as shown in Figure 4. Mining activi-
ties involving blasting generate blast pressures on neighboring structures. The pressure
distribution from a blasting source at a particular distance is considered nearly consistent
over a normal reflecting surface. According to [26], a close-in explosion produces a pressure
distribution that changes significantly in magnitude over the reflecting surface. This creates
more complexity due to the non-uniform of pressure.

To determine the magnitude of peak overpressure, two major parameters are used: the
charge weight and the distance between the blast source and the structure. By observing
the pressure–time diagram depicted in Figure 4, two main phases can be identified. The
positive part of the diagram is called the positive phase and has a duration to, as shown in
Figure 4, while the negative part is called the negative phase and has a duration to−, also
shown in Figure 4. According to [13], when a primary shock strikes a target, the reflected
overpressure Pr instigates. The negative phase exists for a longer duration with lower
intensity pressure than the positive phase. As the standoff distance increases, it can be
noted that the duration/period of the positive blast wave phase increases, and that results
in lower amplitude and a significantly longer-duration shock pulse.
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Figure 4. Shock wave distribution [27].

Using the Friedlander equation, the time evolution of the positive phase of the reflected
pressure is analyzed (Friedlander, 1946):

Pr(t) = Pro

(
1− t∗

to

)
H[t∗](1− H[t∗ − to] H[t∗])exp

(
−d

t∗

to

)
(5)

where H[t*] represents the step function, d is the exponential decay coefficient, and
t* = t − tA, where tA is depicted in Figure 4. According to Rigby et al. [28], the impulse
iro or ir associated with the positive phase, which symbolizes the area under the pressure
curve, can be formulated as:

iro =
∫ tA+t0

tA

Prdt =
[
e−d + d− 1

] Pro to

d2 (6)

One of the most effective means of representing a blast impact is the use of the
CONWEP model. According to [29], CONWEP is a model used to simulate the effects
of a collection of conventional weapons, including air blast routines, breach, cratering,
ground shock, and fragment and projectile penetration. The CONWEP charge property
parameter is used in this study to simulate an air-based explosion using empirical data [30].
Furthermore, according to this consideration, a time history diagram of the pressure loading
is built. In order to utilize this empirical model, one would need to define the equivalent
TNT (trinitrotoluene) mass of the explosive as well as the source point (i.e., where the
explosive is located). The initial process in calculating the explosive wave from a blast
source other than TNT is to convert the charge mass to TNT equivalent mass [31].

Therefore, the CONWEP charge property is used in this study within commercial finite
element software to simulate an air-based explosion by developing a time history pressure
loading, similar to the one shown in Figure 4. The data, which were entered to define
the blast charge properties, include the equivalent mass of TNT, a multiplication factor to
convert from that mass unit into kilograms, and multiplication factors to convert from the
standoff distance, time, or pressure to meter, second, or pressure in Pascals, respectively.

3.2. Continuum Damage Law for the Masonry Units

A concrete damaged plasticity law is used to represent damage on masonry units.
Rate independence is claimed for this law, which is based on incremental plasticity theory.
According to Lubliner et al. [32], Lee and Fenves [33], Tapkın et al. [34], and Daniel and
Dubey [35], this constitutive description is appropriate for the analysis of quasi-brittle
materials such as concrete and masonry. It relies on the concept of isotropic damaged
elasticity for the representation of the irretrievable damage or failure that occurs during the
cracking process for materials under fairly low pressure. The concrete damage plasticity
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law uses a non-associated potential plastic flow, which is in turn the implementation of the
Drucker–Prager hyperbolic function for flow potential [36].

The common failure mechanisms that can be illustrated with this law are, namely,
tensile cracking and compressive crushing. When unloading takes place, the elastic stiffness
of the material is deemed damaged. This damage is implemented by introducing two
damage variables as functions of the plastic strain, one for tension and the other for
compression. A zero value of the damage variable indicates undamaged material, while a
value equal to one indicates a total loss of strength. The corresponding uniaxial stress–strain
relations, representing tension and compression, are provided below:

σt = (1− dt )E0 (ε
t − εt

pl) (7)

σc = (1− dc )E0 (ε
c − εc

pl) (8)

In the above equations, E0 is the preliminary elastic stiffness of the material and dt and
dc are the tensile and compressive damage variables, respectively.

The compressive and tensile stress–strain curves used in this work to define the
compressive and tensile failure response of the masonry units on the numerical models,
as well as the corresponding damage variables diagrams, are provided in the figures
below. The uniaxial stress–strain behavior of concrete is modeled utilizing a Hognestad-
type parabola [37], as per Figure 5 below. Figures 6–8 provide the compressive damage
parameter as well as the tensile stress–strain law and the tensile damage parameter used
for this model [37].
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Figure 5. Compressive stress vs. strain diagram [37].
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Figure 6. Compressive damage variable vs. plastic strain diagram [37].
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Figure 7. Tensile stress vs. strain diagram [37].
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Figure 8. Tensile damage variable vs. plastic strain diagram [37].

The uniaxial tensile damage and uniaxial compressive damage parameters were
developed using the post-failure stress as a function of cracking strain. The cracking strain
is equal to the total strain minus the elastic strain of the undamaged material [32].

Some additional material properties used within the concrete damage plasticity law
are provided in Table 1. The material properties for each masonry unit are provided in
Table 2.

Table 1. Mechanical properties of the masonry unit and mortar [38].

Plasticity Parameter Value

Dilation angle 30
Eccentricity parameter 0.1

Bi- and uni-directional compressive strength ratio 1.16
Stress ratio in tensile meridian 0.67

Viscosity parameter 0.001

16



Computation 2023, 11, 165

Table 2. Material properties [38].

Material
Modulus of

Elasticity (MPa)
Poisson’s Ratio

Tensile
Strength (MPa)

Compressive
Strength (MPa)

Masonry Unit 15,500 0.15 1.05 10.5

3.3. The Geometry of the Masonry Walls

The dimensions of each masonry unit considered in this study are equal to
430 mm × 140 mm × 190 mm. The size of each unit is as per the Concrete Manufac-
tures Association [39]. Low-cost housing in South Africa often uses concrete masonry
blocks and clay bricks. This paper focuses on the use of concrete blocks, and the following
limitations are noted:

- A single-leaf wall is considered, and the wall is unreinforced.
- Category 1 buildings [40].

Two geometries are used in this study for the walls, as shown in Figures 9 and 10. The
first is a solid wall and the second represents a wall with an opening.

Figure 9. Geometry 1 (wall with no opening (mm)).

Figure 10. Geometry 2 (wall with an opening (mm)).

3.4. Details of the Finite Element Model

Figure 11 shows the mesh that is adopted in this study for the models without and
with an opening. Three-dimensional, eight-node linear brick elements are used, with the
element side equal to 40 mm for both walls. A total number of 4800 elements for the model
without the opening and 5600 elements for the model with the opening are used, as shown
in Figure 11.
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(a) (b) 

Figure 11. Mesh of the considered masonry walls: (a) with no opening and (b) with a window opening.

All four sides on the perimeter of each of the two walls are considered as fixed in three
translational degrees of freedom, according to the coordinate system shown in Figure 11. It
is noted that the restraining of the top side of the walls in the Z-direction is attributed to
the assumption that an upper slab or roof will provide restraint in that direction.

Concerning the loading of the models, two load steps are used. In an initial, pre-
existing step, a vertical pressure of 0.25 MPa is applied to the top side of the structure. In
the first load step, a horizontal shear (in-plane) displacement of 10 mm is applied to the top
side of the walls. Alternatively, the wall with no horizontal in-plane displacement is also
considered. In the second load step, the blast loading is applied.

The simulation is conducted using explicit dynamic analysis. This type of analysis
is appropriate since it is able to capture the very short duration of the blast action. It is
noted that the explicit dynamic analysis was originally developed to simulate high-speed
dynamic events that would otherwise require significant computational resources within
implicit codes. For the implementation of this analysis, an automatic time incrementation
is used.

For the application of the contact–friction conditions between the masonry blocks, the
method of Lagrange multipliers is used. A friction coefficient equal to 0.45 is assigned to
the interfaces.

It is noted that for the implementation of the blast load, a charge weight expressed in
TNT at the standoff distances of 100 m, 50 m, and 20 m is used. In addition, the effect of the
blast weight, as well as the effect of changing the blast charge while keeping the distance
constant and changing the standoff distance while keeping the blast charge weight constant,
are also investigated. Only the front surface of the walls is loaded (incident surface). In the
following sections, results obtained from various parametric investigations, emphasizing
the corresponding failure mechanisms, are provided.

4. Validation of the Proposed Model

Before presenting the results from the simulations, a validation of the proposed
model is conducted by comparing the output with published numerical studies. Then, the
results of the investigation are elaborated, emphasizing collapse mechanisms for the used
load cases.

A comparison between results derived from the proposed model and existing numeri-
cal solutions is provided. As depicted in the figures below, similar collapse mechanisms
were obtained when a blast load or in-plane, vertical pressure, and shear displacement
loads are applied to the wall.

• Masi et al. [13] depicted complete failure, indicating that after a wall is damaged
close to the boundary, it comes out in one piece in the middle portion. The explosive
weight was 810 kg at 37 m standoff distances (Figure (a)). Out-of-plane experiments
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conducted by Du et al. [41] depicted complete failure in the middle of a real wall
(Figure (b)).

The proposed model depicted complete failure of the middle section of the wall, under
a blast load with an explosive weight of 810 kg at a standoff distance of 37 m. This is shown
in Figure (c).

• Salmanpour [21] predicted sliding failure along staircase-shaped cracks as mode of
failure for a wall subjected to vertical pressure and shear displacement loading. The
damage to buildings during the 2002 Molise earthquake in Italy, as reported in [42],
resembles the crack pattern shown below in Figure (d).

 
(d) (e) 

The proposed model depicted staircase-shaped cracks when subjected to vertical
pressure and shear displacement loading. This is shown in Figure (e).

5. Results Obtained from the Proposed Numerical Scheme

In the next sections, results depicting the structural response of two masonry walls,
one without an opening and one with an opening, are provided. Within this investigation,
parametric studies depicting the influence of the variation in the weight of charge and the
blast source–structure distance on the response of the walls, were conducted. Relevant
discussions emphasize the collapse modes, which arise in the provided framework. In total,
the cases listed in Table 3 are considered for the walls without and with an opening.

Table 3. Cases considered in the framework of this investigation.

Case Description Blast Load Standoff Distance

Case 1 (solid wall loaded with vertical pressure, horizontal shear
displacement, and blast load).

100 kg TNT 20 m, 50 m

200 kg TNT 20 m, 50 m

1150 kg TNT 20 m, 50 m, 100 m

Case 2 (wall with an opening loaded with vertical pressure, horizontal shear
displacement, and blast load).

1150 kg TNT 50 m

2000 kg TNT 5 m

3500 kg TNT 10 m

Case 3 (solid wall loaded with vertical pressure and blast load). No
horizontal shear displacement is considered.

100 kg TNT 50 m

200 kg TNT 100 m

1150 kg TNT 100 m
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5.1. Case 1: Solid Masonry Wall Loaded with Vertical Pressure, Shear Displacement, and
Blast Load

This section provides results obtained from simulations on a solid wall loaded at its top
boundary surface with a vertical downward pressure and a horizontal shear displacement
load. A blasting action is also applied to the wall.

Figure 12 depicts the displacement and the failure mechanism, which are obtained
from an explosive weight of 100 kg at a standoff distance of 20 m. According to this
figure, in-plane diagonal cracking in the form of opening/sliding between the blocks is
accompanied by some out-of-plane flexural displacement, attributed to the blast load. It
can be observed that though the wall does not collapse totally, significant displacements
are developed. In addition, according to Figure 12b,c, significant compressive and tensile
failure is developed on the masonry blocks. This is attributed to the out-of-plane flexural
displacement of the fixed (in its perimeter) wall. As expected, tensile failure is more
expanded in the wall than compressive failure.

 
 

(a) (b) (c) 

Figure 12. Solid wall loaded with a charge weight of 100 kg at a distance of 20 m: (a) displacement of
the wall at the end of the simulation (m), (b) compressive damage variable, and (c) tensile damage
variable distribution.

Next, the weight of the explosive is gradually increased to 200 kg (Figure 13) and
1150 kg (Figure 14) while the standoff distance is kept constant and equal to 20 m. As ob-
served in Figure 13a, the out-of-plane deflection becomes higher compared with Figure 12a,
due to the increase in the blast weight. In addition, Figure 13b,c shows that extensive
compressive and tensile failure is developed in the masonry blocks. Figure 14 shows that
for the maximum quantity of explosive weight, out-of-plane deflection dominates the
in-plane cracking. In addition, the wall fails completely for this maximum explosive weight
when it is considered at the same distance of 20 m, as above.
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(a) (b) (c) 

Figure 13. Solid wall loaded with a charge weight of 200 kg at a distance of 20 m: (a) displacement of
the wall at the end of the simulation (m), (b) compressive damage variable, and (c) tensile damage
variable distribution.

 
(a) (b) 

Figure 14. Displacement of the solid wall loaded with a charge weight of 1150 kg at a distance of
20 m: (a) depicted in a previous time step prior to complete damage of the wall and (b) depicted at
the final time step.

Next, an investigation using an increased standoff distance of 50 m is conducted, using
explosive weights of 100 kg, 200 kg, and 1150 kg, respectively. From the first case of 100 kg
explosive weight, it is determined that the in-plane failure mode is dominant, as shown
in Figure 15. A diagonal cracking appears, in this case, at the top part of the wall. On the
contrary, for the lower distance of 20 m shown in Figure 12, both in-plane and out-of-plane
flexural deflection are observed.
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Figure 15. Displacement of the solid wall loaded with a charge weight of 100 kg at a distance of 50 m.

For the case of 200 kg explosive weight, the failure mechanism which arises is a
stair-case diagonal cracking along the wall, as shown in Figure 16. This indicates that the
failure mode changes compared with Figure 13, where mainly an out-of-plane response
is observed for the same explosive weight and lower standoff distance (20 m). It is noted
that the damage pattern depicted in Figure 16 is observed in masonry walls that are loaded
with in-plane actions. Some limited out-of-plane flexural displacement also arises in this
case.

Figure 16. Displacement of the solid wall loaded with a charge weight of 200 kg at a distance of 50 m.

For the case of the highest explosive weight of 1150 kg (standoff distance 50 m), it
is determined that out-of-plane flexural deflection is the dominant response, leading to a
corresponding failure mode. Moreover, as can be observed in Figure 17b,c, both tensile
and compressive failure are developed in the whole mass of the wall. By comparing this
with the case of the same explosive weight and lower standoff distance (20 m) shown
in Figure 14, it is noticed that although both walls fail due to the out-of-plane response
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attributed to the blast action, the model with the lower standoff distance leads to a total
out-of-plane collapse.

 
 

(a) (b) (c) 

Figure 17. Solid wall loaded with a charge weight of 1150 kg at a distance of 50 m: (a) displacement
of the wall at the end of the simulation (m), (b) compressive damage variable, and (c) tensile damage
variable distribution.

When an increase in the standoff distance from 50 m to 100 m is considered for the
case of the maximum explosive weight of 1150 kg, the failure mode changes and diagonal
in-plane cracking becomes dominant, as shown in Figure 18, contrary to the out-of-plane
flexural deflection observed at a distance of 50 m (Figure 17). Some out-of-plane flexural
deflection, accompanied by tensile failure at the perimeter and at the central part of the
wall, is also obtained, as shown in Figure 18. Compressive failure is more limited and is
mainly developed at the wall’s bottom corner.

 
  

(a) (b) (c) 

Figure 18. Solid wall loaded with a charge weight of 1150 kg at a distance of 100 m: (a) displacement
of the wall at the end of the simulation (m), (b) compressive damage variable, and (c) tensile damage
variable distribution.

To summarize the effect of varying standoff distances for each explosive weight, the
diagrams shown in Figure 19 are used. It is observed that for bigger explosive weights and
lower standoff distances, higher deflections of the wall are obtained. When the standoff
distance is increased, the impact of the blast loading on the structural system is reduced
since the maximum displacements are also reduced. It is noted that for the case of out-
of-plane response for the maximum explosive weight and minimum distance, a large

23



Computation 2023, 11, 165

deflection is obtained, as depicted with point X in the graph shown in Figure 19a. This
value is only indicative, highlighting a total collapse of the central part of the wall.

(a)

(b)
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Figure 19. Displacement–explosive weight diagrams depicting the (a) out-of-plane and (b) in-plane response.

In Figure 19a,b, linear regression formulas are determined, providing approximate
mathematical expressions that can be used to calculate the deflection of the walls for differ-
ent explosive weight values and standoff distances. In particular, for standoff distances
of 20 m, 50 m, and 100 m, the correlation coefficients are found to be equal to R2 = 0.9962,
R2 = 0.9993, and R2 = 0.85, respectively, for the out-of-plane response. In terms of the
in-plane response, standoff distances 20 m, 50 m, and 100 m provide correlation coefficients
of 0.9906, 0.9618, and 0.9926, respectively. It is noted that an R2 close to 1 indicates that the
regression prediction is of satisfactory accuracy. Equations on the graphs were tested by in-
serting a random independent variable “x” (explosive weight) to estimate the displacement
“y” (deflection of the wall).

24



Computation 2023, 11, 165

5.2. Case 2: Masonry Wall with an Opening Loaded with Vertical Pressure, Shear Displacement,
and Blast Load

To capture the influence of openings (windows) on the structural response of masonry
walls under blast actions, a new model is developed, introducing a window in the middle
of the wall, as shown in Figure 10. Similar to Section 5.1, a vertical downward pressure
and a shear in-plane loading applied at the top surface of the wall are considered together
with the blast action. To simulate the influence of the lintel, which is a concrete beam
usually built just above the opening and in contact with the masonry above, the vertical
displacements for the elements above the window are restricted.

In Figure 20, the displacement contour plot, which was obtained when an explosive
weight of 1150 kg at a standoff distance of 50 m is applied to the wall, is shown. It is
observed that relatively low max displacements arise at the final load step, with an in-plane
diagonal cracking above the window on the left-hand side of the wall just emerging. By
comparing this with Figure 17, which depicts the response of the solid wall under the same
blast loading and standoff distance, it appears that the wall with the opening develops
significantly lower deflection with no obvious out-of-plane deformation, contrary to the
solid wall. This is attributed to the fact that the blast load is modeled as a surface force
under the incident wave (CONWEP), and the damage or effect of the blast is directly
proportional to the exposed surface. In addition, the window is inserted at the middle part
of the wall, where the out-of-plane response due to the blast load would become maximum
in the case of a solid wall.

Figure 20. Displacement contour plot at the end of the simulation for a wall with an opening subjected
to 1150 kg TNT at a standoff distance of 50 m.

Next, to depict the failure of the wall with the opening, the weight of the explosive is
increased and the standoff distance is reduced. In particular, the displacement plots for
the wall obtained from explosive weights of 2000 kg and 3500 kg at standoff distances of
5 m and 10 m are provided in Figure 21. For both cases, out-of-plane failure is obtained
as depicted in Figure 21a,b with the case of 2000 kg explosive weight at a distance of 5 m
being the most severe.

In an effort to provide a qualitative comparison of the response of the walls with and
without a window, it is observed that the most severe collapse of the wall with the window
occurs for 2000 kg explosive weight positioned at 5 m (Figure 21a). The corresponding
most severe collapse of the solid wall occurs for 1150 kg explosive weight positioned at
20 m (Figure 14). Thus, it seems that the opening in the middle of the wall significantly
reduces the effects of the blast action. This observation is in agreement with the findings
provided in [43], where the area of an opening in a masonry building is shown to have a
significant impact on both the normal and shear stresses produced by blast.
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(a) (b) 

Figure 21. Displacement contour plot at the end of the simulation for a wall with an opening subjected
to (a) 2000 kg TNT at a standoff distance of 5 m and (b) 3500 kg TNT at a standoff distance of 10 m.

5.3. Case 3: Solid Masonry Wall Loaded with Vertical Pressure and Blast Load

In this section, the response of the wall without an opening loaded with a vertical
downward pressure at the top surface and the blast action is investigated. Thus, contrary
to Section 5.1 (and Section 5.2), no shear horizontal displacement is applied at the top of the
wall. In Figure 22, the response of the wall subjected to 100 kg and 200 kg TNT at standoff
distances of 50 m and 100 m, respectively, is provided. In Figure 23, the response of the
wall subjected to 1150 kg TNT and 100 m standoff distance is shown.

In both Figures 22 and 23, the out-of-plane deflection characterizes the response of
the wall. Contrary to this behavior, the model of the wall loaded with shear horizontal
displacement, 100 kg explosive weight, and 50 m standoff distance, resulted in diagonal
in-plane cracking (Figure 15) with significantly higher maximum deflection, compared
with the wall shown in Figure 22a.

 
(a) (b) 

Figure 22. Solid wall subjected to (a) 100 kg TNT at a standoff distance of 50 m and (b) 200 kg TNT at
a standoff distance of 100 m when no horizontal displacement loading is applied to the top surface of
the wall (a scale factor equal to 10 is used to magnify the displacement contour plots).
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Figure 23. Solid wall subjected to 1150 kg TNT at a standoff distance of 100 m when no horizontal
displacement loading is applied to the top surface of the wall (a scale factor equal to 10 is used to
magnify the displacement contour plots).

A similar comparison can be made between Figures 18 and 23, representing the dis-
placement contour plot of the wall under the same blast load and standoff distance (1150 kg,
100 m) with and without the shear displacement load, respectively. As shown in Figure 18,
a significantly higher maximum deflection is obtained when the shear displacement load is
applied to the wall, compared with Figure 23. In addition, the in-plane diagonal cracking
is dominant in Figure 18.

6. Conclusions

In this article, the response of masonry walls under static in-plane and blast loads is
investigated using non-linear finite element analysis software [44]. For the simulation of
damage in the interfaces between the stone blocks, unilateral contact–friction interfaces
are applied to depict opening and sliding failure. In addition, a concrete damage plasticity
model is used to describe tensile and compressive damage in the blocks. The proposed
scheme is applied to a solid masonry wall and to a wall with an opening (window).

This investigation aims in highlighting potential collapse mechanisms by testing
different blast load parameters, namely, the weight of the explosive and the standoff
distance between the source of the explosion and the structure. The influence of a horizontal
shear displacement in-plane loading at the top of the wall is also investigated.

According to the findings of this study, the failure mode of the wall loaded with both
shear in-plane displacement and the blast action can be either in-plane diagonal cracking
or out-of-plane flexural failure. The first mode arises when the shear in-plane displacement
is the dominant loading, compared with the blasting action, while the second arises when
the blast is the dominant loading. For the same material properties and wall dimensions,
the weight of the explosive and the standoff distance are the critical parameters, which
determine which of the two loading types dominates. In the results section, case studies
highlighting both failure modes are discussed for various values of the explosive weight
and the standoff distance. A combination of both failure modes can also arise, depending
on the values of these parameters.

Another outcome of this work is the fact that the presence of an opening (window) in
the wall may reduce the effect of the blast action by decreasing the out-of-plane response
of the structure. The reason for this is that due to the opening being located in the middle
of the wall, the blast load is not applied to this critical (for out-of-plane flexure) middle
part of the surface of the wall. Thus, this study shows that the blast action must occur at a
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closer standoff distance compared with the solid wall, in order to cause significant damage
to the structure.

When no shear displacement in-plane loading is applied, the response is dominated
by the out-of-plane flexural deflection, attributed to the blasting action. In this case,
lower maximum displacements are obtained compared with the wall loaded with shear
displacement and blast actions.

Several future investigations could be used to extend the present work. A potential
concept is to study the influence of the area, position, and number of windows on the
response of the walls under blast actions. The usage of different initial static loading could
modify the results, as was shown in the conducted numerical investigation. Design or
re-design based on these findings could also form an interesting research topic. Another
concept is related to the implementation of data-driven structural dynamics, introduc-
ing machine learning tools, to evaluate the influence of several parameters such as the
dimensions of the walls and the blast load parameters on their structural response.
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Abstract: Engineers have consistently prioritized the maintenance of structural serviceability and
safety. Recent strides in design codes, computational tools, and Structural Health Monitoring
(SHM) have sought to address these concerns. On the other hand, the burgeoning application of
machine learning (ML) techniques across diverse domains has been noteworthy. This research
proposes the combination of ML techniques with SHM to bridge the gap between high-cost and
affordable measurement devices. A significant challenge associated with low-cost instruments lies in
the heightened noise introduced into recorded data, particularly obscuring structural responses in
ambient vibration (AV) measurements. Consequently, the obscured signal within the noise poses
challenges for engineers in identifying the eigenfrequencies of structures. This article concentrates
on eliminating additive noise, particularly electronic noise stemming from sensor circuitry and
components, in AV measurements. The proposed MLDAR (Machine Learning-based Denoising of
Ambient Response) model employs a neural network architecture, featuring a denoising autoencoder
with convolutional and upsampling layers. The MLDAR model undergoes training using AV response
signals from various Single-Degree-of-Freedom (SDOF) oscillators. These SDOFs span the 1–10 Hz
frequency band, encompassing low, medium, and high eigenfrequencies, with their accuracy forming
an integral part of the model’s evaluation. The results are promising, as AV measurements in an
image format after being submitted to the trained model become free of additive noise. This with
the aid of upscaling enables the possibility of deriving target eigenfrequencies without altering
or deforming of them. Comparisons in various terms, both qualitative and quantitative, such as
the mean magnitude-squared coherence, mean phase difference, and Signal-to-Noise Ratio (SNR),
showed great performance.

Keywords: ambient vibration; convolutional neural networks; denoising; machine learning; struc-
tural health monitoring

1. Introduction

Structural Health Monitoring (SHM) has become an intriguing topic during the last
decades and is applied to various fields of civil, mechanical, automotive, and aerospace
engineering, among others. Estimating the health condition and understanding the unique
characteristics of structures by assessing the measured physical parameters in real time
represents a major objective of SHM. As a result, signal processing has become an essential
and inseparable part of methodologies introduced via research related to SHM. The appli-
cation of signal processing techniques to the structural damage identification procedure is
classified into two types of approaches, namely, (i) time-domain and (ii) frequency-domain
methods. Experimental studies have assessed the potential of signal processing techniques
in the two aforementioned domains, aiming to enhance vibration-based structural damage
detection subjected to environmental effects (earthquakes, wind, etc.).

Although multiple review studies have been published on vibration-based structural
damage detection, there have been no studies on categorizing signal processing techniques
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based on feature extraction procedures that belong to time and frequency domains for SHM
purposes. Recently, this was explored in the work by Zhang et al. [1]. Meanwhile, with the
developments in the classical SHM approach, neural networks and big data analytics have
paved the way for a new approach in the field of SHM. As Zinno et al. [2] showcased with
their work, Artificial Intelligence (AI) could benefit SHM applications for bridge structures
in several phases: construction, development, management, and maintenance. Moreover,
buildings are aging, and deriving newer architectural trends while preserving building
heritage is not only of high value but also a complex procedure requiring multi-criteria
approaches to decision making to be implemented [3]. Therefore, AI-based methodologies
specially tailored to assist the preservation of building heritage through SHM techniques
have already been developed and are summarized in the work by Mishra [4]. Generally
speaking, one of the most common implementations of deep learning methodologies
in SHM applications relies on the convolutional neural network (CNN) architecture; a
summary of these can be found in the recent work by Sony et al. [5]. As is mentioned in
the conclusion of the aforementioned work, one of the targets of future research will be the
development of the real-time implementation of CNN-based approaches in everyday SHM
practice; the model presented in the current work was developed for real-world practice.
CNN-based models have already been applied with great success in different scientific
fields, e.g., the work by Xu et al. [6], which also inspired the authors to develop the model
presented in the current study; more specifically, in the work by Xu et al. [6], a CNN
and a Recurrent Neural Network (RNN) were combined in order to dynamically detect
levels of ambient noise from speech gaps and remove them from audio signals without
distorting the speech audio quality. Also, during the last decades, multiple Deep Learning
models have found a successful place in the denoising task for various noisy images. An
overview about this can be seen in Elad et al.’s [7] work and Izadi et al.’s [8] work. In
a recent investigation, Damikoukas and Lagaros [9] explored the feasibility of utilizing
an ML model as a robust tool to predict building earthquake responses, addressing the
shortcomings of simplified models. The study advanced by integrating AV measurements
and earthquake time-history data into a neural network framework. This innovative model
presents a promising pathway to deepen our comprehension of structural behavior in the
face of seismic events, thereby contributing to the advancement of earthquake resilience
in building design and engineering. Other recent works that tried to take advantage of
neural networks in structural engineering and seismic response estimation are those of
Xiang et al. [10] and Demertzis et al. [11].

The motivation behind this research was to delve into the potential of Deep Learning in
addressing denoising challenges associated with Micro-Electromechanical System (MEMS)
digital sensors, specifically accelerometers. This category of sensors is notable for its cost-
effectiveness compared to alternatives like force balance accelerometers. However, they
often contend with elevated levels of electronic noise. Recognizing the ongoing strides in AI
capabilities and their ubiquitous integration into various domains, the motivation behind
this work was to leverage Deep Learning for denoising tasks, laying the groundwork
for more advanced applications, such as the real-time denoising of acceleration time
histories. MEMS digital sensors, while economically advantageous, can suffer from inherent
electronic noise. This noise can compromise the accuracy of measurements, especially
in dynamic applications like acceleration monitoring. By harnessing the power of Deep
Learning, this research aims to effectively mitigate this noise and enhance the reliability of
sensor outputs. The broader context lies in the rapid evolution of AI technologies, which
are progressively becoming integral components of everyday applications. This research
envisions the deployment of Neural Processing Unit (NPU) hardware at the measurement
site, paving the way for the real-time denoising of acceleration time histories. This not
only addresses current challenges but also anticipates future scenarios where advanced
techniques are seamlessly integrated into the measurement process. The utilization of NPUs
represents a strategic move toward decentralized processing, enabling on-site denoising
without relying solely on external computational resources. As a result, this research
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endeavors to contribute to the practical implementation of AI-driven denoising techniques,
fostering advancements in the field of sensor technology and real-time data processing.

The achievement of this study is that ambient vibration (AV) measurements are
processed through a properly calibrated neural network (NN) in an image format, and
the structural response is unveiled after removing the additive electrical noise from the
AV recordings. To train the model, 1197 structural oscillators (models of Single Degree
of Freedom (SDOF)) were developed, from which 10,773 numerically produced noisy
signals were generated. These signals were converted into images in order to be fed to the
NN-based model chosen for the purposes of this study. For validation purposes, the results
were converted back to numerical values in order to assess the level of denoising, among
other factors, in terms of frequency spectra between predicted and target signals. The
proposed model is called MLDAR, which stands for Machine Learning-based Denoising of
Ambient Response.

The main contributions of this paper are (i) the denoising of ambient vibration (AV)
acceleration measurements (ii) by presuming the structural eigenfrequencies in domain
spectra needed for further structural analysis and assessment, all of which are realized by
(iii) exploiting the power of neural networks (NNs) and Deep Learning (DP) deploying a
multi-convolutional and transposed convolutional network.

The remainder of this paper is organized as follows. Section 2 generally describes the
characteristics of the structural response generated by ambient vibration, how research
on SHM during the last several decades has been progressing, and how new technologies
are finding their fit due to their versatility and cost efficiency. In Section 2, the structural
parameters used for the creation of the dataset are also presented, along with the list of the
assumptions implemented. Afterward, Section 3 introduces the Machine Learning-based
Denoising of Ambient Response (MLDAR) model, the basic principles on which it was
based on, and also all the chosen parameters of its structure. Thereafter, Section 4 showcases
the validation results of the proposed MLDAR model, both qualitative and quantitative.
The paper concludes with some final remarks given in Section 5 and insights into the
authors’ future work.

2. Structural Response Due to Ambient Vibration and SDOF Models

In this section, the characteristics of the structural response generated by means of
ambient vibration is provided, together with the details of the models used to calibrate the
neural network model developed for the purposes of this study.

2.1. Structural Response Generated by Ambient Vibration

Structures are permanently induced by various types of site excitations, which refer
to either ground vibrations related to nature, e.g., earthquake genesis, or those generated
by humans, like the vibrations generated during excavations, traffic, construction works,
etc. Thus, structures continuously vibrate due to the above-mentioned causes, offering
the possibility of monitoring and studying the structural response permanently. The
structural response is of high value for structural engineers, as, among other tasks, they
can derive the dynamic characteristics of the structure through the measurements they
collect. Structural Health Monitoring (SHM) is a field where multiple sensors are deployed
in order to enable engineers to monitor and assess the structural integrity, assist in deciding
which interventions should be implemented, or even be alerted to an event, either at the
precautionary or post-event state (early warning, etc.).

As nowadays, advancements in the manufacturing and technology of sensors and
microcontrollers are huge, more and more sensing devices are released without any dis-
counts on the level of their quality, shifting SHM research away from the traditional wired
acceleration-sensing systems [12–15]. Meanwhile, attempts to broaden the use of SHM
have been made, as more and more standards and design codes are being revised where
SHM appears as an option or as an obligation for the engineers [16–19]. Therefore, there
is an opportunity to ease any disadvantages of low-cost monitoring devices in terms of

32



Computation 2024, 12, 31

their implementation in civil engineering projects, bringing SHM into the mainstream of
the structural engineering profession.

A common disadvantage of low-cost sensing devices is the higher level of noise that is
introduced into the measurements. This noise is the additive distortion of the true-value
signals. When it comes to high-magnitude motions, it is not an issue, as the real values
can be acquired and processed easily. However, when we are referring to the ambient
response of structures, the magnitude scale is really small, even smaller than today’s low-
cost accelerometers’ level of noise. Therefore, in order to make use of noisy measurements
in various algorithms and methodologies, time-domain dynamic quantities are usually
skipped in favor of frequency-domain ones, such as eigenfrequencies. There are various
data processing techniques that unveil information hidden by noise, such as the averaging
of Fourier Spectra (e.g., [20]) and the recent work by the authors [21]. As said before, in the
time domain, little can be done when measurements are already “noisy”, and here comes
the current work to fill the gap, taking advantage of the power of neural networks and
their image detection capabilities.

2.2. Models Used for Calibrating the NN

Neural networks, in order to be designed and trained, need both parameters of
a system: input(s) and output(s). From that point on, after we decide properly what
architecture we want and correctly configure every parameter, they can learn all those
complex relationships between the prediction and what we have as input data. In this work,
the approach is straightforward, as the aim is to train the neural network to distinguish
additive noise from a noisy signal, which includes an ambient vibration structural response,
and remove it in order to return a “clean” ambient vibration structural response signal. In
order to do this, we would ideally need the “clean” and “noisy” versions of lots of response
signals for different kinds of sensors and buildings. As that is not something easily feasible,
we decided to start building the network from the ground up, using numerical data that
corresponds to a batch of assumptions made both for sensor specifications and for the
building models themselves.

Therefore, all data/measurements used were numerically generated and computation-
ally derived from Newmark numerical integration. The reason was that we wanted to cover
a whole range of SDOF oscillators, with all the possible different parameters’ combinations.
In total, 1197 oscillators were used for the purposes of this study. The assumptions used to
construct these oscillators were based on the model building that can be seen in Figure 1.
The dimensions and other properties of the model building are specifically representative
of the floor plan typically found in residential concrete buildings in Greece. This deliberate
choice ensures that our study is grounded in a context reflective of prevalent architectural
norms in the region, contributing to the relevance and applicability of our findings within
the specified context. This model was constructed in the ADINA analysis software [22].

ADINA stands as a versatile software package renowned for its extensive capabilities
in finite element analysis (FEA) and computational fluid dynamics (CFD). Tailored to
address a diverse array of engineering challenges spanning multiple disciplines, ADINA
excels in solving problems related to structural mechanics, heat transfer, fluid dynamics,
electromagnetics, and multiphysics simulations. The acronym “ADINA” itself encapsulates
its core functionality, representing “Automatic Dynamic Incremental Nonlinear Analy-
sis”. As a comprehensive tool, ADINA’s strength lies in its ability to perform intricate
simulations, offering engineers and researchers a robust platform for tackling complex
problems in fields ranging from structural engineering to fluid dynamics. The software’s
broad applicability makes it an invaluable resource for professionals seeking accurate and
efficient solutions across various domains of engineering. ADINA’s prowess in dynamic,
incremental, and nonlinear analyses underscores its suitability for simulating real-world
scenarios, where the interactions between components and materials exhibit complex and
dynamic behavior. By seamlessly integrating these capabilities, ADINA empowers users
to gain deeper insights into the performance of their designs, aiding in the optimization
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of structures, processes, and systems. In essence, ADINA stands at the forefront of engi-
neering simulation software, providing a sophisticated and adaptable suite of tools for
addressing the multifaceted challenges inherent in the realm of finite element analysis
and computational fluid dynamics. The number of assumptions and parameters used are
shown in Table 1.

Figure 1. Typical building model in ADINA on which assumptions-table is referring to.

Table 1. Model parameters.

Geometry

Plan 10.00 × 7.00 (m2)
Stories 1 to 7
Story height 3.50 (m)
Slab thickness 0.25 (m)
Columns 0.50 × 0.50 (m2)
Beams 0.40 × 0.70 (m2)

Loads

Dead 806.75 (kN)
Live 806.75 (kN)
Safety factor 1 1

Dynamic characteristics

Mass (per story) 110.78 (tons)
Damping ratio ζ 5%
Eigenfrequency 1 to 10 Hz with step of 0.5

Material

Reinforced concrete
Bilinear material Figure 2
Yield point 0.0105 m 2

Post-yield stiffness 50% of geometric one 3

1 Assessment of existing conditions—real loads; 2 0.003 drift × 3.50 m = 0.0105 m (HazusC3L—LowCode). More
details can be found in Hazus®–MH 2.1 Technical Manual (see Paragraph 5.2.1 of [23]); 3 EC8–1 (Ke = 0.5Kg).
After first yield, loading is still happening with Ke f f , even for small forces than Fy.

Figure 2 depicts the bilinear capacity curve used for all structural members. For
each structural element, we considered two distinct stiffness states: geometrical stiffness,
denoted by Kg, and effective stiffness, represented by Ke f f . The effective stiffness, Ke f f ,
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is assumed to be half of the geometrical stiffness (Kg) and arises from the degradation
experienced by the member under deformation, particularly in conditions of higher loads.
This dual representation of stiffness allows for a more nuanced understanding of the
structural response. The geometrical stiffness, Kg, captures the inherent stiffness of the
member in its ideal, undistorted state, while the effective stiffness, Ke f f , accounts for the
impact of deformations and degradation induced by higher loads. By acknowledging
the dynamic interplay between these two stiffness states, the model provides a more
accurate and comprehensive depiction of the member’s behavior under varying conditions,
facilitating a more realistic simulation of structural performance.

Figure 2. Bilinear capacity curve of all structural members.

