

Special Issue Reprint

Advances in the Astonishing World of Phytochemicals

State-of-the-Art for Antioxidants-2nd Edition

Edited by Antonella D'Anneo and Marianna Lauricella

mdpi.com/journal/antioxidants

Advances in the Astonishing World of Phytochemicals: State-of-the-Art for Antioxidants—2nd Edition

Advances in the Astonishing World of Phytochemicals: State-of-the-Art for Antioxidants—2nd Edition

Guest Editors

Antonella D'Anneo Marianna Lauricella

Guest Editors

Antonella D'Anneo Marianna Lauricella

Department of Biological, Department of Biomedicine,
Chemical and Pharmaceutical Neurosciences and Advanced

Sciences and Technologies Diagnostics (BIND)
(STEBICEF) University of Palermo

University of Palermo Palermo Italy

Italy

Editorial Office MDPI AG Grosspeteranlage 5 4052 Basel, Switzerland

This is a reprint of the Special Issue, published open access by the journal *Antioxidants* (ISSN 2076-3921), freely accessible at: https://www.mdpi.com/journal/antioxidants/special_issues/1472QW8437.

For citation purposes, cite each article independently as indicated on the article page online and as indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-5475-2 (Hbk) ISBN 978-3-7258-5476-9 (PDF) https://doi.org/10.3390/books978-3-7258-5476-9

© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

About the Editors
Marianna Lauricella and Antonella D'Anneo
Advances in the Astonishing World of Phytochemicals: State-of-the-Art for
Antioxidants—2nd Edition
Reprinted from: <i>Antioxidants</i> 2025 , <i>14</i> , 582, https://doi.org/10.3390/antiox14050582 1
Cristina-Ștefania Gălbău, Marius Irimie, Andrea Elena Neculau, Lorena Dima,
Lea Pogačnik da Silva, et al.
The Potential of Plant Extracts Used in Cosmetic Product Applications—Antioxidants Delivery
and Mechanism of Actions
Reprinted from: <i>Antioxidants</i> 2024 , <i>13</i> , 1425, https://doi.org/10.3390/antiox13111425 7
Elena Vichi, Alessandra Francini, Andrea Raffaelli and Luca Sebastiani
Effects of Caffeine, Zinc, and Their Combined Treatments on the Growth, Yield, Mineral
Elements, and Polyphenols of Solanum lycopersicum L.
Reprinted from: <i>Antioxidants</i> 2024 , <i>13</i> , 1100, https://doi.org/10.3390/antiox13091100 29
María del Carmen Villegas-Aguilar, Noelia Sánchez-Marzo, Álvaro Fernández-Ochoa,
Carmen Del Río, Joan Montaner, Vicente Micol, et al.
Evaluation of Bioactive Effects of Five Plant Extracts with Different Phenolic Compositions
against Different Therapeutic Targets Proprieted from: Authoridants 2024, 12, 217, https://doi.org/10.2200/apticx12020217
Reprinted from: <i>Antioxidants</i> 2024 , <i>13</i> , 217, https://doi.org/10.3390/antiox13020217 47
Emin Cadar, Ticuta Negreanu-Pirjol, Carolina Pascale, Rodica Sirbu, Irina Prasacu,
Bogdan-Stefan Negreanu-Pirjol, et al.
Natural Bio-Compounds from Ganoderma lucidum and Their Beneficial Biological Actions for
Anticancer Application: A Review
Reprinted from: <i>Antioxidants</i> 2023 , <i>12</i> , 1907, https://doi.org/10.3390/antiox12111907 65
Min Woo Baek, Jong Hwan Lee, Chang Eun Yeo, Su Ho Tae, Se Min Chang,
Han Ryul Choi, et al.
Antioxidant Profile, Amino Acids Composition, and Physicochemical Characteristics of Cherry
Tomatoes Are Associated with Their Color Proprieted from: Autionidants 2024, 12, 785, https://doi.org/10.2200/optiox12070785
Reprinted from: <i>Antioxidants</i> 2024 , <i>13</i> , 785, https://doi.org/10.3390/antiox13070785 101
Lourdes Carmona, Berta Alquézar and Leandro Peña
Biochemical Characterization of New Sweet Orange Mutants Rich in Lycopene and
β-Carotene Antioxidants
Reprinted from: <i>Antioxidants</i> 2024 , <i>13</i> , 994, https://doi.org/10.3390/antiox13080994 118
Przemysław Sitarek, Anna Merecz-Sadowska, Joanna Sikora, Weronika Osicka, Igor Śpiewak,
Laurent Picot and Tomasz Kowalczyk
Exploring the Therapeutic Potential of <i>Theobroma cacao</i> L.: Insights from In Vitro, In Vivo, and
Nanoparticle Studies on Anti-Inflammatory and Anticancer Effects Provinted from Anticoidante 2024, 13, 1376, bytes y/dei ang/10, 2200 /caption 12111276
Reprinted from: <i>Antioxidants</i> 2024 , <i>13</i> , 1376, https://doi.org/10.3390/antiox13111376 133
Mehak Zahra, Heidi Abrahamse and Blassan P. George
Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine
Reprinted from: Antioxidants 2024, 13, 922, https://doi.org/10.3390/antiox13080922 160

Bartolo Tamburini, Diana Di Liberto, Giovanni Pratelli, Chiara Rizzo, Lidia La Barbera,
Marianna Lauricella, et al.
Extra Virgin Olive Oil Polyphenol-Enriched Extracts Exert Antioxidant and Anti-Inflammatory
Effects on Peripheral Blood Mononuclear Cells from Rheumatoid Arthritis Patients
Reprinted from: <i>Antioxidants</i> 2025 , <i>14</i> , 171, https://doi.org/10.3390/antiox14020171 18 0
Ting Li, Wenjun Wu, Jianming Zhang, Qinghang Wu, Shenlong Zhu, Erli Niu, et al.
Antioxidant Capacity of Free and Bound Phenolics from Olive Leaves: In Vitro and
In Vivo Responses
Reprinted from: <i>Antioxidants</i> 2023 , <i>12</i> , 2033, https://doi.org/10.3390/antiox12122033 20 0
Gokhan Zengin, Nilofar, Evren Yildiztugay, Abdelhakim Bouyahya, Halit Cavusoglu,
Reneta Gevrenova and Dimitrina Zheleva-Dimitrova
A Comparative Study on UHPLC-HRMS Profiles and Biological Activities of Inula sarana
Different Extracts and Its Beta-Cyclodextrin Complex: Effective Insights for Novel Applications
Reprinted from: <i>Antioxidants</i> 2023 , <i>12</i> , 1842, https://doi.org/10.3390/antiox12101842 22 4

About the Editors

Antonella D'Anneo

Antonella D'Anneo is Professor in Biochemistry at the Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo. Lecturer in "Biochemistry" in the Bachelor degree in Biological Sciences, University of Palermo. Member of the Italian Society of Biochemistry and Molecular Biology (SIB). She began her studies within the field of tumor biology, cell death mechanisms (apoptosis, necrosis, necroptosis, autophagy and anoikis) activated by natural and synthetic compounds and biochemical pathways which can be activated in tumor cells. To complement her graduate training in biochemistry, she obtained, as a visiting scholar, a training at Rangos Research Center (University of Pittsburgh, USA), taking part in projects concerning gene therapy approaches to determine the tolerization of diabetic patients to the cells of the islet donor. More recently, her studies were focused on the identification of nutraceutical properties (anti-tumor, anti-inflammatory, anti-obesity and antioxidant) of phytochemicals to disclose their biological activity and potential medicinal use. She is the author of over 75 scientific publications in ISI-indexed journals, and her H index = 31.

Marianna Lauricella

Marianna Lauricella is Professor in Biochemistry in the Department of Biomedicine, Neuroscience and Advanced Diagnostics, School of Medicine, University of Palermo. Lecturer in "Biochemistry" in the master's degree course in Medicine, University of Palermo. Member of the Italian Society of Biochemistry and Molecular Biology (SIB). Her research activity mainly concerns the study of the mechanisms governing the control of survival and death in cultured tumor cells. In particular, the aim of her research is to identify natural and synthetic compounds which can selectively induce cell death processes (apoptosis, autophagy, necroptosis). She also has expertise in the study of the role exerted by oxidative stress in inducing obesity and the anti-obesity effects of natural compounds in in vitro models of obesity. She is an author of over 85 peer-reviewed articles, and her H index = 31.

Editorial

Advances in the Astonishing World of Phytochemicals: State-of-the-Art for Antioxidants—2nd Edition

Marianna Lauricella 1,* and Antonella D'Anneo 2,*

- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- ² Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
- * Correspondence: marianna.lauricella@unipa.it (M.L.); antonella.danneo@unipa.it (A.D.)

This Editorial refers to the Special Issue titled "Advances in the Astonishing World of Phytochemicals: State-of-the-Art for Antioxidants—2nd Edition", which highlights the multifaceted properties of natural compounds containing antioxidants and describes the need to understand how active compounds, solvents, and complex formations interact, in order to better establish their potential in applied sciences.

The plant world is a fascinating source of biodiversity and physiologically active substances with antioxidant properties, which help to neutralize free radicals and reduce oxidative stress. Polyphenols are one of the main phytoconstituents, with antioxidant potential found in different parts of plants, including flowers, leaves, fruits, roots, and seeds [1]. Moreover, polyphenols are a diverse group of naturally occurring compounds that play a significant role in protecting plants from environmental stressors and pathogens [2].

Antioxidants derived from plant sources have a wide range of applications across various fields, including health, nutrition, cosmetics, agriculture, and food preservation. These plant-based antioxidants offer natural, sustainable, and often safer alternatives to synthetic chemicals, making them valuable in the development of new products [3,4].

In cosmetics, antioxidants derived from plants are widely used in the preparation of skincare products [5]. Exposure to UV rays and free radicals significantly contributes to skin damage, with the formation of wrinkles and dark spots hastening aging by interfering with defense and restorative processes. The plant world is a rich and diverse source of compounds and nutricosmetics that can play a key role in promoting health and skin vitality, and these have received a great deal of attention from pharmaceutical companies for their anti-free radical potential.

Some common plant-based antioxidants include flavonoids, polyphenols, and vitamins such as Vitamin C and E. In the beauty industry, plant-based ingredients can be used as supplements, nutricosmetics, and cosmetics in the preparation of skincare products with radical scavenging activity in order to create a skin-protective shield from UV rays and free radicals (contribution 1).

Plant-derived compounds also have remarkable uses in agriculture, benefiting both crop production and plant protection due to their antioxidant and antimicrobial properties. Particular interest has been paid to the application of antioxidants in horticulture as plant biostimulants are able to ameliorate stress-associated injury, favor plant growth, increase fruit quality, and reduce toxicity risks. On this topic, research conducted by Vichi et al. (contribution 2) proved that a zinc–caffeine-combined application was able to promote

1

metabolic processes, enriching the nutritional value of high-quality fruits, as well as improving plant growth. Indeed, the authors evaluated the effect of zinc, caffeine, and a combination of these administered in the irrigation procedures of *Solanum lycopersicum* L. plants. The research provided evidence that the zinc-caffeine combination could activate the phenylpropanoid pathway of tomatoes, not only increasing the content of 4-coumaric acid, caffeic acid, and t-ferulic acid but also enhancing the antioxidant properties of the fruits. The analysis of mineral element content assayed in the tomatoes obtained from *Solanum lycopersicum* L. plants that were cultivated with this procedure also demonstrated the absence of health risks after consumption of these fruits. The study is in line with the strategies set by the Food and Agriculture Organization (FAO) of the United Nations that support sustainable agricultural approaches aiming to increase food production and also reduce environmental impacts.

As reported by del Carmen Villegas-Aguilar in her contribution, plant-derived extracts rich in phenolic compounds possess a different plethora of bioactive properties (contribution 3). Indeed, for some classes of phenolic compounds, exact structure—bioactivity relationship mechanisms still remain unknown. However, analyzing five plant matrices (*Theobroma cacao*, *Hibiscus sabdariffa*, *Silybum marianum*, *Lippia citriodora*, *and Olea europaea*) with different phenolic compositions the authors provided evidence that *T. cacao* and *S. marianum* exerted similar inhibitory effects in the enzymes involved in phlogosis processes, as well as in skin aging, highlighting the fact that shared bioactive properties among phenolic compounds can be identified in different matrices.

Different plant extracts have been studied for their potential to treat cancer, and many of them have shown promising effects. *Ganoderma lucidum*, a mushroom known under different names depending on the country, has been extensively used in traditional medicine, particularly in East Asia, for its health benefits. On this topic, Cadar's review highlights the bio-compounds in *Ganoderma lucidum* that have been shown to have cancer-fighting effects (contribution 4). These bioactive molecules include polysaccharides, triterpenoids, sterols, proteins, nucleotides, fatty acids, vitamins, and minerals. These compounds have demonstrated multiple anticancer effects, namely immunomodulatory, anti-proliferative, cytotoxic, and antioxidant actions. However, there is uncertainty about the effects of *Ganoderma lucidum* bio-compounds in the treatment of different cancers. Such an effect could be ascribed to variations in the types of *Ganoderma lucidum* used, differences in the people studied, or interactions between the mushroom and other treatments. Thus, more rigorous and standardized clinical research is necessary to confirm its therapeutic potential and to better understand the mechanisms underlying its anticancer effects.

Apart from studies on plant-derived extracts, research on the nutritional value and antioxidant potential of fruits has gained particular attention due to the important role that fruits play in human health. On this topic, the nutritional value and antioxidant potential of *Solanum lycopersicum* L. fruits were investigated by Woo Baek et al. (contribution 5), who, in their analysis of the properties of five cherry tomato cultivars (green-colored Jocheong, yellow-colored BN Satnolang, orange-colored Gold Chance, black-colored Black Q, and red-colored Snacktom cherry tomatoes), measured physicochemical parameters and compared the firmness, color values, titratable acidity, brix-to-acid ratio (BAR), and total soluble solids of the fruits. Their analysis showed relevant changes in the BAR, as well as in some metabolite profiles, of the content of some amino acids, thus providing evidence for the different taste among cherry tomato cultivars, with metabolite content related to fruit color. In addition, the cherry tomato cultivars analyzed were shown to possess different amounts of pigment content, such as anthocyanins, chlorophylls, lycopene, and β -carotene contents, which could favorably impact consumers' taste. On the other hand, the presence

of lycopene and β -carotene, as well as chlorophylls, sustained the remarkable antioxidant properties of the fruit. The research proposed by these authors emphasizes the relevance of a cultivar screening program to ameliorate the nutritional profile and promote the inclusion of different tomato varieties in order to obtain additive or synergistic effects in secondary metabolite combinations.

Another functional food is *Citrus*, which possesses healthy properties due to the presence of carotenoids, a large family of isoprenoid pigments with antioxidant functions [6]. The chemical profiles of carotenoids change in different cultivars. In rare cases, *Citrus* fruits accumulate lycopene, a potent antioxidant carotene, which confers major nutritional and nutraceutical value to the fruits. Lycopene is present in red-orange fruits, whereas it is absent in orange fruits. Characterizing new red-orange cultivars could constitute a strategy for the citrus industry to diversify the color range and enhance the nutritional value of orange juice. In their study, Carmona et al. (contribution 6) characterized the fruit quality and biochemical features of two new red-fleshed sweet orange varieties, Carrancas and Pinhal, both originating in Sao Paulo (Brazil). In both of these cultivars, the authors demonstrated a high accumulation of lycopene and β -carotene carotenoids, thus highlighting their possible addition to the juice of popular blond-orange fruits.

Theobroma cacao L., commonly known as cocoa, has played an important role in human culture and diet for thousands of years. Sitarek's paper highlights how it also possesses therapeutic potential, relying on its anti-inflammatory and anticancer properties, which come from its polyphenol, flavonoid, and alkaloid content (contribution 7). Theobroma cacao L. extracts have been shown to have significant effects in cancer treatment, such as slowing tumor growth, inducing cancer cell death, and possibly preventing metastasis in various cancer cell lines and animal models. Moreover, cacao extracts demonstrated potential synergistic effects when combined with chemotherapy drugs to improve their effectiveness and reduce the organ toxicity caused by chemotherapy. Research into combining cacao extracts with traditional treatments could lead to new possibilities in cancer therapy and the treatment of chronic inflammatory diseases. Furthermore, combining cacao extracts with nanotechnology could be a promising direction for research in the future, as nanoparticles can improve the bioavailability, target delivery, and controlled release of active compounds. Future studies should focus on optimizing nanoparticle-based systems, examining their safety, and testing their long-term effectiveness for different treatments.

The importance and possible impact of antioxidants have been highlighted, specifically for when an imbalance between the body's natural defense systems and the generation of reactive oxygen species occurs, which promotes the development of chronic illnesses associated with oxidative stress, such as cancer, cardiovascular diseases, and neurodegenerative diseases (contribution 8). For these reasons, the potential of antioxidants has attracted the interest of researchers in nanotechnology, thus offering cutting-edge strategies to enhance drug delivery and promising revolutionary advancements in healthcare (contribution 8). In such a direction, green nanotechnology not only allows for the development of nanoparticle-based strategies to protect flavonoids from degradation in the gastrointestinal tract, but it also makes the creation of controlled release systems possible, maintaining these molecules in the bloodstream for prolonged periods in order to exert their proper therapeutic potential.

Natural antioxidants may play a significant role in managing rheumatoid arthritis (RA), a systemic autoimmune disease primarily affecting the synovial joints and defined by concomitant systemic inflammation and autoantibody production [7]. Although the availability of biological immunosuppressive and immunomodulatory agents alone or in association with nonsteroidal anti-inflammatory drugs or glucocorticoids has significantly

improved the course of the disease in patients with RA, patients often do not adequately respond to current treatment regimens due to tolerance development or severe side effects. Thus, there is an urgent need for therapeutic management using "safe" molecules. Olive oil, especially extra virgin olive oil (EVOO), is renowned for its numerous health benefits, largely attributed to its rich composition of monounsaturated fats and bioactive compounds such as phenolic compounds [8]. A study by Tamburini et al. (contribution 9) highlights the anti-inflammatory and antioxidant effects of extra virgin olive oil polyphenol-enriched extracts (PE-EVOOs) on an RA model. In their study, the authors demonstrated how the treatment of peripheral mononuclear cells (PBMCs) obtained from RA patients with PE-EVOOs resulted in a reduction in intracellular reactive oxygen species (ROS) and pro-inflammatory cytokines, such as tumor necrosis factor- α (TNF- α) and interleukin-1 β (IL-1β). These effects seem to be related to the inhibition of the phosphorylated and active forms of the inflammatory transcription factor NF-κB, as well as to an upregulation of the transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2) and its target antioxidant enzyme catalase and manganese superoxide dismutase (MnSOD). Collectively, these results suggest a possible use of PE-EVOOs as potential adjuvants for the treatment of RA.

Antioxidant potential has also been recognized in olive leaves, the main byproducts generated from olive tree cultivation and processing, due to the presence of phenolic compounds [9]. These are both present in free and bound forms. In their paper, Li et al. (contribution 10) characterizes both free phenolics (FBs) and bound phenolics (BPs) in olive leaves and compares their antioxidant activity in both in vitro and in vivo models. While FBs exhibited significantly higher antioxidant activity than BPs in chemical antioxidant assays (DPPH, ABTS, and FRAP assays), similar antioxidant effects were observed for FBs and BPs in biological systems (cellular and in vivo mouse models). The authors demonstrated that both FPs and BPs protected HepG2 cells from H₂O₂-induced oxidative injury and were effective in mitigating oxidative damage by restoring SOD, CAT, and GSH-Px activities in aging mice. FPs exert their antioxidant activity partly via the activation of the Nrf2 signaling pathway; regarding BP mechanisms, the overall scenario seems to be unclear, and further studies are needed.

Indeed, beyond fruits, the plant kingdom offers a vast array of plants with healthy properties. However, the limited solubility of most of their compounds limits their potential clinical application [10]. To improve the bioavailability of nutraceuticals, the pharmaceutical industry has attempted to encapsulate them in β-cyclodextrin complexes [11]. Inula sarana is a plant of the Asteraceae family, which is largely spread in Asia, Europe, and Africa [12]. It exhibits antioxidant, anti-inflammatory, and anticancer properties due to the presence of different phytocompounds such as polyphenols, diterpenoids, and flavonoids [13]. Zengin et al.'s study aimed to compare the different compositions and properties of Inula sarana extracts in different solvents, including n-hesane, ethyl acetate, dichloromethane, 70% ethanol, and water (contribution 11). The properties of the different extracts were also compared with those incorporated into β-cyclodextrin. The authors demonstrated that water and 70% ethanol extracts had the highest phenolic content and highest antioxidant properties among the extracts analyzed. Additionally, ethanol and hexane extracts displayed the highest inhibition levels out of the different enzymes analyzed, while ethyl acetate extracts contained high levels of flavonoids. Notably, the inclusion complex displayed relatively little or no antioxidant efficacy and enzyme inhibitory potential compared to pure extracts.

Following the rigorous *Antioxidants* review process, eleven papers (seven manuscripts and four reviews in all) were accepted for the publication in this Special Issue. All of these contributions are listed below.

Author Contributions: Conceptualization, M.L. and A.D.; writing—original draft preparation, A.D. and M.L.; review and editing A.D. and M.L. All authors have read and agreed to the published version of the manuscript.

Acknowledgments: We wish to thank all the authors who contributed to the research topic of this Special Issue and the reviewers for their perceptive suggestions and comments. In particular, we acknowledge all of the Editorial staff from the *Antioxidants* journal for their support in the preparation of this Special Issue.

Conflicts of Interest: The authors declare no conflicts of interest.

List of Contributions:

- 1. Gălbău, C.-Ş.; Irimie, M.; Neculau, A.E.; Dima, L.; Pogačnik Da Silva, L.; Vârciu, M.; Badea, M. The Potential of Plant Extracts Used in Cosmetic Product Applications—Antioxidants Delivery and Mechanism of Actions. *Antioxidants* **2024**, *13*, 1425. https://doi.org/10.3390/antiox13111 425.
- Vichi, E.; Francini, A.; Raffaelli, A.; Sebastiani, L. Effects of Caffeine, Zinc, and Their Combined Treatments on the Growth, Yield, Mineral Elements, and Polyphenols of *Solanum lycopersicum* L. *Antioxidants* 2024, 13, 1100. https://doi.org/10.3390/antiox13091100.
- Villegas-Aguilar, M.D.C.; Sánchez-Marzo, N.; Fernández-Ochoa, Á.; Del Río, C.; Montaner, J.; Micol, V.; Herranz-López, M.; Barrajón-Catalán, E.; Arráez-Román, D.; Cádiz-Gurrea, M.D.L.L.; et al. Evaluation of Bioactive Effects of Five Plant Extracts with Different Phenolic Compositions against Different Therapeutic Targets. *Antioxidants* 2024, 13, 217. https://doi.org/10.3390/ antiox13020217.
- 4. Cadar, E.; Negreanu-Pirjol, T.; Pascale, C.; Sirbu, R.; Prasacu, I.; Negreanu-Pirjol, B.-S.; Tomescu, C.L.; Ionescu, A.-M. Natural Bio-Compounds from Ganoderma Lucidum and Their Beneficial Biological Actions for Anticancer Application: A Review. *Antioxidants* 2023, 12, 1907. https://doi.org/10.3390/antiox12111907.
- Baek, M.W.; Lee, J.H.; Yeo, C.E.; Tae, S.H.; Chang, S.M.; Choi, H.R.; Park, D.S.; Tilahun, S.; Jeong, C.S. Antioxidant Profile, Amino Acids Composition, and Physicochemical Characteristics of Cherry Tomatoes Are Associated with Their Color. *Antioxidants* 2024, 13, 785. https://doi.org/10.3390/antiox13070785.
- 6. Carmona, L.; Alquézar, B.; Peña, L. Biochemical Characterization of New Sweet Orange Mutants Rich in Lycopene and β-Carotene Antioxidants. *Antioxidants* **2024**, *13*, 994. https://doi.org/10.3390/antiox13080994.
- 7. Sitarek, P.; Merecz-Sadowska, A.; Sikora, J.; Osicka, W.; Śpiewak, I.; Picot, L.; Kowalczyk, T. Exploring the Therapeutic Potential of Theobroma Cacao L.: Insights from In Vitro, In Vivo, and Nanoparticle Studies on Anti-Inflammatory and Anticancer Effects. *Antioxidants* **2024**, *13*, 1376. https://doi.org/10.3390/antiox13111376.
- 8. Zahra, M.; Abrahamse, H.; George, B.P. Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. *Antioxidants* **2024**, *13*, 922. https://doi.org/10.3390/antiox13080922.
- 9. Tamburini, B.; Di Liberto, D.; Pratelli, G.; Rizzo, C.; Barbera, L.L.; Lauricella, M.; Carlisi, D.; Maggio, A.; Palumbo Piccionello, A.; D'Anneo, A.; et al. Extra Virgin Olive Oil Polyphenol-Enriched Extracts Exert Antioxidant and Anti-Inflammatory Effects on Peripheral Blood Mononuclear Cells from Rheumatoid Arthritis Patients. *Antioxidants* 2025, 14, 171. https://doi.org/10.3390/antiox14020171.
- Li, T.; Wu, W.; Zhang, J.; Wu, Q.; Zhu, S.; Niu, E.; Wang, S.; Jiang, C.; Liu, D.; Zhang, C. Antioxidant Capacity of Free and Bound Phenolics from Olive Leaves: In Vitro and In Vivo Responses. *Antioxidants* 2023, 12, 2033. https://doi.org/10.3390/antiox12122033.
- Zengin, G.; Nilofar; Yildiztugay, E.; Bouyahya, A.; Cavusoglu, H.; Gevrenova, R.; Zheleva-Dimitrova, D. A Comparative Study on UHPLC-HRMS Profiles and Biological Activities of Inula Sarana Different Extracts and Its Beta-Cyclodextrin Complex: Effective Insights for Novel Applications. *Antioxidants* 2023, 12, 1842. https://doi.org/10.3390/antiox12101842.

References

- 1. Wang, L.; Chen, J.; Xie, H.; Ju, X.; Liu, R.H. Phytochemical Profiles and Antioxidant Activity of Adlay Varieties. *J. Agric. Food Chem.* **2013**, *61*, 5103–5113. [CrossRef] [PubMed]
- 2. Debnath, S.C.; An, D. Antioxidant Properties and Structured Biodiversity in a Diverse Set of Wild Cranberry Clones. *Heliyon* **2019**, *5*, e01493. [CrossRef] [PubMed]
- 3. Zhang, Y.-J.; Gan, R.-Y.; Li, S.; Zhou, Y.; Li, A.-N.; Xu, D.-P.; Li, H.-B. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. *Molecules* **2015**, *20*, 21138–21156. [CrossRef] [PubMed]
- 4. Barbosa, A.P.D.O.; Silveira, G.D.O.; De Menezes, I.A.C.; Rezende Neto, J.M.; Bitencurt, J.L.C.; Estavam, C.D.S.; De Lima, A.D.C.B.; Thomazzi, S.M.; Guimarães, A.G.; Quintans-Junior, L.J.; et al. Antidiabetic Effect of the *Chrysobalanus icaco* L. Aqueous Extract in Rats. *J. Med. Food* 2013, 16, 538–543. [CrossRef] [PubMed]
- 5. Hoang, H.T.; Moon, J.-Y.; Lee, Y.-C. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. *Cosmetics* **2021**, *8*, 106. [CrossRef]
- 6. Terao, J. Revisiting Carotenoids as Dietary Antioxidants for Human Health and Disease Prevention. *Food Funct.* **2023**, *14*, 7799–7824. [CrossRef] [PubMed]
- 7. Bullock, J.; Rizvi, S.A.A.; Saleh, A.M.; Ahmed, S.S.; Do, D.P.; Ansari, R.A.; Ahmed, J. Rheumatoid Arthritis: A Brief Overview of the Treatment. *Med. Princ. Pract.* **2018**, *27*, 501–507. [CrossRef] [PubMed]
- 8. Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. *Foods* **2020**, *9*, 1014. [CrossRef] [PubMed]
- 9. Zeng, Y.; Zhou, W.; Yu, J.; Zhao, L.; Wang, K.; Hu, Z.; Liu, X. By-Products of Fruit and Vegetables: Antioxidant Properties of Extractable and Non-Extractable Phenolic Compounds. *Antioxidants* **2023**, *12*, 418. [CrossRef] [PubMed]
- 10. Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Bioavailability of Nutraceuticals: Role of the Food Matrix, Processing Conditions, the Gastrointestinal Tract, and Nanodelivery Systems. *Comp. Rev. Food Sci. Food Safe* **2020**, *19*, 954–994. [CrossRef] [PubMed]
- 11. Saha, S.; Roy, A.; Roy, K.; Roy, M.N. Study to Explore the Mechanism to Form Inclusion Complexes of β-Cyclodextrin with Vitamin Molecules. *Sci. Rep.* **2016**, *6*, 35764. [CrossRef] [PubMed]
- 12. Sevindik, E.; Paksoy, M.Y.; Sevindik, M. Genetic Relationship of Seven *Endemic inula* L. (Asteraceae) Species Grown in Turkey. *Turk. JAF Sci.Tech.* **2022**, *10*, 678–681. [CrossRef]
- 13. Kirimer, N.; Demirci, B.; Duman, H.; Baser, K. Essential Oil of Inula Sarana Boiss. (Compositae), an Endemic Species of Turkey. *Planta Med.* **2009**, *75*, 421. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Review

The Potential of Plant Extracts Used in Cosmetic Product Applications—Antioxidants Delivery and Mechanism of Actions

Cristina-Ștefania Gălbău ¹, Marius Irimie ¹, Andrea Elena Neculau ¹, Lorena Dima ¹, Lea Pogačnik da Silva ², Mihai Vârciu ¹ and Mihaela Badea ¹,*

- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bălcescu St., 500019 Braşov, Romania; cristina.adochite@unitbv.ro (C.-Ş.G.); marius.irimie@unitbv.ro (M.I.); andrea.neculau@unitbv.ro (A.E.N.); lorena.dima@unitbv.ro (L.D.); mihai.varciu@unitbv.ro (M.V.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; lea.pogacnik@bf.uni-lj.si
- * Correspondence: mihaela.badea@unitbv.ro

Abstract: Natural ingredients have been used in skincare products for thousands of years. The current focus is on novel natural bioactivities that shield the skin from UV rays and free radicals, among other damaging elements, while enhancing skin health. Free radicals significantly contribute to skin damage and hasten ageing by interfering with defence and restorative processes. Plants contain natural chemicals that can scavenge free radicals and have antioxidant capabilities. Plant materials are becoming increasingly popular as natural antioxidants related to the expanding interest in plant chemistry. This review focuses on the significance of medicinal plants in skin health and ageing and their potential as a source of antioxidant substances such as vitamins, polyphenols, stilbenes, flavonoids, and methylxanthines.

Keywords: plant extracts; cosmetics; antioxidants; bioactive compounds

1. Introduction

For many years, skincare products have been made with natural components, whether they come from mineral, animal, or plant origins [1–3]. In this century, the use of naturally occurring chemicals continues to increase, probably due to the social media influence. Between 2015 and 2019, the global market for naturally made cosmetics was growing by 10–11% per year. This market also offers a substantial opportunity for the cosmetics industry because many consumers are willing to pay more for these products [4,5]. Plant-based products may be used topically to treat a variety of skin conditions and for skin care. In addition to being more ecologically friendly than traditional cosmetics, cosmetics enhanced with bioactive ingredients are well adapted to the demands of the skin. Plant extracts, which are a rich source of physiologically active chemicals that have a substantial impact on human skin, are a class of natural compounds that are often utilized in cosmetics. We have to emphasize that there are a limited number of studies concerning substances added to food that had an effect on the skin. In some cases, scientific evidence is lacking and the effect is only an assumption.

Many factors, including environmental exposure, gut microbes, stability, activity, and variability in endogenous chemical levels that modulate biotransformation pathways, can influence an organism's metabolism. Antioxidant phytochemicals including vitamins, such as vitamin E, vitamin A, and vitamin C, and polyphenols, tocopherols, and carotenoids have been shown to enhance our aesthetic well-being. These phytochemicals have anti-inflammatory, antioxidant, photoprotective, anti-ageing, antiviral, and antibacterial characteristics. Synergistic stabilizing effects have been demonstrated when combining synthetic and natural antioxidants [6]. Antioxidants include both enzymatic and non-enzymatic compounds [7]. Their distribution is frequently influenced by the various skin cell types.

For example, melanocytes lack antioxidant enzymes [8]. Antioxidants are classified as biopharmaceuticals according to their permeability and solubility [9].

According to estimates, there are three different types of antioxidants: low solubility—low permeability, low solubility—high permeability, and high solubility—low permeability (vitamin C is present in cellular fluids and vitamin E is found in cell membranes). When used in topical treatments, water solubility, restricted permeability, and instability are the primary concerns. The instability caused by external stresses (such as air, light, moisture, heat, oxygen, etc.) affects the product's shelf life [6]. Due to their restricted permeability and water solubility [10], they have limited possibilities of entering deeper epidermal layers and reaching the target location. Antioxidant delivery systems must be capable of being absorbed into the food or beverage matrix without affecting the end product's appearance, texture, flavour, or shelf life [11]. Throughout manufacturing, storage, transit, and usage, it must tolerate environmental stresses like thermal processing, exposure to light, dynamic agitation, cooling, freezing, and dehydration [11]. This study aims to underline the physicochemical importance of antioxidant compounds used in cosmetics, considering their delivery and mechanism of action, summarizing the novelty of the results studied in vitro and in vivo.

2. Materials and Methods

2.1. Search Strategy

Since most connected papers and themes were published recently, our research included all studies published in PubMed, Scopus, and a manual Google Scholar search. The keywords "antioxidants" AND ("dermatology" OR "inflammation" OR "cosmetics" OR "proliferation") formed the basis of the scientific literature search approach. Significant publications were chosen based on different plants? biological, chemical, and functional characteristics.

2.2. Inclusion and Exclusion Criteria

Following criteria, like experimental and review studies, full articles for each selected abstract were retrieved for review. All English-language research articles were included. Investigations were based on in vivo and in vitro research publications. Research publications dealing with specific plant extracts were included. Still, those that considered a combination of plant extracts or a formulation of some other chemical ingredients were excluded. The CAS numbers of the compounds were mentioned in the article, providing valuable information and facilitating the future search for the classification and labelling in the database.

3. Results

3.1. Vitamins

Plants produce compounds (phytochemicals) through their secondary metabolism that can protect them from pests, bacteria, and atmospheric pollutants. In both people and animals, some of these compounds (such as polyphenols, cysteine sulphoxides, and carotenoids) can be combined with free radicals to create stable chemical species [12]. Numerous biological effects of phytochemicals which are beneficial to human health include photoprotective, anti-ageing, anti-inflammatory, antibacterial, antiviral, and anticancer activities [12]. Vitamins E, C, and A, for example, have the potential to be antioxidants and have skincare benefits (Table 1). Collagen synthesis is controlled by vitamin C. Free radicals are actively neutralized by vitamin E, which also helps to soften the skin [13]. Stretch marks, burn scars, and new skin cell growth are reduced by vitamin A, which also boosts collagen formation [14,15].

Table 1. Molecular structures, IUPAC names and CAS numbers for Vitamin A, Vitamin C, Vitamin E, and Coenzyme Q10.

Bioactive Compound	Vitamin A	Vitamin C	Vitamin E	Coenzyme Q10
Molecular structure	HaC CHs HaC HaC OH	HO HO OH	HO CH ₃ CH ₃ CH ₃ CH ₃	CH ₃
IUPAC name	3,7-dimethyl-9-(2,6,6- trimethylcyclohex-1-yl) nona-2,4,6,8-tetraen-1-ol	(5R)-[(1S)-1,2- dihydroxyethyl]-3,4- dihydroxyfuran-2(5H)- one	(2R)-2,5,7,8-tetramethyl-2- [(4R,8R)-4,8,12- trimethyltridecyl]-3,4- dihydrochromen-6-ol	2- [(2E,6E,10E,14E,18E,22E,26E,30E,34E)- 3,7,11,15,19,23,27,31,35,39- decamethyltetraconta- 2,6,10,14,18,22,26,30,34,38-decaenyl]- 5,6-dimethoxy-3-methylcyclohexa- 2,5-diene-1,4-dione
CAS number	68-26-8	50-81-7	59-02-9	303-98-0

3.1.1. Vitamin A

Beta-carotene (pro-vitamin A), vitamin A and its derivatives, and other ingredients have been used as cosmetic additives. Beta-carotene can be found in foods like tomatoes, carrots, and yellow vegetables, whereas the main animal sources of vitamin A are liver and egg yolk. Beta-carotene and vitamin A were also found to be photoprotective by decreasing the quantity of peroxyl lipid radicals in the skin of mice exposed to UV radiation [16]. However, because beta-carotene is so fragile, other types of vitamin A are frequently included in cosmetic compositions. The capacity of vitamin A (CAS number: 68-26-8) and its derivatives to correct keratinization is the main advantage of these ingredients in the cosmetics industry. Tretinoin (CAS number: 302-79-4), vitamin A alcohol (retinol), vitamin A esters (retinyl palmitate (CAS number: 79-81-2), retinyl acetate (CAS number: 127-47-9)), and vitamin A aldehyde (retinal) (CAS number: 116-31-4) are some of the common vitamin A compounds that can be found in cosmetics. These are present in cosmetic compositions in various concentrations due to their involvement in controlling epithelial cell proliferation and differentiation [17].

3.1.2. Vitamin C

Vitamin C (CAS number: 50-81-7), or ascorbate, is a hydrosoluble vitamin found in vegetables and citrus fruits. Its antioxidant properties and role as a cofactor in collagen hydroxylation events make it an essential nutrient. Since humans cannot produce ascorbate, nutritional intake is crucial. The capacity of vitamin C to immediately quench UV-induced free radicals and replenish vitamin E, another effective antioxidant, contributes to its popularity as a cosmetic element [18]. To maximize UV protection, combining sunscreen with a topical antioxidant is essential. Vitamin C does not absorb UV radiations but protects them by radical scavenging, in contrast to sunscreens, which do not [19]. Under laboratory circumstances, 10% topical vitamin C treatment reduced UVB-induced erythema by 52% and sunburn cell development by 40 to 60% [20]. Due to its capacity to promote collagen formation, vitamin C is also used as a component of anti-ageing products. Ascorbyl palmitate (CAS number: 137-66-6) [21], magnesium ascorbyl phosphate (CAS number: 114040-31-2) [22], and L-ascorbic acid (CAS number: 50-81-7) [23] are the three primary forms of ascorbic acid that are frequently found in cosmetics.

3.1.3. Vitamin E

Vitamin E (CAS number: 59-02-9) is a liposoluble vitamin found in various foods, especially soybeans, nuts, wholemeal flour, and oils [24]. It is claimed that systemically reducing lipid peroxidation has several health advantages for the eyes and cardiovascular system. Numerous dermatological benefits of topically administered substances have been demonstrated. The powerful antioxidant properties of vitamin E serve as the main mechanism of action to support its significance. The "protective" term has been employed to characterise the protective effects of vitamin E and its derivatives due to its ability to scavenge free radicals, specifically lipid peroxyl radicals. Numerous studies have demonstrated their capacity to lessen erythema and edema, sunburn cell development, and lipid peroxidation caused by UV radiation [25]. Reduced skin wrinkling and skin tumour growth have been linked to clinical improvement in the obvious indications of skin ageing [26].

3.1.4. Coenzyme Q10

Coenzyme Q10 (CAS number: 303-98-0) is a botanical food ingredient, and its derivatives are used in functional foods and nutritional supplements. The antioxidant properties of coenzyme Q10 have been correlated with the speed-up in recovery of ATP levels following radiation in human fibroblasts and maintaining the stability of cellular energy levels in human keratinocytes. It prevents the harmful effects of photoaging, minimizes wrinkles, and improves skin smoothness on human skin [27]. It is an internal lipophilic molecule that is essential or useful for mitochondrial strength biotransformation and effective for antioxidants and human health [28]. Another study [29] described the effects of administrations of biological and adjuvant coenzyme Q10 therapy, which showed an association between the Psoriasis Area Severity Index (PASI) and the Dermatology Life Quality Index (DLQI) (p = 0.000132), which means that the daily administration of 100 mg coenzyme Q10 supplements to psoriatic patients for 12 weeks improved the correlation between PASI and DLQI. Coenzyme Q10 inhibited the deterioration of skin viscoelasticity, decreased the depth of microrelief lines (wrinkles), and enhanced the skin's smoothness and fairness [30].

3.2. Polyphenols

Polyphenols are structured by one or more aromatic rings containing one or several hydroxyl groups. Depending on the number of phenolic rings and the elements that make up the structures linking these rings, it is possible to distinguish between various classes, such as phenolic acids, flavonoids, stilbenes and lignans [31].

Oral consumption of polyphenols has been related to several health benefits. However, their bioavailability can be limited and is mostly influenced by their chemical structure. The bioavailability is mainly determined by the amount of nutrients ingested, absorbed, and used in metabolic processes [32,33]. The various biological activities of polyphenols reflect the diversity of their structure [34]. They are recognized for their antioxidant, anti-inflammatory, antibacterial, antifungal, antiviral, anti-allergenic, anticancer, and anti-coagulant effects. Plant polyphenols are considered significant for maintaining healthy skin because of their effects on hydration, smoothness, softness, calming, and astringency [35–37]. Collagenase, elastase, and hyaluronidase, which catalyse the degradation of collagen and elastin fibres and hyaluronic acid, respectively, are all skin-specific enzymes that are inhibited by polyphenols. Additionally, they calm inflammation and lessen skin redness while promoting quicker epidermal regeneration, stabilizing capillaries, enhancing microcirculation, increasing skin suppleness, and shielding against damaging environmental factors like UV radiation. Antioxidants have been demonstrated to be associated with a decreased incidence of ROS-induced photoaging [38]. According to Khlebnikov et al. [39], antioxidants are "any substance that directly scavenges reactive oxygen species (ROS) or indirectly acts to upregulate antioxidant defences or inhibit ROS production". The removal of radicals through direct interactions, scavenging, or the reduction of free radicals (such as hydroxyl, superoxide, peroxide, and alcoxyl radicals) to less

reactive molecules is the basis for polyphenols' antioxidant and antiradical effects. Additionally, polyphenols can chelate heavy metal cations (such as Cu²⁺ and Fe²⁺), blocking the Fenton reactions (which result in the production of the highly reactive hydroxyl radical OH) and limiting the activity of numerous free radical-producing enzymes (xanthine oxidase, protein kinase, and lipoxygenase). Other antioxidants, such as ascorbate in the cytosol or tocopherol in biological membranes, are also stimulated and protected due to their activity [40]. Pure polyphenolic substances interact well with other antioxidants to delay skin ageing. An oral antioxidant combination of pycnogenol, evening primrose oil, vitamin C, and vitamin E was studied by Cho at al. [41] for its impact on UVB-induced wrinkle formation. According to the investigation, administering antioxidants to hairless mice exposed to UVB radiation three times per week for 10 weeks dramatically reduced the UVB-induced production of matrix metalloproteinases, mitogen-activated protein kinase, and transcription factor AP-1. In addition, TGF-2 and type I procollagen expression was increased. According to scientific studies, oral treatment with the antioxidant mixture can reduce the appearance of wrinkles by reducing matrix metalloproteinase expression and boosting collagen synthesis [40]. Pomegranates (Punica granatum) are a very good source of polyphenols (anthocyanins and hydrolysed tannins) that have beneficial effects on skin conditions [38]. Pomegranate extract has been shown to have photochemoprotective, antioxidant, anti-inflammatory, and anti-proliferative effects. Pomegranate fruit extract has been proven to promote skin colour and restore brightness to skin exposed to UV radiation [42] and minimize UVB-induced oxidative stress and the oxidation of skin proteins [43].

3.3. Stilbenes

The most important stilbenes found in grapes are *cis*- and *trans*-resveratrol (3,5,4'-trihydroxystilbene) (CAS number: 501-36-0), resveratrol-3-O- β -D-glucopyranoside (piceid) (CAS number: 27208-80-6), piceatannol (3,4,3',5'-tetrahydroxy-trans-stilbene) (CAS number: 10083-24-6) [44] and viniferins which are resveratrol dimers [45]. Research on the anti-carcinogenic, antioxidant, and anti-melanogenesis properties of natural stilbenes against ultraviolet light radiation were performed [46] (Table 2).

Table 2. Molecular structures, IUPAC names and CAS numbers for resveratrol, piceatannol, pinosylvin, and pterostilbene.

Bioactive Compound	Resveratrol	Piceatanol	Pinosylvin	Pterostilbene
Molecular structure	НООН	НО	НООН	H ₃ CO OCH ₃
IUPAC name	5-[(E)-2-(4- hydroxyphenyl)ethenyl] benzene-1,3-diol	4-[(E)-2-(3,5- dihydroxyphenyl)ethen-1- yl]benzene-1,2-diol	5-[(1E)-2-phenylethen-1-yl]benzene-1,3-diol	4-[(E)-2-(3,5- dimethoxyphenyl)ethen-1- yl]phenol
CAS number	501-36-0	10083-24-6	22139-77-1	537-42-8

3.3.1. Resveratrol

Resveratrol (CAS number: 501-36-0) is the main stilbene found naturally in grapes [47]; it is noted for its anticancer, antioxidant, anti-inflammatory and cardioprotective properties [48]. According to De Filippis et al. [49], resveratrol has a strong antioxidant activity on molecular targets related to tumour initiation, promotion, and progression [50]. In turn, it is proposed that it can initiate apoptosis (by regulating and modulating the p53 protein responsible for tumour destruction, by depleting levels of Bcl-2 and Bcl-xL anti-apoptotic molecules and by interfering with the process of nuclear transcription moderated by NF-κB

and AP-1 cascades) [51] and reduction of angiogenesis through inhibition of FGF-2 and VEGF, neovascularisation, as well as modulation of several signalling pathways linked to malignant progression or cell survival [52].

Its demonstrated capacity to permeate the skin barrier and anti-ageing properties are the main reasons for its prominence in dermatology and cosmetology. Resveratrol-containing formulations have been shown to promote fibroblast proliferation and raise the content of collagen III. Because of its affinity for the ER α and ER β estrogen protein receptors, resveratrol helps to stimulate the formation of collagen types I and II. Furthermore, resveratrol also has antioxidant qualities, which means that by lowering the expression of AP-1 and NF-kB proteins and delaying the process of skin photoaging, it may shield cells from oxidative damage brought on by free radicals and UV radiation [53].

3.3.2. Piceatannol

Astringenin, as piceatannol is also known, which is part of *trans*-resveratrol (trans-3,4,3',5'-tetrahydroxystilbene), can be found naturally in red wine, sugar cane, grapes, berries, peanuts, and white tea [54]. Both resveratrol and piceatannol can induce direct antioxidant effects by scavenging free radicals and protecting proteins from cysteine groups under the effect of oxidative stress. A study described that the miR-181a was significantly downregulated in melanoma cancer tissues compared to their neighbouring ones, and strongly overexpressed in both WM266-4 and A2058 cells treated with piceatannol. Therefore, we propose that the apoptotic impact of piceatannol in melanoma cells may be associated with a high level of miR-181a expression [55].

3.3.3. Pinosylvin

The natural polyphenol known as pinosylvin (3,5-dihydroxy-trans-stilbene) (CAS number: 22139-77-1) is a *trans*-stilbenoid and is found in pine trees, specifically in *Pinus sylvestris* [56]. A study in male mice confirmed the action of pinosylvin in reversing the agonist effect of the transient receptor potential ankyrin 1. High concentrations of pinosylvin (100 μ M) showed less effect on the activation of the transient receptor potential ankyrin 1 (TRPA1), thus confirming its anti-inflammatory potency. Also, in the same mice, doses of pinosylvin decreased interleukin-6 levels [57].

3.3.4. Pterostilbene

A natural analogue of resveratrol is pterostilbene (3,5-dimethoxy-4'-hydroxystilbene) (CAS number: 537-42-8), which has greater antioxidant activity than resveratrol and, therefore, has great potential for use in the clinical treatment of various diseases [58]. According to scientific studies [59], it has shown strong chemopreventive properties and beneficial effects of pterostilbene, similar to resveratrol in several in vitro and in vivo studies with different types of cancer.

Pterostilbene is an active apoptotic constituent and can inhibit growth, adhesion, and metastatic growth [60]. These qualities have been reported in various cancer research [61], including breast cancer, pancreatic cancer, stomach cancer, and colon carcinoma [62].

3.4. Phenolic Acids

More than one-third of dietary phenols are phenolic acids. They are naturally occurring in plants as free polyphenols or bound; the latter are linked by ester, ether or acetal bonds [63]. Phenolic acids are made up of a diverse group of chemical substances, where more than 8000 different components can be found that influence human and animal diets. One of their main properties is that they can donate hydrogen molecules or chelate iron and copper ions, preventing low-density lipoproteins from oxidising [64]. They are closely linked to reducing the risk of neurodegenerative diseases, cardiovascular diseases, gastrointestinal [65], colon, breast or ovarian cancer, leukaemia [66], increasing bile secretion, decreasing cholesterol levels, decreasing blood lipid levels, and antimicrobial activities [67].

Phenolic acids can be found in edible vegetables, fruits and nuts suitable for the human diet, with strong anti-diabetic properties, consumption of which reduces the risk of diabetes by regulating the key pathway of carbohydrate metabolism and hepatic glucose homeostasis, including glycolysis, glycogenesis, and gluconeogenesis [68]. Structurally, phenolic acids are derived from the hydroxylation of cinnamic acid [69] or benzoic acid. The phenolic acids most recognized in human foods are caffeic and ferulic acids [70]. Although they are considered direct antioxidants, they also exhibit indirect antioxidant properties by producing endogenous protective enzymes and positive regulatory effects on signalling pathways [71].

According to Drawbridge et al. [72], cereals possess among their phytochemical components phenolic acids that have antioxidant and anti-inflammatory effects. The phenolic acids commonly found in cereals are p-hydroxybenzoic (CAS number: 99-96-7), protocatechuic (CAS number: 99-50-3), vanillic (CAS number: 121-34-6), gallic (CAS number: 149-91-7), syringic (CAS number: 530-57-4), caffeic (CAS number: 331-39-5), p-coumaric (CAS number: 231-000-0), ferulic (CAS number: 1135-24-6), and sinapic acids (CAS number: 530-59-6) (Table 3). Lodovici et al. [73] suggest that daily intakes of hydroxybenzoic and hydroxycinnamic acid range from 11 mg/day to 211 mg/day. In contrast, caffeic acid intake is about 206 mg/day in subjects who consume coffee. In another study, the presence of the gentisic and ferulic acids were reported in the roots of *Brassica rapa* ssp. Pekinensis [74]. The concentrations of these compounds were 0.68 mg/g and 0.56 mg/g after elicitation with copper nanoparticles.

Table 3. Molecular structures, IUPAC names and CAS numbers for p-hydroxybenzoic, protocatechuic, vanillic, gallic, syringic, caffeic, p-coumaric, ferulic and sinapic acids.

Bioactive Compound	Molecular Structure	IUPAC Name	CAS Number
P-hydroxybenzoic acid	но	4-hydroxybenzoic acid	99-96-7
Protocatechuic acid	но	3,4-dihydroxybenzoic acid	99-50-3
Vanillic acid	о он осн	4-hydroxy-3-methoxybenzoic acid	121-34-6
Gallic acid	но он	3,4,5-trihydroxybenzoic acid	149-91-7
Syringic acid	H ₃ CO OCH ₃	4-hydroxy-3,5-dimethoxybenzoic acid	530-57-4
Caffeic acid	но	(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid	331-39-5

Table 3. Cont.

Bioactive Compound	Molecular Structure	IUPAC Name	CAS Number
P-coumaric acid	но	(2E)-3-(4-hydroxyphenyl)prop-2-enoic acid	501-98-4
Ferulic acid	но осн ₃	(2E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid	537-98-4
Sinapic acid	H ₃ CO OH OH	3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid	530-59-6

Okafor et al. [75] reported a range of hydroxybenzoic acids in different Bambara groundnut (*Vigna subterranean*) varieties, where 4-hydroxybenzoic acid (p-hydroxybenzoic acid), 2,6-dimethoxybenzoic acid, protocatechuic acid, caffeic acid, and ferulic acid were found in the highest quantity [76].

3.5. Flavonoids

The chemical composition of flavonoids is 2-phenyl-benzo-a-pyrones. In their natural mode, it is possible to find various patterns in the composition of the two benzene rings that form the basic structure of this compound [77]. Depending on the connection between the rings and the ring structures, in addition to the various hydroxylation and glycosylation patterns, flavonoids can be classified into different subclasses as the following: flavones, flavanols, flavanones, isoflavones, and anthocyanins (Table 4) [78,79].

Table 4. Molecular structures for flavones, flavonols, flavanols, flavanones, isoflavones, and anthocyanins.

Bioactive Compound	Molecular Structure
Flavones	
Flavonols	ООН
Flavanols	
Flavanones	ОН

Table 4. Cont.

Bioactive Compound	Molecular Structure
Isoflavones	
Anthocyanins	o to to

3.5.1. Flavones

This is a subclass that features a double bond between the C2 and C3 of the rings, and a ketone at C4 [80], but they are capable of containing other substituents depending on the taxonomical characteristics of the plant. They can be hydroxylated, methylated, glucosylated, or alkylated [81]. Flavones can be both of natural and synthetical origin. In their natural form, they can be found in various foods and plant tissues, such as flowers, fruits, grapes, apples, celery, mint, and tea, among others [82].

An article written by Maher [83] describes the ability to increase performance and working memory in 12–15-month-old mice by intraperitoneal injections of 7,8-dihydroxy-flavone (5 mg/kg) over 10 days.

3.5.2. Flavonols

This subclass of polyphenols is the most diverse in the plant kingdom and possesses strong physiological activity. Flavonols are secondary metabolites present in a wide variety of fruits, vegetables, and plants [84].

According to Nagula and Wairkar [85], human skin is commonly subjected to oxidative stress due to the influence of UV radiations, ozone radiation and other harmful substances. The main characteristics of flavonols include their ability to act as oxidising agents and protection against the formation of reactive oxygen species [85].

On the other hand, Farhadi et al. [86] state that the flavonols with high antimicrobial activity include quercetin (CAS number: 117-39-5), myricetrin (CAS number: 529-44-2), morin (CAS number: 654055-01-3), galangin (CAS number: 548-83-4), entadanin, rutin (CAS number: 153-18-4), and piliostigmol. The authors reported strong antimicrobial activity against *Porphyromonas gingivalis* in an in vitro investigation of some of these flavonols, with quercetin at a concentration of $0.0125 \,\mu\text{g/mL}$ showing the best results.

3.5.3. Flavanols

Flavanols are found in significant amounts in various fruits and fruit products, such as juices, red wine, cocoa, and tea, among others. The absorption of flavanols in the human diet is limited, because parts of the fruits such as the hulls or seeds are discarded during processing or ingestion [87].

Gómez-Juaristi et al. [88] investigated the absorption and flavanol metabolism in two different soluble cocoa products, one with high flavanol content and one traditional, where for both a 35% absorption capacity was obtained, demonstrating that they are moderately bioavailable and considerably metabolised by the colonic microbiota.

In contrast, another article written by Geng et al. [89] reported on the antidepressant capacity of the flavanols catechin and epicatechin, originating from *Uncaria rhynchophylla*, which influenced melatonin receptors, by evaluating catechin metabolic pathways in mouse plasma.

3.5.4. Flavanones

Flavanones are formed by a chain saturated by three carbon atoms and one oxygen atom and are constituted especially by naringin and hesperidin glycosides, which are the

main compounds of citrus fruits and citrus peels, with a strong antioxidant and free radical inhibition capacity [90]; they are also found in tomatoes and a few aromatic plants such as mint [91].

Anacleto [92] evaluated the protective capacity of flavanones (naringenin) in pancreatic β -cells under oxidative stress, due to its anti-inflammatory and antioxidant capacities.

3.5.5. Isoflavones

Isoflavones are found entirely in legumes and although they are not steroids, they have structural similarities to estrogens and pseudohormonal properties, which is why they are considered phytoestrogens [93]. Isoflavones can be hydrolysed through the gastrointestinal tract but mainly in the jejunum mediated by the collaboration of the brush border membrane and bacterial β -glucosidases [94], releasing aglycones which are absorbed into the intestinal epithelium [95].

Yonekura-Sakakibara et al. [96] proposed that the initial step in the biosynthesis of isoflavones is through the catalysis of 2-hydroxyisoflavanone synthase; isoflavone synthase transforms liquiritigenin and naringenin into 2-hydroxyisoflavanones, and then through dehydration of these are transformed into isoflavones by the influence of 2-hydroxyisoflavanone dehydratase.

3.5.6. Anthocyanins

The pigments from which plants, flowers and fruits obtain their colours are anthocyanins, carotenoids, and others. The colour depends on the pH and the methylation or acylation of their hydroxyl group rings. Anthocyanins are located in the outer layers of the cells of different fruits such as blueberries, red grapes, raspberries, blackberries, strawberries, and many more. The main anthocyanins investigated by the scientific community are delphinidin, pelargonidin, cyanidin, peonidin, and malvidin [97].

Anthocyanins are widely used in the food industry as colour additives [98]; their positive effects on human health include tumour-growth inhibitors, circulatory system support, anti-inflammatory and antioxidant properties, and immune system support [99].

In general, flavonoids are currently being intensively investigated from a medical point of view for their beneficial properties for human health, such as enzyme inhibition, antimicrobial, anti-allergic, antioxidant, vascular, anti-tumour activity, etc. [100]. Flavonoids through direct inhibition of free radicals can prevent cell damage by forming more stable flavonoid radicals and less reactive free radicals [101].

Chen et al. [102] reported on the effects of lotus plumule flavonoids in alleviating inflammatory symptoms by inhibiting the biosynthesis and production of NO, PGE2 and TNF- α (inflammatory mediators) and proinflammatory cytokines such as IL-1 β and IL-6.

AL-Ishaq et al. [103] reported the beneficial effects of flavonoids in the fight against diabetes by influencing carbohydrate digestion, insulin secretion and signalling, fat deposition, and glucose uptake.

3.5.7. Tannins

Several reports have shown that natural tannins and compounds distributed by various types of plants have beneficial effects on health by presenting antioxidant, hypoglycaemic, anti-tumoural, antibacterial, and hypoglycaemic properties [104]. Tannins are classified into the following three groups depending on their structure: hydrolysable tannins, condensed tannins, and compound tannins (Table 5) [105].

3.5.8. Condensed Tannins

These types of tannins are considered oligomers or polymers which, depending on the hydroxylation pattern of the A and B rings of their flavan-3-ol units [106,107], are classified into prodelphinidins, procyanidins, and propelargonidins. These types of tannins possess high antioxidant potency by acting through hydrogen atom or single-electron

transfer mechanisms, and are also noted for their anti-inflammatory, antimicrobial and anticarcinogenic properties [108–110].

Table 5. Molecular structures for tannins, condensed tannins, and hydrolysable tannins.

Bioactive Compound	Molecular Structure
Tannins	\$
Condensed tannins	OH O
Hydrolysable tannins	HO OH OH OH

An excess of these tannins causes changes in taste and an astringent feel to the food; hence, different methods have been developed to remove excess tannins, which can be done by physical, chemical, and biological means [111].

According to Laddha and Kulkarni [112], one of the most important types of condensed tannins is proanthocyanidin, which can be found in various foods. The same authors report that dark chocolate has a strong composition of catechin and epicatechin, and therefore, has potent antioxidant activity.

3.5.9. Hydrolysable Tannins

Hydrolysable tannins contain various monosaccharides (oak, hazelnut, and quebracho) which have a high content of arabinose, glucose, fructose and glucose, but only those from vine bunches and nut galls contain fructose and glucose [113]. Through hydrogen bonds, hydrolysable tannins are able to interact with different cereals, but excess tannins in these products slow down or reduce the digestibility of protein and starch [114,115].

Gallotannin extracts, whose trade name is tannic acid (CAS number: 1401-55-4), depending on the plant source used for extraction are made with mixtures of polygalloylglucose esters or polygalloylquinic acid with a range in the number of galloyl molecules from 2 to 12 [116]. The galloyl units are linked by various polyols, catechins or tri-terpenoid units [117].

3.5.10. Complex Tannins

This subclass of tannins has flavone as its basic unit and is found mainly in legumes, nuts, maize, rice, and tea. It is formed from the combination of an ellagitannin or gall tannin unit and a catechin. Its main positive effects on health include neuroprotective effects [118].

According to Molino et al. [119], several tannins extracted from wood showed positive biological effects in humans and animals, including anti-tumour, antidiabetic, antibacterial, antifungal, and anti-mutagenic properties.

Another article [120] reported the ability of tannins to form tannates, which are stable compounds formed from the binding of tannins to metal ions present in the body; this can be beneficial or harmful to human health, as they can be used to deal with overexposure to heavy metals, but their daily overconsumption can lead to nutrient deficiencies such as calcium and iron, causing osteoporosis and anemia.

3.6. Methylxanthines (Theophylline, Caffeine, and Theobromine)

Methylxanthines are compounds of organic heterocyclic origin that are derived from purine; they are structured by coupled pyrimidinedione and imidazole rings (Table 6) [121] and originate naturally in different products such as coffee, chocolate, tea, soft drinks, mate, and energy drinks, among others [122–124]. The main components of methylxanthines are caffeine (CAS number: 58-08-2), theophylline (CAS number: 58-55-9), and theobromine (CAS number: 83-67-0). Among the main biological functions of methylxanthines are their anti-asthmatic, analgesic, energetic, chronoprotective, anti-inflammatory, antioxidant, and neuroprotective properties [125–128].

Table 6. Molecular structures, IUPAC names and CAS numbers for theophylline, theobromine, and caffeine.

Bioactive Compound	Molecular Structure	IUPAC Name	CAS Number
Theophylline	CH ₃ N N N N N CH ₃	1,3-dimethyl-7H-purine-2,6-dione	58-55-9
Theobromine	H N CH ₃	3,7-dimethyl-3,7-dihydro-1H-purine- 2,6-dione	83-67-0
Caffeine	CH ₃ CH ₃ CH ₃	1,3,7-trimethyl-3,7-dihydro-1H-purine- 2,6-dione	58-08-2

3.6.1. Theophylline

Theophylline (1,3-dimethylxanthine) is derived from a methylated xanthine [129,130], the extraction of which is mainly from *Camellia sinensis* L. and *Ilex Paraguariensis*. Its main biological properties are the decrease of metastasis and inflammation and resistance to therapy in cancer cells. According to Pérez-Pérez et al. [131] theophylline inhibits the PI3K pathway which is a cancer activator that promotes metastasis and resistance to treatment; it is also able to inhibit the expression of inflammatory genes by activating the histone deacetylase 2 protein.

3.6.2. Theobromine

Theobromine and theophylline are present in the tea plant, while the former is a precursor of caffeine biosynthesis, the latter is a caffeine biodegrader [132]. Theobromine originates from xanthine methylation, with a strong adenosine receptor antagonist and non-selective phosphodiesterase inhibitory activity, it increases adenosine monophosphate in the nervous system [133,134]; in turn, theobromine exhibits bronchodilator, diuretic, and antitussive effects and influences angiogenesis in tumour growth [135]. According to Ejuh et al. [136], this compound inhibits the crystallization of uric acid with a great capacity for the treatment and clinical prevention of uric acid-influenced nephrolithiasis.

3.6.3. Caffeine

Currently, the most studied and consumed methylxanthine is caffeine, which can be found in various plants such as tea, coffee, cola, and guarana, and various products such as soft drinks, energy drinks, and chocolate, among others [137,138]. Caffeine is capable of forming the natural metabolites theophylline and theobromine [139]. Among its beneficial effects for humans are stimulation of the nervous system, analgesic effects, diuresis, psychomotor enhancement [140], and gastric acid secretion, as well as negative effects such as nausea, anxiety, increased blood pressure, tremors, and nervousness [141,142]. Caffeine increases the capacity for the occurrence of chromosomal mutations and potentiates cytotoxic, mutagenic, and carcinogenic activities in different animal cells [143].

Due to the wide range of studies carried out that are focused on the biological effects of caffeine on different molecular targets, the following stand out: its antagonist activity on adenosine receptors, the inhibitory effects on phosphodiesterases, the sensitization of cannulae sensitive to ryanodine for the release of calcium in the sarcoplasmic and endoplasmic reticulum, as well as its antagonist activity on GABAA receptors [144].

According to an experimental study, caffeine consumption increased blood pressure and heartbeat [145]. These effects of caffeine on blood pressure were more visible from the consumption of 205 mg per day, where the greatest effects can be seen in the elderly, the hypertensive population, and those who have never consumed caffeine [146].

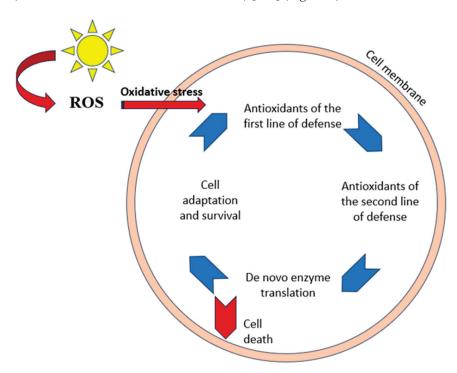
Some examples of the plants and their bioactive compounds are reported in Table 7, with a focus on which biocompounds had the ability to benefit the skin cell culture.

Table 7. Examples of in vitro studies of plant extracts and their biocompound effects on skin.

No	Botanical	Biocompound	Effects on Skin	Cells Type	Ref.
1	Butyrospermum parkii	Flavan-3-ols (catechin)	antioxidant, UV-induced skin damage prevention, collagen synthesis activation, matrix metalloproteinases inhibition	НаСаТ	[1]
2	Glycyrrhiza glabra (licorice) leaf extract	Isoflavones (wighteone)	antioxidant, UV-induced skin damage prevention, anti-inflammatory, and estrogenic effects	НаСаТ	[1]
3	Simmondsia chinensis	Tannins	antioxidant, astringent, wound-healing promotion	НаСаТ	[1]

Table 7. Cont.

No	Botanical	Biocompound	Effects on Skin	Cells Type	Ref.
4	Helianthus annuus	Hydroxycinnamic acid derivatives (chlorogenic, acid, caffeic acid, ferulic acid)	antioxidant, UV-induced skin damage prevention, MMP inhibition, anti-inflammatory, anti-tyrosinase	НаСаТ	[1]
5	Theobroma cacao	Flavan-3-ols	antioxidant, UV-induced skin damage prevention, collagen synthesis activation, MMP inhibition	НаСаТ	[1]
6	Calendula officinalis	Flavonols (quercetin, rutin, narcissin, isorhamnetin, kaempferol)	antioxidant, cell longevity increase	НаСаТ	[1]
7	Glycyrrhiza glabra	Dihydroxyflavanones (glabranin, licoflavanone)	antioxidant, anticancer	НаСаТ	[1]
8	Citrus limon	Flavonoids	anti-inflammatory, antimicrobial, anticancer	НаСаТ	[147]
9	Verbena officinalis	Flavonoids	antiproliferative and anticancer	HCT-116	[148]
10	Symphytum officiale	n.d	boost the regenerative power of epidermal stem cells and their ability to build new tissue;	Callus culture	[149]
11	Camellia sinensis	Flavonoids glycosides	antioxidant, anti-ageing, photoprotective properties	keratinocyte	[150]
12	Papaver roheas	Flavonoids (anthocyanins), quercetin	antioxidant and anti-inflammatory	fibroblasts and keratinocytes	[151]
13	Punica granatum	Flavonoids (anthocyanins), quercetin	antioxidant and anti-inflammatory	fibroblasts and keratinocytes	[151]
14	Clitoria ternatea	Flavonoids (anthocyanins), quercetin	antioxidant and anti-inflammatory	fibroblasts and keratinocytes	[151]
15	Carthamus tinctorius	Carthamin, Quercetin	antioxidant and anti-inflammatory	fibroblasts and keratinocytes	[151]
16	Gomphrena globosa	Betacyanins, quercetin	antioxidant and anti-inflammatory	fibroblasts and keratinocytes	[151]
17	Rubus idaeus	n.d	anti-ageing, antioxidant	Keratinocyte	[152]
18	Rosmarinus officinalis	Flavonoids, polyphenols	antioxidant, anticancer, anti-ageing, anti-inflammatory	Keratinocyte	[153]
19	Cannabis	Flavanols and flavones	anti-ageing	Keratinocytes	[154]
20	Epilobium angustifolium	Flavonoids	anti-ageing and anti-inflammatory properties	НаСаТ	[155]
21	Schisandra chinensis	Flavonoids (quercetin, rutinoside)	radiation-protective, anti-ageing, antioxidant, anti-allergic and anti-inflammatory	НаСаТ	[156]
22	Curcuma longa	Flavonoids (rutin and quercetin-O-hexose)	anti-inflammatory and antioxidant	НаСаТ	[157]
23	Dendrobium officinale	Stilbenoid	antioxidant, anticancer	HEK-293	[158]
24	Cocos nucifera	caprylic acid, capric acid, lauric acid, stearic acid, linoleic acid	anti-inflammatory and skin protective	Keratinocytes	[159]


n.d-not determined.

4. Antioxidants as Reactive Oxygen Species Antagonists in Skin Conditions—Possible Mechanism

There are a lot of harmful oxygen byproducts in the aerobic environment. The organism has developed antioxidant defence mechanisms to protect it from adverse effects. Antioxidants are "any substance that directly scavenges reactive oxygen species (ROS) or indirectly acts to upregulate antioxidant defences or inhibit ROS production" [39]. Still, antioxidants may also undergo further oxidation and intramolecular hydrogen bonding to generate a new, more stable radical [160]. Furthermore, antioxidants can control gene expression,

which causes the nuclear factor erythroid 2-related factor 2 (Nrf-2) to move from the cytosol to the nucleus after splitting apart from its inhibitor, the Kelch-like erythroid cell-derived protein 1. After entering the nucleus, Nrf-2 may bind antioxidant response elements and trigger the transcription of genes related to stress response, including NAD(P)H: quinone acceptor oxidoreductase 1, glutathione S-transferase, and heme-oxygenase-1 [161–163].

The cell's defence mechanism against oxidative stress is made up of an interconnected network of several antioxidants (e.g., superoxide dismutase, catalase, glutathione peroxidase, transferrin, and caeruloplasmin) that function in various ways and at various degrees (first, second, and third lines of defence) [163] (Figure 1).

Figure 1. Antioxidant response of the cell after damage from oxidative stress. ROS levels rise, and oxidative stress is brought on by UV exposure.

ROS production is inhibited by endogenous antioxidants, and propagation reactions are suppressed by the combined action of exogenous and endogenous antioxidants. Enzymes generated from scratch restore damage caused in the cells. Ultimately, the cell will survive due to an adaptation process if the cooperation of various networks associated with antioxidants is able to resist oxidative stress damage. If the stress is continuous, the cell will eventually die [164].

5. Conclusions

For many years, skincare treatments derived from plants have been used. Natural components are still widely used in various novel formulations for skin care, cleansing, and protection (natural products often enhance their action when combined with each other and not simply isolated and concentrated). For medicinal and cosmetic uses, individual active chemicals and compounds found in plants are used; they are often taken in the form of extracts made from different plant tissues. The reason why plant extracts are employed is their ability to shield the skin from damaging external or internal causes. The primary advantages of using natural substances are their antioxidant qualities and their capacity to shield against oxidative stress-related skin problems. Plant extracts' ability to defend against UV radiation is particularly significant since UV-induced photo-oxidative damage to cellular lipids, proteins, and DNA is linked to early skin ageing and the emergence of skin cancer. Plants have much to offer regarding skin care, but further studies and clinical proof are required since many of these extracts' efficacy is still up for debate. Moreover, there are

still a lot of active molecules to be found, and natural compounds made from plant extracts make for a fascinating area of study. A great challenge of new aromatic and therapeutic plants that enhance the quality of plant-based goods may be discovered in the future.

Author Contributions: Conceptualization, C.-Ş.G. and M.B.; methodology, M.B., M.I. and L.P.d.S.; software, C.-Ş.G.; validation, M.B. and L.P.d.S.; formal analysis, A.E.N., L.D. and M.V.; investigation, C.-Ş.G.; resources, M.I.; writing—original draft preparation, C.-Ş.G.; writing—review and editing, C.-Ş.G., M.B. and L.P.d.S.; supervision, M.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Slovene Research Agency, grant number P4-0121. The Transilvania University of Brasov partially supported the publication of this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- Ferreira, M.S.; Magalhães, M.C.; Oliveira, R.; Sousa-Lobo, J.M.; Almeida, I.F. Trends in the Use of Botanicals in Anti-Aging Cosmetics. *Molecules* 2021, 26, 3584. [CrossRef] [PubMed]
- 2. Sahota, A. (Ed.) Sustainability: How the Cosmetics Industry Is Greening up; John Wiley & Sons: Hoboken, NJ, USA, 2014.
- 3. Berardesca, E.; Farage, M.; Maibach, H. Sensitive skin: An overview. Int. J. Cosmet. Sci. 2013, 35, 2–8. [CrossRef] [PubMed]
- 4. CBI Ministry of Foreign Affairs. Which Trends Offer Opportunities on the European Market for Natural Ingredients for Cosmetics? 2022. Available online: https://www.cbi.eu/market-information/natural-ingredients-cosmetics/trends (accessed on 22 February 2023).
- 5. Fonseca-Santos, B.; Corrêa, M.A.; Chorilli, M. Sustainability, natural and organic cosmetics: Consumer, products, efficacy, toxicological and regulatory considerations. *Braz. J. Pharm. Sci.* **2015**, *51*, 17–26. [CrossRef]
- 6. Van Tran, V.; Moon, J.Y.; Lee, Y.C. Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. *J. Control. Release* **2019**, 300, 114–140. [CrossRef] [PubMed]
- 7. Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [CrossRef]
- 8. Yohn, J.J.; Norris, D.A.; Yrastorza, D.G.; Buno, I.J.; Leff, J.A.; Hake, S.S.; Repine, J.E. Disparate antioxidant enzyme activities in cultured human cutaneous fibroblasts, keratinocytes, and melanocytes. *J. Investig. Dermatol.* **1991**, 97, 405–409. [CrossRef]
- 9. Dini, I. Contribution of Nanoscience Research in Antioxidants Delivery Used in Nutricosmetic Sector. *Antioxidants* **2022**, *11*, 563. [CrossRef]
- 10. Oresajo, C.; Pillai, S.; Manco, M.; Yatskayer, M.; McDaniel, D. Antioxidants and the skin: Understanding formulation and efficacy. *Dermatol. Ther.* **2012**, 25, 252–259. [CrossRef]
- 11. Paolino, D.; Mancuso, A.; Cristiano, M.C.; Froiio, F.; Lammari, N.; Celia, C.; Fresta, M. Nanonutraceuticals: The new frontier of supplementary food. *Nanomaterials* **2021**, *11*, 792. [CrossRef]
- 12. Dini, I.; Laneri, S. Spices, condiments, extra virgin olive oil and aromas as not only flavorings, but precious allies for our wellbeing. *Antioxidants* **2021**, *10*, 868. [CrossRef]
- 13. Thiele, J.J.; Ekanayake-Mudiyanselage, S. Vitamin E in human skin: Organ-specific physiology and considerations for its use in dermatology. *Mol. Asp. Med.* **2007**, *28*, 646–667. [CrossRef] [PubMed]
- 14. Shapiro, S.S.; Saliou, C. Role of vitamins in skin care. Nutrition 2001, 17, 839–844. [CrossRef] [PubMed]
- 15. Dini, I.; Laneri, S. The New Challenge of Green Cosmetics: Natural Food Ingredients for Cosmetic Formulations. *Molecules* **2021**, 26, 3921. [CrossRef]
- 16. Larsson, S.C.; Bergkvist, L.; Näslund, I.; Rutegård, J.; Wolk, A. Vitamin A, retinol, and carotenoids and the risk of gastric cancer: A prospective cohort study. *Am. J. Clin. Nutr.* **2007**, *85*, 497–503. [CrossRef] [PubMed]
- 17. Khalil, S.; Bardawil, T.; Stephan, C.; Darwiche, N.; Abbas, O.; Kibbi, A.G.; Nemer, G.; Kurban, M. Retinoids: A journey from the molecular structures and mechanisms of action to clinical uses in dermatology and adverse effects. *J. Dermatol. Treat.* **2017**, 28, 684–696. [CrossRef]
- 18. Wang, K.; Jiang, H.; Li, W.; Qiang, M.; Dong, T.; Li, H. Role of Vitamin C in Skin Diseases. Front. Physiol. 2018, 9, 819. [CrossRef]
- 19. Telang, P.S. Vitamin C in dermatology. *Indian Dermatol. Online J.* **2013**, 4, 143–146. [CrossRef]
- 20. Farris, P.K. Cosmetical Vitamins: Vitamin C. In *Cosmeceuticals. Procedures in Cosmetic Dermatology*, 2nd ed.; Draelos, Z.D., Dover, J.S., Alam, M., Eds.; Saunders Elsevier: New York, NY, USA, 2009; pp. 51–56.
- 21. Meves, A.; Stock, S.N.; Beyerle, A.; Pittelkow, M.R.; Peus, D. Vitamin C derivative ascorbyl palmitate promotes ultraviolet-B-induced lipid peroxidation and cytotoxicity in keratinocytes. *J. Investig. Dermatol.* **2002**, *119*, 1103–1108. [CrossRef]
- 22. Lee, W.J.; Kim, S.L.; Choe, Y.S.; Jang, Y.H.; Lee, S.J.; Kim, D.W. Magnesium Ascorbyl Phosphate Regulates the Expression of Inflammatory Biomarkers in Cultured Sebocytes. *Ann. Dermatol.* **2015**, *27*, *376*–382. [CrossRef]
- 23. Al-Niaimi, F.; Chiang, N.Y.Z. Topical Vitamin C and the Skin: Mechanisms of Action and Clinical Applications. *J. Clin. Aesthetic Dermatol.* **2017**, *10*, 14–17.

- 24. Keen, M.A.; Hassan, I. Vitamin E in dermatology. *Indian Dermatol. Online J.* 2016, 7, 311–315. [CrossRef] [PubMed]
- 25. Liu, X.; Yang, G.; Luo, M.; Lan, Q.; Shi, X.; Deng, H.; Wang, N.; Xu, X.; Zhang, C. Serum vitamin E levels and chronic inflammatory skin diseases: A systematic review and meta-analysis. *PLoS ONE* **2021**, *16*, e0261259. [CrossRef] [PubMed]
- 26. Hamie, H.; Yassine, R.; Shoukfeh, R.; Turk, D.; Huq, F.; Moossavi, M. A review of the efficacy of popular eye cream ingredients. *Int. J. Women's Dermatol.* **2024**, *10*, e156. [CrossRef] [PubMed]
- 27. Tessema, E.N.; Bosse, K.; Wohlrab, J.; Mrestani, Y.; Neubert, R.H.H. Investigation of ex vivo Skin Penetration of Coenzyme Q10 from Microemulsions and Hydrophilic Cream. *Ski. Pharmacol. Physiol.* **2020**, *33*, 293–299. [CrossRef]
- 28. Luo, K.; Yu, J.H.; Quan, Y.; Shin, Y.J.; Lee, K.E.; Kim, H.L.; Ko, E.J.; Chung, B.H.; Lim, S.W.; Yang, C.W. Therapeutic potential of coenzyme Q10 in mitochondrial dysfunction during tacrolimus-induced beta cell injury. *Sci. Rep.* **2019**, *9*, 7995. [CrossRef]
- 29. Al-Oudah, G.A.; Sahib, A.S.; Al-Hattab, M.K.; Al-Ameedee, A.A. Effect of CoQ10 Administration to Psoriatic Iraqi Patients on Biological Therapy Upon Severity Index (PASI) and Quality of Life Index (DLQI) Before and After Therapy. *J. Popul. Ther. Clin. Pharmacol. = J. Ther. Popul. Pharmacol. Clin.* **2022**, 29, e52–e60. [CrossRef]
- 30. Ayunin, Q.; Miatmoko, A.; Soeratri, W.; Erawati, T.; Susanto, J.; Legowo, D. Improving the anti-ageing activity of coenzyme Q10 through protransfersome-loaded emulgel. *Sci. Rep.* **2022**, *12*, 906. [CrossRef] [PubMed]
- Khadem, S.; Marles, R.J. Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies. Molecules 2010, 15, 7985. [CrossRef]
- 32. Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. *Nutr. Rev.* **1998**, *56*, 317–333. [CrossRef]
- 33. Epstein, H. Cosmeceuticals and polyphenols. Clin. Dermatol. 2009, 27, 475–478. [CrossRef]
- 34. Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007, 8, 950–988. [CrossRef]
- 35. Anunciato, T.P.; da Rocha Filho, P.A. Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals. *J. Cosmet. Dermatol.* **2012**, *11*, 51–54. [CrossRef] [PubMed]
- 36. Jain, P.K.; Kharya, M.D.; Gajbhiye, A.; Sara, U.V.S.; Sharma, V.K. Flavonoids as nutraceuticals. A review. *Herba Polonica* **2010**, *56*, 105–117.
- 37. Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as active ingredients for cosmetic products. *Int. J. Cosmet. Sci.* **2015**, *37*, 455–464. [CrossRef]
- 38. Afaq, F.; Saleem, M.; Krueger, C.G.; Reed, J.D.; Mukhtar, H. Anthocyanin-and hydrolyzable tannin-rich pomegranate fruit extract modulates MAPK and NF-κB pathways and inhibits skin tumorigenesis in CD-1 mice. *Int. J. Cancer* 2005, 113, 423–433. [CrossRef]
- 39. Khlebnikov, A.I.; Schepetkin, I.A.; Domina, N.G.; Kirpotina, L.N.; Quinn, M.T. Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. *Bioorganic Med. Chem.* **2007**, *15*, 1749–1770. [CrossRef]
- 40. Gupta, V.K.; Rachna, K.; Munish, G.; Monika, G. Recent updates on free radicals scavenging flavonoids: An overview. *Asian J. Plant Sci.* **2010**, *9*, 108–117. [CrossRef]
- 41. Cho, H.S.; Lee, M.H.; Lee, J.W.; No, K.O.; Park, S.K.; Lee, H.S.; Kang, S.; Cho, W.G.; Park, H.J.; Oh, K.W.; et al. Anti-wrinkling effects of the mixture of vitamin C, vitamin E, pycnogenol and evening primrose oil, and molecular mechanisms on hairless mouse skin caused by chronic ultraviolet B irradiation. *Photodermatol. Photoimmunol. Photomed.* 2007, 23, 155–162. [CrossRef]
- 42. Kasai, K.; Yoshimura, M.; Koga, T.; Arii, M.; Kawasaki, S. Effects of oral administration of ellagic acid-rich pomegranate extract on ultraviolet-induced pigmentation in the human skin. *J. Nutr. Sci. Vitaminol.* **2006**, *52*, 383–388. [CrossRef]
- 43. Khan, N.; Syed, D.N.; Pal, H.C.; Mukhtar, H.; Afaq, F. Pomegranate fruit extract inhibits UVB-induced inflammation and proliferation by modulating NF-κB and MAPK signaling pathways in mouse skin. *Photochem. Photobiol.* **2012**, 88, 1126–1134. [CrossRef]
- 44. Vitrac, X.; Bornet, A.; Vanderlinde, R.; Valls, J.; Richard, T.; Delaunay, J.-C.; Mérillon, J.-M.; Teissédre, P.-L. Determination of Stilbenes (δ-viniferin, trans-astringin, trans-piceid, cis- and trans-resveratrol, ε-viniferin) in Brazilian Wines. *J. Agric. Food Chem.* 2005, 53, 5664–5669. [CrossRef] [PubMed]
- 45. Bavaresco, L.; Fregoni, M.; Trevisan, M.; Mattivi, F.; Vrhovsek, U.; Falchetti, R. The occurrence of the stilbene piceatannol in grapes. *Occur. Stilbene Piceatannol Grapes* **2002**, *41*, 133–136.
- 46. Nagapan, T.S.; Ghazali, A.R.; Basri, D.F.; Lim, W.N. Photoprotective Effect of Stilbenes and its Derivatives Against Ultraviolet Radiation-Induced Skin Disorders. *Biomed. Pharmacol. J.* **2018**, *11*, 1199–1208. Available online: http://biomedpharmajournal.org/?p=21824 (accessed on 20 August 2024). [CrossRef]
- 47. Flamini, R.; Mattivi, F.; Rosso, M.D.; Arapitsas, P.; Bavaresco, L. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols. *Int. J. Mol. Sci.* **2013**, *14*, 9651. [CrossRef]
- 48. Faustino, C.; Francisco, A.P.; Isca, V.M.S.; Duarte, N. Cytotoxic Stilbenes and Derivatives as Promising Antimitotic Leads for Cancer Therapy. *Curr. Pharm. Des.* **2018**, 24, 4270–4311. [CrossRef]
- 49. De Filippis, B.; Ammazzalorso, A.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Amoroso, R. Anticancer Activity of Stilbene-Based Derivatives. *ChemMedChem* **2017**, *12*, 558–570. [CrossRef]
- 50. Cottart, C.H.; Nivet-Antoine, V.; Laguillier-Morizot, C.; Beaudeux, J.L. Resveratrol bioavailability and toxicity in humans. *Mol. Nutr. Food Res.* **2010**, *54*, 7–16. [CrossRef]

- 51. Jeandet, P.; Sobarzo-Sánchez, E.; Clément, C.; Nabavi, S.F.; Habtemariam, S.; Nabavi, S.M.; Cordelier, S. Engineering stilbene metabolic pathways in microbial cells. *Biotechnol. Adv.* **2018**, *36*, 2264–2283. [CrossRef]
- 52. Fulda, S.; Debatin, K.-M. Resveratrol modulation of signal transduction in apoptosis and cell survival: A mini-review. *Cancer Detect. Prev.* **2006**, *30*, 217–223. [CrossRef]
- 53. Ratz-Łyko, A.; Arct, J. Resveratrol as an active ingredient for cosmetic and dermatological applications: A review. *J. Cosmet. Laser Ther.* **2019**, 21, 84–90. [CrossRef]
- 54. Kershaw, J.; Kim, K.H. The therapeutic potential of piceatannol, a natural stilbene, in metabolic diseases: A review. *J. Med. Food* **2017**, 20, 427–438. [CrossRef] [PubMed]
- 55. Du, M.; Zhang, Z.; Gao, T. Piceatannol induced apoptosis through up-regulation of microRNA-181a in melanoma cells. *Biol. Res.* **2017**, *50*, 36. [CrossRef] [PubMed]
- 56. Pecyna, P.; Wargula, J.; Murias, M.; Kucinska, M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. *Biomolecules* **2020**, *10*, 1111. [CrossRef] [PubMed]
- 57. Moilanen, L.J.; Hämäläinen, M.; Lehtimäki, L.; Nieminen, R.M.; Muraki, K.; Moilanen, E. Pinosylvin Inhibits TRPA1-Induced Calcium Influx In Vitro and TRPA1-Mediated Acute Paw Inflammation In Vivo. *Basic Clin. Pharmacol. Toxicol.* 2016, 118, 238–242. [CrossRef]
- 58. Oluwole, O.; Fernando, W.B.; Lumanlan, J.; Ademuyiwa, O.; Jayasena, V. Role of phenolic acid, tannins, stilbenes, lignans and flavonoids in human health—A review. *Int. J. Food Sci. Technol.* **2022**, *57*, 6326–6335. [CrossRef]
- 59. Shazmeen; Haq, I.-U.; Rajoka, M.S.R.; Asim Shabbir, M.; Umair, M.; Llah, I.; Manzoor, M.F.; Nemat, A.; Abid, M.; Khan, M.R.; et al. Role of stilbenes against insulin resistance: A review. *Food Sci. Nutr.* **2021**, *9*, 6389–6405. [CrossRef]
- 60. Villarón, D.; Wezenberg, S.J. Stiff-Stilbene Photoswitches: From Fundamental Studies to Emergent Applications. *Angew. Chem.* **2020**, *132*, 13292–13302. [CrossRef]
- 61. Lee, Y.-H.; Chen, Y.-Y.; Yeh, Y.-L.; Wang, Y.-J.; Chen, R.-J. Stilbene Compounds Inhibit Tumor Growth by the Induction of Cellular Senescence and the Inhibition of Telomerase Activity. *Int. J. Mol. Sci.* **2019**, 20, 2716. [CrossRef]
- 62. Sirerol, J.A.; Rodríguez, M.L.; Mena, S.; Asensi, M.A.; Estrela, J.M.; Ortega, A.L. Role of Natural Stilbenes in the Prevention of Cancer. *Oxidative Med. Cell. Longev.* **2015**, 2016, e3128951. [CrossRef]
- 63. Malarz, J.; Yudina, Y.V.; Stojakowska, A. Hairy Root Cultures as a Source of Phenolic Antioxidants: Simple Phenolics, Phenolic Acids, Phenylethanoids, and Hydroxycinnamates. *Int. J. Mol. Sci.* **2023**, 24, 6920. [CrossRef]
- 64. Liu, B.; Yuan, D.; Li, Q.; Zhou, X.; Wu, H.; Bao, Y.; Lu, H.; Luo, T.; Wang, J. Changes in Organic Acids, Phenolic Compounds, and Antioxidant Activities of Lemon Juice Fermented by Issatchenkia terricola. *Molecules* **2021**, *26*, 6712. [CrossRef] [PubMed]
- 65. Goławska, S.; Łukasik, I.; Chojnacki, A.A.; Chrzanowski, G. Flavonoids and Phenolic Acids Content in Cultivation and Wild Collection of European Cranberry Bush *Viburnum opulus* L. *Molecules* **2023**, *28*, 2285. [CrossRef] [PubMed]
- 66. Shalaby, E. (Ed.) Antioxidants; IntechOpen: London, UK, 2019. [CrossRef]
- 67. Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. *J. Med. Plants Res.* **2011**, *5*, 6697–6703. [CrossRef]
- 68. Vinayagam, R.; Jayachandran, M.; Xu, B. Antidiabetic Effects of Simple Phenolic Acids: A Comprehensive Review. *Phytother. Res.* **2016**, *30*, 184–199. [CrossRef]
- 69. Abdelshafy, A.M.; Belwal, T.; Liang, Z.; Wang, L.; Li, D.; Luo, Z.; Li, L. A comprehensive review on phenolic compounds from edible mushrooms: Occurrence, biological activity, application and future prospective. *Crit. Rev. Food Sci. Nutr.* **2022**, *62*, 6204–6224. [CrossRef] [PubMed]
- 70. Al Jitan, S.; Alkhoori, S.A.; Yousef, L.F. Chapter 13—Phenolic Acids From Plants: Extraction and Application to Human Health. In *Studies in Natural Products Chemistry*; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 58, pp. 389–417. [CrossRef]
- 71. Cueva, C.; Moreno-Arribas, M.V.; Martín-Álvarez, P.J.; Bills, G.; Vicente, M.F.; Basilio, A.; Rivas, C.L.; Requena, T.; Rodríguez, J.M.; Bartolomé, B. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. *Res. Microbiol.* 2010, 161, 372–382. [CrossRef]
- 72. Drawbridge, P.C.; Apea-Bah, F.; Silveira Hornung, P.; Beta, T. Bioaccessibility of phenolic acids in Canadian hulless barley varieties. *Food Chem.* **2021**, *358*, 129905. [CrossRef]
- 73. Lodovici, M.; Guglielmi, F.; Meoni, M.; Dolara, P. Effect of natural phenolic acids on DNA oxidation in vitro. *Food Chem. Toxicol.* **2001**, *39*, 1205–1210. [CrossRef]
- 74. Afnan; Saleem, A.; Akhtar, M.F.; Sharif, A.; Akhtar, B.; Siddique, R.; Ashraf, G.M.; Alghamdi, B.S.; Alharthy, S.A. Anticancer, Cardio-Protective and Anti-Inflammatory Potential of Natural-Sources-Derived Phenolic Acids. *Molecules* 2022, 27, 7286. [CrossRef]
- 75. Okafor, J.N.C.; Meyer, M.; Le Roes-Hill, M.; Jideani, V.A. Flavonoid and Phenolic Acid Profiles of Dehulled and Whole *Vigna subterranea* (L.) Verdc Seeds Commonly Consumed in South Africa. *Molecules* **2022**, 27, 5265. [CrossRef]
- 76. Holiman, P.C.H.; Hertog, M.G.L.; Katan, M.B. Analysis and health effects of flavonoids. Food Chem. 1996, 57, 43–46. [CrossRef]
- 77. Ballard, C.R.; Maróstica, M.R. Chapter 10—Health Benefits of Flavonoids. In *Bioactive Compounds*; Campos, M.R.S., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 185–201. [CrossRef]
- 78. Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 299, 125124. [CrossRef]

- 79. Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Ovais, M.; Ullah, I.; Ahmed, J.; Shahid, M. Flavonoids as Prospective Neuroprotectants and Their Therapeutic Propensity in Aging Associated Neurological Disorders. *Front. Aging Neurosci.* **2019**, *11*, 155. [CrossRef] [PubMed]
- 80. Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. *Molecules* **2022**, 27, 2901. [CrossRef] [PubMed]
- 81. Choy, K.W.; Murugan, D.; Leong, X.-F.; Abas, R.; Alias, A.; Mustafa, M.R. Flavonoids as Natural Anti-Inflammatory Agents Targeting Nuclear Factor-Kappa B (NFkB) Signaling in Cardiovascular Diseases: A Mini Review. *Front. Pharmacol.* **2019**, *10*, 1295. [CrossRef]
- 82. Maher, P. The Potential of Flavonoids for the Treatment of Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 3056. [CrossRef]
- 83. Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial Activity of Some Flavonoids and Organic Acids Widely Distributed in Plants. *J. Clin. Med.* 2020, *9*, 109. [CrossRef]
- 84. Pitura, K.; Arntfield, S.D. Characteristics of flavonol glycosides in bean (*Phaseolus vulgaris* L.) seed coats. *Food Chem.* **2019**, 272, 26–32. [CrossRef] [PubMed]
- 85. Nagula, R.L.; Wairkar, S. Recent advances in topical delivery of flavonoids: A review. *J. Control. Release* **2019**, 296, 190–201. [CrossRef]
- 86. Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. *Phytother. Res.* **2019**, *33*, 13–40. [CrossRef]
- 87. Guven, H.; Arïcï, A.; Sïmsek, O. Flavonoids in Our Foods: A Short Review. J. Basic Clin. Health Sci. 2019, 3, 2. [CrossRef]
- 88. Gómez-Juaristi, M.; Sarria, B.; Martínez-López, S.; Bravo Clemente, L.; Mateos, R. Flavanol Bioavailability in Two Cocoa Products with Different Phenolic Content. A Comparative Study in Humans. *Nutrients* **2019**, *11*, 1441. [CrossRef] [PubMed]
- 89. Geng, C.-A.; Yang, T.-H.; Huang, X.-Y.; Ma, Y.-B.; Zhang, X.-M.; Chen, J.-J. Antidepressant potential of Uncaria rhynchophylla and its active flavanol, catechin, targeting melatonin receptors. *J. Ethnopharmacol.* **2019**, 232, 39–46. [CrossRef] [PubMed]
- 90. Maaliki, D.; Shaito, A.A.; Pintus, G.; El-Yazbi, A.; Eid, A.H. Flavonoids in hypertension: A brief review of the underlying mechanisms. *Curr. Opin. Pharmacol.* **2019**, 45, 57–65. [CrossRef] [PubMed]
- 91. Moro González, L.C.; Guadarrama, A.; Vendrell, V.D.; Sevillano García, M.; Moreno-Arribas, M.V.; Bartolomé, B.; Gil-Sánchez, I. Composición para la Regulación del Metabolismo de la Glucosa. ES2724728 A1, 13 September 2019. Available online: https://digital.csic.es/handle/10261/245476 (accessed on 20 August 2024).
- 92. Anacleto, S.L. Flavanonas de Citrus—Mecanismos de Proteção de Células Î2-Pancreáticas Submetidas ao Estresse Oxidativo. Master's Thesis, Universidade de São Paulo, São Paulo, Brazil, 2020. [CrossRef]
- 93. López, J.G.-E. Flavonoids in Health and Disease. Curr. Med. Chem. 2019, 26, 6972–6975. [CrossRef]
- 94. Pabich, M.; Materska, M. Biological Effect of Soy Isoflavones in the Prevention of Civilization Diseases. *Nutrients* **2019**, *11*, 1660. [CrossRef]
- 95. Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [CrossRef]
- 96. Yonekura-Sakakibara, K.; Higashi, Y.; Nakabayashi, R. The Origin and Evolution of Plant Flavonoid Metabolism. *Front. Plant Sci.* **2019**, *10*, 943. [CrossRef]
- 97. Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [CrossRef]
- 98. Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. *Molecules* **2021**, 26, 5377. [CrossRef]
- 99. Hernández Guiance, S.N.; Marino, L.; Isern, D.M.; Coria, I.D.; Irurzun, I.M. Flavonoides: Aplicaciones medicinales e industriales. *Invenio* 2019, 22, 11–27.
- 100. Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [CrossRef] [PubMed]
- 101. Mahmoud, A.M.; Hernández Bautista, R.J.; Sandhu, M.A.; Hussein, O.E. Beneficial Effects of Citrus Flavonoids on Cardiovascular and Metabolic Health. *Oxidative Med. Cell. Longev.* **2019**, 2019, e5484138. [CrossRef] [PubMed]
- 102. Chen, G.-L.; Fan, M.-X.; Wu, J.-L.; Li, N.; Guo, M.-Q. Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. *Food Chem.* **2019**, 277, 706–712. [CrossRef]
- 103. AL-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. *Biomolecules* **2019**, *9*, 430. [CrossRef]
- 104. Chang, Z.; Zhang, Q.; Liang, W.; Zhou, K.; Jian, P.; She, G.; Zhang, L. A Comprehensive Review of the Structure Elucidation of Tannins from Terminalia Linn. *Evid.-Based Complement. Altern. Med.* **2019**, 2019, e8623909. [CrossRef]
- 105. Nicolle, P.; Marcotte, C.; Angers, P.; Pedneault, K. Pomace limits tannin retention in Frontenac wines. *Food Chem.* **2019**, 277, 438–447. [CrossRef]
- 106. Mueller-Harvey, I.; Bee, G.; Dohme-Meier, F.; Hoste, H.; Karonen, M.; Kölliker, R.; Lüscher, A.; Niderkorn, V.; Pellikaan, W.F.; Salminen, J.-P.; et al. Benefits of Condensed Tannins in Forage Legumes Fed to Ruminants: Importance of Structure, Concentration, and Diet Composition. *Crop Sci.* 2019, 59, 861–885. [CrossRef]
- 107. Rousserie, P.; Rabot, A.; Geny-Denis, L. From Flavanols Biosynthesis to Wine Tannins: What Place for Grape Seeds? *J. Agric. Food Chem.* **2019**, *67*, 1325–1343. [CrossRef]
- 108. Braghiroli, F.L.; Amaral-Labat, G.; Boss, A.F.N.; Lacoste, C.; Pizzi, A. Tannin Gels and Their Carbon Derivatives: A Review. *Biomolecules* **2019**, *9*, 587. [CrossRef]

- 109. Gourlay, G.; Constabel, C.P. Condensed tannins are inducible antioxidants and protect hybrid poplar against oxidative stress. *Tree Physiol.* **2019**, *39*, *345*–355. [CrossRef] [PubMed]
- 110. Zeng, X.; Du, Z.; Sheng, Z.; Jiang, W. Characterization of the interactions between banana condensed tannins and biologically important metal ions (Cu²⁺, Zn²⁺ and Fe²⁺). *Food Res. Int.* **2019**, *123*, 518–528. [CrossRef] [PubMed]
- 111. Shang, Y.-F.; Cao, H.; Ma, Y.-L.; Zhang, C.; Ma, F.; Wang, C.-X.; Ni, X.-L.; Lee, W.-J.; Wei, Z.-J. Effect of lactic acid bacteria fermentation on tannins removal in Xuan Mugua fruits. *Food Chem.* **2019**, *274*, 118–122. [CrossRef]
- 112. Laddha, A.P.; Kulkarni, Y.A. Tannins and vascular complications of Diabetes: An update. *Phytomedicine* **2019**, *56*, 229–245. [CrossRef] [PubMed]
- 113. Vignault, A.; Pascual, O.; Jourdes, M.; Moine, V.; Fermaud, M.; Roudet, J.; Canals, J.M.; Teissedre, P.-L.; Zamora, F. Impact of enological tannins on laccase activity: Special Macrowine. *OENO One* **2019**, *53*, 1. [CrossRef]
- 114. Girard, A.L.; Teferra, T.; Awika, J.M. Effects of condensed vs hydrolysable tannins on gluten film strength and stability. *Food Hydrocoll.* **2019**, *89*, 36–43. [CrossRef]
- 115. Pizzi, A. Tannins: Prospectives and Actual Industrial Applications. Biomolecules 2019, 9, 344. [CrossRef]
- 116. Gombau, J.; Vignault, A.; Pascual, O.; Gómez-Alonso, S.; Gracía-Romero, E.; Hermosín, I.; Canals, J.M.; Teissedre, P.-L.; Zamora, F. Influence of oenological tannins on malvidin-3-O-monoglucoside copigmentation in a model wine solution. *OENO One* **2019**, 53, 3. [CrossRef]
- 117. Sharma, K.P. Tannin degradation by phytopathogen's tannase: A Plant's defense perspective. *Biocatal. Agric. Biotechnol.* **2019**, 21, 101342. [CrossRef]
- 118. Hussain, G.; Huang, J.; Rasul, A.; Anwar, H.; Imran, A.; Maqbool, J.; Razzaq, A.; Aziz, N.; Makhdoom, E.H.; Konuk, M.; et al. Putative Roles of Plant-Derived Tannins in Neurodegenerative and Neuropsychiatry Disorders: An Updated Review. *Molecules* **2019**, 24, 2213. [CrossRef]
- 119. Molino, S.; Casanova, N.A.; Rufián Henares, J.Á.; Fernandez Miyakawa, M.E. Natural Tannin Wood Extracts as a Potential Food Ingredient in the Food Industry. *J. Agric. Food Chem.* **2020**, *68*, 2836–2848. [CrossRef] [PubMed]
- 120. Aires, A. Tannins: Structural Properties, Biological Properties and Current Knowledge; BoD—Books on Demand: Norderstedt, Germany, 2020.
- 121. Monteiro, J.; Alves, M.G.; Oliveira, P.F.; Silva, B.M. Pharmacological potential of methylxanthines: Retrospective analysis and future expectations. *Crit. Rev. Food Sci. Nutr.* **2019**, *59*, 2597–2625. [CrossRef]
- 122. Nathanson, J.A. Caffeine and Related Methylxanthines: Possible Naturally Occurring Pesticides. *Science* **1984**, 226, 184–187. [CrossRef] [PubMed]
- 123. Franco, R.; Oñatibia-Astibia, A.; Martínez-Pinilla, E. Health Benefits of Methylxanthines in Cacao and Chocolate. *Nutrients* **2013**, 5, 4159. [CrossRef] [PubMed]
- 124. Gottwalt, B.; Tadi, P. Methylxanthines. In *StatPearls [Internet]*; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK559165/ (accessed on 20 August 2024).
- 125. Cardozo, E.L.; Ferrarese-Filho, O.; Filho, L.C.; de Lourdes Lucio Ferrarese, M.; Donaduzzi, C.M.; Sturion, J.A. Methylxanthines and phenolic compounds in mate (*Ilex paraguariensis* St. Hil.) progenies grown in Brazil. *J. Food Compos. Anal.* **2007**, 20, 553–558. [CrossRef]
- 126. Horžić, D.; Komes, D.; Belščak, A.; Ganić, K.K.; Iveković, D.; Karlović, D. The composition of polyphenols and methylxanthines in teas and herbal infusions. *Food Chem.* **2009**, *115*, 441–448. [CrossRef]
- 127. Morelli, M.; Simola, N. Methylxanthines and Drug Dependence: A Focus on Interactions with Substances of Abuse. In *Methylxanthines*; Fredholm, B.B., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 483–507. [CrossRef]
- 128. Janitschke, D.; Lauer, A.A.; Bachmann, C.M.; Grimm, H.S.; Hartmann, T.; Grimm, M.O.W. Methylxanthines and Neurodegenerative Diseases: An Update. *Nutrients* **2021**, *13*, 803. [CrossRef]
- 129. Cordella, M.; Tabolacci, C.; Senatore, C.; Rossi, S.; Mueller, S.; Lintas, C.; Eramo, A.; D'Arcangelo, D.; Valitutti, S.; Facchiano, A.; et al. Theophylline induces differentiation and modulates cytoskeleton dynamics and cytokines secretion in human melanoma-initiating cells. *Life Sci.* **2019**, 230, 121–131. [CrossRef]
- 130. Talmon, M.; Massara, E.; Brunini, C.; Fresu, L.G. Comparison of anti-inflammatory mechanisms between doxofylline and theophylline in human monocytes. *Pulm. Pharmacol. Ther.* **2019**, *59*, 101851. [CrossRef]
- 131. Pérez-Pérez, D.; Reyes-Vidal, I.; Chávez-Cortez, E.G.; Sotelo, J.; Magaña-Maldonado, R. Methylxanthines: Potential Therapeutic Agents for Glioblastoma. *Pharmaceuticals* **2019**, 12, 130. [CrossRef]
- 132. Zhou, B.; Ma, C.; Zheng, C.; Xia, T.; Ma, B.; Liu, X. 3-Methylxanthine production through biodegradation of theobromine by Aspergillus sydowii PT-2. *BMC Microbiol.* **2020**, *20*, 269. [CrossRef] [PubMed]
- 133. Iaia, N.; Rossin, D.; Sottero, B.; Venezia, I.; Poli, G.; Biasi, F. Efficacy of theobromine in preventing intestinal CaCo-2 cell damage induced by oxysterols. *Arch. Biochem. Biophys.* **2020**, *694*, 108591. [CrossRef] [PubMed]
- 134. Sugimoto, N.; Katakura, M.; Matsuzaki, K.; Sumiyoshi, E.; Yachie, A.; Shido, O. Chronic administration of theobromine inhibits mTOR signal in rats. *Basic Clin. Pharmacol. Toxicol.* **2019**, 124, 575–581. [CrossRef]
- 135. Cova, I.; Leta, V.; Mariani, C.; Pantoni, L.; Pomati, S. Exploring cocoa properties: Is theobromine a cognitive modulator? *Psychopharmacology* **2019**, 236, 561–572. [CrossRef]

- 136. Ejuh, G.W.; Ndjaka, J.M.B.; Tchangnwa Nya, F.; Ndukum, P.L.; Fonkem, C.; Tadjouteu Assatse, Y.; Yossa Kamsi, R.A. Determination of the structural, electronic, optoelectronic and thermodynamic properties of the methylxanthine molecules theophylline and theobromine. *Opt. Quantum Electron.* **2020**, 52, 498. [CrossRef]
- 137. Riksen, N.P.; Smits, P.; Rongen, G.A. The Cardiovascular Effects of Methylxanthines. In *Methylxanthines*; Fredholm, B.B., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 413–437. [CrossRef]
- 138. Purwoko, T.; Suranto, S.; Setyaningsih, R.; Marliyana, S.D. Caffeine degradation by food microorganisms. *Biodiversitas J. Biol. Divers.* **2023**, 24, 6. [CrossRef]
- 139. Kobetičová, K.; Nábělková, J.; Ďurišová, K.; Šimůnková, K.; černý, R. Antifungal activity of methylxanthines based on their properties. *BioResources* **2020**, *15*, 8110–8120. [CrossRef]
- 140. Karuppagounder, S.S.; Uthaythas, S.; Govindarajulu, M.; Ramesh, S.; Parameshwaran, K.; Dhanasekaran, M. Caffeine, a natural methylxanthine nutraceutical, exerts dopaminergic neuroprotection. *Neurochem. Int.* **2021**, *148*, 105066. [CrossRef] [PubMed]
- 141. Petrucci, R.; Zollo, G.; Curulli, A.; Marrosu, G. A new insight into the oxidative mechanism of caffeine and related methylxanthines in aprotic medium: May caffeine be really considered as an antioxidant? *Biochim. et Biophys. Acta (BBA) Gen. Subj.* **2018**, *1862*, 1781–1789. [CrossRef]
- 142. Schuster, J.; Mitchell, E.S. More than just caffeine: Psychopharmacology of methylxanthine interactions with plant-derived phytochemicals. *Prog. Neuro-Psychopharmacol. Biol. Psychiatry* **2019**, *89*, 263–274. [CrossRef]
- 143. Lander, N.; Soloway, A.H.; Minton, J.P.; Rawal, B.D.; Gairola, C.C. Potential metabolic mutagens of caffeine and various methylxanthines. *J. Pharm. Sci.* **1988**, 77, 955–958. [CrossRef] [PubMed]
- 144. Daly, J.W. Caffeine analogs: Biomedical impact. Cell. Mol. Life Sci. 2007, 64, 2153–2169. [CrossRef] [PubMed]
- 145. Arnaud, M.J.; Welsch, C. Theophylline and caffeine metabolism in man. In *Theophylline and other Methylxanthines/Theophyllin und andere Methylxanthine: Proceedings of the 4th International Symposium, Frankfurt/M; 29th and 30th May, 1981/Vorträge des 4. Internationalen Symposiums, Frankfurt/M.; 29. Und 30. Mai, 1981;* Rietbrock, N., Woodcock, B.G., Staib, A.H., Eds.; Vieweg+Teubner Verlag: Wiesbaden, Germany, 1982; pp. 135–148. [CrossRef]
- 146. Nair, K.P. The Caffeine, Methylxanthines, and Behavior Linkages. In *Food and Human Responses: A Holistic View*; Nair, K.P., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 129–142. [CrossRef]
- 147. Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus limon (Lemon) Phenomenon—A Review of the Chemistry, Pharmacological Properties, Applications in the Modern Pharmaceutical, Food, and Cosmetics Industries, and Biotechnological Studies. *Plants* **2020**, *9*, 119. [CrossRef] [PubMed]
- 148. Kubica, P.; Szopa, A.; Dominiak, J.; Luczkiewicz, M.; Ekiert, H. Verbena officinalis (Common Vervain)—A Review on the Investigations of This Medicinally Important Plant Species. *Planta Medica* **2020**, *86*, 1241–1257. [CrossRef]
- 149. Krasteva, G.; Georgiev, V.; Pavlov, A. Recent applications of plant cell culture technology in cosmetics and foods. *Eng. Life Sci.* **2020**, *21*, 68–76. [CrossRef]
- 150. Koch, W.; Zagórska, J.; Marzec, Z.; Kukula-Koch, W. Applications of Tea (*Camellia sinensis*) and Its Active Constituents in Cosmetics. *Molecues* **2019**, 24, 4277. [CrossRef]
- 151. Bujak, T.; Zagórska-Dziok, M.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Lal, K.; Wasilewski, T.; Hordyjewicz-Baran, Z. Flower Extracts as Multifunctional Dyes in the Cosmetics Industry. *Molecules* **2022**, 27, 922. [CrossRef]
- 152. Rattanawiwatpong, P.; Wanitphakdeedecha, R.; Bumrungpert, A.; Maiprasert, M. Anti-aging and brightening effects of a topical treatment containing vitamin C, vitamin E, and raspberry leaf cell culture extract: A split-face, randomized controlled trial. *J. Cosmet. Dermatol.* 2020, 19, 671–676. [CrossRef] [PubMed]
- 153. de Macedo, L.M.; Santos ÉMd Militão, L.; Tundisi, L.L.; Ataide, J.A.; Souto, E.B.; Mazzola, P.G. Rosemary (*Rosmarinus officinalis* L.; syn *Salvia rosmarinus* Spenn.) and Its Topical Applications: A Review. *Plants* **2020**, *9*, 651. [CrossRef]
- 154. Fordjour, E.; Manful, C.F.; Sey, A.A.; Javed, R.; Pham, T.H.; Thomas, R.; Cheema, M. Cannabis: A multifaceted plant with endless potentials. *Front. Pharmacol.* **2023**, *14*, 1200269. [CrossRef]
- 155. Nowak, A.; Zielonka-Brzezicka, J.; Perużyńska, M.; Klimowicz, A. *Epilobium angustifolium* L. as a Potential Herbal Component of Topical Products for Skin Care and Treatment—A Review. *Molecules* **2022**, 27, 3536. [CrossRef] [PubMed]
- 156. Zagórska-Dziok, M.; Wójciak, M.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Hoian, U.; Klimczak, K.; Szczepanek, D.; Sowa, I. Evaluation of the Antioxidant, Cytoprotective and Antityrosinase Effects of Schisandra chinensis Extracts and Their Applicability in Skin Care Product. *Molecules* 2022, 27, 8877. [CrossRef]
- 157. Chambon, M.; Ho, R.; Baghdikian, B.; Herbette, G.; Bun-Llopet, S.-S.; Garayev, E.; Raharivelomanana, P. Identification of Antioxidant Metabolites from Five Plants (*Calophyllum inophyllum, Gardenia taitensis, Curcuma longa, Cordia subcordata, Ficus prolixa*) of the Polynesian Pharmacopoeia and Cosmetopoeia for Skin Care. *Antioxidants* 2023, 12, 1870. [CrossRef] [PubMed]
- 158. Wang, M.; Zhang, E.; Yu, C.; Liu, D.; Zhao, S.; Xu, M.; Zhao, X.; Yue, W.; Nie, G. *Dendrobium officinale* Enzyme Changing the Structure and Behaviors of Chitosan/γ-poly(glutamic acid) Hydrogel for Potential Skin Care. *Polymers* **2022**, *14*, 2070. [CrossRef] [PubMed]
- 159. Varma, S.R.; Sivaprakasam, T.O.; Arumugam, I.; Dilip, N.; Raghuraman, M.; Pavan, K.B.; Rafiq, M.; Paramesh, R. In vitro anti-inflammatory and skin protective properties of *Virgin coconut* oil. *J. Tradit. Complement. Med.* **2018**, *9*, 5–14. [CrossRef]
- 160. Halliwell, B. Antioxidants: The basics-what they are and how to evaluate them. Adv. Pharmacol. 1997, 38, 3–20. [CrossRef]

- 161. Kanlaya, R.; Khamchun, S.; Kapincharanon, C.; Thongboonkerd, V. Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells. *Sci. Rep.* **2016**, *6*, 30233. [CrossRef]
- 162. Ji, L.L.; Sheng, Y.C.; Zheng, Z.Y.; Shi, L.; Wang, Z.T. The involvement of p62-Keap1-Nrf2 antioxidative signaling pathway and JNK in the protection of natural flavonoid quercetin against hepatotoxicity. *Free Radic. Biol. Med.* **2015**, *85*, 12–23. [CrossRef]
- 163. Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. *Pharmacogn. Rev.* **2010**, *4*, 118–126. [CrossRef]
- 164. Petruk, G.; Del Giudice, R.; Rigano, M.M.; Monti, D.M. Antioxidants from Plants Protect against Skin Photoaging. *Oxidative Med. Cell. Longev.* **2018**, 2018, 1454936. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article

Effects of Caffeine, Zinc, and Their Combined Treatments on the Growth, Yield, Mineral Elements, and Polyphenols of *Solanum lycopersicum* L.

Elena Vichi ¹, Alessandra Francini ^{1,*}, Andrea Raffaelli ^{1,2} and Luca Sebastiani ¹

- Institute of Crop Science (ICS), Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; elena.vichi@santannapisa.it (E.V.); andrea1.raffaelli@santannapisa.it (A.R.); luca.sebastiani@santannapisa.it (L.S.)
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy
- * Correspondence: a.francini@santannapisa.it

Abstract: (1) Background: The effects of Zn and caffeine as promoters of fruit quality in the Solanum lycopersicum L. cultivar 'Panarea' were tested. (2) Methods: During the 56 days of the experiment, plants were treated weekly with 100 mL of 1 mM Zn (Zn), 1 mg L⁻¹ caffeine trimethyl-¹³C (caffeine), and 1 mM Zn + 1 mg L^{-1} caffeine trimethyl- 13 C (Zn + caffeine) and compared to plants that were given tap water (control). (3) Results: Caffeine was taken up by the roots and translocated to the leaves, which positively influenced the number of fruits per plant. After 56 days of treatment, Zn induced a positive increase in tomato dry weight, reducing shoot length (-16.7%) compared to the other treatments. Zn + caffeine had a positive effect on the phenylpropanoid pathway of fruits, and 4-coumaric acid, caffeic acid, and t-ferulic acid were significantly increased, as well as the total antioxidant capacity of the tomatoes. In the flavonoid pathway, only apigenin and luteolin contents were reduced by treatments. The tomatoes showed similar concentrations of the mineral elements Cu, Mn, Fe, Na, Ca, Mg, and K. The Zn and caffeine target hazard quotients were <1, indicating that health risks via the consumption of these tomatoes did not occur. (4) Conclusions: Tomato plants could be irrigated with water containing lower values of Zn, caffeine, and a combination of the two. The treated fruits are rich in antioxidant compounds, such as coumaric acid, caffeic acid, and t-ferulic acid, which are beneficial for human health. No considerable health risks associated with human consumption have been detected.

Keywords: LC-MS/MS; biostimulant; flavonoids; target hazard quotients; translocation factor

1. Introduction

The Food and Agriculture Organization (FAO) of the United Nations has emphasized the need for sustainable agricultural practices that can produce more food with fewer environmental impacts. Several key strategies can be implemented to achieve this goal, and the use of mineral elements and organic compounds represents an additional and increasingly important tool.

Among mineral elements, Zn is an essential micronutrient that plays a crucial role in various plant physiological processes. Zn is a co-factor in many important antioxidant enzymes in plants, such as copper/zinc-superoxide dismutase [1], and participates in several processes, such as germination and reproductive growth, with general effects on plant physiology and morphology [2]. The optimal level of Zn in crops ranges from 30 to 200 mg Zn kg $^{-1}$ dry weight [3]. Zn deficiency is a well-known nutritional disorder that modifies human health, mainly around the world, where principal food crops are the key source of daily calorie intake [3]. For these reasons, the Zn fertilization of crops is an objective of research [4].

Caffeine (1,3,7-trimethylxanthine) is a natural alkaloid found in various plants, including coffee (*Coffea* spp.), tea (*Camellia sinensis*), cocoa (*Theobroma cacao*), and other species. Caffeine is also an ingredient in foods and pharmaceuticals recognized for its stimulant effects on humans and the most frequently detected compound in water, and for this, it is considered a trace of anthropogenic presence [5,6]. Water data indicate that caffeine is relatively stable, with a half-life ranging from 100–240 days to 10 years [7,8].

In plants, it has been observed that caffeine effects are related to dose and species, showing clear biostimulant effects at low doses. Pierattini et al. [9] demonstrated that the treatment of *Populus alba* cv 'Villafranca' with 2 mg L $^{-1}$ caffeine (trimethyl- 13 C) leads to a significant increase in stem and leaf growth. Caffeine can be used as a biostimulant in cucumbers, spinach, and lentils [10–12]. In *Phaseolus vulgaris*, caffeine increased the mitosis of the root meristematic cells [13], whereas, in *Capsicum annum*, low doses of caffeine (between 2 and 38 μ M) increased the mean height of these plants [14]. In spinach (*Spinacia oleracea* L.), caffeine significantly reduced Cd stress, increasing the accumulation of osmolytes and antioxidant molecules, such as proline and ascorbic acid, and reducing lipid peroxidation and H_2O_2 content [11].

The application of low concentrations of caffeine and Zn has been a subject of interest for enhancing plant growth and development [12,15–17]. Combining these two substances can offer synergistic effects, potentially leading to improved plant health and productivity. This application appears interesting in tomato (*Solanum lycopersicum* L.), which is one of the most popular and widespread horticultural crops worldwide. Moreover, tomato plants represent an ideal research model because of their roots, stems, leaves, and edible fruit organs.

According to the Food and Agriculture Organization (FAO), it is cultivated in an area of approximately 5 million hectares, with an annual production of 186 million tons [18]. Considering the increased daily consumption and intrinsic qualities of tomatoes, they play a role in human health. Tomato is a well-characterized source of carotenoids and polyphenols, which are considered targets for cancer prevention [19]. According to their core structures, these antioxidant molecules can be divided into different groups, such as anthocyanins, hydroxycinnamic acids, flavonols, and flavanones. In addition, two flavonol glycosides, rutin and kaempferol-3-rutinoside, are present in tomatoes [19].

It is important to consider that high levels of both Zn and caffeine can be toxic to plants. When Zn reaches toxic concentrations, its effects range from a decrease in biomass to chlorosis, followed by necrosis, to hypoxic-like responses [20–24]. Similarly, a concentration of 2.5 M caffeine inhibits root mitosis in rice [25], and retardation in the seedling growth of *Arabidopsis* and tobacco has been observed when grown under 1 mM caffeine [26]. High levels of Zn and caffeine uptake by plants can also pose a risk for the tomato consumer, exceeding the safety limit for humans [27,28], and the non-carcinogenic target hazard quotient (THQ) [29] can be used.

In this study, we aimed to explore the potential roles of Zn and caffeine in improving tomato plant yield, mineral nutrition, antioxidant capacity, and polyphenol profile. We hypothesized that Zn and caffeine would exert a positive effect on tomato plants. We tested the following: (1) the positive effects of Zn and caffeine on tomato yield, phytochemical parameters such as polyphenols, antioxidant capacity, ethylene production, and solid soluble content (Brix); (2) the mineral nutrient profile of whole plants and fruits; and (3) the risk for humans consuming tomato fruits that could accumulate Zn and caffeine.

