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Preface

The continuous monitoring of human physiological signals has become a foundation of modern

personalized healthcare. Physiological signals, such as brain waves (EEG), cardiac signals (ECG),

and heart rate, provide critical insights into human wellness and are particularly vital for elderly

individuals and those living with chronic conditions. With the advent of wearable technologies, it is

now possible to measure these parameters in real-time, continuously, and non-intrusively. Coupled

with the rapid growth of digital health platforms and Artificial Intelligence (AI), these innovations

are transforming healthcare delivery, enabling timely interventions, improving the quality of care,

and facilitating valuable data-driven decision-making for patients, practitioners, hospitals, and

governments alike.

This Special Issue, “Sensors for Physiological Monitoring and Digital Health”, brings together

diverse scientific perspectives to explore these exciting developments. It highlights contributions

at the intersection of biomedical signal processing, wearable technologies, machine learning,

health informatics, mobility research, bioinformatics, and sports science. Our goal is to foster

interdisciplinary dialogue and provide a platform for highly innovative researchers to share their

findings in this rapidly evolving field.

The motivation behind this reprint is the recognition of both the urgent healthcare needs of

today and the vast opportunities afforded by advances in microfabrication, flexible electronics,

nanomaterials, and wireless communication technologies. The global market for wearable medical

devices reflects this momentum, having grown significantly in recent years, and the demand for

innovative solutions is stronger than ever. By curating the latest research, we aim to showcase the

transformative potential of sensors and digital health in redefining healthcare practices.

This Special Issue is intended for a broad audience, including academic researchers, healthcare

professionals, industry innovators, and policy makers interested in the future of healthcare. We

are deeply grateful to the authors for their valuable contributions and to the reviewers for their

thoughtful evaluations, which ensured the high quality of this collection. We also extend our sincere

appreciation to the editorial team of Sensors for their support in bringing this reprint to fruition.

As Guest Editors, we are honoured to present this Special Issue and hope it serves as both an

inspiration and a resource for continued innovation in the field of physiological monitoring and

digital health.

Ganesh R. Naik, Elena Pirogova, and Margaret Lech

Guest Editors
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SenseHunger: Machine Learning Approach to Hunger
Detection Using Wearable Sensors

Muhammad Tausif Irshad 1,2,*, Muhammad Adeel Nisar 1,2, Xinyu Huang 1, Jana Hartz 1, Olaf Flak 3, Frédéric Li 1,

Philip Gouverneur 1, Artur Piet 1, Kerstin M. Oltmanns 4 and Marcin Grzegorzek 1,5

1 Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
2 Department of IT, University of the Punjab, Katchery Road, Lahore 54000, Pakistan
3 Department of Management, Faculty of Law and Social Sciences, Jan Kochanowski University of Kielce, ul.

Żeromskiego 5, 25-369 Kielce, Poland
4 Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger

Allee 160, 23562 Lübeck, Germany
5 Department of Knowledge Engineering, University of Economics in Katowice, Bogucicka 3,

40-287 Katowice, Poland
* Correspondence: m.irshad@uni-luebeck.de Tel.: +49-451-3101-5612

Abstract: The perception of hunger and satiety is of great importance to maintaining a healthy body
weight and avoiding chronic diseases such as obesity, underweight, or deficiency syndromes due to
malnutrition. There are a number of disease patterns, characterized by a chronic loss of this perception.
To our best knowledge, hunger and satiety cannot be classified using non-invasive measurements.
Aiming to develop an objective classification system, this paper presents a multimodal sensory system
using associated signal processing and pattern recognition methods for hunger and satiety detection
based on non-invasive monitoring. We used an Empatica E4 smartwatch, a RespiBan wearable device,
and JINS MEME smart glasses to capture physiological signals from five healthy normal weight
subjects inactively sitting on a chair in a state of hunger and satiety. After pre-processing the signals,
we compared different feature extraction approaches, either based on manual feature engineering or
deep feature learning. Comparative experiments were carried out to determine the most appropriate
sensor channel, device, and classifier to reliably discriminate between hunger and satiety states. Our
experiments showed that the most discriminative features come from three specific sensor modalities:
Electrodermal Activity (EDA), infrared Thermopile (Tmp), and Blood Volume Pulse (BVP).

Keywords: hunger; satiety; physiological signals; non-invasive sensing; multimodal sensing; ma-
chine learning; artificial neural network

1. Introduction

Hunger and satiety perception occurs within the hypothalamic areas of the brain,
processing a number of endocrine signals coming from peripheral organs such as the stom-
ach, liver, pancreas, intestine, or fat tissue [1]. Differentiating between hunger and satiety
is crucial to maintaining stable body weight and preventing malnutrition. Specifically,
overweight and obesity are known to be associated with a gradually advanced loss of
this perception, leading to overeating, underlying the disease [2]. According to the World
Health Organization (WHO), 39% of adults aged 18 years and older were overweight, and
13% were obese in 2016 [3]. So far, common methods to determine hunger and satiety
are invasive, i.e., via hormonal analyses from blood samples, or based on self-assessment,
such as Visual Analog Scales (VAS) [4,5]. The latter records subjective sensations such
as the desire to eat, hunger, satiety, and nausea [6,7] and by nature, underlies several
external factors influencing the test results (e.g., stress level, environmental temperature,
etc.). In contrast, invasive methods—mostly used in experimental settings—measuring

Sensors 2022, 22, 7711. https://doi.org/10.3390/s22207711 https://www.mdpi.com/journal/sensors1
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blood concentrations of relevant hormones are not practicable in everyday life. In order to
develop a therapeutic device that may assist people to train hunger and satiety perception,
objective and non-invasive measurements are necessary.

The detection of hunger and satiety with multimodal physiological sensor signals
using supervised machine learning (ML) is a worthy investigation. This is because ML has
already shown promising results on physiological sensor signals in a various applications
in other fields such as biology, medicine, and psychology [8–11]. An important step in a
ML process is feature extraction, which consists of computing some values from the data—
referred to as features—that are meaningful for the problem to solve. Feature extraction
approaches map the data from a high-dimensional space to a low-dimensional one to lower
the complexity of the ML problem. There are two main families of feature extraction, namely
feature engineering and feature learning. Feature engineering refers to the manual crafting
of features, either based on expert knowledge or on simple transformation functions (e.g.,
arithmetic operators and/or aggregation operators) applied to the sensor signals.

Feature learning, on the other hand, designates the automated learning of features
from the data. One of the most popular feature learning approaches nowadays is deep
learning that is based on Artificial Neural Networks (ANNs). They work in an end to end
fashion and have already shown promising results in a large number of health-related
applications [12–16]. ANNs are modeled after their biological counterparts and can be
implemented on computers as software applications. The basic elements of ANNs are
artificial neurons, which are interconnected in form of layers. Sensor signals are provided
to the input layer, and then they move to the output layer via interconnected neurons. An
ANN, which consists of more than three layers, i.e., an input layer, an output layer, and
several hidden layers, is called a Deep Neural Network (DNN). DNNs can be trained with
appropriate data to create a useful model that converts inputs into outputs [17,18].

Developing an objective system to predict hunger and satiety using multimodal sen-
sory signals is a complex task. However, such a problem has not been explored extensively
in the past literature. More specifically, all past studies either used invasive sensor modal-
ities or investigated a related but different problem than the recognition of hunger and
satiety. In this work, we therefore hypothesize that modern non-invasive wearable sensors
can allow us to distinguish hunger and satiety states. We perform an ML study involving
the comparison of several state-of-the-art feature extraction and classification approaches.
We also investigate various sensor modalities recording physiological data to determine
which one(s) contribute the most to this problem.

To summarize, we make the following contributions:

1. We investigate the use of non-invasive multimodal sensors in the context of hunger
and satiety detection and develop a state-of-the-art machine learning model, which
learns hunger and satiety patterns from multimodal sensors data and classifies them
into hunger and satiety classes.

2. We analyze and compare wearable devices and sensor channels to select the most
relevant physiological signals for an accurate classification of hunger and satiety data.

3. We perform a comparative analysis of feature extraction approaches and machine
learning algorithms to identify the best features in achieving optimal classification
results.

4. We also provide a brief review of related approaches.

The rest of the article is structured as follows. Section 2 presents the current state-
of-the-art in hunger and satiety detection. Section 3 describes the materials and methods
used to analyze multimodal signals for assessing hunger and satiety. Section 4 presents
the experimental results. Section 5 provides a discussion, and finally, Section 6 concludes
this work.
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2. Related Work

In recent years, some hunger detection methods have been applied for clinical and
behavioral assessments [4,19–25]. Table 1 lists the sensors and systems used in the re-
viewed studies.

Table 1. Sensors and systems for the assessment of hunger in the literature.

Study Sensors/System Dataset
Information

Features Detection

Barajas-
Montiel and
Reyes-Garcia
[25]

Microphone

1627—samples of
hunger and pain

cries (acoustic data
of infants)

Acoustic
features by
means of

frequencies

Hunger cry,
no-hunger cry, pain
cry and no-pain cry

Krishnan
et al. [4]

13—subjects

Feature
learning
(ANN)

VAS responses
from satiety

hormone values
VAS

plasma
concentrations

of satiety
hormones
from blood

samples

Bellmann
et al. [19]

In vitro gas-
trointestinal
model

Gastric viscosity
and Fullness

intestinal digestion - vs.
from tiny-TIMagc Hunger

Rahman et al.
[20]

Microsoft Band, 8—subjects Statistical
features

Time until the
Affectiva Q sensor, (3 female, 5 male) next eating event,

Microphone from 26 to 54 years and about-to-eat

Al-Zubaidi
et al. [21] fMRI

24—male subjects
from 20 to 30 years

(fMRI data)

3—
features

(DC, ReHo
and fALFF)

Neuronal resting
state alterations
changes during

hunger and satiety

Lakshmi et al.
[22]

Hunger, thirst,
EEG EEG signals - and rest-room

sensations

Maria and
Jeyaseelan
[23]

Synthetically
collected SF, CDF

and GCC

Growling

Microphone audio signals
through vs.

mobile phones Burp sound

Gogate and
Bakal [24]

35—patients Hunger

EDA ( 20 of them used
as - vs.

control group ) Stress
VAS: Visual analog scales; ANN: Artificial neural network; fMRI: Functional magnetic resonance imaging; DC:
Degree of centrality; ReHo: Regional homogeneity; fALFF: Fractional amplitude of low-frequency fluctuations;
EEG: Electroencephalography; SF: Spectral features; CDF: Cepstral domain features; GCC: Gammatone cepstral
coefficients; EDA: Electrodermal activity; tiny-TIMagc: In vitro gastrointestinal model.

To the best of our knowledge, physiological signals acquired from multimodal sensors
have not yet been used for the prediction of hunger and satiety responses using machine
learning. For example, Barajas-Montiel and Reyes-Garcia [25] applied traditional signal
processing and pattern classification methods to detect hunger cries, no-hunger cries, pain
cries, and no-pain cries from infant acoustic data. Here, the detection of hunger cries and no
hunger cries is based on acoustic features in the form of frequencies. The model proposed
in this paper [25] is specific to infants and could not be generalized to the young and elderly
population to detect hunger and satiety. They did not describe feature learning or the use
of wearable physiological sensors for hunger and satiety detection.

Interestingly, Maria and Jeyaseelan [23] used audio signals generated by the stomach
to identify growls that can describe hunger well. The synthetic audio signals were recorded
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using mobile phones and pre-processed using smoothing methods and median filtering.
Spectral features were calculated to classify the signals into growls and burps.

Krishnan et al. [4] used ANN to model the feelings of hunger and satiety after food
intake. They trained their model with a dataset relating concentration–time courses of
plasma satiety hormones to VAS assessments. The proposed model successfully predicted
VAS responses from the dataset of satiety hormones obtained in experiments with different
food compositions. They also revealed that the predicted VAS responses for the test data
separated the satiety effects of highly satiating foods from less satiating foods, for both
oral and ileal infusion. However, their approach is time-consuming and invasive because
they used plasma hormone levels, which are not easy to obtain compared to physiological
signals detected by smart sensor devices.

Bellmann et al. [19] claimed that human clinical trials are time-consuming and costly.
Therefore, they developed a gastrointestinal model in conjunction with ANN to predict
feelings of hunger and satiety after the ingestion of different meals. They trained their
model with a series of training datasets to create a prediction set and link the model
measurements to VAS scores for hunger and satiety. Although gastrointestinal-based
modeling is still in its infancy, it is evident that the development of machine learning
approaches has the potential to transform such models into powerful predictive tools, which
can predict physiological responses to food. However, the acquisition of physiological
responses by miniaturized sensors is state-of-the-art.

Rahman et al. [20] proposed that predicting eating events can enable users to adopt
better eating behaviors. As a consequence, they used a set of sensor devices to record
physical activity, location, heart rate, electrodermal activity, skin temperature, and calo-
ries ingested while eight users were eating. They extracted 158 window-level features,
followed by correlation-based feature selection (CFS), and trained a classifier to predict
the about-to-eat event. Time until the next eating event was predicted using regression
analysis. However, the use of motion sensors such as accelerometers and gyroscopes is
questionable for the “time until the next eating” event. Additionally, they did not provide
any comparison between sensor modalities to determine the best optimal device.

Al-Zubaidi et al. [21] investigated the influence of hunger and satiety on resting-state
functional magnetic resonance imaging (rs-fMRI) using connectivity models, i.e., local
connectivity, global connectivity, and the amplitude of rs-fMRI signals. They extracted the
connectivity parameters of ninety brain regions for each model and used the sequential
forward sliding selection strategy in conjunction with a linear support vector machine
classifier to determine which connectivity model best discriminated between metabolic
states (hunger vs. satiety). They claimed that the amplitude of the rs-fMRI signals, with
a classification accuracy of 81%, is slightly more accurate than the local and global con-
nectivity models in detecting changes in the resting state of the brain during hunger and
satiety. However, they did not show results with the state-of-the-art supervised feature
learning approach.

Gogate and Bakal [24] presented a hunger- and stress-monitoring system using gal-
vanic skin response data from 35 patients using proprietary data processing and classifica-
tion techniques. They claimed an overall accuracy of the system of 86.6%. However, they
did neither specify a method for data processing and feature extraction, nor did they use
classical or modern classification methods.