The numerically created ambient acceleration responses of the building’s models are
noiseless, as they would be measured in an ideal experimental world, where measuring
devices do not interfere in the slightest with measurable quantities. However, in real-world
engineering applications, not only quantities are recorded by means of monitoring devices,
as they are accompanied by various levels of noise, such as electronic noise. This family
of noises is mathematically described as white noise, and statistically, it follows a normal
distribution, with an average value of zero and a standard deviation related to the noise
levels of the corresponding measuring device. The Signal-to-Noise Ratio (SNR), Noise
Density (e.g., μg/

√
Hz), and others are terms that usually describe the levels of noise in

the recorded signals.
The final signals are the result of the sum of the aforementioned signals. The sampling

rate is 100 Hz, and the duration of the artificial recordings is 60 s. Each building model
consists of 1 to 7 floors, with a mass ranging between 80% and 120% of the aforementioned
typical values (see Table 1) and with an eigenfrequency ranging between 1 and 10 Hz with
a step of 0.5 Hz. Therefore, 1197 models of single-stage oscillators were derived. For each
of these models, there are three signal windows of the theoretically no-(additional)-noise
response and three electronic and non-electronic noise signal windows, which, superpo-
sitioned, lead to nine combinations of final response signals (pure oscillator response +
electronic/other noise). Thus, 10,773 artificial signals were generated, which were con-
verted into images and were the input of the machine learning model. They were created
in the Matlab environment (release R2021b [24]). Of the generated signals, 75% were used
for training (training set), while the other 25% were the validation sample (validation set).

3. Machine Learning-Based Models: Architecture and Calibration

During the last decade, due to the advances achieved in computer technology, machine
learning has become very popular, having been applied with great success in different
scientific areas, like autonomous vehicles, visual recognition, news aggregation and fake
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news detection, robotics, natural language processing, vocal Artificial Intelligence (AI),
etc. Convolutional neural networks (CNNs) represent a class of artificial neural networks
(ANNs) most commonly used for analyzing images. What makes them unique is that the
network learns to optimize the filters (or kernels) through automated learning, whereas in
traditional algorithms, these filters are hand-engineered. This independence from prior
knowledge and human intervention in feature extraction is a major advantage. CNNs have
applications in image and video recognition, recommender systems, image classification,
image segmentation, medical image analysis, natural language processing, brain–computer
interfaces, and financial time series.

3.1. Convolutional Neural Networks

Convolutional networks (e.g., LeCun et al. [25]), also known as convolutional neural
networks, or CNNs, are a specialized kind of neural network for processing data that has a
known grid-like topology. Examples include time-series data, which can be thought of as a
1-D grid taking samples at regular time intervals, and image data, which can be thought
of as a 2-D grid of pixels. Convolutional networks have been tremendously successful
in practical applications. The name “convolutional neural network” indicates that the
network employs a mathematical operation called convolution.

s(t) =
∫

x(a) · w(t− a)da (1)

where x(t) is the raw signal measurement at time t, w(a) is a weighted average that gives
more weight to recent measurements, a denotes the age of a measurement, and s(t) is the
smoothed estimate of the x(t) measurement.

Convolution is also denoted as follows:

s(t) = (x · w)(t) (2)

In convolutional network terminology, the first argument (the function x) to the
convolution is often referred to as the input, and the second argument (the function w)
is the kernel. The output is sometimes referred to as the feature map (Figure 3). In our
case, as also in many others, the convolution taking place is two-dimensional, and time is
discrete. Therefore, its mathematical notation, called convolution without flipping, which
is equivalent to cross-correlation, is defined as follows:

s(i, j) = (K · I)(i, j) = ∑
m

∑
n

I(i + m, j + n) · K(m, n) (3)

where I is a two-dimensional array of data (e.g., an image), and K is a two-dimensional
kernel; both I and K are discrete values.

Figure 3. A 2D CNN channel.

3.2. The Autoencoders

An autoencoder is a neural network that is trained to attempt to copy its input to
its output (Figure 4). Internally, it has a hidden layer h that describes a code used to
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represent the input. The network may be viewed as consisting of two parts: an encoder
function h = f (x) and a decoder that produces a reconstruction r = g(h). If an autoencoder
succeeds in simply learning to set g( f (x)) = x everywhere, then it is not especially useful.
Instead, autoencoders are designed to be unable to learn to copy perfectly. Usually, they
are restricted in ways that allow them to copy only approximately and to copy only input
that resembles the training data. Because the model is forced to prioritize which aspects
of the input should be copied, it often learns useful properties of the data. Denoising
autoencoders must undo corrupted/noisy input measurements rather than simply copying
them as they are.

Figure 4. The general structure of an autoencoder, mapping an input x to an output (called recon-
struction) r through an internal representation or code h. The autoencoder has two components: the
encoder f (mapping x to h) and the decoder g (mapping h to r).

3.3. MLDAR: A Machine Learning-Based Model for Denoising the Ambient Structural Response

In this study, a machine learning-based model is presented that is able to denoise
ambient-response recordings collected using instruments with specifications equivalent to
those of a low-cost monitoring device (noise density: 22.5 μg/

√
Hz, MEMS type) used in

recent SHM studies [21,26–28]. The proposed model is labeled as MLDAR, which stands
for Machine Learning-based Denoising of Ambient Response, and is presented graphically
in Figure 5. In particular, MLDAR refers to a denoising autoencoder type of neural network
whose purpose is to reproduce its inputs’ time histories of ambient structural responses
free of noise.

Autoencoders serve as powerful tools for denoising tasks, leveraging their inherent
capacity to extract meaningful features from input data while effectively filtering out
noise. Comprising both an encoder and a decoder, autoencoders are designed to learn the
mapping of noisy input to a lower-dimensional representation, facilitating the subsequent
reconstruction of the clean input. The training process involves optimizing the model
to minimize the disparity between the reconstructed and pristine inputs, a mechanism
that inherently eradicates noise. The denoising prowess of autoencoders arises from
their fundamental need to discern between signals and noise. This process highlights
the autoencoder’s capability to emphasize salient features within the data, rendering it
particularly adept at tasks that demand precision amidst ambient noise. A pertinent
application of this capability can be observed in the context of Micro-Electromechanical
Systems (MEMs), where autoencoders prove invaluable in enhancing the accuracy of signal
extraction in the presence of inherent electronic noise. In essence, autoencoders stand out as
versatile tools for noise reduction, excelling in tasks that require the meticulous separation
of signals from noise. Their ability to learn intricate patterns in data and prioritize essential
features positions them as valuable assets in applications ranging from MEMs to various
domains where precision amidst ambient noise is paramount.
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Figure 5. The MLDAR neural network model.

The proposed NN model consists of the encoder, the latent space representation, the
decoder part, and last but not least, the upscaling part. The input to the proposed model is
the noisy ambient response, which can be viewed as a 2D image of size T × F with two
channels, where T represents the time length of the time-history signal, and F denotes the
amplitude of acceleration (in gs) at the given time. On the other hand, the output of the
model is the corresponding ambient response, clear of any additive noise (e.g., electronic).
Its form is also a 2D image with the same size, T × F, as the input.

The signal that precedes the generation of the image takes the form of a time history
of acceleration, organized with a consistent timestep. Essentially, it can be envisioned as a
one-dimensional matrix encompassing acceleration values, supplemented by a concealed
column that incorporates the temporal dimension. This representation is designed to
highlight the temporal evolution of the acceleration data, accentuating their dynamic
nature in the context of image creation. By structuring the information in this manner,
we aim to provide a comprehensive understanding of how acceleration changes over
time, offering valuable insights into the intricate process of image generation. The signals
throughout this work are not presented as graphs but as images. Therefore, they do not
have X- and Y-axes noted in the images themselves. However, they are implied. The X-axis
corresponds to samples, and the Y-axis represents acceleration values.

These images are normalized in the range of 0 to 1, a well-known practice for artificial
neural networks, depending also on the activation functions adopted. For the needs of
the study, a computing system equipped with a standalone NVIDIA Titan RTX graphics
card with 24 GB VRAM was used to implement the training part. Relying on the VRAM
capabilities, the I/O images’ dimensions were chosen as 512× 171 pixels for the input and
as 1536× 512 pixels for the output. Moreover, in addition to the noise elimination process,
an image upscaling process took place with the use of some further levels in the neural
network due to input-image compression due to hardware restrictions. The 510 width
pixels of input compressed images practically mean that the sampling rate was reduced
from 100 Hz to 8.53 Hz. The purpose of the upscaling part is to add the required details to
the output signals in order to enable further signal processing techniques, such as the Fast
Fourier Transform (FFT), and restore as much of the lost frequency spectrum as possible.
After implementing the upscaling process, a sampling rate of 25.6 Hz is restored, meaning
that a bandwidth of 12.8 Hz is retained in our signals.
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In order to convert images from acceleration values, the following limits were used:

• Input images (noisy response): minimum value of −0.000442 g, maximum value of
0.000437 g;

• Output images (no-noise response): minimum value of −0.000074 g, maximum value
of 0.000072 g.

The characteristics of the proposed MLDAR model (Figure 5) are the following: the
images introduced as input arguments are discretized with 512× 171 pixels; therefore, the
input format is [171, 512, 1], where 171 refers to the number of pixels along the height
of each image, 512 is the number of pixels along the width of each image, and 1 is the
value of the monochrome channel (grayscale) of the image. The image is then passed
through a 2D convolutional encoder in order to extract the features of major importance.
The 2D encoder Table 2 consists of four layers of 2D convolution (Conv2D), and ReLu
was selected as the proper activation function. Every Conv2D layer is followed by Batch
Normalization and Dropout (with a frequency of 25%) layers in order to avoid overfitting
and so that the network is able to generalize with better accuracy. After implementing
the encoding part, two dense layers are used for the latent space representation in order
to achieve the desirable compression of the feature values. Feature values were unable
to be directly interpreted at the image-pixel input layer; however, it is now possible by
means of encoding the latent space representation in a reduced multidimensional space.
ReLu is also used as the proper activation function after the small dense layer. Having
reshaped the last dense layer to a two-dimensional one, the decoder Table 3 is used in
order to distance from the feature maps of latent space and return to the composition of
the monochrome image. The decoder consists of four levels of Conv2DTranspose, and
each of them is complemented by the ReLu activation function. Finally, the upscaling

section Table 3 is implemented, which enlarges the image to the desired output size of
1536× 512 pixels. Upscaling is implemented at two levels, the Conv2DTranspose and the
Conv2D one. The first level relies on a ReLu activation function, while the last one relies
on a Sigmoid suppression function, since the output refers to an image with a color value
ranging between 0 to 1. Regarding the activation functions, the Sigmoid activation function
is characterized by an output range confined within [0,1]. This property proves particularly
advantageous when dealing with grayscale images, as their pixel values typically span
the range of 0 to 255 (or normalized to 0–1). Sigmoid effectively scales and squashes the
output to a probability-like range, aligning well with the characteristics of normalized
image data. Conversely, the Rectified Linear Unit (ReLU) activation function introduces
crucial nonlinearity to the model, enabling it to discern and learn intricate patterns and
representations within the data. Empirically, ReLU has demonstrated robust performance,
notably facilitating accelerated convergence during training. In the context of convolutional
autoencoders, ReLU is commonly employed in both the encoding and decoding layers.
This choice is deliberate, aiming to capture and preserve essential features in the data. The
rectification operation inherent in ReLU aids in the learning of hierarchical and spatial
features, enhancing the model’s capacity to extract meaningful information from the input.

The loss function chosen corresponds to the mean absolute error between the true
label and the prediction (Equation (4)):

loss = 1/n
n

∑
t=1
| et |= 1/n

n

∑
t=1
| ypred − ytrue | (4)

The batch size was chosen to be six sets of images (input–output). The training took
place in 80 epochs. The total number of training parameters was 106,375,947. The Adam
optimizer was used on this network with a learning step equal to 0.0001. At the last epoch,
the training error was 0.0045, while the prediction error was 0.0053 (in Figure 6, see the
history of the training process). The exploration of various model structures, hyperparame-
ters, and training techniques is a crucial aspect of Deep Learning. This iterative process
entails systematic testing, evaluation, and subsequent refinement guided by performance
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metrics. In the initial phase of parameter calibration, our emphasis primarily rested on
qualitative comparisons of the results. As the calibration progressed, a transition was
made to a more quantitative assessment approach, allowing for a comprehensive analysis
of the model’s performance and efficacy. This sequential evolution in our methodology
ensures a thorough and balanced evaluation of the experimented variables throughout the
experimentation process.

Table 2. Architecture of MLDAR—Part I. “C” indicates a convolutional layer.

Encoder

C1 1 C2 1 C3 1 C4 1

Filters: 128 64 64 64
Kernel size: (2,2) (2,2) (2,2) (2,2)
Dilation: (1,1) (2,2) (4,4) (6,6)
Stride: (1,1) (1,1) (1,1) (1,1)
Padding: Valid Valid Valid Valid
1 Followed by Batch Normalization, ReLu, and Dropout layers.

Table 3. Architecture of MLDAR—Part II. ‘C’ indicates a convolutional layer, and “TC” indicates a
transposed convolutional layer.

Decoder Upscaling

TC1 1 TC2 1 TC3 1 TC4 1 TC5 1 C5 2

Filters: 64 64 64 128 128 1
Kernel size: (2,2) (2,2) (2,2) (2,2) (4,4) (3,2)
Dilation: (6,6) (4,4) (2,2) (1,1) (1,1) (1,1)
Stride: (1,1) (1,1) (1,1) (1,1) (3,3) (1,1)
Padding: Valid Valid Valid Valid Valid Valid
1 Followed by ReLu; 2 followed by Sigmoid.

Figure 6. Training and validation loss function values over 80 epochs.

4. Frequency Spectrum Comparison: Qualitative and Quantitative Results

In this part of the study, some of the results obtained in the framework of the investiga-
tion are presented. In particular, low-, medium-, and high-frequency signals are randomly
selected, aiming to present the efficiency of the proposed MLDAR model for a spectrum of
frequency values. Apart from the comparison of the results obtained in terms of images,
the frequency content is also compared, the outcome that was the primary goal of the
present work.
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4.1. Qualitative Comparison: Sample of Low-Frequency Signals

Many mid- to high-rise buildings, bridges, and other flexible structures are usually
those showing low-frequency spectral responses, i.e., usually in the range of 1.0 to 3.0 Hz.
The dynamic characteristics of these ground-induced structures correspond to a lower
acceleration amplitude and a higher displacement amplitude. However, the damping part
takes a longer time to diminish the responses to this type of structure. To examine the
efficiency of the MLDAR model for such low-frequency cases, a sample denoted as 4_1 was
randomly chosen; this sample refers to structural model #4, while the #1 time-window is
used to represent the noise. The characteristics of the specific structural model #4 include
a frequency value equal to 1 Hz, a one-story structure, and a mass equal to 95% of the
reference mass provided in Table 1. The noisy signal can be seen in Figure 7, and the
non-noisy one can be found in Figure 8, while the predicted one obtained through the
MLDAR model is shown in Figure 9.

Figure 7. The noisy low-frequency signal (signal 4_1).

Figure 8. The low-frequency signal without noise [Target] (signal 4_1).

Figure 9. The denoised low-frequency signal through the MLDAR model [Prediction] (signal 4_1).

In order to make the difference in the magnitude scale (noisy vs. clean signal) more
clearly visible, an amplitude comparison between the signal with and without additive
noise is provided in Figure 10. This specific sample of noisy signal has values that range
in 7.75× 10−4 mg with a standard deviation of 1.02× 10−4 mg. On the other hand, its
counterpart, the target non-noisy one, has values that range in 7.27× 10−5 mg with a
standard deviation of 9.69 × 10−6 mg. As can be seen, the range difference is almost
10 times. To this point, it should be pointed out again that the noisy signal is sampled at
100 Hz, and the non-noisy one, the product and target of the proposed NN, is sampled at
25.6 Hz. The reduction in the sampling rate consequently reduces the level of the total noise.
Therefore, calculating the average power of a signal at different sampling rates results in
different values. In this case, signal 4_1 in the original 100 Hz form has an average power
of −79.79 dB, that at 25.6 Hz has an average of −85.81 dB, and the target signal sampled at
25.6 Hz has an average power of −98.80 dB.
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Figure 10. Low-frequency case: scale comparison between noisy signal and non-noisy (cleaned–
predicted).

Regarding the frequency content of the signals generated by the specific model case, a
comparison at the frequency-domain level can be seen in Figure 11. The blue-colored line
depicts the noisy signal sampled at 100 Hz, and that was used in the .png format as input
in the NN. Orange and violet correspond to the target and predicted non-noisy signals,
which show the response of model #4 under ambient vibrations. As can be seen, the 1 Hz
frequency is indistinguishable in the ambient vibration measurements due to noise. Even
after the averaging of the Fast Fourier Transforms (FTTs) with a 1 min time-window, the 1
Hz frequency cannot be identified. On the other hand, the implementation of the MLDAR
model managed to remove the noise from the signal at an acceptable level, where the
extraction of the 1 Hz frequency is feasible. As can be seen, the whole frequency band
is much lower in the predicted and target signals, showing that the baseline high-level
electronic noise has been removed. A comparison in time-history terms can be seen in
Figure 12, where differences are colored in green and magenta, and matching regions are
in gray.

Figure 11. Low-frequency case: comparison of frequency content between response to ambient noise
(blue), target signal (orange), and predicted signal (violet)—frequency of 1.0 Hz.

Figure 12. Low-frequency case: comparison of frequency content between target signal (orange) and
prediction (light blue)—frequency of 1.0 Hz.
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4.2. Qualitative Comparison: Sample of Medium-Frequency Signal

Many mid-rise buildings, including typical concrete buildings designed based on
older building codes, are usually those showing medium-frequency spectral responses, i.e.,
usually in the range of 3.0 to 6.0 Hz. In order to further examine the efficiency of the
MLDAR model, a sample denoted by 631_4 was randomly chosen, belonging to the
medium-frequency cases. This sample refers to structural model #631, while the #4 time-
window was used to represent the noise. The characteristics of structural model #631
include a frequency value equal to 6 Hz, and similar to the previous case study, it is a
one-story structure, and the mass is equal to 80% of the reference mass provided in Table 1.
The noisy signal for this specific case can be seen in Figure 13, and the non-noisy one can
be found in Figure 14, while the predicted one obtained through the MLDAR model is
depicted in Figure 15.

Figure 13. The noisy medium-frequency signal (signal 631_4).

Figure 14. The medium-frequency signal without noise [Target] (signal 631_4).

Similar to the low-frequency case, and in order to make the difference in the magnitude
scale (noisy vs. clean signal) more clearly visible, an amplitude comparison between the
signal with and without additive noise is provided in Figure 16. This specific sample
of a noisy signal has values that range in 7.78× 10−4 mg with a standard deviation of
1.03× 10−4 mg. On the other hand, its counterpart, the target non-noisy one, has values
that range in 7.20× 10−5 mg with a standard deviation of 1.08× 10−5 mg. As can be seen,
the range difference is almost 10 times. For this case, signal 631_4 at the 100 Hz sampling
rate has an average power of −79.76 dB, that at 25.6 Hz has an average of −85.69 dB, and
the target signal sampled at 25.6 Hz has an average power of −95.53 dB.

Figure 15. The denoised medium-frequency signal through the MLDAR model [Prediction] (signal
631_4).
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Figure 16. Medium-frequency case: scale comparison between noisy signal and non-noisy (cleaned–
predicted).

Regarding the frequency content of the signals generated by the specific model case, a
comparison at the frequency-domain level can be seen in Figure 17. The blue-colored line
depicts the noisy signal sampled at 100 Hz, and that was used in the .png format as input
in the NN. Orange and violet correspond to target and predicted non-noisy signals, which
shows the response of model #631 under ambient vibrations. As can be seen, the 6 Hz
frequency is indistinguishable in the ambient vibration measurements due to noise. Even
after the averaging of the Fast Fourier Transforms (FTTs) with a 1 min time-window, the
6 Hz frequency cannot be identified, as its intensity is much smaller than that of the noise
band. On the other hand, the implementation of the MLDAR model managed to remove
the noise from the signal at an acceptable level, where the extraction of the 6 Hz frequency
is feasible. As can be seen, the whole frequency band is much lower in the predicted and
target signals, showing that the baseline high-level electronic noise has been removed. A
comparison in time-history terms can be seen in Figure 18, where differences are colored in
green and magenta, and matching regions are in gray.

Figure 17. Medium-frequency case: comparison of frequency content between response to ambient
noise (blue), target signal (orange), and predicted signal (violet)—frequency of 6.0 Hz.
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Figure 18. Medium-frequency case: Comparison of frequency content between target and predicted
non-electronically noisy signals. Differences are highlighted by orange and magenta colors, and
matching regions are in gray—frequency of 6.0 Hz.

4.3. Qualitative Comparison: Sample of High-Frequency Signal

Low-rise buildings such as those designed and built based on modern design codes
or older masonry building structures are usually those showing high-frequency spectral
responses, i.e., usually equal to 6.0 Hz or higher. The dynamic characteristics of these
ground-induced structures correspond to a higher acceleration amplitude, which, however,
is damped at a higher rate of response attenuation. To further examine the efficiency of
the proposed MLDAR model for higher-frequency cases, a sample denoted by 1194_7 was
randomly chosen. This sample refers to structural model #1194, while the #7 time-window
was used to represent the noise. The characteristics of structural model #1194 include a
frequency value equal to 10 Hz, a seven-story structure, and a mass equal to 105% of the
reference mass provided in Table 1. The noisy signal can be seen in Figure 19, and the
non-noisy one can be found in Figure 20, while the predicted one obtained through the
MLDAR model is shown in Figure 21.

Similar to the other two cases, for the high-frequency case as well, in order to make
the difference in the the magnitude scale (noisy vs. clean signal) more clearly visible, an
amplitude comparison between the signal with and without additive noise is provided in
Figure 22. This specific sample of noisy signal has values that range in 8.01× 10−4 mg with
a standard deviation of 1.04× 10−4 mg. On the other hand, its counterpart, the target non-
noisy one, has values that range in 6.94× 10−5 mg with a standard deviation of 1.17× 10−5.
As can be seen again, the range difference is almost 10 times. In this case, signal 631_4 at a
100 Hz sampling rate has an average power of −79.70 dB, that at 25.6 Hz has an average of
−85.56 dB, and the target signal sampled at 25.6 Hz has an average power of −92.51 dB.

Figure 19. The noisy high-frequency signal (signal 1194_7).

Figure 20. The high-frequency signal without noise [Target] (signal 1194_7).
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Figure 21. The denoised high-frequency signal through the MLDAR model [Prediction] (signal
1194_7).

Figure 22. High-frequency case: scale comparison between noisy signal and non-noisy (cleaned–
predicted).

Regarding the frequency content of the signals generated by the specific model case,
a comparison at the frequency-domain level can be seen in Figure 23. The blue-colored
line depicts the noisy signal sampled at 100 Hz, and that was used in the .png format as
input in the NN. Orange and violet correspond to target and predicted non-noisy signals,
which shows the response of model #1194 under ambient vibrations. As can be seen, the
10 Hz frequency is indistinguishable in the ambient vibration measurements due to noise.
Even after the averaging of the Fast Fourier Transforms (FTTs) with a 1 min time-window,
the frequency of interest cannot be identified, as its intensity is much smaller than that of
the noise band. On the other hand, the implementation of the MLDAR model managed
to remove the noise from the signal at an acceptable level, where the extraction of the
target frequency is feasible. As can be seen, the whole frequency band is much lower in the
predicted and target signals, showing that the baseline high-level electronic noise has been
removed. A comparison in time-history terms can be seen in Figure 24, where differences
are colored in green and magenta, and matching regions are in gray.

4.4. Quantitative Results: Comparing Frequency Spectra of Prediction and Target for the Whole
Dataset through Magnitude-Squared Coherence

Although the denoising process that relies on a Deep Learning model (MLDAR model)
concerns acceleration time-history recordings and operates on their image formatting, the
main objective of the original problem is the frequency extraction from ambient vibration
measurements; thus, the comparison should also be performed on the efficiency of the
MLDAR model in extracting eigenfrequencies from the denoised ambient response signals.
The first step is to convert the MLDAR image-output dataset into numerical time histories,
and then the frequency spectra need to be extracted through the Fast Fourier Transform
(FFT) algorithm.
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Figure 23. High-frequency case: comparison of frequency content between response to ambient noise
(blue), target signal (orange), and predicted signal (violet)—frequency of 10.0 Hz.

Figure 24. High-frequency case: Comparison between target and predicted non-electronically noisy
signals. Differences are highlighted by orange and magenta colors, and matching regions are in
gray—frequency of 10.0 Hz.

To compare the efficiency of the MLDAR method, a comparison in frequency terms
is also performed between predicted and target (original and non-noisy) signals for the
validation dataset (i.e., 2700 signals). The validation dataset contains around 25% of the
total generated 10,773 signals. Specifically, the magnitude-squared coherence values Cxy( f )
(Equation (5)) [29–31] are calculated for a specified frequency range between predicted and
target signals. Then, the mean value of Cxy( f ) for each sample pair of signals is derived.
This frequency range depends on the SDOF frequency of interest of each signal and is
determined as follows: fSDOF ± 0.1 (Hz). As seen in Figure 25, the minimum mean Cxy( f )
value for the whole validation dataset is 91%. The average value of the mean Cxy( f ) for
the whole validation dataset was calculated at 0.98, with a standard deviation of 0.01. The
standard deviation of Cxy( f ) for each sample varies, as shown in Figure 26.

Cxy( f ) =
|Pxy( f )|2

Pxx( f )Pyy( f )
. (5)

where Cxy( f ) is the magnitude-squared coherence of the x and y signals, Pxx( f ) and Pyy( f )
are the power spectral densities of the two signals, and Pxy( f ) is the cross-power spectral
density of the two signals. Cxy( f ) is between 0 and 1.
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Figure 25. Mean magnitude-squared coherence Cxy( f ) for whole validation dataset between target
and predicted signals.

Figure 26. Standard deviation of magnitude-squared coherence Cxy( f ) for whole validation dataset
between target and predicted signals.

For purposes of completeness, the phase difference (δφ) between the target and pre-
dicted signals in the validation dataset is also presented based on the already-calculated
Pxy( f ) values, i.e., the cross-power spectral density of the two signals. Similarly, for the
same frequency range of each signal, the average of the difference in phase is calculated,
and the trend for all signals is summarized in Figure 27. The average value of the mean
(δφ) for the whole dataset of signals is calculated as 0.20 degrees, with a standard deviation
of 3.245. The standard deviation of δφ for each sample varies, as shown in Figure 28.
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Figure 27. Mean phase difference (δφ) for whole validation dataset between target and predicted
signals.

Figure 28. Standard deviation of phase difference (δφ) for whole validation dataset between target
and predicted signals.

Distinctive colors have been introduced in Figures 25 and 27, with the purpose of
highlighting the individuality of each graph point, emphasizing their uniqueness within
the dataset. The decision to employ varied colors is strategic, as using a uniform color for
all points could result in a visually overwhelming amalgamation, resembling a continuous
painted area due to the sheer volume of points within the limited horizontal space. By
assigning unique colors to each point, we ensure that the values remain discrete and
discernible, preventing the potential visual confusion that might arise from a homogeneous
color scheme.
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4.5. Quantitative Results: Evaluating Denoising Performance through SNR Levels

Finally, an additional index, the Signal-to-Noise Ratio (SNR) (Equation (6)), was
employed to assess the denoising performance. The SNR is a commonly used metric
in the fields of science and engineering to compare the level of a desired signal to the
level of background noise. It is typically calculated as the ratio of the signal power to the
noise power and is often expressed in decibels. An SNR ratio greater than 1:1 (exceeding
0 dB) indicates that the signal strength exceeds that of the noise, thereby signifying a
favorable outcome.

SNR =
Pclean
Pnoisy

(6)

The SNR was calculated by taking the average power, denoted by P. The SNR was
computed between the noisy and non-noisy signals, specifically between the target and
predicted signals. This calculation was performed for the entire validation set, and the
corresponding results are presented in Figure 29. SNR#1 refers to the ratio between the
target signal and the noisy signal, while SNR#2 represents the ratio between the predicted
signal and the noisy signal. The mean value of SNR#1 is found to be −8.40 decibels
(dB), indicating a relatively low signal strength compared to the background noise. The
median value for SNR#1 is −8.16 dB, suggesting a similar trend in the central tendency
of the data. Similarly, the mean of SNR#2 is −8.44 dB, implying a comparable signal–
noise relationship for the predicted signal. The median value for SNR#2 is −8.29 dB,
reinforcing the observations made from the mean value. These SNR measurements provide
quantitative information regarding the relationship between the target or predicted signals
and the accompanying noise. The negative dB values indicate that the noise level tends
to overshadow the signal strength, highlighting the need for further improvement in
denoising techniques to enhance signal clarity.

Figure 29. Signal-to-Noise Ratio (SNR) for whole validation dataset between target and predicted
signals.

5. Conclusions

This research proposes the use of a neural network model as a denoiser for ambient
vibration measurements, with the primary objective of removing noise while preserving the
essential information necessary for subsequent signal manipulation. In this study, signal
manipulation refers to the extraction of the dynamic characteristics, such as eigenfrequen-
cies and eigenmodes, of Single-Degree-of-Freedom (SDOF) building models.

In pursuit of denoising various signals, challenges arise after employing a digital
sensor or converting an analog sensor output into digital form, leaving limited options
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for noise reduction. One established approach involves the application of Digital Signal
Processing (DSP) techniques, such as digital filtering, moving average filters, and moving
median filters. These methods aim to effectively mitigate noise interference. An alternative
strategy entails implementing averaging techniques in the frequency domain following the
Fourier Transform. This approach proves particularly beneficial in addressing noise issues
by exploiting the frequency characteristics of the signals. In the context of analog sensors,
the quest for enhanced noise reduction requires a multifaceted approach. This includes
the adoption of superior digitization hardware, exemplified by high-quality Analog-to-
Digital Converters (ADCs). Furthermore, improvements in shielding for cables and the
integration of advanced decoupling transistors contribute significantly to fortifying the
system against unwanted noise. Nevertheless, in the specific context of this study, a
distinctive choice was made to utilize a Deep Learning architecture for denoising purposes.
This decision reflects a departure from traditional techniques, indicating an exploration into
the innovative realm of machine learning for noise reduction. By opting for Deep Learning,
this study endeavors to leverage the model’s ability to discern complex patterns and extract
relevant features, potentially offering a more sophisticated and adaptive solution to the
challenges posed by signal noise. This strategic shift aligns with the evolving landscape
of signal processing, embracing the promising capabilities of advanced machine learning
architectures for effective denoising in diverse sensor applications.

To train and validate the denoiser model, a dataset of response signals was artificially
generated based on existing accelerometer noise specifications. Both qualitative and quan-
titative evaluations demonstrate that the proposed MLDAR model effectively eliminates
almost all types of additive noise, including electronic and non-electronic sources, from
theoretically noise-free ambient response signals. Despite the significant difference in scale
between noisy and noise-free signals, as evident in Figures 10, 16, and 22, the MLDAR
model consistently succeeds in removing the noise from the signals. It is worth noting
that the MLDAR model produces output signals with a resolution of 12.8 Hz, which is
sufficient for most common building structures and civil engineering infrastructures. This
limitation is due to the smaller resolution of the input signals compared to the output
signals, potentially attributed to hardware capabilities. Nonetheless, the MLDAR model’s
upscaling capabilities open avenues for future work, enabling its utilization in versatile
and lightweight applications, such as web applications and IoT devices. This makes it
possible to combine the denoising model with earthquake building seismic assessment
tools and methodologies.

Moreover, the quantitative results of the MLDAR model, as presented in the last
paragraph of the numerical investigation section, exhibit its promising performance. The
validation dataset shows that the worst performance achieved was a 91% accuracy for
only a few cases, while the average score reached 98% (refer to Figure 25). This confirms
the successful accomplishment of the primary goal of this study, which is extracting the
eigenfrequencies of SDOF building models from noisy signals, a task previously challeng-
ing without extending the sampling time or employing statistical signal manipulation
techniques [21].

The model was trained using a dataset composed of artificially generated ambient
response signals designed to replicate the noise specifications of a MEMS-type accelerom-
eter, specifically the ADXL355 model. These signals were superimposed on the ambient
responses of Multi-Degree-of-Freedom (MDOF) building models. The outcomes showcased
the efficacy of the MLDAR model in effectively eliminating additive noise from ostensibly
noise-free ambient signals. Notably, the model demonstrated this capability despite the
substantial scale difference between noisy and non-noisy signals. A constraint observed is
the resolution of the output signal images, which restricts the signal’s useful bandwidth to
12.8 Hz, given a sampling rate of 25.6 Hz. Nevertheless, this resolution proves adequate
for the majority of building structures and applications in civil engineering. Quantitative
assessments affirm the model’s promising performance, with high magnitude-squared
coherence scores averaging at 98%, coupled with minimal phase differences of 0.20°. An
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impressive outcome of the study is the MLDAR model’s capacity to extract fundamen-
tal eigenfrequencies from MDOF building models even in the presence of noisy signals,
achieving the primary objective without the necessity of extending the sampling time or
employing statistical signal manipulation. To further enhance the capabilities of the ML-
DAR model in future endeavors, several avenues can be explored. Expanded Training Data:
Consider retraining the model by incorporating additional data from diverse sensors and
ambient vibration field measurements. Real-Time Implementation: Integrate the trained
model into a microcontroller or single-board microcomputer/barebone equipped with
AI capabilities. This would facilitate the real-time denoising of measurements. Notably,
Tensorflow, even in its Tensorflow Lite version, is compatible with a range of low-cost
devices (USD 50–150), such as Arduino Nano 33 BLE Sense, Espressif ESP32, Raspberry
Pi 4, NVIDIA® Jetson Nano™, and Coral Dev Board. Versatility Improvement: Explore
the possibility of enhancing the model’s versatility in signal denoising tasks, including
time-history signals of various natures. This expansion could broaden the applicability of
the MLDAR model across a wider spectrum of scenarios.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANNs Artificial neural networks
AV Ambient vibration
CNN Convolutional neural network
ML Machine learning
MLDAR Machine Learning-based Denoising of Ambient Response
MEMs Micro-Electromechanical Systems
NN Neural network
NPUs Neural Processing Units
RNN Recurrent Neural Network
SDOF Single Degree of Freedom
SHM Structural Health Monitoring
SNR Signal-to-Noise Ratio
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Abstract: Random vibration analysis is a mathematical tool that offers great advantages in predicting
the mechanical response of structural systems subjected to external dynamic loads whose nature is
intrinsically stochastic, as in cases of sea waves, wind pressure, and vibrations due to road asperity.
Using random vibration analysis is possible, when the input is properly modeled as a stochastic
process, to derive pieces of information about the structural response with a high quality (if compared
with other tools), especially in terms of reliability prevision. Moreover, the random vibration approach
is quite complex in cases of non-linearity cases, as well as for non-stationary inputs, as in cases of
seismic events. For non-stationary inputs, the assessment of second-order spectral moments requires
resolving the Lyapunov matrix differential equation. In this research, a numerical procedure is
proposed, providing an expression of response in the state-space that, to our best knowledge, has not
yet been presented in the literature, by using a formal justification in accordance with earthquake
input modeled as a modulated white noise with evolutive parameters. The computational efforts
are reduced by considering the symmetry feature of the covariance matrix. The adopted approach is
applied to analyze a multi-story building, aiming to determine the reliability related to the maximum
inter-story displacement surpassing a specified acceptable threshold. The building is presumed to
experience seismic input characterized by a non-stationary process in both amplitude and frequency,
utilizing a general Kanai–Tajimi earthquake input stationary model. The adopted case study is
modeled in the form of a multi-degree-of-freedom plane shear frame system.

Keywords: non-stationary random process; covariance analysis; Lyapunov equation; dynamic
response and reliability

1. Introduction

Taking into account how structures behave in a random vibration setting is a prevalent
method used to assess actual response scenarios [1]. This applies to various contexts,
e.g., aircraft, vibrating machinery, and buildings subjected to marine or wind vibrations.
These engineering scenarios involve examining how structures respond to dynamic and
nondeterministic actions, and random dynamic analysis proves to be the most effective
mathematical tool for this purpose [2]. This decision arises from the inherent randomness
in inputs, a well-documented aspect in the field of random vibration theory (as evidenced
by [3–6]). Approaching the problem using these methodologies enables acquiring relevant
and reliable information about the structural response, typically unattainable through
deterministic methods. The strength of the random vibration approach lies in its high-
quality information, including the quantification of structural integrity, which is significant
in probabilistic safety assessments. Failure is generally described as the initial moment
when a structural crisis begins, tying it to the first instance where one or more measurements
of structural response exceed a safe range. This usually involves assessing structural
response indicators like displacements, stresses, buckling loads, or natural frequencies.
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The random vibration problem for linear mechanical systems subject to Gaussian
processes input is posed in stationary environmental conditions as the solution of the
so-called Lyapunov matrix equation [7,8] to obtain the response covariance that defines
completely the statistics of the system. Challenges in solving the Lyapunov equation have
constrained the size of the meshes that could be employed. The Lyapunov equation (i.e.,
Lyapunov matrix equation, AR + RAT + B = 0, A system matrix, R covariance matrix,
and B input matrix, see Section 2) is typically achieved using algorithms like Bartels–
Steward or Hessenberg–Schur. These methods require the Schur factorization of system
matrix A. Various software tools for scientific computing, such as Matlab and Python,
employ adapted versions of these algorithms, delivering satisfactory results for small dense
matrices A and B. This involves O

(
N3) floating-point operations and O

(
N2)memory [9].

Approaches designed for large system dimensions have been developed, for instance, the
Krylov subspace methods [9–11] or the matrix sign function decomposition with Newton’s
iterative method.

In non-stationary cases, under the same assumptions (linear system and Gaussian input)
the time covariance approach is more complex as the Lyapunov matrix covariance becomes
a differential one (i.e., Lyapunov differential matrix equation,

.
R = AR + RAT + B = 0, see

Section 3) whose numerical solution is sometimes more complex, and there are not standard
tools to be implemented, differently from the stationary case.

The main objective of this research is to introduce a numerical technique for evaluating
response covariance in the time domain for linear structures subjected to non-stationary
stochastic loads. This method is tailored for a generic scenario where the input involves a
non-stationary modulated filtered white noise process, capable of simulating various real
physical loads like earthquakes [12–15].

To achieve a versatile non-stationary approach applicable across different contexts, the
structural response is assessed using a covariance approach, as understanding the evolving
covariance matrix in the space state is crucial for evaluating reliability, particularly in terms
of initial failure events.

To address this, a time-step integration algorithm is proposed, employing the Eu-
ler implicit method to solve the differential Lyapunov matrix equation. The outcome
is a sequential algorithm that requires the numerical solution of a stationary Lyapunov
matrix equation at each time step, a task achievable through standard numerical tools.
This method is implemented to reduce computational expenses and has been specifically
applied to a multi-story building represented by a shear frame structure, examining dy-
namic responses under seismic base motions and assessing the reliability concerning initial
threshold crossings.