2. Materials and Methods

2.1. Plant Materials and Treatments

Red tomatoes (*Solanum lycopersicum* L.) cv 'Panarea' were transplanted (one plant for pot) in 7 L pots filled with a peat-based commercial substrate (Potgrond H 90 Klasmann-Deilmann Belgium N.V., Bolzano, Italy). Each plant was fertilized at the start of the experiment with 2.5 g of NPK-MgO (16/10/18/2–Cifo, Orto, Bologna–Italy) and grown in a greenhouse (N.43.76926550560972, W.10.407108271387008, San Giuliano Terme, Italy)

from April to July. After three weeks, the plants were divided into groups (n = 7) and treated weekly until the end of the trial (56 days) with 100 mL of tap water (control, containing 65 \pm 13 μ g L⁻¹ of Zn), 1 mM Zn (0.136 mg L⁻¹) (Zn), 1 mg L⁻¹ caffeine trimethyl-¹³C (caffeine), and 1 mM Zn + 1 mg L⁻¹ caffeine trimethyl-¹³C (Zn + caffeine). Regular daily irrigation with tap water was performed according to the plant growth dynamics. Zn was distributed in the form of ZnCl₂ (anhydrous powder, \geq 98%, Sigma-Aldrich, Milan, Italy). Caffeine trimethyl-¹³C (powder, \geq 99, Sigma-Aldrich, Milan, Italy) was used to discriminate between exogenous and endogenous caffeine (Figure S1).

2.2. Yield Measurements and Sampling

Stem length of each plant was measured weekly (n = 7). During the experiment, the first, second, and third trusses were collected at 32, 48, and 56 days from the beginning of the experiment. The total yield and fruit number for each plant were determined by weighing and counting all fruits. For each truss, the first and second fruits of the truss were collected and analyzed. For the first fruit, the fresh weight (FW), dry weight (DW), caliber (cm), total soluble solids ($^{\circ}$ Brix, using a portable refractometer Shodex, West Berlin, NJ, USA), mineral element, caffeine, and polyphenol concentrations were determined. For the second fruit, ethylene analyses were performed. After 56 days (last sampling), roots, stems, and leaves were collected, and FW was measured and stored for specific analysis. Part of the plant material was oven-dried at 60 $^{\circ}$ C until its weight remained constant.

2.3. Ethylene Measurements

Ethylene production in the first, second, and third trusses was assessed by enclosing the second fruits of each truss in airtight glass bottles sealed with plastic screwcaps and fitted with rubber septa. Incubation lasted for 1 h, and the headspace (1 mL) was removed from the jar and injected into a gas chromatograph (HP5890, Hewlett-Packard, Menlo Park, CA, USA) equipped with a flame ionization detector and metal column (internal dimension 150×0.4 cm) packed with Hysep T. Column, and detector temperatures were set at 70 and 350 °C, respectively. The nitrogen carrier gas was used at a flow rate of 30 mL min⁻¹. The ethylene data (n = 5) are expressed as nl g⁻¹ h⁻¹.

2.4. Zinc and Mineral Element Analyses

A microwave-assisted digestion method was used to digest 0.3~g of the dried first fruit of the first, second, and third trusses and leaf, stem, and root samples with 8~mL of 65% nitric acid (Sigma-Aldrich, Milan, Italy). The mixture was digested using a COOLPEX Smart Microwave Reaction System (Yiyao Instrument Technology Development Co. Ltd., Shanghai, China). The digested solution was diluted to 30~mL with deionized water. Mineral element quantification was performed using a Microwave Plasma-Atomic Emission Spectrometer (4210 MP-AES, Agilent Technologies, Santa Clara, CA, USA). The wavelengths used were 213.8 nm for Zn, 393.3 nm for Ca, 766.4~nm for K, 588.9~nm for Na, 324.8~nm for Cu, 371.9~nm for Fe, 403.0~nm for Mn, and 285.2~nm for Mg. Daucus~carota (L.) leaf tissue was used as the analytical standard reference (WEPAL IPE, Wageningen University, Wageningen, Netherlands). A multi-element standard solution was prepared in $5\%~HNO_3~(v/v)$ medium and diluted with Milli-Q H_2O for mineral quantification. The limits of detection (LOD) were calculated as three times the standard deviation of the blank samples: Zn~7.8, Ca~39, K~41.2, Na~35.5, Cu~0.9, Fe~1.6, Mg~0.8, and $Mn~0.6~mg~kg^{-1}$. The results (n=7) are expressed on a dry mass basis ($mg~kg^{-1}$ DW).

2.5. Caffeine-¹³C Extraction and Polyphenol Extraction

Fresh roots (0.5 g), stems, leaves, and first fruits of the first, second, and third trusses were extracted after grinding in mortars with 3 mL of 0.1% formic acid (Sigma-Aldrich, Milan, Italy) and 3 μ L of 15% hydrochloric acid (Sigma-Aldrich, Milan, Italy). The extract was centrifuged at 17,000× g for 5 min (Allegra 64R, Beckman Coulter Inc., Brea, CA, USA), and the supernatant was filtered through 0.20- μ m syringe filters (Sartorius Stedim Biotech

GmbH, Gottingen, Germany) before storing at $-20\,^{\circ}\text{C}$ until liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis. The fresh fruit in first position of first, second, and third truss clusters was used to determine the selected polyphenols: protocatechuic acid (PCTA), 4-coumaric acid (PCA), caffeic acid (CFA), t-ferulic acid (TFRA), naringenin (NRG), apigenin (APG), luteolin (LTO), quercetin (QCT), chlorogenic acid (CGA), piceid (PCD), phloridzin (PDZ), kaempferol 7-G (QCT7G), kaempferol 3-G (QCT3G), kaempferol 3-O-rutinoside (KPF3R), rutin (RTN), and quercetin 3,4 DG (QCTDG) (Sigma-Aldrich, Milan, Italy). Tomato samples (7.5 g FW) were extracted with 25 mL of 80% methanol (Sigma Aldrich, Milan, Italy) for 30 min at room temperature (25 °C) using a laboratory shaker (VDRL mod. 711/CS ASAL, Milan, Italy). Extracts were filtered through a 0.45 μ m pore size membrane (Sigma-Aldrich, Milan, Italy) before injection into LC-MS/MS mass spectrometer (AB Sciex LLC, Framingham, MA, USA). Analytical standards for caffeine (trimethyl- 13 C) and specific polyphenols were used as the calibration curves. The matrix effects and recovery efficiencies were also evaluated.

2.6. Caffeine and Selected Polyphenols Analyses

Caffeine (trimethyl¹³-C) and selected polyphenol concentrations in the fruits were determined by LC-MS/MS mass spectrometry (Sciex 5500 QTrap+) using an information-dependent acquisition (IDA) method with selected reaction-monitoring (SRM) transitions per component as a survey scan and MS-MS enhanced product ion (EPI) spectrum acquisition. An AB Sciex 5500 QTrap+ mass spectrometer (AB Sciex LLC, Framingham, MA, USA), equipped with a Turbo V ion spray source coupled to an ExionLC AC System custom-made by Shimadzu (Shimadzu Corporation, Kyoto, Japan), was used to determine the specific molecules.

2.7. HPLC-MS/MS Method for Polyphenols

A Phenomenex Kinetex [®] Biphenyl 100×2.1 mm, 2.6 µm particle size column (Phenomenex, Torrance, CA, USA) was employed for the chromatographic separation. An elution gradient was performed using acetonitrile containing 0.1% v/v formic acid and Milli-Q water with 0.1% v/v formic acid (Sigma-Aldrich, Milan, Italy). MS-MS detection was performed in negative ion mode. The common source parameters were as follows: nebulization gas (GS1) 50, turbo gas (GS2) 50, curtain gas (CUR) 10, temperature (TEM) 500 °C, ion spray voltage (IS) -4500 V, and input potential (EP) 10 V. The declustering potential (DP), collision energy (CE), and collision cell exit potential (CXP) were adjusted for the specific SRM for each component. The SRM transitions and corresponding compound parameters are listed in Table S1.

2.8. HPLC-MS/MS for Caffeine

An Agilent PhenylHexyl 2 \times 100 mm 2.7 μ m particle size column (Agilent, Santa Clara, CA, USA) was employed for chromatographic separation. An elution gradient was performed using acetonitrile containing 0.1% v/v formic acid and Milli-Q water (Merck KGaA, Darmstadt, Germany) with 0.1% v/v formic acid (Sigma-Aldrich, Milan, Italy). Tandem mass spectrometry (MS-MS) was performed in the positive ion mode. The common source parameters were as follows: nebulization gas (GS1) 50, turbo gas (GS2) 45, curtain gas 25, temperature 500 °C, ion spray voltage 5500 V, and input potential 10 V. The compound parameters were adjusted for the selected reaction-monitoring transitions for each component and are shown in Table S1.

2.9. DPPH Assay

The scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical tomatoes was analyzed with 200 μ L of the methanol extract previously used for polyphenol assay, mixed with 800 μ L of a Tris-HCl 100 mM solution (Sigma-Aldrich, Milan, Italy), pH 7.0, and finally kept in the dark for 30 min after adding 250 μ M DPPH (Sigma-Aldrich, Milan, Italy). Methanol: water (80:20, v:v) was used as a control reference, and the absorbance

was measured at 517 nm using a spectrophotometer (Infinite 200 PRO, Tecan Italia Srl Milan, Italy). The radical scavenging activity of the extracts was calculated using the following equation:

$$DPPH\ inhibition(\%) = \frac{Absorbance\ of\ control - Absorbance\ of\ sample}{Absorbance\ of\ control} \times 100$$

2.10. Translocation Factor

The response of tomato plants (n = 7) to Zn and Zn + caffeine application was evaluated in terms of the translocation factor (Tf), a unit-less index indicating the ability of the plant to transfer caffeine or Zn from roots to aerial part of tomato plants. Tf was calculated to evaluate the capability of plants to accumulate Zn or caffeine, absorbed by roots, in the aerial parts (stems, leaves, and fruits harvested after 56 days of treatment). Tf was calculated using the following equation:

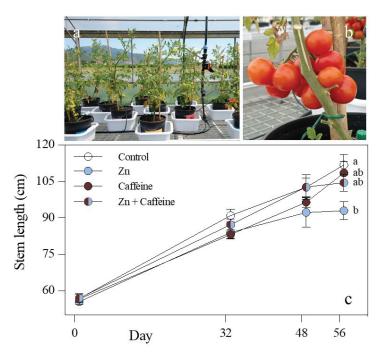
$$Tf = \frac{Zn \ or \ Caffeine \ concentration \ in \ the \ aerial \ parts \ \left(mg \ kg^{-1}\right)}{Zn \ or \ Caffeine \ concentration \ in \ the \ root \ parts \ \left(mg \ kg^{-1}\right)}$$

2.11. Risk Assessment

The health risks caused by the intake of tomato fruits grown under Zn and caffeine treatments were assessed using the THQ index [29]. THQ was calculated as the ratio of exposure to Zn or caffeine to the reference dose (RfD), which is the highest level at which no adverse health effects are expected. THQ describes the non-carcinogenic health risks posed by exposure to Zn or caffeine. If THQ is < 1, non-carcinogenic health effects are expected. In contrast, a THQ >1 indicates that there is a possibility that adverse health effects could occur. THQ was calculated as follows:

$$THQ = \frac{Efr \times Ed \times Fir \times C}{RfD \times Bw \times ATn} \times 10^{-3}$$

where Efr = exposure frequency (365 days/year); Ed = exposure duration (50 years); RfD = reference dose (being $0.3 \text{ mg kg}^{-1} \text{ day}^{-1}$ for Zn and 37 mg kg⁻¹ day⁻¹ for caffeine according to EFSA and Antoine et al. [28,29]. Bw = the estimated average body weight (70 kg) considering exposed consumers aged 15–17 years old; ATn = average time of exposure to non-carcinogenic HMs (Ed \times 365 days/year), C = concentration of Zn or caffeine in tomato fruit; Fir = food ingestion rate in grams per day (for 50 g of tomato per day).


2.12. Statistical Analysis

Before performing the statistical test, the normality of the data was assessed and analyzed using two-way ANOVA. Tukey's post-hoc test for post-hoc mean comparison at p = 0.05 was used. t-test analyses were performed to determine the differences between the control and treated plants. A heat map and principal component analysis (PCA) were performed for the mineral elements and polyphenols. Graphs and statistical analyses were performed using Prism-GraphPad 10.1 Mac.

3. Results

One of the main objectives of this study was to assess whether Zn and caffeine have a positive effect on tomato plant performance, with a focus on fruit quality and safety. The macroscopic observation of tomato plants demonstrated that caffeine application did not change the growth performance compared with the control (Figure 1), either added to Zn or alone (Figure 1). In contrast, plant height was significantly lower in Zn-treated plants

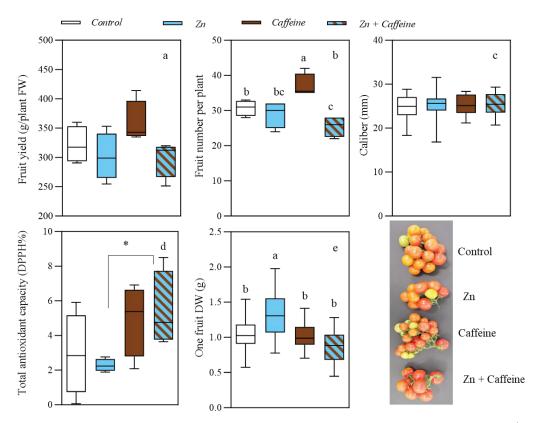

than in the control plants, and stem length was significantly reduced by 16.7% (Figure 1c and Table S2).

Figure 1. (a) Overview of plants (*Solanum lycopersicum* cv 'Panarea') grown under greenhouse conditions; (b) tomato truss; and (c) stem length at 0, 32, 48, and 56 days of the experiment. Plants were treated with tap water (control), 0.136 mg L⁻¹ Zn (Zn), 1 mg L⁻¹ caffeine-(trimethyl- 13 C) (caffeine), and 1 mg L⁻¹ caffeine (trimethyl- 13 C) + 0.136 mg L⁻¹ Zn (Zn + caffeine). Data represent the mean \pm SD (n = 7). The data followed a normal distribution and were subjected to two-way ANOVA, and the values indicated with different letters were significantly different from each other following Tukey's post-hoc test, $p \le 0.05$ (Supplementary Table S2).

Tomato fruits were assessed at harvest for (i) fruit yield, (ii) fruit number per plant, (iii) caliber, (iv) total antioxidant capacity (DPPH%), and (v) fruit dry weight of the first tomato per truss. For the total fruit yield per plant, there was a not significant increase of 6% or 37 g/plant due to caffeine treatment (Figure 1a) compared to the control; these data are promising and deserve future experimental work. The number of fruits per plant was the highest in caffeine-treated plants (Figure 2b), with a significant interaction between Zn and caffeine factors (p = 0.009, Table S3). The fruit number per plant increased under caffeine treatments by 20% compared to the control, whereas a slight reduction was observed under Zn + caffeine treatments (-17%). There were no significant differences in caliber between the treatment and control groups (Figure 2c). Regarding the total antioxidant activity of tomato fruits after 56 days of treatment (Figure 2d, Table S3), an increase was detected considering the caffeine factor (p = 0.019). The results indicated that tomato plants treated with caffeine increased their average antioxidant capacity by 69% and 85% compared to the average control in the caffeine and Zn + caffeine treatments, respectively (Figure 2d). Finally, Zn application significantly increased the fruit DW when compared with the other treatments (+21%, +23%, and +34% relative to the control, caffeine, and Zn + caffeine, respectively) (Figure 2e, Table S3).

The total soluble solid content during the three harvesting periods ranged from 8.4 to $10.4~^{\circ}$ Brix (Table 1), while concerning ethylene, the average values of the three harvesting periods ranged from 0.14 to 0.52 nl g $^{-1}$ h $^{-1}$ (Table 1 and Table S4). The total soluble solid content and ethylene concentration were not significantly affected by Zn or caffeine treatments (Table 1).

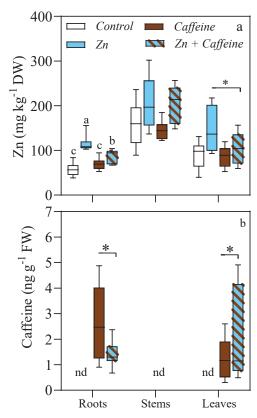

Figure 2. Box plot representation of the effects of treatments with tap water (control), 0.136 mg L⁻¹ Zn (Zn), 1 mg L⁻¹ caffeine-(trimethyl-¹³C) (caffeine), and 1 mg L⁻¹ caffeine (trimethyl-¹³C) + 0.136 mg L⁻¹ Zn (Zn + caffeine) on the fruit of *Solanum lycopersicum* cv 'Panarea' after 56 days of the experiment. (a) Fruit yield (n = 7); (b) fruit number per plant (n = 7); (c) caliber (n = 7); (d) total antioxidant capacity (DPPH%) (n = 4); (e) one fruit dry weight of the first tomato per truss (n = 7). The data followed a normal distribution and were subjected to two-way ANOVA (Supplementary Table S3). Values indicated with different letters differ significantly from each other (Tukey's post-hoc test, $p \le 0.05$). t-test analyses * = p < 0.05.

Table 1. Total soluble solids content (°Brix) and ethylene production (nl g $^{-1}$ h $^{-1}$) in *Solanum lycopersicum* 'Panarea' plants. One fruit per truss of the first, second, and third truss clusters was used for the analyses after 32, 48, and 56 days of treatment, respectively. Tap water (control), 0.136 mg L $^{-1}$ Zn (Zn), 1 mg L $^{-1}$ caffeine (trimethyl $^{-13}$ C) (caffeine), 1 mg L $^{-1}$ caffeine (trimethyl $^{-13}$ C), and 0.136 mg L $^{-1}$ Zn (Zn + caffeine). Data (n = 5) were analyzed using two-way ANOVA. Tukey's post-hoc test at $p \le 0.05$ probability level was applied, and statistical data are reported in Supplementary Table S4.

			Treat	ments	
	Day of Treatment	Control	Zn	Caffeine	Zn + Caffeine
Total soluble solids content (°Brix)	32	8.9 ± 0.9	9.4 ± 1.4	8.8 ± 0.8	8.4 ± 1.2
	48	9.0 ± 1.0	10.0 ± 1.4	9.0 ± 0.8	9.0 ± 1.1
	56	10.4 ± 2.2	8.9 ± 0.8	9.0 ± 0.7	9.0 ± 1.4
	32	0.37 ± 0.3	0.40 ± 0.2	0.18 ± 0.1	0.52 ± 0.5
Ethylene (nl $g^{-1} h^{-1}$)	48	0.16 ± 0.1	0.45 ± 0.5	0.13 ± 0.1	0.14 ± 0.1
,	56	0.32 ± 0.3	0.48 ± 0.6	0.25 ± 0.2	0.44 ± 0.3

The uptake of Zn and caffeine in each organ of the tomato plants was evaluated (Figure 3). The stem is the organ in which Zn reached the highest value compared to roots and leaves (204 and 200 mg kg $^{-1}$ DW in plants treated with Zn + caffeine and Zn alone) (Figure 3a and Table S5). ANOVA did not show any significant interaction between Zn and

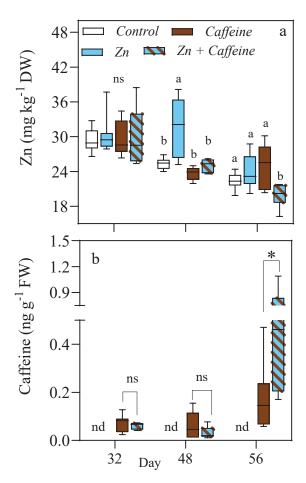

caffeine in the stems (p = 0.838). In the roots, ANOVA revealed a significant interaction between Zn and caffeine (p = 0.002) (Table S5). A significant increase of 53% and 98% in root Zn concentration was observed in plants treated with Zn + caffeine ($89 \pm 14.9 \text{ mg kg}^{-1} \text{ DW}$) and Zn alone ($115 \pm 17.3 \text{ mg kg}^{-1} \text{ DW}$) in comparison to the control plants (Figure 3a). The t-test analyses between Zn and Zn + caffeine treatments indicated that in roots (p = 0.041) and leaves (p = 0.035), the treatment with Zn + caffeine reduced the concentration of Zn allocated to these two organs (Figure 3a). When present in treatments, caffeine was taken up by the roots (2.6 ± 1.51 and 1.4 ± 0.53 ng g⁻¹ FW under caffeine and Zn + caffeine treatments respectively) and translocated to the leaves (1.3 ± 0.28 and 3.5 ± 1.28 ng g⁻¹ FW under caffeine and Zn + caffeine treatments, respectively) (Figure 3b). Under our experimental conditions, caffeine was not detected in the stems (Figure 3b). In particular, the t-test indicated that at the root level, the caffeine concentration was 4.5 times lower (p = 0.031) under the Zn + caffeine treatments than under caffeine alone. In contrast, mixed Zn + caffeine exposure increased caffeine translocation to the leaves (p = 0.037, Figure 3b).

Figure 3. (a) Zn concentration (mg kg⁻¹ DW) and (b) caffeine concentration (ng g⁻¹ FW) in the roots, stems, and leaves of *Solanum lycopersicum* cv 'Panarea' after 56 days of treatment with tap water (control), 0.136 mg L⁻¹ Zn (Zn), 1 mg L⁻¹ caffeine-(trimethyl-¹³C) (caffeine), and 1 mg L⁻¹ caffeine-(trimethyl-¹³C) + 0.136 mg L⁻¹ Zn (Zn + caffeine). Statistical significances were determined with two-way ANOVA (data n = 7), and different letters indicate a statistical difference according to Tukey's multiple comparison test ($p \le 0.05$) (Supplementary Table S5); nd = not detected; * = p < 0.05.

After verifying the uptake of Zn and caffeine in the non-edible parts of the plant, we focused on the fruits during the three different harvesting times after 32, 48, and 56 days of treatment (Figure 4a). The average Zn concentration in tomatoes ranges from a minimum of 19.7 to a maximum of 31.6 mg kg⁻¹ DW. A higher average value was detected in Zn + caffeine fruits after 56 days of treatment, whereas it was lower in fruits after 48 days of Zn treatment (Figure 4a). No significant changes (p = 0.988) in the Zn concentration in fruits were observed between the treatments at the first (32 days) harvest time (Table S6). In contrast, ANOVA showed a significant difference (p = 0.027) in the uptake of Zn between

treatments at the second harvest time (48 d), with a significantly higher uptake of Zn in plants exposed to 0.136 mg L⁻¹ of Zn. Finally, in plants treated with Zn + caffeine, after 56 days of exposure, we observed a significant reduction (p = 0.003) of 12% in the Zn content of the fruits (Figure 4a).

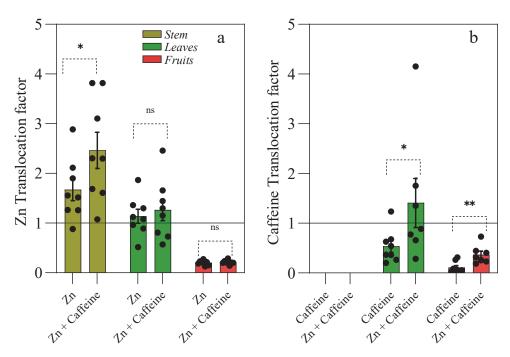


Figure 4. (a) Zn concentration (mg kg $^{-1}$ DW); (b) Caffeine concentration (ng g FW $^{-1}$) in tomato fruits *Solanum lycopersicum* cv 'Panarea' after 32, 48, and 56 days of treatments with tap water (control), 0.136 mg L $^{-1}$ Zn (Zn), 1 mg L $^{-1}$ caffeine-(trimethyl $^{-13}$ C) (caffeine), and 1 mg L $^{-1}$ caffeine-(trimethyl $^{-13}$ C) + 0.136 mg L $^{-1}$ Zn (Zn + caffeine). Statistical significances were determined with two-way ANOVA (data n=7), and different letters indicated a statistical difference according to Tukey's multiple comparison test ($p \le 0.05$) (Supplementary Table S6); ns = not significant; nd = not detected; * = p < 0.05. t-test between caffeine and mix results was also performed.

The uptake and accumulation of caffeine in the vegetables indicated that tomatoes could take up and accumulate this molecule in the soil. The amount of caffeine increases with exposure time; in fact, the average values for caffeine after 32 and 48 days range between 0.06 and 0.07 (ng g⁻¹ FW), while a maximum value of 0.52 ng g⁻¹ FW was measured after 56 days of Zn + caffeine exposure (Figure 4b).

Under our experimental conditions, the ratio of Zn that reached the aerial part with respect to that present in the roots (Tf) varied among different organs, with values higher than 1 in the stems and leaves (Figure 5a). The highest Zn Tf values were observed in the stems of the plants treated with Zn + caffeine (Tf = 2.4; p = 0.041). No significant Tf was found in the leaves or fruits (Figure 5a). The calculation of caffeine Tf plants showed Tf <1 in the leaves and fruits, with significant values in both the leaves and fruits under Zn + caffeine treatment (Figure 5b).

Data and statistical analyses of the concentrations of mineral elements in the first-, second-, and third-truss fruits are shown in Tables S7 and S8.

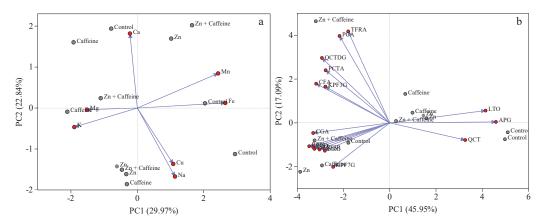


Figure 5. Translocation factors for Zn (a) and caffeine (b) in *Solanum lycopersicum* 'Panarea' stem, leaves, and tomatoes after 56 days of treatment with 0.136 mg L⁻¹ Zn (Zn), 1 mg L⁻¹ caffeine-(trimethyl- 13 C) (caffeine), 1 mg L⁻¹ caffeine (trimethyl- 13 C), and 0.136 mg L⁻¹ Zn (Zn + caffeine). Data were analyzed by *t*-test, and significant results are reported (* = p < 0.05; ** = p < 0.01; ns = not significant).

All tomatoes analyzed had similar concentrations of the mineral elements Cu, Mn, Fe, Na, Ca, Mg, and K after 32, 48, and 56 days of treatment, as indicated by the biplot data of the PCA analyses (Figure 6a). The scores of each tomato sample were examined in a two-dimensional plot of the first two principal components (52.8% of the total variability), and no separation of the samples into groups was found. K was the most abundant element in third-truss fruits, with concentrations ranging from 27,159 to 32,951 mg kg $^{-1}$ DW (Figure 6a). In the first and second truss, K ranged from 27,585 to 32,362 mg kg $^{-1}$ DW and 27,691 to 31,887 mg kg $^{-1}$ DW, respectively (Table S7). The Mg and Ca values did not differ significantly (p > 0.05) between the treatments.

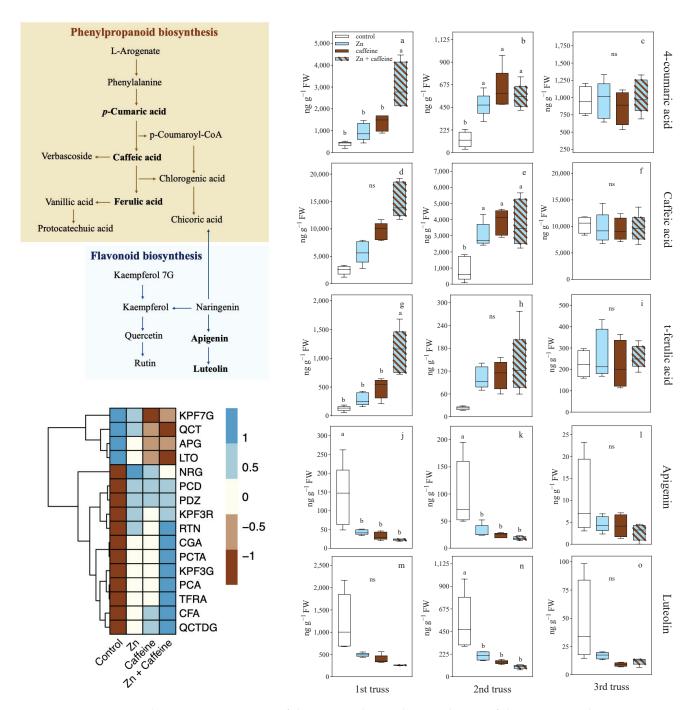
The ANOVA analysis of mineral element data in fruits after 32, 48, and 56 days, in general, did not reveal significant differences in the interactions between the Zn and caffeine factors at the first and third truss harvests (Table S8). The only exceptions were Mn (Zn \times caffeine, p = 0.027), Fe (Zn \times caffeine, p = 0.047), and Na (Zn \times caffeine p = 0.049) after 48 days of treatment. Some other interesting statistical differences were observed at the 56th day of treatment for Fe (Zn factor, p = 0.006) (Table S8).

In tomatoes, antioxidant molecules play a key role in determining fruit quality. The concentrations of the 16 polyphenols studied by UHPLC-ESI-MS/MS in all analyzed trusses are reported in Table 2 and Figures 6b and 7. The content of 11 antioxidant molecules did not change in relation to the treatments applied (Tables 2 and S9). Rutin was the most abundant polyphenol in the fruit, with an average of 207,640 \pm 131,711 ng g $^{-1}$ FW, followed by chlorogenic acid (91,221 \pm 59,534 ng g $^{-1}$ FW), kaempferol 3-R (8388 \pm 9428 ng g $^{-1}$ FW), and caffeic acid (6904 \pm 4563 ng g $^{-1}$ FW) (Table 2).

Figure 6. Principal component analysis (PCA) biplot of (a) mineral elements analyzed in the first fruit of the first, second, and third trusses (Supplementary Tables S7 and S8). Principal component analysis (b) of selected polyphenol–protocatechuic acid (PCTA), 4-coumaric acid (PCA), caffeic acid (CFA), trans-ferulic acid (TFRA), naringenin (NRG), apigenin (APG), luteolin (LTO), quercetin (QCT), chlorogenic acid (CGA), piceid (PCD), phloridzin (PDZ), kaempferol 7-G (QCT7G), kaempferol 3-G (QCT3G), kaempferol 3-O-rutinoside (KPF3R), rutin (RTN), quercetin 3,4 DG (QCTDG) of *Solanum lycopersicum* cv 'Panarea' treated with tap water (control), 0.136 mg L $^{-1}$ Zn (Zn), 1 mg L $^{-1}$ caffeine (trimethyl- 13 C) (caffeine), 1 mg L $^{-1}$ caffeine (trimethyl- 13 C), and 0.136 mg L $^{-1}$ Zn (Zn + caffeine). The loadings (red color) and score (grey color) of the PCA are reported.

Table 2. Concentration (ng g⁻¹ FW) of the selected polyphenols: protocatechuic acid (PCTA), naringenin (NRG), quercetin (QCT), chlorogenic acid (CGA), piceid (PCD), phloridzin (PDZ), kaempferol 7-G (QCT7G), kaempferol 3-O-rutinoside (KPF3R), rutin (RTN), quercetin 3,4 DG (QCTDG) analyzed in first fruit of first, second, and third truss of *Solanum lycopersicum* cv 'Panarea' treated with tap water (control), 0.136 mg L⁻¹ Zn (Zn), 1 mg L⁻¹ caffeine (trimethyl-¹³C) (caffeine), 1 mg L⁻¹ caffeine (trimethyl-¹³C), and 0.136 mg L⁻¹ Zn (Zn + caffeine). Data (n = 5) are expressed as the mean \pm standard deviation.

			Treatments		
	Compound	Control	Zn	Caffeine	Zn + Caffeine
	PCTA	921 ± 220	722 ± 258	542 ± 294	863 ± 385
	NRG	747 ± 551	1935 ± 1312	1816 ± 2150	641 ± 212
	QCT	221 ± 139	259 ± 79	197 ± 61	204 ± 92
	CGA	$125,798 \pm 41,569$	$141,023 \pm 42,128$	$131,831 \pm 59,148$	$187,224 \pm 62,235$
	PCD	84 ± 25	111 ± 33	108 ± 26	98 ± 27
third Truss	PDZ	1584 ± 1146	2878 ± 1693	1939 ± 710	1878 ± 1201
	KPF7G	320 ± 29	374 ± 133	334 ± 209	303 ± 103
	KPF3G	65 ± 31	102 ± 44	94 ± 38	119 ± 64
	KPF3R	$15,648 \pm 5099$	$22,661 \pm 4649$	$19,293 \pm 10,572$	$20,822 \pm 8325$
	RTN	$309,569 \pm 97,652$	$375,194 \pm 74,526$	$353,134 \pm 72,683$	$365,085 \pm 10,102$
	QCTDG	916 ± 396	1263 ± 229	1304 ± 742	1283 ± 427
	PCTA	173 ± 117	833 ± 586	595 ± 153	709 ± 234
	NRG	76 ± 41	544 ± 818	299 ± 63	428 ± 421
	QCT	444 ± 245	204 ± 116	131 ± 27	94 ± 15
	CGA	8637 ± 5989	$48,542 \pm 23,516$	$47,921 \pm 15,864$	$74,721 \pm 45,677$
	PCD	14 ± 10	67 ± 29	70 ± 26	80 ± 27
second Truss	PDZ	289 ± 238	719 ± 230	1304 ± 793	1466 ± 607
	KPF7G	81 ± 58	43 ± 23	41 ± 18	70 ± 56
	KPF3G	65 ± 14	85 ± 22	88 ± 15	88 ± 17
	KPF3R	120 ± 10	44 ± 5	142 ± 75	149 ± 93
	RTN	$30,355 \pm 20,331$	$153,394 \pm 5505$	$161,355 \pm 91,172$	$224,005 \pm 94,323$
	QCTDG	183 ± 143	799 ± 60	1309 ± 965	1127 ± 594


Table 2. Cont.

			Treatments		
	Compound	Control	Zn	Caffeine	Zn + Caffeine
	PCTA	402 ± 170	522 ± 117	675 ± 152	1110 ± 422
	NRG	273 ± 117	405 ± 231	460 ± 112	757 ± 374
	QCT	863 ± 681	239 ± 81	166 ± 19	156 ± 50
	CGA	$57,333 \pm 29,331$	$92,037 \pm 41,689$	$70,646 \pm 22,055$	$123,978 \pm 25,866$
	PCD	43 ± 20	58 ± 18	58 ± 18	66 ± 25
first Truss	PDZ	457 ± 198	1049 ± 547	1123 ± 466	1206 ± 471
	KPF7G	124 ± 65	64 ± 13	74 ± 25	68 ± 41
	KPF3G	34 ± 14	36 ± 14	57 ± 19	140 ± 134
	KPF3R	3499 ± 1613	6151 ± 2594	6108 ± 2879	9657 ± 6951
	RTN	$72,725 \pm 32,123$	$151,346 \pm 59,515$	$122,042 \pm 32,231$	$222,966 \pm 119,537$
	QCTDG	367 ± 194	851 ± 756	1004 ± 513	2398 ± 3216

The five significantly different UHPLC-ESI-MS/MS data corresponding to 4-coumaric acid, caffeic acid, t-ferulic acid, apigenin, and luteolin analyzed in the first fruits of the first, second, and third trusses were incorporated in the plant metabolic pathway overview to provide evidence for changes in the antioxidant production of the polyphenols studied. The biosynthetic routes are indicated by lines (Figure 7). Globally, in the phenylpropanoid pathway, 4-coumaric acid, caffeic acid, and t-ferulic acid were significantly increased by Zn or caffeine (Figure 7a–i, Table S9), whereas the flavonoid pathway (apigenin and luteolin) was significantly reduced by treatment (Figure 7j–o, Table S9). Treatment with Zn + caffeine increased the concentrations of 4-coumaric acid, caffeic acid, and t-ferulic acid compared with the control tomatoes at the first and second times of tomato harvest (Figure 7 and Table S9). Apigenin and luteolin levels decreased after Zn and caffeine treatments (Figure 7 and Table S9).

Principal component analysis was applied to the tomato metabolite dataset under different treatments (Figure 6b). When the scores of each tomato sample were examined in a two-dimensional plot of the first two principal components (63.04% of the total variability), a clear separation of samples into groups was found, with a particular correlation among protocatechuic acid, 4-coumaric acid, caffeic acid, trans-ferulic acid, and quercetin 3,4 DG with Zn + caffeine treatment (Figure 6b). A positive correlation was detected between luteolin and apigenin and control tomatoes; these are, in fact, the two polyphenols that were significantly reduced under the treatments (Figure 6b).

In Table 3, the average Zn and caffeine concentrations and THQ values for the first, second, and third truss clusters are shown. Remarkably, no specific THQ related to Zn or caffeine was >1. For Zn, the THQ values ranged from 0.006 to 0.009, and 0.003 and 0.005 under Zn and Zn + caffeine treatments, respectively. Concerning caffeine, the THQ values ranged from 1.44×10^{-5} to 4.33×10^{-5} for Zn and from 8.16×10^{-6} to 1.10×10^{-4} under Zn + caffeine treatment (Table 3).

Figure 7. Schematic representation of the putative biosynthetic pathways of the main secondary compounds and hierarchical clustering analysis (HCA) plot of polyphenols in *Solanum lycopersicum* cv 'Panarea'; box plot representation of 4-coumaric acid (PCA) (**a**–**c**), caffeic acid (CFA) (**d**–**f**), t-ferulic acid (TFRA) (**g**–**i**), apigenin (APG) (**j**–**l**), and luteolin (LTO) (**m**–**o**) in *Solanum lycopersicum* cv 'Panarea' after 32, 48, and 56 days of treatment with tap water (control), 0.136 mg L⁻¹ Zn (Zn), 1 mg L⁻¹ caffeine-(trimethyl-¹³C) (caffeine), and 1 mg L⁻¹ caffeine-(trimethyl-¹³C) + 0.136 mg L⁻¹ Zn (Zn + caffeine). Statistical significances were determined with two-way ANOVA (n = 5) and different letters indicated a statistical difference according to Tukey's multiple comparison test ($p \le 0.05$) (Supplementary Table S9); ns = not significant.

Table 3. Zn and caffeine average concentration expressed as fresh weight and target hazard quotient (THQ) values in first, second, and third truss clusters of *Solanum lycopersicum* 'Panarea' plants exposed to 0.136 mg L^{-1} Zn (Zn), 1 mg L^{-1} caffeine (trimethyl-¹³C) (caffeine) or 0.136 mg L^{-1} Zn and 1 mg L^{-1} caffeine (trimethyl-¹³C) (Zn + caffeine).

	Truss Clusters	Zn	Zn + Caffeine
	first	3.79	2.29
Zn _{average} (mg kg ⁻¹ FW)	second	3.71	1.99
0 0	third	2.85	1.52
	first	0.009	0.005
THQ of Zn	second	0.008	0.004
	third	0.006	0.003
		Caffeine	Zn + Caffeine
	first	0.072	0.059
Caffeine _{average} (ng g ⁻¹ FW)	second	0.060	0.034
	third	0.181	0.460
	first	1.73×10^{-5}	1.42×10^{-5}
THQ of caffeine	second	1.44×10^{-5}	8.16×10^{-6}

4. Discussion

In horticulture, to use irrigation water supplemented with ions and molecules that could have a role as biostimulants, we need proof of the effective changes it can have on plant growth, fruit quality, and toxicity risks. The combined application of caffeine and zinc could stimulate overall metabolic processes, with the final goal of inducing plant growth and producing higher-quality fruits with improved size, mineral elements, and nutritional value.

It has been demonstrated that treatment with caffeine has a positive effect (biostimulator) on the number of fruits per plant, as observed by Jené et al. [30] on lentil yields, which showed an almost 50% increase when plants were treated with 10^{-3} M caffeine. These authors also observed that the effects of caffeine disappeared when an additional treatment was added to the plant, which could explain why the plants treated with the combination of Zn + caffeine did not show the same results as those treated with caffeine alone. Caffeine has a positive effect on the growth of Vigna radiata plants, as they grow faster in soil with caffeine [31]. Moreover, caffeine can inhibit seed germination but does not impair plant development when sprayed on plants or used to wet the soil [32]. Once caffeine treatment is applied, this compound in tomato is mainly absorbed in the roots; however, its translocation to the aerial part seems to be facilitated by a caffeine-Zn complex, as observed in our previous study on poplar plants [33]. When caffeine was present with Zn in the treatments, it also improved the total antioxidant capacity of fruits. Tomato plant organs have different capabilities to uptake Zn, as indicated by our results, but fruits have less ability to accumulate Zn because of the high presence of phloem tissue [34]. In this study, we showed that Zn was translocated to all organs in S. lycopersicum cv 'Panarea'. The concurrent presence of Zn and caffeine reduces the translocation of this element at the fruit level. Zn can easily form complexes with several molecules, including organic acids such as citrate and malate, or amino acids such as histidine. Moreover, it has been reported that when a formulation containing caffeine and Zn is prepared, a Zn-caffeine complex is formed in the solution [35]. Under our experimental conditions, this complex could reduce Zn uptake in plants, as also reported in our previous observations in Populus alba leaves exposed to Zn + caffeine treatments [33]. The Zn concentration found in the stems under our experimental conditions did not explain the shoot reduction observed after 56 days. Zn is necessary for the synthesis of tryptophan, a precursor of indole acetic acid; therefore, it plays an active role in the production of auxin, an essential growth hormone [36] that may indirectly interfere with internodal elongation.

Because tomato quality is also related to the content of different mineral elements that could contribute to taste, texture, and nutritional value [37] and play a role in antioxidant defense enzymes, the contents of Fe, Mn, Cu, and Ca were measured in this study. We hypothesized a positive effect of Zn and caffeine on tomatoes in terms of mineral elements; however, we found that treatments did not significantly interfere with mineral elements in tomatoes, and in general concentrations, the data are in line with the literature [38]. In the presence of Fe, the Zn–caffeine complex is converted into an Fe–caffeine complex [35], which could explain why Fe in fruit is reduced after 56 days of Zn + caffeine treatment. Regarding the total soluble content and ethylene production, our data were similar to those obtained by Roohanitaziani et al. [39], who measured the °Brix of 107 tomato accessions, and the Brix values range from 3.5–9.8. As ethylene promotes the ripening of tomato fruit, our data demonstrate that Zn + caffeine treatments did not interfere with the maturation process. The qualitative analysis of the phenolic compounds obtained in our study was consistent with those reported in the literature. For example, rutin and naringin have been reported as the main flavonoids in different varieties of red tomatoes [40–42].

It is interesting to note that the presence of Zn + caffeine in tomato plants induces an increase in the abundance of polyphenols like 4-coumaric, caffeic, and t-ferulic acid, which in the literature were found to be bioactive phenolic compounds that could help humans to ameliorate many diseases [37]. In tomatoes exposed to Zn and caffeine, the activation of a plant's antioxidant system could be the result of the stimulation of the phenylpropanoid biosynthetic pathway, inducing the synthesis of the above-indicated phenolic acids [43]. It is important to note that some other molecules (the flavones apigenin and luteolin) were significantly reduced by Zn or caffeine. These two molecules are considered functional components in foods, and their relationship with health has been proven by numerous researchers [44]. In general, the increase in polyphenols under Zn + caffeine treatment could also be associated with tomatoes, with an increase in the total antioxidant capacity of the fruits after 56 days of treatment. For this reason, tomatoes treated with low levels of caffeine and Zn could be an excellent source of secondary metabolites that play beneficial roles in inhibiting reactive oxygen species by scavenging free radicals [37]. The ability of tomato plants to take up Zn or caffeine has important implications for human health risk assessment [28,45,46]. According to Kloke [47], Tf > 1 represents the capability to transfer the mineral element/organic compound in the aerial parts of the plants [48]. Under our experimental conditions, Zn and Zn + caffeine treatments showed Tf > 1 in the stem and leaves, indicating a clear translocation in the aerial part of the compost used. Therefore, it was necessary to evaluate the THQ-based risk assessment, as both compounds can be toxic to humans if taken in high concentrations. The THQ-based risk assessment method provides a more precise indication of risks [49,50]. THQ data for Zn ingestion indicated that there were no significant health risks associated with the intake of Zn- and caffeine-treated tomatoes. Moreover, our Zn THQ data are in line with a previous meta-analysis study on tomatoes irrigated with Zn-containing water [43]. Finally, the measured risk due to the ingestion of tomatoes irrigated with caffeine indicated that THQ values in all fruits were lower than 1, indicating no considerable health risks for human consumption [28].

5. Conclusions

In conclusion, under our experimental conditions, the quality of fruits was conserved, and for some antioxidant molecules, such as 4-coumaric, caffeic, and t-ferulic acid, the concentration was increased. The estimated THQ values demonstrated that the daily consumption of tomatoes irrigated with Zn- and caffeine-treated water used in this study did not pose a health risk. Further specific analyses must be performed, especially for the dose related to lycopene and beta-carotene, considering the impact of these compounds on the total antioxidant profile of tomatoes. We also acknowledge that the results of our short-term experiment are not comparable to field ones because plant responses may change over time due to complex plant—soil interactions but provide an indication of the positive

effect of caffeine and Zn on tomato plants and could be taken under consideration for the future formulation of biostimulant products.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/antiox13091100/s1, Figure S1: Schematic representation of experimental design and sampling; Table S1: Mass spectrometer parameters; Table S2: Statistic of stem length; Table S3: Statistic on fruit physiology; Table S4: Statistic of total soluble solids content and ethylene production; Table S5: Statistic of Zn concentration in roots, stem and, leaves; Table S6: Statistic of Zn concentration in fruits; Table S7: Data of mineral elements in fruits; Table S8: Statistic of mineral elements concentration in fruits; Table S9: Statistic of polyphenols data in fruits.

Author Contributions: Conceptualization, L.S. and A.F.; methodology, A.R. and E.V.; validation, L.S. and A.F.; formal analysis, E.V.; data curation, A.F. and E.V.; writing—original draft preparation, A.F. and E.V.; writing—review and editing, A.F. and L.S.; supervision, L.S.; All authors have read and agreed to the published version of the manuscript.

Funding: This study was carried out within the Agritech National Research Center and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RE-SILIENZA (PNRR)–MISSIONE 4 COMPONENTE 2, INVESTIMENTO 14–DD 1032 17/06/2022, CN00000022) and in part by "VIRMA: Velivolo Intelligente Robotico per il Monitoraggio Agro-Ambientale–finanziato dal MUR nell'ambito del Fondo per la promozione e lo sviluppo delle politiche del Programma nazionale per la ricerca_PNR, in coerenza con il Regolamento UE n 241/2021 e con il PNRR 2021-2026, misura: Iniziative di ricerca interdisciplinare che esplorino temi di rilievo trasversale per il PNR, senza restrizioni basate sull'aderenza a settori scientifici di riferimento o ad aree tematiche prioritarie" This manuscript reflects only the authors' views and opinions, neither the European Union nor the European Commission can be considered responsible for them Financial support was provided by PiAnta project granted (CUP J54I19000770002) by Regione Toscana, POR FESR 2014-2020 for part of the equipment used (4210 MP-AES Agilent Technologie, Allegra 64R-Beckman) Financial support was provided by Agrobioscience PhD program at Scuola Superiore Sant'Anna of Pisa to Elena Vichi.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article and Supplementary Materials.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Kavian, S.; Safarzadeh, S.; Yasrebi, J. Zinc improves growth and antioxidant enzyme activity in *Aloe vera plant* under salt stress. *South Afr. J. Bot.* **2022**, *147*, 1221–1229. [CrossRef]
- 2. Stanton, C.; Sanders, D.; Krämer, U.; Podar, D. Zinc in plants: Integrating homeostasis and biofortification. *Mol. Plant* **2022**, *15*, 65–85. [CrossRef] [PubMed]
- 3. Marschner, P. Rhizosphere biology. In *Marschner's Mineral Nutrition of Higher Plants*; Academic Press: Cambridge, MA, USA, 2012; pp. 369–388.
- 4. Prasad, P.N.S.; Subbarayappa, C.T.; Sathish, A.; Ramamurthy, V. Impact of Zinc Fertilization on Tomato (*Solanum lycopersicum* L.) Yield, Zinc use Efficiency, Growth and Quality Parameters in Eastern Dry Zone (EDZ) Soils of Karnataka, India. *Int. J. Plant Soil Sci.* 2021, 33, 20–38. [CrossRef]
- 5. Júnior, C.A.M.; Luchiari, N.D.C.; Gomes, P.C.F.L. Occurrence of caffeine in wastewater and sewage and applied techniques for analysis: A review. *Eclet. Quim.* **2019**, *44*, 11–26. [CrossRef]
- 6. Korekar, G.; Kumar, A.; Ugale, C. Occurrence, fate, persistence and remediation of caffeine: A review. *Environ. Sci. Pollut. Res.* **2020**, 27, 34715–34733. [CrossRef] [PubMed]
- 7. Edwards, Q.A.; Sultana, T.; Kulikov, S.M.; Garner-O'neale, L.D.; Yargeau, V.; Metcalfe, C.D. Contaminants of Emerging Concern in Wastewaters in Barbados, West Indies. *Bull. Environ. Contam. Toxicol.* **2018**, *101*, 1–6. [CrossRef]
- 8. Vieira, L.; Soares, A.; Freitas, R. Caffeine as a contaminant of concern: A review on concentrations and impacts in marine coastal systems. *Chemosphere* **2022**, *286*, 131675. [CrossRef]
- 9. Pierattini, E.C.; Francini, A.; Raffaelli, A.; Sebastiani, L. Degradation of exogenous caffeine by *Populus alba* and its effects on endogenous caffeine metabolism. *Environ. Sci. Pollut. Res.* **2016**, *23*, 7298–7307. [CrossRef]
- 10. Vitória, A.; Mazzafera, P. Cytokinin-like effects of caffeine in bioassays. *Biol. Plant.* 1997, 39, 329–335. [CrossRef]
- 11. Emanuil, N.; Akram, M.S.; Ali, S.; Majrashi, A.; Iqbal, M.; El-Esawi, M.A.; Ditta, A.; Alharby, H.F. Exogenous Caffeine (1,3,7-Trimethylxanthine) Application Diminishes Cadmium Toxicity by Modulating Physio-Biochemical Attributes and Improving the Growth of Spinach (*Spinacia oleracea* L.). Sustainability 2022, 14, 2806. [CrossRef]

- 12. Jené, L.; Munné-Bosch, S. Hormonal involvement in boosting the vegetative vigour underlying caffeine-related improvements in lentil production. *Plant Sci.* **2023**, *336*, 111856. [CrossRef] [PubMed]
- 13. Truta, E.; Zamfirache, M.M.; Olteanu, Z. Caffeine induced genotoxic effects in *Phaseolus vulgaris* and *Raphanus sativus*. *Bot. Serbica* **2011**, 35, 49–54.
- 14. Kumar, G.; Tripathi, A. Mutagenic response of caffeine in Capsicum annuum. J. Indian Bot. Soc. 2004, 83, 136–140.
- 15. Ghiyasi, M.; Danesh, Y.R.; Amirnia, R.; Najafi, S.; Mulet, J.M.; Porcel, R. Foliar Applications of ZnO and Its Nanoparticles Increase Safflower (*Carthamus tinctorius* L.) Growth and Yield under Water Stress. *Agronomy* **2023**, *13*, 192. [CrossRef]
- 16. Minnocci, A.; Francini, A.; Romeo, S.; Sgrignuoli, A.D.; Povero, G.; Sebastiani, L. Zn-localization and anatomical changes in leaf tissues of green beans (*Phaseolus vulgaris* L.) following foliar application of Zn-lignosulfonate and ZnEDTA. *Sci. Hortic.* **2018**, 231, 15–21. [CrossRef]
- 17. Rossi, L.; Fedenia, L.N.; Sharifan, H.; Ma, X.; Lombardini, L. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (*Coffea arabica* L.) plants. *Plant Physiol. Biochem.* **2019**, *135*, 160–166. [CrossRef]
- 18. FAOSTATS. 2022. Available online: https://www.fao.org/faostat/en/#search/tomato (accessed on 23 March 2024).
- 19. Martí, R.; Roselló, S.; Cebolla-Cornejo, J. Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention. *Cancers* **2016**, *8*, 58. [CrossRef]
- 20. Sbartai, H.; Djebar, M.R.; Rouabhi, R.; Sbartai, I.; Berrebbah, H. Antioxidative response in tomato plants *Lycopersicon esculentum* L. roots and leaves to zinc. *Am. Eurasian J. Toxicol. Sci.* **2011**, *3*, 41–46.
- 21. Romeo, S.; Francini, A.; Ariani, A.; Sebastiani, L. Phytoremediation of Zn: Identify the diverging resistance, uptake and biomass production behaviours of poplar clones under high zinc stress. *Water Air Soil. Pollut.* **2014**, 225, 1–12. [CrossRef]
- 22. Pavithra, G.J.; Mahesh, S.; Parvathi, M.S.; Basavarajeshwari, R.M.; Nataraja, K.N.; Shankar, A.G. Comparative growth responses and transcript profiling of zinc transporters in two tomato varieties under different zinc treatments. *Indian J. Plant Physiol.* **2016**, 21, 208–212. [CrossRef]
- 23. Carbonare, L.D.; White, M.D.; Shukla, V.; Francini, A.; Perata, P.; Flashman, E.; Sebastiani, L.; Licausi, F. Zinc Excess Induces a Hypoxia-Like Response by Inhibiting Cysteine Oxidases in Poplar Roots. *Plant Physiol.* **2019**, *180*, 1614–1628. [CrossRef] [PubMed]
- 24. Kaur, H.; Garg, N. Zinc toxicity in plants: A review. Planta 2021, 253, 1–28. [CrossRef] [PubMed]
- 25. Smyth, D.A. Effect of methylxanthine treatment on rice seedling growth. J. Plant Growth Regul. 1992, 11, 125–128. [CrossRef]
- 26. Mohanpuria, P.; Sudesh, K.Y. Retardation in seedling growth and induction of early senescence in plants upon caffeine exposure is related to its negative effect on Rubisco. *Photosynthetica* **2009**, *47*, 293–297. [CrossRef]
- 27. Noulas, C.; Tziouvalekas, M.; Karyotis, T. Zinc in soils, water and food crops. J. Trace Elem. Med. Biol. 2018, 49, 252–260. [CrossRef]
- 28. European Food Safety Authority. *EFSA Explains Risk Assessment—Caffeine*; European Food Safety Authority: Parma, Italy, 2015. Available online: https://data.europa.eu/doi/10.2805/618813 (accessed on 3 August 2023).
- 29. Antoine, J.M.; Fung, L.A.H.; Grant, C.N. Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. *Toxicol. Rep.* **2017**, *4*, 181–187. [CrossRef]
- 30. Jené, L.; Mirabent, C.; Campillos, S.; Munné-Bosch, S. Impact of environmental conditions, stress severity and dose application on caffeine-related improved lentil productivity. *Environ. Exp. Bot.* **2022**, 203, 105064. [CrossRef]
- 31. Ansari, A.M. The effect of caffeine and nicotine on different plant growth. *Int. J. Adv. Res. Innov. Ideas Educ.* **2020**, *6*, 846–858. Available online: www.IJARIIT.com (accessed on 3 August 2023).
- 32. Sledz, W.; Motyka, A.; Zoledowska, S.; Paczek, A.; Los, E.; Rischka, J. Influence of exogenously supplemented caffeine on cell division, germination, and growth of economically important plants. In *The Question of Caffeine*; IntechOpen: London, UK, 2017; pp. 127–142. [CrossRef]
- 33. Vannucchi, F.; Traversari, S.; Raffaelli, A.; Francini, A.; Sebastiani, L. *Populus alba* tolerates and efficiently removes caffeine and zinc excesses using an organ allocation strategy. *Plant Growth Regul.* **2020**, 92, 597–606. [CrossRef]
- 34. Trebolazabala, J.; Maguregui, M.; Morillas, H.; García-Fernandez, Z.; de Diego, A.; Madariaga, J.M. Uptake of metals by tomato plants (*Solanum lycopersicum*) and distribution inside the plant: Field experiments in Biscay (Basque Country). *J. Food Compos. Anal.* 2017, 59, 161–169. [CrossRef]
- 35. Rajam, K.; Rajendran, S.; Banu, N.N. Effect of Caffeine-Zn²⁺ System in Preventing Corrosion of Carbon Steel in Well Water. *J. Chem.* **2013**, 2013, 521951. [CrossRef]
- 36. Castillo-Gonzalez, J.; Ojeda-Barrios, D.; Hernandez-Rodríguez, A.; Gonzalez-Franco, A.C.; Robles-Hernandez, L.; Lopez-Ochoa, G.R. Zinc metalloenzymes in plants. *Interciencia* **2018**, 43, 242–248.
- 37. Ali, M.Y.; Ibn Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, M.I.; Gan, S.H. Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. *Foods* **2021**, *10*, 142. [CrossRef] [PubMed]
- 38. Ciudad-Mulero, M.; Pinela, J.; Carvalho, A.M.; Barros, L.; Fernández-Ruiz, V.; Ferreira, I.C.F.R.; Sánchez-Mata, M.d.C.; Morales, P. Bioaccessibility of Macrominerals and Trace Elements from Tomato (*Solanum lycopersicum* L.) Farmers' Varieties. *Foods* **2022**, *11*, 1968. [CrossRef]
- 39. Roohanitaziani, R.; de Maagd, R.A.; Lammers, M.; Molthoff, J.; Meijer-Dekens, F.; van Kaauwen, M.P.W.; Finkers, R.; Tikunov, Y.; Visser, R.G.F.; Bovy, A.G. Exploration of a Resequenced Tomato Core Collection for Phenotypic and Genotypic Variation in Plant Growth and Fruit Quality Traits. *Genes* 2020, *11*, 1278. [CrossRef]

- 40. Bénard, C.; Gautier, H.; Bourgaud, F.; Grasselly, D.; Navez, B.; Caris-Veyrat, C.; Weiss, M.; Génard, M. Effects of Low Nitrogen Supply on Tomato (*Solanum lycopersicum*) Fruit Yield and Quality with Special Emphasis on Sugars, Acids, Ascorbate, Carotenoids, and Phenolic Compounds. *J. Agric. Food Chem.* **2009**, *57*, 4112–4123. [CrossRef]
- 41. Georgé, S.; Tourniaire, F.; Gautier, H.; Goupy, P.; Rock, E.; Caris-Veyrat, C. Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. *Food Chem.* **2011**, 124, 1603–1611. [CrossRef]
- 42. Izzo, L.; Castaldo, L.; Lombardi, S.; Gaspari, A.; Grosso, M.; Ritieni, A. Bioaccessibility and Antioxidant Capacity of Bioactive Compounds from Various Typologies of Canned Tomatoes. *Front. Nutr.* **2022**, *9*, 849163. [CrossRef]
- 43. Francini, A.; Giro, A.; Ferrante, A. Biochemical and molecular regulation of phenylpropanoids pathway under abiotic stresses. In *Plant Signaling Molecules—Role and Regulation under Stressful Environments*; Elsevier: Amsterdam, The Netherlands, 2019; pp. 183–192.
- 44. Özcan, F.Ö.; Aldemir, O.; Karademir, B. Flavones (Apigenin, Luteolin, Crhysin) and Their Importance for Health. *Mellifera* **2020**, 20, 16–27.
- 45. Bounar, A.; Boukaka, K.; Leghouchi, E. Determination of heavy metals in tomatoes cultivated under green houses and human health risk assessment. *Qual. Assur. Saf. Crop. Foods* **2020**, *12*, 76–86. [CrossRef]
- 46. Gupta, N.; Yadav, K.K.; Kumar, V.; Krishnan, S.; Kumar, S.; Nejad, Z.D.; Khan, M.M.; Alam, J. Evaluating heavy metals contamination in soil and vegetables in the region of North India: Levels, transfer and potential human health risk analysis. *Environ. Toxicol. Pharmacol.* **2021**, *82*, 103563. [CrossRef] [PubMed]
- 47. Kloke, A.; Sauerbeck, D.R.; Vetter, H. The Contamination of Plants and Soils with Heavy Metals and the Transport of Metals in Terrestrial Food Chains. In *Changing Metal Cycles and Human Health*; Nriagu, J.O., Ed.; Springer: Berlin, Germany, 1984; pp. 113–141. [CrossRef]
- 48. Khan, S.; Farooq, R.; Shahbaz, S.; Khan, M.A.; Sadique, M. Health risk assessment of heavy metals for population via con-sumption of vegetables. *World Appl. Sci. J.* **2009**, *6*, 1602–1606.
- 49. Wang, X.; Sato, T.; Xing, B.; Tao, S. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. *Sci. Total. Environ.* **2005**, 350, 28–37. [CrossRef] [PubMed]
- 50. Hwang, I.M.; Choi, J.Y.; Nho, E.Y.; Dang, Y.M.; Jamila, N.; Khan, N.; Seo, H.-Y.; Kim, K.S. Determination of Essential and Toxic Elements in Vegetables from South Korea. *Anal. Lett.* **2017**, *50*, 663–681. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article

Evaluation of Bioactive Effects of Five Plant Extracts with Different Phenolic Compositions against Different Therapeutic Targets

María del Carmen Villegas-Aguilar ¹, Noelia Sánchez-Marzo ², Álvaro Fernández-Ochoa ¹, Carmen Del Río ^{3,4}, Joan Montaner ^{3,4}, Vicente Micol ^{2,5}, María Herranz-López ², Enrique Barrajón-Catalán ², David Arráez-Román ¹, María de la Luz Cádiz-Gurrea ^{1,*} and Antonio Segura-Carretero ¹

- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; marivillegas@ugr.es (M.d.C.V.-A.); alvaroferochoa@ugr.es (Á.F.-O.); darraez@ugr.es (D.A.-R.); ansegura@ugr.es (A.S.-C.)
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) Miguel Hernández University (UMH), 03202 Elche, Spain; n.sanchez@umh.es (N.S.-M.); vmicol@umh.es (V.M.); mherranz@umh.es (M.H.-L.); e.barrajon@umh.es (E.B.-C.)
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain; cdelriomercado@gmail.com (C.D.R.); jmontaner-ibis@us.es (J.M.)
- Department of Neurology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
- OIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Carlos III Health Institute, 28029 Madrid, Spain
- * Correspondence: mluzcadiz@ugr.es; Tel.: +34-958-63-72-06

Abstract: Plant extracts rich in phenolic compounds have been reported to exert different bioactive properties. Despite the fact that there are plant extracts with completely different phenolic compositions, many of them have been reported to have similar beneficial properties. Thus, the structure-bioactivity relationship mechanisms are not yet known in detail for specific classes of phenolic compounds. In this context, this work aims to demonstrate the relationship of extracts with different phenolic compositions versus different bioactive targets. For this purpose, five plant matrices (Theobroma cacao, Hibiscus sabdariffa, Silybum marianum, Lippia citriodora, and Olea europaea) were selected to cover different phenolic compositions, which were confirmed by the phytochemical characterization analysis performed by HPLC-ESI-qTOF-MS. The bioactive targets evaluated were the antioxidant potential, the free radical scavenging potential, and the inhibitory capacity of different enzymes involved in inflammatory processes, skin aging, and neuroprotection. The results showed that despite the different phenolic compositions of the five matrices, they all showed a bioactive positive effect in most of the evaluated assays. In particular, matrices with very different phenolic contents, such as T. cacao and S. marianum, exerted a similar inhibitory power in enzymes involved in inflammatory processes and skin aging. It should also be noted that H. sabdariffa and T. cacao extracts had a low phenolic content but nevertheless stood out for their bioactive antioxidant and anti-radical capacity. Hence, this research highlights the shared bioactive properties among phenolic compounds found in diverse matrices. The abundance of different phenolic compound families highlights their elevated bioactivity against diverse biological targets.

Keywords: phenolic compound; HPLC-MS; free radical scavenging capacity; enzyme inhibition; antioxidant; neuroprotection; structure–activity relationship

1. Introduction

Phenolic compounds are a class of compounds present in plants that have been reported to have enormous bioactive potential [1]. These compounds are secondary metabolites naturally synthesized in plants, and more than 8000 different chemical structures have been reported [2]. Based on their basic chemical structures, these compounds have been

classified into at least 10 different classes [3]. It should be noted that, even though they show so much structural variability, they are widely studied for their antioxidant [4,5], anti-inflammatory [6], anti-aging [7], neuroprotective [8], and anticarcinogenic [9] potentials, among others. In fact, plant sources with different phenolic contents have been demonstrated to be involved in multiple pathways in the pathogenesis of different diseases [10,11]. In this scenario, there is emerging evidence on the neuroprotective activity of different phenolic compounds present in various plant sources regarding inhibition of acetylcholinesterase (AchE), Aß aggregation, proinflammatory markers, and 1-methyl-4phenyl-1-1,2,3,6-tetrahydropyridine (MPTP)-induced apoptosis, among others [12]. Thus, phenolic compounds from different matrices have been shown to have neuroprotective capacity, such as Eucommia ulmoides Oliver (rich in phenolic acids, flavonoids, and iridoid glycosides), herbaceous peony (with paeoninflorin as the main active ingredient), and Sanghuangprous vaninii (an extract rich in caffeic acid); they may ameliorate the dopaminergic deficiency in the MPTP-induced model in the zebrafish brain [12-14]. However, common phenolics present in different sources, for example, quercetin, which is contained in different matrices such as apple, chocolate, or cherry [15], have been shown to have both antioxidant and tyrosinase inhibitory actions [16]. Another example is kaempferol, another flavonoid, which is also present in a wide variety of plants and has a high antioxidant capacity [17]. When compared to other groups—for example, verbascoside, which belongs to the phenylpropanoids and is present in different matrices such as Lippia citriodora and Olea europaea—they have also been shown to have a high antioxidant capacity [18]. In this context, the structure-bioactivity relationship mechanisms are not yet known in detail for specific classes of phenolic compounds present in different plant sources.

Hence, the aim of this study is to evaluate the bioactive potential of different plant extracts with different phenolic profiles and to analyse the structure–bioactivity relationship mechanisms of phenolic compounds present in different plant sources. For this purpose, five plant matrices (fruits of *Theobroma cacao* (TC), calyxes of *Hibiscus sabdariffa* (HS), fruits of *Silybum marianum* (SM), leaves of *L. citriodora* (LC), and leaves of *O. europaea* (OE)) were selected. On these selected plants, a hydroalcoholic mixture extraction was carried out, and in order to know the phenolic content, a characterization by HPLC-ESI-TOF-MS was performed.

2. Materials and Methods

2.1. Chemicals

All chemicals used in this study were of analytical reagent grade and used as received. LC-MS grade acetonitrile and formic acid for mobile phases were purchased from Riedel-de-Haën (Honeywell, Charlotte, NC, USA). For solutions, ultrapure water was obtained with a Milli-Q system Millipore (Bedford, MA, USA), and absolute ethanol was purchased from VWR chemicals (Radnor, PA, USA). The chemical standards (verbascoside, myrecetin-3-glucoside, quercetin, epigallocatechin, gardoside, sylibin, oleuropein, kaempferol, catechin, quercetin glucoside, quinic acid, and procyanidin B1) were obtained from Sigma-Aldrich (St. Louis, MO, USA).

The following reagents were used for the different in vitro assays—sulfuric acid and absolute ethanol—they were obtained from Riedel-de-Haën (Honeywell, NC, USA). Acetic acid, sodium carbonate, sodium hydroxide, TPTZ (2,4,6-tris(2-pyridyl)-s-triazine and hydrochloridic acid were purchased from Fluka (Honeywell, NC, USA). Folin reagent, gallic acid (GA), sodium phosphate monobasic and dibasic, potassium persulfate, ABTS (2,2-azinobis (3-ethylbenzothiazoline-6-sulphonate)), fluorescein, Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), Tris (tri(hydroxymethyl)aminomethane), sodium acetate, heptahydrate ferrous sulphate, ferric chloride, DMF (dimethylformamide), NADH (β -nicotinamide adenine dinucleotide), DAF-2 (diaminofluorescein diacetate), DHR (dihydrorhodamine), potassium dihydrogen phosphate anhydrous, NBT (nitrotetrazolium blue chloride), Cayman's xanthine oxidase fluorometric assay kit, tyrosinase inhibitor screening kit (colorimetric), acetylcholinesterase from Electrophorus, acetylthiocholine iodide, neu-

trophil elastase colorimetric kit, 1-10 phenantroline, sodium chloride, hyaluronidase from sheep testes, hyaluronic acid, FALGPA (*N*-[3-(2-furyl)acryloyl]-L-leucyl-glycyl-L-prolyl-L-alanine), and collagenase from *Clostridium histolyticum* were purchased from Sigma-Aldrich (St. Louis, MO, USA). NOC-5 was purchased from Chemcruz (Santa Cruz Biotechnology, Dallas, TX, USA).

Human keratinocytes (the spontaneously immortalized cell line HaCaT) were obtained from Cell Lines Service (CLS) GmbH (Eppelheim, Germany). Dulbecco's Modified Eagle's Medium (DMEM), fetal bovine serum (FBS), and penicillin–streptomycin solution (10,000 U/mL penicillin and 10 mg/mL streptomycin in citrate buffer) were purchased from GibcoTM/Thermo Fisher Scientific (Waltham, MA, USA). Hoechst 33342 and 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA) probes were acquired from Molecular ProbesTM (InvitrogenTM/Thermo Fisher Scientific, Waltham, MA, USA).

2.2. Extraction Procedure from Plant Matrices

The pre-industrial extracts of the selected plant matrices were provided by NATAC Biotech S.L. (Cáceres, Spain). These extracts were obtained by ethanol/water mixture extraction, which is considered a favorable solvent for the extraction of polar substances such as phenolic compounds, in addition to being environmentally friendly and non-toxic to humans (GRAS (Generally Recognized As Safe) solvent).

The extraction parameters were optimized for each plant matrix individually and are described below. For all extracts, a solid–liquid extraction (maceration) was carried out using a hydroalcoholic mixture for two hours. A mixture of EtOH:H $_2$ O (80:20; v:v) was used for all samples except for SM, which was EtOH 96%. The extraction temperatures were set at 45 $^{\circ}$ C for the OE and HS extracts and 55 $^{\circ}$ C for the rest of the extracts. A solvent:plant ratio of 20:1 was used for all extracts except for SM, which was 25:1. The obtained extracts were dried using a vacuum drying, stored at room temperature, and protected from light until their analysis. For the different analytical and bioactive analyses, the extracts were reconstituted with the same solvents and mixture used for the extraction procedure.

2.3. HPLC-ESI-TOF-MS Analysis

TC, HS, SM, LC, and OE extracts at 5000 mg/L were analysed by high-performance liquid chromatography (Agilent 1290 HPLC, Agilent Technologies, Palo Alto, CA, USA) coupled to mass spectrometry with a quadrupole time-of-flight analyser (Agilent 6545 QTOF Ultra High Definition, Agilent Technologies, Palo Alto, CA, USA). Chromatographic analysis was carried out in reversed phase with a C18 ACQUITY UPLC BEH column (1.7 μ m, 2.1 mm, 150 mm, 130 Å, Waters Corporation, Milford, MA, USA). The working temperature of the column was 60 °C. The mobile phases were (A) acidified water with 0.1% of formic acid (v/v) and (B) acetonitrile. The following mobile phase gradient was used for optimal separation: 0.00 min [A:B 100/0], 5 min [A:B 90/10], 18 min [A:B 15/85], 24 min [A:B 0/100], 25.50 min [A:B 0/100], 26.50 min [A:B 95/5], and 32.50 min [A:B 95/5]. A mobile phase flow rate of 0.4 mL/min and an injection volume of 5 μ L was used.

MS acquisition was performed in electrospray negative ionization (ESI) mode in a mass range between 50 and 1200 m/z. Other parameters were as follows: gas flow rate 10 L/min; gas temperature 200 °C; nebulizer 20 psig, enveloping gas temperature 350 °C, enveloping gas flow rate 12 L/min, VCap 4000 V, nozzle voltage 500 V.

Finally, the acquired data were processed through Qualitative Analysis of MassHunter workstation software version B.06.00 (Agilent Technologies), Mzmine 2.53, and Sirius 2.0. The compounds were annotated by comparison of the MS/MS spectra with those from analytical standards or published in the literature and databases, such as SciFinder[®], CEU Mass Mediator, Human Metabolome Data Base (HMDB), and Kyoto Encyclopedia of Genes and Genomes (KEGG).

2.4. In Vitro Assays for Bioactive Determination of Phenolic Compounds in Extracts

The assays described below were adapted to a 96-well polystyrene microplate, and absorbance and fluorescence measurements were performed on a Synergy H1 Monochromator-Based Multimode Microplate reader (Bio-Tek Instruments Inc., Winooski, VT, USA).

2.4.1. Total Phenolic Content and Antioxidant Capacity Measurements

Total phenolic content (TPC) was measured by the Folin–Ciocalteu method using gallic acid as a reference compound for the standard curve [19]. Measurements were carried out in triplicate.

The FRAP assay was performed following the method described by Benzie and Strain (1996) [20]. The reduction of the radical cation of ABTS was performed by TEAC assay using a method previously described by Zulueta et al. (2022) [21]. To test the ability of the extracts to scavenge peroxyl radicals, an ORAC method was used with some modifications [21]. In all assays, measurements were performed in triplicate.

2.4.2. Evaluation of Free Radical and ROS/RNS Scavenging Potential

All free-radical scavenging assays were performed and adapted according to Rojas-García et al. (2022) [22]. To measure the scavenging capacity of the radical superoxide anion (\cdot O₂ $^-$), a colorimetric method was used. A fluorometric-based method was used for the nitric oxide (\cdot NO) and HOCl assays. The results for the three assays were expressed as the concentration of the different extracts needed to inhibit ROS/RNS formation by half (IC₅₀).

2.4.3. Evaluation of Enzymatic Inhibition Potential

The activity of the extracts to inhibit the enzyme tyrosinase was performed using the Tyrosinase Inhibitor Screening Kit (Colorimetric). The Xanthine Oxidase (XO) inhibitory activity of the extracts was measured using the Cayman's XO Fluorometric Assay Kit. The elastase inhibition assay was measured using the Neutrophil Elastase Inhibitor Screening Kit. For the measurement of hyaluronidase inhibition, the test performed by Nema et al. (2013) [23] was used with some modifications. The inhibitory effect against collagenase of the extracts was performed following the methodology performed by Kumar et al. (2019) [24], but some parameters were modified. Finally, acetylcholinesterase (AchE) inhibitory activity was measured using a photometric assay described by Ellman et al. (1961) [25]. All assays were performed in triplicate, and the result was expressed by calculating the IC_{50} using different concentrations of the extracts except for the tyrosinase and elastase assays, where the % inhibition of the enzymes was calculated at 500 and $IO00 \, mg/L$ concentration of the extracts, respectively.

2.4.4. Cellular Assays to Measure Antioxidant Capacity Cytotoxic Activity In Vitro

The cytotoxic activity of the extracts was assessed on human immortalized keratinocytes (HaCaT cell line). Cells were maintained following the manufacturer's indications. DMEM with 4.5 g/L glucose and 1 mM pyruvate was supplemented with 10% (v/v) of fetal bovine serum and 1% (v/v) penicillin–streptomycin solution. Cells were grown at 37 °C in a humidified 5% CO₂ incubator and were passed every 2–3 days. Assays were carried out in 96-well plates with 12,000 seeded cells in each well.

Cells were seeded and were treated after 24 h with each extract at different concentrations (5–800 μ g/mL). Cells were incubated for 24 h, and nuclei were stained by adding Hoechst 33342 fluorescent probe during the last 30 min (4.5 μ M final concentration). Extracts were freshly prepared at 100 mg/mL in DMSO, and corresponding DMSO controls were included in the assay to evaluate cytotoxic effects caused by this solvent.

Fluorescence measurements were carried out in PBS 1x using a Cytation 3 Cell Imaging Multimode reader (BioTek, Winooski, VT, USA) with 377 nm excitation and 447 nm emission filters. Data were expressed as a percentage of cellular viability compared to

nontreated cells. IC₅₀ values were calculated through nonlinear regression of the algorithm-transformed concentrations and the normalized responses.

Antioxidant Activity In Vitro

To evaluate the antioxidant effectiveness of the extracts, HaCaT cells were cultured for 24 h as described above and then treated with noncytotoxic concentrations (10, 20 y 40 μg/mL) of the extracts. After 24 h of treatment, cultures were washed twice with PBS 1x. Cells were maintained with a thin layer of PBS 1x while were exposed to solar ultraviolet radiation type A (UVA) radiation (8 J/cm²) emitted by a Bio-Link Crosslinker BLX-E312 (Vilber Lourmat, Collégien, France). To prevent excessive heating due to the UVA exposure, plates were meanwhile put on ice as described previously by Cooper et al. (2009) [26]. In parallel, treated cells were manipulated in the same manner but were covered during UVA exposure (nonirradiated controls). Subsequently, cells were incubated with Hoechst 33342 (4.5 μM) and H2DCF-DA (30 μM) in fresh medium for 30 min. H2DCF-DA (nonfluorescent) to monitor ROS generation through its oxidation to fluorescent 2',7'dichlorodihydrofluorescein (DCF) by those radical species and cell viability (Hoechst). Both fluorescent signals were measured by the Cytation 3 reader as described above for Hoechst 33342 and using 485 nm excitation and 535 nm emission filters for DCF. DCF signals were normalized with the nuclei number determined for each well by Hoechst staining, and data were expressed as percentage of ROS (%) compared to nontreated and nonirradiated cells.

2.5. In Vivo Neuroprotection Capacity

2.5.1. Drosophila Stock and Exposure to Hypoxia

Drosophila melanogaster has been commonly employed as a neurodegeneration model system due to its minimal resource demands and notable conservation, including the response to alterations in oxygen levels, which is similar to the human. Hypoxia-induced injury is a crucial mechanism in several medical conditions, including ischemic stroke, cardiac infarction, and renal disease, among others. In fact, drosophila has been proposed by several authors to study the impact of hypoxia-reperfusion [27,28] and represents a good screening model for neurovascular disease [29].

Drosophila melanogaster stock (Oregon R strain) was kindly provided by Dr. Luisma Escudero. Flies were bred in polystyrene tubes on a standard medium at constant temperature and humidity (25 °C; 50% humidity) and a 12 h light/dark cycle. Three days after emergence, male flies were sexed under CO₂ anesthesia, and vials containing 10–15 male flies were prepared. Treated flies received instant food formulation (Genesee Scientific, Morrisville, NC, USA) prepared in water containing the plant extracts at the indicated concentrations. After hatching, male flies were maintained in standard food for 5 days, and a set of flies were supplemented in the food with the plant extracts at 0.05, 0.2, and 0.3 mg/mL. The control group was kept on media prepared in vehicle (0.5% ethanol in water). Treatment media was refreshed once during the experimental procedure. After 5 days, flies were subjected to 2.5 h of hypoxia (1% O₂, 25 °C, 30–40% humidity) by introducing the vials in a hypoxic glove box (Coy, Grass Lake, MI, USA) where the environmental oxygen was displaced by N_2 . Then, flies were monitored for locomotor activity for 4 h and mortality rate was assessed after reoxygenation and represented as relative mortality to the hypoxia group. Each experiment consisted of three tubes per condition (10–15 flies/vial) and was repeated at least three times.

2.5.2. Drosophila Locomotor Activity Monitoring

To study the effect of hypoxia exposure on fly behavior, flies were transferred into a 25 mm empty polycarbonate tube and placed in the Drosophila Activity Monitoring (DAM) system v3.11.1.35 (LAM25H-3, Trikinetics Inc., Waltham, MA, USA). Locomotor activity was recorded for 4 h by registering the infrared light beam crosses in each tube at 3 different heights. The DAMSystem3 Data Collection Software was used for data acquisition, and

raw data were grouped into 30-minute intervals using FileScan Software v1.13. Live flies were counted at the beginning and the end of the assessment period. Relative mean beam crosses were calculated by normalizing mean movement counts per fly to the hypoxia group and represented as a heatmap using GraphPad Prism v7.

2.6. Statistical Analysis

The results were presented as mean \pm standard deviation (SD) of at least three replicates. IBM SPSS Statistics 24.0 software (SPSS Inc., Chicago, IL, USA) was used for the statistical analysis of antioxidant, free radical, and enzyme data. The differences between samples were statistically analysed by one-way ANOVA, and post hoc comparisons of the means were performed with Tukey's HSD and T3 de Dunnett tests.

GraphPad Prism version 8.01 (GraphPad Software, San Diego, CA, USA) was used for the representation and analysis of cellular assays. Data were expressed as the mean \pm SD of 5–10 replicates depending on the assay. Statistical differences were determined by one-way ANOVA and statistical comparisons with Tukey's test.

3. Results

3.1. Characterisation of the Extracts by HPLC-ESI-qTOF-MS

The TC, HS, SM, LC, and OE extracts were tentatively characterized by HPLC-ESI-qTOF-MS. Base peak chromatograms (BPCs) of the five extracts are shown in Figure S1. The characterization was carried out based on retention times, fragments, mass spectra, predictions from different software, and other studies previously published in the literature. According to the identification guidelines proposed by Sumner et al. (2007) [30], compounds were annotated at level 1 with commercial standards, at level 2 by comparing the MS/MS spectra with those present in the databases, at level 3 based on the molecular formulation and MS1 spectra, and at level 4 where the molecules remain as unknowns. All this information is provided in Tables S1, S2, S3, S4, and S5 for TC, HS, SM, LC, and OE extracts, respectively.

In total, 292 compounds were characterized, specifically 52 compounds in TC, 40 compounds in HS, 67 compounds in SM, 85 compounds in LC, and 98 compounds in OE. It was worth noting the difference between the matrices in phenolic richness, with SM, LC, and OE having more than 65 compounds in each, while TC and HS have less than 60 compounds. This fact may be mainly due to the extraction conditions and the polarity of the majority of phenolic compounds in each matrix. Among the five extracts, LC and OE contain the highest number of annotated compounds. Briefly, the flavan-3-ols was the class with the highest richness in the TC extract since epigallocatechin, quinic acid, and gluconic acid were the main compounds present in this extract. The HS extract has a high presence of hibiscus acid, hibiscus acid lactone, and glycosylated flavonoids, such as quercetin 3-O-rutinoside and quercetin 7-glucoside. The SM extract stood out for its high flavonoid presence, especially silybin and its isomers such as silycystin, isosilybin b, or its modified forms such as dehydrosilybin, silybin hydrogenated or acetylsilybin A/B. The LC extract was characterized by a particularly high presence of phenylpropanoids. Among the phenylpropanoids, verbascoside presented the highest presence. In addition, a high presence of iridoids and secoiridoids, such as shanziside, and glycosylated compounds of this type, such as gardoside, was detected. In the OE extract, the presence of the oleuropein aglycone was particularly high. The parental form of this compound, oleuropein, and other modifications of oleuropein, such as oleuropein-glucoside, were also found in high concentrations.

Table 1 shows the common compounds among the five matrices under study. The high presence of fatty acids shared by the five matrices is noteworthy. The matrices with the highest number of compounds in common were LC and OE, with verbascoside, malic acid, gluconic acid, and fatty acids such as linolenic acid and palmitic acid standing out among the compounds in common.

Table 1. Common compounds that have been identified in more than one of the matrices.

Compound	Rt (min)	-[H - H]	Mol. Formula	Т. сасао	H. sabdariffa	S. marianum	L. citriodora	O. europaea
Gluconic acid	1.01	195.0519	C ₆ H ₁₂ O ₇	×			×	×
Malic acid	1.07	133.0140	$C_4H_6O_5$				×	×
Quinic acid	1.13	191.0292	C ₇ H ₁₂ O ₆	×				×
Chlorogenic acid	4.02	353.0867	C ₁₆ H ₁₈ O ₉		×	×		
Epigallocatechin	9.18	305.0690	$C_{15}H_{14}O_7$	×				×
Verbascoside	9.33	623.1978	$C_{29}H_{36}O_{15}$				×	×
Quercetin 3-O-rutinoside	09.6	609.1458	C ₂₇ H ₃₀ O ₁₆		×			×
Quercetin glucoside	9.85	463.0878	$C_{21}H_{20}O_{12}$	×	×	×		
Unknown	10.23	539.1751	$C_{25}H_{32}O_{13}$		×			×
Quercetin	12.16	301.0339	$C_{15}H_{10}O_7$	×	×			
Unknown	12.95	329.0654	$C_{17}H_{14}O_7$		×		×	
Dihydrocapsiate	13.53	307.192	$C_{18}H_{28}O_4$				×	×
Eupatorin	13.56	343.0818	C ₁₈ H ₁₆ O ₇		×		×	
Gingerol	13.92	293.1748	C ₁₇ H ₂₆ O ₄	×	×		×	×
Hydroxylinolenic acid	15.74	293.2113	C ₁₈ H ₃₀ O ₃		×		×	×
Unknown	16.30	540.3288	C ₂₉ H ₄₉ O ₉	×		×	×	×
Unknown	16.60	566.3453	$C_{31}H_{51}O_9$			×	×	×
Ethyl vanillate	17.77	195.0686	$C_{10}H_{12}O_4$	×				×
Linolenic acid	18.46	277.2159	$C_{18}H_{30}O_{2}$	×	×		×	×
10'-Apo-beta-carotenal	18.73	375.2712	C ₂₇ H ₃₆ O	×	×	×	×	×
Linoleic acid	19.16	279.2328	C ₁₈ H ₃₂ O ₂	×	×	×	×	×
Palmitic acid	19.82	255.2325	C ₁₆ H ₃₂ O ₂	×			×	×
Unkwnon	19.87	403.3052	$C_{22}H_{44}O_6$	×	×	×		×
Oleic Acid	19.95	281.2482	$C_{18}H_{34}O_{2}$	×	×	×	×	×
Unknown	20.98	383.1934	$C_{16}H_{32}O_{10}$	×	×		×	×
Ginsenoside Rh2	20.98	621.4417	C ₃₆ H ₆₂ O ₈			×	×	
	17.5							

x: presence of the compound in the extract.

3.2. Evaluation of the Antioxidant and Anti-Inflammatory Capacities of the Extracts

3.2.1. Evaluation of TPC, Antioxidant Capacity and ROS Scavenging Potential

In Table 2, we can find the TPC values obtained by the Folin-Ciocalteu method and the results of the FRAP, TEAC, and ORAC tests for the five matrices under study. As a result, all the matrices under study show antioxidant capacity, so they can all be considered bioactive against oxidative stress. It is worthwhile to highlight the case of the SM extract, which obtained the highest values for the four tests. In addition, a general trend showing that the higher the content of TPC, the greater the capacity for the transfer of electrons and H atoms can be observed, confirming previous studies [31]. This is also in agreement with the findings in the case of the HS extract, which presented the lowest values in the four assays. It is important to note that there is no universal method for measuring antioxidant capacity, as different methods can measure various mechanisms of action. For instance, assays like FRAP and TEAC are based on single electron transfer (SET), employing indirect and direct approaches, respectively. On the other hand, the ORAC method relies on hydrogen atom transfer (HAT), which is similar to both electron transfer and hydrogen atom transfer. Choosing different assays to evaluate antioxidant activity can offer a comprehensive prediction of this bioactive potential, providing complementary information [32].

Table 2. Evaluation of total phenolic content and antioxidant capacity of extracts.

Sample	TPC (mg GAE/g DE)	FRAP (mmol Fe ²⁺ /g DE)	TEAC (mmol TE/g DE)	ORAC (mmol TE/g DE)
Т. сасао	255 ± 12 a	1.38 ± 0.09 b,c	1.25 ± 0.08 a	2.35 ± 0.09 ^c
H. sabdariffa	51 ± 1 ^d	$0.47 \pm 0.05 ^{\mathrm{d}}$	$0.24\pm0.02~^{\rm c}$	1.16 ± 0.03 ^d
S. marianum	617 ± 8 b	$1.4 \pm 0.3 ^{\mathrm{a,b,c,d}}$	1.3 ± 0.1 a	11.7 ± 0.3 b
L. citriodora	$344\pm15^{\text{ c}}$	2.4 ± 0.2 a	$1.15 \pm 0.08~^{\mathrm{a}}$	5.9 ± 0.2 a
О. еигораеа	216 ± 28 a	1.65 ± 0.10 a,b	0.84 ± 0.05 b	6.0 ± 0.2 a

TPC: Total Polar Compounds; FRAP: Ferric Reducing Antioxidant Power Assay; TEAC: Trolox Equivalent Antioxidant Capacity; ORAC: Oxygen Radical Absorbance Capacity; GAE: Gallic Acid Equivalent; DE: Dry Extract; TE: Trolox Equivalent. Data are means \pm standard deviation (n = 3). Different letters represent statistically significant differences at p < 0.05 level.

Table 3 reveals the amount of extract required to inhibit half the concentration of reactive species (IC_{50}).

Table 3. Evaluation of radical scavenging of controls and extracts.

Sample	\cdot O $_2^-$ (mg/L) 1	·NO (mg/L) 1	HOCl (mg/L) 1
Т. сасао	$29.7\pm0.4~^{\rm c}$	$0.42 \pm 0.02^{\ b}$	$0.71 \pm 0.02^{\ \mathrm{b}}$
H. sabdariffa	50 ± 2^{a}	10.3 ± 1.0 ^c	1.32 ± 0.04 ^d
S. marianum	57 ± 6 ^a	5.0 ± 0.8 a	0.70 ± 0.01 b
L. citriodora	n.d.	3.76 ± 0.08 a	3.5 ± 0.4 a
O. europaea	269 ± 17 ^d	3.0 ± 0.2 a	16 ± 2 ^c
Gallic acid	50 ± 3 a	1.4 ± 0.3 b	3.8 ± 0.3 a
Epicatechin	70 ± 5^{b}	$0.87 \pm 0.02^{\ b}$	0.18 ± 0.01 e

Data are means \pm standard deviation (n = 3). ¹ Inhibitory Concentration at 50%. Different letters represent statistically significant differences at p < 0.05 level. n.d.: no data.

The intracellular accumulation of ROS, which occurs in cells under oxidative stress, is responsible for several chronic pathologies, including cancer, neurodegenerative or cardiovascular pathologies [33]. Thus, Reuter et al. (2010) revealed that oxidative stress

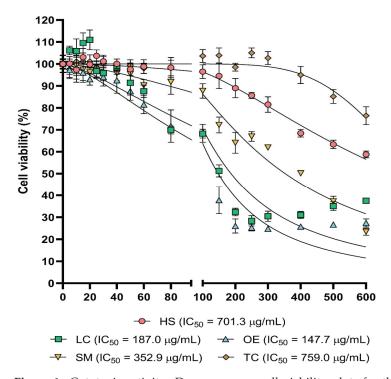
can activate several transcription factors, which can lead to the expression of more than 500 different inflammation-related genes [34]. The activation of this entire cascade can lead to chronic inflammation, which in turn may mediate most chronic diseases, including cancer, diabetes, cardiovascular, neurological, and pulmonary diseases [34]. In this regard, phenolic compounds have been shown to have a potent antioxidant effect because their chemical structure means they can eliminate ROS, and their antioxidant capacity is therefore related to the other properties of this type of compound, such as anti-inflammatory and neuroprotective properties.

In relation to radical scavenging assays, with the exception of LC and OE for the $\cdot O_2^-$ assay, all showed bioactivity. TC presented the best IC₅₀ value for all the radical scavenging tests, being significantly better than the other extracts. This indicates that the types of phenolic compounds present in TC have a higher anti-radical power than those present in OE for the $\cdot O_2^-$ and HOCl test and that the HS for the \cdot NO test presented the highest IC₅₀ values. For these tests, epicatechin (EPI) and gallic acid (GA) were used as standard controls, listed in Table 3. It is observed that, especially in the HOCl assay, EPI has significantly better values compared to the five plant matrices, which is related to the TC extract being one of the lowest as this extract has a high EPI content.

3.2.2. Evaluation of Enzymatic Inhibition Capacity

Table 4 presents the inhibitory effect of the five extracts under study on the hyaluronidase, XOD, tyrosinase, elastase, and collagenase enzymes and the positive control used for each enzyme. As mentioned above, phenolic compounds are involved in the regulation of the level of reactive species. In this sense, the excess of these reactive species can lead to excessive activation and dysregulation of different enzymes studied in this work. For instance, the enzyme XOD is a dehydrogenase responsible for catalyzing hypoxanthine to xanthine and subsequently to the oxidation of uric acid. However, when oxidative stress is present, XOD is transformed into an oxidase, which leads to the production of superoxide radicals and causes many inflammatory diseases [35].

Table 4. Evaluation of en	zymatic inhibition capac	ity of controls and	d extracts.
	J 1	J	


Sample	Hyaluronidase (mg/L) ¹	XOD (mg/L)	Tyrosinase (% inh.) ²	Elastase (% inh.) ³	Collagenase (mg/L) ¹	AChE (mg/L) ¹
Т. сасао	12 ± 2 ^a	n.d.	28 ± 8 a,b,c	23 ± 4 ^{b,c,d}	156 ±1 ^b	244 ± 9 ^a
H. sabdariffa	66 ± 6 ^d	n.d.	$5\pm2^{\rm \ c}$	44.1 ± 0.5 a,b,c,d	$1190 \pm 35^{\text{ b}}$	n.d.
S. marianum	4.9 ± 0.4 a	4.4 ± 0.4 a	39 ± 4 ª	n.d.	56 ± 3 ^b	$1259 \pm 53^{\text{ b}}$
L. citriodora	87 ± 5 ^c	3.2 ± 0.4 a,b	$17\pm2^{\mathrm{b,c}}$	48 ± 3 a	$633 \pm 27^{\ a}$	316 ± 4 ^c
O. europaea	$187\pm5^{\text{ b}}$	$2.3 \pm 0.3^{\ b}$	28 ± 3 ^{a,b}	25 ± 3 b,c,d	618 ± 9 a	$373 \pm 6^{\text{ d}}$
Gallic acid	102 ± 4^{4}	n.d.	n.d.	n.d.	n.d.	n.d.
Epicatechin	167 \pm 6 4	9 ± 1 °	n.d.	n.d.	n.d.	n.d.
Physostigmine	n.d.	n.d.	n.d.	n.d.	n.d.	0.043 ± 0.004 ⁶
1,10-phenanthroline	n.d.	n.d.	n.d.	n.d.	83 \pm 2 5	n.d.
Elastatinal (51.26 ppm)	n.d.	n.d.	n.d.	53 ± 5	n.d.	n.d.
Kojic acid (21.3 ppm)	n.d.	n.d.	49 ± 6	n.d.	n.d.	n.d.

Data are means \pm standard deviation (n = 3). 1 Inhibitory Concentration at 50%. 2 At 500 mg/L. 3 At 1000 mg/L. 4 Inhibitory Concentration at 20%. 5 % Inhibition. 6 Inhibitory Concentration at 90%. Different letters represent statistically significant differences at p < 0.05 level. n.d.: no data.

In the case of the hyaluronidase assay, all matrices under study show bioactivity. Nevertheless, SM has been shown to be the most bioactive, while OE is significantly less so. For the enzyme XOD, the lowest IC $_{50}$ value corresponds to OE, while TC and HS did not even reach this 50% inhibition. Furthermore, when compared to the positive control used, EPI, both SM and LC, and OE have a more significant ability to inhibit the enzyme. The tyrosinase inhibition assay shows the % inhibition of the enzyme at 500 mg/L, with SM showing the highest activity and HS the lowest and with the other three extracts being similar in terms of inhibition. In the elastase assay, the results were expressed as % inhibition of the enzyme at 1000 mg/L, with the LC extract having the highest inhibitory power, while SM is not able to inhibit. Thus, in this case, with the exception of SM, all the extracts showed bioactivity. Finally, in the collagenase assay, the five matrices under study were able to inhibit collagenase, highlighting, in this case, SM since, when compared to HS, which is the least bioactive, there is a big difference in the dose needed to inhibit the enzyme at 50%.

3.2.3. Cellular Assays to Measure Antioxidant Capacity

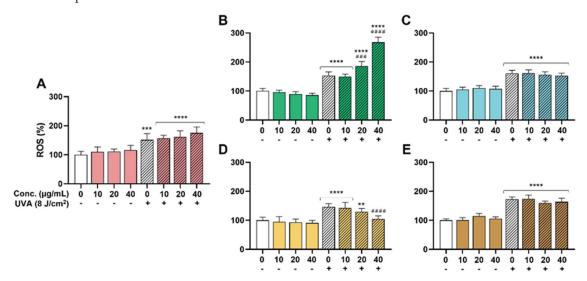

The cytotoxic effects of the extracts in HaCaT cells were plotted in Figure 1 (Statistical significance for Figure 1 was included in Table S6). DMSO was used as a vehicle to solubilize the extracts and not alter cell viability, even at the highest used concentration (Table S7).

Figure 1. Cytotoxic activity. Dose–response cell viability plots for the five extracts tested. Cell viability values were obtained as described in methods section. Statistical significance was included in Table S6.

LC and OE extracts exhibited the highest cytotoxicity, and both treatments resulted in a statistically significant reduction in cell viability from 40 $\mu g/mL$. IC $_{50}$ was estimated as 187 $\mu g/mL$ for LC and 147.4 $\mu g/mL$ for OE. In the case of the SM extract, cytotoxic effects were statistically significant from 60 $\mu g/mL$, and IC $_{50}$ was 352.9 $\mu g/mL$. With the HS treatment, cell viability was decreased from 200 $\mu g/mL$ with statistical significance, and calculated IC $_{50}$ was 701.3 $\mu g/mL$ for this extract, which did not reduce cell viability in a significant manner up to 400 $\mu g/mL$ and whose IC $_{50}$ was 759 $\mu g/mL$.

The effectiveness of the extracts as antioxidant ingredients was explored in the HaCaT model due to the significant role of oxidative stress on skin health and aging. UVA was chosen as a well-known inductor of ROS generation and oxidative stress in the skin [36]. On the one hand, as shown in Figure 2, none of the extracts were able to reduce the basal oxidative stress in the absence of UVA. On the other hand, UVA radiation increased the presence of ROS in a significant way in all the conditions, and only the SM extract was able to decrease these ROS levels in a dose-dependent manner. Pretreatment with 20 μ g/mL of SM reduced the increment in ROS levels from 146% (untreated but irradiated condition) to 129%. A statistically significant reduction to 105% ROS was evidenced for 40 μ g/mL (Figure 2D, ####, p < 0.0001). Apparently, the rest of the extracts (HS, OE, LC, and TC) did not prevent the oxidative action of UVA. Furthermore, the LC extract exhibited a significant prooxidant effect at 20 and 40 μ g/mL, probably related to a phototoxic effect of some of its components.

Figure 2. Antioxidant activity. ROS levels were measured as described in methods section. Significance was established at p < 0.05. ** (p < 0.01), *** (p < 0.001), and **** (p < 0.0001) are in the figures and indicate statistically significant differences compared to the nontreated and nonirradiated control. ### (p < 0.001), and #### (p < 0.0001) indicate statistically significant differences compared to the nontreated irradiated control. (**A**): *Hibiscus sabdariffa*; (**B**): *Lippia citriodora*; (**C**): *Olea europaea*; (**D**): *Silybum marianum*; (**E**): *Theobroma cacao*.

3.3. Evaluation of the Neuroprotective Effect of the Extracts

There is a close link between the ability of phenolic compounds to exert their neuroprotective effect through their antioxidant and free radical scavenging action and their ability to inhibit enzymes involved in neurodegenerative diseases, such as AChE [8].

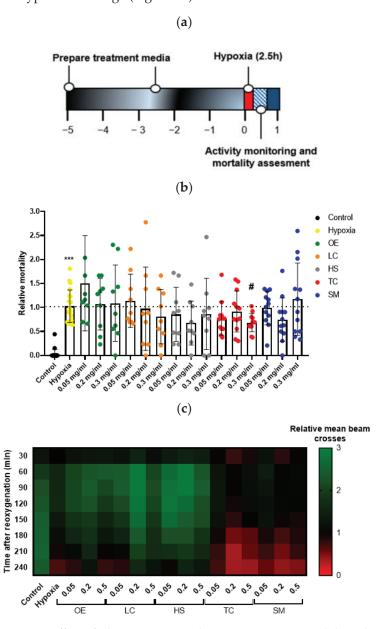

3.3.1. Evaluation of Acetylcholinesterase (AChE) Inhibition Capacity

Table 4 shows the inhibitory effect of the extracts on AChE, showing that the lowest extract concentration to inhibit 50% of the enzymatic activity was for the TC extract, followed by LC, OE, and SM extracts. The HS extract did not even reach 50% of the enzymatic activity at very high doses of concentration. Thus, with the exception of HS, all showed bioactivity against enzyme inhibition.

3.3.2. Effect of Supplementation with Different Plant Extracts on Hypoxia–Reoxygenation Injury in *D. melanogaster*

Hypoxic stress is known to produce injury in flies. The drosophila model does not reproduce some aspects of human brain ischemia because of its primitive blood system (blood vessels are lacking, and there is no lymphoid blood cell lineage). However, the model recapitulates important pathogenic features when subjected to hypoxia, such as increased

activation of brain caspases, locomotor deficiencies, and mortality [37]. Moreover, increases in several oxidative stress markers and changes in metabolic activity have been observed in flies subjected to hypoxia [27]. Therefore, the use of this screening model provides an easy and convenient way of testing antioxidant compounds, such as polyphenols. To investigate the influence of hypoxia–reoxygenation injury in Drosophila, treated flies were subjected to hypoxic stress for 2.5 h under controlled conditions (1% O₂; 25 °C; 30–40% relative humidity) (Figure 3a). As expected, flies in the hypoxia group showed a significant increase in mortality compared to the control group 4 h after reoxygenation. Treatment with the extract TC at the higher concentration resulted in a significant increase in fly survival after the hypoxia challenge (Figure 3b).

Figure 3. Effect of plant extract supplementation on Drosophila melanogaster exposed to severe hypoxia. (a) Schematic illustration of the hypoxia protocol in flies. (b) Effect of the treatment on fly survival after exposure to 1% O₂ for 2.5 h. Data were analyzed using one-way ANOVA test followed by Dunnett's multiple comparisons test *** p < 0.001 vs. control; # p < 0.05 vs. hypoxia. (c) Heatmap displaying the locomotor activity of treated flies. Flies were transferred into the monitor immediately after hypoxia and the activity was recorded for 240 min after reperfusion. Each cell shows the mean beam crosses per fly in the group.

We also studied fly behavior by quantifying animal movement for 4 h after hypoxia. While control flies moved uniformly over time, flies in the hypoxia group showed a reduction in locomotor activity, indicated by fewer beam crosses, which were more evident after 120–150 min of reoxygenation, revealing that the reperfusion injury worsened fly behavior. However, treatment with TC could not recover the loss of locomotor activity induced by hypoxia (Figure 3c).

The results obtained show that there is no single matrix that stands out for its bioactivity in all the tests, but rather, depending on the bioactive target and the assay in question, there are matrices that stand out. Still, the rest, with a few exceptions, also show bioactivity. This shows that despite the structural diversity present in the different families of phenolic compounds, they all show high bioactivity; it is the combination of these compounds that gives them their pleiotropic character.

4. Discussion

The extracts under study have been characterized, giving a wide range of phenolic compounds, some of which are characteristic of each of the matrices and a minority of which are common among the different matrices (Table 1). Although most of the compounds are not common, all matrices have bioactive potential against the targets under study, so the differences in potential between them may be mainly due to these specific compounds being in each of the matrices and also due to the differences in the ratio between them.

When we pay attention to the results of the antioxidant tests for TPC and FRAP, TEAC, and ORAC (Table 2), the higher the TPC, the greater the antioxidant power shown in the tests. Thus, HS has the lowest TPC and the lowest value in the other antioxidant test values, while SM has the highest TPC content and high values in the rest of the tests measuring antioxidant power. This relationship is consistent with the tests carried out by Aroso et al. (2017) [38], in which there is also a positive relationship between the TPC content and the tests measuring antioxidant power.

In the case of the other three remaining plant matrices, they have intermediate values for the results of the TPC and FRAP, TEAC, and ORAC assays. For the FRAP assay, the matrices TC, SM, and OE showed very similar values. This may be due to the fact that there are similar compounds in their composition. For example, both TC and OE have epigallocatechin [39], a compound that has been shown to have a potent action in the FRAP assay. In contrast, SM, with its high content of flavolignans such as silybin A and B, has also been shown to have a potent action in the FRAP assay [40]. In the case of the ORAC assay, the matrices LC and OE obtained a similar and high value, which may be due to the fact that both matrices share the most compounds in their composition, like verbascoside, which has been shown to be potent in proton transfer, the mechanism of action on which this antioxidant capacity test is based [41].

In the case of cellular assays in HaCaT cells, TC, OE, and SM extracts were able to decrease ROS levels; however, the only one that achieved this in a dose-dependent manner was SM. This is in agreement with Svobodová et al. (2007) [42], who found that flavonolignans present in the SM extract suppress UVA-induced oxidative stress in HaCaT cells, making this extract potentially useful in the treatment of UVA-induced skin damage.

In relation to the tests to measure the capacity to eliminate specific ROS and RNS, for the $\cdot O_2^-$ radical test, the HS and SM matrices obtained a similar IC₅₀ value, which is also similar to the value obtained for the gallic acid standard. Table 1 shows that the compounds that these two matrices have in common include chlorogenic acid and quercetin glucoside. In this sense, there are studies that demonstrate the high power of chlorogenic acid [43], quercetin glucoside [44], and gallic acid [45] for the uptake of the superoxide radical, which is in agreement with the results obtained.

In the test to eliminate HOCl, TC and SM were the ones that obtained the lowest IC50. Despite the difference in phenolic composition, they achieved similar results. TC extract has a high epigallocatechin and epicatechin content. As shown in Table 3, epicatechin has a high free radical scavenging power, with its power in the HOCl scavenging test standing

out, where it has more power than even the whole TC extract. This is supported by different studies showing the high power of TC extract to scavenge free radicals [46]. Furthermore, He et al. (2018) evaluated the power of different catechins against radicals, and they found that epigallocatechin gallate possessed the highest radical scavenging power, followed by epigallocatechin, epicatechin, and catechin in descending order of power. This suggests that the effect of these compounds is strongly related to the structure of catechins, mainly due to the hydroxyl and galloyl groups [47]. For SM, silybin has shown potent action for HOCl removal [48].

In the case of the XOD enzyme, the OE and LC extracts have been shown to have potent inhibitory power. Both extracts share compounds such as verbascoside, the main bioactive compound present in LC. This compound was shown to be a potent inhibitor of the XOD enzyme, as verbascoside is able to enter the active site of XOD and form hydrogen bonds with amino acid residues (such as Lys-1045, Arg-880, Arg-912, Glu-1261, and Gln-1194) [49].

Within the enzymes involved in maintaining skin firmness, hyaluronidase, elastase, and collagenase, there is no single matrix that stands out for all of them. For both hyaluronidase and collagenase, the TC and SM matrices have the lowest IC_{50} values. Thus, in the case of TC, the content of compounds from the flavan-3-ols group was shown to be potent inhibitors of these three enzymes involved in the loss of elasticity and firmness of the skin [50]. For SM, the main group of compounds are flavolignans, which have also been shown to have a potent inhibitory action on the aforementioned enzymes. This shows that phenolic compounds from different groups and, therefore, with different chemical properties can exert the same bioactive effect [51].

The mechanism of action by which the polyphenols present in our matrices have the ability to inhibit enzymes would be the next step in our research. There are in silico studies—using different phenolic compounds that have been tested on the enzymes—for example, the inhibition of rosmarinic acid against human hyaluronidase. Molecular docking studies revealed that rosmarinic acid is bounded to the hyaluronidase binding pocket with four binding interactions [52]. In our study, the hyaluronidase used was not human but bovine, but these are highly phylogenetically conserved proteins [53]. Another compound that has been tested in silico against collagenase, elastase, and tyrosinase enzymes is caffeine, which was shown to form a stable protein–ligand complex validated by molecular dynamics simulation. Thus, the potential of phenolic compounds in the inhibitory action of these enzymes is shown [54].

Finally, the neuroprotective effect of the different extracts was evaluated in both in vitro and in vivo assays. In the case of the in vitro AChE enzyme inhibition assay, the extract with the highest enzyme inhibitory capacity was TC, followed by LC and OE extracts with a similar IC_{50} value. In the case of the in vivo assay in which the survival of flies after hypoxia challenge was measured, it was TC that significantly improved survival. The TC extract is high in epigallocatechin and epicatechin, compounds that have been shown to be potent inhibitors of AChE [55,56]. The similar inhibition of LC and OE at doses slightly higher than TC may be due to their high presence of flavonoid glycosides, which are considered essential for AChE inhibition [57].

The results highlight the importance of reporting the bioactive properties of plant extracts according to their phenolic composition and not simply their total phenolic content, as many of the bioactive properties can be related to a particular phenolic type or phenolic family or to the synergistic action of them.

In this context, when exploring the potential use of bioactive compounds, such as phenolic compounds, for health improvement, utilizing combined plant extracts becomes intriguing. A rich array of phenolic compounds from diverse sources could offer broader benefits to the organism, leveraging the potential synergistic effects arising from different types of phenolic compounds [58]. Therefore, plant extracts with this bioactive potential could be used for the development of nutraceuticals for the prevention of diseases related to metabolic stress and inflammation [59]. Additionally, these extracts could be em-

ployed in nutricosmetics, as the main enzymes evaluated—such as tyrosinase, collagenase, and hyaluronidase—are associated with maintaining skin color, elasticity, and hydration, respectively [60].

5. Conclusions

In this study, the antioxidant, anti-inflammatory, and neuroprotective effects of five plant extracts showing different phenolic compositions have been evaluated by means of different assays in order to assess the relationship between the presence of different types of phenolic compounds and their bioactivity. This study shows that not all extracts that are rich in phenolic compounds show the same bioactivities in the assays used, but, depending on their phenolic composition, there are extracts with greater or lesser bioactive potential against different targets. In general, it is observed that when there are common phenolic compounds in the different extracts, some of the bioactive capacities are similar, as has been observed in the case of LC and OE. Nevertheless, the greatest bioactive difference has been observed when comparing the richness of the families of phenolic compounds, so the SM extract, rich in flavolignans such as silybin, are shown to possess a high antioxidant capacity in both spectrophotometric and cellular assays. It also proved to be a potent inhibitor of tyrosinase, hyaluronidase, and collagenase. In contrast, in other bioactivity tests measuring free radical scavenging capacity and neuroprotective effect through inhibition of the enzyme AChE and survival in flies subjected to hypoxia stress, it was the TC extract that stood out, possibly due to its high presence in compounds of the flavan-3-ol family, such as epigallocatechin and epicatechin. In future studies, it would be interesting to study the relationship between the phenolic composition of the matrices and the macronutrients present in the same matrices, with the aim of evaluating whether these interactions affect the hypoactivity of the phenolic compounds. Thus, this work demonstrates that phenolic compounds present in different matrices have common bioactive properties and that the abundance of different families of phenolic compounds makes them stand out with higher bioactivity against different biological targets.

Supplementary Materials: The following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/antiox13020217/s1, Figure S1. Base peak chromatogram from the extracts. A. *T. cacao*. B. *H. sabdariffa*. C. *S. marianum*. D. *L. citriodora*. E. *O. europaea*; Table S1. Identification of phytochemical compounds in *T. cacao* extract by HPLC-ESI-qTOF-MS; Table S2. Identification of phytochemical compounds in *H. sabdariffa* extract by HPLC-ESI-qTOF-MS; Table S3. Identification of phytochemical compounds in *S. marianum* extract by HPLC-ESI-qTOF-MS; Table S4. Identification of phytochemical compounds in *L. citriodora* extract by HPLC-ESI-qTOF-MS; Table S5. Identification of phytochemical compounds in *O. europaea* extract by HPLC-ESI-qTOF-MS; Table S6. Numerical results (mean and SD) and statistical significance for Figure 1 results; Table S7. Equivalent DMSO concentrations for each extract concentration.

Author Contributions: Conceptualization, M.d.C.V.-A. and M.d.I.L.C.-G.; methodology, M.d.C.V.-A., N.S.-M. and C.D.R.; software, M.d.C.V.-A., N.S.-M., Á.F.-O., C.D.R. and M.H.-L.; investigation, M.d.C.V.-A., N.S.-M. and C.D.R.; resources, V.M., E.B.-C., D.A.-R. and A.S.-C.; data curation, M.d.C.V.-A., N.S.-M., M.d.I.L.C.-G., Á.F.-O., C.D.R., J.M. and M.H.-L.; writing—original draft preparation, M.d.C.V.-A.; writing—review and editing, M.d.I.L.C.-G., Á.F.-O. and E.B.-C.; visualization, M.d.I.L.C.-G., Á.F.-O. and J.M.; supervision, M.d.I.L.C.-G., Á.F.-O., J.M. and M.H.-L.; project administration, V.M., E.B.-C., D.A.-R. and A.S.-C. funding acquisition, V.M., E.B.-C., D.A.-R. and A.S.-C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: This work was supported by the project RTI2018-096724-B-C21 and RTI2018-096724-B-C22 (Ministry of Science, Innovation and Universities). M.d.C.V.-A. thanks the Spanish Ministry of Science, Innovation, and Universities for the grant FPU19/01146. M.d.I.L.C.-G. thanks her contract RYC2021-032119-I founded by MCIN/AEI/10.13039/501100011033 and NextGenerationEU/PRTR. This work was also supported by the Official Funding Agency for Biomedical Research of the Spanish Government, Institute of Health Carlos III (ISCIII) through CIBEROBN (CB12/03/30038), which is co-funded by the European Regional Development Fund. C.R. received financial support from the Sara Borrell program funded by ISCIII, grant number CD21/00148. M.H.-L. and E.B.-C. were supported by the "Requalification for university teachers grant" from the Spanish Ministry of Universities and European Union Next Generation program.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Ambra, R.; Pastore, G.; Lucchetti, S. The Role of Bioactive Phenolic Compounds on the Impact of Beer on Health. *Molecules* **2021**, 26, 486. [CrossRef]
- 2. Perez-Gregorio, R.; Simal-Gandara, J. A Critical Review of Bioactive Food Components, and of Their Functional Mechanisms, Biological Effects and Health Outcomes. *Curr. Pharm. Des.* **2017**, *23*, 2731–2741. [CrossRef]
- 3. Vuolo, M.M.; Lima, V.S.; Maróstica Junior, M.R. Phenolic Compounds. In *Bioactive Compounds*; Elsevier: Amsterdam, The Netherlands, 2019; pp. 33–50. ISBN 9780128147757.
- 4. Wojdylo, A.; Oszmianski, J.; Czemerys, R. Antioxidant Activity and Phenolic Compounds in 32 Selected Herbs. *Food Chem.* **2007**, 105, 940–949. [CrossRef]
- 5. Brahmi, F.; Nury, T.; Debbabi, M.; Hadj-Ahmed, S.; Zarrouk, A.; Prost, M.; Madani, K.; Boulekbache-Makhlouf, L.; Lizard, G. Evaluation of Antioxidant, Anti-Inflammatory and Cytoprotective Properties of Ethanolic Mint Extracts from Algeria on 7-Ketocholesterol-Treated Murine RAW 264.7 Macrophages. *Antioxidants* 2018, 7, 184. [CrossRef]
- 6. Ambriz-Pérez, D.L.; Leyva-López, N.; Gutierrez-Grijalva, E.P.; Heredia, J.B. Phenolic Compounds: Natural Alternative in Inflammation Treatment. A Review. *Cogent. Food Agric.* **2016**, *2*, 1131412. [CrossRef]
- 7. Luo, J.; Si, H.; Jia, Z.; Liu, D. Dietary Anti-Aging Polyphenols and Potential Mechanisms. Antioxidants 2021, 10, 283. [CrossRef]
- 8. Kovacsova, M.; Barta, A.; Parohova, J.; Vrankova, S.; Pechanova, O. Neuroprotective Mechanisms of Natural Polyphenolic Compounds. *Act. Nerv. Super. Rediviva* **2010**, *52*, 181–186.
- 9. Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant Activity and Phenolic Compounds of 112 Traditional Chinese Medicinal Plants Associated with Anticancer. *Life Sci.* **2004**, *74*, 2157–2184. [CrossRef] [PubMed]
- 10. Coman, V.; Teleky, B.E.; Mitrea, L.; Martău, G.A.; Szabo, K.; Călinoiu, L.F.; Vodnar, D.C. Bioactive Potential of Fruit and Vegetable Wastes. In *Advances in Food and Nutrition Research*; Academic Press Inc.: Cambridge, MA, USA, 2020; Volume 91, pp. 157–225. ISBN 9780128204702.
- 11. Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural Products in Drug Discovery: Advances and Opportunities. *Nat. Rev. Drug Discov.* **2021**, *20*, 200–216. [CrossRef] [PubMed]
- 12. Shi, R.; Gao, D.; Stoika, R.; Liu, K.; Sik, A.; Jin, M. Potential Implications of Polyphenolic Compounds in Neurodegenerative Diseases. *Crit. Rev. Food Sci. Nutr.* **2022**, 1–24. [CrossRef] [PubMed]
- 13. Zhang, S.; Yu, Z.; Xia, J.; Zhang, X.; Liu, K.; Sik, A.; Jin, M. Anti-Parkinson's Disease Activity of Phenolic Acids from: *Eucommia ulmoides* Oliver Leaf Extracts and Their Autophagy Activation Mechanism. *Food Funct.* **2020**, *11*, 1425–1440. [CrossRef] [PubMed]
- 14. Li, X.; Gao, D.; Paudel, Y.N.; Li, X.; Zheng, M.; Liu, G.; Ma, Y.; Chu, L.; He, F.; Jin, M. Anti-Parkinson's Disease Activity of *Sanghuangprous vaninii* Extracts in the MPTP-Induced Zebrafish Model. *ACS Chem. Neurosci.* **2022**, *13*, 330–339. [CrossRef] [PubMed]
- 15. Xu, D.; Hu, M.-J.; Wang, Y.-Q.; Cui, Y.-L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. *Molecules* **2019**, 24, 1123. [CrossRef] [PubMed]
- 16. Fan, M.; Zhang, G.; Hu, X.; Xu, X.; Gong, D. Quercetin as a Tyrosinase Inhibitor: Inhibitory Activity, Conformational Change and Mechanism. *Food Res. Int.* **2017**, *100*, 226–233. [CrossRef] [PubMed]
- 17. Jan, R.; Khan, M.; Asaf, S.; Lubna; Asif, S.; Kim, K.-M. Bioactivity and Therapeutic Potential of Kaempferol and Quercetin: New Insights for Plant and Human Health. *Plants* **2022**, *11*, 2623. [CrossRef] [PubMed]
- 18. Villegas-Aguilar, M.d.C.; Leyva-Jiménez, F.J.; Cádiz-Gurrea, M.d.l.L.; Segura-Carretero, A.; Arráez-Román, D. Comprehensive Analysis of Antioxidant Compounds from *Lippia citriodora* and *Hibiscus sabdariffa* Green Extracts Attained by Response Surface Methodology. *Antioxidants* **2020**, *9*, 1175. [CrossRef] [PubMed]
- 19. Blainski, A.; Lopes, G.; de Mello, J. Application and Analysis of the *Folin ciocalteu* Method for the Determination of the Total Phenolic Content from *Limonium brasiliense* L. *Molecules* **2013**, *18*, 6852–6865. [CrossRef] [PubMed]
- 20. Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of "Antioxidant Power": The FRAP Assay. *Anal. Biochem.* **1996**, 239, 70–76. [CrossRef]
- 21. Zulueta, A.; Esteve, M.J.; Frígola, A. ORAC and TEAC Assays Comparison to Measure the Antioxidant Capacity of Food Products. *Food Chem.* **2009**, *114*, 310–316. [CrossRef]

- Rojas-García, A.; Fuentes, E.; Cádiz-Gurrea, M.d.l.L.; Rodriguez, L.; Villegas-Aguilar, M.D.C.; Palomo, I.; Arráez-Román, D.; Segura-Carretero, A. Biological Evaluation of Avocado Residues as a Potential Source of Bioactive Compounds. *Antioxidants* 2022, 11, 1049. [CrossRef]
- 23. Nema, N.K.; Maity, N.; Sarkar, B.K.; Mukherjee, P.K. Matrix Metalloproteinase, Hyaluronidase and Elastase Inhibitory Potential of Standardized Extract of *Centella asiatica*. *Pharm. Biol.* **2013**, *51*, 1182–1187. [CrossRef] [PubMed]
- Kumar, J.P.; Mandal, B.B. Inhibitory Role of Silk Cocoon Extract against Elastase, Hyaluronidase and UV Radiation-Induced Matrix Metalloproteinase Expression in Human Dermal Fibroblasts and Keratinocytes. *Photochem. Photobiol. Sci.* 2019, 18, 1259–1274. [CrossRef] [PubMed]
- 25. Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. *Biochem. Pharmacol.* **1961**, *7*, 88–95. [CrossRef] [PubMed]
- 26. Cooper, K.L.; Liu, K.J.; Hudson, L.G. Enhanced ROS Production and Redox Signaling with *Combined arsenite* and UVA Exposure: Contribution of NADPH Oxidase. *Free Radic. Biol. Med.* **2009**, 47, 381–388. [CrossRef] [PubMed]
- 27. Habib, P.; Jung, J.; Wilms, G.M.; Kokott-Vuong, A.; Habib, S.; Schulz, J.B.; Voigt, A. Posthypoxic Behavioral Impairment and Mortality of Drosophila Melanogaster Are Associated with High Temperatures, Enhanced Predeath Activity and Oxidative Stress. *Exp. Mol. Med.* **2021**, *53*, 264–280. [CrossRef] [PubMed]
- 28. Vigne, P.; Tauc, M.; Frelin, C. Strong Dietary Restrictions Protect Drosophila against Anoxia/Reoxygenation Injuries. *PLoS ONE* **2009**, *4*, e5422. [CrossRef]
- 29. García-Rodríguez, P.; Ma, F.; del Río, C.; Romero-Bernal, M.; Najar, A.M.; Cádiz-Gurrea, M.d.l.L.; Leyva-Jimenez, F.J.; Ramiro, L.; Menéndez-Valladares, P.; Pérez-Sánchez, S.; et al. Diet Supplementation with Polyphenol-Rich Salicornia Ramosissima Extracts Protects against Tissue Damage in Experimental Models of Cerebral Ischemia. *Nutrients* 2022, 14, 5077. [CrossRef]
- 30. Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed Minimum Reporting Standards for Chemical Analysis. *Metabolomics* **2007**, *3*, 211–221. [CrossRef]
- 31. Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; van Camp, J.; Alasalvar, C.; Ismail, A.B.; et al. Antioxidant Activity, Total Phenolics and Flavonoids Contents: Should We Ban in Vitro Screening Methods? *Food Chem.* **2018**, 264, 471–475. [CrossRef]
- 32. Morales-Soto, A.; García-Salas, P.; Rodríguez-Pérez, C.; Jiménez-Sánchez, C.; Cádiz-Gurrea, M.d.l.L.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Antioxidant Capacity of 44 Cultivars of Fruits and Vegetables Grown in Andalusia (Spain). *Food Res. Int.* **2014**, *58*, 35–46. [CrossRef]
- 33. Fischer, B.; Voynow, J.; Ghio, A. COPD: Balancing Oxidants and Antioxidants. *Int. J. Chron. Obstruct. Pulmon. Dis.* **2015**, 10, 261–276. [CrossRef] [PubMed]
- 34. Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative Stress, Inflammation, and Cancer: How Are They Linked? *Free Radic. Biol. Med.* **2010**, *49*, 1603–1616. [CrossRef] [PubMed]
- 35. Wu, Z.; Zhang, H.; Li, F.; Yang, F. Evaluation of Xanthine Oxidase Inhibitory Activity of Flavonoids by an Online Capillary Electrophoresis-based Immobilized Enzyme Microreactor. *Electrophoresis* **2020**, *41*, 1326–1332. [CrossRef] [PubMed]
- 36. Chen, J.; Liu, Y.; Zhao, Z.; Qiu, J. Oxidative Stress in the Skin: Impact and Related Protection. *Int. J. Cosmet. Sci.* **2021**, 43, 495–509. [CrossRef] [PubMed]
- 37. Xia, Y.; Xu, W.; Meng, S.; Lim, N.K.H.; Wang, W.; Huang, F.-D. An Efficient and Reliable Assay for Investigating the Effects of Hypoxia/Anoxia on Drosophila. *Neurosci. Bull.* **2018**, *34*, 397–402. [CrossRef] [PubMed]
- 38. Aroso, I.M.; Araújo, A.R.; Fernandes, J.P.; Santos, T.; Batista, M.T.; Pires, R.A.; Mano, J.F.; Reis, R.L. Hydroalcoholic Extracts from the Bark of *Quercus suber* L. (Cork): Optimization of Extraction Conditions, Chemical Composition and Antioxidant Potential. *Wood Sci. Technol.* **2017**, *51*, 855–872. [CrossRef]
- 39. Xu, J.Z.; Yeung, S.Y.V.; Chang, Q.; Huang, Y.; Chen, Z.-Y. Comparison of Antioxidant Activity and Bioavailability of Tea Epicatechins with Their Epimers. *Br. J. Nutr.* **2004**, *91*, 873–881. [CrossRef] [PubMed]
- 40. Viktorova, J.; Stranska-Zachariasova, M.; Fenclova, M.; Vitek, L.; Hajslova, J.; Kren, V.; Ruml, T. Complex Evaluation of Antioxidant Capacity of Milk Thistle Dietary Supplements. *Antioxidants* **2019**, *8*, 317. [CrossRef]
- 41. Aldini, G.; Piccoli, A.; Beretta, G.; Morazzoni, P.; Riva, A.; Marinello, C.; Maffei Facino, R. Antioxidant Activity of Polyphenols from Solid Olive Residues of c.v. Coratina. *Fitoterapia* **2006**, *77*, 121–128. [CrossRef]
- 42. Svobodová, A.; Zdařilová, A.; Walterová, D.; Vostálová, J. Flavonolignans from *Silybum marianum* Moderate UVA-Induced Oxidative Damage to HaCaT Keratinocytes. *J. Dermatol. Sci.* **2007**, *48*, 213–224. [CrossRef]
- 43. Xi, Y.; Jiao, W.; Cao, J.; Jiang, W. Effects of Chlorogenic Acid on Capacity of Free Radicals Scavenging and Proteomic Changes in Postharvest Fruit of Nectarine. *PLoS ONE* **2017**, *12*, e0182494. [CrossRef]
- 44. Suh, H.J.; Lee, J.M.; Cho, J.S.; Kim, Y.S.; Chung, S.H. Radical Scavenging Compounds in Onion Skin. *Food Res. Int.* **1999**, 32, 659–664. [CrossRef]
- 45. Furuno, K.; Akasako, T.; Sugihara, N. The Contribution of the Pyrogallol Moiety to the Superoxide Radical Scavenging Activity of Flavonoids. *Biol. Pharm. Bull.* **2002**, 25, 19–23. [CrossRef]
- Ebuehi, O.A.T.; Anams, C.; Gbenle, O.D.; Ajagun-Ogunleye, M.O. Hydro-ethanol Seed Extract of Theobroma Cacao Exhibits Antioxidant Activities and Potential Anticancer Property. J. Food Biochem. 2019, 43, e12767. [CrossRef]
- 47. He, J.; Xu, L.; Yang, L.; Wang, X. Epigallocatechin Gallate Is the Most Effective Catechin Against Antioxidant Stress via Hydrogen Peroxide and Radical Scavenging Activity. *Med. Sci. Monit.* **2018**, 24, 8198–8206. [CrossRef] [PubMed]

- 48. Surai, P. Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. *Antioxidants* **2015**, *4*, 204–247. [CrossRef] [PubMed]
- 49. Wan, Y.; Zou, B.; Zeng, H.; Zhang, L.; Chen, M.; Fu, G. Inhibitory Effect of Verbascoside on Xanthine Oxidase Activity. *Int. J. Biol. Macromol.* **2016**, 93, 609–614. [CrossRef] [PubMed]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as Active Ingredients for Cosmetic Products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [CrossRef] [PubMed]
- 51. Vostálová, J.; Tinková, E.; Biedermann, D.; Kosina, P.; Ulrichová, J.; Rajnochová Svobodová, A. Skin Protective Activity of Silymarin and Its Flavonolignans. *Molecules* **2019**, *24*, 1022. [CrossRef] [PubMed]
- 52. Li, H.-Z.; Ren, Z.; Reddy, N.V.; Hou, T.; Zhang, Z.-J. In Silico Evaluation of Antimicrobial, Antihyaluronidase and Bioavailability Parameters of Rosmarinic Acid in Perilla Frutescens Leaf Extracts. SN Appl. Sci. 2020, 2, 1547. [CrossRef]
- 53. García, G.A.; Hernández, S.V.; Mejía, Ó.R.; Baez, S.A.; Ananías García, Y.C. Biología y Patobiología Humana Del Ácido Hialurónico En La Estabilización de La Matriz Extracelular y La Inflamación. *Revista Med.* **2006**, *14*, 80–87.
- 54. Eun Lee, K.; Bharadwaj, S.; Yadava, U.; Gu Kang, S. Evaluation of Caffeine as Inhibitor against Collagenase, Elastase and Tyrosinase Using in Silico and in Vitro Approach. *J. Enzym. Inhib. Med. Chem.* **2019**, *34*, 927–936. [CrossRef]
- 55. Jiang, Y.; Gao, H.; Turdu, G. Traditional Chinese Medicinal Herbs as Potential AChE Inhibitors for Anti-Alzheimer's Disease: A Review. *Bioorg. Chem.* **2017**, *75*, 50–61. [CrossRef]
- 56. Zhang, L.; Cao, H.; Wen, J.; Xu, M. Green Tea Polyphenol (–)-Epigallocatechin-3-Gallate Enhances the Inhibitory Effect of Huperzine A on Acetylcholinesterase by Increasing the Affinity with Serum Albumin. *Nutr. Neurosci.* **2009**, *12*, 142–148. [CrossRef]
- 57. Mottaghipisheh, J.; Taghrir, H.; Boveiri Dehsheikh, A.; Zomorodian, K.; Irajie, C.; Mahmoodi Sourestani, M.; Iraji, A. Linarin, a Glycosylated Flavonoid, with Potential Therapeutic Attributes: A Comprehensive Review. *Pharmaceuticals* **2021**, *14*, 1104. [CrossRef]
- 58. Serrano, A.; Ros, G.; Nieto, G. Bioactive Compounds and Extracts from Traditional Herbs and Their Potential Anti-Inflammatory Health Effects. *Medicines* **2018**, *5*, 76. [CrossRef] [PubMed]
- 59. Villegas-Aguilar, M.d.C.; Fernández-Ochoa, Á.; Cádiz-Gurrea, M.d.l.L.; Pimentel-Moral, S.; Lozano-Sánchez, J.; Arráez-Román, D.; Segura-Carretero, A. Pleiotropic Biological Effects of Dietary Phenolic Compounds and Their Metabolites on Energy Metabolism, Inflammation and Aging. *Molecules* 2020, 25, 596. [CrossRef] [PubMed]
- 60. García-Villegas, A.; Rojas-García, A.; Villegas-Aguilar, M.d.C.; Fernández-Moreno, P.; Fernández-Ochoa, Á.; Cádiz-Gurrea, M.d.l.L.; Arráez-Román, D.; Segura-Carretero, A. Cosmeceutical Potential of Major Tropical and Subtropical Fruit By-Products for a Sustainable Revalorization. *Antioxidants* **2022**, *11*, 203. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Review

Natural Bio-Compounds from *Ganoderma lucidum* and Their Beneficial Biological Actions for Anticancer Application: A Review

Emin Cadar ^{1,†}, Ticuta Negreanu-Pirjol ^{1,2,*}, Carolina Pascale ^{3,†}, Rodica Sirbu ^{3,*}, Irina Prasacu ⁴, Bogdan-Stefan Negreanu-Pirjol ^{1,†}, Cezar Laurentiu Tomescu ^{5,6} and Ana-Maria Ionescu ^{5,7}

- Faculty of Pharmacy, "Ovidius" University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; emin.cadar@365.univ-ovidius.ro (E.C.); bogdan.negreanu@univ-ovidius.ro (B.-S.N.-P.)
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
- Organizing Institution for Doctoral University Studies of "Carol Davila", University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; carolina.pascale@drd.umfcd.ro
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020956 Bucharest, Romania; irina.prasacu@umfcd.ro
- Faculty of Medicine, "Ovidius" University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania; tomescu.cezar.laurentiu@gmail.com (C.L.T.); ana.maria.ionescu@univ-ovidius.ro (A.-M.I.)
- 6 "Sf. Ap. Andrei" County Clinical Emergency Hospital, Tomis Bvd., No. 145, 900591 Constanta, Romania
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
- * Correspondence: ticuta.negreanu@univ-ovidius.ro (T.N.-P.); rodica.sirbu@umfcd.ro (R.S.)
- [†] These authors contributed equally to this work.