Lakshmi et al. [22], proposed a method to detect hunger specifically in physically
disabled people. The main goal was to communicate using the brain’s thoughts without
muscle control, specifically for severely paralyzed people with a non-invasive approach
to make the task less complex and more convenient. In this approach, a single-channel
electrode was placed on a person’s scalp to detect human sensations of hunger, thirst,
and toilet using images placed in front of it. The final result was obtained by analyzing
the person’s attention level. The attention levels of each image were compared to the
corresponding image in MATLAB, and the resulting attention level value was obtained.

4
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In general, there are very few studies [4,19–25] on the subject that we investigate.
However, each of them has some limitations; for example, the data collection method used
by Krishnan et al. [4] was invasive, and the results of Bellmann et al. [19] were based on
gastrointestinal models. Rahman et al. [20], used motion sensors for the “time until the next
eating” event, which is questionable. Maria and Jeyaseelan [23], and Barajas-Montiel and
Reyes-Garcia [25] used microphones to record the data, which can trigger a privacy risk.
The authors in [21,22,24] used hand-crafted features, while feature learning can perform
as well or better than state-of-the-art [26]. To-date, no automated system for detecting
hunger and satiety using multimodal physiological signals has been evaluated, nor is there
a public dataset.

3. Materials and Methods

In this section, we present the aspects of the sensor modalities accumulated for data
acquisition, the process of data acquisition, and discuss the experimental settings. The
entire process from data acquisition to analysis consists of a series of steps as shown in
Figure 1, which has been extensively described in the past literature [9,27].

       Data         
Acquisition Pre-processing

Features
Extraction and

Selection
Classification Evaluation

Figure 1. Standard approach to developing machine learning and pattern recognition systems. Each
step should be optimized in parallel to achieve the best performance.

3.1. Dataset Acquisition

The hardware configuration of our proposed sense-hunger system is shown in Figure 2.
We used the following wearable devices and sensor modalities to collect physiological
hunger and satiety signals from five healthy individuals:

1. RespiBan (Plux Wireless Biosignals S. A., Lisboa, Portugal) [28]: Subjects wear the
respiration belt on the chest, at the level of the thorax, with the electrode connectors
facing forward. It contains the Respiration (Resp) sensor and also provides the
possibility for connecting to other sensors such as Electrodermal activity (EDA),
Electrocardiography (ECG), and Electromyography (EMG), as shown in Figure 2. The
description of these sensors is as follows:

• Resp: This sensor measures the respiration rate. It detects chest or abdominal
expansion/contraction, and outputs a respiration signal. It is usually worn using
a comfortable and flexible length-adjustable belt. It is sampled at 475 Hz.

• EDA [29]: EDA of RespiBan (Eda_RB) consists of two electrodes placed on the
front, in the middle of the index finger, and in the middle of the middle finger of
subject’s non-dominant hand. This sensor measures the galvanic skin response,
i.e., the change in electrical conductivity of skin in response to sweat secretion. It
is also sampled at 475 Hz.

• ECG [30]: It consists of three electrodes placed on the subject’s right upper
pectoral, left upper pectoral, and at the left bottom thoracic cage. This sensor
records the electrical impulses through the heart muscle, and it can also be used
to provide information on the heart’s response to physical exertion. It is also
sampled at 475 Hz.

• EMG [31]: This sensor is used to assess the electrical activity associated with
muscle contractions and respective nerve cells, which control them. It is placed
on the subject’s abdomen above the belly button and is also sampled at 475 Hz.

2. Empatica E4 wristband (Emaptica Inc., Cambridge MA, USA) [32]: It contains pho-
toplethysmogram (PPG), infrared thermopile (Tmp), and EDA sensors that allow
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measurements of sympathetic nervous system activity and heart rate (HR) variability.
The description of these sensors is as follows:

• PPG: This sensor measures blood volume pulse (BVP), which can be used to
derive HR and inter-beat interval (IBI). It is sampled at 1 Hz.

• Tmp: This sensor records skin temperature. It is sampled at 5 Hz.
• EDA: EDA of Empatica E4 (Eda_E4) wristband measures the galvanic skin

response, which is the change in the electrical conductivity of the skin in response
to sweat secretion. It is sampled at 5 Hz.

3. JINS MEME smart glasses (Jins Inc., Tokyo, Japan) [33]: They can track not only where
we look, but how often we blink and even whether we are about to relax or fall asleep.
It uses electrooculography (EOG) electrodes placed in three locations on the frame.
These electrodes can track blink duration and eye movements in different directions.
It is sampled at 20 Hz.

Via Bluetooth

JINS MEME smart glasses

Empatica E4 wristband

- Electrooculography 

- Photoplethysmogram 

- Electrodermal activity 

- Thermopile 

Via Bluetooth

RespiBan

- Electromyography

- Electrocardiogram 

- Electrodermal activity

- Respiration

Figure 2. The SenseHunger system uses three sensory devices, namely, JINS MEME smart glasses,
Empatica E4 wristband, and RespiBan. The Electrodermal activity (EDA), Electrocardiogram (ECG),
and Electromyography (EMG) electrodes are plugged into the RespiBan device. Datasets from all
devices are sent to the laptop for storage using a Bluetooth connection.

The data collection of hunger and satiety activities involved five healthy volunteers
whose demographic information is provided in Appendix C. Subjects were asked not to
eat anything for 16 h before data collection. However, drinking water was allowed. Data
collection for each subject was divided into two phases, namely, the hunger and the satiety
phase. In the hunger phase, data collection lasted for 5 min, using the sensory devices
shown in Figure 2. After eating, the process was resumed for the satiety phase, which
lasted for 30 min.

3.2. Pre-Processing

State-of-the-art machine learning (ML) algorithms can certainly derive knowledge
from raw sensor data. However, their output generally depends on the quality of the
datasets they are working with. If data are insufficient or contain extraneous and irrelevant
information, ML algorithms may produce less accurate and less understandable results or
discover nothing useful at all. Therefore, pre-processing of the data is an important step
in the process of ML. The pre-processing step is necessary for solving various types of
problems influencing data such as noise, redundancy, missing values, etc. [34]. In the first
step, datasets from all sensor channels (as shown in Figure 2) are synchronized, resampled
to a frequency of 100 Hz, and linearly interpolated to ensure that the channels shared a
common repetition.
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Based on our preliminary experiments, we segmented the data of each sensor channel
using a Sliding Window Segmentation (SWS) in the following three settings with an
overlapping window, to select the optimal setting: In the first setting, the length T and
sliding stride (step size) ΔS of a time window are set to 10 and 5 s, respectively. The second
setting is defined by length T = 30 s and sliding step ΔS = 15 s, while in the third setting,
the length T and the sliding step ΔS of a time window are set to 60 and 30 s, respectively.
The experimental results with the mentioned window sizes and step sizes are presented in
Section 4.

3.3. Feature Extraction and Selection

In a linear or nonlinear fashion, feature extraction approaches model the data from
a high-dimensional space into a reduced dimensional space. In this study, we used two
approaches to extract features, namely the hand-crafted features and automated feature
learning.

Hand-crafted Features: We used 18 hand-crafted features [9,35] consisting of the
statistical and frequency-related values of the input signals. These features are listed in
Table 2. All features were computed independently for each axis of each sensor channel,
following the suggestions of Cook and Krishnan [36]. They were subsequently concatenated
to obtain a feature vector of size 18 × sensor (S). To remove the effects of discrepancies
between the values of each feature, min-max normalization was performed for each feature
to project its values into the interval [0, 1]. The normalization constants calculated on the
training set were again used to calculate the features in the test set.

Table 2. Hand-crafted features calculated independently for each sensor channel.

Hand-Crafted Features

Maximum Minimum
Average Standard deviation

Zero-crossing Percentile 20
Percentile 50 Percentile 80
Interquartile Skewness

Kurtosis Auto-correlation
First-order mean Second-order mean

Norm of the first-order mean Norm of the second-order mean
Spectral energy Spectral entropy

We applied feature selection on the features we manually computed to remove useless
or redundant ones, and to decrease the complexity of our classification model. This can
improve the performance of a model and determine the interdependence between features
and class labels [36]. A common approach for feature selection is feature ranking, which
quantifies the ability of the feature to predict the desired class. A Random Forest (RF) was
used to select the most important hand-crafted features [37]. It is a tree-based learner that
generally grows by applying the classification and regression tree method (CART) [38],
where binary splits recursively partition the tree into homogeneous or nearly homogeneous
terminal nodes. After a fair split, the data is moved from the root tree node to the child
nodes, improving the homogeneity of the child nodes relative to the parent node [39].
Typically RF consists of a set of hundreds of trees, where each tree is grown using a sample
of the dataset.

In RF, trees are generally grown non-deterministically using a two-step randomization
procedure. Apart from the randomization applied by growing the tree using a sample of
the primary data, a subsequent level of randomization is set at the node level as the tree
grows. The objective of this two-step randomization is to decorrelate the trees, so that RF
ensemble has low variance. Features ranked by RF are based on the quality of the purity
improvement (which is the fraction of data items that belong to the class) of the node.
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Given a node n and the estimated class probabilities p(k|n) k = 1, . . . Q. The Gini index can
be defined by using the following equation [40].

G(n) = 1−
Q

∑
k=1

p(k|n)2 (1)

In Equation (1), Q is the total number of classes. In order to obtain the Gini index-
based measure at each node, the Gini index decline is calculated for the variable used for
partitioning. The Gini index-based measure of variable importance is then obtained by the
average drop in the Gini index. For the comparison of manual feature selection approaches,
see Appendix A.

Feature Learning: Feature learning involves learning features from labeled input data
in an automated way without any human input. Feature learning has become increas-
ingly popular over the past years with the popularization of ANNs and DNNs. During
training, they are fed with raw input data to learn a mapping against each class in an
end to end fashion. ANN and DNN models have been shown to perform well on various
tasks (e.g., image classification [41], activity recognition [9,42], and sleep stage classifica-
tion [8]). However, training such models can be challenging as it is computationally more
expensive than training traditional models. Moreover, finding optimal architectures is a
non-trivial process.

In the past, Multi-Layer Perceptrons (MLPs) [43] and Convolutional Neural Networks
(CNNs) [44] have been used for various tasks. MLPs represent the most primitive type of
ANN. In order to process 2D sensor data with its sensor axis (S) and time (T), the input
data are first normalized using the batch-normalization layer [45], and then passed to fully
connected layers that expect 1D input. A syntactic example of the MLP architecture can be
seen in Figure 3.

Input signal

T

S 

Batch
normalization

....

Input layer

(T x S)

Hidden layers

Softmax layer

....

n1 nh

nc

....

....

Figure 3. Illustration of a MLP where different sensor channels are converted into a (T×S) dimensional
vector, which is passed to the different hidden layers (h) and output classes (c) as defined by the
softmax layer.

In CNN architectures, the convolutional layers are the main building blocks normally
used to perform convolutional operations between one or several convolutional filters (or
kernels) learned during the training phase and the layer input. The convolution operation
can be applied by sliding the convolution kernels over the input data. In this study, raw
sensor data are given as 3D input (S× T× 1) to the CNN model for processing. After a
series of convolutional and pooling layers, the output of the last convolutional layer is
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usually smoothed into a 1D vector and fed into the softmax layer. The Rectified Linear Unit
(ReLU) is the most commonly used activation function for convolutional layers. It is also
common to add multiple dense layers of a multilayer perceptron to the CNN architecture
for classification problems. In that case, a softmax activation function is usually used to
connect the aftermost dense layer to the output layer. An example of a CNN model can be
seen in Figure 4.

In initial experiments (whose results are reported in Appendix B), various config-
urations for the window size (T), step size (ΔS), and learning rate (lr) parameters were
examined. It was found that T = 60 s, ΔS= 5 s, and lr =10−4 yielded the best performances.
Therefore, each sensor channel information was segmented into parts, resulting in data
frames of the form (N × S × 1), where N is the number of segments, or more precisely,
(6000 × 7 × 1) for each class.

The purpose of this study was to test the use of feature learning methods with a dual
objective. The primary goal was to analyze the quality of MLP and CNN in automatically
extracting features with different hyperparameters. The secondary objective was to examine
and compare the results of human-generated features and automatic feature extraction.
The results of classifying hunger and satiety using the above mentioned approaches are
presented in the experimental results section.

Input signal

T

S 

....

Softmax layer

....

nc

nhConvolution Pooling
Convolution

Pooling

Flattening

....

Figure 4. Illustration of a Convolutional Neural Network (CNN) model with convolutional layers,
pooling layers, h dense layers, and c output classes represented by a softmax layer. Input data are
processed by convolutional layers and pooling layers, and are passed to dense layers after extraction
of profound features.

3.4. Classification

To provide a comparison between hand-crafted features and automatically learned
features, we used two types of classification approaches. Traditional classifiers such as
support vector machine (SVM), decision tree (DT), and RF were trained and tested on
hand-crafted features, and ANN-based models such as MLP and CNN with softmax layers
were applied to classify the automatically learned features into hunger vs. satiety classes.
The description of these methods are as follows:

1. SVM: In pattern recognition, SVM is a supervised learning algorithm, which can be
used for classification and regression tasks. Its robust performance on noisy and
sparse data makes it a good choice for a variety of applications [42]. In a classification
task, the SVM separates the labeled training data with a maximum margin hyperplane.
Test data are then mapped to the same space to predict a class label. SVM can also
efficiently map high-dimensional data to a high-dimensional dimension feature space
to perform nonlinear classification [46].
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2. DT: This is an approach to classification or regression analysis, in which a decision
tree is constructed by recursively partitioning the feature space of the training set into
smaller and smaller subsets. The final consequence is a tree with decision and leaf
nodes. DT aims to find a set of decision rules that instinctively divide the feature space
to build a instructive and robust classification model. A decision node has binary or
multiple branches. A leaf node indicates a class or outcome. The top decision node in
a tree points to the best predictor, which is called the root node [47].

3. RF: This is a popular ensemble learning method used for various types of classification
problems such as activity recognition [35], where multiple DTs are created at training
time [48–52]. In RF, each tree casts a unit vote by assigning each input to the most
likely class label. RF is fast, robust to noise, and an effective ensemble, which can
be used to identify nonlinear patterns in datasets. It can handle both numeric and
categorical data. The biggest advantage of RF compared to DT is that it is significantly
more resilient to overfitting [53].