2. Linear Elastic MDoF Subject to Non-Stationary Random Vibration

Many instances of real-life structural issues revolve around configurations that match a
linear viscoelastic system of lumped masses. These systems face either steady or fluctuating
forces. This study considers both scenarios to evaluate how structural responses vary
statistically, employing the covariance approach [13,14].

This method presents notable benefits, especially in dynamic conditions, where inputs
are simulated as white noises. These can be filtered to better match real dynamic occur-
rences. By solving the equations of the dynamic equilibrium system, this technique gauges
the structural response of a deterministic second-order linear mechanical system composed
of lumped masses when subjected to probabilistic dynamic input.

M
..
Xs(t) + C

.
Xs(t) + KXs(t) = Gs f (t) (1)

where Xs,
.

Xs and
..
Xs are the structural displacement, velocity, and acceleration process

vectors. M, C and K are the mass, viscous, and stiffness symmetric matrices. While the
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mass matrix is always positive definite, the damping and stiffness matrices are positive
semi-definite. The vector

f (t)T = [ f1(t), f2(t), . . . , fn(t)] (2)

accumulates n stochastic excitations applied to the structure, while Gs represents an m x n
matrix linking the excitation components of the forcing vector to the structural degrees of
freedom. When the elements of the system excitations vector are stationary white noises,
the first- and second-order statistical moments remain unchanged over time.〈

f ST
i (t)

〉
= μ fi

(3)

〈
f ST
i (t1) f ST

j (t2)
〉
= [J]ijδ(t2 − t1) =

[
RST

f f (t2, t2)
]

ij
(4)

Moreover, if f ST
i (t) are Gaussian excitations, then the responses and their time derivatives

constitute a Markov vector in the dimension phase state.
The matrix, related to a vector satisfying the shot noise properties (usually denoted as

a shot noise vector), has diagonal elements equal to the autocovariance intensity of each
force and extra-diagonal elements representing the level of correlation between two generic
different forces, so that can vary from if and f j are completely correlated, to zero, if and are
completely un-correlated.

Then, in the case of complete un-correlated forcing loads, the matrix is replaced by the
simpler diagonal matrix of components, where the elements are the input power spectral
density of each entry.

A commonly used method involves expressing a non-stationary input through an
intensity modulation of a stationary process, often referred to as uniform modulation.
This method assumes that the intensity of the process alters over time according to a
deterministic function ϕ(t), while the spectral contents remain constant. Consequently,
in the case of time modulation, a stationary forcing process vector is substituted by the
following non-stationary vector:

f
NS

(t) =
[

ϕ1(t) f ST
1 (t), ϕ2(t) f ST

3 (t), . . . , ϕn(t) f ST
n (t)

]
(5)

with the stochastic characterization〈
f NS
i (t)

〉
= ϕi(t)μ fi

(6)

〈
f NS
i (t1) f NS

j (t2)
〉
= ϕi(t1)ϕj(t2)[J]ijδ(t2 − t1) =

[
RNS

f f (t1, t2)
]

i, j
(7)

and, in case of un-correlated excitations, the covariance matrix RNS
f f (t2, t2) is diagonal

RNS
f f (t1, t2) =

〈
f NS
i (t1) f NS

j (t2)
〉
=

{
2πSi

0 ϕi(t1)ϕi(t2)δ(t2 − t1) if i = j
0 if i �= j

(8)

Pre Filters Technique

In time-domain stochastic analysis, two primary methods are typically employed.
The first, applicable when the input’s autocorrelation function is known, has been pre-
viously outlined. The second involves modeling input processes by solving differential
equations using filter techniques, where the input is a white noise process—referred to as
the pre-filter technique.

The first method is advantageous when the input closely aligns with a shot noise
process, providing accurate representation. However, this representation is limited as many
real-world phenomena exhibit noticeable frequency modulation, making it suitable only in
specific cases.
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The second approach is more versatile and capable of representing phenomena with
varying frequency contents, even those changing over time. This flexibility is crucial
for accurately describing phenomena that could lead to resonant effects in structures.
Additionally, this method retains the advantages associated with shot noise inputs, making
it the preferred choice for many real structural issues.

In particular, using the pre-filter approach, the filter response is described by the 2m f
filter space state vector, the solution of the 2m f set of differential equations

.
Z f = A f (t)Z f + G f Wf (t) (9)

that generally could have a time-dependent form, when not only the frequency but also
the amplitude of loads has an intrinsic evolutive nature. W is a vector of n f white noise
processes (stationary or non-stationary), G f is a m f xn f matrix that couples the excitation
components of the forcing vector to the filter degree of freedom, and finally, A f (t) is the
2m f X. 2m f filter system matrix, whose generic form is

A f (t) =

(
0 I

H1
f (t) H2

f (t)

)
(10)

Then, adopting the pre-filter technique, the motion differential equations are written in
the space state as

.
Zs(t) =

(
0 I

−M−1K −M−1C

)
Zs(t) +α(t)Zf (t) (11)

.
Z f = A f (t)Z f + G f Wf (t) (12)

where

As =

(
0 I

H1
s H2

s

)
(13)

is the structural system matrix

α(t) =
(

0 0

Gsα1(t) Gsα2(t)

)
(14)

is a 2nsx2ms time-dependent matrix

Zs =
(

Xs
.

Xs

)T
(15)

is the structural space vector. Equations for the space state structure can be summarized as

.
Z(t) = A(t)Z(t) + G(t)Wf (t) (16)

where
ZT

=

(
Xs, X f ,

.
XS,

.
X f

)T
(17)

G(t) =
(

0

G f

)
(18)

is a new global 2m = 2
(

ms + m f

)
space state vector (structure plus filter) and

d
dt

⎛
⎜⎜⎜⎜⎝

Xs
X f
.

XS
.

X f

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 I 0
0 0 0 I

H1
s Gsα1(t) H2

s Gsα2(t)
0 H1

f (t) 0 H1
f (t)

⎞
⎟⎟⎠
⎛
⎜⎜⎜⎜⎝

Xs
X f
.

XS
.

X f

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎝

0
0
0

Gf W f

⎞
⎟⎟⎠ (19)
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The structural matrix and response vectors are contingent on the design parameter
vector b, which encompasses elements such as structural stiffness, damping, masses, and
various mechanical parameters like cross-sections, Young’s modulus, and boundary condi-
tions, among others. Filter parameters and input intensity are also included within this set
of design parameters. Consequently, the system matrix and equations, comprising both the
space state structure and filter equation, can be explicitly reconfigured as a function of this
design parameter vector:

A(b, t) =

⎛
⎜⎜⎜⎝

0 0 I 0

0 0 0 I

H1
s (b) Gsα1(b, t) H2

s (b) Gsα2(b, t)
0 H1

f (b, t) 0 H1
f (b, t)

⎞
⎟⎟⎟⎠ (20)

.
Z(b, t) = A(b, t)Z(b, t) + G(b, t)Wf (t) (21)

3. Space State Covariance Evaluation

In case of zero initial conditions, the solution of (space state structure + filter equation)
has the following general expression:

Z(t) =
∫ t

0
Φ(t, τ)GWf (t)dτ (22)

where the matrix Φ(t1, t2) (see for example [3]) is usually called transition matrix. The mean
space state vector μz(t) could be determined by the differential vectorial equation:

.
μz

(
b, t
)
= Aμz

(
b, t
)
+ Gμw(t) (23)

The covariance matrix is as follows:

RZZ(t1, t2) =

(
RXX(t1, t2) R

X
.

X
(t1, t2)

R
X

.
X
(t1, t2) R .

X
.

X
(t1, t2)

)
(24)

This second-order statistical moments matrix, due to its symmetry, is described by(
2m2 + m

)
independent elements and can be evaluated by the well-known Lyapunov

differential matrix equation

.
RZZ(b, t) = A(b, t)RZZ(b, t) + RZZ(b, t)A(b, t)

T
+ B(t) (25)

where
B(t) =

〈
Z(t)GTW(t)T

〉
+
〈

GW(t)ZT
(t)
〉
= P(t) + PT(t) (26)

and where P can be written as

P(t) =
∫ t

0
Φ(t− τ)G

〈
W(τ)WT

(t)
〉

GTdτ =
∫ t

0
Φ(t− τ)N(t, τ)dτ (27)

and
N(t, τ) = GRww(t, τ)GT . (28)

It must be noticed that Equation (25), which is valid for the non-stationary case, in a
stationary environmental situation, is simplified in the following equation that contains no
more time dependency:

A
(

b
)

RZZ

(
b
)
+ RZZ

(
b
)

A
(

b
)T

+ B = 0 (29)
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A serious simplification takes place when the forcing vector is a white noise process
as defined in (Rww stationary) or (Rww non-stationary). In these cases, the matrix B(t) is
equal to

B(t) =
(∫ t

0
Φ(t− τ)GRww(t, τ)GTdτ

)
+

(∫ t

0
Φ(t− τ)GRww(t, τ)GTdτ

)T
(30)

where both integrals above are equal due to the Dirac function properties. Finally, B can be
written as follows:

B(t) = 2GRww(t, t)GT =

[
0mxm 0mxm

0mxm L(t)

]
(31)

where the MXM submatrix is diagonal with the elements

[L(t)]k, k =
2πS0k

m2
k

ϕ2
k(t) (32)

Meanwhile, for some applications, covariance information about structural accelera-
tion is needed so that the matrix

R ..
X

..
X
(b, t) =

〈
..
X

..
X

T〉
(33)

must be determined, and it is easily obtainable by the relation

R ..
X

..
X
(b, t) = D(b, t)RZZ(b, t)D(b, t)T (34)

where
D(b, t) =

[
H1

s (b) Gsα1(b, t) H2
s (b) Gsα2(b, t)

]
. (35)

4. Time Integration BF Procedure for R and R, b

Even if many numerical standard codes exist for the stationary Lyapunov equation
(the Lyapunov equation in stationary conditions is where A and B are the input matrices
and X is the unknown one), there are limited examples for addressing the non-stationary
Lyapunov equation, and so a simple numeric implicit integration method is proposed.
In this context, a straightforward numerical implicit integration method is suggested.
Specifically, the modified Euler method is used, in which the period is divided in m equals
time steps d in each sub-period Δt, and a linear variation in the time derivative covariance
matrix

.
R(t) is assumed. Under this assumption, we have the (standard implicit Euler method):

R(h+1) = R(h) +
1
2

Δt
[

.
R
(h+1)

+
.
R
(h)
]

(36)

where the symbol a(h) denotes the generic quantity a evaluated at time t = hΔt. By using
the matrix equations evaluated at times t(h+1) and t(h), we obtain the following m algebraic
matrix equations of the Lyapunov type[(

1
2 (I− ΔtA)

)
R(h+1) + R(h+1)

(
1
2 (I− ΔtA)

)T
]
=[(

1
2 (I + ΔtA)

)
R(h) + R(h)

(
1
2 (I + ΔtA)

)T
]
+ Δt

2

(
B(h) + B(h+1)

) (37)

that are solved in sequence for each time value, starting from the initial time value and the
initial covariance matrix value.

In this way, the m unknown matrices (h = 1, . . . , m) are determined. By assuming a
constant or time variable (depending on the filter parameters variation), the matrices are

PB = 1
2 (I− ΔtA)

PF = 1
2 (I + ΔtA)

(38)
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and we discern that a more compact form of (Rnum1) is

[
PBR(h+1) + R(h+1)PT

B

]
=
[
PFR(h) + R(h)PT

F

]
+

Δt
2

(
B(h) + B(h+1)

)
(39)

that could be solved at each step via a standard stationary Lyapunov equation solver, for
example, the leap in the standard Matlab toolbox, in the form

PBR(h+1) + R(h+1)PT
B + C(h+1) = 0 (40)

where C(h+1) = −
([

PFR(h) + R(h)PT
F

]
+ Δt

2

(
B(h) + B(h+1)

))
.

Covariance could be integrated as proposed in the following integration scheme
(Algorithm 1), where nt is the number of time integration steps, T is the total analysis
time, nb the number of design parameters, and, for the sake of simplicity in notation,
S(h, j) = R, bj((h− 1)Δt):

Algorithm 1: Integration scheme

 % ( )f fdata input S tω ξ φ  % 

 ( )B t= − Δ   

 ( )F t= + Δ   

 =      (definition of initial condition for t=0 both on    and on  b ) 

 

for  j =   to  nb  % initial condition definition% 

 j =  ; 

end;      

for  i =   to ( tn −    % beginning of time integration % 

( )ti i iΔ= + +  

T
F Fi i i i= + +   

i + =  leap B i−  

standard solution for stationary Lyapunov equation T
B Bi i i+ + + − = . 

for  j =  to nb  cycle for each design vector element 

( ) ( ) Tt
b bi j j i i i i jΔ= + + + + +   

T
F Fi j i j i j i j= + +   

i j+ =  lyap B i j   

 end    % end of cycle on design vector elements % 
end   % end of time integration % 
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5. Numerical Example

The method proposed is used to analyze a multi-story building under earthquake
forces. To maintain a balance between simplicity and generality, a shear-type plane frame
structure is chosen as the model (as shown in Figure 1). This choice is reasonable because,
in many buildings, the floor slabs possess very high in-plane stiffness, allowing them to be
treated as rigid diaphragms. This simplification significantly enhances analysis efficiency
without substantially compromising the accuracy of response assessment to ground forces.

 
Figure 1. Mechanical scheme of analyzed plane frame shear type.

Moreover, to further enhance computational efficiency, the matrix condensation tech-
nique is employed. The primary assumption in modeling the building’s mechanics is
linearity, which remains valid considering the limitations on horizontal displacements
necessary for operational service levels. This assumption holds when the maximum inter-
story drift approaches or reaches the elastic limit of structural displacements, typical in full
operational design demands.

For the sensitivity analysis, the design vector comprises the masses, stiffness, and
damping of each floor. This comprehensive vector allows for the evaluation of how
variations in these parameters impact the final structural reliability.

b = (b1, b2, b3) =
(

mT , k
T

, cT
)

where b2 = k
T
= (k1, k2, k3, . . . , kn).
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5.1. Equations of Motion

To capture the essential seismic characteristics involving spectral and time modulation,
a non-stationary modulated Kanai–Tajimi process is utilized to model stochastic ground
motion. This process characterizes the base acceleration

..
Xg(t) acting at the structure’s base

as follows: { ..
Xg(t) =

..
X f (t) + φ(t)w(t)

..
X f (t) + 2ξgωg

.
X f (t) + ω2

gX f (t) = −φ(t)w(t)

where X f (t) is the response of the Kanai–Tajimi filter, with a frequency ωg and damping
coefficient ξg, and w(t) is the white noise, whose constant bilateral power spectral density
(PDS) function is S0. This last parameter is related to the peak ground acceleration (PGA)
..
X

max
g by means of relation [16]

S0 = 0.2222
ξg

( ..
X

max
g

)2

πωg

(
1 + 4ξ2

g

)
The non-stationary nature is introduced through the deterministic temporal modula-

tion function φ(t), regulating the intensity variations while preserving the earthquake’s
frequency characteristics. In this scenario, the specific modulation functions proposed by
Jennings [17] are adopted:

ϕ(t) =

⎧⎪⎪⎨
⎪⎪⎩
(

t
t1

)2
t < t1

1 t1 ≤ t ≤ t2

e−β(t−t2) t > t2

(41)

The motion equations for the complete structural system are then as follows:

..
X(t) + M(bC(b)

.
X(t) + M(bK(b)X(t) = r

..
Xg(t)..

X f (t) + 2ξ f ω f
.

X f (t) + ω2
f X f (t) = −w(t)φ(t)

where the drag vector nx1 is r = [1, 1, 1, . . . , 1, 1]T , M(b), C(b), and K(b) are, respectively,
mass, viscosity, and stiffness nxn principal structure matrices, whose general expression
are reported in Appendix A with reference to the rigid floor assumption. The three vectors
..
X(b, t),

.
X(b, t), and X(b, t) are ground relative acceleration, velocity, and displacement

nx1 vectors. In the case of the analyzed structure, the mass matrix is diagonal and the two
viscous and stiffens matrices are tri-diagonal once. The mechanical filter parameters, the
damping ratio and frequency, are ξ f and ω f , and the base excitation

..
Xg(t) is then equal to

φ(t)w(t) +
..
X f (t).

Introducing the state vector Y(b, t) =
{

XT
(b, t), X f (t)

}T
, the motion equation sys-

tem (motion Equation (1)) can be rewritten as
..
Y(b, t) = −H1(b)

.
Y(b, t)− H2(b)Y(b, t)− f (t)

where the two matrices H1(b) and H2(b), with the vector f (t), are defined for this specific
problem and shown in Appendix B.

The N = n+ 1 degree of freedom 2nd-order differential system (second-order moment
equals complete) can be replaced with a 2N DoF 1st-order differential equation in the space
state as follows:

.
Z(b, t) = A(b)Z(b, t) + F(t)
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where the space vector 2N is Z(b, t) =
{

Y(b, t),
.

Y(b, t)
}

and the system matrix (2N X. 2N)

A(b) =
(

0n+1 In+1

−H2(b) −H1(b)

)
and the 2N forcing vector F(t) =

{
0n+1

f (t)

}
.

5.2. Reliability Evaluation

With reference to the proposed problem, it is required to evaluate the probability that
each story drift Uh of the floor exceeds the thresholds, at least once in a given earthquake
duration. Then, for each hth level, this failure event is associated with the condition
|xh+1 − xh| = |uh| = βh. For each level h, the reliability vector element rh(b, T) is defined as
where, under the Poisson hypothesis for threshold crossing (that is an acceptable hypothesis
for rare events as in [18]), we obtain

rh(b, βh, T) =

exp

{
− 1

π

∫ T
0

(
σ .

Uh
(b, τ)

σUh
(b, τ)

√
1− ρ2

Uh
.

Uh
(b, t) exp

{
− 1

2 η2
h(b, βh, τ)

}
χ
[
dUh(b, βh, t)

])
dτ

}

and the final global structural reliability is then

rglobal(b, β, t) = ∏n
h=1 rh

(
b, βh, t

)
Although exact analytical solutions for this are generally unavailable, it is known that

the equation (approximate upper-bound global reliability) provides an approximate, upper-
bound estimate, as stated above, and can be used for design and pre-design purposes from
a practical viewpoint, as in this study. In order to evaluate the reliability vector (adopting
the Poisson approach) related to the inter-floor relative displacement threshold crossing,
one needs to introduce the inter-story drift vector with the associated covariance matrix
RZU ZU (t) (see Appendix C).

The reliability vector rU previously defined can be evaluated as the collection of

rUh(T) = r0 e−
∫ T

0 υ+Uh(τ)dτ

where v+Uh
(ηVh) is a function of σ2

Uh
, σ2.

Uh
, and ρ

Uh
.

Uh
, accordingly, and are, respectively, the h

and the n + h diagonal elements of RZU ZU (t) and ηUh = βh
σUh

, with βh being the hth barrier.

The equation represents the probability that the inter-story displacement will cross
the maximum acceptable value βh during the time interval [0, T]. All the barriers can be
collected in the barrier vector. Its elements are assumed constant and equal to 3.0 cm for
each floor, that is, there is a lateral drift equal to 1.0% in the case of inter-story height of 3 m.

5.3. System Parameters

The chosen building configuration consists of three stories, each with a uniform mass
equal to x 105 (kg) for each level. Lateral stiffness to the first floor is present, and it
is assumed that a linear reduction decreases its value to the at the top floor (k2 = 5.1 ·
107(N/m) and k3 = 4.2 · 107(N/m)). Finally, damping is evaluated by setting ci = 2

√
miki

(ci = [3.0 2.8 2.5] 105(N s/m)).
The seismic characterization is based on a peak ground acceleration (PGA) of 0.45 (g),

and four distinct total durations (10, 20, 30, and 40 s) are employed. Figure 2 displays the
structural inter-story covariances, measured in terms of displacement (a) and velocity (b).
It is noteworthy that for durations exceeding this, structural responses attain a stationary
level. Moreover, for this particular structural configuration, the covariance response of the
first level is greater than the other two, even though the third is approximately half, while
the second is only slightly smaller.
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σ

σ
Figure 2. Inter-story displacements (a) and velocities (b) covariance response of a 3DoF system
subject to modulated filtered white noise with different time durations. Continuous lines are for
t_{d} = 10 (s), dashed lines are for t_{d} = 20 (s), dash–dot lines are for t_{d} = 30 (s), and finally, dotted
lines are for t_{d} = 40 (s). Blue lines represent the inter-story drift response on the first floor, magenta
lines on the second floor, and red lines refer to the third floor.

Figure 3 illustrates the structural safeties assessed at each lateral inter-story drift
threshold for failure, along with the overall reliability calculated as an approximate upper-
bound global reliability. It is important to observe that the probability of failure is highest
for the first inter-story drift threshold, followed by a slightly lower probability for the
second one, and finally, the third threshold has a considerably negligible probability of
failure (i.e., r3 = 1).

 

Figure 3. System reliability of a 3DoF system, evaluated as the probability of maximum inter-story drift
exceeds a given threshold of 3 (cm). Results are obtained for different values of t_{d}: continuous lines
are for t_{d} = 10 (s), dashed lines are for t_{d} = 20 (s), dash–dot lines are for t_{d} = 30 (s), and finally,
dotted lines are for t_{d} = 40 (s). Blue lines are for first-level reliability, magenta lines are for second-level
reliability, and red lines are for third-level reliability. Black slight lines are for global system reliability.
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6. Conclusions

A numerical time integration algorithm is proposed to deal with non-stationary ran-
dom vibration problems utilizing a covariance approach. The algorithm is developed to
solve the differential matrix equations that govern the evolution of the stochastic response
of structures subjected to random inputs. To create a versatile non-stationary approach
applicable in various contexts, the structural response is assessed through a covariance
approach. The reliability concerning first-crossing failure events is then derived based
on the knowledge of the evolving covariance matrix in the space state. The algorithm is
proposed for a generic Gaussian input of filtered non-stationary processes, representing
diverse real-world physical loads. To solve this problem, the time integration algorithm
involves differentiating the Lyapunov equation using an adapted Euler implicit scheme,
which can be easily implemented using standard tools in various programming codes.
Finally, the proposed algorithm is applied to analyze the dynamic responses of a multistory
building, idealized as a shear frame structure.
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Appendix A

Matrices, C and K are, for a shear-type frame, respectively diagonal and tri-diagonals:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1 0 0
0 m2 0

0 m3
. . .

. . . . . .
0 mn−1 0

0 mn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A1)

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

k1 + k2 −k2 0
−k2 k2 + k3 −k3 0

0 −k3 k3 + k4
. . .

0
. . . . . . −kn−1 0

−kn−1 kn−1 + kn −kn
0 −kn kn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A2)

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1 + c2 −c2 0
−c2 c2 + c3 −c3 0

0 −c3 c3 + c4 −c4

0
. . . . . . . . . 0

−cn−1 cn−1 + cn −cn
0 −cn cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A3)
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Appendix B

Matrices H1 and H2 are

H1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2ξ f ω f
2ξ f ω f

.
M−1C .

2ξ f ω f
2ξ f ω f

0 0 0 . . . . . . 0 0 −2ξ f ω f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A4)

H2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω2
f

ω2
f

.
M−1K .

ω2
f

ω2
f

0 0 0 . . . . . . 0 0 −ω2
f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A5)

where ω2
f and ξ f are filter characteristics and the forcing vector is

f (t) = [0, 0, 0, . . . . . . , 0, ϕ(t)w(t)]T .

Appendix C

The covariance matrix RZU ZU

(
b, t
)

is defined in the linear space of stochastic pro-

cesses as a linear equation related to the inter-story drift U(b, t) and displacement X(b, t)
vectors, holds U(b, t) = TX(b, t) where the transform matrix T is a bi-diagonal one, and is
independent of the design vector:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0
−1 1 0 0

0 −1 1 0
...

−1 1
. . .
. . . 1 0 0

... 0 −1 1 0 0
0 −1 1 0

0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A6)

The covariance matrix RZU ZU

(
b, t
)

is then related to RZZ

(
b, t
)

through the following
connection:

�
T =

(
T 0
0 T

)
(A7)

ZV(b) =
�
TZ(b) (A8)

RZU ZU (b, t) =
�
TRZZ(b, t)

�
TT (A9)
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Abstract: Function approximation is a fundamental process in a variety of problems in computational
mechanics, structural engineering, as well as other domains that require the precise approximation
of a phenomenon with an analytic function. This work demonstrates a unified approach to these
techniques, utilizing partial sums of the Taylor series in a high arithmetic precision. In particular, the
proposed approach is capable of interpolation, extrapolation, numerical differentiation, numerical
integration, solution of ordinary and partial differential equations, and system identification. The
method employs Taylor polynomials and hundreds of digits in the computations to obtain precise
results. Interestingly, some well-known problems are found to arise in the calculation accuracy and
not methodological inefficiencies, as would be expected. In particular, the approximation errors
are precisely predictable, the Runge phenomenon is eliminated, and the extrapolation extent may a
priory be anticipated. The attained polynomials offer a precise representation of the unknown system
as well as its radius of convergence, which provides a rigorous estimation of the prediction ability.
The approximation errors are comprehensively analyzed for a variety of calculation digits and test
problems and can be reproduced by the provided computer code.

Keywords: function approximation; approximation errors; interpolation; extrapolation; numerical
differentiation; numerical integration; ordinary differential equation; partial differential equation;
system identification; inverse problems; Taylor series; Taylor polynomials

1. Introduction

The utilization of a high arithmetic precision (HAP) for the modeling of an unknown
function exhibited a remarkable extrapolation ability in [1], with extrapolation spans
1000% higher than the existing methods in the literature. The basis of this method was
the approximation of an unknown analytic function with a high arithmetic precision.
This is an essential problem in a variety of numerical methods. Standard programming
languages are limited to 16–64 floating point digits, and researchers have been taking
into account a high arithmetic precision for the various computations regarding the nu-
merical integration [2], interpolation [3], and solution of Partial Differential Equations
(PDEs) [4].

Recent research works highlight the importance of a HAP in computations. In [5],
the Clarinet framework is proposed to replace floating point arithmetic in various linear
algebra and computer vision calculations. The effect of round-off errors when utilizing
a standard accuracy for reduction algorithms is highlighted in [6], and a high-precision
“RingAllreduce” algorithm was proposed. A high-precision ray-tracing algorithm is pre-
sented in [7], reducing round-off errors in the numerical examples. A high arithmetic
precision is also significant in the design of Field Programmable Gate Arrays (FPGAs),
and a new representation to tackle programming challenges is proposed in [8]. The GNU
Multiple Precision Arithmetic Library (GMP) [9] is a widely used library in many computer

Computation 2024, 12, 53. https://doi.org/10.3390/computation12030053 https://www.mdpi.com/journal/computation
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languages, like C++, Python, and Julia, and a framework to enable its usage by Java was
recently developed [10].

Nevertheless, standard techniques exist for performing interpolation with Taylor
polynomials [11,12], as well as the solution of differential equations [13–15]. However,
certain problems occur when applying these methods for scientific computing tasks, such
as the well-known Runge phenomenon [16,17], which remains a major complication [18–20].
Taylor series arise in the foundations of differential calculus [21] by associating the behavior
of a function around a point x0 with its derivatives at that particular point.

Accordingly, Taylor series are capable of approximating any analytic function in theory.
However, in the practice of computing, they often fail, and researchers use other approx-
imators than Taylor polynomials, such as radial basis functions, Lagrange polynomials,
Chebyshev polynomials, artificial neural networks, etc., to avoid numerical instabilities.
A variety of numerical methods have been developed for such operations, as researchers
have been observing that Taylor polynomials do not offer stable calculations. Utilizing
a high arithmetic precision, we demonstrate that such need, which arose to address the
computational inaccuracies, does not exist. Taking into account the high extrapolation
spans attained in [1] and obtained with integrated radial basis functions [22,23] and some
hundreds or even thousands of digits for the calculations, we apply a high arithmetic
precision utilizing the “BigFloat” structure of Julia language [24], using the GMP [9] library
to truncate the Taylor series, known as Taylor polynomials or partial sums.

The purpose of this work is to present a unified approach to interpolation, extrapola-
tion, numerical differentiation, solution of partial differential equations, system identifica-
tion, and numerical integration for problems which comprise given data of an unknown
analytic function or the source for PDEs. The paper is organized as follows: the formu-
lation of our approach is presented in Section 2; some basic operations and results for
1-dimensional interpolation, extrapolation, numerical differentiation, numerical integra-
tion, and solutions of ordinary differential equations are presented in Section 3; the results
of multidimensional function approximation, solution of partial differential equations, and
system identification are presented in Section 4; and the conclusions follow in Section 5.

Taylor polynomials provide a fundamental means to approximate complex func-
tions and understand their behavior, such as rate of change, curvature, and higher-order
characteristics. However, when utilizing standard floating-point precision, a variety of
numerical methods fail to produce robust results, and researchers have been developing
complex numerical methods and techniques to tackle numerical instabilities. Interestingly,
when utilizing hundreds of digits of precision, the accuracy obtained is exceptional in
a variety of computational tasks while keeping a unified, fundamental, straightforward,
and interpretable representation with Taylor polynomials.

2. Description of the Method

Let f (x) be an analytic function, which is unknown. It is given that the function takes
values f = { f1, f2, . . ., fN} at specified points x = {x1, x2, . . ., xN} as in Figure 1 for a generic
analytic function. By applying the Taylor series [21] of the function at some point x0, we may

write f (x ± x0) = f (x0)± f ′(x0)
1! (x − x0) +

f ′′(x0)
2! (x− x0)

2 ± · · · ± f (n)(x0)
n! (x− x0)

n + · · · .
The derivatives of the function, df =

{
f 0, f ′, f ′′, . . ., f (n)

}
, at x0, divided by the correspond-

ing factorial n!, are constant quantities. Hence, by truncating the series at the nth power, we

derive that f (x± x0) ∼= f (x0)± f ′(x0)
1! (x− x0) +

f ′′(x0)
2! (x− x0)

2 ± · · ·+ f (n)(x0)
n! (x− x0)

n +

Rn(x), while the remainder of the approximation is bounded by |Rn(x)| ≤ f n+1(x)
(n+1)! |x −

x0|n+1, ∀x : |x− x0| ≤ r [25].
For a series f (x) = ∑∞

n=0 an(x− x0)
n, we have that the radius of convergence [25] r

is a non-negative real number or ∞ such that the series converges if |x − x0| < r and
diverges if |x − x0| ≥ r. That is to say, the series converges in the interval (x0 − r,
x0 + r). We may compute r using the ratio test, lim sup|an+1/an|, or using the root test,
with r = 1/ lim supn→∞

n
√|an|. We select the root test because the coefficients ai often
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contain zero elements, making the division computationally unstable. Furthermore, be-
cause lim inf(an+1/an) ≤ lim inf((an)

(1/n)) ≤ lim sup((an)
(1/n)) ≤ lim sup(an+1/an) [26],

the computed r from the root test is more precise, as it is bounded by the ratio test.
A high arithmetic precision was found capable of achieving an accurate computation

of r for a known series, whereas the floating point fails. This is a significant part of the
proposed numerical schemes, as the identification of r offers information on the larger
disk where the series converges. Accordingly, we obtain knowledge of the interpolation
accuracy or even the extrapolation span of the approximated function beyond the given
domain. In particular, at x0 = 0, we may write that

f (x) ∼= a0 ± a1x + a2x2 ± · · ·+ anxn (1)

where a =
{

1, f ′/1, f ′′/2!, . . ., f (n)/n!
}

= df� {1, . . . , n!}. This is the truncated Taylor
polynomial, which may converge to f [27,28]. By applying the Taylor formula for all the
n given points xi, with i = 1 . . . n, we obtain f = Va, where Vis the Vandermonde matrix,
with elements vi,j = xi

j−1, where j = 1 . . . n [29,30].

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 x2
1 . . . xn−1

1
1 x2 x2

2 . . . xn−1
2

1 x3 x2
3 . . . xn−1

3
...

...
...

. . .
...

1 xn x2
n . . . xn−1

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Figure 1. Given values of f (x) at points xi for the approximation of f by inverting the corresponding
Vandermonde matrix V.

The square Vandermonde matrix for distinct xi is invertible, with det(V) = ∏1≤i<j≤n
(xj − xi) [31] and inverse matrix V−1=U−1L−1, where the elements lij of L−1, and uij of
U−1, are given by

lij =
{

∏i
k=1(k �=j)

1
xj−xk

; 0∀i < j; l11 = 1
}

, and uij = {ui−1,j−1 − ui,j−1xj−1; ui1 = 0;

uii = 1, uoj = 0} [32].
Hence, we have closed-form formulas for the matrix V−1 and for det(V), which is later

used for the comparison among the various digits utilized in the calculations. Accordingly,
we can compute the polynomial factors a = {a1, a2, . . ., an} by using the following:

a = V−1f,

We can also compute the corresponding errors:

e = Va− f.

Some errors e are inevitable due to the truncation of the Taylor series, which theo-
retically comprise infinite terms, to Taylor polynomials that utilize a number of terms n.
The computation of a with floating point arithmetic exhibits significant errors e in the
inversion as well as the determinant calculation, with respect to their theoretical values
from the closed-form formulas and numerical values computed by a machine.

3. Function Approximation in HAP

We demonstrate the proposed numerical scheme in a variety of numerical methods,
analytic functions, and calculation digits. We begin with some basic operations.
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3.1. Basic Operations

For the simple function f (x) = sin(x), the theoretical Taylor series exhibits an alternat-
ing sign with intermediate zero coefficients

sin x =
∞

∑
n=0

(−1)n

(2n + 1)!
x2n+1 = 0 + x + 0− x3

3!
+ 0 +

x5

5!
− . . . ,

Hence, according to the presented method, the factors a = {a1, a2, . . ., an} should be equal to{
0, 1, 0,− 1

3! , 0, 1
5! ,− . . . , 1

n!

}
for a truncated series with n terms. However, the computation

of V−1, as well as the det(V), exhibits great variation with the calculation precision in bits
p (approximately equivalent to p/3 digits), when computed numerically or analytically
using formulas. Table 1 presents such variation for f (x) = sin(x), with L = 1, n = 201,
dx = 2L/(n− 1) = 10−2 and x ∈ [−L, L]. The subscript “an” denotes the analytical value
and “nu” the numerical one, as computed in variable precision p = 50 to 2000 bits.

Table 1. Variation of V−1, det(V), and a, with the calculation precision in bits p, for the same example.

Error vs. Precision (p) p = 50 p = 100 p = 500 p = 1000 p = 2000

det Van − det Vnu 3.866× 10−2341 4.300× 10−4106 −2.735× 10−6810 −3.741× 10−6960 −1.853× 10−7261

max |V−1
an −V−1

nu | 9.739× 10100 4.911× 1094 1.242× 1038 1.124× 10−111 5.504× 10−413

max |aan − anu| 4.029× 101 1.813× 100 9.252× 10−18 9.252× 10−18 9.252× 10−18

In Table 1, a high variation in the differences among V−1
an and V−1

nu is revealed,
from 9.739× 10+100 for p = 50 bits, which is approximately equal to floating point precision,
to 5.504× 10−413 for p = 2000 bits. Accordingly, the maximum differences between a−1

an
and a−1

nu are 4.029× 10+01 for p = 50 bits and 9.252× 10−18 for p ≥ 500 bits. It is important
to underline that all the calculations are for the same example and the same approximation
scheme. Apparently, the errors of O( 10−16) cannot be considered as negligible. The signifi-
cance of the precise computation is further demonstrated for the corresponding differences
in the calculation of the determinant, with an analytical value constant at 1.647× 10−6754

and the corresponding differences from the computed values varying from 3.866× 10−2341

to −1.853× 10−7261, with alternating signs, again for the same example. In Table 1, we also
show that as the determinants’ difference shortens, the same stands for the inversion errors.

Digits accuracy exhibits great variation among the computed 1/r, as well. The pre-
cise calculation of V and V−1 makes the computation of 1/rconvergent, as the calculated
lim supn→∞

n
√|an| � lim infn→∞

n
√|an|. Particularly in Figure 2a, the computed 1/r with

a high accuracy (p = 2000 bits) exhibits a clear convergent pattern, whereas, for a stan-
dard accuracy (p = 50 bits), the corresponding 1/r is disoriented and does not converge
(Figure 2b). Similarly, for the vector a, the maximum absolute differences among the ana-
lytical and numerical values vary between 4.029× 10+01 and 9.252× 10−18.
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(a)

(b)

Figure 2. Radius of convergence for the computed Taylor expansion of f (x) = sin(x) for the same
domain and different computational precisions. (a) p = 2000 bits (b) p = 50 bits.

3.2. Function Approximation

As f (x) = sin(x), we have that
∣∣ f n+1(x)

∣∣ ≤ 1; hence, the theoretical remainder
of the approximation, when using n = 200 terms of the Taylor series, is bounded by
|Rn(x)| ≤ 1

(n+1)! |1− 0|n+1 = 6.308× 10−378. In Table 2, the differences among computed
and analytical values of f at x and xi = x + dx/2 are presented.

Table 2. Variation of approximation errors with the calculation precision in bits p.

Error vs. Precision (p) p = 50 p = 100 p = 500 p = 1000 p = 2000

max | fan(x)− fnu(x)| 1.708× 10−12 3.045× 10−28 1.231× 10−148 3.770× 10−299 3.475× 10−600

max | fan(xi)− fnu(xi)| 5.932× 10−08 2.045× 10−15 3.673× 10−96 2.373× 10−246 9.909× 10−407

Interestingly, although for p = 50, the approximation error for f (x) on the given points
x is 1.708× 10−12, the corresponding interpolation error on xi is 5.932× 10−8 (Table 2). How-
ever, the Runge phenomenon, which is severe at the boundaries, is eliminated for p > 500.
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3.3. Extrapolation

The extrapolation problem of given data is a highly unstable process [33]. Recent
results have highlighted the ability of extended spans when using a high arithmetic
precision [1]. In Figure 3, the highly extended extrapolation span for f (x) = sin(x)
is depicted. The extrapolation errors start becoming visible only for x > 73L. We
should highlight that this is consistent with the corresponding theory as, for this function,
the computed 1/r = lim supn→∞

n
√|an| takes the values of 0.0178, 0.0169, 0.0161, 0.0152,

0.0145, and 0.0137 for the higher values of n (Figure 2a). Accordingly, we may write that
r = 1/0.0137 � 72.99, which is equal to the observed extrapolation span. Accordingly,
the extrapolation lengths for p = 1000 are 12.141 according to the root test 1/r, and in
the actual computations, the errors are >1 for x > 12.150; and similarly, for p = 500, the
root test value is 2.154 and the computed value is 2.230, as illustrated in Figure 3. Hence,
interestingly, utilizing this approach, we may predict not only determine the behavior of
the approximated unknown function within the given domain, but its extrapolation spans
as well, and, hence, the prediction ability.