Abstract: Ganoderma lucidum (G. lucidum) has been known for many centuries in Asian countries under different names, varying depending on the country. The objective of this review is to investigate the scientific research on the natural active bio-compounds in extracts obtained from G. lucidum with significant biological actions in the treatment of cancer. This review presents the classes of bio-compounds existing in G. lucidum that have been reported over time in the main databases and have shown important biological actions in the treatment of cancer. The results highlight the fact that G. lucidum possesses important bioactive compounds such as polysaccharides, triterpenoids, sterols, proteins, nucleotides, fatty acids, vitamins, and minerals, which have been demonstrated to exhibit multiple anticancer effects, namely immunomodulatory, anti-proliferative, cytotoxic, and antioxidant action. The potential health benefits of G. lucidum are systematized based on biological actions. The findings present evidence regarding the lack of certainty about the effects of G. lucidum bio-compounds in treating different forms of cancer, which may be due to the use of different types of Ganoderma formulations, differences in the study populations, or due to drug-disease interactions. In the future, larger clinical trials are needed to clarify the potential benefits of pharmaceutical preparations of G. lucidum, standardized by the known active components in the prevention and treatment of cancer.

Keywords: natural bio-compounds; *Ganoderma lucidum*; polysaccharides; triterpenoids; antitumor activity; immunomodulatory; antioxidant; cytotoxic

1. Introduction

Ganoderma lucidum (G. lucidum), (Fr.) Karst is a medicinal mushroom known in traditional Asian medicine under different names depending on the country: Lingzhi (China), Reishi, and Mannentake (Japan), Linh chi (Vietnam), and Yeong Ji or Yung Gee (Republic of Korea) [1]. It is considered a source of longevity and health promotion [2–4]. The traditional medicinal uses of these mushrooms in Chinese and Japanese folk medicine as

health remedies and herbal supplements are widely recognized [5-7]. The knowledge and use of medicinal mushrooms have preoccupied researchers, who have developed valuable studies on their bioactive components and their importance [8–12]. According to the World Health Organization, it has been estimated that around three-quarters of the world's population relies on traditional medicines to maintain their health [13]. In traditional oriental medicine, G. lucidum has been used to treat several diseases, such as asthma, bronchitis, arthritis, hypertension, insomnia, diabetes, liver disease, nephritis, and cancer [14-16]. In ancient Chinese medicine, G. lucidum has been used for longevity and as an anticancer and antioxidant agent [17-20]. In the last 30 years, data have been reported on the chemical composition of G. lucidum extracts, justifying their biological activity and numerous health benefits. Among the most important bioactive compounds are polysaccharides and triterpenes [21–26]. Numerous other bioactive metabolites, such as proteins, peptides, sterols, lectins, adenosine, vitamins, and metals, have also been identified [27-31]. However, it should be noted that there are differences in the composition of G. lucidum products due to cultivation conditions, the extraction process of the bio-compounds, and the origin or part of the fungus used (fruiting body, mycelium, or spores) [14,28,30]. Nevertheless, many bioactive compounds in G. lucidum exhibit antioxidant, antitumor, and anti-inflammatory properties [32-37]. Such benefits have been investigated in multiple studies on their effect against prostate cancer, ovarian cancer, hepatocellular carcinoma, the induction of apoptosis in colon cancer, and the inhibition of angiogenesis [38-43]. Different immunomodulatory activities have been reported [44-47]. Other researchers have also reported studies on antioxidant and antioxidative stress actions [48-50]. With the development of modern research techniques to identify the chemical compositions of G. lucidum compounds, data may be accessible for use in medical research. A detailed understanding of these biological mechanisms could greatly influence and extend their benefits to human health.

The present study aims to review the data on active bio-compounds with important biological actions against cancer. Factors influencing the composition of the *G. lucidum* fungus, such as growing conditions (in the wild, in deciduous forests, or in special crops) and territorial areas, are analyzed. The characteristics of the *G. lucidum* fungus, as well as the chemo-bioactive compounds identified in *G. lucidum* with anticancer activities, its biological activities against cancer, and its toxicity and safety, are described in separate sections. The mechanisms of anticancer effects, including other biological activities that contribute to the fight against cancer, such as immunomodulatory, antioxidant, and cytotoxic actions, are also presented. Some negative cases in which *G. lucidum* bio-compounds were administered to patients undergoing treatment for several conditions are included as well. In these patients, the effects of *G. lucidum* treatments were not beneficial due to the occurrence of adverse effects.

2. Characteristics of Ganoderma lucidum Fungus

2.1. Description and Spread of the Fungus

The first description of *Ganoderma lucidum* (Curtis) P. Karst. was made by Curtis in England, and this description was officially recorded by Fries [51]. Initially, Cao et al. claimed that this fungus was already known as "Lingzhi", a medicinal fungus identified and used in China for more than 2000 years [52]. Later, based on molecular studies, it was established that the East Asian medicinal mushroom is a different species from the *G. lucidum* mushroom [52]. After morphological and molecular examinations, Wang et al. confirmed that the Lingzhi species from China are related to *G. lucidum* from the UK and to other *Ganoderma* species [53]. Kwon et al. conducted phylogenetic analyses of *Ganoderma* species and showed that there are 62 strains of *Ganoderma* [54]. According to the taxonomic classification established by Nahata A., the species *Ganoderma lucidum* (Curt: Fr.) Karst belongs to the kingdom *Fungi*, phylum *Basidiomycota*, class *Agaricomycetes*, order *Polyporales*, family *Ganodermataceae*, genus *Ganoderma*, and species *lucidum* [55]. *G. lucidum* from the UK and other related *Ganoderma* species have also been morphologically and molecularly examined by different researchers who have conducted important studies,

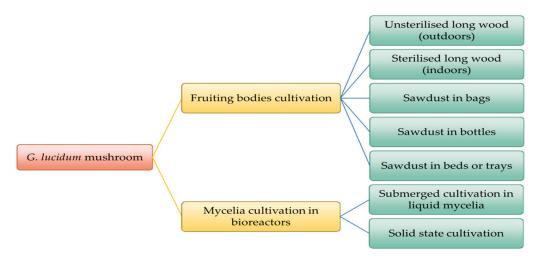

such as Kim et al., Park et al., and Liao et al. [56–58]. Several phylogenetically related *Ganoderma* species have been found in North America, Europe, and Asian countries [56,58]. Gottlieb et al. also performed molecular and morphological studies on the *Ganoderma* species collected from South America, followed by Eyssartier et al. from France [59,60]. In 2017, Copot et al. identified the fungus *G. lucidum* in hilly and mountainous areas in Romania, specifically in oak forests [61]. The description of *G. lucidum* collected from Romania highlighted the mushroom cap, which is kidney-shaped and can be up to 20 cm in diameter, ranging in color from red to pinkish-brown when mature [61]. Towards the edges, the coloration of the cap ranged from bright yellow to white. The spore print is brown (see Figure 1a,b) [61]. Figure 1c shows the fungus *G. lucidum* (Reishi or Lingzhi) adapted from studies by Parepalli et al. [62].

Figure 1. Appearance of *Ganoderma lucidum* in Europe (Romania) and Asia [61,62]. (a) *G. lucidum* from Neamt County, Romania, adapted from [61]. (b) *G. lucidum* from Bacau County, Romania, adapted from [61]. (c) Reishi or Lingzhi from India, adapted from [62].

2.2. Data on G. lucidum Cultivation

G. lucidum can also grow in greenhouses under controlled conditions. Data on cultivation methods have been reported in the literature, such as the study of Boh et al., where different biotechnological cultivation methods are presented [14]. As *G. lucidum* is rare in nature, cultivation in greenhouses is practiced using two methods: cultivation of fruiting bodies on wooden logs or on sawdust bags (or large plastic bottles) [14]. The main cultivation methods to produce *G. lucidum* (fruiting body and mycelia) are presented in Figure 2 [14].

Figure 2. Different cultivation methods for fruit body and mycelium of *Ganoderma lucidum*, adapted from [14].

Various other cultivation methods have also been practiced. For example, Nithya et al. conducted research on the selection of an ideal material to grow *G. lucidum* fungus by testing wood retting, wheat bran, sorghum, and sorghum grains combined with chalk dust

and gypsum [63]. Adongbede et al. (2021) used indigenous hardwoods supplemented with rice and wheat bran as substrates for growing *G. lucidum* in Nigeria, where the fungus is not naturally available [64]. Matute et al. (2002) grew *G. lucidum* in bags using sunflower hulls as a nutrient source [65]. Yang et al. (2003) used carbohydrate and nitrogen-rich residues from a rice bran distillery to grow *G. lucidum* in polypropylene bags [66]. Hsieh et al. (2004) used soybean residues as a nutrient for growing *G. lucidum* in polypropylene bags [67]. Chang et al. (2006) reported studies on the optimization of growth methods for *G. lucidum* [68]. It is worth noting that cultivation conditions and substrate composition influence the biochemical composition of *G. lucidum* fungi qualitatively and quantitatively, as confirmed by Baskar et al. in 2011 through their studies [69].

3. Chemical Bioactive Compounds Identified in G lucidum with Anticancer Actions

In the last 30 years, numerous studies have been conducted highlighting the nutritional potential of *G. lucidum* mushrooms [30]. Research on the biochemical composition of this mushroom has led to the identification of several categories of compounds with health-promoting biological activity, as reported by Ahmad et al. [7,13].

3.1. Proximate Composition for G. lucidum

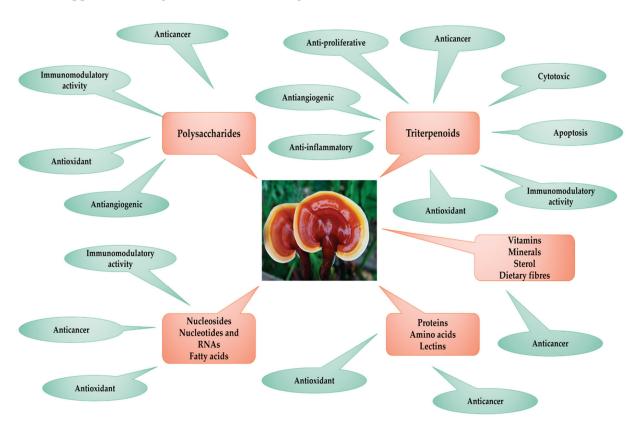

The values of the bioactive compound classes differ quantitatively and qualitatively within certain limits, depending on the country and area of origin of the fungus and whether it is cultivated or naturally occurring in the forest. In the case of cultivated mushrooms, bioactive compounds depend on the nutrient richness of the substrate and environmental factors, such as humidity and temperature [14]. Most phytochemical reports show that, with regard to the chemical composition, the fruiting body of *G. lucidum* consists of 90% water and 10% different compounds, as presented in Table 1, according to Mau et al. [70].

Table 1. Proximate composition of the fruiting body of *G. lucidum* from different country origins, reported as a percentage.

Mushroom Origin/ Constitutes	From Bangladesh	From Bangladesh	From Taiwan	From China	From Spain	From India	From Nigeria
Moisture %	12.19	47	-	-	-	7.5	2.78 ± 0.05
Ash %	3.93	6.3	1.8	1.21 ± 0.06	2.31 ± 0.12	18.7	8.42 ± 0.13
Water-soluble proteins %	28.6	19.50	7–8	7.47 ± 0.22	11.70 ± 0.35	23.6	16.79 ± 0.13
Total lipids %	2.4	3.00	3–5	-	-	5.8	1.52 ± 0.09
Fatty acid	-	-	-	1.44 ± 0.10	1.27 ± 0.09	-	1.22 ± 0.07
Total carbohydrates %	44.91	5.41	26–28	9.88 ± 1.04	11.02 ± 1.16	42.8	63.27 ± 0.20
Dietary fibers %	14.67	2.4	59	76.81 ± 3.46	69.35 ± 3.12	-	7.77 ± 0.34
References	[21]	[30,71]	[70]	[72]	[72]	[73]	[74]

Table 1 summarizes the information on the biochemical composition of the fungus, as noted by multiple researchers. The content analysis of the bioactive compound classes includes data on moisture, ash, water-soluble protein content, total lipid content, total carbohydrate content, and dietary fiber content. From Bangladesh, data were reported by Rahman et al. (2020), El Sheikha (2022), and Roy et al. (2018) [21,30,71]. The interest in the nutritional potential of *G. lucidum* in Taiwan was proven by studies conducted by Mau et al. (2001) [70]. The total fatty acid content was reported only by Fraile-Fabero et al. for *G. lingzhi* from China and *G. lucidum* from mushroom crops from Madrid, Spain, in 2021 [72]. Comparable data were also reported by Parapelli et al. (2021) for *G. lucidum* from India and by Ogbe et al. (2013) from Nigeria [73,74]. Additional studies were published by Wachtel-Galor et al. (2011), by Paterson et al. (2006), and by Garuba et al. (2000) [75–77]. The pharmacognostic review of the active compounds isolated from basidiocarp and mycelium of *G. lucidum* revealed that it contains polysaccharides, triterpenes, vitamins, minerals,

sterols, proteins, proteo-polysaccharides, lectins, nucleotides, and fatty acids, as reported by Ahmad (2018) [13]. Figure 3 systematizes the categories of biochemical compounds that support the biological activities occurring in the treatment of various cancer tumors [13].

Figure 3. Bioactive compounds in *G. lucidum* and biological actions involved in anticancer activity, adapted from Ahmad [13].

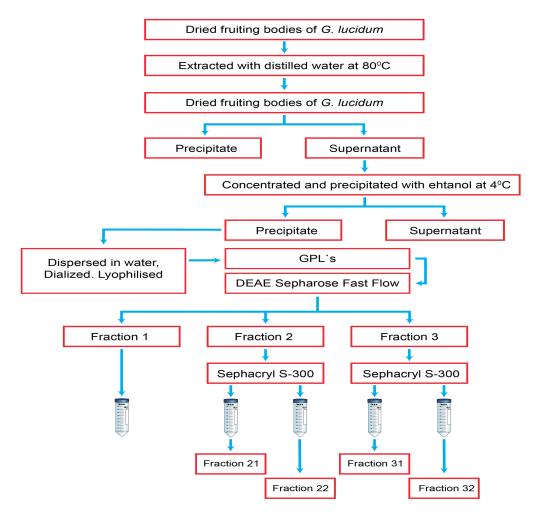
3.2. Polysaccharide Content of G. lucidum

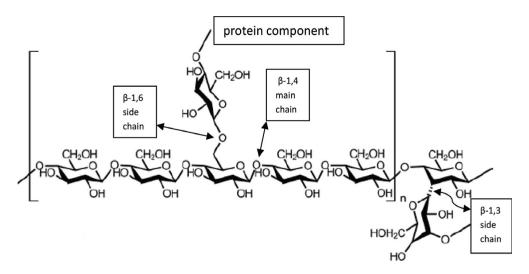
Numerous studies have identified the existence of several types of polysaccharides in the fruiting body, spores, or mycelium of *G. lucidum*, as reported by Liu et al. and Lin et al. [78,79]. Polysaccharides represent a class of macromolecules with diverse structures and a wide range of physicochemical properties and biological actions, according to studies by Ferreira et al., Yu et al., and Giavasis [80–82]. According to Ahmad, Bhat et al., and Liu et al., these polysaccharide compounds are considered some of the most potent bioactive metabolites with antitumoral effects due to their biochemical structure [13,18,78]. Polysaccharide compounds (Gl-Ps) have a rich history and have been extensively studied in recent years by Sanodiya et al., Parepalli et al., and Chen et al. [27,62,83].

3.2.1. Extraction and Purification of Polysaccharides

The most widely used method for polysaccharide extraction from spores, fruiting bodies, and mycelium is hot-water extraction, as documented by Nie et al. [84]. Figure 4 illustrates the extraction of five polysaccharide fractions from *G. lucidum* [85]. The fruiting body of *G. lucidum* was initially peeled, shredded, and sieved in order to obtain a fine powder. The extraction of Gl-Ps from the mushroom powder was performed with distilled water at 80 °C [85]. There are researchers who have used diluted saline solution or alkaline acid solutions for polysaccharide extraction, as reported by Wang et al. (2011). Other extraction methods that were applied included microwaves, ultrasound, or enzymatic methods, as in the studies of Lin et al. (2005), Huang et al. (2010), Zhao et al. (2010), and Leong et al. (2021) [86–90]. After filtering, the solution is subjected to precipitation with alcohol or acetone to obtain crude polysaccharides [84]. Polysaccharide purification

can be achieved by several techniques, such as ethanol fractionation or different column chromatographic techniques, as illustrated by Chen et al. (2008), Huang et al. (2011), and Jiang et al. (2012) [91–93]. Ion-exchange chromatography (DEAE-Sepharose Fast Flow), gel filtration, and affinity chromatography were the most useful methods, as highlighted by Choong et al. [85]. Figure 4 illustrates the extraction and fractionation steps of polysaccharides from *G. lucidum*. Five polysaccharide fractions were obtained [85].




Figure 4. Diagram of the extraction of polysaccharides from *G. lucidum*, adapted from [85].

3.2.2. Structure of Polysaccharides from G. lucidum

The investigation of the structures and chemical properties of polysaccharides from G. lucidum involves knowledge of the composition of existing monosaccharides, branching structures, types of glycosidic linkages, chain conformations, and molecular weights [18]. As investigation techniques have developed, it was found that G. lucidum can have polysaccharides in its composition, either as pure or linked with other proteins or peptides [94–98]. Bhat et al. (2021) showed that homo-glucans from G. lucidum are linear or branched biopolymers, possessing a backbone formed by α - or β -linked (1 \rightarrow 3), (1 \rightarrow 6)- β -glucan and (1 \rightarrow 3)- α -glucan glucose units, and may possess side chains attached in different positions [18]. Further investigations by different authors explore bioactivities as well. Bao et al. (2002) determined that the structures of the backbone chains are linear or branched bipolymers [94]. These possess a backbone consisting of α - or β -linked glucose units [94]. In 2006, new structures with heteroglucans were outlined by Cao et al., and new structures with heteropolysaccharides were documented by Sullivan et al. [95,96]. Further types of ligands were presented by Li et al. (2007), Ye et al. (2008), Ye et al. (2009), Wang et al. (2009), Ye et al. (2010), and Liu et al. (2010) [97–102]. Pan D. et al. (2012), Ma et al. (2013), and Pan K. et al.

(2013) also described the types of polysaccharide structures with different types of linkages, shown in detail in Table 2 [103–105]. Ooi et al. (2000) and Zhang et al. (2007) pointed out in their studies that the degree of base-chain substitution and branching chain length play important roles in determining the bioactivity of β -(1 \rightarrow 3)-linked glucans [106,107]. Table 2 illustrates various techniques and methods utilized in the extraction, fractionation, and purification of polysaccharides and provides information about their structure (the backbone and monosaccharide compositions).

Side-chain branching occurs at C-6 of the main-chain glucosyl residues, as shown in Figure 5 and indicated by Choong et al. (2019) [85]. Jia et al. (2009) argued that among all homo-glucans, β -glucans are glucose polymers that exist as unbranched (1 \rightarrow 3)- β -linked backbones in the form of (1 \rightarrow 3)- β -linked backbones [108]. Figure 5 shows a Gl-Ps chain [85].

Figure 5. The structure of a Gl-Ps chain consisting of β - $(1\rightarrow 3)$ bonds with some β - $(1\rightarrow 6)$ branches, adapted from [85].

The molecular weight of Gl-Ps can range from 4×10^5 to 1×10^6 Da. Sanodiya et al. (2009) demonstrated that this has a significant impact on reducing cancer progression [27]. Studies by Moradali et al., Doco et al. (2001), and Hung et al. (2005) described polysaccharide-protein or peptide complexes using modern GC-MS methods [109–111]. Wang et al. (2002) and Sanodiya et al. (2009) investigated monosaccharides from the raw extract of *G. lucidum* [24,27]. Furthermore, Wang et al. (2009) and Ye et al. (2010) also provided data on monosaccharides identified in *G. lucidum* [100,101]. Similarly, Dai et al. (2010) and Yang et al. (2010) investigated *G. lucidum* and described the monosaccharide composition as predominantly consisting of xylose, fructose, glucose, and maltose [112,113]. Several other studies have been published reporting data on the polysaccharide structure and their medical applications, including Dong et al. (2012), Liu et al. (2012), Skalicka-Wozniak et al. (2012), and Pascale et al. (2022) [114–117].

Table 2. Structural characteristics, extraction, and fractionation techniques of polysaccharides from G. Iucidum.

	of G. lucidum	Composition	Dackbone	Extraction and Fractionation	Bioactivity	References
1 Fm	Fruiting body	Glucose, rhamnose glucose, galactose, rhamnose	$\beta(1\rightarrow 3)$ -Glucan; $-(1\rightarrow 3)$ - $(1\rightarrow 4)$ -, $(1\rightarrow 6)$ Heteroglycan α - $(1\rightarrow 4)$, β - $(1\rightarrow 6)$ -heteroglycan	Hot-water extraction; DEAE-cellulose and gel filtration; chromatography	Antioxidant activity	[94]
2 Fru	Fruiting body (cultivated)	Mannose, rhamnose, glucose, galactose	Heteroglucans (GLP, GLP1, GLP2, GLP3, GLP4) Main glycosidic bond	Ultrasonic extraction; Sevag method; ethanol precipitation; ultrafiltration membranes	Antioxidant activity in vitro by DPPH scavenging activity; reducing power; Fe ²⁺ chelating activity; ORAC	[95]
3 Fr.	Fruiting body (cultivated)	Glucose, galactose, mannose, arabinose	Heteropolysaccharide (GL-1; GL-V) (1→4)-galactan, Heteropolysaccharide	Soluble in water and in ethyl-acetate; Sevag method; dialysis	Bioactive compounds are an important source of anticancer agents	[96]
4 Ext	Extracellular	Galactose, mannose, glucose, arabinose, rhamnose	α -(1 \rightarrow 4)-Galactose	DEAE-Sephcel and Sephadex G200.	Enhance T- and B-lymphocyte proliferation and antibody production	[67]
5 Fm	Fruiting body	Galactose, glucose, fucose	α -(1 \rightarrow 6)-galactose α -(1 \rightarrow 3)-Glucose	Hot-water extraction; DEAE-Sepharose Fast-Flow and Sephacryl S-300	Immunostimulatory activity of spleen lymphocyte proliferation	[86]
6 Fru	Fruiting body	Glucose, galactose, arhamnose	Heteroglycan α -(1 \rightarrow 4), β -(1 \rightarrow 6)	Hot-water extraction	Immunologically active; proliferation of B-lymphocytes with important immunologic activity	[66]
7 Fru (cu	Fruiting body (cultivated)	Glucose, galactose, mannose, arabinose, xylose, fucose	Heteropolysaccharides glucans $(1\rightarrow 3)$ - β -D-glucan with a few short $(1\rightarrow 4)$ -linked glucosyl units	Extraction and separation of fractions with hot water, cold and hot 1 M NaOH	Antitumor activity against sarcoma solid tumor	[100]
8 Fm	Fruiting body	Galactose, glucose, fucose	α - $(1\rightarrow 6)$ -, $(1\rightarrow 2,6)$ -Galactose β - $(1\rightarrow 3)$ -, $(1\rightarrow 4,6)$ -Glucose	Hot-water extraction; DEAE-Sepharose Fast-Flow and Sepharose CL-6B	An immunostimulating potential	[101]
9 Fr	9 Fruiting body	Glucose, galactose, mannose	β -(1 \rightarrow 3)(1 \rightarrow 4)(1 \rightarrow 6)-Glucan Heteropolysaccharides	Hot-water extraction; DEAE-cellulose-32 and Sephacryl S-200 h	Pronounced antioxidant activity in free radicals scavenging and ${\rm Fe}^{2+}$ chelating	[102]
10 Fru (wj	Fruiting body (wild)	Galactose, rhamnose, and glucose in mole ratio of 1.00:1.15:3.22	Water-soluble polysaccharide α - $(1\rightarrow6)$ -, $(1\rightarrow2,6)$ Galactose β - $(1\rightarrow3)$ -, $(1\rightarrow4,6)$ Glucose	Hot water and ethanol precipitation; DEAE-Sepharose Fast Flow and Sephacryl S-300	Neutral heteropolysaccharide, which reported antihyperglycemia effects	[103]

 Table 2. Cont.

Mushroom Part of G. lucidum	Monosaccharide Composition	Backbone	Extraction and Fractionation	Bioactivity	References
Mycelium (cultivated)	Rhamnose, arabinose, mannose, glucose, galactose	Heteropolysaccharide α -D-Glc (1 \rightarrow 6), α -D-Glc, α -D-Man (rhamnose and arabinose residues in the side chain)	Hot water; ethanol precipitation; Sevag method; dialysis	Antitumor activity against Human hepatocarcinoma cell line (HepG2) and tumor xenografts in ICR mice	[104]
2 Fruiting body	Glucose	Branched homo-glucan (GLP0; GLP1) $(1\rightarrow 3)$ - β -D-glucan with $(1\rightarrow 6)$ - β -D branches	Hot water followed by ethanol precipitation	Induced a cascade of immunomodulatory cytokines against sarcoma 180 solid tumor	[105]

3.3. Triterpene and Triterpenoid Content of G. lucidum

Triterpenes belong to the class of terpenes that have a molecule consisting of six isoprene units and are widespread in the plant kingdom [35]. Triterpenoids are part of the triterpene class, having heteroatoms (usually oxygen atoms) in the molecule. They are important bioactive compounds in the composition of *G. lucidum*, as shown by Wu et al. (2023) [118]. In 2018, Gu et al. revealed that the present triterpenes synthesize structures derived from lanosterol, which has a skeleton with a tetracyclic structure and the molecular formula $C_{30}H_{48}$ [119]. Terpenoid compounds from *G. lucidum* that have a C30 backbone and molecular masses between 400 and 600 kDa were studied by Baby et al. and Galappaththi et al., who generically named them Ganoderma triterpenoids (Gl-Ts) [120,121]. Further research on the structure and characterization of triterpenoids from *G. lucidum* that elucidates their biological activities was published in 2022 by Cör et al. and Lin et al. [122,123].

3.3.1. Physicochemical Determination and Analysis of Triterpene Compounds

Studies conducted by Ghorai et al. (2012), Taofiq et al. (2017), and Chang et al. (2012) utilizing UV spectrophotometric measurements have made significant contributions to the methods for determining total terpenoids [124–126]. Huie et al. (2004) employed chromatographic and electrophoretic methods for the analysis of triterpenoids, and Yang et al. (2007) utilized a combined approach involving HPLC-ESI-MS [127,128]. Chen et al. (2012) highlighted the existence of multiple methods for investigating terpenoids [83]. Triterpenoid analysis was also outlined in the studies of Zhang et al. (2008), Shi et al. (2010), and Hadda et al. (2015) [129–131]. Che et al., Hui et al., and Zhang et al. reported novel insights into *triterpenoids* obtained from *G. lucidum* [132–134]. In 2023, Wu et al. emphasized the necessity of a new research strategy intertwining the concepts of chemical component analysis and pharmacological activity [118].

3.3.2. Structure of *G. lucidum* Triterpenoids (Gl-Ts)

Wu et al. (2023) extensively reported on the diverse types of Gl-Ts identified from the mycelia, fruit body, and spores of *G. lucidum*, showcasing distinct structural variations, including alcohols, aldehydes, ketones, acids, esters, and various other substituents positioned differently [118]. Xia et al. (2014) conducted an in-depth analysis of the skeletal structure of *G. lucidum*, revealing that a majority of these terpenoids consist of 30 carbon atoms [135]. Using information derived from Wu et al., in Figure 6, the structures of a typical terpenoid skeleton are depicted, illustrating the numbered positions corresponding to the matched carbon atoms alongside 10 additional terpenoid structures exhibiting diverse substituents [118].

In Figure 6, illustrating the typical terpenoid skeleton structure, distinct substituents are evident at positions C-3, C-7, C-11, C-12, C-15, C-20, and C-27. Fatmawati et al. (2010) elucidated the structure of a new terpenoid, Ganoderic acid Df, featuring a β-hydroxy substituent at the C-11 position, distinguishing it from all other compounds characterized by a carbonyl group at the same position [136]. At the C-3 position, potential substituents include the β -hydroxy, carbonyl, and β -acetoxy groups. At C-20, a single carbon atom can host two substituents, which may be the methyl or hydroxyl groups or even hydrogen. Wu et al. demonstrated that at the C-25 position, various carboxyl groups, such as formyl, acetyl, or butyryl, can be found [118]. Additionally, Sharma et al. (2019) presented data on triterpenes from G. lucidum, characterized by isoprene units in their composition, featuring a C30 skeleton structure of ganoderic acids, aldehydes, esters, alcohols, lactones, glycosides, ketones, and molecular masses ranging from 400 to 600 g/mol [137]. Koo et al. (2019) identified a new compound with a lanostane triterpenoid structure named Ganosidone A, which, along with eight other derivatives, was investigated for its cancer chemopreventive potential [138]. Concerning the molecular configuration of ganoderic acids, Cör et al. (2022) documented the structures illustrated in Figure 7 [122].

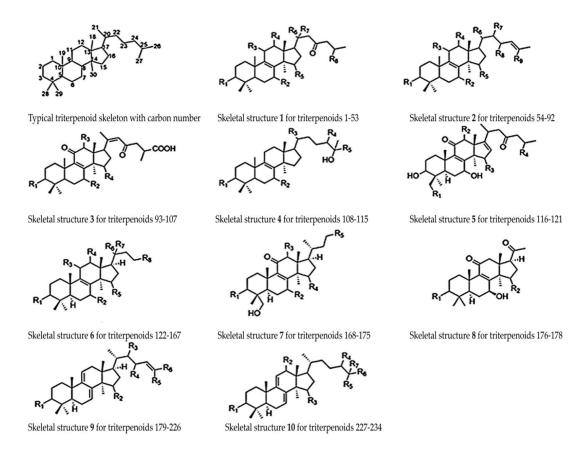
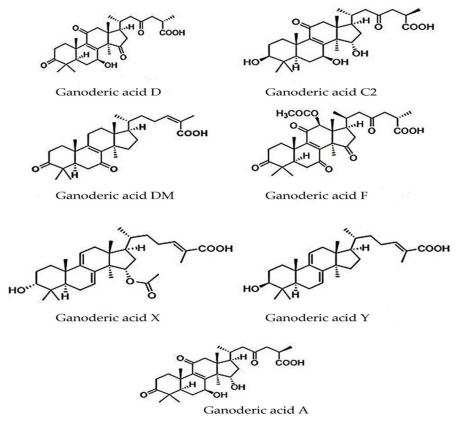



Figure 6. Skeletal structure of a typical terpenoid and other terpenoids 1–10 [118].

Figure 7. Structure of ganoderic acids from *G. lucidum*, adapted from [122].

Murata et al. (2019) identified and extracted a novel compound with a lanostane triterpene structure from G. lucidum using NMR and MS physicochemical analysis [139]. Studies presented by Yue et al. in 2008 and 2010, as well as those by Zhang et al. and Cheng et al., revealed the cytotoxic effects exerted by ganoderic acids from G. lucidum, which alter proteins involved in cell proliferation and cell death in carcinogenesis or oxidative stress [140-143]. In 2012, Liu et al. and Rios et al. studied the lanostanoid compounds from G. lucidum for their anticancer activities [144,145]. In 2013, Li et al. isolated a novel ganoderic acid from G. lucidum mycelia and studied its characteristics. Fatmawati et al. studied the structure-activity relationship of lanostane-type triterpenoids, and Li et al. reported cytotoxic effects in a wide range of triterpene compounds [146–148]. In 2017, Chen et al. presented data on compounds with triterpene structures existing in G. lucidum that exhibited activity as inhibitors of biological processes [149]. In 2019, Liang et al. illustrated their findings on the structure and mechanisms of action of ganoderic acids from G. lucidum [150]. In 2021, Chinthanom et al. documented their findings on lanostane triterpenoids isolated from mycelial cultures of Ganoderma spp. that can be modified by semisynthesis, thus obtaining synthetic compounds [151]. In 2023, Pascale et al. reported data on the specific structures and pharmacological mechanisms of triterpenoids with biological activities from G. lucidum [152]. Figure 8 illustrates other structures specific to the terpenoid compounds described by Pascale et al. [152].

Figure 8. Specific structures for other ganoderic compounds [152].

3.4. Vitamins, Minerals, and Sterols Content

Vitamins, minerals, and sterols were among the 400 biologically active constituents recognized by various researchers after 2018, including Cör et al., Yang et al., and Ahmad, F. In terms of quantity, the vitamins were in the following order: B1, B2, B6, β -carotene, C, D, and E [153–155]. Hussein et al. (2022) also studied the existence of vitamins in *G. lucidum* [156]. El Sheikha et al. (2022) highlighted the highest vitamin content as consisting of niacin (B3) and ascorbic acid (C) [30]. Mineral contents have been reported by several studies, such as El Sheikha et al., Roy et al., Ogbe et al., Cör et al., and Hussein et al. [30,71,74,153,156]. Table 3 displays the values for mushroom compositions reported by various authors, expressed in milligrams per 100 g (mg/100 g), parts per million (ppm), and percentages (%) [30,71,74,153,156].

Similar data were also presented by Sharif et al. (2016) and Treviño et al. [157,158]. The bioaccumulation of copper and zinc in *G. lucidum* was also documented by Matute et al. in 2011 [159]. In 2008, Falandysz J. reported the existence of selenium in the composition of some antioxidant enzymes with protective actions that are involved in antitumor effects [160]. In their study, conducted in 2000, Chiu et al. identified the presence of germanium in the Ganoderma extract. Their research encompassed an assessment of genotoxicity and antigenotoxicity related to this finding [161]. Du et al. (2008) studied the positive effect of selenium on the immune regulation activity of *G. lucidum*, and the involvement of this element in anticancer activities was documented [162].

Table 3. Minerals of *G. lucidum* fruiting body.

Elements	mg/100 g	mg/100 g	% or ppm	ppm
Potassium	432	3.590	1.11 ± 0.04 (%)	-
Phosphorus	225	4.150	$30.17 \pm 1.29 (\text{ppm})$	-
Sulfur	129	-	-	-
Magnesium	7.95	1.030	0.34 ± 0.01 (%)	50.76 ± 1.19
Sodium	2.82	375	229.88 ± 0.34 (ppm)	-
Calcium	1.88	832	$1.99 \pm 0.04\%$	-
Copper	27	-	$7.43 \pm 0.13 (\text{ppm})$	5.49 ± 0.35
Manganese	22	-	$71.06 \pm 1.56 (\text{ppm})$	20.19 ± 0.54
Iron	2.22	82.6	$121.37 \pm 1.82 (ppm)$	130.60 ± 1.63
Zinc	0.7	-	$51.49 \pm 2.16 (\text{ppm})$	8.45 ± 0.38
References	[30,71]	[153]	[74]	[156]

Sterols with the chemical formula $C_{17}H_{28}O$ are a group of steroids that are cyclic secondary monohydric alcohols. Since 2002, Ma et al. have reported three new lanostanoids and two ergostane sterols, which were isolated by spectroscopic methods [163]. The role of sterols is important in the body's metabolism in regulating some hormonal and immune system functions. Akihisa et al. (2007) studied the effects of sterols and triterpene acids from *G. lucidum* on anti-inflammatory and antitumor actions [164]. In 2011, the sterol content of *G. lucidum* was researched by Liu et al., who analyzed it qualitatively and quantitatively using HPLC methods [165]. In 2015, Baby et al. showed that sterols in *G. lucidum* can be classified based on their skeletons [120].

3.5. Protein, Lectin, and Amino Acid Content

3.5.1. Proteins and Peptides in G. lucidum

Proteins constitute a distinct category of biochemically active molecules in *G. lucidum*, as demonstrated by Cör et al. in 2018 [153]. Numerous studies have reported various biological effects of the primary fungal protein, Ling-zhi-8 (LZ-8). Structural reports were published by Huang et al. in 2009, and the immunomodulatory actions of LZ-8 were documented by Hsu et al. in 2013, Lin et al. in 2014, and Yang et al. [166–169]. In 2015, Sa-ard et al. studied crude proteins from *G. lucidum* (both mycelia and fruiting bodies) for their antioxidant actions [170]. In 2021, Fraile-Fabero et al. conducted studies on proteins from *G. lucidum* [72]. Additional research by Sun et al. in 2004 revealed the existence of compounds with a polysaccharide-peptide complex structure along with phenolic components with antioxidant potential in *G. lucidum* [171].

Ji et al. (2007) further documented the existence of proteo-polysaccharides in *Ganoderma lucidum*. They studied the immunomodulatory effects, emphasizing the anticancer properties of this fungus [172]. The immunomodulatory properties of LZ-8 protein and polysaccharides were studied by Yeh et al. in 2010 and Girjal et al. in 2012 [173,174]. Zhong et al. (2015) conducted research on the involvement of the peptide-polysaccharide complex from *G. lucidum* in oxidative stress [175]. Subsequent data on the presence of proteins in *G. lucidum* and their biological actions were published by Kumakura et al. in 2019, and further insights were provided by Yu et al. in 2021 and 2023, where they specifically documented the effects of proteoglycans derived from *G. lucidum* [176–178]. Huang et al. (2022) reported a novel pentapeptide in the mycelium of Ganoderma spp. that demonstrates antioxidant properties [179].

3.5.2. Lectins from G. lucidum

Lectins are glycoproteins found in the fruiting body of *G. lucidum*. Lectins are carbohydrate-binding proteins that have been classified according to their origin and

structure. In 2007, Thakur et al. isolated and purified a group of lectin-structured proteins with a weight of 114 kDa from the fruiting bodies of *G. lucidum* [180]. In 2011, Girjal et al. isolated a new bioactive lectin from *G. lucidum*, which also exhibited hemagglutinating activity against both human and animal erythrocytes [181]. Nikitina et al. (2017) investigated lectins in mycelia and detected hemagglutinating activity in culture medium and in a crude mycelial extract of *G. lucidum* [182]. Recent research conducted by Yousra et al. has demonstrated varying binding patterns of lectins from *G. lucidum* with glycan moieties. These patterns play a crucial role in influencing biological activities, including antitumor, antiviral, and immunomodulatory effects [183].

3.5.3. Amino Acid Content of G. lucidum

The amino acid content has been documented by several authors. According to the research of Sanodiya et al., Yousra et al., and Deepalakshmi et al., the most abundant amino acid was glutamic acid [27,183,184]. This was followed by aspartic acid, glycine, and alanine. The amino acids in *G. lucidum* have also been analyzed by Zhang et al. in 2018, who reported 18 different types of amino acids [185]. It should be noted that factors such as the origin of the tested samples and the species of fungus, as well as different analysis techniques, may result in different amino acid values. Compounds with antioxidant properties from *G. lucidum* have been analyzed in numerous studies. Thus, Kim et al. (2008), Sheikh et al. (2014), Lin et al. (2015), and Veljović et al. (2017) presented data on the chemical compounds of *G. lucidum* [186–189]. The amino acid values for *G. lucidum*, as reported by Sanodiya et al. in 2009 and Deepalakshmi et al. in 2011, are presented in Table 4 [27,184].

Amino Acid	Aspartic Acid	Threonine	Serine	Glutamic Acid	Proline	Glycine	Alanine	Valine
	Asp	Thr	Ser	Glu	Pro	Gly	Als	Val
mg AA/g protein	117	66	54	120	60	108	100	61
References	[27,184]	[27,184]	[27,184]	[27,184]	[27,184]	[27,184]	[27,184]	[27,184]
Amino acid	Methionine	Isoleucine	Leucine	Phenylalanine	Tyrosine	Histidine	Lysine	Arginine
	Met	Ile	Leu	Phe	Tyr	His	Lys	Arg
mg AA/g protein	6	36	55	28	16	12	21	22
References	[27,184]	[27,184]	[27.184]	[27,184]	[27.184]	[27,184]	[27,184]	[27,184]

Table 4. Amino acids content in *Ganoderma lucidum* mushroom.

3.5.4. Content of Compounds with Antioxidant Properties in G. lucidum

Dong et al. (2019), Zheng et al. (2020), Rahman et al. (2020), and Kolniak-Ostek et al. (2022) reported data regarding the total triterpenoid, polysaccharide, polyphenol (TPC), and flavonoid (TFC) content of *G. lucidum* [21,190–192]. Furthermore, Kim et al. (2008) analyzed the phenolic compounds from *G. lucidum* using HPLC and identified 28 phenolic compounds. All these compounds are responsible for antioxidant activity [186]. Triterpenoid compounds were documented by Lin et al. in 2015 and Kolniak-Ostek et al. in 2022 [188,192]. Polysaccharide compounds were described by Lin et al. in 2015 [188]. Polyphenolic compounds were investigated by Rahman et al. in 2020 and by Kolniak-Ostek et al. in 2022 [21,192]. Flavonoid compounds and ascorbic acid were detailed in a study by Rahman et al. in 2020 [21]. Depending on the area of origin of the mushroom (cultivated or forest) and the extraction techniques used, the concentrations of the compounds listed in Table 5 vary considerably. The terpenoid content is lower in cultivated *G. lucidum*, depending on the cultivation method, as Kolniak-Ostek et al. showed [192]. The results on compounds responsible for antioxidant activity are presented in Table 5.

Table 5. Compounds with antioxidant activity from *G. lucidum*.

Total Triterpenoids	Total Poly	saccharides	Total Polypheno	l Content (TPC)	Total Flavonoid Content (TFC)	Ascorbic Acid
/g d.w.	mg glucose	equiv./g d.w.	mg/100	g d.w.	mg/100 g d.w.	mg/100 g d.w.
196.03-643.06	769.1	112.53	33.3-43.49	912.38	34.09-38.08	30.51-32.2
[188]	[192]	[188]	[21]	[192]	[21]	[21]

Kolniak-Ostek et al. presented more data on several phenolic acids present in *G. lucidum* responsible for antioxidant activity, which are presented in Table 6 [192].

Table 6. The phenolic acids from *G. lucidum* [192].

Nr.	Phenolic Acids	Quantity (mg/100 g DW of Extract)
1	Tricaffeoyl-glucosyl-glucoside	13.54 ± 0.23
2	Tricaffeoyl-glucosyl	23.79 ± 0.24
3	Caffeoyltrihexoside	38.02 ± 0.30
4	Protocatechuic acid hexoside	19.09 ± 0.15
5	1-Caffeoylquinic acid	505.89 ± 3.21
6	trans-5-P-coumaroylquinic acid	0.46 ± 0.01
7	5-Caffeoylquinic acid	95.01 ± 0.92
8	Caffeoyl-2-hydroxyethane-1.1.2-tricarboxylic acid	213.89 ± 1.52
9	Yunnaneic acid F	1.29 ± 0.01
10	Salvianolic acid B	1.39 ± 0.01
	Sum	912.38 ± 20.14

Means \pm SD ($p \le 0.05$; n = 3).

The antioxidant properties of G. *lucidum* were analyzed using several methods, including the reporting of DPPH and ABTS radical scavenging activities, as well as the FRAP assay. The results were expressed in units of measurement. These units vary according to the different experimental methods used. However, the importance of the results lies in the unequivocal demonstration of the antioxidant activity possessed by the constituents found in *G. lucidum* (see Table 7).

Table 7. Antioxidant capacity in the extract of G. lucidum.

DF	PH	FR	AP	ABTS
(%)	(μMol TE/g)	$(\mu g/100 g)$	(μMol TE/g)	(μMol TE/g)
24.04 ± 0.33	51.3 ± 1.04	614.83 ± 0.05	49.87 ± 1.58	81.26 ± 1.10
[21]	[192]	[21]	[192]	[192]

Means \pm SD ($p \le 0.05$; n = 3).

Furthermore, Dong et al. (2019) demonstrated a strong correlation between the antioxidant capacities measured using DPPH, ABTS, and FRAP assays and the content of polyphenolics and triterpenoids in *G. lucidum* [190]. Similar studies have also been published by Saltarelli et al. in 2015 [193]. The properties of compounds in *G. lucidum* and their effects on antioxidant activity were also documented by Tang et al. (2016), Sanchez C. (2017), Mohammadifar et al. (2020), and Mustafin et al. (2022) [194–197].

3.6. Content in Nucleosides and Fatty Acids

3.6.1. Nucleosides and Nucleobases in G. lucidum

Nucleotides are monomeric units that consist of a base (purine or pyrimidine) and one or more phosphate groups. Nucleotides are formed from nucleosides by phosphorylation under the action of kinases. Nucleosides are glycosyl amines derived from a nitrogenous base and a ribose or deoxyribose. These compounds have been shown to contain uridine

and uracil, both of which are capable of reducing elevated serum aldolase levels. The water-soluble fraction of *Ganoderma* suppresses platelet aggregation. Cheung et al. have carried out studies on the identification and role of bases and nucleoside markers [198]. Gao et al. (2007) identified six nucleobases qualitatively in fruiting body samples of *G. lucidum* and *G. sinense* [199]. Additional studies of the distribution of nucleotides and nucleobases were also carried out by Yuan et al. in 2008 and Chen et al. in 2012, who were able to document 16 nucleotides and nucleobases in the *Ganoderma* species [200,201]. Phan et al. (2018) demonstrated in their work that nucleobases, nucleosides, and nucleotides found in fungi play crucial roles in regulating various physiological processes in the human body through purinergic and/or pyrimidine receptors. [202]. In 2022, Sheng et al. analyzed 10 target compounds from 23 batches of *Ganoderma* samples from different regions of China and demonstrated that the geographical origin of the fungi might be the exclusive factor affecting the accumulation of nucleosides and nucleobases in the *Ganoderma* spp. mycelium [203].

3.6.2. Fatty Acid Content

The total lipid content of *G. lucidum* has been reported in several studies by Rahman et al. (2020), El Sheikha (2022), Roy (2018), and Ogbe et al. (2013) [21,30,71,74]. Comparative data for the fatty acid content of carpophores from G. lingzhi (from industrial cultures in China) and *G. lucidum* (from cultures in Madrid, Spain) were described by Fraile-Fabero et al. in 2021 [72]. Fraile-Fabero et al. found that G. lingzhi contains the highest percentage of arachidic acid, followed by the margaric, behenic, margaroleic, lignoceric, and cis-vaccenic acids, while *G. lucidum* contains the highest percentage of α -linolenic acid, followed by the myristic, stearic, capric, erucic, nervonic, elaidic, octadecatrienoic, octadecadienoic, and eicosatrienoic acids [72]. Data on the presence of essential fatty acids in *G. lucidum* were also presented by Hossain et al. in 2007 [204]. Stojković et al. (2014) conducted comparative studies between the *G. lucidum* species from Serbia and China [205]. Lin et al. (2017) reported hydroxy fatty acids (HFA) present in the molecular species of acylglycerols of *G. lucidum* [206]. Salvatore et al. (2020) identified fatty acid methyl esters (FAMEs) in the triglycerides of *G. lucidum* spores [207]. Table 8 displays the composition similarities between the two species. [72].

Table 8. Fatty acids content of two Ganoderma species [72].

Fatty Acids	G. lingzhi \pm 15%	G. lucidum \pm 15%
Total monounsaturated fatty acids	37.5	28.68
Total polyunsaturated fatty acids	43.84	49.93
Total saturated fatty acids	18.64	20.77
Total	99.98	99.38

Phytochemical reports over the past four decades indicate the presence of 279 bioactive secondary metabolites (Wasser et al.), along with over 200 polysaccharides and polysaccharide-protein complexes (Baby et al.), and more than 30 steroidal compounds (Wasser et al.) within the chemical composition of *G. lucidum*. These compounds play a pivotal role in the development of various biological actions. [120,208,209].

4. Biological Activities against Cancer

The biocomponents present in *G. lucidum* contribute to the numerous biological actions of this medicinal mushroom, making it applicable in medical contexts for combating cancer. Both polysaccharide compounds (Gl-Ps) and triterpene compounds (Gl-Ts) have been shown to exhibit anticancer activities. Over a 25-year period, numerous studies have investigated the anticancer effects of *G. lucidum* compounds, including those reported by Wang et al. (2002), Zhang et al. (2007), and Akihisa et al. (2007) [24,107,164]. Between 2009 and 2015, other researchers published studies on the anticancer effects of *G. lucidum*

bio-compounds, such as Cho et al., Ferreira et al., Trajkovic et al., Kao et al., Zhao et al., and Joseph et al. [15,28,34,35,37,80,89]. Between 2018 and 2023, new studies disclosed data on anticancer actions, including those by Ahmad F. and Cör et al. in 2018, Kolniac-Ostek et al. in 2022, and Ekiz et al. in 2023 [13,153,192,210]. Our aim is to review the most important studies and systematize these data on the possible mechanisms.

4.1. Anticancer Action

The anticancer activity attributed to Gl-Ps was studied by Cao et al. in 2002 and 2003 [211,212]. Many other studies have demonstrated the effect of Gl-Ps on cytokines, including those by Chen et al. and Zhu et al. [213,214]. In 2007, Zhu et al. demonstrated the beneficial immunological effects in mice attributed to Gl-Ps extracts administered at low doses [215]. You et al. studied the effects of Gl-Ps on antioxidant enzymes in ovarian cancer in rats, while Xu et al. conducted research on mediating the immunomodulatory, cytotoxic, and anti-angiogenic effects of Gl-Ps [216,217]. Polysaccharides have been identified as a distinct class of compounds present in G. lucidum compositions, demonstrating anticancer activity by stimulating host immune function, as reported by Ahmad F., Sun et al., and Wiater et al. [213,218,219]. In 2012, Zhang et al. reported the effects of Gl-Ps on suppressing hepatocyte proliferation in rats [220]. Pan et al. reported the effects of Gl-Ps on rats with gastric cancer, inducing enhanced immunity and antioxidant activity [103]. The study by Suarez-Arroyo et al. in 2013 explored inflammatory breast cancer (IBC) and the effects of Gl-Ps in breast cancer [221]. In 2015, Habijanic et al. reported on the effects of Gl-Ps in modulating cytokine responses and lymphocyte activity [222]. Several studies have delved into the mechanisms of action of G. lucidum compounds in cancer treatment, such as those published by Ahmad F., Sohretoglu et al., and Wang et al. in 2018, as well as Fu et al. in 2019 [13,223-225]. The triterpene compounds (Gl-Ts) identified in G. lucidum exhibit significant anticancer effects. Both Min et al. in 2000 and Gao et al. in 2002 reported that triterpene compounds displayed cytotoxic effects against tumor cells [226,227]. In 2004, Lin et al. investigated the actions of Gl-Ps from aqueous extracts and Gl-Ts from alcoholic extracts of G. lucidum, evaluating their angiogenic effects [228]. Li et al. conducted research on ganoderic acid X, which acts by inhibiting topoisomerases and inducing apoptosis [229]. In Table 9, we have compiled the effects of essential compounds (Gl-Ps and Gl-Ts) in G. *lucidum* that significantly contribute to its anticarcinogenic activity.

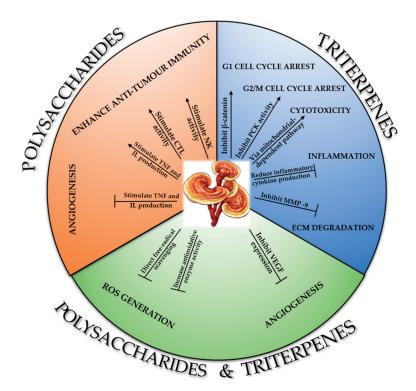
Table 9. Anticancer activity of polysaccharides and triterpenes from G. Iucidum.

1 GI-Ps Ef			Keterences
GI-Ps	Effects on dendritic cells	GI-Ps acts on the maturation and function of cultured murine bone marrow-derived dendritic cells (DCs).	[211]
	Effect on cytotoxicity	Gl-Ps acts with a specific T-lymphocyte cytotoxic (CTL) mechanism, which has been pulsed with the tumor antigen P815.	[212]
3 Gl-Ps Ev	Evaluation of immunomodulatory effect on cytokines	Explain the mechanism of action on macrophages in which Gl-Ps (fractions) activate kinase to induce, in turn, activation of IL-1, IL-2, and TNF- α .	[213]
4 Gl-Ps Ef	Effect of cytokine-induced killer cells (CIK)	GI-Ps decreases the number of lymphokine-activated cytokines (LAK) and CIK-induced cytokine-killing cells.	[214]
5 Gl-Ps hin	Actions in immunopotentiation therapy against induced immunosuppression	GI-Ps extract at low doses leads to increased immunological effector cell activity in immunosuppressed mice.	[215]
6 GI-Ps Ef	Effect on antioxidant enzyme activity	GI-Ps from <i>G. Iucidum</i> significantly reduced malondialdehyde (MDA) production and increased the activity of serum antioxidant enzymes in ovarian cancer therapy in rats.	[216]
7 GI-Ps G	Gl-Ps suppresses tumorigenesis, inhibits tumor growth	GI-Ps affects immune cells, including B-lymphocytes, T-lymphocytes, dendritic cells, and natural killer cells. They are mediated by immunomodulatory, anti-angiogenic, and cytotoxic effects.	[217]
8 GI-Ps A	Antitumor effects by stimulating host immune function	GI-Ps acts directly in activating lymphocytes that have been tested by incubating GI-Ps with an antigen-deficient tumor cell line. Also, GI-Ps acts on B16F10 melanoma cells.	[218]
9 GI-Ps A	Antitumor effects by stimulating host immune function	Gl-Ps can induce lymphocyte proliferation through action on B16F10 melanoma cells and IFN- γ production.	[219]
10 Gl-Ps Su	Antitumor activity manifested by a mixture of GI-Ps and sulfates.	GI-Ps sulfate showed remarkable inhibition of rat Heps proliferation.	[220]
11 GI-Ps TI	Therapeutic potential in inflammatory breast cancer (IBC).	Study results provide evidence that GI-Ps treatment suppresses protein synthesis and tumor growth by affecting survival signaling pathways in mice injected with IBC cells, suggesting a natural therapeutic potential for breast cancer.	[221]
12 Gl-Ps In	The ability of isolated Gl-Ps fractions (F3) to induce innate inflammatory cytokines	Enhanced Th1 response with high levels of IFN-y and IL-2. Cell wall Gl-Ps were inducers of innate inflammatory cytokines, and extracellular Gl-Ps demonstrated a high capacity to modulate cytokine responses to IL-17 production.	[222]

 Table 9. Cont.

G. Iucidum Com- pounds	Actions and Effects of GI-Ps on Antitumor Activity	Mechanism of Action	References
13 Gl-Ps	Potential anticancer activity	They discussed the mechanisms of anticancer activity attributed to GI-Ps by highlighting immunomodulatory, anti-proliferative, pro-apoptotic, antimetastatic and anti-angiogenic effects.	[223]
14 Gl-Ps	Antitumor action and immunomodulatory effects of GI-Ps in rats	Gl-Ps increased the serum concentration of Il-2, INF- γ and tumor necrosis factor- α . It increased the cytotoxic activity of natural killer cells and I cells and led to prolonged lifespan of brain glioma-bearing rats.	[224]
15 Gl-Ps, spores	Antitumor action of a novel polysaccharide with an estimated average molecular weight of 1.5 \times 104 Da	In vivo antitumor activity tests showed that Gl-Ps could significantly inhibit S180 tumor growth in mice. No drug-related toxic reactions were observed.	[225]
16 GI-Ts	Ganoderic acids from spores and their cytotoxicity	The cytotoxicity of the compounds isolated from the <i>Ganoderma</i> spores was carried out in vitro against Meth-A and LLC tumor cell lines.	[227]
17 Gl-Ts	Anticancer study of lucial dehydes B, C (2,3), ganodermanonol, and ganodermanondiol	Cytotoxic mechanism. Lucialdehyde C exhibited the most potent cytotoxicity against CLL, T-47D, sarcoma 180, and Meth-A tumor cells.	[227]
18 Gl-Ps Gl-Ts	Antitumor effect of aqueous extract; cytotoxic activity of alcoholic extract	Manifestation of a significant antitumor effect in several tumor-bearing animals; manifestation of an anti-angiogenic effect that may be involved in the antitumor activity.	[228]
19 Gl-Ts	Ability of ganoderic acid $X\left(GAX\right)$ to inhibit topoisomerases and interfere with apoptosis	Mechanisms of chromosomal DNA degradation, cancer cell apoptosis, mitochondrial membrane disruption, and caspase-3 activation have been elucidated upon GAX treatment of HuH-7 human hepatoma cells.	[229]
20 GI-Ts	Cytotoxicity of GA-T on different human carcinoma	It was shown in vivo to significantly inhibit proliferation of lung cancer cells by inducing apoptosis by $\mbox{GA-T}$	[230]
21 Gl-Ts	The effect of ganoderic acids A, F, and H on breast cancer cells was evaluated	GA-A, GA-F, and GA-H suppressed cell proliferation, colony formation, and invasive behavior of MDA-MB-231 cells. They have biological effects by inhibiting transcription factors AP-1 and NF- κ B.	[231]
22 GA-T	Studies of anti-invasive and antimetastatic mechanisms of GA-T in vitro in lung cancer	GA-T dose-dependently inhibited 95-D cell migration by wound healing assay, promoting cell aggregation and inhibiting cell adhesion to the extracellular matrix (ECM). GA-T prevents tumor metastasis in highly metastatic lung carcinoma.	[232]
23 Gl-Ts.	Anticancer, anti-inflammatory, and antimetastatic activities of G. Iucidum extracts	Gl-Ts from <i>G. lucidum</i> reduces the production of IL-8, IL-6, MMP-2, and MMP-9 in breast cancer and melanoma cells. They decrease cancer cell viability in a time and dose-dependent manner.	[233]
24 GL-Ts	Investigation of GI-Ts with activity in inhibiting growth of pulmonary carcinoma metastates and suppressing colonic inflammation	The triterpene extracts exhibit inhibitory activity against foodborne carcinogen-induced mouse colon carcinogenesis. All suppressive functions were enhanced by high doses of triterpene extract.	[234]

 Table 9. Cont.


G. Iucidum Com- pounds	Actions and Effects of Gl-Ps on Antitumor Activity	Mechanism of Action	References
25 Gl-Ts NTF, ATF	Evaluation of anticancer effects of NTF (neutral triterpene fraction) and ATF (acidic triterpene fraction) on human colorectal cancer	The cytotoxic effects of Gl-Ts on human colon cancer cells SW480, SW620, SW116, and mouse embryonic fibroblast cells NIH3T3 were studied. Compounds isolated from NTF acted as antitumorals by inducing apoptosis.	[235]
27 GISO	Mechanistic investigation of the anticancer-gene effect of GISO (G. lucidum spore oil) on mammary cancer cells	Growth of MDA—MB-231 cells, in vitro, were inhibited by treatment with GISO (0.2, 0.4, and 0.6 μ L/mL). In vitro, GISO increased Bax and caspase-3 expression but did not affect caspase-8 expression.	[536]
27 Gl-Ts	Anticancer potential of <i>G. lucidum</i> against prostate cancer (PC-3)	G. Iucidum has been shown to prevent prostate cancer cell growth and stimulate apoptosis in PC-3 cells by preventing STAT-3 translocation (signal transduction and activation of transcription).	[237]
28 Gl-Ts	Effects on colorectal cancer. Involves suppression of NF-kB-regulated inflammation and carcinogenesis	In vitro administration of GLSF extract at non-toxic concentrations to mice inoculated with CT27 tumor cells significantly potentiated paclitaxel-induced growth inhibition and apoptosis in CT27 and HCT-15 cells.	[238]
29 Gl-Ps, Gl-Ts	Evaluation of the effects on skin carcinogenesis analyzed on JB6 cells in SKH-1 mice	Reduced incidence and multiplicity of skin tumors. In tumor-free skin tissue of mice, Gl-Ps and Gl-Ts attenuated UV-induced epidermal thickening. Gl-SF increased CD8 and Granzyme B expression.	[239]

Tang et al. (2006) reported the effects of ganoderic acid T in inhibiting lung cancer tumors (95-D), inducing apoptosis, and arresting the cell cycle at the G(1) phase [230]. Gl-Ts-type triterpenes and ganoderic acids A, F, and G were investigated in 2008 by Jiang et al. for their effects on breast cancer [231]. In 2009, Trajkovic et al. documented the action of triterpenes in B-16 melanoma, while Xu et al. studied ganoderic acid T and its effects on lung cancer [34,232]. In 2017, Barbieri et al. published data on the inhibition of IL-8, IL-6, MMP-2, and MMP-9 release in cancer cells under pro-inflammatory conditions in breast cancer and melanoma cells, and Ye et al. disclosed data on the effects of ganoderic and lucidenic acids in inhibiting the growth of lung carcinoma metastases and suppressing colon inflammation [233,234]. In 2020, the anticancer effects of triterpene fractions extracted from *G. lucidum* on SW620 human colorectal cancer cells were reported in vitro by Li et al. [235]. The action of Gl-Ts against various cancers has been studied by Jiao et al. (breast cancer cells), Wang et al. (prostate cancer), and Liu et al. (colorectal cancer) [236–238]. In 2022, Shahid et al. conducted research on the anticancer activities of Gl-Ts in skin cancer [239].

4.2. Possible Mechanisms in Anticancer Actions

The medical world has shown significant interest in establishing possible mechanisms of anticancer activity, especially as the literature provides ample evidence regarding the actions of *G. lucidum* biocomponents against various forms of cancer. In 2018, Ahmad F. systematized the possible mechanisms by which *G. lucidum* bio-compounds participate in cancer treatment [13]. The steps considered by Ahmad include the activation of the host cell immune response, induction of cell differentiation, inhibition of angiogenesis, direct cytotoxicity to tumor cells, inhibition of urokinase-type plasminogen activator and receptor expression in cancer cells, and inhibition of phase II metabolizing enzymes [13].

Kao et al. elucidated the mechanisms of the anticancer action of *G. lucidum* compounds by discussing the distinct effects of polysaccharide and triterpene compounds separately, as well as their combined effects (see Figure 9) [35].

Figure 9. Mechanisms of action of polysaccharide and triterpene extracts isolated from *G. lucidum* with anticancer effect, adapted from [35].

They showed that polysaccharide compounds (Gl-Ps) act through three mechanisms [35]: by enhancing the host immune response, by stimulating macrophage activity, and by stimulating T-lymphocytes and natural killer (NK) cells. Triterpenes (Gl-Ts) act through five mechanisms:

- G1-phase cell cycle arrest by inhibition of β -catenin;
- Inhibition of protein kinase C (PCK), which generates G2-phase cell cycle inhibition;
- Induction of apoptosis in cancer cells via the mitochondrial pathway, followed by activation of caspase cascades;
- Preventing tumor metastasis by inhibiting MMP-9 and interleukin IL-8 and by degrading the extracellular matrix (ECM);
- Suppressing the secretion of anti-inflammatory cytokines [240].

Together, the two major classes of bio-compounds, Gl-Ps and Gl-Ts, share two common mechanisms, namely:

- I. Antioxidant actions by reducing oxidative stress generated by free radicals and reactive oxygen species (ROS) through the actions of antioxidant enzymes [35].
- II. Suppressing angiogenesis and inhibiting nitric oxide production.

4.3. Other Biological Actions Involved in Anticancer Activities

The antitumor activity of *G. lucidum* bio-compounds is based on the differential effects of other biological activities generated by *G. lucidum* bio-compounds, as reported by Cör et al. [122,153]. Other researchers, such as Sharma et al., Ahmad, and You et al., have also conducted studies on the various factors that can lead to cancer [137,155,216]. Additionally, researchers like Xu et al., Fu et al., and Hapuarachchi et al. have analyzed various biological actions associated with cancer [217,225,241].

4.3.1. Immunomodulatory Activities

Anticancer activity based on immunomodulation activity has been reported by several researchers, such as Bao et al., Ooi et al., Moradali et al., and Lin et al. [94,106,109,168].

Effects of Gl-Ps on T- and B-Lymphocytes

Numerous studies have been reported that highlight the activating role of Gl-Ps (F3 fraction) on T-lymphocytes by increasing interleukin production: IL-1, IL-2, IL-6, and IL-12, and increasing the expression of IFN- γ and INF- α . Additionally, they enhanced DNA synthesis in mouse spleen cells, as reported by Chen et al. [213] and Wang et al. [24]. Gl-Ps from *G. lucidum* can activate PKC and PKA protein kinases in murine T-lymphocytes, according to Sohretoglu et al. [223]. The effect of Gl-Ps on B-lymphocytes is also crucial for tumor immunity. For example, Gl-Ps can activate B-lymphocytes by enhancing their proliferation and differentiation, leading to the production of substantial amounts of immunoglobulins in mice. Furthermore, Gl-Ps can directly stimulate the expression of PKC α and PKC γ in B-lymphocytes, as reported by Zhang et al. [242]. Activated B-lymphocytes increase the production of immunomodulatory substances, such as IL-1 β and TNF- α , and reactive nitrogen species, such as NO [242].

Effect of Gl-Ps on Dendritic Cells

Dendritic cells (DCs) are professional antigen-presenting cells involved in the initiation of the primary T-lymphocyte immune response [223]. Stimulation of dendritic cell maturation by Gl-Ps from *G. lucidum* was documented by Sanodiya et al. [27]. Lai et al. reported that treatment with Gl-Ps F3 fraction extract improved the mixed lymphocyte response and stimulated the production of ten cytokines and six chemokines [243]. Jan et al. outlined the immunomodulatory activity of Gl-Ps, including the activation and maturation of DCs, as evidenced by increased cytokine production (IL-12, IL-6, IL-23, and IL-10) [244]. Chan et al. reported that treatment of monocytic leukemic cell lines with Gl-Ps resulted in

increased leukocyte HLA-DR antigen expression and induced leukemic cell differentiation through increased superoxide production and cell cycle arrest [245].

Effect of Gl-Ps on Macrophages

Sohretoglu et al. demonstrated that Gl-Ps activate macrophages in vitro and elevate the levels of various cytokines, including IL-1 β , tumor necrosis factor (TNF- α), IFN- γ , and IL-6 in the culture medium. This activation significantly increases macrophage phagocytosis and enhances macrophage-mediated tumor cytotoxicity [223]. Zhang et al. showed that the in vivo treatment of S180 sarcoma-bearing mice with Gl-Ps activated bone marrow-derived macrophages, inducing the production of immunomodulatory compounds such as IL-1 β , TNF- α , and nitric oxide (NO) [242]. Hsu et al. elucidated the role of caspases in macrophage F3 fraction-induced Gl-Ps from *G. lucidum* spores [246]. Guo et al. discovered a novel water-soluble polysaccharide within *G. lucidum* spores that acts as an inducer of TNF- α and IL-6 secretion in murine peritoneal macrophages [247]. The in vivo administration of extracts from *G. lucidum* spores potentiated the proliferative response of splenocytes and induced antitumor activity against lung cancer in mice [247]. Hsu et al. reported that Gl-Ps induces increased secretion of the inflammatory cytokine IL-1 and stimulates the expression of pro-IL-1 and IL-1-converting enzymes in human and murine macrophages, an association linked with its anticancer activity [248].

Effect of Gl-Ps on Natural Killer (NK) Cells

Altfeld et al. defined the role of (NK) natural killer cells in innate immunity [249]. Chien et al. demonstrated that treatment with Gl-Ps resulted in increased monocyte, macrophage, and NK cell populations in human umbilical cord blood [250]. Wang et al. studied the effects of the bio-compounds from *G. lucidum* that, upon oral administration to mice, improved NK cell and phagocytosis activities and increased cytokine levels [251]. In additional research by Zhu et al., it was shown that Gl-Ps accelerated the recovery of bone marrow cells, red blood cells, and white blood cells, as well as splenic NK and NKT killer cells, and enhanced T- and B-lymphocyte proliferative responses [215]. The application of Gl-Ps treatments is recommended in cancer chemotherapy only at low doses [215].

4.3.2. Anti-Proliferative, Cytotoxic, and Apoptosis-Increasing Activities

Ganoderic bio-compounds have demonstrated various anti-proliferative and cytotoxic effects in studies regarding the treatment of different types of cancer [252-255]. The anti-proliferative effects of Gl-Ts compounds in G. lucidum manifest through cell cycle arrest [252,253]. Gl-Ts compounds can arrest the cell cycle in the G1 phase by inhibiting the β-catenin pathway, as reported by Wu et al., and in the G2/M phase by suppressing protein kinase C (PKC) activity, as reported by Lin et al. [252,253]. Jedinak et al. reported that ganodermanontriol inhibited the proliferation of HCT116 and HT-29 colon cancer cells by inhibiting β -catenin [254]. Li et al. (2005) identified ganoderic acid X as a compound that can arrest the cell cycle by inhibiting topoisomerase [229]. Chen et al., in 2010, reported that ganoderic acid T (GA-T) exhibits anti-proliferative effects against cancer cells in vitro and against metastasis in vivo [255]. In 2008, Chen et al. reported in the wound vacuolization assay that ganoderic acid Me (GA-Me), administered in a dose- and time-dependent manner, inhibited tumor invasion and cell adhesion to the extracellular matrix (ECM) [256]. GA-Me suppressed master metalloproteinases at the mRNA and protein levels in 95-D cells and is considered a potent antimetastatic carcinoma inhibitor [256]. Hsu et al. studied the anti-proliferative effects of lucidenic acids in human leukemic HL-60 cells [257].

Tang et al. conducted a study on the anti-proliferative effect of ganoderic acid T against cancer cells and observed enhanced cytotoxicity in lung cancer [230]. Triterpene compounds can induce apoptosis of cancer cells via the mitochondria-dependent pathway, followed by caspase activation, as reported by Kao et al. and Liu et al. in 2011 and 2012 [35,258,259]. Zhou et al. investigated the cytotoxic effects of GA-Me in human

colon carcinoma, observing a dose-dependent pattern, and determined that the anticancer bioactivity of GA-Me was mediated through induced apoptosis [260].

4.3.3. Anti-Inflammatory Activities

Several inflammatory mediators, such as TNF- α , IL-6, TGF- β , and IL-10, have been shown to play roles in cancer initiation and progression [261,262]. *G. lucidum* biocomplexes have demonstrated dose-dependent anti-inflammatory effects [223]. Administration of the triterpene extract suppressed inflammatory cytokine secretion in macrophages with a significant reduction in inflammation in the affected tissue, as reported by Dudhgaonkar et al. in 2009 [263]. Joseph et al. found that Gl-Ps administration resulted in a 58% inhibition of inflammation, as assessed by carrageenan-induced (acute) and formalin-induced (chronic) inflammation assays [37].

4.3.4. Anti-Angiogenic Activities

Angiogenesis, the process by which new vasculature is formed from pre-existing vasculature, plays a key role in tumor growth and metastasis as well [264]. Nitric oxide is known to be an angiogenesis-inducing agent in tumors, promoting capillary formation within the tumor and allowing it to expand. In 2004, Cao et al. reported the existence of a peptide in *G. lucidum* that significantly reduced microvessel formation, as detected by the chorioallantois membrane assay [265]. Stanley et al. (2005) found that the *G. lucidum* extract prevented capillary morphogenesis by inhibiting the secretion of angiogenic factors VEGF and (TGF)- β 1 [38]. Cao et al. (2006) demonstrated that the *G. lucidum* extract contains a polysaccharide peptide that exhibits anti-angiogenic activity by inhibiting nitric oxide production, subsequently suppressing cell multiplication in a dose-dependent manner [95].

4.3.5. Antioxidant Activities

Excess free radicals adversely affect bases in the nucleic acid structure, amino acids in the protein structure, and double bonds in unsaturated fatty acids, leading to oxidative stress, which is responsible for the alteration of DNA, RNA, proteins, and lipids. Hsieh et al. reported that bio-compounds from G. lucidum can exert chemopreventive effects through their antioxidant properties, such as free radical scavenging, as well as the ability to affect phase II detoxification enzymes [39]. Other authors, such as Smina et al., studied the antioxidant activity of Gl-Ts and demonstrated that they can reduce free radicals in cancer cells. [266]. In another study, Smina et al. reported the effect of total triterpenes from G. lucidum on the intracellular levels of reactive oxygen species (ROS) and the activities of endogenous antioxidant enzymes in spleen lymphocytes, highlighting their role in reducing radiation-induced oxidative DNA damage in spleen cells [267]. In 2001 and 2003, Lu et al. highlighted the beneficial contribution of the polysaccharides extracted from G. lucidum mycelium in reducing ROS-induced oxidative damage [268,269]. Lee et al. reported the existence of an amino polysaccharide compound in G. lucidum that can inactivate hydroxyl and superoxide anion radicals [270]. Other authors, such as XiaoPing et al. and Zhao et al., studied Gl-Ps and showed that these bio-compounds could be beneficial for glutathione peroxidase and reduce malonaldehyde levels in rats with cervical carcinoma and mice exposed to γ -irradiation [49,271].

5. Toxicity and Safety

Although there are numerous published studies on the beneficial effects of *G. lucidum*, there is also relatively little information reporting the toxic effects in humans. In this regard, Ahmad F. highlighted human sensitisation to *Ganoderma* antigen, reported in the USA, leading to allergic reactions [13,155]. When undergoing *G. lucidum* treatment, special attention should be paid to potential interactions with other drugs. Diabetic patients or those being treated with anticoagulants or antiplatelet drugs require special caution when being administered *G. lucidum*, as the anticipated effects may be altered [272].

In cancer therapy, although *G. lucidum* has been utilized as an anticancer agent, caution is still required when using it in conjunction with chemotherapy due to potential toxicity. Plasma concentrations of *G. lucidum* should be carefully monitored to detect elevated, toxic levels [273]. In an *in vitro* study, *G. lucidum* extracts were found to have toxic effects when exposed to cells at concentrations higher than those required for stimulatory results, resulting in a significant reduction in cell viability in a number of cell lines [274]. *G. lucidum* exhibits antihypertensive activity and may potentiate the effects of antihypertensive drugs [275]. Gl-Ps from *G. lucidum* have antibacterial activity and can enhance the activity of some antibiotics (e.g., tetracycline and cefazolin) [276].

6. Conclusions

G. lucidum bio-compounds are regarded as valuable in alternative cancer treatments based on non-natural products. The present work has compiled available data from various in vitro and in vivo studies on G. lucidum bio-compounds and their beneficial effects in anticancer treatment through their biological actions, such as anti-proliferative, antioxidant, immunomodulatory, anti-inflammatory, and anti-angiogenic effects. This paper presents information on the active bio-compounds in G. lucidum to obtain conclusive data and confirm their benefits regarding the mechanisms of anticancer action. Additionally, understanding the mechanisms of anticancer action, combined with other biological anticancer actions exerted by both the main bioactive compounds Gl-Ps and Gl-Ts and other compounds described in the paper (proteins, vitamins, metals, sterols, fatty acids, and nucleotide compounds), is necessary for targeted use in anticancer treatments. It is also crucial to comprehend that the biocomponents of G. lucidum are directly influenced by several factors, including the origin and culture medium, environmental conditions, temperature, humidity, and the quality of the environment from which the fungus originates. Therefore, further experimental, epidemiological, and clinical studies are needed to characterize the interactions of the administration of *G. lucidum* forms with different conventional anticancer drugs. More research is needed to combine G. lucidum bio-compound treatments with chemotherapy. Extensive pharmacological studies are also necessary to establish optimal dosages and assess the efficacy and safety of administration. Moreover, it is important to extend the research to identify metabolite subtypes that support the observed bioactivities, aiming to establish anticancer therapy procedures that promote general health and longevity.

Author Contributions: Conceptualization E.C., C.L.T., I.P., B.-S.N.-P. and C.P.; methodology, E.C., A.-M.I., C.L.T., B.-S.N.-P. and C.P.; writing—original draft preparation, E.C., R.S., C.P., I.P., B.-S.N.-P. and C.L.T.; writing—review and editing, R.S., C.P., I.P., B-S.N-P., A.-M.I. and E.C.; supervision T.N.-P., C.L.T., I.P. and R.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Gl-Ps	G. lucidum polysaccharides	ROS	Reactive Oxygen Species
Gl-Ts	G. lucidum triterpenoids	GA-A	Ganoderic acids A
TPC	Total polyphenol content	GA-F	Ganoderic acids F
TFC	Total flavonoid content	GA-H	Ganoderic acids H
IL	Interleukin	GA-T	ganoderic acid T
TNF-α	Tumor Necrosis Factor Alpha	GA-Me	Ganoderic acid Me
INF-γ	Interferon Gamma	MMP	Matrix metalloproteinase;
TGF-α	Transforming Growth Factor-Alfa	TCL	T-lymphocyte cytotoxic
TGF-β	Transforming Growth Factor-Beta	NK	Natural killer cells;
VEGF	Vascular Endothelial Growth Factor	PKC	Protein kinase C
NO	Nitrogen species	ECM	Extracellular matrix;
MDA	Malondialdehyde	DCs	Dendritic cells
HPLC-ESI-MS	Liquid chromatography coupled with electrospray ionization mass spectrometry	TEAC	Trolox equivalent antioxidant capacity

References

- 1. Cai, Q.; Li, Y.; Pei, G. Polysaccharides from *Ganoderma lucidum* attenuates microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response. *J. Neuroinflamm.* **2017**, *14*, 63–76. [CrossRef]
- 2. Li, H.J.; He, Y.L.; Zhang, D.H.; Yue, T.H.; Jiang, L.X.; Li, N.; Xu, J.W. Enhancement of ganoderic acid production by constitutively expressing *Vitreoscilla hemoglobin* gene in *Ganoderma lucidum*. *J. Biotechnol.* **2016**, 227, 35–40. [CrossRef]
- 3. Sliva, D. Cellular and physiological effects of *Ganoderma lucidum* (Reishi). *Mini Rev. Med. Chem.* **2004**, *4*, 873–879. [CrossRef] [PubMed]
- 4. Soccol, C.R.; Bissoqui, L.Y.; Rodrigues, C.; Rubel, R.; Sella, S.R.; Leifa, F.; De Souza Vandenberghe, L.P.; Soccol, V.T. Pharmacological Properties of Biocompounds from Spores of the Lingzhi or Reishi Medicinal Mushroom *Ganoderma lucidum* (Agaricomycetes): A Review. *Int. J. Med. Mushrooms* **2016**, *18*, 757–767. [CrossRef] [PubMed]
- 5. Zheng, W. Drug discovery from fungal metabolites: A review of the papers in this monographical issue of Mycosystema concerned with the natural resources, problems and strategies. *Mycosystema* **2011**, *30*, 151–157.
- 6. Lindequist, U.; Niedermeyer, T.H.; Jülich, W.D. The pharmacological potential of mushrooms. *Evid. Based Complement. Altern. Med.* **2005**, 2, 285–299. [CrossRef]
- 7. Ahmad, M.F.; Ahmad, F.A.; Azad, Z.R.; Azaz, A.; Alam, M.I.; Ansari, J.A.; Panda, B.P. Edible mushrooms as health promoting agent. *Adv. Sci. Focus* **2013**, *1*, 189–196. [CrossRef]
- 8. El Sheikha, A.F.; Hu, D.M. How to trace the geographic origin of mushrooms? *Trends Food Sci. Technol.* **2018**, *78*, 292–303. [CrossRef]
- 9. Kou, F.; Ge, Y.; Wang, W.; Mei, Y.; Kao, L.; Wei, X.; Xiao, H.; Wu, X. A review of *Ganoderma lucidum* polysaccharides: Health benefit, structure-activity relationship, modification, and nanoparticle encapsulation. *Int. J. Biol. Macromol.* **2023**, 243, 125199. [CrossRef]
- 10. Lee, K.H.; Morris-Natschke, S.L.; Yang, X.; Huang, R.; Zhou, T.; Wu, S.F.; Shi, Q.; Itokawa, H. Recent progress of research on medicinal mushrooms, foods, and other herbal products used in traditional Chinese medicine. *J. Tradit. Complement. Med.* **2012**, 2, 1–12. [CrossRef]
- 11. Loyd, A.L.; Richter, B.S.; Jusino, M.A.; Truong, C.; Smith, M.E.; Blanchette, R.A.; Smith, J.A. Identifying the "mushroom of immortality": Assessing the *Ganoderma* species composition in commercial Reishi products. *Front. Microbiol.* **2018**, *9*, 1557–1572. [CrossRef]
- 12. Wasser, S.P.; Coates, P.; Blackman, M.; Cragg, G.; Levine, M.; Moss, J.; White, J. Reishi or Ling Zhi (*Ganoderma lucidum*). In *Encyclopedia of Dietary Supplements*, 1st ed.; Coates, P.M., Blackman, M.R., Cragg, G.M., Levine, M., White, J.D., Moss, J., Eds.; Marcel Dekker: New York, NY, USA, 2005; Volume 1, pp. 680–690. [CrossRef]
- 13. Ahmad, M.F. *Ganoderma lucidum*: Persuasive biologically active constituents and their health endorsement. *Biomed. Pharmacother.* **2018**, 107, 507–519. [CrossRef]
- 14. Boh, B.; Berovic, M.; Zhang, J.; Zhi-Bin, L. *Ganoderma lucidum* and its pharmaceutically active compounds. *Biotechnol. Ann. Rev.* **2007**, *13*, 265–301. [CrossRef]
- 15. Cho, J.H.; Noh, H.J.; Kang, D.H.; Lee, J.Y.; Lee, M.J.; Park, H.S.; Sung, G.H.; Jhune, C.S. Antioxidant activity and Cancer cell growth inhibition of *Ganoderma lucidum*. *J. Mush.* **2012**, *10*, 203–207.
- 16. Ryu, D.H.; Cho, J.Y.; Sadiq, N.B.; Kim, J.C.; Lee, B.; Hamayun, M.; Lee, T.S.; Kim, H.S.; Park, S.P.; Nho, C.W.; et al. Optimization of antioxidant, anti-diabetic, and anti-inflammatory activities and ganoderic acid content of differentially dried *Ganoderma lucidum* using response surface methodology. *Food Chem.* **2021**, 335, 127645–127654. [CrossRef] [PubMed]
- 17. Cherian, E.; Sudheesh, N.P.; Janardhanan, K.K.; Patani, G. Free-radical scavenging and mitochondrial antioxidant activities of Reishi-*Ganoderma lucidum* (Curt: Fr) P. Karst and Arogyapacha—Trichopus zeylanicus Gaertn extracts. *J. Basic Clin. Physiol. Pharmacol.* 2009, 20, 289–307. [CrossRef] [PubMed]

- 18. Bhat, Z.A.; Wani, A.H.; War, J.M.; Bhat, M.Y. Major bioactive properties of *Ganoderma* polysaccharides: A Review. *Asian J. Pharm. Clin. Res.* **2021**, *14*, 11–24. [CrossRef]
- 19. Liu, X.; Yuan, J.P.; Chung, C.K.; Chen, X.J. Antitumor activity of the sporoderm-broken germinating spores of *Ganoderma lucidum*. *Cancer Lett.* **2002**, *182*, 155–161. [CrossRef]
- Kumar, V.; Yadav, H.K. Therapeutic potential of an edible macro-fungus: Ganoderma lucidum (Curtis) P. Karst. Indian J. Trad. Know. 2019, 18, 702–713.
- Rahman, M.A.; Al Masud, A.; Lira, N.Y.; Shakil, S. Proximate analysis, phtochemical screening and antioxidant activity of different strains of *Ganoderma lucidum* (Reishi Mushroom). Open J. Biol. Sci. 2020, 5, 24–27.
- 22. Sudheer, S.; Alzorqi, I.; Manickam, S.; Ali, A. Bioactive Compounds of the Wonder Medicinal Mushroom "Ganoderma lucidum". Bioactive Molecules in Food. In *Reference Series in Phytochemistry*; Mérillon, J.M., Ramawat, K.G., Eds.; Springer: Cham, Switzerland, 2019; pp. 1863–1893. [CrossRef]
- 23. Bulam, S.; Ustun, N.S.; Peksen, A. Health benefits of *Ganoderma lucidum* as a medicinal mushroom. *Turk. J. Agric. Food Sci. Technol.* **2019**, 7, 84–93. [CrossRef]
- 24. Wang, Y.Y.; Khoo, K.H.; Chen, S.T.; Lin, C.C.; Wonga, C.H.; Lin, C.H. Studies on the immunomodulating and antitumor activities of *Ganoderma lucidum* (reishi) polysaccharides: Functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. *Bioorg. Med. Chem.* 2002, 10, 1057–1062. [CrossRef] [PubMed]
- 25. Zhao, R.L.; He, Y.M. Network pharmacology analysis of the anti-cancer pharmacological mechanisms of *Ganoderma lucidum* extract with experimental support using Hepa1-6-bearing C57 BL/6 mice. *J. Ethnopharmacol.* **2018**, *10*, 287–295. [CrossRef] [PubMed]
- 26. Oke, M.A.; Afolabi, F.J.; Oyeleke, O.O.; Kilani, T.A.; Adeosun, A.R.; Olanbiwoninu, A.A.; Adebayo, E.A. *Ganoderma lucidum*: Unutilized natural medicine and promising future solution to emerging diseases in Africa. *Front. Pharmacol.* **2022**, *13*, 952027. [CrossRef]
- 27. Sanodiya, B.S.; Thakur, G.S.; Baghel, R.K.; Prasad, G.B.; Bisen, P.S. *Ganoderma lucidum*: A potent pharmacological macrofungus. *Curr. Pharm. Biotechnol.* **2009**, *10*, 717–742. [CrossRef] [PubMed]
- 28. Ferreira, I.C.; Vaz, J.; Vasconcelos, M.H.; Martins, A. Compounds from wild mushrooms with antitumor potential. *Anticancer. Agents Med. Chem.* **2010**, *10*, 424–436. [CrossRef]
- 29. Smania, E.F.A.; Monache, F.D.; Smania, A., Jr.; Yunes, R.A.; Cuneo, R.S. Antifungal activity of sterols and triterpenes isolated from *Ganoderma annulare*. *Fitoterapia* **2003**, *74*, 375–377. [CrossRef]
- 30. El Sheikha, A.F. Nutritional Profile and Health Benefits of *Ganoderma lucidum* "Lingzhi, Reishi, or Mannentake" as Functional Foods: Current Scenario and Future Perspectives. *Foods* **2022**, *11*, 1030. [CrossRef]
- 31. Du, M.; Hu, X.; Zhao, G.; Wang, C. Mechanism Underlying the Antitumor Activity of Proteins from the Ling Zhi or Reishi Medicinal Mushroom, *Ganoderma lucidum* (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae) In Vitro. *Int. J. Med. Mush.* **2010**, *12*, 133–139. [CrossRef]
- 32. Siwulski, M.; Sobieralski, K.; Golak-Siwulska, I.; Sokol, S.; Sekara, A. *Ganoderma lucidum* (Curt.: Fr.) Karst.—health-promoting properties. A review. *Herba Pol.* **2015**, *61*, 105–118. [CrossRef]
- 33. Yuen, J.W.; Gohel, M.D. Anticancer effects of *Ganoderma lucidum*: A review of scientific evidence. *Nutr. Cancer* **2005**, *53*, 11–17. [CrossRef]
- 34. Trajkovic, H.L.M.; Mijatovic, S.A.; Maksimovic-Ivanic, D.D.; Stojanovic, I.D.; Mamcilovic, M.B.; Tufegdzic, S.J.; Maksimovic, V.M.; Marjanovic, Z.S.; Stosic-Grujicic, S.D. Anticancer Properties of *Ganoderma lucidum* Methanol Extracts In Vitro and In Vivo. *Nutr. Cancer* 2009, 61, 696–707. [CrossRef]
- 35. Kao, C.; Jesuthasan, A.C.; Bishop, K.S.; Glucina, M.P.; Ferguson, L.R. Anti-cancer activities of Ganoderma lucidum: Active ingredients and pathways. *Funct. Foods Health Dis.* **2013**, *3*, 48–65. [CrossRef]
- 36. Kumar, D.S.; Senthilkumar, P.; Surendran, L.; Sudhagar, B. *Ganoderma lucidum* oriental mushroom mediated synthesis of gold nanoparticles conjugated with doxorubicin and evaluation of its anticancer potential on human breast cancer MCF-7/DOX cells. *Int. J. Pharm. Pharm. Sci.* **2017**, *9*, 267–274. [CrossRef]
- 37. Joseph, S.; Sabulal, B.; George, V.; Antony, K.; Janardhanan, K. Antitumor and anti-inflammatory activities of polysaccharides isolated from *Ganoderma lucidum*. *Acta Pharm*. **2011**, *61*, 335–342. [CrossRef] [PubMed]
- 38. Stanley, G.; Harvey, K.; Slivova, V.; Jiang, J. *Ganoderma lucidum* suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-beta1 from prostate cancer cells. *Biochem. Biophys. Res. Commun.* **2005**, 330, 46–52. [CrossRef] [PubMed]
- 39. Hsieh, T.C.; Wu, J.M. Suppression of proliferation and oxidative stress by extracts of *Ganoderma lucidum* in the ovarian cancer cell line OVCAR-3. *Int. J. Mol. Med.* **2011**, *28*, 1065–1069. [CrossRef]
- 40. Wu, X.; Guan, H.; Li, J.; Guo, J.; Hou, B. Evaluation of antitumour action of *Ganoderma lucidum* extract in hepatocarcinoma mice. *Afr. J. Pharm. Pharmacol.* **2012**, *6*, 2884–2887. [CrossRef]
- 41. Li, A.; Shuai, X.; Jia, Z.; Li, H.; Liang, X.; Su, D.; Guo, W. *Ganoderma lucidum* polysaccharide extract inhibits hepatocellular carcinoma growth by down regulating regulatory T cells accumulation and function by inducing microRNA-125b. *J. Transl. Med.* **2015**, *13*, 100. [CrossRef]
- 42. Liang, Z.; Guo, Y.T.; Yi, Y.J.; Wang, R.C.; Hu, Q.L.; Xiong, X.Y. *Ganoderma lucidum* Polysaccharides Target a Fas/Caspase Dependent Pathway to Induce Apoptosis in Human Colon Cancer Cells. *Asian Pac. J. Cancer Prev.* **2014**, *15*, 3981–3986. [CrossRef]

- 43. Hsu, S.C.; Ou, C.C.; Chuang, T.C.; Li, J.W.; Lee, Y.J.; Wang, V. *Ganoderma tsugae* extract inhibits expression of epidermal growth factor receptor and angiogenesis in human epidermoid carcinoma cells: In vitro and in vivo. *Cancer. Lett.* **2009**, 281, 108–116. [CrossRef]
- 44. Wasser, S.P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. *Appl. Microbiol. Biotechnol.* **2002**, *60*, 258–274. [CrossRef]
- 45. Gao, Y.; Zhou, S.; Jiang, W.; Huang, M.; Dai, X. Effects of Ganopoly (a *Ganoderma lucidum* polysaccharide extract) on the immune functions in advanced-stage cancer patients. *Immunol. Investig.* **2003**, *32*, 201–215. [CrossRef]
- 46. Sun, L.X.; Lin, Z.B.; Duan, X.S.; Qi, H.H.; Yang, N.; Li, M. Suppression of the production of transforming growth factor b1, interleukin-10, and vascular endothelial growth factor in the B16F10 cells by *G. lucidum* polysaccharides. *J. Interferon Cytokine Res.* **2014**, *34*, 667–675. [CrossRef]
- 47. Shi, M.; Zhang, Z.; Yang, Y. Antioxidant and immunoregulatory activity of *Ganoderma lucidum* polysaccharide. *Carbohydr. Polym.* **2013**, 95, 200–206. [CrossRef] [PubMed]
- 48. Shaher, F.; Qiu, H.; Wang, S.; Hu, Y.; Wang, W.; Zhang, Y.; Wei, Y.; Al-ward, S.; Abdulghani, M.A.M.; Alenezi, S.K.; et al. Associated Targets of the Antioxidant Cardioprotection of *Ganoderma lucidum* in Diabetic cardiomyopathy by Using Open Targets Platform: A Systematic Review. *BioMed Res. Int.* **2020**, 2020, 7136075. [CrossRef]
- 49. XiaoPing, C.X.; Yan, C.; Shuibing, L.; You Gou, C. Free radical scavenging of *Ganoderma lucidum* polysaccharides and its effect on antioxidant enzymes and immunity activities in cervical carcinoma rats. *Carbohydr. Polym.* **2009**, *77*, 389–393. [CrossRef]
- 50. Jones, S.; Janardhanan, K.K. Antioxidant and antitumor activity of *Ganoderma lucidum* (Curt.: Fr.) P. Karst. Reishi (Aphyllophoromycetideae) from South India. *Int. J. Med. Mushr.* 2000, 2, 195–200. [CrossRef]
- 51. Fries, E.M. Systema Mycologicum, Sistens Fungorum Ordines, Genera et Species, huc Usque Cognitas, Quas ad Normam Methodi Naturalis Determinavit; Sumtibus Ernesti Mauritti: New York, NY, USA, 1821; Volume 1, pp. 1–274.
- 52. Cao, Y.; Wu, S.H.; Dai, Y.C. Species clarification of the prize medicinal *Ganoderma* mushroom "Lingzhi". *Fungal Divers.* **2012**, *56*, 49–62. [CrossRef]
- 53. Wang, X.C.; Xi, R.J.; Li, Y.; Wang, D.M.; Yao, Y.J. The species identity of the widely cultivated *Ganoderma*, 'G. lucidum' (Ling-zhi), in China. PLoS ONE 2012, 7, 40857. [CrossRef]
- 54. Kwon, O.C.; Park, Y.J.; Kim, H.I.; Kong, W.S.; Cho, J.H.; Lee, C.S. Taxonomic Position and Species Identity of the Cultivated Yeongji 'Ganoderma lucidum' in Korea. Mycobiology **2016**, 44, 1–6. [CrossRef]
- 55. Nahata, A. *Ganoderma lucidum*: A potent medicinal mushroom with numerous health benefits. *Pharm. Anal. Acta* **2013**, *4*, 159. [CrossRef]
- 56. Kim, H.K.; Seo, G.S.; Kim, H.G. Comparison of characteristics of *Ganoderma lucidum* according to geographical origins: Consideration of morphological characteristics (II). *Mycobiology* **2001**, *29*, 80–84. [CrossRef]
- 57. Park, Y.J.; Kwon, O.C.; Son, E.S.; Yoon, D.E.; Han, W.; Nam, J.Y.; Yoo, Y.B.; Lee, C.S. Genetic diversity analysis of *Ganoderma* species and development of a specific marker for identification of medicinal mushroom *Ganoderma lucidum*. *Afr. J. Microbiol. Res.* **2012**, *6*, 5417–5425. [CrossRef]
- 58. Liao, B.; Chen, X.; Han, J.; Dan, Y.; Wang, L.; Jiao, W.; Song, J.; Chen, S. Identification of commercial *Ganoderma* (Lingzhi) species by ITS2 sequences. *Chin. Med.* **2015**, *10*, 22. [CrossRef] [PubMed]
- 59. Gottlieb, A.M.; Ferrer, E.; Wright, J.E. rDNA analyses as an aid to the taxonomy of species of *Ganoderma*. *Mycol. Res.* **2000**, 104, 1033–1045. [CrossRef]
- 60. Eyssartier, G.; Roux, P. *Le Guide des Champignons: France et Europe*, 4th ed.; Pub. Belin/Humensis: Paris, France, 2017; pp. 1–1150. Available online: https://www.amazon.co.uk/champignons-France-Europe-Guillaume-Eyssartier/dp/2410010423 (accessed on 22 October 2023).
- 61. Copot, O.; Tanase, C. Maxent modelling of the potential distribution of *Ganoderma lucidum* in north-eastern region of Romania. *J. Plant Develop.* **2017**, 24, 133–143.
- 62. Parepalli, Y.; Chavali, M.; Sami, R.; Singh, M.; Sinha, S.; Touahra, F. *Ganoderma Lucidum*: Extraction and Characterization of Polysaccharides, Yields and their Bioapplications. *Algerian J. Res. Technol.* **2021**, *5*, 30–43.
- 63. Nithya, M.; Ambikapathy, V. Cultivation of Ganoderma lucidum (Curt. fr.) P. Karst. Int. J. Sci. Res. 2012, 3, 39–41.
- 64. Adongbede, E.M.; Atoyebi, A.F. Isolation of *Ganoderma lucidum* (Curtis) P. Karst. From the Wild in Lagos through Tissue Culture Techniques and Cultivation on Sawdust of Six Nigerian Hardwoods. *J. Appl. Sci. Environ. Manag.* 2021, 25, 1497–1503. [CrossRef]
- 65. Matute, R.G.; Figlas, D.; Devalis, R.; Delmastro, S.; Curvetto, N. Sunflower seed hulls as a main nutrient source for cultivating *Ganoderma lucidum. Micol. Apl. Int.* **2002**, *14*, 19–24.
- 66. Yang, F.C.; Hsieh, C.; Chen, H.M. Use of stillage grain from a rice-spirit distillery in the solid state fermentation of *Ganoderma lucidum*. *Process. Biochem.* **2003**, *39*, 21–26. [CrossRef]
- 67. Hsieh, C.; Yang, F.C. Reusing soy residue for the solid-state fermentation of *Ganoderma lucidum*. *Bioresour*. *Technol*. **2004**, 91, 105–109. [CrossRef] [PubMed]
- 68. Chang, M.Y.; Tsai, G.J.; Houng, J.Y. Optimization of the medium composition for the submerged culture of *Ganoderma lucidum* by Taguchi array design and steepest ascent method. *Enz. Microb. Technol.* **2006**, *38*, 407–414. [CrossRef]
- 69. Baskar, G.; Sathya, S.R.; Jinnah, R.B.; Sahadevan, R. Statistical optimization of polysaccharide production by submerged cultivation of Lingzhi or Reishi medicinal mushroom, *Ganoderma lucidum* (W.Curt.: Fr.) P. Karst. MTCC 1039 (Aphyllophoromycetideae). *Int. J. Med. Mush.* **2011**, *13*, 41–49. [CrossRef] [PubMed]

- Mau, J.L.; Lin, H.C.; Chen, C.C. Non-volatile components of several medicinal mushrooms. Food Res. Int. 2001, 34, 521–526.
 [CrossRef]
- 71. Roy, D.N.; Azad, A.; Sultana, M.F.; Anisuzzaman, A.S.M.; Khondkar, P. Nutritional profil e and mineral composition of two edible mushroom varieties consumed and cultivated in Bangladesh. *J. Phytopharmacol.* **2018**, *1*, 100–107. [CrossRef]
- 72. Fraile-Fabero, R.; Ozcariz-Fermoselle, M.V.; Oria-de-Rueda-Salgueiro, J.A.; Garcia-Recio, V.; Cordoba-Diaz, D.; Jimen-Lopez, M.P.; Girbes-Juan, T. Differences in Antioxidants, Polyphenols, Protein Digestibility and Nutritional Profile between *Ganoderma lingzhi* from Industrial Crops in Asia and *Ganoderma lucidum* from Cultivation and Iberian Origin. *Foods* **2021**, *10*, 1750. [CrossRef]
- 73. Parepalli, Y.; Chavali, M.; Sami, R.; Khojah, E.; Elhakem, A.; El Askary, A.; Singh, M.; Sinha, S.; El-Chaghaby, G. Evaluation of Some Active Nutrients, Biological Compounds and Health Benefits of Reishi Mushroom (*Ganoderma lucidum*). Int. J. Pharm. 2021, 17, 243–250. [CrossRef]
- 74. Ogbe, A.O.; Obeka, A.D. Proximate, Mineral and Anti-Nutrient Composition of Wild *Ganoderma lucidum*: Implication on its Utilization in Poultry Production. *Ir. J. Appl. Anim. Sci.* **2013**, *3*, 161–166.
- 75. Wachtel-Galor, S.; John, J.Y.; Buswell, J.A.; Benzie, I.F.F. Ganoderma lucidum (Lingzhi or Reishi). In *Herbal Medicine: Biomolecular and Clinical Aspects*, 2nd ed.; Benzie, I.F.F., Wachtel-Galor, S., Eds.; CRC Press/Taylor and Francis: Boca Raton, FL, USA, 2011; pp. 1–500. [CrossRef]
- 76. Paterson, R.R.M. Ganoderma—a therapeutic fungal biofactory. Phytochemistry 2006, 67, 1985–2001. [CrossRef]
- 77. Garuba, T.; Olahan, G.; Lateef, A.; Alaya, R.; Awolowo, M.; Sulyman, A. Proximate Composition and Chemical Profiles of Reishi Mushroom (*Ganoderma lucidum* (Curt: Fr.) Karst). *J. Sci. Res.* **2020**, *12*, 103–110. [CrossRef]
- 78. Liu, Y.; Long, Y.; Liu, H.; Lan, Y.; Long, T.; Kuang, R.; Wang, Y.; Zhao, J. Polysaccharide prediction in *Ganoderma lucidum* fruiting body by hyperspectral imaging. *Food Chem. X* **2021**, *13*, 100–199. [CrossRef] [PubMed]
- 79. Lin, Y.L.; Shih, C.; Cheng, P.Y.; Chin, C.L.; Liou, A.T.; Lee, P.Y.; Chiang, B.L. A Polysaccharide Purified from *Ganoderma lucidum* Acts as a Potent Mucosal Adjuvant That Promotes Protective Immunity Against the Lethal Challenge with Enterovirus A71. *Front. Immunol.* 2020, 29, 5617–5658. [CrossRef] [PubMed]
- 80. Ferreira, I.C.; Heleno, S.A.; Reis, F.S.; Stojkovic, D.; Queiroz, M.J.; Vasconcelos, M.H. Chemical features of *Ganoderma* polysaccharides with antioxidant, antitumor and antimicrobial activities. *Phytochemistry* **2015**, *114*, 38–55. [CrossRef]
- 81. Yu, H.; Liu, Y.; Zhou, S.; Yan, M.; Xue, L.; Tang, Q.; Zhang, J. Comparison of the polysaccharides form fruiting bodies, mycelia, and spore powder of *Ganoderma lingzhi*. *Mycosystema* **2016**, *35*, 170–177. [CrossRef]
- 82. Giavasis, I. Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. *Curr. Opin. Biotechnol.* **2014**, *26*, 162–173. [CrossRef]
- 83. Chen, Y.; Xie, M.; Zhang, H.; Wang, Y.; Nie, S.; Li, C. Quantification of total polysaccharides and triterpenoids in *Ganoderma lucidum* and *Ganoderma atrum* by near infrared spectroscopy and chemometrics. *Food Chem.* **2012**, *135*, 268–275. [CrossRef]
- 84. Nie, S.; Zhang, H.; Li, W.; Xie, M. Current development of polysaccharides from *Ganoderma*: Isolation, structure and bioactivities. *Bioact. Carbohydr. Diet. Fibre.* **2013**, *1*, 10–20. [CrossRef]
- 85. Choong, Y.-K.; Ellan, K.; Chen, X.D.; Mohamad, S.A. Extraction and Fractionation of Polysaccharides from a Selected Mushroom Species, *Ganoderma lucidum*: A Critical Review. In *Fractionation*; Hassan-Al, H.I., Ed.; IntechOpen: London, UK, 2019; pp. 39–60. [CrossRef]
- 86. Wang, J.G.; Ma, Z.C.; Zhang, L.N.; Fang, Y.P.; Jiang, F.; Phillips, G.O. Structure and chain conformation of water-soluble heteropolysaccharides from *Ganoderma lucidum*. *Carbohydr*. *Polym*. **2011**, *86*, 844–851. [CrossRef]
- 87. Lin, Y.L.; Liang, Y.C.; Lee, S.S.; Chiang, B.L. Polysaccharide purified from *Ganoderma lucidum* induced activation and maturation of human monocyte-derived dendritic cells by the NF-κB and p38 mitogen activated protein kinase pathways. *J. Leukoc. Biol.* **2005**, *78*, 533–543. [CrossRef] [PubMed]
- 88. Huang, S.Q.; Ning, Z.X. Extraction of polysaccharide from *Ganoderma lucidum* and its immune enhancement activity. *Int. J. Biol. Macromol.* **2010**, 47, 336–341. [CrossRef] [PubMed]
- 89. Zhao, L.; Dong, Y.; Chen, G.; Hu, Q. Extraction, purification, characterization, and antitumor activity of polysaccharides from *Ganoderma lucidum*. *Carbohydr*. *Polym*. **2010**, *80*, 783–789. [CrossRef]
- 90. Leong, Y.K.; Yang, F.C.; Chang, J.S. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. *Carbohydr. Polym.* **2021**, 251, 117006. [CrossRef]
- 91. Chen, Y.; Xie, M.Y.; Nie, S.P.; Li, C.; Wang, Y. Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of *Ganoderma atrum*. *Food Chem.* **2008**, *107*, 231–241. [CrossRef]
- 92. Huang, S.Q.; Li, J.W.; Li, Y.Q.; Wang, Z. Purification, and structural characterization of a new water-soluble neutral polysaccharide GLP-F1-1 from *Ganoderma lucidum*. *Int. J. Biol. Macromol.* **2011**, *48*, 165–169. [CrossRef]
- 93. Jiang, H.Y.; Sun, P.L.; He, J.Z.; Shao, P. Rapid purification of polysaccharides using novel radial flow ion-exchange by response surface methodology from *Ganoderma lucidum*. Food Bioprod. Process. **2012**, 90, 1–8. [CrossRef]
- 94. Bao, X.F.; Wang, X.S.; Dong, Q.; Fang, J.N.; Li, X.Y. Structural features of immunologically active polysaccharides from *Ganoderma lucidum*. *Phytochemistry* **2002**, *59*, 175–181. [CrossRef]
- 95. Cao, Q.Z.; Lin, Z.B. *Ganoderma lucidum* polysaccharides peptide inhibits the growth of vascular endothelial cell and the induction of VEGF in human lung cancer cell. *Life Sci.* **2006**, *78*, 1457–1463. [CrossRef]
- 96. Sullivan, R.; Smith, J.E.; Rowan, N.J. Medicinal mushrooms and cancer therapy. Translating a traditional practice into Western medicine. *Perspect. Biol. Med.* **2006**, 49, 159–170. [CrossRef] [PubMed]

- 97. Li, Y.Q.; Fang, L.; Zhang, K.C. Structure and bioactivities of agalactose rich extracellular polysaccharide from submergedly cultured *Ganoderma lucidum*. *Carbohydr*. *Polym*. **2007**, *68*, 323–328. [CrossRef]
- 98. Ye, L.B.; Zhang, J.S.; Zhou, K.; Yang, Y.; Zhou, S.J.W. Purification, NMR study and immuno stimulating property of a fucogalactan from the fruiting bodies of *Ganoderma lucidum*. *Planta Medica* **2008**, 74, 1730–1734. [CrossRef] [PubMed]
- 99. Ye, L.B.; Zhang, J.S.; Yang, Y.; Zhou, S.; Liu, Y.F.; Tang, Q.J.; Du, X.; Chen, H.; Pan, Y. Structural characterisation of a heteropolysac-charide by NMR spectra. *Food Chem.* **2009**, *112*, 962–966. [CrossRef]
- 100. Wang, J.; Zhang, L. Structure and chain conformation of five water-soluble derivatives of a beta-D-glucan isolated from *Ganoderma lucidum*. *Carbohydr. Res.* **2009**, 344, 105–112. [CrossRef]
- 101. Ye, L.; Li, J.R.; Zhang, J.S.; Pan, Y.J. NMR characterization for polysaccharide moiety of a glycopeptide. *Fitoterapia* **2010**, *81*, 93–96. [CrossRef] [PubMed]
- 102. Liu, W.; Wang, H.Y.; Pang, X.B.; Yao, W.B.; Gao, X.D. Characterization, and antioxidant activity of two low-molecular-weight polysaccharides purified from the fruiting bodies of *Ganoderma lucidum*. *Int. J. Biol. Macromol.* **2010**, *46*, 451–457. [CrossRef]
- 103. Pan, D.; Wang, L.; Chen, C.; Teng, B. Structure characterization of a novel neutral polysaccharide isolated from *Ganoderma lucidum* fruiting bodies. *Food Chem.* **2012**, *135*, 1097–1103. [CrossRef]
- 104. Ma, C.W.; Feng, M.; Zhai, X.; Hu, M. Optimization for the extraction of polysaccharides from *Ganoderma lucidum* and their antioxidant and antiproliferative activities. *J. Taiwan Inst. Chem. Eng.* **2013**, 44, 886–894. [CrossRef]
- 105. Pan, K.; Jiang, Q.; Liu, G.; Miao, X.; Zhong, D. Optimization extraction of *Ganoderma lucidum* polysaccharides and its immunity and antioxidant activities. *Intl. Biol. Macromol.* **2013**, *55*, 301–306. [CrossRef]
- 106. Ooi, V.E.; Liu, F. Immunomodulation, and anti-cancer activity of polysaccharide-protein complexes. *Curr. Med. Chem.* **2000**, 7, 715–729. [CrossRef]
- 107. Zhang, M.; Cui, S.W.; Cheung, P.C.; Wang, Q. Antitumor polysaccharides from mushrooms: A review on their isolation process, structural characteristics, and antitumor activity. *Trends Food Sci. Technol.* **2007**, *18*, 4–19. [CrossRef]
- 108. Jia, J.; Zhang, X.; Hu, Y.S.; Wu, Y.; Wang, Q.Z.; Li, N.N. Evaluation of in vivo antioxidant activities of *Ganoderma lucidum* polysaccharides in STZ diabetic rats. *Food Chem.* **2009**, *115*, 32–36. [CrossRef]
- 109. Moradali, M.F.; Mostafavi, H.; Ghods, S.; Hedjaroude, G.A. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). *Int. Immunopharmacol.* **2007**, *7*, 701–724. [CrossRef]
- 110. Doco, T.; O'Neill, M.A.; Pellerin, P. Determination of the neutral and acidic glycosyl-residue compositions of plant polysaccharides by GC–EI–MS analysis of the trimethylsily l methyl glycoside derivatives. *Carbohydr. Polym.* **2001**, *46*, 249–259. [CrossRef]
- 111. Hung, C.C.; Santschi, P.H.; Gillow, J.B. Isolation and characterization of extracellular polysaccharides produced by *Pseudomonas fluorescens* Biovar II. *Carbohydr. Polym.* **2005**, *61*, 141–147. [CrossRef]
- 112. Dai, J.; Wu, Y.; Chen, S.W.; Zhu, S.; Yin, H.P.; Wang, M. Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. *Carbohydr. Polym.* **2010**, 82, 629–635. [CrossRef]
- 113. Yang, Q.; Wang, S.W.; Xie, Y.H.; Sun, J.Y.; Wang, J.B. HPLC analysis of *Ganoderma lucidum* polysaccharides and its effect on antioxidant enzymes activity and Bax, Bcl-2 expression. *Int. J. Biol. Macromol.* **2010**, 46, 167–172. [CrossRef]
- 114. Dong, Q.; Wang, Y.; Shi, L.; Yao, J.; Li, J.; Ma, F. A novel water-soluble β-D-glucan isolated from the spores of *Ganoderma lucidum*. *Carbohydr. Res.* **2012**, 353, 100–105. [CrossRef]
- 115. Liu, Y.J.; Shena, J.; Xia, Y.M.; Zhang, J. The polysaccharides from *Ganoderma lucidum*: Are they always inhibitors on human hepatocarcinoma cells? *Carbohydr. Polym.* **2012**, *90*, 1210–1215. [CrossRef] [PubMed]
- 116. Skalicka-Wozniak, K.; Szypowski, J.; Łos, R.; Siwulski, M.; Sobieralski, K.; Glowniak, K. Evaluation of polysaccharides content in fruit bodies and their antimicrobial activity of four *Ganoderma lucidum* (W Curt.: Fr.) P. Karst strains cultivated on different wood type substrates. *Acta Soc. Bot. Pol.* **2012**, *81*, 17–21. [CrossRef]
- 117. Pascale, C.; Sirbu, R.; Cadar, E. Importance of Bioactive Compounds of *Ganoderma lucidum* Extract in Medical Field. *Eur. J. Nat. Sci. Med.* **2022**, *5*, 39–47. [CrossRef]
- 118. Wu, S.; Zhang, S.; Peng, B.; Tan, D.; Wua, M.; Jinchao Weia, J.; Wanga, Y.; Luoa, H. *Ganoderma lucidum*: A comprehensive review of phytochemistry, efficacy, safety and clinical study. *Food Sci. Hum. Wellness* **2023**, *13*, 568–596. [CrossRef]
- 119. Gu, L.; Zheng, Y.; Lian, D. Production of triterpenoids from *Ganoderma lucidum*: Elicitation strategy and signal transduction. *Process Biochem.* **2018**, *69*, 22–32. [CrossRef]
- 120. Baby, S.; Johnson, A.J.; Govindan, B. Secondary metabolites from Ganoderma. Phytochemistry 2015, 114, 66–101. [CrossRef]
- 121. Galappaththi, M.C.A.; Patabendige, N.M.; Premarathne, B.M.; Hapuarachchi, K.K.; Tibpromma, S.; Dai, D.Q.; Suwannarach, N.; Rapior, S.; Karunarathna, S.C. A Review of *Ganoderma* Triterpenoids and Their Bioactivities. *Biomolecules* 2023, 13, 24. [CrossRef] [PubMed]
- 122. Cör, A.D.; Knez, Ž.; Knez, M.M. Antioxidant, antibacterial, antitumor, antifungal, antiviral, anti-inflammatory, and nevroprotective activity of *Ganoderma lucidum*: An overview. *Front. Pharmacol.* **2022**, *13*, 934–982. [CrossRef]
- 123. Lin, Y.X.; Sun, J.T.; Liao, Z.Z.; Sun, Y.; Tian, X.G.; Jin, L.L.; Wang, C.; Leng, A.J.; Zhou, J.; Li, D.W. Triterpenoids from the fruiting bodies of *Ganoderma lucidum* and their inhibitory activity against FAAH. *Fitoterapia* **2022**, *158*, 1051–1061. [CrossRef]
- 124. Ghorai, N.; Chakraborty, S.; Shamik, G.; Saha, S.K.; Biswas, S. Estimation of total Terpenoids concentration in plant tissues using a monoterpene, Linalool as standard reagent. *Protoc. Exch.* **2012**, *1*, 6. [CrossRef]