3.5. Evaluation

The selection of the evaluation metric is very important and application-dependent,
because an inadequately defined metric may lead to incorrect conclusions [54]. For this
reason, the evaluation metrics were designed to be consistent with the state-of-the-art work
in this field, and to facilitate comparison. It is worth mentioning that in all experiments
of this work, cross-validation was used according to the Leave-One-Subject-Out (LOSO)
protocol, in which each subject’s data are used once as the test set, whereas the remaining
data constitute the training set. In general, the overall performance is the average of the
results gained for each tested subject. The LOSO cross-validation procedure guarantees
that all models are tested on unknown subjects, which allows a realistic evaluation of the
classification algorithms used in de-factor applications.

For the classification performance of the different models tested, we used accuracy
assessed by the ratio of true predictions (i.e., true positive (tp), true negative (tn)) to all
entries (i.e., true positive (tp), true negative (tn), false positive (fp), false negative (fn)) [55],
as shown in Equation (2):

Accuracy =
tp + tn

tp + tn + fp + fn
(2)

In addition to the accuracy, we used the averaged F1 (AF1) score (short for macro-
averaged F1 score), which treats all classes equally and can be used to evaluate the class
imbalance problem (as shown in Equation (6)). It can be defined by using Precision
(Equation (3)), Recall (Equation (4)), and F1 score (Equation (5)) [55,56].

Precision =
tp

tp + fp
(3)

Recall =
tp

tp + fn
(4)

The F1 score combines the precision and recall into a single metric by taking its
harmonic mean, as shown in Equation (5):

F1 score =
2 × Precision × Recall

Precision + Recall
(5)

In our experiments, the AF1 score is given, which is the average of the F1 scores of all
classes:

AF1 score =
1
c

c

∑
i=1

F1 scorei (6)
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In Equation (6), c represents the no. of classes and F1 scorei represents the F1 score for
the ith class.

4. Experimental Results

In our study, all algorithms and models were implemented using Python 3.9. For the
algorithms SVM, DT, and RF, and the deep learning models MLP and CNN, the libraries
sklearn and Keras with Tensorflow 2.2.0 backend were used. Adaptive Moment Estimation
(ADAM) [57] was chosen as the optimizer for our deep learning model with an initial
learning rate of 10−4, and trained with 50 epochs at a batch size of 32. The categorical cross
entropy was used as the loss function for the deep learning models. Since no automated
method for the optimization of DNN hyper-parameters has been found so far, trial-and-
error was used to obtain the best hyper-parameters for the DNNs we tested in our study.
The configurations we tested are provided in Appendix B. The hyper-parameter values
that were used in our experiments are provided in Tables 3 and 4 for MLP and CNN,
respectively. It is worth mentioning that we decided not to report the result of a single
LOSO cross-validation, but the average results obtained after performing it five times.

Table 3. MLP architecture with learning rate set to 10−4.

Layer Name Neurons/Dropout Rate Activation

Dense 64 ReLU

Batch Norm - -

Dense 16 ReLU

Dropout 0.5 -

Flatten - -

Dense 8 ReLU

Dropout 0.5 -

Dense 2 Softmax

Table 4. CNN architecture with a fixed dropout rate of 0.5 and learning rate of 10−4.

Layer Name No. Kernels (Units) Kernel (Pool) Size Stride Activation

Convolutional 64 (1,1) (1,1) ReLU

Batch Norm - - - -

Convolutional 32 (1,1) (1,1) ReLU

Convolutional 16 (1,1) (1,1) ReLU

Flatten - - - -

Dense 2 - - Softmax

Preliminary experiments with all hand-crafted features (i.e., without feature selection),
and SVM, DT, and RF classifiers were carried out to determine the best segmentation
parameters. The results of these experiments are shown in Table 5. It can be seen that the
best performing configuration is obtain when using RF with T = 60 s and ΔS = 30 s, and
largely outperforms the others that were tested. We therefore selected these segmentation
parameters and classifier for the rest of our studies. However, the overall classification
results remain mediocre, with a AF1 score of around 60%.
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Table 5. Results of binary classification of hunger and satiety.

Classifier
Win Size

(T)
Step

Size (ΔS)
Acc.

Hungry
Acc. Satiety Acc AF1 Score

SVM 10 05 20.90 70.37 56.89 45.63
DT 10 05 27.94 70.40 58.04 49.17
RF 10 05 30.97 71.75 59.90 51.36

SVM 30 15 21.61 68.86 55.43 45.24
DT 30 15 21.93 71.54 58.29 46.73
RF 30 15 38.59 73.23 62.71 55.91

SVM 60 30 13.19 69.50 55.00 41.34
DT 60 30 18.44 79.43 67.14 48.93
RF 60 30 36.36 82.05 72.00 59.21

DT: Decision tree classifier; RF: Random forest classifier; SVM: Support vector machine classifier; Acc: Accuracy;
AF1 Score: Averaged macro F1 score.

To improve the initial classification results and verify the potential of each sensor
channel, experiments were also conducted with each sensor channel separately. We moni-
tored the classification accuracies of each sensor channel after the LOSO cross-validation to
determine its relevance in detecting hunger and satiety. Figure 5 shows the boxplot, mean,
and standard deviation (in dotted lines) of the obtained accuracies.
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Figure 5. Importance of each sensor channel in recognizing hunger and satiety.

The standard deviations of Resp, ECG, and EOG are higher compared to the other
sensors. The results in Table 6 show that these sensors are the least significant because
their accuracy is less than 70%, and there is a very large variance among the different
subjects. Therefore, we decided to exclude the Resp, ECG, and EOG sensors data for further
experiments. Moreover, the literature also confirms the importance of Tmp, BVP, and
EDA (Eda_E4 and Eda_RB) signals in the detection of hunger. For example, the research
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of Mandryk and Klarkowski [58] reveals that BVP increases in response to hunger and
decreases in response to relaxation, He et al. [59] identifies changes in Tmp, EDA, and
HR values following the ingestion of food. The authors in [24] had already used EDA
for hunger detection. Furthermore, IBI and HR are directly related to BVP, since they are
derived from it.

Table 6. Hunger and satiety classification results on each sensor channel using RF classifier.

Sensor Acc. Hungry Acc. Satiety Acc AF1 Score

Tmp 73.08 95.30 92.00 84.19
Eda_E4 70.59 94.98 91.43 82.79

BVP 67.35 94.68 90.86 81.02
Eda_RB 62.18 92.25 87.14 77.22

IBI 43.48 91.95 85.14 67.46
HR 40.45 91.33 84.86 65.89

EMG 30.95 90.58 83.43 60.77
Resp 29.30 79.56 68.29 54.43
EOG 39.25 73.25 62.86 56.25
ECG 21.59 73.66 60.57 47.63

RF: Random forest classifier; Acc: Accuracy; BVP: Blood volume pulse; Eda_E4: Electrodermal activity sensor of
empatica E4 wristband; Tmp: Thermopile; IBI: Inter-beat interval; HR: Heart rate; Resp: Respiratory; Eda_RB:
Electrodermal activity sensor of RespiBan; ECG: Electrocardiogram; EMG: Electromyography; EOG: Electroocu-
lography. Note: For these experiments, we used a window size of 60 s and a step size of 30 s to compute the 18
hand-crafted features for each axis of the sensor channel.

Further experiments were performed with the best 18, 54, 72, 90, and 108 features
of the selected sensor channels (i.e., excluding Resp, ECG, and EOG), ranked by their
increasing Gini impurity scores. With the best 18 features, an Acc of 93.43% and an AF1
score of 87.86% were obtained, as shown in Table 7.

Table 7. Results of the classification of hunger and satiety using RF classifier based on the best
features selected with feature importance ranking.

No. of Best Features Acc. Hungry Acc. Satiety Acc AF1 Score

18 79.65 96.08 93.43 87.86
54 66.02 94.14 90.00 80.08
72 68.18 95.42 92.00 81.80
90 68.00 94.67 90.86 81.33
108 67.33 94.49 90.57 80.91

Acc: Accuracy; AF1 Score: Averaged macro F1 score.

The results of our experiments shows that the best results could be obtained with
just 18 hand-crafted features based on the FIR (as shown in Table 7). Moreover, there is
not much difference in the classification results of the best 54, 72, 90, and 108 features.
Furthermore, the results with 18 hand-crafted features are notably better than the results
that were obtained using all sensors (see Table 5). It could be concluded that Resp, ECG,
and EOG are the least informative sensors in this case, while BVP, Eda_E4, Tmp, HR,
Eda_RB, and EMG are the most informative sensors and could be used to detect hunger
and satiety.

To determine the relative relevance of each wearable device (i.e., Empatica E4 wrist-
band, JINS MEME smart glasses, and RespiBan professional, with ECG, EMG, and EDA
sensors) in detecting hunger and satiety, further experiments were also conducted with
the RF classifier. Figure 6 shows the results of each device using the best 18 features in
each case. Our experimental results show that Empatica appears to be the best wearable
device, outperforms the other devices, and might be used as the only wearable device for
monitoring hunger and satiety.
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Figure 6. Comparison of sensor devices on the basis of accuracy (Acc) and averaged macro F1 score
(AF1) for hungry and satiety classes. Empatica: Empatica E4 wristband; JIMS MEME: JINS MEME
smart glasses; RespiBan: RespiBan professional device, including ECG, EMG, and EDA sensors.

To provide a comparison between feature engineering and feature learning approaches
on our dataset, the experiments were also performed using CNN and MLP. With the CNN,
an Acc of 82.90% and an AF1 score of 82.54% were obtained, as shown in Table 8. The
segmentation technique mentioned above was not adequate for training a deep learning
model. Therefore, we devised another segmentation technique using a window size of
60 seconds and a step size of 5 s for deep learning-based models.

Table 8. Results of the classification of hunger and satiety using feature learning approaches.

Classifier Acc. Hungry Acc. Satiety Acc AF1 Score

MLP 77.79 81.35 80.14 79.57
CNN 81.37 83.70 82.90 82.54

Acc: Accuracy; CNN: Convolutional Neural Network; MLP: Multi-Layer Perceptron.

5. Discussion

The following points provide a detailed discussion of the aforementioned results:

• One of the main objective of this paper was to develop a machine learning approach
to classify hunger and satiety using wearable sensors. Therefore, we used wearable
devices like the Empatica E4 wristband, JINS MEME smart glasses, and RespiBan
professional with miniaturized sensors that provided sufficient quality data and
that could capture physiological signals related to the perception of hunger and
satiety in patients or people with occupational constraints, as opposed to invasive [4],
gastrointestinal model [19], fMRI-based data [21], and gastric tone signals [23]. Our
proposed non-invasive multimodal system with carefully selected sensor channels
outperformed previous approaches with an accuracy of 93.43% and an average F1
score of 87.86%.

• Each classification algorithm is based on different mathematical models [60], and
may produce different results for the same dataset. In order to obtain highly accurate
results and to select the best classifier for further experiments, we not only conducted
experiments with different classifiers, but also with different window sizes and step
sizes. It was found that the RF classifier was best suited for hunger and satiety
detection using hand-crafted features, and it outperformed the DT and SVM classifiers
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in each scenario. It was also observed that the window size of 60 s and the step size of
30 were significant for each classifier.

• In the past, deep learning-based approaches have shown promising results in a variety
of application domains such as biology, medicine, and psychology [8,12–15,42,61].
However, they are computationally expensive and also require a large number of
training samples [62] to build successful models compared to traditional approaches
using hand-crafted features. To compare the results of feature learning and feature
engineering, we also computed 18 features independently for each axis of each sensor
channel. They were subsequently concatenated to obtain a feature vector of the size
of 18 × sensor (S) axis. It was found that well-engineered features can perform better
than deep learning approaches in the case of a limited number of training samples.

• In this study, we used feature importance ranking (FIR), which measures the contribu-
tion of each input feature to the performance of the model. It turned out that the most
accurate results can be obtained only with the best 18 hand-crafted features (as shown
in Table 7) and the addition of other irrelevant and redundant features can introduce
noise into the data, which can reduce the performance of a classifier. It can be pointed
out that the top five features come exclusively from three different sensor channels
(Eda_E4, BVP, and Tmp) and are either computing the mean or the 80th percentile
of the data values. Percentile 80 provides an approximation of the maximum value
in a data segment that is less sensitive to noise or outliers than the actual maximum
computation. This would indicate that the average and upper data values in Eda_E4,
BVP, and Tmp are of high importance to distinguish between hunger and satiety. This
feature selection also validates our previous results to identify the importance of each
sensor channel (Table 6), and seem to confirm findings from the literature that showed
these sensor channels to be relevant in detecting hunger and satiety [24,58,59] (c.f.
Figure 5). The overall selected best features can be seen in Figure 7.

Figure 7. The overall 18 best features. Note: pt80: 80th percentile; avg: average; zc: zero crossings;
mx: maximum; acr: auto-correlation; pt50: 50th percentile; mn: minimum; pt20: 20th percentile;
BVP: Blood Volume Pulse; HR: Heart Rate; Tmp: Temperature; Eda: Electrodermal activity; RB:
Respiration belt; E4: Empatica E4.

• Long-term monitoring with a large number of wearable sensors may be uncomfortable
for users [63]. Therefore, eliminating irrelevant sensors can decrease the degree of
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discomfort and improve the robustness of the classification system by reducing the
dimensionality and also save a lot of money [64]. In this work, we compared not only
all sensors, but also wearable devices, to determine the most suitable sensors and
wearable device for hunger and satiety detection. It was found that PPG (BVP, IBI,
and HR), EDA (Empatica E4 and RespiBan), Tmp, and EMG were the appropriate
sensor modalities for this study, and Resp, ECG, and EOG were the least appropriate.
We also found that the Empatica E4 wristband was the most suitable device compared
to the other devices.