0 20 40 60

- 1.0

- 0.5

0.0

0.5

1.0

f(x
)

x

given f
exact f
extrapolated f, p=2000
extrapolated f, p=1000
extrapolated f, p=500

p=1000
p=2000

p=500

accuracy loss
for precision:

Figure 3. Extrapolation of f for varying values of arithmetic precision p. For p = 2000, the extrapola-
tion errors are visible only for x > 73L without any periodicity information given.

Furthermore, in Figure 4, the extrapolation of f (x) = ln(x+ 1) (a) and f (x) = arctan(x)
(b) is illustrated by varying the precision p employed in the calculations. In both cases, when
utilizing the standard precision p = 50, the extrapolation span is very short, in contrast to
increased precision, such as p = 100, p = 200, and p = 1000.

(a) (b)

Figure 4. Extrapolation of (a) f (x) = ln(x + 1) and (b) f (x) = arctan(x) for varying values of
precision p.
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3.4. Numerical Integration

We calculated the vector a; hence, we know an approximation of f (x) ∼= a0 + a1x +
a2x2 + · · ·+ anxn. By integrating the Taylor polynomial of f , the indefinite integral is

F(x) ∼= a0x +
a1x2

2
+

a2x3

3
+ · · ·+ anxn+1

n + 1
+ c.

The only unknown quantity is c, which may be calculated by the supplementary

constraint that F(−L) = 0; hence, c ∼= −a0L− a1L2

2 − a2L3

3 − · · · − an Ln+1

n+1 . f (x) = sin(x),
hence F(x) = − cos(x). The proposed scheme offers a direct computation of the integrals,
as the vector a is known. In Table 3, the very low errors of numerical integration are
demonstrated, as well as the significance of the studied digits. The numerical integration
errors in Table 3 are computed as e = Fan − Fnu, where Fan is the analytical computa-
tion Fan =

∫ L
−L f (x)dx = − cos(−L) + cos(L) = 0, for the case of sin(x), and Fnu is the

corresponding numerical computation, utilizing the computed a.

Table 3. Numerical integration errors.

Error vs. Precision (p) p = 50 p = 100 p = 500 p = 1000 p = 2000

Fan − Fnu 1.502× 10−09 3.957× 10−17 1.226× 10−97 2.431× 10−249 −1.028× 10−548

3.5. Numerical Differentiation

The derivatives of f are directly computed by

a = {a1, a2, . . ., an} =
{

f (x0),
f ′(x0)

1!
,

f ′′(x0)

2!
, · · · ,

f (n)(x0)

n!

}
= df� n!,

with df denoting the vector of the n ordinary derivatives of f and n! denoting the vector of
the n factorials. The kth < n derivative at any other point x �= x0 may easily be computed
by Equation (1), deriving f ′(x) ∼= 0 + a1 + 2a2x + 3a3x2 + · · ·+ nanxn−1, f ′ ′(x) ∼= 0 + 0 +
2a2 + 6a3x + · · ·+ (n− 1)nanxn−2, and, hence,

f (k)(x) ∼= k!akxk + · · ·+ n!
(n− k)!

anxn−k, (2)

where the factors {ak, ak+1, . . ., an} have already been computed by a. We demonstrate the
efficiency of the numerical differentiation in the following example apropos the solution of
differential Equations.

3.6. Solution of Ordinary Differential Equations (ODEs)

The solution we investigate utilizes the constitution of the matrices representing the
derivatives of each element of V in HAP. For example:

dV =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 2x1 . . . (n− 1)xn−2
1

0 1 2x2 . . . (n− 1)xn−2
2

0 1 2x3 . . . (n− 1)xn−2
3

...
...

...
. . .

...
0 1 2xn . . . (n− 1)xn−2

n

⎤
⎥⎥⎥⎥⎥⎥⎦

, and d2V =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 2 . . . (n− 1)(n− 2)xn−3
1

0 0 2 . . . (n− 1)(n− 2)xn−3
2

0 0 2 . . . (n− 1)(n− 2)xn−3
3

...
...

...
. . .

...
0 0 2 . . . (n− 1)(n− 2)xn−3

n

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and so on. By utilizing such matrices, we can easily constitute a system of equations
representing the differential equation at points xi. To demonstrate the unified approach
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to the solution of differential equations, we consider the bending of a simply supported
beam [34], with the governing equation given below:

EI
d4w
dx4 = q(x) (3)

where E is the modulus of elasticity, I the moment of inertia, w the sought solution repre-
senting the deflection of the beam, and q the external load. For E = I = L = 1, q(x) = 0,
and fixed boundary conditions w(0) = 0, dw

dx

∣∣∣
x=o

= 0, w(L) = 1/100, dw
dx

∣∣∣
x=L

= 0, we may
write Equation (3) supplemented by the boundary conditions in matrix form as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 24 . . . (n− 1)(n− 2)(n− 3)(n− 4)xn−5
1

0 0 0 0 24 . . . (n− 1)(n− 2)(n− 3)(n− 4)xn−5
2

0 0 0 0 24 . . . (n− 1)(n− 2)(n− 3)(n− 4)xn−5
3

...
...

...
...

...
. . .

...
0 0 0 0 24 . . . (n− 1)(n− 2)(n− 3)(n− 4)xn−5

n
1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0
L 0 0 0 0 · · · 0
0 L 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a0
a1
a2
...

an

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0
p1
p2
...

pn
w0
w′0
wL
w′L

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Solving for a and utilizing matrix V, we derive the sought solution using w = Va. The
exact solution is

EIw(x) =
−2EI

L3 x3 +
3EI
L2 x2,

and, hence, the exact a = {0, 0, 3,−2, 0, . . . , 0}. In Figure 5, the ability of a high precision
(p = 1000) to identify the exact weights ais revealed, while the p = 50 bits accuracy fails
dramatically for such identification. However, they exhibit a lower deviation than the
interpolation problem, probably due to the imposition of the boundary conditions.

0 25 50 75 100

- 4

- 2

0

2

4

n

a

p=1000
p=50

Figure 5. Calculated a for p = 50 and p = 1000 bits accuracies. Low arithmetic precision yields
incorrect coefficients a for the same problem and data.

3.7. System Identification

The inverse problems, that is, the identification of the system which produced a gov-
erning differential law [35], is of great interest as this law rigorously describes the behavior
of a studied system. We demonstrate the ability of high-precision Taylor polynomials to
perform a rapid and precise identification of unknown systems.
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Let t be an input variable and s a measured response. As presented above, we
may easily compute a = {a1, a2, . . ., an}, by a = V−1s. Here, we assume the existence of a
differential operator T, such that T(s) = c. According to [35], we may write T as a power se-

ries as T(s) =
2
∑

i,j,k=0
bijksi ṡj s̈k = b000 + b100s + b010 ṡ + b001 s̈+b200s2 + b110sṡ + b101ss̈ +

b020 ṡ2 + b011 ṡs̈ + b002 s̈2 and by setting c′ = c−b000; and assuming a linear approximation,
we derive

1 =
b100s + b010 ṡ + b001 s̈

c′ .

Applying the later for all xi and writing the resulting system in matrix form, we obtain

[Va + dVa + d2Va]bT = {1}, (4)

where {1} = {1, 1, . . . , 1}. Solving for b, we obtain the weights of the derivatives in the
differential operator T(s).

For example, if we apply the previous for data of Newton’s second law [30] of
motion s(t) = t2, with s indicating space and t time, we may calculate vectors a and
solve Equation (4) for b; with c′ = 1 and a p = 1000 bits precision, we derive that
b = {0, 0, 1/2}+ O(10−270), and, hence, 1

2 s̈ = 1 → s̈ = 2, which is equivalent to s̈ = a,
where a = F

m = 2, which represents the external source that produces s(t) = t2.
We assume that 1 = b100s + b010 ṡ + b001 s̈; hence, by integrating s twice, with

S =
∫

s and SS =
∫∫

s, and utilizing the interval [0, t], we obtain t + c1 = b100(S(t) −
S(0)) + b010(s(t)− s(0)) + b001(ṡ(t)− ṡ(0)); however, S(0)= s(0) = ṡ(0) = 0. Accord-
ingly, we may write t = b100S(t) + b010s(t) + b001 ṡ(t), and if we integrate for a second time
in the interval [0, t], we obtain

t2/2 = b100(SS(t)− SS(0)) + b010(S(t)− S(0)) + b001(s(t)− s(0)),

and by using SS(0) = 0, we obtain

s(t) =
t2 /2−b100SS(t)−b010S(t)/b001 (5)

The integrals of s,
∫

s , and
∫∫

s can be approximated with a high accuracy by utilizing,
accordingly, the procedure discussed in Section 3.4, by using the integrals of the obtained
Taylor polynomials, ∫

s ∼= a0t +
a1t2

2
+

a2t3

3
+ · · ·+ antn+1

n + 1∫∫
s ∼= a0t2

2
+

a1t3

6
+

a2t4

12
+ · · ·+ antn+2

(n + 1)(n + 2)
,

as well as the corresponding matrices for all the given ti,

IV =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1/2 t1/3 . . . tn+1
1 /(n + 1)

1 1/2 t2/3 . . . tn+1
2 /(n + 1)

1 1/2 t3/3 . . . tn+1
3 /(n + 1)

...
...

...
. . .

...
1 1/2 tn/3 . . . tn+1

n /(n + 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

IIV =

⎡
⎢⎢⎢⎢⎢⎣

1/2 1/6 t1/12 . . . tn+2
1 /(n + 1)/(n + 2)

1/2 1/6 t2/12 . . . tn+2
2 /(n + 1)/(n + 2)

1/2 1/6 t3/12 . . . tn+2
3 /(n + 1)/(n + 2)

...
...

...
. . .

...
1/2 1/6 tn/12 . . . tn+2

n /(n + 1)/(n + 2)

⎤
⎥⎥⎥⎥⎥⎦.
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The calculated impact of b001 for the p = 50 and p = 1000 bits accuracy is revealed
by the resulting extrapolation curves beyond the observed domain, utilizing Equation (5).
For the p = 50 bits accuracy, for given data in the domain [0, 1], we may extrapolate
only up to a short time (t′ = 1.343) after the last given tend = 1.000, with threshold for
errors < 1.000, while for p = 2000 bits, the corresponding t′ attains the remarkably high
value of 9.621× 10+10, highlighting the extrapolation power of high arithmetic precision.

4. Functions in Multiple Dimensions

4.1. Multidimensional Interpolation

The Taylor series of f (x, y), depending on two variables x, y ∈ Ω, where Ω is a closed
disk about the center x0, y0, may be written utilizing the partial derivatives of f [31,32]
in the form of f (x, y) = f (a, b) + (x− a) fx(a, b) + (y− b) fy(a, b) + 1

2! ((x− a)2 fxx(a, b) +
2(x− a)(y− b) fxy(a, b) + (y− b)2 fyy(a, b)) + . . ., which, in vector form, is written as

f (x) = f (x0) + (x− x0)
T D f (x0) +

1
2!
(x− x0)

T
{

D2 f (x0)
}
(x− x0) + · · · ,

where D2 f (x0) is the Hessian matrix at x0.
Let n be the number of given points of f (xi, yj), with i, j ∈ (1, 2, . . . , n). In order

to constitute the approximating polynomial of f (x, y) with high-order terms and for-
mulate the V matrix with dimensions n × n, we consider all possible combinations of{

ni, nj ∈ (0, 1, . . . , n− 1) | ni + nj ≤ n− 1
}

. Hence, we may write the following for all the
given xi:

V(xi,yj) =

⎡
⎢⎢⎢⎣

1 x1 y1 x1y1 x2
1 y2

1 . . . xnk
1 ynl

1
1 x2 y2 x2y2 x2

2 y2
2 . . . xnk

2 ynl
2

. . . . . . . . . . . . . . . . . .
. . . . . .

1 xn yn xnyn x2
n y2

n . . . xnk
n ynl

n

⎤
⎥⎥⎥⎦,

with k + l = n− 1. Thus, we can approximate f with n polynomial terms using the following:

f = Va → a =V−1f (6)

The computation of a with Equation (6) permits the computation of f (
�
xi,

�
yj), for any

�
xi,

�
yj ∈ Ω, by utilizing the corresponding

�

V.
Let f (x, y) = sin(5x)+ cos(e2y). We approximate f with n = 300 random values xi, yi ∈

[−0.5, 0.5], and, later, we interpolate f with n = 300 random values
�
xi,

�
yji
∈ [−0.35, 0.35].

In Figure 6, the exact and approximated values f (
�
xi,

�
yj) are depicted for p = 2000 and

p = 50 bits accuracies. Apparently, for the same interpolation problem formulation in three
dimensions, the computational precision p dramatically affects the results. The

max
∣∣∣∣ f (xi, yj)analytical

− f (
�
xi,

�
yj)numerical

∣∣∣∣
equals 8.570× 10−09 for p = 2000 and 1.286× 10+01 for p = 50 bits. The polynomials’
weights a were calculated by first computing V−1 by solving V\I; hence, a = V−1f because
a = V\I exhibits significant errors. The calculation of the inverse of generic matrices, as well
as the solution of systems of Equations in a high precision, is a topic for future research.
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x
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f(x
,y
)

(a)

x
y

f(x
,y
)

(b)

Figure 6. Exact and approximated values of f for precision p = 2000 bits (a) and p = 50 bits (b).
We can observe that by utilizing enough digits, we have a precise approximation in contrast to a
standard precision, indicating a computational deficiency and not a methodological one.

4.2. Solution of Partial Differential Equations

We present the ability of a high precision to solve partial differential equations by
considering a plate without axial deformations and vertical load q(x, y). The governing
Equation [36] has the following form:

∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4 = − q

D
(7)
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that is, ∇2∇2w = − q
D , where D := Eh3

12(1−ν2)
, E is the modulus of elasticity, v is the Poisson

constant, and h is the slab’s height.
The sought solution w(x, y) is the slab’s deformation within the boundary condi-

tions wb(xb, yb) along some boundaries b = {1, 2, . . .}. In order to solve Equation (7),
we approximate

w = Va

using the approximation scheme of Equation (6), and as the vector a is constant, we obtain
wx4=Vx4 a, wy4=Vy4 a, and wx2y2=Vx2y2 a, with wxk yl denoting the partial derivative of w

of order k over x and l over y, ∂k+lw
∂xk∂yl , for all given xi, yj with i, j ∈ (1, 2, . . . , n). Utilizing this

notation, we may write Equation (7) for all xi, yj in matrix form as

[
Vx4 + 2Vx2y2 + Vy4

]
a = q.

By applying some boundary conditions, we may write for the same a,

⎡
⎢⎢⎣

Vx4 + 2Vx2y2 + Vy4

V(x1, y1)
Vx(x2, y2)

. . .

⎤
⎥⎥⎦× a =

⎡
⎢⎢⎢⎣

q

w(x1, y1)
∂w
∂x

∣∣∣
(x1,y1)

. . .

⎤
⎥⎥⎥⎦→

a =

⎡
⎢⎢⎣

Vx4 + 2Vx2y2 + Vy4

V(x1, y1)
Vx(x2, y2)

. . .

⎤
⎥⎥⎦
−1

×

⎡
⎢⎢⎢⎣

q

w(x1, y1)
∂w
∂x

∣∣∣
(x1,y1)

. . .

⎤
⎥⎥⎥⎦. (8)

By computing a, we then obtain the sought solution as w = Va.
For example, for a simply supported slab, the boundary conditions are w(xb, yb) = wb

for some boundary b. We consider a square slab, with n = 20 divisions per dimension,
dx = 1/99, L = (n − 1)dx, and w(xb, yb) = 0, at the four linear boundaries, and q =
1, the normalized load to comprise values of 1 everywhere (Equation (7)). After the
computation of a with Equation (8), we may easily compute the corresponding shear forces,
which are defined by

Qx = −D
∂

∂x

(
∂2w
∂x2 +

∂2w
∂y2

)
, Qy = −D

∂

∂y

(
∂2w
∂x2 +

∂2w
∂y2

)
.

We utilize the computed a and matrices Vxxx, Vxyy, Vyxx, Vyyy. Newton’s equilibrium
states that the total shear force at the boundaries should be equal to the total applied force.
For a constant load over the plate, the Equilibrium error

max
∣∣∣∣
∫

A
q(x, y)−∑ Qx,y

∣∣∣∣,
for p = 50 bits is 6.924× 10−05, and for p = 2000, it is 2.242× 10−591. We observe that
there is a large difference, though the errors are small, even with p = 50 bits. Interestingly,
utilizing a concentrated load by loading the nodes close to (0, 0), the inversion error

max

∣∣∣∣∣∣∣∣∣

⎡
⎢⎢⎣

Vx4 + 2Vx2y2 + Vy4

V(x1, y1)
Vx(x2, y2)

. . .

⎤
⎥⎥⎦
−1

×

⎡
⎢⎢⎣

Vx4 + 2Vx2y2 + Vy4

V(x1, y1)
Vx(x2, y2)

. . .

⎤
⎥⎥⎦− I

∣∣∣∣∣∣∣∣∣
,

for p = 50 bits is 43.988, and for p = 2000, it is 4.381× 10−587, further highlighting the
significance of accuracy in the calculations.
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5. Conclusions

Function approximation exists in the core calculations of computational mechanics,
with implications for other disciplines. In this work, a high arithmetic precision, when
applied to Taylor polynomials, is found capable of executing various numerical tasks
precisely. Particularly, a high arithmetic precision significantly improves accuracy in solving
beam deflection equations, demonstrating the importance of computational precision in the
solution of ODEs. A high precision significantly enhances the solution accuracy of partial
differential equations for slab deformation under a vertical load, highlighting the critical
role of computational precision in PDEs. Furthermore, traditional issues like the Runge
phenomenon, commonly encountered in numerical approximations, are eliminated with
the use of a HAP. The radius of convergence for the Taylor series is precisely computable
using a HAP, providing valuable insights into the interpolation accuracy and potential
extrapolation range of an unknown function.

Overall, the use of Taylor polynomials in a high arithmetic precision showcases poten-
tial as a unified approach to various numerical computations, delivering highly accurate
results and revealing that some numerical instabilities are due to computational inaccu-
racies rather than methodological issues. Future research can include parallel computing
techniques or optimized matrix inversion strategies to deal with the Vandermonde matrix
and other related computational challenges in HAP. Taylor polynomials with a high pre-
cision could also be applied to more complex systems and geometries in computational
mechanics, as well as other engineering problems involving function approximation, such
as fluid dynamics and quantum physics. Extending the research to high-dimensional
problems where function approximation becomes significantly more complicated could
also be an important field, addressing the practical aspects of high-precision calculations for
partial differential equations and integral equations in a high-dimensional space. The study
of precision in calculations illustrates the odd but fundamental epistemological principle
that even 1 + 1 = 2 might be falsified [37].
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Nomenclature

x Variable x, corresponding to f (x)
x0 Initial point in the approximation
n Number of terms in the Taylor series, also number of nodes
L Length of the given domain
E Modulus of elasticity
I Inertia of the beam
f (x) Analytic function
f Vector of function values
x Vector of points
r Radius of convergence
V Vandermonde matrix
df Vector of the derivatives of the function f (x)
D Flexural rigidity of plate
w Deflection of the beam/plate
q External load of beam/plate
a Coefficient vector for Taylor polynomials
v Poisson constant
h Slab’s thickness
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Abstract: This study conducts buckling and free vibration analyses of multi-directional functionally
graded sandwich plates subjected to various boundary conditions. Two scenarios are considered:
a functionally graded (FG) skin with a homogeneous hard core, and an FG skin with a homogeneous
soft core. Utilizing refined plate models, which incorporate a parabolic distribution of transverse
shear stresses while ensuring zero shear stresses on both the upper and lower surfaces, equations
of motion are derived using Hamilton’s principle. Analytical solutions for the buckling and free
vibration analyses of multi-directional FG sandwich plates under diverse boundary conditions are
developed and presented. The obtained results are validated against the existing literature for both
the buckling and free vibration analyses. The composition of metal–ceramic-based FG materials
varies longitudinally and transversely, following a power law. Various types of sandwich plates
are considered, accounting for plate symmetry and layer thicknesses. This investigation explores
the influence of several parameters on buckling and free vibration behaviors.

Keywords: buckling; free vibration; hard core; soft core; multi-directional FGM

1. Introduction

Composite materials blend two or more substances with varying properties to create
unique characteristics absent in their individual components. Functionally graded materials
(FGMs) represent a specific class of composites distinguished by directional variations
in their material properties [1]. While unidirectional FGMs vary their properties along a
single axis, multi-directional (MD) graded materials introduce variations along multiple
axes, enhancing their performance [2].

Various methodologies have been proposed for analyzing the free vibration of plates,
beams, and shells, including the energy method for plates [3], Galerkin–Vlasov’s method
for tapered plates [4], and the Rayleigh–Ritz method for rotating hard-coating cylindrical
shells [5]. For 2-D FGMs, studies have explored their free vibration behavior under differ-
ent boundary conditions, revealing variations in their frequency based on the boundary
conditions [6]. A semi-analytical numerical method was employed in solving the problems
of the bending analysis of 2-D functionally graded (FG) circular and annular plates [7] and
their impact analysis [8].

Buckling and frequency analyses were conducted on a two-directional (2-D) FG circu-
lar plate using the differential quadrature method (DQM) for both clamped and simply
supported boundary conditions. The results indicated a higher critical buckling load
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for the clamped plate compared to the simply supported configuration [9]. Additionally,
finite element analysis and analytical techniques like the third-order shear deformation
plate theory have provided us with understanding of the static deflection and buckling
characteristics of FGM plates [10,11].

The free vibration and buckling of 2-D FGM plates were investigated using a non-
uniform rational B-spline technique [12]. Estimating the material properties of FGMs is
crucial, with empirical relationships available for ideal FGMs. However, certain parameters
like the stress–strain transfer ratio (q) remain mathematically unquantifiable, necessitat-
ing experimental validation [13]. Several material combination experiments have been
conducted to explore the parameter q empirically [14].

A free vibration analysis of multi-directional FG piezoelectric annular plates has been
conducted using the differential quadrature method (DQM). Radial and thickness grada-
tions were incorporated, revealing that radial gradation enhances plate stiffness, resulting
in higher frequency responses [15]. Static and dynamic analyses of three-dimensional
shells composed of multi-directional FG material (MD FGM) have been carried out using
polyhedral finite element methods. That study explored the effects of shell thickness and
slenderness on structural behavior [16]. The bending analysis of multilayer panels of FGMs
was performed using a higher-order layer-wise model, with Young’s modulus determined
via the Halpin–Tsai method and Poisson’s ratio via the rule of mixture [17]. In a thermal
environment, numerical and experimental investigations were used to examine the free
vibration of unidirectional and bi-directional porous FG curved panels. The evaluation
of temperature-dependent (TD) material properties showed lower frequencies compared
to temperature-independent (TID) properties [18]. A strain gradient elasticity theory was
employed to study the dynamic response of square microplates with multi-directional FGM
properties under a moving concentrated load [19]. The optimization of multi-directional
FG plates under thermal effects was achieved through free vibration analysis [20]. Further-
more, a free vibration analysis of tri-directional FG beams under magneto-electro-elastic
fields utilized the DQM and higher-order deformation theory [21,22]. In another study,
the analysis of MD FG sandwich plates covered both FG skin with a homogeneous core and
FG cores with homogeneous skin configurations, with the former demonstrating higher
natural frequencies [23].

Singh and Kumari [24] proposed an approximate analytical solution for analyzing
the free vibration of composite FG rectangular plates. By applying a modified version
of Hamilton’s principle, they derived governing equations, considering all stresses and
displacements as primary variables. The solution was obtained using the extended Kan-
torovich method, along with Fourier and power series approaches. Singh et al. [25] intro-
duced a framework for accurately analyzing the free vibration of in-plane FG orthotropic
rectangular plates integrated with piezoelectric sensory layers, considering both their elastic
and viscoelastic properties. Numerical studies have explored the effects of in-plane grada-
tion and viscoelasticity on vibration responses, revealing significant alterations in flexural
frequencies and mode shapes. Vaishali et al. [26] proposed an innovative multi-physical
probabilistic vibration analysis approach for FG materials. They combined Gaussian Pro-
cess Regression (GPR) with finite element simulations, aided by a Monte Carlo Simulation,
resulting in significant computational efficiency. By integrating machine learning with
physics-based modeling, system uncertainty can be efficiently quantified.

Malikan and Eremeyev [27] developed a novel hyperbolic, polynomial higher-order
elasticity theory for thick FGM beams. Their model addressed a critical drawback in
material composition and incorporated a unique shape function for shear stress distribution.
Through rigorous validation and comparative analyses, they demonstrated the efficacy of
their approach. Their findings underscored the significance of higher-order beam theories
and stretching effects. Importantly, their investigation into FGM beams with different
boundary conditions revealed the marked effects of material imperfections, emphasizing
the practical implications of their work for structural mechanics and material engineering.
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Functionally graded materials undergo changes in their properties through adjust-
ments in their microstructure, material composition, and porosity. Manufacturing tech-
niques such as solid-state, liquid-state, or deposition processes enable the fabrication of
these materials [28,29]. The research on FG structures, including plates, disks, and beams,
has predominantly focused on unidirectional FGMs, as evidenced by the existing liter-
ature [30–32]. Fabrication methods must minimize the delamination that results from
differences in the materials’ physical and chemical characteristics, necessitating techniques
that ensure consistent thermo-mechanical properties [33]. While existing methods suit
the fabrication of unidirectional FGMs, multi-directional gradation poses unique challenges.
Functionally graded additive manufacturing (FGAM) emerges as a promising solution
due to its ability to produce components with material gradients in various directions,
offering advantages such as reduced material wastage, the absence of tooling requirements,
and decreased manufacturing time and costs [34]. Various material modeling techniques
exist, with rule of mixture (ROM) models often providing the best results for material
combinations when compared to experimental data [35].

A delamination analysis within multilayered FG beam configurations was performed
with a specific emphasis on understanding the time-dependent strain energy release rate.
The study included different models of nonlinear creep behavior, particularly in ten-
sion and compression scenarios [36]. Dastjerdi et al. [37] employed a highly efficient
quasi-3D theory to investigate the nonlinear hygro-thermo-mechanical bending analysis of
a thick FGM rotating disk in a hygro-thermal environment, taking porosity into account
as a structural defect. Their analysis incorporates two applied quasi-3D displacement
fields, where the strain along the thickness is non-zero, unlike in conventional plate the-
ories. Karami and Ghayesh [38] explored the significance of micromechanical models in
analyzing the forced vibrations of multi-layered microplates subjected to a moving load.
Their microplate comprised an FGM core and metal foam face sheets. The problem was
modelled using a quasi-3D shear deformable method and modified couple stress theory.
The same authors [39] investigated the vibrations of sandwich microshells featuring porous
FG face sheets, considering in-surface curvilinear motions. The motion equations were
derived using Hamilton’s principle, employing a curvilinear framework for a modified
couple stress scheme that incorporated length-scale parameters. The vibration modes for
curvilinear and normal displacements were assumed using trigonometric functions, and
natural frequencies were determined numerically.

Despite the extensive research on unidirectional graded plates, research on multi-
directional gradation remains limited. Multi-directional gradation promises optimized
structures with enhanced performance compared to unidirectional grading. Thus, this
paper investigates the free vibration and buckling analysis of multi-directional FG plates
using refined plate theories. Our analysis considers a face sheet made of FGM with
a homogeneous core composed of ceramic (hard core) or metal (soft core). The results of
the proposed methods are validated against the existing literature for both buckling and
free vibration analyses. Furthermore, a detailed parametric analysis explores the effects
of grading index and geometry on the frequency and buckling load of multi-directional
FG plates.

2. Mathematical Modeling

2.1. Preliminary Concepts and Definitions

Figure 1 depicts a multi-directional FGM sandwich plate with its dimensions along
the x, y, and z axes denoted as length (a), width (b), and thickness (h), respectively.
The sandwich plate comprises two face sheets (top and bottom) sandwiching a core layer.
In Figure 1, the x and y axes represent the midplane, while the z axis is perpendicular to
the midplane.
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x

y

z

b

h

Figure 1. Multi-directional FGM sandwich plate.

A power law variation in the volume fraction of the FGM’s metal and ceramic con-
stituents is represented by Equations (1) and (2). This investigation focuses on metal (Al)
and ceramic (Al2O3), with their compositions varying longitudinally (px) and transversely
(pz). The material properties of the FGM sandwich plate are influenced by the volume frac-
tions of these constituents along both its longitudinal and transverse directions, following
a power law relationship. The volume fraction of metal in a multi-directional sandwich
plate is expressed as shown in Equation (1):

V(1)(x, z) =
(

z−h1
h1−h2

)pz(
1− x

2a
)px

V(2)(x, z) = 1

V(3)(x, z) =
(

z−h4
h3−h4

)pz(
1− x

2a
)px

(1)

where V(n) (n = 1, 2, 3) represents the volume fraction function of Layer n, while pz
and px denote the volume fraction indices in the transverse and longitudinal directions,
respectively. Type A has an FG face sheet and homogeneous hard core, while Type B has
an FG face sheet and homogeneous soft core. Figure 2 presents the different layers of
the material. The layer thicknesses, denoted by the coordinate points h1 = −h/2, h2, h3, and
h4 = h/2 in the z direction, determine the sandwich configuration.

y

z

Homogeneous  core
(Hard core or Soft core)Layer 2

Layer 1

Layer 3

h1

h2

h3

h4

h

Figure 2. Material variation with thickness of multi-directional FGM sandwich plate: FGM containing
face sheets and a homogeneous core (Type A: hard core, Type B: soft core).

2.2. Modeling of FG Sandwich Plate

The effective material properties of the plate, i.e., its Young’s modulus E, Poisson’s ratio
ν, and mass density ρ, can be expressed by the rule of mixture, as shown in Equation (2) [40].

P(n)(x, z) = (P1 − P2)V(n)(x, z) + P2 (2)

where P(n) is the effective material property of the FGM of Layer n. For Type A, P1 and
P2 are the properties of the top and bottom faces of Layer 1, respectively, and vice versa
for Layer 3, depending on the volume fraction V(n) (n = 1, 2, 3). For Type B, P1 and P2 are
the properties of Layer 3 and Layer 1, respectively. The discussion of the two types of FGM
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sandwich plates, Type A with a hard core and Type B with a soft core, will be presented in
subsequent sections. In this study, the Poisson’s ratio of the plate is considered constant,
as its impact on deformation is deemed significantly less impactful than that of Young’s
modulus [41].

2.3. Displacement Field and Strains

In the multi-directional FGM sandwich plate, the in-plane displacements u and v are
accounted for in the x and y directions, respectively, while the transverse displacement w
occurs in the z direction. These displacements can be expressed as follows, using refined
shear deformation theory, as shown in Equations (3)–(6):

u(x, y, z, t) = u0(x, y, t)− z ∂wb
∂x − f (z) ∂wb

∂x
v(x, y, z, t) = v0(x, y, t)− z ∂wb

∂y − f (z) ∂wb
∂y

w(x, y, z, t) = wb(x, y, t) + ws(x, y, t)
(3)

In this study, two different shape functions are considered, as follows:

f (z) = − 1
4 z + 5

3 z
( z

h
)2 for Model 1

f (z) = z− h
π sin

(
πz
h
)

for Model 2
(4)

where u0, v0, wb, and ws are the in-plane and transverse displacements of the mid-
dle plane. The strains associated with the displacements in Equation (3) are given by
Equations (5) and (6):

εx = ε0
x + z kb

x + f ks
x

εy = ε0
y + z kb

y + f ks
y

γxy = γ0
xy + z kb

xy + f ks
xy

γyz = g γs
yz

γxz = g γs
xz

εz = 0

(5)

where
ε0

x = ∂u0
∂x , kb

x = − ∂2wb
∂x2 , ks

x = − ∂2ws
∂x2

ε0
y = ∂v0

∂y , kb
y = − ∂2wb

∂y2 , ks
y = − ∂2ws

∂y2

γ0
xy = ∂u0

∂y + ∂v0
∂x , kb

xy = −2 ∂2wb
∂x∂y , ks

xy = −2 ∂2ws
∂x∂y

γs
yz =

∂ws
∂y , γs

xz =
∂ws
∂x

g(z) = 1− f ′(z), f ′(z) = d f (z)
dz

(6)

The stress–strain relationship of a multi-directional FGM sandwich plate can be ex-
pressed as shown in Equations (7) and (8):

⎧⎨
⎩

σx
σy
τxy

⎫⎬
⎭

(n)

=

⎡
⎣ Q11 Q12 0

Q12 Q22 0
0 0 Q66

⎤
⎦
(n)⎧⎨
⎩

εx
εy
γxy

⎫⎬
⎭

and
{

τyz
τzx

}(n)

=

[
Q44 0
0 Q55

](n){
γyz
γzx

} (7)

where
Q(n)

11 (x, z) = Q(n)
22 (x, z) = E(n)(x,z)

1−ν2

Q12 = ν ·Q(n)
11 (x, z)

Q(n)
44 (x, z) = Q(n)

55 = Q(n)
66 = E(n)(x,z)

2(1+ν)

(8)
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2.4. Governing Equations

Hamilton’s principle (Equation (9)) is employed here to derive the equations of motion:

0 =

t∫
0

(δU + δV − δK) dt (9)

Here, δU represents the variation of strain energy, δV denotes the variation of work done,
and δK signifies the variation of kinetic energy. The variation of the strain energy of
the plate is expressed as shown in Equation (10):

δ U =
∫
V

[
σxδ εx + σyδ εy + τxyδ γxy + τyzδ γyz + τxzδ γxz

]
dV

=
∫
A

[
Nxδ ε0

x + Nyδ ε0
y + Nxyδ γ0

xy + Mb
xδ kb

x + Mb
yδ kb

y + Mb
xyδ kb

xy

+Ms
xδ ks

x + Ms
yδ ks

y + Ms
xyδ ks

xy + Ss
yzδ γs

yz + Ss
xzδ γs

xz

]
dA = 0

(10)

where A is the top surface and the stress resultants N, M, and S are defined as

(
Ni, Mb

i , Ms
i

)
=

3
∑

n=1

hn+1∫
hn

(1, z, f )σidz, (i = x, y, xy)

(
Ss

xz, Ss
yz

)
=

3
∑

n=1

hn+1∫
hn

g
(
τxz, τyz

)
dz

(11)

The variation of the work done by the in-plane load
(

N0
x , N0

y , N0
xy

)
can be expressed as

δV = −
∫
A

Nδ(wb + ws)dA (12)

with

N =

[
N0

x
∂2(wb + ws)

∂x2 + N0
y

∂2(wb + ws)

∂y2 + 2N0
xy

∂2(wb + ws)

∂x∂y

]
(13)

The variation in the kinetic energy of the plate can be expressed as

δ K =
h/2∫
−h/2

∫
A

( .
uδ

.
u +

.
vδ

.
v +

.
wδ

.
w
)

ρ(z) dA dz

=
∫
A

{
I0
[ .
u0δ

.
u0 +

.
v0δ

.
v0 +

( .
wb +

.
ws
)(

δ
.

wb + δ
.

ws
)]

−I1

( .
u0

∂δ
.

wb
∂x + ∂

.
wb
∂x δ

.
u0 +

.
v0

∂δ
.

wb
∂y + ∂

.
wb
∂y δ

.
v0

)
−I2

( .
u0

∂δ
.

ws
∂x + ∂

.
ws
∂x δ

.
u0 +

.
v0

∂δ
.

ws
∂y + ∂

.
ws
∂y δ

.
v0

)
+J1

(
∂

.
wb
∂x

∂δ
.

wb
∂x + ∂

.
wb
∂y

∂δ
.

wb
∂y

)
+ K2

(
∂

.
ws
∂x

∂δ
.

ws
∂x + ∂

.
ws
∂y

∂δ
.

ws
∂y

)
+J2

(
∂

.
wb
∂x

∂δ
.

ws
∂x + ∂

.
ws
∂x

∂δ
.

wb
∂x + ∂

.
wb
∂y

∂δ
.

ws
∂y + ∂

.
ws
∂y

∂δ
.

wb
∂y

)}
dA

(14)

The notation with a dot superscript denotes differentiation with respect to the time
variable t, where ρ(z) represents the mass density defined by Equation (3) and (Ii, Ji, Ki)
denote mass inertias, expressed as

(I0, I1, I2) =
3
∑

n=1

hn+1∫
hn

(
1, z, z2)ρ(z)dz

(J1, J2, K2) =
3
∑

n=1

hn+1∫
hn

(
f , z f , f 2)ρ(z)dz

(15)
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By substituting Equations (10), (12), and (14) into Equation (9), the following can
be derived:

δ u0 : ∂Nx
∂x +

∂Nxy
∂y = I0

..
u0 − I1

∂
..
wb
∂x − J1

∂
..
ws
∂x

δ v0 : ∂Nxy
∂x +

∂Ny
∂y = I0

..
v0 − I1

∂
..
wb
∂y − J1

∂
..
ws
∂y

δ wb : ∂2 Mb
x

∂x2 + 2
∂2 Mb

xy
∂x∂y +

∂2 Mb
y

∂y2 + N = I0
( ..
wb +

..
ws
)
+ I1

(
∂

..
u0

∂x + ∂
..
v0

∂y

)
− I2∇2 ..

wb − J2∇2 ..
ws

δ ws : ∂2 Ms
x

∂x2 + 2
∂2 Ms

xy
∂x∂y +

∂2 Ms
y

∂y2 + ∂Ss
xz

∂x +
∂Ss

yz
∂y + N = I0

( ..
wb +

..
ws
)
+ J1

(
∂

..
u0

∂x + ∂
..
v0

∂y

)
− J2∇2 ..

wb − K2∇2 ..
ws

(16)

By substituting Equation (7) into Equation (11) and integrating across the thickness of
the plate, the stress resultants can be expressed compactly in terms of strains as follows:

⎧⎨
⎩

N
Mb

Ms

⎫⎬
⎭ =

⎡
⎣A B Bs

B D Ds

Bs Ds Hs

⎤
⎦
⎧⎨
⎩

ε

kb

ks

⎫⎬
⎭ (17)

in which

N =
{

Nx, Ny, Nxy
}t, Mb =

{
Mb

x, Mb
y, Mb

xy

}t
, Ms =

{
Ms

x, Ms
y, Ms

xy

}t

ε =
{

ε0
x, ε0

y, γ0
xy

}t
, kb =

{
kb

x, kb
y, kb

xy

}t
, ks =

{
ks

x, ks
y, ks

xy

}t

A =

⎡
⎣ A11 A12 0

A12 A22 0
0 0 A66

⎤
⎦, B =

⎡
⎣ B11 B12 0

B12 B22 0
0 0 B66

⎤
⎦, D =

⎡
⎣ D11 D12 0

D12 D22 0
0 0 D66

⎤
⎦

Bs =

⎡
⎣ Bs

11 Bs
12 0

Bs
12 Bs

22 0
0 0 Bs

66

⎤
⎦, Ds =

⎡
⎣ Ds

11 Ds
12 0

Ds
12 Ds

22 0
0 0 Ds

66

⎤
⎦, Hs =

⎡
⎣ Hs

11 Hs
12 0

Hs
12 Hs

22 0
0 0 Hs

66

⎤
⎦

S =
{

Ss
xz, Ss

yz

}t
, γ =

{
γ0

xz, γ0
yz

}t
, As =

[
As

44 0
0 As

55

]

(18)

The stiffness components are given as⎧⎨
⎩

A11 B11 D11 Bs
11 Ds

11 Hs
11

A12 B12 D12 Bs
12 Ds

12 Hs
12

A66 B66 D66 Bs
66 Ds

66 Hs
66

⎫⎬
⎭ =

h/2∫
−h/2

Q11
(
1, z, z2, f (z), z f (z), f 2(z)

)⎧⎨⎩
1
ν
1−ν

2

⎫⎬
⎭dz

(A22, B22, D22, Bs
22, Ds

22, Hs
22) =

(
A11, B11, D11, Bs

11, Ds
11, Hs

11
)

As
44 = As

55 =
h/2∫
−h/2

Q44[g(z)]
2dz

(19)

By introducing Equation (17) into Equation (16), the equations of motion can be
rephrased in terms of displacements (u0, v0, wb, ws). The resulting equations take the
following forms:

A11
∂2u0
∂x2 + A66

∂2u0
∂y2 + (A12 + A66)

∂2v
∂x∂y − B11

∂3wb
∂x3 − (B12 + 2B66)

∂3wb
∂x∂y2

−Bs
11

∂3ws
∂x3 −

(
Bs

12 + 2Bs
66
) ∂3ws

∂x∂y2 = I0
..
u0 − I1

∂
..
wb
∂x − J1

∂
..
ws
∂x

(A12 + A66)
∂2u0
∂x∂y + A66

∂2v0
∂x2 + A22

∂2v0
∂y2 − (B12 + 2B66)

∂3wb
∂x2∂y − B22

∂3wb
∂y3

−Bs
22

∂3ws
∂y3 −

(
Bs

12 + 2Bs
66
) ∂3ws

∂x2∂y = I0
..
v0 − I1

∂
..
wb
∂y − J1

∂
..
ws
∂y

B11
∂3u0
∂x3 + (B12 + 2B66)

∂3u0
∂x∂y2 + (B12 + 2B66)

∂3v0
∂x2∂y + B22

∂3v0
∂y3 − D11

∂4wb
∂x4

−2(D12 + 2D66)
∂4wb

∂x2∂y2 − D22
∂4wb
∂y4 − Ds

11
∂4ws
∂x4 − 2

(
Ds

12 + 2Ds
66
) ∂4ws

∂x2∂y2

−Ds
22

∂4ws
∂y4 + N = I0

( ..
wb +

..
ws
)
+ I1

(
∂

..
u0

∂x + ∂
..
v0

∂y

)
− I2∇2 ..

wb − J2∇2 ..
ws

Bs
11

∂3u0
∂x3 +

(
Bs

12 + 2Bs
66
) ∂3u0

∂x∂y2 +
(

Bs
12 + 2Bs

66
) ∂3v0

∂x2∂y + Bs
22

∂3v0
∂y3 − Ds

11
∂4wb
∂x4

−2
(

Ds
12 + 2Ds

66
) ∂4wb

∂x2∂y2 − Ds
22

∂4wb
∂y4 − Hs

11
∂4ws
∂x4 − 2

(
Hs

12 + 2Hs
66
) ∂4ws

∂x2∂y2 − Hs
22

∂4ws
∂y4

+As
55

∂2ws
∂x2 + As

44
∂2ws
∂y2 + N = I0

( ..
wb +

..
ws
)
+ J1

(
∂

..
u0

∂x + ∂
..
v0

∂y

)
− J2∇2 ..

wb − K2∇2 ..
ws

(20)
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The exact solution to the set of Equation (20), describing the P-FGMs multi-directional
functionality graded sandwich plate under various boundary conditions, can be derived.
The boundary conditions for an arbitrary edge include both its simply supported and
clamped conditions:

• Clamped (C):

u0 = v0 = wb = ∂wb/∂x =∂wb/∂y =ws = ∂ws/∂x =∂ws/∂y = 0,
at x = 0, y = 0, b

(21)

• Simply supported (S):

v0 = wb = ∂wb/∂y =ws = ∂ws/∂y = 0, at x = 0, a
u0 = wb = ∂wb/∂x =ws = ∂ws/∂x = 0, at y = 0, b

(22)

The following representation of the displacement quantities that fulfill the aforemen-
tioned boundary conditions is applicable to our specific problem:

⎧⎪⎪⎨
⎪⎪⎩

u0
v0
wb
ws

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Umn
∂Xm(x)

∂x Yn(y)eiωt

VmnXn(x) ∂Yn(y)
∂y eiωt

WbmnXn(x)Yn(y)eiωt

WsmnXn(x)Yn(y)eiωt

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(23)

where Umn, Vmn, Wbmn, and Wsmn are arbitrary parameters and ω = ωmn denotes the eigenfre-
quency associated with the (m,n)th eigenmode. The functions Xm(x) and Yn(y) are suggested
here to satisfy, at least, the geometric boundary conditions given in Equations (21) and (22)
and represent the approximate shapes of the deflected surface of the plate. These functions,
for the different boundary condition cases, are listed in Table 1. Note that λ = mπ/a and
μ = nπ/b.