- 125. Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; José Alves, M.; Barros, L.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R. The potential of *Ganoderma lucidum* extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. *Food Chem. Toxicol.* **2017**, *108*, 139–147. [CrossRef]
- 126. Chang, C.L.; Lin, C.S.; Lai, G.H. Phytochemical characteristics, free radical scavenging activities, and neuroprotection of five medicinal plant extracts. Evidence-based Complement. *Altern. Med.* **2012**, 2012, 984295. [CrossRef]
- 127. Huie, C.W.; Di, X. Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components. *J. Chromatogr. B.* **2004**, *812*, 214–257. [CrossRef]
- 128. Yang, M.; Wang, X.; Guan, S.; Xia, J.; Sun, J.; Guo, H.; Guo, D.A. Analysis of triterpenoids in *Ganoderma lucidum* using liquid chromatography coupled with electrospray ionization mass spectrometry. *J. Am. Soc. Mass Spectr.* 2007, 18, 927–939. [CrossRef]
- 129. Zhang, C.R.; Yang, S.P.; Yue, J.M. Sterols and triterpenoids from the spores of *Ganoderma lucidum*. *Nat. Prod. Res.* **2008**, 22, 1137–1142. [CrossRef]
- 130. Shi, L.; Ren, A.; Mu, D.; Zhao, M. Current progress in the study on biosynthesis and regulation of ganoderic acids. *Appl. Microbiol. Biotechnol.* **2010**, *88*, 1243–1251. [CrossRef]
- 131. Hadda, M.; Djamel, C.; Akila, O. Production and qualitative analysis of triterpenoids and steroids of *Ganoderma* species harvested from cork oak forest of North-Eastern Algeria. *Res. J. Microbiol.* **2015**, *10*, 366–376. [CrossRef]
- 132. Che, X.Q.; Li, S.P.; Zhao, J. Ganoderma triterpenoids from aqueous extract of *Ganoderma lucidum*. *Zhongguo Zhong Yao Za Zhi* **2017**, 42, 1908–1915.
- 133. Hui, Z.; Jiang, H.; Yan Chen, Y.; Wang, J.; Yan, J. Quality evaluation of triterpenoids in *Ganoderma* and related species by the quantitative analysis of multi-components by single marker method. *J. Liq. Chromatogr. Relat. Technol.* **2018**, 41, 860–867. [CrossRef]
- 134. Zhang, C.; Fu, D.; Chen, G. Comparative and chemometric analysis of correlations between the chemical fingerprints and anti-proliferative activities of ganoderic acids from three *Ganoderma* species. *Phytochem. Anal.* **2019**, *30*, 474–480. [CrossRef]
- 135. Xia, Q.; Zhang, H.; Sun, X.; Zhao, H.; Wu, L.; Zhu, D.; Yang, G.; Shao, Y.; Zhang, X.; Mao, X.; et al. A comprehensive review of the structure elucidation and biological activity of triterpenoids from *Ganoderma* spp. *Molecules* **2014**, *19*, 17478–17535. [CrossRef]
- 136. Fatmawati, S.; Shimizu, K.; Kondo, R. Ganoderic acid Df, a new triterpenoid with aldose reductase inhibitory activity from the fruiting body of *Ganoderma lucidum*. Fitoterapia **2010**, 81, 1033–1036. [CrossRef]
- 137. Sharma, C.; Bhardwaj, N.; Sharma, A.; Tuli, H.S.; Katial, P.; Beniwal, V.; Gupta, G.K.; Sharma, A. Bioactive metabolites of *Ganoderma lucidum*: Factors, mechanism and broad-spectrum therapeutic potential. *J. Herb. Med.* **2019**, *17*, 100268. [CrossRef]
- 138. Koo, M.H.; Chae, H.J.; Lee, J.H. Antiinflammatory lanostane triterpenoids from *Ganoderma lucidum*. Nat. Prod. Res. **2019**, 35, 4295–4302. [CrossRef] [PubMed]
- 139. Murata, C.T.Q.; Onda, S.; Usuki, T. Extraction and isolation of ganoderic acid Sigma from *Ganoderma lucidum*. *Tetrahedron Lett.* **2016**, *57*, 5368–5371. [CrossRef]
- 140. Yue, Q.X.; Cao, Z.W.; Guan, S.H.; Liu, X.H.; Tao, L.; Wu, W.Y.; Li, Y.X.; Yang, P.Y.; Liu, X.; Guo, D.A. Proteomics characterization of the cytotoxicity mechanism of ganoderic acid D and computer-automated estimation of the possible drug target network. *Mol. Cell. Proteom.* **2008**, *7*, 949–961. [CrossRef]
- 141. Yue, Q.X.; Song, X.Y.; Ma, C.; Feng, L.X.; Guan, S.H.; Wu, W.Y.; Yang, M.; Jiang, B.H.; Liu, X.; Cui, Y.J.; et al. Effects of triterpenes from *Ganoderma lucidum* on protein expression profile of HeLa cells. *Phytomedicine* **2010**, *17*, 606–613. [CrossRef]
- 142. Zhang, X.Q.; Ip, F.C.; Zhang, D.M. Triterpenoids with neurotrophic activity from *Ganoderma lucidum*. *Nat. Prod. Res.* **2011**, 25, 1607–1613. [CrossRef]
- 143. Cheng, C.R.; Yue, Q.X.; Wu, Z.Y. Cytotoxic triterpenoids from Ganoderma lucidum. Phytochemistry 2010, 71, 1579–1585. [CrossRef]
- 144. Liu, J.; Shimizu, K.; Tanaka, A. Target proteins of ganoderic acid DM provides clues to various pharmacological mechanisms. *Sci. Rep.* **2012**, *2*, 905. [CrossRef]
- 145. Ríos, J.L.; Andújar, I.; Recio, M.C.; Giner, R.M. Lanostanoids from fungi: A group of potential anticancer compounds. *J. Nat. Prod.* **2012**, *75*, 2016–2044. [CrossRef]
- 146. Li, Y.B.; Liu, R.M.; Zhong, J.J. A new ganoderic acid from *Ganoderma lucidum* mycelia and its stability. *Fitoterapia* **2013**, *84*, 115–122. [CrossRef] [PubMed]
- 147. Fatmawati, S.; Kondo, R.; Shimizu, K. Structure-activity relationships of lanostane-type triterpenoids from *Ganoderma lingzhi* as α-glucosidase inhibitors. *Bioorg. Med. Chem. Lett.* **2013**, 23, 5900–5903. [CrossRef]
- 148. Li, P.; Deng, Y.P.; Wei, X.X.; Xu, J.H. Triterpenoids from *Ganoderma lucidum* and their cytotoxic activities. *Nat. Prod. Res.* **2013**, 27, 17–22. [CrossRef] [PubMed]
- 149. Chen, B.; Tian, J.; Zhang, J. Triterpenes and meroterpenes from *Ganoderma lucidum* with inhibitory activity against HMGs reductase, aldose reductase and α-glucosidase. *Fitoterapia* **2017**, *120*, 6–16. [CrossRef]
- 150. Liang, C.; Tian, D.; Liu, Y. Review of the molecular mechanisms of *Ganoderma lucidum* triterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y. Eur. J. Med. Chem. **2019**, 174, 130–141. [CrossRef]
- 151. Chinthanom, P.; Vichai, V.; Dokladda, K.; Sappan, M.; Thongpanchang, C.; Isaka, M. Semisynthetic modifications of antitubercular lanostane triterpenoids from *Ganoderma*. *J. Antibiot.* **2021**, *74*, 435–442. [CrossRef]
- 152. Pascale, C.; Sirbu, R.; Cadar, E. Therapeutical Properties of Bioactive Compounds Extracted from *Ganoderma lucidum* Species on Acute and Chronic Diseases. *Eur. J. Nat. Sci. Med.* **2023**, *6*, 73–86. [CrossRef]

- 153. Cör, A.D.; Knez, Z.; Knez-Hrncic, M. Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of *Ganoderma lucidum* Terpenoids and Polysaccharides: A Review. *Molecules* **2018**, 23, 649. [CrossRef] [PubMed]
- 154. Yang, Y.; Zhang, H.; Zuo, J.; Gong, X.; Yi, F.; Zhu, W.; Li, L. Advances in research on the active constituents and physiological effects of *Ganoderma lucidum*. *Biomed. Dermatol.* **2019**, *3*, 1–17. [CrossRef]
- 155. Ahmad, M.F. *Ganoderma lucidum*: A rational pharmacological approach to surmount cancer. *J. Ethnopharmacol.* **2020**, *60*, 113047. [CrossRef] [PubMed]
- 156. Hussien, Z.G. Chemical content study in *Ganoderma lucidum* commercial products. Minar. *Int. J. App. Sci. Technol.* **2022**, *4*, 158–165. [CrossRef]
- 157. Sharif, S.; Mustafa, G.; Munir, H. Proximate composition and micronutrient mineral profile of wild *Ganoderma lucidum* and four commercial exotic mushrooms by ICP-OES and LIBS. *J. Food Nutr. Res.* **2016**, *4*, 703–708.
- 158. Treviño, S.; Díaz, A.; Sanchez-Lara, E.; Sanchez-Gaytan, B.L.; Perez-Aguilar, J.M.; Gonzalez-Vergara, E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. *Biol. Trace Elem. Res.* **2019**, *188*, 68–98. [CrossRef] [PubMed]
- 159. Matute, R.G.; Serra, A.; Figlas, D.; Curvetto, N. Copper and Zinc Bioaccumulation and Bioavailability of *Ganoderma lucidum*. *J. Med. Food* **2011**, *14*, 1273–1279. [CrossRef] [PubMed]
- 160. Falandysz, J. Selenium in edible mushrooms. *J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.* **2008**, 26, 256–299. [CrossRef] [PubMed]
- 161. Chiu, S.W.; Wang, Z.M.; Leung, T.M.; Moore, D. Nutritional value of ganoderma extract and assessment of its genotoxicity and antigenotoxicity using comet assays of mouse lymphocytes. *Food Chem. Toxicol.* **2000**, *38*, 173–178. [CrossRef]
- 162. Du, M.; Cong, W.; Hu, X.S.; Zhao, G. Positive Effect of Selenium on the Immune Regulation Activity of Ling Zhi or Reishi Medicinal Mushroom, *Ganoderma lucidum* (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae), Proteins In Vitro. *Int. J. Med. Mushrooms* 2008, 10, 337–344. [CrossRef]
- 163. Ma, J.; Ye, Q.; Hua, Y.; Zhang, D.; Cooper, R.; Chang, M.N.; Chang, J.Y.; Sun, H.H. New Lanostanoids from the Mushroom *Ganoderma lucidum*. Nat. Prod. 2002, 65, 72–75. [CrossRef]
- 164. Akihisa, T.; Nakamura, Y.; Tagata, M.; Tokuda, H.; Yasukawa, K.; Uchiyama, E.; Suzuki, T.; Kimura, Y. Anti-Inflammatory and Anti-Tumor-Promoting Effects of Triterpene Acids and Sterols from the Fungus *Ganoderma lucidum*. *Chem. Biodivers.* **2007**, *4*, 224–231. [CrossRef]
- 165. Liu, J.; Huang, W.; Lv, M.; Si, J.; Guo, B.; Li, S. Determination of ergosterol in Ganoderma lucidum from different varieties and cultured tree species by HPLC. *J. Chin. Med. Mater.* **2011**, 34, 187–190.
- 166. Huang, L.; Sun, F.; Liang, C.; He, Y.X.; Bao, R.; Liu, L.; Zhou, C.Z. Crystal structure of LZ-8 from the medicinal fungus *Ganoderma lucidium*. *Proteins* **2009**, *75*, 524–527. [CrossRef]
- 167. Hsu, H.Y.; Kuan, Y.C.; Lin, T.Y.; Tsao, S.M.; Hsu, J.; Ma, L.J.; Sheu, F. Reishi Protein LZ-8 Induces FOXP3(+) Treg Expansion via a CD45-Dependent Signaling Pathway and Alleviates Acute Intestinal Inflammation in Mice. *Evid. Based Comp. Alternat. Med.* 2013, 2013, 513542. [CrossRef]
- 168. Lin, H.J.; Chang, Y.S.; Lin, L.H.; Haung, C.F.; Wu, C.Y.; Ou, K.L. An Immunomodulatory Protein (Ling Zhi-8) from a *Ganoderma lucidum* Induced Acceleration of Wound Healing in Rat Liver Tissues after Monopolar Electrosurgery. *Evid. Based Complement. Altern. Med.* **2014**, 2014, 916531. [CrossRef]
- 169. Yang, Y.; Yu, T.; Tang, H.; Ren, Z.; Li, Q.; Jia, J.; Chen, H.; Fu, J.; Ding, S.; Hao, Q.; et al. *Ganoderma lucidum* Immune Modulator Protein rLZ-8 Could Prevent and Reverse Bone Loss in Glucocorticoids-Induced Osteoporosis Rat Model. *Front. Pharmacol.* **2020**, 11, 731. [CrossRef]
- 170. Sa-Ard, P.; Sarnthima, R.; Khammuang, S. Antioxidant, antibacterial and DNA protective activities of protein extracts from *Ganoderma lucidum*. *J. Food Sci. Technol.* **2015**, *52*, 2966–2973. [CrossRef]
- 171. Sun, J.; He, H.; Xie, B.J. Novel Antioxidant Peptides from Fermented Mushroom *Ganoderma lucidum*. *J. Agric. Food Chem.* **2004**, 52, 6646–6652. [CrossRef]
- 172. Ji, Z.; Tang, Q.; Zhang, J.; Yang, Y.; Jia, W.; Pan, Y. Immunomodulation of RAW264.7 macrophages by GLIS, a proteopolysaccharide from *Ganoderma lucidum*. J. Ethnopharmacol. **2007**, 112, 445–450. [CrossRef]
- 173. Yeh, C.H.; Chen, H.C.; Yang, J.J.; Chuang, W.I.; Sheu, F. Polysaccharides PS-G and Protein LZ-8 from Reishi (*Ganoderma lucidum*) Exhibit Diverse Functions in Regulating Murine Macrophages and T Lymphocytes. *J. Agric. Food Chem.* **2010**, *58*, 8535–8544. [CrossRef]
- 174. Girjal, V.U.; Neelagund, S.; Krishnappa, M. Antioxidant Properties of the Peptides Isolated from *Ganoderma lucidum* Fruiting Body. *Int. J. Pept. Res. Ther.* **2012**, *18*, 319–325. [CrossRef]
- 175. Zhong, D.; Wang, H.; Liu, M.; Li, X.; Huang, M.; Zhou, H.; Lin, S.; Lin, Z.; Yang, B. *Ganoderma lucidum* polysaccharide peptide prevents renal ischemia reperfusion injury via counteracting oxidative stress. *Sci. Rep.* **2015**, *5*, 16910. [CrossRef]
- 176. Kumakura, K.; Hori, C.; Matsuoka, H.; Kiyohiko, I.K.; Masahiro, S.M. Protein components of water extracts from fruiting bodies of the reishi mushroom *Ganoderma lucidum* contribute to the production of functional molecules. *J. Sci. Food. Agric.* **2019**, *99*, 529–535. [CrossRef]
- 177. Yu, F.; Wang, Y.; Teng, Y.; Yang, S.; He, Y.; Zhang, Z.; Yang, H.; Ding, C.F.; Zhou, P. Interaction and Inhibition of a *Ganoderma lucidum* Proteoglycan on PTP1B Activity for Anti-diabetes. *ACS Omega* **2021**, *6*, 29804–29813. [CrossRef]

- 178. Yu, F.; Teng, Y.; Jiaqi, L.J.; Yang, S.; Zeng, Z.; Yanming, H.; Hongjie, Y.; Chuan-Fan, D.; Ping, Z. Effects of a *Ganoderma lucidum* Proteoglycan on Type 2 Diabetic Rats and the Recovery of Rat Pancreatic Islets. *ACS Omega* **2023**, *8*, 17304–17316. [CrossRef]
- 179. Huang, P.; Luo, F.J.; Ma, Y.C.; Wang, S.X.; Huang, J.; Qin, D.D.; Xue, F.F.; Liu, B.Y.; Wu, Q.; Wang, X.L.; et al. Dual antioxidant activity and the related mechanisms of a novel pentapeptide GLP4 from the fermented mycelia of *Ganoderma lingzhi*. *Food Funct*. **2022**, *13*, 9032–9048. [CrossRef]
- 180. Thakur, A.; Rana, M.; Lakhanpal, T.N.; Ahmad, A.; Khan, M.I. Purification and characterization of lectin from fruiting body of *Ganoderma lucidum*: Lectin from *Ganoderma lucidum*. Biochim. Et Biophys. Acta Gen. Subj. 2007, 1770, 1404–1412. [CrossRef]
- 181. Girjal, V.U.; Neelagund, S.; Krishnappa, M. Ganoderma lucidum: A source for novel bioactive lectin. Prot. Pept. Lett. 2011, 18, 1150–1157. [CrossRef]
- 182. Nikitina, V.E.; Loshchinina, E.A.; Vetchinkina, E.P. Lectins from Mycelia of Basidiomycetes. *Int. J. Mol. Sci.* **2017**, *18*, 1334. [CrossRef]
- 183. Yousra, A.; El-Maradny, E.M.; El-Fakharany, M.M.S.; Mona, H.H.; Heba, S.S. Lectins purified from medicinal and edible mushrooms: Insights into their antiviral activity against pathogenic viruses. *Int. J. Biol. Macromol.* **2021**, *179*, 239–258. [CrossRef]
- 184. Deepalakshmi, K.; Mirunalini, S. Therapeutic properties and current medical usage of medicinal mushroom: *Ganoderma lucidum*. *Int. J. Pharm. Sci. Res.* **2011**, 2, 1922–1929. [CrossRef]
- 185. Zhang, H.; Jiang, H.; Zhang, X.; Yan, J. Amino Acids from *Ganoderma lucidum*: Extraction Optimization, Composition Analysis, Hypoglycemic and Antioxidant Activities. *Curr. Pharm. Anal.* **2018**, *14*, 562–570. [CrossRef]
- 186. Kim, M.Y.; Seguin, P.; Ahn, J.K.; Kim, J.J.; Chun, S.C.; Kim, E.H.; Seo, S.H.; Kang, E.Y.; Kim, S.L.; Park, Y.J.; et al. Phenolic Compound Concentration and Antioxidant Activities of Edible and Medicinal Mushrooms from Korea. *J. Agric. Food Chem.* 2008, 56, 7265–7270. [CrossRef]
- 187. Sheikh, I.A.; Vyas, D.; Ganaie, M.A.; Dehariya, K.; Singh, V. HPLC determination of phenolics and free radical scavenging activity of ethanolic extracts of two polypore mushrooms. *Int. J. Pharm. Pharm. Sci.* **2014**, *6*, 679–684.
- 188. Lin, M.S.; Yu, Z.R.; Wang, B.J.; Wang, C.C.; Weng, Y.M.; Koo, M. Bioactive constituent characterization and antioxidant activity of *Ganoderma lucidum* extract fractionated by supercritical carbon dioxide. *Sains Mal.* **2015**, *44*, 1685–1691.
- 189. Veljović, S.; Veljović, M.; Nikićević, N.; Despotović, S.; Radulović, S.; Nikšić, M.; Filipović, L. Chemical composition, antiproliferative and antioxidant activity of differently processed *Ganoderma lucidum* ethanol extracts. *J. Food Sci. Technol.* **2017**, *54*, 1312–1320. [CrossRef]
- 190. Dong, Q.; He, D.; Ni, X. Comparative study on phenolic compounds, triterpenoids, and antioxidant activity of Ganoderma lucidum affected by different drying methods. *Food Meas.* **2019**, *13*, 3198–3205. [CrossRef]
- 191. Zheng, S.; Zhang, W.; Liu, S. Optimization of ultrasonic-assisted extraction of polysaccharides and triterpenoids from the medicinal mushroom *Ganoderma lucidum* and evaluation of their in vitro antioxidant capacities. *PLoS ONE* **2020**, *15*, e0244749. [CrossRef]
- 192. Kolniak-Ostek, J.; Oszmianski, J.; Szyjka, A.; Moreira, H.; Barg, E. Anticancer and Antioxidant Activities in *Ganoderma lucidum* Wild Mushrooms in Poland, as Well as Their Phenolic and Triterpenoid Compounds. *Int. J. Mol. Sci.* **2022**, *23*, 9359. [CrossRef]
- 193. Saltarelli, R.; Ceccaroli, P.; Buffalini, M.; Vallorani, L.; Casadei, L.; Zambonelli, A.; Iotti, M.; Badalyan, S.; Stocchi, V. Biochemical characterization and antioxidant and antiproliferative activities of different *Ganoderma* collections. *J. Mol. Microb. Biotechnol.* **2015**, 25, 16–25. [CrossRef]
- 194. Tang, X.; Cai, W.; Xu, B. Comparison of the Chemical Profiles and Antioxidant and Antidiabetic Activities of Extracts from Two *Ganoderma* Species (Agaricomycetes). *Int. J. Med. Mush.* **2016**, *18*, 609–620. [CrossRef]
- 195. Sánchez, C. Reactive oxygen species and antioxidant properties from mushrooms. *Synth. Syst. Biotechnol.* **2017**, 2, 13–22. [CrossRef]
- 196. Mohammadifar, S.; Fallahi, G.S.; Asef, S.M.R.; Vaziri, A. Comparison between antioxidant activity and bioactive compounds of *Ganoderma applanatum* (Pers.) Pat. and *Ganoderma lucidum* (Curt.) P. Karst from Iran. *Iran. J. Plant Physiol.* **2020**, *11*, 3417–3424.
- 197. Mustafin, K.; Bisko, N.; Blieva, R.; Al-Maali, G.; Krupodorova, T.; Narmuratova, Z.; Saduyeva, Z.; Zhakipbekova, A. Antioxidant and antimicrobial potential of *Ganoderma lucidum* and *Trametes versicolor*. *Turk. J. Biochem.* **2022**, *47*, 483–489. [CrossRef]
- 198. Cheung, H.Y.; Ng, C.W.; Hood, D.J. Identification and quantification of base and nucleoside markers in extracts of *Ganoderma lucidum*, *Ganoderma japonicum* and *Ganoderma capsules* by micellar electrokinetic chromatography. *J. Chromatogr.* **2001**, 911, 119–126. [CrossRef] [PubMed]
- 199. Gao, J.L.; Leung, K.S.; Wang, Y.T.; Lai, C.M.; Li, S.P.; Hu, L.F. Qualitative and quantitative analyses of nucleosides and nucleobases in *Ganoderma* spp. by HPLC-DAD-MS. *J. Pharm. Biomed. Anal.* **2007**, 44, 801–811. [CrossRef] [PubMed]
- 200. Yuan, J.P.; Zhao, S.Y.; Wang, J.H.; Kuang, H.C.; Liu, X. Distribution of Nucleosides and Nucleobases in Edible Fungi. *J. Agric. Food Chem.* 2008, 56, 809–815. [CrossRef] [PubMed]
- 201. Chen, Y.; Bicker, W.; Wu, J.I.; Xie, M.; Lindner, W. Simultaneous Determination of 16 Nucleosides and Nucleobases by Hydrophilic Interaction Chromatography and Its Application to the Quality Evaluation of *Ganoderma*. *J. Agric. Food Chem.* **2012**, *60*, 4243–4252. [CrossRef] [PubMed]
- 202. Phan, C.W.; Wang, J.K.; Cheah, S.C.; Naidu, M.; David, P.; Sabaratnam, V. A review of the nucleid acid constituents in mushrooms: Nucleobases, nucleosides, and nucleotides. *Crit. Rev. Biotechnol.* **2018**, *38*, 762–777. [CrossRef]
- 203. Sheng, F.; Wang, A.; Luo, X.; Xiao, J.; Hu, L.; Li, L. Simultaneous determination of ten nucleosides and bases in *Ganoderma* by micellar electrokinetic chromatography. *Food Sci. Hum. Wellness* **2022**, *11*, 263–268. [CrossRef]

- 204. Hossain, S.A.; Nuhu, A.; Siddharth, B.M.A.; Rahman, M. Essential fatty acid contents of *Pleurotus ostreatus*, *Ganoderma lucidum* and *Agaricus bisporus*. *Bangladesh J. Mush.* **2007**, 2, 1–7.
- 205. Stojković, D.S.; Barros, L.; Calhelha, R.C.; Glamočlija, J.; Ćirić, A.; van Griensven, L.J.; Soković, M.; Ferreira, I.C. A detailed comparative study between chemical and bioactive properties of *Ganoderma lucidum* from different origins. *Int. J. Food Sci. Nutr.* **2014**, *65*, 42–47. [CrossRef]
- 206. Lin, J.T.; Hou, C.; Dulay, R.; Ray, K.; Chen, G. Structures of hydroxy fatty acids as the constituents of triacylglycerols in Philippine wild edible mushroom, *Ganoderma lucidum*. *Biocatal*. *Agric*. *Biotechnol*. **2017**, *12*, 148–151. [CrossRef]
- 207. Salvatore, M.M.; Elvetico, A.; Gallo, M.; Salvatore, F.; DellaGreca, M.; Naviglio, D.; Andolfi, A. Fatty Acids from *Ganoderma lucidum* Spores: Extraction, Identification and Quantification. *Appl. Sci.* **2020**, *10*, 3907. [CrossRef]
- 208. Wasser, S.P. Medicinal mushroom science: History, current status, future trends, and unsolved problems. *Int. J. Med. Mush.* **2010**, 12, 1–16. [CrossRef]
- 209. Wasser, S.P. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. *Appl. Microbiol. Biotechnol.* **2011**, *89*, 1323–1332. [CrossRef]
- 210. Ekiz, E.; Oz, E.; Abd El-Aty, A.M.; Proestos, C.; Brennan, C.; Zeng, M.; Tomasevic, I.; Elobeid, T.; Çadırcı, K.; Bayrak, M.; et al. Exploring the Potential Medicinal Benefits of *Ganoderma lucidum*: From Metabolic Disorders to Coronavirus Infections. *Foods* 2023, 12, 1512. [CrossRef]
- 211. Cao, L.Z.; Lin, Z.B. Regulation on maturation and function of dendritic cells by *Ganoderma lucidum* polysaccharides. *Immunol. Lett.* 2002, 83, 163–169. [CrossRef]
- 212. Cao, L.Z.; Lin, Z.B. Regulatory effect of *Ganoderma lucidum* polysaccharides on cytotoxic T-lymphocytes induced by dendritic cells in vitro. *Acta. Pharmacol. Sin.* **2003**, 24, 321–326. [PubMed]
- 213. Chen, H.S.; Tsai, Y.F.; Lin, S.; Lin, C.C.; Khoo, K.H.; Lin, C.H. Studies on the immuno-modulating and anti-tumor activities of *Ganoderma lucidum* (Reishi) polysaccharides. *Bioorg. Med. Chem.* **2004**, *12*, 5595–5601. [CrossRef] [PubMed]
- 214. Zhu, X.L.; Lin, Z.B. Effects of *Ganoderma lucidum* polysaccharides on proliferation and cytotoxicity of cytokine-induced killer cells. *Acta Pharmacol. Sin.* **2005**, *26*, 1130–1137. [CrossRef]
- 215. Zhu, X.L.; Chen, A.F.; Lin, Z.B. *Ganoderma lucidum* polysaccharides enhance the function of immunological effector cells in immunosuppressed mice. *J. Ethnopharmacol.* **2007**, *111*, 219–226. [CrossRef]
- 216. You, G.C.; Zongji, S.; XiaoPing, C. Modulatory effect of *Ganoderma lucidum* polysaccharides on serum antioxidant enzymes activities in ovarian cancer rats. *Carbohyd. Polym.* **2009**, *78*, 258–262. [CrossRef]
- 217. Xu, Z.; Chen, X.; Zhong, Z.; Chen, L.; Wang, Y. *Ganoderma lucidum* polysaccharides: Immunomodulation and potential anti-tumor activities. *Am. J. Chin. Med.* **2011**, *39*, 15–27. [CrossRef] [PubMed]
- 218. Sun, L.X.; Lin, Z.B.; Li, X.J.; Li, M.; Lu, J.; Duan, X.S. Promoting effects of *Ganoderma lucidum* polysaccharides on B16F10 cells to activate lymphocytes. *Basic Clin. Pharmacol. Toxicol.* **2011**, *108*, 149–154. [CrossRef]
- 219. Wiater, A.; Paduch, R.; Choma, A.; Pleszczyńska, M.; Siwulski, M.; Dominik, J. Biological study on carboxymethylated $(1\rightarrow 3)$ - α -D-glucans from fruiting bodies of *Ganoderma lucidum*. *Int. J. Biol. Macromol.* **2012**, *51*, 1014–1023. [CrossRef]
- 220. Zhang, J.; Liu, Y.J.; Park, H.S.; Xia, Y.M. Antitumor activity of sulfated extracellular polysaccharides of *Ganoderma lucidum* from the submerged fermentation broth. *Carbohydr. Polym.* **2012**, *87*, 1539–1544. [CrossRef]
- 221. Suarez-Arroyo, I.J.; Rosario-Acevedo, R.; Aguilar-Perez, A.; Clemente, P.L.; Cubano, L.A.; Serrano, J. Anti-tumor effects of *Ganoderma lucidum* (reishi) in inflammatory breast cancer in in vivo and in vitro models. *PLoS ONE* **2013**, *8*, e57431. [CrossRef]
- 222. Habijanic, J.; Berovic, M.; Boh, B.; Plankl, M.; Wraber, B. Submerged cultivation of *Ganoderma lucidum* and the effects of its polysaccharides on the production of human cytokines TNF-α, IL-12, IFN-γ, IL-2, IL-4, IL-10 and IL-17. *N. Biotechnol.* **2015**, 32, 85–95. [CrossRef]
- 223. Sohretoglu, D.; Huang, S. *Ganoderma lucidum* Polysaccharides as An Anti-cancer Agent. *Anticancer Agents Med. Chem.* **2018**, *18*, 667–674. [CrossRef]
- 224. Wang, C.; Shi, S.; Chen, Q.; Lin, S.; Wang, R.; Wang, S.; Chen, C. Antitumor and Immunomodulatory Activities of *Ganoderma lucidum* Polysaccharides in Glioma-Bearing Rats. *Integr. Cancer Ther.* **2018**, 17, 674–683. [CrossRef]
- 225. Fu, Y.; Shi, L.; Ding, K. Structure elucidation and anti-tumor activity in vivo of a polysaccharide from spores of *Ganoderma lucidum* (Fr.) Karst. *Int. J. Biol. Macromol.* **2019**, *141*, 693–699. [CrossRef]
- 226. Min, B.S.; Gao, J.J.; Nakamura, N.; Hattori, M. Triterpenes from the spores of *Ganoderma lucidum* and their cytotoxicity against meth-A and LLC tumor cells. *Chem. Pharm. Bull.* **2000**, *48*, 1026–1033. [CrossRef]
- 227. Gao, J.J.; Min, B.S.; Ahn, E.M.; Nakamura, N.; Lee, H.K.; Hattori, M. New triterpene aldehydes, lucialdehydes A—C, from *Ganoderma lucidum* and their cytotoxicity against murine and human tumor cells. *Chem. Pharm. Bull.* **2002**, *50*, 837–840. [CrossRef]
- 228. Lin, Z.B.; Zhang, H.N. Anti-tumor and immunoregulatory activities of *Ganoderma lucidum* and its possible mechanisms. *Acta. Pharmacol. Sin.* **2004**, 25, 1387–1395. [PubMed]
- 229. Li, C.H.; Chen, P.Y.; Chang, U.M.; Kan, L.S.; Fang, W.H.; Tsai, K.S. Ganoderic acid X, a lanostanoid triterpene, inhibits topoisomerases and induces apoptosisofcancercells. *Life Sci.* **2005**, 77, 252–265. [CrossRef] [PubMed]
- 230. Tang, W.; Liu, J.W.; Zhao, W.M.; Wei, D.Z.; Zhong, J.J. Ganoderic acid T from *Ganoderma lucidum* mycelia induces mitochondria mediated apoptosis in lung cancer cells. *Life Sci.* 2006, 80, 205–211. [CrossRef] [PubMed]
- 231. Jiang, J.; Grieb, B.; Thyagarajan, A.; Sliva, D. Ganoderic acids suppress growth and invasive behavior of breast cancer cells by modulating AP-1 and NFkappaB signaling. *Int. J. Mol. Med.* **2008**, *21*, 577–584. [CrossRef]

- 232. Xu, K.; Liang, X.; Gao, F.; Zhong, J.; Liu, J. Antimetastatic effect of ganoderic acid T in vitro through inhibition of cancer cell invasion. *Process Biochem.* **2010**, *45*, 1261–1267. [CrossRef]
- 233. Barbieri, A.; Quagliariello, V.; DelVecchio, V.; Falco, M.; Luciano, A.; Amruthraj, N.J. Anticancer and anti-inflammatory properties of *Ganoderma lucidum* extract effects on melanoma and triple-negative breast cancer treatment. *Nutrients* **2017**, *9*, 210. [CrossRef]
- 234. Ye, H.; Jenson, A.B. Ganoderma lucidum on the Inhibition of Colorectal Cancer. Hematol. Med. Oncol. 2017, 2, 1–4. [CrossRef]
- 235. Li, P.; Liu, L.; Huang, S.; Zhang, Y.; Xu, J.; Zhang, Z. Anti-cancer effects of a neutral triterpene fraction from *Ganoderma lucidum* and its active constituents on SW620 human colorectal cancer cells. *Anticancer Agents Med. Chem.* **2020**, 20, 237–244. [CrossRef]
- 236. Jiao, C.; Chen, W.; Tan, X.; Liang, H.; Li, J.; Yun, H. *Ganoderma lucidum* spore oil induces apoptosis of breast cancer cells *in vitro* and *in vivo* by activating caspase-3 and caspase-9. *J. Ethnopharmacol.* **2020**, 247, 112256. [CrossRef]
- 237. Wang, X.; Wang, B.; Zhou, L.; Wang, X.; Veeraraghavan, V.P.; Mohan, S.K. *Ganoderma lucidum* put forth anti-tumor activity against PC-3 prostate cancer cells viainhibitionofJak-1/STAT-3activity. *Saudi J. Biol. Sci.* **2020**, 27, 2632–2637. [CrossRef]
- 238. Liu, M.M.; Liu, T.; Yeung, S.; Wang, Z.; Andresen, B.; Parsa, C.; Orlando, R.; Zhou, B.; Wu, W.; Li, X.; et al. Inhibitory activity of medicinal mushroom *Ganoderma lucidum* on colorectal cancer by attenuating inflammation. *Prec. Clin. Med.* 2021, 4, 231–245. [CrossRef] [PubMed]
- 239. Shahid, A.; Huang, M.; Liu, M.; Shamim, M.A.; Parsa, C.; Orlando, R. The medicinal mushroom *Ganoderma lucidum* attenuates UV-induced skin carcinogenesis and immunosuppression. *PLoS ONE* **2022**, 17, e0265615. [CrossRef] [PubMed]
- 240. De Marzo, A.M.; Platz, E.A.; Sutcliffe, S.; Xu, J.; Gronberg, H.; Drake, C.G.; Nakai, Y.; Isaacs, W.B.; Nelson, W.G. Inflammațion in prostate carciogenesis. *Nat. Rev. Cancer* **2007**, *7*, 256–269. [CrossRef] [PubMed]
- 241. Hapuarachchi, K.K.; Wen, T.C.; Jeewon, R.; Wu, X.; Kang, J.C.; Hyde, K.D. Mycosphere Essays 7: *Ganoderma lucidum*—are the beneficial anti-cancer properties substantiated? *Mycosphere* **2016**, *7*, 305–332. [CrossRef]
- 242. Zhang, J.; Tang, Q.; Zhou, C.; Jia, W.; Da Silva, L.; Nguyen, L.D.; Reutter, W.; Fan, H. GLIS, a bioactive proteoglycan fraction from *Ganoderma lucidum*, displays anti-tumour activity by increasing both humoral and cellular immune response. *Life Sci.* **2010**, *87*, 628–637. [CrossRef]
- 243. Lai, C.Y.; Hung, J.T.; Lin, H.H.; Yu, A.L.; Chen, S.H.; Tsai, Y.C.; Shao, L.E.; Yang, W.B.; Yu, J. Immunomodulatory and adjuvant activities of a polysaccharide extract of *Ganoderma lucidum* in vivo and in vitro. *Vaccine* **2010**, *28*, 4945–4954. [CrossRef]
- 244. Jan, R.H.; Lin, T.Y.; Hsu, Y.C.; Lee, S.S.; Lo, S.Y.; Chang, M.; Chen, L.K.; Lin, Y.L. Immuno-modulatory activity of *Ganoderma lucidum*-derived polysacharide on human monocytoid dendritic cells pulsed with Der p 1 allergen. *BMC Immunol.* **2012**, *12*, 31–41. [CrossRef]
- 245. Chan, W.K.; Cheung, C.C.; Law, H.K.; Lau, Y.L.; Chan, G.C. *Ganoderma lucidum* polysaccharides can induce human monocytic leukemia cells into dendritic cells with immuno-stimulatory function. *J. Hematol. Oncol.* **2008**, 21, 9–21. [CrossRef]
- 246. Hsu, J.W.; Huang, H.C.; Chen, S.T.; Wong, C.H.; Juan, H.F. *Ganoderma lucidum* Polysaccharides Induce Macrophage-Like Differentiation in Human Leukemia THP-1 Cells via Caspase and p53 Activation. *Evid. Based Complement. Altern. Med.* 2011, 2011, 358717. [CrossRef]
- 247. Guo, L.; Xie, J.; Ruan, Y.; Zhou, L.; Zhu, H.; Yun, X.; Jiang, Y.; Lu, L.; Chen, K.; Min, Z.; et al. Characterization and immunostimulatory activity of a polysaccharide from the spores of *Ganoderma lucidum*. *Int. Immunopharmacol.* **2009**, *9*, 1175–1182. [CrossRef]
- 248. Hsu, H.Y.; Hua, K.F.; Lin, C.C.; Lin, C.H.; Hsu, J.; Wong, C.H. Extract of Reishi Polysaccharides Induces Cytokine Expression via TLR4-Modulated Protein Kinase Signaling Pathways. *J. Immunol.* **2004**, *173*, 5989–5999. [CrossRef] [PubMed]
- 249. Altfeld, M.; Fadda, L.; Frleta, D.; Bhardwaj, N. DCs and NK cells: Critical effectors in the immune response to HIV-1. *Nat. Rev. Immunol.* **2011**, *11*, 176–186. [CrossRef] [PubMed]
- 250. Chien, C.M.; Cheng, J.L.; Chang, W.T.; Tien, M.H.; Tsao, C.M.; Chang, Y.H.; Chang, H.Y.; Hsieh, J.F.; Wong, C.H.; Chen, S.T. Polysaccharides of *Ganoderma lucidum* alter cell immunophenotypic expression and enhance CD56+ NK-cell cytotoxicity in cord blood. Bioorg. *Med. Chem.* 2004, 12, 5603–5609. [CrossRef]
- 251. Wang, P.Y.; Zhu, X.L.; Lin, Z.B. Antitumor and Immunomodulatory Effects of Polysaccharides from Broken-Spore of *Ganoderma lucidum*. Front. Pharmacol. **2012**, 13, 135. [CrossRef]
- 252. Wu, G.; Qian, Z.; Guo, J.; Hu, D.; Bao, J.; Xie, J.; Xu, W.; Lu, J.; Chen, X.; Wang, Y. *Ganoderma lucidum* Extract Induces G1 Cell Cycle Arrest, and Apoptosis in Human Breast Cancer Cells. *Am. J. Chin. Med.* 2012, 40, 631–642. [CrossRef] [PubMed]
- 253. Lin, S.B.; Li, C.H.; Lee, S.S.; Kan, L.S. Triterpene-enriched extracts from *Ganoderma lucidum* inhibit growth of hepatoma cells via suppressing protein kinase C, activating mitogen-activated protein kinases and G2-phase cell cycle arrest. *Life Sci.* **2003**, 72, 2381–2390. [CrossRef]
- 254. Jedinak, A.; Thyagarajan-Sahu, A.; Jiang, J.; Sliva, D. Ganodermanontriol, a lanostanoid triterpene from *Ganoderma lucidum*, suppresses growth of colon cancer cells through ss-catenin signaling. *Int. J. Oncol.* **2011**, *38*, 761–767. [CrossRef] [PubMed]
- 255. Chen, N.H.; Liu, J.W.; Zhong, J.J. Ganoderic acid T inhibits tumor invasion in vitro and in vivo through inhibition of MMP expression. *Pharmacol. Rep.* **2010**, *62*, 150–163. [CrossRef]
- 256. Chen, N.H.; Liu, J.W.; Zhong, J.J. Ganoderic acid Me inhibits tumor invasion through down-regulating matrix metalloproteinases 2/9 gene expression. *J. Pharmacol. Sci.* **2008**, *108*, 212–216. [CrossRef]
- 257. Hsu, C.L.; Yu, Y.S.; Yen, G.C. Lucidenic acid B induces apoptosis in human leukemia cells via a mitochondria-mediated pathway. J. Agric. Food Chem. 2008, 56, 3973–3980. [CrossRef]

- 258. Liu, R.M.; Zhong, J.J. Ganoderic acid Mf and S induce mitochondria mediated apoptosis in human cervical carcinoma HeLa cells. Phytomed. *Int. J. Phytother. Phytopharmacol.* **2011**, *18*, 349–355. [CrossRef]
- 259. Liu, R.M.; Li, Y.B.; Zhong, J.J. Cytotoxic and pro-apoptotic effects of novel ganoderic acid derivatives on human cervical cancer cells *in vitro*. Eur. J. Pharmacol. **2012**, 681, 23–33. [CrossRef] [PubMed]
- 260. Zhou, L.; Shi, P.; Chen, N.H.; Zhong, J.J. Ganoderic acid Me induces apoptosis through mitochondria dysfunctions in human colon carcinoma cells. *Proc. Biochem.* **2011**, *46*, 219–225. [CrossRef]
- 261. Lu, H.; Ouyang, W.; Huang, C. Inflammation, a Key Event in Cancer Development. *Mol. Cancer Res.* **2006**, *4*, 221–233. [CrossRef] [PubMed]
- 262. Shalapour, S.; Karin, M. Immunity, inflammation, and cancer: An eternal fight between good and evil. *J. Clin. Investig.* **2015**, 125, 3347–3355. [CrossRef]
- 263. Dudhgaonkar, S.; Thyagarajan, A.; Sliva, D. Suppression of the inflammatory response by triterpenes isolated from the mushroom *Ganoderma lucidum*. *Int. Immunopharmacol.* **2009**, *9*, 1272–1280. [CrossRef]
- 264. Miron, L.; Gafton, B.; Marinca, M. Tumor angiogenesis- implications in cancer therapy. Iasi J. Surg. 2010, 6, 2.
- 265. Cao, Q.Z.; Lin, Z.B. Antitumor and anti-angiogenic activity of *Ganoderma lucidum* polysaccharides peptide. *Acta Pharmacol. Sin.* **2004**, 25, 833–838.
- 266. Smina, T.P.; Mathew, J.; Janardhanan, K.K.; Devasagayam, T.P. Antioxidant activity and toxicity profile of total triterpenes isolated from *Ganoderma lucidum* (Fr.) P. Karst occurring in South India. *Environ. Toxicol. Pharmacol.* **2011**, 32, 438–446. [CrossRef]
- 267. Smina, T.P.; De, S.; Devasagayam, T.P.; Adhikari, S.; Janardhanan, K.K. *Ganoderma lucidum* total triterpenes prevent radiation-induced DNA damage and apoptosis in splenic lymphocytes in vitro. *Mutat. Res.* **2011**, 726, 188–194. [CrossRef]
- 268. Lu, H.M.; Uesaka, T.; Katoh, O.; Kyo, E.; Watanabe, H. Prevention of the development of preneoplastic lesions, aberrant crypt foci, by a water-soluble extract from cultured medium of *Ganoderma lucidum* (Rei-shi) mycelia in male F344 rats. *Oncol. Rep.* **2001**, 8, 1341–1345. [CrossRef] [PubMed]
- 269. Lu, H.; Kyo, E.; Uesaka, T.; Katoh, O.H.W. A water-soluble extract from cultured medium of *Ganoderma lucidum* (Rei-shi) mycelia suppresses azoxymethane-induction of colon cancers in male F344 rats. *Oncol. Rep.* **2003**, *10*, 375–379. [CrossRef]
- 270. Lee, J.M.; Kwon, H.; Jeong, H.; Lee, J.W.; Lee, S.Y.; Baek, S.J.; Surh, Y.J. Inhibition of lipid peroxidation and oxidative DNA damage by *Ganoderma lucidum*. *Phytother. Res.* **2001**, *15*, 245–249. [CrossRef] [PubMed]
- 271. Zhao, W.; Jiang, X.; Deng, W.; Lai, Y.; Wu, M.; Zhang, Z. Antioxidant activities of *Ganoderma lucidum* polysaccharides and their role on DNA damage in mice induced by cobalt-60 gamma-irradiation. *Food Chem. Toxicol.* **2012**, *50*, 303–309. [CrossRef]
- 272. Ulbricht, C.; Isaac, R.; Milkin, T.; Poole, E.A.; Rusie, E.; Grimes Serrano, J.M.; Weissner, W.; Windsor, R.C.; Woods, J. An evidence-based systematic review of stevia by the Natural Standard Research Collaboration. *Cardiovasc. Hematol. Agents Med. Chem.* 2010, *8*, 113–127. [CrossRef] [PubMed]
- 273. Gill, S.K.; Rieder, M.J. Toxicity of a traditional Chinese medicine, *Ganoderma lucidum*, in children with cancer. *Can. J. Clin. Pharmacol.* **2008**, 15, 275–285.
- 274. Bishop, K.S.; Kao, C.H.; Xu, Y.; Glucina, M.P.; Paterson, R.R.M.; Ferguson, L.R. From 2000 years of *Ganoderma lucidum* to recent developments in nutraceuticals. *Phytochemistry* **2015**, *114*, 56–65. [CrossRef]
- 275. Tran, H.B.; Yamamoto, A.; Matsumoto, S.; Ito, H.; Igami, K.; Miyazaki, T.; Kondo, R.; Shimizu, K. Hypotensive effects and angiotensin-converting enzyme inhibitory peptides of reishi (*Ganoderma lingzhi*) auto-digested extract. *Molecules* 2014, 19, 13473–13485. [CrossRef]
- 276. Karwa, A.; Gaikwad, S.; Rai, M.K. Mycosynthesis of silver nanoparticles using Lingzhi or Reishi medicinal mushroom, *Ganoderma lucidum* (W. Curt.: Fr.) P. Karst. and their role as antimicrobials and antibiotic activity enhancers. *Int. J. Med. Mush.* **2011**, *13*, 483–491. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article

Antioxidant Profile, Amino Acids Composition, and Physicochemical Characteristics of Cherry Tomatoes Are Associated with Their Color

Min Woo Baek ^{1,2,†}, Jong Hwan Lee ^{1,2,†}, Chang Eun Yeo ^{2,3}, Su Ho Tae ^{1,2}, Se Min Chang ^{1,2}, Han Ryul Choi ⁴, Do Su Park ^{2,5}, Shimeles Tilahun ^{2,5,6,*} and Cheon Soon Jeong ^{1,2,*}

- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; minwoo100@kangwon.ac.kr (M.W.B.); ljhhh96@kangwon.ac.kr (J.H.L.); xotngh9906@kangwon.ac.kr (S.H.T.)
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Republic of Korea; freeum75@gmail.com (C.E.Y.); parkds@kangwon.ac.kr (D.S.P.)
- Sunmin F&B Co., Ltd., Chuncheon 24341, Republic of Korea
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea; hanryul192@kangwon.ac.kr
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- ⁶ Department of Horticulture and Plant Sciences, Jimma University, Jimma 378, Ethiopia
- * Correspondence: shimeles@kangwon.ac.kr (S.T.); jeongcs@kangwon.ac.kr (C.S.J.)
- [†] These authors contributed equally to this work.

Abstract: This study was conducted to characterize different colored lines of cherry tomatoes and derive information regarding their metabolite accumulation. Different colored cherry tomato cultivars, namely 'Jocheong', 'BN Satnolang', 'Gold Chance', 'Black Q', and 'Snacktom', were assessed for their firmness, taste characteristics, and nutritional metabolites at the commercial ripening stage. The cultivars demonstrated firmness to withstand impacts during harvesting and postharvest operations. The significant variations in the Brix to acid ratio (BAR) and the contents of phenylalanine, glutamic acid, and aspartic acid highlight the distinct taste characteristics among the cultivars, and the nutritional metabolites are associated with the color of the cultivars. The cultivar choices would be the black-colored 'Black Q' for chlorophylls, β -carotene, total flavonoids, and anthocyanins; the red-colored 'Snacktom' for lycopene; the orange-colored 'Gold Chance' for total phenolics; and the green-colored 'Jocheong' for chlorophylls, vitamin C, GABA, glutamic acid, essential amino acids, and total free amino acids. The antioxidant capacity varied among the cultivars, with 'Gold Chance' consistently exhibiting the highest activity across the four assays, followed by 'Snacktom'. This study emphasizes the importance of screening cultivars to support breeding programs for improving the nutritional content and encourages the inclusion of a diverse mix of different colored cherry tomatoes in packaging to obtain the cumulative or synergistic effects of secondary metabolites.

Keywords: anthocyanins; cherry tomatoes; GABA; β-carotene; lycopene; phenolics

1. Introduction

The tomato (*Solanum lycopersicum* L.) originates from South America, where it underwent domestication and improvement primarily in the Andean regions of Ecuador and Peru, which was completed in Mesoamerica [1]. Currently, a diverse range of tomato cultivars exists, with different morphological, physicochemical, and sensory attributes contributing to a wide range of tomato-based foods, either in raw or processed form [2]. In 2021, the global production of tomatoes reached 189.13 million tons, cultivated on 5.17 million ha, with Asia contributing significantly by holding a substantial 63.02% share [3]. Specifically, the Republic of Korea produced 348,983 tons of tomatoes from an area of 5610 ha during the same year [3].

Regular tomato consumption is associated with various health benefits, including anticancer properties, decreased susceptibility to cardiovascular, neurodegenerative, and bowel diseases, and improved immune response, exercise recovery, and skin health [4,5]. Experimental evidence also suggests that tomatoes rich in carotenoids have protective effects against oxidative stress in the retinal pigment epithelium and delay the progression of age-related macular degeneration [6]. These protective effects of tomatoes are primarily linked to their valuable bioactive components, such as β -carotene, lycopene, flavonoids, phenolics, and vitamins C and E, which possess antioxidant properties [5].

The increased amino acid levels in tomatoes play a role in their health-promoting qualities, as amino acids are the building blocks of proteins essential for maintaining cellular structure, facilitating the transport and storage of nutrients, promoting wound healing, and aiding in the repair of damaged tissues [7]. Among the amino acids, γ -aminobutyric acid (GABA) and its precursor, glutamic acid, play signaling roles in a range of tissues [8,9]. GABA-rich tomatoes improve metabolic health as the bioavailability of GABA from pureed tomatoes was found to be similar to that of GABA supplement solution in water [8]. In tomatoes, a high level of GABA was found to accumulate in tomato fruit before the breaker stage and to be catalyzed rapidly thereafter [10]. So, screening cultivars rich in GABA and glutamic acid, which do not show rapid GABA catabolism after reaching the breaker stage, could be advantageous for consumers.

Apart from the above-mentioned antioxidant properties and GABA content, consumer acceptance of tomato fruit relies significantly on the taste and physicochemical attributes like the firmness, color, total soluble solids (TSS), titratable acidity (TA), and the Brix to acid ratio (BAR) [11,12]. The postharvest quality of tomatoes develops during the growth, and the phytochemical composition and antioxidant activity can be affected by agronomic practices, environmental factors such as light intensity, water availability, temperature, and growing media, along with the ripening stages and conditions [4,13,14]. Furthermore, research findings have revealed that the diversity among tomato cultivars affects their physicochemical and antioxidant properties and GABA levels [5,9,15].

This study was conducted in a climate-controlled greenhouse with a hydroponics system under the same agronomic practices based on the hypothesis that the color variation among different cherry tomatoes will reveal significant variations in their metabolite profiles. We used green-colored 'Jocheong', yellow-colored 'BN Satnolang', orange-colored 'Gold Chance', black-colored 'Black Q', and red-colored 'Snacktom' cherry tomatoes to characterize these different colored lines of cherry tomatoes and derive novel information regarding their metabolite accumulation. Specifically, we expected that a distinct color difference would influence the concentration and composition of metabolites, leading to measurable differences in the nutritional content and antioxidant activity among the cherry tomato cultivars, which could require consuming a mix of different colored cherry tomatoes to benefit from their cumulative effects. In addition, the synergistic effects of all the constituents in tomatoes are likely to surpass the advantages of individual components like lycopene and β -carotene. Thus, this study incorporated both individual parameters and antioxidant activities in four assays to study the combined effect of these individual parameters.

2. Materials and Methods

2.1. Chemicals

All the chemicals utilized in this study were of analytical reagent grade. HPLC-grade methanol for the mobile phase was purchased from the J.T. Baker chemical company (Center Valley, PA, USA). Potassium dihydrogen phosphate was sourced from Yakuri Pure Chemicals (Kyoto, Japan). Metaphosphoric acid and dimethyl sulfoxide (DMSO) were purchased from Kanto Chemical (Tokyo, Japan). Potassium chloride was procured from Junsei Chemical (Tokyo, Japan). β-carotene, gallic acid, rutin, and ascorbic acid were purchased as standards from Sigma-Aldrich (St. Lous, MO, USA). Additionally, the amino acid standard was purchased from Agilent Technologies (Santa Clara, CA, USA).

The following reagents were also purchased from Sigma-Aldrich (St. Louis, MO, USA): sodium acetate, acetone, ethanol, hexane, Folin–Ciocalteu reagent, sodium carbonate, aluminum nitrate, potassium acetate, DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)), potassium persulfate, acetate, TPTZ (2,4,6-Tri(2-pyridyl)-s-triazine), hydrochloric acid, ferric chloride, sodium phosphate, potassium ferricyanide, trichloroacetic acid, and iron(III) chloride.

2.2. Plant Materials

Five cherry tomato (Solanum lycopersicum L.) scion cultivars, namely green-colored 'Jocheong' (Taeyang Seed Co., Ltd., Seoul, Republic of Korea), yellow-colored 'BN Satnolang', orange-colored 'Gold Chance', black-colored 'Black Q' (Bunong Seed Co., Ltd., Suwon, Republic of Korea), and red-colored 'Snacktom' cherry tomatoes (Pan Pacific Seed Co., Ltd., Yongin, Republic of Korea), were used in this research. Additionally, 'Bikeio' rootstock (Bunong Seed Co., Ltd., Suwon, Republic of Korea) was used for this study. The trays for cultivation were arranged within the greenhouse facility of Hoban Agriculture Corporation, situated at coordinates $37^{\circ}55'29''$ N and $127^{\circ}47'04''$ E, at an elevation of 85 m above sea level in Chuncheon, Gangwon Province, Republic of Korea. The seeds were sown on 27 September 2021 on horticultural soil sourced from Pindstrup, Denmark. A 162-hole tray measuring W $280 \times L$ $540 \times H$ 45 mm and a 128-hole tray measuring W $280 \times L$ $540 \times H$ 48 mm, both sourced from Bumnong Co., Ltd. (Jeongup, Republic of Korea), were used for sowing the cherry tomato scion and rootstock seeds, respectively. After sowing, we adequately irrigated the seeded trays through overhead irrigation and then covered them with vermiculite to retain moisture. The germination process took place over 48 h in a germination room under dark conditions, with a controlled temperature ranging between 25 and 28 °C and a relative humidity maintained at 90%. Then, the seedlings were transferred to the greenhouse and grafting was attained within a month of seeding, and the plants had reached a stage of growth suitable for transplantation by 5 December 2021.

The transplanted tomatoes were grown using a hydroponic system within a climate-controlled greenhouse located at coordinates $37^{\circ}92'$ N and $127^{\circ}75'$ E in Gangwon Province, Republic of Korea, during the spring/summer of 2022. The electrical conductivity (EC) of the fertigation solution was regulated within a range of 2.5 to 2.8 deciSiemens per meter (dS m $^{-1}$) while maintaining the pH between 5.5 and 5.8, tailored according to the growth stages. The harvesting commenced on 10 March 2022, with the fruits used for the measurements being harvested on 10 May 2022. Harvesting involved selecting uniform-sized fruits from the third cluster of each plant without physical defects, with the exclusion of fruits located at the tip of the cluster.

After harvesting at the commercial harvesting stage, the fruits were transported to Kangwon National University, where ten representative fruits per cultivar were randomly selected. The physicochemical data were taken the same day and the samples prepared for metabolite analysis were freeze-dried, ground, filtered using a 40 μm filter, and stored in a deep freezer until analysis.

2.3. Physicochemical Parameters

Fruits of the five cherry tomato cultivars were measured for the firmness, color values, total soluble solids (TSSs), titratable acidity (TA), and brix to acid ratio (BAR). The fruit firmness at the equator of each fruit was measured following the method described by Baek et al. [16]. This involved applying a maximum force of 10 kg using a rheometer (Sun Scientific Co. Ltd., Tokyo, Japan) fitted with a 3 mm diameter round stainless-steel probe with a flat end at a speed of 1.0 mm/s, and the results were quantified in Newtons (N). The fruit skin color values greenness to redness (a*), blueness to yellowness (b*), and darkness to brightness (L*) were measured according to Baek et al. [16] from ten fruit using a CR-400 Chroma meter (Minolta, Tokyo, Japan). The determination of the TSSs, TA, and BAR values followed the procedure described by Tilahun et al. [13] The TSSs was assessed using an Atago refractometer (Atago Co., Ltd., Tokyo, Japan) at 20 °C, with measurements taken

from ten sample fruits. The TA was measured through a Mettler Toledo analyzer (Mettler Toledo Ltd., Zurich, Switzerland). This involved dilution (1 mL juice: 19 mL distilled water) followed by titration until reaching a pH of 8.1, utilizing 0.1 N NaOH. The TA result was quantified as mg $100~{\rm g}^{-1}$ citric acid of fresh tomato. The BAR was computed by dividing the TSSs by the TA.

2.4. Amino Acids

Three biological replicates of freeze-dried cherry tomato fruit samples (1 g) were extracted using 75% ethanol with ultrasonic extraction for 1 h followed by room temperature extraction for 24 h. After filtering the extract with a 0.2 μ m filter, analysis of the amino acid content was conducted using Henderson et al.'s [17] method with a Dionex Ultimate 3000 HPLC. The method utilizes automated online derivatization with o-phthalaldehyde (OPA) for primary amino acids and 9-fluorenylmethyl chloroformate (FMOC) for secondary amino acids, and it involves the separation and detection of amino acids using specific reagents that react with amino groups to form derivatives, which are then quantified by the HPLC system.

2.5. Secondary Metabolites

Chlorophylls (Chls) were extracted from the ethanol extract of the cherry tomato cultivars. The Chls extraction process utilized the dimethyl sulfoxide (DMSO) extraction procedure as described by Baek et al. [18]. Absorbance readings were taken at 645 and 663 nm utilizing a microplate reader (SpectraMax ABS Plus, Molecular Devices, Sunnyvale, CA, USA) with a DMSO blank serving as the reference. Then, Chl a, Chl b, and the total Chls were calculated using the equations of Arnon [19], as outlined Tilahun et al. [20].

The total anthocyanin content (expressed as cyanidin-3-glucoside equivalents) was assessed using the pH differential method [21] as described by Tilahun et al. [20]. Freezedried radish microgreen samples (0.25 g) were mixed with 5 mL of methanol containing 0.1% HCl. The samples were subjected to ultrasonic treatment three times for 10 min, followed by centrifugation to collect the supernatant. A 50 μ L portion of the supernatant was filtered using a 0.45 μ m membrane filter (PTFE, 13 mm, Whatman, Maidstone, UK). Subsequently, a mixture of 25 mM potassium chloride buffer (pH 1.0) and 400 mM sodium acetate buffer (pH 4.5) was prepared in 950 μ L and developed for 15 min. Readings were taken at 520 nm and 700 nm using a microplate reader (SpectraMax ABS Plus, Molecular Devices, Sunnyvale, CA, USA). Then, the anthocyanin content was calculated using the formula:

Anthocyanin content (mg g⁻¹) =
$$(V \times A \times MW \times DF)/(\varepsilon \times m)$$

where the variables V, A, MW, DF, ε , and m represent the total volume of the extract (mL), the difference in absorbance values at pH 1.0 and pH 4.5 at 520 nm and 700 nm, the molar mass of cyanidin-3-glucoside (449.2 g mol⁻¹), the dilution factor, the molar extinction coefficient in L mol⁻¹ cm⁻¹ (26,900), and the sample quantity (g), respectively.

The lycopene and β -carotene content of the cherry tomato fruit samples were determined according to the methods described by Tilahun et al. [14]. Freeze-dried tomato samples (1 g) were placed in vials, followed by the addition of 5 mL of ethanol, 5 mL of acetone, and 10.0 mL of hexane to each vial. Subsequently, the vials underwent centrifugation for 15 min at $6000 \times g$. Following centrifugation, each vial was supplemented with 3 mL of deionized water, and the samples were subjected to agitation for an additional 5 min. Phase separation was achieved by allowing the vials to stand at room temperature without agitation for 5 min. The hexane layer's absorbance at 503 and 448 nm, relative to a blank hexane solvent, was measured using a microplate reader (SpectraMax i3, Molecular Devices, Sunnyvale, CA, USA) to determine the lycopene and β -carotene content, respectively. The lycopene content of the samples was subsequently quantified as mg 100 g⁻¹ of dry weight following the procedure outlined by Fish et al. [22]

Lycopene content (mg kg $^{-1}$) = (Absorbance at 503 \times 0.0312)/kg = (Absorbance at 503 \times 31.2)/g

Meanwhile the β -carotene content was determined by comparing the sample readings to the β -carotene standard curve and expressed as mg 100 g⁻¹ dry weight of the sample.

The levels of total phenolics and flavonoids in the freeze-dried cherry tomato fruit samples were determined with three replications, following the methodology established in our laboratory, as described by Baek et al. [23]. An ethanolic extract (1 mg mL $^{-1}$) or standard was mixed with 1 mL of 10% Folin-Ciocalteu phenol reagent and 1 mL of 2% sodium carbonate solution for the total phenolics measurement. After 90 min of dark incubation at room temperature, the absorbance was then measured at 750 nm using a microplate reader (Spectramax i3, Molecular Devices, Sunnyvale, CA, USA). The results were expressed as milligrams of gallic acid equivalents per gram of sample (mg GAE g^{-1}) after the measurements were compared to the gallic acid calibration curve. For the total flavonoid analysis, 1.5 mL of ethanol, 0.1 mL of 10% aluminum nitrite solution, 0.1 mL of 1 M potassium acetate solution, and 2.8 mL distilled water were combined with an ethanolic extract (1 mg mL $^{-1}$). After stirring, the mixture was left to react for 30 min. The absorbance was then measured at 415 nm using a microplate reader (SpectraMax i3, Molecular Devices, Sunnyvale, CA, USA). The obtained results were compared to a rutin calibration curve and expressed as milligrams of rutin equivalents per gram of sample (mg $RE g^{-1}$).

The vitamin C content was analyzed from the freeze-dried cherry tomato samples in triplicate using reversed phase (RP) liquid chromatography with ultraviolet (UV) detection according to Tilahun et al. [20]. A 1 g sample was combined with 10 mL of 5% metaphosphoric acid (5 g/100 mL) and homogenized for 1 min. Following homogenization, the mixture underwent 10 min centrifugation at $7828\times g$. The liquid layer of the extract was then filtered with 0.22 μ m membrane and subjected to analysis using a ZORBAX Eclipse XDB-C18 column (4.6 cm \times 250 mm, 5 μ m, Agilent Technologies, Santa Clara, CA, USA) coupled with a UV-2075 detector (Jasco, Tokyo, Japan) at 265 nm. The analysis involved a 20 μ L injection of 100% MeOH:0.1 M KH₂PO₄ (1:9 ratio) at a flow rate of 1 mL min⁻¹ as the mobile phase.

2.6. Antioxidant Activities

Freeze-dried and ground cherry tomato samples were subjected to extraction following the method previously implemented in our laboratory [23]. The assessment of the Trolox-equivalent antioxidant capacity (ABTS), DPPH radical-scavenging capacity, and ferric-reducing antioxidant power (FRAP) was carried out in triplicate following the procedures described by Baek et al. [23]. Additionally, the reducing power (RP) assay was conducted in triplicate according to the method detailed by Choi et al. [24].

A sample solution (0.2 mL) containing a 10 mg mL $^{-1}$ concentration of the extract was added to a 0.8 mL ethanolic DPPH (0.4 mM) solution. The mixture was allowed to react at room temperature in the dark for 10 min. The absorbance was then measured at 517 nm using a microplate reader (Molecular Devices, Sunnyvale, CA, USA). For the blank, distilled water was used instead of the sample. Then, the calculation for the radical scavenging activity was as follows:

DPPH radical scavenging activity (%) = $[1 - (Absorbance of the sample/Absorbance of the blank)] \times 100$

A stock solution of ABTS was prepared by dissolving it in water to a concentration of 7.4 mM. The cation (ABTS+) was generated by reacting this stock solution with 2.45 mM potassium persulfate and allowing the mixture to stand for 14 h at room temperature in the dark. The ABTS+ solution was then diluted with ethanol to achieve an absorbance of 0.70 ± 0.02 at 750 nM. Then, 1.0 mL of diluted ABTS+ solution was added to 0.01 mL of sample (10 mg mL⁻¹ concentration), and the mixture was left at room temperature for 30 min in the dark. The absorbance was measured at 750 nM using a microplate reader (Molecular Devices, Sunnyvale, CA, USA). For the blank, distilled water was used instead of the sample. Then, the radical scavenging activity was calculated by the following equation:

ABTS radical scavenging activity (%) = $[1 - (Absorbance of the sample/Absorbance of the blank)] \times 100$

The FRAP reagent was prepared fresh daily using 300 mM acetate buffer (pH 3.6), a 10 mM 2, 4, 6-tri (2-pyridyl) -1, 3, 5-triazine (TPTZ) solution in 40 mM HCl, and a 20 mM FeCl₃·6H₂O solution in a 10:1:1 (v/v) ratio. The reagent was warmed to 37 °C in a water bath before use. Then, 0.05 mL of the sample (10 mg mL⁻¹ concentration) was mixed with distilled water (0.15 mL) and the FRAP reagent (1.5 mL). The reaction mixture was incubated at 37 °C for 4 min, and the absorbance was measured at 595 nM using a microplate reader (Molecular Devices, Sunnyvale, CA, USA).

For the reducing power (RP) assay, samples (0.1 mL) of 10 mg mL $^{-1}$ concentration were mixed with potassium ferricyanide (1 %, 0.5 mL) and sodium phosphate buffer (0.2 M, 0.5 mL) and incubated at 50 °C for 20 min. Trichloroacetic acid (0.5 mL) was then added to the mixed solution and centrifuged at 1790× g for 10 min. In a new test tube, the supernatant (0.5 mL), iron (III) chloride solution (0.1%, 0.1 mL), and distilled water (0.5 mL) were mixed. Then, the absorbance of this solution was measured at 700 nm using a microplate reader (Molecular Devices, Sunnyvale, CA, USA).

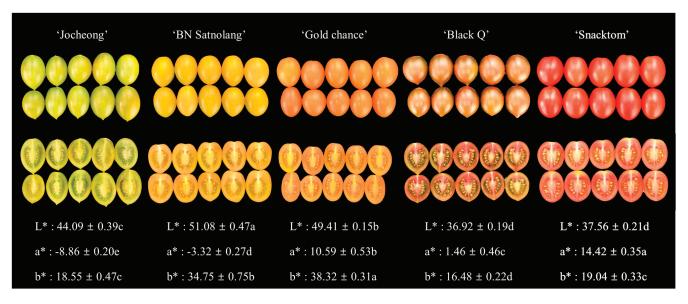
2.7. Experimental Design and Statistical Analysis

A completely randomized design was used at the greenhouse. To assess the differences between the cherry tomato cultivars, the collected data were subjected to analysis of variance (ANOVA) at p < 0.05 using statistical software (SAS/STAT® 9.1; SAS Institute Inc., Cary, NC, USA). Duncan's multiple range test, heat maps and principal component analysis (PCA) were used to further examine the variations between the cultivars. MetaboAnalyst v6.0 and XLSTAT version 2015.1 (Addinsoft Inc., 244 Fifth Avenue, Suite E100, New York, NY, USA) were used for the heat maps and PCA, respectively.

3. Results and Discussion

3.1. Physicochemical Parameters

Assessing the firmness of fresh tomatoes is a crucial parameter to evaluate their quality, especially concerning their suitability for the intended culinary uses. Additionally, it serves as a valuable criterion for screening resilient cultivars, ensuring resistance against mechanical injury during harvesting and postharvest operations [16]. In the present study, significant difference in firmness was observed among the five cherry tomato cultivars (Table 1). The highest firmness value was recorded in 'Black Q' (17.09 N), followed by 'Jocheong' (13.38 N), and the lowest firmness value was recorded in the 'BN Satnolang' (10.44 N) cultivar, although the difference between 'BN Satnolang', 'Gold Chance', and 'Snacktom' was not significant. Previous studies have also reported significant differences in firmness among different tomato cultivars [5,13]. The genetic variation in cherry tomato cultivars can influence the cuticle of the tomato fruit, which has been found to have a significant influence on the fruit firmness and ripening physiology, both directly as the cuticle acts as a load-bearing matrix under tension and indirectly by regulating the fruit's water status [25]. In addition, differences among cultivars may impact the absorption of calcium [26]. An adequate calcium intake is essential for promoting robust growth in tomato plants, reinforcing and stabilizing cell walls, and ultimately, influencing the firmness of the fruit [27].


Table 1. Physicochemical parameters of fresh cherry tomato cultivars at harvest.

Cultivars	Firmness (N)	TSSs (°Brix)	TA (mg 100 g^{-1})	BAR (TSS/TA)
Jocheong	$13.38 \pm 0.97 \mathrm{b}$	$7.84\pm0.11~\mathrm{cd}$	1.14 ± 0.03 a	$6.84 \pm 0.69 \text{ c}$
BN Satnolang	$10.44 \pm 0.39 \text{ c}$	10.75 ± 0.20 a	$0.96 \pm 0.03 \mathrm{b}$	11.33 ± 1.26 a
Gold chance	$10.88\pm0.52~\mathrm{c}$	$8.66 \pm 0.27 \mathrm{b}$	$1.00 \pm 0.04 \mathrm{b}$	$8.76 \pm 1.34 \mathrm{b}$
Black Q	17.09 ± 0.60 a	$7.43 \pm 0.45 d$	$0.92 \pm 0.02 \mathrm{b}$	$8.15 \pm 0.64 \mathrm{b}$
Snacktom	$10.82\pm0.42~\mathrm{c}$	$8.26\pm0.16\mathrm{bc}$	$1.01 \pm 0.03 \mathrm{b}$	$8.28 \pm 0.99 \mathrm{b}$

TSSs, TA, and BAR stand for total soluble solids, titratable acidity, and brix to acid ratio. The results are shown as the mean \pm SD (n = 10), with differing letters in the same column indicating significant statistical difference at p < 0.05.

A significant difference was also observed in the TSSs, TA and BAR of the cherry tomato cultivars (Table 1). The TSSs content of 'BN Satnolang' (10.75 °Brix) was the highest and 'Black Q' (7.43 °Brix) was the least. The TA values ranged from 0.92 mg $100~{\rm g}^{-1}$ in 'Black Q' to 1.14 mg $100~{\rm g}^{-1}$ in 'Jocheong'. On the other hand, although the difference between 'Gold Chance', 'Black Q', and 'Snacktom' was not significant, 'BN Satnolang' had the highest BAR (11.33), while the lowest BAR (6.84) was observed in 'Jocheong' (Table 1), indicating differences in the taste characteristics of the tested cherry tomato cultivars. In agreement with this study, previous studies reported variations in the TSSs, TA, and BAR among cultivars, highlighting that the balance of sugar and acid contents influences the taste characteristics of tomatoes [28,29].

The external color of cherry tomatoes is more closely tied to consumer preferences, given its impact on the human eye's perception of color. Oltman et al. [30] reported color to be the most important external attribute for tomato liking in their survey conducted on consumers' attitudes and preferences for fresh market tomatoes. Although they reported red-colored tomatoes as attractive, they also stressed that different groups of tomato consumers exist, with specific preferences for health benefits, taste, firmness, and juiciness. In the current study, the color of cherry tomatoes spans from green to red, encompassing a* values that vary from -8.86 in the 'Jocheong' to 14.42 in the 'Snacktom'. The degree of yellowness, represented by the b* values, also ranges from 16.48 in 'Black Q' to 38.32 in 'Gold Chance', as illustrated in Figure 1.

Figure 1. Harvesting stages and external colors of the tested cherry tomato cultivars. The color of the fruit was assessed using the L* (brightness), Hunter a* (redness), and b* (yellowness) values.

3.2. Amino Acids

In this study, the amino acid content was evaluated among the different colored cherry tomato cultivars tested. A total of 22 free amino acids were identified and the content of amino acids in the cherry tomatoes was significantly dependent on the cultivar (Table 2). The total free amino acid content (TAA) of 'Jocheong' was the highest (62.36 g kg $^{-1}$ DW), followed by 'Black Q' (52.88 g kg $^{-1}$ DW), 'Gold Chance' (35.32 g kg $^{-1}$ DW), 'Snacktom' (34.56 g kg $^{-1}$ DW), and 'BN Satnolang' (32.05 g kg $^{-1}$ DW), respectively (Table 2). Consistent with the findings of this research, Tilahun et al. [5] tested the 'TY VIP', 'Mamirio', 'Tori', and 'Arya' tomato cultivars and also observed variation in the total amino acids, ranging from 38.81 to 57.31 g kg $^{-1}$ DW. The assessment of the protein quality in a food can be performed by examining the levels of nine essential amino acids (EAA), namely methionine, leucine, isoleucine, histidine, tryptophan, valine, phenylalanine, threonine, and lysin [31]. The findings of this study, as indicated in Table 2, revealed the highest essential amino acids content

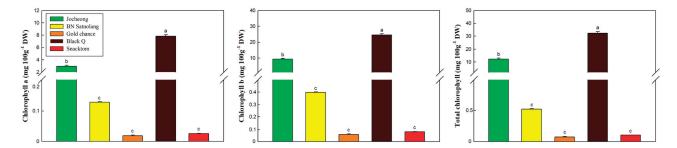
in 'Jocheong' (5.96 g kg $^{-1}$ DW), followed by 'Black Q' (3.74 g kg $^{-1}$ DW), 'BN Satnolang' (2.95 g kg $^{-1}$ DW), 'Snacktom' (2.68 g kg $^{-1}$ DW), and 'Gold Chance' (2.52 g kg $^{-1}$ DW), respectively. Hence, the contents of EAA in cherry tomatoes is also cultivar-dependent, and having information about the EAA content could assist customers in selecting the cultivar that best suits their preferences.

Table 2. Individual, essential and total amino acid contents in fresh cherry tomato cultivars at harvest.

	Jocheon	ıg	BN Satno	lang	Gold Cha	nce	Black (Q	Snackto	om
Amino Acids	mg kg ⁻¹	%	${ m mg~kg^{-1}}$	%						
Aspartic acid	4971.14 b	7.97	3403.79 с	10.62	3254.97 с	9.22	5274.66 a	9.98	3052.74 d	8.83
Glutamic acid	26,883.30 a	43.11	12,054.79 c	37.62	16,446.00 b	46.56	27,544.36 a	52.09	17,118.92 b	49.54
Asparagine	4535.81 a	7.27	2928.94 b	9.14	2108.42 c	5.97	1438.23 e	2.72	2017.01 d	5.84
Serine	1296.15 a	2.08	546.86 d	1.71	729.03 c	2.06	914.87 b	1.73	726.80 c	2.10
Glutamine	9953.29 a	15.96	5992.00 b	18.70	5225.22 c	14.79	3492.97 d	6.61	5069.68 c	14.67
Histidine (EAA)	820.70 a	1.32	347.11 c	1.08	371.14 c	1.05	516.37 b	0.98	364.92 c	1.06
Glycine	108.47 a	0.17	56.25 d	0.18	65.91 b	0.19	68.65 b	0.13	60.04 c	0.17
Threonine (EAA)	1080.68 a	1.73	378.28 cd	1.18	369.27 d	1.05	487.64 b	0.92	401.14 c	1.16
Citrulline	106.72 a	0.17	53.04 b	0.17	50.87 b	0.14	32.31 c	0.06	48.20 b	0.14
Arginine	925.54 a	1.48	483.77 c	1.51	396.16 d	1.12	630.74 b	1.19	385.01 d	1.11
Alanine	607.64 c	0.97	370.36 d	1.16	834.15 b	2.36	1132.56 a	2.14	622.79 c	1.80
Taurine	14.65 c	0.02	13.66 с	0.04	25.90 b	0.07	31.97 a	0.06	23.00 b	0.07
GABA	6220.85 a	9.98	1906.47 d	5.95	2176.56 c	6.16	4960.61 b	9.38	1449.25 e	4.19
Tyrosine	212.93 a	0.34	159.53 b	0.50	77.79 d	0.22	95.15 c	0.18	75.50 d	0.22
Valine (EAA)	342.26 a	0.55	116.12 d	0.36	125.43 c	0.36	263.64 b	0.50	120.33 cd	0.35
Methionine (EAA)	5.74 b	0.01	10.60 a	0.03	10.17 a	0.03	10.29 a	0.02	10.05 a	0.03
Tryptophane (EAA)	366.11 a	0.59	285.02 b	0.89	225.84 c	0.64	282.80 b	0.53	205.82 c	0.60
Phenylalanine (EAA)	1420.66 a	2.28	909.42 b	2.84	621.45 e	1.76	876.84 c	1.66	779.57 d	2.26
Isoleucine (EAA)	677.53 a	1.09	207.36 c	0.65	174.30 d	0.49	384.94 b	0.73	201.38 c	0.58
Leucine (EAA)	640.01 a	1.03	256.19 d	0.80	268.70 c	0.76	385.72 b	0.73	226.90 e	0.66
Lysine (EAA)	609.34 a	0.98	437.21 c	1.36	354.76 d	1.00	532.44 b	1.01	366.47 d	1.06
Proline	558.91 a	0.90	1130.84 b	3.53	1409.95 b	3.99	3519.51 a	6.66	1233.16 b	3.57
Total EAA	5963.04 a	1.29	2947.31 с	2.60	2521.05 d	3.25	3740.67 b	8.11	2676.59 d	2.84
Total	62,358.44 a		32,047.62 d		35,321.97 с		52,877.27 b		34,558.69 c	

EAA stands for essential amino acid. The results are shown as the mean \pm SD (n = 3), with differing letters in the same raw indicating a significant statistical difference at p < 0.05.

Among the individual free amino acids, glutamic acid proved to be the most abundant amino acid across all five cultivars. The content varied from 12.05 g kg^{-1} DW (37.62%) for 'BN Satnolang' to 27.54 g kg⁻¹ DW (52.09%) for 'Black Q'. Glutamine was the second most abundant free amino acid, except for 'Black Q', where the contents of aspartic acid and GABA were higher than glutamine. Generally, GABA, asparagine, aspartic acid, glutamine, and glutamic acid emerged as the predominant amino acids in all five cherry tomato cultivars, constituting a range from 80.78% in 'Black Q' to 84.29% in 'Jocheong' of the total free amino acids. Consistent with the findings of this study, Tilahun et al. [5] similarly identified these amino acids as the primary constituents, accounting for 80.65 to 89.98% of the total free amino acids in the 'TY VIP', 'Mamirio', 'Tori', and 'Arya' tomato cultivars at the pink stage of ripening. While the GABA content in tomatoes reduces significantly during the ripening transition, 'Kumato' tomato, which undergoes a color transformation from green to reddishbrown or purple after ripening, has been reported to maintain a high level of GABA [18]. Similarly, in the present study, a high level of GABA (6.22 g kg⁻¹ DW) and its precursor, glutamic acid (26.88 g kg^{-1} DW), was recorded in the green-colored 'Jocheong', followed by black-colored 'Black Q' (4.96 g kg $^{-1}$ GABA and 27.54 g kg $^{-1}$ DW glutamic acid). Hence, when considering the amount of TAA, EAA, and GABA, the preferable cultivars of choice would be the green-colored 'Jocheong' and black-colored 'Black Q'.


Phenolic volatiles, which play a crucial role in shaping our perception of the tomato flavor, encompass a range of compounds derived from the amino acid phenylalanine [11]. Additionally, the umami taste of tomatoes is influenced by the ratio of glutamic acid to aspartic acid, which is essential for the overall taste profile [12]. Notably, the contents of phenylalanine, glutamic acid, and aspartic acid varied significantly among the five cherry

tomato cultivars (Table 2), and the ratio of glutamic acid to aspartic acid ranges from 3.54 in 'BN-Satnolang' to 5.61 in 'Snacktom', underscoring their role in imparting a distinct and unique taste to each cultivar. In the current study, taurine, a naturally occurring sulfurcontaining amino acid, was also detected in cherry tomatoes and the amount ranged from 13.66 mg kg $^{-1}$ in 'BN-Satnolang' to 31.97 mg kg $^{-1}$ in 'Black Q'. Taurine, primarily sourced from the seafoods, has attracted significant attention in recent years due to its cardiovascular effects, such as regulating blood pressure, improving cardiac fitness, and enhancing vascular health [32]. Hence, cherry tomato cultivars could also be screened based on their taurine content, and the preferable cultivar based on the amount of taurine would be the black-colored 'Black Q'.

3.3. Secondary Metabolites

Secondary metabolites contribute to the plant's interaction with its surroundings, enhancing the aroma and pigmentation to attract seed dispersers while serving as a defense mechanism against both biotic and abiotic stresses [31,33]. The positive health impacts of these secondary metabolites obtained from plant foods become apparent through the consumption of various phytochemicals, exhibiting cumulative or synergistic effects [33].

The distinct vibrant color of tomato is a result of the transformation of chloroplasts into chromoplasts, a process linked to carotenoid synthesis [14]. As tomatoes ripen, they accumulate lycopene (red linear carotene) and β -carotene (orange cyclization pro-vitamin A product) [34]. This study revealed significant variations among the cherry tomato cultivars in terms of the anthocyanins, chlorophylls, lycopene and β -carotene contents (Figures 2 and 3). In addition to the anthocyanins, the colored tomatoes have the underlining carotenoid pigment, including chlorophylls, lycopene and β -carotene, and these pigments could impact consumers' preference by indicating maturity, quality and freshness. The green to red (a* values) and blue to yellow (b* values) observed in Figure 1 are directly proportional to the chlorophylls, lycopene and β -carotene contents (Figures 2 and 3). Chlorophylls, lycopene and β -carotene demonstrate significant antioxidant properties, and dietary anthocyanin consumption has been linked to reduced cardiovascular disease risk factors [14,35,36].

Figure 2. Chlorophyll a, chlorophyll b and total chlorophyll content contents of 'Jocheong', 'BN Satnolang', 'Gold chance', 'Black Q', and 'Snacktom' cherry tomato cultivars at harvest. Different letters on the bars indicate a significant difference between the mean values of the cultivars (n = 3) at p < 0.05.

In this study, the average total Chls content varied between 0.10 mg g $^{-1}$ DW in 'Gold Chance' and 32.40 mg g $^{-1}$ DW in 'Black Q' (Figure 2). The concentrations of chlorophyll a, chlorophyll b, and total chlorophylls exhibited similar patterns, with 'Black Q' and 'Jocheong' showing the highest two scores, respectively. On the other hand, 'Snacktom' (39.40 mg 100 g^{-1} DW) and 'Black Q' (35.96 mg 100 g^{-1} DW) exhibited the highest lycopene content, followed by 'Gold Chance' (16.08 mg 100 g^{-1} DW), 'BN Satnolang' (8.87 mg 100 g^{-1} DW), and 'Jocheong' (6.54 mg 100 g^{-1} DW) (Figure 3). 'Black Q' (17.51 mg 100 g^{-1} DW) had the highest in β -carotene content, followed by 'Gold Chance' (16.62 mg 100 g^{-1} DW), while the lowest (7.23 mg 100 g^{-1} DW) was observed in 'BN Satnolang' (Figure 3). Similar findings of previous works support the variation in the lycopene and β -carotene contents among cultivars [5,14]. However, 'BN Satnolang' and 'Jocheong' showed lower levels of lycopene

| Virginia C (mg 100 g⁻¹ DW) | Disciplina C (mg 100 g⁻¹ DW) |

and β-carotene compared to the previously reported 'TY Megaton', 'Yureka', Tori', 'TY VIP', 'Mamirio', and 'Arya' tomato cultivars [5,14].

Figure 3. Lycopene, β-carotene, total phenolics, total flavonoids, vitamin C and anthocyanins contents of cherry tomato cultivars at harvest. Different letters on the bars indicate a significant difference between the mean values of the cultivars (n = 3) at p < 0.05.

Conversely, 'Gold Chance' showed the highest level of total phenolics at 169.36 mg GAE $100~\rm g^{-1}$ DW, followed by 'Snacktom' and 'BN Satnolang' with 162.15 and 147.03 mg GAE $100~\rm g^{-1}$ DW, respectively (Figure 3). The total phenolics content in this study ranged from 144.30 to 169.36 mg GAE $100~\rm g^{-1}$ DW, slightly lower than the range (168.20 to 290.70 mg GAE $100~\rm g^{-1}$) reported by Bhandari et al. [37] for Korean commercial tomato cultivars.

The black-colored 'Black Q' recorded high levels of total flavonoids (13.05 mg RE 100 g $^{-1}$ DW) and anthocyanins (126.47 mg 100 g $^{-1}$ DW). The green-colored 'Jocheong' had a high level of vitamin C (204.92 mg 100 g $^{-1}$ DW), while the red-colored 'Snacktom' ranked second in the contents of vitamin C (184.42 mg 100 g $^{-1}$ DW) and anthocyanins (80.60 mg 100 g $^{-1}$ DW) (Figure 3).

Tomatoes, one of the most extensively cultivated vegetables worldwide, are a significant source of bioactive compounds, including carotenoids and polyphenols, such as phenolic acids and flavonoids. Nonetheless, the level of flavonoids in tomatoes is deemed less than optimal, primarily due to the lack of anthocyanins [38]. Therefore, breeding attempts were conducted to develop anthocyanin-enriched tomatoes. Anthocyanin-rich tomatoes developed through breeding programs produce fruits with a dark skin color

(purple or black) and high nutraceutical values, combining the health advantages of anthocyanins with those of other tomato phytochemicals, especially carotenoids [39].

Therefore, in the context of secondary metabolites, the preferable cultivar choices would be the black-colored 'Black Q' for chlorophylls, β -carotene, total flavonoids and anthocyanins; the red-colored 'Snacktom' for lycopene; the orange-colored 'Gold Chance' for total phenolics; and the green-colored 'Jocheong' for chlorophylls and vitamin C. This suggests the benefit of choosing cultivars tailored to specific target functional compounds and distributing a blend of differently colored cherry tomatoes through packaging for cumulative health benefits.

3.4. Antioxidant Activities

Free radicals have been indicated as a natural by-product of aerobic metabolism, where approximately 2-3% of the cell's oxygen consumption undergoes conversion into these radicals, contributing to the processes of aging and age-related diseases if their amount becomes excessive over an extended period [15,40]. A high intake of fruits and vegetables exhibiting antioxidant activity is receiving increased attention due to their potential in mitigating the detrimental effects of free radicals [15]. The consumption of fresh and processed products made of tomatoes has been reported as a valuable source of antioxidants, contributing significantly to reducing the risk of various cancers [41,42] and plasma lipid peroxidation [15,43]. Therefore, it has become essential to evaluate the nutritional quality of tomatoes by assessing their antioxidant activity. In this study, variations in the antioxidant activity were observed among the five cultivars of cherry tomatoes using four different assays. In all four assays, 'Gold Chance' exhibited the highest antioxidant activity, with 'Snacktom' ranking second (Table 3). As indicated in Figure 3, 'Gold Chance' demonstrated the highest total phenolics, while 'Snacktom' showed the highest levels in lycopene and β-carotene. The findings of our study valorize the direct correlations of secondary bioactive metabolites with the antioxidant activity of fresh cherry tomatoes.

Table 3. Antioxidant activities of cherry tomato cultivars at harvest.

Cultivars	DPPH (%)	ABTS (%)	FRAP (Absorbance)	RP (Absorbance)
Jocheong	$63.69 \pm 0.04 \mathrm{c}$	$14.16 \pm 0.68 \text{ c}$	$0.231 \pm 0.002 \mathrm{b}$	$0.222 \pm 0.002 c$
BN Satnolang	$58.55 \pm 0.31 \mathrm{d}$	$13.67 \pm 0.67 \mathrm{c}$	$0.212 \pm 0.003 c$	$0.221 \pm 0.004 c$
Gold chance	69.72 ± 0.33 a	16.32 ± 0.09 a	0.250 ± 0.000 a	0.249 ± 0.002 a
Black Q	$56.63 \pm 0.33 \mathrm{e}$	$13.27 \pm 0.71 \text{ c}$	$0.202 \pm 0.002 d$	$0.221 \pm 0.002 c$
Snacktom	$69.02 \pm 0.31 \mathrm{b}$	$15.22 \pm 0.36 \mathrm{b}$	0.253 ± 0.003 a	$0.243 \pm 0.001 \mathrm{b}$

DPPH, FRAP, ABTS, and RP stand for α-diphenyl-β-picrylhydrazyl, ferric-reducing antioxidant power, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), and reducing power assays, respectively. The results are shown as the mean \pm SD (n = 3), with differing letters in the same column indicating a significant statistical difference at p < 0.05. All the data were detected at 10 mg mL⁻¹ methanol extracts of freeze-dried cherry tomatoes.

3.5. Principal Component and Correlation Analysis

Evaluating the functional properties of tomatoes involves examining their antioxidant activity and determining the key contributors, such as carotenoids, ascorbic acid, phenolics, flavonoids, and anthocyanins. In this study, the different colored cherry tomato cultivars tested were grown under the same agronomic practices based on the hypothesis that the color variation would result in significant differences in their metabolite profiles. In addition, all the parameters were standardized and collected under the same condition for all the cultivars. Consequently, the trends observed in the principal component analysis (PCA) and correlation analysis highlight the parameters that primarily cause variations among the tested cultivars and the relationship between each parameter, respectively. The PCA elucidates the distinctions among treatments and the prominent factors influencing the spatial distribution and correlation of observed parameters. The data collected for cherry tomato cultivars were subjected to the PCA, and the resulting PCA is depicted in Figure 4, illustrating the separation of cultivars based on the observed parameters. The results showed that factor 1 (F1) and factor 2 (F2) together accounted for about 80.42% of the total variance. F1 held the highest variation, elucidating 53.72% of the overall variance, while F2

contributed an additional 26.69% to the total variances. F1 and F2 demonstrated the clear separation of the cherry tomato cultivars, indicating the differences in nutritional quality (metabolites and antioxidant activities) among the five cherry tomato cultivars (Figure 4). Among the five cultivars analyzed, 'Black Q' and 'Snacktom' showed a high level of lycopene and β-carotene, 'Gold Chance' a high level of total phenolics, 'Black Q' a high level of total flavonoids and anthocyanins, and 'Jocheong' a high level of vitamin C. In addition, the heat map in Figure 5 illustrates the comprehensive distinctions in the physiochemical characteristics, free amino acids, secondary metabolites, and antioxidant activities among the tested cherry tomato cultivars. The correlations among the collected parameters are also shown in Figure 6. Significant positive correlation coefficients were observed between the secondary metabolites (lycopene, β-carotene, vitamin C, total phenolics, flavonoids, and anthocyanins) and the antioxidant activities measured with the four assays (DPPH, FRAP, ABTS, RP) (Figure 6). These results prove the contribution of secondary metabolites to the antioxidant capacity of cherry tomatoes. Moreover, the contribution of the total phenolics to the antioxidant activity was clearly indicated in the PCA for 'Gold Chance', 'Snacktom', and 'BN Satnolang'. Our results agree with those of Choi et al. [31], who reported a higher positive correlation of total phenolics with the antioxidant capacity in kiwifruit.

Biplot (axes F1 and F2: 80.42 %)

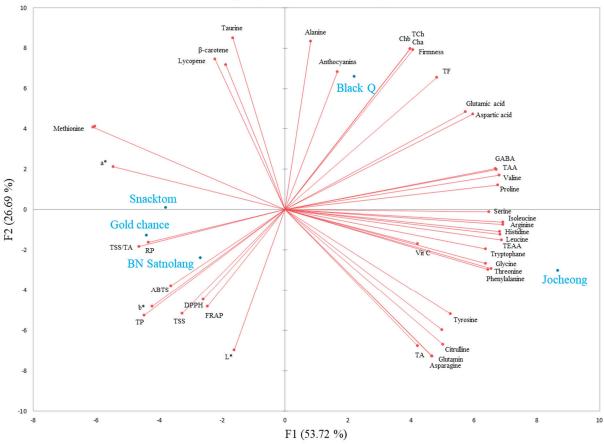
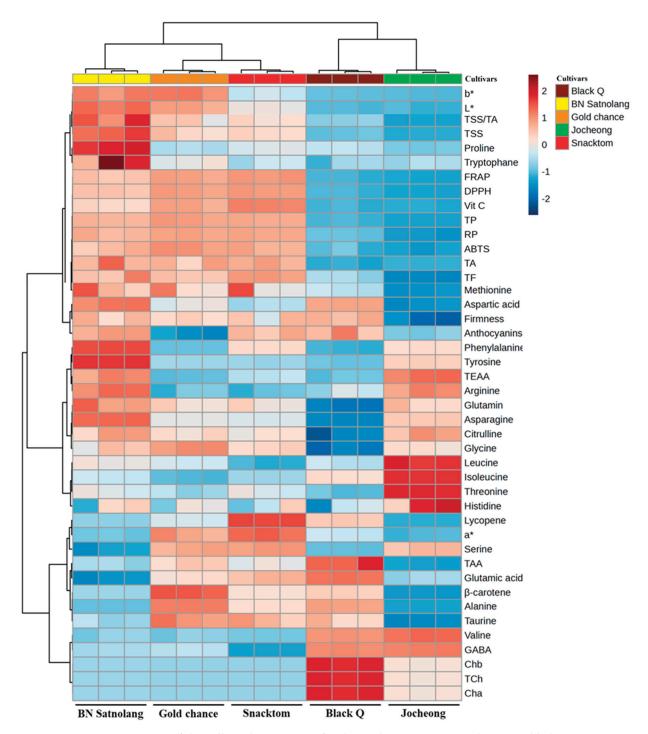
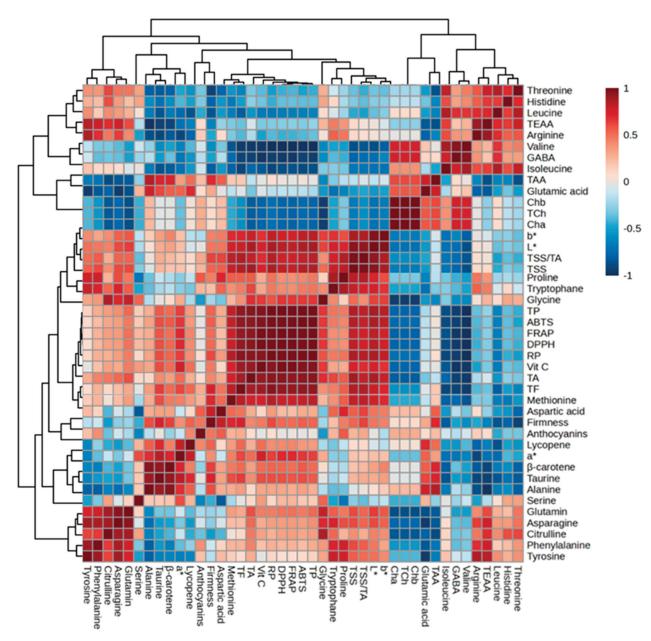




Figure 4. Biplot of nutritional quality parameters in five cherry tomato cultivars at harvest. Data normalization was performed using the median combined with autoscaling, and the analysis was conducted using MetaboAnalyst 6.0 software (https://www.metaboanalyst.ca/ (accessed on 20 November 2023)). The parameters include chlorophyll a (Cha), chlorophyll b (Chb), total chlorophyll (TCh), total soluble solids (TSSs), titratable acid (TA), total amino acids (TAAs), total essential amino acids (TEAs), vitamin C (Vit C), total phenolics (TPs), total flavonoids (TFs), Hunter's a* (a*), Hunter's b* (b*), Hunter's L* (L*), α-diphenyl-β-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and reducing power (RP).

Figure 5. Heat map of the collected parameters for the 'Jocheong', 'BN Satnolang', 'Gold chance', 'Black Q', and 'Snacktom' cherry tomato cultivars at harvest. Data normalization was performed using the median combined with autoscaling, and the analysis was conducted using MetaboAnalyst 6.0 software (https://www.metaboanalyst.ca/ (accessed on 20 November 2023)). The parameters include chlorophyll a (Cha), chlorophyll b (Chb), total chlorophyll (TCh), total soluble solids (TSSs), titratable acid (TA), total amino acids (TAAs), total essential amino acids (TEAs), vitamin C (Vit C), total phenolics (TPs), total flavonoids (TFs), Hunter's a* (a*), Hunter's b* (b*), Hunter's L* (L*), α-diphenyl-β-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and reducing power (RP).

Figure 6. Correlation heat map of nutritional quality parameters in five cherry tomato cultivars at harvest. Data normalization was performed using the median combined with autoscaling, and the analysis was conducted using MetaboAnalyst 6.0 software (https://www.metaboanalyst.ca/ (accessed on 20 November 2023)). The parameters include chlorophyll a (Cha), chlorophyll b (Chb), total chlorophyll (TCh), total soluble solids (TSSs), titratable acid (TA), total amino acids (TAAs), total essential amino acids (TEAs), vitamin C (Vit C), total phenolics (TPs), total flavonoids (TFs), Hunter's a* (a*), Hunter's b* (b*), Hunter's L* (L*), α-diphenyl-β-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and reducing power (RP).

4. Conclusions

In this study, five different colored cherry tomato cultivars, namely 'Jocheong', 'BN Satnolang', 'Gold Chance', 'Black Q', and 'Snacktom', were assessed for their firmness, taste characteristics, and nutritional content. The cultivars exhibited sufficient firmness to withstand impacts during harvesting and postharvest operations, making them well-suited for distribution. The BAR ranged from 11.33 in 'BN Satnolang' to 6.84 in 'Jocheong', indicating the differences in the taste characteristics of the tested cherry tomato cultivars. A

higher amount of a given metabolite means that a smaller quantity of tomatoes is needed to meet the daily requirements, which in turn reduces the production, distribution, and consumption costs. Considering the amount of TAA, EAA, and GABA, the preferred choices were the green-colored 'Jocheong' and the black-colored 'Black Q'. For the secondary metabolites, 'Black Q' excelled in β-carotene, total flavonoids, and anthocyanins, while the red-colored 'Snacktom' stood out in lycopene. The orange-colored 'Gold Chance' led in total phenolics, and the green-colored 'Jocheong' topped in vitamin C. The antioxidant activity varied among the cultivars, with 'Gold Chance' consistently exhibiting the highest activity across the four assays, followed by 'Snacktom'. 'Gold Chance' also demonstrated the highest total phenolics, while 'Snacktom' had the highest levels of lycopene and βcarotene, implying the direct correlation of the secondary bioactive metabolites with the antioxidant activity of fresh cherry tomatoes. In addition, this study recommends selecting cultivars based on the target functional compounds and promoting a diverse mix of colored cherry tomatoes in packaging to align with consumers' requirements. This approach encourages the consumption of various cultivars, enhancing the cumulative or synergistic effects of secondary metabolites and offering potential health benefits. Future research could explore the findings of sensory acceptance analysis, the impact of various preharvest and postharvest treatments, and the effects of storage on the quality of different colored cherry tomatoes.

Author Contributions: M.W.B.: Conceptualization, investigation, data curation. J.H.L.: Conceptualization, investigation, data curation. C.E.Y.: Investigation, data curation. S.H.T.: Investigation, data curation. S.M.C.: Investigation, data curation. H.R.C.: Software and formal analysis. D.S.P.: Writing—review and editing. S.T.: Conceptualization, investigation, writing—original draft, writing—review and editing. C.S.J.: Conceptualization, investigation, supervision, writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: The financial support from the National Research Foundation of Korea (NRF), under the BK21 FOUR project, and from Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (Project No. 3220525-5) is gratefully acknowledged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are included in the article. This study complied with local and national regulations. No collection of seeds or plants is involved in this study.

Conflicts of Interest: Author C.E.Y. is employed by Sunmin F&B Co., Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

- 1. Ercolano, M.R.; Di Donato, A.; Sanseverino, W.; Barbella, M.; De Natale, A.; Frusciante, L. Complex migration history is revealed by genetic diversity of tomato samples collected in Italy during the eighteenth and nineteenth centuries. *Hortic. Res.* **2020**, *7*, 100. [CrossRef] [PubMed]
- 2. Pinela, J.; Petropoulos, S.A.; Barros, L. Editorial: Advances in tomato and tomato compounds research and technology. *Front. Nutr.* **2022**, *9*, 1018498. [CrossRef] [PubMed]
- 3. FAOSTAT. Food and Agriculture Organization of the United Nations Cropping Database. 2021. Available online: http://faostat3.fao.org/home/index.html (accessed on 20 November 2023).
- 4. Collins, E.J.; Bowyer, C.; Tsouza, A.; Chopra, M. Tomatoes: An extensive review of the associated health impacts of tomatoes and factors that can affect their cultivation. *Biology* **2022**, *11*, 239. [CrossRef] [PubMed]
- 5. Tilahun, S.; Choi, H.R.; Baek, M.W.; Cheol, L.H.; Kwak, K.W.; Park, D.S.; Solomon, T.; Jeong, C.S. Antioxidant properties, γ-aminobutyric acid (GABA) content, and physicochemical characteristics of tomato cultivars. *Agronomy* **2021**, *11*, 1204. [CrossRef]
- 6. Chichili, G.R.; Nohr, D.; Frank, J.; Flaccus, A.; Fraser, P.D.; Enfissi, E.M.A.; Biesalski, H.K. Protective effects of tomato extract with elevated beta-carotene levels on oxidative stress in ARPE-19 cells. *Br. J. Nutr.* **2006**, *96*, 643–649. [CrossRef] [PubMed]
- 7. Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, I.; Gan, S.H. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A Review. *Foods* **2021**, *10*, 45. [CrossRef] [PubMed]

- 8. de Bie, T.H.; Balvers, M.G.J.; de Vos, R.C.H.; Witkamp, R.F.; Jongsma, M.A. The influence of a tomato food matrix on the bioavailability and plasma kinetics of oral gamma-aminobutyric acid (GABA) and its precursor glutamate in healthy men. *Food Funct.* 2022, *13*, 8399–8410. [CrossRef] [PubMed]
- 9. de Bie, T.H.; de Vos, R.C.H.; van Eekelen, H.D.L.M.; Millenaar, F.F.; van de Wiel, C.K.M.; Allefs, J.J.H.M.; Balvers, M.G.J.; Witkamp, R.F.; Jongsma, M.A. Screening for GABA and glutamic acid in tomato and potato genotypes and effects of domestic cooking. *J. Food Compos. Anal.* **2023**, 122, 105416. [CrossRef]
- 10. Akihiro, T.; Koike, S.; Tani, R.; Tominaga, T.; Watanabe, S.; Iijima, Y.; Aoki, K.; Shibata, D.; Ashihara, H.; Matsukura, C.; et al. Biochemical mechanism on GABA accumulation during fruit development in tomato. *Plant Cell Physiol.* **2008**, 49, 1378–1389. [CrossRef] [PubMed]
- 11. Rambla, J.L.; Tikunov, Y.M.; Monforte, A.J.; Bovy, A.G.; Granell, A. The expanded tomato fruit volatile landscape. *J. Exp. Bot.* **2013**, *65*, 4613–4623. [CrossRef]
- 12. Morelli, C.F.; Cutignano, A.; Speranza, G.; Abbamondi, G.R.; Rabuffetti, M.; Iodice, C.; De Prisco, R.; Tommonaro, G. Taste compounds and polyphenolic profile of tomato varieties cultivated with beneficial microorganisms: A chemical investigation on nutritional properties and sensory qualities. *Biomolecules* **2023**, *13*, 117. [CrossRef] [PubMed]
- 13. Tilahun, S.; Park, D.S.; Solomon, T.; Choi, H.R.; Jeong, C.S. Maturity stages affect nutritional quality and storability of tomato cultivars. *CyTA J. Food* **2019**, *17*, 87–95. [CrossRef]
- 14. Tilahun, S.; Park, D.S.; Seo, M.H.; Hwang, I.G.; Kim, S.H.; Choi, H.R.; Jeong, C.S. Prediction of lycopene and β-carotene in tomatoes by portable chroma-meter and VIS/NIR spectra. *Postharvest Biol. Technol.* **2018**, *136*, 50–56. [CrossRef]
- 15. Lenucci, M.S.; Cadinu, D.; Taurino, M.; Piro, G.; Dalessandro, G. Antioxidant composition in cherry and high-pigment tomato cultivars. *J. Agric. Food Chem.* **2006**, *54*, 2606–2613. [CrossRef]
- 16. Baek, M.W.; Choi, H.R.; Lee, H.C.; Lee, J.H.; Lee, O.H.; Hong, J.S.; Jeong, C.S.; Tilahun, S. Preharvest methyl jasmonate and salicylic acid treatments improve the nutritional qualities and postharvest storability of tomato. *Sci. Hortic.* **2023**, 321, 112332. [CrossRef]
- 17. Henderson, J.W.; Ricker, R.D.; Bidlingmeyer, B.A.; Woodward, C. Rapid, Accurate, Sensitive, and Reproducible HPLC Analysis of Amino Acids. *Amino Acids* **2000**, *1100*, 1–10.
- 18. Baek, M.W.; Choi, H.R.; Jae, L.Y.; Kang, H.M.; Lee, O.H.; Jeong, C.S.; Tilahun, S. Preharvest treatment of methyl jasmonate and salicylic acid increase the yield, antioxidant activity and GABA content of tomato. *Agronomy* **2021**, *11*, 2293. [CrossRef]
- 19. Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in *Beta vulgaris*. *Plant Physiol*. **1949**, 24, 1. [CrossRef] [PubMed]
- 20. Tilahun, S.; Baek, M.W.; An, K.-S.; Choi, H.R.; Lee, J.H.; Hong, J.S.; Jeong, C.S. Radish microgreens produced without substrate in a vertical multi-layered growing unit are rich in nutritional metabolites. *Front. Plant Sci.* **2023**, *14*, 1236055. [CrossRef]
- 21. Liu, Y.; Feng, X.; Zhang, Y.; Zhou, F.; Zhu, P. Simultaneous changes in anthocyanin, chlorophyll, and carotenoid contents produce green variegation in pink–leaved ornamental kale. *BMC Genom.* **2021**, 22, 455. [CrossRef]
- 22. Fish, W.W.; Perkins-Veazie, P.; Collins, J.K. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. *J. Food Compos. Anal.* **2002**, *15*, 309–317. [CrossRef]
- 23. Baek, M.W.; Choi, H.R.; Solomon, T.; Jeong, C.S.; Lee, O.-H.; Tilahun, S. Preharvest methyl jasmonate treatment increased the antioxidant activity and glucosinolate contents of hydroponically grown pak choi. *Antioxidants* **2021**, *10*, 131. [CrossRef] [PubMed]
- 24. Choi, Y.E.; Choi, S.I.; Han, X.; Men, X.; Jang, G.W.; Kwon, H.Y.; Kang, S.R.; Han, J.S.; Lee, O.H. Radical scavenging-linked anti-adipogenic activity of aster scaber ethanolic extract and its bioactive compound. *Antioxidants* **2020**, *9*, 1290. [CrossRef] [PubMed]
- 25. Saladié, M.; Matas, A.J.; Isaacson, T.; Jenks, M.A.; Goodwin, S.M.; Niklas, K.J.; Xiaolin, R.; Labavitch, J.M.; Shackel, K.A.; Fernie, A.R.; et al. A reevaluation of the key factors that influence tomato fruit softening and integrity. *Plant Physiol.* **2007**, *144*, 1012–1028. [CrossRef] [PubMed]
- 26. Rached, M.; Pierre, B.; Yves, G.; Matsukura, C.; Ariizumi, T.; Ezura, H.; Fukuda, N. Differences in blossom-end rot resistance in tomato cultivars is associated with total ascorbate rather than calcium concentration in the distal end part of fruits per se. *Hortic. J.* **2018**, *87*, 372–381. [CrossRef]
- 27. Thor, K. Calcium—Nutrient and messenger. Front. Plant Sci. 2019, 10, 440. [CrossRef] [PubMed]
- 28. Garcia, E.; Barrett, D.M. Evaluation of processing tomatoes from two consecutive growing seasons: Quality attributes, peelability and yield. *J. Food Process. Preserv.* **2006**, *30*, 20–36. [CrossRef]
- 29. Tigist, M.; Workneh, T.S.; Woldetsadik, K. Effects of variety on the quality of tomato stored under ambient conditions. *J. Food Sci. Technol.* **2013**, *50*, 477–486. [CrossRef]
- 30. Oltman, A.E.; Jervis, S.M.; Drake, M.A. Consumer attitudes and preferences for fresh market tomatoes. *J. Food Sci.* **2014**, *79*, S2091–S2097. [CrossRef]
- 31. Choi, H.R.; Baek, M.W.; Cheol, L.H.; Jeong, C.S.; Tilahun, S. Changes in metabolites and antioxidant activities of green 'Hayward' and gold 'Haegeum' kiwifruits during ripening with ethylene treatment. *Food Chem.* **2022**, *384*, 132490. [CrossRef]
- 32. Santulli, G.; Kansakar, U.; Varzideh, F.; Mone, P.; Jankauskas, S.S.; Lombardi, A. Functional role of taurine in aging and cardiovascular health: An updated overview. *Nutrients* **2023**, *15*, 4236. [CrossRef] [PubMed]

- 33. Leitzmann, C. Characteristics and health benefits of phytochemicals. *Forsch. Komplementarmedizin* **2016**, 23, 69–74. [CrossRef] [PubMed]
- 34. Carrillo-López, A.; Yahia, E.M. Changes in color-related compounds in tomato fruit exocarp and mesocarp during ripening using HPLC-APcI+-mass Spectrometry. *J. Food Sci. Technol.* **2014**, *51*, 2720–2726. [CrossRef] [PubMed]
- 35. Garcia, C.; Blesso, C.N. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. *Free Radic. Biol. Med.* **2021**, *172*, 152–166. [CrossRef] [PubMed]
- 36. Lanfer-Marquez, U.M.; Barros, R.M.C.; Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. *Food Res. Int.* **2005**, 38, 885–891. [CrossRef]
- 37. Bhandari, S.R.; Chae, Y.; Lee, J.G. Assessment of phytochemicals, quality attributes, and antioxidant activities in commercial tomato cultivars. *Hortic. Sci. Technol.* **2016**, *34*, *677*–691. [CrossRef]
- 38. Blando, F.; Berland, H.; Maiorano, G.; Durante, M.; Mazzucato, A.; Picarella, M.E.; Nicoletti, I.; Gerardi, C.; Mita, G.; Andersen, Ø.M. Nutraceutical characterization of anthocyanin-rich fruits produced by "Sun Black" tomato line. *Front. Nutr.* **2019**, *6*, 133. [CrossRef]
- 39. Gonzali, S.; Perata, P. Anthocyanins from purple tomatoes as novel antioxidants to promote human health. *Antioxidants* **2020**, 9, 1017. [CrossRef]
- 40. Wickens, A.P. Ageing and the free radical theory. Respir. Physiol. 2001, 128, 379–391. [CrossRef]
- 41. Bianchi, A.R.; Vitale, E.; Guerretti, V.; Palumbo, G.; De Clemente, I.M.; Vitale, L.; Arena, C.; De Maio, A. Antioxidant characterization of six tomato cultivars and derived products destined for human consumption. *Antioxidants* **2023**, *12*, 761. [CrossRef]
- 42. Giovannucci, E.; Rimm, E.B.; Liu, Y.; Stampfer, M.J.; Willett, W.C. A prospective study of tomato products, lycopene, and prostate cancer risk. *J. Natl. Cancer Inst.* **2002**, *94*, 391–398. [CrossRef] [PubMed]
- 43. Balestrieri, M.L.; De Prisco, R.; Nicolaus, B.; Pari, P.; Moriello, V.S.; Strazzullo, G.; Iorio, E.L.; Servillo, L.; Balestrieri, C. Lycopene in association with α-tocopherol or tomato lipophilic extracts enhances acyl-platelet-activating factor biosynthesis in endothelial cells during oxidative stress. *Free Radic. Biol. Med.* **2004**, *36*, 1058–1067. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article

Biochemical Characterization of New Sweet Orange Mutants Rich in Lycopene and β-Carotene Antioxidants

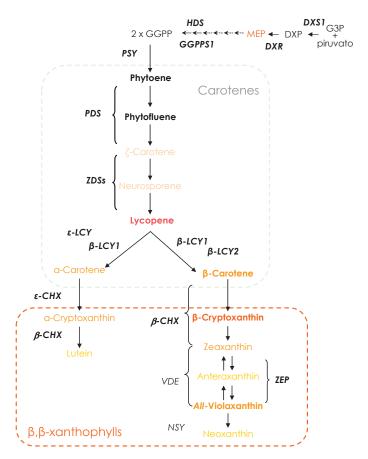
Lourdes Carmona 1,2, Berta Alquézar 1,2 and Leandro Peña 1,2,*

- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain; Icarmona@ibmcp.upv.es (L.C.); beralgar@ibmcp.upv.es (B.A.)
- ² Fundo de Defesa da Citricultura (Fundecitrus), Araraquara 14807-040, SP, Brazil
- * Correspondence: lpenya@ibmcp.upv.es

Abstract: Carotenoid-rich foods such as citrus fruits have a wide range of functions in human health. They primarily exert antioxidant effects, but individual carotenoids may also act through other health-promoting mechanisms such as β -carotene as pro-vitamin A. Here, we show that red-fleshed sweet oranges grown in tropical climates are 4–9 times richer in carotenoids than their orange-fleshed counterparts, regardless of their maturation stage. The most significant difference observed between both varieties was the presence of lycopene at moderate concentrations (around 8 μ g/g FW) in the mature pulp of the red varieties, which was absent in the blond ones. This is because the red-fleshed sweet oranges grown in tropical climates with high temperatures increase lycopene and β -carotene concentrations in their pulp during fruit maturation. Due to lycopene accumulation, red orange juice offers a promising addition to popular blond-orange, with the new varieties Carrancas and Pinhal being perfectly suitable for blending to enhance juice colour. Sao Paulo, one of the world's leading citrus orange juice producers, as well as other tropical citrus regions could benefit from cultivating using such lycopene-rich cultivars and industrially.

Keywords: carotenoids; lycopene; β-carotene; red-fleshed oranges; antioxidants; phytonutrients

1. Introduction


Carotenoids are a large family of isoprenoid pigments that have essential functions as components of the light-harvesting system and in protecting plant cells against oxidative processes [1]. These pigments are also components of the human diet, with important antioxidant activity and protective effects against carcinogenesis, cardiovascular diseases and degenerative progression [2–6]. Moreover, carotenoids with at least one unsubstituted β -ionone ring like β -carotene or β -cryptoxanthin are the precursors of vitamin A [7–9].

Carotenoids impart attractive colours to many fruits and vegetables, including citrus fruits [10,11]. Citrus fruit and juice are widely consumed, with a total production of 158.5 million tons of fruit per year worldwide [12], positioning them as important sources of carotenoids for the human diet [13,14]. The *Citrus* genus displays a complex carotenoid profile, with more than 110 different carotenes and xanthophylls reported, provide external and internal fruit coloration of the main citrus species and hybrids [15–17]. The carotenoid content and composition impact both the commercial and nutritional quality, these are the major determinants of consumer acceptance, since the external colour of citrus fruit and juice constitutes the consumer's first perception of the product and thus represents a primary quality attribute. Differences in the carotenoid profiles in mature citrus fruits, where content and composition vary depending on the cultivar [17,18], are responsible for the wide range of colorations that can be found among diverse citrus cultivars, from the white of grapefruits, pale yellow of some lemons, the intense orange of certain sweet oranges and mandarins to the red of specific oranges and grapefruits [16]. For example, although the β , β -xanthophyll violaxanthin predominates in mandarin and sweet orange

fruits, a higher β -cryptoxanthin content can be found in the former, providing their distinctive orange-reddish colour [16]. On the other hand, lemons are characterised by an accumulation of linear colourless carotenes (see the review in [17]).

The carotenoid biosynthesis pathway has been well characterised [17,19–22]. Carotenoids are derived in light-grown plants from the precursor isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP) from the methyl-D-erythritol 4-phosphate (MEP) pathway, which occurs in the plastids [23,24]. The first step is catalysed by DXP synthase (DXS) to produce deoxyxylulose 5-phosphate (DXP), which is reduced by DXP reductoisomerase (DXR) and yields MEP (Figure 1). MEP is converted into the precursors IPP and DAMPP by the sequential action of different enzymes. The condensation of these precursors generates geranylgeranyl pyrophosphate (GGPP). Through the action of phytoene synthase (PSY), two GGPPs are converted into the colourless carotene named phytoene, which is desaturated to phytofluene by phytoene desaturase (PDS). Phytofluene is desaturated by ζ -carotene desaturase (ZDS), generating the red-coloured carotene lycopene, which is cyclised by *lycopene* ε -cyclase (ε LCY) and *lycopene* β -cyclase (β LCY) to produce α -carotene or by the enzyme β LCY to generate β -carotene. In orange fruits, the accumulation of carotenoids during the maturation process is coordinated by the induction of β LCY2 expression, concomitantly with a decrease in ε LCY expression, favouring a shift to β , β -xanthophylls production. The β -carotene hydroxylase (β CHX) enzyme acts on β carotene, yielding zeaxanthin via β-cryptoxanthin, followed by the epoxidation reaction of zeaxanthin via zeaxanthin epoxidase (ZEP) to generate violaxanthin, the most abundant carotenoid in sweet orange juices.

In rare case, citrus fruits accumulate lycopene. This has been reported and characterised in only a few species, such as grapefruits (Citrus paradisi Marcf.) and pummelo (Citrus grandis Osbeck) [25]. Lycopene is a potent antioxidant carotene which confers major nutritional and nutraceutical value [26,27]. Few sweet oranges have also been reported to be capable of accumulating lycopene, such as Shara orange, a sport of Shamouti [28], the red orange Hong Anliu, a bud mutation of Anliu sweet orange [29] and Cara cara, which originated in Venezuela as a bud mutation from a Navel orange [25,30]. In addition to the nutritional value of red oranges, lycopene accumulation provides an atypical internal colouration that varies from the pink of the Shara orange to the bright red pulp of Cara cara oranges, providing important commercial value to these varieties. Because of that, the main citrus industries have been focused on searching for and selecting sweet orange types containing lycopene pigmentation in the recent years, including Puka Valencia from Argentina or Ruby Valencia from South Africa [31]. Sao Paulo (Brazil), which contributes 70% of worldwide juice production, has incorporated Puka and Cara cara red-oranges as commercial cultivars of interest [32]. More recently, the red orange Mombuca has been also selected, this is a Brazilian red variety that originated as a spontaneous sweet orange mutant [33]. The characterisation of new red-orange cultivars could offer a strategy for the citrus industry to extend the range of colours and increase the nutritional properties of orange juice. Thus, the aim of this work was to characterise the fruit quality and biochemical features of two new red-fleshed sweet orange spontaneous mutants, Carrancas and Pinhal, both originated and selected in Sao Paulo (Brazil). It is presented here that both new mutants are productive, mid-season varieties, showing high accumulation of lycopene and β-carotene phytonutrient carotenoids, with sufficiently high juice quality to consider them as possible new appealing red-flesh additions to the currently existing and highly successful blond-orange varieties.