6. Conclusions

In this paper, we introduced an objective and non-invasive machine learning model
to detect hunger and satiety using physiological sensor data. Our proposed multimodal
system enables the detection of hunger and satiety with an accuracy of 93.43%, and an
average F1 score of 87.86% in LOSO configuration. The results of this study lead to
the following conclusions: firstly, state-of-the-art wearable sensors provide good quality
physiological data on hunger and satiety, and could be used to build a non-invasive and
objective system. Furthermore, deep learning architectures do not necessarily perform
well, especially when we have a limited number of training samples. In addition, feature
selection could help to remove unnecessary and redundant features that lead to noise,
which in turn leads to better results. Finally, the experiments of this study showed that the
most discriminative features come from three specific sensor modalities: Electrodermal
Activity (EDA), infrared Thermopile (Tmp), and Blood Volume Pulse (BVP). These sensors
are part of the Empatica E4 wristband, which is the most influential device in this study
and can be used as a standalone device. In order to learn more about the perception of
hunger and satiety, further experiments with long-term hunger and satiety data are needed,
which will not only help to train deep learning models well, but also further divide hunger
and satiety into sub-classes to gain further insight, which is part of our future work.
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Abbreviations

The following abbreviations are used in this manuscript:

VAS Visual Analog Scales
ANN Artificial Neural Networks
DNN Deep Neural Networks
GSR Galvanic Skin Response
EDA Electrodermal Activity
EEG Electroencephalography
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fMRI Functional Magnetic Resonance Imaging
DC Degree of Centrality
ReHo Regional Homogeneity
fALFF Fractional Amplitude of Low Frequency Fluctuations
SF Spectral Features
CDF Cepstral Domain Features
GCC Gammatone Cepstral Coefficients
CFS Correlation-based Feature Selection
ECG Electrocardiogram
EMG Electromyography
PPG Photoplethysmogram
TMP Thermopile
EOG Electrooculography
ML Machine Learning
BVP Blood Volume Pulse
MLP Multi-layer Perceptrons
LSTM Long Short-term Memory
CNN Convolutional Neural Network
ReLU Rectified Linear Unit
SVM Support Vector Machine
DT Decision Tree
RF Random Forest
LOSO Leave-one-subject-out
ADAM Adaptive Moment Estimation
SWS Sliding Window Segmentation
Acc Accuracy
AF1 Averaged macro F1 score

Appendix A. Comparison of Manual Feature Selection Approaches

Feature selection (FS) is a process usually applied in machine learning studies that
involve the computation of a large number of features. In particular, it is required to
eliminate features that would not be the most discriminative for the classification problem
to solve, and on the other hand, identify the most useful ones. We used in our study three
commonly used FS methods: Boruta, eXtreme Gradient Boosting (XGB), and RF [65–67].

RF is an ensemble learner that works well with nonlinear data, handles large datasets
efficiently, and is useful for feature selection. Most of the time, it provides better accuracy
compared to other algorithms. However, RF can be slow in training when used with a large
number of trees, and is sometimes not suitable for many sparse features [48–50,53,65].

Similar to RF, XGB is an ensemble machine learning algorithm that incorporates loss
minimization using gradient descent to the RF framework. It is less prone to overfitting,
can handle missing values, has minimal effects of outliers, and can also be used as a feature
selector. However, it is more difficult to tune because there are many hyperparameters and
overfitting is possible if the parameters are not set correctly [66,68].

Boruta is a wrapper feature selection approach based on RF that selects or eliminates
features after computing an feature importance scores, so that the quality of its feature
selection depends on the quality of the RF model. The sensitivity of Boruta can be improved
by using a RF with a larger number of decision trees. However, increasing the number of
trees in RF may increase the computation time of the Boruta algorithm, which limits the
use of the algorithm for analyzing very large datasets [67].

In order to make a fair comparison between the manual FS approaches in this study,
we selected the best 18, 54, 72, 90, and 108 features with Boruta, XGB, and RF, and classified
them with XGB and RF classifiers. The best results of each classifier in each setting are
shown in Table A1. The best configuration was obtained by using RF both for feature
selection and classification.
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Table A1. Results of the classification of hunger and satiety using RF and XGB classifier based on the
best features selected with Boruta, XGB, and RF.

Classifier FS Algorithm No. of Best Features Acc. Hungry Acc. Satiety Acc AF1 Score

RF RF 18 79.65 96.08 93.43 87.86
RF Boruta 108 72.53 95.89 92.86 84.21
RF XGB 54 73.12 95.88 92.86 84.50

XGB RF 18 69.23 94.63 90.86 81.93
XGB Boruta 54 53.33 93.11 88.00 73.22
XGB XGB 18 63.92 94.20 90.00 79.06

RF: Random Forest; XGB: eXtreme Gradient Boosting; Acc: Accuracy; AF1 Score: Averaged macro F1 score.

Appendix B. Hyper-Parameter Selection for Feature Learning Approaches

Machine learning algorithms work with two types of parameters, namely learnable
parameters and hyper-parameters. The learnable parameters are those that the algorithms
learn themselves during training on a given dataset, while hyper-parameters are specified
by engineers or scientists prior to the training in order to regulate how algorithms learn, and
to change the performance of the model. In our study, the most impactful hyper-parameters
on the final classification performances were the learning rate (lr), window size (T), and
step size (ΔS).

The lr determines the rate at which the ANN training algorithm (backpropagation
algorithm) updates the weights of the network during each training iteration. More
specifically, each neural weight wn at iteration n ∈ N∗ is updated following the formula:

wn = wn−1 − lr × ∂L
∂w

(wn−1)

where L designates the loss function comparing the network outputs to the expected
outputs.

The window size T and step size ΔS are both segmentation parameters that respec-
tively determine how long in time the input of the network is, and how much time needs to
pass between two consecutive windows of data. Both parameters control the rate at which
the learning algorithm picks up new information.

Figure A1 shows the ANN performances obtained for the various combinations of
hyper-parameters that were tested for the feature learning approaches (MLP and CNN)
in this study. Since no automated method for optimizing the hyper-parameters of deep
neural networks has proven its effectiveness in practice so far, the best values for these
parameters in this study were determined through trial-and-error. The hyper-parameter
T = 60 s, ΔS= 5 s, and lr =10−4 worked best for the MLP and CNN models of this study.

Figure A1. Selection of hyper-parameters for the feature learning approaches. lr: learning rate; T:
window size; ΔS: step size.
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Appendix C. Demographic Information about the Subjects

The following Table A2 shows the demographic data (such as sex, age, and weight) of
the subjects used for data acquisition in this study.

Table A2. Demographic data of subjects used for data acquisition in this study.

Subject Name Sex/Gender Age (in years) Weight (in kg)

S1 Female 23 65
S2 Male 29 71
S3 Male 37 72
S4 Male 26 81
S5 Male 27 75

kg: Kilograms; S1: Subject 1; S2: Subject 2; S3: Subject 3; S4: Subject 4; S5: Subject 5.
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Abstract: Sleep scoring involves the inspection of multimodal recordings of sleep data to detect
potential sleep disorders. Given that symptoms of sleep disorders may be correlated with specific
sleep stages, the diagnosis is typically supported by the simultaneous identification of a sleep stage
and a sleep disorder. This paper investigates the automatic recognition of sleep stages and disorders
from multimodal sensory data (EEG, ECG, and EMG). We propose a new distributed multimodal
and multilabel decision-making system (MML-DMS). It comprises several interconnected classifier
modules, including deep convolutional neural networks (CNNs) and shallow perceptron neural
networks (NNs). Each module works with a different data modality and data label. The flow of
information between the MML-DMS modules provides the final identification of the sleep stage and
sleep disorder. We show that the fused multilabel and multimodal method improves the diagnostic
performance compared to single-label and single-modality approaches. We tested the proposed
MML-DMS on the PhysioNet CAP Sleep Database, with VGG16 CNN structures, achieving an
average classification accuracy of 94.34% and F1 score of 0.92 for sleep stage detection (six stages) and
an average classification accuracy of 99.09% and F1 score of 0.99 for sleep disorder detection (eight
disorders). A comparison with related studies indicates that the proposed approach significantly
improves upon the existing state-of-the-art approaches.

Keywords: machine learning; distributed networks; multimodal classification; multilabel classification;
sleep stage detection; sleep disorder detection; decision-making networks

1. Introduction

Sleep is an integral part of human life. Poor sleep quality can lead to various physio-
logical and mental health problems. Sleep experts identify two major stages of wakefulness
and sleep, with sleep further subdivided into light sleep, deep sleep, and rapid eye move-
ment (REM) behavior [1]. Good sleep quality is characterized by the deep sleep stage
occupying a relatively high proportion of the sleep duration [2]. Therefore, accurate de-
tection and analysis of sleep stages carry a heavy weight in the general assessment of a
patient’s health. Traditional sleep assessment requires the patient to sleep in a testing room
while wearing a set of sensors collecting physiological data of different modalities, such as
electroencephalograms (EEG), electrocardiograms (ECG), and electromyographs (EMG).
A typical recording time is eight hours. The physiological data are manually analyzed
(scored) offline by at least two qualified assessors identifying sleep stage intervals and
sleep anomalies indicating possible sleep disorders. The sleep scoring procedure follows
the American Academy of Sleep Medicine [3] or the Rechtschaffen and Kales [4] standards.
It is costly, time-consuming, and requires highly qualified human resources [5]. Therefore,
despite their importance, sleep diagnosis centers have limited availability. A solution to
this dilemma could be given by an automatic sleep scoring algorithm that can automatically
analyze the multimodal recordings and identify sleep stages and sleep disorders [6].

Early sleep scoring studies have exhaustively analyzed feature-based approaches
and classical classifiers such as the support vector machine (SVM), random forest (RF), or
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artificial neural networks (ANNs); for example, Ref. [7] reviewed sleep stage classification
systems using ANNs. The performance varied depending on the recognized stages. A
comparative study was presented in [8] that aimed to identify the most effective features
and the most efficient algorithm to classify sleep stages. An accuracy of 98% was reported.
In [9], a single EEG channel was used to identify optimal machine learning (ML) and
feature extraction. Spectral linear features and an RF classifier led to the best classification
performance, while ensuring real-time online processing. An extensive review of the
current literature on automated sleep scoring can be found in [10,11].

Although systematic research progress towards automatic sleep classification has been
observed for almost two decades, the recent advancement in machine learning technology
offered a leap into new and exciting opportunities for designing highly effective sleep
diagnosis algorithms. The majority of recent sleep scoring studies investigate single-label
cases where the algorithm has a task to identify either the sleep stage or the sleep disorder
modality. This task is predominantly conducted using single-modality data, most often
EEG. There is also an emerging line of research where the scoring is derived from multiple
modalities such as EEG and ECG. We refer to these methods as multimodal. Only a small
number of papers challenged the simultaneous sleep stage and sleep disorder recognition
task. We refer to these methods as multilabel. Limited studies have been published on the
combination of multimodal- and multilabel sleep techniques.

An example of a single-modality sleep stage classification approach is given in
Kim et al. [12]. The heart rate variability (HRV) signals were classified to identify three
sleep stages (wake, light sleep, and deep sleep). After denoising, the fractal property feature
of the HRV signals led to a 72% classification accuracy using pairwise correlation analysis.
Another example is available in Fernández-Varela et al. [13], who used two EEG, one EOG,
and two EMG channels to detect five sleep stages. An assembly of five CNNs, one for each
modality, was used to classify the input time waveforms. Validation results based on the
Sleep Heart Health Study (SHHS) [14,15] resulted in an F1 score of 0.76. Phan et al. [16]
used spectrogram features and a multitask CNN to detect the five classes of sleep stages.
The Sleep EDF database [17,18] was used to detect five sleep stages. Accuracies of 82% to
83% were reported using the Sleep EDF database [17,18]. Rui et al. [19] used a multitask
2D-CNN to detect five sleep stages based on the time series features. A testing accuracy of
85% was achieved using the SHHS [14,15] and Sleep-EDF [17,18] data.

While there is a relatively large body of research on sleep stage detection, research
into sleep disorder classification has resulted in a smaller number of publications. Zhuang
and Ibrahim [20] developed a multi-channel Deep Learning (DL-AR) model where a set
of CNNs was applied to six channels of raw signals of different modalities, including
three channels of EEG (electroencephalogram) signals and one channel each of EMG
(electromyogram), ECG (electrocardiogram), and EOG (electrooculogram) signals. The
model was tested on the PhysioNet CAP Sleep database [18,21], yielding specificity and
sensitivity scores of around 95% for eight sleep disorders. Sharma et al. [22] used wavelet-
based features extracted from EOG and EMG signals to identify six sleep disorders from the
PhysioNet CAP Sleep database [18,21]. The Hjorth transform parameters were classified
using ensemble bagged trees, resulting in a testing accuracy of 94.3%.

1.1. Paper Contributions

Current multimodal sleep classification methods have a single-label character, i.e., the
combined modalities are used to classify either a sleep stage or a sleep disorder. To our
knowledge, our experiments are the first attempt to conduct a simultaneous multimodal-
and multilabel classification of sleep data. There are no similar studies classifying sleep
data on such a large scale, which includes six sleep stages, eight sleep disorders, and three
data modalities (EEG, ECG, and EMG). This paper presents one of the first research studies
in this area. To accomplish such a vast task, we introduce a new Multimodal and Multilabel
Decision-Making System (MML-DMS) consisting of multiple interconnected classifiers
identifying either the sleep stage or the sleep disorder from different sensor modalities. The
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information generated by these classifiers is then passed to two decision-making neural
networks: one to identify the sleep stage and the other to identify the sleep disorder.
The proposed method is tested by simultaneously identifying six sleep stages and eight
sleep disorders from three different sensor modalities using the PhysioNet CAP Sleep
database [18,21]. Despite the significant complexity of this task, the system offers a high
performance that can be largely attributed to its distributed and modular character.

1.2. Paper Structure

Section 2 provides a detailed description of the proposed MML-DMS system for
automatic sleep scoring. Section 3 describes the data and experiments used to validate the
MML-DMS. The results are discussed in Section 4, and the paper is concluded in Section 5.

2. Materials and Methods

2.1. Proposed Multimodal and Multilabel Decision-Making System (MML-DMS)

The MML-DMS is a system of interconnected independent neural network classifiers
or units. The connections are determined by the flow of information between the units.
Each classifier conducts its own individual task and uses a different type or modality of
input data. However, as a whole, the system performs the main task of simultaneous
identification of a sleep stage and sleep disorder. The system modules are relatively simple
in their architectures, can be independently trained in a time- and data-efficient manner,
and can eventually be reused in other similar systems.

In this study, we describe three experiments designed to gradually increase the system
complexity and validate the system components. All experiments have a similar first step:
splitting time waveforms of different modalities into short intervals, transferring each
block into a logarithmic spectrogram array, and converting it into a corresponding color
RGB image. Figures 1–3 illustrate how the MML-DMS concept was developed by gradually
increasing its complexity and changing the interconnections between component modules.
In its final form, as shown in Figure 3, the MML-DMS version, denoted as MML-DMS2,
is a two-level classification procedure. At the first-level, there is an ensemble of six par-
allel CNN classifiers, including three networks classifying the sleep stage (one for each
modality—EEG, ECG, and EMG) and three networks classifying the sleep disorder (one for
each modality—EEG, ECG, and EMG).