Table 1. The admissible functions for the various boundary conditions [42].

Boundary Conditions x = 0 y = 0 x = a y = b Xm(x) Yn(y)

SSSS S S S S sin(λx) sin(μx)
CSCS C S C S sin2(λx) sin(μx)
CCCC C C C C sin2(λx) sin2(μx)
FCFC F C F C cos2(λx)·[sin2(λx) + 1] sin2(μx)

By substituting Equation (23) into the governing Equation (20) and multiplying each
equation by its corresponding eigenfunction, and then integrating over the solution domain,
we can derive the following equations after performing certain mathematical manipulations:⎛
⎜⎜⎝
⎡
⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 − βN a34 − βN
a41 a42 a43 − βN a44 − βN

⎤
⎥⎥⎦ −ω2

⎡
⎢⎢⎣

m11 0 m13 m14
0 m22 m23 m24

m31 m32 m33 m34
m41 m42 m43 m44

⎤
⎥⎥⎦
⎞
⎟⎟⎠·
⎧⎪⎪⎨
⎪⎪⎩

Umn
Vmn
Wmn
Xmn

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

0
0
0
0

⎫⎪⎪⎬
⎪⎪⎭ (24)

in which
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a11 = A11α12 + A66α8 a12 = (A12 + A66)α8 a13 = −B11α12 − (B12 + 2B66)α8 a14 = −(Bs
12 + 2Bs

66
)
α8 − Bs

11α12

a21 = (A12 + A66)α10 a22 = A22α4 + A66α10 a23 = −B22α4 − (B12 + 2B66)α10 a24 = −(Bs
12 + 2B66

)
α10 − Bs

22α4

a31 = B11α13 + (B12 + 2B66)α11
a32 = (B12 + 2B66)α11

+B22α5

a33 = −D11α13 − 2(D12 + 2D66)α11

−D22α5

a34 = −Ds
11α13 − 2

(
Ds

12 + 2Ds
66
)
α11

−Ds
66α5

a41 = Bs
11α13 +

(
Bs

12 + 2Bs
66
)
α11

a42 =
(

Bs
12 + 2Bs

66
)
α11

+Bs
22α5

a43 = −Ds
11α13 − 2

(
Ds

12 + 2Ds
66
)
α11

−Ds
22α5

a44 = −Hs
11α13 − 2

(
Hs

12 + 2Hs
66
)
α11

−Hs
22α5 + As

44α9 + As
55α3

N = N0
x

ξ1 = N0
y /N0

x

(25)

and
m11 = −I0α6
m13 = −I1α6, m32 = −I1α3
m14 = J1α6, m33 = −I0α1 + I2(α3 + α9)
m22 = −I0α2, m34 = −I0α1 + J2(α3 + α9)
m23 = I1α2, m41 = −J1α9
m24 = J1α2, m42 = −J1α3
m31 = −I1α9, m44 = −I0α1 + K2(α3 + α9)

(26)

with
β = ξ1α3 + α9

(α1, α3, α5) =
b∫

0

a∫
0
(XmYn, XmY′′

n , XmY′′′n )XmYndxdy

(α2, α4, α10) =
b∫

0

a∫
0
(XmY′n, XmY′′

n , X′′
mY′n)XmY′ndxdy

(α6, α8, α12) =
b∫

0

a∫
0
(X′mYn, X′mY′′

n , X′′′
mYn)X′mYndxdy

(α7, α9, α11, α13) =
b∫

0

a∫
0
(X′mY′n, X′′

mYn, X′mY′′
n , X′′′m Yn)XmYndxdy

(27)

3. Numerical Results and Discussion

In this section, we explore several numerical examples to assess the accuracy of
the two proposed theories in analyzing the buckling and free vibration of multi-directional
FG sandwich plates under different boundary conditions. A range of sandwich plate
configurations, comprising both symmetric and non-symmetric FGMs, are examined to
demonstrate the versatility of these theories.

The subsequent discussions aim to underscore the precision and relevance of the pre-
sented theories in capturing the plate’s behavior under varied conditions. The considered
configuration schemes of the sandwich plates include:

1. (1-0-1) FGM sandwich plate, consisting of two layers of equal thickness without a core,
where h1 = h2 = 0.

2. (1-2-1) FGM sandwich plate, with the core thickness equal to the sum of the face
thicknesses: h2 = −h/4, h3 = h/4.

3. (1-1-1) FGM sandwich plate, comprising three equal-thickness layers: h2 = −h/6,
h3 = h/6.

4. (2-2-1) FGM sandwich plate, featuring a core thickness twice that of the upper face
and equal to the lower one, defined by h2 = −h/10, h3 = 3h/10.

5. (1-1-2) FGM sandwich plate, with a core thickness equal to that of the lower face and
with the thickness of the upper face twice that of the core: h2 = −h/4, h3 = 0.

The material combinations include aluminum and alumina, each with the following
properties [23]:

• Ceramic (alumina, Al2O3): Young’s modulus Ec = 380 GPa, Poisson’s ratio vc = 0.3,
density ρc = 3800 kg/m3;
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• Metal (aluminum, Al): Young’s modulus Em = 70 GPa, Poisson’s ratio vm = 0.3, density
ρm = 2702 kg/m3.

3.1. FG Sandwich Plates
3.1.1. Free Vibration Analysis of FG Sandwich Plates

The face sheet comprises a functionally graded material with properties varying
along the pz direction. A power law distribution is utilized for the FG face sheet, while
the core consists of a homogeneous material. When the core material is pure ceramic
(alumina), it is referred to as “hard-core”, and when it is pure metal (aluminum) it is called
“soft-core”. Table 2 displays the fundamental frequency results obtained from the two
proposed methods for a/h = 10 and px = 0, in the case of a hard core. The results indicate
that the sandwich plate with the (1-2-1) scheme exhibits the highest frequency because of
its thicker ceramic core, leading to greater stiffness. Subsequently, a decrease in natural
frequency was observed for the (2-2-1) scheme, followed by the (1-1-1), (2-1-2), and (1-0-1)
schemes. Their frequency diminishes with an increase in the grading parameter pz.

Table 2. Dimensionless fundamental frequency ω of FG sandwich plates (a/h = 10 and px = 0). Type
A: hard core.

pz Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

0

3D [43] 1.8268 1.8268 1.8268 1.8268 1.8268
SSDT [44] 1.8245 1.8245 1.8245 1.8245 1.8245
TSDT [44] 1.8245 1.8245 1.8245 1.8245 1.8245
FSDT [44] 1.8244 1.8244 1.8244 1.8244 1.8244

NFSDT [45] 1.8244 1.8244 1.8244 1.8244 1.8244
Present 1 1.8245 1.8245 1.8245 1.8245 1.8245
Present 2 1.8245 1.8245 1.8245 1.8245 1.8245

0.5

3D [43] 1.4461 1.4861 1.5213 1.5493 1.5767
SSDT [44] 1.4444 1.4842 1.5193 1.5520 1.5745
TSDT [44] 1.4442 1.4841 1.5192 1.5520 1.5727
FSDT [44] 1.4417 1.4816 1.5170 1.5500 1.5727

NFSDT [45] 1.4442 1.4841 1.5192 1.5471 1.5745
Present 1 1.4446 1.4844 1.5195 1.5474 1.5747
Present 2 1.4447 1.4845 1.5195 1.5474 1.5747

1

3D [43] 1.2447 1.3018 1.3552 1.3976 1.4414
SSDT [44] 1.2434 1.3002 1.3534 1.4079 1.4393
TSDT [44] 1.2432 1.3001 1.3533 1.4079 1.4393
FSDT [44] 1.2403 1.2973 1.3507 1.4056 1.4372

NFSDT [45] 1.2429 1.3000 1.3533 1.3956 1.4393
Present 1 1.2437 1.3005 1.3537 1.3959 1.4396
Present 2 1.2438 1.3006 1.3537 1.3959 1.4396

5

3D [43] 0.9448 0.9810 1.0453 1.1098 1.1757
SSDT [44] 0.9463 0.9821 1.0448 1.1474 1.1740
TSDT [44] 0.9460 0.9818 1.0447 1.1473 1.1740
FSDT [44] 0.9426 0.9787 1.0418 1.1447 1.1716

NFSDT [45] 0.9431 0.9796 1.0435 1.1077 1.1735
Present 1 0.9467 0.9824 1.0451 1.1094 1.1743
Present 2 0.9469 0.9826 1.0453 1.1095 1.1744

Additionally, an analysis was conducted for a/h = 5 and px = 0 for both hard-core and
soft-core materials, as presented in Tables 3 and 4. The analysis reveals that the soft-core
material yields lower frequencies than the hard-core material for homogeneous materials.
Moreover, as the plate thickness transitions from a/h = 10 to a/h = 5, there is a noticeable
decrease in the frequency outcomes.
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Table 3. Dimensionless fundamental frequency ω of FG sandwich plates (a/h = 5 and nx = 0). Type A:
hard core.

nz Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

0
3D [43] 1.6771 1.6771 1.6771 1.6771 1.6771

NFSDT [45] 1.6697 1.6697 1.6697 1.6697 1.6697
Present 1 1.6701 1.6701 1.6701 1.6701 1.6701

0.5
3D [43] 1.3536 1.3905 1.4218 1.4454 1.4694

NFSDT [45] 1.3473 1.3841 1.4152 1.4386 1.4626
Present 1 1.3478 1.3844 1.4154 1.4388 1.4628

1
3D [43] 1.1749 1.2292 1.2777 1.3143 1.3534

NFSDT [45] 1.1691 1.2232 1.2714 1.3078 1.3467
Present 1 1.1703 1.2238 1.2717 1.3082 1.3471

5
3D [43] 0.8909 0.9336 0.9980 1.0561 1.1190

NFSDT [45] 0.8853 0.9286 0.9916 1.0488 1.1118
Present 1 0.89528 0.9365 0.9959 1.0533 1.1136

10
3D [43] 0.8683 0.8923 0.9498 1.0095 1.0729

NFSDT [45] 0.8599 0.8860 0.9428 1.0012 1.0648
Present 1 0.8725 0.8998 0.9508 1.0095 1.0679

Table 4. Dimensionless fundamental frequency ω of FG sandwich plates (a/h = 5 and nx = 0). Type B:
soft core.

nz Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

0
3D [43] 0.8529 0.8529 0.8529 0.8529 0.8529

NFSDT [45] 0.8491 0.8491 0.8491 0.8491 0.8491
Present 1 0.8501 0.8501 0.8501 0.8501 0.8501

0.5
3D [43] 1.3789 1.3206 1.2805 1.2453 1.2258

NFSDT [45] 1.3686 1.3115 1.2729 1.2380 1.2185
Present 1 1.3829 1.3284 1.2859 1.2509 1.2255

1
3D [43] 1.5090 1.4333 1.3824 1.3420 1.3213

NFSDT [45] 1.4915 1.4156 1.3702 1.3302 1.3104
Present 1 1.5176 1.4557 1.4036 1.3625 1.3289

5
3D [43] 1.6587 1.5801 1.5028 1.4601 1.4267

NFSDT [45] 1.6305 1.5125 1.4589 1.4195 1.4026
Present 1 1.6585 1.6181 1.5665 1.5212 1.4748

10
3D [43] 1.6728 1.6091 1.5267 1.4831 1.4410

NFSDT [45] 1.6495 1.5196 1.4642 1.4266 1.4101
Present 1 1.6679 1.6394 1.5931 1.5484 1.5018

When nz = 0.5, the hard-core plate exhibits higher frequencies than the soft-core plate
for all instances, except for the 1-0-1 scheme, where the soft core demonstrates higher
frequencies. Conversely, at nz = 1, the soft core demonstrates higher frequencies than
the hard core, except for the 1-2-1 scheme. Beyond nz > 5, it is observed that the soft-core
material consistently yields higher frequencies than the hard-core material.

3.1.2. Buckling Analysis of FG Sandwich Plates

The buckling analysis results mirror the trends observed in the frequency analysis, as
summarized in Table 5. Similar to the frequency outcomes, the buckling analysis focuses
on a square plate with a hard core material undergoing uniaxial compression, particularly
at a/h = 10. Among the different schemes examined, the (1-2-1) configuration demonstrates
the highest buckling load, followed by (2-2-1), (1-1-1), (2-1-2), and (1-0-1), in descending
order of buckling strength. Notably, there is a consistent decrease in buckling load with
the increasing grading parameter pz. This pattern underscores the significant influence
of the grading parameter on the buckling behavior of square plates with a hard core
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material under uniaxial compression, with various schemes exhibiting distinct levels of
structural stability.

Table 5. Dimensionless buckling load N of square plates under uniaxial compression (ξ1 = 0, a/h = 10).
Type A: hard core.

nz Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

0

SSDT [44] 13.0061 13.0061 13.0061 13.0061 13.0061
TSDT [44] 13.0050 13.0050 13.0050 13.0050 13.0050
FSDT [44] 13.0045 13.0045 13.0045 13.0045 13.0045

NFSDT [45] 13.0045 13.0045 13.0045 13.0045 13.0045
Present 1 13.0049 13.0049 13.0049 13.0049 13.0049
Present 2 13.0061 13.0061 13.0061 13.0061 13.0061

0.5

SSDT [44] 7.3657 7.9420 8.4371 8.8104 9.2167
TSDT [44] 7.3644 7.9408 8.4365 8.8100 9.2168
FSDT [44] 7.3373 7.9132 8.4103 8.7867 9.1952

NFSDT [45] 7.3634 7.9403 8.4361 8.8095 9.2162
Present 1 7.3644 7.9408 8.4365 8.8099 9.2168
Present 2 7.3657 7.9419 8.4371 8.8104 9.2167

1

SSDT [44] 5.1685 5.8412 6.4654 6.9498 7.5063
TSDT [44] 5.1671 5.8401 6.4647 6.9494 7.5066
FSDT [44] 5.1424 5.8138 6.4389 6.9257 7.4837

NFSDT [45] 5.1648 5.8387 6.4641 6.9485 7.5056
Present 1 5.1671 5.8401 6.4647 6.9494 7.5066
Present 2 5.1685 5.8412 6.4654 6.9498 7.5063

5

SSDT [44] 2.6601 3.0441 3.5806 4.1129 4.7349
TSDT [44] 2.6582 3.0426 3.5796 4.1121 4.7347
FSDT [44] 2.6384 3.0225 3.5596 4.0929 4.7148

NFSDT [45] 2.6415 3.0282 3.5710 4.1024 4.7305
Present 1 2.6582 3.0426 3.5796 4.1121 4.7347
Present 2 2.6601 3.0441 3.5806 4.1129 4.7349

Moreover, a buckling analysis of square FG plates under biaxial compression was
conducted, as indicated in Table 6. This table provides a comprehensive comparison of
the dimensionless buckling loads for square plates across various theories and conditions,
offering insights into the impact of the grading parameter on the structural stability of
the plate. Similar to unidirectional loading, biaxial loading also results in a noticeable
decrease in the dimensionless buckling loads for all the schemes considered.

Table 6. Dimensionless buckling load N of square plates under biaxial compression (ξ1 = 1, a/h = 10).
Type A: hard core.

nz Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

0

SSDT [44] 6.5030 6.5030 6.5030 6.5030 6.5030
TSDT [44] 6.5025 6.5025 6.5025 6.5025 6.5025
FSDT [44] 6.5022 6.5022 6.5022 6.5022 6.5022

NFSDT [45] 6.5022 6.5022 6.5022 6.5022 6.5022
Present 1 6.5025 6.5025 6.5025 6.5025 6.5025
Present 2 6.5030 6.5030 6.5030 6.5030 6.5030

0.5

SSDT [44] 3.6828 3.9710 4.2186 4.4052 4.6084
TSDT [44] 3.6822 3.9704 4.2182 4.4050 4.6084
FSDT [44] 3.6687 3.9566 4.2052 4.3934 4.5976

NFSDT [45] 3.6817 3.9702 4.2181 4.4047 4.6081
Present 1 3.6822 3.9704 4.2182 4.4049 4.6084
Present 2 3.6828 3.9709 4.2185 4.4052 4.6083
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Table 6. Cont.

nz Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

1

SSDT [44] 2.5842 2.9206 3.2327 3.4749 3.7531
TSDT [44] 2.5836 2.9200 3.2324 3.4747 3.7533
FSDT [44] 2.5712 2.9069 3.2195 3.4629 3.7418

NFSDT [45] 2.5824 2.9193 3.2320 3.4742 3.7528
Present 1 2.5835 2.9200 3.2323 3.4747 3.7533
Present 2 2.5842 2.9206 3.2327 3.4749 3.7531

5

SSDT [44] 1.3300 1.5220 1.7903 2.0564 2.3674
TSDT [44] 1.3291 1.5213 1.7898 2.0561 2.3673
FSDT [44] 1.3192 1.5113 1.7798 2.0464 2.3574

NFSDT [45] 1.3208 1.5141 1.7855 2.0512 2.3652
Present 1 1.3291 1.5213 1.7898 2.0560 2.3673
Present 2 1.3300 1.5220 1.7903 2.0564 2.3674

3.2. Multi-Directional FG Sandwich Plates
3.2.1. Free Vibration Analysis of Multi-Directional FG Sandwich Plates

The free vibration analysis of a multi-directional FG skin with a homogeneous hard
core was conducted under various boundary conditions. Multi-directional gradation was
achieved by adjusting the parameters px and pz. The results are presented in Table 7.
Across all boundary conditions, the (1-2-1) scheme exhibits the highest frequency, followed
by (2-2-1), (1-1-1), (2-1-2), and (1-0-1). In all scenarios, maintaining a constant and zero
value for the parameter px while increasing pz from 0.5 to 1 and 5 results in a decrease in
frequency. Similarly, increasing px from 0 to 0.5 and up to 2 and then varying pz also leads
to a decreasing trend in frequency.

Table 7. Dimensionless fundamental frequency ω of square plates under various boundary conditions
(a/h = 10). Type A: hard core.

Boundary
Conditions

px pz 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

SSSS

0 0.5 1.4446 1.4844 1.5195 1.5474 1.5747
0 1 1.2437 1.3005 1.3537 1.3959 1.4396
0 5 0.9467 0.9824 1.0451 1.1094 1.1743

0.5 0.5 1.3965 1.4302 1.4635 1.4949 1.5216
0.5 1 1.2113 1.2606 1.3109 1.3556 1.3983
0.5 5 0.9451 0.9748 1.0338 1.0981 1.1613
2 0.5 1.2835 1.3046 1.3353 1.3749 1.4024
2 1 1.1378 1.1708 1.2156 1.2655 1.3076
2 5 0.9414 0.9590 1.0103 1.0745 1.1341

CSCS

0 0.5 2.1285 2.1868 2.2375 2.2772 2.3165
0 1 1.8379 1.9218 1.9992 2.0599 2.1231
0 5 1.4017 1.4583 1.5511 1.6446 1.7399

0.5 0.5 2.0571 2.1080 2.1569 2.2018 2.2407
0.5 1 1.7894 1.8634 1.9373 2.0015 2.0638
0.5 5 1.3983 1.4469 1.5345 1.6280 1.7208
2 0.5 1.8894 1.9256 1.9718 2.0288 2.0697
2 1 1.6788 1.7321 1.7988 1.8708 1.9329
2 5 1.3899 1.4234 1.4999 1.5934 1.6813
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Table 7. Cont.

Boundary
Conditions

px pz 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

CCCC

0 0.5 2.6386 2.7106 2.7725 2.8205 2.8684
0 1 2.2834 2.3877 2.4827 2.5565 2.6338
0 5 1.7439 1.8180 1.9334 2.0482 2.16583

0.5 0.5 2.5497 2.6139 2.6744 2.7287 2.7767
0.5 1 2.2225 2.3157 2.4069 2.4850 2.5616
0.5 5 1.7387 1.8038 1.9129 2.0277 2.1425
2 0.5 2.3406 2.3902 2.4486 2.5178 2.5689
2 1 2.0835 2.1538 2.2371 2.3250 2.4021
2 5 1.7257 1.7741 1.8701 1.9849 2.0939

FCFC

0 0.5 2.7884 2.8643 2.9290 2.9788 3.0289
0 1 2.4168 2.5271 2.6268 2.7038 2.7847
0 5 1.8478 1.9289 2.0510 2.1715 2.2954

0.5 0.5 2.6941 2.7629 2.8266 2.8830 2.9335
0.5 1 2.3519 2.4514 2.5474 2.6289 2.7094
0.5 5 1.8415 1.9137 2.0294 2.1499 2.2709
2 0.5 2.4724 2.5282 2.5906 2.6628 2.7171
2 1 2.2035 2.2809 2.3695 2.4614 2.5428
2 5 1.8257 1.8821 1.9843 2.1048 2.2199

Notably, the results reveal an intriguing observation: an increase in the parameter pz
has a more pronounced effect on the frequency parameter compared to px. Thus, enhancing
the ceramic composition of the material in its transverse direction demonstrates a more
significant influence on frequency than varying the ceramic composition of its longitudinal
direction. The frequency is observed to be at its maximum for the FCFC condition, followed
by the CCCC, CSCS, and SSSS conditions.

The free vibration analysis of a multi-directional FG skin combined with a homoge-
neous soft core was also conducted under various boundary conditions for different values
of px and pz. The results are presented in Table 8. In contrast to the hard-core sandwich
plate, the maximum frequency was observed for the (1-0-1) configuration, followed by
(2-1-2), (1-1-1), (2-2-1), and (1-2-1). Similar to the hard-core case, the soft-core frequency is
highest for the FCFC condition, followed by the CCCC, CSCS, and SSSS conditions.

Across all boundary conditions, maintaining a fixed and zero value for the parameter
px while increasing pz from 0.5 to 1 and 5 results in an increase in frequency. Conversely,
increasing px from 0 to 0.5 and up to 2 and varying pz leads to a similar increase in frequency.
The results underscore the fact that the parameter pz has a more significant influence on
the frequency parameter compared to px.

Table 8. Dimensionless fundamental frequency ω of square plates under various boundary conditions
(a/h = 10). Type B: soft core.

Boundary
Conditions

px pz 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

SSSS

0 0.5 1.5758 1.5299 1.4876 1.4372 1.4173
0 1 1.7263 1.6846 1.6405 1.5798 1.5619
0 5 1.8422 1.8421 1.8179 1.7541 1.7494

0.5 0.5 1.6232 1.5879 1.5507 1.4986 1.4828
0.5 1 1.7452 1.7137 1.6749 1.6146 1.6000
0.5 5 1.8401 1.8441 1.8228 1.7601 1.7570
2 0.5 1.7017 1.6887 1.6627 1.6085 1.6006
2 1 1.7762 1.7652 1.7382 1.6791 1.6714
2 5 1.8354 1.8476 1.8323 1.7718 1.7720
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Table 8. Cont.

Boundary
Conditions

px pz 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

CSCS

0 0.5 2.2702 2.1949 2.1305 2.0639 2.0299
0 1 2.4889 2.4125 2.3402 2.2608 2.2229
0 5 2.6799 2.6551 2.6007 2.5159 2.4809

0.5 0.5 2.3500 2.2855 2.2237 2.1542 2.1209
0.5 1 2.5258 2.4619 2.3942 2.3144 2.2771
0.5 5 2.6796 2.6609 2.6105 2.5266 2.4932
2 0.5 2.4776 2.4404 2.3886 2.3152 2.2845
2 1 2.5842 2.5476 2.4923 2.4127 2.3788
2 5 2.6778 2.6715 2.6289 2.5474 2.5171

CCCC

0 0.5 2.7695 2.6701 2.5885 2.5124 2.4665
0 1 3.0378 2.9312 2.8358 2.7455 2.6897
0 5 3.2917 3.2401 3.1577 3.0599 2.9948

0.5 0.5 2.8767 2.7864 2.7043 2.6239 2.5747
0.5 1 3.0912 2.9977 2.9053 2.8136 2.7552
0.5 5 3.2937 3.2499 3.1717 3.0748 3.0107
2 0.5 3.0449 2.9835 2.9084 2.8226 2.7694
2 1 3.1743 3.1116 3.0305 2.9380 2.8782
2 5 3.2958 3.2674 3.1982 3.1032 3.0417

FCFC

0 0.5 2.8951 2.7859 2.6987 2.6225 2.5716
0 1 3.1767 3.0559 2.9515 2.8615 2.7965
0 5 3.4568 3.3879 3.2907 3.1924 3.1092

0.5 0.5 3.0140 2.9116 2.8210 2.7402 2.6828
0.5 1 3.2383 3.1298 3.0265 2.9346 2.8647
0.5 5 3.4606 3.3999 3.3068 3.2091 3.1264
2 0.5 3.1988 3.1233 3.0364 2.9495 2.8830
2 1 3.3337 3.2555 3.1613 3.0677 2.9926
2 5 3.4659 3.4215 3.3372 3.2410 3.1601

3.2.2. Buckling Analysis of Multi-Directional Sandwich Plates

Likewise, a buckling analysis was carried out for a multi-directional FG skin paired
with a homogeneous hard core under various boundary conditions, incorporating different
values of px and pz. Across all boundary conditions, the (1-2-1) scheme consistently demon-
strated the highest frequency, followed by (2-2-1), (1-1-1), (2-1-2), and (1-0-1). The results
are presented in Table 9.

The buckling load undergoes a notable decrease when px remains at zero and pz varies
from 0.5 to 5. Additionally, as both px and pz are incrementally adjusted, the buckling load
decreases, with pz exerting a more significant influence than px. The maximum buckling
load was observed under the FCFC boundary condition, followed by the CCCC, CSCS, and
SSSS conditions.

The buckling analysis of a multi-directional FG skin with a homogeneous soft core was
conducted using similar parameter values. The results are presented in Table 10. Across all
boundary conditions, the (1-0-1) scheme consistently exhibits the highest buckling load,
followed by (2-1-2), (1-1-1), (2-2-1), and (1-1-1). The buckling load experiences a significant
increase when px is maintained at zero and pz varies from 0.5 to 5. Furthermore, incre-
mental adjustments in both px and pz result in an increased buckling load. The maximum
buckling load was observed under the FCFC condition, followed by the CCCC, CSCS, and
SSSS conditions.
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Table 9. Dimensionless buckling load N of square plates under various boundary conditions (ξ1 = 1,
a/h = 10). Type A: hard core.

Boundary
Conditions

px pz 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

SSSS

0 0.5 3.6822 3.9704 4.2182 4.4049 4.6084
0 1 2.5836 2.9200 3.2324 3.4747 3.7533
0 5 1.3291 1.5213 1.7898 2.0560 2.3673

0.5 0.5 3.3400 3.6008 3.8391 4.0419 4.2426
0.5 1 2.3939 2.6942 2.9871 3.2338 3.5029
0.5 5 1.3132 1.4882 1.7421 2.0049 2.3062
2 0.5 2.6494 2.8539 3.0711 3.3002 3.5003
2 1 2.0109 2.2382 2.4909 2.7428 2.9958
2 5 1.2799 1.4213 1.6460 1.9017 2.1826

CSCS

0 0.5 6.8605 7.3953 7.8497 8.1872 8.5586
0 1 4.8432 5.4737 6.0517 6.4943 7.0067
0 5 2.5016 2.8785 3.3849 3.8795 4.4612

0.5 0.5 6.2201 6.7143 7.1567 7.5246 7.8959
0.5 1 4.4844 5.0537 5.5993 6.0509 6.5494
0.5 5 2.4677 2.8154 3.2956 3.7841 4.3477
2 0.5 4.9270 5.3365 5.7488 6.1675 6.5439
2 1 3.7581 4.2053 4.6824 5.1459 5.6195
2 5 2.3949 2.6880 3.1153 3.5909 4.1184

CCCC

0 0.5 9.2373 9.9552 10.5596 11.0035 11.4961
0 1 6.5513 7.4037 8.1779 8.7647 9.4479
0 5 3.3941 3.9213 4.6095 5.2737 6.0585

0.5 0.5 8.3721 9.0459 9.6401 10.1254 10.6224
0.5 1 6.0623 6.8391 7.5736 8.1735 8.8414
0.5 5 3.3439 3.8349 4.4887 5.1449 5.9063
2 0.5 6.6247 7.2047 7.7675 8.3230 8.8337
2 1 5.0717 5.6980 6.3470 6.9651 7.6049
2 5 3.2349 3.6606 4.2447 4.8841 5.5985

FCFC

0 0.5 10.8692 11.7121 12.4173 12.9312 13.5048
0 1 7.7331 8.7391 9.6467 10.3296 11.1282
0 5 4.0148 4.6515 5.4666 6.2465 7.1712

0.5 0.5 9.8488 10.6484 11.3463 11.9092 12.4918
0.5 1 7.1529 8.0755 8.9396 9.6388 10.4219
0.5 5 3.9521 4.5488 5.3239 6.0947 6.9926
2 0.5 7.7875 8.4932 9.1618 9.8086 10.4127
2 1 5.9771 6.7339 7.5029 8.2251 8.9797
2 5 3.8149 4.3412 5.0358 5.7873 6.6313

Table 10. Dimensionless buckling load N of square plates under various boundary conditions (ξ1 = 1,
a/h = 10). Type B: soft core.

Boundary
Conditions

px pz 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

SSSS

0 0.5 3.9158 3.6018 3.3496 3.1017 2.9770
0 1 4.9809 4.5812 4.2423 3.8888 3.7302
0 5 6.3116 5.9908 5.6258 5.1429 4.9673

0.5 0.5 4.2926 3.9860 3.7234 3.4429 3.3158
0.5 1 5.2096 4.8331 4.4959 4.1236 3.9641
0.5 5 6.3410 6.0394 5.6855 5.2028 5.0310
2 0.5 5.0219 4.7482 4.4749 4.1298 3.9982
2 1 5.6446 5.3254 5.0012 4.5931 4.4361
2 5 6.3969 6.1343 5.8037 5.3219 5.1589
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Table 10. Cont.

Boundary
Conditions

px pz 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

CSCS

0 0.5 6.9651 6.3522 5.8856 5.4808 5.2319
0 1 8.8733 8.0495 7.3940 6.8224 6.4704
0 5 11.4549 10.6674 9.8643 9.0650 8.5544

0.5 0.5 7.7135 7.0766 6.5604 6.0956 5.8111
0.5 1 9.3552 8.5479 7.8692 7.2585 6.8763
0.5 5 11.5328 10.7791 9.9902 9.1863 8.6741
2 0.5 9.1297 8.5002 7.9139 7.3319 6.9766
2 1 10.2468 9.5073 8.8092 8.1261 7.6953
2 5 11.6792 10.9948 10.2374 9.4264 8.9138

CCCC

0 0.5 9.0716 8.2251 7.6020 7.1061 6.7586
0 1 11.5691 10.3968 9.4986 8.8027 8.2856
0 5 15.1311 13.9037 12.7229 11.7333 10.9025

0.5 0.5 10.1175 9.2048 8.4892 7.9139 7.4925
0.5 1 12.2651 11.0898 10.1375 9.3863 8.8056
0.5 5 15.2571 14.0721 12.9036 11.9041 11.0635
2 0.5 12.0741 11.1201 10.2665 9.5369 8.9691
2 1 13.5375 12.4139 11.3971 10.5446 9.8545
2 5 15.4932 14.3959 13.2576 12.2414 11.3854

FCFC

0 0.5 10.4404 9.4306 8.7022 8.1545 7.7373
0 1 13.3239 11.9014 10.8357 10.0699 9.4331
0 5 17.5759 16.0092 14.5512 13.4495 12.3755

0.5 0.5 11.6978 10.5847 9.7294 9.0892 8.5673
0.5 1 14.1765 12.7309 11.5854 10.7529 10.0252
0.5 5 17.7400 16.2199 14.7711 13.6554 12.5642
2 0.5 14.0361 12.8349 11.7854 10.9667 10.2366
2 1 15.7264 14.3105 13.0605 12.1066 11.2195
2 5 18.0477 16.6251 15.2018 14.0618 12.9413

4. Conclusions

The comprehensive investigation outlined in this paper provides pivotal insights into
the buckling and free vibration behavior of multi-directional FG sandwich plates under
a spectrum of boundary conditions. Our rigorous validation process and in-depth analyses
offer a clear understanding of the materials’ responses across various load applications.
The consistency between the results of different shape function models underscores the re-
liability of our analytical approach. The implications of this research are particularly salient
for design engineers and materials scientists focusing on the development of unidirectional
and multi-directional FG sandwich panels custom-designed for specialized applications.

The primary conclusions drawn from this study can be summarized as follows:

1. The boundary condition of FCFC invariably results in the highest frequency and
buckling load values when compared to other tested conditions such as CCCC, CSCS,
and SSSS. Noteworthy is the observation that the transverse grading parameter pz
demonstrates a more significant effect than the longitudinal grading parameter px on
these outcomes.

2. In the context of sandwich plates with a hard core, an increment in the values of both
px and pz is associated with a reduction in the plates’ natural frequency and buckling
load. This situation is reversed for materials with a soft core, where an increase in px
and pz corresponds to a decrease in their frequency and buckling load. This inverse
relationship is due to the increased presence of ceramic constituents in the FG material,
which are introduced as the grading parameters px and pz rise, thereby enhancing
the natural frequency due to their higher stiffness relative to metals.

3. Structural configurations that have a thicker core are shown to yield a higher stiffness.
Specifically, for cores predominantly made of ceramic, enhancing the ceramic layer
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thickness effectively introduces additional stiffness akin to rigid plates, which elevates
their natural frequencies. In contrast, for metal-based core configurations, an increase
in metal core thickness imparts greater flexibility to the structure, leading to a decrease
in its natural frequencies.