Figure 1. Schematic diagram of the biosynthesis pathway of carotenoid in citrus fruit. The carotenoids and genes analysed in this work are bold-lettered. G3P, glyceraldehyde-3-phosphate; DXP, deoxyxylulose 5-phosphate; MEP, methyl-D-erythritol 4-phosphate; GGPP, geranylgeranyl pyrophosphate; DXS, DXP synthase; DXR, DXP reductoisomerase; HDS, HDR, hydroxymethylbutenyl 4-diphosphate reductase; GGPPS, geranylgeranyl pyrophosphate synthase; PSY, phytoene synthase; PDS, phytoene desaturase; ZDS, ζ- carotene desaturase; ε-LCY, lycopene ε-cyclase; β-LCY1, lycopene β-cyclase 1; β-LCY2, lycopene β-cyclase 2; β-CHX, β-carotene hydroxylase; εCHX, ε-carotene hydroxylase; ZEP, zeaxanthin epoxidase; VDE, violaxanthin de-epoxidase; NSY, neoxanthin synthase. Metabolites are coloured according to their colours, whereas black indicates no colour. Dotted rectangles separate different groups of carotenoids.

2. Materials and Methods

2.1. Plant Material

In this study, sweet orange (*C. sinensis* L. Osbeck) fruits from cultivars Hamlin (Ha), Pera (Pe) and Valencia (Va), were used as early, mid-season and late-season blond oranges, respectively, Cara cara (Cc), Carrancas (Ca), Mombuca (Mo), Pinhal (Ph) and Puka (Pk) were used as early (Cc), mid-season (Ca, Mo, Ph) and late (Pk) red-fleshed mutants, at different developmental stages: immature-green (IG), mature-green (MG), breaker (BR) and full-coloured (FC). They were harvested at random from adult (4-year-old) trees grown under standard conditions in an experimental area in a commercial orchard (Fazenda Guacho) in Sta. Cruz de Rio Pardo, Sao Paulo State, Brazil (22°53′56″ S–49°37′58″ O) during two consecutive seasons (season 1: 2021/22–season 2: 2022/23). The climatological conditions of the area were monitored (Figure S1). Fruits were uniform in size and colour, and free of damage or defects. Pulp was separated with a scalpel, immediately frozen in liquid nitrogen, ground to a fine powder and stored at –80 °C until analysis. For all analyses, 3 replicate samples of 5 fruits each per developmental stage were used.

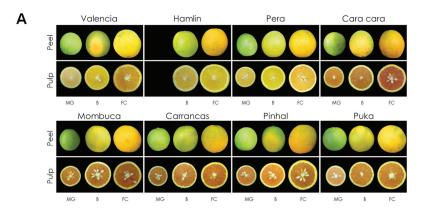
2.2. Analysis of Fruit Quality

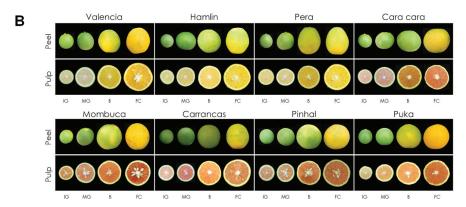
Fruit quality assessment was carried out for every cultivar over two seasons. Measurements of quality parameters were achieved based on fruit samples for every citrus tree from the orchard. A total of 40 fruits (4 samples of 10 fruits each) were harvested annually when the fruit was fully mature. The following fruit quality parameters were measured and averaged for each sample: fruit weight (W), fruit volume (V), fruit diameter (D), fruit height (H), cortex fruit thickness (C), peel fruit thickness (P), number of segments (Sg), number of seeds (S), juice content (JC), total soluble solids (TSS), titratable acidity (TA) and maturity index (MI). The parameters were measured as described in Pons et al. [34]. All measures are presented as the mean \pm standard error of each sample.

2.3. Carotenoid Extraction and UPLC Analysis of Individual Carotenoids

Carotenoids were extracted as is described in Carmona et al. [35]. The carotenoid composition of each sample was analysed through UPLC with a Nexera X2 Shimadzu liquid chromatography system equipped with a LC-30AD pump and a SPD-M20A photodiode array detector, and LabSolution software (version 5.57 SP1). An Acquity BEH C18 carotenoid column (100 mm \times 2.1 mm, 1.8 μ m) coupled to a C18 guard column $(20 \text{ mm} \times 2.1 \text{ mm})$ (Waters, Milford, MA, USA) was used. The samples were prepared for UPLC by dissolving the dried carotenoid extracts in CHCl₃:MeOH:acetone (3:2:1, v:v:v). For carotenoid separation, a binary gradient elution was adapted for red oranges [36] from the ternary described by Alquezar et al. [37] for red-oranges by using the Gradient Method Calculator (Thermo Scientific, Waltham, MA, USA). Carotenoids were identified based on their retention time, absorption and fine spectra [38-41]. The carotenoid peaks were integrated at their individual maxima wavelength and their contents were calculated using calibration curves of β -carotene (Sigma, St. Louis, MO, USA) for α - and β carotene; β -cryptoxanthin (Extrasynthese, Genay, France) for β -cryptoxanthin; zeaxanthin (Extrasynthese) for zeaxanthin; lutein (Sigma) for violaxanthin isomers, mutatoxanthin and antheraxathin; lycopene (Sigma) for lycopene and phytoene (Sigma) for phytoene and phytofluene. The total carotenoids were calculated as the sum of all quantified individual ones.

2.4. Total RNA Isolation and Quantitative RT-PCR Analysis


The total RNA extraction, DNase treatment, cDNA synthesis, quantitative real-time PCR procedure and primers used for the analysed genes followed Carmona et al. [42]. The primer sequences used for each gene used are detailed in Table S1 [35,37,43–45]. To demonstrate the expression stability of the reference genes *glyceraldehyde-3-phosphate dehydrogenase C2 (GAPC2)*, *ubiquitin-conjugating enzyme 21 (UBC21)* and *ubiquitin-protein ligase 7 (UPL7)* under our experimental conditions, the algorithm geNorm was used (https://genorm.cmgg.be/, accessed on 1 February 2021) [46]. The relative expression of genes of interest (GOI) in this study was determined throughout the maturation process as described by Carmona et al., [42]. Values are presented as the mean of at least three independent analyses \pm SD.


3. Results

3.1. Fruit Appearance at Different Developmental Stages and Fruit Quality Parameters of New Red-Fleshed Sweet Orange Mutants

The changes in external and internal appearance during the maturation period for each variety are shown in Figure 2. Peel and pulp colour progressively turned from green to red or orange along the maturation process, with a remarkable treddish coloration occurring in the pulp of red-fleshed cultivars. The differences in pulp coloration between the blond cultivars Hamlim (Ha), Pera (Pe) and Valencia (Va), and the red-fleshed ones Cara cara (Ca), Mombuca (Mo), Carrancas (Ca), Pinhal (Ph) and Puka (Pk) were detected from the initial stages of fruit development. The pulp of immature-green (IG) fruit from blond cultivars displayed a yellow colour while fruit belonging to red mutants already

presented a distinctive reddish-pink colouration at that developmental stage (Figure 2B). Then, during the maturation period, the internal colouration of Ha, Pe and Va fruit turned a characteristic orange colour (Figure 2). The red-fleshed cultivars remained deep red throughout their development, displaying orange shades in advanced mature stages. The intensity of the red colour at full maturity and their progress during maturation were comparable for all red mutants, with small variations depending on the season.

Figure 2. External and internal appearance of Valencia, Hamlin, Pera, Cara cara, Mombuca, Carrancas, Pinhal and Puka fruits (*C. sinensis* L. Osbeck) in two different seasons: (**A**) Season 1 (2021/2022) and (**B**) Season 2 (2022/2023). The physiological fruit stages are indicated: IG (Immature-green), MG (Mature-green), B (breaker) and FC (Full-color).

The fruit quality parameters of each sweet orange cultivar at the mature stage are represented in Table 1 The highest total soluble solids (TSS) were found in blond Pe and Va cultivars ($12.6^{\circ} \pm 0.2^{\circ}$ and $11.8^{\circ} \pm 0.3^{\circ}$ Brix, respectively), while Mo and Ca presented the lowest TSS ($8.5^{\circ} \pm 0.2^{\circ}$ and $8.0^{\circ} \pm 0.4^{\circ}$ Brix, respectively) in season 2. In general, TSS values were lower in season 1, although there remained differences among varieties. The titratable acidity (TA) was similar for most cultivars in both seasons, with Ca, Ph and Mo having the lowest acidity ($0.4^{\circ} \pm 0.3^{\circ}$, $0.5^{\circ} \pm 0.0^{\circ}$ and $0.5^{\circ} \pm 0.2^{\circ}$, respectively in 2022/2023). The Maturity index (MI) expressed as the ratio of TSS/TA and measured for each variety and season showed that blond varieties tended to display lower values (ranging from $14.5^{\circ} \pm 0.2^{\circ}$ to $17.9^{\circ} \pm 0.5^{\circ}$, in season 2) due in part to increased acidity, while intermediate concentrations were found in the red-fleshed mutants Mo and Pk, which presented MIs of $17.8^{\circ} \pm 0.4^{\circ}$ and $19.7^{\circ} \pm 0.4^{\circ}$ in season 2. The red-fleshed Ca and Ph showed the highest MI ratios, which were around 19–20 for both seasons (Table 1).

and Puka (Pk) fruits (C. sinensis L. Osbeck) in seasons 1 (2021/2022, up) and 2 (2022/2023, down). The data are means \pm SD of at least three Table 1. Quality parameters from fruits of Valencia (Va), Hamlin (Ha), Pera (Pe), Cara cara (Cc), Mombuca (Mo), Carrancas (Ca), Pinhal (Ph) independent measurements.

Variety	Total Soluble Solids (°Brix) (TSS)	Titratable Acidity (g/L) (TA)	Maturity Index (MI)	Juice Content Per Orange (JC) (mL)	Fruit Weight (W) (g)	Percentage Juice Con- tent/Fruit Weight (%)	Fruit Diameter (mm)	Fruit Height (mm)	Cortex (mm)	Peel (mm)	Number of Segments	Number of Seed
Valencia	11.7 ± 0.0	0.7 ± 0.3	13.5 ± 0.3	85.0 ± 11.3	219.3 ± 20.2	38.9 ± 4.6	73.7 ± 2.0	76.5 ± 3.1	4.6 ± 0.2	1.7 ± 0.1	10.9 ± 0.3	56.3 ± 7.4
Hamlim	10.8 ± 0.3	0.8 ± 0.0	14.1 ± 0.5	61.3 ± 5.3	168.8 ± 5.1	36.3 ± 3.2	68.9 ± 0.9	69.4 ± 0.6	4.4 ± 0.4	1.6 ± 0.1	10.5 ± 0.2	51.5 ± 6.7
Pera	12.6 ± 0.1	0.7 ± 0.2	12.8 ± 0.3	88.5 ± 1.5	207.7 ± 5.8	42.7 ± 1.8	71.1 ± 0.7	76.1 ± 0.7	5.1 ± 0.1	1.6 ± 0.1	10.6 ± 0.2	61.5 ± 6.4
Cara Cara	9.5 ± 0.0	0.5 ± 0.2	17.9 ± 0.7	38.1 ± 4.5	277.0 ± 26.8	14.4 ± 2.8	86.1 ± 3.8	88.9 ± 1.6	7.5 ± 0.8	2.5 ± 0.4	10.7 ± 0.3	0.3 ± 0.3
Mombuca	8.3 ± 0.0	0.5 ± 0.0	18.0 ± 0.6	92.0 ± 5.3	188.9 ± 8.1	48.6 ± 0.9	71.0 ± 1.2	72.0 ± 1.0	4.6 ± 0.2	1.7 ± 0.1	10.6 ± 0.2	144.3 ± 3.7
Carrancas	7.8 ± 0.0	0.4 ± 0.3	20.1 ± 0.7	55.9 ± 1.6	144.6 ± 7.0	38.7 ± 1.8	64.9 ± 1.3	65.2 ± 1.6	3.2 ± 0.2	1.8 ± 0.1	10.2 ± 0.4	69.0 ± 5.9
Pinhal	8.8 ± 0.3	0.5 ± 0.2	18.9 ± 0.3	54.3 ± 3.1	157.2 ± 2.0	34.5 ± 1.8	65.5 ± 1.0	68.1 ± 1.6	4.9 ± 0.2	2.2 ± 0.2	10.2 ± 0.2	137.5 ± 3.8
Puka	9.6 ± 0.2	0.5 ± 0.1	18.6 ± 0.3	109.1 ± 4.4	209.2 ± 5.4	52.2 ± 2.9	73.3 ± 0.7	72.9 ± 0.9	4.7 ± 0.1	1.6 ± 0.2	10.4 ± 0.3	72.5 ± 9.9
Valencia	11.8 ± 0.3	0.7 ± 0.2	16.1 ± 0.2	92.3 ± 1.9	190.6 ± 4.3	48.4 ± 1.1	70.4 ± 0.8	72.5 ± 0.7	6.1 ± 1.3	1.1 ± 0.1	10.8 ± 0.2	45.0 ± 5.3
Hamlim	9.5 ± 0.1	0.7 ± 0.2	14.5 ± 0.2	80.0 ± 0.0	152.7 ± 2.2	52.4 ± 0.8	66.3 ± 0.7	69.3 ± 1.1	4.4 ± 0.2	2.0 ± 0.0	10.2 ± 0.2	49.3 ± 7.4
Pera	12.6 ± 0.2	0.7 ± 0.3	17.9 ± 0.5	93.8 ± 2.1	181.7 ± 1.2	51.6 ± 0.9	68.2 ± 0.1	73.9 ± 0.7	4.7 ± 0.2	1.6 ± 0.2	9.7 ± 0.2	43.5 ± 6.5
Cara Cara	9.9 ± 0.1	0.5 ± 0.1	18.6 ± 0.4	53.8 ± 3.1	225.7 ± 5.6	27.1 ± 0.7	75.0 ± 0.4	74.9 ± 0.8	6.2 ± 0.3	1.4 ± 0.1	10.4 ± 0.2	7.0 ± 0.4
Mombuca	8.5 ± 0.2	0.5 ± 0.2	17.8 ± 0.4	72.3 ± 1.7	141.2 ± 1.5	51.2 ± 0.8	64.8 ± 0.3	66.8 ± 0.3	5.1 ± 0.1	2.2 ± 0.1	10.4 ± 0.1	147.5 ± 5.5
Carrancas	8.0 ± 0.4	0.4 ± 0.3	20.4 ± 0.8	74.3 ± 6.7	143.9 ± 2.3	51.7 ± 5.2	64.3 ± 0.7	66.0 ± 0.6	4.6 ± 0.2	1.6 ± 0.1	10.4 ± 0.2	89.0 ± 11.7
Pinhal	9.1 ± 0.0	0.5 ± 0.0	19.7 ± 0.1	62.8 ± 2.8	131.0 ± 3.0	47.9 ± 1.3	62.5 ± 0.7	64.5 ± 0.6	4.8 ± 0.2	2.0 ± 0.1	10.4 ± 0.2	116.8 ± 7.8
Puka	9.6 ± 0.3	0.6 ± 0.2	17.1 ± 0.2	66.8 ± 5.6	160.6 ± 6.6	41.9 ± 4.9	74.7 ± 0.6	65.7 ± 0.8	4.4 ± 0.1	1.9 ± 0.1	10.6 ± 0.1	35.5 ± 4.1

3.2. Carotenoid Composition of Red-Fleshed Sweet Orange Pulp during Maturation

The total content and composition of carotenoids was analysed in the pulp of the three blond oranges and five red-fleshed mutants at four developmental stages: immature-green (IM), mature-green (MG), breaker (Br) and full-coloured (FC) (Figures 3, 4 and S2). Seven main carotenoids were measured through UPLC analysis, accounting for more than 90% of the total carotenoids in all samples analysed. The total carotenoid content was calculated as the sum of all carotenoids identified (Figure 3). The changes in total carotenoid content were markedly different in the blond oranges compared to red-fleshed mutants. In the blond cultivars, the total carotenoid content in the pulp was very little until the Br stage, and then increased to reach its maximum values of 4.8–8.9 μg/g FW and 2.0–8.6 μg/g FW in seasons 2 and 1, respectively. The carotenoids accumulation in the pulp of redfleshed mutants was high from the early stages of development (8.3–15.1 μ g/g FW and 4.6–23.9 µg/g FW in seasons 2 and 1, respectively) and progressively increased throughout the whole maturation process (23.0–38.7 μg/g FW and 25.5–40.8 μg/g FW in seasons 2 and 1, respectively). The pulp of the red-fleshed mutants at early stages presented about 10-times higher concentrations of total carotenoids than that of the blond cultivars. From the Br to FC stages, the total carotenoid content in the pulp of the red mutants was 4 to 9 times higher than that in the blond oranges.

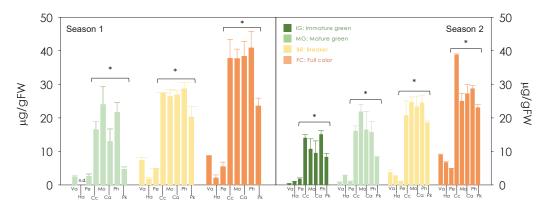
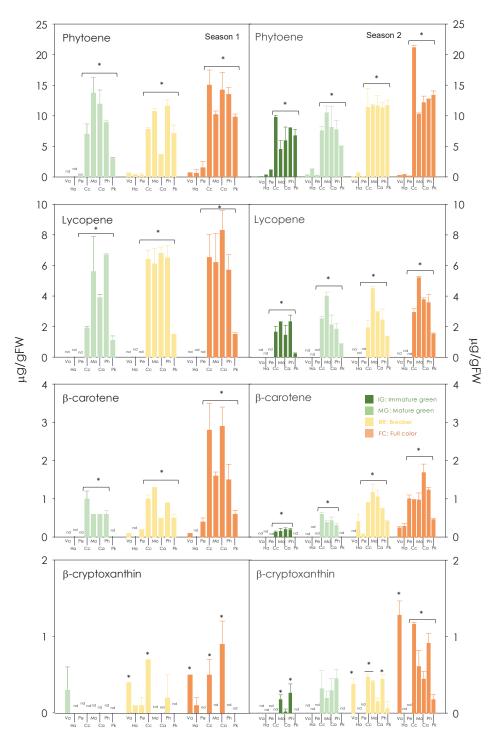


Figure 3. Changes in carotenoid contents in the pulp during development and maturation of Valencia (Va), Hamlin (Ha), Pera (Pe), Cara cara (Cc), Mombuca (Mo), Carrancas (Ca), Pinhal (Ph) and Puka (Pk) fruits (*C. sinensis* L. Osbeck) in two different seasons. The 10 samples analysed correspond to the developmental and maturation stages indicated in Figure 2. The physiological fruit stages are indicated: IG (immature-green), MG (mature-green), B (breaker) and FC (full-colour). The data are means \pm SD of at least three independent measurements. Statistical analyses were performed using analysis of variance (ANOVA) and an asterisk above the bars indicates significantly different values at $p \le 0.01$ (n.d.: non detected).


The evolution of carotenoid content and composition in the pulp of blond oranges was markedly different to that of red-fleshed mutants, with differences obvious from the IG stage, well before the beginning of the maturing process (Figure 4 and S2). During the maturation of blond oranges, the pulp accumulated almost exclusively xanthophylls, with *all*-violaxanthin (as the sum of *E*-violaxanthin and 9-*Z*-violaxanthin) as the major carotenoid, which accounted for more than 50% of the total carotenoids in mature fruit. On the contrary, linear carotenoids were predominant carotenoids in the pulp of all the red-fleshed mutants, accounting for more than 70% of total carotenoids in all stages analysed. Phytoene concentration augmented gradually as fruit matured, containing around 3–17 fold (0.8–9.8 fold) more than the pulp of the blond cultivars in season 2. A similar pattern was noticed for the other linear carotene phytofluene, whose content increased 1–9 fold (2.1–8.3 fold) in season 2 during maturation in red oranges. This carotenoid was not detected in blond fruits. For both compounds, Pk was the red-fleshed mutant with the least accumulation. As expected, no lycopene was detected in Ha, Pe and Va throughout all maturation stages and β -carotene only was detected in traces in mature stages. In

the case of red-fleshed mutants, both bioactive carotenes were accumulated in the pulp from the early stages on. The maximum lycopene content was reached in mature fruit in all red-fleshed mutants, with Pk being the cultivar with the lowest content of these pigments in both seasons, 1.5 ± 0.5 and 2.2 ± 0.4 µg/g FW in season 2 and 1, respectively. Instead, the other red-fleshed mutants accumulated higher contents of lycopene, reaching up to $7.2 \pm 1.5 \,\mu\text{g/g}$ FW or $8.3 \pm 1.0 \,\mu\text{g/g}$ FW as was the case of the Cc and Ca varieties (Figure 4). There was a higher accumulation of β -carotene in red-fleshed mutants (between 0.6– $2.9\pm0.1~\mu g/g$ FW and 0.5– $1.7\pm0.2~\mu g/g$ FW for season 1 and 2, respectively) than blond cultivars (between 0.1–0.4 \pm 0.1 $\mu g/g$ FW and 0.2–0.1 \pm 0.2 $\mu g/g$ FW for season 1 and 2, respectively). In any case, the mutant Ca accumulated the highest quantity of β -carotene in both seasons (Figure 4). Related to carotenoids of the ϵ,β -branch, only traces of α -carotene and α -cryptoxanthin were detected in all the varieties during the maturation period, while lutein accumulated during the maturation process, with the exception of Va in which it was only was detected in the early stages (Figures 4 and S2). The accumulation of β , β -xanthophylls (as the sum of β -cryptoxanthin, mutatoxanthin, anteraxanthin, E-violaxanthin and 9-Z-violaxanthin) was increased in the pulp along the maturation process in all varieties, presenting the highest contents in the Va cultivar, $8.5 \pm 0.4 \,\mu\text{g/g}$ FW and $7.5 \pm 0.1 \,\mu\text{g/g}$ FW in season 2 and 1, respectively (Figures 4 and S2). At full maturation stage, red-flesh mutants presented a higher content of β , β -xanthophylls, being Cc and Pk showing the highest contents ($4.1 \pm 0.3 \,\mu\mathrm{g/g}$ FW and $3.5 \pm 0.3 \,\mu\mathrm{g/g}$ FW in season 2 and 1, respectively).

3.3. Gene Expression Profile of Carotenogenic Genes during Development and Maturation in the Pulp of Red-Fleshed Sweet Oranges

In order to determine whether the carotenoid composition in red-fleshed oranges was associated with specific gene expression patterns, the expression of a total of 14 genes involved in carotenoid production was analysis (Figure 5). Four genes of the MEP pathway and eleven genes of the carotenoid pathway were analysed in the pulp of every cultivar at the different developmental stages, as shown in Figure 2. Transcript accumulation of DXS and HDR presented a maximum at the MG in season 1, although in season 2 it was similar to the FC stage, with the exception of the Ph cultivar which showed the highest expression (3.7 \pm 0.3 and 3.7 \pm 0.1, relative expression for DXS1 and HDR, respectively) compared with other cultivars at this stage (Figure S3). In general, the HDS gene showed the lowest expression of all genes in the MEP pathway, while GGPPS1 presented no changes during season 1 and only a slight increment in MG and FC stages in the second season (Figure S3).

The expression profile of the carotenogenic genes was different between seasons. While in season 1 no relevant changes were observed between the MG, Br and FC stages, several differences were detected in season 2 (Figures 5 and S4). Among them, the Va cultivar displayed a boost in the expression of *PDS*, β -*LCY2* and β -*CHX* in the MG stage (3.4 \pm 0.5, 4.9 \pm 0.1 and 4.3 \pm 0.2, respectively). On the other hand, Ph was the cultivar with the highest expression of carotenogenic genes in the FC stage with a relatively higher expression of 2.2 \pm 0.1, 2.5 \pm 0.6, 4.0 \pm 0.2, 3.4 \pm 0.1 and 2.0 \pm 0.2, for *PSY*, *PDS*, *ZDS1*, β -*LCY2* and β -*CHX*, respectively (Figures 5 and S3). In any case, these differences in gene expression did not explain the carotenoid profiles in the pulp in red-fleshed sweet oranges fruits compared to that of blond cultivars.

Figure 4. Carotenoid content of phytoene, phytofluene, β-carotene and β-cryptoxanthin in the pulp during development and maturation of Valencia (Va), Hamlin (Ha), Pera (Pe), Cara cara (Cc), Mombuca (Mo), Carrancas (Ca), Pinhal (Ph) and Puka (Pk) fruits (*C. sinensis* L. Osbeck) in two different seasons. The samples analysed correspond to the developmental and maturation stages indicated in Figure 2. The physiological fruit stages are indicated: IG (immature-green), MG (mature-green), B (breaker) and FC (full-colour). The data are means \pm SD of at least three independent measurements. Statistical analyses were performed using analysis of variance (ANOVA) and an asterisk above the bars indicates significantly different values at $p \le 0.01$ (n.d.: non detected).

Figure 5. Quantitative RT-PCR analysis of the expression of PSY, PDS, β-LCY2 β-CHX and ZEP genes in the pulp during development and maturation of Valencia (Va), Hamlin (Ha), Pera (Pe), Cara cara (Cc), Mombuca (Mo), Carrancas (Ca), Pinhal (Ph) and Puka (Pk) fruits (*C. sinensis* L. Osbeck) in two different seasons. The samples analysed correspond to the developmental and maturation stages indicated in Figure 2. The physiological fruit stages are indicated: IG (immature-green), MG (mature-green), B (breaker) and FC (full-colour). Statistical analyses were performed using analysis of variance (ANOVA) and an asterisk above the bars indicates significantly different values at $p \le 0.01$.

4. Discussion

There is currently an active search in most fruit industries worldwide for citrus fruit mutants with distinctive attractive colours, especially reddish hues. This is not only because of the appealing of the red colour for most human cultures [47,48] but also because it is associated with the accumulation of healthy phytonutrients, namely carotenoids such as lycopene. It is shown here that the juice and pulp from sweet orange varieties producing red-fleshed fruit are four to nine times richer in carotenoids than those from orange-fleshed counterparts when trees are grown under a tropical climate and independently of fruit maturation of early, mid-season and late varieties, reinforcing an association between red colour and the functional attributes of sweet orange fruit and juices. Carotenoid-rich foods have been associated with risk reduction for several chronic diseases, including reduced incidence of obesity, type 2 diabetes, eye diseases, certain types of cancer (especially prostate and digestive tract tumours), and even lower total mortality. In addition, some carotenoids, particularly β -carotene, constitute important vitamin A precursors [49,50]. Carotenoids have been widely recognised as physiological antioxidants because of their ability to quench singlet molecular oxygen [5,6,51].

The carotenoid profiles in the fruit pulp/juice showed that linear carotenoids such as phytoene and phytofluene were the most abundant in all the five red-fleshed varieties, representing more than 70% of total carotenoids in all developmental/maturation stages, while the blond varieties accumulated mainly xanthophylls, with all-violaxanthin depicting more than 50% of total carotenoids in mature fruit. Nevertheless, the most remarkable difference was the accumulation of lycopene at moderate concentrations (about 8 µg/g FW) in mature pulp from red fruit, while it was absent in blond varieties. Moreover, red-fleshed varieties accumulated β-carotene in mature fruit for at least one of the seasons while this compound was only detected in traces in blond varieties (Figures 3, 4 and S2). A positive association between the accumulation of linear carotenoids and lycopene has been described before for Cc and other red-fleshed sweet orange varieties [29,37,52,53] when grown under sub-tropical climate conditions, but not in the Chinese Anliu sweet orange variety, which does not accumulate upstream carotenes but has lycopene-rich pulp [29,54]. Such correlation was shown in the case of the five red-fleshed varieties studied here, suggesting that enhanced PSY activity may be responsible at least in part for the accumulation of lycopene [37] as it occurs in other fruits such as tomato [55,56]. Together with this or alternatively, a partial blockage in the function of β -LCY2 has been proposed in other lycopene-rich citrus varieties [57,58]. However, the accumulation of lycopene and β-carotene was not accompanied by a consistent decrease in the production of xanthophylls (Figures 4 and S2) as it has been reported in other works with red-fleshed sweet orange mutants [37,53] and as it may be expected if β -LCY2 expression were interfered with. Moreover, we did not find alterations of the transcriptional profiles in the pulp of the red-fleshed oranges, neither in the expression of MEP pathway gene precursors of phytoene or in that of β -LCY2, when compared with those of the blond orange controls (Figures 5, S3 and S4). Therefore, the molecular features behind the mutation that leads to the accumulation of lycopene in the pulp of these (and other) sweet orange varieties remain to be elucidated, although this mutation seems to be post-transcriptionally regulated at the level of the carotenoid biosynthetic pathway.

Seasonal differences were observed in the accumulation of carotenoids for all the varieties investigated here. For example, highest concentrations of lycopene and β -carotene in the pulp of red-fleshed varieties Cc, Mo, Ca and Ph were linked to higher maximum temperatures during fruit maturation in season 2 vs. season 1. Although arelatively low temperature is required for chlorophylls to degrade and for carotenoids to accumulate during the maturation of citrus fruits, it is well known that high temperatures in the later stages of fruit maturation enhance the accumulation of lycopene and other carotenoids in the pulp of lycopene-rich varieties (review in Alquezar et al. [37]). Our results indicate that growing lycopene-rich varieties in other areas of Sao Paulo state, at the north and centre of the region (Figure S1), closer to the main areas of the citrus belt, where temperatures are

more amenable than in the south, may further improve the accumulation of lycopene and β -carotene.

So far, lycopene and β -carotene are the most investigated carotenoids in search for in vivo human health benefits [50,59]. Apart from the role of β -carotene as provitamin A precursor, recent epidemiological and cellular studies are showing the antioxidant effect of lycopene in inhibiting the development of diseases such as cardiovascular diseases inflammation, obesity, neurodegenerative disorders, type 2 diabetes, metabolic diseases that affect the bone, eye, kidney and liver and ulcerative colitis [26,27,60]. Moreover, lycopene accumulates at high concentrations in the testis, where its antioxidant activity may help to eliminate oxidative damage [59,60].

Sao Paulo state (Brazil) concentrates 70% of the orange juice produced worldwide. Ha, Pe and Va, used here as blond-orange controls, are the most important varieties grown in Sao Paulo, representing about 80% of the total orange juice produced. Lycopene-rich red orange juice may become an appealing addition to the already highly popular blond orange juices. Considering the five red-fleshed mutants investigated, Cc is not a suitable variety for the juice industry, because it accumulates the bitter triterpene compound limonin in its flesh just minutes after processing, like most Navel oranges [25]. Pk is a mutant from Va, and as suchis the only late red-fleshed variety of the group. However, it does accumulated the lowest concentrations of lycopene and β -carotene. From the three midseason red-fleshed mutants, Mo showed the lowest MI and Ca showed the highest amounts of lycopene/β-carotene. Both Ca and Ph are highly productive (A.R. Violante, Cutrale, personal communication, https://www.cutrale.com.br/, accessed on 1 March 2023) and may be used either alone or for blending to give a reddish orange colour to usually paleorange juices such as those from Hamlin and other early and mid-season blond varieties. Further agronomic and nutraceutical studies may help to promote the use of these new mutants potentially beneficial red-fleshed cultivars for the global citrus industry.

5. Conclusions

Carotenoid profiles in the fruit pulp of five red-fleshed orange varieties revealed that about 70% were linear carotenoids at all stages of development and maturation. In contrast, the blond varieties accumulated primarily xanthophylls, with *all*-violaxanthin comprising more than 50% of total carotenoids in mature fruit. In this study, the most noteworthy distinction between red-fleshed and blond varieties was the presence of lycopene and the accumulation of β -carotene in red-fleshed ones, which was absent or at traces in blond counterparts. In tropical areas, the incorporation of lycopene-rich red orange juice could be a potential practice to enhance the appeal of orange juices. Among the 5 red-fleshed mutants investigated, both the new Ca and Ph mutants could be used to blend for imparting a reddish-orange colour to typically pale-orange juices, potentially benefiting the global citrus industry. Moreover, the increased accumulation of lycopene in these red-fleshed varieties not only enhances the juice colour but also improves its nutritional value, thanks to lycopene antioxidant properties and increase in β -carotene content.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/antiox13080994/s1. Table S1. Primer sequences used for the quantitative RT-PCR analyses. Figure S1. Representative climatological condition parameters: (A) temperature, (B) relative humidity and (C) precipitations in different commercial orchards Fazenda Guacho in Sta. Cruz de Rio Pardo (Sao Paulo State, Brazil) during the seasons 2021/22 (season 1) and 2022/23 (season 2). Figure S2. Carotenoid content of phytofluene, lutein and *all*-violaxanthin in the pulp during development and maturation of Valencia (Va), Hamlin (Ha), Pera (Pe), Cara cara (Cc), Mombuca (Mo), Carrancas (Ca), Pinhal (Ph) and Puka (Pk) fruits (*C. sinensis* L. Osbeck) in two different seasons. The samples analysed correspond to the developmental and maturation stages indicated in Figure 2. The physiological fruit stages are indicated: IG (immature-green), MG (mature-green), B (breaker) and FC (full-colour). The data are means \pm SD of at least three independent measurements. Statistical analyses were performed using analysis of variance (ANOVA) and an asterisk above the bars indicates significantly different values at $p \le 0.01$. Figure S3. Quantitative RT-PCR analysis of the expression of *DXS1*,

HDR, HDS and *GGPPS1* genes in the pulp during development and maturation of Valencia (Va), Hamlin (Ha), Pera (Pe), Cara cara (Cc), Mombuca (Mo), Carrancas (Ca), Pinhal (Ph) and Puka (Pk) fruits (*C. sinensis* L. Osbeck) in two different seasons. The samples analysed correspond to the developmental and maturation stages indicated in Figure 2. The physiological fruit stages are indicated: IG (immature-green), MG (mature-green), B bBreaker) and FC (full-colour). Statistical analyses were performed using analysis of variance (ANOVA) and an asterisk above the bars indicates significantly different values at $p \le 0.01$. Figure S4. Quantitative RT-PCR analysis of the expression of *ZDS1*, *ZDS2*, *ZDS3*, ε -*LCY2* and β -*LCY1* genes in the pulp during development and maturation of Valencia (Va), Hamlin (Ha), Pera (Pe), Cara cara (Cc), Mombuca (Mo), Carrancas (Ca), Pinhal (Ph) and Puka (Pk) fruits (*C. sinensis* L. Osbeck) in two different seasons. The samples analysed correspond to the developmental and maturation stages indicated in Figure 2. The physiological fruit stages are indicated: IG (immature-green), MG (mature-green), B (breaker) and FC (full-colour). Statistical analyses were performed using analysis of variance (ANOVA) and an asterisk above the bars indicates significantly different values at $p \le 0.01$.

Author Contributions: Conceptualization: L.C. and L.P.; Methodology: L.C. and B.A.; Formal analysis: L.C.; Investigation: L.P.; Data curation: L.C.; Writing—original draft preparation: L.C.; Writing—review and editing: B.A. and L.P.; Supervision and funding acquisition: L.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the São Paulo Research Foundation (FAPESP, Brazil) project FAPESP 2014/12616-9, Fundecitrus. LC was funded by FAPESP grant (2014/23447-3).

Institutional Review Board Statement: No studies involving humans or animals.

Informed Consent Statement: No studies involving humans.

Data Availability Statement: The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.

Acknowledgments: We appreciate the collaboration of A. Ricardo Violante (Cutrale) and the help of the Cutrale company (Sao Paulo, Brazil) as well as the collaboration of Fazenda Guacho (Agroterenas, Sta. Cruz de Rio Pardo, Sao Paulo, Brazil) for allowing us to access their orchards and use their fruits. The technical support of Tatiane M. Malara is also acknowledged.

Conflicts of Interest: The authors declare that this research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

- 1. Demmig-Adams, B.; Gilmore, A.M.; Iii, W.W.A. Carotenoids 3: In Vivo Function of Carotenoids in Higher Plants. *FASEB J.* **1996**, 10, 403–412. [CrossRef] [PubMed]
- 2. Fraser, P.D.; Bramley, P.M. The Biosynthesis and Nutritional Uses of Carotenoids. *Prog. Lipid Res.* **2004**, *43*, 228–265. [CrossRef] [PubMed]
- 3. Nishino, H.; Murakoshi, M.; Tokuda, H.; Satomi, Y. Cancer Prevention by Carotenoids. *Arch. Biochem. Biophys.* **2009**, *483*, 165–168. [CrossRef] [PubMed]
- 4. Yamaguchi, M.; Uchiyama, S. Osteoporosis Prevention by β-Cryptoxanthin. ACS Symp. Ser. 2008, 993, 408–418.
- 5. Bohn, T.; Balbuena, E.; Ulus, H.; Iddir, M.; Wang, G.; Crook, N.; Eroglu, A. Carotenoids in Health as Studied by Omics-Related Endpoints. *Adv. Nutr.* **2023**, *14*, 1538–1578. [CrossRef]
- 6. Terao, J. Revisiting Carotenoids as Dietary Antioxidants for Human Health and Disease Prevention. *Food Funct.* **2023**, *14*, 7799–7824. [CrossRef] [PubMed]
- 7. Edem, D.O. Vitamin A: A Review. Asian J. Clin. Nutr. 2009, 1, 65–82. [CrossRef]
- 8. Burri, B.J. Beta-Cryptoxanthin as a Source of Vitamin A. J. Sci. Food Agric. 2015, 95, 1786–1794. [CrossRef] [PubMed]
- 9. Meléndez-Martínez, A.J.; Britton, G.; Vicario, I.M.; Heredia, F.J. Color and Carotenoid Profile of Spanish Valencia Late Ultrafrozen Orange Juices. *Food Res. Int.* **2005**, *38*, 931–936. [CrossRef]
- 10. Hirschberg, J. Carotenoid Biosynthesis in Flowering Plants. Curr. Opin. Plant Biol. 2001, 4, 210-218. [CrossRef]
- 11. Dellapenna, D.; Pogson, B.J. Vitamin Synthesis in Plants: Tocopherols and Carotenoids. *Annu. Rev. Plant Biol.* **2006**, *57*, 711–738. [CrossRef] [PubMed]
- 12. FAOSTAT. Available online: https://www.fao.org/faostat/en/ (accessed on 1 June 2023).
- 13. Meléndez-Martínez, A.; Vicario, I.M.; Heredia, F.J. Carotenoid Pigments: Structural and Physicochemical Considerations. *Arch. Latinoam. Nutr.* **2007**, *57*, 109–117. [PubMed]
- 14. Stewart, I. Provitamin A and Carotenoid Content of Citrus Juices. J. Am. Chem. Soc. Chromatogr. 1976, 77, 1132–1137. [CrossRef]

- 15. Stewart, I.; Wheaton, T.A. Conversion of β -Citraurin to Reticulataxanthin and β -Apo-8'-Carotenal to Citranaxanthin during the Isolation of Carotenoids from Citrus. *Phytochemistry* **1973**, *12*, 2947–2951. [CrossRef]
- 16. Gross, J. Pigments in Fruits; Academic Press: London, UK, 1987.
- 17. Alquézar, B.; Jesús Rodrigo, M.; Zacarías, L. Carotenoid Biosynthesis and Their Regulation in Citrus Fruits. *Tree For. Sci. Biotechnol.* **2008**, 2, 23–35.
- 18. Ikoma, Y.; Matsumoto, H.; Kato, M. Diversity in the Carotenoid Profiles and the Expression of Genes Related to Carotenoid Accumulation among Citrus Genotypes. *Breed. Sci.* **2016**, *66*, 139–147. [CrossRef]
- 19. Römer, S.; Fraser, P.D. Recent Advances in Carotenoid Biosynthesis, Regulation and Manipulation. *Planta* **2005**, 221, 305–308. [CrossRef]
- 20. Kato, M.; Ikoma, Y.; Matsumoto, H.; Sugiura, M.; Hyodo, H.; Yano, M. Accumulation of Carotenoids and Expression of Carotenoid Biosynthetic Genes during Maturation in Citrus Fruit. *Plant Physiol.* **2004**, *134*, 824–837. [CrossRef]
- 21. Fanciullino, A.L.; Dhuique-Mayer, C.; Luro, F.; Morillon, R.; Ollitrault, P. Carotenoid Biosynthetic Pathway in the Citrus Genus: Number of Copies and Phylogenetic Diversity of Seven Genes. *J. Agric. Food Chem.* **2007**, *55*, 7405–7417. [CrossRef]
- 22. Mendes, A.F.D.S.; Soares, V.L.F.; Costa, M.G.C. Carotenoid Biosynthesis Genomics. In *Pigments in Fruits and Vegetables*; Springer: New York, NY, USA, 2015; pp. 9–29.
- 23. Rodríguez-Concepció, M.; Boronat, A. Elucidation of the Methylerythritol Phosphate Pathway for Isoprenoid Biosynthesis in Bacteria and Plastids. *Plant Physiol.* **2002**, *130*, 1079–1089. [CrossRef]
- 24. Rodríguez-Concepción, M. Early Steps in Isoprenoid Biosynthesis: Multilevel Regulation of the Supply of Common Precursors in Plant Cells. *Phytochem. Rev.* **2006**, *5*, 1–15. [CrossRef]
- 25. James, S. Citrus Varieties of the World: An Illustrated Guide; Sinclair International Ltd.: Norwich, UK, 2000.
- Saini, R.K.; Rengasamy, K.R.R.; Mahomoodally, F.M.; Keum, Y.S. Protective Effects of Lycopene in Cancer, Cardiovascular, and Neurodegenerative Diseases: An Update on Epidemiological and Mechanistic Perspectives. *Pharmacol. Res.* 2020, 155, 104730. [CrossRef] [PubMed]
- 27. Shafe, M.O.; Gumede, N.M.; Nyakudya, T.T.; Chivandi, E. Lycopene: A Potent Antioxidant with Multiple Health Benefits. *J. Nutr. Metab.* **2024**, 2024, 6252426. [CrossRef] [PubMed]
- 28. Monselise, S.P.; Halevy, A.H. Detection of Lycopene in Pink Orange Fruit. Science 1961, 133, 1478. [CrossRef]
- 29. Liu, Q.; Xu, J.; Liu, Y.; Zhao, X.; Deng, X.; Guo, L.; Gu, J. A Novel Bud Mutation That Confers Abnormal Patterns of Lycopene Accumulation in Sweet Orange Fruit (*Citrus sinensis* L. Osbeck). *J. Exp. Bot.* **2007**, *58*, 4161–4171. [CrossRef]
- 30. Lee, H.S. Characterization of Carotenoids in Juice of Red Navel Orange (Cara Cara). *J. Agric. Food Chem.* **2001**, 49, 2563–2568. [CrossRef] [PubMed]
- 31. Ollitrault, P. The Genus Citrus, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2020.
- 32. Pompeu, J. Porta Enxertos. In *Citros*; Mattos, D., de Negri, J.D., Pio, R.M., Pompeu, J., Eds.; Fundag Campinas, Instituto Agronomico: Campinas, Brazil, 2005; pp. 61–104.
- 33. Pinheiro, T.; Nishimura, D.; de Nadai, F.; Figueira, A.; Latado, R. Selection of Reference Genes for Expression Analyses of Red-Fleshed Sweet Orange (*Citrus sinensis*). *Genet. Mol. Res.* **2015**, *14*, 18440–18451. [CrossRef] [PubMed]
- 34. Pons, E.; Peris, J.E.; Peña, L. Field Performance of Transgenic Citrus Trees: Assessment of the Long-Term Expression of *UidA* and *NptII* Transgenes and Its Impact on Relevant Agronomic and Phenotypic Characteristics. *BMC Biotechnol.* **2012**, *12*, 41. [CrossRef]
- 35. Carmona, L.; Zacarías, L.; Rodrigo, M.J. Stimulation of Coloration and Carotenoid Biosynthesis during Postharvest Storage of 'Navelina' Orange Fruit at 12 °C. *Postharvest Biol. Technol.* **2012**, *74*, 108–117. [CrossRef]
- 36. de Oliveira Caland, R.B.; Cadavid, C.O.M.; Carmona, L.; Peña, L.; de Paula Oliveira, R. Pasteurized Orange Juice Rich in Carotenoids Protects Caenorhabditis Elegans against Oxidative Stress and β-Amyloid Toxicity through Direct and Indirect Mechanisms. *Oxidative Med. Cell. Longev.* **2019**, 2019, 5046280. [CrossRef]
- 37. Alquezar, B.; Rodrigo, M.J.; Zacarías, L. Regulation of Carotenoid Biosynthesis during Fruit Maturation in the Red-Fleshed Orange Mutant Cara Cara. *Phytochemistry* **2008**, *69*, 1997–2007. [CrossRef]
- 38. Rodrigo, M.J.; Marcos, J.F.; Zacarías, L. Biochemical and Molecular Analysis of Carotenoid Biosynthesis in Flavedo of Orange (*Citrus sinensis* L.) during Fruit Development and Maturation. *J. Agric. Food Chem.* **2004**, 2, 6724–6731. [CrossRef] [PubMed]
- 39. Rodrigo, M.J.; Marcos, J.F.; Alférez, F.; Mallent, M.D.; Zacarías, L. Characterization of Pinalate, a Novel *Citrus Sinensis* Mutant with a Fruit-Specific Alteration That Results in Yellow Pigmentation and Decreased ABA Content. *J. Exp. Bot.* **2003**, *54*, 727–738. [CrossRef]
- 40. Rouseff, R.; Raley, L.; Hofsommer, H.J. Application of Diode Array Detection with a C-30 Reversed Phase Column for the Separation and Identification of Saponified Orange Juice Carotenoids. *J. Agric. Food Chem.* **1996**, 44, 2176–2181. [CrossRef]
- 41. Britton, G.; Liaaen-Jensen, S.; Pfander, H. Overview of Carotenoid Biosynthesis. In *Biosynthesis and Metabolism*; Birkhäuser Verlag: Basel, Switzerland, 1998; Volume 3, pp. 13–148.
- 42. Carmona, L.; Alquézar, B.; Marques, V.V.; Peña, L. Anthocyanin Biosynthesis and Accumulation in Blood Oranges during Postharvest Storage at Different Low Temperatures. *Food Chem.* **2017**, 237, 7–14. [CrossRef]
- 43. Alós, E.; Cercós, M.; Rodrigo, M.J.; Zacarías, L.; Talón, M. Regulation of Color Break in Citrus Fruits. Changes in Pigment Profiling and Gene Expression Induced by Gibberellins and Nitrate, Two Ripening Retardants. *J. Agric. Food Chem.* **2006**, *54*, 4888–4895. [CrossRef]

- 44. Lado, J.; Cronje, P.; Alquézar, B.; Page, A.; Manzi, M.; Gómez-Cadenas, A.; Stead, A.D.; Zacarías, L.; Rodrigo, M.J. Fruit Shading Enhances Peel Color, Carotenes Accumulation and Chromoplast Differentiation in Red Grapefruit. *Physiol. Plant* 2015, 154, 469–484. [CrossRef] [PubMed]
- 45. Mafra, V.; Kubo, K.S.; Alves-Ferreira, M.; Ribeiro-Alves, M.; Stuart, R.M.; Boava, L.P.; Rodrigues, C.M.; Machado, M.A. Reference Genes for Accurate Transcript Normalization in Citrus Genotypes under Different Experimental Conditions. *PLoS ONE* **2012**, 7, e31263. [CrossRef] [PubMed]
- 46. Vandesompele, J.; de Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; de Paepe, A.; Speleman, F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. *Genome Biol.* **2002**, *3*, 1–12. [CrossRef]
- 47. Kawai, C.; Zhang, Y.; Lukács, G.; Chu, W.; Zheng, C.; Gao, C.; Gozli, D.; Wang, Y.; Ansorge, U. The Good, the Bad, and the Red: Implicit Color-Valence Associations across Cultures. *Psychol. Res.* **2023**, *87*, 704–724. [CrossRef]
- 48. Wu, Y.; Lu, J.; van Dijk, E.; Li, H.; Schnall, S. The Color Red Is Implicitly Associated with Social Status in the United Kingdom and China. *Front. Psychol.* **2018**, *9*, 1902. [CrossRef] [PubMed]
- 49. Olson, J.A. Provitamin A Function of Carotenoids: The Conversion of Beta-Carotene into Vitamin A. J. Nutr. 1989, 119, 105–108. [CrossRef]
- 50. Eggersdorfer, M.; Wyss, A. Carotenoids in Human Nutrition and Health. Arch. Biochem. Biophys. 2018, 652, 18–26. [CrossRef]
- 51. Dias, M.G.; Olmedilla-Alonso, B.; Hornero-Méndez, D.; Mercadante, A.Z.; Osorio, C.; Vargas-Murga, L.; Meléndez-Martínez, A.J. Comprehensive Database of Carotenoid Contents in Ibero-American Foods. A Valuable Tool in the Context of Functional Foods and the Establishment of Recommended Intakes of Bioactives. *J. Agric. Food Chem.* **2018**, *66*, 5055–5107. [CrossRef] [PubMed]
- 52. Xu, C.J.; Fraser, P.D.; Wang, W.J.; Bramley, P.M. Differences in the Carotenoid Content of Ordinary Citrus and Lycopene-Accumulating Mutants. *J. Agric. Food Chem.* **2006**, *54*, 5474–5481. [CrossRef] [PubMed]
- 53. Zacarías-García, J.; Cronje, P.J.; Diretto, G.; Zacarías, L.; Rodrigo, M.J. A Comprehensive Analysis of Carotenoids Metabolism in Two Red-Fleshed Mutants of Navel and Valencia Sweet Oranges (*Citrus sinensis*). Front. Plant Sci. **2022**, 13, 1034204. [CrossRef]
- 54. Xu, Q.; Yu, K.; Zhu, A.; Ye, J.; Liu, Q.; Zhang, J.; Deng, X. Comparative Transcripts Profiling Reveals New Insight into Molecular Processes Regulating Lycopene Accumulation in a Sweet Orange (*Citrus sinensis*) Red-Flesh Mutant. *BMC Genom.* **2009**, *10*, 540. [CrossRef]
- 55. Enfissi, E.M.A.; Nogueira, M.; Bramley, P.M.; Fraser, P.D. The Regulation of Carotenoid Formation in Tomato Fruit. *Plant J.* **2017**, 89, 774–788. [CrossRef] [PubMed]
- 56. Bramley, P.M. Regulation of Carotenoid Formation during Tomato Fruit Ripening and Development. *J. Exp. Bot.* **2002**, *53*, 2107–2113. [CrossRef]
- 57. Alquézar, B.; Zacarías, L.; Rodrigo, M.J. Molecular and Functional Characterization of a Novel Chromoplast-Specific Lycopene β-Cyclase from Citrus and Its Relation to Lycopene Accumulation. *J. Exp. Bot.* **2009**, *60*, 1783–1797. [CrossRef] [PubMed]
- 58. Lu, S.; Zhang, Y.; Zheng, X.; Zhu, K.; Xu, Q.; Deng, X. Isolation and Functional Characterization of a Lycopene β-Cyclase Gene Promoter from Citrus. *Front. Plant Sci.* **2016**, *7*, 1367. [CrossRef] [PubMed]
- 59. Crupi, P.; Faienza, M.F.; Naeem, M.Y.; Corbo, F.; Clodoveo, M.L.; Muraglia, M. Overview of the Potential Beneficial Effects of Carotenoids on Consumer Health and Well-Being. *Antioxidants* **2023**, *12*, 1069. [CrossRef]
- 60. Bin-Jumah, M.N.; Nadeem, M.S.; Gilani, S.J.; Mubeen, B.; Ullah, I.; Alzarea, S.I.; Ghoneim, M.M.; Alshehri, S.; Al-Abbasi, F.A.; Kazmi, I. Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases. *Antioxidants* 2022, 11, 232. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Review

Exploring the Therapeutic Potential of *Theobroma cacao* L.: Insights from In Vitro, In Vivo, and Nanoparticle Studies on Anti-Inflammatory and Anticancer Effects

Przemysław Sitarek ^{1,*}, Anna Merecz-Sadowska ², Joanna Sikora ³, Weronika Osicka ⁴, Igor Śpiewak ⁵, Laurent Picot ⁶ and Tomasz Kowalczyk ^{5,*}

- Department of Medical Biology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, 90-725 Lodz, Poland; anna.merecz-sadowska@uni.lodz.pl
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; joanna.sikora@umed.lodz.pl
- Students Research Group, Department of Medical Biology, Medical University of Lodz, 90-151 Lodz, Poland; weronika.osicka@stud.umed.lodz.pl
- Students Research Group, Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; igor.spiewak@edu.uni.lodz.pl
- 6 Littoral Environnement et Sociétés UMRi CNRS 7266 LIENSs, La Rochelle Université, 17042 La Rochelle, France; laurent.picot@univ-lr.fr
- * Correspondence: przemyslaw.sitarek@umed.lodz.pl (P.S.); tomasz.kowalczyk@biol.uni.lodz.pl (T.K.)

Abstract: Theobroma cacao L., commonly known as cocoa, has been an integral part of human culture and diet for thousands of years. However, recent scientific research has highlighted its potential therapeutic properties, particularly in the treatment of cancer and inflammatory diseases. This comprehensive review analyzes the anti-inflammatory and anticancer effects of *Theobroma cacao* extracts combined with nanoparticles using in vitro and in vivo studies. Its diverse biological activity can be attributed to its rich phytochemical profile, including polyphenols, flavonoids, and alkaloids. In vitro studies have found that cocoa extracts, alone or in combination with nanoparticles, inhibit cancer cell proliferation, induce apoptosis and modulate key signaling pathways in various cancer cell lines. The extracts have also been found to reduce tumor growth and enhance the efficacy of conventional chemotherapeutic agents, potentially reducing their side effects, in vivo. Its anti-inflammatory properties are based on its ability to modulate inflammatory mediators, inhibit NF-κB signaling, and regulate macrophage polarization. These effects have been observed in both cellular and animal models of inflammation. This review opens up new possibilities for future research and therapeutic applications, highlighting the potential of *Theobroma cacao* as a valuable complementary approach in the treatment and prevention of cancer and inflammatory diseases.

Keywords: *Theobroma cacao*; anticancer; anti-inflammatory; polyphenols; in vitro studies; in vivo studies; nanoparticles

1. Introduction

Theobroma cacao L., the botanical name for the cacao tree, means "food of the gods", a fitting title for a plant that has played a significant role in human history for thousands of years. The history of cacao is rich and multifaceted, beginning with the ancient Mesoamerican civilizations and extending to its global prominence today. This paper explores the cultural significance and historical use of *T. cacao*, from its origins, through its introduction to Europe, and ultimately to its worldwide impact. Cacao trees originally grew in the river valleys of South America, and by the seventh century AD, the Mayan Indians had introduced them to Mexico. They were also domesticated and cultivated by other Central

American Indian groups, including the Aztecs and the Toltecs. The word chocolate comes from the Aztec language, derived from inter alia xhocolatl or cacahuatl. Ancient texts describe various cacao mixtures used for ceremonial, medicinal, and culinary purposes [1–3]. The name Theobroma cacao was coined by the Swedish botanist Carl Linnaeus in 1753 and published in Species Plantarum. Theobroma itself is derived from the Greek broma, meaning food, and Theo, meaning god, which translates as food of the gods [4-6]. The cacao tree thrives at elevations of 200-400 m in regions receiving 1000-3000 mm of annual rainfall. It needs a humid environment with consistent rainfall and rich soil. Theobroma cacao can grow only within 10 degrees north or south of the equator, favoring the moist, shady regions of tropical rainforests [7,8]. One of the greatest individual causes of death is cancer, caused by harmful chemicals, viruses, agents that produce free radicals, certain environmental toxins, and unavoidable everyday factors. Traditional cancer treatments such as chemotherapy, radiotherapy, and surgery typically provide only limited and temporary relief. Therefore, there is great interest in identifying alternative remedies for cancer that are widely accessible, cost-effective, and have minimal side effects [9–12]. Theobroma cacao appears to have anticancer and anti-inflammatory properties thanks to its flavonoid, polyphenol, and alkaloid content [13-15]. Cocoa also has cardioprotective, neuroprotective, and hepatoprotective effects, and cocoa leaf and bark extracts have demonstrated protective effects against doxorubicin-induced oxidative stress and organ damage [16-20]. Among promising strategies to enhance the therapeutic potential of *T. cacao* extracts, nanoparticle-based delivery systems have emerged as a particularly interesting approach. Nanoparticles can improve the bioavailability of bioactive compounds, enable targeted delivery to specific tissues, and potentially enhance the therapeutic efficacy of cocoa extracts. The combination of T. cacao extracts with nanoparticles represents an innovative direction in developing more effective treatments for cancer and inflammatory diseases [21].

The aim of this study is to comprehensively evaluate the anti-inflammatory and anticancer properties of *T. cacao* extract in vitro and in vivo, alone and in combination with nanoparticles. This research aims to elucidate the potential mechanisms underlying these effects and explore the potential of *T. cacao* as a source of novel bioactive therapeutic compounds for the treatment of cancer and inflammatory diseases.

2. Experimental Paper Selection Criteria

This review focuses on in vitro and in vivo studies of plant extracts from Theobroma cacao and the potential mechanisms of their anticancer and anti-inflammatory effects. The studies were identified using the PubMed, Google Scholar, and Scopus databases and included data published between 2004 and 2024. The following key words were used in the search: Theobroma cacao extract, secondary metabolite, in vitro study, in vivo study, anticancer potential of *Theobroma cacao*, anti-inflammatory potential of *Theobroma cacao*, anticancer potential of Theobroma cacao in combination with nanoparticles, anti-inflammatory potential of *Theobroma cacao* in combination with nanoparticles, bioactive compounds in Theobroma cacao, therapeutic potential of Theobroma cacao, synergistic anticancer effects of Theobroma cacao and nanoparticles. The articles published in languages other than English or abstracts were excluded. Duplicate articles from different databases were also excluded. All the inclusion and exclusion criteria were checked again after these articles had been removed. Finally, after searching the above sources, 203 articles were found, including the following: anticancer in vitro effect of Theobroma cacao extract (55 articles), in vitro anti-inflammatory effect of Theobroma cacao extract (49 articles), in vivo anticancer effect of Theobroma cacao extract (31 articles), in vivo anti-inflammatory effect of Theobroma cacao extract (46 articles), biological effect of nanoparticles with Theobroma cacao extract (22 articles). Due to similarities, lack of relevance to the topic, and imprecise information contained within them, 98 records were excluded. As a result, the final analysis includes 105 articles in total, of which 50 are presented in tables.

Each selected scientific paper was analyzed, and the following data were selected and tabulated: scientific name of the plant, plant parts used to prepare the extract or isolate the

pure compound, type of extract, class of compounds or different compounds identified in the extract, cancer cell lines used or animal model/cell line inoculated with carcinogenic compounds, activity or mechanism of action, and reference. Articles explaining the mechanism(s) of action of plant extracts derived from *T. cacao* are discussed in the main text before being presented in tables.

3. Agricultural Livelihoods and Socio-Economic Development

The global demand for chocolate and cocoa products drives a robust international market for cacao beans. The chocolate industry is a multi-billion dollar market, with annual global chocolate sales exceeding \$100 billion [22,23]. Cocoa cultivation is an important source of income for millions of smallholder farmers in tropical regions, mainly in West Africa, Latin America, and Southeast Asia. Leading producers, including Ivory Coast, Ghana, Indonesia, and Brazil, rely heavily on cocoa cultivation as a key component of their agricultural sectors [24] (Figure 1). In these countries, cocoa exports are crucial, accounting for a significant proportion of their gross domestic product (GDP) and export earnings. For smallholder farmers, cocoa is a stable cash crop that provides an essential income. Cocoa cultivation also has cultural significance in many production regions. It supports traditional farming practices and contributes to the preservation of local heritage. In some areas, cocoa cooperatives play a key role in community organization, empowering farmers through collective bargaining and shared resources. The economic stability provided by cocoa cultivation helps to improve living standards, fund education, and provide health care. In addition, cocoa supports ancillary industries such as local processing, transport, and agricultural supply, further stimulating the rural economy.

Cocoa production statistics in 2023

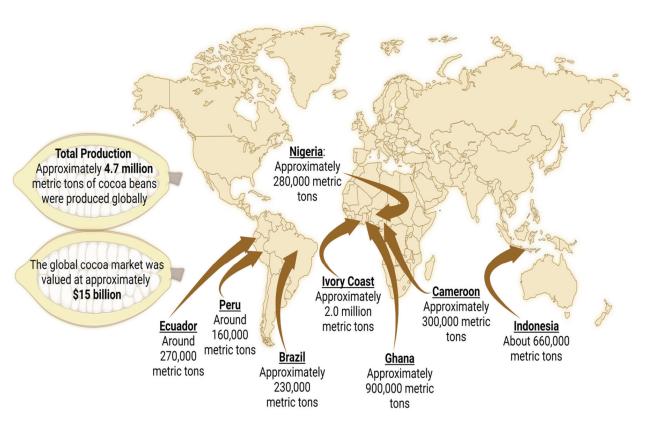


Figure 1. Global cocoa production.

4. Theobroma cacao L.—Characteristics, Secondary Metabolites, and Health Benefits

The *Theobroma* genus (*Theobroma cacao* L.), globally renowned as the basis of chocolate (Figure 2), lies within the family Malvaceae, a large and diverse family of flowering plants. It includes around 244 genera and over 4225 species, encompassing a variety of growth forms, such as trees, shrubs, and herbaceous plants. Its members are distributed worldwide, particularly in tropical and subtropical regions. Among these, *Theobroma cacao*, the cocoa tree, is a particularly desirable crop for its seeds [25]. The cocoa tree thrives exclusively in humid, tropical regions, and cocoa has become a vital agricultural product in numerous developing nations across West Africa, where it accounts for over 70% of global production, as well as in Southeast Asia, Latin America, and the Caribbean [26]. The seeds of *T. cacao*, commonly enjoyed in cocoa drinks and chocolate, are recognized as a rich source of bioactive compounds, particularly polyphenols, alkaloids phytosterols, and fatty acids; these are believed to confer many of the proposed protective effects associated with the consumption of cocoa and chocolate. These secondary metabolites not only contribute to the unique flavor profile of cocoa but also play a significant role in its potential health benefits [9,10].

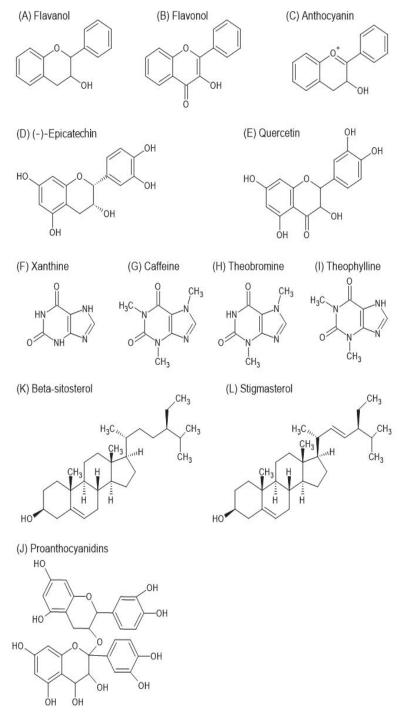


Figure 2. *Theobroma cacao* L. (courtesy of the Missouri Botanical Garden and the Royal Botanic Gardens, Kew, ©RBG Kew).

Theobroma cacao is particularly rich in polyphenols, a diverse group of plant-based compounds. Cocoa beans contain three main groups of polyphenols: catechins (about 37% of the polyphenol content), anthocyanidins (around 4%), and proanthocyanidins (approximately 58%). The most abundant catechin is (-)-epicatechin, which makes up as much as 35% of the total catechin content, with smaller amounts of (+)-catechin, (+)-gallocatechin, and (–)-epigallocatechin. For anthocyanidins, the primary compounds are cyanidin-3- α -L-arabinoside, and cyanidin-3- β -D-galactoside. In the case of procyanidins, the main components are dimers, trimers, or oligomers of flavan-3,4-diol connected by $4 \rightarrow 8$ or $4 \rightarrow$ 6 bonds, with the most significant procyanidins being B1, B2, B3, B4, B5, C1, and D [27,28]. Another group of compounds present in *T. cacao* are alkaloids. Among all structurallyrelated purine alkaloids found in chocolate (methylxanthines), theobromine stands out as the primary compound. *Theobroma cacao* has two major classes of phenylpropanoids, viz. cinnamic acid and tocopherol derivatives [29]. Jalal and Collin isolated p-coumaric acid and caffeic acid, two common cinnamic acid derivatives, along with p-coumaroylquinic acid and chlorogenic acid, i.e., cinnamic acid derivatives containing quinic acid, from T. cacao leaves [30]. The same compounds were detected by UHPLC-MS/MS study in the leaves, seeds, and pericarp of *Theobroma* genus by Tauchen et al. [31].

The seeds of *Theobroma cacao*, also known as cocoa beans, are rich in fats. Approximately 50–57% of the dry weight of whole cocoa beans consists of lipids, commonly referred

to as cocoa butter. This cocoa butter, predominantly found in dark chocolate, typically consists of around 33% oleic acid, 25% palmitic acid, and 33% stearic acid [32]. *Theobroma cacao* contains a wealth of minerals, including potassium, phosphorus, copper, iron, zinc, and magnesium. These minerals play an important role in the proper functioning of the body and are involved in most physiological processes, e.g., maintaining the acid–base balance, transporting some substances, and maintaining healthy bones and teeth. Therefore *T. cacao*, in the form of high-cocoa chocolate rich in nutrients, can be included in a well-rounded diet, when consumed in moderation [33]. Selected secondary metabolites contained in *Theobroma cacao* are shown in Figure 3.

Figure 3. Chemical structure of selected secondary metabolites of *Theobroma cacao* L. (ChemSketch (freeware), version 2023.2.4, Advanced Chemistry Development, Inc. (ACD/Labs), Toronto, ON, Canada, www.acdlabs.com accessed on 23 June 2024).

The bioactive compounds in *Theobroma cacao* have been associated with various potential health benefits, including antioxidant properties, metabolic effects, anti-inflammatory potential, and neuroprotective effects, as well as cardiovascular health and anticancer properties [10].

Polyphenols and flavonoids exhibit strong antioxidant properties, acting as free radical scavengers and potentially reducing oxidative stress in the body [34]. Studies have also shown cocoa consumption to have promising metabolic effects. Cocoa has been demonstrated to alleviate obesity. Studies showed that mice fed a high-fat diet supplemented with cocoa demonstrated less weight gain, attenuated insulin resistance, and reduced severity of obesity-related fatty liver disease. Moreover, it has been proven that daily consumption of 40 g/d of dark chocolate rich in cocoa lowers markers of oxidative stress, hepatocyte apoptosis and ALT in the serum compared to the consumption of milk chocolate [35]. Furthermore, cocoa and its procyanidins demonstrate significant anti-inflammatory potential. They may provide anti-inflammatory benefits by modulating cytokine production and regulating NF-kB target gene expression, which could have implications for various inflammatory conditions [36]. Notably, in vitro studies have suggested that cocoa polyphenolic extracts may have neuroprotective effects, which may be significant in neurodegenerative conditions. For example, in Alzheimer's disease, cocoa polyphenolic extracts not only exhibit antioxidant properties but also provide neuroprotective effects. These neuroprotective effects are linked to the activation of the BDNF survival pathway in cells treated with $A\beta$ plaques or Aβ oligomers, resulting in a decrease in neurite dystrophy. Alzheimer's disease is characterized by an increased production of amyloid (A)β oligomers, which activates microglia, leading to the release of inflammatory substances and neuronal death [37]. Cocoa extracts have demonstrated cardioprotective potential by exerting hypoglycemic and hypocholesterolemic effects, with treatment lowering serum glucose levels and improving lipid profiles. The consumption of chocolate and chocolate-containing confections has been found to induce relatively low levels of postprandial glycemia compared to equivalent amounts of carbohydrates in starchy foods such as bread, rice, and potatoes. They may help lower serum glucose levels and improve lipid profiles, potentially contributing to the prevention of cardiovascular diseases and diabetes [38]. Additionally, the phytosterols present in cocoa seeds lower total plasma cholesterol and low-density lipoprotein levels by inhibiting cholesterol absorption in the intestine. Cocoa seeds contain 2–3 mg of plant sterols per gram of fat, mainly β -sitosterol and stigmasterol. The fatty acid profile of cocoa may also contribute to its cardiovascular benefits, comprising primarily triacylglycerols (TAGs) with 2-oleyl glycerides (O) of palmitic (P) and stearic (S) acids (POP, POS, SOS) [39].

Polyphenols are especially renowned for their beneficial impact on cancer. For example, they appear to prevent the progression of cancer and have been found to induce non-apoptotic cell death and block the cell cycle in the G2/M phase, enhancing their antiproliferative properties [28]. In addition, in laboratory studies, cocoa compounds such as epicatechin, catechin, quercetin, and extracts of procyanidins and B-type dimeric procyanidins have been found to decrease the expression or activity of NF-κB and AP-1 in Hodgkin and Reed–Sternberg (HRS), Daudi, human acute monocytic leukemia (THP-1), and Jurkat cancer cell lines. Pentameric procyanidin from *T. cacao* was found to inhibit breast cancer cell growth by inducing mitochondrial effects that lead to growth arrest or trigger apoptotic and non-apoptotic cell death processes. Additionally, research on the novel mitochondriotoxic molecule F16 has shown that compounds causing mitochondrial depolarization can inhibit breast cancer cell growth through G1 arrest, apoptosis, or necrosis, depending on the genetic makeup of the cells [10].

These diverse potential health benefits highlight the growing interest in *Theobroma cacao* as a possible source of nutraceuticals and functional food components. As research in this area continues to expand, it is becoming increasingly clear that the use of *Theobroma cacao* may extend far beyond chocolate production, opening new avenues for health promotion and disease prevention.

5. Anticancer and Anti-Inflammatory Effects of *Theobroma cacao* Extract In Vitro and In Vivo

The relationship between inflammation and cancer has been the subject of growing interest in recent years. Chronic inflammation can contribute significantly to the development and progression of cancer through multiple mechanisms. Inflammatory cells, particularly tumor-associated macrophages (TAMs), can promote tumor growth by producing growth factors, cytokines, and chemokines that stimulate cell proliferation, angiogenesis, and metastasis [40-42]. These cells also generate reactive oxygen and nitrogen species, which can induce DNA damage and genomic instability in proliferating cells. Furthermore, the inflammatory microenvironment can facilitate the survival of neoplastic cells by activating transcription factors such as NF-kB and STAT3, which regulate pro-survival genes [43,44]. Chronic inflammation associated with infections, autoimmune diseases, or environmental factors can create a tumorigenic microenvironment that fosters neoplastic transformation and progression. Understanding this intricate relationship between inflammation and cancer provides valuable insights into potential therapeutic targets and underscores the importance of anti-inflammatory strategies in cancer prevention and treatment [45-47]. Theobroma cacao extracts exhibit diverse anticancer effects through multiple mechanisms targeting various aspects of cancer cell biology. These extracts, rich in bioactive compounds, demonstrate antiproliferative, pro-apoptotic, and cell cycle regulatory activities across different cancer cell lines. The antiproliferative effects of cocoa extracts are evidenced by their ability to inhibit cancer cell growth in various cell lines, including MCF-7 (breast cancer), HepG2 (liver cancer), and Caco-2 (colon cancer) [34,48]. This growth inhibition is often associated with cell cycle arrest, particularly at the G2/M phase, as observed in Caco-2 cells [49]. The extracts also modulate key enzymes involved in polyamine biosynthesis, such as ornithine decarboxylase and S-adenosylmethionine decarboxylase, potentially contributing to their antiproliferative effects [49]. Cocoa extracts induce apoptosis in cancer cells through multiple pathways. For instance, methanolic leaf extracts have been shown to upregulate pro-apoptotic genes (DDIT3, HRK, GADD45G) and increase the activity of caspases 8 and 9 in MCF-7 cells [50]. Additionally, procyanidin-rich extracts can increase intracellular reactive oxygen species (ROS) levels and promote caspase-3-dependent cell death in ovarian cancer cells [51]. Cocoa extracts may also possess antimetastatic properties. For example, procyanidin-rich extracts have been observed to downregulate matrix metalloprotease-2 (MMP2), an enzyme associated with cancer metastasis [51]. Theobromine, a major alkaloid in cocoa, demonstrates significant anticancer potential. It enhances the cytotoxicity of doxorubicin in LoVo colon cancer cells and modulates proteins associated with proliferative and anti-apoptotic pathways, including PDE4, ERK, NF-κB, and Akt/mTOR [34,52]. Theobromine also activates pro-apoptotic pathways involving JNK and p38-MAPK [52]. It is important to note that the anticancer effects of cocoa extracts can vary depending on the plant part used, extraction method, and specific composition of bioactive compounds. Furthermore, the relationship between antioxidant activity, total phenolic content, and anticancer effects is complex and does not always show a direct correlation [53]. Finally, Theobroma cacao extracts exhibit multifaceted anticancer activities, including antiproliferative, pro-apoptotic, and potentially antimetastatic effects. These activities are mediated through various molecular mechanisms, highlighting the potential of cocoa-derived compounds in cancer research and therapy. However, further research, particularly in vivo studies and clinical trials, is needed to fully elucidate the therapeutic potential and mechanisms of action of these extracts. Other studies are presented in Table 1 below.

 Table 1. Anticancer in vitro effect of Theobroma cacao extract.

Part of the Plant	Class of Compounds	Cell Line	Ic ₅₀	Activity/Mechanism/Effects	Ref.
Cocoa beans	phenylpropenyl-amino acids, hydroxycinnamic-amino acid conjugates, procyanidin compounds, fatty acids and lysophospholipids	MCF-7, Hep-G2, OE19, Caco-2	Indonesian cocoa beans: MCF-7—254.20 μg/mL Hep-G2—122.00 μg/mL OE19—903.30 μg/mL Caco-2—104.90 μg/mL Peruvian cocoa beans: MCF-7—708.30 μg/mL Hep-G2—199.70 μg/mL Caco-2—133.90 μg/mL	The extract did not significantly inhibit proliferation of all cancer cell lines.	[48]
Cocoa leaf extract	ı	MCF-7	41.43 µg/mL	The extract did not significantly inhibit proliferation of all cancer cell lines.	[34]
Cacao fruit powder	polyphenols flavonoids	HeLa, CaCo2	HeLa: 1810 μg/mL, 2170 μg/mL CaCo2: 2650 μg/mL	The extract inhibited proliferation of both cancer cell lines.	[54]
Theobromine extract	theobromine	LoVo, LoVo/Dx	-	Theobromine highly enhanced cytotoxic and resistance reversal potency of MAE-TPR.	[55]
Cocoa bean phenolic extract	protocatechuic acid, p-hydroxybenzoic acid, ideain, catechin, chlorogenic acid, caffeic acid, epicatechin, cyanidin, quercetin, kaempferol, procyanidin B1, procyanidin B2, clovamide	AML12, MLP29	•	The cocoa extract inhibited drug-triggered cytotoxicity in liver, possibly by activating autophagy. The phenolic compounds protected the cells from celecoxib-induced viability inhibition. Apoptotic pathways (e.g., Bax) are the main target for cocoa extract.	[50]
Edel cocoa bean extract from fermented and unfermented cocoa beans	polyphenols	Human gingival fibroblast cells	1552.877 µg/mL (from fermented cocoa extract) 32.1282 µg/mL (from unfermented cocoa extract)	The extract from fermented cocoa beans did not show a cytotoxic effect, but the extract from unfermented beans showed a cytotoxic effect on fibroblast cells.	[49]

Junt.	. 77
7	
5	
Е	

Part of the Plant	Class of Compounds	Cell Line	Ic ₅₀	Activity/Mechanism/Effects	Ref.
Cocoa leaf extract	methanolic extract	MCF-7	6.4 µg/mL (concentration after 48 h)	The compounds present in the methanolic leaf extract induced apoptosis in breast cancer cells by inducing cell shrinkage and membrane blebbing. The bioactive fraction upregulated pro-apoptotic genes (DDIT3, HRK, GADD45G) and increased the activity of caspase 3, caspase 8, and caspase 9.	[56]
Cocoa powder	caffeine, theobromine, flavonols, procyanidins	Caco-2	1	The cocoa extract had an anti-proliferative effect by blocking cells at the G2/M phase. Cocoa extract causes polyamine biosynthesis inhibition.	[52]
Cocoa leaf, bark, husk, unfermented cocoa shell, fermented cocoa shell, root, cherelle, pith extracts	methanolic extract	MCF-7, A549, HeLa, HepG2, HT-29, MDA-MB-231, WRL-68	For MCF-7 cell line: Leaf—41.43 µg/mL Bark—71.97 µg/mL Husk—62.23 µg/mL Unfermented shell—65.03 µg/mL Fermented shell—242.33 µg/mL Pith—329.67 µg/mL Root—76.40 µg/mL Cherelle—68.90 µg/mL	The cocoa leaf extract had strong cytotoxic activity against the MCF-7 cell line. The hexane-partitioned fraction had the highest cytotoxic effect.	[57]
Theobromine extract	theobromine	U87-MG	,	Theobromine showed antiproliferative properties on the U87-MG cell line. This activity was mediated by the modulation of proteins associated with proliferative and anti-apoptotic pathways (e.g., PDE4, ERK, NF-kB, Akt/mTOR) and the activation of the pro-apoptotic pathway by JNK, p38-MAPK.	[58]
Phenolic cocoa powder extract	theobromine, procyanidin B1, procyanidin B2, catechin, epicatechin	HepG2	1	The cocoa extract protected cells from oxidative stress.	[59]

 Table 1. Cont.

Dant of the Dlant	Class of Commodia	Coll Ling	- 2	A ativitar/Machaniam/Efforts	Jo d
Roasted cocoa, unroasted cocoa, roasted fermented cocoa, unroasted fermented fermented cocoa,	phenols	A549	062	Cocoa bean extracts inhibited cell proliferation, stopped the cell cycle in different phases, and increased apoptosis process in the A549 cell line.	[53]
Cocoa seeds	albumin, globulin, prolamin, glutelin	L5178Y	Unfermented cocoa: Albumin—3140 (µg protein/mL) Globulin—2890 (µg protein/mL) Glutelin—580 (µg protein/mL) Semi-fermented cocoa: Albumin—1510 (µg protein/mL) Globulin—2210 (µg protein/mL) Glutelin—220 (µg protein/mL)	Antitumor activity was observed only in the albumin fraction that inhibited the growth of lymphoma cells. It may be associated with sulfur and hydrophobic amino acids. Antioxidant activity was observed in the glutelin and albumin fractions. No correlation was found between antitumor and antioxidant activity.	[51]
Cocoa leaf, bark, husk, fermented and unfermented shell, pith, root, cherelle	methanolic extract	MCF-7, MDA-MB-231, HepG2, HT-29, A549, HeLa, WRL-68	41.4 μg/mL-857.04 μg/mL	The root extract had the highest antioxidant activity, but only the cherelle extract inhibited lipid peroxidation. The leaf extract had highest antiproliferative potential. A negative correlation was found between antioxidant activity, total phenolic content, and anticancer effect.	[09]
Procyanidin rich cocoa powder extract	procyanidins, flavan-3-ol, catechin	OAW42, OVCAR3	-	The procyanidin-rich extract increased the intracellular level of ROS. The treatment induced caspase-3-dependent death and the downregulation of MMP2 (a matrix metalloprotease associated with metastasis).	[61]
Cocoa bean husk	polyphenol, flavonoids	PC3, DU145	1	Bean husk includes large amounts of phenolic compounds, which demonstrated antioxidant and anticancer activity on prostate cancer cell lines.	[62]
Cocoa pod husk	methanolic extract, lupeol, syringaresinol, catechol, squalene	MCF-7, HeLa	MCF—7: 161.53 μg/mL, 45.36 μg/mL, 53.91 μg/mL HeLa: 272.58 μg/mL, 82.44 μg/mL, 120.71 μg/mL	The ethyl acetate partition derived from cocoa pod husk had moderate activity against MCF-7 cells and low activity against HeLa. The extract demonstrated high levels of lupeol, syringaresinol, catechol and squalene, which showed anticancer activity.	[63]

The anti-inflammatory properties of *Theobroma cacao* extracts have been extensively studied in various in vitro models, revealing a complex array of mechanisms through which cocoa compounds modulate inflammatory responses. These effects are primarily attributed to the diverse bioactive compounds present in cocoa. Cocoa extracts demonstrate significant modulatory effects on inflammatory mediators. Multiple studies have shown that these extracts can reduce the production of pro-inflammatory cytokines such as TNF- α , IL-1β, and IL-6 in various cell lines, including macrophages and endothelial cells [64– 66]. This cytokine modulation is often accompanied by a decrease in the expression of their corresponding mRNAs, suggesting regulation at the transcriptional level [64]. The anti-inflammatory action of cocoa extracts also involves the modulation of key signaling pathways. For instance, cocoa polyphenols have been shown to inhibit the nuclear translocation of NF-kB, a crucial transcription factor in inflammatory responses [67]. Additionally, some studies report the activation of MAPK pathways by theobromine, which can lead to complex immune-modulatory effects [68]. Interestingly, cocoa extracts demonstrate the ability to influence macrophage polarization. Phenolic extracts from cocoa beans have been observed to promote a shift from pro-inflammatory M1 macrophages to anti-inflammatory M2 macrophages, thereby altering the overall inflammatory milieu [69]. Moreover, cocoa extracts have demonstrated the ability to maintain gut barrier function and reduce epithelial inflammation [70,71]. Another significant anti-inflammatory mechanism of cocoa extracts is the suppression of nitric oxide (NO) production in activated macrophages [72]. This effect is particularly important given the role of NO in perpetuating inflammatory responses.

Cocoa compounds also show protective effects on cellular structures. Theobromine, for instance, has been reported to protect membrane integrity by reducing levels of inflammatory factors and matrix metalloproteinases [73]. It is worth noting that the anti-inflammatory effects of cocoa extracts can vary depending on the specific composition and preparation method. For example, different fractions of pectin obtained from cocoa pod husks showed varying abilities to modulate macrophage functions and cytokine production [74]. In conclusion, the anti-inflammatory properties of *Theobroma cacao* extracts are mediated through multiple mechanisms, including cytokine modulation, signaling pathway regulation, macrophage polarization, and protection of cellular structures. These diverse effects underscore the potential of cocoa-derived compounds as novel anti-inflammatory agents. However, further research, particularly in vivo studies and clinical trials, is necessary to fully elucidate the therapeutic potential of these extracts in inflammatory conditions. Other studies are presented in Table 2 below.

 Table 2. In vitro anti-inflammatory effect of Theobroma cacao extract.

Part of the Plant	Class of Compounds	Cell Line	Dose	Activity/Mechanism/Effects	Ref.
Cocoa pod husk	Pectin	Mice peritoneal macrophages	25, 50, 100, 200, 400 μ8·mL ⁻¹	Optimized pectin, partially deacetylated pectin, de-esterified pectin, and homogalacturonan pectin obtained from cocoa pod husk are able to modulate some macrophage functions, e.g., the secretion of pro-inflammatory factors (NO, TNF- α , IL-12) and anti-inflammatory IL-10. The optimized pectin fraction showed anti-inflammatory activity, while homogalacturonan pectin increased the number of activated macrophages.	[74]
Theobromine extract	Theobromine	CaCo-2	10-30 µМ	Theobromine protected membrane structure integrity by decreasing the level of specific inflammatory factors such as cytokines and matrix metalloproteinases.	[23]
Cocoa powder extract	Flavonoids Polyphenols	NR8383, RAW 264.7	5–100 µg/mL	Cocoa extract lowered the level of TNF- α , IL-1 α , IL-6, NO and MCP-1.	[64]
Aqueous cocoa extract	Polyphenols	J744A.1	0.25%, 0.05%	Cocoa extract contains compounds that suppress NO production in macrophages activated by LPS and IFN- γ .	[72]
Dried cocoa beans	Polyphenols	HUVEC	25, 50, 100 ppm	Cocoa extract prevents increases in IL-6 and sVCAM-1 levels in human endothelial cells following induction by plasma from preeclamptic patients.	[65]
"Guiana" cocoa pods	Theobromine, Caffeine, Epicatechin, Procyanidin A1, Procyanidin A2, Procyanidin B2, Procyanidin C1	J774-A1	100 μL	Guiana cocoa shows better inhibition of IL-6 production and stimulation of TNF- α secretion.	[99]

 Table 2. Cont.

	(,	ı		,
Part of the Plant	Class of Compounds	Cell Line	Dose	Activity/Mechanism/Ettects	Ket.
Cocoa beans	Phenolic extract	THP-1	0.1–100 μМ	Cocoa extract reduced the inflammatory response in M1 macrophage by increasing the secretion of anti-inflammatory cytokines. It also caused a metabolic switch from the M1 pro-inflammatory to the M2 anti-inflammatory type.	[69]
Cocoa bean shell	Theobromine, Caffeine, Protocatechuic acid, Catechin, Epicatechin, Procyanidin B2, Procyanidin B, Procyanidin B, Procyanidin A,	CaCo-2	10, 25, 50 µg/mL	The extracts inhibited IL-8 and TLR2, and TLR4, indicating that cocoa could interfere with oxysterol-mediated inflammation.	[67]
Theobromine extract	Theobromine	RAW 264.7	1–500 µg/mL	Theobromine activated MAPK and NF-kB signaling pathways, which enhance immune effects. Theobromine increases production of inflammatory factors by p38, JNK, and NF-kB pathways. It also upregulates the expression of iNOS. Higher expression of COX-2 causes increased PGE2 production.	[89]
Procyanidin-rich cocoa extract	Flavanols, Catechin, Epicatechin	CaCo-2, HT-29	Max concetration— 100 μg/mL or 10–25 μg/mL	Cocoa extract prevents loss of gut barrier function and epithelial inflammation.	[20]
Cocoa beans	Polyphenols	GMSM-K	31.25, 62.5, 125, 250, 500 µg/mL	Cocoa extract inhibited <i>F. nucleatum</i> -induced inflammatory response in monocytes and oral epithelial cells. The extract improves the barrier function of oral epithelial cells.	[71]
Cocoa powder	Aqueous and ethanolic extract	PBMC, THP-1	0.5–10 µg/mL	Cocoa extracts suppressed mitogen-induced degradation of tryptophan. IFN- γ and neopterin production were strongly inhibited by extracts.	[75]
Cocoa extract	1	HUVEC	6.25, 12.5, 25, 50, 100 μg/mL	The cocoa extract inhibited angiotensin-covering enzyme activity and increased the NO level.	[26]

The in vivo anticancer effects of *Theobroma cacao* extracts have been investigated in various animal models, providing crucial insights into their potential therapeutic applications. These studies reveal a complex interplay of mechanisms through which cocoa-derived compounds exert their anticancer activities while also demonstrating protective effects against chemotherapy-induced toxicity. One of the most notable findings is the ability of cocoa extracts to enhance the efficacy of conventional chemotherapeutic agents. For instance, the combination of cocoa extract with doxorubicin has been shown to increase the overall anticancer effect, albeit with a partial increase in systemic toxicity [77]. This synergistic action suggests that cocoa compounds may potentiate the cytotoxic effects of chemotherapy on cancer cells. Furthermore, cocoa powder has demonstrated protective efficacy against vital organ damage induced by doxorubicin, without compromising its chemotherapeutic effect in BALB/c mice with Ehrlich ascites carcinoma [17]. This dual action of organ protection and maintenance of anticancer efficacy is particularly noteworthy, as it addresses one of the major challenges in cancer therapy—reducing side effects while maintaining treatment effectiveness.

The anticancer potential of cocoa extracts is further evidenced by their ability to act as carcinogenic inhibitors. This is achieved through the down-regulation of heat shock protein 90 (Hsp90) and the normalization of heat shock protein expression [78]. Given the role of Hsp90 in stabilizing various oncogenic proteins, its downregulation represents a significant mechanism by which cocoa compounds may inhibit cancer progression. Importantly, cocoa extracts have demonstrated protective effects against chemotherapy-induced organ toxicity. Studies in female BALB/c mice have shown that cocoa extract can protect vital organs such as the heart, liver, and kidney from doxorubicin-induced damage [79]. This protective effect, combined with the synergistic anticancer activity, suggests a potential role for cocoa extracts in improving the therapeutic index of conventional chemotherapy. Moreover, cocoa extracts demonstrated significant antioxidant and hepatoprotective properties in vivo. Studies using BALB/cN mice have shown that cocoa polyphenols favorably modulate cellular redox state and molecular signaling pathways associated with oxidative stress [78]. These extracts have been observed to decrease hepatic cell necrosis and suppress Pkm2, a key enzyme in cancer metabolism. Furthermore, they reduce hepatotoxicity by lowering the activity of serum transaminases and phosphatic phosphatase, indicating a protective effect on liver function [78]. The anticancer effects of cocoa are not limited to direct cytotoxicity or chemotherapy enhancement. Daily consumption of cocoa products has been shown to increase plasma flavonol concentrations in Wistar-Unilever rats, thereby enhancing the overall antioxidant potential of plasma [80]. This systemic increase in antioxidant capacity may contribute to cancer prevention by reducing oxidative stress and DNA damage. In conclusion, the in vivo anticancer effects of *Theobroma cacao* extracts are multifaceted, involving enhancement of chemotherapy efficacy, modulation of oxidative stress and cellular signaling pathways, carcinogenic inhibition, and protection against chemotherapy-induced organ toxicity. These diverse mechanisms highlight the potential of cocoa-derived compounds as adjuvants in cancer therapy, possibly improving treatment outcomes while mitigating side effects. However, further research, including clinical trials, is necessary to fully elucidate the therapeutic potential and safety profile of these extracts in human cancer treatment. Other studies are presented in Table 3 below.

 Table 3. In vivo anticancer effect of Theobroma cacao extract.

Part of the Plant	Class of Compounds	Organism	Dose	Z	Exposure Time	Activity/Mechanism/Effects	Ref.
Cocoa seeds glycolic extract	polyphenols	Mice bone marrow	Genotoxicity test: 0.5, 1.0, 1.5, and 2.0 g/kg of theobroma extract Antigenotoxicity test: 2.0 g/kg of theobroma extract and 5.0 mg/kg of doxorubicin	5 male mice and 5 female mice	24 h 48 h	The combination of cocoa extract (2 g/kg) with doxorubicin (5 mg/kg) partially increases systemic toxicity. The extract enhances the toxic effects of doxorubicin.	[22]
Cocoa cake extract	polyphenols, flavonoids, gallic acid, procyanidin B1, epigallocatechin, procyanidin B2, epicatechin, epigallocatechin gallate, vanillin, p-coumaric acid, m-coumaric acid, quercetin	BALB/cN mice liver and blood samples	Cocoa extract—34.5 mg/kg Epicatechin extract—2.24 mg/kg	4 groups of 8 female BALB/cN mice	2 weeks	Cocoa polyphenols improved cellular redox state and molecular signaling pathways associated with oxidative stress. They also decreased hepatic cell necrosis and suppressed Pkm2. Hepatotoxicity was decreased by lowering the activity of serum transaminases and phosphatic phosphatase activity. The extract acted as a carcinogenic inhibitor by down-regulating Hsp 90 and returning the expression of Hsp70 to normal levels.	[28]
Cocoa nibs powder	polyphenols, alkaloids, flavonoids	Female BALB/c mice vital organs (heart, liver, kidney) and blood samples	Doxorubicin-treated mice—4.91 mg/kg Cocoa extract-treated mice—200 mg/kg Doxorubicin- and cocoa-treated mice—4.91 mg/kg of doxorubicin and 200 mg/kg of cocoa extract	5 groups of 16 mice	21 days	Cocoa extract protects organs against doxorubicin-induced intoxication (heart, liver, kidney). It also has a synergistic anticancer effect, enhancing doxorubicin activity.	[62]

 Table 3. Cont.

Class of Compounds Organism
Wistar–Unilever rat prostate
BALB/c mice Ehrlich ascites carcinoma tumor cells

The in vivo anti-inflammatory effects of *T. cacao* extracts have been extensively studied in various animal models, revealing a wide array of mechanisms through which cocoaderived compounds modulate inflammatory responses. These studies provide crucial insights into the potential therapeutic applications of cocoa extracts in inflammatory conditions. Cocoa polyphenols demonstrate significant anti-inflammatory activity through multiple pathways. In ICR mice, cocoa polyphenols have been shown to lower the expression of cyclooxygenase-2 (COX-2), a key enzyme in the inflammatory process. Furthermore, they inhibit the nuclear translocation of p65, a subunit of NF-kB, and prevent the degradation of $I\kappa B\alpha$, thus suppressing the NF- κB signaling pathway, which is central to inflammatory responses [81]. Studies in C57BL/6 mice have revealed that cocoa supplementation decreases the mRNA levels of pro-inflammatory cytokines such as TNF- α and IL-6, as well as nitric oxide synthase. Additionally, cocoa extracts inhibit the activity of enzymes associated with inflammation, including phospholipase A2 and cyclooxygenase-2 [82]. These effects collectively contribute to a comprehensive anti-inflammatory action. The anti-inflammatory properties of cocoa extracts extend to wound healing. In rabbits, cocoa pod extract has been shown to accelerate wound healing, likely due to its rich content of polyphenols, flavonoids, and tannins [83]. This suggests potential applications in dermatological conditions and post-surgical recovery. Cocoa extracts also demonstrate significant metabolic effects that indirectly contribute to their anti-inflammatory action. In Wistar rats, a diet enriched with cocoa bean phenolic extract led to a decrease in fat tissue, inhibition of protein tyrosine phosphatase 1B (PTP1B), attenuation of hepatic steatosis, and improved serum lipid profiles [84]. These metabolic improvements can reduce systemic inflammation associated with obesity and metabolic disorders. The immunomodulatory effects of cocoa are further evidenced by studies in Wistar rats, where cocoa-enriched diets caused a decrease in prostaglandin E2 (PGE2) production and prevented imbalances in T-cell proportions [85]. This suggests that cocoa compounds can modulate both innate and adaptive immune responses. Cocoa extracts have also shown promise in specific inflammatory conditions. In a rat model of periodontitis, cocoa pod husk extract increased alveolar bone regeneration by enhancing osteoblast numbers and bone morphogenetic protein-2 (BMP-2) expression [86]. This indicates potential applications in inflammatory bone disorders. Ethanol extracts of cocoa stem bark have been shown to reduce inflammation in Wistar rats by lowering neutrophil migration and reducing inflammatory mediator production [85]. Cocoa extracts also demonstrate antioxidant properties that complement their anti-inflammatory effects. Polyphenol-enriched cocoa leaf extracts inhibit xanthine oxidase and angiotensin-converting enzymes in male Wistar rats, indicating potential in preventing oxidative stress [87]. Finally, dietary studies in female Wistar rats have shown that cocoa-containing diets lower serum levels of TNF- α and inducible nitric oxide synthase (iNOS) activity, while also decreasing colon cell infiltration [88]. This suggests potential applications in inflammatory bowel conditions. In conclusion, the in vivo anti-inflammatory effects of Theobroma cacao extracts are mediated through multiple mechanisms, including the modulation of inflammatory enzymes, suppression of pro-inflammatory cytokines, inhibition of NF-kB signaling, improvement of metabolic parameters, and enhancement of wound healing. These diverse effects underscore the potential of cocoa-derived compounds as novel anti-inflammatory agents with wide-ranging therapeutic applications. However, further research, including clinical trials, is necessary to fully elucidate the efficacy and safety of these extracts in human inflammatory conditions. Other studies are presented in Table 4 below.

Table 4. In vivo anti-inflammatory effect of Theobroma cacao extract.

Part of the Plant	Class of Compounds	Organism	Dose	Z	Exposure Time	Activity/Mechanism/Effects	Ref.
Cocoa polyphenols from cocoa powder	Polyphenols, Gallic acid, Epicatechin.	Skin from ears of ICR mice	With 12-O- tetradecanoylphorbol-13- acetate: 4 mg/kg 20 mg/kg 40 mg/kg 200 mg/kg Without 12-O- tetradecanoylphorbol-13- acetate: 200 mg/kg	Groups of 6 female mice	5 h	Cocoa polyphenols lower the activity of COX-2 expression, inhibit the activation of MAPK and NF-kB pathways.	[84]
Unsweetened cocoa powder	Polyphenols.	Male C57BL/6 mice	80 mg/g of unsweetened cocoa powder	Low-fat diet 23 mice High-fat diet 21 mice High-fat diet cocoa treated 24 mice	18 weeks	Cocoa supplementation decreases adipose tissue inflammation by downregulating genes associated with NF-kB.	[82]
Cocoa pod extract	Polyphenols, Flavonoids, Tannins.	Rabbit	Concentration of cocoa: 0%, 5%, 10%, 15%	36 male rabbits	3 days 5 days 7 days	Cocoa pod extract can accelerate the speed of wound healing.	[83]
Cocoa bean phenolic extract	Phenols	Wistar rats	Raw cocoa bean: 2.25% of diet; Roasted cocoa bean: 2.45% of diet; Havan-3-ol: 0.114% of diet	5 groups of 8 male rats	4 weeks	A diet enriched with cocoa bean extract causes fat tissue reduction, PTP1B inhibition, hepatic steatosis attenuation, ROS protection, and improved serum lipid profile, and increases serum AC1. It shows anti-obesity properties.	[68]
Leaf extracts	Tannins, Phenols, Saponins, Terpenoids, Flavonoids, Glycosides.	African earthworms (Pheretima posthuma)	10, 25, 50 mg/mL	1		Cocoa leaf extracts have antioxidant and anthelmintic activity.	[90]

Table 4. Cont.

Part of the Plant	Class of Compounds	Organism	Dose	Z	Exposure Time	Activity/Mechanism/Effects	Ref.
Cocoa pods powder	Flavonoids, Alkaloids, Tannins, Saponins.	Wistar rats	Fermented cocoa: 150 mg/kg 300 mg/kg	35 rats	21 days	Anti-hyperglycemia compounds were discovered in fermented cocoa polyphenol extracts.	[85]
Cocoa pod husk extract	Polyphenols	Wistar rats	Cocoa pod husk extract 100 mg/mL	24 male rats	7 days 14 days	Cocoa pod husk extract increases alveolar bone regeneration in periodontitis by increasing osteoblast numbers and BMP-2 expression.	[98]
Stem bark extract		Wistar rats	Cocoa stem bark: Extract 250 mg/kg Ethylacetate fraction 65, 125 and 250 mg/kg	7 groups of 10 rats	72 h	Ethanol extracts of cocoa stem bark reduce inflammation by decreasing inflammatory mediator production (TNF- α).	[81]
Cocoa leaves	Polyphenols	Male Wistar rats	10, 20, 30, 40 µg/mL	3 male rats	7 days acclima- tization	Polyphenol-enriched cocoa leaf extract inhibits xanthine oxidase and angiotensin 1-converting enzyme. Leaf extract may be useful in preventing oxidative stress.	[87]
Cocoa	Procyanidin B2 Catechin, Epicatechin, Isoquercetin, Quercetin	Female Wistar rats	5% cocoa diet	4 groups of 12 rats	3 weeks	Cocoa-containing diet shows anti-inflammatory potential. In addition, lower colon cell infiltration was observed.	[88]

While numerous in vitro and in vivo studies have demonstrated the anticancer and anti-inflammatory potential of Theobroma cacao, clinical evidence has been more limited. However, several important clinical trials have specifically investigated these properties in human subjects.

A particularly significant clinical investigation examining the anticancer effects of Theobroma cacao is the "Effects of Chocolate Consumption in Elderly Patients With Cancer in Palliative Care" trial (NCT04367493). This randomized intervention study specifically focused on elderly cancer patients receiving palliative care, providing direct clinical evidence of cocoa's effects in cancer patients. The study design involved three groups of 15 subjects each: a control group, a 55% cocoa intervention group, and a white chocolate intervention group. The trial measured multiple key parameters, including inflammatory markers through serum interleukin-6 levels, oxidative stress parameters via reduced glutathione (GSH) levels and ascorbic acid quantification, lipid peroxidation through malonaldehyde measurements, and DNA damage assessment using 8-hydroxy-2′-deoxyguanosine levels. Additionally, the study evaluated quality of life measures using the EORTC-QLQ-C30 questionnaire.

The COcoa Supplement and Multivitamin Outcomes Study (COSMOS; NCT02422745) represents a large-scale investigation into cocoa's potential anticancer properties. This randomized clinical trial examined whether daily supplementation with cocoa extract (containing 500 mg/day of flavanols, including 80 mg of (—)-epicatechin) could reduce cancer risk in older adults. The scale and design of this study provide valuable insights into the potential role of cocoa flavanols in cancer prevention.

An ancillary study to COSMOS (NCT05510375) specifically investigated the antiinflammatory aspects of cocoa supplementation through the examination of inflammaging the chronic, low-grade inflammation associated with aging. This study is particularly relevant, as it bridges the gap between laboratory findings on cocoa's anti-inflammatory properties and their clinical manifestation in human subjects.

These clinical trials represent critical steps in validating the anticancer and antiinflammatory properties of Theobroma cacao observed in preclinical studies. They provide important insights into the translation of laboratory findings to human applications and suggest potential therapeutic roles for cocoa compounds in cancer care and inflammation management.

6. Antitumor and Anti-Inflammatory Effects of *Theobroma cacao* Extract in an In Vitro and In Vivo Model in Combination with Nanoparticles

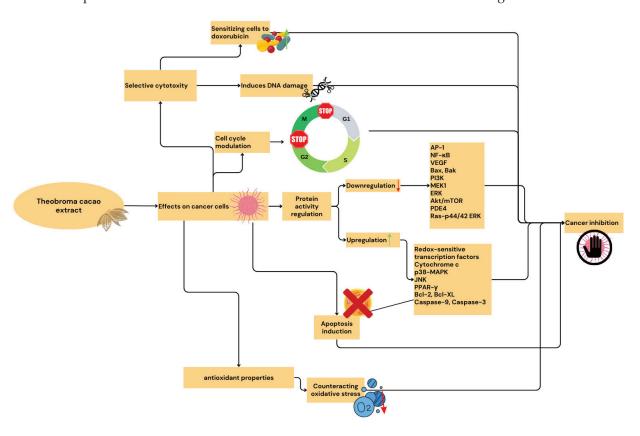
Nanoparticles have emerged as a promising platform for enhancing cancer therapy due to their unique physicochemical properties and ability to be functionalized with various targeting moieties and therapeutic agents. Their small size allows them to penetrate biological barriers and accumulate preferentially in tumor tissues through the enhanced permeability and retention (EPR) effect [91,92]. Nanoparticles can be engineered to carry multiple drugs simultaneously, enabling combination therapies and overcoming drug resistance mechanisms. Moreover, stimuli-responsive nanoparticles can be designed to release their payload in response to specific tumor microenvironment conditions, such as pH or enzyme activity, thereby improving the therapeutic index and reducing systemic toxicity. The surface of nanoparticles can also be modified with imaging agents, allowing for therapeutic applications that combine therapy and diagnostics [93–95].

In the context of inflammatory disorders, nanoparticles offer several advantages for targeted drug delivery and the modulation of the inflammatory response. Their ability to encapsulate and protect anti-inflammatory compounds can enhance drug stability and prolong circulation time. Nanoparticles can be designed to target specific cells or tissues involved in inflammation, such as activated endothelial cells or macrophages, through the incorporation of appropriate ligands. This targeted approach can improve the efficacy of anti-inflammatory treatments while minimizing off-target effects [96–98]. Additionally, certain types of nanoparticles, such as metal nanoparticles, have inherent anti-inflammatory

properties that can complement the effects of loaded drugs. The versatility of nanoparticle platforms allows for the development of multifunctional systems that can simultaneously deliver therapeutics, modulate the immune response, and provide real-time monitoring of treatment efficacy [99,100].

The literature is limited in relation to biological studies on the anticancer and antiinflammatory effects of *Theobroma cacao* extract in combination with nanoparticles, which is why further work confirming this synergistic effect is so important. Table 5 below shows current studies that demonstrate combinations of *Theobroma cacao* extract in combination with nanoparticles in the context of biological research.

Table 5. Biological effect of nanoparticles with Theobroma cacao extract.


Part of the Plant	Nanoparticles	Dose	Activity/Mechanism/Effects	Ref.
Cocoa powder	Silver nanoparticles	25, 50 mg/mL	An insignificant cytotoxic effect on human dermal fibroblast cells has been demonstrated.	[101]
Cocoa seeds	Palladium/Copper (II) oxide nanoparticles	15 mL of cocoa seed extract	The chemical components of cocoa (e.g., catechin, phenolic acids) were identified as stabilizing, reducing and capping agents. This method of obtaining nanoparticles shows lower toxicity and is environmentally friendly.	[102]
Cocoa powder	Gold nanoparticles	0.1, 1, 2.5, 10, 50 mg/mL	Gold nanoparticles are not toxic for human dermal fibroblast.	[103]
Cocoa seed extract	Gold nanoparticles	200, 250, 270, 300 μL	Anisotropic b-AuNPs (derived from <i>T. cacao</i> [cocoa] seed extract) demonstrated excellent photothermal properties in A431 epidermal cancer cells using a laser power density of 6 W/cm ² . The b-AuNP nanoparticles exhibited near-infrared absorbance at 700–1000 nm, facilitating an effective photothermal therapy against A431 cancer cells.	[104]
Cocoa bean extract	Graphene nanoparticles	IC ₅₀ —31.2 μg/mL	The cytotoxicity studies showed that the synthesized CSE-GQDs exhibited dose-dependent toxicity on human breast cancer (MCF-7) cell lines.	[105]

7. Conclusions and Future Perspectives

In conclusion, *Theobroma cacao* appears to offer complex and promising therapeutic potential based on its anti-inflammatory and anticancer properties, which can be attributed to its polyphenol, flavonoid, or alkaloid content. The extracts have demonstrated significant antiproliferative, proapoptotic and potentially antimetastatic properties in various cancer cell lines and animal models, both alone and in combination with nanoparticles. An important aspect of *T. cacao* extracts is that they are able to demonstrate potential synergistic effects with conventional chemotherapeutic agents and protect against chemotherapy-induced organ toxicity. This dual action suggests a unique role for cacao-derived compounds in enhancing the efficacy of cancer treatment, while mitigating its side effects.

Further research into combination therapies, particularly the synergistic effects between *Theobroma cacao* extracts and conventional treatments, may open up new avenues in cancer therapy and the treatment of chronic inflammatory diseases. Although several mechanisms of action have been identified, a deeper understanding of the molecular pathways involved in the anticancer and anti-inflammatory effects of *Theobroma cacao* extracts is needed. The integration of nanotechnology with *T. cacao* extracts represents a particularly promising direction for future research. Nanoparticle-based delivery systems offer several

advantages, including enhanced bioavailability, targeted delivery, and controlled release of bioactive compounds. Future studies should focus on optimizing nanoformulations, investigating their biodistribution and safety profiles, and evaluating their long-term efficacy in various therapeutic applications. The development of new formulations and delivery systems may enhance the bioavailability and targeted delivery of bioactive cacao compounds, potentially improving their therapeutic efficacy. Long-term research into the effects of cocoa consumption on the prevention of cancer and chronic inflammation is warranted, as is research into how individual genetic variants may influence the response to *Theobroma cacao* extracts, potentially paving the way for personalized therapeutic strategies. The potential mechanism of action of *Theobroma cocoa* extract is shown in Figure 4.

Figure 4. The potential mechanism of action of cocoa extract (Canva, version 1.97.0.0, Canva Inc., Sydney, Australia, https://www.canva.com accessed on 26 June 2024).

In summary, *Theobroma cacao* has long played a key role in the global economy. Recent research shows that it can play a key role in health protection. The economic importance of cocoa is obvious in the food industry, and its medicinal properties, especially its anti-inflammatory and anticancer properties, offer promising opportunities for health. Continuous research and development in the cultivation and practical use of cocoa may further increase its share in both the global economy and biomedicine in the future. Its multifaceted biological activities, combined with a long history of human consumption and enhanced effects when combined with nanoparticles, make it an attractive candidate for further research.