Figure 1. Experiment 1: Sleep stage and sleep disorder classification using a baseline approach.
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Figure 2. Experiment 2: Sleep stage and sleep disorder classification using MML-DMS1.

Figure 3. Experiment 3: Sleep stage and sleep disorder classification using MML-DMS2.

The CNNs act as independent evaluators, directly analyzing the physiological data
coming from the sensors. The probability vectors given by all six CNNs are concatenated
and passed to two second-stage decision-making classifiers designed as fully connected
shallow neural networks (NNs). One of the networks is trained to provide the final
identification of the sleep stage and the other to identify the sleep disorder. Both stages
identify the sleep stage and the sleep disorder. The difference is that in the first stage,
each CNN makes decisions based on single-modality physiological data with only one
label representing either the sleep stage or the sleep disorder. In contrast, the second-stage
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NNs use integrated sleep stage and sleep disorder information. Since the first-level CNN
assessors use limited single-modality information, assessment results may vary between
assessors, and their decisions may not always be correct. However, during the second
stage of the classification process, the secondary NN evaluators compensate for the first-
level limitations by using two-dimensional label information and arbitrating between the
primary evaluators to arrive at the final sleep stage and sleep disorder labels.

2.2. Pre-Processing of Multimodal Data

The pre-processing steps followed were consistent across all three data modalities
(EEG, ECG, and EMG). The pre-recorded time waveforms synchronized across modalities
were first transformed to have the same bandwidth of 256 Hz and a sampling frequency of
512 Hz for all three modalities. The time waveforms were then divided into short-duration
blocks to conduct block-by-block processing. Raw data signals sourced from the PhysioNet
CAP Sleep database [18,21] represented at least eight hours of recordings labeled every
30 s with sleep stage- and sleep disorder information. However, when using 30-s non-
overlapping intervals, the number of intervals was insufficient for training CNN models.
Therefore, each 30-s sample was divided into overlapping 10-s intervals with a 1-s stride
between subsequent blocks, resulting in a 90% overlap. The same approach was applied to
all three modalities. Having such a short stride, we could generate a relatively large number
of training data intervals. Since records are labeled sample-by-sample, a given interval was
assumed to have the same label as the corresponding data sample. A two-dimensional
spectrogram array was calculated for each interval.

2.3. Calculation of Amplitude Spectrograms and RGB Images

A two-dimensional amplitude spectrogram array was calculated for each 10 s interval
using the Short-Time Fourier Transform (STFT). It was conducted the same way for all
modalities to facilitate synchronized processing. By comparing the linear and the logarith-
mic frequency scales, it was experimentally determined that the logarithmic frequency scale
led to better classification outcomes. Therefore, the spectrograms were generated using the
logarithmic frequency scale, while the time scale was linear. Finally, the spectrogram arrays
were converted into color RGB images using the “jet” colormap [23]. The color intensity
values of the RGB images were normalized separately for each modality, with the minimum
and maximum values corresponding to the average minima and maxima calculated for all
images representing a given modality. Figure 4 shows examples of the original waveforms
for different modalities and the corresponding RGB images representing different sleep
stages and disorders. The RGB images were used to train the first-level classifiers of the
proposed MML-DMS. Through visual inspection of these images, differences can be ob-
served between the visual patterns for sleep stages and sleep disorders. These differences
are difficult to comprehend by human observers. However, this study shows that CNNs
can learn these differences to provide an automatic classification of sleep data.

It should be noted that the wavelet transform [24,25] is a very interesting alternative
to the STFT. We used the STFT as it could be more efficiently implemented in real-time,
and it is an industry-standard for real-time processing with widely available processing
platforms and tools.
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Nocturnal frontal lobe epilepsy -Sleep Stage S1

Periodic leg movements -Sleep Stage S1

REM behavior disorder -Sleep Stage S1

Sleep-disordered breathing -Sleep Stage S1

ECG EEG EMG

Bruxism -Sleep Stage S1

Healthy -Sleep Stage S1

Insomnia -Sleep Stage S1

Narcolepsy -Sleep Stage S1

Figure 4. Examples of ECG-, EEG-, and EMG time waveforms and the corresponding logarithmic
spectrograms for sleep stage S1 across different sleep disorders.

2.4. CNN Classifiers

The MML-DMS included six CNN classifiers. Each classifier was trained to recognize
either a sleep stage or a sleep disorder from a single modality (EEG, ECG, or EMG). The
sleep stage identification included six categories: wake (W), four sleep levels (from light
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sleep to deep sleep denoted S1, S2, S3, and S4, respectively), and rapid eye movement (R). At
the same time, the sleep disorder identification included eight categories: normal sleep (N),
Bruxism (B), insomnia (I), narcolepsy (Na), nocturnal frontal lobe epilepsy (Nf), periodic
leg movements (P), REM behavior disorder (Rd) and sleep-disordered breathing (S).

The VGG16 architecture was chosen experimentally after evaluating different CNN
classifiers, e.g., Inception-v3, ResNet50, and VGG16 structures, using a single classifier
scenario. From the tested structures, VGG16 offered the highest classification accuracy
at a reasonable computational time. In general terms, the MM-DMS is a modular clas-
sification system concept that can be implemented using different architectures for the
component modules.

For all CNN models, the VGG16 CNN network structure [26,27] was used. It consisted
of thirteen two-dimensional convolutional layers and three fully connected layers. The
activations were rectified using a rectified linear unit (ReLu) activation function, and the
learning rate was set to 0.001. All CNNs were trained from scratch; no transfer learning
was applied. The VGG16 architecture was chosen experimentally after evaluating several
alternative options. The VGG16 structure offered the highest accuracy at a reasonable
computational time.

2.5. Concatenation of Probability Vectors

The final decision-making networks of the MML-DMS were trained on the soft prob-
ability vectors generated by the CNN classifiers. These vectors were concatenated and
passed as inputs to the NNs. For example, given K data categories, M independent CNN
classifiers, and N images, the probability vector generated by the jth CNN (j = 1, . . . , M) for
image i (i = 1, . . . , N) was Pi,j = [pi,j,1, . . . , pi,j,K]. Therefore, the concatenated probability
vectors Ci were given as:

Ci =[pi,1,1, . . . , pi,1,K,

pi,2,1, . . . , pi,2,K,

. . .

pi,M,1, . . . , pi,M,K]. (1)

The concatenated probability vectors and the corresponding “ground truth” data
labels were passed to the decision-making NN. It was trained to provide the final sleep
stage categorization label. The probability merging process required having the same
number of representative images for each modality. Since the available data contained
different numbers of spectrogram images for different modalities (see Table 1), the number
of training images was reduced in order to have the same number of images per modality.
The NN training and testing runs were repeated three times, and the average values of the
performance parameters were calculated.

Table 1. Number of spectrogram images calculated for six sleep stages (W: wake, S1–S4: sleep
sub-stages, and R: rapid eye movement), and three modalities (ECG, EEG, and EMG).

Sleep Stage ECG EEG EMG

R 38002 83345 38002
S1 10405 19326 10405
S2 79338 168825 79338
S3 25229 51083 25229
S4 28179 63765 28179
W 45552 97925 45552

Total 226705 484269 226705
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2.6. Decision-Making Neural Network (NN)

Two shallow NNs have been trained to determine the final decision: one for the final
sleep stage label; and the other for the final sleep disorder label. Both NNs consisted of an
input layer containing 18 nodes, 2 hidden layers, each with 128 nodes, and an output layer
with 6 nodes. The ReLu function was applied to the activations from the input and hidden
layers, and the SoftMax function to the activations from the output layer. To enhance its
performance, the sleep stage detection NN was trained using transfer learning from a
VGG16 network pre-trained on the ECG data, as described in [23]. The sleep disorder NN
on the other hand was trained from scratch, and no pre-training was applied.

2.7. Classical Decision-Making Methods

As shown in Figures 2 and 3, when arbitrating between the outcomes of different
CNN classifiers, the MML-DMS used a shallow decision-making NN. To validate the NN
performance, a comparison was made by replacing the NN with other classical decision-
making approaches, i.e., maximum probability, average probability, and majority voting.

When using the maximum probability method, the final label was assigned to the label
indicated by the largest probability across all CNN classifiers. The majority voting approach
would evaluate the categories suggested by each CNN classifier and make a decision based
on the category that achieved the highest vote. When all assessors disagreed, the maximum
probability criterion was used. The average probability method would average the voting
provided by all CNNs for all categories and choose the category that scored the highest.

2.8. Performance Measures

The assessment of the MML-DMS performance was based on the classification ac-
curacy, precision, recall, and F1 score. Given the true positive (TP), true negative (TN),
false-positive (FP), and the false-negative (FN) classification outcomes, the classification
accuracy was calculated using:

Aclassification =
TP + TN

TP + TN + FP + FN
. (2)

Since the training data were unbalanced across categories, the F1 score was estimated
to indicate how well the classification accuracy was distributed across categories. It was
calculated using:

F1 =
2 · Recall · Precision
Recall + Precision

, (3)

where the recall and precision values were defined as:

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

3. Experiments and Results

3.1. Data Description

The MML-DMS and the baseline approaches were tested using publicly available
sleep data collected by the Sleep Disorders Center of the Ospedale Maggiore of Parma,
Italy, available through the PhysioNet CAP Sleep database [18,21]. It is one of the most
frequently used research databases. This choice was also motivated by the fact that the
data represented recordings from multimodal sensors labeled with sleep stage as well as
sleep disorder. Therefore, it provided a suitable testing bed for simultaneous multimodal-
and multilabel sleep scoring. In addition, the number of available recordings was sufficient
to train deep learning models. The data included synchronized waveforms representing
three sensor modalities (ECG, EEG, and EMG). The total number of participants was 108.
For all participants, the recordings were labeled with six sleep stages: wake (W), sleep sub
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stages (S1 to S4), and rapid eye movement (R). The data also included labels of normal
sleep (N) from sixteen participants, and seven common sleep disorders: Bruxism (B) from
two people, insomnia (I) from nine people, narcolepsy (Na) from five people, nocturnal
frontal lobe epilepsy (Nf) from forty people, periodic leg movements (P) from ten people,
REM behavior disorder (Rd) from twenty-two people, and sleep-disordered breathing (S)
from four people.

Tables 1 and 2 list the numbers of RGB images of spectrograms across three modalities
(EEG, ECG, and EMG) for the sleep stages and sleep disorders, respectively. It can be
observed that the image data were imbalanced across the sleep stage and sleep disorder
categories. For the sleep stage categories, the S2 category was represented by the largest
number of images, followed by the W, R, S4, S3, and S1 categories. For the sleep disorder
categories, the N class was represented by the largest number of images, followed by the I,
Nf, Rd, P, Na, S, and B categories.

Table 2. Number of spectrogram images calculated for eight sleep disorders (N: normal sleep, B: Brux-
ism, I: insomnia, Na: narcolepsy, Nf: nocturnal frontal lobe epilepsy, P: periodic leg movements, Rd:
REM behavior disorder, S: sleep-disordered breathing) and three modalities (ECG, EEG, and EMG).

Sleep Disorder ECG EEG EMG

B 1423 25536 1423
I 18132 125116 18132
N 25599 89244 25599

Na 16764 39350 16764
Nf 58705 74328 58705
P 27330 41544 27330

Rd 67826 67575 67826
S 10926 21576 10926

Total 226705 484269 226705

The EEG recordings included signals collected from sixteen electrodes (P1-P16) placed
on the patient’s head at different positions, as shown in [18,21]. The ECG signals were
collected from two electrodes, ECG1 and ECG2, placed on the patient’s chest, as shown
in [18,21]. The EMG samples included EMG measurements of the submentalis muscle and
bilateral anterior tibial EMG [18,21].

3.2. Training, Validation and Testing Procedures

The MM-DMS modules were trained in a person-independent way. However, all
participants were represented in training and testing data to achieve a fair representation
of person-related diversity. For each participant and for each sleep stage, the data were
split into training/validation (90%) and testing (10%) subsets. These subsets were then
grouped across all subjects into the total training/validation and testing sets for the sleep
stage and sleep disorder classification. The training and testing of the final trained model
procedure was repeated three times, each time using different training/validation and
testing subsets based on the three-fold cross-validation technique. The classification results
were calculated as an average of these three repeats. The experiments were conducted
using the Python programming platform with 90% of the training/validation dataset used
to train the model hyperparameters and 10% of the training/validation dataset to perform
validation of the training process. The hyperparameters are summarized in Table 3.

The MML-DMS is a modular system of neural networks. At the first level of clas-
sification, we have convolutional neural networks (CNNs), and at the second level, we
have shallow perceptron neural networks (NNs). Each network was trained independently
using standard neural network training algorithms and the same set of ground truth labels
(either sleep stage or sleep disorder depending on the classification task). There was no
external optimization loop with an objective function for the whole system.
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For the CNNs, the objective function was the standard cross entropy loss, CE, be-
tween the ground truth probabilities p(x) and network output probabilities q(x), where x
represents the training data vectors.

CE = −∑
x

p(x) log q(x) (6)

The optimization method used was stochastic gradient descent (SGD). For the shallow
NNs, the objective functions and the optimization methods were the same as for CNNs,
and both levels of classification used the same ground truth labels given either by the sleep
stage or sleep disorder categories of the PhysioNet CAP Sleep database. The difference was
that the first-level classifiers (CNNs) were trained on physical data from sensors, whereas
the second-level decision-making NNs were trained on the metadata given as probability
vectors generated by the first-level CNNs.

After training each of the CNNs, the output probabilities can be saved and used to
train the shallow decision-making NNs. Unlike the CNNs, which classify using only a
single label—either sleep stage or sleep disorder—the NNs have the advantage of making
the decision based on information provided by both sleep stage and sleep disorder labels.

Table 3. Hyperparameters for the VGG16 CNNs and the Shallow NNs.

Parameters CNN DM-Shallow NN

Optimization SGD * SGD *
Initial learning rate 0.001 0.001

Batch size 10 3
Maximum epochs 100 10

Early Stopping Yes Yes
* Stochastic Gradient Descent.

3.3. Experimental Framework

To highlight the advantages of the MML-DMS and how it compares to baseline
methods, three sleep stage and sleep disorder classification experiments were conducted.
We started with a basic Experiment 1, testing the baseline CNN classifiers working with
a single modality. In Experiment 2, we moved to a simplified form of the MML-DMS
(denoted MML-DMS1) where there was no fusion of the sleep stage and sleep disorder
information. Finally, we progressed to Experiment 3, where the sleep stage and sleep
disorder information was fused at the final decision-making stage of the fully developed
version of the MML-DMS (denoted MML-DMS2).