The insights gleaned from our research extend the existing knowledge base and
provide a robust foundation for the optimized design of FG sandwich plates, catering to the
evolving demands of advanced engineering applications. We anticipate that our findings
will spur further studies, potentially exploring even wider parameter spaces and boundary
conditions to enrich our understanding of the structural applications of FG materials.
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Abstract: Horizontally curved steel I-beams exhibit a complicated mechanical response as they
experience a combination of bending, shear, and torsion, which varies based on the geometry of the
beam at hand. The behaviour of these beams is therefore quite difficult to predict, as they can fail
due to either flexure, shear, torsion, lateral torsional buckling, or a combination of these types of
failure. This therefore necessitates the usage of complicated nonlinear analyses in order to accurately
model their behaviour. Currently, little guidance is provided by international design standards in
consideration of the serviceability limit states of horizontally curved steel I-beams. In this research, an
experimentally validated dataset was created and was used to train numerous machine learning (ML)
algorithms for predicting the midspan deflection at failure as well as the failure load of numerous
horizontally curved steel I-beams. According to the experimental and numerical investigation, the
deep artificial neural network model was found to be the most accurate when used to predict the
validation dataset, where a mean absolute error of 6.4 mm (16.20%) was observed. This accuracy far
surpassed that of Castigliano’s second theorem, where the mean absolute error was found to be equal
to 49.84 mm (126%). The deep artificial neural network was also capable of estimating the failure
load with a mean absolute error of 30.43 kN (22.42%). This predictive model, which is the first of its
kind in the international literature, can be used by professional engineers for the design of curved
steel I-beams since it is currently the most accurate model ever developed.

Keywords: structural engineering; structural steel; curved beams; machine learning; finite element
modelling

1. Introduction

Although curved beams have been in existence for centuries, minimal guidance has
been available on the design of curved steel elements. The fabrication of curved steel beams
began in the 19th century when steel members were cast in a curved profile or built up
from components into a curved profile. Fabrication advanced, utilising three-roll pressing
or induction bending in situations where residual stresses were particularly significant
or smaller radii were required [1]. However, the majority of steel used for construction
is formed through the use of roller bending, which is a cold process. When curving open
sections using cold processes, the flanges exert a significant force on the web, which could
lead to local buckling. Therefore, additional rolls are provided inside the tension flange for
sections that are susceptible to local buckling (Figure 1).

Horizontally curved beams experience significant residual stresses due to the manner
in which they are formed. A steel member rolled at room temperature experiences me-
chanical residual stresses (compressive and tensile) that reduce the ultimate strength of
the member by increasing its flexibility, which subsequently causes a decrease in buckling
strength [2]. Tensile residual stresses are particularly detrimental as they are often the cause
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of fatigue failure and stress corrosion cracking, whereas compressive residual stresses can
be somewhat beneficial as they can mitigate the origination and propagation of cracks [3].

 

 

Figure 1. Additional rolls to prevent web buckling on an I-section [4].

The main challenge encountered with horizontally curved beams is that due to the
geometry of the beam when normal loads are applied, the beam experiences a complex
combination of bending, shear, and torsion simultaneously. Torsional moments can be
visualised from the deflected shape as the compression flange tends to deflect laterally
away from the centre of curvature [5]. When bending and torsional moments are applied
simultaneously to a beam, the coupling of these forces tends to reduce the carrying capacity
of the member. Research has found that the behaviour of horizontally curved beams is
dependent on the R/L ratio, which can also be represented as the span angle. It has been
noted that when the span angle is less than 1◦, the beam responds similarly to a straight
beam and is dominated by flexure (bending). When the span angle is larger than 20◦, the
beam behaviour of the beam is primarily dominated by torsion. When the span angle is
between 1◦ and 20◦, both bending and torsion significantly impact the behaviour of the
beam [6].

In straight I-beams, lateral torsional buckling is easily observable through the lateral
displacement and rotation of the member. In curved I-beams, however, this behaviour is
always present due to the torsional moments experienced. This behaviour was termed
lateral–torsional–vertical behaviour by Lee, et al. [7]. Therefore, due to initial curvature,
similar to initial out-of-straightness in columns, bifurcation-type lateral torsional buckling
may not be observed in curved steel I-beams. However, it has been noted that, as seen
with straight beams, the flexural strength of curved beams decreases for members that
are susceptible to lateral torsional buckling [6]. The effect of lateral torsional buckling
is negligible when the angle between torsional restraints is less than 22.5◦. Should this
angle be larger than 22.5◦, the American Institute of Steel Construction (AISC) recommends
that the beam be handled as a straight beam with an adjusted lateral–torsional buckling
modification factor that accounts for the curvature.

Over the years, numerous researchers have attempted to provide analytical formulae
for horizontally curved members; however, very few have focused on equations regarding
deflection and rotation. Wong [8] modified Castigliano’s second theorem, which was origi-
nally developed for straight beams, and made it applicable to horizontally curved beams.
Castigliano’s second theorem is a strain energy method that is used to calculate deflection.
The equation generated can be seen in Equation (1). Cd can be calculated from Figure 2. It
is important to note here that Equation (1) is limited to beams that are fixed on both sides
and a point load is applied at the centre point. Dahlberg [9] created various equations that
can be used for various boundary and load conditions. However, these equations are quite
difficult to implement and are therefore rarely used in practice. Furthermore, Dahlberg [9]
did not compare the formula with experimental or finite element results.

Δ0.5θ =
Pr3

EI
Cd (1)
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Figure 2. Variation of deflection coefficients with span angle for curved beams loaded with a
concentrated load [8].

Castigliano’s second theorem can also be applied to determine the rotation of curved
beams; however, this is often even more tedious than the equations necessary for deflec-
tion. However, a simplified equation is provided by AISC (Equation (2)). The symbol h0
represents the height of the member and Δmax represents the maximum displacement of
the member [6].

This equation is derived using the M/R method, which is used extensively in the
design of horizontally curved beams, where the curved beam is modelled as a straight
beam with a length equal to the curved member length. The torsional moment is then
accounted for by a separate equation:

θmax = tan−1
(

2Δmax

h0

)
(2)

Various assumptions have been during the derivation of this formula, including that
the thickness of each plate element is small relative to the width, which is, in turn, small
relative to the span. The stresses due to warping are assumed to be negligible.

Modelling curved beams in FEM causes further complexities. The majority of com-
mercially available software applications model curved beams as a series of straight beams,
which provides sufficient accuracy for most design purposes. If the model experiences
significant nonlinear behaviour, a convergence study is required in order to optimise the
number of elements required, while the development of torsion further complicates the
analysis process. Conventional beam finite elements (FEs) cannot be used to model horizon-
tally curved steel I-beams that experience torsion, due to the existence of warping torsion.
Conventional beam FEs account only for St Venant stiffness, which causes numerical er-
ror regarding computing the torsional deformation. Current beam FEs that incorporate
warping stiffness are available; however, these are rarely incorporated in commercially
available software and also tend to be less accurate. Three-dimensional FEs such as shell or
solid elements are commonly used by researchers attempting to model the behaviour of
curved beams. These elements accurately represent torsional behaviour without the need
for numerous torsional constants. Previous researchers found that using solid FEs paired
with nonlinear analyses led to accurate estimates of experimental results for both ultimate
load and midspan deflection ([10–13]).
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The combination of bending and shear as well as displacements and twisting rotations
causes second-order bending actions in the plane of a curved I-beam. With an increase in
load, these interactions grow rapidly and may ultimately cause early nonlinear behaviour
and yielding, leading to reductions in the ultimate load-carrying capacity of the beam. This
therefore necessitates the usage of nonlinear analyses when analysing horizontally curved
beams, as opposed to general static (linear) analysis. Given the complexity of the problem,
the use of FEs that are integrated with 3D numerical material models is also recommended,
as in this research work.

2. Machine Learning Algorithms

This section briefly presents the various ways machine learning (ML) has been used
to develop formulae that allow the design or mechanical investigation of civil engineer-
ing structures. ML and artificial intelligence (AI) have been implemented over recent
decades in different fields as efficient tools used to predict analysis outputs for engineering
problems that are deemed computationally demanding and highly complicated to solve
analytically. The use of ML has largely eliminated the need for large numerical analysis,
as it contains the ability to provide adequate estimates of the desired outputs. The main
issue at hand, however, is that to train an ML algorithm, a large enough dataset is required.
Therefore, the primary task of the majority of research work at this stage is the generation
of datasets for various reinforced concrete and steel-related problems using either physical
or validated numerical experiments. A meta-analysis of various case studies was pre-
sented by Markou, et al. [14]; however, the current paper focused on a single mechanical
response problem in an attempt to provide a solution to a problem that has never been
solved in the past. It is important to note that all ML algorithms that were used to perform
the training, testing, and validation for the needs of this research work can be found on
GitHub (https://github.com/nbakas/nbml/, accessed on 21 June 2023), through down-
loading nbml freeware. Furthermore, the datasets that were developed for the needs of
this research work can be found through the following link (https://github.com/nbakas/
nbml/tree/a0d27c94dd590688815180ebf6428963a24ca245/datasets, accessed on 1 July
2024), whereas the proposed models can be developed directly by the reader.

Various ML algorithms were used in this research, namely linear regression (LR),
polynomial regression with hyperparameter tuning (POLYREG-HYT), hyperparameter tun-
ing of extreme gradient boosting (XGBoost-HYT-CV), and parallel deep learning artificial
neural networks with hyperparameter tuning (DANN-MPIH-HYT). The LR method was
used as a point of comparison for the other ML algorithms (Markou, Bakas, Papadrakakis,
and Chatzichristofis [14]).

POLYREG-HYT is useful for generating relatively accurate closed-form formulae and
is applied to develop predictive models in higher-order classes. This relatively simplistic
method provides a formula based on the nonlinear combination of all independent vari-
ables [14]. This model is based on the creation of nonlinear terms that are based on the
independent variables up to the third degree. The algorithm then selects the nonlinear
features that correspond to the minimum error. Originally, this methodology was utilised
by Gravett, et al. [15], who made use of a simplistic approach in determining the number
of features to use during training. Thereafter, that algorithm was improved and the use of
hyperparameter tuning was introduced, as shown in Markou, Bakas, Papadrakakis, and
Chatzichristofis [14], showcasing the proposed ML algorithm that has been used for the
needs of this research work. The improved algorithm is outlined in Algorithm 1.

XGBoost-HYT-CV is a modification to the currently open-source extreme gradient
boosting algorithm. The original XGBoost is a gradient-boosting library for ML problems
such as classifying and regressing. The algorithm implements the gradient boosting frame-
work, which is designed to be fast and scalable, making it suitable for large datasets [14].
For improving the current XGBoost algorithm, hyperparameter tuning was used. This
tuning was found to exhibit accurate results compared to those of deep learning and require
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less computing demand [14]. One benefit of this algorithm is its ability to locate and replace
missing values in the training and testing datasets.

Algorithm 1: Feature selection algorithm for polynomial regression [14]

Data: X, y, m f (maximum number of features)
Result: Initialize [o] = 1 with the constant term ∈ [p]
Solve Linear System X′ × a = y, where X′ ⊂ X, with [o] columns.
Compute regression errors e1.
Set as optimal error ê ← e1.
Set as optimal indices [ô]← [o].
for i ∈ [1, 2, . . . , l] do

repeat
Select an index d ∈ [p] randomly.
if d ∈ [o] then

r ← U (0, 1)
if r < 1

2 then
Select randomly od ∈ [p] : od �∈ [o]
[o]← ([o] \ d) ∪ od;

else
[o]← [o] \ d;

end

else
if o < m f then

[o]← [o] ∪ d;
else

Select randomly od ∈ [o]
[o]← ([o] \ od) ∪ d;

end

end

until rank(X′) ≡ o;
Solve Linear System X′ × a = y.
Compute regression error ei.
if ei < ê then

ê ← ei
[ô]← [o]

else
[o]← [ô]

end

end

The final algorithm to be engaged was DANN-MPIH-HYT, which has the ability to
train on both small and large datasets through the use of parallel processing. The algorithm
was programmed to train on both computer processing units (CPUs) and graphics pro-
cessing units (GPUs) and the use of distributed computations was also provided. This led
to faster training and testing times when using the algorithm, as deep learning is known
to be particularly slow when dealing with training processes, especially in cases where
large datasets are used [14]. A combination of Horovod with MPI was used to optimise
the numerical procedure. The Horovod library was implemented for multi-GPU training.
Using Horovod, one is able to take a single GPU training script and run it across numerous
GPUs in parallel. Through the use of message-passing interface (MPI) commands, each
process is initialised and assigned its MPI rank in a straightforward manner, which is
achieved in fewer code changes compared with other approaches. Various experimental
algorithms were tested by Markou, Bakas, Papadrakakis and Chatzichristofis [14] on the
Cyclone Supercomputer, utilising PyTorch for computer vision as well as regression tasks,
highlighting the efficiency of data parallelism.
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ML combined with FEM modelling has been used to create accurate formulae for
various engineering applications in recent years. Markou and Bakas [16] created formulae
to determine the shear capacity of concrete slender beams without stirrups. In their research
work, a total of 35,849 beams were created and four ML algorithms were used, namely
linear regression, polynomial regression, XGBoost, and deep learning neural networks. In
that study, it was noted that the XGBoost algorithm was the most accurate, boasting an
error of 5.82%. A similar methodology was followed by [17–20], where design formulae
and predictive models were developed in relation to RC and steel structural problems.
In this context, the current research work validates numerical models through the use
of results from experiments conducted on curved steel I-beams at the laboratories of the
University of Pretoria, and thereafter, the development of a relatively large dataset through
nonlinear analyses is described. The next step will involve the development of the proposed
predictive models that are validated and presented in the present paper.

3. Experimental Investigation

Experimental studies were performed in order to validate the finite element models
that were used to develop the datasets for the needs of this research work. Experiments
were also used to determine the appropriate finite element type that would yield the most
accurate results regarding the deflection and rotation of the I-beam. The experiments
involved the investigation of a horizontally curved steel I-beam (IPE 100) where the two
ends were fully fixed and a vertically upward load was applied at the midspan. The results
measured were vertical deflection at the midspan, rotation at the midspan and quarter
points, and strains at the midspan and the support.

The beam that was analysed was a 3.5 m long IPE100 beam. This beam was selected to
minimise the applied forces in order to maintain a safe working environment. A simplified
schematic outlining how the beam was supported and loaded can be seen in Figure 3.

Figure 3. Basic schematic of the curved beam experimental setup (all dimensions are in millimetres).

To create a fully fixed support, the cross-section of the IPE 100 beam was welded onto
two 12 mm thick plates. These 12 mm thick plates were then welded onto a stiff beam, which
was then bolted onto the test floor using M24 Gr8.8 bolts. The entire system was assumed
rigid and minimal deflections and rotations were expected at this point. Additional linear
variable differential transformers (LVDTs) were placed at the supports. A schematic of the
support conditions as well as a photograph can be seen in Figures 4 and 5, respectively.
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Figure 4. Schematic of the experiment with fixed support (all dimensions are in millimetres).

 

Figure 5. Experiment with fixed support.

A simple load application mechanism was used, which allowed a quicker and easier
test set-up. The beam was loaded with a 40 mm steel bar that had a flat edge. This flat
edge was loaded onto the beam using an overhead crane. The load cell then calculated the
load experienced by the beam every 100 milliseconds, which was seen to provide sufficient
data for analysis purposes. The loading equipment had a capacity of 50 tonnes, which was
sufficient for the expected failure load of the beam. The steel bar also allowed the beam to
rotate freely at the point of load application, which was required given the large expected
rotations of this horizontally curved beam.

LVDTs were used to measure beam deflection only in the vertical direction. Two
different LVDT types were used, one with a 250 mm range, which was placed at the
supports and the other with a 1000 mm range, which was placed at the midspan. The
LVDT at the midspan was placed 160 mm away from the point of load application so
measurements could be taken at the same position as the strain gauges. The strain gauges
were offset in order to not be influenced by the applied point load. LVDTs were used due
to their high accuracy and good long-term stability as opposed to potentiometers, which
have lower accuracy and precision but are typically more versatile. A schematic of the
placement of LVDTs can be seen in Figure 6.

Inclinometers were used to measure the rotation along the beam as well as across the
beam. Two dual-axis inclinometers were used. The inclinometers used made use of an
electrolytic level which was capable of measuring inclination along two axes (pitch and
roll). One inclinometer was placed 100 mm from the point of load application but on the
opposite half of the beam from where the LVDT and strain gauges were placed, and the
other was placed at the quarter point of the same half. A schematic outlining the position
of the inclinometers can be seen in Figure 7.
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Figure 6. Schematic indicating points of displacement measurements (all dimensions are in millimetres).

Figure 7. Schematic indicating points of rotation measurements (all dimensions are in millimetres).

The majority of the setup of the instrumentation involved accurately placing the strain
gauges. Strain gauges are very sensitive. Therefore, the surface where a strain gauge is
applied is required to be extremely smooth and free of all impurities prior to the placement
of the strain gauge. The placement of these strain gauges was critical so that comparison
between the strain gauge and the FE analysis could be as accurate as possible. This was
particularly true for the strain gauges placed at 45◦, which were required to accurately
measure torsional strain within the beam. A total of 16 strain gauges were used to measure
the strain at various points on one half of the beam. At the midspan, only longitudinal
strain gauges were provided at the top and the bottom flange. These longitudinal flanges
were placed at the far edge of the beam to read the maximum longitudinal strain at
the midspan. The same setup was followed at the support, which led to another four
longitudinally placed strain gauges being placed at this point. Two strain gauges were also
placed transversely at the top and bottom flanges to investigate the shear flow in the beam.
A further two vertical strain gauges were placed on either side of the web to measure the
shear flow of the beam across the web. Four diagonal strain gauges were placed to measure
the torsional stresses experienced at these points. A schematic outlining the position of the
strain gauges can be seen in Figure 8.

All instrumentation was connected to an HBX Quantum logger. This logger allowed
conversion from voltage to the appropriate units for the various instrumentation after
calibration (e.g., millimetres for the LVDT, kilonewtons for the load cell, and microme-
tres/metres for the strain gauges). During the experiment, the load was applied to the
beam in increments up to the final failure load past the point of yielding. During loading, a
video was taken to record the experiment, which was used for verification when analysing
the results. Photos were then also taken after the final load was applied and yielding had
been experienced for further analysis (Figure 9).
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Figure 8. Schematic indicating points of strain measurements (all dimensions are in millimetres).

 

Figure 9. Deflected shape of the beam during the loading phase.

4. Analysis of Experimental Results

During testing, a total of five variables were measured. These variables were the
load applied at the midspan, the displacement, the tilt/rotation, and the strain. The initial
readings prior to the load application were taken as a reference point for all future readings.
As previously mentioned, the load was applied incrementally in steps of 3 kN. This was
carried out so it could be accurately determined at what load yielding occurred (through
measuring permanent deformation). It was noted that after the 12 kN load was removed,
permanent deformation occurred at the midpoint of the beam. The deflection for this load
was approximately 55 mm.
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The deflection measured at the supports was negligible, reaching up to 0.07 mm
(upwards). This was seen as negligible and therefore was not factored into the calculations
of the midspan deflection. Figure 10 shows the load–deflection curve of the beam. Results
showed that the beam deflected linearly up to 55.05 mm at a load of 12.42 kN. The experi-
ment was stopped right at the point of yielding; therefore, a plateau is not indicated in this
graph, which would be a further indication that yielding had occurred.

Figure 10. Experimental beam load–deflection curve (midspan).

When investigating the tilt results, errors were noted. The results showed that tilt
did not consistently increase as load increased. At some points, a decrease in tilt was
measured with an increase in load. This can be seen in Figure 11, where it can be seen that
as the load increased from 2 kN to 4 kN, the tilt was measured to have decreased slightly.
Practically, this is not possible. It is believed that this error was due to incorrect use of
the measuring apparatus. The apparatus used to measure tilt made use of an electrolytic
level. Electrolytic levels are typically poor when it comes to dynamic/cyclical loading,
due to the conductive fluid found within the sealed glass. These results can therefore be
used to obtain a rough estimate of how tilt increases as the load increases; however, these
results cannot be used to determine the accuracy of FE models or analytical formulae. A
line of best fit has been included in Figure 11 for further interpretation, which shows that
tilt increased as load increased.

Figure 11. Experimental beam load–tilt diagram.
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The strain results were quite interesting and showed the implication of the support
conditions utilised. The support was intended to be fully fixed; however, practically,
the support behaved in a way between that of a fully fixed connection and a torsionally
pinned connection, as was seen with the strain gauge results. The strain gauge pattern was
symmetrical with the cross section (both vertically and horizontally); however, the results
were not seen to be perfectly symmetrical. The major reason for the discrepancies was most
likely to have been due to inaccuracies during the setting out of the strain gauges. Material
and geometric imperfections also played a role. The strain gauge results can be seen from
Figures 12–14.

Figure 12. Graphical summary of experimental beam flange longitudinal strain gauge results.

Figure 13. Graphical summary of experimental beam flange transverse strain gauge results.
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Figure 14. Graphical summary of experimental beam 45◦ web strain gauge results.

5. Comparison of Experimental Data with Finite Element Analysis Results

Various FE models were used and compared to determine which model most accu-
rately represented the behaviour of the experimental beam. The focus was to determine the
optimum FE model to be used for the development of the datasets. The datasets were used
to train various ML algorithms for the development of the proposed predictive models
related to the calculation of the ultimate strength of curved steel I-beams that are fixed at
their ends and the respective deflection.

CivilFEM 2021 was used to develop the numerous FE meshes that were used to
construct the dataset. This software was selected due to its interface, which allowed the
creation of curved steel I-beam meshes in an automated manner. Solid and shell FEs were
considered in this research work, where the mesh size was determined based on a previous
research study where a mesh sensitivity analysis was conducted by the authors [21]. Linear
and quadratic elements were also considered for each of the FEs used to reproduce the
experimental results. It is important to note at this stage that [21] used experimental results
found in the literature to calibrate their model that involved steel I-beams with a different
support system compared with the fixed-end beams that are investigated herein. That
pilot project showed that hexahedral isoparametric FEs were able to accurately reproduce
experimental results [21].

Therefore, a total of four models were created for the needs of this research work,
namely, a linear solid element, a quadratic solid element, a linear shell element, and a
quadratic shell element. All material-related parameters were kept constant between the
four models to maintain consistency. A typical nonlinear material model with anticipated
bilinear behaviour was assumed. The hardening type selected was isotropic, indicating
that yielding occurred when the effective or equivalent stress was equal to the specified
yield stress. This selected yielding criterion was set to be that of von Mises. Furthermore,
the material properties were assumed to be that of an S355 steel material (355 MPa yield
stress, 210 GPa elastic modulus, a Poisson ratio of 0.3, and a density of 7850 kg/m3). The
experimental deflection and rotation at the midspan were then compared with the midspan
deflection and rotation calculated using the various FE models. Analytical formulae were
also included for comparative purposes.

Figure 15 shows that the linear solid FE derived the worst prediction when estimating
midspan deflection. The analytical method, Castigliano’s second theorem, was also unable
to accurately represent the behaviour of the beam and performed quite poorly compared
with the more advanced FE models. The quadratic solid model most accurately calculated
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the midspan deflection, with an average error of only 1.83 mm. A summary of the computed
mean absolute error (MAE) can be seen in Table 1.

Figure 15. Load–deflection graph displaying experimental deflection results, FE results, and results
obtained with the analytical formula.

Table 1. Mean absolute error of the FEM deflection estimate and Castigliano’s theorem compared
with the experimental data.

Deflection Estimation Method MAE

Linear solid finite element model 18.64 mm

Quadratic solid finite element model 1.83 mm

Linear shell finite element model 2.12 mm

Quadratic shell finite element model 2.33 mm

Castigliano’s theorem 9.91 mm

Furthermore, the resulting section rotations can be seen in Figure 16. Similar to
the deflection results, experimental data and the results derived from FE analyses were
compared with those of a commonly used analytical method, as discussed previously
(Equation (2)). The experimental deflection was used as an input to achieve the highest
accuracy possible when implementing the analytical method. Due to the fact that solid
FEs do not contain rotational degrees of freedom, the rotation was calculated from first
principles through making use of the vertical deflection at opposite ends of the bottom
flange and using trigonometry to calculate the rotation. This method only holds given that
the cross-section does not warp significantly. From the graphic, it was noted that the linear
solid FEs provided the least accuracy, underestimating the midspan tilt quite significantly.

The M/R performed slightly better compared with the linear solid Fes; however,
these results were still exceedingly conservative compared with the more advanced FE
models. The more advanced FE models correlated well with the line of best fit of the
experimental data. However, it seems the quadratic shell model was more accurate up
until approximately 10 kN. From 10 kN to failure, the linear shell and the quadratic solid
models both displayed lower errors compared with the experimental data. A summary of
error metrics (MAE) can be seen in Table 2.
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Figure 16. Load–rotation graph displaying experimental, FE, and the M/R analytical formula results.

Table 2. Mean absolute error of FEM rotation estimate and the analytical formula for experimen-
tal data.

Rotation Estimation Method MAE

Linear solid finite element model 4.98◦

Quadratic solid finite element model 1.31◦

Linear shell finite element model 1.52◦

Quadratic shell finite element model 1.33◦

M/R method 2.31◦

It is therefore concluded that FE models with the numerical modelling technique as
outlined in this section are capable of accurately representing the behaviour of horizontally
curved steel I-beams. These models have also been shown to outperform quite significantly
the existing analytical formulae for estimating both deflection and rotation. It was noted
that of all the FE models, the quadratic solid FE performed best in both estimating deflection
and rotation. Therefore, the numerical modelling technique outlined in this section was
utilised in developing a large dataset as described in the subsequent sections.

6. Numerical Campaign

A relatively large dataset consisting of 864 models was created through the use of
CivilFEM. A total of six sections were considered, namely, IPE100, IPE200, IPE300, IPE400,
IPE500, and IPE600. This was done to encompass the entire IPE section list according to
European standards. The variables considered were the moment of inertia around the x
axis (Ixx), the moment of inertia around the y axis (Iyy), polar moment of inertia (J), section
height (h), section width (b), section area (A), beam curved length (L), beam radius of
curvature (R), material yield strength (fy), material Young’s modulus (E), material Poisson
ratio (v), and material shear modulus (G). For each section considered, three yield strengths
were assumed (235 MPa, 275 MPa, and 355 MPa), to account for the various structural steel
strengths commercially available in South Africa. Three Young’s moduli were considered,
namely, 190 GPa, 200 GPa, and 210 GPa, to account for variances in material stiffness. The
Poisson ratio was fixed at 0.28 and the equation of G was calculated based on E and v. Four
lengths and four radii were considered per section in order to cover the broad range of
geometries that the proposed predictive models will be applicable for. Given that R/L ratios
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have been found to control the behaviour of curved beams, four specific R/L ratios were
considered on all beams, namely, R/L = 1, 2, 4, and 8. All the beams were fully fixed on both
ends and a load was applied normally downwards at the midspan.

To maintain consistency, the models were automatically generated using a Python
script within CivilFEM. This ensured all material and geometrical properties were main-
tained and only a single variable was modified, allowing automatic mesh generation. A
Python script was developed and optimised to ensure consistency and minimise running
time through decreasing the number of variables and the overall performance of the code.
The models all made use of quadratic solid elements with a mesh size of up to 50 mm. A
typical nonlinear material model with predicted bilinear behaviour was assumed. The
hardening type selected was isotropic, which indicates that yielding occurred when the
effective or equivalent stress was equal to the specified yield stress. This selected yielding
criterion was set to be that of von Mises.

Table 3 indicates different statistical parameters, including skewness. A value of 0
indicates that the dataset contained no skewness and had a perfectly normal distribution.
According to Aminu and Shariff [22], a range from −3 to 3 can be considered as a cutoff,
and based on this, the results show that the data were not significantly skewed. Kurtosis
is another parameter that assists further in determining whether a dataset is normally
distributed or not. This is performed by determining whether a dataset is “heavy-tailed”
or “light-tailed”. “Heavy-tailed” implies that a dataset contains numerous data points in
outlier positions, whereas a “light-tailed” dataset contains minimal to no outliers. Once
again, there is no accepted convention on what is deemed “heavy-tailed”; however, Aminu
and Shariff [22] state that a range from +10 to −10 is deemed light-tailed and contains
minimal outliers. In this context, it was observed that the dataset created for the needs of
this research work contained minimal outliers with a good distribution.

Table 3. Horizontally curved beam dataset descriptive statistics.

Mean Median STD Min Max Skewness Kurtosis

Ixx (mm4) 291,198,612 231,300,000 326,514,119 1,710,000 920,800,000 0.977 −0.455

Iyy (mm4) 12,720,819 13,180,000 1,1960,328 159,000 33,870,000 0.625 −0.960

J (mm4) 692,957 841,000 553,277 12,100 1,540,000 0.142 −1.343

h (mm) 349.80 400 172.05 100 600 −0.011 −1.284

b (mm) 150.59 180 58.02 55 220 −0.472 −1.181

A (mm2) 7490 8450 5048 1030 15,600 0.285 −1.223

L (m) 7.48 4 6.44 1 24 1.346 0.953

R (m) 27.99 16 35.26 1 192 2.653 8.242

Fy (MPa) 289.37 275 50.23 235 355 0.343 −1.543

E (GPa) 199.93 200 8.14 190 210 0.012 −1.491

The correlation matrix for the displacement dataset can be found in Figure 17a and for
the failure load dataset in Figure 17b. It was clear from the correlation matrix results that
all cross-sectional properties had a strong positive correlation with the midspan deflection
and the failure load. It was also clear that, of all the properties, the curved length had
the largest correlation with the midspan vertical deflection. This implies the potential to
translate to positive results in the sensitivity analysis; this is discussed in Section 7.
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(a) (b) 

Figure 17. Correlation matrix of (a) midspan deflection dataset and (b) failure load dataset.

7. Machine Learning Training and Testing

This section outlines how numerous ML algorithms were applied in order to create
formulae that can outperform current analytical methods used to estimate the deflection of
horizontally curved steel I-beams. The ML algorithms considered were linear regression
(LR), polynomial regression with hyperparameter tuning (POLYREG-HYT), deep artificial
neural networks with MPI, Horovod, and hyperparameter tuning (DANN-MPIH-HYT),
and extreme gradient boosting with hyperparameter tuning and cross-validation (XGBoost-
HYT-CV) [14]. It must be noted here that for the ML analyses performed, 85% of the dataset
was used to train the ML algorithm and 15% was used for testing. The performance of ML
algorithms varies; therefore, to quantify accuracy, numerous error metrics were considered.
The error metrics considered in this research work were the mean absolute percentage error
(MAPE), the mean absolute mean percentage error (MAMPE), the mean absolute error
(MAE), and the root-mean-square error (RMSE). The Pearson correlation coefficient was
also considered (R) for determining the similarity between the PV (predicted value) and the
DV (dependent variable). An in-depth discussion of the error metrics can be found in [23].

7.1. Proposed Predictive Models for the Case of Deflection

This section outlines the midspan deflection predictions provided by the various
ML algorithms. The numerically obtained error metrics were analysed to determine the
performance of the various proposed predictive models. The correlation for the train and
test datasets can be seen in Figures 18–21.

 

(a) (b) 

Figure 18. Correlation between the deflection determined using FEM and the deflection estimated
using LR (a) on the training dataset and (b) on the testing dataset.
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(a) (b) 

Figure 19. Correlation between the deflection determined using FEM and the deflection estimated
using POLYREG-HYT (a) on the training dataset and (b) on the testing dataset.

 

(a) (b) 

Figure 20. Correlation between the deflection determined using FEM and the deflection estimated
using the DANN-MPIH-HYT algorithm (a) on the training dataset (b) on the testing.

 

(a) (b) 

Figure 21. Correlation between the deflection determined using FEM and the deflection estimated
using the XGBoost-HYT-CV algorithm (a) on the training dataset (b) on the testing dataset.

LR and POLYREG-HYT are the only ML algorithms considered in this study that are
capable of providing closed-form formulae. Equation (3) shows the formula generated with
the LR algorithm, which can be used to estimate the vertical midspan deflection, whereas
Equation (4) provides the proposed predictive model derived using POLYREG-HYT. When
implementing the formulae, all cross-sectional properties are in mm/mm2/mm3/mm4,
and the span is given in m. The yield strength is provided in MPa and the Young’s modulus
in GPa.
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d = −2.9147× 10−8E− 08× Ixx + 6.085× 10−6 × Iyy + 7.153× J + 8.6563×
10−1 × h− 6.7409× 10−1 × b− 4.496× 10−2 × A + 1.1562× 101 × L− 1.1261× R+

5.1585× 10−2 × fy − 6.87948× 10−2E
(3)

d = −1.10850× 10−2 × h× L + 5.54753× L2 − 2.59341× 10−2 × b× L2+
8.71342× 10−1 × L + 4.36940× 10−1 × R− 3.72902× 10−4 × b2 + 7.64167×
10−5 × h× R2 + 4.14113× 10−7 × h× A× L + 1.20492× 10−1 × R2−
2.10080× 10−9 × J × L× fy + 2.36217× 10−8 × A2 × R + 8.06401× 10−3 × b× L×
R− 3.01987× 10−5 × A× L× R− 1.61891× L× R− 2.78160× 10−2 × L3−
3.98564× 10−4 × R3 − 4.35591× 10−9 × b× A2 − 6.98688× 10−4 × b× R2+
4.76077× 10−3 × L× R2 + 9.28207× 10−12 × Iyy × b× fy − 2.05690× 10−7 × A×
R× fy + 2.68695× 10−7 × h3 + 1.26135× 10−10 × Iyy × R2 + 2.50786× 10−5 × R2×
fy + 8.68248× 10−4 × L2 × fy + 6.78638× 10−11 × Iy × R× fy − 1.03722× 10−6×
h× b× fy + 1.76647× 10−5 × h× b× R− 3.55305× 10−7 × A× E2−
9.13425× 10−7 × h× fy

2 + 1.87704× 10−7 × h× A× E− 8.00661× 10−7 × h× A×
R + 4.02981× 10−6 × h× fy × E− 2.62557× 10−4 × L× R× fy − 1.01188× 10−2×
L2 + 1.18944× 10−6 × J × L2 − 7.59868× 10−10 × Iyy × L× E

(4)

Visually, it was difficult to discern which ML algorithm performed the best. Therefore,
as previously mentioned, numerous error metrics were used to measure the performance of
the various algorithms. Table 4 summarises the results. As can be seen, XGBoost-HYT-CV
was the most accurate proposed model when looking at the training dataset, whereas when
comparing the error metrics obtained from the testing dataset, that was not the case. The
DANN-MPIH-HYT proposed predictive model was found to be slightly more accurate. It
should also be noted that, even though DANN-MPIH-HYT was the most accurate in the
testing phase, this algorithm did require the longest computation time (27 times slower).

Table 4. Comparison of the ML algorithms trained on the deflection dataset.

Model Dataset R MAPE MAMPE MAE RMSE
Computation

Time (s)

LR Train 0.8934 225.93% 45.08% 17.6614 25.6709 0.0013

POLYREG-
HYT Train 0.9874 69.91% 13.90% 5.4447 9.0447 10.91

DANN-
MPIH-HYT Train 0.9950 39.64% 7.59% 2.9731 5.7272 2019.76

XGBoost-
HYT-CV Train 0.9968 22.97% 5.92% 2.3199 4.5566 75.27

LR Test 0.9064 168.22% 39.74% 17.1810 24.4716 0.00

POLYREG-
HYT Test 0.9905 70.38% 12.49% 5.3997 7.9865 0.00

DANN-
MPIH-HYT Test 0.9950 35.82% 8.04% 3.4776 5.8759 0.0004

XGBoost-
HYT-CV Test 0.9922 23.89% 8.44% 3.6504 7.2498 0.0033

Ultimately, it was apparent that accurate formulae can be created using ML algo-
rithms. A later section of this paper compares these results with out-of-sample data, further
validating the proposed predictive models’ ability to capture unknown results.

Sensitivity analyses were conducted on each of the independent variables to determine
which variable affected the dependent variable the most. This will assist future studies
in determining which variables to exclude in order to increase efficiency in the proposed
predictive models. This analysis also provides engineers with a deeper understanding of
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the behaviour of horizontally curved steel I-beams. Figure 22 summarises the findings of
the sensitivity analysis. As can be seen, the three most influential variables on midspan
vertical deflection were the curved length (L), the moment of inertia around the minor axis
(Iyy), and the radius of curvature (R). L was by far the most influential variable, according
to the obtained results. The cross-section area, cross-section width, and cross-section height
had practically no impact on the midspan deflection, according to the sensitivity analysis
performed for the needs of this research work related to the beam deflection.

Figure 22. Summary of sensitivity analysis findings (XGBoost-HYT-CV).

It is important to show here that the predictive models did not overfit and that the
solution obtained through the ML analysis led to an objective predictive model that did not
overfit. In addition to the validation presented in Section 8, Figure 23 shows the tuned cross-
validation histories for the DANN-MPIH-HYT and the XGBoost-HYT-CV ML algorithms.
It was evident that the algorithms were able to derive models that were optimised through
the training and testing procedure.

 
(a) (b) 

Figure 23. Case of deflection. Tuned cross-validation history for the case of (a) DANN-MPIH-HYT
and (b) XGBoost-HYT-CV.

7.2. Proposed Predictive Models for the Case of Failure Load

This section outlines the failure load predictions provided by the various ML algo-
rithms. An analysis was conducted to determine the performance of the various pro-
posed predictive models. The correlation for the train and test datasets can be seen in
Figures 24–27.
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(a) (b) 

Figure 24. Correlation between the failure load determined using FEM and the failure load estimated
using LR (a) on the training dataset (b) on the testing dataset.

 

(a) (b) 

Figure 25. Correlation between the failure load determined using FEM and the failure load estimated
using POLYREG-HYT (a) on the training dataset (b) on the testing dataset.

 

(a) (b) 

Figure 26. Correlation between the failure load determined using FEM and the failure load estimated
using the DANN-MPIH-HYT algorithm (a) on the training dataset (b) on the testing dataset.
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(a) (b) 

Figure 27. Correlation between the failure load determined using FEM and the failure load estimated
using the XGBoost-HYT-CV algorithm (a) on the training dataset (b) on the testing dataset.

As stated previously, it was necessary to use error metrics to determine which ML
algorithm performed the best. Therefore, a summary of error metrics can be seen in Table 5.
As can be seen, the proposed XGBoost-HYT-CV model was the most accurate when looking
at the training and testing datasets. This indicates the fact that no ML algorithm was
capable of providing accurate results for all datasets, and different algorithms were used in
allocating the best fit to a specific dataset.

Table 5. Comparison of the ML algorithms trained on the failure load dataset.