Author Contributions: P.S.: writing—review and editing, writing—original draft, conceptualization, visualization, supervision. A.M.-S.: writing—review and editing, investigation. J.S.: writing—review and editing, investigation. W.O.: resources, data curation. I.Ś.: resources, data curation. L.P.: writing—review and editing, investigation. T.K.: writing—original draft, conceptualization, visualization, supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

GDP	Gross domestic product
ALT	Alanine transaminase
BDNF	Brain-derived neurotrophic factor
HRS	Hodgkin and Reed-Sternberg
THP-1	Human acute monocytic leukemia
TAMs	Tumor-associated macrophages
ROS	Reactive oxygen species
MMP2	Matrix mettaloproteinase-2
MAPK	Mitogen activated protein kinases
NO	Nitric oxide
TNF	Tumor necrosis factor
COX-2	Cyclo-oxygenase-2
PTP1B	Protein tyrosine phosphatase 1B
PGE2	Prostaglandin E2
BMP-2	Bone morphogenetic protein-2
EPR	Permeability and retention effect

References

- 1. Díaz-Valderrama, J.R.; Leiva-Espinoza, S.T.; Aime, M.C. The history of cacao and its diseases in the Americas. *Phytopathology* **2020**, *110*, 1604–1619. [CrossRef] [PubMed]
- 2. McNeil, C. Chocolate in Mesoamerica: A Cultural History of Cacao; University Press of Florida: Gainesville, FL, USA, 2006. [CrossRef]
- 3. Richardson, J.E.; Whitlock, B.A.; Meerow, A.W.; Madriñán, S. The age of chocolate: A diversification history of *Theobroma* and Malvaceae. *Front. Ecol. Evol.* **2015**, *3*, 120. [CrossRef]
- 4. Cuatrecasas, J. Cacao and its allies: A taxonomic revision of the genus *Theobroma*, Contrib. U.S. Natl. Herb. 1964, 35, 379–614.
- 5. Motamayor, J.C.; Lachenaud, P.; Da Silva e Mota, J.W.; Loor, R.; Kuhn, D.N.; Brown, J.S.; Schnell, R.J. Geographic and genetic population differentiation of the Amazonian chocolate tree (*Theobroma cacao* L.). *PLoS ONE* **2008**, *3*, e3311. [CrossRef] [PubMed]
- 6. Kaufman, T.; Justeson, J. The history of the word for cacao in ancient Mesoamerica. Anc. Mesoam. 2007, 18, 193–237. [CrossRef]
- 7. Zeng, H.; Locatelli, M.; Bardelli, C.; Amoruso, A.; Coisson, J.D.; Travaglia, F.; Arlorio, M.; Brunelleschi, S. Anti-inflammatory properties of clovamide and *Theobroma cacao* phenolic extracts in human monocytes: Evaluation of respiratory burst, cytokine release, NF-κB activation, and PPARγ modulation. *J. Agric. Food Chem.* **2011**, *59*, 5342–5350. [CrossRef]
- 8. Verna, R. The history and science of chocolate. *Malays. J. Pathol.* **2013**, 35, 111.
- 9. Ebuehi, O.A.; Anams, C.; Gbenle, O.D.; Ajagun-Ogunleye, M.O. Hydro-ethanol seed extract of Theobroma cacao exhibits antioxidant activities and potential anticancer property. *J. Food Biochem.* **2019**, 43, e12767. [CrossRef]
- 10. Baharum, Z.; Akim, A.M.; Hin, T.Y.Y.; Hamid, R.A.; Kasran, R. *Theobroma cacao*: Review of the extraction, isolation, and bioassay of its potential anti-cancer compounds. *Trop. Life Sci. Res.* **2016**, 27, 21–42.
- 11. Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004, 134, 3479–3485. [CrossRef]
- 12. Jalil, A.; Ismail, A. Polyphenols in cocoa and cocoa products: Is there a link between antioxidant properties and health? *Molecules* **2008**, *13*, 2190–2219. [CrossRef] [PubMed]
- 13. Corti, R.; Flammer, A.J.; Hollenberg, N.K.; Lüscher, T.F. Cocoa and cardiovascular health. *Contemp. Rev. Cardiovasc. Med. Cocoa* **2009**, *119*, 1433–1441. [CrossRef] [PubMed]
- 14. Ellam, S.; Williamson, G. Cocoa and human health. Annu. Rev. Nutr. 2013, 33, 105–128. [CrossRef] [PubMed]
- 15. Gianfredi, V.; Salvatori, T.; Villarini, M.; Moretti, M. Can chocolate consumption reduce cardio-cerebrovascular risk? A systematic review and meta-analysis. *Nutrition* **2018**, *46*, 103–114. [CrossRef] [PubMed]
- 16. Selmi, C.; Cocchi, C.A.; Lanfredini, M.; Keen, C.L.; Gershwin, M.E. Chocolate at heart: The anti-inflammatory impact of cocoa flavanols. *Mol. Nutr. Food Res.* **2008**, 52, 1340–1348. [CrossRef]
- 17. Patil, P.P.; Khanal, P.; Patil, V.S.; Charla, R.; Harish, D.R.; Patil, B.M.; Roy, S. Effect of *Theobroma cacao* L. on the efficacy and toxicity of doxorubicin in mice bearing Ehrlich ascites carcinoma. *Antioxidants* **2022**, *11*, 1094. [CrossRef]
- 18. Ruzaidi, A.; Abbe Maleyki, M.; Amin, I.; Nawalyah, A.; Muhajir, H. Protective effect of polyphenol-rich extract prepared from Malaysian cocoa (*Theobroma cacao*) on glucose levels and lipid profiles in streptozotocin-induced diabetic rats. *J. Sci. Food Agric.* 2008, 88, 1442–1447. [CrossRef]

- 19. Kosoko, A.M.; Olurinde, O.J.; Akinloye, O.A. Doxorubicin induced neuro-and cardiotoxicities in experimental rats: Protection against oxidative damage by Theobroma cacao stem bark. *Biochem. Biophys. Rep.* **2017**, *10*, 303–317. [CrossRef]
- 20. Zhang, D. Theobroma. In *Wild Crop Relatives: Genomic and Breeding Resources: Plantation and Ornamental Crops;* Springer: Berlin/Heidelberg, Germany, 2011; pp. 277–296.
- 21. Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. *Nat. Rev. Drug Discov.* **2024**, 20, 101–124. [CrossRef]
- 22. Farley, R. CHOCOLATE CITY, VANILLA SUBURBS REVISITED: The Racial Integration of Detroit's Suburbs. *Du Bois Rev. Soc. Sci. Res. Race* 2022, 19, 1–29. [CrossRef]
- 23. Brown, A.L.; Bakke, A.J.; Hopfer, H. Understanding American premium chocolate consumer perception of craft chocolate and desirable product attributes using focus groups and projective mapping. *PLoS ONE* **2020**, *15*, e0240177. [CrossRef] [PubMed]
- 24. Boysen, O.; Ferrari, E.; Nechifor, V.; Tillie, P. *Impacts of the Cocoa Living Income Differential Policy in Ghana and Côte D'Ivoire*; Publications Office of the European Union: Luxembourg, 2021. [CrossRef]
- 25. De Souza, P.A.; Moreira, L.F.; Sarmento, D.H.A.; da Costa, F.B. Cacao—Theobroma cacao. Exot. Fruits 2018, 69–76. [CrossRef]
- 26. Bekele, F.; Phillips-Mora, W. Cacao (*Theobroma cacao* L.) breeding, Adv. Plant Breed. Strateg. Ind. Food Crops 2019, 6, 409–487. [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [CrossRef]
 [PubMed]
- 28. Andújar, I.; Recio, M.C.; Giner, R.M.; Ríos, J.L. Cocoa polyphenols and their potential benefits for human health. *Oxid. Med. Cell Longev.* **2012**, 2012, 906252. [CrossRef] [PubMed]
- 29. Smit, H.J. Theobromine and the Pharmacology of Cocoa. In *Methylxanthines. Handbook of Experimental Pharmacology*; Springer: Berlin/Heidelberg, Germany, 2011. [CrossRef]
- 30. Jalal, M.A.F.; Collin, H.A. Polyphenols of mature plant, seedling, and tissue cultures of Theobroma cacao. *Phytochemistry* **1977**, *16*, 1377–1380. [CrossRef]
- 31. Tauchen, J.; Bortl, L.; Huml, L.; Miksatkova, P.; Doskocil, I.; Marsik, P.; Villegas, P.P.P.; Flores, Y.B.; Van Damme, P.V.; Lojka, B.; et al. Phenolic composition, antioxidant and anti-proliferative activities of edible and medicinal plants from the Peruvian Amazon. *Rev. Bras. Farmacogn.* **2016**, 26, 728–737. [CrossRef]
- 32. Tokede, O.A.; Gaziano, J.M.; Djoussé, L. Effects of cocoa products/dark chocolate on serum lipids: A meta-analysis. *Eur. J. Clin. Nutr.* **2011**, *65*, 879–886. [CrossRef]
- 33. Montagna, M.T.; Diella, G.; Triggiano, F.; Caponio, G.R.; De Giglio, O.; Caggiano, G.; Di Ciaula, A.; Portincasa, P. Chocolate, "Food of the Gods": History, science, and human health. *Int. J. Environ. Res. Public Health* **2019**, *16*, 4960. [CrossRef]
- 34. Zainal, B.; Abdah, M.; Taufiq-Yap, Y.; Roslida, A.; Rosmin, K. Anticancer agents from non-edible parts of *Theobroma cacao*. *Nat. Prod. Chem. Res.* **2014**, 2. [CrossRef]
- 35. Weikart, D.K.; Indukuri, V.V.; Racine, K.C.; Coleman, K.M.; Kovac, J.; Cockburn, D.W.; Hopfer, H.; Neilson, A.P.; Lambert, J.D. Effect of processing on the anti-inflammatory efficacy of cocoa in a high fat diet-induced mouse model of obesity. *J. Nutr. Biochem.* **2022**, *109*, 109117. [CrossRef] [PubMed]
- 36. Gu, Y.; Lambert, J.D. Modulation of metabolic syndrome-related inflammation by cocoa. *Mol. Nutr. Food Res.* **2013**, *57*, 948–961. [CrossRef] [PubMed]
- 37. Magrone, T.; Russo, M.A.; Jirillo, E. Cocoa and dark chocolate polyphenols: From biology to clinical applications. *Front. Immunol.* **2017**, *8*, 677. [CrossRef] [PubMed]
- 38. Badrie, N.; Bekele, F.; Sikora, E.; Sikora, M. Cocoa agronomy, quality, nutritional, and health aspects. *Crit. Rev. Food Sci. Nutr.* **2015**, *55*, 620–659. [CrossRef] [PubMed]
- 39. Cerri, M.; Reale, L.; Zadra, C. Metabolite Storage in *Theobroma cacao* L. Seed: Cyto-Histological and Phytochemical Analyses. *Front. Plant Sci.* **2019**, *10*, 1599. [CrossRef]
- 40. Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. *Signal Transduct. Target. Ther.* **2021**, *6*, 263. [CrossRef]
- 41. Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. *Immunity* **2019**, *51*, 27–41. [CrossRef]
- 42. Singh, N.; Baby, D.; Rajguru, J.P.; Patil, P.B.; Thakkannavar, S.S.; Pujari, V.B. Inflammation and cancer. Ann. Afr. Med. 2019, 18, 121–126. [CrossRef]
- 43. Kay, J.; Thadhani, E.; Samson, L.; Engelward, B. Inflammation-induced DNA damage, mutations, and cancer. *DNA Repair* **2019**, 83, 102673. [CrossRef]
- 44. Landskron, G.; De la Fuente, M.; Thuwajit, P.; Thuwajit, C.; Hermoso, M.A. Chronic inflammation and cytokines in the tumor microenvironment. *J. Immunol. Res.* **2014**, 2014, 149185. [CrossRef]
- 45. Sohrab, S.S.; Raj, R.; Nagar, A.; Hawthorne, S.; Paiva-Santos, A.C.; Kamal, M.A.; El-Daly, M.M.; Azhar, E.I.; Sharma, A. Chronic inflammation's transformation to cancer: A nanotherapeutic paradigm. *Molecules* **2023**, *28*, 4413. [CrossRef] [PubMed]
- 46. de Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. *Cancer Cell.* **2023**, *41*, 374–403. [CrossRef] [PubMed]

- 47. Fang, J.; Lu, Y.; Zheng, J.; Jiang, X.; Shen, H.; Shang, X.; Lu, Y.; Fu, P. Exploring the crosstalk between endothelial cells, immune cells, and immune checkpoints in the tumor microenvironment: New insights and therapeutic implications. *Cell Death Dis.* **2023**, 14, 586. [CrossRef] [PubMed]
- 48. Lavorgna, M.; Pacifico, S.; Nugnes, R.; Russo, C.; Orlo, E.; Piccolella, S.; Isidori, M. Theobroma cacao Criollo var. beans: Biological properties and chemical profile. *Foods* **2021**, *10*, 571. [CrossRef] [PubMed]
- 49. Fitriyani, N.; Sutjiati, R.; Arina, Y.M.D.A. Cytotoxicity test of cocoa bean extract (*Theobroma cacao* L.) fermented and unfermented Edel varieties against human gingival fibroblast cells. *Health Not.* **2021**, *5*, 363–367.
- 50. Arlorio, M.; Bottini, C.; Travaglia, F.; Locatelli, M.; Bordiga, M.; Coïsson, J.D.; Martelli, A.; Tessitore, L. Protective activity of *Theobroma cacao* L. phenolic extract on AML12 and MLP29 liver cells by preventing apoptosis and inducing autophagy. *J. Agric. Food Chem.* **2009**, *57*, 10612–10618. [CrossRef]
- 51. Preza, A.M.; Jaramillo, M.E.; Puebla, A.M.; Mateos, J.C.; Hernández, R.; Lugo, E. Antitumor activity against murine lymphoma L5178Y model of proteins from cacao (*Theobroma cacao* L.) seeds in relation with in vitro antioxidant activity. *BMC Complement. Altern. Med.* 2010, 10, 61. [CrossRef]
- 52. Carnésecchi, S.; Schneider, Y.; Lazarus, S.A.; Coehlo, D.; Gossé, F.; Raul, F. Flavanols and procyanidins of cocoa and chocolate inhibit growth and polyamine biosynthesis of human colonic cancer cells. *Cancer Lett.* **2002**, *175*, 147–155. [CrossRef]
- 53. Bauer, D.; de Abreu, J.P.; Oliveira, H.S.; Goes-Neto, A.; Koblitz, M.G.; Teodoro, A.J. Antioxidant activity and cytotoxicity effect of cocoa beans subjected to different processing conditions in human lung carcinoma cells. *Oxid. Med. Cell. Longev.* **2016**, 2016, 7428515. [CrossRef]
- 54. Wang, X.; Zhang, J.; Cock, I.E. Acai, cacao and maca extracts: Anticancer activity and growth inhibition of microbial triggers of selected autoimmune inflammatory diseases. *Pharmacogn. Commun.* **2016**, *6*, 204–214. [CrossRef]
- 55. Środa-Pomianek, K.; Michalak, K.; Palko-Łabuz, A.; Poła, A.; Dzięgiel, P.; Puła, B.; Świątek, P.; Wesołowska, O. Cytotoxic and multidrug resistance reversal activity of phenothiazine derivative is strongly enhanced by theobromine, a phytochemical from cocoa. *Eur. J. Pharmacol.* **2019**, 849, 124–134. [CrossRef] [PubMed]
- 56. Ranneh, Y.; Abu Bakar, M.F.; Md Akim, A.; Bin Baharum, Z.; Ellulu, M.S.; Fadel, A. Induction of apoptosis and modulation of caspase activity on MCF-7 human breast cancer cells by bioactive fractionated cocoa leaf extract. *Asian Pac. J. Cancer Prev.* 2023, 24, 2473–2483. [CrossRef] [PubMed]
- 57. Zainal, B.; Abdah, M.; Taufiq Yap, Y.; Roslida, A.; Mohd Redzuan, S.; Kasran, R. Bioactivity-guided fractionation of potent anti-cancer properties from non-edible tissues of *Theobroma cacao*. *Malays. Cocoa J.* **2016**, *9*, 170–181.
- 58. Sugimoto, N.; Miwa, S.; Hitomi, Y.; Nakamura, H.; Tsuchiya, H.; Yachie, A. Theobromine, the primary methylxanthine found in *Theobroma cacao*, prevents malignant glioblastoma proliferation by negatively regulating phosphodiesterase-4, extracellular signal-regulated kinase, Akt/mammalian target of rapamycin kinase, and nuclear factor-kappa B. *Nutr. Cancer* **2014**, *66*, 419–423. [CrossRef] [PubMed]
- 59. Martín, M.A.; Ramos, S.; Mateos, R.; Granado Serrano, A.B.; Izquierdo-Pulido, M.; Bravo, L.; Goya, L. Protection of human HepG2 cells against oxidative stress by cocoa phenolic extract. *J. Agric. Food Chem.* **2008**, *56*, 7765–7772. [CrossRef]
- 60. Baharum, Z.; Akim, A.M.; Taufiq-Yap, Y.H.; Hamid, R.A.; Kasran, R. In vitro antioxidant and antiproliferative activities of methanolic plant part extracts of *Theobroma cacao*. *Molecules* **2014**, *19*, 18317–18331. [CrossRef]
- 61. Taparia, S.S.; Khanna, A. Procyanidin-rich extract of natural cocoa powder causes ROS-mediated caspase-3 dependent apoptosis and reduction of pro-MMP-2 in epithelial ovarian carcinoma cell lines. *Biomed. Pharmacother.* **2016**, *83*, 130–140. [CrossRef]
- 62. Choi, J.; Yang, C.; Lim, W.; Song, G.; Choi, H. Antioxidant and apoptotic activity of cocoa bean husk extract on prostate cancer cells. *Mol. Cell. Toxicol.* **2022**, *18*, 1–11. [CrossRef]
- 63. Yahya, M.; Ginting, B.; Saidi, N. Anticancer and antiretroviral activities of methanolic extract from *Theobroma cacao* L pod husk: Focusing on the ethyl acetate partition. *F1000Research* **2022**, *11*, 1395. [CrossRef]
- 64. Ramiro, E.; Franch, A.; Castellote, C.; Pérez-Cano, F.; Permanyer, J.; Izquierdo-Pulido, M.; Castell, M. Flavonoids from *Theobroma cacao* down-regulate inflammatory mediators. *J. Agric. Food Chem.* **2005**, *53*, 8506–8511. [CrossRef]
- 65. Rahayu, B.; Baktiyani, S.C.; Nurdiana, N. *Theobroma cacao* increases cells viability and reduces IL-6 and sVCAM-1 level in endothelial cells induced by plasma from preeclamptic patients. *Pregnancy Hypertens.* **2016**, *6*, 42–46. [CrossRef] [PubMed]
- 66. Jean-Marie, E.; Bereau, D.; Poucheret, P.; Guzman, C.; Boudard, F.; Robinson, J.C. Antioxidative and immunomodulatory potential of the endemic French Guiana wild cocoa "Guiana". Foods 2021, 10, 522. [CrossRef] [PubMed]
- 67. Rossin, D.; Barbosa-Pereira, L.; Iaia, N.; Testa, G.; Sottero, B.; Poli, G.; Zeppa, G.; Biasi, F. A dietary mixture of oxysterols induces in vitro intestinal inflammation through TLR2/4 activation: The protective effect of cocoa bean shells. *Antioxidants* **2019**, *8*, 151. [CrossRef]
- 68. Lee, H.W.; Choi, I.W.; Ha, S.K. Immunostimulatory activities of theobromine on macrophages via the activation of MAPK and NF-κB signaling pathways. *Curr. Issues Mol. Biol.* **2022**, *44*, 4216–4228. [CrossRef] [PubMed]
- 69. Dugo, L.; Belluomo, M.G.; Fanali, C.; Russo, M.; Cacciola, F.; Maccarrone, M.; Sardanelli, A.M. Effect of cocoa polyphenolic extract on macrophage polarization from proinflammatory M1 to anti-inflammatory M2 state. *Oxid. Med. Cell. Longev.* **2017**, 2017, 6293740. [CrossRef] [PubMed]
- 70. Bitzer, Z.T.; Glisan, S.L.; Dorenkott, M.R.; Goodrich, K.M.; Ye, L.; O'Keefe, S.F.; Lambert, J.D.; Neilson, A.P. Cocoa procyanidins with different degrees of polymerization possess distinct activities in models of colonic inflammation. *J. Nutr. Biochem.* **2015**, *26*, 827–831. [CrossRef]

- 71. Ben Lagha, A.; Huacho, P.M.; Grenier, D. A cocoa (*Theobroma cacao* L.) extract impairs the growth, virulence properties, and inflammatory potential of *Fusobacterium nucleatum* and improves oral epithelial barrier function. *PLoS ONE* **2021**, *16*, e0252029. [CrossRef]
- 72. Ono, K.; Takahashi, T.; Kamei, M.; Mato, T.; Hashizume, S.; Kamiya, S.; Tsutsumi, H. Effects of an aqueous extract of cocoa on nitric oxide production of macrophages activated by lipopolysaccharide and interferon-gamma. *Nutrition* **2003**, *19*, 681–685. [CrossRef]
- 73. Iaia, N.; Rossin, D.; Sottero, B.; Venezia, I.; Poli, G.; Biasi, F. Efficacy of theobromine in preventing intestinal CaCo-2 cell damage induced by oxysterols. *Arch. Biochem. Biophys.* **2020**, *694*, 108591. [CrossRef]
- 74. Amorim, J.C.; Vriesmann, L.C.; Petkowicz, C.L.; Martinez, G.R.; Noleto, G.R. Modified pectin from *Theobroma cacao* induces potent pro-inflammatory activity in murine peritoneal macrophage. *Int. J. Biol. Macromol.* **2016**, 92, 1040–1048. [CrossRef]
- 75. Jenny, M.; Santer, E.; Klein, A.; Ledochowski, M.; Schennach, H.; Ueberall, F.; Fuchs, D. Cacao extracts suppress tryptophan degradation of mitogen-stimulated peripheral blood mononuclear cells. *J. Ethnopharmacol.* 2009, 122, 261–267. [CrossRef] [PubMed]
- 76. Persson, I.A.; Persson, K.; Hägg, S.; Andersson, R.G. Effects of cocoa extract and dark chocolate on angiotensin-converting enzyme and nitric oxide in human endothelial cells and healthy volunteers—A nutrigenomics perspective. *J. Cardiovasc. Pharmacol.* **2011**, 57, 44–50. [CrossRef] [PubMed]
- 77. Boriollo, M.F.G.; Alves, V.E.; Silva, T.A.; Silva, J.J.; Barros, G.B.S.; Dias, C.T.S.; Höfling, J.F.; Oliveira, N.M.S. Decrease of the DXR-induced genotoxicity and nongenotoxic effects of *Theobroma cacao* revealed by micronucleus assay. *Braz. J. Biol.* **2021**, *81*, 268–277. [CrossRef] [PubMed]
- 78. Giacometti, J.; Muhvić, D.; Pavletić, A.; Đudarić, L. Cocoa polyphenols exhibit antioxidant, anti-inflammatory, anticancerogenic, and anti-necrotic activity in carbon tetrachloride-intoxicated mice. *J. Funct. Foods* **2016**, 23, 177–187. [CrossRef]
- 79. Patil, P.P.; Kumar, P.; Khanal, P.; Patil, V.S.; Darasaguppe, H.R.; Bhandare, V.V.; Bhatkande, A.; Shukla, S.; Joshi, R.K.; Patil, B.M.; et al. Computational and experimental pharmacology to decode the efficacy of *Theobroma cacao* L. against doxorubicin-induced organ toxicity in EAC-mediated solid tumor-induced mice. *Front. Pharmacol.* **2023**, *14*, 1174867. [CrossRef]
- 80. Bisson, J.F.; Guardia-Llorens, M.A.; Hidalgo, S.; Rozan, P.; Messaoudi, M. Protective effect of Acticoa powder, a cocoa polyphenolic extract, on prostate carcinogenesis in Wistar-Unilever rats. *Eur. J. Cancer Prev.* **2008**, *17*, 54–61. [CrossRef]
- 81. Gu, Y.; Yu, S.; Park, J.Y.; Harvatine, K.; Lambert, J.D. Dietary cocoa reduces metabolic endotoxemia and adipose tissue inflammation in high-fat fed mice. *J. Nutr. Biochem.* **2014**, 25, 439–445. [CrossRef]
- 82. Izzuddin, A.F.A.; Nurkesuma, A.; No, J.K.; Timur, J.J. The potential of cocoa (*Theobroma cacao* L.) pods extract in periodontal dressing to rabbit gingival wound healing. *Sci. Coop. Med. Work* **2015**, 1–16. Available online: http://med-scoop.org/medPapers/2015/IWDN-2015/2.Izzuddin.pdf (accessed on 7 November 2024).
- 83. Dare, C.A.; Onwumelu, R.N.; Oyedapo, O.O. Biochemical studies on the effects of polyphenols from fermented and unfermented acetone extracts of cocoa (*Theobroma cacao* L.) seeds on antioxidant enzymes of streptozotocin-induced diabetic rats. *Niger. J. Biochem. Mol. Biol.* **2013**, *28*, 45–59.
- 84. Rahayu, Y.C.; Setiawatie, E.M.; Rahayu, R.P.; Sakinah, N.N.; Kusumawardani, B.; Gunadi, A.; Ryandhana, P.H. Effects of cocoa pod husk extract (*Theobroma cacao* L.) on alveolar bone in experimental periodontitis rats. *Trends Sci.* 2023, 20, 6535. [CrossRef]
- 85. Oyeleke, S.A.; Ajayi, A.M.; Umukoro, S.; Aderibigbe, A.O.; Ademowo, O.G. Anti-inflammatory activity of *Theobroma cacao* L. stem bark ethanol extract and its fractions in experimental models. *J. Ethnopharmacol.* **2018**, 222, 239–248. [CrossRef] [PubMed]
- 86. Irondi, E.A.; Olanrewaju, S.; Oboh, G.; Olasupo, F.; Boligon, A.A. Inhibitory potential of cocoa leaves polyphenolics-rich extract on xanthine oxidase and angiotensin 1-converting enzyme. *J. Biol. Act. Prod. Nat.* **2017**, *7*, 39–51. [CrossRef]
- 87. Pérez-Berezo, T.; Ramírez-Santana, C.; Franch, A.; Ramos-Romero, S.; Castellote, C.; Pérez-Cano, F.J.; Castell, M. Effects of a cocoa diet on an intestinal inflammation model in rats. *Exp. Biol. Med.* **2012**, 237, 1181–1188. [CrossRef] [PubMed]
- 88. Lee, K.W.; Kundu, J.K.; Kim, S.O.; Chun, K.S.; Lee, H.J.; Surh, Y.J. Cocoa polyphenols inhibit phorbol ester-induced superoxide anion formation in cultured HL-60 cells and expression of cyclooxygenase-2 and activation of NF-kappaB and MAPKs in mouse skin in vivo. *J. Nutr.* 2006, 136, 1150–1155. [CrossRef]
- 89. Żyżelewicz, D.; Zakłos-Szyda, M.; Juśkiewicz, J.; Bojczuk, M.; Oracz, J.; Budryn, G.; Miśkiewicz, K.; Krysiak, W.; Zduńczyk, Z.; Jurgoński, A. Cocoa bean (*Theobroma cacao* L.) phenolic extracts as PTP1B inhibitors, hepatic HepG2 and pancreatic β-TC3 cell cytoprotective agents and their influence on oxidative stress in rats. *Food Res. Int.* **2016**, *89*, 946–957. [CrossRef]
- 90. Osukoya, O.; Fadaka, A.; Adewale, O.; Oluloye, O.; Ojo, O.; Ajiboye, B.; Adewumi, D.; Kuku, A. In vitro anthelmintic and antioxidant activities of the leaf extracts of *Theobroma cacao* L. *AIMS Agric. Food* **2019**, *4*, 568–577. [CrossRef]
- 91. Chehelgerdi, M.; Chehelgerdi, M.; Allela, O.Q.B.; Pecho, R.D.C.; Jayasankar, N.; Rao, D.P.; Thamaraikani, T.; Vasanthan, M.; Viktor, P.; Lakshmaiya, N.; et al. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. *Mol. Cancer* 2023, 22, 169. [CrossRef]
- 92. Cheng, X.; Xie, Q.; Sun, Y. Advances in nanomaterial-based targeted drug delivery systems. *Front. Bioeng. Biotechnol.* **2023**, 11, 1177151. [CrossRef]
- 93. Sun, L.; Liu, H.; Ye, Y.; Lei, Y.; Islam, R.; Tan, S.; Tong, R.; Miao, Y.B.; Cai, L. Smart nanoparticles for cancer therapy. *Signal Transduct. Target. Ther.* **2023**, *8*, 418. [CrossRef]
- 94. Oehler, J.B.; Rajapaksha, W.; Albrecht, H. Emerging applications of nanoparticles in the diagnosis and treatment of breast cancer. *J. Pers. Med.* **2024**, *14*, 723. [CrossRef]

- 95. Garg, P.; Pareek, S.; Kulkarni, P.; Salgia, R.; Singhal, S.S. Nanoengineering solutions for cancer therapy: Bridging the gap between clinical practice and translational research. *J. Clin. Med.* **2024**, *13*, 3466. [CrossRef] [PubMed]
- 96. Zhu, F.D.; Hu, Y.J.; Yu, L.; Zhou, X.G.; Wu, J.M.; Tang, Y.; Qin, D.L.; Fan, Q.Z.; Wu, A.G. Nanoparticles: A hope for the treatment of inflammation in CNS. *Front. Pharmacol.* **2021**, *12*, 683935. [CrossRef] [PubMed]
- 97. Huang, Y.; Guo, X.; Wu, Y.; Chen, X.; Feng, L.; Xie, N.; Shen, G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: Prevention and treatment. *Signal Transduct. Target. Ther.* **2024**, *9*, 34. [CrossRef] [PubMed]
- 98. Chiang, M.C.; Yang, Y.P.; Nicol, C.J.B.; Wang, C.J. Gold nanoparticles in neurological diseases: A review of neuroprotection. *Int. J. Mol. Sci.* **2024**, 25, 2360. [CrossRef] [PubMed]
- 99. Auffinger, B.; Morshed, R.; Tobias, A.; Cheng, Y.; Ahmed, A.U.; Lesniak, M.S. Drug-loaded nanoparticle systems and adult stem cells: A potential marriage for the treatment of malignant glioma? *Oncotarget* **2013**, *4*, 378–396. [CrossRef]
- 100. Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles' physicochemical properties on responses in biological systems. *Polymers* **2023**, *15*, 1596. [CrossRef]
- 101. Chowdhury, N.R.; MacGregor-Ramiasa, M.; Zilm, M.; Majewski, P.; Vasilev, K. 'Chocolate' silver nanoparticles: Synthesis, antibacterial activity and cytotoxicity. *J. Colloid Interface Sci.* **2016**, 482, 151–158. [CrossRef]
- 102. Nasrollahzadeh, M.; Sajadi, S.M.; Rostami-Vartooni, A.; Bagherzadeh, M. Green synthesis of Pd/CuO nanoparticles by *Theobroma cacao* L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free Heck coupling reaction under aerobic conditions. *J. Colloid Interface Sci.* 2015, 448, 106–113. [CrossRef]
- 103. Roy Chowdhury, N.; Cowin, A.J.; Zilm, P.; Vasilev, K. "Chocolate" gold nanoparticles—One pot synthesis and biocompatibility. *Nanomaterials* **2018**, *8*, 496. [CrossRef]
- 104. Fazal, S.; Jayasree, A.; Sasidharan, S.; Koyakutty, M.; Nair, S.V.; Menon, D. Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. *ACS Appl. Mater. Interfaces* **2014**, *6*, 8080–8089. [CrossRef]
- 105. Anooj, E.S.; Praseetha, P.K. Cocoa bean-extract mediated graphene quantum dots as antimicrobial, anticancer and plant growth regulators. *Int. J. Recent Technol. Eng.* **2019**, *8*, 269–273. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Remieri

Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine

Mehak Zahra, Heidi Abrahamse and Blassan P. George *

Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa; mehakzahra.zm@gmail.com (M.Z.); habrahamse@uj.ac.za (H.A.)

* Correspondence: blassang@uj.ac.za; Tel.: +27-11-559-6926

Abstract: This study emphasizes the critical role of antioxidants in protecting human health by counteracting the detrimental effects of oxidative stress induced by free radicals. Antioxidants found in various forms such as vitamins, minerals, and the phytochemicals abundant in fruits and vegetables—neutralize free radicals by stabilizing them through electron donation. Specifically, flavonoid compounds are highlighted as robust defenders, addressing oxidative stress and inflammation to avert chronic illnesses like cancer, cardiovascular diseases, and neurodegenerative diseases. This research explores the bioactive potential of flavonoids, shedding light on their role not only in safeguarding health, but also in managing conditions such as diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases. This review highlights the novel integration of South African-origin flavonoids with nanotechnology, presenting a cutting-edge strategy to improve drug delivery and therapeutic outcomes. This interdisciplinary approach, blending traditional wisdom with contemporary techniques, propels the exploration of flavonoid-mediated nanoparticles toward groundbreaking pharmaceutical applications, promising revolutionary advancements in healthcare. This collaborative synergy between traditional knowledge and modern science not only contributes to human health, but also underscores a significant step toward sustainable and impactful biomedical innovations, aligning with principles of environmental conservation.

Keywords: antioxidant; anti-inflammatory; flavonoids; natural products; nanoparticles; South Africa

1. Introduction

Antioxidants are a class of compounds that play a crucial role in maintaining human health by protecting the body from oxidative stress and the damage caused by harmful molecules known as free radicals. These molecules are highly reactive and can lead to cellular damage, DNA mutations, and various diseases if not properly controlled [1]. Antioxidants work by neutralizing free radicals, preventing them from causing harm to cells and tissues. They do this by donating electrons to stabilize these highly reactive molecules, thereby reducing their potential for damage [2]. There are numerous types of antioxidants, including vitamins (such as vitamin C and vitamin E), minerals (like selenium and zinc), and the phytochemicals found in fruits, vegetables, and other plant-based foods. Each type of antioxidant has its unique mechanism of action and may be more effective against specific types of free radicals [3]. Consuming antioxidant-rich foods is associated with a lowered risk of chronic diseases, such as heart disease, cancer, and neurodegenerative disorders [4].

Antioxidants are believed to help combat inflammation, support the immune system, and slow the aging process by reducing oxidative stress [4]. However, it is important to maintain a balanced intake of antioxidants as excessive supplementation can have negative effects and potentially disrupt the delicate balance of oxidative reactions within the body. A well-rounded diet that includes a variety of fruits, vegetables, and whole grains is typically the best way to ensure a healthy intake of antioxidants [5]. Antioxidants are essential

components of a healthy diet and play a significant role in protecting the body from the damaging effects of oxidative stress and free radicals, ultimately promoting overall human health and well-being [3].

The Phyllanthaceae family, a large group of flowering plants with approximately 1301 species, includes the genus Phyllanthus. This genus is widely distributed across the tropical and subtropical regions of Africa, America, Asia, and Australia [6,7]. Historically, Phyllanthus Cicca and P. Kirganelia have been the most significant species within the Phyllanthaceae family for treating various human ailments [8]. Phyllanthus plants are rich in phytochemical components important in pharmacology, including terpenoids, alkaloids, and polyphenolic substances such as phenolic acids, flavonoids, coumarins, lignins, stilbenes, and anthocyanins [9]. In South African flora, many plant species are rich sources of flavonoids, and traditional medicine systems have utilized these bioactive compounds for centuries [10]. Flavonoids are well known for their potent antioxidant properties, which play a crucial role in protecting cells and tissues from oxidative stress. This is essential for maintaining overall health and preventing various chronic diseases [11]. A high consumption of fruits and vegetables has been shown to correlate with a reduced incidence and mortality rate of various degenerative diseases, including cancer, cardiovascular disease, and immune dysfunction, according to multiple human cohort and case-control studies [12-14]. Alongside the vitamins and minerals found in fruits and vegetables, phytochemicals such as flavonoids and other phenolics may contribute to these protective benefits. Estimating flavonoid intake is an essential step toward understanding their protective effects against chronic diseases [15]. Although flavonoids are significant dietary antioxidants, the limited data on their comprehensive food composition has hindered the assessment of dietary intake in populations. A study by Chun et al. indicated that the highest daily mean intake of flavonoids came from tea (157 mg), citrus fruit juices (8 mg), wine (4 mg), and citrus fruits (3 mg) [16]. The efficacy of flavonoids is highly dependent on their bioavailability and metabolism. The concentration needed to achieve therapeutic effects can vary based on the form of flavonoid, how it is consumed, and individual differences in metabolism [11]. Flavonoid supplements are associated with numerous health benefits, including antioxidant, anti-inflammatory, and anticancer properties [17]. Regular consumption of flavonoid-rich supplements can help in reducing the risk of chronic diseases such as cardiovascular diseases, diabetes, and certain types of cancer [18]. Common flavonoid supplements include quercetin, EGCG, and genistein, which are available in various forms such as capsules, tablets, and powders. These supplements are often combined with other vitamins and minerals to enhance their health effects [19]. Kaempferol, also known as 3,4',5,7-tetrahydroxyflavone, is a flavonol with hydroxyl groups at positions 3, 5, 7, and 4' [20]. It can be found in various sources such as broccoli, cabbage, gooseberries, grapes, kale, strawberries, tomatoes, citrus fruits, brussels sprouts, and several medicinal plants. Kaempferol has demonstrated strong binding affinities with EGFR, surpassing those of the native ligand and even gefitinib [21]. Inflammation is a key factor in the development of many diseases, including cardiovascular diseases and cancer. Flavonoids have demonstrated anti-inflammatory properties that can help mitigate the inflammatory processes in the body [20]. The antioxidant and anti-inflammatory activities of flavonoids have also been associated with a reduced risk of cancer development. These compounds may inhibit the growth of cancer cells and promote apoptosis, making them a potential component in cancer prevention [22]. Flavonoids have also been linked to improving cardiovascular health due to their ability to reduce oxidative stress and inflammation in blood vessels. This can help prevent atherosclerosis and reduce the risk of heart diseases [23]. They have also shown promise in protecting the brain from oxidative damage and inflammation, potentially reducing the risk of neurodegenerative diseases such as Alzheimer's and Parkinson's [24]. Many studies have indicated that flavonoids may help manage diabetes by improving insulin sensitivity and reducing inflammation, making them valuable in the management of this chronic condition [25].

The study of flavonoids' bioactive properties may lead to the development of new pharmaceuticals or nutraceuticals for various health conditions, offering alternatives or complementary approaches to traditional therapies. By elucidating and harnessing the antioxidant and anti-inflammatory potential of flavonoids, researchers can contribute to the development of strategies and products that have a positive impact on human health and well-being [26]. Nanomedicine employs biocompatible nanomaterials for therapeutic interventions in the treatment of diverse diseases. Flavonoids derived from plant materials serve a dual role as reducing and electrostatic stabilizing agents, facilitating the green synthesis of metal nanomaterials. These synthesized nanomaterials demonstrate effective applications in treating cancer cells and combating pathogenic microbes [27]. Flavonoid-loaded nanoparticles have demonstrated effectiveness in preventing bacterial cell damage in oxidizing environments. The prolonged antioxidant effect observed in the oxidizing medium can be attributed to the gradual release of flavonoids from the nanoparticles. This is in contrast to free flavonoids, which are largely depleted in the initial phase due to their rapid consumption [28]. Encapsulating flavonoids in nanoparticles enhances their effects on cytokine production in vitro and in vivo. This is due to improved cellular uptake as nanoparticles, with their small size and surface traits, facilitate membrane interaction, resulting in higher intracellular flavonoid concentrations. Additionally, encapsulation protects flavonoids, increasing their stability and bioavailability, thereby preventing degradation and improving absorption and circulation [29]. Understanding the interaction between cell membranes and nanoparticles is crucial for evaluating the efficiency of flavonoid-loaded nanoparticles. Hydrophobic interactions between polyphenols and liposome membranes, for instance, enhance the encapsulation and delivery of polyphenols. This interaction facilitates efficient loading into liposomes, protecting the polyphenols from degradation and enhancing their stability during storage and transport [29].

This review focuses on novel studies about the treatment potential of flavonoids and their fusion with nanotechnology, presenting a cutting-edge approach that could revolutionize drug delivery and improve therapeutic outcomes. Integrating traditional wisdom with contemporary techniques not only enriches our comprehension of these compounds, but it also facilitates their efficient utilization in nanomedicine.

2. South African Flora: A Rich Source of Flavonoids

The geographical distribution of key plants in South Africa is remarkably diverse, and this diversity extends to the presence of various flavonoids within these plants (Table 1). Among these botanical treasures, Rooibos stands out as a beloved South African plant, thriving in the Western and Northern Cape regions. Rooibos is renowned for its rich flavonoid composition, and it is particularly characterized by flavonols like quercetin and aspalathin [30]. Indigenous South African communities have traditionally used rooibos, such as the Khoi and San, for centuries, as shown in Table 1. It has been consumed as an herbal infusion for its refreshing taste and potential health benefits [31]. Rooibos tea is abundant in flavonoids like aspalathin and nothofagin, which are known for their potent antioxidant properties. These flavonoids help neutralize free radicals, reducing oxidative stress and preventing cellular damage [31]. Research indicates that the flavonoids in rooibos tea can enhance lipid profiles and lower blood pressure, contributing to cardiovascular health. Regular consumption of rooibos tea may aid in the prevention of cardiovascular diseases. Aspalathin, a distinctive flavonoid in rooibos, has shown promise in regulating blood sugar levels by improving insulin sensitivity and reducing fasting glucose levels, making it a beneficial dietary supplement for diabetes management [32]. Cyclopia intermedia is indigenous to South Africa, and it particularly thrives in the fynbos biome spanning the Western and Eastern Cape provinces. This area boasts diverse flora and rich biodiversity, making it a prime habitat for the Cyclopia species, which are widely cultivated for the production of honeybush tea [33]. This plant is also utilized to create a sweet herbal infusion known for its therapeutic effects, including soothing coughs and easing respiratory issues like tuberculosis, pneumonia, and catarrh [33]. In the arid landscapes of South

Africa, another notable indigenous species, Hoodia gordonii, finds its habitat. While Hoodia gordonii is primarily recognized for its appetite-suppressing properties, it also possesses flavonoids such as quercetin and kaempferol [34]. Hoodia gordonii has a history of use by San Bushmen in South Africa as an appetite suppressant during long hunting trips [35]. Hoodia contains flavonoid compounds that might contribute to weight management by reducing caloric intake and supporting weight loss. Although mainly recognized for its appetite suppression, it is also thought to boost energy levels, though scientific evidence for this effect is limited [36]. The South African region is also home to various cycad species, and these plants often harbor flavonoids among their diverse phytochemical constituents. Traditional uses of cycads among South African indigenous communities include the consumption of certain species as a starchy food source, although this practice has raised conservation concerns [37]. Notably, Pelargonium sidoides, commonly referred to as Umckaloabo, is a medicinal plant native to South Africa. It is celebrated for its flavonoidrich composition, particularly in the form of quercetin derivatives [38]. Pelargonium sidoides has been traditionally used by South African communities, including the Zulu and Xhosa, for its medicinal properties in the treatment of respiratory infections [38]. Additionally, the South African region is host to *Sceletium tortuosum*, a plant with a historical and cultural significance. Sceletium tortuosum, which is native to this region, contains mesembrine alkaloids, which are a distinctive type of flavonoid [39]. Sceletium tortuosum has a long history of traditional use among indigenous South African communities, such as the San and Khoi, as a mood-enhancing and stress-reducing herb [40]. These diverse plant species and their flavonoid-rich compositions underscore the unique botanical wealth of South Africa and its importance in the study of flavonoids within a variety of ecological and pharmacological contexts.

Table 1. Diversity of South African plant species and their flavonoid-rich compositions.

Plant Species	Flavonoids	Traditional Uses	References	
Rooibos (Aspalathus linearis)	Flavonols like quercetin and aspalathin			
Cyclopia intermedia (Honey bush)	Various flavonoids	Soothing coughs and easing respiratory issues like tuberculosis, pneumonia, and catarrh	[33]	
Hoodia gordonii	Quercetin, kaempferol	Appetite-suppressing properties	[34,35]	
Cycads (Various species)	Various flavonoids among diverse phytochemical constituents	Consumption as a starchy food source, raising conservation concerns	[37]	
Pelargonium sidoides (Umckaloabo)	Quercetin derivatives	Treating respiratory infections	[38]	
Sceletium tortuosum	Mesembrine alkaloids (distinctive flavonoid type)	Mood enhancement and stress reduction	[40]	

3. Antioxidant Potential of Flavonoids

Antioxidants, such as flavonoids, in preventing oxidative stress-related diseases, are supported by various studies that highlight their impact on mitigating cellular damage and disease development. Free radicals, or ROS, are inherently unstable molecules generated by living organisms as part of routine cellular metabolism. When there is a tilt in the equilibrium between oxidants and antioxidants in favor of oxidants, this condition is referred to as oxidative stress [41]. Flavonoids are potent antioxidants with multiple mechanisms that contribute to their effectiveness in neutralizing free radicals and preventing oxidative damage in the body. Flavonoids act as free radical scavengers, neutralizing reactive oxygen species (ROS) through their ability to donate hydrogen atoms or electrons [42]. In cardiovascular diseases, flavonoids help to improve endothelial function and reduce inflammation by scavenging free radicals [43]. Some flavonoids exhibit metal chelation properties, binding

to transition metals such as iron and copper, which can otherwise catalyze the generation of free radicals. This chelation inhibits metal-induced oxidative stress [44]. Flavonoids possess the capability to hinder the activity of enzymes that generate reactive species like xanthine oxidase and NADPH oxidase, thereby diminishing the production of ROS [45]. Additionally, flavonoids have the ability to restore other antioxidants such as vitamin C and vitamin E, thus bolstering the body's overall antioxidant defense system [46]. In vitro studies focusing on South African flavonoids have unveiled their robust antioxidant capabilities through various experimental setups and assessments. Research conducted by Oyedemi et al. examined the antioxidant potential of South African plant extracts rich in flavonoids using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assays, demonstrating significant radical scavenging activity [47]. Studies by Firuzi et al. further explored the antioxidant activity of South African flavonoids through ferric-reducing antioxidant power (FRAP) assays, indicating their capacity to reduce ferric ions, a marker of antioxidant potential [48]. In an investigation by Aderogba et al., South African plant extracts, particularly flavonoid-rich ones, were tested for their total antioxidant capacity, demonstrating significant antioxidant properties through various in vitro assays [49]. The fermented leaves and stems of Cyclopia intermedia are utilized to create Honeybush tea, a traditional herbal infusion native to South Africa. This plant is also processed into a sweet herbal drink known for its therapeutic properties, including soothing coughs and easing respiratory conditions like tuberculosis, pneumonia, and catarrh. Honeybush tea is reputed to be low in tannins and being caffeine-free while also containing a range of antioxidants [33]. Marnewick et al. explored the antioxidant characteristics of several South African herbal teas, notably rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.), both of which contain distinctive flavonoids like aspalathin and mangiferin [31]. Another study indicated that honeybush tea, brewed from Cyclopia intermedia, contains a substantial quantity of polyphenols, which contribute to its various physiological benefits. Traditionally used as a medicinal drink, honeybush tea is now gaining recognition for its health-promoting properties, including its antioxidant activity and low caffeine content [50]. Several roles and the functional significance of flavonoids are illustrated in Figure 1.

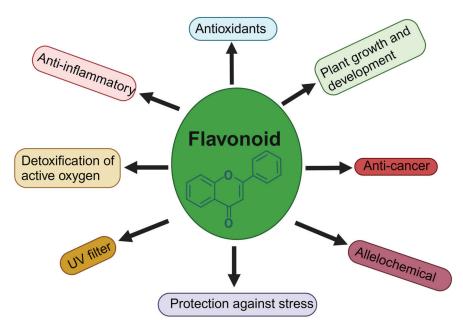


Figure 1. The role and functional significance of flavonoids: an illustrated overview.

3.1. Anti-Inflammatory and Anti-Oxidative Flavonoids

Oxidative stress stands as the primary underlying factor for conditions like cancer, diabetes, arthritis, rheumatoid arthritis, neurodegenerative disorders, hypertension, atherosclerosis, and chronic inflammatory ailments [51]. Research by Ciumarnean et al. suggested

a protective association between flavonoid intake and a reduced risk of cardiovascular diseases, attributing this effect to the antioxidant properties of flavonoids, particularly their ability to reduce oxidative stress in the cardiovascular system [52]. As shown in Figure 2, in the development of cardiovascular disease, a crucial inflammatory process occurs. Various research studies have connected inflammatory and immune responses to the vascular damage linked with atherosclerosis [53]. Oxidative stress triggers the elevation of enzymes like cyclooxygenase (COX) and lipoxygenase (LPO), which contribute to the release of chemokine factors such as interleukins [54,55]. Notably, certain polyphenols, especially quercetin, have demonstrated the ability to inhibit COX and LPO enzymes, potentially curbing this inflammatory cascade [56]. Polyphenols exhibit anti-inflammatory characteristics and can regulate inflammatory mediators in individuals at a heightened risk of cardiac disease (Figure 2) [57]. Flavonoids have become a focal point for specialists due to their diverse potential benefits. Research on these compounds is intricate and time-consuming because of their varied molecular structures. However, several studies have proposed that dietary polyphenols could be advantageous as a supplementary approach in preventing and treating chronic inflammatory conditions [57,58]. Studies, such as those by Meng-zhen, demonstrate the potential of flavonoids in mitigating oxidative stress and inflammation in neurodegenerative diseases, thereby suggesting a role in preventing conditions like Alzheimer's and Parkinson's [59]. Flavonoids have shown promise in cancer prevention due to their antioxidative and anti-inflammatory properties. Flavonoids function as signaling molecules that regulate cell growth, trigger apoptosis, and decrease the production of reactive oxygen species. These capabilities offer potential alternative strategies for both treating and preventing cancer [60]. Quercetin, a naturally occurring flavonoid present in numerous fruits and vegetables, has demonstrated diverse biological effects in experimental models. Among its observed effects is the alleviation of key symptoms associated with asthma, including bronchial hyperactivity, mucus production, and airway inflammation (Figure 2) [61]. The impact of flavonoids on oxidative stress and diabetes has been explored in previous studies, indicating that these antioxidants can help reduce oxidative stress in diabetes by scavenging free radicals and modulating key signaling pathways [62]. The World Health Organization identified cardiovascular disease (CVD) as the leading cause of death worldwide in 2019. Previous research has indicated differences in the composition of the gut microbiome between individuals with and without CVD, and it has been suggested that flavonoids may reduce the risk of heart disease [63].

The body initiates inflammation as a normal biological response to tissue injury, microbial pathogen infection, and chemical irritation. This process involves the migration of immune cells from blood vessels, releasing mediators at the site of damage. Following this, inflammatory cells are recruited, and there is a release of ROS, reactive nitrogen species (RNS), and proinflammatory cytokines to eliminate foreign pathogens and aid in tissue repair. Typically, normal inflammation is a quick and self-limiting process, but if resolution is aberrant and inflammation persists, it can contribute to the development of various chronic disorders [64]. Persistent inflammation and oxidative stress play crucial roles in the development of obesity, cancer, and neurodegenerative diseases. Flavonoids are gaining recognition as promising therapeutic agents for these conditions, given their antiinflammatory and antioxidant properties [60]. Several flavonoids, including hesperidin, apigenin, luteolin, and quercetin, have been documented for their anti-inflammatory and analgesic properties. These flavonoids may specifically impact the function of enzyme systems that play a crucial role in the initiation of inflammatory processes, particularly tyrosine and serine-threonine protein kinases [65]. Flavonoids exert their kinase inhibition by competitively binding with ATP at the catalytic sites of these enzymes. The targeted enzymes play crucial roles in signal transduction and cell activation processes, particularly within the immune system's cells. Research indicates that flavonoids have the capability to inhibit the expression of isoforms of inducible nitric oxide synthase, cyclooxygenase, and lipoxygenase. These enzymes are responsible for generating significant amounts of nitric oxide, prostanoids, leukotrienes, and other inflammatory mediators, including cytokines,

chemokines, and adhesion molecules [66]. Elisha et al. [67] conducted an in vitro study on acetone leaf extracts from nine selected plants, revealing significant antioxidant, anti-inflammatory, and anti-arthritic properties. This research aligns with traditional assertions regarding the efficacy of these South African medicinal plants in addressing conditions such as arthritis, infections, rheumatism, and inflammation. The identified plants exhibit potential for becoming therapeutic agents in the treatment of inflammation and other autoimmune disorders.

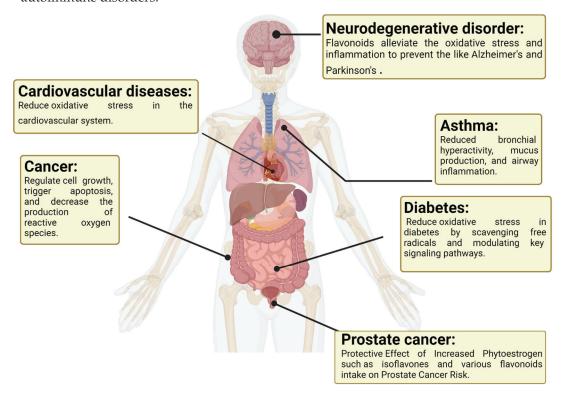


Figure 2. Flavonoids prevent oxidative stress-related diseases.

Natural compounds, including flavonoids, exhibit neuroprotective capabilities, likely attributed to their capacity to regulate the inflammatory responses implicated in neurodegenerative diseases [68]. Numerous studies have proposed a potential neuroprotective and anti-inflammatory function of plant extracts that are rich in flavonoids. For instance, the anti-inflammatory potential of honey flavonoid extract (HFE) was evaluated using N13 microglia cells stimulated by lipopolysaccharide. In this model, HFE (at flavonoid concentrations of 0.5 and 1 mg/mL) significantly reduced the generation of pro-inflammatory mediators, specifically inhibiting the expression of inducible nitric oxide synthase (iNOS) mRNA and protein levels. Additionally, HFE demonstrated a notable suppression in the production of both tumor necrosis factor- α (TNF- α) and interleukin-1 β (IL-1 β) [69]. As shown in Figure 3, flavonoids have been demonstrated to exhibit anti-inflammatory effects by modulating immune cell function, reducing chemokine and COX-2 expression, suppressing cytokine release, and inhibiting pro-inflammatory transcription factors such as PI3K/Akt and IKK/JNK [42,70]. A recent study highlighted the potential of encapsulated flavonoids in modulating cytokine activity in various in vitro and in vivo models. Encapsulated flavonoids can influence cytokine activity differently, depending on the flavonoid type, cell line, concentration, and treatment duration. Some studies have shown the downregulation of cytokines like IL-1 β , IL-6, TNF- α , and IL-8, while others have noted the upregulation of IL-10. Encapsulated flavonoids often have a more significant impact on cytokine activity compared to their non-encapsulated counterparts [29]. Flavonoids can modulate various cell signaling pathways involved in oxidative stress, inflammation, and apoptosis. These pathways can be differentially regulated in cancer and non-cancerous

conditions. For example, in non-cancerous cells, flavonoids can activate the Nrf2 pathway, leading to the upregulation of antioxidant defenses. In cancer cells, flavonoids might inhibit the NF-κB pathway, reducing cell survival and proliferation [71]. The therapeutic effects of flavonoids, particularly their modulation of ROS, differ between cancerous and non-cancerous conditions due to variations in cellular redox states, metabolic requirements, and signaling pathways [72]. In cancerous cells, the redox balance is often disrupted, leading to elevated levels of ROS [2,73]. These elevated ROS levels can promote cancer cell proliferation, survival, and metastasis through various signaling pathways, such as the MAPK, PI3K/Akt, and NF-κB pathways [74]. Flavonoids can modulate these pathways by reducing ROS levels, thereby inhibiting cancer cell growth and inducing apoptosis [75]. For example, quercetin has been shown to induce apoptosis in cancer cells by modulating the PI3K/Akt pathway and reducing ROS levels [76]. On the other hand, in non-cancerous cells, flavonoids can help maintain redox homeostasis and protect against oxidative stress-induced damage. This protective effect is particularly beneficial in conditions such as cardiovascular diseases, neurodegenerative disorders, and aging, where oxidative stress plays a key role [77]. Flavonoids like kaempferol and epicatechin have been found to enhance antioxidant defenses and reduce ROS levels in non-cancerous cells, thereby preventing cellular damage and promoting overall health [75]. Despite the promising therapeutic potential, several challenges need addressing for the effective utilization of South African flavonoids in clinical settings. The standardization of extraction processes, identification of optimal dosages, and clarification of potential interactions with conventional medications are crucial areas that require attention. Future research should focus on unraveling the specific mechanisms of action of different South African flavonoids, considering their interactions within complex cellular pathways. Moreover, the exploration of synergistic effects among flavonoids and with other bioactive compounds present in South African plants is a promising avenue for future investigations.

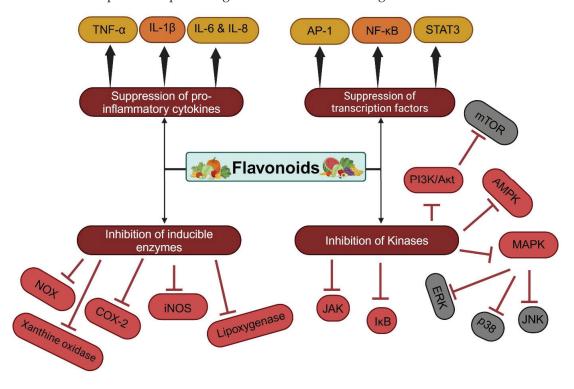


Figure 3. The targets of flavonoids in inflammatory processes.

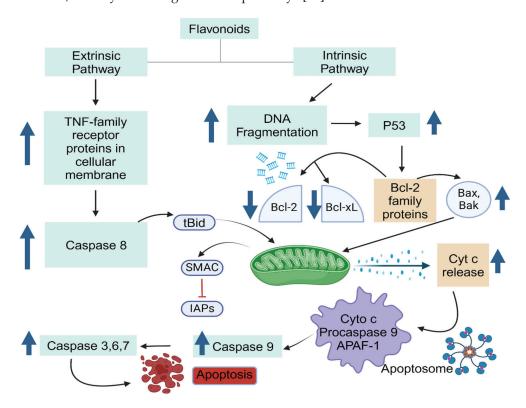
3.2. Anti-Cancer Effects of Flavonoids

Flavonoids have been consistently shown in various studies to possess the capacity to neutralize free radicals, modulate cellular metabolism, and mitigate the risk of diseases associated with oxidative stress [78]. Numerous studies have suggested that a variety of

flavonoids demonstrate anticancer properties. Despite this, the precise molecular mechanisms underlying these effects remain incompletely understood. Cancer originates from internal factors such as oxidative stress, hypoxia, genetic mutations, and deficient apoptotic function [70]. Studies by Kopustinskiene et al. [75] have emphasized the role of flavonoids in reducing oxidative stress and preventing DNA damage, which are critical factors in cancer development. The role of oxidative stress in initiating cancer is well established, and potent antioxidants have the potential to impede the progression of carcinogenesis. The effectiveness of an antioxidant compound to act as an anticancer agent relies on its ability to neutralize oxygen radicals and act as an inhibitor. Diets abundant in radical scavengers have the capacity to reduce the cancer-promoting effects of certain radicals [79]. Among the most common genetic abnormalities in human cancers are mutations in the p53 gene. Inhibiting the expression of p53 may halt the progression of cancer cells in the G2-M phase of the cell cycle. In human breast cancer cell lines, flavonoids have been shown to effectively decrease the expression of the mutant p53 protein, bringing it down to nearly undetectable levels [80]. External factors contributing to its development include exposure to stress, pollution, smoking, radiation, and ultraviolet rays [81]. Cancer cells exhibit distinctive traits, including modified metabolism, disrupted cell cycles, frequent genetic mutations, resilience against immune responses, persistent inflammation, development of metastases, and stimulation of angiogenesis [82]. External factors contributing to its development include exposure to stress, pollution, smoking, radiation, and ultraviolet rays [81,82]. Flavonoids display a diverse range of anticancer properties, influencing the activities of enzymes involved in scavenging ROS. They contribute to cell cycle arrest, promote apoptosis and autophagy, and inhibit the proliferation and invasiveness of cancer cells [75,83,84]. When the balance of pro-oxidant activities and the antioxidant defense within cells is disrupted, there is a rise in ROS production, resulting in the accumulation of free radicals [83]. ROS primarily originate in the mitochondrial electron transport chain as byproducts of the oxidative phosphorylation in cells [85]. The increased levels of ROS contribute to oxidative stress, which plays a role in the onset of inflammatory processes associated with various degenerative diseases and cancer. Flavonoids exhibit a dual role in maintaining ROS homeostasis: they function as antioxidants under normal conditions and serve as potent pro-oxidants in cancer cells, activating apoptotic pathways [86,87]. Flavonoids exhibit direct ROS-scavenging capabilities and can chelate metal ions by stabilizing free radicals through the presence of phenolic hydroxyl groups [88,89]. The indirect antioxidant effects of flavonoids are associated with the activation of antioxidant enzymes, as well as the inhibition of pro-oxidant enzymes and phase II detoxification enzymes. Both antioxidant and pro-oxidant activities contribute to the anticancer effects of flavonoids [2]. A recent in vivo study suggested that a specific polyphenolic compound found in green tea, which consists mainly of flavanol and proanthocyanidin components, effectively prevents the formation of skin tumors in mice. Additionally, it showed that, for the first time, certain fractions that are extracted from rooibos and honeybush, using a method involving ethyl acetate, also protect against the tumor promotion induced by TPA (a chemical compound) in mouse skin. Their findings indicate a significant reduction in the number of tumors, a decrease in their size, and a delay in their formation [90]. Another study suggested that rooibos and honeybush extracts, like green tea extracts, disrupt cell growth by affecting mitochondrial function, causing mitochondrial membrane depolarization. They inhibit cell proliferation at lower concentrations and induce apoptosis at higher concentrations, targeting precancerous cells. The anticancer effects of green tea and rooibos extracts primarily involve monomeric flavonoids, while honeybush extracts, rich in polymeric proanthocyanidins, alter cell growth parameters and often exhibit protective effects with their monomeric polyphenols. These herbal teas' ability to prevent cancer is influenced by specific interactions between polyphenols and cells, which vary between extracts and contribute to their unique anticancer properties when compared to green tea [91]. Genistein, an isoflavone, facilitates the arrest of breast cancer MDA-MB-231 and MCF-7 cells at the G2/M phase, leading to a subsequent apoptosis dependent on ROS [92]. As shown in Table 2, daidzein

induces apoptosis in MCF-7 breast cancer cells by generating ROS [93]. Hesperetin, a flavanone, triggers apoptosis in gall bladder carcinoma [94], esophageal cancer [95], hepatocellular carcinoma [96], and human breast carcinoma MCF-7 cells [97]. This effect is achieved by activating the mitochondrial apoptotic pathway through increased ROS production. Naringenin, another flavanone, exhibits anticancer effects on choriocarcinoma JAR and JEG 3 cell lines by inducing ROS generation and activating signaling pathways [98]. Additionally, it initiates an apoptotic cascade in human epidermoid carcinoma A431 cells [99]. In prostate cancer PC3 and LNCaP cell lines, naringenin suppresses proliferation and migration, induces apoptosis, and generates ROS (Table 2) [100]. An increased intake of phytoestrogens, such as isoflavones and various flavonoids, demonstrates a protective effect against the risk of prostate cancer [101]. Moreover, naringenin has demonstrated the ability to decrease the generation of ROS while augmenting the activity of superoxide dismutase, catalase, and glutathione in chronic diseases and cancer [102]. The pro-oxidant properties of cocoa catechins and procyanidins have been observed to induce apoptotic morphological changes and DNA damage, leading to apoptosis in epithelial the ovarian cancer cells OAW42 and OVCAR3 [103]. Flavonoids appear to be significant anti-cancer agents by targeting receptor tyrosine kinases (RTKs) and influencing their downstream signaling pathways, such as MAPK, PI3K/Akt, and JAK/STAT [104]. The development of various cancers may be linked to the activation of specific proto-oncogenes, such as EGFR. EGFR is widely distributed in mammalian epithelial cells and binds to epidermal growth factor (EGF) or tumor necrosis factor (TNF) [105,106]. A study by Chen et al. found that quercetin reduces cervical cancer cell viability, promotes G2/M phase cell cycle arrest, induces apoptosis, and inhibits cell migration and invasion. The activation of the EGFR and ERK pathways has been observed, with both kinases markedly activated by quercetin. Inhibition of these pathways using afatinib (EGFR inhibitor) and U0126 (ERK inhibitor) enhances apoptosis and cell cycle arrest, suggesting that EGFR and ERK activation may counteract the anticancer effects of quercetin [107]. In HepG2 cells, cocoa polyphenolic extract activates the ERK1/2 pathway, enhancing the activities of glutathione peroxidase and reductase [108]. Additionally, cocoa catechins and procyanidins provides protection to Caco2 cells against induced oxidative stress, reducing ROS production and preventing cellular death [109]. The antioxidant properties of cocoa flavanols have demonstrated beneficial effects in safeguarding against colon cancer [110]. Recent studies have indicated that quercetin reduces the proliferation of hepatocellular carcinoma HepG2 cells by decreasing intracellular ROS levels [111]. Moreover, it has been shown to increase ROS production and the number of apoptotic cells in human gastric cancer AGS and human breast cancer MCF-7 cells [112]. Kaempferol, a flavonol, impedes the growth of bladder cancer EJ cells by inducing apoptosis and causing S phase arrest through the modulation of ROS levels [113]. In colorectal cancer cell lines (HCT116, HCT15, and SW480), kaempferol activates caspases through ROS generation, leading to apoptosis [114]. Additionally, kaempferol exhibits cytotoxic effects on rat hepatocellular carcinoma cells by targeting mitochondria through ROS mediation [115]. The anticancer properties of flavones apigenin and luteolin in ovarian cancer cell lines (A2780, OVCAR-3, and SKOV-3) have been associated with alterations in ROS signaling and the promotion of apoptosis [116]. Apigenin also induces apoptosis in human cervical cancer-derived cell lines, including HeLa, SiHa, CaSki, and C33A, through increased ROS generation and the initiation of mitochondrial apoptotic pathways [117]. Flavone chrysin increases ROS and lipid peroxidation levels, leading to the death of choriocarcinoma (JAR and JEG3), bladder, and ovarian cancer (ES2 and OV90) cells [118,119]. The antioxidant activity of flavonoids has been explored in human studies, revealing a correlation between serum total antioxidant capacity and dietary anthocyanin consumption [120]. Cyanidin induces cell death in DU145 and LnCap human prostatic cancer cells through ROS modulation [121]. Cyanidin and delphinidin accelerates cellular ROS accumulation, suppresses glutathione reductase, and depletes glutathione, resulting in cytotoxicity in metastatic colorectal cancer cells (LoVo and LoVo/ADR) [122]. Quercetin and daidzin are two natural compounds currently receiving significant attention

for their anticancer properties [123]. Quercetin, a flavonoid primarily found in vegetables and fruits such as capers, lovage, dill, cilantro, and onions, has been reported to inhibit HeLa cells by blocking the phosphatidylinositol 3-kinase (PI3K)-Akt/PKB (protein kinase B) pathway. It also promotes apoptosis through the activation of the intrinsic apoptotic pathway, which includes the upregulation of Bax, Bad, Bid, caspase-9, and caspase-3, as well as the downregulation of Bcl-2 and Bcl-xL. Additionally, quercetin triggers cytochrome c release and inhibits NF-κB, PKC-δ, and ERK1/2 while activating AMPK and reducing uPA/uPAR, MMP-9, and MMP-2 to hinder cell migration and invasion [124-126]. Daidzin, a glycoside form of the flavonoid daidzein and found in soy isoflavones, has been noted for its anticancer effects in the early stages of prostate cancer development and for reducing the risk of postmenopausal breast cancer [127]. It is also known to inhibit telomerase activity by forming hydrogen bonds with the base of the G-quadruplex [128,129]. A recent study by Zubair et al. revealed that daidzin is more cytotoxic and selective on T47D and HeLa cell lines than quercetin, likely due to its glucose units forming hydrogen bonds with specific amino acid residues. Docking results have supported this, showing lower binding energy for daidzin compared to quercetin [130].


Table 2. Anticancer effects and the mechanism of action of various flavonoids.

Flavonoids	Cancer Type	Cell Line	Effect	Mechanism	References
Genistein	Breast cancer	MDA-MB-231 and MCF-7	G2/M phase arrest, Apoptosis	ROS dependency	[92]
Daidzein	Breast cancer	MCF-7	Apoptosis induction	ROS generation	[93]
Hesperetin	Gall bladder, esophageal, hepatocellular, and breast cancer	MCF-7	Apoptosis trigger	Mitochondrial pathway, ROS production	[94–97]
Naringenin	Choriocarcinoma, epidermoid carcinoma, and prostate cancer	JAR, JEG 3 A431, PC3 and LNCaP	Anticancer effects	ROS generation, apoptotic pathways	[98–100]
Cocoa Catechins/Procyanidins	Ovarian cancer	OAW42 and OVCAR3	Apoptosis	DNA damage, apoptotic changes	[103]
Cocoa Catechins/Procyanidins	Adenocarcinoma	Caco2	Oxidative Stress Protection	Reduced ROS production	[109]
Cocoa Polyphenolic Extract	Liver cancer	HepG2	ERK1/2 pathway activation	Increased antioxidant enzyme activity	[108]
Quercetin	Liver cancer	HepG2	Chemo preventive properties	Reduced proliferation, decreased ROS levels	[111]
Quercetin	Gastric adenocarcinoma and breast cancer	AGS and MCF-7	Apoptosis induction	Increased ROS production	[112]
Kaempferol	Bladder cancer	EJ	Growth inhibition	Apoptosis, S phase arrest, ROS modulation	[113]
Kaempferol	Colorectal cancer	HCT116, HCT15, and SW480	Apoptosis activation	Caspase activation, ROS generation	[114]
Kaempferol	Hepatocellular carcinoma	HepG2	Cytotoxic effects	Mitochondrial targeting, ROS mediation	[115]

Table 2. Cont.

Flavonoids	Cancer Type	Cell Line	Effect	Mechanism	References
Apigenin	Ovarian cancer	A2780, OVCAR-3, and SKOV-3	Apoptosis promotion	ROS signaling alteration	[116]
Apigenin	Cervical cancer	HeLa, SiHa, CaSki, and C33A	Apoptosis activation	ROS generation, mitochondrial pathway	[117]
Chrysin	Choriocarcinoma, bladder cancer, and ovarian cancer	JAR, JEG3, ES2 and OV90	Induction of death	Increased ROS, lipid peroxidation	[118,119]
Cyanidin	Prostate cancer	DU145 and LnCap	Induced cell death	ROS modulation	[121]
Cyanidin and Delphinidin	Colorectal cancer	LoVo and LoVo/ADR	Cytotoxic effects	ROS accumulation	[122]

Cancer cells often display resistance to apoptosis, a cellular process typically initiated by various signal transduction pathways and involves proapoptotic proteins such as caspases and the Bcl-2 family [131,132]. As shown in Figure 4, there are two primary signaling pathways of apoptosis: the extrinsic pathway, which is associated with the tumor necrosis factor (TNF) superfamily and is predominantly mediated by caspase 8; and the intrinsic pathway, also known as the mitochondrial pathway, which involves the Bcl-2 family proteins triggering the activation of caspases 9, 3, and 7 (Figure 4) [70]. In cancer cells, there is often an upregulation of oncogenic genes like c-Myc, promoting cellular proliferation and suppressing p53 function. Additionally, antiapoptotic proteins from the Bcl-2 family are activated, while proapoptotic proteins and caspases may be downregulated [133]. Flavonoids have the potential to intervene in apoptotic signaling cascades, thereby activating cell death pathways [75].

Figure 4. Flavonoid targets in the extrinsic and intrinsic apoptosis pathways: key molecules and signaling cascades.

3.3. Anti-Hypertensive Effects of Flavonoids

Cardiovascular disease is the leading cause of death worldwide. Several key risk factors contribute to these conditions, including high blood pressure, aging, obesity, dyslipidemia, a sedentary lifestyle, smoking, stress, and poor lifestyle choices [134]. Nitric oxide released from endothelium plays a vital role in controlling vascular tone and blood pressure. Nitric oxide exerts its effects by triggering the cGMP-protein kinase G pathway in vascular smooth muscle cells. The activation of this pathway stimulates potassium channels, leading to membrane hyperpolarization and reduced intracellular calcium influx, which ultimately results in vasodilation. Protein kinase G achieves this effect by phosphorylating myosin light chains, thereby reducing the contractility of smooth muscles in blood vessels [135,136].

Flavones, a subgroup of flavonoids rich in luteolin, lower blood pressure by initiating and activating the cAMP/protein kinase A pathway. This pathway subsequently activates nitric oxide synthase, leading to an elevated concentration of endothelial nitric oxide. The resulting vasodilation is regulated by potassium and calcium channels [92,137]. The blood pressure-lowering effects of flavonols, such as kaempferol and quercetin, are achieved through modulation of the renin-angiotensin-aldosterone system, enhancement of the endothelial function, and regulation of smooth muscle contraction in blood vessels [138,139]. These mechanisms are attributed to their capability to activate nitric oxide-synthase 3, leading to increased plasma levels of nitric oxide. The enhancement of endothelial function is achieved by inhibiting the response of smooth muscle cells in blood vessels to endothelin-1 [140,141]. The dietary intake of quercetin varies across different countries. Estimated flavonoid consumption ranges from 50 to 800 mg per day, with quercetin making up approximately 75% of this intake. This variation largely depends on the consumption of fruits, vegetables, and tea. In vitro studies involving endothelial denudation have shown that the antihypertensive effects of quercetin and kaempferol rely on nitric oxide synthesized in the endothelium. This conclusion was drawn from the significant reduction in the vasodilator activity that was observed of these two flavonols when the endothelium was removed [142,143]. An in vivo study by Manach et al. [144] demonstrated that dietary flavonols, specifically quercetin and rutin, are absorbed and present in rat plasma as conjugated metabolites at concentrations around 115 µmol/L, and they also exhibit significant antioxidant properties, particularly in inhibiting LDL oxidation. Another study by Edwards et al. showed that quercetin administered for 4 weeks at a dose of 730 mg/day to individuals with prehypertension and stage 1 hypertension resulted in a reduction in blood pressure, but it did not affect the oxidative stress parameters in blood and urine [145].

In contrast to quercetin, naringenin, a member of the flavanone class, demonstrates vasodilatory effects even in the absence of the endothelium. This is due to its ability to activate potassium channels, especially those that are calcium-activated and voltage-dependent. Naringenin's blood pressure-lowering effects are a result of membrane hyperpolarization and the relaxation of vascular smooth muscle, which are both influenced by calcium-activated potassium channels [146]. A study on hypertensive rats demonstrated that epicatechin's antihypertensive mechanism involves decreasing superoxide production in the aorta and left ventricle, as well as in enhancing nitric oxide-synthase activity [147].

Soy isoflavones are structurally like human estrogen, which is believed to contribute to their beneficial role in preventing hypertension in menopausal women. Daidzein induces vasodilation through mechanisms similar to other flavonoids, but it also uniquely stimulates the production of prostaglandins [148]. Genistein's antihypertensive effects are achieved by inhibiting the tyrosine kinase Pyk2, which regulates calcium ion channels and activates signaling pathways [149]. Additionally, genistein helps reduce pulmonary hypertension by decreasing smooth muscle hypertrophy in pulmonary arteries [150].

3.4. Anti-Microbial Effects of Flavonoids

Flavonoids demonstrate broad-spectrum antimicrobial activity against bacteria, fungi, and viruses [151]. They achieve this by disrupting microbial cell membranes, inhibiting nucleic acid synthesis, and interfering with microbial metabolism [152]. A recent study

identified four compounds—pectolinaringenin (1), (\pm) -4′,5,7-trimethoxy flavanone (2), 5-hydroxy-3,7,4′-trimethoxyflavone (3), and 3,5,7-trihydroxy-4′-methoxyflavone (4)—from the South African weed *Chromolaena odorata*. Compounds 2 and 3 exhibited promising antimicrobial activity against *E. coli*, *S. aureus*, *K. pneumoniae*, *A. fumigatus*, and *C. neoformans*, with minimum inhibitory concentrations (MIC) between 0.016 and 0.125 mg/mL, which is comparable to gentamicin, ciprofloxacin, and amphotericin B. These compounds also demonstrated good anti-biofilm and metabolic inhibition activities but weak anti-adhesion effects. They showed low toxicity to human and animal cells, with selectivity indexes between 1 and 12.625, indicating higher toxicity to microbial strains. These findings suggest that Compounds 2 and 3 could be potential leads for developing prophylactic treatments and anti-infective drugs against urinary tract infection [153].

To comprehend the mechanisms through which dietary flavonoids exert their effects in the body, it is essential to identify the specific chemical forms of their various metabolites that are present in systemic circulation, as these are the physiologically active forms [154]. Dietary flavonoids are primarily found in their glycoside forms. However, in plasma, glycosides are rare due to the deglycosylation process that occurs in both the small and large intestines, which vary based on the type of sugar moiety [155–157]. In the small intestine, two enzymes act as β-glucosidases against flavonoid monoglucosides [158]. Lactase-phlorizin hydrolase (LPH), a brush border-associated enzyme, hydrolyzes lactose into glucose and galactose. Day et al. discovered that LPH also hydrolyzes quercetin 3-O-glucoside (Q3G), quercetin 4'-O-glucoside (Q4'G), and the monoglucosides of genistein and daidzein to produce corresponding aglycons in vitro [159]. The other enzyme, cytosolic β-glucosidase (CBG), located in enterocytes, shows broad specificity and hydrolyzes Q4'G, genistein 7-O-glucoside (genistin), and daidzein 7-O-glucoside (daidzin), but not quercetin 3.4'-O-diglucoside, Q3G, or quercetin 3-O-rhamnoglucoside (rutin), using cell-free extracts from the human intestine and liver [160]. Before CBG can hydrolyze these glucosides, they are taken up into the cell via the sodium-glucose co-transporter type 1 (SGLT1), as evidenced by studies using human Caco-2 cells and SGLT1-transfected rodent G6D3 cells [161]. In individuals with lactase deficiency, plasma levels of isoflavone metabolites are initially lower but eventually become like those in lactase-sufficient individuals, likely due to compensation by the intestinal microbiota. Isoflavone glucosides are primarily hydrolyzed by CBG in cell-free extracts of the human intestine and liver, with LPH playing a lesser role compared to rats [162]. Recently, calycosin-7-O-glucoside, a methylated isoflavone, was identified as a novel substrate for SGLT1 but not for LPH in rats [163]. Therefore, deglycosylation in the small intestine is crucial for enhancing the bioavailability of flavonoid monoglucosides. Nevertheless, the intestinal microbiota can often compensate for the absence of this process, ensuring sufficient hydrolysis and absorption of these compounds [164]. In recent years, numerous studies have highlighted the dual role of the gut microbiota in maintaining host health. Gut-resident bacteria produce various metabolites and bioproducts essential for protecting host and gut homeostasis. Conversely, during pathological dysbiosis, certain microbiota subpopulations can expand and produce high levels of toxins, leading to inflammation and tumorigenesis [165]. Flavonoids such as quercetin, epigallocatechin gallate (EGCG), and genistein have been demonstrated to alter the composition of the microbiota within the tumor microenvironment, resulting in changes in immune response and tumor growth [166]. A study by Maheswari et al. demonstrated that titanium dioxide nanoparticles modified with extracts from Plectranthus amboinicus (Karpooravalli), Phyllanthus niruri (Keezhanelli), and Euphorbia hirta (Amman Pacharisi) were synthesized using the hydrothermal method. X-ray diffraction revealed the anatase nature of the samples, and TEM analysis showed an increase in particle size for the bio-modified samples. These nanoparticles exhibited significant antibacterial activity against both Gram-negative (Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus and Streptococcus mutans), with Plectranthus amboinicus-modified titanium dioxide nanoparticles showing the best results [167].

4. Flavonoid-Mediated Nanoparticles and Their Efficacy

South Africa is home to approximately 10% of the world's plant species, with over 3000 species recognized for their significant medicinal properties [23]. Medicinal plants have a longstanding role in traditional medicine, with over 80% of the South African population depending on them for primary health care [168]. Medicinal plants provide diverse therapeutic benefits due to their rich array of secondary metabolites, including flavonoids, alkaloids, phenolics, terpenoids, tannins, glycosides, quinones, steroids, and saponins [169]. Flavonoids are commonly formulated into various food supplements to leverage their health benefits, enhancing both their bioavailability and efficacy for consumers. Formulating flavonoids into these supplements can improve their bioavailability, which is often low due to poor solubility and rapid metabolism [19]. Techniques such as nanoparticle encapsulation, liposomal delivery, and complexation with cyclodextrins are used to increase the absorption and stability of flavonoids [170]. Several phytochemical and pharmacological studies of these plants and their derivatives have shown impressive in vitro activity but less in vivo efficacy. To enhance their effectiveness, a growing body of literature is suggesting combining traditional medicinal plants with nanotechnology [171].

Despite this rich biodiversity and the potential advantages of plant-mediated metallic nanoparticles (MNPs), the use of South African medicinal plants for MNP synthesis remains largely underexplored [172]. Recently, several indigenous South African plants, including Salvia africana-lutea, Sutherlandia frutescens, Galenia Africana, Catharanthus roseus, Hypoxis hemerocallidea, Cotyledon orbiculata, and Aspalathus linearis, have been employed in the synthesis of MNPs [173]. These nanoparticles, with sizes ranging from 5 to 50 nm, have demonstrated significantly higher antibacterial activities compared to their corresponding plant extracts [174,175]. Given the substantial potential of plants as alternative sources of reducing agents with enhanced bioactivity, ongoing research into the rich medicinal plant reserves of South Africa is crucial [176]. Nanoparticles can exploit the enhanced permeability and retention (EPR) effect, which is a phenomenon where nanoparticles tend to accumulate in tumor tissue much more than in normal tissues due to the leaky vasculature and poor lymphatic drainage in tumors. Quercetin nanoparticles have shown higher accumulation in tumor sites compared to free quercetin [177]. Nanoparticles can be engineered with surface modifications to target specific tissues or cells, enhancing their distribution to desired sites within the body. Flavonoid nanoparticles functionalized with antibodies or ligands can target cancer cells specifically, improving therapeutic outcomes [178]. They can also increase the solubility of flavonoids that are poorly soluble in water, leading to better absorption in the gastrointestinal tract. Nanoparticles can shield flavonoids from the degradation caused by enzymes and acidic conditions in the gastrointestinal tract, enhancing their stability and bioavailability. Encapsulating flavonoids in polymeric nanoparticles has proven effective in preventing early degradation and boosting their therapeutic efficacy [179]. Nanoparticles not only protect flavonoids from degradation in the gastrointestinal tract, but also enable controlled release, maintaining therapeutic levels in the bloodstream over extended periods. For example, the sustained release of EGCG from nanoparticles has demonstrated enhanced bioavailability and prolonged antioxidant effects [180].

Green nanobiotechnology involves the creation of nanoparticles or nanomaterials using biological methods, harnessing the abilities of microorganisms, plants, viruses, or their components, like proteins and lipids, aided by biotechnological techniques [181]. Plants have served as natural remedies for various physiological disorders in traditional Eastern medicine, notably in Indian and Chinese practices, since ancient times. There is existing literature on the 'Green' synthesis of nanoparticles such as copper (Cu), gold (Au), nickel (Ni), platinum (Pt), titanium (Ti), selenium (Se), silver (Ag), and zinc (Zi) using plant resources [182]. These plant-based metal nanoparticles have demonstrated remarkable antimicrobial, anticancer, antidiabetic, anti-inflammatory, antioxidant, and immunomodulatory activities, as reported in previous studies [183,184]. Previous research has consistently indicated that the reduction and stabilization of metal ions during synthesis are attributed

to the presence of phytochemicals in plant materials. These phytochemicals encompass alkaloids, flavonoids, phenols, terpenoids, alcohols, sugars, and proteins [185,186]. While synthesizing MNPs using a singular active substance from plant extracts can aid in nanoparticle purification, additional research is necessary to explore the biomedical applications of such MNPs for treating specific diseases. Currently, there is limited literature available on the use of a single substance from plant extracts for MNP synthesis. Recent findings have emphasized the significant role of flavonoids, which are widely present in plant extracts, in the bio reduction of metal ions leading to nanoparticle formation [187,188]. A recent innovative study found that Karpooravalli-Keezhanelli-modified titanium dioxide nanoparticles demonstrated minimal cell viability at a concentration of 50 μg mL⁻¹, indicating excellent anticancer activity. Subsequent MTT assays on normal L929 cells showed these nanoparticles to be safer and less toxic. Therefore, Karpooravalli-Keezhanelli-modified titanium dioxide nanoparticles have potential as future anticancer drugs [167]. Table 3 provides a comprehensive overview of various nanoparticles (NPs) synthesized using different flavonoids, each exhibiting unique properties and potential applications. Quercetin-based silver and selenium nanoparticles (Ag-SeNPs) have a size range of 30-35 nm [189]. The selection of the nanocarrier is based on the structure of quercetin, specifically its 2-(3,4dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one configuration [29]. Quercetin can scavenge free radicals that are generated by metals. Mittal et al. proved quercetin is mainly responsible for the reduction and stabilization of metal ions. Interestingly, the aforementioned study confirmed quercetin-mediated bimetallic Ag-SeNPs possess higher therapeutic efficacy in terms of antioxidant, antimicrobial, and anticancer activities [189]. Kaempferol, a flavanol widely found in various plant sources, has been investigated for its involvement in the synthesis of gold nanoparticles (AuNPs). In a study conducted by Raghavan et al. [190], it was revealed that kaempferol plays a crucial role in the formation of AuNPs. Furthermore, the resulting nanoparticles exhibit considerable potential in the realm of cancer treatment, particularly showing promise in combating human breast cancer [190]. Apiin-coated AuNPs with a size of 21 nm display notable anticancer activity [191]. Proanthocyanidin-coated AuNPs, sized between 17 and 29 nm, exhibit efficient cardio-protective potential along with good biocompatibility [192]. Luteolin-conjugated silver nanoparticles (AgNPs) at size of 13 nm exhibit significant antimicrobial activity against Bacillus subtilis [193]. Baicalein, a major bioactive flavonoid, demonstrates significant synergistic effects when combined with tetracycline and β-lactams in the treatment of methicillin-resistant Staphylococcus aureus (MRSA). Additionally, it has been noted for its ability to mitigate quorum sensing-controlled virulence factors, particularly biofilm formation, in Pseudomonas aeruginosa [194]. In a study by Rajkumari et al. the synthesis of AuNPs mediated by baicalein was reported. Baicalein-based AuNPs at a size of 39 nm demonstrate antibiofilm activity against Pseudomonas aeruginosa [195]. Flavonoids from Dalbergia spinosa, when used in the synthesis of silver nanoparticles (AgNPs) at a size of 18 nm, exhibit both anti-inflammatory and antibacterial activities against Escherichia coli, P. aeruginosa, Staphylococcus aureus, and B. subtilis [196]. These findings highlight the versatility and diverse applications of bioactive compounds in nanoparticle synthesis. The nanoparticles show potential in areas such as cancer treatment, antimicrobial applications, and anti-inflammatory responses. The varied sizes and compositions of the nanoparticles also contribute to their unique functionalities, demonstrating the broad spectrum of possibilities in the field of nanomedicine and nanotechnology.

Table 3. Flavonoid-mediated nanomaterials and their sizes with applications in biomedicine.

Flavonoids Nanomaterial		Size (nm)	Biomedical Applications	References	
Quercetin	Ag-SeNPs	30–35 nm	Exhibit antioxidant, antimicrobial, and anticancer activities.	[189]	
Proanthocyanidin	AuNPs	17–29 nm	Efficient cardio-protective potential with good biocompatibility		
Luteolin	AgNPs	13 nm	Antimicrobial activity against B. subtilus	[193]	
Kaempferol	AuNPs	16.5 nm	Anticancer activity against human breast cancer.	[190]	
Apiin	AuNPs	21 nm	Anticancer activity	[191]	
Baicalein	AuNPs	39 nm	Antibiofilm activity against P. aeruginosa	[195]	
Flavonoids (Dalbergia spinosa)	AgNPs	18 nm	Anti-inflammatory and antibacterial (<i>E. coli</i> , <i>P. aeruginosa</i> , <i>S. aureus</i> , and <i>B. subtilis</i>) activities	[196]	

Numerous studies have explored the interactions between flavonoids and metal nanoparticles, particularly those involving Ag and Au, as well as the oxides of Fe, Zn, and Ti, resulting in materials with intriguing physicochemical and biological properties. Silver nanoparticles have shown promising antioxidant, antibacterial, antifungal, antiparasitic, antiviral, and anticancer properties. To investigate potential medical applications, silver nanoparticles have been functionalized with various flavonoids such as apigenin, catechin, EGCG, kaempferol, myricetin, 4',7-dihydroxyflavone, dihydromyricetin, hesperidin, and quercetin. Moreover, silver@quercetin nanoparticles have been studied as biocompatible and photostable aggregation-induced emission luminogens for the in situ and real-time monitoring of biomolecules and biological processes. In biological studies, silver nanoparticles combined with quercetin have been examined for their potential anti-inflammatory effects. Additionally, silver nanoparticles loaded with isoorientin have been investigated for their potential toxicity and their activity on enzymes related to type II diabetes and obesity [197]. In a 2021 study, Kollur et al. investigated the anticancer properties of luteolinfunctionalized zinc oxide nanoparticles (L-ZnONPs). These nanoparticles were synthesized by combining an aqueous solution of Zn(OAc)₂ with luteolin, followed by filtration of the resulting white precipitate, ethanol washing to eliminate impurities, and calcination of the final product [198]. Results suggest that the nanohybrid induces intrinsic cellular mechanisms leading to apoptosis and halts the cell cycle. Moreover, by downregulating MMP-2 and VE-cadherin expression, the nanoparticles suppress the migration and invasion of A549 cells [198]. In another investigation, Salaheldin et al. explored the potential application of three novel nano formulations of (-)-epigallocatechin-3-gallate (EGCG) as natural chemo preventive agents against DNA damage induced by ultraviolet beam (UVB) radiation in keratinocytes [199].

Gold nanoparticles (AuNPs), much like silver nanoparticles (AgNPs), have garnered significant attention since their discovery. This is primarily attributed to their straightforward synthesis, easy surface modification, and their broad spectrum of potential applications, particularly in the field of medical sciences [200]. Gold nanoparticles are frequently functionalized with flavonoid compounds to enhance their properties and expand their range of applications [201]. Gold nanorods integrated with metal–phenolic networks, which include EGCG, procyanidins (OPC), and tannic acid (TA), have demonstrated significantly accelerated wound healing and strong bactericidal effects when used with NIR irradiation. Similarly, quercetin-conjugated gold nanoparticles have shown both antibacterial and antioxidant activities. Additionally, gold nanoparticles coated with CHY, kaempferol, and quercetin have exhibited enhanced antibacterial efficacy against Gram-negative bacteria [202,203]. In a study by Sivakumar et al. [204], suggested silver nanoparticles (AgNPs) were phytosynthesized using leaf extract from *Phyllanthus urinaria L*. They proposed that polyols like flavones and catechins play a role in reducing silver ions to form AgNPs,

and they are supported by the disappearance of the C-O band at 1226 cm $^{-1}$ in IR spectra. The nanoparticles range in shape from cuboidal to orthorhombic, with sizes varying from 15 nm to 80 nm. Antimicrobial tests against *Escherichia coli, Salmonella typhi, Vibrio cholera, Pseudomonas aeruginosa,* and *Proteus mirabilis* showed strong bactericidal activity across all tested concentrations (100 to 400 μ g/mL). Maximum inhibition zones of 18 mm were observed against *V. cholera* at 400 μ g/mL, while the lowest activity was 8 mm against *P. mirabilis* at 100 μ g/mL. Further research is needed to determine the minimum inhibitory concentration (MIC) values for comprehensive efficacy assessment [204].

Flavonoid-modified metal nanoparticles exhibit their usefulness starting from the initial synthesis stage to advanced investigations in medical and pharmaceutical domains. Understanding various methods for synthesizing flavonoid–metal nanoparticle conjugates and hybrids, along with their characterization, biological attributes, and medical uses, offers insights into numerous possibilities. Numerous research outcomes have indicated that combining flavonoids with metal nanoparticles enhances their individual characteristics and potential applications.

5. Conclusions and Suggestions

In conclusion, this review highlights the significant potential of flavonoid-mediated nanoparticles, especially those derived from South African plant species, as promising therapeutic agents owing to their potent antioxidant and anti-inflammatory properties. The diverse flora in South Africa provide a rich source of these compounds, opening avenues for future research and development, particularly in the context of nanomedicine. Exploring the unique aspects of flavonoid-mediated nanoparticles, such as their size, structure, and interactions, presents novel dimensions for enhancing therapeutic efficacy.

Further investigations into the distinctive mechanisms of action, bioavailability, and potential synergistic effects of flavonoid-loaded nanoparticles across various plant species offer exciting prospects for the development of innovative therapies. Understanding these nanoparticles behavior and leveraging traditional knowledge with modern scientific approaches are crucial for unlocking their full potential in treating a spectrum of diseases.

Author Contributions: Conceptualization, M.Z.; writing—original draft preparation, M.Z. writing—review and editing, B.P.G. and H.A.; supervision, B.P.G. and H.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work is based on the research funded by the South African Research Chairs Initiative of the Department of Science and Technology and the National Research Foundation (NRF) of South Africa (Grant No. 98337), the South African Medical Research Council (Grant No. SAMRC EIP007/2021), as well as the grants received from the NRF Research Development Grants for Y-Rated Researchers (Grant No: 137788), the University Research Committee (URC), the University of Johannesburg, and the Council for Scientific Industrial Research (CSIR)-National Laser Centre (NLC).

Acknowledgments: The authors wish to sincerely thank the South African Research Chairs Initiative of the Department of Science and Technology, the National Research Foundation (NRF) of South Africa, and the South African Medical Research Council (SAMRC). The research reported in this review article was supported by the South African Medical Research Council (SAMRC) through its Division of Research Capacity Development under the Research Capacity Development Initiative, which received its funding from the South African National Treasury. The content and findings reported/illustrated are the sole deduction, view, and responsibility of the researchers and do not reflect the official position and sentiments of the SAMRC.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. *Pharmacogn. Rev.* **2010**, *4*, 118–126. [CrossRef] [PubMed]
- 2. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. *Int. J. Biochem. Cell Biol.* **2007**, *39*, 44–84. [CrossRef] [PubMed]

- 3. Services D of H & H. Antioxidants. Department of Health & Human Services. Available online: http://www.betterhealth.vic.gov. au/health/healthyliving/antioxidants (accessed on 7 July 2024).
- 4. Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. *Oxid. Med. Cell. Longev.* **2016**, 2016, 5276130. [CrossRef] [PubMed]
- 5. Salehi, B.; Martorell, M.; Arbiser, J.L.; Sureda, A.; Martins, N.; Maurya, P.K.; Sharifi-Rad, M.; Kumar, P.; Sharifi-Rad, J. Antioxidants: Positive or Negative Actors? *Biomolecules* **2018**, *8*, 124. [CrossRef] [PubMed]
- 6. Nisar, M.F.; He, J.; Ahmed, A.; Yang, Y.; Li, M.; Wan, C. Chemical Components and Biological Activities of the Genus *Phyllanthus*: A Review of the Recent Literature. *Molecules* **2018**, *23*, 2567. [CrossRef]
- 7. GBIF Backbone Taxonomy. Available online: https://www.gbif.org/dataset/d7dddbf4-2cf0-4f39-9b2a-bb099caae36c (accessed on 12 July 2024).
- 8. Sepeur, S. Nanotechnology: Technical Basics and Applications; Vincentz Network GmbH & Co KG: Hanover, Germany, 2008; 172p.
- 9. Kiran, K.R.; Swathy, P.S.; Paul, B.; Prasada, K.S.; Rao, M.R.; Joshi, M.B.; Rai, P.S.; Satyamoorthy, K.; Muthusamy, A. Untargeted metabolomics and DNA barcoding for discrimination of Phyllanthus species. *J. Ethnopharmacol.* **2021**, 273, 113928. [CrossRef] [PubMed]
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. *Molecules* 2022, 27, 2901. [CrossRef] [PubMed]
- 11. Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. *Am. J. Clin. Nutr.* **2004**, *79*, 727–747. [CrossRef] [PubMed]
- 12. Doll, R. An Overview of the epidemiological evidence linking diet and cancer. Proc. Nutr. Soc. 1990, 49, 119–131. [CrossRef]
- 13. Kyle, J.; Duthie, G. Nutritional Relevance of Flavonoids in Disease Prevention. Nat. Prod. Commun. 2006, 1, 1049–1060. [CrossRef]
- 14. Hertog, M.G.; Feskens, E.J.; Hollman, P.C.; Katan, M.B.; Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. *Lancet* **1993**, 342, 1007–1011. [CrossRef] [PubMed]
- 15. Hertog, M.G.L.; Kromhout, D.; Aravanis, C.; Blackburn, H.; Buzina, R.; Fidanza, F.; Giampaoli, S.; Jansen, A.; Menotti, A.; Nedeljkovic, S.; et al. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. *Arch. Intern. Med.* 1995, 155, 381–386. [CrossRef]
- 16. Chun, O.K.; Chung, S.J.; Song, W.O. Estimated Dietary Flavonoid Intake and Major Food Sources of U.S. Adults. *J. Nutr.* **2007**, 137, 1244–1252. [CrossRef]
- 17. Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. *Am. J. Clin. Nutr.* **2001**, *74*, 418–425. [CrossRef] [PubMed]
- 18. Khan, N.; Afaq, F.; Mukhtar, H. Cancer chemoprevention through dietary antioxidants: Progress and promise. *Antioxid. Redox Signal.* **2008**, *10*, 475–510. [CrossRef] [PubMed]
- 19. Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. *Am. J. Clin. Nutr.* **2005**, *81*, 230S–242S. [CrossRef] [PubMed]
- 20. Chen, A.Y.; Chen, Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. *Food Chem.* **2013**, *138*, 2099–2107. [CrossRef]
- 21. Wendlocha, D.; Krzykawski, K.; Mielczarek-Palacz, A.; Kubina, R. Selected Flavonols in Breast and Gynecological Cancer: A Systematic Review. *Nutrients* **2023**, *15*, 2938. [CrossRef] [PubMed]
- 22. Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. *Sci. World J.* **2013**, 2013, 162750. [CrossRef]
- 23. Rangel-Huerta, O.D.; Pastor-Villaescusa, B.; Aguilera, C.M.; Gil, A. A Systematic Review of the Efficacy of Bioactive Compounds in Cardiovascular Disease: Phenolic Compounds. *Nutrients* **2015**, *7*, 5177–5216. [CrossRef]
- 24. Spagnuolo, C.; Russo, M.; Bilotto, S.; Tedesco, I.; Laratta, B.; Russo, G.L. Dietary polyphenols in cancer prevention: The example of the flavonoid quercetin in leukemia. *Ann. N. Y. Acad. Sci.* **2012**, *1259*, 95–103. [CrossRef] [PubMed]
- 25. Khurana, S.; Venkataraman, K.; Hollingsworth, A.; Piche, M.; Tai, T.C. Polyphenols: Benefits to the Cardiovascular System in Health and in Aging. *Nutrients* **2013**, *5*, 3779–3827. [CrossRef] [PubMed]
- 26. Boyle, S.; Dobson, V.; Duthie, S.; Kyle, J.; Collins, A. Absorption and DNA protective effects of flavonoid glycosides from an onion meal. *Eur. J. Nutr.* **2000**, *39*, 213–223. [CrossRef] [PubMed]
- 27. Sathishkumar, P.; Gu, F.L.; Zhan, Q.; Palvannan, T.; Mohd Yusoff, A.R. Flavonoids mediated 'Green' nanomaterials: A novel nanomedicine system to treat various diseases—Current trends and future perspective. *Mater. Lett.* **2018**, 210, 26–30. [CrossRef]
- 28. Roy, P.; Parveen, S.; Ghosh, P.; Ghatak, K.; Dasgupta, S. Flavonoid loaded nanoparticles as an effective measure to combat oxidative stress in Ribonuclease A. *Biochimie* **2019**, *162*, 185–197. [CrossRef] [PubMed]
- 29. Stevens Barrón, J.C.; Chapa González, C.; Álvarez Parrilla, E.; De la Rosa, L.A. Nanoparticle-Mediated Delivery of Flavonoids: Impact on Proinflammatory Cytokine Production: A Systematic Review. *Biomolecules* **2023**, *13*, 1158. [CrossRef] [PubMed]
- 30. Joubert, E.; de Beer, D. Rooibos (*Aspalathus linearis*) beyond the farm gate: From herbal tea to potential phytopharmaceutical. *S. Afr. J. Bot.* **2011**, 77, 869–886. [CrossRef]
- 31. Marnewick, J.L.; Rautenbach, F.; Venter, I.; Neethling, H.; Blackhurst, D.M.; Wolmarans, P.; Macharia, M. Effects of rooibos (*Aspalathus linearis*) on oxidative stress and biochemical parameters in adults at risk for cardiovascular disease. *J. Ethnopharmacol.* **2011**, *133*, 46–52. [CrossRef] [PubMed]

- 32. Joubert, E.; Gelderblom, W.; Louw, A.; de Beer, D. South African herbal teas: *Aspalathus linearis*, Cyclopia spp. and Athrixia phylicoides—A review. *J. Ethnopharmacol.* **2008**, *119*, 376–412. [CrossRef]
- 33. Rejmánek, M. Cape plants: A conspectus of the Cape flora of South Africa. Divers. Distrib. 2001, 7, 303-304. [CrossRef]
- 34. Van Heerden, F. Hoodia gordonii: A natural appetite suppressant. J. Ethnopharmacol. 2008, 119, 434–437. [CrossRef] [PubMed]
- 35. Vermaak, I.; Hamman, J.H.; Viljoen, A.M. *Hoodia gordonii*: An up-to-date review of a commercially important anti-obesity plant. *Planta Medica* **2011**, 77, 1149–1160. [CrossRef] [PubMed]
- Tulp, O.; Harbi, N.A.; Mihalov, J.; DerMarderosian, A. Effect of Hoodia plant on food intake and body weight in lean and obese LA/Ntul//-cp rats. FASEB J. 2001, 15, A404.
- 37. Swart, C.; Rowswell, R.; Donaldson, J.; Barker, N. Population structure and survival of the critically endangered cycad Encephalartos latifrons in South Africa. S. Afr. J. Bot. 2019, 127, 80–90. [CrossRef]
- 38. Timmer, A.; Günther, J.; Motschall, E.; Rücker, G.; Antes, G.; Kern, W.V. Pelargonium sidoides extract for treating acute respiratory tract infections. *Cochrane Database Syst. Rev.* **2013**, CD006323. [CrossRef] [PubMed]
- 39. Gericke, N.; Viljoen, A.M. Sceletium—A review update. J. Ethnopharmacol. 2008, 119, 653-663. [CrossRef] [PubMed]
- 40. de Beer, S.; Campbell, J.; Leisegang, K.; Ma, X. A comparison between the anthropological and modern day uses of this indigenous herb. In Proceedings of the SA Medical Research Council 6th Annual Research Conference, 2012. Available online: https://repository.uwc.ac.za/handle/10566/6575?show=full (accessed on 24 July 2024).
- 41. Gupta, R.K.; Patel, A.K.; Shah, N.; Choudhary, A.K.; Jha, U.K.; Yadav, U.C.; Gupta, P.K.; Pakuwal, U. Oxidative stress and antioxidants in disease and cancer: A review. *Asian Pac. J. Cancer Prev.* **2014**, *15*, 4405–4409. [CrossRef]
- 42. Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [CrossRef]
- 43. Middleton, E., Jr.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. *Pharmacol. Rev.* **2000**, *52*, 673–751.
- 44. Szewczyk, K.; Bogucka-Kocka, A.; Vorobets, N.; Grzywa-Celińska, A.; Granica, S. Phenolic Composition of the Leaves of Pyrola rotundifolia L. and Their Antioxidant and Cytotoxic Activity. *Molecules* **2020**, *25*, 1749. [CrossRef]
- 45. Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases. *Physiol. Rev.* **2014**, *94*, 329–354. [CrossRef]
- 46. Gusti, A.M.T.; Qusti, S.Y.; Alshammari, E.M.; Toraih, E.A.; Fawzy, M.S. Antioxidants-Related Superoxide Dismutase (SOD), Catalase (CAT), Glutathione Peroxidase (GPX), Glutathione-S-Transferase (GST), and Nitric Oxide Synthase (NOS) Gene Variants Analysis in an Obese Population: A Preliminary Case-Control Study. *Antioxidants* 2021, 10, 595. [CrossRef]
- 47. Oyedemi, S.O.; Afolayan, A.J. Antibacterial and antioxidant activities of hydroalcoholic stem bark extract of Schotia latifolia Jacq. *Asian Pac. J. Trop. Med.* **2011**, 4, 952–958. [CrossRef] [PubMed]
- 48. Firuzi, O.; Lacanna, A.; Petrucci, R.; Marrosu, G.; Saso, L. Evaluation of the antioxidant activity of flavonoids by "ferric reducing antioxidant power" assay and cyclic voltammetry. *Biochim. Biophys. Acta (BBA)-Gen. Subj.* 2005, 1721, 174–184. [CrossRef]
- 49. Aderogba, M.A.; Okoh, E.K.; Idowu, T.O. Evaluation of the Antioxidant Activity of the Secondary Metabolites from Piliostigma reticulatum (DC.) Hochst. *J. Biol. Sci.* **2005**, *5*, 239–242.
- 50. Kamara, B.I.; Brandt, E.V.; Ferreira, D.; Joubert, E. Polyphenols from Honeybush Tea (*Cyclopia intermedia*). *J. Agric. Food Chem.* **2003**, *51*, 3874–3879. [CrossRef]
- 51. Aust, S.D.; Morehouse, L.A.; Thomas, C.E. Role of metals in oxygen radical reactions. *J. Free. Radic. Biol. Med.* **1985**, *1*, 3–25. [CrossRef]
- 52. Ciumărnean, L.; Milaciu, M.V.; Runcan, O.; Vesa, S.C.; Răchișan, A.L.; Negrean, V.; Perné, M.-G.; Donca, V.I.; Alexescu, T.-G.; Para, I.; et al. The Effects of Favonoids in Cardiovascular Diseases. *Molecules* **2020**, 25, 4320. [CrossRef]
- 53. Aviram, M.; Rosenblat, M. Macrophage-mediated oxidation of extracellular low density lipoprotein requires an initial binding of the lipoprotein to its receptor. *J. Lipid Res.* **1994**, *35*, 385–398. [CrossRef] [PubMed]
- 54. Abu-Amsha, R.; Croft, K.D.; Puddey, I.B.; Proudfoot, J.M.; Beilin, L.J. Phenolic content of various beverages determines the extent of inhibition of human serum and low-density lipoprotein oxidation *in vitro*: Identification and mechanism of action of some cinnamic acid derivatives from red wine. *Clin. Sci.* 1996, 91, 449–458. [CrossRef]
- 55. Ross, R. Atherosclerosis is an inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [CrossRef] [PubMed]
- 56. Ridker, P.M.; Brown, N.J.; Vaughan, D.E.; Harrison, D.G.; Mehta, J.L. Established and Emerging Plasma Biomarkers in the Prediction of First Atherothrombotic Events. *Circulation* **2004**, *109* (Suppl. 1), IV-6–IV-19. [CrossRef]
- 57. Quiñones, M.; Miguel, M.; Aleixandre, A. Beneficial effects of polyphenols on cardiovascular disease. *Pharmacol. Res.* **2013**, *68*, 125–131. [CrossRef]
- 58. Lapuente, M.; Estruch, R.; Shahbaz, M.; Casas, R. Relation of Fruits and Vegetables with Major Cardiometabolic Risk Factors, Markers of Oxidation, and Inflammation. *Nutrients* **2019**, *11*, 2381. [CrossRef] [PubMed]
- 59. Meng-Zhen, S.; Ju, L.; Lan-Chun, Z.; Cai-Feng, D.; Shu-Da, Y.; Hao-Fei, Y.; Wei-Yan, H. Potential therapeutic use of plant flavonoids in AD and PD. *Heliyon* **2022**, *8*, e11440. [CrossRef]
- 60. Ahn-Jarvis, J.H.; Parihar, A.; Doseff, A.I. Dietary Flavonoids for Immunoregulation and Cancer: Food Design for Targeting Disease. *Antioxidants* **2019**, *8*, 202. [CrossRef]
- 61. Fortunato, L.R.; Alves, C.D.F.; Teixeira, M.M.; Rogerio, A.P. Quercetin: A flavonoid with the potential to treat asthma. *Braz. J. Pharm. Sci.* **2012**, *48*, 589–599. [CrossRef]

- 62. Jung, M.; Park, M.; Lee, H.C.; Kang, Y.-H.; Kang, E.S.; Kim, S.K. Antidiabetic Agents from Medicinal Plants. *Curr. Med. Chem.* **2006**, *13*, 1203–1218. [CrossRef] [PubMed]
- 63. Flavonoid-Rich Food Could Improve Your Gut Microbiome and Lower Your Blood Pressure. Available online: https://www.sciencefocus.com/news/flavonoid-food-gut-microbiome-blood-pressure (accessed on 8 July 2024).
- 64. Pan, M.-H.; Lai, C.-S.; Ho, C.-T. Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 2010, 1, 15–31. [CrossRef]
- 65. Hunter, T. Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. *Cell* **1995**, *80*, 225–236. [CrossRef]
- 66. Tunon, M.J.; Garcia-Mediavilla, M.V.; Sanchez-Campos, S.; González-Gallego, J. Potential of flavonoids as anti-inflammatory agents: Modulation of pro-inflammatory gene expression and signal transduction pathways. *Curr. Drug Metab.* **2009**, *10*, 256–271. [CrossRef] [PubMed]
- 67. Elisha, I.L.; Dzoyem, J.-P.; McGaw, L.J.; Botha, F.S.; Eloff, J.N. The anti-arthritic, anti-inflammatory, antioxidant activity and relationships with total phenolics and total flavonoids of nine South African plants used traditionally to treat arthritis. *BMC Complement. Altern. Med.* **2016**, *16*, 307. [CrossRef] [PubMed]
- 68. Spagnuolo, C.; Moccia, S.; Russo, G.L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. *Eur. J. Med. Chem.* **2018**, *153*, 105–115. [CrossRef] [PubMed]
- 69. Candiracci, M.; Piatti, E.; Dominguez-Barragán, M.; García-Antrás, D.; Morgado, B.; Ruano, D.; Gutiérrez, J.F.; Parrado, J.; Castaño, A. Anti-inflammatory Activity of a Honey Flavonoid Extract on Lipopolysaccharide-Activated N13 Microglial Cells. *J. Agric. Food Chem.* **2012**, *60*, 12304–12311. [CrossRef] [PubMed]
- 70. Chirumbolo, S.; Bjørklund, G.; Lysiuk, R.; Vella, A.; Lenchyk, L.; Upyr, T. Targeting Cancer with Phytochemicals via Their Fine Tuning of the Cell Survival Signaling Pathways. *Int. J. Mol. Sci.* **2018**, *19*, 3568. [CrossRef] [PubMed]
- 71. Surh, Y.-J.; Kundu, J.K.; Na, H.-K. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. *Planta Medica* **2008**, 74, 1526–1539. [CrossRef] [PubMed]
- 72. Slika, H.; Mansour, H.; Wehbe, N.; Nasser, S.A.; Iratni, R.; Nasrallah, G.; Shaito, A.; Ghaddar, T.; Kobeissy, F.; Eid, A.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. *Biomed. Pharmacother.* **2022**, 146, 112442. [CrossRef] [PubMed]
- 73. Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? *Nat. Rev. Drug Discov.* **2009**, *8*, 579–591. [CrossRef] [PubMed]
- 74. Williams, R.J.; Spencer, J.P.E.; Rice-Evans, C. Flavonoids: Antioxidants or signalling molecules? *Free Radic. Biol. Med.* **2004**, *36*, 838–849. [CrossRef]
- 75. Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. *Nutrients* **2020**, *12*, 457. [CrossRef]
- 76. Gupta, S.C.; Hevia, D.; Patchva, S.; Park, B.; Koh, W.; Aggarwal, B.B. Upsides and downsides of reactive oxygen species for cancer: The roles of reactive oxygen species in tumorigenesis, prevention, and therapy. *Antioxid. Redox Signal.* **2012**, *16*, 1295–1322. [CrossRef]
- 77. Habauzit, V.; Morand, C. Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: An update for clinicians. *Ther. Adv. Chronic Dis.* **2012**, *3*, 87–106. [CrossRef]
- 78. Cassidy, A.; Minihane, A.M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. *Am. J. Clin. Nutr.* **2017**, *105*, 10–22. [CrossRef]
- 79. Kumar, S.; Chashoo, G.; Saxena, A.K.; Pandey, A.K. *Parthenium hysterophorus*: A Probable Source of Anticancer, Antioxidant and Anti-HIV Agents. *BioMed Res. Int.* **2013**, 2013, 810734. [CrossRef] [PubMed] [PubMed Central]
- 80. Lamson, D.W.; Brignall, M.S. Antioxidants and cancer, part 3: Quercetin. Altern. Med. Rev. J. Clin. Ther. 2000, 5, 196–208.
- 81. Blackadar, C.B. Historical review of the causes of cancer. World J. Clin. Oncol. 2016, 7, 54–86. [CrossRef]
- 82. Neagu, M.; Constantin, C.; Popescu, I.D.; Zipeto, D.; Tzanakakis, G.; Nikitovic, D.; Fenga, C.; Stratakis, C.A.; Spandidos, D.A.; Tsatsakis, A.M. Inflammation and Metabolism in Cancer Cell—Mitochondria Key Player. *Front. Oncol.* **2019**, *9*, 348. [CrossRef] [PubMed]
- 83. Rodríguez-García, C.; Sánchez-Quesada, C.; Gaforio, J.J. Dietary Flavonoids as Cancer Chemopreventive Agents: An Updated Review of Human Studies. *Antioxidants* **2019**, *8*, 137. [CrossRef] [PubMed]
- 84. Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. *Nutrients* **2018**, *10*, 1618. [CrossRef]
- 85. Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [CrossRef]
- 86. Hadi, S.M.; Asad, S.F.; Singh, S.; Ahmad, A. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. *IUBMB Life* **2000**, *50*, 167–171. [CrossRef] [PubMed]
- 87. Link, A.; Balaguer, F.; Goel, A. Cancer chemoprevention by dietary polyphenols: Promising role for epigenetics. *Biochem. Pharmacol.* **2010**, *80*, 1771–1792. [CrossRef] [PubMed]
- 88. Oliveira-Marques, V.; Marinho, H.S.; Cyrne, L.; Antunes, F. Modulation of NF-kappaB-dependent gene expression by H2O2: A major role for a simple chemical process in a complex biological response. *Antioxid. Redox Signal.* **2009**, *11*, 2043–2053. [CrossRef] [PubMed]
- 89. Fraga, C.G.; Galleano, M.; Verstraeten, S.V.; Oteiza, P.I. Basic biochemical mechanisms behind the health benefits of polyphenols. *Mol. Asp. Med.* **2010**, *31*, 435–445. [CrossRef] [PubMed]

- 90. Marnewick, J.; Joubert, E.; Joseph, S.; Swanevelder, S.; Swart, P.; Gelderblom, W. Inhibition of tumour promotion in mouse skin by extracts of rooibos (*Aspalathus linearis*) and honeybush (*Cyclopia intermedia*), unique South African herbal teas. *Cancer Lett.* **2005**, 224, 193–202. [CrossRef] [PubMed]
- 91. Magcwebeba, T.U.; Swart, P.; Swanevelder, S.; Joubert, E.; Gelderblom, W.C.A. In Vitro Chemopreventive Properties of Green Tea, Rooibos and Honeybush Extracts in Skin Cells. *Molecules* **2016**, *21*, 1622. [CrossRef]
- 92. Kaushik, S.; Shyam, H.; Agarwal, S.; Sharma, R.; Nag, T.C.; Dwivedi, A.K.; Balapure, A.K. Genistein potentiates Centchroman induced antineoplasticity in breast cancer via PI3K/Akt deactivation and ROS dependent induction of apoptosis. *Life Sci.* 2019, 239, 117073. [CrossRef] [PubMed]
- 93. Jin, S.; Zhang, Q.Y.; Kang, X.M.; Wang, J.X.; Zhao, W.H. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. *Ann. Oncol.* **2010**, *21*, 263–268. [CrossRef]
- 94. Pandey, P.; Sayyed, U.; Tiwari, R.K.; Siddiqui, M.H.; Pathak, N.; Bajpai, P. Hesperidin Induces ROS-Mediated Apoptosis along with Cell Cycle Arrest at G2/M Phase in Human Gall Bladder Carcinoma. *Nutr. Cancer* **2019**, *71*, 676–687. [CrossRef]
- 95. Wu, D.; Zhang, J.; Wang, J.; Li, J.; Liao, F.; Dong, W. Hesperetin induces apoptosis of esophageal cancer cells via mitochondrial pathway mediated by the increased intracellular reactive oxygen species. *Tumor Biol.* **2016**, *37*, 3451–3459. [CrossRef]
- 96. Zhang, J.; Song, J.; Wu, D.; Wang, J.; Dong, W. Hesperetin induces the apoptosis of hepatocellular carcinoma cells via mitochondrial pathway mediated by the increased intracellular reactive oxygen species, ATP and calcium. *Med. Oncol.* **2015**, 32, 101. [CrossRef]
- 97. Palit, S.; Kar, S.; Sharma, G.; Das, P.K. Hesperetin Induces Apoptosis in Breast Carcinoma by Triggering Accumulation of ROS and Activation of ASK1/JNK Pathway. *J. Cell. Physiol.* **2015**, 230, 1729–1739. [CrossRef]
- 98. Park, S.; Lim, W.; Bazer, F.W.; Song, G. Naringenin suppresses growth of human placental choriocarcinoma via reactive oxygen species-mediated P38 and JNK MAPK pathways. *Phytomedicine* **2018**, *50*, 238–246. [CrossRef]
- 99. Ahamad, S.; Siddiqui, S.; Jafri, A.; Ahmad, S.; Afzal, M. Arshad induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest. *PLoS ONE* **2014**, *9*, e110003. [CrossRef]
- 100. Lim, W.; Park, S.; Bazer, F.W.; Song, G. Naringenin-Induced Apoptotic Cell Death in Prostate Cancer Cells Is Mediated via the PI3K/AKT and MAPK Signaling Pathways. *J. Cell. Biochem.* **2017**, *118*, 1118–1131. [CrossRef]
- 101. Zhang, H.Y.; Cui, J.; Zhang, Y.; Wang, Z.L.; Chong, T.; Wang, Z.M. Isoflavones and Prostate Cancer: A Review of Some Critical Issues. *Chin. Med. J.* **2016**, 129, 341–347. [CrossRef]
- 102. Zaidun, N.H.; Thent, Z.C.; Latiff, A.A. Combating oxidative stress disorders with citrus flavonoid: Naringenin. *Life Sci.* **2018**, 208, 111–122. [CrossRef]
- 103. Taparia, S.S.; Khanna, A. Procyanidin-rich extract of natural cocoa powder causes ROS-mediated caspase-3 dependent apoptosis and reduction of pro-MMP-2 in epithelial ovarian carcinoma cell lines. *Biomed. Pharmacother.* **2016**, *83*, 130–140. [CrossRef]
- 104. Dev, S.S.; Farghadani, R.; Abidin, S.A.Z.; Othman, I.; Naidu, R. Flavonoids as receptor tyrosine kinase inhibitors in lung cancer. *J. Funct. Foods* **2023**, *110*, 105845. [CrossRef]
- 105. Zhang, W.; Gao, Y.; Jiang, Y.B.; Ping, L.B.; Cheng, H.; Zhang, J. EGFR promoter methylation detection in cervical cancer by a hybridization-fluorescence polarization assay. *Diagn. Mol. Pathol.* **2013**, 22, 102–106. [CrossRef]
- 106. Peng, Z.; Wang, Q.; Zhang, Y.; He, J.; Zheng, J. EBP50 interacts with EGFR and regulates EGFR signaling to affect the prognosis of cervical cancer patients. *Int. J. Oncol.* **2016**, 49, 1737–1745. [CrossRef]
- 107. Chen, X.; Xu, P.; Zhang, H.; Su, X.; Guo, L.; Zhou, X.; Wang, J.; Huang, P.; Zhang, Q.; Sun, R. EGFR and ERK activation resists flavonoid quercetin-induced anticancer activities in human cervical cancer cells in vitro. *Oncol. Lett.* **2021**, 22, 754. [CrossRef]
- 108. Martín, M.Á.; Serrano, A.B.G.; Ramos, S.; Pulido, M.I.; Bravo, L.; Goya, L. Cocoa flavonoids up-regulate antioxidant enzyme activity via the ERK1/2 pathway to protect against oxidative stress-induced apoptosis in HepG2 cells. *J. Nutr. Biochem.* **2010**, 21, 196–205. [CrossRef]
- 109. Rodríguez-Ramiro, I.; Martín, M.; Ramos, S.; Bravo, L.; Goya, L. Comparative effects of dietary flavanols on antioxidant defences and their response to oxidant-induced stress on Caco2 cells. *Eur. J. Nutr.* **2011**, *50*, 313–322. [CrossRef]
- 110. Martín, M.A.; Goya, L.; Ramos, S. Preventive Effects of Cocoa and Cocoa Antioxidants in Colon Cancer. *Diseases* **2016**, *4*, 6. [CrossRef]
- 111. Jeon, J.-S.; Kwon, S.; Ban, K.; Hong, Y.K.; Ahn, C.; Sung, J.-S.; Choi, I. Regulation of the Intracellular ROS Level Is Critical for the Antiproliferative Effect of Quercetin in the Hepatocellular Carcinoma Cell Line HepG2. *Nutr. Cancer* 2019, 71, 861–869. [CrossRef]
- 112. Shang, H.; Lu, H.; Lee, C.; Chiang, H.; Chu, Y.; Chen, A.; Lin, Y.; Chung, J. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells. *Environ. Toxicol.* **2018**, *33*, 1168–1181. [CrossRef]
- 113. Wu, P.; Meng, X.; Zheng, H.; Zeng, Q.; Chen, T.; Wang, W.; Zhang, X.; Su, J. Kaempferol Attenuates ROS-Induced Hemolysis and the Molecular Mechanism of Its Induction of Apoptosis on Bladder Cancer. *Molecules* **2018**, 23, 2592. [CrossRef]
- 114. Choi, J.-B.; Kim, J.-H.; Lee, H.; Pak, J.-N.; Shim, B.S.; Kim, S.-H. Reactive Oxygen Species and p53 Mediated Activation of p38 and Caspases is Critically Involved in Kaempferol Induced Apoptosis in Colorectal Cancer Cells. *J. Agric. Food Chem.* **2018**, *66*, 9960–9967. [CrossRef]
- 115. Seydi, E.; Salimi, A.; Rasekh, H.R.; Mohsenifar, Z.; Pourahmad, J. Selective Cytotoxicity of Luteolin and Kaempferol on Cancerous Hepatocytes Obtained from Rat Model of Hepatocellular Carcinoma: Involvement of ROS-Mediated Mitochondrial Targeting. *Nutr. Cancer* 2018, 70, 594–604. [CrossRef]
- 116. Tavsan, Z.; Kayali, H.A. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. *Biomed. Pharmacother.* **2019**, *116*, 109004. [CrossRef]

- 117. Salmani, J.M.M.; Zhang, X.-P.; Jacob, J.A.; Chen, B.-A. Apigenin's anticancer properties and molecular mechanisms of action: Recent advances and future prospectives. *Chin. J. Nat. Med.* **2017**, *15*, 321–329. [CrossRef]
- 118. Lim, W.; Ryu, S.; Bazer, F.W.; Kim, S.; Song, G. Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction. *J. Cell. Physiol.* **2018**, 233, 3129–3140. [CrossRef]
- 119. Park, W.; Park, S.; Lim, W.; Song, G. Chrysin disrupts intracellular homeostasis through mitochondria-mediated cell death in human choriocarcinoma cells. *Biochem. Biophys. Res. Commun.* **2018**, *503*, 3155–3161. [CrossRef]
- 120. Alipour, B.; Rashidkhani, B.; Edalati, S. Dietary flavonoid intake, total antioxidant capacity and lipid oxidative damage: A cross-sectional study of Iranian women. *Nutrition* **2016**, *32*, 566–572. [CrossRef]
- 121. Sorrenti, V.; Vanella, L.; Acquaviva, R.; Cardile, V.; Giofrè, S.; DI Giacomo, C. Cyanidin induces apoptosis and differentiation in prostate cancer cells. *Int. J. Oncol.* **2015**, *47*, 1303–1310. [CrossRef]
- 122. Cvorovic, J.; Tramer, F.; Granzotto, M.; Candussio, L.; Decorti, G.; Passamonti, S. Oxidative stress-based cytotoxicity of delphinidin and cyanidin in colon cancer cells. *Arch. Biochem. Biophys.* **2010**, *501*, 151–157. [CrossRef]
- 123. Khan, F.; Niaz, K.; Maqbool, F.; Hassan, F.I.; Abdollahi, M.; Venkata, K.C.N.; Nabavi, S.M.; Bishayee, A. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update. *Nutrients* **2016**, *8*, 529. [CrossRef]
- 124. Teekaraman, D.; Elayapillai, S.P.; Viswanathan, M.P.; Jagadeesan, A. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line. *Chem. Interact.* **2019**, *300*, 91–100. [CrossRef]
- 125. Li, H.; Chen, C. Quercetin Has Antimetastatic Effects on Gastric Cancer Cells via the Interruption of uPA/uPAR Function by Modulating NF-κb, PKC-δ, ERK1/2, and AMPKα. *Integr. Cancer Ther.* **2017**, *17*, 511–523. [CrossRef]
- 126. Xiang, T.; Fang, Y.; Wang, S.X. Quercetin suppresses HeLa cells by blocking PI3K/Akt pathway. *J. Huazhong Univ. Sci. Technol.* **2014**, *34*, 740–744. [CrossRef] [PubMed]
- 127. Wang, Q.; Ge, X.; Tian, X.; Zhang, Y.; Zhang, P. Soy isoflavone: The multipurpose phytochemical (Review). *Biomed. Rep.* **2013**, *1*, 697–701. [CrossRef] [PubMed]
- 128. Boucher, B.A.; Cotterchio, M.; Anderson, L.N.; Kreiger, N.; Kirsh, V.A.; Thompson, L.U. Use of isoflavone supplements is associated with reduced postmenopausal breast cancer risk. *Int. J. Cancer* 2013, 132, 1439–1450. [CrossRef] [PubMed]
- 129. Shan, C.; Tan, J.-H.; Ou, T.-M.; Huang, Z.-S. Natural products and their derivatives as G-quadruplex binding ligands. *Sci. China Chem.* **2013**, *56*, 1351–1363. [CrossRef]
- 130. Zubair, M.S.; Anam, S.; Maulana, S.; Arba, M. In Vitro and In Silico Studies of Quercetin and Daidzin as Selective Anticancer Agents. *Indones. J. Chem.* **2021**, *21*, 310–317. [CrossRef]
- 131. Abotaleb, M.; Samuel, S.M.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in Cancer and Apoptosis. *Cancers* **2018**, *11*, 28. [CrossRef]
- 132. McArthur, K.; Kile, B.T. Apoptotic Caspases: Multiple or Mistaken Identities? *Trends Cell Biol.* **2018**, 28, 475–493. [CrossRef] [PubMed]
- 133. Jan, R.; Chaudhry, G.-E. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. *Adv. Pharm. Bull.* **2019**, *9*, 205–218. [CrossRef] [PubMed]
- 134. Peluso, M.R. Flavonoids attenuate cardiovascular disease, inhibit phosphodiesterase, and modulate lipid homeostasis in adipose tissue and liver. *Exp. Biol. Med.* **2006**, *231*, 1287–1299. [CrossRef]
- 135. Gao, Y.; Chen, T.; Raj, J.U. Endothelial and Smooth Muscle Cell Interactions in the Pathobiology of Pulmonary Hypertension. *Am. J. Respir. Cell Mol. Biol.* **2016**, *54*, 451–460. [CrossRef]
- 136. Puzserova, A.; Bernatova, I. Blood pressure regulation in stress: Focus on nitric oxide-dependent mechanisms. *Physiol. Res.* **2016**, 65, S309–S342. [CrossRef] [PubMed]
- 137. Su, J.; Xu, H.-T.; Yu, J.-J.; Gao, J.-L.; Lei, J.; Yin, Q.-S.; Li, B.; Pang, M.-X.; Su, M.-X.; Mi, W.-J.; et al. Luteolin Ameliorates Hypertensive Vascular Remodeling through Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells. *Evid.-Based Complement. Altern. Med.* 2015, 2015, 1–14. [CrossRef] [PubMed]
- 138. Thamcharoen, N.; Susantitaphong, P.; Wongrakpanich, S.; Chongsathidkiet, P.; Tantrachoti, P.; Pitukweerakul, S.; Avihingsanon, Y.; Praditpornsilpa, K.; Jaber, B.L.; Eiam-Ong, S. Effect of N- and T-type calcium channel blocker on proteinuria, blood pressure and kidney function in hypertensive patients: A meta-analysis. *Hypertens. Res.* 2015, 38, 847–855. [CrossRef] [PubMed]
- 139. Leeya, Y.; Mulvany, M.J.; Queiroz, E.F.; Marston, A.; Hostettmann, K.; Jansakul, C. Hypotensive activity of an n-butanol extract and their purified compounds from leaves of *Phyllanthus acidus* (L.) Skeels in rats. *Eur. J. Pharmacol.* **2010**, *649*, 301–313. [CrossRef] [PubMed]
- 140. Larson, A.J.; Symons, J.D.; Jalili, T. Therapeutic potential of quercetin to decrease blood pressure: Review of efficacy and mechanisms. *Adv. Nutr.* **2012**, *3*, 39–46. [CrossRef] [PubMed]
- 141. Rivera, L.; Morón, R.; Sánchez, M.; Zarzuelo, A.; Galisteo, M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese zucker rats. *Obesity* 2008, *16*, 2081–2087. [CrossRef] [PubMed]
- 142. Olaleye, M.; Crown, O.; Akinmoladun, A.; Akindahunsi, A. Rutin and quercetin show greater efficacy than nifedipin in ameliorating hemodynamic, redox, and metabolite imbalances in sodium chloride-induced hypertensive rats. *Hum. Exp. Toxicol.* **2014**, 33, 602–608. [CrossRef] [PubMed]

- 143. Oyagbemi, A.A.; Omobowale, T.O.; Ola-Davies, O.E.; Asenuga, E.R.; Ajibade, T.O.; Adejumobi, O.A.; Arojojoye, O.A.; Afolabi, J.M.; Ogunpolu, B.S.; Falayi, O.O.; et al. Quercetin attenuates hypertension induced by sodium fluoride via reduction in oxidative stress and modulation of HSP 70/ERK/PPARγ signaling pathways. *Biofactors* 2018, 44, 465–479. [CrossRef] [PubMed]
- 144. Manach, C.; Morand, C.; Texier, O.; Favier, M.-L.; Agullo, G.; Demigné, C.; Régérat, F.; Rémésy, C. Quercetin metabolites in plasma of rats fed diets containing rutin or quercetin. *J. Nutr.* 1995, 125, 1911–1922. [CrossRef]
- 145. Edwards, R.L.; Lyon, T.; Litwin, S.E.; Rabovsky, A.; Symons, J.D.; Jalili, T. Quercetin reduces blood pressure in hypertensive subjects1. *J. Nutr.* 2007, 137, 2405–2411. [CrossRef]
- 146. Saponara, S.; Testai, L.; Iozzi, D.; Martinotti, E.; Martelli, A.; Chericoni, S.; Sgaragli, G.; Fusi, F.; Calderone, V. (+/-)-Naringenin as large conductance Ca(2+)-activated K+ (BKCa) channel opener in vascular smooth muscle cells. *Br. J. Pharmacol.* **2006**, 149, 1013–1021. [CrossRef]
- 147. Schnorr, O.; Brossette, T.; Momma, T.Y.; Kleinbongard, P.; Keen, C.L.; Schroeter, H.; Sies, H. Cocoa flavanols lower vascular arginase activity in human endothelial cells in vitro and in erythrocytes in vivo. *Arch. Biochem. Biophys.* **2008**, 476, 211–215. [CrossRef]
- 148. Lu, X.L.; Liu, J.X.; Wu, Q.; Long, S.M.; Zheng, M.Y.; Yao, X.L.; Ren, H.; Wang, Y.G.; Su, W.W.; Cheung, R.T.F.; et al. Protective effects of puerarin against Aß40-induced vascular dysfunction in zebrafish and human endothelial cells. *Eur. J. Pharmacol.* **2014**, 732, 76–85. [CrossRef]
- 149. Mita, M.; Tanaka, H.; Yanagihara, H.; Nakagawa, J.I.; Hishinuma, S.; Sutherland, C.; Walsh, M.P.; Shoji, M. Membrane depolarization-induced RhoA/Rho-associated kinase activation and sustained contraction of rat caudal arterial smooth muscle involves genistein-sensitive tyrosine phosphorylation. *J. Smooth Muscle Res.* 2013, 49, 26–45. [CrossRef] [PubMed]
- 150. Wang, X.; Zhao, T.; Zhou, S.; Sun, L.; Zhang, L.; Yu, G. Mg2+-dependent modulation of BKCa channels by genistein in rat arteriolar smooth muscle cells. *J. Cell. Physiol.* **2014**, 229, 1981–1989. [CrossRef] [PubMed]
- 151. Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [CrossRef]
- 152. Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [CrossRef] [PubMed]
- 153. Omokhua-Uyi, A.G.; Abdalla, M.A.; Leonard, C.M.; Aro, A.; Uyi, O.O.; Van Staden, J.; McGaw, L.J. Flavonoids isolated from the South African weed Chromolaena odorata (Asteraceae) have pharmacological activity against uropathogens. *BMC Complement. Med. Ther.* 2020, 20, 233. [CrossRef] [PubMed]
- 154. Murota, K.; Nakamura, Y.; Uehara, M. Flavonoid metabolism: The interaction of metabolites and gut microbiota. *Biosci. Biotechnol. Biochem.* **2018**, *82*, 600–610. [CrossRef]
- 155. Day, A.J.; Mellon, F.; Barron, D.; Sarrazin, G.; Morgan, M.R.; Williamson, G. Human metabolism of dietary flavonoids: Identification of plasma metabolites of quercetin. *Free Radic. Res.* **2001**, *35*, 941–952. [CrossRef]
- 156. Morand, C.; Manach, C.; Crespy, V.; Remesy, C. Quercetin 3-O-beta-glucoside is better absorbed than other quercetin forms and is not present in rat plasma. *Free Radic Res.* **2000**, *33*, 667–676. [CrossRef] [PubMed]
- 157. Sesink, A.L.A.; O'Leary, K.A.; Hollman, P.C.H. Quercetin glucuronides but not glucosides are present in human plasma after consumption of quercetin-3-glucoside or quercetin-4'-glucoside. *J. Nutr.* **2001**, *131*, 1938–1941. [CrossRef] [PubMed]
- 158. Day, A.J.; Gee, J.M.; DuPont, M.S.; Johnson, I.T.; Williamson, G. Absorption of quercetin-3-glucoside and quercetin-4'-glucoside in the rat small intestine: The role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. *Biochem. Pharmacol.* **2003**, *65*, 1199–1206. [CrossRef] [PubMed]
- 159. Day, A.J.; Cañada, F.; Díaz, J.C.; A Kroon, P.; Mclauchlan, R.; Faulds, C.B.; Plumb, G.W.; Morgan, M.R.; Williamson, G. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. *FEBS Lett.* **2000**, *468*, 166–170. [CrossRef] [PubMed]
- 160. Day, A.J.; DuPont, M.S.; Ridley, S.; Rhodes, M.; Rhodes, M.J.; Morgan, M.R.; Williamson, G. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. *FEBS Lett.* **1998**, *436*, 71–75. [CrossRef] [PubMed]
- 161. Walgren, R.A.; Lin, J.T.; Kinne, R.K.; Walle, T. Cellular uptake of dietary flavonoid quercetin 4'-beta-glucoside by sodium-dependent glucose transporter SGLT1. *J. Pharmacol. Exp. Ther.* **2000**, 294, 837–843. [PubMed]
- 162. Islam, M.A.; Punt, A.; Spenkelink, B.; Murk, A.J.; van Leeuwen, F.X.R.; Rietjens, I.M.C.M. Conversion of major soy isoflavone glucosides and aglycones in in vitro intestinal models. *Mol. Nutr. Food Res.* **2014**, *58*, 503–515. [CrossRef]
- 163. Shi, J.; Zheng, H.; Yu, J.; Zhu, L.; Yan, T.; Wu, P.; Lu, L.; Wang, Y.; Hu, M.; Liu, Z. SGLT-1 Transport and Deglycosylation inside Intestinal Cells Are Key Steps in the Absorption and Disposition of Calycosin-7-O-β-d-Glucoside in Rats. *Drug Metab. Dispos.* **2016**, *44*, 283–296. [CrossRef] [PubMed]
- 164. Al-Ishaq, R.K.; Liskova, A.; Kubatka, P.; Büsselberg, D. Enzymatic Metabolism of Flavonoids by Gut Microbiota and Its Impact on Gastrointestinal Cancer. *Cancers* **2021**, *13*, 3934. [CrossRef]
- 165. Vivarelli, S.; Salemi, R.; Candido, S.; Falzone, L.; Santagati, M.; Stefani, S.; Torino, F.; Banna, G.L.; Tonini, G.; Libra, M. Gut Microbiota and Cancer: From Pathogenesis to Therapy. *Cancers* **2019**, *11*, 38. [CrossRef]
- 166. Wang, M.; Yu, F.; Zhang, Y.; Chang, W.; Zhou, M. The Effects and Mechanisms of Flavonoids on Cancer Prevention and Therapy: Focus on Gut Microbiota. *Int. J. Biol. Sci.* **2022**, *18*, 1451–1475. [CrossRef] [PubMed]
- 167. Maheswari, P.; Harish, S.; Ponnusamy, S.; Muthamizhchelvan, C. A novel strategy of nanosized herbal Plectranthus amboinicus, Phyllanthus niruri and Euphorbia hirta treated TiO₂ nanoparticles for antibacterial and anticancer activities. *Bioprocess Biosyst. Eng.* **2021**, *44*, 1593–1616. [CrossRef] [PubMed]

- 168. Dzerefos, C.M.; Witkowski, E. Density and potential utilisation of medicinal grassland plants from Abe Bailey Nature Reserve, South Africa. *Biodivers. Conserv.* **2001**, *10*, 1875–1896. [CrossRef]
- 169. Makunga, N.P. Turning folklore into an ethnomedicinal catalogue Medicinal Plants of South Africa (2nd edition), B-E. van Wyk, B. van Oudtshoorn and N. Gericke: Book review. S. Afr. J. Sci. 2009, 105, 250.
- 170. Yao, Y.; Sang, W.; Zhou, M.; Ren, G. Phenolic composition and antioxidant activities of 11 celery cultivars. *J. Food Sci.* **2010**, *75*, C9–C13. [CrossRef] [PubMed]
- 171. Tavakoli, J.; Miar, S.; Majid Zadehzare, M.; Akbari, H. Evaluation of Effectiveness of Herbal Medication in Cancer Care: A Review Study. *Iran. J. Cancer Prev.* **2012**, *5*, 144–156. [PubMed]
- 172. Ahmad, N.; Danish, S.; Sahai, N.; Dutta, R. Biosynthesis, Characterization of Gold Nanoparticles Using M. indica Leaf Extract and Their Anticancer Activity. *Int. J. Nanobiotechnol.* **2016**, *2*, 7–11.
- 173. Dube, P.; Meyer, S.; Madiehe, A.; Meyer, M. Antibacterial activity of biogenic silver and gold nanoparticles synthesized from Salvia africana-luteaandSutherlandia frutescens. *Nanotechnology* **2020**, *31*, 505607. [CrossRef] [PubMed]
- 174. Elbagory, A.M.; Meyer, M.; Cupido, C.N.; Hussein, A.A. Inhibition of Bacteria Associated with Wound Infection by Biocompatible Green Synthesized Gold Nanoparticles from South African Plant Extracts. *Nanomaterials* **2017**, *7*, 417. [CrossRef]
- 175. Rajagopal, T.; Jemimah, I.A.A.; Ponmanickam, P.; Ayyanar, M. Synthesis of silver nanoparticles using Catharanthus roseus root extract and its larvicidal effects. *J. Environ. Biol.* **2015**, *36*, 1283–1289.
- 176. Elbagory, A.M.; Hussein, A.A.; Meyer, M. The In Vitro Immunomodulatory Effects of Gold Nanoparticles Synthesized From Hypoxis hemerocallidea Aqueous Extract And Hypoxoside On Macrophage And Natural Killer Cells. *Int. J. Nanomed.* **2019**, *14*, 9007–9018. [CrossRef] [PubMed]
- 177. Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. *J. Control. Release* **2000**, *65*, 271–284. [CrossRef] [PubMed]
- 178. Brannon-Peppas, L.; Blanchette, J.O. Nanoparticle and targeted systems for cancer therapy. *Adv. Drug Deliv. Rev.* **2004**, *56*, 1649–1659. [CrossRef] [PubMed]
- 179. Zhang, W.; Mehta, A.; Tong, Z.; Esser, L.; Voelcker, N.H. Development of Polymeric Nanoparticles for Blood–Brain Barrier Transfer—Strategies and Challenges. *Adv. Sci.* **2021**, *8*, 2003937. [CrossRef] [PubMed]
- 180. Vieira, I.R.S.; Tessaro, L.; Lima, A.K.O.; Velloso, I.P.S.; Conte-Junior, C.A. Recent Progress in Nanotechnology Improving the Therapeutic Potential of Polyphenols for Cancer. *Nutrients* **2023**, *15*, 3136. [CrossRef] [PubMed]
- 181. Zahra, M.; Abrahamse, H.; George, B.P. Green nanotech paradigm for enhancing sesquiterpene lactone therapeutics in cancer. *Biomed. Pharmacother.* **2024**, 173, 116426. [CrossRef] [PubMed]
- 182. Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—An updated report. *Saudi Pharm. J.* **2016**, 24, 473–484. [CrossRef] [PubMed]
- 183. Rehana, D.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. *Bioprocess Biosyst. Eng.* **2017**, *40*, 943–957. [CrossRef]
- 184. Reddy, N.J.; Vali, D.N.; Rani, M.; Rani, S.S. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. *Mater. Sci. Eng. C* **2014**, *34*, 115–122. [CrossRef]
- 185. Jayaprakash, N.; Vijaya, J.J.; Kaviyarasu, K.; Kombaiah, K.; Kennedy, L.J.; Ramalingam, R.J.; Munusamy, M.A.; Al-Lohedan, H.A. Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. *J. Photochem. Photobiol. B Biol.* **2017**, 169, 178–185. [CrossRef]
- 186. Khodadadi, B.; Bordbar, M.; Nasrollahzadeh, M. Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using *Salvia hydrangea* extract: Catalytic activity for reduction of organic dyes. *J. Colloid Interface Sci.* **2017**, 490, 1–10. [CrossRef] [PubMed]
- 187. Sathishkumar, P.; Vennila, K.; Jayakumar, R.; Yusoff, A.R.M.; Hadibarata, T.; Palvannan, T. Phyto-synthesis of silver nanoparticles using Alternanthera tenella leaf extract: An effective inhibitor for the migration of human breast adenocarcinoma (MCF-7) cells. *Bioprocess Biosyst. Eng.* **2016**, *39*, 651–659. [CrossRef]
- 188. Sathishkumar, P.; Preethi, J.; Vijayan, R.; Yusoff, A.R.M.; Ameen, F.; Suresh, S.; Balagurunathan, R.; Palvannan, T. Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract. *J. Photochem. Photobiol. B Biol.* 2016, 163, 69–76. [CrossRef] [PubMed]
- 189. Mittal, A.K.; Kumar, S.; Banerjee, U.C. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. *J. Colloid Interface Sci.* **2014**, *431*, 194–199. [CrossRef] [PubMed]
- 190. Raghavan, B.S.; Kondath, S.; Anantanarayanan, R.; Rajaram, R. Kaempferol mediated synthesis of gold nanoparticles and their cytotoxic effects on MCF-7 cancer cell line. *Process Biochem.* **2015**, *50*, 1966–1976. [CrossRef]
- 191. Kasthuri, J.; Veerapandian, S.; Rajendiran, N. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. *Colloids Surfaces B Biointerfaces* **2009**, *68*, 55–60. [CrossRef] [PubMed]
- 192. Vinodhini, A.; Govindaraju, K.; Singaravelu, G.; Sadiq, A.M.; Kumar, V.G. Cardioprotective potential of biobased gold nanoparticles. *Colloids Surfaces B Biointerfaces* **2014**, *117*, 480–486. [CrossRef] [PubMed]
- 193. Nazeruddin, G.; Prasad, N.; Prasad, S.; Shaikh, Y.; Waghmare, S.; Adhyapak, P. Coriandrum sativum seed extract assisted in situ green synthesis of silver nanoparticle and its anti-microbial activity. *Ind. Crop. Prod.* **2014**, *60*, 212–216. [CrossRef]

- 194. Luo, J.; Kong, J.L.; Dong, B.Y.; Huang, H.; Wang, K.; Wu, L.H.; Hou, C.C.; Liang, Y.; Li, B.; Chen, Y.Q. Baicalein attenuates the quorum sensing-controlled virulence factors of *Pseudomonas aeruginosa* and relieves the inflammatory response in *P. aeruginosa*-infected macrophages by downregulating the MAPK and NFκB signal-transduction pathways. *Drug Des. Dev. Ther.* **2016**, *10*, 183–203. [CrossRef]
- 195. Rajkumari, J.; Busi, S.; Vasu, A.C.; Reddy, P. Facile green synthesis of baicalein fabricated gold nanoparticles and their antibiofilm activity against Pseudomonas aeruginosa PAO1. *Microb. Pathog.* **2017**, *107*, 261–269. [CrossRef]
- 196. Muniyappan, N.; Nagarajan, N. Green synthesis of silver nanoparticles with *Dalbergia spinosa* leaves and their applications in biological and catalytic activities. *Process. Biochem.* **2014**, *49*, 1054–1061. [CrossRef]
- 197. Sysak, S.; Czarczynska-Goslinska, B.; Szyk, P.; Koczorowski, T.; Mlynarczyk, D.T.; Szczolko, W.; Lesyk, R.; Goslinski, T. Metal Nanoparticle-Flavonoid Connections: Synthesis, Physicochemical and Biological Properties, as Well as Potential Applications in Medicine. *Nanomaterials* **2023**, *13*, 1531. [CrossRef] [PubMed]
- 198. Kollur, S.P.; Prasad, S.K.; Pradeep, S.; Veerapur, R.; Patil, S.S.; Amachawadi, R.G.; Lamraoui, G.; Al-Kheraif, A.A.; Elgorban, A.M.; Syed, A.; et al. Luteolin-Fabricated ZnO Nanostructures Showed PLK-1 Mediated Anti-Breast Cancer Activity. *Biomolecules* **2021**, 11, 385. [CrossRef]
- 199. Salaheldin, T.A.; Adhami, V.M.; Fujioka, K.; Mukhtar, H.; Mousa, S.A. Photochemoprevention of ultraviolet Beam Radiation-induced DNA damage in keratinocytes by topical delivery of nanoformulated Epigallocatechin-3-gallate. *Nanomed. Nanotechnol. Biol. Med.* 2022, 44, 102580. [CrossRef] [PubMed]
- 200. Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold Nanoparticles: Preparation, Properties, and Applications in Bionanotechnology. *Nanoscale* **2012**, *4*, 1871–1880. [CrossRef]
- 201. Zhang, C.; Huang, L.; Sun, D.-W.; Pu, H. Interfacing metal-polyphenolic networks upon photothermal gold nanorods for triplex-evolved biocompatible bactericidal activity. *J. Hazard. Mater.* **2022**, *426*, 127824. [CrossRef] [PubMed]
- 202. Alhadrami, H.A.; Orfali, R.; Hamed, A.A.; Ghoneim, M.M.; Hassan, H.M.; Hassane, A.S.I.; Rateb, M.E.; Sayed, A.M.; Gamaleldin, N.M. Flavonoid-Coated Gold Nanoparticles as Efficient Antibiotics against Gram-Negative Bacteria—Evidence from In Silico-Supported In Vitro Studies. *Antibiotics* 2021, 10, 968. [CrossRef]
- 203. Das, S.; Pramanik, T.; Jethwa, M.; Roy, P. Flavonoid-Decorated Nano-gold for Antimicrobial Therapy Against Gram-negative Bacteria Escherichia coli. *Appl. Biochem. Biotechnol.* **2021**, *193*, 1727–1743. [CrossRef]
- 204. Sivakumar, S.; Tamizhazhagan, A.; Abdhul, K. Synthesis, characterization and anti-bacterial activity of silver nanoparticles from leaf extract of *Phyllanthus urinaria* L. Eur. J. Biomed. Pharm. Sci. 2017, 12, 544–553.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article

Extra Virgin Olive Oil Polyphenol-Enriched Extracts Exert Antioxidant and Anti-Inflammatory Effects on Peripheral Blood Mononuclear Cells from Rheumatoid Arthritis Patients

Bartolo Tamburini ^{1,2,†}, Diana Di Liberto ^{3,†}, Giovanni Pratelli ³, Chiara Rizzo ², Lidia La Barbera ², Marianna Lauricella ^{3,*}, Daniela Carlisi ³, Antonella Maggio ⁴, Antonio Palumbo Piccionello ⁴, Antonella D'Anneo ⁵, Nadia Caccamo ^{1,‡} and Giuliana Guggino ^{2,‡}

- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Section of Immunology, University of Palermo, 90127 Palermo, Italy; bartolo.tamburini@unipa.it (B.T.); nadia.caccamo@unipa.it (N.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University Hospital "P. Giaccone", 90127 Palermo, Italy; chiara.rizzo06@unipa.it (C.R.); lidia.labarbera@unipa.it (L.L.B.); giuliana.guggino@unipa.it (G.G.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Section of Biochemistry, University of Palermo, 90127 Palermo, Italy; diana.diliberto@unipa.it (D.D.L.); giovanni.pratelli@unipa.it (G.P.); daniela.carlisi@unipa.it (D.C.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; antonella.maggio@unipa.it (A.M.); antonio.palumbopiccionello@unipa.it (A.P.P.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy; antonella.danneo@unipa.it
- Correspondence: marianna.lauricella@unipa.it
- [†] These authors equally contributed to the paper.
- [‡] These authors also equally contributed to the paper.