3.4. Experiment 1

In this experiment, a simple baseline system shown in Figure 1 was created with
six CNNs working in parallel to classify either sleep stage or sleep disorder based on
single-modality data (EEG, ECG, or EMG). No fusion of information was applied. The
resulting classification accuracy and F1 scores are presented in Table 4, and the examples of
confusion matrices are shown in Figure 5.

Table 4. Experiment 1: Classification results for the baseline single-modality CNN classifiers.

Sleep Stage Classification Sleep Disorder Classification
Modality Accuracy (%) F1-Score Accuracy (%) F1-Score

ECG 57.85% 0.50 93.74% 0.95
EEG 54.89% 0.43 79.21% 0.79
EMG 51.40% 0.40 74.91% 0.74
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(a) (b)

(c) (d)

(e) (f)
Figure 5. Experiment 1: Examples of confusion matrices for sleep stage and sleep disorder detection
using baseline single-modality CNN classifiers: (a) ECG Sleep Stage detection confusion matrices;
(b) ECG Sleep Disorder detection confusion matrices; (c) EEG Sleep Stage detection confusion
matrices; (d) EEG Sleep Disorder detection confusion matrices; (e) EMG Sleep Stage detection
confusion matrices; (f) EMG Sleep Disorder detection confusion matrices.

A comparison between sleep stage and sleep disorder detection shows that sleep
disorder identification shows more than 20% higher accuracy and F1 scores than sleep
stage detection. While the sleep stage accuracy ranges between 51.4% and 57.85% and the
F1 scores from 0.4 to 0.5, for the sleep disorder, it is between 74.91% and 93.74% for the
classification accuracy and between 0.74 and 0.95 for the F1 scores. Similarly, the confusion
matrices for sleep disorders show very clear diagonal patterns due to an even distribution
of high accuracy across sleep disorder categories. Firstly, it could indicate that there are
more distinct differences between spectral patterns of sleep disorders compared to that of
sleep stages. Secondly, the data imbalances could play a less significant role in the training
of disorder models than sleep stage models.

A comparison between different modalities shows that for both types of labels—sleep
stage and sleep disorder—ECG signals show the highest performance, i.e., 57.85% accuracy
for sleep stage and 93.74% for sleep disorder, followed by mid-performing EEG signals
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and finally by the lowest-performing EMG signals. It appears that ECG signals alone could
be efficiently used to determine the sleep disorder. However, the sleep stage recognition
scores were very low. Therefore, we needed to investigate ways of improvement to see if
information fusion could be used to boost the sleep stage recognition accuracy.

3.5. Experiment 2

In this experiment, we test a simplified version of the MML-DMS denoted as MML-
DMS1. As shown in Figure 2, it includes two levels of classification. At the first level, there
are six CNN models. Three of these models are trained to identify sleep stages using only
single-modality data (EEG, ECG, or EMG), and the other three to identify sleep disorders
also using only single-modality data (EEG, ECG, or EMG). The probability vectors from
the sleep stage classifiers are then concatenated and passed to the shallow NN (Sleep Stage
Decision-making NN) trained to make the final sleep stage decision. At the same time, the
probability vectors from the sleep disorder CNNs are concatenated and passed to another
shallow NN (Sleep Disorder Decision-making NN) trained to decide the final sleep disorder
label. The final decisions are made using a single-label approach since there is no fusion of
sleep disorder information with sleep stage information.

The MML-DMS1 system allowed us to compare the multimodal information fusion
with the single-modality approach used in Experiment 1. The MML-DMS1 accuracy and F1
scores are presented in Table 5.

Table 5. Experiment 2: Classification results for MML-DMS1 with different final decision-making
(DM) methods (MP: maximum probability; MV: majority voting; AP: average probability; PT-Shallow
NN: pre-trained NN; Shallow NN: trained-from-scratch NN).

Sleep Stage Classification Sleep Disorder Classification
DM-Methods Accuracy (%) F1-Score Accuracy (%) F1-Score

Shallow NN 73.42% 0.73 98.93% 0.99
PT-Shallow NN 91.06% 0.90 N/A N/A

MP 65.09% 0.56 97.07% 0.97
MV 62.25% 0.52 94.27% 0.91
AP 42.21% 0.35 54.59% 0.53

At the same time, examples of confusion matrices are shown in Figure 6(a) and (b) for
the sleep stage- and sleep disorder detection, respectively.

(a) (b)
Figure 6. Experiment 2: Examples of confusion matrices for (a) sleep stage using MML-DMS1 with
pre-trained NN and (b) sleep disorder detection using MML-DMS1 with trained-from-scratch NN.

To determine the efficiency of NN-based decision making in comparison with other
classical decision-making techniques, we have compared it with the maximum probability

33



Sensors 2023, 23, 3468

(MP), majority voting (MV), and average probability (AP) methods. These methods were
applied within the MML-DMS structure at the second level of classification by replacing the
shallow NN. The first-level CNNs remained unchanged. The results are listed in Table 5. In
the case of sleep stage classification, the shallow NN trained from scratch did not perform
very well, showing only 73.42% accuracy (Table 5). Therefore, a pre-trained shallow NN
(PT-Shallow NN) was applied to improve the performance. In the case of sleep disorder,
no pre-training of the NN was used since the trained-from-scratch NN already provided
high accuracy.

It can be observed from Table 5 that the MML-DMS1 clearly outperformed the single-
modality classification tested in Experiment 1. However, the sleep stage detection im-
provement was more significant than for the sleep disorder. The sleep stage detection
achieved 91.06% accuracy, improving upon the single modalities by about 30% to 40%,
whereas the sleep disorder classification achieved 98.93% accuracy, improving upon the
single modalities by about 6% to 20%. A clear improvement was also observed for the
F1 scores and the confusion matrices, indicating that the multimodal approach is more
robust to the data imbalances across categories. Specifically, the examples of confusion
matrices for the sleep stage, as shown in Figure 6, show a much stronger diagonal pattern
of high classification accuracy for individual categories than the single-modality confusion
matrices shown in Figure 5.

Based on the outcomes of Experiment 2, it can be concluded that the fusion of mul-
timodal information led to the improvement of the classification results. The classifi-
cation of sleep stages was somehow more challenging and led to slightly lower results
than the classification of sleep disorders. The shallow NN outperformed other classical
decision-making approaches.

3.6. Experiment 3

In this experiment, we tested a full version of the MML-DMS denoted as MML-DMS2.
It represents a multimodal as well as a multilabel approach. As shown in Figure 3, it
includes two classification levels. As for the MML-DMS1, at the first level, three CNN
models are trained to identify sleep, each model using only single-modality data (EEG,
ECG, or EMG). Similarly, three other CNN models are trained to identify the sleep disorder
from single-modality data (EEG, ECG, or EMG).

The probability vectors from all sleep stage classifiers and all sleep disorder classifiers
are then concatenated and passed to the shallow NN (Sleep Stage Decision-making NN)
trained to make the final sleep stage decision as well as to another shallow NN (Sleep
Disorder Decision-making NN) trained to decide the final sleep disorder label. Unlike
in MML-DMS1, the final decisions in MML-DMS2 are made using both multimodal and
multilabel approaches, which means that in addition to fusing the multi-sensor infor-
mation (EEG, ECG, and EMG), the sleep disorder information is fused with the sleep
stage information.

The implementation of MML-DMS2 allowed us to compare the combined multimodal
and multilabel information fusion with the single-modality approach used in Experiment
1. In addition, we could investigate the effect of adding the multilabel fusion to the
multimodal approach (MML-DMS1) used in Experiment 2.

The MML-DMS2 accuracy and F1 scores are presented in Table 6. At the same time,
the examples of the confusion matrices are shown in Figure 7(a) and (b) for the sleep stage-
and sleep disorder detection, respectively. Like in Experiment 2, the shallow NN trained
from scratch did not perform very well, giving only 84.89% accuracy (Table 6). Therefore,
a pre-trained shallow NN (PT-Shallow NN) was applied to improve the system. No pre-
training of the NN was applied for sleep disorder detection since the trained-from-scratch
NN already led to high accuracy.
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Table 6. Experiment 3: Classification results for MML-DMS2 using a shallow decision-making NN
(PT-Shallow NN: pre-trained NN; Shallow NN: trained-from-scratch NN).

Sleep Stage Classification Sleep Disorder Classification
DM-Methods Accuracy (%) F1-Score Accuracy (%) F1-Score

Shallow NN 84.89% 0.77 99.09% 0.99
PT-Shallow NN 94.34% 0.92 N/A N/A

(a) (b)
Figure 7. Experiment 3: Examples of confusion matrices for (a) sleep stage using MML-DMS2 with
pre-trained NN and (b) sleep disorder detection using MML-DMS2 with trained-from-scratch NN.

Table 6 shows that the MML-DMS2 achieved 94.34% accuracy for the sleep stage
detection and 99.09% for the sleep disorder detection. It shows an improvement upon the
MML-DMS1 of about 4% for the sleep stage and of 1% for the sleep disorder.

A clear improvement upon the MML-DMS1 was also observed for the F1 scores and
the confusion matrices, indicating that the combined multimodal and multilabel approach
is even more robust to the data imbalances across categories. The examples of confusion
matrices for the sleep stage, as shown in Figure 7, have very high classification accuracy
for individual categories compared to the single-modality confusion matrices shown in
Figure 5.

Based on the outcomes of Experiment 3, it can be concluded that the combined
multimodal and multilabel information leads to an improvement in comparison with the
multimodal approach and also in comparison with the single-modality baseline. The
classification of sleep stages was more challenging and led to slightly lower results than
the classification of sleep disorders.

4. Discussion

Figure 8 shows bar graphs summarizing the outcomes of this study. In Figure 8(a)
and (c), the classification accuracy is presented for the sleep stage- and sleep disorder
classification, respectively, while Figure 8(b) and (d) show the corresponding F1 scores.
Each bar corresponds to a different classification approach tested in our experiments.

In Figure 8(a) and (b), pertaining to the sleep stage recognition, ten approaches are
listed, including three single-modality and single-label baseline classifiers (ECG CNN,
EEG CNN, and EMG CNN), five versions of the MML-DMS1 system each with a different
decision-making method (MML-DMS1 MP, MML-DMS1 MV, MML-DMS1 AP, MML-DMS1
NN, and MML-DMS1 PT-NN), and two versions of the MML-DMS2—one with the trained
from scratch NN (MML-DMS2 NN) and the other with the pre-trained NN (MML-DMS2
PT-NN).

In contrast, in Figure 8(c) and (d), pertaining to the sleep disorder recognition, we only
have eight approaches, including three single-modality and single-label baseline classifiers
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(ECG CNN, EEG CNN, and EMG CNN), four versions of the MML-DMS1 system each
with a different decision-making method (MML-DMS1 MP, MML-DMS1 MV, MML-DMS1
AP, and MML-DMS1 NN), and one version of the MML-DMS2 with the NN trained from
scratch (MML-DMS2 NN).

(a) (b)

(c) (d)

Figure 8. Comparison between all sleep stage and sleep disorder classification methods tested in
this study: (a) Accuracy (%)—Sleep Stage Recognition; (b) F1 Score (%)—Sleep Stage Recognition;
(c) Accuracy (%)—Sleep Disorder Recognition; (d) F1 Score (%)—Sleep Disorder Recognition.

The experiments demonstrated a clear advantage of combining not only the multi-
modal but also the multilabel information. It was confirmed by the highest performance
resulting from the MML-DMS2 approach, which outperformed all other techniques and led
to a 94.34% classification accuracy for the sleep stage recognition and 99.09% for the sleep
disorder recognition. The F1 scores and the confusion matrices were also consistently high,
showing that the proposed modular system of networks has the capacity to compensate
for the training data imbalance and give uniformly high recognition accuracy across all
data categories. The second-best performance was achieved by the MML-DMS1 method
offering a fusion of modalities but not the labels. It led to slightly lower classification
accuracy values, i.e., 91.06% for sleep stage and 98.93% for sleep disorder classification. The
highest difference was observed for the least-performing single-modality and single-label
techniques. The CNN classifiers using EEG or EMG signals alone achieved around 51% to
55% accuracy for the sleep stage and about 75% to 79% for the sleep disorder recognition.
Interestingly, ECG signals alone performed exceptionally well, yielding a 93.74% accuracy
for the sleep disorder but only 57.85% for the sleep stage recognition. The F1 scores and
the confusion matrices corresponding to the single-modality methods were also consis-
tently low, showing that a single CNN classifier cannot compensate for the training data
imbalance.

One of the advantages of the MML-DMS is its distributed and modular character
making it very versatile. The component modules are independent classifiers. Each of
these classifiers uses a different combination of the input data and type of labels. The
connections and data flow between modules determine the final output. It allows for either
fusion or separation of specific data. Therefore, the system modules can be assembled
in many different ways, and the trained units can be stored and reused depending on
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the task. It also means that the system can be trained with much less data, time, and
lower hardware requirements compared to the large multi-branch stacked neural network
structures frequently used in multimodal or multilabel problems.

One of the key factors leading to the overall high performance of the MML-DMS
is the use of a shallow NN trained to arbitrate between the outcomes of an assembly of
assessors (CNNs working with the single-modality data). As shown in our experiments, it
outperforms other frequently used approaches, such as the maximum probability, majority
voting, or average probability approaches. Each of these techniques makes certain arbitrary
assumptions about how to judge the assessors. In contrast, this NN is free of such assump-
tions and learns directly from the data how to compensate for the potential mistakes made
by the assembly of assessors.

Finally, we would like to compare the consistency of our results with other related
studies. The majority of related multimodal classification methods have a single-label char-
acter, i.e., the combined modalities are used to classify either sleep stage or sleep disorder.
Our experiments show one of the first attempts to conduct a simultaneous multimodal and
multilabel classification of sleep data. Due to the lack of similar approaches, we present
two separate tables. Table 7 shows a comparison with related sleep stage recognition
studies, whereas Table 8 shows a comparison with sleep disorder classification works.
We can see that for the sleep stage classification case, both of our methods outperform
the best-performing study [19] by 6% (MML-DMS1) to 9% (MML-DMS2). Note that [19]
classified five sleep stage categories, whereas our approach used six categories. Similarly,
in sleep disorder classification, our approach outperformed the best results of [20] by 4%
(MML-DMS1 and MML-DMS2).