Model Dataset R MAPE MAMPE MAE RMSE
Computation

Time (s)

LR Train 0.8939 53.64% 27.45% 54.597 76.468 0.001

POLYREG-
HYT Train 0.9369 28.10% 19.26% 38.308 59.633 11.09

DANN-
MPIH-HYT Train 0.9811 10.29% 8.90% 17.693 34.055 2014.47

XGBoost-
HYT-CV Train 1.0000 0.00% 0.00% 0.0025 0.0041 75.07

LR Test 0.8909 46.06% 27.56% 49.658 67.978 0.00

POLYREG-
HYT Test 0.9412 29.15% 20.86% 37.593 50.776 0.00

DANN-
MPIH-HYT Test 0.9791 10.59% 10.12% 18.241 32.1723 0.0008

XGBoost-
HYT-CV Test 0.9978 3.79% 2.61% 4.694 10.225 0.003

For the cases of the closed-form solutions, Equation (5) shows the formula generated
with LR, and Equation (6) provides the proposed predictive formula generated through the
POLYREG-HYT ML algorithm:

L f = 2.0577× 10−6 × Ixx − 1.5497× 10−4 × Iyy + 7.7002× 10−4 × J + 1.9789× h−
8.2286× b + 2.1078× 10−1 × A− 2.0335× 101 × L + 2.5421× 10−1 × R+
5.8542× 10−1 × fy − 9.3538× 10−2 × E

(5)
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L f = 1.2526× 10−3 × L× R2 − 2.153× 10−4 × Iyy − 1.455× 10−3 × b× A
+1.8898× 10−5 × h× L× E− 1.2804× 10−9 × Ixx × h× L
−7.8792× 10−5 × h× R2 + 1.1314× 10−11 × Ixx × h× R
+6.9077× 10−3 × L× fy − 1.9573× 10−3 × R× fy
+1.6174× 10−8 × Iyy × L2 + 2.9069× 10−11 × Iyy × A× fy
+2.2861× 10−9 × Iyy × A× L− 2.2406× 10−9 × Ixx × b× L
+3.1524× 10−8 × J × h× fy + 3.8102× 10−4 × h× b2

+8.3911× 10−5 × b× R× E− 2.3274× 10−6 × J × b
−1.1303× 10−2 × A× L− 6.1153× 10−10 × Iyy × R× E
−4.5723× 10−4 × b× L× fy − 1.7705× 10−11 × J2 × fy
+2.7631× 10−3 × f 2

y − 6.0399× 10−6 ∗ f 3
y + 7.0583× 10−5 × J × L

+1.36958× 10−10 × Ixx × A− 2.8373× 10−9 × J × R× E

(6)

Sensitivity analyses were also conducted on the failure load dataset. A graphical
summary of the findings can be seen in Figure 28. As can be seen, the three most influential
variables on the midspan failure load were the moment of inertia around the major axis (Ixx),
the curved length (L), and the radius of curvature (R). Ixx was by far the most influential
variable, due to the fact that as the stiffness of the beam in bending increased, a larger load
was required to reach failure. The cross-sectional area (A), flange width (b), cross-sectional
height (h), polar moment of inertia (J), and moment of inertia around the minor axis
(Iyy) had practically no impact on the failure load according to the XGBoost-HYT-CV ML
algorithm. These findings can be used to create an improved, simpler dataset in the future.

Figure 28. Results of sensitivity analysis (XGBoost-HYT-CV).

Before moving to the validation section presented next, Figure 29 shows the tuned
cross-validation history for the case of the DANN-MPIH-HYT and XGBoost-HYT-CV algo-
rithms resulting from the analysis. Once more, it is easy to observe the numerical response
of the two histories that converge to R2 = 1.0, which represents maximum data correlation.
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(a) (b) 

Figure 29. Case of ultimate load. Tuned cross-validation history for the case of (a) DANN-MPIH-HYT
and (b) XGBoost-HYT-CV.

8. Validation

This section outlines the process of validation that was performed through the use
of out-of-sample FE models. The validation aimed to evaluate the proposed predictive
models’ abilities to capture data that were not used during training or testing. It must
be noted here that the ML algorithms were trained on IPE sections (IPE 100, IPE 200, IPE
300, IPE 400, IPE 500, and IPE 600) of various geometries. For validation purposes, it was
decided to use sections as per the South African Steel Construction Handbook (SASCH). The
sections considered were 203 × 133 × 25, 305 × 165 × 40, and 457 × 191 × 67. Therefore,
the proposed predictive models had never been exposed to this type of sectional geometry.
Additionally, out-of-sample R/L ratios of 2.5 and 5 were considered and the overall span
of the section varied depending on the section depth. Out-of-sample yield strengths of
285 MPa and 325 MPa were considered and the Young’s modulus values considered were
195 GPa and 205 GPa. This led to a total of 48 out-of-sample beams being created for
validation purposes. The descriptive statistics relating to the new validation dataset can be
seen in Table 6.

Table 6. Validation models descriptive statistics.

Mean Median Std Min Max Skewness Kurtosis

Ixx (mm4) 134,333,333 85,500,000 116,928,298 23,500,000 294,000,000 0.58 −1.53

Iyy (mm4) 8,416,667 7,660,000 4,738,358 3,090,000 14,500,000 0.25 −1.53

J (mm4) 194,667 149,000 134,794 59,000 376,000 0.49 −1.53

h (mm) 320.20 303.8 103.97 203.2 453.60 0.24 −1.53

b (mm) 162.8 165.1 23.37 133.4 189.90 −0.15 −1.53

A (mm2) 5643.33 516 2225.95 3220 8550 0.33 −1.53

L (m) 9.17 8.5 5 3 18 0.56 −0.75

R (m) 34.38 27.5 22.9 7.5 90 1.11 0.69

fy (MPa) 305 305 20.21 285 325 0.00 −2.09

E (GPa) 200 200 5.05 195 205 0.00 −2.09

8.1. Validation of Deflection ML Results

The proposed predictive models that were developed to estimate the deflection of the
beams were used to predict the deflections of the out-of-sample data. This section focuses
only on the two algorithms, namely, DANN-MPIH-HYT and XGBoost-HYT-CV, that were
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found to outperform the rest of the ML-generated predictive models. Correlation plots of
the two ML models can be seen in Figures 30 and 31. These results were compared with
the current analytical method, Castigliano’s second theorem. The graph showcasing the
correlation of Castigliano’s second theorem can be seen in Figure 32.

Figure 30. Correlation between the deflection determined using FEM and the deflection estimated
using DANN-MPIH-HYT on the validation dataset.

Figure 31. Correlation between the deflection determined using FEM and the deflection estimated
using XGBoost-HYT-CV on the validation dataset.

Figure 32. Correlation between the deflection determined using FEM and the deflection estimated
using Castigliano’s theorem on the validation dataset.
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A summary of the error metrics of all ML algorithms can be seen in Table 7. As can be
seen, the DANN-MPIH-HYT algorithm outperformed all ML algorithms and the currently
used analytical formula. The POLYREG-HYT formula performed the worst. This poor
performance was attributed to over-fitting, as the LR formula was quite accurate. It should
be noted that even though these results were verified using FEM models, the FE modelling
technique used was experimentally verified using an experimental beam where the error
experienced was negligible.

Table 7. Summary of the error metrics on the validation dataset (case of deflection).

Algorithm R MAPE MAMPE MAE RMSE

LR 0.9267 82.37% 51.84% 20.471 24.426

POLYREG-HYT 0.5174 122.73% 131.81% 52.047 72.419

DANN-MPIH-HYT 0.988 19.08% 16.19% 6.393 8.389

XGBoost-HYT-CV 0.7007 68.37% 42.40% 16.744 21.509

Castigliano 0.6781 155.42% 126.23% 49.842 65.574

8.2. Validation of Failure Load ML Results

The proposed predictive models previously discussed were used to predict the failure
load of the out-of-sample data. This section outlines the findings. No analytical formulae
are discussed in this section, as the focus of this article is more on deflection estimation and
not failure mode investigation. Due to the complexities associated with the failure modes of
horizontally curved beams, numerous equations were consulted, and their inclusion would
overwhelm the article. The focus herein is on DANN-MPIH-HYT and XGBoost-HYT-CV
since they were found to outperform the other predictive models. Correlation plots can be
seen in Figures 33 and 34.

The results paint a different picture from what was seen during training and testing.
The XGBoost-HYT-CV did not seem to achieve better results than those generated with the
DANN-MPIH-HYT algorithm; however, a closer look at the error metrics was required. A
summary of the error metrics can be seen in Table 8.

Figure 33. Correlation between the failure load determined using FEM and the failure load estimated
using DANN-MPIH-HYT on the validation dataset.
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Figure 34. Correlation between the failure load determined using FEM and the failure load estimated
using XGBoost-HYT-CV on the validation dataset.

Table 8. Summary of error metrics on the validation dataset (case of failure load).

Algorithm R MAPE MAMPE MAE RMSE

LR 0.1440 478.86% 403.82% 548.0527 560.4963

POLYREG-HYT 0.2843 539.71% 500.12% 678.7503 885.5885

DANN-MPIH-HYT 0.9235 23.22% 22.42% 30.4302 38.4831

XGBoost-HYT-CV 0.7914 26.42% 26.87% 36.4645 42.9955

As can be seen, the correlation was significantly worse and all the error metrics
showed that the predictions provided through the XGBoost-HYT-CV were less accurate
than the predictions provided through the DANN-MPIH-HYT algorithm. This is the same
phenomenon as was experienced in the deflection dataset where the DANN-MPIH-HYT
algorithm performed better with the out-of-sample data compared with all the other ML
algorithms. Therefore, the extended duration required to train the DANN-MPIH-HYT
algorithm can be said to translate to improved accuracy during validation.

9. Conclusions and Recommendations

This study showed that FE modelling was able to replicate the experimental results
acquired with horizontally curved steel I-beams. For the needs of this research work, an
experiment was performed that involved the loading of an IPE100 curved steel I-beam
under a vertical load. The experimental data obtained were then used to validate numerical
models through the use of CivilFEM software. The usage of quadratic solid FEs with
a hexahedral mesh size of 50 mm as well as appropriate material constitutive models
paired with nonlinear analyses led to the most accurate results when compared with the
experimental data.

A parametric investigation was conducted in which it was noted that the FE modelling
technique outlined in this research work was capable of accurately estimating the midspan
deflection and rotation of horizontally curved steel I-beams. The MAE was noted to be
3.32% when estimating deflection and 9.17% when estimating rotation, which far outper-
formed analytical methods, which had an error of 19.80% when estimating deflection and
16.07% when estimating rotation.

The experimentally validated model was then used to develop numerous FE meshes
that were analysed under ultimate limit state loading conditions. The numerically obtained
results were used to develop a large dataset. A total of 864 models were created that
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encompassed the entire IPE cross-section list (IPE100 to IPE600). A total of 10 independent
variables were considered in this study.

Numerous ML algorithms were used, namely, LR, POLYREG-HYT, DANN-MPIH-
HYT, and XGBoost-HYT-CV, for developing the proposed predictive models. During the
validation phase, experimentally validated FE models that were outside the training dataset
were created to validate the various proposed predictive models proposed in this research
work. To further evaluate the accuracy of the available analytical methods for computing
the deflection and ultimate load of curved steel I-beams, the validation data were used
to assess Castilgiano’s analytical formulae as well. According to the numerical findings,
the DANN-MPIH-HYT algorithm was the most accurate in estimating both deflection
and failure load. When estimating deflection, the DANN-MPIH-HYT proposed predictive
model had a MAMPE of 16.19%. This was found to be a significant improvement compared
with the analytical method, Castigliano’s second theorem, which derived an extremely
large MAMPE of 126.23%, highlighting the need for more accurate and objective predictive
models. It is also safe to conclude that based on the findings of this dissertation, the
proposed ML-generated predictive models are far more accurate than the current analytical
methods for estimating the deflection of curved steel I-beams.

In addition to the above, when estimating the failure load of curved steel I-beams,
the DANN-MPIH-HYT generated model was found to be significantly more accurate than
the other proposed models. This is most likely to be due to the complexities associated
with horizontally curved steel I-beams and the nature of the datasets. Horizontally curved
steel I-beams have various failure modes, given that they can fail due to flexure, torsion,
shear, or a combination of these. The beams may also fail due to lateral torsional buckling.
Therefore, a larger dataset is required for the ML algorithms to derive the patterns that
are connected to the failure modes of the beams. At this stage, the international literature
includes numerous equations for each of the failure modes. Therefore, there is no individual
formula to compare the estimates with. It is believed that the DANN-MPIH-HYT algorithm,
which resulted in a MAMPE of 22.42%, can be further improved in the future by either
increasing the dataset or providing different formulae for the different failure modes, as is
currently the case in all design codes.

Finally, this research study is able to propose, for the first time in the international
literature, accurate and objective predictive models that outperform any known formula
used to compute the deflection of curved steel I-beams and their ultimate capacity. The
largest datasets currently available in the international literature were also developed for
the training and testing of the proposed predictive models. This pilot project paves the way
for the development of future design formulae that can be more accurately applied to a
larger range of beams for different boundary conditions.

This research was limited to evaluating the feasibility of using FE models to estimate
the midspan deflection and failure load of horizontally curved steel I-beams with a single
point load at midspan and fully fixed at both ends. The development of the datasets
foresaw the use of minimum and maximum geometrical features. Therefore, the proposed
predictive models should not be used for beams with dimensions that are larger or smaller
than the respective maximum and minimum geometrical values of the beams found in the
datasets developed herein. Furthermore, recommendations for future work should include
the following:

• Perform more experiments on curved steel I-beams to further validate the proposed
predictive models;

• Consider various boundary conditions, such as torsionally pinned beams, and deter-
mine the influence this has on deflection, failure load, rotation, and stress distribution.
In theory, this should not significantly impact the failure load. However, this is
expected to have a drastic impact on the stress distribution and rotation of the section;

• Consider various loading conditions, such as uniformly distributed loads;
• Consider the impact residual stresses have on stress distribution and investigate

whether this has an impact on deflection and failure loads. Residual stresses are far
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greater in horizontally curved steel I-beams compared with straight beams, due to the
initial cold-forming process. Therefore, residual stresses vary depending on the R/L
ratio at hand. Currently, there is no formula available in the international literature
that allows accounting for how the residual stresses vary throughout the length of the
beam and within the cross-section. Therefore, a detailed investigation is required.

• Develop an accurate formula to determine the midspan rotation of horizontally curved
steel I-beams using a relevant dataset.
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Abstract: Aiming at evaluating the bond strength of fiber-reinforced polymer (FRP) rebars in ultra-
high-performance concrete (UHPC), boosting machine learning (ML) models have been developed
using datasets collected from previous experiments. The considered variables in this study are rebar
type and diameter, elastic modulus and tensile strength of rebars, concrete compressive strength
and cover, embedment length, and test method. The dataset contains two test methods: pullout
tests and beam tests. Four types of rebar, including carbon fiber-reinforced polymer (CFRP), glass
fiber-reinforced polymer (GFRP), basalt, and steel rebars, were considered. The boosting ML models
applied in this study include AdaBoost, CatBoost, Gradient Boosting, XGBoost, and Hist Gradient
Boosting. After hyperparameter tuning, these models demonstrated significant improvements in
predictive accuracy, with XGBoost achieving the highest R2 score of 0.95 and the lowest Root Mean
Square Error (RMSE) of 2.21. Shapley values analysis revealed that tensile strength, elastic modulus,
and embedment length are the most critical factors influencing bond strength. The findings offer
valuable insights for applying ML models in predicting bond strength in FRP-reinforced UHPC,
providing a practical tool for structural engineering.

Keywords: ultra-high-performance concrete; machine learning; gradient boosting; XGBoost; shapley
values technique

1. Introduction

Fiber-reinforced polymer (FRP) rebars have been introduced as an alternative to ad-
dress the corrosion challenges associated with traditional steel reinforcements [1]. FRP
rebars offer corrosion resistance and a high strength-to-weight ratio, making them an attrac-
tive choice for concrete structures [2]. Compared to conventional steel rebars, FRP rebars
exhibit distinct characteristics, such as high tensile strength and lightweight properties.
However, unlike steel rebars, FRP rebars demonstrate no plastic behavior (yielding) before
rupture, highlighting their unique tensile behavior [3].

Various types of FRP rebars, including glass FRP (GFRP) [4–7], carbon FRP (CFRP) [8],
basalt FRP (BFRP) [9–11], and aramid FRP (AFRP) [12], have emerged as promising al-
ternatives to traditional steel reinforcements. Each type of FRP rebar possesses unique
characteristics with advantages and limitations. Generally, FRP rebars are brittle polymers
with a lower modulus of elasticity compared to steel, particularly in the case of GFRP and
BFRP bars [13].

GFRP rebars are particularly popular among the different FRP types due to their
cost-effectiveness. The ratio of FRP reinforcement significantly influences the flexural
capacity and failure mode of concrete beams. Increasing the GFRP reinforcement ratio
has proven more effective in enhancing beam flexural capacity than adding steel fibers or
optimizing fiber orientations [14]. Despite their appeal, GFRP rebars face challenges such
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as limited toughness, weaker bonding with concrete compared to steel rebars, and low fire
resistance [15].

Although current FRP design standards and specifications do not extensively incor-
porate BFRP bars due to limited studies on their durability, basalt fiber offers promising
attributes, including the ability to withstand high temperatures. Basalt fiber is an envi-
ronmentally friendly material classified as sustainable due to its natural composition and
the absence of chemical additives during production. It is considered a “green” material
derived from rock [16].

One of the significant concerns with using CFRP in reinforced concrete (RC) members
is the low bonding property of CFRP rods embedded in concrete, mortar, and epoxy resin.
To address this issue, research has investigated using CFRP rods with attached GFRP ribs
to improve bond strength. The study demonstrated excellent load-carrying capacity and
fatigue durability of RC members strengthened by CFRP rods with ultra-high modulus [17].

Recently, ultra-high-performance fiber-reinforced concrete (UHPFRC) has gained
significant research attention [18–20]. UHPFRC is a cement-based material characterized
by high compressive strength, tensile and flexural strengths, ductility, and remarkable
durability [21]. Ultra-high-performance concrete (UHPC) beams reinforced with FRP bars
have exhibited high flexural stiffness and minimal crack width at the serviceability limit
state [22].

Research on the bond performance of CFRP bars in UHPFRC, including tests on
pullout specimens, revealed that bond strength increases with larger CFRP bar diameters.
A theoretical model was developed to predict bond strength [23]. Additional studies have
shown that the bond performance between CFRP bars and UHPC is predominantly affected
by pullout damage, with CFRP bar surfaces peeling off from the internal core while UHPC
remains undamaged. Enhancing the cover and steel fiber volume fraction improves bond-
ing performance, whereas increasing the bar diameter reduces it. Equations for calculating
ultimate bond strength and development length have been proposed, integrating factors
such as CFRP bar diameter, bonded length, and cover thickness [24]. Additionally, the
combined use of CFRP and UHPC has demonstrated strong performance as a retrofitting
method for pre-damaged concrete [25].

The performance of concrete elements reinforced with FRP bars is fundamentally
influenced by the bond properties between the reinforcement and the surrounding concrete.
Achieving a sufficient level of bonding is critical for ensuring effective force transmission
between these two materials. The substitution of steel with FRP significantly alters the load
transfer mechanism between the concrete and reinforcement. The tensile behavior of FRP
bars, which are composed of a single type of fiber material, is characterized by a linear
elastic stress-strain response up to the point of failure [3].

While several practical formulas for calculating the ultimate bond strength of FRP
bars in concrete exist in standards such as ACI 440.1R-06 [3] and CSA S806-12 [26], these
codes primarily target ordinary concrete. They may not directly apply to evaluate the bond
performance between FRP bars and UHPC with high compressive strength [27].

Recent advancements in machine learning (ML), particularly in boosting algorithms,
have shown great promise in predicting complex material behavior in structural engineer-
ing. Boosting techniques such as AdaBoost, Gradient Boosting Machine, and XGBoost
have been successfully applied to predict properties such as the compressive strength
of ordinary concrete and high-performance concrete (HPC) [28–32]. The effectiveness of
AdaBoost in predicting concrete compressive strength with high accuracy has been proven,
outperforming the other ML methods, such as artificial neural networks [30]. Similarly, the
Gradient Boosting Machine method was employed to model the nonlinear relationships
in high-performance concrete [31], and XGBoost was used to predict CNT-modified con-
crete’s compressive strength [32]. These studies highlight the ability of boosting algorithms
to handle complex datasets and deliver accurate predictions, making them suitable for
analyzing material properties in structural engineering contexts.
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Numerous studies have investigated the bond strength of various FRP rebars in
UHPFRC using different testing methods, such as pullout and beam tests [33–38]. This
study developed boosting ML-based models to predict the bond strength of UHPFRC
containing various FRP bar types and test methods. Due to the limited dataset size typical
in civil engineering research, non-parametric ML models are more suitable as they can
effectively handle smaller datasets without overfitting. These models were chosen for their
robustness, interpretability, and superior performance in capturing complex interactions
within small datasets. The research also examined the significance of multiple features on
the bond strength of UHPFRC. Variables considered in this study include rebar type and
diameter, elastic modulus and tensile strength of rebars, concrete compressive strength,
embedment length, and test method. The dataset includes two test methods—pullout
and beam tests—and four types of rebars, including CFRP, GFRP, basalt, and steel rebars.
Figure 1 illustrates the overall process of the study, starting with data collection from
experimental studies on the bond strength of FRP rebars in UHPC. The data collection
process includes various features related to concrete and rebars. These variables were
then used as input features for the ML models, including AdaBoost, CatBoost, Gradient
Boosting, XGBoost, and Hist Gradient Boosting. The figure highlights how these models
were trained and tuned, with the final step showcasing model evaluation using R2, RMSE,
and MAE metrics. Additionally, feature importance analysis was conducted to identify the
most influential variables impacting bond strength predictions.

Collecting Dataset

Label encoding

EDA

Boosting ML models

5-fold cross validation

ML models results

Feature importance

ADA
CAT
GB
XGB
HGB
Boosting

Figure 1. Overview of the study.
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2. Previous Experimental Works on Bond Strength Assessment of Various FRP Bars
in UHPFRC

Figure 2 depicts the condition of an FRP bar embedded in concrete. An average bond
stress resists the stress in the bar, u. The equilibrium of forces can be calculated according
to Equation (1).

leπdbu = A f bar f f (1)

where le, db, and A f bar represent the embedment length, diameter, and cross-sectional
area of the bar, respectively, while f f denotes the stress developed in the bar at the end
of the embedment length. Unlike steel bars, it is not always necessary to fully develop
the strength of an FRP bar, particularly in cases where the flexural capacity is controlled
by concrete crushing. In such scenarios, the required stress in the FRP bar at the point of
failure may be lower than its guaranteed ultimate strength.

Figure 2. Schematic of FRP bar under uniaxial loading.

Table 1 summarizes previous studies investigating the bond strength of different FRP
bars embedded in UHPFRC. Some studies focus on the behavior of individual FRP bar
types, such as GFRP, CFRP, and BFRP, alongside conventional steel rebar used as a control
specimen. One study, in particular, examined three types of FRP rebar—ribbed CFRP, sand-
coated CFRP, and ribbed GFRP—along with steel rebar as a comparative benchmark [39].
The most frequently studied variables in the reviewed literature include rebar type and
diameter, embedment length, and concrete cover.

Several findings from these studies were consistent across different FRP rebar types.
The results generally indicated that the bond strength between FRP rebars, irrespective
of the FRP type, was lower than that of steel rebars [40,41]. However, UHPC beams
reinforced with GFRP bars showed a significant increase in flexural capacity compared to
steel ones [27]. Furthermore, these findings suggest that using bars with smaller diameters
enhances bond capacity [42].

Moreover, it was observed that increasing the embedment length could lead to a
reduction in bond strength between FRP bars and UHPC [39,40,42]. However, one study
reported an inverse relationship, where the bond strength of helically ribbed CFRP bars in
UHPC decreased with a reduction in embedment length [8].

The results also confirmed the positive impact of concrete cover on bond strength,
with a continuous increase in bond strength observed as the concrete cover thickness
increased [8,40]. A comparison of maximum bond strength revealed the following order:
ribbed CFRP bars, ribbed GFRP bars, steel bars, and sand-coated CFRP bars [39].

Additionally, a comparison of test methods indicated that the bond strength measured
using the hinged beam test was lower than that obtained from the direct pullout test [33].
Specifically, the bond strength of GFRP rebars was higher in the beam test compared to the
pullout test [40].
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Several studies proposed formulas based on their results and compared them with
existing design codes. Bond strength was predicted using two proposed equations with
modified bond parameters and an artificial neural network (ANN) method, where the ANN
demonstrated superior accuracy over the proposed formulas. A modified bond equation
for helically ribbed and sand-coated FRP bars also improved prediction accuracy with the
ANN approach [8]. Another study found that the ACI 440 equation provided reasonable
predictions for under-reinforced beams but was unconservative for over-reinforced beams,
overestimating flexural capacity. The CSA code offered better deflection predictions than
ACI 440 equations. However, at ultimate capacity, both ACI 440 and CSA specifications
were unconservative, particularly for over-reinforced beams, as neither code accounted
for the additional ductility gained by the beams [27]. Lastly, the ACI 440.1R-15 and CSA
S806-12 equations were conservative in predicting embedment length for BFRP bars, while
the CSA-S6-14 equation was more accurate for BFRP with larger diameters. However, it
was not conservative for smaller diameters [42].

3. Dataset Collection

To evaluate the bond strength of various FRP bars in UHPFRC using ML models, a
dataset of 249 specimens from existing experimental studies was compiled. The specifics
of this dataset are outlined in Table 2. The features analyzed in this study encompass
both concrete and rebar characteristics. Table 2 details that the specimens underwent
both pullout and beam tests. These test methods are further depicted in Figure 3. ACI
440.3R-12 [43] provides information about these test methods. In the pullout test, the
displacement between the free end of the rebar and the UHPC is measured, whereas in the
beam test, the displacement is measured at the beam supports [40]. The dataset includes
four types of rebar: GFRP, CFRP, basalt, and steel. Rebar diameters range from 7.5 to
20 mm, with embedment lengths varying between 25 and 276 mm. The data reveal that
fiber-reinforced rebars exhibit a low modulus of elasticity, ranging from 47 to 158, while all
UHPFRC specimens have a high compressive strength (f’

c), between 71 and 181.

(a) 

Figure 3. Cont.

139



Computation 2024, 12, 202

(b) 

Figure 3. Setup of investigated test methods: (a) pullout test, and (b) beam test.

Table 2. Experimental dataset collected from existing literature.

Research Test Method Rebar Type
Rebar
Diameter
(mm)

Embedment
Length (mm)

Tensile
Strength
(MPa)

f’
c (MPa)

Elastic
Modulus
(GPa)

Number of
Specimens

Hu et al.
(2024) [40]

Pullout and
Beam

GFRP
and Steel 16 40–160 609 and 894 133.2 54 and 198 16

Zhu et al.
(2023) [24] Beam CFRP 8, 10, and 12 25–120 2030 and

2702 131–143 - 11

Liang et al.
(2023) [13] Pullout GFRP, BFRP,

and Steel 12 42 355–1321 93–122 48–200.4 48

Tong et al.
(2023) [44] Pullout GFRP 12, 16, and 20 60–100 702–782 90–132 54–58 54

Decebal et al.
(2021) [36] Beam GFRP 17.2 69–276 1100 87–132 60 28

Hossain et al.
(2017) [33] Beam GFRP 15.9 and 19.1 47–133 751–1439 71–174 47–64 48

Ahmed and
Sennah
(2014) [45]

Pullout GFRP 20 80–160 1105 166–181 64.7 35

Ahmad et al.
(2011) [34] Pullout CFRP 7.5, 8, 10, and

12 40–160 2300 and
2400 170 130 and 158 9

CFRP: carbon fiber-reinforced polymer; GFRP: glass fiber-reinforced polymer; BFRP: basalt fiber-reinforced
polymer.

4. Dataset Construction

Figure 4 presents the results of the correlation analysis and distribution of key input
variables concerning bond strength. Each hexagon represents a data point, and the color
gradient in the hexagons indicates the density of the data points in specific regions of
the plot. Darker hexagon colors represent regions of higher density, where more data
points exhibit similar parameter values, thus signifying stronger correlations between these
values and bond strength. Lighter colors indicate areas with fewer data points and weaker
correlations. The color intensity helps visualize the concentration of the data and highlights
where certain parameter values have more influence on bond strength. In Figure 4, the
variables “Test method” and “Rebar type” are represented numerically for visualization
purposes. The numeric equivalents for the test methods are as follows: 0 corresponds
to the pullout test, while 1 represents the beam test. For the rebar types, the numeric
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representation is as follows: 0 denotes CFRP, 1 indicates GFRP, 2 stands for BFRP, and 3
signifies steel.

  

  

  

Figure 4. Joint plot output and input variables.

Figure 5 presents a correlation heatmap that visualizes the relationships between
input variables and bond strength. The numbers within each heatmap cell represent the
correlation coefficient values, which quantify the strength and direction of the relationship
between the variables. A correlation coefficient value close to 1 indicates a strong positive
correlation, meaning that as one variable increases, the other also increases. A value close
to−1 indicates a strong negative correlation, where an increase in one variable corresponds
to a decrease in the other. Values near 0 suggest no significant correlation between the
variables. These numbers are important for understanding the influence of each input
parameter on bond strength, providing insight into which variables are most critical for
accurate predictions.
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Figure 5. Correlation heatmap between output and input variables.

Figure 6 features histograms and violin plots for both the output and input variables,
explicitly focusing on the most impactful features: concrete compressive strength, the
tensile strength of rebars, and bond length. The histograms show the distribution of
these variables, while the violin plots provide a deeper insight into their distribution
characteristics, including density and variability. These visualizations highlight how these
key variables are distributed within the dataset and their influence on the bond strength.

142



Computation 2024, 12, 202

  

  

Figure 6. Histograms and violin plot of output and input variables.

5. Boosting

Boosting is an influential ensemble technique in ML that aims to create a strong
predictive model by combining the outputs of multiple weak learners, typically decision
trees [46]. As shown in Figure 7, the fundamental concept behind boosting is to sequentially
train these weak learners so that each new learner focuses on the mistakes made by the
previous ones. This iterative process allows the model to gradually improve its accuracy,
effectively “boosting” its performance with each step [47]. At the core of boosting lies a
simple yet powerful idea: instead of a single, complex model being built, a series of simpler
models is constructed, where each successive model is designed to correct the errors of its
predecessor. The process begins with a base model often a shallow decision tree, being
trained on the entire dataset. The residuals, or errors, from this initial model, are then used
to guide the training of the next model in the sequence. Specifically, the subsequent model
is trained to predict these residuals, directly addressing the areas where the previous model
fell short. This cycle is continued, with each model incrementally refining the predictions
made by the ensemble.

AdaBoost is one of the earliest and most popular boosting algorithms. The key idea in
AdaBoost is to focus on the instances in which the previous models were misclassified. The
Algorithm 1 increases the weights of the misclassified cases so that the subsequent model
pays more attention to them [47].

AdaBoost and Gradient Boosting build models sequentially, with each model focus-
ing on correcting the errors of the previous one. However, AdaBoost focuses on mis-
classification errors, while Gradient Boosting minimizes a specified loss function using
gradient descent.
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XGBoost and Hist Gradient Boosting are both advanced implementations of Gradi-
ent Boosting that focus on improving computational efficiency and accuracy [48]. They
incorporate optimizations such as regularization, parallel processing, and efficient data
handling, making them faster and more scalable than traditional Gradient Boosting.

Figure 7. Schematic of boosting algorithm.

Algorithm 1. Algorithm of AdaBoost regressor

STEP 1: Initialize the weight distribution wi =
1
N f or i = 1, . . . , N, where N is the number of

training samples.
STEP 2: For each iteration m:
(A) Train a weak learner hm(x) using the weighted data.
(B) Compute the error rate. ∈m as:

∈m=
∑N

i=1 wi .I(yi �=hm(xi))

∑N
i=1 wi

(C) Compute the model weight αm:
αm = log

(
1−∈m∈m

)
(D) Update the weights:

wi ← wi.exp(αm I(yi �= hm(xi))
(E) Normalize the weights
STEP 3: The final prediction is a weighted majority vote of the weak learners.

CatBoost is specifically designed to handle categorical data more effectively. It intro-
duces ordered boosting, which builds models on subsets of data to prevent overfitting
and uses advanced techniques to process categorical features without extensive prepro-
cessing [49]. CatBoost is highly efficient when working with datasets that have a large
number of categorical variables. CatBoost is unique among the five models due to its
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specialized focus on categorical data and unique ordered boosting approach. While it
shares the boosting concept with the other models, its techniques and optimizations for
categorical features set it apart.

When evaluating the performance of machine learning models, several key metrics
are commonly used to assess the accuracy and reliability of predictions. The coefficient
of determination, known as R2, is a statistical measure that represents the proportion of
variance in the dependent variable that is predictable from the independent variables, as
shown in Equation (2). A higher R2 value indicates a better fit of the model to the data,
with a value of 1 indicating perfect prediction. However, R2 alone may not always provide
a complete picture of model performance, especially in outliers or nonlinear relationships.
To complement R2, as defined in Equation (3), Root Mean Squared Error (RMSE) is often
used, providing an absolute measure of the difference between observed and predicted
values. RMSE penalizes larger errors more significantly, making it sensitive to outliers.
Additionally, Mean Absolute Error (MAE), shown in Equation (4), serves as a robust metric
by calculating the average magnitude of prediction errors, regardless of direction, offering
a straightforward interpretation of model accuracy. Together, these metrics—R2, RMSE,
and MAE—provide a comprehensive evaluation of model performance, each highlighting
different aspects of prediction quality, and are essential for comparing and selecting the
most appropriate model for a given task. In these equations, y is the actual value, ŷ is the
predicted value, and y is the mean of the actual values.

R2 = 1− ∑N
i=1(ŷtest,i − ytest,i)

2

∑N
i=1(ŷtest,i − ytest)

2 (2)

RMSE =

√
∑(ŷtest,i − ytest,i)

2

N
(3)

MAE =
1
n ∑n

i=1|yi − ŷi| (4)

6. Hyperparameter Tuning

Hyperparameter tuning is critical in building effective machine-learning models, espe-
cially when dealing with complex algorithms such as those used in boosting techniques [50].
The performance of machine learning models heavily depends on the appropriate selection
of hyperparameters, which control the behavior of the learning process. Unlike model
parameters, which are learned directly from the training data, hyperparameters must be
set before the training begins and require careful tuning to optimize model performance.

This study performed hyperparameter tuning using a grid search approach combined
with 5-fold cross-validation. The goal was to systematically explore a range of possible
hyperparameter values to identify the combination that yields the best performance on the
training data while ensuring that the model generalizes well to unseen data.

The flowchart and k-fold cross-validation diagram depict the overall process, as shown
in Figures 8 and 9. Initially, the dataset was split into training and testing subsets, with the
training set used for model training and hyperparameter tuning and the test set reserved
for final model evaluation. For each hyperparameter combination, a model was trained and
evaluated using 5-fold cross-validation, where the training data was split into five equally
sized folds. Four subsets were used to train the model in each fold, and the remaining
subset was used for validation. This process was repeated five times, with each subset
serving as the validation set once, and the average performance metric (R2 score) across
the folds was computed.
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Figure 8. Schematic of 5-fold cross validation (Blue folds are training data and red folds are
validation data).

Figure 9. Flowchart of grid search.

Upon completion of the grid search, the best combination of hyperparameters was
identified based on the highest mean R2 score obtained during cross-validation. This
optimal set of hyperparameters was then used to train the final model on the entire
training set. The model’s performance was evaluated before and after tuning to assess the
impact of hyperparameter optimization. The selected hyperparameters and their space for
hyperparameter tuning are shown in Tables 3–6.
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Table 3. Adaboost selected hyperparameters and their space.

N_Estimators Learning_Rate Loss

50 0.01 Linear
100 0.1 Square
200 0.2 Exponential
300 0.3 -
400 0.5 -

Table 4. Catboost selected hyperparameters and their space.

Iterations Learning_Rate Depth L2_Leaf_Reg Bagging_Temperature

100 0.01 4 3 0.8
150 0.05 6 5 1
200 0.1 8 7 -
300 0.2 - 9 -
400 - - - -

Table 5. Gradient booting and XGBoost selected hyperparameters and their space.

N_Estimators Learning_Rate Max_Depth Max_Features

50 0.01 None sqrt
100 0.1 4 log2
200 0.2 5 -
300 0.3 8 -
400 0.5 10 -

Table 6. Hist Gradient Boosting Regressor selected hyperparameters and their space.

L2_Regularization Learning_Rate Max_Depth Max_Iter

0 0.01 None 100
0.1 0.1 4 200
0.5 0.2 5 300
1 0.3 8 -
- 0.5 10 -

7. Results

7.1. Machine Learning Results

The performance evaluation of the ML models was conducted using three key met-
rics: R2 score, RMSE, and MAE. These metrics were calculated both before and after
hyperparameter tuning to assess the impact of the tuning process on model accuracy.

As presented in Table 7 and Figure 10, the results reveal that hyperparameter tuning
significantly enhanced the performance of all models, particularly those that initially
exhibited lower accuracy.

Table 7. ML models’ results.

Model
R2

(Default)
RMSE

(Default)
MAE

(Default)
R2

(Tuned)
RMSE

(Tuned)
MAE

(Tuned)

ADAboost 0.61 6.46 5.03 0.7 5.63 2.67
Catboost 0.94 2.56 1.9 0.95 2.34 1.74
Gradient
Boosting 0.94 2.58 1.95 0.95 2.26 1.73

XGBoost 0.94 2.33 1.78 0.95 2.21 1.68
Hist Gradient

Boosting 0.59 6.58 4.18 0.68 5.86 3.24
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After tuning, the AdaBoost model’s R2 score improved from 0.61 to 0.7, indicating a
better fit between the predicted and actual values. This improvement was accompanied by a
reduction in RMSE from 6.46 to 5.63 and a decrease in MAE from 5.03 to 2.67, demonstrating
that tuning effectively reduced the model’s prediction errors.

CatBoost, which already performed well with default parameters, saw its R2 score
increase slightly from 0.94 to 0.95 after tuning. The RMSE decreased from 2.56 to 2.34, and
the MAE was reduced from 1.9 to 1.74. Although the improvements were marginal, they
indicate that even highly effective models can benefit from careful tuning.

Similarly, after tuning, the Gradient Boosting model slightly increased its R2 score
from 0.94 to 0.95. The RMSE improved from 2.58 to 2.26, and the MAE decreased from 1.95
to 1.73. These results suggest that while the model was already robust, hyperparameter
tuning contributed to further refining its predictions.

(a) 

(b) 

Figure 10. Cont.
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(c) 

(d) 

Figure 10. Cont.
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(e) 

Figure 10. ML model results: (a) ADAboost, (b) CatBoost, (c) Gradient Boosting, (d) XGBoost, and
(e) Hist Gradient Boosting.

XGBoost, known for its high performance, also showed a modest improvement in
accuracy after tuning, with the R2 score increasing from 0.94 to 0.95. The RMSE dropped
from 2.33 to 2.21 and the MAE from 1.78 to 1.68, indicating a slight enhancement in the
model’s predictive capabilities.