Abstract: Rheumatoid arthritis (RA) is a long-term systemic autoimmune disorder that causes joint inflammation, swelling, pain, bone erosion, and deformities. Recent findings emphasize the anti-inflammatory and antioxidant properties of bioactive natural compounds, such as polyphenols extracted from plants and fruits, and their possible synergistic effect when used in combination with current therapies to improve the prognosis and symptoms of inflammatory rheumatic diseases. Here, we report that Sicilian extra virgin olive oil polyphenol-enriched extracts (PE-EVOOs) reduce intracellular reactive oxygen species (ROS) and pro-inflammatory cytokines, such as tumor necrosis factor- α (TNF- α) and interleukin-1 β (IL-1 β), in peripheral mononuclear cells (PBMCs) obtained from both RA patients and healthy subjects (HSs) treated with lipopolysaccharides (LPS) as a control. HPLC-ESI-MS analysis highlighted that PE-EVOOs are rich in different polyphenolic compounds responsible for many of the observed biological effects. At molecular levels, Western blotting analyses revealed that PE-EVOO treatment is associated with the downregulation of the phosphorylated and active form of the inflammatory transcription factor NF-kB and the pro-inflammatory enzyme cyclooxygenase 2 (COX2). In addition, PE-EVOOs upregulated the transcription factor Nrf2 and its target antioxidant enzyme catalase and manganese superoxide dismutase (MnSOD). Collectively, these results suggest a possible use of PE-EVOOs as potential adjuvants for the treatment of RA.

Keywords: rheumatoid arthritis; PBMCs; extra virgin olive oil polyphenols; IL-1 β ; TNF- α ; Nrf2

1. Introduction

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease primarily causing synovial joint inflammation, cartilage devastation, bone erosion, pain, deformities, and progressive disability with a reduction in an individual's quality of life [1]. Although its etiopathogenesis is still unclear, it is estimated that RA affects 0.5-1% of the global population [2]. Current management strategy primarily focuses on the reduction in symptoms at the joints and the slowdown of its progression towards disability through the administration of disease-modifying anti-rheumatic drugs (DMARDs) either alone or in association with nonsteroidal anti-inflammatory drugs (NSAIDs) or glucocorticoids [3]. DMARDs are immunosuppressive and immunomodulatory agents classified as conventional DMARDs, such as methotrexate, leflunomide, hydroxychloroquine, and sulfasalazine, biologic DMARDs, introduced in the early nineties and, more recently, the synthetic target molecules usually prescribed after the failure of conventional DMARD therapy. They are monoclonal, chimeric humanized fusion antibodies, receptors fused to a part of the human immunoglobulin, or small molecules, like Janus kinase (JAK) inhibitors, highly specific and targeting a specific pathway of the immune system [4]. Although the availability of biological DMARDs has significantly improved the course of the disease in patients suffering from RA, patients often do not adequately respond to current treatment regimens due to tolerance development or severe side effects. Thus, over the past few decades, researchers have investigated if natural phytochemicals are effective in relieving RA-associated symptoms. Several phytochemicals, such as alkaloids, flavonoids, steroids, terpenoids, and polyphenols have shown anti-inflammatory and immunomodulatory activity against RA [5-7]. However, their use is often limited because of their high molecular weight, poor water solubility, permeability, and stability affecting their absorption and bioavailability, which can be currently implemented by phenolic-enabled nanotechnology (PEN) [8,9]. The Mediterranean diet is a healthy eating plan characterized by the high consumption of fruits, vegetables, and whole grains and reduced consumption of red meat. Extra virgin olive oil (EVOO), the main source of Mediterranean diet lipids, is obtained via mechanical extraction from the olive fruit under conditions that do not alter its composition. The consumption of EVOO has been shown to exert beneficial effects against several immune-inflammatory chronic diseases, including RA, systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD) [10–12].

In the past, the health-promoting properties of EVOO have been largely correlated to the high content of monounsaturated fatty acids, in particular oleic acid. However, more recently, attention has been focused on the presence of a variety of phenolic compounds, such as hydroxytyrosol (HTy), tyrosol, and oleuropein [13], on which the pharmacological properties of the olive tree seem to depend [14,15]. Thus, EVOO quality depends not only on the content of free fatty acids but also its content in polyphenols. Polyphenols are a class of compounds characterized by the presence of one or more aromatic rings and two or more hydroxyl groups. They are found in different parts of many plants including roots, stems, leaves, fruit, and flowers and are produced for defense against pathogens (microbes and fungi) and to discourage leaf-eating insects [16]. Due to their structure, they possess antioxidant and anti-inflammatory properties and are able to modulate abnormal cellular signaling induced by pro-inflammatory stimuli and oxidative stress, such as those related to the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and NF-E2-related factor 2 (Nrf2) [17].

Several recent studies [18] demonstrated the ability of EVOO polyphenols to activate the signaling pathway of Nrf2, a transcription factor that regulates the expression of phase II detoxifying enzymes, including NAD(P)H quinone oxidoreductase 1, glutathione per-

oxidase, ferritin, heme oxygenase-1 (HO-1), and antioxidant genes, which protect cells from different injuries via their anti-inflammatory effects, thus influencing the course of several diseases characterized by inflammation, such as RA, asthma, IBD, and Helicobacter pylori infection-induced gastritis [19]. Furthermore, EVOO polyphenols exert their anti-inflammatory activity also by preventing the activation of NF- κ B, a protein complex responsible for the transcription of pro-inflammatory mediators, such as interleukin-6 (IL-6), tumor necrosis factor- α (TNF- α), inducible nitric oxide synthase (iNOS), interleukin-1 β (IL-1 β), and cyclooxygenase 2 (COX2), in almost all types of animal cells and are involved in different processes such as inflammation, oxidative stress, apoptosis, immune response, cell growth, and development [17].

The consumption of EVOO or EVOO polyphenol-enriched extracts (PE-EVOOs) exerts beneficial effects against RA [20]. In collagen-induced arthritis (CIA), DBA/1 mice treated with EVOO or PE-EVOO have been shown to reduce joint edema and cartilage degradation, as well as decrease the levels of pro-inflammatory cytokines, preventing arthritis development [20,21]. In addition, in IL-1β-activated human synovial SW982 fibroblasts PE-EVOOs inhibited the production of pro-inflammatory mediators, like matrix metalloproteinases 1 (MMP-1) and IL-6, and this protective effect seems to be related to the inhibition of mitogen-activated protein kinases (MAPKs) (JNK and p38), which are involved in NF-kB activation in the cytoplasm and the modulation of its transactivating potential in the nucleus [22–24]. Here, we investigated the modulation of the inflammatory response in peripheral blood mononuclear cells (PBMCs) isolated from RA by treatment with PE-EVOOs. Our results provided evidence that PE-EVOOs exhibit significant antiinflammatory properties by inhibiting NF-κB activation and downregulating the levels of COX-2 and the pro-inflammatory cytokines TNF- α and IL-1 β . Furthermore, PE-EVOOs displayed potent antioxidant effects, which appear to be mediated by the activation of Nrf2, the master regulator of cellular antioxidant defenses, and its targets manganese superoxide dismutase (MnSOD) and catalase.

2. Materials and Methods

2.1. Chemical Extraction of Polyphenols from EVOO

EVOO was purchased from Azienda Agricola Signorello, Campobello di Mazzara, Sicily, Italy. PE-EVOOs were obtained through repeated centrifugations in a mixture containing ethanol and water at an 8:2 ratio, along with an immiscible n-hexane at a 1:1 ratio with the initial quantity of EVOO. Subsequently, the extracted polyphenol content was assessed using the Folin–Chiocalteu protocol [25] by determining the equivalent amount of gallic acid, one of the most represented polyphenols in EVOO [25]. To remove the ethanol, which can be toxic to cells, a freeze-drying process was employed, and the product obtained was resuspended in dimethyl sulfoxide (DMSO).

2.2. HPLC/MS/ESI/Q-Tof Analysis

Previously reported methods were adapted for performing HPLC/MS analysis [26,27]. A solution of the freeze-dried sample in ethanol (1 mg/mL v/v) was prepared. The ethanolic solution was directly injected without further treatment. Water and acetonitrile were of HPLC/MS grade. Formic acid was of analytical quality. A reversed-phase Phenomenex Luna Omega Polar C18 100 column, (150 mm \times 4.6 mm, particle size 5 μ m) with a Phenomenex (Torrance, CA 90501-1430, USA) C18 security guard column (4 \times 3 mm) was used. The injection volume was 25 μ L. The eluate was monitored with Mass Total Ion Count (MS TIC) and UV (530 nm). Mass spectra were obtained on an Agilent 6540 UHD, Santa Clara, CA 95051, USA, accurate-mass quadrupole time-of-flight (Q-TOF) spectrometer

equipped with a dual AJS Electrospray Ionization (ESI) source working in negative mode. Nitrogen N2 was used as desolvation gas at 300 °C and a flow rate of 8 L min⁻¹. The nebulizer was set to 45 psig. The sheath gas temperature was set at 400 °C and a flow of 12 L min⁻¹. A potential 2.6 kV was used on the capillary. The fragmentor was set to 75 V. MS spectra were recorded in the 100–1500 m/z range. Quality control was performed prior to analysis using mass calibration in the range of 100–3000 Dalton (Q-TOF calibration mix) and solvent delay calibration for retention time. An in-house quality check mix containing known compounds (phenylalanine, saccharose, benzoic acid, and rutin) was injected during the batch of analysis. Mass spectrum data were analyzed for metabolite annotation using MassHunter Qualitative Analysis B.06.00 and the Metabolomics Workbench database (https://www.metabolomicsworkbench.org/) (accessed on 1 December 2024).

2.3. Patients

For our study, 22 RA naïve patients were recruited at the Rheumatology Unit of Policlinico "Paolo Giaccone", University of Palermo. All patients recruited met the ACR/EULAR 2010 classification criteria for RA. They had active diseases and had never received DMARD treatment. Patients had previously been treated with a stable dose of NSAIDs. All patients presented active diseases, defined as a disease activity score of 28 Creactive protein (DAS28CRP) > 5.1. In addition, 15 healthy subjects (HSs) were recruited as controls, paired by age and sex. The baseline demographic and clinical features of the patients are shown in Table 1. This study was approved by the local Ethics Committee of the University of Palermo and complied with the provisions of the Declaration of Helsinki. Informed consent was obtained from all patients and control.

Table 1. Clinical characteristics of RA patients and HSs.

	RA (n = 22)	HSs (n = 15)
Age mean, years (range)	54.8 (32–70)	47.2 (31–60)
Female sex, <i>n</i> (%)	14 (63.6)	11 (73.3)
Disease duration, years (range)	3 (0.5–5.7)	-
Anti-CCP, n (%)	10 (45.5)	-
RF, n (%)	13 (59)	-
CRP mg/l, mean (range)	6.2 (0.2–7.6)	-
ESR, mean (range)	27.7 (1–89)	-
DAS28CRP score, mean (range)	3.4 (0.9-5.7)	-

Anti-CCP: cyclic citrullinated peptide; CRP: C-reactive protein; DAS28CRP: disease activity score 28CRP; ESR: erythrocyte sedimentation rate; HSs: healthy subjects; RA: rheumatoid arthritis; RF: rheumatoid factor.

2.4. MTS Assay

The MTS assay (CellTiter 96^{\circledR} AQueous One Solution Cell Proliferation Assay, MTS, Promega Corporation, Madison, WI, USA) was used to evaluate the metabolic activity and viability of PBMCs. The assay involves the conversion of the tetrazolium salt MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) to a purple formazan in the presence of phenazine methosulfate. The enzymes responsible are NADPH-dependent dehydrogenases, which are active only in viable cells. The absorbance of the resulting formazan solution is proportional to the number of viable cells and can be quantified using a spectrophotometer (Abs measured at 490–500 nm). To this end, PBMCs of HSs were incubated in a 96 multiwell plate (100×10^3 /well/ 100μ L) for 48 h with different doses (0.5– 50μ g/mL) of PE-EVOOs. Then, 20μ L of MTS solution was added

to each well at a final concentration of 0.33 mg/mL, incubated for 2 h at 37 °C, and the absorbance was recorded at 490 nm.

2.5. Radical Scavenging Activity by DPPH

Radical scavenging activity of PE-EVOOs was determined by DPPH (1,1-diphenyl-2-picrylhydrazyl) radical (Sigma, Merck KGaA, Darmstadt, Germany) [28]. Different amounts of PE-EVOOs (0.5–50 $\mu g/mL$) were added to 1 mL of ethanol DPPH solution (100 μM) and incubated for half an hour at room temperature and in the dark. DPPH radicals are stable molecules, characterized by a deep-violet color with an absorption maximum of 517, which is reduced by the addition of antioxidant compounds. Discoloration was measured spectrophotometrically. Ethanol DPPH solution was used to prepare the negative control (A0), and a blank sample (A2) containing ethanol was used as a reference. The radical scavenging activity (% of DPPH radical inhibition) was calculated using the following equation:

Inhibition (%) =
$$1 - (A1 - A2/A0 - A2) \times 100$$

2.6. Isolation of PBMCs

Peripheral blood samples were obtained from healthy subjects (HSs) and RA patients and collected in ethylenediaminetetraacetic acid (EDTA) tubes. PBMCs were isolated from patients and HSs by density gradient centrifugation. Peripheral blood was diluted at a 1:2 ratio with PBS and then centrifuged on a Ficoll gradient (Lympholyte for human cell separation from Cederlane, Burlington, Ontario, Canada) in a 15 mL polystyrene conical centrifuge tube for 20 min at $770 \times g$ at room temperature (RT). Subsequently, PBMCs were carefully aspirated from the plasma–Ficoll interface and washed twice (at $500 \times g$ for 5 min) with fresh RPMI 1640 medium (Euroclone, Pero, Italy) supplemented with 20 mM HEPES, 100 U/mL penicillin, and 100 µg/mL streptomycin (Euroclone). Finally, PBMCs were resuspended in 1 mL of complete RPMI medium, containing 10% heat-inactivated FCS and 2 mM L-glutamine (Euroclone).

2.7. Cytofluorimetric Analysis

Following the Ficoll-Hypaque gradient separation, freshly isolated PBMCs from HSs and RA patients were cultured in a complete medium alone or in the presence of 10 µg/mL of PE-EVOO for 48 h. LPS (Sigma) (5 µg/mL) was added only to HS PBMCs cultured in complete medium alone or in the presence of PE-EVOOs (10 µg/mL) after the first 24 h of PE-EVOO treatment. In addition, 10 μg/mL of Monensin (BioLegend, San Diego, CA, USA) was added to all the conditions after the first hour of incubation as a Golgi blocker to ensure the intracellular retention of cytokines. At the end of the incubation period, PBMCs were stained with a Zombie NIR Fixable Viability Kit (BioLegend), a fluorescent dye to assess their viability, and anti-human monoclonal antibodies (mAbs) specific for surface molecules, such as CD3 PerCP clone REA613, CD4 PECy7 clone REA623, and CD14 APC clone REA599 (Miltenyi Biotec, Bergisch Gladbach, Germany), as previously reported [29,30]. Following surface molecule detection, PBMCs were fixed, permeabilized (Inside Stain Kit, Miltenyi Biotec), and incubated with mAbs directed against TNF- α FITC clone REA656 and IL-1β PE clone REA1172 (Miltenyi Biotec). Flow cytometry acquisition of stained PBMCs was carried out using the FACS Lyric cytometer (BD Biosciences, San Diego, CA, USA), and a minimum of 200,000 total events were acquired. Subsequently, sample analysis was performed using FlowJo v10 software (BD Biosciences).

2.8. Intracellular Detection of Reactive Oxygen Species (ROS) Through H₂DCFDA Staining

Intracellular levels of reactive oxygen species (ROS) were assessed by quantifying the oxidation of the cell-permeable dye 2',7'-dichlorodihydrofluorescein diacetate (H₂DCFDA) (Molecular Probe, Life Technologies, Eugene, OR, USA) [28,31]. PBMCs obtained from RA patients and HSs were treated as previously described for cytofluorimetric analysis but in the absence of Golgi blocker Monensin. Subsequently, the cells, after washing in PBS, were incubated in the dark at 37 °C with 5% CO₂ in the presence of 0.5 μ M H₂DCFDA dye for 5 min. Following the incubation, excess fluorochrome was removed through PBS washing, and the intracellularly produced fluorescent 2',7'-dichlorofluorescein (DCF), resulting from oxidation, was quantified using flow cytometric assays. These assays employed excitation and emission wavelengths suitable for green fluorescence, with an FITC filter having an excitation wavelength of 488 nm and an emission wavelength of 530 nm.

2.9. Western Blotting Analysis

Western blot analyses were performed as previously reported [32-34]. Following treatment with LPS and/or PE-EVOOs, cells were rinsed with PBS and subsequently lysed at 4 °C for 30 min in an ice-cold lysis buffer containing 1% NP-40, 0.1% SDS, and 0.5% sodium deoxycholate in PBS and supplemented with a protease inhibitor cocktail. The lysate was then sonicated in three 10 s bursts. Protein concentration was determined using the Bradford protein assay (Bio-Rad Laboratories S.r.l., Segrate, Milan, Italy). Subsequently, an equivalent amount of proteins (30 µg/lane) was loaded and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The gels were then transferred onto a nitrocellulose membrane (Bio-Rad). Immunodetection was carried out by incubating the membranes with specific primary antibodies: phosphorylated p65 NF-κB (Ser536, 93H1, Cell Signaling (Danvers, MA, USA)), p65 NF-κB (sc-8008, Santa Cruz, CA, USA), phosphorylated Nrf2 (pSer40, NBP2-67465, Santa Cruz, CA, USA), Nrf2 (NBP1-32822, Novus Biologicals Bio-Techne SRL, Milan, Italy), MnSOD (sc-133254, Santa Cruz, CA, USA), catalase (sc-271358, Santa Cruz, CA, USA), and COX2 (sc-7951, Santa Cruz, CA, USA). Finally, immunoreactive signals, developed using HRP-conjugated secondary antibodies (Amersham, GE Healthcare Life Science, Milan, Italy), were visualized with enhanced chemiluminescence (ECL) reagents (Cyanagen, Bologna, Italy) and captured with ChemiDoc XRS (Bio-Rad). Signal quantification was performed using Quantity One 1-D software. The intensity of the protein of interest was quantified via densitometric analysis using SMX Image software (Bio-Rad). Protein expression was normalized with GAPDH (AM4300, Invitrogen-TermoFisher Scientific, Milan, Italy) as a control.

2.10. Statistical Analysis

Multiple unpaired Student's t-tests by GraphPad Prism, version 9.0 (GraphPad Software, San Diego, CA, USA), were used to perform statistical analyses reported here, and all the data were expressed as mean \pm SD. A p-value of <0.05 was considered statistically significant for each test. When not specified, the data are not significant with respect to the related control. All experiments were conducted in triplicate.

3. Results

3.1. Characterization of Phytochemical Compounds Present in Sicilian EVOO Extracts

The phenolic composition of EVOO is profoundly influenced by agronomic, technological, and storage conditions. Factors such as olive cultivar, ripening stage, environmental conditions, harvesting methods, and milling techniques contribute to the diversity and concentration of phenolic compounds. In order to assess the composition of EVOO cultivated in

the Mediterranean area (Sicily, Italy), ethanol extracts prepared as reported in the Section 2 were analyzed by an HPLC/ESI/Q-TOF in negative mode analysis. The analysis permitted the identification of 31 metabolites in ethanolic extracts of EVOO (Table 2). Approximately half of these metabolites belong to the saponifiable fraction, including carboxylic acids (mandelic acid and azelaic acid), fatty acids (oleic, linoleic, stearic, and palmitic acids), and fatty acid derivatives. The remaining metabolites were part of the unsaponifiable fraction, with derivatives of 3-hydroxytyrosol (3,4-dihydroxyphenylethanol, 3,4-DHPEA) emerging as the predominant compounds in the polar phenol extract. Ligstroside, formed by ester bonds between 3,4-DHPEA and oleanolic acid or its demethylated form, is one of two secoiridoids dominant in polar phenol extracts.

Table 2. The bioactive natural compounds in the phenolic extracts of Sicilian EVOO. Metabolites were identified using HPLC-ESI-MS analysis.

	Compound	Rt (min)	ESI ⁺ [M-H] ⁻ (m/z) (<i>Exp</i> .)	ESI ⁻ [M-H] ⁻ (m/z) (<i>Teor</i> .)	Molecular Formula	Metabolite Classes
1	Mandelic acid	3.17	151.0417	151.0401	C ₈ H ₈ O ₃	Carboxylic acid
2	Abscisic acid	7.59	309.1368 a	309.1344	C ₁₅ H ₂₀ O ₄	Phytohormone
3	Azelaic acid	9.19	187.1010	187.0976	C ₉ H ₁₆ O ₄	Carboxylic acid
4	3-hydroxytyrosol 4-glucoside	9.95	351.0801	351.0852	$C_{14}H_{20}O_{8}$	Phenolic compound
5	Abscisic acid isomer	10.45	309.1368 a	309.1344	C ₁₅ H ₂₀ O ₄	Phytohormone
6	Erythritol phosphate	13.82	201.0218	201.0170	$C_4H_{11}O_7P$	Sugar derivative
7	Oleuropein aglycon	15.98	377.1276	377.1242	C ₁₉ H ₂₂ O ₈	Secoiridoid
8	5,6'-dihydroxy-6,7-dimethoxyflavone- 2'-O-glucoside	16.69	491.1220	491.1195	C ₂₃ H ₂₄ O ₁₂	Flavone
9	Trihydroxyoctadecenoic acid	17.17	329.2379	329.2334	C ₁₈ H ₃₄ O ₅	Fatty acid derivative
10	Deoxygeniposidic acid	17.33	357.1155	357.1191	$C_{16}H_{22}O_9$	Iridoid glucoside
11	Coniferyl ferulate	17.64	355.1225	355.1187	$C_{20}H_{20}O_6$	Monolignol cinnamate
12	Methyltyrosine	19.48	194.0854	194.0823	$C_{10}H_{13}NO_3$	Amino acid derivative
13	3-hydrossityrosol heptanoate	21.58	265.1513	265.1445	$C_{15}H_{22}O_4$	Phenolic compound
14	Decyl gallate	25.41	309.1775	309.1708	$C_{17}H_{26}O_5$	Phenolic compound
15	Hydroxyoctadecadienoic acid	25.89	295.2321	295.2279	C ₁₈ H ₃₂ O ₃	Fatty acid derivative
16	Hydroxylinolenic acid	26.20	293.2165	293.2122	C ₁₈ H ₃₀ O ₃	Fatty acid derivative
17	Dihydroxyoctadecadienoic acid	26.20	311.2273	311.2228	C ₁₈ H ₃₂ O ₄	Fatty acid derivative
18	Dihydroxyoctadecenoic acid	26.76	313.2421	313.2384	C ₁₈ H ₃₄ O ₄	Fatty acid derivative
19	Gingerol	27.06	293.1826	293.1758	C ₁₇ H ₂₆ O ₄	Phenolic compound
20	Dihydroxypropyl tetradecanoate	27.81	337.2091 ^b	337.2151	C ₁₇ H ₃₄ O ₄	Fatty acid derivative
21	Olean-12-ene-3,7,15,21,23,28-hexol	27.89	551.3639 a	551.3590	$C_{30}H_{50}O_{6}$	Triterpenoid
22	Linoleic acid	28.34	279.2361	279.2330	$C_{18}H_{32}O_2$	Fatty acid
23	Linoleyl 3-hydroxytyrosol	28.87	415.2906	415.2854	$C_{26}H_{40}O_4$	Phenolic compound
24	Oleic acid	29.22	281.2521	281.2486	$C_{18}H_{34}O_2$	Fatty acid
25	Palmitoyl 3-hydroxytyrosol	29.48	391.2895	391.2854	$C_{24}H_{40}O_4$	Phenolic compound
26	Oleyl 3-hydroxytyrosol	29.67	417.3054	417.3010	C ₂₆ H ₄₂ O ₄	Phenolic compound
27	Oleanene-tetrol	30.18	519.3732 a	519.3691	$C_{30}H_{50}O_4$	Triterpenoid
28	Stearic acid	30.58	283.2676	283.2643	C ₁₈ H ₃₆ O ₂	Fatty acid
29	Palmitic acid	30.79	255.2369	255.2330	$C_{16}H_{32}O_2$	Fatty acid
30	Octadecanoyl-glycerol	32.08	393.2829 ^b	393.2777	C ₂₁ H ₄₂ O ₄	Fatty acid derivative
31	Palmitoyl 3-hydroxytyrosol isomer	32.25	391.2906	391.2854	$C_{24}H_{40}O_4$	Phenolic compound

^a formiate; ^b chloride.

3.2. PE-EVOOs Possess Radical Scavenging Activity

To ascertain the potential radical scavenging activity of PE-EVOOs, different concentrations of the extracts (0.5–50 $\mu g/mL$) were incubated with DPPH, as reported in the Section 2. As shown in Figure 1, our data demonstrated that PE-EVOOs own a high and dose-dependent radical scavenging activity. Indeed, at the lower tested concentration (0.5 $\mu g/mL$), PE-EVOOs inhibited DPPH radicals by only 15%. This effect rises by increasing the dose of PE-EVOOs, reaching an inhibition value of 90% at 50 $\mu g/mL$.

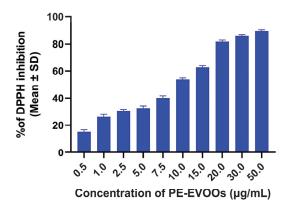
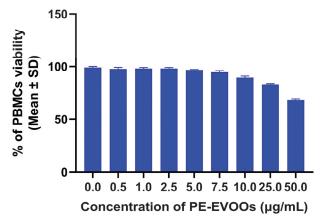



Figure 1. PE-EVOOs exert a high dose-dependent radical scavenging activity. The antioxidant activity of Sicilian PE-EVOOs was evaluated by a DPPH radical scavenging assay. Different concentrations of PE-EVOOs (from 0.5 to 50 μ g/mL) were added to an ethanol DPPH• solution, and the relative absorption was measured at 517 nm spectrophotometrically. The bar graphs represent the mean of three independent experiments \pm SD. p-value summary < 0.001 compared to the only vehicle control (ethanol).

3.3. Effects of PE-EVOOs on PBMC Viability

The present study aimed to investigate whether PE-EVOOs were capable of counteracting oxidative stress and inflammatory pathways in RA patients' PBMCs. To rule out potential cytotoxic effects of PE-EVOOs on PBMCs, preliminary experiments were performed by incubating HS PBMCs with different doses (0.5–50 μ g/mL) of PE-EVOOs for 48 h. Then, the viability was evaluated by an MTS assay, as reported in the Section 2. The results reported in Figure 2 indicate that PE-EVOOs at 50 μ g/mL reduced cell viability by 67%. However, doses of PE-EVOOs lower than 25 μ g/mL did not affect PBMC viability.

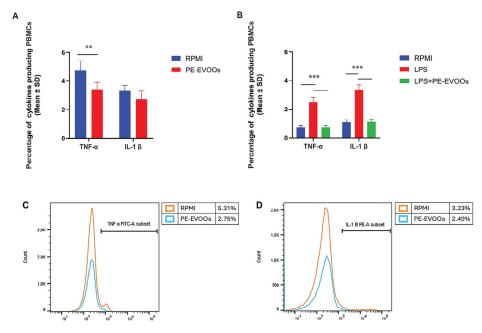


Figure 2. PE-EVOO effects on PBMC viability. PBMCs $(100 \times 10^3/100 \,\mu\text{L/well})$ were incubated with different doses $(0.5–50 \,\mu\text{g/mL})$ of PE-EVOOs for 48 h. Then, the percentage of viable cells was assessed by an MTS assay. The values reported are the mean \pm SD of three independent experiments. p-value summary < 0.05 with respect to cells cultured in medium alone (RPMI).

Based on these preliminary data, the concentration of PE-EVOOs chosen for further experiments was 10 μ g/mL, exhibiting 55% radical scavenging activity and a very low cytotoxic effect on PBMCs (about 10%).

3.4. PE-EVOOs Exert Anti-Inflammatory Effects in RA Patients and HS LPS-Stimulated PBMCs

Then, to investigate whether PE-EVOOs exert anti-inflammatory effects on RA patients' PBMCs, we isolated them from RA patients, as described in the Section 2, and treated them in vitro for 48 h with 10 $\mu g/mL$ of PE-EVOOs. After treatments, cytofluorimetric analyses were performed to evaluate the production by PBMCs of TNF- α and IL-1 β , the main cytokines playing an important role in the development and progression of inflammatory rheumatic disease (IRDs). As shown by cumulative data of cytofluorimetric analyses obtained from RA patients and reported in Figure 3A, PE-EVOO treatment reduced the percentage of RA PBMCs producing both TNF- α and IL-1 β with respect to untreated RA PBMCs. In fact, the mean percentage of TNF- α^+ RA PBMCs lowered from 4.73 (SD \pm 0.681) in untreated cells to 3.40 (SD \pm 0.490) in PE-EVOO-treated ones. In addition, the percentage of IL-1 β^+ RA PBMCs decreased from 3.31 (SD \pm 0.375) in untreated cells to 2.75 (SD \pm 0.558) in PBMCs treated for 48 h with PE-EVOOs.

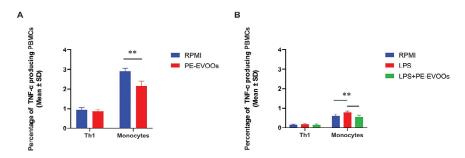


Figure 3. PE-EVOOs reduce the production of pro-inflammatory cytokines from RA patients and HS LPS-stimulated PBMCs. Cumulative data obtained from flow cytometric analyses of RA patients (**A**) and HS LPS-stimulated (**B**) PBMCs intracellularly stained for TNF- α and IL-1 β show that both cytokines decreased after 48 h of 10 µg/mL PE-EVOO treatment. Histogram overlays of the production of TNF- α (**C**) and IL-1 β (**D**) from an RA representative patient. ** p < 0.01 and *** p < 0.001 with respect to cells cultured in medium alone (RPMI) or with LPS (LPS).

We also evaluated the effects of PE-EVOOs treated on HS PBMCs stimulated with 5 μ g/mL of LPS, as reported in the Section 2, to simulate in vitro the inflammatory conditions that characterize RA patients. Interestingly, the anti-inflammatory effect of PE-EVOOs was also observed in LPS-treated HS PBMCs. In fact, in HS PBMCs, LPS treatment increased the production of both TNF- α and IL-1 β , and these cytokines were both reduced in a statistically significant manner when the cells were pretreated with PE-EVOOs. In fact, as the same Figure 3B shows, the mean percentage for TNF- α + cells was reduced from 2.49 (SD \pm 0.347) in PBMCs stimulated with LPS alone to 0.73 (SD \pm 0.129) in PE-

EVOO-pretreated cells and for IL-1 β^+ cells from 3.35 (SD \pm 0.334) in PBMCs stimulated with LPS alone to 1.11 (SD \pm 0.174) in PE-EVOO-pretreated cells. Figure 3C,D show histogram overlays of the production of TNF- α and IL-1 β , respectively, obtained from an RA-representative patient.

In addition, to understand which cell subset was more susceptible to the anti-inflammatory PE-EVOO effect, cytofluorimetric analyses were performed on RA patients and HSs to evaluate the effect of PE-EVOO treatment on TNF- α production from T helper cells and monocytes, characterized by different cell surface markers (CD3+/CD4+ for T helper subset and CD3-/CD14+ for monocytes). Our data reported in Figure 4A demonstrated that 48 h of treatment with 10 µg/mL of PE-EVOOs reduced the percentage of monocytes producing TNF- α in RA patients, with a mean percentage going from 2.91 (SD \pm 0.130) in untreated PBMCs to 2.18 (SD \pm 0.356) in PE-EVOO-treated PBMCs. The same effect was observed in HSs, where the percentage of monocytes producing TNF- α lowered from 0.79 (SD \pm 0.065) in LPS-stimulated PBMCs to 0.54 (SD \pm 0.097) in PE-EVOO-pretreated LPS-stimulated PBMCs (Figure 4B). Instead, the production of TNF- α from T helper cells remained unvaried in both RA and LPS-stimulated HS PBMCs.

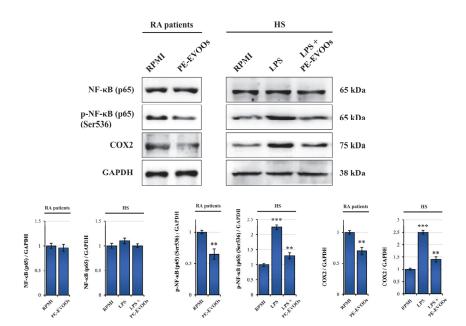


Figure 4. PE-EVOOs reduce TNF- α production only from monocytes and not from T helper cells. Cumulative data obtained from flow cytometric analyses of RA patients (**A**) and HS LPS-stimulated (**B**) PBMCs intracellularly stained for TNF- α production from Th1 cells and monocytes show that only monocytes producing TNF- α decreased after 48 h of 10 μg/mL PE-EVOO treatment. ** p < 0.01 with respect to cells cultured in medium alone (RPMI) or with LPS.

3.5. PE-EVOO Treatment Reduces the Activation of NF-κB in RA Patients and HS LPS-Stimulated PBMCs

NF- κ B is identified as one of the main transcription factors involved in the transcription of inflammatory cytokines, like IL-1 β , TNF- α , and COX2, whose increased levels in RA are associated with bone erosion, pain hypersensitivity, and disease progression [35].

In mammals, the NF-κB family consists of five members: RelA (p65), RelB, c-Rel, NF-kB1 (p50 and its precursor p105), and NF-κB2 (p52 and its precursor p100), which form different homodimers and heterodimers, and each of them activates its own characteristic target genes [36–38]. It has been reported that TNF-α induces via IKK the phosphorylation of p65 RelA on Ser-536, leading to the activation of NF-κB signaling and enhanced inflammation [39]. For this reason, we investigated the ability of PE-EVOOs to modulate the activity of phospo-NF-κB p65 (Ser536) in RA patients and HS LPS-stimulated PBMCs. The expression levels of both NF-κB and its phosphorylated p65 subunit were evaluated by Western blotting analysis in both RA patients and HS LPS-stimulated PBMCs alone or after 48 h of treatment with 10 μ g/mL of PE-EVOOs. Our data demonstrated that the PE-EVOO treatment reduced the levels of phosphorylated NF-κB p65 in both RA patients and HS LPS-stimulated PBMCs, whereas the expression levels of total NF-κB did not change in both cases (Figure 5). Thus, the reduced activity of NF-κB could, in part, mediate the anti-inflammatory effect of PE-EVOOs.

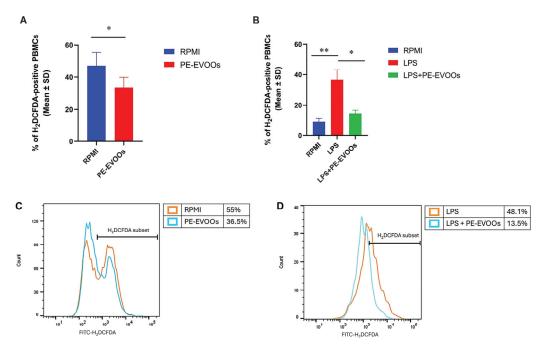
Figure 5. PE-EVOOs exert anti-inflammatory effects by reducing the expression of the active form of NF-κB and COX2. Western blotting analysis of NF-κB, phosphorylated-NF-κB, and COX2 in RA patients and HS LPS-stimulated PBMCs treated for 48 h with 10 μg/mL of PE-EVOOs. Equal loading of proteins was verified by immunoblotting for GAPDH. The bar graphs represent the mean of three independent experiments. ** p < 0.01 and *** p < 0.001 with respect to cells cultured in medium alone (RPMI).

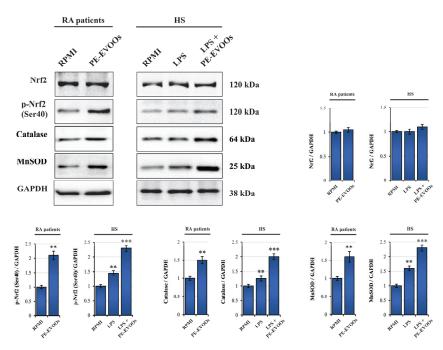
Moreover, in RA patients and HS LPS-stimulated PBMCs, PE-EVOO treatment also reduced the expression levels of COX2, a pro-inflammatory enzyme whose expression is upregulated by the increased IL-1 β secretion via NF-kB [40] (Figure 5).

3.6. PE-EVOOs Exert Antioxidative Effects in RA Patients and HS LPS-Stimulated PBMCs

It has been reported that ROS generation plays a key role in the pathogenesis of several IRDs, including RA [41]. It is now well established that elevated ROS production amplifies the inflammatory response by upregulating genes associated with immune and inflammatory cytokines through the activation of NF-κB, a nuclear transcription factor sensitive to redox signaling [42].

Therefore, we investigated the ability of PE-EVOOs to reduce ROS production in both RA and LPS-stimulated HS PBMCs. Cumulative cytofluorimetric analyses, obtained by the oxidation of the H2DCFDA dye, showed that 48 h of treatment with 10 $\mu g/mL$ of PE-EVOOs caused a reduction in intracellular ROS in RA patients' PBMCs, from a mean percentage of 47.14 (SD \pm 8.322) H2DCFDA+ untreated PBMCs to 33.40 (SD \pm 6.542) H2DCFDA+ PE-EVOOs treated PBMCs (Figure 6A). A similar effect was observed in HS PBMCs, where PE-EVOO treatment significantly reduced ROS production induced by LPS treatment (5 $\mu g/mL$) (Figure 6B). The mean percentage of H2DCFDA+ cells decreased from 36.68 (SD \pm 14.268) in LPS-stimulated PBMCs to 14.60 (SD \pm 4.771) in PE-EVOO-pretreated LPS-stimulated PBMCs (Figure 6B). Figure 6C,D show histogram overlays of intracellular ROS production obtained from PBMCs of a representative RA patient and HSs, respectively.




Figure 6. PE-EVOOs exert antioxidant effects in RA patients and HS LPS-stimulated PBMCs. Cumulative data obtained from flow cytometric analysis of RA patients (**A**) and HS LPS-stimulated (**B**) PBMCs treated for 48 h with 10 μ g/mL of PE-EVOOs stained for intracellular ROS using the redox-sensitive fluorochrome H2-DCFDA, as reported in the Section 2. Histogram overlays of intracellular ROS production obtained from PBMCs of a representative RA patient (**C**) and HSs (**D**). * p < 0.05 and ** p < 0.01 with respect to cells cultured in medium alone (RPMI) or with LPS.

3.7. PE-EVOO Treatment Upregulates the Antioxidant Nrf2-Mediated Pathway in RA Patients and HS LPS-Stimulated PBMCs

To deeply investigate the molecular mechanisms responsible for PE-EVOO antioxidant effect on RA patients and HSs, we performed Western blotting experiments to evaluate the ability of PE-EVOOs to upregulate Nrf2, a transcription factor that controls the expression of several antioxidant genes, regulating the physiological and pathophysiological outcomes of oxidant exposure [43]. We demonstrated that PE-EVOO treatment increased the levels of phosphorylated and active forms of Nrf2 in RA patients and HS LPS-stimulated PBMCs, while the levels of total Nrf2 did not change (Figure 7).

According to these data, we further demonstrated by Western blotting analysis that the expression levels of catalase and MnSOD, two important ROS scavenger enzymes regulated transcriptionally by Nrf2 [44], markedly increased in PBMCs from RA patients and HSs stimulated with LPS after 48 h of PE-EVOO treatment.

Taken together, these results seem to indicate that the activation of Nrf2 and antioxidant enzymes, catalase and MnSOD, could mediate the antioxidant behavior of PE-EVOOs in both RA patients and HS LPS-stimulated PBMCs.

Figure 7. PE-EVOOs exert antioxidant effects upregulating the active form of Nrf2 and its transcriptional targets, catalase and MnSOD. Western blotting analysis of Nrf2, p-Nrf2 (Ser 40), catalase, and MnSOD in RA patients and HS LPS-stimulated PBMCs treated for 48 h with 10 μ g/mL of PE-EVOOs. Equal loading of proteins was verified by immunoblotting for GAPDH. The bar graphs represent the mean of three independent experiments \pm SD. ** p < 0.01 and *** p < 0.001 with respect to cells cultured in medium alone (RPMI).

4. Discussion

RA is one of the most prevalent complex, chronic, inflammatory diseases, manifested by elevated oxidative stress and inflammatory biomarkers [45]. While current RA therapies, including conventional DMARDs, biologics, and corticosteroids, have significantly improved the course of the disease, there is an urgent need for novel approaches that can better target the underlying pathogenetic mechanisms, reduce side effects, prevent joint damage, and improve long-term quality of life [46]. Recently, several natural compounds have been shown to exert a supportive role in managing RA, helping to reduce inflammation, relieve pain, and potentially improve joint health [21].

As part of the ongoing quest to identify natural compounds for the treatment of RA, our study focused on investigating the anti-inflammatory and antioxidant properties of polyphenol-rich extracts derived from extra virgin olive oil produced in Sicily, Italy. This region, located in the Mediterranean basin, is characterized by an optimal climate, traditional olive harvesting techniques, and the immediate milling of olives after harvest, all of which contribute to producing high-quality EVOO with a superior nutritional and chemical profile. Notably, the DPPH assay evidenced that ethanol extracts of Sicilian EVOO possess strong ROS scavenging properties. The characterization of the polyphenolic profile of these extracts using HPLC/MS provided evidence that they are rich in polyphenols. In particular, we demonstrated the presence of 3,4-DHPEA and its derivatives. The high prevalence of 3,4-DHPEA and its derivatives underscores the significant role these compounds play in EVOO's biological effects. The potent antioxidant activity of 3,4-DHPEA is well documented, with mechanisms such as free radical scavenging and metal ion chelation supporting its cardioprotective, neuroprotective, and anticancer effects [47,48]. While the antioxidant activity forms the foundation of its health benefits, the molecular pathways underlying its diverse biological effects warrant further exploration [15].

TNF- α , IL-1 β , and IL-6 are pro-inflammatory cytokines that play a critical role in the pathogenesis and progression of RA, with growth-promoting properties directed towards synovial fibroblasts whose hyperproliferation is responsible for the alteration of joint structures and destruction of connective tissue and subchondral bone [49]. Therefore, elevated serum levels of these cytokines are commonly observed in individuals with active RA and are associated with disease severity and joint damage [50]. In line with this observation, we demonstrated that RA PBMCs expressed elevated levels of both TNF- α and IL-1 β . Notably, an increased expression of both pro-inflammatory cytokines was observed in healthy-subject PBMCs stimulated with lipopolysaccharide LPS to mimic an inflammatory condition. Notably, RA PBMCs were not stimulated with LPS because it is widely reported that the high basal secretion of pro-inflammatory cytokines characterizing RA patients causes a decrease in the ability to secrete increased amounts of cytokines in response to pro-inflammatory stimulation, such as LPS [51].

High levels of circulating TNF- α , produced primarily by activated macrophages and T cells and, to a lesser extent, by neutrophils, mast cells, and endothelial cells [52], lead to fibroblast activation in RA patients, resulting in the recruitment of inflammatory cells into the lesion and the NF- κ B-mediated secretion of inflammatory cytokines, cathepsins, matrix metalloproteinases, and other inflammatory mediators, which cause destructive changes in the joints [53]. TNF- α binds to the ubiquitously expressed TNF receptor 1 (TNFR1/TNFR-55) or the tissue-restricted TNFR2 (TNFR-75) [54]. TNFR1 binding activates canonical NF- κ B, the MAP kinases p38 and JNK, and due to the presence of a death domain, apical caspases. Signaling via TNFR2, which does not contain a death domain, activates MAP kinases and also leads to noncanonical NF- κ B activation [54,55], causing the differentiation of multiple Th subsets towards inflammatory phenotypes, like Th1 and Th17.

IL-1 β is a member of the interleukin-1 family, produced by activated macrophages, monocytes, and a subpopulation of dendritic cells called slanDC, as a proprotein, which is proteolytically processed into its active form by caspase 1 (CASP1/ICE) [56]. IL-1 β is a central mediator of innate immunity and inflammation, leading to fever onset and immune activation upon binding to IL-1 receptor 1, and its secretion is tightly regulated.

The activation of Toll-like receptors (TLRs), TNF- α receptors, or IL-1 receptors upon binding of mature IL-1 α or IL-1 β , induces the transcription of the biologically inactive pro-form, although for its secretion, inflammasome activation is requested [56,57]. IL-1 β , together with TNF- α and IL-6 serum levels, often correlate with disease severity, including joint swelling and bone erosion [58,59]. For this reason, a reduction in the synthesis of both TNF- α and IL-1 β using bioactive natural compounds may represent an effective method to manage inflammation in IRDs, including RA [60].

Interestingly, we found that exposure to PE-EVOOs significantly reduced the production of TNF- α and IL-1 β , both in RA PBMCs and in HS PBMCs stimulated with LPS, thus suggesting an anti-inflammatory potential of EVOO extracts. In addition, the observation that the treatment with PE-EVOOs efficiently reduces specifically monocytic TNF- α production confirms that their use could be beneficial to RA symptoms, given its role in cartilage and bone infiltration and destruction characterizing RA progression. Our findings in fact support the literature data reporting that TNF- α -producing macrophages are the most abundant immune cells found in RA synovium, where they produce also other pro-inflammatory cytokines (IL-1 β and IL-6), chemoattractant factors (CCL2 and IL-8), and metalloproteinases (MMP-3 and MMP-12) [61–63], inducing cellular proliferation and increased vascular permeability, which contribute to the pathogenic features of tissue proliferation and neovascularization characterizing rheumatoid synovium, along with cartilage and bone infiltration and destruction [63].

It has been known that IL-1 β upregulates the expression of COX2, an inducible enzyme that converts arachidonic acid into prostaglandins, amplifying the inflammatory response [64]. In turn, COX2-derived prostaglandins, like PGE2, can enhance the release of IL-1 β from immune cells, creating a feedback loop that sustains inflammation [65]. In line with these suggestions, the reduction in COX2 production observed in RA PBMC treated with PE-EVOOs may contribute to reduced inflammation in RA patients.

Our data also demonstrated that PE-EVOOs reduced the active phosphorylated form of NF- κ B in both RA and healthy LPS-stimulated PBMCs. NF- κ B is a critical transcription factor that controls the expression of a wide array of pro-inflammatory genes [65]. Its activation is promoted by different pro-inflammatory stimuli, like TNF- α or IL-1 β , or TLR activation by pathogens [66]. When activated, NF- κ B binds to specific DNA response elements in the nucleus, initiating the transcription of pro-inflammatory genes, including TNF- α and other cytokines, such as IL-1 β and IL-6, in a positive feedback loop [67]. Thus, the reduction in NF- κ B activation may explain the anti-inflammatory role exerted by PE-EVOOs in RA PBMCs.

A link between chronic inflammation and oxidative stress has been observed, with free radicals being the cause of many chronic diseases, such as RA [68]. Sustained ROS production can lead to chronic NF-κB activation, contributing to inflammation and tissue damage [68]. ROS act as signaling molecules activating NF-κB by activating the IκB kinase (IKK) complex, which phosphorylates IκB (inhibitor of NF-κB), marking it for ubiquitination and proteasome 26S degradation [68]. This releases NF-κB, allowing it to translocate to the nucleus and activate target genes [68]. ROS can also directly oxidize specific cysteine residues on IKK or other upstream signaling proteins, modulating their activity [69]. Thus, the reduction in ROS level can contribute to inactivating NF-κB and inflammation. Notably, our data provided evidence that PE-EVOOs reduce the production of ROS both in RA PBMCs and HS LPS-stimulated PBMCs. The antioxidant effects of PE-EVOOs could be explained by the ability of these extracts to upregulate the transcriptional factor Nrf2 and its antioxidant target enzymes MnSOD and catalase in RA PBMCs and healthy LPS-stimulated PBMCs.

In line with our hypothesis, it has been shown that Nrf2 prevents LPS-induced transcriptional upregulation of several pro-inflammatory cytokines, such as IL-6 and IL-1 β [70], whose production is increased in Nrf2—/— mice with dextran sulfate-induced colitis [70]. Nrf2 also inhibits the production of IL-17 and other Th1 cytokines, reducing disease progression in autoimmune encephalitis, an experimental model of multiple sclerosis [71]. Furthermore, Nrf2-dependent antioxidant genes, such as HO-1, NQO-1, Gclc, and Gclm, block the production of TNF- α , IL-6, monocyte chemo-attractant protein-1 (MCP1), macrophage inflammatory protein-2 (MIP2), and other inflammatory mediators [70,72]. Our results, therefore, underline how the marked anti-inflammatory activity of PE-EVOOs is strongly correlated to the reduction in oxidative stress through the increased expression of the active form of Nrf2 and its target antioxidant genes, MnSOD and catalase.

5. Conclusions

Our findings confirm the dual anti-inflammatory and antioxidant efficacy of PE-EVOOs, underscoring their potential as natural therapeutic agents for managing RA. The anti-inflammatory activity of PE-EVOOs seems to be mediated by the inhibition of the NF- κ B signaling pathway. This suppression significantly reduces the expression of COX2, a pivotal enzyme in the inflammatory process, and decreases the synthesis of critical pro-inflammatory cytokines, such as TNF- α and IL-1 β . This mechanism may help to mitigate the chronic inflammation associated with RA and other degenerative diseases.

Simultaneously, PE-EVOOs exhibit robust antioxidant properties by neutralizing ROS and upregulating the expression of essential antioxidant enzymes, including catalase and MnSOD. This effect seems to involve the activation of Nrf2. By protecting cells from oxidative damage, which often exacerbates chronic inflammation, PE-EVOOs provide a comprehensive therapeutic benefit.

These results highlight the potential of PE-EVOOs not only to modulate inflammatory responses but also to enhance antioxidant defense mechanisms, suggesting a valuable role in the management of chronic inflammatory conditions, such as RA. By leveraging their natural bioactive properties, PE-EVOOs could serve as an adjunct to conventional RA therapies, contributing to pain relief, inflammation reduction, and improved overall treatment outcomes. This dual action underscores their promise as a complementary natural intervention for enhancing the quality of life in individuals with RA. Comprehensive clinical trials are needed to confirm the efficacy and safety of PE-EVOOs in diverse patient populations and to explore optimal dosing regimens. Such research will be crucial to translate these preliminary findings into viable therapeutic strategies, paving the way for their integration into evidence-based management plans for RA and other chronic inflammatory diseases.

Author Contributions: Conceptualization, B.T., D.D.L., M.L. and G.G.; methodology, D.C. and A.D.; investigation, B.T., D.D.L., G.P., A.M., A.P.P., C.R. and L.L.B.; data curation, D.D.L. and G.P.; software, G.P. and D.C.; writing—original draft preparation, D.D.L. and M.L.; review and editing, all authors; supervision N.C. and G.G.; funding acquisition, N.C. and G.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially sustained by Finalized Research Funding (FFR 2024), Università degli Studi di Palermo, Palermo, Italy.

Institutional Review Board Statement: The study involves human participants and was approved by the local Ethics Committee of the University of Palermo and complied with the provisions of the Declaration of Helsinki.

Informed Consent Statement: Informed consent was obtained from all patients and control.

Data Availability Statement: Data presented in this study are available in this manuscript.

Acknowledgments: Azienda Agricola Signorello, Campobello di Mazzara.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Abbreviations

COX2 Cyclooxygenase 2

CIA Collagen-induced arthritis

DMARDs Disease-modifying anti-rheumatic drugs

DPPH 1,1-diphenyl-2-picrylhydrazyl

EVOO Extra virgin olive oil

H₂DCFDA 2',7'-dichlorodihydrofluorescein diacetate

IL-1β Interleukin-1β

IRD Inflammatory rheumatic disease

IκB Inhibitor of NF-κB

IKK IkB kinase

LPS Lipopolysaccharide

MnSOD Manganese superoxide dismutase

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-

MTS 2-(4-sulfophenyl)-2H-tetrazolium

NF-ĸB Nuclear factor kappa-light-chain enhancer of activated B cells

Nrf2 NF-E2-related factor 2

PBMCs Peripheral blood mononuclear cells PE-EVOOs Polyphenol-enriched extracts ROS Reactive oxygen species

Th1 Thelper 1

Th17

T helper17 TNF-α Tumor necrosis factor-α

References

Putterman, C. Introduction: New treatment paradigms in rheumatoid arthritis. Am. J. Orthop. 2007, 36, 2–3. [PubMed]

- Kvien, T.K. Epidemiology and burden of illness of rheumatoid arthritis. *Pharmacoeconomics* 2004, 22, 1–12. [CrossRef] [PubMed]
- 3. Bullock, J.; Rizvi, S.A.A.; Saleh, A.M.; Ahmed, S.S.; Do, D.P.; Ansari, R.A.; Ahmed, J. Rheumatoid Arthritis: A Brief Overview of the Treatment. Med. Princ. Pract. 2018, 27, 501–507. [CrossRef] [PubMed]
- Benjamin, O.; Goyal, A.; Lappin, S.L. Disease-Modifying Antirheumatic Drugs (DMARD). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024.
- 5. Gonfa, Y.H.; Bachheti, A.; Semwal, P.; Rai, N.; Singab, A.N.; Bachheti, R.K. Hepatoprotective activity of medicinal plants, their phytochemistry, and safety concerns: A systematic review. Z. Naturforsch. C J. Biosci. 2024, 0116. [CrossRef] [PubMed]
- Gandhi, G.R.; Jothi, G.; Mohana, T.; Vasconcelos, A.B.S.; Montalvao, M.M.; Hariharan, G.; Sridharan, G.; Kumar, P.M.; Gurgel, R.Q.; Li, H.B.; et al. Anti-inflammatory natural products as potential therapeutic agents of rheumatoid arthritis: A systematic review. Phytomedicine 2021, 93, 153766. [CrossRef]
- Wambugu, S.N.; Mathiu, P.M.; Gakuya, D.W.; Kanui, T.I.; Kabasa, J.D.; Kiama, S.G. Medicinal plants used in the management of chronic joint pains in Machakos and Makueni counties, Kenya. J. Ethnopharmacol. 2011, 137, 945-955. [CrossRef]
- 8. Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [CrossRef]
- Rudrapal, M.; Mishra, A.K.; Rani, L.; Sarwa, K.K.; Zothantluanga, J.H.; Khan, J.; Kamal, M.; Palai, S.; Bendale, A.R.; Talele, S.G.; et al. Nanodelivery of Dietary Polyphenols for Therapeutic Applications. Molecules 2022, 27, 8706. [CrossRef]
- Santangelo, C.; Vari, R.; Scazzocchio, B.; De Sanctis, P.; Giovannini, C.; D'Archivio, M.; Masella, R. Anti-inflammatory Activity of Extra Virgin Olive Oil Polyphenols: Which Role in the Prevention and Treatment of Immune-Mediated Inflammatory Diseases? Endocr. Metab. Immune Disord. Drug Targets 2018, 18, 36–50. [CrossRef]
- 11. Gambino, C.M.; Accardi, G.; Aiello, A.; Candore, G.; Dara-Guccione, G.; Mirisola, M.; Procopio, A.; Taormina, G.; Caruso, C. Effect of Extra Virgin Olive Oil and Table Olives on the ImmuneInflammatory Responses: Potential Clinical Applications. Endocr. Metab. Immune Disord. Drug Targets 2018, 18, 14–22. [CrossRef]
- Jimenez-Sanchez, A.; Martinez-Ortega, A.J.; Remon-Ruiz, P.J.; Pinar-Gutierrez, A.; Pereira-Cunill, J.L.; Garcia-Luna, P.P. Therapeutic Properties and Use of Extra Virgin Olive Oil in Clinical Nutrition: A Narrative Review and Literature Update. Nutrients 2022, 14, 1440. [CrossRef] [PubMed]
- 13. Castejon, M.L.; Montoya, T.; Alarcon-de-la-Lastra, C.; Sanchez-Hidalgo, M. Potential Protective Role Exerted by Secoiridoids from Olea europaea L. in Cancer, Cardiovascular, Neurodegenerative, Aging-Related, and Immunoinflammatory Diseases. Antioxidants **2020**, 9, 149. [CrossRef] [PubMed]
- 14. Aparicio-Soto, M.; Sanchez-Hidalgo, M.; Rosillo, M.A.; Castejon, M.L.; Alarcon-de-la-Lastra, C. Extra virgin olive oil: A key functional food for prevention of immune-inflammatory diseases. Food Funct. 2016, 7, 4492-4505. [CrossRef] [PubMed]
- Karkovic Markovic, A.; Toric, J.; Barbaric, M.; Jakobusic Brala, C. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules 2019, 24, 2001. [CrossRef]
- 16. Stiller, A.; Garrison, K.; Gurdyumov, K.; Kenner, J.; Yasmin, F.; Yates, P.; Song, B.H. From Fighting Critters to Saving Lives: Polyphenols in Plant Defense and Human Health. Int. J. Mol. Sci. 2021, 22, 8995. [CrossRef]
- Serreli, G.; Deiana, M. Extra Virgin Olive Oil Polyphenols: Modulation of Cellular Pathways Related to Oxidant Species and Inflammation in Aging. Cells 2020, 9, 478. [CrossRef]
- Bucciantini, M.; Leri, M.; Nardiello, P.; Casamenti, F.; Stefani, M. Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants 2021, 10, 1044. [CrossRef]
- 19. Perkins, N.D. The Rel/NF-kappa B family: Friend and foe. Trends Biochem. Sci. 2000, 25, 434-440. [CrossRef]

- Rosillo, M.A.; Alcaraz, M.J.; Sanchez-Hidalgo, M.; Fernandez-Bolanos, J.G.; Alarcon-de-la-Lastra, C.; Ferrandiz, M.L. Anti-inflammatory and joint protective effects of extra-virgin olive-oil polyphenol extract in experimental arthritis. *J. Nutr. Biochem.* 2014, 25, 1275–1281. [CrossRef]
- 21. Rosillo, M.A.; Sanchez-Hidalgo, M.; Sanchez-Fidalgo, S.; Aparicio-Soto, M.; Villegas, I.; Alarcon-de-la-Lastra, C. Dietary extravirgin olive oil prevents inflammatory response and cartilage matrix degradation in murine collagen-induced arthritis. *Eur. J. Nutr.* **2016**, *55*, 315–325. [CrossRef]
- 22. Rosillo, M.A.; Alarcon-de-la-Lastra, C.; Castejon, M.L.; Montoya, T.; Cejudo-Guillen, M.; Sanchez-Hidalgo, M. Polyphenolic extract from extra virgin olive oil inhibits the inflammatory response in IL-1beta-activated synovial fibroblasts. *Br. J. Nutr.* **2019**, 121, 55–62. [CrossRef] [PubMed]
- 23. Schulze-Osthoff, K.; Ferrari, D.; Riehemann, K.; Wesselborg, S. Regulation of NF-kappa B activation by MAP kinase cascades. *Immunobiology* **1997**, *198*, 35–49. [CrossRef] [PubMed]
- 24. Lee, Y.S.; Choi, E.M. Myricetin inhibits IL-1beta-induced inflammatory mediators in SW982 human synovial sarcoma cells. *Int. Immunopharmacol.* **2010**, *10*, 812–814. [CrossRef] [PubMed]
- 25. Blainski, A.; Lopes, G.C.; de Mello, J.C. Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from *Limonium brasiliense* L. *Molecules* **2013**, *18*, 6852–6865. [CrossRef] [PubMed]
- 26. Raimondo, S.; Urzi, O.; Meraviglia, S.; Di Simone, M.; Corsale, A.M.; Rabienezhad Ganji, N.; Palumbo Piccionello, A.; Polito, G.; Lo Presti, E.; Dieli, F.; et al. Anti-inflammatory properties of lemon-derived extracellular vesicles are achieved through the inhibition of ERK/NF-kappaB signalling pathways. *J. Cell. Mol. Med.* 2022, 26, 4195–4209. [CrossRef]
- 27. Faddetta, T.; Polito, G.; Abbate, L.; Alibrandi, P.; Zerbo, M.; Caldiero, C.; Reina, C.; Puccio, G.; Vaccaro, E.; Abenavoli, M.R.; et al. Bioactive Metabolite Survey of Actinobacteria Showing Plant Growth Promoting Traits to Develop Novel Biofertilizers. *Metabolites* 2023, 13, 374. [CrossRef]
- 28. Locatelli, M.; Gindro, R.; Travaglia, F.; Coïsson, J.D.; Rinaldi, M.; Arlorio, M. Study of the DPPHradical dot-scavenging activity: Development of a free software for the correct interpretation of data. *Food Chem.* **2009**, *114*, 889–897. [CrossRef]
- 29. Pratelli, G.; Carlisi, D.; Di Liberto, D.; Notaro, A.; Giuliano, M.; D'Anneo, A.; Lauricella, M.; Emanuele, S.; Calvaruso, G.; De Blasio, A. MCL1 Inhibition Overcomes the Aggressiveness Features of Triple-Negative Breast Cancer MDA-MB-231 Cells. *Int. J. Mol. Sci.* 2023, 24, 11149. [CrossRef]
- 30. Mansueto, P.; Di Liberto, D.; Fayer, F.; Soresi, M.; Geraci, G.; Giannone, A.G.; Seidita, A.; D'Alcamo, A.; La Blasca, F.; Lo Pizzo, M.; et al. TNF-alpha, IL-17, and IL-22 production in the rectal mucosa of nonceliac wheat sensitivity patients: Role of adaptive immunity. *Am. J. Physiol. Gastrointest. Liver Physiol.* **2020**, 319, G281–G288. [CrossRef]
- 31. Eruslanov, E.; Kusmartsev, S. Identification of ROS Using Oxidized DCFDA and Flow-Cytometry. *Methods Mol. Biol.* **2010**, *594*, 57–72.
- 32. De Blasio, A.; Pratelli, G.; Drago-Ferrante, R.; Saliba, C.; Baldacchino, S.; Grech, G.; Tesoriere, G.; Scerri, C.; Vento, R.; Di Fiore, R. Loss of MCL1 function sensitizes the MDA-MB-231 breast cancer cells to rh-TRAIL by increasing DR4 levels. *J. Cell. Physiol.* 2019, 234, 18432–18447. [CrossRef] [PubMed]
- 33. Di Liberto, D.; Iacuzzi, N.; Pratelli, G.; Porrello, A.; Maggio, A.; La Bella, S.; De Blasio, A.; Notaro, A.; D'Anneo, A.; Emanuele, S.; et al. Cytotoxic Effect Induced by Sicilian Oregano Essential Oil in Human Breast Cancer Cells. *Cells* **2023**, *12*, 2733. [CrossRef] [PubMed]
- 34. Pipitone, R.M.; Zito, R.; Lupo, G.; Javed, A.; La Mantia, C.; Di Maria, G.; Pratelli, G.; Di Salvo, F.; Fontana, S.; Pucci, M.; et al. Curcumin and Andrographolide Co-Administration Safely Prevent Steatosis Induction and ROS Production in HepG2 Cell Line. *Molecules* 2023, 28, 1261. [CrossRef] [PubMed]
- 35. Roman-Blas, J.A.; Jimenez, S.A. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. *Osteoarthr. Cartil.* **2006**, *14*, 839–848. [CrossRef] [PubMed]
- 36. Udalova, I.A.; Mott, R.; Field, D.; Kwiatkowski, D. Quantitative prediction of NF-kappa B DNA-protein interactions. *Proc. Natl. Acad. Sci. USA* **2002**, *99*, 8167–8172. [CrossRef]
- 37. Ghosh, S.; Hayden, M.S. Celebrating 25 years of NF-kappaB research. Immunol. Rev. 2012, 246, 5–13. [CrossRef]
- 38. Dejardin, E.; Droin, N.M.; Delhase, M.; Haas, E.; Cao, Y.; Makris, C.; Li, Z.W.; Karin, M.; Ware, C.F.; Green, D.R. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. *Immunity* **2002**, *17*, 525–535. [CrossRef]
- 39. Sakurai, H.; Suzuki, S.; Kawasaki, N.; Nakano, H.; Okazaki, T.; Chino, A.; Doi, T.; Saiki, I. Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. *J. Biol. Chem.* 2003, 278, 36916–36923. [CrossRef]
- 40. Kitanaka, N.; Nakano, R.; Kitanaka, T.; Namba, S.; Konno, T.; Nakayama, T.; Sugiya, H. NF-kappaB p65 and p105 implicate in interleukin 1beta-mediated COX-2 expression in melanoma cells. *PLoS ONE* **2018**, *13*, e0208955. [CrossRef]

- 41. Shufang, M.; Xiaojiao, H.; Yinhong, K. Pro-inflammatory cytokine IL-21 correlates with the reactive oxygen species and 25-hydroxy vitamin D in rheumatoid arthritis patients. *Immun. Inflamm. Dis.* **2024**, *12*, e1308. [CrossRef]
- 42. Bhol, N.K.; Bhanjadeo, M.M.; Singh, A.K.; Dash, U.C.; Ojha, R.R.; Majhi, S.; Duttaroy, A.K.; Jena, A.B. The interplay between cytokines, inflammation, and antioxidants: Mechanistic insights and therapeutic potentials of various antioxidants and anticytokine compounds. *Biomed. Pharmacother.* **2024**, *178*, 117177. [CrossRef] [PubMed]
- 43. He, F.; Ru, X.; Wen, T. NRF2, a Transcription Factor for Stress Response and Beyond. *Int. J. Mol. Sci.* **2020**, 21, 4777. [CrossRef] [PubMed]
- 44. Vaziri, N.D. Protective Effect of Nrf2 and Catalase in Maternal Diabetes-Induced Perinatal Hypertension and Kidney Disease. *Diabetes* 2012, 61, 2400–2402.45. [CrossRef] [PubMed]
- 45. Romao, V.C.; Fonseca, J.E. Etiology and Risk Factors for Rheumatoid Arthritis: A State-of-the-Art Review. *Front. Med.* **2021**, *8*, 689698. [CrossRef] [PubMed]
- 46. Inui, K.; Koike, T. Combination therapy with biologic agents in rheumatic diseases: Current and future prospects. *Ther. Adv. Musculoskelet. Dis.* **2016**, *8*, 192–202. [CrossRef]
- 47. Kouka, P.; Tsakiri, G.; Tzortzi, D.; Dimopoulou, S.; Sarikaki, G.; Stathopoulos, P.; Veskoukis, A.S.; Halabalaki, M.; Skaltsounis, A.L.; Kouretas, D. The Polyphenolic Composition of Extracts Derived from Different Greek Extra Virgin Olive Oils Is Correlated with Their Antioxidant Potency. *Oxidative Med. Cell. Longev.* 2019, 2019, 1870965. [CrossRef]
- 48. Servilli, M.; Sordini, B.; Esposto, S.; Urbani, S.; Veneziani, G.; Di Maio, I.; Selvaggini, R.; Taticchi, A. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil. *Antioxidants* **2014**, *3*, 1–23. [CrossRef]
- 49. Gitter, B.D.; Labus, J.M.; Lees, S.L.; Scheetz, M.E. Characteristics of human synovial fibroblast activation by IL-1 beta and TNF alpha. *Immunology* **1989**, *66*, 196–200.
- 50. Inam Illahi, M.; Amjad, S.; Alam, S.M.; Ahmed, S.T.; Fatima, M.; Shahid, M.A. Serum Tumor Necrosis Factor-Alpha as a Competent Biomarker for Evaluation of Disease Activity in Early Rheumatoid Arthritis. *Cureus* **2021**, *13*, e15314. [CrossRef]
- 51. Bogatyreva, A.I.; Gerasimova, E.V.; Kirichenko, T.V.; Markina, Y.V.; Popkova, T.V.; Shalygina, M.V.; Tolstik, T.V.; Markin, A.M.; Orekhov, A.N. Proinflammatory Activation of Monocytes in Patients with Immunoinflammatory Rheumatic Diseases. *Dokl. Biochem. Biophys.* **2024**, 517, 228–234. [CrossRef]
- 52. Alam, M.S.; Otsuka, S.; Wong, N.; Abbasi, A.; Gaida, M.M.; Fan, Y.; Meerzaman, D.; Ashwell, J.D. TNF plays a crucial role in inflammation by signaling via T cell TNFR2. *Proc. Natl. Acad. Sci. USA* **2021**, *118*, e2109972118. [CrossRef] [PubMed]
- 53. Jang, D.I.; Lee, A.H.; Shin, H.Y.; Song, H.R.; Park, J.H.; Kang, T.B.; Lee, S.R.; Yang, S.H. The Role of Tumor Necrosis Factor Alpha (TNF-alpha) in Autoimmune Disease and Current TNF-alpha Inhibitors in Therapeutics. *Int. J. Mol. Sci.* 2021, 22, 2719. [CrossRef] [PubMed]
- 54. Bradley, J.R. TNF-mediated inflammatory disease. J. Pathol. 2008, 214, 149–160. [CrossRef] [PubMed]
- 55. Sedger, L.M.; McDermott, M.F. TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants—Past, present and future. *Cytokine Growth Factor Rev.* **2014**, 25, 453–472. [CrossRef]
- 56. Yazdi, A.S.; Ghoreschi, K. The Interleukin-1 Family. Adv. Exp. Med. Biol. 2016, 941, 21-29.
- 57. Tamburini, B.; La Manna, M.P.; La Barbera, L.; Mohammadnezhad, L.; Badami, G.D.; Shekarkar Azgomi, M.; Dieli, F.; Caccamo, N. Immunity and Nutrition: The Right Balance in Inflammatory Bowel Disease. *Cells* **2022**, *11*, 455. [CrossRef]
- 58. Du, J.; Sun, J.; Wen, Z.; Li, Q.; Xia, Y.; Yang, Q.; Yang, C. Serum IL-6 and TNF-alpha Levels Are Correlated with Disease Severity in Patients with Ankylosing Spondylitis. *Lab. Med.* **2022**, *53*, 149–155. [CrossRef]
- 59. Zhao, R.; Zhou, H.; Su, S.B. A critical role for interleukin-1beta in the progression of autoimmune diseases. *Int. Immunopharmacol.* **2013**, *17*, 658–669. [CrossRef]
- 60. Moller, B.; Villiger, P.M. Inhibition of IL-1, IL-6, and TNF-alpha in immune-mediated inflammatory diseases. *Springer Semin. Immunopathol.* **2006**, 27, 391–408. [CrossRef]
- 61. Ardura, J.A.; Rackov, G.; Izquierdo, E.; Alonso, V.; Gortazar, A.R.; Escribese, M.M. Targeting Macrophages: Friends or Foes in Disease? *Front. Pharmacol.* **2019**, *10*, 1255. [CrossRef]
- 62. Kinne, R.W.; Stuhlmuller, B.; Burmester, G.R. Cells of the synovium in rheumatoid arthritis. Macrophages. *Arthritis Res. Ther.* **2007**, *9*, 224. [CrossRef] [PubMed]
- 63. Jang, S.; Kwon, E.J.; Lee, J.J. Rheumatoid Arthritis: Pathogenic Roles of Diverse Immune Cells. *Int. J. Mol. Sci.* **2022**, 23, 905. [CrossRef] [PubMed]
- 64. Kao, A.P.; Wang, K.H.; Long, C.Y.; Chai, C.Y.; Tsai, C.F.; Hsieh, T.H.; Hsu, C.Y.; Chang, C.C.; Lee, J.N.; Tsai, E.M. Interleukin-1beta induces cyclooxygenase-2 expression and promotes the invasive ability of human mesenchymal stem cells derived from ovarian endometrioma. *Fertil. Steril.* 2011, *96*, 678–684.e1. [CrossRef] [PubMed]
- 65. Jin, K.; Qian, C.; Lin, J.; Liu, B. Cyclooxygenase-2-Prostaglandin E2 pathway: A key player in tumor-associated immune cells. *Front. Oncol.* **2023**, *13*, 1099811. [CrossRef] [PubMed]

- 66. Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-kappaB signaling in inflammation. *Signal Transduct. Target. Ther.* **2017**, 2, e17023. [CrossRef]
- 67. Libermann, T.A.; Baltimore, D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. *Mol. Cell. Biol.* **1990**, *10*, 2327–2334. [CrossRef]
- 68. Lingappan, K. NF-kappaB in Oxidative Stress. Curr. Opin. Toxicol. 2018, 7, 81–86. [CrossRef]
- 69. Lennicke, C.; Cocheme, H.M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. *Mol. Cell* **2021**, *81*, 3691–3707. [CrossRef]
- 70. Ahmed, S.M.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. *Biochim. Biophys. Acta Mol. Basis Dis.* **2017**, *1863*, 585–597. [CrossRef]
- 71. Maldonado, P.P.; Guevara, C.; Olesen, M.A.; Orellana, J.A.; Quintanilla, R.A.; Ortiz, F.C. Neurodegeneration in Multiple Sclerosis: The Role of Nrf2-Dependent Pathways. *Antioxidants* **2022**, *11*, 1146. [CrossRef]
- 72. Vomund, S.; Schafer, A.; Parnham, M.J.; Brune, B.; von Knethen, A. Nrf2, the Master Regulator of Anti-Oxidative Responses. *Int. J. Mol. Sci.* **2017**, *18*, 2772. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article

Antioxidant Capacity of Free and Bound Phenolics from Olive Leaves: In Vitro and In Vivo Responses

Ting Li ^{1,2,†}, Wenjun Wu ^{3,†}, Jianming Zhang ¹, Qinghang Wu ¹, Shenlong Zhu ⁴, Erli Niu ⁴, Shengfeng Wang ⁵, Chengying Jiang ³, Daqun Liu ^{1,*} and Chengcheng Zhang ^{1,*}

- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; lt1345600496@126.com (T.L.); zhangjianming@zaas.ac.cn (J.Z.); hang9799@outlook.com (Q.W.)
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
- ³ Gansu Research Academy of Forestry Science and Technology, Lanzhou 730020, China; wuwenjun121@163.com (W.W.); jcytxb@126.com (C.J.)
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; zhusl@zaas.ac.cn (S.Z.); niuerli@zaas.ac.cn (E.N.)
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, China; wsf1027@zjut.edu.cn
- * Correspondence: liudaqun@zaas.ac.cn (D.L.); zhangcc@zaas.ac.cn (C.Z.)
- [†] These authors have contributed equally to this work.

Abstract: Olive leaves are rich in phenolic compounds. This study explored the chemical profiles and contents of free phenolics (FPs) and bound phenolics (BPs) in olive leaves, and further investigated and compared the antioxidant properties of FPs and BPs using chemical assays, cellular antioxidant evaluation systems, and in vivo mouse models. The results showed that FPs and BPs have different phenolic profiles; 24 free and 14 bound phenolics were identified in FPs and BPs, respectively. Higher levels of phenolic acid (i.e., sinapinic acid, 4-coumaric acid, ferulic acid, and caffeic acid) and hydroxytyrosol were detected in the BPs, while flavonoids, triterpenoid acids, and iridoids were more concentrated in the free form. FPs showed a significantly higher total flavonoid content (TFC), total phenolic content (TPC), and chemical antioxidant properties than those of BPs (p < 0.05). Within the range of doses (20–250 μ g/mL), both FPs and BPs protected HepG2 cells from H₂O₂-induced oxidative stress injury, and there was no significant difference in cellular antioxidant activity between FPs and BPs. The in vivo experiments suggested that FP and BP treatment inhibited malondialdehyde (MDA) levels in a D-galactose-induced oxidation model in mice, and significantly increased antioxidant enzyme activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and the total antioxidant capacity (T-AOC). Mechanistically, FPs and BPs exert their antioxidant activity in distinct ways; FPs ameliorated D-galactose-induced oxidative stress injury partly via the activation of nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway, while the BP mechanisms need further study.

Keywords: olive leaves; free phenolics; bound phenolics; antioxidant properties; oxidative stress

1. Introduction

Oxidative stress is a destructive state of signaling caused by excessive production of reactive oxygen/nitrogen species (ROS/RNS), resulting in imbalanced redox control between oxidants and antioxidants that favors the oxidants [1,2]. Oxidative stress has been considered the key trigger of many chronic diseases, such as cardiovascular disease, inflammation, diabetes, and cancer [3,4]. Therefore, supplementation with external antioxidants is required to resist oxidative stress and maintain oxidative balance. In this context, natural antioxidants, such as polyphenols, carotenoids, phytosterols, ascorbic acid, and polyunsaturated fatty acids, with safe and efficient antioxidant effects, have attracted considerable interest.

Although antioxidant activity can be assessed in many ways on the basis of different mechanisms, several studies on antioxidant foods and components only use in vitro chemical antioxidant methods to characterize their activities, due to the low cost and easy implementation [5–7]. It is necessary to realize that in vitro antioxidant evaluations, such as 2,2'-azinobis-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay, 2,2-diphenyl-1picrylhydrazyl (DPPH) inhibition, and ferric reducing antioxidant power (FRAP) assay, usually have low biological significance. Antioxidant defense is a complex and multicomponent enzymatic defense system, which typically includes GSH-Px, CAT, SOD, and different exogenous antioxidants that may have selective action on specific antioxidant enzymes [8]. In vitro chemical antioxidant methods have limitations for assessing absorption, bioavailability, distribution, and metabolism [9]. As a result, inconsistent results are often observed between the in vitro antioxidant potential and the in vivo responses of antioxidant foods and components [10,11], indicating that in vitro antioxidant potential is sometimes not reproduced in vivo [12]. In order to obtain an accurate antioxidant capacity and avoid one-sided or even contradictory results of tested antioxidants, a combination of multiple methods, such as cellular antioxidant activity (CAA) assays and animal models, are thus needed to evaluate the antioxidant activity of foods and components.

Olive leaves, which are low-value byproducts generated from olive tree cultivation and olive oil processing, contain a considerable quantity of antioxidant-active substances. Phenolic acids, flavonoids, secoiridoids, hydroxycinnamic acids, simple phenols, and triterpenic acids, which have been shown to be have the potential to scavenge reactive oxygen radicals and resist oxidative stress in the body, are the main sources of the antioxidant properties of olive leaves [13,14]. However, phenolic compounds in plants are usually present in free and bound forms [15,16]. In general, BPs are difficult to directly extract by traditional maceration methods, because they are covalently bound to cell wall structural components (e.g., cellulose, hemicellulose, and pectin) [17]. Nevertheless, numerous in vitro antioxidant assays demonstrated that the insoluble BPs in some plants possess a significantly higher antioxidant capacity compared to FPs [18–20]. However, the BPs in olive leaves and their contributions to total phenolics and antioxidant activity have received little attention, as most studies on olive leaves have only emphasized the antioxidant activity of FPs. Furthermore, no investigations have been performed to assess the antioxidant capacity of olive leaves both in vitro and in vivo.

Thus, the objectives of this study were to (i) characterize the composition and determine the content of FPs and BPs in olive leaves; (ii) investigate and compare the antioxidant capacities and possible mechanisms of FPs and BPs in olive leaves using chemical antioxidant methods (DPPH, ABTS, and FRAP), a cellular antioxidant assay, and in vivo animal models. This work will provide a theoretical basis for the application of olive leaves as antioxidants in products.

2. Materials and Methods

2.1. Plant Materials

Fresh olive leaves of the Nocellara del belice cultivar were obtained from the research garden of Zhejiang Academy of Agricultural Sciences (30.28° N, 120.15° E), Zhejiang Province, China. The mature green leaves were randomly picked from different parts of olive trees (7-year-old) in the middle of April 2022. After harvesting, fresh olive leaves were immediately transported to our lab and dried at 105 °C for 90 min in a hot air oven (DHG-9070A, Jinghong, Shanghai, China). The dried leaves were then ground using a grinder (BJ-200, Baijie, Hangzhou, China), passed through a 60-mesh (250 μ m) sieve to obtain a fine powder, and then stored in vacuum-sealed bags at -20 °C until extraction.

2.2. Chemicals and Reagents

Trolox, Folin–Ciocalteu reagent, 2,4,6-tris(2-pyridyl)-s-triazine (TPTZ), 2',7'-dichlorodihy drofluorescein diacetate (DCFH-DA), α , α' -azodiisobutyramidine dihydrochloride (ABAP), and 3-(4,5-dimethylythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were obtained

from Sigma-Aldrich (St. Louis, MO, USA). Reduced glutathione (GSH), SOD, GSH-Px, CAT, MDA, and T-AOC test kits were purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, China). Other reagents were of analytical grade.

2.3. Extraction of Free and Bound Phenolic Fractions from Olive Leaves

The FP and BP fractions of the olive leaves were extracted following a previously reported method [21]. Briefly, 1 g of dry olive leaf powder was extracted using 10 mL of a 70% ethanol solution in an ultrasonic bath for 30 min at 50 °C. The extraction was replicated three times, and the filtrates were combined and served as the FP fraction. Then, the BP fraction was extracted from the residue by alkali extraction. First, the residues were mixed with 40 mL NaOH (2 M), and hydrolyzed at room temperature for 4 h on a shaker under nitrogen. After alkaline hydrolysis, the mixture was acidified to pH 2 with 6 M HCl and centrifuged for 5 min with 5000 rpm. The obtained supernatants were extracted five times with ethyl acetate (1:1, v/v), then the pooled ethyl acetate extracts were evaporated, dissolved in 10 mL of methanol, and labeled as BP fractions. The extraction yield of FP and BP were 315.3 mg/g dry weight (DW) and 73.9 mg/g DW, respectively. The FP and BP fractions extracted from the olive leaves were stored at -20 °C before analysis.

2.4. Identification and Quantification of Free and Bound Antioxidants in Olive Leaves

Chemical profiles in the FP and BP fraction of olive leaves were analyzed by a UPLC-Q-Exactive Orbitrap MS (Ultimate 3000, Thermo Fisher Scientific, San Jose, CA, USA) equipped with an ACQUITY UPLC T3 (2.1 \times 100 mm, 1.8 μ m, Waters, Milford, MA, USA) column. The UPLC-Q-Exactive Orbitrap MS analysis, including gradient elution conditions and mass spectrometer parameters, were described in our previous study [14]. The identification of FPs and BPs in olive leaves was carried out by matching their high-accuracy quasi-molecular ions and ion fragmentation patterns with the built-in database.

The quantification of individual phenolics (i.e., simple phenols, phenolic acids, flavonoids, iridoids, and triterpenic acids) identified by the UPLC-Q-Exactive Orbitrap-MS were analyzed by using a HPLC system (LC-2030C, Shimazu, Kyoto, Japan) equipped with a Diode Array Detector (DAD). The detection wavelengths were 210, 280, and 320 nm [14,22]. An external standard method was used, and the standards hydroxytyrosol, rutin, oleuropein, luteolin, kaempferol, luteolin-7-O-glucoside, rhoifolin, apigenin-7-O-glucoside, oxalic, maslinic, asiatic, oleanolic, corosolic, ursolic, ferulic, sinapinic, 4-coumaric, caffeic, and chlorogenic acid were used for calculation of calibration curves (Table S1). The results were expressed as $\mu g/g$ DW.

2.5. Determination of TPC and TFC

The TPC and TFC were determined according to the Folin–Ciocalteu and aluminum chloride colorimetric methods, respectively. The specifics of the method are described in detail in our previous research [14].

2.6. Chemical Antioxidant Activity Evaluation

The chemical antioxidant activity of the FP and BP fractions from olive leaves were determined using DPPH, ABTS, and FRAP assays according to previously reported methods [23], and the absorbances at 517 nm, 734 nm, and 593 nm were measured using a spectrophotometer (UV-2600, UNICO, Shanghai, China). Trolox was used as the control [24], and the results were expressed as mg Trolox equivalent/gram of dry olive leaves (µmol TE/g DW).

2.7. Cellular Antioxidant Activity Evaluation

2.7.1. Cell Culture and Cytotoxicity Assay

The HepG2 cell at passages 5–10 was obtained from Beijing Dingguo Changsheng Biotechnology Co., Ltd. (Beijing, China). HepG2 cells were cultured in DMEM medium containing 10% fetal bovine serum, 100 U/mL penicillin, and 100 μ g/mL streptomycin in a 5% CO₂ incubator at 37 °C. Cytotoxicity was measured using MTT assay, with slight modifications based on a previous study [25]. Briefly, 190 μ L of HepG2 cells were seeded

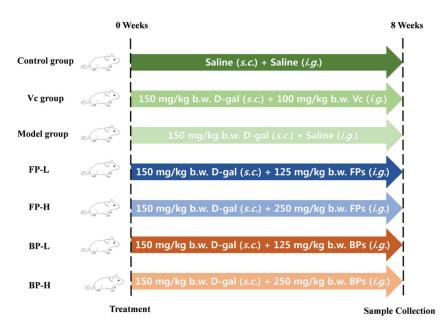
in 96-well plates at a density of 1×10^5 cells/mL, and 10 μ L of different concentrations (0, 5, 10, 20, 50, 100, 200, 250, and 500 μ g/mL) of olive leaf FP or BP extracts were added to the cells for 24 h. After that, an MTT solution (5 mg/mL) was added to each well, and the absorbance values were measured at 490 nm.

2.7.2. H₂O₂-Induced Oxidative Stress in HepG2 Cells

The cells were inoculated into 96-well plates (190 μ L) at a density of 1 \times 10⁵ cells/mL for 24 h, and 10 μ L of H₂O₂ (0, 100, 200, 400, 800, 1200, 1600, and 3200 μ mol/L) were added to the cells for 1, 2, 4, 6, and 8 h, respectively. Then, the cell survival rate was measured by the MTT assay to screen the optimal H₂O₂ treatment concentration and incubation time for constructing the oxidative stress HepG2 cell model. As shown in Tables S2 and S3, the optimal concentration and incubation time for H₂O₂ treatment was found to be 800 μ mol/L for 6 h according to the half-inhibitory concentration of the cells [26].

HepG2 cells seeded in 96-well plates were incubated for 24 h, and then the cells were grouped as follows: (i) normal group, cells treated with medium but without H_2O_2 treatment; (ii) experimental group, cells treated with olive leaf FP or BP extracts and H_2O_2 treatment; and (iii) damage group, cells treated with medium and H_2O_2 treatment. After the cells were pretreated with 10 μL of different concentrations (20, 50, 100, 200, 250, and 500 $\mu g/mL$) of olive leaf FP or BP extracts for 24 h, the medium was removed and 190 μL of fresh medium and 10 μL of 800 $\mu mol/L$ H_2O_2 were added to each well for 6 h of incubation. Finally, the cell survival rate was measured by the MTT assay as described above.

2.7.3. CAA Assay


The CAA of the FP and BP fractions in the olive leaves were determined as described by Wolfe and Liu [27]. HepG2 cells were plated with a density of 6×10^4 cells/well in 96-well black microplates and incubated for 24 h; after that, the growth medium was removed and the cells were washed with PBS to remove the non-adherent and dead cells. Then, the cells were cultivated for 1 h with 100 μ L of FP and BP extracts or quercetin with 25 μ M DCFH-DA dissolved in medium. After that, the culture medium was removed, and HBSS solution (with 600 μ M ABAP) was added to each well. Finally, the black microplates were placed into a fluorescent microplate reader (Spectra MAX 190, Molecular Devices, San Jose, CA, USA). The real-time fluorescence was read every 5 min for 1 h with an excitation wavelength of 485 nm and an emission wavelength of 538 nm.

2.8. In Vivo Antioxidant Activity Evaluation

2.8.1. Animals and Experimental Design

Male ICR mice (six weeks, 20 ± 2 g) were purchased from Hangsi Laboratory Animal Co., Ltd. (Hangzhou, China). All animal procedures were conducted in compliance with institutional guidelines for the care and use of laboratory animals at the Zhejiang Academy of Agricultural Sciences (Certificate NO.2023ZAASLA80). After 7 days of adaptive feeding, the mice were randomly divided into seven groups (n = 8): (1) control group (administrated 0.1 mL/10 g body weight (b.w.) saline); (2) model group (administrated 0.1 mL/10 g b.w. saline); (3) Vitamin C (Vc) group (administrated 100 mg/kg b.w. Vc); (4) FP-L (administrated 125 mg/kg b.w. FPs); (5) FP-H (administrated 250 mg/kg b.w. FPs); (6) BP-L (administrated 125 mg/kg b.w. BPs); and (7) BP-H (administrated 250 mg/kg b.w. BPs).

All solutions were administered once daily by gastric gavage for 8 weeks. In addition, all mice except those in the control group received subcutaneous injections of D-galactose at a dose of 150 mg/kg b.w. daily, and the control group received injections of saline (Figure 1). After 8 weeks, mice were fasted for 12 h before being euthanized with $\rm CO_2$ and sacrificed by cervical dislocation to obtain blood samples and heart, kidney, and liver tissues.

Figure 1. The schematic diagram of the experimental design for evaluating the in vivo antioxidant ability of FPs and BPs in olive leaves.

2.8.2. Histological Analysis

The fixed liver tissues were embedded in paraffin, then sectioned (5-mm thick) and stained with hematoxylin and eosin (H&E) for histopathology. After installation, the slides were viewed under a microscope (DXIT 1200, Nikon, Tokyo, Japan).

2.8.3. Biochemical Assays

The in vivo antioxidant activity in the serum, liver, and kidney was evaluated by measuring MDA, GSH-Px, SOD, CAT, GSH, and T-AOC using commercial ELISA kits according to the instructions.

2.8.4. RT-qPCR Analysis

Hepatic total RNA was isolated using Trizol reagent, followed by reverse transcription of total RNA to cDNA. The mRNA expression levels were measured by an RT-qPCR system (ABI PRISM 7300, Applied Biosystems, Foster City, CA, USA), and the results were calculated by the $2^{-\Delta\Delta CT}$ method. GAPDH was used as an internal reference control, and primer sequences used in this study are shown in Table S4.

2.9. Statistical Analysis

All results are expressed as mean \pm SD. The data were processed by one-way ANOVA, followed by Tukey's post hoc tests using SPSS Statistics software (V21.0, SPSS Inc., Chicago, IL, USA), with the significant difference set at p < 0.05. Origin software (2019b, Originlab Inc., Massachusetts, MA, USA) was used for EC $_{50}$ analysis.

3. Results and Discussion

3.1. Identification and Quantification of Free and Bound Antioxidants in Olive Leaves

Phenolic compounds in plants exist in free and bound forms [28]. Although BPs are usually found at lower levels compared to FPs, numerous studies have demonstrated that BPs in some food matrices possess a significantly higher antioxidant capacity than FPs [18,19]. Previously, the profiles of BPs in olive leaves and their contributions to antioxidant activity were not studied. Therefore, the chemical profiles of FP and BP fractions in olive leaves were investigated in this research, and their in vitro and in vivo antioxidant capacity and possible mechanism were studied comprehensively.

The chemical profiles of FP and BP fractions in olive leaves were preliminarily identified by using a UPLC-Q-Exactive Orbitrap-MS, and the identified 28 compounds along with their retention time (Rt), mass data, MS/MS fragments, and molecular formula are described in Table 1 and Figure S1. These compounds were classified into five different families according to their structural skeletons, and included one simple phenol, five phenolic acids, fifteen flavonoids, two iridoids, and five triterpenoid acids. As shown in Table 1, 24 compounds were identified in the FP fractions of olive leaves, with flavonoids, iridoids, and triterpenic acids being the primary class. The chemical profiles of FP fractions are in accordance with previous findings; Contreras et al. [29] and Dias et al. [30] analyzed FP fractions of olive leaves by liquid chromatography coupled to mass spectrometry techniques and also revealed their richness in flavonoids (luteolin, quercetin, rutin, luteolin-7-O-glucoside, etc), iridoids (oleuropein and secoxyloganin), and simple phenols (hydroxytyrosol). In addition, a total of 14 phenolics were detected in the BP fractions, consisting of flavonoids (6), phenolic acids (5), triterpenic acids (2), and simple phenol (1). As far as we know, this is the first time that phytochemical profiles of BP fractions were identified in olive leaves.

The individual phenolic compounds were further quantified, and our results demonstrated that the FP and BP fractions had different phenolic profiles, as indicated in Table 2. The highest phenolic content detected in the FP fraction was that of oleuropein (17.52 mg/g DW), followed by luteolin-7-O-glucoside (2.80 mg/g DW) and kaempferol-7-O-glucoside (2.07 mg/g DW), which was consistent with the previously reported findings of the FP composition in olive leaves [14]. In the BP fraction, the content of sinapinic acid was highest at 0.39 mg/g DW, followed by apigenin-7-O-neohesperidoside (0.31 mg/g DW), 4-coumaric acid (0.21 mg/g DW), ferulic acid (0.20 mg/g DW), hydroxytyrosol (0.19 mg/g DW), and caffeic acid (0.16 mg/g DW). It was noteworthy that higher levels of phenolic acid (i.e., sinapinic acid, 4-coumaric acid, ferulic acid, and caffeic acid) and hydroxytyrosol were detected in the BP fraction; however, flavonoids, triterpenoid acids, and iridoids were more concentrated in the free form.

Oleuropein, secoxyloganin, maslinic acid, and glycosylated flavonoids are usually the most abundant phenolic compound in olive leaves, and are easily and efficiently extracted by organic aqueous mixtures [14]. However, phenolic acids are mostly covalently linked to structural components of the cell walls forming cross-links in plants, and thus cannot be easily extracted directly by solvent extraction; this may explain why phenolic acids are typically found in bound forms, with free forms being extremely rare [31,32]. Most phenolic acids, such as gallic, *p*-coumaric, ferulic, and caffeic acid, are also found at higher levels in their bound forms than in their corresponding free forms in sorghum and mango leaves [19,31]. Phenolic acids, with many phenolic hydroxyl groups in the molecules, are excellent hydrogen or electron donors that quench free radicals [33,34]. Thus, phenolic acids are probably important contributors to the antioxidant capacity of the BP fraction in olive leaves. Further research aims to release FPs in olive leaves through food processing, such as ultra-high pressure, alkaline or enzymatic hydrolysis, and fermentation.

Table 1. Compounds identified by UPLC-Q-Exactive Orbitrap-MS in free and bound phenolic fraction of olive leaves.

S S	Rt (min)	Measured m/z	MS/MS Fragments	Molecular Formula	CAS	Compounds	Class	FP	BP
1	3.912	153.0550 [M – H] ⁻	123.04, 153.05	C8H10O3	10597-60-1	Hydroxytyrosol	Simple phenols	×	×
7	5.296	$353.0880 [M - H]^{-}$	191.06, 209.66	$C_{16}H_{18}O_9$	327-97-9	Chlorogenic acid	Phenolic acids	×	×
33	5.790	163.0390 [M + H] ⁺	163.04, 145.03, 135.04	$\mathrm{C_9H_8O_4}$	331-39-5	Caffeic acid	Phenolic acids		×
4	6.605	$147.0440 [M + H]^{+}$	147.04, 119.05	$C_9H_8O_3$	7400-08-0	4-Coumaric acid	Phenolic acids		×
5	7.110	$223.0610 [M - H]^{-}$	164.05, 208.04, 223.06	$C_{11}H_{12}O_5$	530-59-6	Sinapinic acid	Phenolic acids		×
9	7.155	$177.0646 [M + H]^{+}$	177.05, 145.03	$C_{10}H_{10}O_{4}$	537-98-4	Ferulic acid	Phenolic acids		×
^	5.698	$403.1250 [M - H]^{-}$	59.01, 71.01, 89.02	C17H24O11	58822-47-2	Secoxyloganin	Iridoids	×	
8	7.525	539.1776 [M-H]	539.18, 377.12, 275.09	$C_{25}H_{32}O_{13}$	32619-42-4	Oleuropein	Iridoids	×	
6	5.916	$609.1469 [M - H]^{-}$	447.09, 609.15, 285.04	$C_{27}H_{30}O_{16}$	52187-80-1	Luteolin-3',7-di-O-glucoside	Flavonoids	×	
10	6.523	$609.1470 [M - H]^{-}$	609.15, 300.03, 301.04	$C_{27}H_{30}O_{16}$	153-18-4	Rutin	Flavonoids	×	×
11	6.528	$611.1608 [M + H]^{+}$	303.05, 466.11, 85.03	$C_{27}H_{30}O_{16}$	18016-58-5	Quercetin 3-0-glucoside-7-0-rhamnoside	Flavonoids	×	
12	6.753	$465.1026 [M + H]^{+}$	303.05, 85.03	$C_{21}H_{20}O_{12}$	482-35-9	Quercetin-3\beta-D-glucoside	Flavonoids	×	
13	6.758	$449.1077 [M + H]^{+}$	449.11, 287.05	$C_{21}H_{20}O_{11}$	5373/11/5	Luteolin-7-O-glucoside	Flavonoids	×	×
14	6.941	$577.1570 [M - H]^{-}$	269.05, 577.16	$C_{27}H_{30}O_{14}$	17306-46-6	Apigenin-7-O-neohesperidoside	Flavonoids	×	×
15	7.143	$609.1815 [M + H]^{+}$	301.07, 609.18	$C_{28}H_{32}O_{15}$	38665-01-9	Neodiosmin	Flavonoids	×	
16	7.214	$477.1043 [\mathrm{M} - \mathrm{H}]^{-}$	431.10, 268.04, 269.05	$C_{21}H_{20}O_{10}$	578-74-5	Apigenin-7-O-glucoside	Flavonoids	×	×
17	7.236	$447.0937 [M - H]^{-}$	285.04, 447.09	$C_{21}H_{20}O_{11}$	16290-07-6	Kaempferol-7-O-glucoside	Flavonoids	×	×
18	7.390	$447.0939 [M-H]^{-}$	210.04, 285.04	C21H20O11	6920-38-3	Luteolin-4'-O-glucoside	Flavonoids	×	
19	8.919	$285.0407 [M - H]^{-}$	285.04, 299.46	$\mathrm{C}_{15}\mathrm{H}_{10}\mathrm{O}_{6}$	491-70-3	Luteolin	Flavonoids	×	×
20	8.922	287.0548 [M + H] ⁺	287.05, 269.08	$C_{15}H_{10}O_6$	520-18-3	Kaempferol	Flavonoids	×	
21	9.012	$303.0496 [\mathrm{M} - \mathrm{H}]^{-}$	303.05, 285.15	$C_{15}H_{10}O_7$	117-39-5	Quercetin	Flavonoids	×	
22	9.882	$301.0703 [M + H]^{+}$	301.07, 286.05	$C_{16}H_{12}O_6$	520-34-3	Diosmetin	Flavonoids	×	
23	10.001	$315.0514 [M - H]^{-}$	315.05, 300.03	$C_{16}H_{12}O_7$	1486-70-0	3-O-Methylquercetin	Flavonoids	×	
24	11.579	$487.3434 [M - H]^{-}$	487.34, 469.33	$C30H_{48}O_5$	464-92-6	Asiatic acid	Triterpenoid acids	×	
25	13.414	$471.3483 [M - H]^{-}$	471.35, 428.24	$\mathrm{C}_{30}\mathrm{H}_{48}\mathrm{O}_4$	4373-41-5	Maslinic acid	Triterpenoid acids	×	
56	13.434	455.3517 [M + H] ⁺	205.16, 189.16, 203.18	$\mathrm{C}_{30}\mathrm{H}_{48}\mathrm{O}_4$	4547-24-4	Corosolic acid	Triterpenoid acids	×	×
27	12.759	457.3673 [M + H] ⁺	457.37, 203.18, 191.18	$C_{30}H_{48}O_3$	508-02-1	Oleanolicacid	Triterpenoid acids	×	
28	16.492	439.3567 [M + H] ⁺	411.36, 439.36, 203.18	$\mathrm{C}_{30}\mathrm{H}_{48}\mathrm{O}_3$	77-52-1	Ursolic acid	Triterpenoid acids	×	×

X: presence of the compound. FP and BP represent free phenolic and bound phenolic, respectively.

 Table 2. Quantification of phenolics compounds in free and bound phenolic fraction of olive leaves.

;		Content (1	Content (mg/g DW)			Content (mg/g DW)	mg/g DW)
Z	Compounds	FP Fraction	BP Fraction	OZ	Compounds	FP Fraction	BP Fraction
П	Hydroxytyrosol	$0.11 \pm 0.01 ^{\mathrm{b}}$	0.19 ± 0.09 a	15	Apigenin-7-0-glucoside	0.47 ± 0.03 a	0.05 ± 0.01 b
7	Chlorogenic acid	$0.13 \pm 0.02 ^{\mathrm{a}}$	$0.07\pm0.01~^{\rm b}$	16	Neodiosmin	0.54 ± 0.03	ND
8	Caffeic acid	ND	0.16 ± 0.01	17	Kaempferol-7-0-glucoside	$2.07\pm0.15\mathrm{a}$	$0.14\pm0.03~\mathrm{b}$
4	4-Coumaric acid	ND	0.21 ± 0.03	18	Luteolin-4'-O-glucoside	0.61 ± 0.04	ND
Ŋ	Sinapinic acid	ND	0.39 ± 0.03	19	Luteolin	$0.38 \pm 0.03 ^{\mathrm{a}}$	$0.03\pm0.01~\mathrm{b}$
9	Ferulic acid	ND	0.20 ± 0.08	20	Kaempferol	0.03 ± 0.01	ND
_	Secoxyloganin	2.11 ± 0.18	ND	21	Quercetin	0.12 ± 0.01	ND
8	Oleuropein	17.52 ± 2.61	ND	22	Diosmetin	0.03 ± 0.00	ND
6	Luteolin-3',7-di-O-glucoside	0.44 ± 0.03	ND	23	3-O-Methylquercetin	0.02 ± 0.00	ND
10	Rutin	$1.31 \pm 0.10^{\text{ a}}$	$0.12\pm0.01~^{\rm b}$	24	Asiatic acid	$0.26\pm0.01~^{\rm a}$	ND
11	Quercetin 3-0-glucoside-7-0-rhamnoside	0.52 ± 0.03	ND	25	Maslinic acid	$1.31\pm0.02~^{\rm a}$	$0.01\pm0.00~^\mathrm{b}$
12	Quercetin-3\beta-D-glucoside	0.78 ± 0.06	ND	26	Corosolic acid	0.39 ± 0.08	ND
13	Luteolin-7-O-glucoside	2.80 ± 0.27 ^a	$0.12\pm0.04~\mathrm{b}$	27	Oleanolic acid	$1.61\pm0.07~^{\rm a}$	$0.06 \pm 0.00 ^{ m b}$
14	Apigenin-7- <i>0-</i> neohesperidoside	$0.71\pm0.04~^{\rm a}$	$0.31\pm0.02^{\rm b}$	28	Ursolic acid	ND	0.02 ± 0.01

Means followed by different letters $\binom{a,b}{b}$ are significant differences (p < 0.05); FP and BP represent free phenolic and bound phenolic, respectively; ND, not detected.

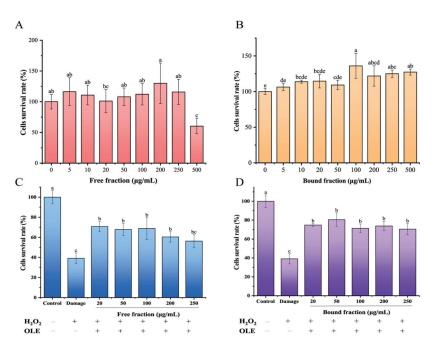
3.2. Chemical Antioxidant Activities of FP and BP Fractions in Olive Leaves

Chemical antioxidant methods are widely used for preliminary screening of oxidation/reduction potentials of antioxidants due to their low cost and easy implementation. TPC and TFC were found to be directly associated with chemical antioxidant activities [6,23]. In this study, the TPC and TFC of the FP and BP fractions of olive leaves were evaluated prior to the chemical antioxidant assay. As shown in Table 3, the TPC and TFC levels in the FP fraction were statistically higher than those in the BP fraction (26.39 vs. 0.65 mg GAE/g DW for TPC, and 145.30 vs. 1.73 mg RE/g DW for TFC, p < 0.05). The bound phenolics contributed to only 2.4% of the total phenolics content, suggesting that phenolic compounds in olive leaves were largely present in a free form. The result was in agreement with previous findings reporting that most phenolics in vegetables and fruits were found in free forms, and those in insoluble bound forms generally accounted for no more than 24% of the total phenolic content [17,35].

Table 3. TPC, TFC and the chemical antioxidant activity of free and bound phenolic fraction from olive leaves.

	TPC	TFC	DPPH	ABTS	FRAP
	(mg GAE/g DW)	(mg RE/g DW)	(μmol TE/gDW)	(μmol TE/gDW)	(µmol TE/gDW)
FP fraction BP fraction	$26.39 \pm 1.26^{\ a} \ 0.65 \pm 0.05^{\ b}$	145.30 ± 9.11 a 1.73 ± 0.29 b	26.09 ± 0.03 a 10.44 ± 0.01 b	249.49 ± 0.29 a 6.66 ± 0.01 b	13.79 ± 0.03 a 0.37 ± 0.00 b

Means followed by different letters (a , b) are significant differences (p < 0.05); FP and BP represent free phenolic and bound phenolic, respectively.

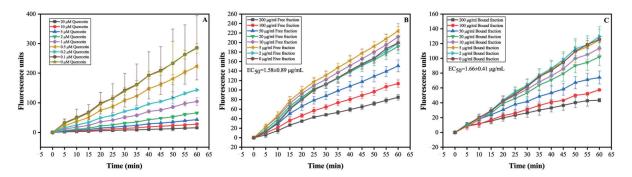

Furthermore, three chemical methods, including DPPH and ABTS for evaluating the scavenging ability of radicals and the FRAP method for evaluating the iron reduction capacity, were used to estimate the antioxidant activities of FP and BP fractions in olive leaves. As shown in Table 3, the DPPH and ABTS+. free radical scavenging ability of the FP fraction was significantly higher than that of the BP fraction, with values of 26.09 vs. 10.44 μ mol TE/g DW with the DPPH assay, and 249.49 vs. 6.66 μ mol TE/g DW with the ABTS assay. The FRAP assay also showed a significant order of magnitude difference between the FPs and BPs, with values of 13.79 vs. 0.37 μ mol TE/g DW, respectively. The presence of rich polyphenols, such as flavonoids, triterpenoid acids, and particularly oleuropein, of which the levels were very high, could be the reason for the high DPPH and ABTS+. radical-scavenging property of the FP fraction [36]. In conclusion, the chemical antioxidant activity indicated that the BP fraction in olive leaves had a weak DPPH and ABTS+. radical-scavenging ability.

3.3. Cellular Antioxidant Activities of FP and BP Fractions in Olive Leaves

Currently, chemical antioxidant activity assays have a major role in testing antioxidant effects; however, their ability to predict in vivo activity has been questioned due to the limitations on absorption, bioavailability, distribution, and metabolism assessment [9]. Therefore, we established a cellular antioxidant system to compare and investigate the difference between the biological and chemical antioxidant ability of the FP and BP fractions in olive leaves in this study.

3.3.1. FP and BP Fractions in Olive Leaves Resist H_2O_2 -Induced Oxidative Stress in HepG2 Cells

First, the cytotoxicity of FPs and BPs in HepG2 cells was investigated to screen for a concentration that did not exhibit significant toxicity in cells. As shown in Figure 2A, FPs up to 250 μ g/mL did not impact cell viability, but at 500 μ g/mL, the cell survival rate decreased to 60.39 \pm 12.17%. The BPs at concentrations of 5–500 μ g/mL were nontoxic to HepG2 cells, with the cell survival rate between 106.35% and 136.01% (Figure 2B). The subsequent concentrations of FPs and BPs for cellular antioxidant activity assays were set as 0–250 μ g/mL.