Table 7. A comparison with related multimodal sleep stage classification studies.

Authors Database Modality Classes Features Method Accuracy (%)

Kim et al.
CAP ECG, HRV 2 DFA * alpha

k-fold cross
73.6%(2017) [12] validation

(k = 13)

Fernández-
SHHS

EEG
5 Time series 1D-CNN 78%Varela et al. EOG

(2018) [13] EMG

Phan et al. Sleep EDF EEG, EOG 5 Spectrogram Multi-task CNN 82.3%(2019) [16] SHHS

Rui et al. Sleep EDF EEG, EOG, 5 Time series Multi-task 85%(2021) [19] EMG, ECG 2D-CNN

This study CAP EEG, ECG, 6 Log MML-DMS1 91.06%
EMG Spectrogram MML-DMS2 94.34%

* Detrended Fluctuation Analysis.

Table 8. A comparison with related multimodal sleep disorder classification studies.

Authors Database Modality Classes Features Method Accuracy (%)

Zhuang et al. CAP EEG, EMG, 8 Spectrogram DL-AR 95%(2022) [20] ECG, EOG

Sharma et al. CAP EOG, EMG 6 Hjorth Ensemble 94.3%(2022) [22] parameters Bagged Trees

This study CAP EEG, ECG, 8 Log MML-DMS1 98.93%
EMG Spectrogram MML-DMS2 99.09%
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5. Conclusions

In this study, we investigated the simultaneous recognition of six sleep stages and
eight sleep disorder conditions from three different sensor modalities: EEG, ECG, and
EMG. We proposed a new multimodal and multilabel classification system (MML-DMS).
The classification outcomes derived separately for each modality by a parallel set of CNNs
identifying either sleep stages or sleep disorders were fused and passed to a shallow NN to
make the final decision. The system was validated using the PhysioNet CAP Sleep database
and achieved 94.34% classification accuracy for sleep stage recognition and 99.09% for sleep
disorder recognition.

It has to be noted that the experimental testing setup presented in this study was
limited to a closed-set scenario, where the training and testing sets of samples were mutually
exclusive. However, both sets represented the same groups of patients. Future research
will test if the system can be generalized to accurately categorize data from patients unseen
in the training process.

We demonstrated that the fusion of multimodal and multilabel information signifi-
cantly improves classification outcomes compared to single-classifier and single-modality
methods. Most significantly, the MML-DMS improved not only the overall classification
accuracy but also the confusion matrices, leading to a uniformly high classification accuracy
across all data categories. It effectively canceled out the detrimental effect of class imbalance
that crippled single-modality performance. A comparison with related studies shows a
significant improvement upon existing state-of-the-art techniques.

The study provided a proof of concept for simultaneous multimodal and multilabel
scoring using the MML-DMS method. Due to the high complexity of the multimodal and
multilabel task, MML-DMS was validated on a single database using a single type of CNN
and shallow NN structure. Future research will investigate different structures of the CNN
and NN classifiers and validate the proposed approach on different databases. We will
also investigate improvements to sleep stage classification as it was shown to be more
challenging than sleep disorder recognition.
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Abbreviations

The following abbreviations are used in this manuscript:

AP Average Probability
B Bruxism
CAP Cyclic Alternating Pattern
CNN Convolutional Neural Network
DM Decision-making
ECG Electrocardiogram
EEG Electroencephalogram
EMG Electromyogram
EOG Electrooculogram
FN False Negative
FP False Positive
HRV Heart Rate Variability
I Insomnia
MML-DMS Multimodal and Multilabel Decision-making System
MP Maximum Probability
MV Majority Voting
N Normal - no sleep disorder
Na Narcolepsy
Nf Nocturnal frontal lobe epilepsy
NN Neural Network
P Periodic leg movements
PT Pre-trained
Rd REM behavior disorder
R Rapid eye movement
RGB Red, Green, and Blue
S Sleep-disordered breathing
S1-S4 Sleep stages
SGD Stochastic gradient descent
SHHS Sleep Heart Health Study
TL Transfer Learning
TN True Negative
TP True Positive
W Wake
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Abstract: The measurement of respiratory volume based on upper body movements by means of a
smart shirt is increasingly requested in medical applications. This research used upper body surface
motions obtained by a motion capture system, and two regression methods to determine the optimal
selection and placement of sensors on a smart shirt to recover respiratory parameters from benchmark
spirometry values. The results of the two regression methods (Ridge regression and the least absolute
shrinkage and selection operator (Lasso)) were compared. This work shows that the Lasso method
offers advantages compared to the Ridge regression, as it provides sparse solutions and is more robust
to outliers. However, both methods can be used in this application since they lead to a similar sensor
subset with lower computational demand (from exponential effort for full exhaustive search down
to the order of O (n2)). A smart shirt for respiratory volume estimation could replace spirometry in
some cases and would allow for a more convenient measurement of respiratory parameters in home
care or hospital settings.

Keywords: wearables; smart clothing; sensor selection; linear regression; Lasso; Ridge regression;
tidal volume

1. Introduction

Respiratory volumes and respiration-induced movements of the upper body are con-
nected, and there is a desire to determine tidal volumes via surface motions of the human
upper body. Respiration-induced motions were studied as early as 1848 by Sibson et al. [1].
Later, Wade et al. [2] used improved measurement methods and examined the respiratory-
induced movements of the upper body, and recently, Laufer et al. [3] analyzed movement
parameters of the upper body and their correlations with the respiratory volume in detail.

The pioneers who initiated the research field of determining tidal volumes from
upper body movements were Konno and Mead [4]. They investigated the underlying
relationships in more detail and published their first studies in the 1960s. The potential
of such an approach was recognized, and many other studies followed. Unfortunately,
only two measurement methods were able to establish themselves for clinical use and
are still used sporadically today. One of these measurement methods is optoelectronic
plethysmography [5,6]. The underlying principle of optoelectronic plethysmography is an
optical motion tracking system (MoCap). The MoCap system detects respiration-induced
movements on the upper body and determines respiration volumes. The disadvantages of
an optoelectronic plethysmography are the acquisition costs and the complex procedure
of use. It is nevertheless used in very sensitive areas of respiratory monitoring where
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breathing should not be influenced or impeded in any way by the measurement system—
for example, in the respiratory monitoring of premature infants. The second established
method is respiratory inductance plethysmography [7,8]. The respiratory inductance
plethysmography measures respiratory-induced cross-sectional changes on the upper body
inductively and thereby determines tidal volumes. The major disadvantage of respiratory
inductance plethysmography is its reduced measurement accuracy [9].

Therefore, despite all efforts to date, tidal volumes are still determined by respiratory
flow measurement using spirometers [10–12] or body plethysmographs [13–15]. For precise
clinical respiratory flow measurements, patients under investigation must wear a face mask
or breathe through a mouthpiece while the nose is blocked by a nose clip. This can be very
inconvenient, especially for long-term measurements, and can falsify the measurement
results themselves [16,17].

Hence, there remains a need for alternative methods for measuring respiratory vol-
umes using upper body surface motion. A previous study [3] has shown that upper
body movements are in some cases highly correlated with changes in respiratory volumes.
This fact can be utilized for the determination of respiratory volumes via upper body
movements, and some current approaches used inertial measurement units [18–20], others
used strain gauges [21,22] or optical encoder systems, as in belts measuring changes in
circumferences [23–25]. However, a real breakthrough has not been achieved yet despite
the potential of new, improved and miniaturized sensors or sensor technologies [26,27]. In
particular, the miniaturization and increased precision of sensors improves their integration
into garments. In particular, smart shirts are increasingly used in medical diagnostics and
therapy monitoring applications, where high accuracy is required [28–30]. To date, this
has been mostly in the field of cardiovascular monitoring, e.g., heart rate monitoring or
respiratory rate monitoring [19,31–36]. The Hexoskin Shirt (Montreal, QC, Canada) [37] is a
newly launched smart shirt for monitoring vital signs and attempts to determine respiratory
minute volumes in addition to common vital signs. However, various studies [38–40] have
shown that the accuracy of measuring respiratory volumes are still outside the clinically
relevant range.

In the development of new smart shirts, it is crucial to determine the optimal number,
location and type of sensors to employ in the garment. Data from a MoCap system that
tracks respiratory-induced movements at multiple points on the upper body were analyzed
with different methods to select the optimal sensor sets for respiratory volume estimation.
The MoCap system allows for the determination of various movement parameters of
the upper body, such as accelerations, displacements and tilt angles at various surface
points. Furthermore, upper body circumferences and local distance changes between
the points can be determined [3]. These movement parameters can be measured via
corresponding sensors.

In this work, two different regression methods were applied to map different subsets of
displacement parameters, generated from the motion capture system data, to tidal volume.
A preliminary analysis with five subjects indicated already the capabilities of the regression
methods and provided accurate estimates of tidal volume [41]. The regression methods
were exemplarily evaluated in this study on the displacement parameters; however, they
are fully applicable to the other respiration induced motion parameters of the upper body.
Such an analysis is essential to provide confidence in the subset selection for clinical
use. Any approach that selects a small number of optimal sensors from a large set of
sensors can be supported by the Lasso or Ridge regression, which results in a significant
reduction of time and computing power at the cost of some loss in accuracy compared to
an exhaustive search.

2. Materials and Methods

2.1. Measurement Setup

The study was based on the data recorded in Laufer et al. [3], where a motion capture
system (MoCap) (Bonita, VICON, Denver, CO, USA) with nine infrared cameras (VICON
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Bonita B10, firmware version 404) was used to measure the respiratory-induced movements
of the human upper body via 102 highly reflective motion capture markers, attached at
precise locations on a compression shirt. A schematic of the measurement system is shown
in Figure 1. The markers were arranged in 8 different levels, where 48 were located ventrally,
18 laterally and 36 dorsally on the shirt (Figure 2). The highest MoCap marker (collar of the
shirt) was located close to the C6 cervical vertebra and serves as a reference point (level 1).
Since the cervical spine is barely exposed to respiratory movements, the reference marker
can be used together with two other markers along the spine for a movement correction;
non-respiratory movements can be eliminated via these 3 reference markers.

Figure 1. Schematic of the MoCap system. Five of the nine infrared cameras, the compression shirt
with MoCap markers and the representation of the MoCap markers by the Vicon Systems on a screen.
Figure published in [3].

Figure 2. Compression shirt with 102 reflective MoCap markers–ventral view (a) and dorsal view (b).
The markers are arranged in 8 distinct levels. Reference point in dorsal view ((b)—level 1) is the
highest MoCap marker at the neck of the shirt.

As shown in Figure 2, level 2 was approximately located at the level of the thoracic
vertebra T1 and at the level of the clavicula, respectively. Level 3 was at the height of T4,
while level 4 was at the height of T7, caudally underneath the scapula. Level 5 was at the
level of the thoracic vertebra T11, and level 6 was at the height of the lumbar vertebra L1,
just at the caudal end of the arcus costalis. Level 7 was at the level of L3, and level 8 was at
the height of L5. However, these levels are only approximations and were found to vary
depending on the shape of the participants.

Subjects wearing the compression shirt and surrounded by the MoCap cameras per-
formed different breathing patterns while breathing simultaneously through a spirometer
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(SpiroScout and LFX Software 1.8, Ganshorn Medizin Electronic GmbH, Niederlauer,
Germany). The spirometer served as a reference for tidal volume measurement. Flow and
volume data were measured with the spirometer at a sampling frequency of 200 Hz. To
reduce the dataset slightly, the sampling frequency was set to 40 Hz for the MoCap system.
The MoCap system provided the spatial positions of all markers at each time point of the
measurement, which were transferred via VICON Nexus software (version 1.8.5.6 1009h,
Vicon Motion Systems Ltd., Denver, CO, USA) to MATLAB (R2022a, The MathWorks,
Natick, MA, USA) for subsequent calculations.

During measurements, subjects sat as shown in Figure 3. To reduce non-respiratory
movements of the upper body, the spirometer was attached to a rigid holder at the level of
the subject’s mouth. In this way, movements of the head and upper body were minimal, and
the movement data obtained were almost entirely respiratory movements. Additionally, the
subjects could rest their arms on that holder. This posture improved the optical detection
of lateral markers in MoCap system and was more comfortable as reported by the subjects.
To enhance marker detection, the subjects were asked to tie up long hair during the
measurement.

 
Figure 3. Measurement setup: A subject wearing the compression shirt with MoCap markers,
breathing through the spirometer, which was fixed on the rigid mount and surrounded by the MoCap
cameras. Figure published in [3].

2.2. Participants and Respiratory Manoeuvres

Ethical approval for this study was obtained from the University of Canterbury Ethics
Committee HEC 2019/01/LR-PS and the Furtwangen University Ethics Committee. It
was ensured that all measurements were performed in accordance with the principles
of the Helsinki Declaration and that subjects were fully informed about the study prior
to measurement. In addition, the subjects were informed about any risks, even if the
risks associated with these measurements were minor and very unlikely. Signed informed
consent was collected from each subject prior to experimentation. The subjects could stop
the measurement at any time if they felt the slightest discomfort.

Participants were recruited via an email to the students of the Furtwangen University.
Inclusion criteria included lung healthy students. Exclusion criteria included known lung
disease, pregnant women and subjects aged under 18.
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Three women and thirteen men participated in the measurements. The average height
of the subjects was 1.76 ± 0.02 m, the average age was 25.7 ± 2.2 years and the average
weight was 69.4 ± 2.0 kg. Further details are listed in Table 1.

Table 1. Details of the Participants. Table published in [3].

Subject Height/[m] Weight/[kg] BMI/[kg/m2] Age/[years] Gender

1 1.84 75 22.15 18 male
2 1.72 65 21.97 19 female
3 1.70 56 19.38 26 male
4 1.67 57 20.44 18 female
5 1.83 78 23.29 30 male
6 1.75 70 22.86 32 male
7 1.79 75 23.41 53 male
8 1.74 63 20.81 20 male
9 1.70 68 23.53 24 male
10 1.82 73 22.04 30 male
11 1.74 81 26.75 31 male
12 1.73 67 22.39 19 male
13 1.71 60 20.52 23 male
14 1.68 66 23.38 21 female
15 1.88 75 21.22 20 male
16 1.83 82 24.49 28 male

The subjects took different tidal volumes in order to capture as much of the respiratory
spectrum as possible. For this purpose, the subjects reduced their breathing activity to
a minimum and breathed shallow breaths. Afterwards, the subjects increased the tidal
volume beyond the volume of normal spontaneous breathing (but not to the maximum),
thus taking medium breaths, and finally, they breathed in and out as far as possible
(maximal breaths). As shown in Table 2 and Figure 4, each of these breathing patterns was
performed for approximately one minute.