The Hist Gradient Boosting model observed the most notable improvement, where the
R2 score significantly increased from 0.59 to 0.68 after tuning. Although the final R2 score of
0.68 does not reach the same level as the other models, the improvement is still substantial,
indicating that hyperparameter tuning was crucial in enhancing the performance of this
model. The tuning process also reduced RMSE from 6.58 to 5.86 and the MAE from 4.18 to
3.24, further demonstrating the positive impact of optimization on the model’s predictive
accuracy.

The impact of hyperparameter tuning is shown in Figure 11, which clearly demon-
strates that hyperparameter tuning plays a crucial role in enhancing model performance.
The improvements were especially pronounced for models such as AdaBoost and Hist
Gradient Boosting, which initially had lower R2 scores. After tuning, these models achieved
higher R2 scores and exhibited lower RMSE and MAE values, significantly reducing pre-
diction errors. Even models that performed well with default parameters, such as CatBoost
and XGBoost, benefited from tuning, achieving slight but meaningful improvements in
accuracy. Also, the best hyperparameter values resulting from hyperparameter tuning are
shown in Table 8.

Table 8. Best hyperparameters resulting from hyperparameter tuning.

Model N_Estimators Max_Depth Max_Features Learning_Rate Loss

AdaBoost 100 - - 0.5 exponential
Gradient
Boosting 200 4 sqrt 0.1 -

XGBoost 150 10 - 0.1 -

These findings underscore the necessity of hyperparameter optimization in developing
reliable and accurate machine learning models, particularly in complex applications such
as structural engineering. The consistent performance gains across all models suggest that
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thorough hyperparameter tuning is essential for fully leveraging the potential of machine
learning algorithms and achieving optimal results.

  
(a) (b) 

(c) 

Figure 11. Impact of hyperparameter tuning on ML models results: (a) R2, (b) RMSE, and (c) MAE.

The Taylor diagrams in Figure 12 visually compare the ML models’ performance on the
training, test, and combined datasets. Across all datasets, CatBoost, Gradient Boosting, and
XGBoost consistently demonstrate high correlation coefficients and standard deviations
that closely match the reference, indicating their robustness and accuracy in capturing the
underlying patterns of the data. AdaBoost shows moderate performance, with slightly
lower correlations and greater deviations from the reference, while Hist Gradient Boosting,
despite improvements after hyperparameter tuning, still exhibits lower correlation and a
higher standard deviation compared to the other models. These diagrams highlight the
effectiveness of CatBoost, Gradient Boosting, and XGBoost in delivering reliable predictions
while also pointing to areas where models such as AdaBoost and Hist Gradient Boosting
could benefit from further refinement.
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(a) (b) 

 
(c) 

Figure 12. Taylor diagram for ML models results: (a) train data, (b) test data, and (c) total data.

To further enhance the model performance, two approaches were explored using
a Voting Regressor, which combines predictions from multiple models to leverage the
strengths of each.

In the first approach, the Voting Regressor was constructed by combining all the
models: AdaBoost, CatBoost, Gradient Boosting, XGBoost, and Hist Gradient Boosting.
The result of this ensemble was comparable to the performance of the best individual
models (CatBoost, Gradient Boosting, and XGBoost), with no significant improvement in
the key metrics (see Figure 13a). This suggests that while combining all models can help
in averaging out errors, it does not necessarily lead to better performance if some of the
models are less accurate.

The Voting Regressor was formed in the second approach using only the best-performing
models: CatBoost, Gradient Boosting, and XGBoost. This targeted ensemble approach resulted
in a slight performance improvement, with the R2 score increasing from 0.95 (achieved by
the best individual models) to 0.96 (see Figure 13b). This modest improvement indicates that
focusing the ensemble on the top-performing models allows the Voting Regressor to deliver
more accurate and consistent predictions by capitalizing on the strengths of these models
without the dilution effect that might come from including weaker models.

Overall, the selective combination of the best models in the Voting Regressor proved
to be a more effective strategy, providing a small but valuable boost in predictive accu-
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racy further enhancing the model’s reliability in predicting bond strength in structural
engineering applications.

 
(a) 

(b) 

Figure 13. Voting regressor results: (a) first approach and (b) second approach.
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Additionally, the performance of all models across all metrics, including R2, RMSE,
and MAE, is shown in Figure 14.

Figure 14. Comparison of the results of all ML models.

The developed user interface (UI) in this study provides a comprehensive and inter-
active platform for implementing machine learning models tailored explicitly for bond
strength prediction in FRP-reinforced UHPC. As shown in Figure 15, this UI allows users
to select from six different machine learning models, which are discussed, each with its
own specific set of hyperparameters. The interface enables users to input various features
related to the structural properties of the FRP-UHPC system and customize the model
parameters. After model training, users can evaluate the model’s performance using key
metrics such as R2, RMSE, and MAE, displayed for both the training and test datasets.
Furthermore, the UI facilitates the prediction of bond strength by allowing users to input
new data based on the trained model, thus offering an accessible and powerful tool for
practical applications and research in structural engineering. The Python code for this UI
can be found on GitHub.

The feature importance analysis across various ML models provides critical insights
into the factors that most significantly influence the prediction of bond strength. As shown
in Figure 16, each model highlights different aspects of the input features, allowing for a
deeper understanding of the variables that drive the predictions.

In the AdaBoost model, tensile strength (MPa), elastic modulus (GPa), and embedment
length (mm) are identified as the most influential features. These variables dominate
the model’s decision-making process, emphasizing their critical role in predicting bond
strength. Other features such as cover and compressive strength (fc) also contribute, but
their impact is less pronounced.

The CatBoost model recognizes tensile strength (MPa) and embedment length (mm)
as key predictors. Features such as cover (mm) and elastic modulus (GPa) also show
significant importance, reflecting the model’s sensitivity to these parameters. CatBoost’s
advanced handling of categorical variables may account for the subtle differences in feature
importance distribution compared to other models.

Gradient Boosting highlights embedment length (mm) as the most critical feature,
followed closely by tensile strength (MPa) and elastic modulus (GPa). This emphasis on em-
bedment length aligns with established engineering principles, reinforcing its importance
in determining bond strength.
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(a) 

 
(b) 

Figure 15. ML models UI: (a) before running and (b) after running.
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(a) 

 
(b) 

 
(c) 

Figure 16. Cont.
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(d) 

 
(e) 

(f) 

Figure 16. Feature importance of ML models: (a) Adaboost, (b) CatBoost, (c) Gradient Boosting,
(d) XGBoost, (e) Hist Gradient Boosting, and (f) Voting Regressor.
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XGBoost places the highest importance on elastic modulus (GPa) and tensile strength
(MPa), with embedment length (mm) also playing a significant role. The distribution of
feature importance in XGBoost reflects its unique optimization techniques, influencing how
the model prioritizes variables.

In Hist Gradient Boosting, embedment length (mm) and tensile strength (MPa) emerge
as the top features, with elastic modulus (GPa) also being crucial. The model’s use of
histogram-based binning may contribute to how it evaluates and prioritizes features,
leading to a slightly different emphasis than other boosting models.

The Voting Regressor, which combines the predictions from multiple models, consis-
tently identifies tensile strength (MPa) and embedment length (mm) as the most important
features. This consistency across different models underscores the critical influence of these
parameters in predicting bond strength. By balancing the feature importance from all its
constituent models, the Voting Regressor offers a more comprehensive understanding of
the factors driving bond strength predictions.

As a result, tensile strength (MPa), elastic modulus (GPa), and embedment length
(mm) are consistently recognized as the key predictors of bond strength across all models.
This consistency highlights the robustness of these features in both modeling and practical
engineering applications. The variations in feature importance among the models also
demonstrate the value of using an ensemble approach such as the Voting Regressor, which
captures a more nuanced and balanced understanding of feature contributions, ultimately
leading to more accurate and reliable predictions.

7.2. Shapley Values

In addition to traditional feature importance analysis, SHAP values were employed
to gain a more nuanced understanding of the impact of each feature on the model’s
predictions. As shown in Figure 17, SHAP values offer a method to explain the output
of a machine-learning model by attributing the contribution of each feature to the final
prediction. This approach is rooted in cooperative game theory, where the goal is to fairly
distribute the “payout” (in this case, the model’s prediction) among all features based on
their individual contributions.

Figure 17. Workflow of the Shapley values method.

φi = ∑S�N{i}
|s|!(|N| − |S| − 1)!

|N|! [v(S ∪ {i})− v(S)] (5)

As shown in Equation (5), the Shapley value φi for feature i is determined by averaging
the marginal contributions of that feature across all possible permutations of features. Here,
N represents the set of all features, S denotes a subset of features excluding feature i, |S|
indicates the number of elements in subset S, v(S) is the model’s prediction based solely on
the features in S, and v(S ∪ {i}) is the model’s prediction when feature i is included in S.
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Figures 18 and 19 illustrate the SHAP value analysis for the XGBoost model, which
was identified as one of the best-performing models in this study. In Figure 18, the SHAP
summary plot shows the distribution of SHAP values for each feature across all predictions.
Each point on the plot represents a SHAP value for a particular feature and instance. The
color represents the feature value, and the position on the x-axis shows the SHAP value,
indicating whether the feature increases or decreases the predicted bond strength. This plot
provides a detailed view of how each feature affects individual predictions, highlighting
the variability in the impact of features such as embedment length and tensile strength.

Figure 18. SHAP values for the XGB model.

Figure 19. Mean SHAP values for the XGB model.

Figure 19 presents the importance of global SHAP features, where features are ranked
by their average absolute SHAP values. This gives an overview of which features have
the most significant overall impact on the model’s predictions. Interestingly, embedment
length (mm) is ranked as the most important feature in the SHAP analysis, while in the
traditional feature importance analysis, it is ranked third. This discrepancy arises because
traditional feature importance measures the average contribution of each feature to the
model’s overall accuracy, whereas SHAP values take into account the impact of each feature
on every single prediction.
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The higher ranking of embedment length in the SHAP analysis suggests that while its
average contribution might be lower compared to features such as elastic modulus and ten-
sile strength, its impact is more significant and variable in certain contexts. This variability
could mean that, in specific cases, changes in embedment length have a more substantial ef-
fect on the model’s output, thereby increasing its overall importance when assessed through
SHAP values. Essentially, SHAP values capture the feature’s influence more granularly,
reflecting its critical role in specific instances rather than just its average contribution.

The primary difference between SHAP values and traditional feature importance
lies in the interpretation and granularity of the analysis. Traditional feature importance
measures how much each feature contributes to the model’s predictions on average, but it
does not account for the direction or variability of these contributions. In contrast, SHAP
values provide a more detailed explanation by showing the magnitude of a feature’s impact
and the direction (positive or negative) and how this impact varies across different instances.
This makes SHAP values particularly useful for understanding complex models such as
XGBoost, where interactions between features can lead to varying impacts on predictions.

To summarize, embedment length ranks as the most important feature in SHAP analy-
sis on the test data because it has a significant and context-specific impact on individual
predictions, even if its overall contribution across the entire training dataset (as measured
by traditional feature importance) is somewhat lower. This highlights the value of using
SHAP values to understand feature importance better, especially when analyzing how the
model performs on new, unseen data.

Figure 20 provides a detailed visualization of the SHAP values for individual features
in the XGBoost model, highlighting how each feature impacts the model’s predictions on
the test data. Each subplot corresponds to a specific feature, with the SHAP values plotted
on the y-axis and the feature values on the x-axis, while the color gradient, from blue to
red, represents the range of feature values. For categorical features such as Test Method
and rebar type, distinct clusters of SHAP values are observed, indicating how specific
categories within these features consistently influence the predicted bond strength, either
positively or negatively. Rebar diameter (mm) shows that higher diameters generally result
in higher SHAP values, suggesting a positive correlation with bond strength. However,
the effect varies depending on the interaction with other features. Embedment length
(mm) significantly impacts predictions, where shorter lengths tend to decrease predicted
bond strength and longer lengths have a positive effect, illustrating this feature’s critical
role in the model’s output. The feature Cover (mm) demonstrates a more complex, non-
linear relationship, where increases in cover can either positively or negatively affect the
predictions, reflecting the nuanced role of this feature. Lastly, tensile strength shows a
clear trend where higher tensile strength leads to higher predicted bond strength, further
reinforcing its importance in the model. Figure 21 presents SHAP waterfall plots for three
specific instances from the test dataset (numbers 14, 25, and 69) to illustrate how individual
features contribute to the final model prediction in the XGBoost model. Each plot shows
the breakdown of the model’s prediction and the contributions from each feature, offering
a clear visualization of how the features interact to influence the predicted bond strength.

7.3. Predictive Formulas for Bond Strength of FRP Rebars in UHPC

There have been numerous attempts to predict the bond strength of FRP rebars
in UHPC, with each study incorporating specific FRP rebars and concrete characteristics.
Table 9 summarizes some of these predictive formulas derived from various research efforts.

Figure 22 presents the results of applying these predictive formulas to the compiled
dataset, with comparisons to the corresponding experimental values. These formulas are
overfitted to the specific conditions of their original research papers and do not generalize
well to the broader dataset. This overfitting limits their applicability when predicting bond
strength in more diverse scenarios.
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Figure 20. SHAP values for each feature.
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(a) 

(b) 

(c) 

Figure 21. SHAP values for three random points in test data: (a) test data number 19, (b) test data
number 27, and (c) test data number 54 (In the visualization, blue color indicates that the feature
reduces the prediction value, while red color shows that the feature increases the prediction value).
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Table 9. Proposed formulations in previous studies.

Research Formula Note

Yoo et al. 2023 [8]

(a): τmax

( f ′c)
0.36 = (1.46 + 0.043db)× (0.68 + 0.195 c

db
+ 2.449 db

le
) for

sand-coated CFRP

(b): τmax

( f ′c)
0.5 = (7.775 + 1.184db)×

(
−0.918− 0.061 db

le
+
(

c
db

)0.03
)

for

helically ribbed CFRP

Separate equation according to
CFRP type.

Lee et al. 2008 [51] τmax = 3.3 f ′0.3
c for GFRP bars (a)

τmax = 4.1 f ′0.5
c for steel bars (b)

Only considers f ′c .

Zhu et al. [24] τmax =
(
−0.5 + 0.03 c

db
+ 4.5 db

le
+ 21.6

db

)√
f ′c CFRP rebars in UHPC

based on both pullout test data and beam test
Does not consider rebar type.

(a) 

(b) 

Figure 22. Previous predictive formulas compare to experimental values: (a) CFRP and (b) GFRP and
steel [8,24,51].

In contrast, the ML models employed in this study have demonstrated superior
predictive performance. Unlike traditional formulas, these ML models are not constrained
by predefined equations and can adapt to the complexities and non-linearities within the
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dataset. The models were trained and tuned using diverse features to capture a broader
range of interactions between variables. Consequently, the ML models provided more
accurate and generalized predictions across the entire dataset, outperforming the traditional
formulas in most cases. The success of these models in this study suggests that they could
serve as valuable tools for structural engineers seeking to predict bond strength with greater
accuracy and reliability across diverse practical applications.

8. Conclusions

This study demonstrated the application of various ML models, including AdaBoost,
CatBoost, Gradient Boosting, XGBoost, and Hist Gradient Boosting, in predicting the bond
strength of reinforced concrete structures. Unlike traditional methods, ML models do
not rely on explicit mathematical equations to predict rebar bond strength. Instead, these
models are trained on experimental data, allowing them to capture complex patterns and
relationships between input variables and bond strength. By learning from the data, ML
models can provide accurate predictions without predefined equations. The employed
models were thoroughly evaluated before and after hyperparameter tuning to assess their
predictive capabilities.

• The results indicated that hyperparameter tuning significantly improved the perfor-
mance of all models, particularly those that initially exhibited lower accuracy, such as
AdaBoost and Hist Gradient Boosting.

• The analysis revealed that CatBoost, Gradient Boosting, and XGBoost consistently out-
performed the other models, with XGBoost achieving the highest predictive accuracy
after tuning. This was further corroborated by the Taylor diagrams, which illustrated
the robustness of these models across training, testing, and combined datasets.

• The study also explored using a Voting Regressor to combine the strengths of mul-
tiple models. The findings showed that a Voting Regressor combining only the
best-performing models (CatBoost, Gradient Boosting, and XGBoost) slightly im-
proved predictive accuracy, demonstrating the value of model voting in enhancing
prediction reliability.

• In addition to traditional feature importance analysis, SHAP values were employed to
gain deeper insights into the impact of individual features on the model’s predictions.
The SHAP analysis highlighted that embedment length had a significant impact
on predictions.

• The insights gained from this study underscore the importance of hyperparameter
optimization and advanced interpretability techniques such as SHAP values in devel-
oping and evaluating machine learning models for structural engineering applications.
The consistent identification of key features such as tensile strength, elastic modulus,
and embedment length across different models and analyses reinforces their critical
role in predicting bond strength, providing valuable guidance for future research and
practical applications in this field.

• The findings demonstrate that while traditional predictive formulas can provide
insights within specific experimental contexts, their limited generalizability highlights
the need for more adaptable approaches, such as ML models, which have proven to
deliver more accurate and reliable bond strength predictions across diverse scenarios.

• The user interface developed in this study enhances accessibility and practical applica-
tion by allowing engineers to seamlessly implement and evaluate ML models for bond
strength prediction in FRP-reinforced UHPC. By providing an interactive platform
that supports customization of model parameters and real-time evaluation of model
performance, the user interface bridges the gap between advanced ML techniques
and their practical application in structural engineering. This tool empowers users to
leverage state-of-the-art predictive models, thereby contributing to more accurate and
efficient design and analysis processes in the field.
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Abstract: This paper presents a numerical homogenization method for estimating the
effective converse flexoelectric coefficients. A 2D model made of two-phase composite
is developed at the microscale in consideration of a representative volume element that
includes a continuous flexoelectric fiber embedded in a pure elastic matrix. In the imple-
mentation, the constitutive equations are derived from the electromechanical enthalpy
accounting for higher-order coupling terms. Electric boundary conditions associated with
an inhomogeneous electric field are imposed, allowing the approximation of the gener-
ated mechanical strains and stresses. Accordingly, the numerical simulations yield the
overall equivalent converse flexoelectricity tensor for the longitudinal, transversal, and
shear couplings. The results showed that the composite undergoes an obvious straining,
which creates actuation due to the converse effect. The components of the homogenized
longitudinal and transverse coefficients were found to be dependent on the volume fraction
and elastic properties of the constituents.

Keywords: numerical homogenization; electromechanical coupling; converse flexoelectricity;
flexoelectric nanocomposites

1. Introduction

Flexoelectricity is a physical property related to the break of the symmetry inversion
in dielectrics. In this case, the electromechanical coupling is defined by the relationship
between the displacement of ions (i.e., polarization) and the mechanical deformation.
The energy conversion mechanism is, at best, notable at small length scales. With recent
developments in nanotechnology, increasing interest has been shown in studying the modi-
fication in the electromechanical behavior of flexoelectric nanocomposites that provides
the possibility to produce considerably larger flexoelectric outcomes [1,2]. The concept of
direct flexoelectricity was introduced by Kogan in the 1960s, who quantified the effect in
solid crystals by a coefficient that couples the strain gradient and the induced electric polar-
ization [3]. In this direct form, an electrical polarization is induced in the presence of an
inhomogeneous strain. Later, Tagantsev [4] extended the phenomenological flexoelectricity
theory of Kogan by accounting for surface and bulk contributions [4]. Further experimental
investigations have confirmed the theory of Tagantsev for the role of electric susceptibility
in improving the flexoelectric effect [5]. In addition, several theoretically based studies have
been devoted to better understand the fundamentals of electromechanical coupling [2,6,7].

In contrast, the converse effect of flexoelectricity causes a deformation when applying
an electric field. The direct and converse coefficients are widely used to measure flex-
oelectric performance. Still, their sign and relative magnitude are contradictory in the
relevant literature. Flexoelectric effects have been experimentally reported in the range
of 10−9 − 10−6 C/m for certain ferroelectrics and perovskite oxides [8]. To calculate the
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converse coefficients, the common setup includes measuring the bending in a capacitor
after applying a voltage or applying a voltage across a truncated pyramid; see [9–11]
among others. Analogously, a large effective piezoelectric response has been produced in
nonpiezoelectric materials, and the converse flexoelectricity showed non-negligible effects
in thin films [12]. The equivalent piezoelectric effect has been shown to increase with the
converse flexoelectricity in permittivity gradient composites [13]. The mechanism has
been investigated in an asymmetric structure around 90◦ domain walls at which large
polarization and strain gradients are clearly concentrated [14]. An analysis of atomic-scale
electron microscopy imaging data has been integrated with phenomenological phase field
modeling to study the influence of flexocoupling on the global vortex structure [15]. More-
over, flexoelectric coefficients were extracted for a homogeneous domain from simulations
based on ab initio lattice dynamics [16] and first-principles calculations [17]. An explicit
solution was presented relying on a micro-hole model. The formulations were based on
higher-order governing equations that take into account the strain gradient elasticity, the
direct flexoelectricity, and the converse flexoelectricity [18]. Approaches along these lines
were implemented to exact solutions for the flexoelectric response in [19].

In two- (or multiple-)phase composites, an active material which has the flexoelectric
properties can increase the efficiency of energy conversion in the zones of high strain
gradients. A significant enhancement of polarization could be attributed to the flexoelectric
effect [20]. Nevertheless, it has been shown that it is possible to produce piezoelectric
nanocomposites without the use of piezoelectric materials [21]. In this regard, elastic
heterogeneity impacts the effective piezo- and flexoelectric responses as well. Analytical
and computational homogenization have provided insight into the coupling at the mi-
croscale to determine the average macroscopic properties where a heterogeneous domain
is transformed into a small body of a homogeneous one. Worth mentioning here are the
documented works for piezoelectric, electrets, and electrostrictive composites in [22–25].
The homogenized flexoelectric, dielectric, and elastic response was theoretically studied
by [26]. In the mean time, an analytical micromechanic approach was exploited to calculate
the effective flexoelectric coefficients in a multifunctional fiber composite [27]. Asymptotic
homogenization was applied to flexoelectric rods [28] and flexoelectric composite plates
with a periodically varying thickness [29]. Considering the flexoelectric effect, the effective
elastic piezoelectric constants were examined via analytical-based micromechanical models
and finite element models [30–32].

The numerical implementation of computational homogenization commonly used
a representative volume element (RVE) to approximate the kinematic and constitutive
equations in equilibrium. In [33], an apparent flexoelectricity response was concluded in
heterogeneous piezoelectricity by applying a computational approach on the finite element
method. As the flexoelectricity of the constituent materials was not considered, the effective
flexoelectric tensor was approximated in different geometries. Similarly, an inclusion-based
piezoelectric planar composite was examined, and the effective properties were predicted
using a variational formulation [34]. The effective material properties and flexoelectric
coefficients were evaluated using a 3D RVE with periodic boundary conditions in [35]. The
numerical simulation was implemented on a microstructure composed of an elastic matrix
and cylindrical flexoelectric filler. Ref. [36] has solved the higher-order electromechanical
coupling using a high-order approximation space constrained to periodicity conditions.
Special attention was given to the homogenization of architected metamaterials with
apparent piezoelectricity. It is worth noting that the above-mentioned works have focused
on the direct effects of flexoelectricity. With regard to the converse effect, a numerical
study was provided in [37] which revealed an enhanced overall flexoelectric response in
periodic piezoelectric composites. The apparent converse coefficients were found to be in
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the same order as the direct coefficients in the local constituents. Indeed, to the author’s
best knowledge, the contributions in this direction are scarce. A thorough and robust
numerical technique is at high demand, as it can provide a deeper understanding of the
direct and converse flexoelectricity.

The main objective of this study is to evaluate the effect of converse flexoelectricity in
two-phase composites, namely elastic and flexoelectric. In particular, a numerical homoge-
nization method is presented, offering significant advantages in predicting the effective
converse flexoelectric coefficients. The electromechanical coupling terms associated with
the strain, the electric field gradient, and the strain gradient elasticity are derived from the
electrical enthalpy. Non-Uniform Rational B-spline (NURBS)-based isogeometric analysis
(IGA) is used to address the problem leveraging its higher-order continuity. The study
relies on numerical simulations conducted on a two-dimensional model subjected to inho-
mogeneous electric field. The solution involves computing the distribution of the electrical
field, as well as the generated stress and strain fields. Then, the overall performance of the
heterogeneous system is obtained by calculating the equivalent coefficients. The converse
flexoelectricity tensor is evaluated at varying volume fractions including comparison with
respect to the ratio of the elasticity between the two constituents. The paper is organized as
follows. Section 2 introduces the mathematical formulation of the continuum flexoelectric
boundary value problem, and presents how NURBS-based isogeometric analysis (IGA)
is used to approximate the solution of the electromechanically coupled system. Section 3
describes the setup of the problem, including an in-depth discussion of the results of
computational experiments. Afterwards, the summary and conclusions are shown in
Section 4.

2. Flexoelectricity Modeling Formulation

Direct and converse flexoelectricity are characterized by fourth-order tensors that
couple polarization and strain gradient in the former, and strain and polarization gradient in
the latter. Considering flexoelectricity theory, the internal energy includes additional terms
related to the electromechanical coupling. The Gibbs-free (electromechanical enthalpy)
bulk energy for a linear flexoelectric solid can be written as

H
(

εij, Ei, ε jk,l , Ek,l

)
=

1
2
Cijklεijεkl − 1

2
κijEiEj − eiklEiεkl

+ dijklEiε jk,l + fijklEi,jεkl +
1
2

gijklmnεij,kε lm,n

(1)

where εij is the strain tensor and Ei = −φ,i is the vector of the electric field, with φ

being the electric potential. The comma notation (, ) in the subscript denotes the first
derivative with respect to one spatial variable. The first two terms represent elastic and
electrostatic potentials, respectively, where Cijkl is the fourth-order tensor of elastic moduli
and κij indicates the second-order tensor of dielectric permittivity. The contribution of
piezoelectricity is represented by the third-order piezoelectric tensor, eikl , which couples the
strain and the electric field. Likewise, the flexoelectric effect is accounted for by fourth-order
flexocoupling tensors in the fourth and fifth terms in the above expression. Here, dijkl and
fijkl represent the direct and converse tensors, respectively. For cubic symmetry materials,
each tensor has only three nonzero independent components: longitudinal, transverse, and
shear coefficients [38]. The particular focus hereinafter is on the converse constants, which
correspond to the ratio of the polarization gradient to the produced strain. In addition, this
study considers the nonlocal elastic energy associated with the strain gradient elasticity.
To ensure positive strain energy, a relatively small value is assumed for a length scale
parameter (l) according to the simplified model of strain gradient elasticity theory, such
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that the sixth-order elastic tensor gijklmn = l2Cjkmn [39]. Further higher-order coupling
terms are neglected for the sake of simplicity.

From the above-mentioned enthalpy, the constitutive relations for the electric displace-
ment (D), the stress tensor (σ), and the higher-order tensors (hyper) of stress (S) and
electric displacement (P, known as the electric quadrupole) are obtained as follows:

Di = eiklεkl + κijEj − dijklε jk,l (2a)

σij = Cijklεkl − eiklEi + fijklEi,j (2b)

Sijk = dlijkEl + gijklmnε lm,n (2c)

Pij = fikljεkl (2d)

When solving the weak form, it is required to solve fourth-order partial differential
equations (PDEs), which necessitates C1 continuity. This study employs the isogeometric
analysis (IGA) approach for the discretization, because it includes higher-order smooth
basis functions. For this purpose, the formulation presented in [40,41] is adopted based
on Non-Uniform Rational B-spline (NURBS) basis functions, N(i,p)(ξ). The geometry is
discretized by control points. In doing so, mechanical and electrical degrees of freedom
are assigned for each control point. To approximate the solution of field variables, the
nodal values are multiplied with their corresponding basis functions. The mechanical
displacement (u) and electric potential (φ) fields with the corresponding variations are
approximated by

u = Nu
Tue (3a)

φ = Nφ
Tφe (3b)

∂ju = ∂j(Nu)
Tue = (Bu)

Tue = ε (3c)

∂jθ = ∂j
(
Nφ

)T
φe =

(
Bφ

)T
φe = −E (3d)

∂j∂ku = ∂j∂k(Nu)
Tue = (Hu)

Tue = ∇ε (3e)

∂j∂kφ = ∂j∂k
(
Nφ

)T
φe = (Hs)

Tφe = −∇E (3f)

where the superscript e denotes nodal parameters at the control points. The gradient opera-
tors Bu and Bφ are the spatial derivatives of the basis functions Nu and Nφ, respectively,
while Hu and Hs are their second-order (Hessian) derivatives. Note that the NURBS basis
functions are continuously differentiable up to p− 1 a polynomial order of p [42].

The boundary conditions can be imposed as mechanical tractions, t̄, or surface charge
density, �, at the boundaries Γt and ΓD. By integration over the domain Ω, the discrete
representation of Equation (1), after some algebra, reads [41]

H =
1
2 ∑

e
uT
(∫

Ωe

BuC(Bu)
TdΩe

)
u− 1

2 ∑
e

(∫
Ωe

Bφκ
(
Bφ
)TdΩe

)
φφ + ∑

e
uT
(∫

Ωe

Bue
(
Bφ
)TdΩe

)
φ

+∑
e

uT
(∫

Ωe

HudT(Bφ
)TdΩe

)
φ + ∑

e
uT
(∫

Ωe

(Bu)
T f
(
Hφ
)TdΩe

)
φ +

1
2 ∑

e
uT
(∫

Ωe

Hsg(Hs)
TdΩe

)
u

−∑
e

(∫
Γte

NT
utΓds

)
u + ∑

e

(∫
ΓDe

NT
φ�ds

)
φ

(4)

The corresponding mechanical and electrostatic equilibrium are obtained for u and φ,
respectively. Hence, the global stiffness coupled matrix is assembled from the mechanical,
electromechanical, and electrical elemental stiffness matrices [43].
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3. Numerical Implementation and Results

This study investigates a two-phase composite constituted by flexo (active phase)
and elastic (passive phase) materials under the assumption of plane strain condi-
tions. The former experiences pure flexoelectricity (i.e, non-piezoelectric with eij = 0,
κij = 12.48× 10−9 C/Vm and fijkl = 1.0× 10−6 C/m), whereas the latter is a plain elastic
material. This can provide a clear distinction between their individual physics. The geom-
etry of the reference problem is sketched in Figure 1, which takes the shape of a square
RVE with dimensions Lx1 = Lx2 = 100× 10−6 m. A two-dimensional configuration with
longitudinally oriented active fibers is being considered. This configuration enables the
study of the converse effect in both the longitudinal and transverse directions.

Figure 1. Schematic representation of the RVE.

In the analysis, a transversely isotropic elasticity is assumed, incorporating softer
passive material that can yield enhanced deflection. The elastic properties for the matrix
are taken as C11 = 60 GPa, C12 = 32.3 GPa, and C44 = 13.8 GPa; while for the flexo phase,
they are C11 = 120 GPa, C12 = 40 GPa, and C44 = 40 GPa. However, we will change these
properties and examine their effects on the effective coefficients at a varied volume fraction.
A no-slippage condition is accounted for, ensuring continuity in displacement, traction,
and electrical potential along the interfaces.

While the effective dielectric properties can be estimated using a uniform electric field,
the homogenized piezoelastic (piezoelectric and elastic) constants can be obtained under
boundary conditions of uniform strain. Differently, the direct flexoelectric constants can be
determined by imposing a strain gradient. However, the scope of this study is to evaluate
the converse flexoelectricity. Boundary conditions that create a polarization gradient
are considered for this purpose. An electric field gradient is generated independently,
ensuring that all other kinematic conditions remain at zero, except for the component
under investigation. Note in this case that F = P : [ε]−1. In doing so, the RVE is subjected
to a periodically fluctuating electric potential, φ, which will result in non-homogeneous
electric fields. Quadratic electric boundary conditions for the system are applied at the
surfaces/boundaries as follows:

φ|x=0,L = φ(x) = V0 −V0

(
2x
L
− 1
)2

(5)

where V0 is the amplitudes of the electric potential.
For the numerical implementation, the model with the established geometry is meshed

by quadratic B-spline elements. The control points are utilized to discretize the geometry
and encompass the degrees of freedom (DoF). Two DoF pertaining to mechanical displace-
ment and one for the electric potential are assigned. Mesh sensitivity is evaluated using
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different sizes associated with a quadratic shape function in all simulations. It has been
determined that discretization of 40 × 40 elements is sufficient to achieve accurate results,
revealing only a negligible impact on the numerical approximation. Macroscopic quantities
are obtained via the volume averaging operator (·) = 〈·〉 := 1/V

∫
Ω(·)dV.

Throughout all simulations, we consider the converse flexoelectricity effect under
predefined electrical loading. An electric field gradient with respect to x2, (∇E22 = E2,2),
can be obtained by applying a non-uniform electric potential on the left and right edges
of the RVE in accordance to Equation (5). In similar way, ∇E11 is generated from a non-
uniform voltage on the top and bottom surfaces. Figure 2 illustrates the distribution of
the axial stresses σ22 within an RVE subjected to an electric gradient ∇E22. The micro-
structure is loaded with flexo material ratio of 20% by volume and the amplitude V0 is
100 V. Negative and positive concentrations of electric quadrupoles are induced in the x1

and x2 directions, respectively, within the flexo phase due to the electric gradient. The
contours of stress fields in Figure 2a exhibit an axis of symmetry along x2-axis attributed
to the symmetrical microstructure along this axis. Furthermore, the applied electrical
loading primarily induces negative stresses within the inclusion and positive stresses in its
surrounding matrix, because of perfect bonding of the two materials and the absence of
boundary constraints. Consequently, the flexo phase contracted while the matrix expanded
due to stresses. The direction of the electric potential determines the sign of the straining.
It can be revealed that the generated stresses are a clear indication of actuation as a result
of the converse flexoelectric effect. The stress profiles across the mid height calculated
at different loadings are depicted in Figure 2b. The plots confirm that the axial stress
developed through the flexo phase is considerably stronger. This is attributed to the
flexoelectric coupling. It is also observed that with an increase in the magnitude of the
applied voltage, a proportionate increase in the actuation is produced.
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Figure 2. Distribution of the axial stress σ22 due to an electric gradient ∇E22: (a) contour of stress
field scaled by 2 corresponding to V0 = 100 V, and (b) variation of σ22 at mid-height for different
electrical potentials.

Table 1 presents the homogenized converse coefficients of the longitudinal, transversal
and shear couplings in a system including flexo phase comprising a volume fraction of 20%.
The second row of the table includes the percentages of the equivalent coefficients relative
to the flexo phase of fijkl = 1.0× 10−6 C/m. The effective converse shear coefficient f 1212
exhibits the largest value of 0.94 × 10−6 C/m, leading to a remarkable contribution to the
shear strain. The components f 2222 and f 2211 are 0.49 × 10−6 C/m and 0.51 × 10−6 C/m,
respectively. Interestingly, f 2222 and f 2211 are proportional to in-plane actuation, while
f 1212 is proportional to out-of-plane actuation. When reinforcing an elastic matrix with
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only 20% by volume, the overall coefficients can be improved by up to 50% of the flexo
material. This clearly demonstrates the significant impact of converse flexoelectricity on
electromechanical coupling.

Table 1. Effective converse flexoelectric coefficients and their ratios to the flexo phase of
fijkl = 1.0× 10−6 C/m.

f ijkl [×10−6 C/m]

f 2222 f 2211 f 1212

Coefficient 0.49 0.51 0.94
Relative percentage 49% 51% 94%

Additionally, the evolution of the components of the converse flexoelectric coefficients
with respect to the volume fraction is studied and plotted in Figure 3. It also demonstrates
the impact of material elasticity by considering different ratios of the elasticity modulus of
the matrix relative to the inclusion, ρ = C11elastic/C11 f lexo. From the figure, it can be observed
that the components f 2222 and f 2211, which couple the polarization gradient and strain in
the axial and transverse directions, are characterized by an obvious increasing trend. The
reason for these improvements is that the inclusion is considered with electromechanical
properties while the matrix is purely elastic material. An upward shift of can be noticed as
the ratio ρ increases from 0.5 to 2.0 implying a stronger converse effect. The change in f 1212,
is almost marginal over the entire range resulting in a relatively modest improvement,
particularly at microstructure filled with � 10% volume fractions.

(a) (b) (c)
Figure 3. Variation of the effective converse flexoelectric coefficients versus the volume fraction:
(a) f2222, (b) f2211, and (c) f1212. ρ = C11elastic/C11 f lexo.

4. Summary

Flexoelectricity is a complex electromechanical coupling phenomenon that is challeng-
ing to fully comprehend and precisely quantify. The system is characterized by fourth-order
partial differential equations, requiring C1 continuity. The energy conversion relies on
higher-order coupling terms that relate the electric polarization and mechanical strain,
along with their corresponding gradients. The mechanism can stand for direct or converse
effects concerning to the induced energy terms. The impact of strain and electric field
gradients is evident in two-phase materials, because the high gradients can contribute more
to the total energy.

In this study, numerical homogenization was employed to evaluate the overall ef-
fective converse coefficients in composites. The continuum flexoelectric boundary value
problem was formulated and solved numerically accounting for the electrical enthalpy. The
constitutive relationships are defined as the work conjugates of strain, electric field, and
their gradients. Isogeometric analysis with Non-Uniform Rational B-spline (NURBS) was
considered in solving the governing equations and approximating the solution. Particular
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attention was given to a heterogeneous composite system formed by unidirectional contin-
uous fibers aligned in an elastic matrix. The fibers are non-piezoelectric and are assumed
to feature purely flexoelectric behavior with a fully bonded interface with the surrounding
matrix, involving continuity in both displacement and electric potential. For this purpose,
a standard continuum model was adopted employing a 2D representative volume element
at microstructure. The geometry was meshed with 40 × 40 B-Spline elements. Each control
point was defined with two types of DoFs, namely conventional displacement and electric
potential. The study examined a pre-designed electrical loading as the RVE was subjected
to fluctuated electric potential, resulting in non-homogeneous electric fields. Subsequently,
the homogenized values were obtained by integrating over the volume.

The simulations revealed a significant contribution of the converse flexoelectricity to
the electromechanical coupling. Apparent mechanical stresses were created in the inclusion
and its surrounding matrix. The disparity between the compression and tension stresses
increased with the amplitude of the applied electric potential. The components of the
effective coefficients that couple a polarization gradient and strain in the longitudinal and
transverse directions ( f 2222 and f 2211) demonstrated an approximately similar tendency
for the addressed geometry. The equivalent coefficients of a composite with a 20% volume
fraction reached up to 50% the flexo phase. These coefficients steadily increased with the
increasing volume fraction, which fits with the rule of mixture. However, the change in
the shear constant, f 1212, was found to be marginal. Therefore, further study is essential to
evaluate its performance. Additionally, the study examined the impact of material elasticity.
A stronger effect was observed when using softer inclusion.
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