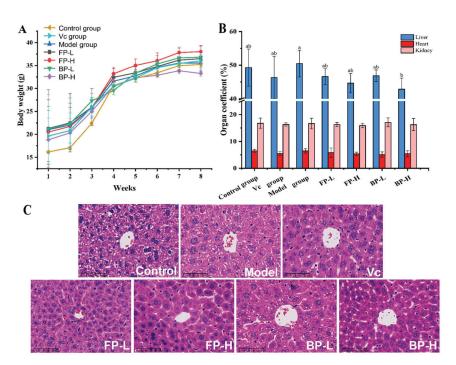

Figure 2. Protective effect of FPs and BPs in olive leaves against H_2O_2 -induced oxidative stress in HepG2 cells. (**A**,**B**) The effect of FPs and BPs on the cell survival rate of HepG2 cells. (**C**,**D**) The effect of FPs and BPs on the cell survival rate of HepG2 cells induced by H_2O_2 . Different letters indicate significant differences (p < 0.05).

H₂O₂ is a well-recognized oxidative stress inducer, which can penetrate the cell membrane and generate excessive ROS, leading to oxidative stress and eventually injuring the cell [37]. Next, the protection of FPs and BPs against H₂O₂-induced oxidative stress was evaluated in the study. As presented in Figure 2C,D, the cell viability of the H₂O₂-damaged group was remarkably decreased to 39.10% in comparison with the normal group (p < 0.05). Encouragingly, pretreatment with both the FPs and BPs effectively inhibited the decrease in H₂O₂-induced cell viability. The cell viability of HepG2 cells was 70.75% and 74.81% with pretreatment of FPs and BPs at 20 mg/mL, respectively, and was almost unchanged as the FP and BP concentration increased from 20 to 250 µg/mL. The protective capacities of FP and BP on H₂O₂-induced oxidative stress are not surprising and can be associated with the presence of phenolic compounds. For example, Goncalves et al. [38] reported phenolic-enriched fractions from sweet cherries had a significant ability to prevent HepG2 cells against H₂O₂-induced oxidative injury. Furthermore, many studies have reported that hydroethanolic extracts from vegetal leaf parts were rich in phenolic and flavonoid compounds (e.g., Apios americana Medik, Vaccinium dunalianum Wight and Hemerocallis fulva), and also showed strong ability to inhibit the H₂O₂-induced cells damage [39–41]. The results in this study suggested that both FPs and BPs in olive leaves protected HepG2 cells from H₂O₂-induced oxidative stress injury, and that BPs showed better antioxidant activity for rescuing H₂O₂-induced cell viability losses than did FPs.

3.3.2. FP and BP Fractions in Olive Leaves Exhibited Cellular Antioxidant Activity

The CAA assay, which measures the ability of antioxidants to inhibit the formation of fluorescent DCF by ABAP-generated peroxyl radicals in the HepG2 cell model, was used to assess the biological antioxidant capacity of FPs and BPs in olive leaves. As presented in Figure 3, the fluorescence from DCF formation in HepG2 cells decreased with increased quercetin, FP, and BP concentrations, suggesting that they have great antioxidant capacity. The EC $_{50}$ values of CAA for FPs and BPs was 1.58 µg/mL and 1.66 µg/mL, respectively, suggesting that there was no significant difference in the CAA value between the FP and BP fraction (p > 0.05). The observations on CAA were inconsistent with the conclusion by the chemical antioxidant evaluation, which found that the BP fraction had a weaker

ability to eliminate DPPH and ABTS+. free radicals, and a significant order of magnitude difference was found between FPs and BPs. Perhaps this difference is related to the higher content of phenolic acids (i.e., sinapinic acid, ferulic acid, and caffeic acid) in BPs, which can increase the activity of antioxidant enzymes, such as CAT, GSH-Px, SOD, and heme oxygenase-1 (HO-1), and thereby activate the intracellular antioxidant defense system [12]. The contradictory conclusions between the chemical antioxidant and cellular antioxidant responses has been previously observed with certain antioxidant foods and components, such as inulin, tangeretin, and citrus flavanones [11,42]. The cell-based antioxidant assay is more biologically relevant than chemical tests due to its sensitivity for cell uptake, metabolism, and intracellular location [9]. Thus, antioxidant assays chosen in future studies should be further extended to obtain a more complete panorama of the antioxidant activity, and should not be limited to an in vitro chemical antioxidant assessment.


Figure 3. Kinetic curves of peroxyl radical-induced DCF fluorescence and the inhibition of oxidation by quercetin (**A**), FPs (**B**) and BPs (**C**) on the fluorescence in HepG2 cells over time.

3.4. In Vivo Antioxidant Activities of FP and BP Fractions in Olive Leaves

D-galactose is widely used for establishing an oxidation model in mice [43]. Excessive D-galactose in the body will produce aldose, hydrogen peroxide, and other oxygen free radicals, causing the accumulation of reactive oxygen species, and ultimately leading to oxidative stress [44]. In this research, D-galactose was chosen to establish the oxidation model for evaluating the in vivo antioxidant capacity and possible mechanisms of FPs and BPs in olive leaves (Figure 1). As shown in Figure 4A, the body weight of mice in all groups exhibited an upward trend without differences among groups during the 8-week experiments. The index results of the kidney, liver, and heart demonstrated that D-galactose injections slightly decreased the organ indexes of mice without statistically significant differences (Figure 4B), which was consistent with previous reports [45].

3.4.1. FP and BP Fractions in Olive Leaves Protect Liver Tissue in Aging Mice

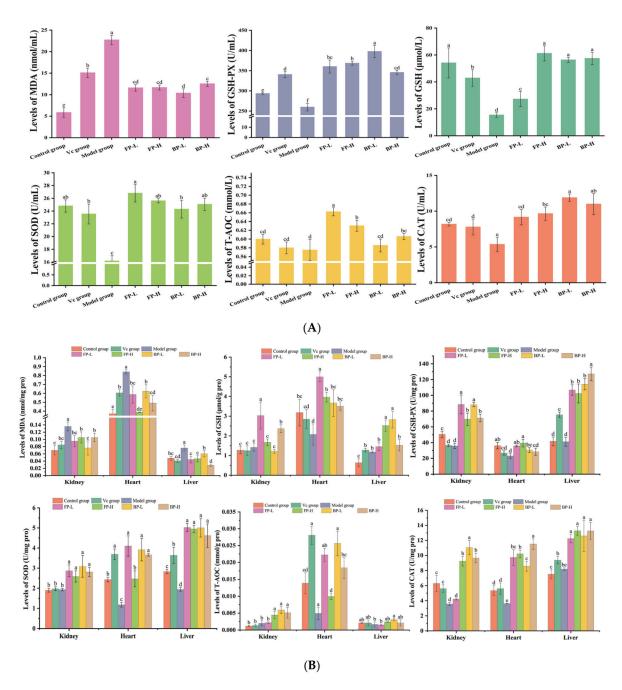

The liver is highly sensitivity to the oxidative damage caused by D-galactose [46]. According to the hepatic H&E staining results (Figure 4C), the liver structure of mice in the control group had a normal cell morphology and was neatly arranged around the central vein, with prominent nuclei and abundant cytoplasm with a uniform distribution. Compared with the control group, the model group exhibited apparent liver damage, which was characterized by vacuolar degeneration, necrosis, and structural disorder, indicating that the D-galactose injections induced liver damage in mice. Treatment with Vc, FPs, and BPs significantly ameliorated liver damage, as evidenced by cells arranged in a more orderly manner, and the structures tended to be complete, indicating the protective effect of FPs and BPs on liver tissue.

Figure 4. Effects of FPs and BPs in olive leaves on body weight (**A**), organ coefficients (**B**), and H&E staining (**C**) in D-galactose-induced aging mice. Scale bar = $50 \mu m$. Different letters indicate significant differences (p < 0.05).

3.4.2. FP and BP Fractions in Olive Leaves Relieve Oxidative Stress in Aging Mice

The body has several natural defense systems to counteract oxidative stress, including the production of antioxidant enzymes (SOD, CAT, and GSH-Px) and the action of nonenzymatic antioxidants, such as GSH and Vitamin E [47]. However, endogenous and exogenous oxidants disrupt this antioxidant system, causing accumulation of reactive oxygen species and producing peroxidation products, and ultimately causing oxidative stress [48]. MDA is one of the products of lipid peroxidation, which can reflect the severity of a free radical attack on cells [49]. As shown in Figure 5, the mice in the model group that received subcutaneous injections of D-galactose for 8 weeks displayed 3.9-fold, 2.2-fold, 2.3-fold, and 1.7-fold higher MDA levels in the serum than those of the control group, kidney, heart, and liver, respectively. The FP and BP extract treatments significantly reversed the increased MDA content compared with the model group, indicating that FP and BP extracts effectively regulated the redox status in D-galactose-induced aging mice. Furthermore, the antioxidant enzymes (SOD, CAT, and GSH-Px), the T-AOC, and the non-enzymatic GSH levels in the serum, kidney, heart, and liver of mice were measured to evaluate the repair effect of FPs and BPs on oxidative stress in aging mice. As shown in Figure 5A,B, the levels of CAT, SOD, and GSH-Px in the serum, kidney, and heart of mice in the model group were lower than those in the control group (p < 0.05). Each dose of FP and BP increased the activities of SOD, GSH-Px, and CAT in aging mice without a dose-response relationship. In addition, we observed that both FPs and BPs effectively improved the T-AOC and the non-enzymatic GSH level in aging mice. In conclusion, the data from this work showed that the FP and BP fractions were effective in mitigating oxidative damage by restoring SOD, CAT, and GSH-Px activities, and the content of MDA in aging mice.

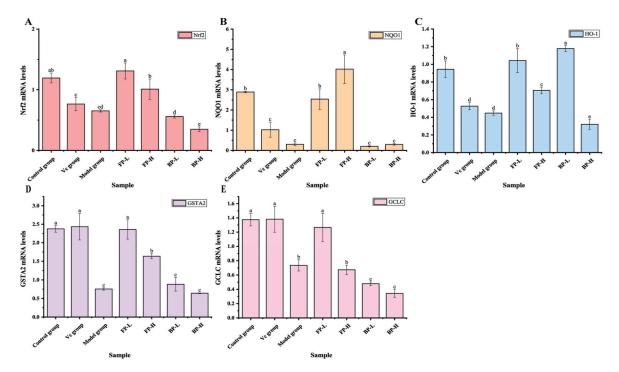


Figure 5. Effect of FPs and BPs in olive leaves on antioxidant properties in D-galactose-induced aging mice: (**A**) serum; and (**B**) kidney, heart, and liver tissues. Different letters indicate significant differences (p < 0.05).

3.4.3. FP Fractions in Olive Leaves Activate Nrf2 Signaling in Aging Mice

Nrf2 has been recognized as a key antioxidant transcription factor involved in redox homeostasis by targeting many antioxidant genes, including NAD(P)H dehydrogenase quinone 1 (NQO1), HO-1, glutamate-cysteine ligase catalytic subunit (GCLC), CAT, and SOD [50,51]. Thus, the expression levels of Nrf2, HO-1, NQO1, GCLC, and Glutathione S-transferase alpha 2(GSTA2) were determined in this research. The results showed that D-galactose administration decreased the expression of Nrf2 compared to the control group (Figure 6A), which was consistent with a previous study that reported that the D-galactose treatment inhibited the translocation of Nrf2 [45]. FP treatment reversed the effect of D-galactose on the expression of Nrf2 in mice; in particular, 125 mg/kg of FPs resulted in a

2.84-fold increase in the expression of Nrf2 compared to the model group. This result indicated that there was not a dose-response relationship between Nrf2 expression and the FP concentration. In contrast, the BP-treated groups, both at 125 and 250 mg/kg, did not affect the expression of Nrf2. As shown in Figure 6B–E, the increase of Nrf2 in the FP-treated group eventually led to the upregulation of the targeted genes HO-1, NQO1, GCLC, and GSTA2 in mouse livers, while BP-treated groups did not have increased expression of these genes. This shows that even though both FPs and BPs effectively increased antioxidant enzyme activity and prevented oxidative damage in vivo, there was a great difference in their mechanisms. Perhaps this difference is related to the different chemical profiles of FPs and BPs, with the polyphenols in FPs protecting against oxidative stress by elevating gene expression of Nrf2. FPs ameliorate D-galactose-induced oxidative stress injury partly via the activation of the Nrf2 signaling pathway, while the mechanism of BPs need further study.

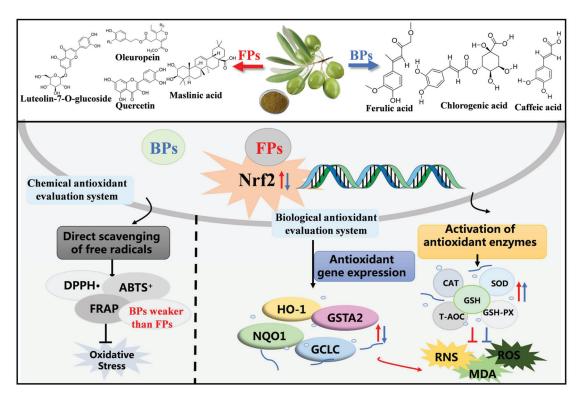


Figure 6. Effect of FPs and BPs in olive leaves on the expression of Nrf2 signaling in D-galactose-induced aging mice: (**A**) Nrf2; (**B**) NQO1; (**C**) HO-1; (**D**) GSTA2; and (**E**) GCLC. Different letters indicate significant differences (p < 0.05).

4. Conclusions

The present study investigated and compared the chemical profiles, contents, and in vitro and in vivo antioxidant capacities of FPs and BPs in olive leaves. The results showed that FPs and BPs exhibited different antioxidant effects in the chemical antioxidant evaluation systems compared to the biological antioxidant evaluation systems. The chemical antioxidant evaluation systems (DPPH, ABTS, and FRAP assays) indicated that FPs exerted significantly higher antioxidant activity than did the BP fraction, and BPs had a weak ability to directly scavenging DPPH and ABTS+. free radicals. In biological antioxidant evaluation systems (cellular and in vivo mouse models), both FPs and BPs exhibited similar antioxidant effects by effectively protecting HepG2 cells from H₂O₂-induced oxidative stress injury, and were effective in mitigating oxidative damage by restoring SOD, CAT, and GSH-Px activities in aging mice. Further exploration showed that FPs ameliorated D-gal-induced oxidative stress injury partly via the activation of the Nrf2 signaling pathway, while the mechanism of BPs requires further study (Figure 7). The different manner by which FPs and BPs exert antioxidant activity is probably related to the

different chemical profiles of FPs and BPs. In conclusion, it could be stated that the in vitro chemical antioxidant assessment of antioxidant foods and components is not sufficient to estimate their antioxidant effects in vivo. To obtain a more complete panorama of the antioxidant activity, the antioxidant assay chosen should be further extended to cellular and/or in vivo animal systems in future studies.

Figure 7. Potential molecular mechanisms of antioxidant properties by FPs and BPs in olive leaves. The red arrows represent FPs, and the blue arrows represent BPs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/antiox12122033/s1, Figure S1. Total ion chromatogram (TIC) of free and bound phenolics fractions in olive leaves for negative ion and positive ion mode UPLC-Q-Exactive Orbitrap-MS. (A,B) FPs in negative and positive ion mode; (C,D) BPs in negative and positive ion mode. Table S1. Calibration curves used for HPLC quantification. Table S2. Effect of different concentrations of H_2O_2 on the viability of HepG2 cells. Table S3. Effect of the incubation time of H_2O_2 on the viability of HepG2 cells. Table S4. Primer sequences for RT-qPCR.

Author Contributions: Conceptualization, T.L., C.J., C.Z. and D.L.; methodology, T.L., W.W., J.Z., Q.W. and S.W.; software, W.W. and J.Z.; investigation, S.Z., E.N. and C.J.; resources, S.Z. and E.N.; data curation, T.L., J.Z. and S.W.; writing—original draft preparation, T.L., W.W., Q.W., S.Z. and E.N.; writing—review and editing, C.J., C.Z. and D.L.; supervision, C.Z. and D.L.; funding acquisition, C.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Science and Technology Major Project of Gansu Province: 23ZDNK001 and Key Research and Development Project of Zhejiang Province: 2021C02002.

Institutional Review Board Statement: The study was conducted according to the Guide for the Care and Use of Laboratory Animals, and was approved by the Animal Care and Use Committee of Zhejiang Academy of Agricultural Sciences (protocol code 2023ZAASLA80).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article and Supplementary Materials.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. *Life Sci.* **2016**, *148*, 183–193. [CrossRef] [PubMed]
- Saucedo, R.; Ortega-Camarillo, C.; Ferreira-Hermosillo, A.; Diaz-Velazquez, M.F.; Meixueiro-Calderon, C.; Valencia-Ortega, J. Role of oxidative stress and inflammation in gestational diabetes mellitus. *Antioxidants* 2023, 12, 1812. [CrossRef] [PubMed]
- 3. Miller, M.R. Oxidative stress and the cardiovascular effects of air pollution. *Free. Radic. Biol. Med.* **2020**, *151*, 69–87. [CrossRef] [PubMed]
- 4. Sharma, V.; Mehdi, M.M. Oxidative stress, inflammation and hormesis: The role of dietary and lifestyle modifications on aging. *Neurochem. Int.* **2023**, *164*, 105490. [CrossRef] [PubMed]
- 5. Li, M.; Chen, X.; Deng, J.; Ouyang, D.; Wang, D.; Liang, Y.; Chen, Y.; Sun, Y. Effect of thermal processing on free and bound phenolic compounds and antioxidant activities of hawthorn. *Food Chem.* **2020**, *332*, 127429. [CrossRef] [PubMed]
- 6. Suo, H.; Peng, Z.; Guo, Z.; Wu, C.; Liu, J.; Wang, L.; Xiao, J.; Li, X. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from different potato genotypes: Comparison of free and bound phenolic profiles and antioxidant activity. *Food Chem.* **2022**, *388*, 133058. [CrossRef]
- 7. Lucas-Gonzalez, R.; Viuda-Martos, M.; Perez-Alvarez, J.A.; Fernandez-Lopez, J. In vitro digestion models suitable for foods: Opportunities for new fields of application and challenges. *Food Res. Int.* **2018**, *107*, 423–436. [CrossRef]
- 8. Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. *Curr. Opin. Food Sci.* **2016**, *8*, 33–42. [CrossRef]
- 9. Meng, W.; Sun, H.; Mu, T.; Garcia-Vaquero, M. Extraction, purification, chemical characterization and antioxidant properties in vitro of polyphenols from the brown macroalga *Ascophyllum nodosum*. *Algal Res.* **2023**, *70*, 102989. [CrossRef]
- Gamboa-Gomez, C.I.; Simental-Mendia, L.E.; Gonzalez-Laredo, R.F.; Alcantar-Orozco, E.J.; Monserrat-Juarez, V.H.; Ramirez-Espana, J.C.; Gallegos-Infante, J.A.; Moreno-Jimenez, M.R.; Rocha-Guzman, N.E. In vitro and in vivo assessment of anti-hyperglycemic and antioxidant effects of oak leaves (*Quercus convallata* and *Quercus arizonica*) infusions and fermented beverages. Food Res. Int. 2017, 102, 690–699. [CrossRef]
- 11. Shang, H.M.; Zhou, H.Z.; Yang, J.Y.; Li, R.; Song, H.; Wu, H.X. In vitro and in vivo antioxidant activities of inulin. *PLoS ONE* **2018**, *13*, e192273. [CrossRef] [PubMed]
- 12. Mota, J.C.; Almeida, P.P.; Freitas, M.Q.; Stockler-Pinto, M.B.; Guimaraes, J.T. Far from being a simple question: The complexity between in vitro and in vivo responses from nutrients and bioactive compounds with antioxidant potential. *Food Chem.* **2023**, 402, 134351. [CrossRef] [PubMed]
- 13. Zugcic, T.; Abdelkebir, R.; Alcantara, C.; Carmen Collado, M.; Vicente Garcia-Perez, J.; Melendez-Martinez, A.J.; Jambrak, A.R.; Lorenzo, J.M.; Barba, F.J. From extraction of valuable compounds to health promoting benefits of olive leaves through bioaccessibility, bioavailability and impact on gut microbiota. *Trends Food Sci. Technol.* **2019**, *83*, 63–77. [CrossRef]
- 14. Zhang, C.; Zhang, J.; Xin, X.; Zhu, S.; Niu, E.; Wu, Q.; Li, T.; Liu, D. Changes in phytochemical profiles and biological activity of olive leaves treated by two drying methods. *Front. Nutr.* **2022**, *9*, 854680. [CrossRef]
- 15. Zeng, Y.; Zhou, W.; Yu, J.; Zhao, L.; Wang, K.; Hu, Z.; Liu, X. By-products of fruit and vegetables: Antioxidant properties of extractable and non-extractable phenolic compounds. *Antioxidants* **2023**, *12*, 418. [CrossRef]
- 16. Shahidi, F.; Hossain, A. Importance of insoluble-bound phenolics to the antioxidant potential is dictated by source material. *Antioxidants* **2023**, *12*, 203. [CrossRef]
- 17. Acosta-Estrada, B.A.; Gutierrez-Uribe, J.A.; Serna-Saldivar, S.O. Bound phenolics in foods, a review. *Food Chem.* **2014**, *152*, 46–55. [CrossRef]
- 18. Chandrasekara, A.; Shahidi, F. Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. *J. Agric. Food. Chem.* **2010**, *58*, 6706–6714. [CrossRef]
- 19. Zhang, J.; Wang, Y.D.; Xue, Q.W.; Zhao, T.R.; Khan, A.; Wang, Y.F.; Liu, Y.P.; Cao, J.X.; Cheng, G.G. The effect of ultra-high pretreatment on free, esterified and insoluble-bound phenolics from mango leaves and their antioxidant and cytoprotective activities. *Food Chem.* **2022**, *368*, 130864. [CrossRef]
- Liyana-Pathirana, C.M.; Shahidi, F. Importance of insoluble-bound phenolics to antioxidant properties of wheat. J. Agric. Food. Chem. 2006, 54, 1256–1264. [CrossRef]
- 21. You, B.; Yang, S.; Yu, J.; Xian, W.; Deng, Y.; Huang, W.; Li, W.; Yang, R. Effect of thermal and dry salt-curing processing on free and bound phenolics and antioxidant activity in prunus mume fruits together with the phenolic bioaccessibility. *LWT* **2021**, 145, 111355. [CrossRef]
- 22. Zhang, C.; Xin, X.; Zhang, J.; Zhu, S.; Niu, E.; Zhou, Z.; Liu, D. Comparative evaluation of the phytochemical profiles and antioxidant potentials of olive leaves from 32 cultivars grown in china. *Molecules* **2022**, 27, 1292. [CrossRef]
- 23. Martinović, A.; Cavoski, I. The exploitation of cornelian cherry (*Cornus mas* L.) Cultivars and genotypes from montenegro as a source of natural bioactive compounds. *Food Chem.* **2020**, *318*, 126549. [CrossRef] [PubMed]
- 24. Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The frap assay. *Anal. Biochem.* **1996**, 239, 70–76. [CrossRef]

- Li, F.; Liao, X.; Jiang, L.; Zhao, J.; Wu, S.; Ming, J. Orientin attenuated d-galn/lps-induced liver injury through the inhibition of oxidative stress via Nrf2/Keap1 pathway. J. Agric. Food. Chem. 2022, 70, 7953–7967. [CrossRef] [PubMed]
- 26. He, Y.; Peng, L.; Xiong, H.; Liu, W.; Zhang, H.; Peng, X.; Zhu, X.; Guo, F.; Sun, Y. The profiles of durian (*Durio zibethinus* murr.) Shell phenolics and their antioxidant effects on H₂O₂-treated HepG2 cells as well as the metabolites and organ distribution in rats. *Food Res. Int.* **2023**, *163*, 112122. [CrossRef]
- 27. Wolfe, K.L.; Liu, R.H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. *J. Agric. Food. Chem.* **2007**, *55*, 8896–8907. [CrossRef]
- 28. Shahidi, F.; Dissanayaka, C.S. Phenolic-protein interactions: Insight from in-silico analyses—A review. *Food Prod. Process. Nutr.* **2023**, *5*, 2. [CrossRef]
- 29. Contreras, M.; Lama-Munoz, A.; Espinola, F.; Moya, M.; Romero, I.; Castro, E. Valorization of olive mill leaves through ultrasound-assisted extraction. *Food Chem.* **2020**, *314*, 126218. [CrossRef]
- 30. Dias, M.C.; Figueiredo, C.; Pinto, D.C.G.A.; Freitas, H.; Santos, C.; Silva, A.M.S. Heat shock and UV-B episodes modulate olive leaves lipophilic and phenolic metabolite profiles. *Ind. Crop. Prod.* **2019**, *133*, 269–275. [CrossRef]
- 31. Li, M.; Xu, T.; Zheng, W.; Gao, B.; Zhu, H.; Xu, R.; Deng, H.; Wang, B.; Wu, Y.; Sun, X.; et al. Triacylglycerols compositions, soluble and bound phenolics of red sorghums, and their radical scavenging and anti-inflammatory activities. *Food Chem.* **2021**, *340*, 128123. [CrossRef] [PubMed]
- 32. Sun, S.; Zhao, Y.; Wang, L.; Tan, Y.; Shi, Y.; Sedjoah, R.A.; Shao, Y.; Li, L.; Wang, M.; Wan, J.; et al. Ultrasound-assisted extraction of bound phenolic compounds from the residue of apocynum venetum tea and their antioxidant activities. *Food Biosci.* **2022**, *47*, 101646. [CrossRef]
- 33. Liu, Z. Why natural antioxidants are readily recognized by biological systems? 3D architecture plays a role! *Food Chem.* **2022**, 380, 132143. [CrossRef] [PubMed]
- 34. Choi, J.Y.; Lee, J.W.; Jang, H.; Kim, J.G.; Lee, M.K.; Hong, J.T.; Lee, M.S.; Hwang, B.Y. Quinic acid esters from erycibe obtusifolia with antioxidant and tyrosinase inhibitory activities. *Nat. Prod. Res.* **2019**, *35*, 3026–3032. [CrossRef] [PubMed]
- 35. Yeo, J.; Shahidi, F. Identification and quantification of soluble and insoluble-bound phenolics in lentil hulls using HPLC-ESI-MS/MS and their antioxidant potential. *Food Chem.* **2020**, *315*, 126202. [CrossRef] [PubMed]
- 36. Benavente-Garcia, O.; Castillo, J.; Lorente, J. Antioxidant activity of phenolics extracted from *Olea Europaea* L. Leaves. *Food Chem.* **2000**, *68*, 457–462. [CrossRef]
- 37. Akhtar, M.J.; Ahamed, M.; Alhadlaq, H.A.; Alshamsan, A. Mechanism of ros scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ros associated degenerative disorders. *Biochim. Biophys. Acta-Gen. Subj.* 2017, 1861, 802–813. [CrossRef] [PubMed]
- 38. Goncalves, A.C.; Flores-Felix, J.D.; Costa, A.R.; Falcao, A.; Alves, G.; Silva, L.R. Hepatoprotective effects of sweet cherry extracts (cv. Saco). *Foods* **2021**, *10*, 2623. [CrossRef]
- 39. Gao, S.H.; Zhao, T.R.; Liu, Y.P.; Wang, Y.F.; Cheng, G.G.; Cao, J.X. Phenolic constituents, antioxidant activity and neuroprotective effects of ethanol extracts of fruits, leaves and flower buds from *Vaccinium Dunalianum* wight. *Food Chem.* **2022**, 374, 131752. [CrossRef]
- 40. Chu, Q.; Jia, R.; Chen, C.; Wang, Y.; Yu, X.; Zhang, Y.; Wu, T.; Zheng, X. Apios americana medik leaf extracts attenuate H₂O₂-induced hepatotoxicity. *Food Biosci.* **2021**, *41*, 100996. [CrossRef]
- 41. Wang, W.; Zhang, X.; Liu, Q.; Lin, Y.; Zhang, Z.; Li, S. Study on extraction and antioxidant activity of flavonoids from *Hemerocallis Fulva* (daylily) leaves. *Molecules* **2022**, 27, 2916. [CrossRef] [PubMed]
- 42. Wang, Y.; Jin, R.; Chen, J.; Cao, J.; Xiao, J.; Li, X.; Sun, C. Tangeretin maintains antioxidant activity by reducing Cul3 mediated Nrf2 ubiquitination. *Food Chem.* **2021**, *365*, 130470. [CrossRef] [PubMed]
- 43. Sha, A.; Liu, Y.; Qiu, X.; Xiong, B. Polysaccharide from paris polyphylla improves learning and memory ability in d-galactose-induced aging model mice based on antioxidation, p19/p53/p21, and wnt/β-catenin signaling pathways. *Int. J. Biol. Macromol.* **2023**, 251, 126311. [CrossRef] [PubMed]
- 44. Kumar, A.; Prakash, A.; Dogra, S. Protective effect of curcumin (*Curcuma Longa*) against D-galactose-induced senescence in mice. *J. Asian Nat. Prod. Res.* **2011**, *13*, 42–55. [CrossRef]
- 45. Sun, W.; Zhu, J.; Qin, G.; Huang, Y.; Cheng, S.; Chen, Z.; Zhang, Y.; Shu, Y.; Zeng, X.; Guo, R. Lonicera japonica polysaccharides alleviate D-galactose-induced oxidative stress and restore gut microbiota in icr mice. *Int. J. Biol. Macromol.* **2023**, 245, 125517. [CrossRef]
- 46. Castillo, C.; Salazar, V.; Ariznavarreta, C.; Vara, E.; Tresguerres, J.A. Effect of isoflavone administration on age-related hepatocyte changes in old ovariectomized femal wistar rats. *Phytomedicine* **2006**, *13*, 468–476. [CrossRef]
- 47. Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. *Adv. Med. Sci.* **2018**, *63*, 68–78. [CrossRef]
- 48. Ngo, V.; Duennwald, M.L. Nrf2 and oxidative stress: A general overview of mechanisms and implications in human disease. *Antioxidants* **2022**, *11*, 2345. [CrossRef]
- 49. Lakshmi, S.P.; Reddy, A.T.; Kodidhela, L.D.; Varadacharyulu, N.C. Epigallocatechin gallate diminishes cigarette smoke-induced oxidative stress, lipid peroxidation, and inflammation in human bronchial epithelial cells. *Life Sci.* 2020, 259, 118260. [CrossRef]

- 50. Kang, Y.P.; Mockabee-Macias, A.; Jiang, C.; Falzone, A.; Prieto-Farigua, N.; Stone, E.; Harris, I.S.; Denicola, G.M. Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. *Cell Metab.* **2021**, *33*, 174–189. [CrossRef]
- 51. Wang, C.; Cui, C.; Li, N.; Sun, X.; Wen, L.; Gao, E.; Wang, F. Antioxidant activity and protective effect of wheat germ peptides in an in vitro celiac disease model via Keap1/Nrf2 signaling pathway. *Food Res. Int.* **2022**, *161*, 111864. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article

A Comparative Study on UHPLC-HRMS Profiles and Biological Activities of *Inula sarana* Different Extracts and Its Beta-Cyclodextrin Complex: Effective Insights for Novel Applications

Gokhan Zengin ^{1,*}, Nilofar ^{1,2}, Evren Yildiztugay ³, Abdelhakim Bouyahya ⁴, Halit Cavusoglu ⁵, Reneta Gevrenova ⁶ and Dimitrina Zheleva-Dimitrova ^{6,*}

- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; nilofar.nilofar@unich.it
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, 66100 Chieti, Italy
- Department of Biotechnology, Science Faculty, Selcuk University, Konya 42130, Turkey; eytugay@selcuk.edu.tr
- ⁴ Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; a.bouyahya@um5r.ac.ma
- Department of Physics, Science Faculty, Selcuk University, Konya 42130, Turkey; hcavusoglu@selcuk.edu.tr
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; rgevrenova@pharmfac.mu-sofia.bg
- * Correspondence: gokhanzengin@selcuk.edu.tr (G.Z.); dzheleva@pharmfac.mu-sofia.bg (D.Z.-D.)

Abstract: Within this particular framework, the extracts obtained from Inula sarana using a variety of solvents, included n-hexane, ethyl acetate, dichloromethane (DCM), 70% ethanol, ethanol, and water. The extracts obtained from n-hexane, ethyl acetate, and DCM were then subjected to a specific method for their incorporation into β -cyclodextrin (β -CD). The establishment of complex formation was validated through the utilization of scanning electron microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The identification of phytochemical components was executed using UHPLC-HRMS. Furthermore, the total phenolic and flavonoid content was evaluated using the Folin-Ciocalteu assay and the AlCl₃ method. Subsequently, the determination of antioxidant capacity was conducted utilizing DPPH, ABTS, CUPRAC, Frap, PBD, and MCA assays. The enzyme inhibitory activities of the samples (extracts and β -CD complexes) were also examined by AChE, BChE, tyrosinase, α -glucosidase, and α -amylase. The findings indicated that water and 70% ethanol extracts contained the highest phenolic content. One hundred and fourteen bioactive compounds were identified by UHPLC-HRMS analysis. This study unveiled a substantial array of flavonoids, phenolic acid-hexosides and caffeoylhexaric acids within I. sarana, marking their initial identification in this context. Among the various extracts tested, the 70% ethanol extract stood out due to its high flavonoid content (jaceosidin, cirsiliol, and eupatilin) and hydroxybenzoic and hydroxycinnamic acid hexosides. This extract also displayed notably enhanced antioxidant activity, with ABTS, CUPRAC, and FRAP test values of 106.50 mg TE/g dry extract, 224.31 mg TE/g dry extract, and 110.40 mg TE/g, respectively. However, the antioxidant values of the complex extracts with β -CD were generally lower than those of the pure extracts, an observation warranting significant consideration. In terms of enzyme inhibition activity, the ethanol and 70% ethanol extracts exhibited higher inhibitory effects on AChE, tyrosinase, and α-glucosidase. Conversely, n-hexane displayed stronger inhibitory activity against BChE. The ethyl acetate extract demonstrated elevated amylase inhibitory activity. However, the antioxidant values of the complex extracts with β-CD were generally lower than those of the pure extracts, a noteworthy observation, while water and extracts from the I. sarana complex with β -CD exhibited minimal or negatable inhibitory activity against specific enzymes.

Keywords: *Inula sarana*; β-cyclodextrin; chemical characterization; SEM; enzyme inhibitory

1. Introduction

The Asteraceae family, comprising the largest group of flowering plants, encompasses over 24,000 to 30,000 species and 1600 to 1700 genera [1]. Within this family are found essential botanical resources, including medicinal oil-yielding plants, horticultural resources, and economically significant species. Noteworthy phytochemical constituents like polyphenols, diterpenoids, and flavonoids are prevalent among the constituents of this botanical family [2]. Therefore, species of this family typically stand out for their notable antioxidant, anti-inflammatory, antiparasitic, and anticancer properties [3,4]. The genus *Inula* L. encompasses approximately 25 species, with nine endemic to Turkey, is predominantly distributed in Asia, Africa, Europe, and is notably abundant in the Mediterranean region [5–7].

The limited solubility of many drugs in water represents one of the most significant challenges preventing the advancement of various pharmaceuticals. A notable observation reveals that approximately 40% of newly developed drugs display poor water solubility, which prevents their efficient clinical application [8]. This challenge has led to the exploration of various precise drug encapsulation techniques. One particular strategic possibility involves the encapsulation of such drugs using various methods. This approach has the potential to increase dissolution rates, increase membrane permeability, and, ultimately, improve the bioavailability of nutraceuticals with low solubility. Generally, cyclodextrins (CDs) are low-cost starch derivatives that have been manufactured and enzymatically modified. These nontoxic starch derivatives have minimal absorption in the upper gastrointestinal tract and are completely metabolized by the gut microbes [9]. The unique hollow molecular structure of β -cyclodextrin (β -CD) allows it to form inclusion complexes with a diverse range of organic compounds. These compounds partially or completely accommodated within its relatively hydrophobic cavity, eliminating a limited number of high-energy water molecules [9,10]. The pharmaceutical industry frequently utilizes cyclodextrins due to their ability to form inclusion complexes with various molecules, serving as a means to enhance the water solubility and consequently, the bioavailability of lipophilic drugs. This strategy, though, is less effective for hydrophilic or moderately polar drugs, leading to the exploration of cyclodextrin derivatives. However, these challenges can be effectively addressed through chemical modifications. β -CD, categorized as a polysaccharide, has some limitations, including insufficient water solubility and possible toxicities when ingested intravenously [11]. These challenges, however, can be effectively addressed through chemical modifications. The approach of synthesizing nanosponges based on cyclodextrins appears to be a viable technique to bolster and prolong the stability of drugs.

Curcumin's clinical applicability is limited due to challenges like low bioavailability, minimal solubility in aqueous settings, and susceptibility to chemical degradation at physiological pH levels; however, studies have demonstrated that its solubility can be enhanced by up to 2.34 times through complexation with β -CD [12]. In a study recently published, a remarkable enhancement of 206-fold in curcumin solubility was documented, demonstrating the sustained release of curcumin from the resultant inclusion complexes [13]. Recently, a number of studies have reported the successful encapsulation of extracts and essential oils derived from the Asteraceae family. This encapsulation process has been designed to enhance the bioavailability of bioactive compounds contained within these extracts and oils. The ultimate goal is to significantly boost their efficacy in various applications. This development represents a notable advancement in the field of natural product encapsulation and opens up new possibilities for harnessing the therapeutic potential of these bioactive substances [14–16]. Nevertheless, scientific exploration into the characteristics of *Inula sarana* remains limited. Hence, due to the unexplored nature of *I. sarana*, we undertook a comprehensive study of this particular species.

Beyond their pharmaceutical applications, cyclodextrins (CDs) provide a number of benefits with broader implications. Their ability to extend the shelf life of food products has sparked interest, demonstrating their significance beyond the realm of medicine. Moreover, CDs have the ability to mask or eliminate unpleasant tastes and odours, addressing

concerns about the flavour of certain goods [17]. The process of encapsulating plant extract within β -CD at the molecular level holds numerous potentials for several benefits. As study claimed that olive leaf encapsulation in β -CD demonstrates the potential for various enhancements, including increased solubility in aqueous solutions, improved compatibility within oil/water systems, enhanced protection against oxidative degradation during storage, and the possibility of improving its bioavailability [10,18].

In this context, the study aimed to determine the chemical composition (by using UHPLC-HRMS) of *I. sarana* extracts and their biological activities Additionally, we investigated the changes in chemical profiles and biological properties in β -CD incorporation of its ethyl acetate, n-hexane, and DCM. This aspect can provide significant information for preparing formulations using *I. sarana* for further pharmaceutical, nutraceutical, and cosmeceutical applications.

2. Materials and Methods

2.1. Chemicals

Acetonitrile, formic acid (for LC–MS) and methanol (analytical grade) were provided from Merck (Merck, Sofia, Bulgaria). The reference standards, using for UHPLC-HRMS protocatechuic, *p*-coumaric, *m*-coumaric, *o*-coumaric, vanillic, gentisic and salicylic acids, luteolin 7-*O*-glucoside, kaempferol-3-*O*-rutinoside, kaempferol 3-*O*-glucoside, isorhamnetin 3-*O*-glucoside, nepetin 7-*O*-glucoside, hyperoside, apigenin, quercetin, kaempferol, hispidulin, chrysoeriol, isorhamnetin, jseocidine, and luteolin were obtained from Extrasynthese (Genay, France). Chlorogenic, neochlorogenic, caffeic, 3,4-dicaffeoylquinic, 3,5-dicaffeylquinic and 1,5-dicaffeoylquinic acids, as well as dehydrocostus lactone, isoalantolactone, alantolactone, and partenolide, were supplied from Phytolab (Vesten-Bergsgreuth, Germany).

2.2. Plant Material

In the summer of 2021, the aerial parts of *I. sarana* were gathered in Konya (Turkey: Seydisehir-Antalya road, Alacabel location, 1640 m) by the botanist Evren Yildiztugay. After collecting the plants, one specimen was deposited at the Selcuk University herbarium (EY-3212). The plant materials underwent a thorough washing process with tap and distilled water to eliminate any soil and contaminants prior to extraction. The aerial parts were then air-dried for 10 days in shade at room temperature and powdered.

2.3. Sample Preparation

The n-hexane, ethyl acetate, DCM, 100% ethanol, and 70% ethanol extracts were obtained through the maceration method, wherein 10 g of plant material was mixed with 200 mL of each solvent and steeped for 24 h at room temperature. We used Whatman 1 filter paper to filter the mixtures and a rotary-evaporator to remove the solvents. To make the water extract (100%), we boiled 200 milliliters of water and infused 10 g of plant material for 15 min. After filtration, we lyophilized the extract for 48 h. Subsequently, all extracts were stored at 4 °C until analysis. The extraction yields were 3.32% (for n-hexane), 4.33% (for DCM), 5.03% (for ethyl acetate), 5.90% (for ethanol), 17.03% (for 70% ethanol) and 6.63% (for water).

2.4. Total Phenolic and Flavonoids Content

Total phenolic (Folin–Ciocalteu assay) and flavonoids (AlCl₃ assay) contents of the extracts/complexes by colorimetric method using the describe method for phenolic by Acquaviva et al. [19] and for flavonoids by Llorent-Martínez et al. [20]. Results were expressed as gallic acid equivalents (mg GAE/g dry extract or complex) and rutin equivalents (mg RE/g dry extract or complex) for respective assays.

2.5. UHPLC-HRMS Analysis

The UHPLC-HRMS analyses were performed as previously described [21]. Q Exactive Plus mass spectrometer with a heated electrospray ionization (HESI-II) probe (ThermoFisher Scientific, Inc., Waltham, MA, USA), operated in negative and positive ion modes (m/z range from 100 to 1500 at a resolution of 70,000) was used for the LC-MS analyses. The tune parameters were as follows: 2.5 kV spray voltage, 38 AU sheath gas flow rate, 12 AU auxiliary gas flow rate, 320 °C capillary temperature, 320 °C probe heater temperature, and level 50 S-lens RF. Acquisition was developed at the full-scan MS and Data Dependent-MS2 modes (DD-MS2). Other parameters for Full MS mode were as follows: maximum injection time (IT) 100 ms, number of scan ranges 1, and automatic gain control (AGC) target 3×10^6 . For the DD-MS2 mode, the instrument parameters were maximum IT 50ms, microscans 1, resolution 17,500, AGC target 1×10^5 , MSX count 1, Top5, and isolation window 2.0 m/z, and the stepped normalized collision energy was 10, 20, and 60 eV. The separation was performed on a C18 column Kromasil EternityXT (1.8 μ m, 2.1 \times 100 mm) (Bohus, Ale, Sweden) at 40 °C. The mobile phase contained 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B). The run time was 33 min, and the flow rate was 0.3 mL/min. The gradient elution program was as follows: 0–1 min, 5% B; 1–20 min, 5-30% B; 20-25 min, 30-50% B; 25-30 min, 50-70% B; 30-33 min, 70-95%; and 33-34 min, 95–5% B. Equilibration time was 4 min. The injection volume was set to 1 μ L, and the flow rate was 300 μL/min. Data acquisition was performed using Xcalibur 4.2 software (Thermo Scientific). MZmine 2.53 software was applied to the UHPLC-HRMS raw files of the *I. sarana* extract for further analysis.

2.6. Preparation and Characterization of β-CD Complexes

The inclusions for n-hexane, ethyl acetate and dicholoromethane (DCM) extracts were prepared in a 1:1 ratio. Fifty mg of extracts were dissolved in 50 mL of methanol and these extracts were carefully filtered. Then, almost 50 mg β -CD (in 50 mL of water) was added and the mixture was stirred at room temperature for 24 h. After that, the mixtures were filtered, and the methanol was removed using a rotary evaporator. The final mixtures were lyophilized at $-40~^{\circ}\text{C}$ to remove all water and the dry samples were stored in the dark condition at $4~^{\circ}\text{C}$. The obtained inclusions were named hexane/ β -CD, ethyl acetate/ β -CD and DCM/ β -CD.

The samples were directly placed on aluminum stabs; then, the shape and surface characteristics were observed by micrographs of the samples taken by scanning electron microscopy (SEM) (Zeiss EVO LS10; Oberkochen, Germany) using the gold sputter technique. The zone magnification for the images were kept around $20,000\times$. Observations were performed under 1 and 15 kV. Fourier transform infrared spectrum (FTIR) was recorded on a Vertex 70 Bruker FTIR spectrometer (Bruker, Leipzig, Germany) with attenuated total reflectance (ATR) module. All spectra were captured in the 400 and 4000 cm $^{-1}$ spectral region at a scan rate of 180 scans and a spectral resolution of 4 cm $^{-1}$. The FTIR spectrum was used in the transmittance mode.

2.7. In Vitro Antioxidant Assays

We evaluated the antioxidant potential of the extracts through the execution of six complementary in vitro spectrophotometric tests, as described in reference [22]. These tests included examinations of the ABTS and DPPH assays, which probe the extracts' ability to neutralize free radicals. The extract's ability to reduce (FRAP and CUPRAC assays) and its metal chelating capacity (MCA) were evaluated. Total antioxidant ability was measured by the phosphomolybdenum (PBD) assay. We utilized the Trolox standard for assessing all assays except MCA, for which we compared the results in terms of equivalent EDTA per gram of extract.

2.8. Enzyme Inhibitory Activity

The inhibitory effects of extracts and inclusions were investigated against different enzymes acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, α -amylase and α -glucosidase. The enzyme inhibitory assays were performed as reported by Zengin [23]. The inhibition of AChE and BChE was quantified as milligrams of galanthamine equivalents (GALAE) per gram of extract, while tyrosinase inhibition was measured as milligrams of kojic acid equivalents (KAE) per gram of extract. In addition, α -amylase and α -glucosidase inhibition were assessed in terms of millimoles of acarbose equivalents (ACAE) per gram of extract.

2.9. Statistical Analysis

Statistical analysis was performed using Xl Stat (Version 16). All analyses were conducted in triplicates (n = 3) and presented as mean values with their standard deviation (mean value \pm std). Differences between samples were examined using one-way analysis of variance (ANOVA) and Tukey's post hoc test with significance level set at p < 0.05. Veen diagrams were designed using an online platform (http://bioinformatics.psb.ugent.be/webtools/Venn/; accessed on 20 August 2023). Circle heat map was also obtained from an online platform (https://www.chiplot.online/; accessed on 20 August 2023). Graph Pad Prism (version 9.2) was used for Pearson correlation analysis.

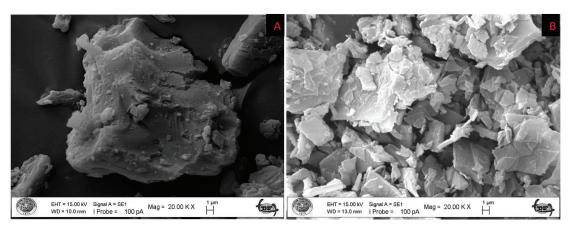
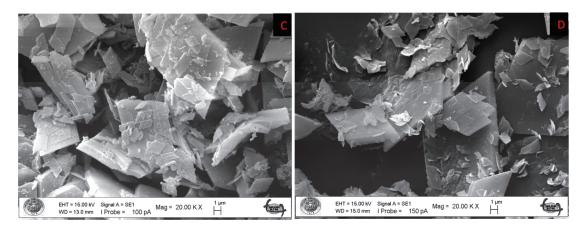
3. Results and Discussion

3.1. Characterization of β -CD Complexes

As because polar solvent extracts are typically not encapsulated by β -CD due to the strong hydrophilic interactions between polar compounds and water, which limit their inclusion within the hydrophobic cavity of β -CD [24]. So, water, 70% ethanol, and water extracts was not encapsulated with β -CD. The n-hexane, ethyl acetate and DCM extracts were incorporated into β -CD, and were characterized.

3.1.1. SEM Analysis

When it comes to scrutinizing the microscopic morphology and structure of solids, especially crystalline materials, scanning electron microscopy (SEM) serves as an indispensable tool [25]. A concentrated electron beam is used to scan a sample's surface in order to create images of it. By interacting with the atoms in the sample, the electrons create signals that provide information about the sample's surface topography and chemical composition. The morphologies of pure β -CD, ethyl acetate/ β -CD, hexane/ β -CD and DCM/ β -CD were characterized by SEM and the images are shown in Figure 1. The structural differences observed among the related complexes imply that additional crystalline phases may have emerged following complexation. In general, the β -CD particles (Figure 1) displayed irregular and parallelogram shapes under various inclusion complexes.

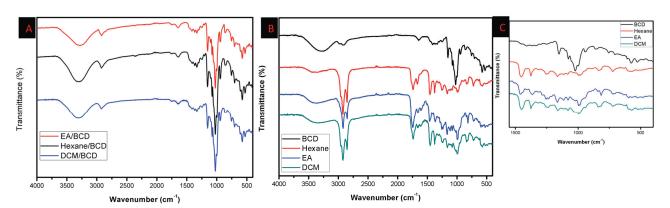

Figure 1. Cont.

Figure 1. SEM images of pure β-cyclodextrin (**A**); Ethyl acetate/β-cyclodextrin (**B**); Hexane/β-cyclodextrin (**C**); DCM/β-cyclodextrin (**D**) inclusion complex.

3.1.2. Fourier Transform Infrared Spectroscopic Analysis

The infrared spectrum's position and intensity correspond to the features of molecular structures. The production of inclusion complex and the interaction of ethyl acetate, n-hexane, DCM, and β-CD can be inferred from changes in FTIR spectra. The FTIR spectra of ethyl acetate β -CD, n-hexane β -CD, and DCM β -CD inclusion complex were shown in Figure 2A. In addition, FTIR spectra of pure β -cyclodextrin and each extract without the presence of β-cyclodextrin with enlarged form between 1550 cm⁻¹ and 400 cm⁻¹ are shown in Figure 2B The typical absorption frequency of β -CDs spans the full 400–3800 cm⁻¹ range. Organic small molecules can only constitute a maximum of 25% (w/w) of the inclusion complex [26]. Their distinctive peaks are obscured and hard to distinguish by the absorption peaks of β -CDs. Tensile vibration absorption occurs about 1700 cm⁻¹ if the guest molecule has a group like -COOH, -COOR, or C=O. The stretching (-OH) vibration of hydroxyl groups causes the broad peak around 3380 cm⁻¹. According to Figure 2, the stretching (C-H) vibration is responsible for the peaks at 2970 and 2900 cm⁻¹ in the FTIR spectrum of all samples, while the (C–H) deformation vibration is responsible for the peak at 1390 cm⁻¹. The FTIR spectrum exhibits two peaks as a result of the stretching (C–O) vibration. The stretching (C-O) vibration of the co-carbon carboxyl group causes one peak to occur at 1210 cm⁻¹, and the stretching (C-O) vibration of the -O-CH₂CH₃ group causes another comparably strong peak to appear at 1040 cm^{-1} [27].

Figure 2. FT–IR spectra of Ethyl acetate/β–cyclodextrin, Hexane/β–cyclodextrin, DCM/β–cyclodextrin inclusion complex (**A**), FT–IR spectra of pure β–cyclodextrin and each extract without the presence of β–cyclodextrin (**B**), with enlarged form between 1550 cm $^{-1}$ and 400 cm $^{-1}$ (**C**).

The composition of different extracts of *I. sarana* and its complex with β -CD has been studied in terms of total phenolic content and total flavonoid content. The results have been categorized among various solvents and different extraction conditions.

3.2. Total Phenolic and Flavonoid Content

Among the various extracts obtained, the highest total phenolic content was found in the extract obtained from water, with a value of 55.55 mg GAE/g dry extract (Table 1). On the other hand, the lowest total phenolic content was observed in the n-hexane extract, which had a value of 12.45 mg GAE/g dry extract. In the middle range, the ethanol extract had a total phenolic content of 38.42 mg GAE/g dry extract. In terms of the total flavonoid content, the highest value was recorded for the extract obtained from ethyl acetate, with 22.60 mg RE/g dry extract. Conversely, the lowest total flavonoid content was found in the water extract, which had a value of 9.11 mg RE/g dry extract. In the middle range, the DCM extract exhibited a total flavonoid content of 16.57 mg RE/g dry extract. When considering the extracts obtained from the complex of *I. sarana* with β -CD, the highest total phenolic content was observed in the dichloromethane/β-CD (DCM/β-CD), with a value of 4.54 mg GAE/g dry complex, followed by the ethyl acetate/β-CD had a total phenolic content of 4.17 mg GAE/g dry complex. The lowest total phenolic content in this group was found in the n-hexane/ β -CD, which had a value of 3.00 mg GAE/g dry complex. In terms of total flavonoid content in the β-CD complex extracts, the highest value was recorded for the ethyl acetate/ β -CD, with 3.82 mg RE/g dry complex. However, n-hexane/β-CD had lowest total flavonoid content 1.96 \pm 0.26 mg RE/g dry complex.

Table 1. Total phenolic and flavonoid content of the tested samples *.

Extracts	Total Phenolic Content (mg GAE/g Dry Extract or Complex)	Total Flavonoid Content (mg RE/g Dry Extract or Complex)
n-Hexane	12.45 ± 0.44 $^{ m f}$	4.60 ± 0.18 $^{ m e}$
Ethyl acetate	23.77 ± 0.15 ^d	22.60 ± 0.44 a
Dicholoromethane	20.19 ± 0.78 $^{ m e}$	16.57 ± 0.32 b,c
Ethanol	38.42 ± 0.10 $^{\mathrm{c}}$	17.23 ± 0.48 b
70% Ethanol	$46.36 \pm 0.12^{\ \mathrm{b}}$	15.93 ± 0.30 $^{ m c}$
Water	$55.55 \pm 0.42~^{ m a}$	9.11 ± 0.14 d
n-Hexane/β-CD	$3.00\pm0.03~^{ m h}$	1.96 ± 0.26 ^f
Ethyl acetate/β-CD	$4.17 \pm 0.11~^{ m g}$	3.82 ± 0.41 $^{ m e}$
DCM/-β-CD	$4.54 \pm 0.09 \; \mathrm{g}$	1.81 ± 0.07 ^f

^{*} Values are reported as mean \pm SD of three parallel measurements. GAE: Gallic acid equivalents; RE: Rutin equivalents. Different letters ("a" indicates the highest level) in the same column indicate significant differences in the tested extracts and complexes (p < 0.05).

These results highlight variations in the levels of total phenolic and flavonoid compounds, depending on the solvents and extraction conditions as well as the effect of complexation with β -CD on these levels.

The results of this study on the extracts of $\it I. sarana$ as well as its complex with $\it \beta$ -CD provide significant insights into the phenolic and flavonoid composition of this medicinal plant and its complex. Recognized for their antioxidative features, these compounds may have positive implications for human health.

The variations observed in the total phenolic and flavonoid contents based on the extraction solvents indicate that different solvents have varying capabilities to extract these compounds from the plant. For instance, extracts obtained from water and 70% ethanol appear to have the highest contents of phenolic and flavonoid compounds. This suggests that these solvents are more effective in extracting these compounds from the plant [28–30]. In our study, the polar solvents, namely ethanol, 70% ethanol, and water, were generally rich in terms of total phenolic content. This can be attributed to the enhanced solvation of antioxidant compounds in the extracts, which is caused by the interactions (especially hydrogen bonds) between the polar sites of the antioxidant molecules and these solvents.

In addition, both lipophilic and hydrophilic phenolics can be extracted by the solvents and thus can result in high values in the spectrophotometric assays. This fact was also confirmed by UHPLC-HRMS analysis, which showed more components in the polar solvents when compared to nonpolar solvents.

The results of the *I. sarana*/ β -CD complex extracts generally showed lower total phenolic and flavonoid contents compared to the classical extracts. Understanding these observations is important for product formulation involving extracts, where a reduction in phenolic and flavonoid compounds might impact their potential effectiveness. Therefore, further research and experimentation are imperative to identify the precise reasons behind this decrease. It is important to acknowledge that the explanation may vary depending on the specific plant extract, extract amount, and experimental conditions. Studies prove the concentration of β -CD and the ratio at which it forms complexes with the relevant extracts playing a significant role. The not optimized ratio may lead to reduced antioxidant activity [31]. Additional studies are necessary to gain deeper insights and validate these findings. This unexpected decrease in phenolic and flavonoid content when using β -CD challenges conventional assumptions, encouraging researchers to explore novel mechanisms and applications. The deviation from the typical enhancement effect of β -CD on phenolic and flavonoid content may complicate the formulation of products reliant on these extracts, potentially affecting their intended effectiveness.

3.3. UHPLC-HRMS Analysis

The compound identification/annotation approach was based on the fragmentation rules and indicative ions for different types of compounds, reference standards and literature data [21]. The main points in the peak's annotation and dereplication are accurate masses in Full MS, MS/MS fragmentation, relative abundance of deprotonated/protonated molecules and fragment ions, elemental composition, correspondence to the simulated monoisotopic profiles, and comparison with the retention times, MS/MS spectra and chromatographic behavior of reference standards. The total ion chromatograms (TIC) are given in Figure 3.

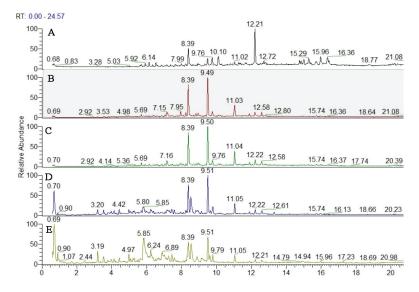


Figure 3. Cont.

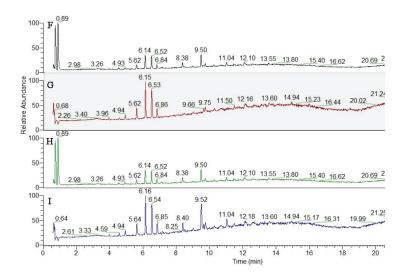
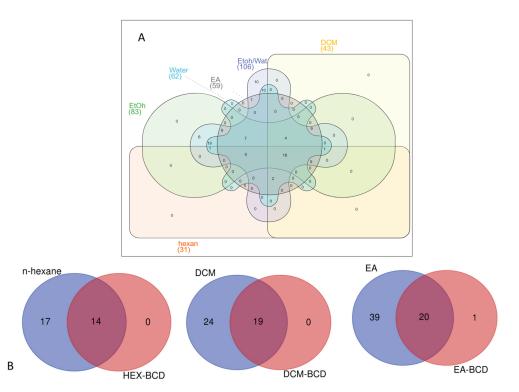



Figure 3. TIC of studied *Inula sarana* extracts in negative ion mode; (**A**) n-hexane extract; (**B**) ethyl acetate extract; (**C**) DCM extract; (**D**) ethanol extract; (**E**) 70% ethanol extract; (**F**) water extract; (**G**) n-hexane/β-CD; (**H**) ethyl acetate/β-CD; (**I**) DCM/β-CD.

To compare the number of identified compounds in the tested extracts, we constructed Venn diagrams, and the results are presented in Figure 4. As can be seen from Figure 4A, most compounds were identified in the 70% ethanol extract with 106 compounds, followed by ethanol (83) and water (62). The n-hexane extract contained the lowest number of chemicals (31). In this sense, the polar solvents can be suggested for further application with *I. sarana*. Furthermore, we compared the number of identified compounds in the extracts and their complex. From Figure 4B, it can be seen that almost 45–50% of the identified compounds were protected by β -CD complexation.

Figure 4. Venn diagrams showing number of compounds identified from the tested extracts (**A**). Comparison the identified compounds in the extracts and theirs complexes (**B**). EA: Ethyl acetate; DCM: Dichloromethane; EtOh: Ethanol; EtOh/Water: 70% Ethanol; BCD: β -cyclodextrin.

3.3.1. Hydroxybenzoic and Hydroxycinnamic Acids and Their Derivatives

Several glycosides of hydroxybenzoic and hydroxycinnamic acids, including hexosides 1-4, 6, 8-11 and 17 were tentatively identified (Tables S1 and S2, Figure S1). A variety of the phenylpropanoid glycosides were also evidenced. Thus, compounds 31 and 33 demonstrated the same deprotonated molecules $[M-H]^-$ at m/z 521.130 (calc. for $C_{24}H_{25}O_{13}$). The occurrence of caffeoyl and syringyl residues was deduced from the transitions $521.130 \rightarrow 323.077 \text{ [M-H-C}_9\text{H}_{10}\text{O}_5]^-$ and $323.077 \rightarrow 161.023 \text{ [M-H-C}_6\text{H}_{10}\text{O}_5]^-$, supported by the indicative fragment ions at m/z 179.034 [caffeic acid-H]⁻ and 197.045 [syringic acid-H] $^-$. Additionally, the syringic acid was evidenced by the fragment ions at m/z182.021 [syringic acid-H-CH₃] $^-$, 166.998 [syringic acid-H-2CH₃] $^-$ and 123.008 [syringic acid-H-2CH₃-CO₂]⁻. Accordingly, 31 and 33 were assigned to syringic acid-(caffeoyl)hexosides. In the same manner, the transitions $441.140 \rightarrow 323.077 [M-H-C_5H_{10}O_3]^-$ and $323.077 \rightarrow 161.023 [M-H-C_6H_{10}O_5]^-$ indicated both hydroxyisovaleryl and caffeoyl moieties in 35 (caffeic acid-(hydroxyisovaleryl(-hexoside). In addition, coumaric acid at m/z 163.060, gentisic acid at m/z 153.018, hydroxybenzoic acid at m/z 137.023 and vanillic acid at m/z 167.034 were dedicated in 32, 34, 36/43 and 37, respectively. Thus, they were ascribed as hydroxyisopropanoic acid-(coumaroyl)-hexoside, gentisic acid-(caffeoyl)hexoside, caffeic acid-(hydroxybenzoyl)-hexoside and vanillic acid-(caffeoyl)-hexoside, respectively.

Six hydroxybenzoic acids (5, 12, 15, 16, 25 and 42) and 3 hydroxycinnamic acids (22, 24, and 30) together with quinic acid (20) and two caffeoylgluconic ester isomers (13 and 18) were identified in the extracts on the basis of comparison with the reference standards, respectively (Table S1, Figure S1).

Although hydroxybenzoic and hydroxycinnamic acids were found in their free form, herein, a great number of their hexosides and phenylpropanoid glycosides were evidenced in *I. sarana* for the first time. Quinic acid (21) was the main compound in this group of compounds in the studied extract, together with 10 and 15 (Figure S1).

3.3.2. Acylquinic Acids (AQAs)

Herein, 5 *mono* AQA and 7 *di* AQA and 1 *tri* AQA acids were annotated/dereplicated in the *I. sarana* extracts (Tables S1 and S2, Figure S2). The AQAs recognition was based on the fragment ions and their relative abundances corresponding to each subclass AQAs. The base peaks at *m*/*z* 191.055 was indicative for a substitution at C-5 of quinic acid skeleton. Thus, 21, 26 and 28 were assigned to 5-caffeoyl-, 5-*p*-coumaroyl and 5-feruloylquinic acid, respectively.

diAQA consisted of the following subclasses: dicaffeoylquinic acids (diCQA) (38–41), p-coumaroyl-caffeoylquinic acids (p-CoCQA) (44, 45) and hydroxydihydrocaffeoyl-caffeoylquinic acids (HC-CQA) (29).

Compounds 40 and 44 gave diagnostic ions at m/z 353.088, indicating a loss of caffeoyl (40) and p-coumaroyl (44) moiety. Moreover, both compounds gave base peaks at m/z 191.055 together with the prominent ion at m/z 179.034 [caffeic acid–H] $^-$ (40) and 163.039 (44), as was observed in 3-monoAQA (Table S1). Thus, 40 and 44 were ascribed as 3, 5-diCQA and 3C-5-p-CoQA, respectively.

Vicinal diCQA 3, 4-diCQA (38), 4,5-diCQA (41) and 4p-Co-5CQA (45) were evidenced by the diagnostic "dehydrated" quinic acid ion at m/z 173.045 (Table S1).

Peak 46 yielded a precursor ion at m/z 677.152 (calc. for $C_{34}H_{29}O_{15}$), along with the transitions at m/z 677.152 \rightarrow 515.120 \rightarrow 353.088 \rightarrow 191.055, resulting from the losses of three caffeoyl residues. 4,5-disubstituted quinic acid skeleton was deduced from the fragment ions at m/z 191.055 (48%), 179. 034 (68%), 173.045 (92%) and 135.044 (81%). Thus, 46 was assigned to 3,4,5-tricaffeoylquinic acid.

3.3.3. Caffeoylhexaric Acids (CHAs)

Overall, 4 monoCHA, 5 diCHA, 3 triCHA and 2 tetraCHA were annotated together with their esters with aliphatic acids and hexosides. The starting points in the CHAs recognition

were the diagnostic fragment ions resulting from the subsequent losses of one (47-50), two (51-55), three (57-59) and four (56 and 60) caffeoyl residues (Table S1, Figure S3). Accordingly, the base peak at m/z 209.030 ($C_6H_9O_8$) [hexaric acid (HA)–H]⁻ was observed along with a number of fragment ions at m/z 191.019 [HA–H–H₂O]⁻, 173.009 [HA–H– $2H_2O]^-$, 147.029 [HA-H-H₂O-CO₂]⁻, 129.018 [HA-H-2H₂O-CO₂]⁻, 111.007 [HA-H-3H₂O-CO₂]⁻, 85.028 [HA-H-2H₂O-2CO₂]⁻ (47) (Table S1) [21,32]. Compounds 62 and 63 shared the same [M–H]⁻ at m/z 617.153 (calc. for $C_{29}H_{29}O_{15}$). They afforded the indicative fragment ions at m/z 293.088 [M-H-2caffeoyl]⁻ and 191.019 [M-H-2caffeoyl- $C_5H_{10}O_2$]⁻ resulting from the losses of caffeoyl residues and a subsequent loss of 102.069 Da (calc. for $C_5H_{10}O_2$) or 2-methylbutiric acid/isovaleric acid (62). Caffeoyl moiety was deduced from the fragment ions at m/z 179.034 [caffeic acid (CA)–H]⁻, [(CA–H)–H₂O]⁻ at m/z161.023 and 135.044 [(CA-H)-CO₂]⁻. Accordingly, 62 and 63 were ascribed as isomeric 2-methylbutanyl/isovaleryl-dicaffeoylhexaric acids. In the same manner, 66 and 67 were annotated as 2-methylbutanyl/isovaleryl-tricaffeoylhexaric acid. Similarly, the assignment of 65 ([M–H]⁻ at m/z 765.169, $C_{37}H_{33}O_{18}$) was suggested by the transition 279.072 \rightarrow 191.019, resulting from the loss of 88.054 Da (calc. for C₄H₈O₂) or isobutyric acid. Concerning compounds 61 and 64, they afforded the indicative fragment ions at m/z 279.072 [M–H– 3caffeoyl-Hex] and 293.088, respectively, before the loss of the corresponding aliphatic acid. Accordingly, 64 was assigned to isobutanyl-tricaffeoylhexaric acid-hexoside (61) and 2-methylbutanyl/isovaleryl-tricaffeoylhexaric acid-hexoside (64).

3.3.4. Flavonoids

Overall, 6 flavone-, 10-flavonol- and 1 flavanone-glycosides were found. The dereplication/annotation of flavonoids was based on the indicative ions and their relative abundances in MS/MS spectra, corresponding to the respective flavonoid's subclass reported elsewhere [21].

The sugar chain of 68–70, 72, 73, 78 and 80 was consistent with rutinoside (308.112 Da, $C_{12}H_{20}O_9$) (Tables S1 and S2, Figure S4). Exemplifying this consistency, in (–)ESI-MS/MS the precursor ions at m/z 623.163 (80) generated deprotonated molecule of the aglycone (Y_0^-) at m/z 315.051. The aglycone was apparent by the prominent fragment at m/z 300.028 [Y₀-H-•CH₃]⁻, supported by a series of neutral and radical losses and RDA ions at m/z 271.025 [Y₀-H-CH₃-CHO $^{\bullet}$]⁻, 243.030 [Y₀-H-CH₃-CHO $^{\bullet}$ -CO]⁻, 227.034 [Y₀-H-CH₃- $CHO^{\bullet}-CO_2$ and 215.035 $[Y_0-H-CH_3-CHO^{\bullet}-2CO]^-$ (Table S1). Methoxylation at a ring A of the 6-hydroxyluteolin was evident by the RDA ions at m/z 165.990 ($^{1.3}A^-$ –CH₃), 133.028 $(^{1,3}B^{-})$, as was seen in patuletin. Accordingly, 80 was ascribed as nepetin O-rutinoside. Quercetin (68, 69, 71, 74 and 77) and luteolin (72 and 75) were proved by the base peaks and RDA ions at $151.002 \, (^{1,3}A^-)$ and $107.012 \, (^{0,4}A^-)$, $178.998 \, (^{1,2}A^-)$, $121.029 \, (^{1,2}B^-)$ (quercetin), and 133.028 ($^{1,3}B^-$) (luteolin). Compounds 68 and 69 revealed the same [M–H] $^-$ at m/z609.147. The aglycone quercetin was evidenced in both flavonoids: 68 afforded a base peak (Y_0^-) at 301.036, while 69 gave (Y_0^-) at m/z 301.035 together with an abundant fragment ion of the radical aglycone $[Y_0-H]^{\bullet-}$ at m/z 300.028 (68.6%), suggesting the 3-O-glycosidic bond [33]. Accordingly, 68 was identified as rutin, additionally confirmed with the standard reference, while 69 was annotated as quercetin 7-O-rutinoside. Isoquercitrin (71), hyperoside (74), luteolin 7-O-glucoside (75), kaempferol 3-O-glucoside (81) and isorhamnetin 3-O-glucoside (82) were clearly identified by comparison with reference standards.

The approach for recognition of 6-methoxylated flavonoids was delineated elsewhere [21]. Among them, 7 methoxylated derivatives of quercetagetin (85, 88, 90, 94, 101, 102 and 105), four 6-hydroxyluteolin derivatives (89, 91, 100 and 104), and two scutelarein derivatives (96 and 103) were described.

As an example, isomers 94, 101 and 102 ([M–H] $^-$ at m/z 359.077, $C_{18}H_{15}O_8$) demonstrated the fragmentation pathway of 6-methoxylated quercetagetin derivatives (Table S1, Figure S5). In (–)ESI-MS/MS 94, 101, and 102 yielded radical losses at m/z 344.054 [M–H– $^{\bullet}$ CH₃] $^-$, 329.031 [M–H–2 $^{\bullet}$ CH₃] $^-$ and 314.009 [M–H–3 $^{\bullet}$ CH₃] $^-$. A series of neutral losses were also recorded at m/z 301.036 [M–H–2 $^{\bullet}$ CH₃–CO] $^-$, 286.012 [M–H–3 $^{\bullet}$ CH₃–CO] $^-$,

258.071 [M–H–3 $^{\circ}$ CH₃–2CO]⁻ and 230.022 [M–H–3 $^{\circ}$ CH₃–3CO]⁻. In addition, a series of RDA ions were observed at m/z 165.990 (1,3 A⁻– $^{\circ}$ CH₃), 136.987 (1,3 A⁻–CO–CH₄) and 109.999 (1,3 A⁻–CO–CHO–CH₃) indicating methoxylation in the A-ring. A dimethoxylated RDA ion 1,3 B was discernable by prominent fragment ions at m/z 163.040 (1,3 B⁻–CH₂) and 148.016 (1,3 B⁻– $^{\circ}$ CH₃–CH₂) (Table S1). Thus, 94, 101 and 102 were ascribed as quercetagetin-3,6,3'(4')-trimethyl ether isomers.

3.3.5. Sesquiterpene Lactones and Derivatives

The dereplication of sesquiterpene lactones and derivatives was performed by UHPLC-ESI/HRMS of *I. sarana* extracts in positive ion mode as more relevant for the analysis of this class of specialized metabolites [34]. Based on accurate masse in Full MS, MS/MS fragmentation pathways, relative abundance of precursor and fragment ions, elemental composition, and comparison with reference standards and literature data, six sesquiterpene lactones and three sesquiterpenes were identified or tentatively annotated in *I. sarana* extracts. Previous investigation revealed MS/MS fragmentation patterns of sesquiterpene lactones with characteristic ions corresponding to the loss of H_2O (-18 Da), CO (-28 Da), CO (-28 Da), CO (-28 Da), and CO (-28 Da), and CO (-46 Da), and CO (-46 Da), CO (-46 Da), and CO (-46 Da),

Two peaks shared the same 108 and 113 protonated ion [M+H]⁺ at m/z 233.153. The abundant fragments at m/z 215.143 (55.6% for 108) and (60.4% for 113) [M+H–H₂O]⁺ are in agreement with a presence of OH group. The base peak at m/z 187.148 [M+H–H₂O–CO]⁺, together with diagnostic fragments at m/z 161.132 [M+H–CO–CO₂]⁺, m/z 117.070 [C₉H₈C₉H₉]⁺ and m/z 105.070 [C₈H₈C₉H₉]⁺, as well as comparison to the reference standards allowed the identification of 108 and 113 as isoalantolactone and alantolactone, respectively. Similarly, 107 and 110 were related to hydroxyalantolactone and dehydroalantolactone, respectively. In addition, based on a comparison with reference standards, 106 was related to dehydrocostus lactone, while 109 to partenolide.

3.4. Antioxidant Properties

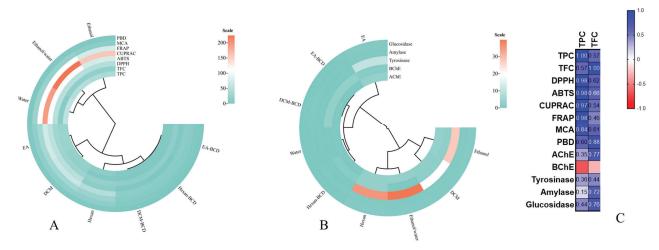
The thorough analysis of the antioxidant activity of *I. sarana* extracts and its complex with β -CD revealed intriguing diversity in results. The DPPH, ABTS, CUPRAC, FRAP, PBD, and MCA tests provided essential insights into the antioxidant capacities of each sample, uncovering significant trends. The ethanol extract displayed high values in the ABTS (73.61 mg TE/g dry extract), CUPRAC (159.00 mg TE/g dry extract), and FRAP (74.18 mg TE/g dry extract) tests, reflecting substantial antioxidant activity. Interestingly, the 70% ethanol extract exhibited even more impressive antioxidant activity, with values of 106.5 mg TE/g dry extract in the ABTS test, 224.31 mg TE/g dry extract in the CUPRAC test, and 110.40 mg TE/g dry extract in the FRAP test (Table 2). The equations, range and R2 values of standard compounds in the biological activity assays are presented in Table S3.

	1	1	1			
Extracts	DPPH (mg TE/g Dry Extract/Complex)	ABTS (mg TE/g Dry Extract/Complex)	CUPRAC (mg TE/g Dry Extract/Complex)	FRAP (mg TE/g Dry Extract/Complex)	PBD (mmol TE/g Dry Extract/Complex)	MCA (mg EDTAE/g Dry Extract/Complex)
n-Hexane	17.95 ± 0.24 e	$12.02 \pm 0.62^{\text{ e}}$	46.56 ± 0.71 e	24.50 ± 1.87 d	1.49 ± 0.03 b	13.85 ± 0.56 °
Ethyl acetate	$27.95\pm0.30^{\circ}$	53.24 ± 0.10 c	71.51 ± 2.43 d	33.25 ± 0.21 c	2.07 ± 0.14 a	15.62 ± 0.97 c
Dicholoromethane	25.90 ± 0.24 d	48.29 ± 0.37 d	64.50 ± 2.94 d	31.39 ± 0.36 c,d	2.01 ± 0.23 a	15.44 ± 1.09 $^{\mathrm{c}}$
Ethanol	45.84 ± 0.19 b	73.61 ± 0.74 b	159.00 ± 1.30 c	74.18 ± 0.39 b	1.97 ± 0.02 a	10.53 ± 0.41 d
70% Ethanol	47.97 ± 0.02 a	106.50 ± 0.09 a	224.31 ± 0.02 a	110.40 ± 3.96 a	1.61 ± 0.06 b	19.22 ± 0.82 b
Water	47.63 ± 0.04 a	106.41 ± 0.01 a	193.85 ± 8.08 b	113.88 ± 7.43 a	1.28 ± 0.03 c	22.99 ± 0.08 a
n-Hexane/β-CD	15.17 ± 0.53 f	na	$9.98 \pm 0.22^{\text{ f}}$	7.47 ± 0.04 $^{ m e}$	$0.12 \pm 0.02^{\text{ e}}$	$0.96 \pm 0.25 \mathrm{g}$
Ethyl acetate/β-CD	$13.98 \pm 0.36 ^{\mathrm{g}}$	$1.52\pm0.04^{\rm \ f}$	10.67 ± 0.42 f	8.11 ± 0.18 $^{ m e}$	0.15 ± 0.01 e	1.87 ± 0.08 f
DCM/β-CD	14.30 ± 0.55 f,g	$2.01\pm0.36^{\rm \ f}$	$11.82\pm0.20~^{\rm f}$	7.97 ± 0.05 $^{ m e}$	$0.26 \pm 0.02^{\text{ d}}$	4.08 ± 0.53 $^{ m e}$

Table 2. Antioxidant properties of the tested samples *.

^{*} Values are reported as mean \pm SD of three parallel measurements. PBD: Phosphomolybdenum; MCA: Metal chelating Activity; TE: Trolox Equivalent; EDTAE: EDTA equivalent. Different letters ("a" indicates the strongest ability) in the same column indicate significant differences in the tested extracts and complexes (p < 0.05).

However, the extracts form the complex with β -CD generally showed lower antioxidant values compared to the pure relevant extracts. For instance, the n-hexane extract exhibited DPPH and ABTS scavenging ability as 17.95 mg TE/g dry complex and 12.02 mg TE/g dry complex, respectively; however, the incorporation of the extracts in β -CD negatively affects its ability (DPPH: 15.17 mg TE/g; ABTS: no active). A similar case was also noted for ethyl acetate and DCM. These observations suggest that complexation with β -CD might influence the availability and reactivity of antioxidant compounds.


First and foremost, the observation of significant differences in antioxidant capacities among the various extracts underscores the critical influence of solvent choice in the extraction process. Ethanol-based extracts particularly excelled in multiple tests, illustrating ethanol's efficacy in solubilizing antioxidant compounds. The outstanding outcomes obtained with the 70% ethanol extract underscore the potential in extracting active compounds, which could be attributed to the increased polarity properties [36–38].

Regarding the extracts from the complex with β -CD, the trend of displaying reduced antioxidant values deserves particular attention. This observation suggests that the formation of the complex might have consequences on the release, stability, or accessibility of antioxidant compounds, potentially due to their encapsulation within the β-CD cavity [39,40]. This intricate interaction between the complex and active compounds could hold significant implications for the design and utilization of formulations based on these extracts. Previous studies have indicated that in vitro approaches using antioxidants demonstrate superior efficacy compared to drug complexes with CDs [41]. This difference can be attributed to the potential formation of stable phenoxy radicals through intermolecular hydrogen bonding between the hydroxyl groups of CDs and hydroxyl-containing drugs, particularly for those with hydroxyl groups [42,43]. CDs are also known to enhance drug stability by reducing oxidation [44]. Therefore, the complexation of CDs may not be advantageous for in vitro models involving extracts rich in polyphenols with hydroxyl groups. Additionally, it has been reported that complex antioxidant abilities may not be detectable using certain in vitro test systems, such as DPPH, FRAP, and CUPRAC, as these methods measure distinct properties of the complex [44,45].

Nonetheless, a study carried out by a group of researchers, as indicated by Escobar-Avello et al., yielded results that demonstrated minimal distinctions between the effects of pure extracts and encapsulated extracts [46]. For instance, when investigating encapsulated β -CD, it was revealed that their antioxidant capability measured at 5300 μ mol TE/g [46] was quite comparable to the reading of 4612 μ mol TE/g obtained from the pure extract [47]. This observation underscores that the encapsulation process utilizing β -CD seemed to have a negligible impact on enhancing the antioxidant potential of the compound.

On the contrary, numerous authors propose the notion that the antioxidative potential of phenolic compounds experiences enhancement through their encapsulation within β -CD [48]. This encapsulation process within cyclodextrins is believed to bolster the antioxidant capacity of phenolic compounds, according to several scholarly perspectives.

Furthermore, the variation in results across different antioxidant tests reflects the diversity of mechanisms by which the compounds present in the extracts can scavenge free radicals and other reactive species. The DPPH, ABTS, CUPRAC, FRAP, PBD, and MCA tests utilize distinct mechanisms to assess antioxidant activity, which can explain why certain active substances exhibit superior performance in a specific test but not in others. To gain more insights into the relationship between bioactive compounds and antioxidant abilities, we designed circle and Pearson's correlation heat maps. Based on the circle heat map, the extracts/complex were divided into different groups. Polar extracts, namely ethanol, 70% ethanol and water, were divided into the same group. Others (ethyl acetate, DCM, and n-hexane) were placed in a different group. In addition, the β -CD complexes were very close to each other (Figure 5A). Based on Pearson's correlation values, the total phenolic content was highly correlated with radical scavenging, reducing and metal chelating abilities (R > 0.8).

Figure 5. Circle heat maps for the results from antioxidant (**A**) and enzyme inhibitory assays (**B**) and Pearson correlation values between total bioactive compounds and biological activities (**C**) (TPC: Total phenolic content; TFC: Total flavonoid content; ABTS: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid; DPPH: 1,1-diphenyl-2-picrylhydrazyl; CUPRAC: Cupric reducing antioxidant capacity; FRAP: Ferric reducing antioxidant power; AChE: acetylcholinesterase; BChE: butyrylcholinesterase; MCA: Metal chelating assay; PBD: Phosphomolybdenum).

The observed antioxidant ability of the extracts can be attributed to the presence of certain compounds. Chlorogenic and other caffeoylquinic acids, which are common in the Asteraceae family, are main players in the antioxidant mechanisms of chlorogenic acid due to their hydroxyl groups [49]. Rutin, which was detected in all extracts, also plays an essential role in the antioxidant properties of the extracts due to its 3′ OH group [50]. In addition, 4-hydroxybenzoic and 3-hydroxybenzoic acids, which were detected in all samples, are significant antioxidants with hydroxyl groups [51]. Sesquiterpenes are also important groups in the chemical composition of the tested samples and can contribute to the observed antioxidant properties. For example, partenolide has been reported as a protective shield against oxidative stress in moderate dosages [52]. Therefore, the antioxidant ability of the extracts can be attributed to the presence of these compounds.

In summary, these results shed light on the complexity of the antioxidant activity of $\it{I. sarana}$ extracts and their complex with $\it{\beta}$ -CD. They underscore the importance of understanding the interactions between active compounds, solvents, and complex forms to optimize the antioxidant properties of the extracts. This study provides crucial insights to guide future research aimed at exploring underlying mechanisms and harnessing these extracts for applications beneficial to human health.

3.5. Enzyme Inhibition Effects

3.5.1. α -Amylase and α -Glucosidase

Diabetes, also referred to as diabetes mellitus, stands as one of the most widespread epidemic diseases globally [53]. It is characterized by the inhibition of enzyme activities responsible for the conversion of dietary starch into glucose, namely α -amylase and α -glucosidase [54]. Nature has consistently proven to be a generous reservoir of valuable compounds known for their potential health benefits. Among these, plants emerge as a substantial source of secondary metabolites, notably phenolic and flavonoid compounds, with recognized inhibitory properties against α -amylase and α -glucosidase activities [55].

The investigation into the inhibitory activity of $\it{I. sarana}$ and its complex with $\it{\beta}$ -CD on the enzymes amylase and glucosidase has unveiled intriguing insights into their potential as regulators of carbohydrate digestion. The results reveal significant variations in inhibition values among the different extracts and the complex. Extract obtained from ethyl acetate exhibited the highest inhibition values for amylase, averaging at 0.49 mmol

ACAE/g dry extract. This suggests that these extracts might contain compounds capable of modulating amylase activity, which is involved in breaking down starch into simple sugars. The n-hexane and DCM extracts also displayed notable inhibitory activity against amylase, with values of 0.47 and 0.44 ACAE/g dry extract, respectively. Conversely, water extract exhibited lower inhibition values, indicating less pronounced amylase inhibitory activity (Table 3).

Table 3. Enzym	ne inhibitory	effects of the	tested extracts *.

Extracts	AChE (mg GALAE/g Dry Extract/Complex)	BChE (mg GALAE/g Dry Extract/Complex)	Tyrosinase (mg KAE/g Dry Extract/Complex)	Amylase (mmol ACAE/g Dry Extract/Complex)	Glucosidase (mmol ACAE/g Dry Extract/Complex)
n-Hexane	2.99 ± 0.06 c	3.37 ± 0.31 a	35.48 ± 2.19 b	0.47 ± 0.01 a,b	0.89 ± 0.01 b
Ethyl acetate	3.17 ± 0.08 b,c	1.43 ± 0.22 c	10.32 ± 1.38 e	0.49 ± 0.02 a	0.80 ± 0.01 c
DCM	2.69 ± 0.06 d	2.37 ± 0.38 b	$19.57 \pm 1.08 ^{\mathrm{d}}$	0.45 ± 0.01 b,c	0.90 ± 0.03 a,b
Ethanol	3.42 ± 0.12 a	2.82 ± 0.18 a,b	27.87 ± 0.57 °	0.44 ± 0.01 $^{\mathrm{c}}$	0.88 ± 0.01 b
70% Ethanol	3.18 ± 0.05 b	0.07 ± 0.01 d	39.88 ± 0.46 a	0.33 ± 0.01 d	0.93 ± 0.01 a
Water	0.12 ± 0.06 e	na	na	0.05 ± 0.01 f	0.21 ± 0.01 d
n-Hexane/β-CD	na	1.27 ± 0.23 c	na	0.10 ± 0.01 e	na
Ethyl acetate/β-CD	na	2.97 ± 0.06 a	na	0.07 ± 0.01 e,f	na
DCM/β-CD	0.16 ± 0.03 e	2.95 ± 0.09 a,b	na	0.09 ± 0.01 e	na

^{*} Values are reported as mean \pm SD of three parallel measurements. GALAE: Galantamine equivalent; KAE: Kojic acid equivalent; ACAE: Acarbose equivalent; na: not active. Different letters ("a" indicates the strongest ability) in the same column indicate significant differences in the tested extracts and complexes (p < 0.05).

Regarding glucosidase, 70% ethanol extract showcased the highest inhibitory activity, with average values of 0.93 mmol ACAE/g dry extract. This might suggest that this extract contain compounds capable of modulating the digestion and absorption of simple carbohydrates. DCM extract also exhibited high inhibition values for glucosidase, with values of 0.90 mmol ACAE/g. Conversely, the water extract displayed weaker inhibitory activity, indicating a limited impact on glucosidase.

The inhibitory activity observed in the extracts of the complex with β -CD might suggest a potential modulation of digestive enzymes through complex formation, although further in-depth research is needed to understand the underlying mechanisms.

The results from the evaluation of the inhibitory activity of $\it I. sarana$ and its complex with β -CD on the enzymes amylase and glucosidase provide significant insights into their potential in regulating carbohydrate digestion, with implications for glycemic management and metabolic health.

The observed variations in inhibition values among the different extracts and the complex underscore the importance of selecting the appropriate extraction solvent for the final composition of the extracts and their inhibitory activity [36,56]. Seventy percent ethanol extract exhibited the highest inhibition values for both amylase and glucosidase, suggesting that these extracts might contain specific bioactive compounds capable of modulating the activity of these digestive enzymes [57–59]. The ethanol extract also displayed significant inhibitory activity, confirming the positive impact of ethanol as an extraction solvent.

The observation of lower inhibitory activities in water extract suggests that the bioactive compounds responsible for the inhibitory activity might be more soluble in organic solvents. This raises questions about the specific compounds present in the organic extracts that are responsible for this inhibitory activity.

The formation of the complex with β -CD exhibited some inhibitory activity, although the results are less conclusive due to the presence of "na" values for certain extracts. However, this could suggest that complex formation may potentially influence the interactions between the extracted compounds and the target enzymes, thereby modulating their activity. This phenomenon can be elucidated by considering the involvement of hydroxyl groups in phenolic and flavonoid compounds in the formation of β -CD complexes. The depletion of free hydroxyl groups in these compounds may lead to a reduction in enzyme inhibition.

3.5.2. Cholinesterase Inhibitory Activity

Alzheimer's Disease (AD) is a globally recognized neurodegenerative condition that has sparked widespread concern, currently affecting over 35 million individuals across the world [60]. Within the realm of potential therapeutics for this condition, the inhibition of cholinesterase enzymes emerges as a pivotal target. Specifically, the AChE and BChE enzymes play essential roles in terminating cholinergic neurotransmission by facilitating the hydrolysis of acetylcholine. As disease progresses, acetylcholine levels decrease, and using AChE and BChE inhibitors has been shown to effectively relieve AD symptoms [61]. Notably, BChE enzyme levels exhibit an upward trend as the disease advances and in correlation with an individual's age. Consequently, the exploration of selective AChE and BChE inhibitors holds great promise and has garnered significant attention from researchers. Additionally, it's noteworthy that plant extract inhibitors are known to possess potent and undesirable side effects [62,63], highlighting one of the primary objectives of this investigation.

The evaluation of the inhibitory activity of *I. sarana* and its complex with β -CD on the enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) has provided valuable insights into their potential as neuroprotective agents. The results reveal significant variations in inhibition values among the different extracts and the complex. Extracts obtained from ethanol, 70% ethanol, and ethyl acetate exhibited the highest values for AChE inhibition, with values of 3.42, 3.18, and 3.1 mg GALAE/g dry extract, respectively. For BChE inhibition, the ethanol-based extracts also displayed higher values, with 2.82 and 1.43 mg GALAE/g dry extract for the ethanol and ethyl acetate extracts, respectively. Conversely, the water extract showed low AChE inhibition activity (0.12 mg GALAE/g dry extract), while the complex with β -CD exhibited significant BChE inhibition activity (2.95 mg GALAE/g dry complex) (Table 3).

The observation of varying inhibition values among the different extracts underscores the significance of solvent choices in the final composition of the extracts. Extracts obtained from ethanol, 70% ethanol, and ethyl acetate demonstrated significant AChE inhibition activity, indicating the presence of compounds capable of modulating this enzyme closely linked to cholinergic neurotransmission [64–66]. These extracts exhibited higher inhibitory activity against AChE, potentially attributed to the presence of specific bioactive compounds that possess particular affinities for this enzyme.

The inhibition values for BChE also exhibited variations, with the ethanol extract showing noteworthy activity. Inhibition of BChE is associated with positive effects on cognitive function and the prevention of neurodegenerative diseases [67–69]. It is intriguing to note that the complex with β -CD displayed significant BChE inhibition activity, suggesting that complex formation might influence interactions between the extracted compounds and the target enzymes.

3.5.3. Tyrosinase Inhibitory Activity

Tyrosinase, a copper-containing enzyme, plays a pivotal role in catalysing melanin synthesis through oxidation reactions, leading to undesired darkening resulting from the enzymatic oxidation of phenols [70]. This concern arises from its significant involvement not only in mammalian melanogenesis but also in enzymatic browning in fruits and fungi [71]. Consequently, the development of tyrosinase inhibitors holds broad applications, extending to medicinal [72] and cosmetic products [73], particularly in addressing hyperpigmentation issues. In light of this, downregulating or inhibiting tyrosinase activity has become a common approach, both in dealing with pigment disorders and as a whitening agent for aesthetic purposes serving as one of the focal points of this present study.

The evaluation of the inhibitory activity of *I. sarana* and its complex with β -CD on the enzyme tyrosinase has provided intriguing insights into their potential for melanogenesis regulation. The results unveiled significant differences in inhibition values among the various extracts and the complex. Extracts obtained from ethanol and 70% ethanol exhibited the highest tyrosinase inhibition values, with 27.87 mg KAE/g dry extract and 39.88 mg

KAE/g dry extract, respectively (Table 3). The ethanol extract displayed remarkable inhibitory activity, suggesting the presence of compounds capable of modulating melanin production and potentially applicable in cosmetic or dermatological applications. The weakest tyrosinase inhibitory effect was found in the ethyl acetate extract with 10.32 mg KAE/g dry extract. Other extracts displayed varying inhibition values, emphasizing the impact of solvent choice on the enzyme tyrosinase activity.

The observation of variable inhibition values among the different extracts and the complex underscores the impact of solvent choice on the chemical composition of the extracts and, consequently, their capacity to modulate tyrosinase enzyme activity. The highest inhibitory activity was observed in the ethanol and 70% ethanol extracts, indicating that these solvents favored the extraction of potentially bioactive compounds capable of regulating melanin production [74–76]. This observation aligns with ethanol's known properties to solubilize phenolic and flavonoid compounds, which are often associated with tyrosinase inhibitory activities.

The absence of inhibitory activity in the water extract raises questions about the active compounds responsible for this activity. This could be attributed to differences in solubility of bioactive compounds in water compared to organic solvents [77]. However, it is possible that the active compounds might be present in too low quantities in the water extract to generate observable inhibitory activity. The influence of the complex with β -CD on tyrosinase inhibitory activity was not extensively explored in this study, but it could be interesting for future research to investigate how complex formation might influence the regulation of melanin production.

Similar to antioxidant assays, we designed a circle heat map based on the enzyme inhibition results and the results are given in Figure 5B. In contrast to antioxidant ability, the extracts/complex based on the enzyme inhibitory were differently classified. This fact can be explained by different effects (synergetic or antagonistic) of chemicals on the enzymes and complex structures of active sites of each enzymes. As further insights, we examined the relationship between total bioactive compounds and enzyme inhibitory properties. In Figure 5C, we did not observe any correlation between total phenolic content and enzyme inhibitory properties (R < 0.5). However, AChE, amylase and glucosidase were moderately correlated with the total flavonoid content (R > 0.7).

When considering the collective findings, the observed inhibitory effect on enzymes in the tested samples can be attributed to the presence of specific compounds. For instance, chlorogenic acid has been recognized as a crucial inhibitor of both AChE and BChE, and its OH group, substituting quinic acid, can interact with the active sites of these enzymes, as detailed by Oboh et al. [78]. Likewise, the OH group participates in the formation of hydrogen bonds within the active site of amylase, as suggested by Zheng et al. [79]. Furthermore, compounds such as rutin [80], hyperoside [81], and hydroxybenzoic acid [82] are also known as significant inhibitors. Notably, the glycosylation and the number of hydroxyl groups within the flavonoid rings of their structure can impact their enzyme inhibitory effects, as discussed by Li et al. [83]. Additionally, partenolide has demonstrated the ability to enhance acetylcholine levels by inhibiting AChE activity in diabetic rats, as reported by Khare et al. [84].

4. Conclusions

The study findings showed that water and 70% ethanol extracts had the highest phenolic content, while ethyl acetate extracts contained notable flavonoids. This observation was further substantiated through the utilization of ESI MS/MS analysis. Moreover, the extracts of ethyl acetate, n-hexane, and DCM were effectively enclosed within an inclusion complex of β -CD, a fact that was verified by means of FTIR-ATR and SEM examinations.

It is noteworthy that the water-based extract and 70% ethanol extracts exhibited the highest level of antioxidant activity among all tested extract. This indicates a significant potential for these extracts to serve as potent sources of antioxidants, thereby holding promise for various applications in the realm of health and wellness.

Similarly, ethanol and n-hexane extracts displayed higher inhibition of the AChE and BChE, respectively. Moreover, the 70% ethanol extract exhibited elevated inhibition of the tyrosinase and α -glucosidase enzymes, and ethyl acetate demonstrated pronounced inhibition of the amylase enzyme. Notably, the inclusion complex displayed relatively less or no antioxidant efficacy and enzyme inhibitory potential compared to the unencapsulated extracts. This variation in inhibition values observed across the distinct extracts and the inclusion complex underscores the significant influence of solvent selection on the chemical composition of the extracts. Consequently, this choice of solvent directly affects their potential to effectively modulate enzyme activity. These findings emphasize the critical significance of comprehending the interplay between active compounds, solvents, and complex formations, as a means to enhance and optimize the antioxidant properties inherent in these extracts. The outcomes of this study offer invaluable insights for future investigations aimed at comprehending the fundamental mechanisms at play, thereby unlocking the potential of these extracts for applications that can distinctly contribute to enhancing human health and well-being.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/antiox12101842/s1, Table S1: Specialized metabolites in *Inula sarana* extracts assayed by UHPLC-HRMS; Table S2: Specialized metabolites in *Inula sarana* extracts assayed by UHPLC-HRMS in positive ion mode; Table S3: The equations, range and R2 values of standard compounds in the biological activity assays; Figure S1: Extracted ion chromatograms of hydroxybenzoic and hydroxycinnamic acids and their derivatives; Figure S2: Extracted ion chromatograms of caffeoylhexaric acids; Figure S4. Extracted ion chromatograms of flavonoid glycosides; Figure S5: Extracted ion chromatograms of flavonoid aglycons. References [22,85] cited in the supplementary materials.

Author Contributions: Conceptualization, G.Z., N., E.Y., R.G. and D.Z.-D.; methodology, G.Z., E.Y., H.C., R.G. and D.Z.-D.; software, G.Z., H.C. and D.Z.-D.; validation, G.Z., N. and A.B.; formal analysis, G.Z.; investigation, G.Z., N. and A.B.; resources, E.Y. and H.C.; data curation, G.Z., R.G. and D.Z.-D.; writing—original draft preparation, G.Z., N., A.B. and H.C.; writing—review and editing, E.Y., G.Z. and D.Z.-D.; visualization, G.Z., H.C. and D.Z.-D.; supervision, R.G.; project administration, G.Z.; funding acquisition, G.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Union's Next Generation EU economic recovery package via the National Recovery and Resilience Plan of the Republic of Bulgaria, project N° BG-RRP-2.004-0004-C01.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article and supplementary material.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Panero, J.; Crozier, B. Macroevolutionary dynamics in the early diversification of Asteraceae. *Mol. Phylogeny Evol.* **2016**, 99, 116–132. [CrossRef] [PubMed]
- 2. Ali, S.; Zameer, S.; Yaqoob, M. Ethnobotanical, phytochemical and pharmacological properties of *Galinsoga parviflora* (Asteraceae): A review. *Trop. J. Pharm. Res.* **2017**, *16*, 3023–3033.
- 3. Rolnik, A.; Olas, B. The plants of the Asteraceae family as agents in the protection of human health. *Int. J. Mol. Sci.* **2021**, 22, 3009. [CrossRef] [PubMed]
- 4. Devkota, H.P. An Overview of Medicinal Plants of the Asteraceae Family and Their Role in Human Health. In *Medicinal Plants of the Asteraceae Family: Traditional Uses, Phytochemistry and Pharmacological Activities*; Springer: Singapore, 2022; pp. 1–15. [CrossRef]
- 5. Sevindik, E.; Paksoy, M.Y.; Sevindik, M. Genetic relationship of seven endemic *Inula* L. (Asteraceae) species grown in Turkey. *Turk. J. Agric. Food Sci. Technol.* **2022**, *10*, 678–681. [CrossRef]
- 6. Karlıoğlu Kılıç, N.; Yılmaz Dağdeviren, R.; Paksoy, M.Y.; Tuncalı Yaman, T. Pollen morphology of eight endemic *Inula* L. (Asteraceae) species in Turkey. *Palynology* **2021**, *45*, 235–244. [CrossRef]

- 7. Englund, M.; Pornpongrungrueng, P.; Gustafsson, M.H.; Anderberg, A.A. Phylogenetic relationships and generic delimitation in Inuleae subtribe Inulinae (Asteraceae) based on ITS and cpDNA sequence data. *Cladistics* **2009**, *25*, 319–352. [CrossRef]
- 8. Trotta, F.; Zanetti, M.; Cavalli, R. Cyclodextrin-based nanosponges as drug carriers. *Beilstein J. Org. Chem.* **2012**, *8*, 2091–2099. [CrossRef]
- 9. Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743–1754. [CrossRef]
- 10. Mourtzinos, I.; Salta, F.; Yannakopoulou, K.; Chiou, A.; Karathanos, V.T. Encapsulation of olive leaf extract in β-cyclodextrin. *J. Agric. Food Chem.* **2007**, *55*, 8088–8094. [CrossRef]
- Allahyari, S.; Esmailnezhad, N.; Valizadeh, H.; Ghorbani, M.; Jelvehgari, M.; Ghazi, F.; Zakeri-Milani, P. In-vitro characterization and cytotoxicity study of flutamide loaded cyclodextrin nanosponges. J. Drug Deliv. Sci. Technol. 2021, 61, 102275. [CrossRef]
- 12. Mashaqbeh, H.; Obaidat, R.; Al-Shar'i, N. Evaluation and characterization of curcumin-β-cyclodextrin and cyclodextrin-based nanosponge inclusion complexation. *Polymers* **2021**, *13*, 4073. [CrossRef] [PubMed]
- 13. Obaidat, R.; Al-Shar'i, N.; Tashtoush, B.; Athamneh, T. Enhancement of levodopa stability when complexed with β-cyclodextrin in transdermal patches. *Pharm. Dev. Technol.* **2018**, 23, 986–997. [CrossRef] [PubMed]
- 14. Yien, R.M.K.; Matos, A.P.d.S.; Gomes, A.C.C.; Garófalo, D.d.A.; Santos-Oliveira, R.; Simas, N.K.; Ricci-Júnior, E. Nanotechnology promoting the development of products from the biodiversity of the Asteraceae family. *Nutrients* **2023**, *15*, 1610. [CrossRef] [PubMed]
- 15. Zorzi, G.K.; Caregnato, F.; Moreira, J.C.F.; Teixeira, H.F.; Carvalho, E.L.S. Antioxidant effect of nanoemulsions containing extract of *Achyrocline satureioides* (Lam) DC—Asteraceae. *AAPS PharmSciTech* **2016**, 17, 844–850. [CrossRef]
- 16. Furlan, V.; Bren, U. *Helichrysum italicum*: From extraction, distillation, and encapsulation techniques to beneficial health effects. *Foods* **2023**, *12*, 802. [CrossRef] [PubMed]
- 17. Szente, L.; Szejtli, J. Cyclodextrins as food ingredients. Trends Food Sci. Technol. 2004, 15, 137–142. [CrossRef]
- 18. Rodis, P.S.; Karathanos, V.T.; Mantzavinou, A. Partitioning of olive oil antioxidants between oil and water phases. *J. Agric. Food Chem.* **2002**, *50*, 596–601. [CrossRef]
- 19. Acquaviva, A.; Nilofar, N.; Bouyahya, A.; Zengin, G.; Di Simone, S.C.; Recinella, L.; Leone, S.; Brunetti, L.; Uba, A.I.; Cakilcioğlu, U. Chemical characterization of different extracts from *Artemisia annua* and their antioxidant, enzyme inhibitory and anti-inflammatory properties. *Chem. Biodivers.* **2023**, *20*, e202300547. [CrossRef]
- 20. Llorent-Martínez, E.J.; Ruiz-Medina, A.; Zengin, G.; Ak, G.; Jugreet, S.; Mahomoodally, M.F.; Emre, G.; Orlando, G.; Libero, M.L.; Nilofar; et al. New Biological and chemical evidences of two Lamiaceae species (*Thymbra capitata* and *Thymus sipyleus* subsp. rosulans): In vitro, in silico and ex vivo approaches. *Molecules* 2022, 27, 9029.
- 21. Gevrenova, R.; Zengin, G.; Sinan, K.I.; Zheleva-Dimitrova, D.; Balabanova, V.; Kolmayer, M.; Voynikov, Y.; Joubert, O. An in-Depth study of metabolite profile and biological potential of *Tanacetum balsamita* L.(Costmary). *Plants* **2022**, *12*, 22. [CrossRef]
- 22. Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two *Potentilla* species (*P. speciosa* L. and *P. reptans* Willd.) and their chemical composition. *Front. Pharmacol.* **2017**, *8*, 290. [CrossRef] [PubMed]
- 23. Zengin, G. A study on in vitro enzyme inhibitory properties of *Asphodeline anatolica*: New sources of natural inhibitors for public health problems. *Ind. Crops Prod.* **2016**, *83*, 39–43. [CrossRef]
- 24. Popović, B.M.; Blagojević, B.; Latković, D.; Četojević-Simin, D.; Kucharska, A.Z.; Parisi, F.; Lazzara, G. A one step enhanced extraction and encapsulation system of cornelian cherry (*Cornus mas* L.) polyphenols and iridoids with β-cyclodextrin. *LWT-Food Sci. Technol.* **2021**, *141*, 110884. [CrossRef]
- 25. Tong, L. Cyclodextrin Chemistry: Fundamentals and Application; China Science Publishing & Medial Ltd.: Beijing, China, 2001.
- 26. Zhu, G.; Zhu, G.; Xiao, Z. A review of the production of slow-release flavor by formation inclusion complex with cyclodextrins and their derivatives. *J. Incl. Phenom. Macrocycl. Chem.* **2019**, *95*, 17–33. [CrossRef]
- 27. Fan, K. Introduction of Spectroscopy; Higher Education Press: Beijing, China, 2011.
- 28. Anwar, F.; Przybylski, R. Effect of solvents extraction on total phenolics and antioxidant activity of extracts from flaxseed (*Linum usitatissimum* L.). *ACTA Sci. Pol. Technol. Aliment.* **2012**, *11*, 293–302. [PubMed]
- 29. Hossain, M.A.; Shah, M.D. A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant *Merrenia borneensis*. *Arab. J. Chem.* **2015**, *8*, 66–71. [CrossRef]
- 30. Ng, Z.X.; Samsuri, S.N.; Yong, P.H. The antioxidant index and chemometric analysis of tannin, flavonoid, and total phenolic extracted from medicinal plant foods with the solvents of different polarities. *J. Food Process. Preserv.* **2020**, *44*, e14680. [CrossRef]
- 31. Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of cyclodextrins and drug/cyclodextrin complexes. *Molecules* **2018**, *23*, 1161. [CrossRef]
- 32. Kłeczek, N.; Michalak, B.; Malarz, J.; Kiss, A.K.; Stojakowska, A. *Carpesium divaricatum* Sieb. & Zucc. revisited: Newly identified constituents from aerial parts of the plant and their possible contribution to the biological activity of the Plant. *Molecules* **2019**, 24, 1614.
- 33. Cuyckens, F.; Claeys, M. Mass spectrometry in the structural analysis of flavonoids. J. Mass Spectrom. 2004, 39, 1–15. [CrossRef]
- 34. Yao, D.; Li, Z.; Huo, C.; Wang, Y.; Wu, Y.; Zhang, M.; Li, L.; Shi, Q.; Kiyota, H.; Shi, X. Identification of in vitro and in vivo metabolites of alantolactone by UPLC-TOF-MS/MS. *J. Chromatogr. B* **2016**, 1033, 250–260. [CrossRef]

- 35. Wang, T.; Guo, S.; Zhang, S.; Yue, W.; Ho, C.-T.; Bai, N. Identification and quantification of seven sesquiterpene lactones in *Inula britannica* by HPLC-DAD-MS. *Anal. Methods* **2019**, *11*, 1822–1833. [CrossRef]
- 36. Duan, X.; Subbiah, V.; Xie, C.; Agar, O.T.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. Evaluation of the antioxidant potential of brown seaweeds extracted by different solvents and characterization of their phenolic compounds by LC–ESI-QTOF–MS/MS. *J. Food Sci.* **2023**, *88*, 3737–3757. [CrossRef]
- 37. Dulo, B.; Phan, K.; Githaiga, J.; Raes, K.; De Meester, S. Natural quinone dyes: A review on structure, extraction techniques, analysis and application potential. *Waste Biomass Valoriz.* **2021**, *12*, 6339–6374. [CrossRef]
- 38. Tohma, H.; Altay, A.; Köksal, E.; Gören, A.C.; Gülçin, İ. Measurement of anticancer, antidiabetic and anticholinergic properties of sumac (*Rhus coriaria*): Analysis of its phenolic compounds by LC–MS/MS. *J. Food Meas. Charact.* **2019**, *13*, 1607–1619. [CrossRef]
- 39. Jiang, L.; Jia, F.; Han, Y.; Meng, X.; Xiao, Y.; Bai, S. Development and characterization of zein edible films incorporated with catechin/β-cyclodextrin inclusion complex nanoparticles. *Carbohydr. Polym.* **2021**, 261, 117877. [CrossRef] [PubMed]
- 40. Wang, Y.; Du, Y.-T.; Xue, W.-Y.; Wang, L.; Li, R.; Jiang, Z.-T.; Tang, S.-H.; Tan, J. Enhanced preservation effects of clove (*Syzygium aromaticum*) essential oil on the processing of Chinese bacon (preserved meat products) by beta cyclodextrin metal organic frameworks (β-CD-MOFs). *Meat Sci.* **2023**, *195*, 108998. [CrossRef] [PubMed]
- 41. Lucas-Abellán, C.; Mercader-Ros, M.; Zafrilla, M.; Gabaldón, J.; Núñez-Delicado, E. Comparative study of different methods to measure antioxidant activity of resveratrol in the presence of cyclodextrins. *Food Chem. Toxicol.* **2011**, 49, 1255–1260. [CrossRef]
- 42. Zhao, M.; Wang, H.; Yang, B.; Tao, H. Identification of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity. *Food Chem.* **2010**, *120*, *1138*–1142. [CrossRef]
- 43. Kfoury, M.; Landy, D.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Effect of cyclodextrin complexation on phenylpropanoids' solubility and antioxidant activity. *Beilstein J. Org. Chem.* **2014**, *10*, 2322–2331. [CrossRef]
- 44. Belozertseva, I.V.; Dravolina, O.A.; Tur, M.A.; Semina, M.G.; Zvartau, E.E.; Bespalov, A.Y. Morphine-induced Straub tail reaction in mice treated with serotonergic compounds. *Eur. J. Pharmacol.* **2016**, 791, 1–7. [CrossRef] [PubMed]
- 45. Siqueira-Lima, P.S.; Brito, R.G.; Araújo-Filho, H.G.; Santos, P.L.; Lucchesi, A.; Araújo, A.A.; Menezes, P.P.; Scotti, L.; Scotti, M.T.; Menezes, I.R. Anti-hyperalgesic effect of Lippia grata leaf essential oil complexed with β-cyclodextrin in a chronic musculoskeletal pain animal model: Complemented with a molecular docking and antioxidant screening. *Biomed. Pharmacother.* **2017**, *91*, 739–747. [CrossRef] [PubMed]
- 46. Escobar-Avello, D.; Avendaño-Godoy, J.; Santos, J.; Lozano-Castellón, J.; Mardones, C.; von Baer, D.; Luengo, J.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A.; Gómez-Gaete, C. Encapsulation of phenolic compounds from a grape cane pilot-plant extract in hydroxypropyl beta-cyclodextrin and maltodextrin by spray drying. *Antioxidants* **2021**, *10*, 1130. [CrossRef] [PubMed]
- 47. Escobar-Avello, D.; Mardones, C.; Saez, V.; Riquelme, S.; von Baer, D.; Lamuela-Raventos, R.M.; Vallverdu-Queralt, A. Pilot-plant scale extraction of phenolic compounds from grape canes: Comprehensive characterization by LC-ESI-LTQ-Orbitrap-MS. *Food Res. Int.* 2021, 143, 110265. [CrossRef] [PubMed]
- 48. Pinho, E.; Grootveld, M.; Soares, G.; Henriques, M. Cyclodextrins as encapsulation agents for plant bioactive compounds. *Carbohydr. Polym.* **2014**, *101*, 121–135. [CrossRef]
- 49. Saqib, M.; Iqbal, S.; Mahmood, A.; Akram, R. Theoretical investigation for exploring the antioxidant potential of chlorogenic acid: A density functional theory study. *Int. J. Food Prop.* **2016**, *19*, 745–751. [CrossRef]
- 50. Choi, S.-S.; Park, H.-R.; Lee, K.-A. A comparative study of rutin and rutin glycoside: Antioxidant activity, anti-inflammatory effect, effect on platelet aggregation and blood coagulation. *Antioxidants* **2021**, *10*, 1696. [CrossRef]
- 51. Velika, B.; Kron, I. Antioxidant properties of benzoic acid derivatives against superoxide radical. *Free. Radic. Antioxid.* **2012**, 2, 62–67. [CrossRef]
- 52. Seca, A.M.L.; Silva, A.M.S.; Pinto, D.C.G.A. Chapter 9—Parthenolide and Parthenolide-Like Sesquiterpene Lactones as Multiple Targets Drugs: Current Knowledge and New Developments. In *Studies in Natural Products Chemistry*; Attaur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 52, pp. 337–372.
- 53. Neeland, I.J.; Patel, K.V. Diabetes: Key markers of injury and prognosis. In *Biomarkers in Cardiovascular Disease*; Elsevier: Amsterdam, The Netherlands, 2019; pp. 41–51.
- 54. Beidokhti, M.N.; Jäger, A.K. Review of antidiabetic fruits, vegetables, beverages, oils and spices commonly consumed in the diet. *J. Ethnopharmacol.* **2017**, 201, 26–41. [CrossRef]
- 55. Papoutsis, K.; Zhang, J.; Bowyer, M.C.; Brunton, N.; Gibney, E.R.; Lyng, J. Fruit, vegetables, and mushrooms for the preparation of extracts with α -amylase and α -glucosidase inhibition properties: A review. *Food Chem.* **2021**, 338, 128119. [CrossRef]
- 56. Dai, J.; Li, Y.; Zhou, H.; Chen, J.; Chen, M.; Xiao, Z. Genistein promotion of osteogenic differentiation through BMP2/SMAD5/RUNX2 signaling. *Int. J. Biol. Sci.* **2013**, *9*, 1089. [CrossRef] [PubMed]
- 57. Lordan, S.; Smyth, T.J.; Soler-Vila, A.; Stanton, C.; Ross, R.P. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. *Food Chem.* **2013**, *141*, 2170–2176. [CrossRef] [PubMed]
- 58. Shashirekha, M.; Mallikarjuna, S.; Rajarathnam, S. Status of bioactive compounds in foods, with focus on fruits and vegetables. *Crit. Rev. Food Sci. Nutr.* **2015**, *55*, 1324–1339. [CrossRef] [PubMed]
- 59. Swaraz, A.; Sultana, F.; Bari, M.W.; Ahmed, K.S.; Hasan, M.; Islam, M.M.; Islam, M.A.; Satter, M.A.; Hossain, M.H.; Islam, M.S. Phytochemical profiling of Bl*umea laciniata* (Roxb.) DC. and its phytopharmaceutical potential against diabetic, obesity, and Alzheimer's. *Biomed. Pharmacother.* **2021**, *141*, 111859. [CrossRef] [PubMed]

- 60. Tzioras, M.; McGeachan, R.I.; Durrant, C.S.; Spires-Jones, T.L. Synaptic degeneration in Alzheimer disease. *Nat. Rev. Neurol.* **2023**, 19, 19–38. [CrossRef] [PubMed]
- 61. Alves, L.K.L.; Cechinel Filho, V.; de Souza, R.L.R.; Furtado-Alle, L. BChE inhibitors from marine organisms—A review. *Chem. Biol. Interact.* **2022**, *367*, 110136.
- 62. Aras, A.; Türkan, F.; Yildiko, U.; Atalar, M.N.; Kılıç, Ö.; Alma, M.H.; Bursal, E. Biochemical constituent, enzyme inhibitory activity, and molecular docking analysis of an endemic plant species, *Thymus migricus*. Chem. Pap. **2021**, 75, 1133–1146. [CrossRef]
- 63. Imran, M.; Irfan, A.; Ibrahim, M.; Assiri, M.A.; Khalid, N.; Ullah, S.; Al-Sehemi, A.G. Carbonic anhydrase and cholinesterase inhibitory activities of isolated flavonoids from *Oxalis corniculata* L. and their first-principles investigations. *Ind. Crops Prod.* **2020**, 148, 112285. [CrossRef]
- 64. Raza, M.A.; Danish, M.; Mushtaq, M.; Sumrra, S.H.; Saqib, Z.; Rehman, S.U. Phenolic profiling and therapeutic potential of local flora of Azad Kashmir; In vitro enzyme inhibition and antioxidant. *Open Chem.* **2017**, *15*, 371–379. [CrossRef]
- 65. Tamfu, A.N.; Roland, N.; Mfifen, A.M.; Kucukaydin, S.; Gaye, M.; Botezatu, A.V.; Duru, M.E.; Dinica, R.M. Phenolic composition, antioxidant and enzyme inhibitory activities of *Parkia biglobosa* (Jacq.) Benth., *Tithonia diversifolia* (Hemsl) A. Gray, and *Crossopteryx febrifuga* (Afzel.) Benth. *Arab. J. Chem.* **2022**, *15*, 103675. [CrossRef]
- 66. Zhao, X.-j.; Gong, D.-m.; Jiang, Y.-r.; Guo, D.; Zhu, Y.; Deng, Y.-c. Multipotent AChE and BACE-1 inhibitors for the treatment of Alzheimer's disease: Design, synthesis and bio-analysis of 7-amino-1, 4-dihydro-2H-isoquilin-3-one derivates. *Eur. J. Med. Chem.* **2017**, *138*, 738–747. [CrossRef] [PubMed]
- 67. Hussain, G.; Rasul, A.; Anwar, H.; Aziz, N.; Razzaq, A.; Wei, W.; Ali, M.; Li, J.; Li, X. Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. *Int. J. Biol. Sci.* **2018**, *14*, 341. [CrossRef] [PubMed]
- 68. Loizzo, M.R.; Saab, A.; Statti, G.; Menichini, F. Composition and α-amylase inhibitory effect of essential oils from *Cedrus libani*. *Fitoterapia* **2007**, *78*, 323–326. [CrossRef] [PubMed]
- 69. Oboh, G.; Olasehinde, T.A.; Ademosun, A.O. Essential oil from lemon peels inhibit key enzymes linked to neurodegenerative conditions and pro-oxidant induced lipid peroxidation. *J. Oleo Sci.* **2014**, *63*, 373–381. [CrossRef] [PubMed]
- 70. Kubo, I.; Kinst-Hori, I. Flavonols from saffron flower: Tyrosinase inhibitory activity and inhibition mechanism. *J. Agric. Food Chem.* **1999**, 47, 4121–4125. [CrossRef]
- 71. Matsuura, R.; Ukeda, H.; Sawamura, M. Tyrosinase inhibitory activity of citrus essential oils. *J. Agric. Food Chem.* **2006**, *54*, 2309–2313. [CrossRef]
- 72. Li, J.; Li, C.; Peng, X.; Li, S.; Liu, B.; Chu, C. Recent discovery of tyrosinase inhibitors in traditional Chinese medicines and screening methods. *J. Ethnopharmacol.* **2022**, *303*, 115951. [CrossRef]
- 73. Lee, S.Y.; Baek, N.; Nam, T.-g. Natural, semisynthetic and synthetic tyrosinase inhibitors. *J. Enzym. Inhib. Med. Chem.* **2016**, 31, 1–13. [CrossRef]
- 74. Kukula-Koch, W.; Szwajgier, D.; Gaweł-Bęben, K.; Strzępek-Gomółka, M.; Głowniak, K.; Meissner, H.O. Is phytomelatonin complex better than synthetic melatonin? The assessment of the antiradical and anti-Inflammatory properties. *Molecules* **2021**, 26, 6087. [CrossRef]
- 75. Nebrigić, V.; Kljakić, A.C.; Zengin, G.; Terzić, M.; Mašković, P.; Radojković, M. Effects of extraction and drying techniques on the chemical composition and biological activities of *Helichrysum italicum*. *Process Biochem.* **2023**, 130, 96–104. [CrossRef]
- 76. Wen, P.; Hu, T.-G.; Linhardt, R.J.; Liao, S.-T.; Wu, H.; Zou, Y.-X. Mulberry: A review of bioactive compounds and advanced processing technology. *Trends Food Sci. Technol.* **2019**, *83*, 138–158. [CrossRef]
- 77. Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. *Planta Medica* **1998**, *64*, 711–713. [CrossRef] [PubMed]
- 78. Oboh, G.; Agunloye, O.M.; Akinyemi, A.J.; Ademiluyi, A.O.; Adefegha, S.A. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer's disease and some pro-oxidant induced oxidative stress in rats' brain-in vitro. *Neurochem. Res.* **2013**, *38*, 413–419. [CrossRef]
- 79. Zheng, Y.; Yang, W.; Sun, W.; Chen, S.; Liu, D.; Kong, X.; Tian, J.; Ye, X. Inhibition of porcine pancreatic α-amylase activity by chlorogenic acid. *J. Funct. Foods* **2020**, *64*, 103587. [CrossRef]
- 80. Dubey, S.; Ganeshpurkar, A.; Ganeshpurkar, A.; Bansal, D.; Dubey, N. Glycolytic enzyme inhibitory and antiglycation potential of rutin. *Future J. Pharm. Sci.* **2017**, *3*, 158–162. [CrossRef]
- 81. Shen, H.; Wang, J.; Ao, J.; Cai, Y.; Xi, M.; Hou, Y.; Li, M.; Luo, A. Inhibitory kinetics and mechanism of active compounds in green walnut husk against α-glucosidase: Spectroscopy and molecular docking analyses. *LWT-Food Sci. Technol.* **2022**, 172, 114179. [CrossRef]
- 82. Budryn, G.; Majak, I.; Grzelczyk, J.; Szwajgier, D.; Rodríguez-Martínez, A.; Pérez-Sánchez, H. Hydroxybenzoic acids as acetylcholinesterase inhibitors: Calorimetric and docking simulation studies. *Nutrients* **2022**, *14*, 2476. [CrossRef] [PubMed]
- 83. Li, Y.Q.; Zhou, F.C.; Gao, F.; Bian, J.S.; Shan, F. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase. *J. Agric. Food Chem.* **2009**, *57*, 11463–11468. [CrossRef] [PubMed]

- 84. Khare, P.; Datusalia, A.K.; Sharma, S.S. Parthenolide, an NF-κB inhibitor ameliorates diabetes-induced behavioural deficit, neurotransmitter imbalance and neuroinflammation in type 2 diabetes rat model. *Neuromolecular Med.* **2017**, *19*, 101–112. [CrossRef]
- 85. Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. *Phytochem. Lett.* **2017**, 20, 365–372. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

MDPI AG Grosspeteranlage 5 4052 Basel Switzerland Tel.: +41 61 683 77 34

Antioxidants Editorial Office E-mail: antioxidants@mdpi.com www.mdpi.com/journal/antioxidants

Disclaimer/Publisher's Note: The title and front matter of this reprint are at the discretion of the Guest Editors. The publisher is not responsible for their content or any associated concerns. The statements, opinions and data contained in all individual articles are solely those of the individual Editors and contributors and not of MDPI. MDPI disclaims responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