Table 2. Performed respiratory patterns. Table published in [3].

Pattern Number Duration [s] Breathing Pattern

1 30 spontaneous breathing (normal)
2 60 shallow breathing
3 30 spontaneous breathing (normal)
4 60 medium breaths
5 30 spontaneous breathing (normal)
6 60 maximal breaths
7 30 spontaneous breathing (normal)

Figure 4. Respiratory patterns shown based on spirometer volume data from subject 5. Breathing of
different tidal volumes—shallow (2), medium (4) and maximal breaths (6) between short ranges of
normal spontaneous breathing ((1), (3), (5) and (7)). Figure published in [3].
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Before and after each breathing pattern, subjects performed 30 s of normal spontaneous
breathing to relax and to avoid risk of hyper/hypoventilation. The total measurement time
was approximately 5 min, but the exact timing depended on the subject’s breathing rhythm.

2.3. Data Processing

Motions of the MoCap markers were dimensionally reduced to their major axis using
the methods of Laufer et al. [42], as they move predominantly on a specific line (Figure 5).
By projecting the marker movements onto their major axis of movement, the dimension of
the MoCap data was reduced by a factor of three.

Figure 5. Spatial movement of the MoCap markers on the compression shirt (a) during shallow
breathing (b), normal spontaneous breathing (c), medium breaths (d) and maximal breaths (e),
illustrated based on the data of subject 5. The MoCap markers move predominantly on a specific line,
which are illustrated in (e) as red dashed lines. Figure published in [3].

The resulting position changes of all MoCap markers were presented in matrix form
(AL). Two different regression methods (solving AL x = vspiro) allowed for selection of
optimal marker subsets of m markers. The performances of these subsets was compared
with the best marker subset obtained from an exhaustive search of all possible combinations
of m markers.

The analysis of all possible combinations is a computationally demanding and time-
consuming process. However, unlike other methods that can only imply the optimal set
based on probabilistic principles, the analysis of all possible combinations provides the
best possible and thus optimal set of markers for the determination of the tidal volume.
The number (N) of all combinations with k markers out of a set of n markers is given by:

N =

(
n
k

)
=

(
102

4

)
≈ 5 × 106,

N =

(
n
k

)
=

(
102

5

)
≈ 8 × 107

or

N =

(
n
k

)
=

(
102

6

)
≈ 1.4 × 109

(1)
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Apart from the analysis of all combinations, regression techniques allowed for faster
selection of optimal markers/sensor locations. The first regression technique used was
Ridge regression [43], which used a Tikhonov regularization term. Ridge regression
finds the argument that minimizes both model error and parameter-squared magnitude
(Equation (2)):

xopt,R = [x1, . . . xm]
T
opt,R = argmin

x

(∥∥ALx − vspiro
∥∥

2 + α‖x‖2

)
(2)

where m is the number of chosen parameters and α is the regularization factor of the
Tikhonov regularization term αǁxǁ2.

For each parameter/MoCap marker of AL, an argument of x was determined. The
value of the respective x corresponds to the significance of the parameter/the information
content of the parameter with respect to the overall system. To reduce the marker set from
n = 102 to m markers, the markers that were assigned the m highest absolute values of x

were selected, because they carried the highest respiratory information of vspiro.
The second regression method used was the least absolute shrinkage and selection

operator (Lasso) [44], which provided a sparse solution for x, and solved:

xopt,L = [x1, . . . xm]
T
opt,L = argmin

x

(∥∥ALx − vspiro
∥∥

2 + λ‖x‖1

)
(3)

where m is the number of chosen parameters, and λ is the regularization factor of the
penalty term of the regularization λǁxǁ1.

By a suitable selection of λ, the number of resulting MoCap markers was reduced to
m. For comparison, the value of the (Lasso) regularization factor λ was also assigned to the
regularization factor α (Ridge).

To increase the significance of this comparison, a bootstrapping resampling procedure
was used. Using 16 data sets might be sufficient, but the additional bootstrapping resam-
pling procedure provides more robust evaluation and reduces the relevance of outliers
in the data. Hence, for m = 4 and m = 5, 250 random data segments (of random length)
were selected from each of the 16 datasets, on which the analysis was performed separately.
To obtain the corresponding data segments, two integer values from a discrete uniform
distribution (randi function of MATLAB) were used as boundaries of the data segment.
For m = 6, the number of bootstrapping steps/resampling was reduced to 50 due to time
constraints. The analysis was done on a personal computer with a 12th Gen Intel (R) Core
(TM) i7-12700K processor with 3.61 GHz (Intel Corporation, Santa Clara, CA, USA) and
64.0 GB RAM (Corsair Gaming Inc., Fremont, CA, USA).

Three MoCap markers along the spine (including the reference marker in the neck)
were added to the marker set of m markers, chosen by the different approaches. These three
MoCap markers/sensors can be used to compensate for non-respiration related movements,
such as bending or twisting the upper body.

The final set of m + 3 MoCap markers provided by each method allowed for the
calculation of the inspiratory volume:

vm+3 = AL·xopt (4)

In each bootstrapping step, the target number of markers was selected for each of the
three different approaches, which yielded a minimal volume error of vm+3 with respect to
vspiro. The number of selected markers was according to the size of the targeted subsets
of m = 4, m = 5 or m = 6 markers. Each time a MoCap marker was selected (amongst all
subjects) the marker was noted. The number of times each marker occurs in all 16 subjects
in the selected sensor is analyzed. Finally, the m markers with the highest notation amongst
all bootstrapping steps and subjects were selected as most valuable MoCap markers.
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3. Results

For all subjects, each of the 250 (respectively, 50 in a case of subsets of 6 sensors) random
segments of measured data during bootstrapping was used to calculate the disparity
between the volume estimations from the optimal models from the 3 methods and the
gold standard vspiro measurement. The resulting errors are illustrated in the box plot
shown in Figure 6. The mean values of λ respectively α are given in Table 3. Based on a
random data segment of 60 s, a computation time comparison of the three methods was
performed, showing the time savings of the Lasso and Ridge regression regarding the
calculation of all possible combinations. This time comparison is listed in Table 4. The
sensor positions determined by the different optimization methods for m = 4, 5 and 6 are
shown in Figures 7–9, respectively. In each figure, the added three datum markers along
the spine are represented as red points while the m optimal locations are indicated in green
dashed ellipses.

 

Figure 6. Box plot of the volume errors of vm+3 for the different approaches related to the spirometer
volume vspiro during bootstrapping. The errors are shown for subsets of 4, 5 and 6 markers for all
16 subjects. The box and whisker plot illustrate the minimum value, 25th percentile, median, 75th
percentile and the maximum value, and the red + signs denote outliers.
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Table 3. Mean values of the regularization factors λ (Lasso). The regularization factor α (Ridge) was
set to the value of λ.

m Mean (λ)

4 0.096
5 0.059
6 0.036

Table 4. Average calculation time required by Ridge regression and Lasso compared to the average
time needed to analyse all combinations based on random data segments of 60 s.

Average Required Time [s]

m Ridge Regression Lasso All Combinations

4 0.037 0.066 81
5 0.046 0.073 1573
6 0.047 0.112 46,886

Figure 7. Visualization of the best sensor subset of 4 sensors (green dashed ellipses) by the analysis
of all combinations (global optimal subset), Lasso and the Ridge regression–ventral view (top) and
dorsal view (bottom). Red points represent the three datum markers.
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Figure 8. Visualization of the best sensor subset of 5 sensors (green dashed ellipses) by the analysis
of all combinations (global optimal subset), Lasso and the Ridge regression–ventral view (top) and
dorsal view (bottom). Red points represent the three datum markers.

Figure 9. Visualization of the best sensor subset of 6 sensors (green dashed ellipses) by the analysis
of all combinations (global optimal subset), Lasso and the Ridge regression–ventral view (top) and
dorsal view (bottom). Red points represent the three datum markers.
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4. Discussion

The use of optoelectronic plethysmography in clinical practice indicates that there is
a need for alternatives to respiratory flow measurement via spirometers or body plethys-
mographs. A smart shirt to measure respiratory volume could be that alternative, would
provide convenient measurement and could be used in many clinical scenarios—from
sleep apnea monitoring to home care, from respiratory monitoring of comatose patients to
exercise monitoring of competitive athletes.

In this study, we investigated the ability of different regression methods to determine
the optimal, minimal sensor set that yields accurate inspiratory volume estimation. An
optimal method could provide far-reaching support for sensor positioning in smart shirt
development [42]. The performed breathing maneuvers (Table 2 and Figure 4) covered
a broad range of clinically-relevant tidal volumes. Figure 6 shows the error in estimated
tidal volumes of every method. The exhaustive search evaluated all possible combinations
and suggested, consequently, the sensor subset that gave the lowest error. Thus, the
considerable computational cost was able to yield the global optimal subset (assuming the
original marker placement). The errors that occur even for the global optimal subset show
that the tidal volumes of the spirometer vspiro cannot be reproduced exactly with the chosen
number of sensors and limited surface motion information.

In a previous study [45], deviations of tidal volumes measured by an optoelectronic
plethysmography device from vspiro were observed mainly for larger breaths. These devia-
tions might be caused by pressure-induced compressions of the air in the thorax, whereas
these compressions do not influence the flow measurement via the spirometer. These
deviations are exemplarily shown based on the data of subject 15 in Figure 10. Apart from
the maximum deviations, this seems to be mainly an underestimation of volumes, which
could be caused by filtering effects (transfer function).

 
Figure 10. Deviations between the volume obtained by the MoCap system (blue) and the spirometer
(red). Maximal deviations occur at maximal breaths—exemplarily illustrated based on the data of
subject 15.

Expectedly, involving higher number of sensors enhances measurement of tidal vol-
ume and reduces the error (Figure 6), since any added information would improve a
regressive estimation. Due to the bootstrapping process used to artificially expand the data
set, the actual performance may differ slightly from the actual performance. In this respect,
shorter data segments can lead to smaller errors because they typically have fewer diver-
gent trends and features in respiratory curves and can be better fitted to vspiro. Figure 11
shows exemplarily two data segments of random length that were used for analysis during
bootstrapping. It can be seen that shorter data segments have fewer divergent trends and
features. In addition, it can be seen that the volumes determined via the movements of four
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MoCap markers/sensors are highly correlated with vspiro, independent of the method used
for selection of the MoCap markers/sensors.

 

Figure 11. Two randomly selected areas of the data used for analysis during bootstrapping, illustrated
based on the data of subject 5 and for m = 4. The upper part shows the volume curve of the spirometer,
while the lower part shows the corresponding volume obtained by the three different methods.

Overall, the mean errors (Figure 6) of the two regression methods are of similar
magnitude. The Lasso’s mean errors in the case of m = 4 were slightly lower for 14 of the 16
subjects and in case of m = 5 for 13/16 subjects compared to the mean errors of the Ridge
regression. For m = 6, the Lasso’s mean errors were lower in 7/16 subjects and nearly equal
in 5/16 subjects.

While in the Lasso, the value of λ was determined by the number of desired mark-
ers/sensors, the mean error of the Ridge regression can be influenced by the choice of α.
A small α leads to smaller errors of the regression term

∥∥ALx − vspiro
∥∥

2 while a larger
α leads to faster convergence of the calculation. Thus, the choice of α affects the mean
error of the calculation. Since α was assigned the value of λ in this study, a comparison
is possible, but it is only indicative and should not be the decisive criterion for the choice
between the Ridge and Lasso, as a change in the regularization factors may influence the
determined errors.

Interestingly, the Lasso’s mean errors as well as the Ridge’s mean errors were con-
sistently higher than the mean errors of the global optimal set in all cases. Compared to
the Lasso and the global optimal subset, the Ridge regression has higher peak errors and
higher deviations for nearly all subjects. Figure 6 indicates that the Ridge regression is
much more susceptible to yielding outlier high errors than the Lasso regression. The results
of this study are in agreement with the outcomes of Ng et al. [46] since in our case the Lasso
method (L1 norm) also showed clear advantages in terms of errors, robustness and outliers
compared to the Ridge regression (L2 norm). The Lasso approach is known to produce a
sparse solution, prevent overfitting and remain robust to outliers. All these features of the
Lasso method are advantageous when selecting sensors from a sensor set. In particular,
the sparse solution supports the selection of the smallest possible subset, which reduces
complexity, error-proneness and cost. In particular, the Lasso shows tremendous advan-
tages in the investigation of respiration-induced upper body movements. Upper body
movements during respiration show a high correlation with the respiratory volume itself.
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The deeper a subject inhales the more the upper body expands. The high correlations of
the movement parameters with the respiratory volume also imply high correlations of the
respiratory parameters with each other. When the Lasso method is applied to data that are
highly correlated with each other especially, it works well and provides a sparse solution.

The Ridge regression does not necessarily provide sparse solutions; on the contrary the
regression is reducing the difference in the measurement positions and thus complicates the
selection. However, the savings in both time (Table 4) and computational costs compared
to the exhaustive search is considerable. The computational demand is reduced from an
exponential effort for a full exhaustive search down to the order of O (n2) for the regression
methods. Thus, in general, the comparatively light computational burden of the Ridge
regression implies it has its legitimate benefit in some situations.

For a smart shirt as a medical product, an exhaustive search, although computation-
ally intensive, provided significantly lower volume errors while the regressive models
provided more consistent sensor sets. In practice, the maker location from such an analysis
would be fixed and constant across patients. The regressive models could then be used to
produce precise estimations of inspiratory volume. However, if more precise respiratory
measurements were possible, the regression could be adapted to develop an individualized
model for precise and accurate estimations of the inspiratory volume.

While there is general agreement in the optimal positions of MoCap markers/sensors
in a smart shirt across regression methods, the regression methods did not yield exactly
the same positions. It appears that the Ridge regression agrees with the positions of the
best combination slightly more consistently than the Lasso. The positions obtained from
the Ridge regression and exhaustive search are more lateral in the ventral region than the
positions obtained by the Lasso. This is also evident for m = 5 (Figure 8) and m = 6 (Figure 9),
where the Lasso method selects an area for a sensor in the central abdominal region.

When increasing the number of sensors from m = 4 (Figure 7) to m = 5 (Figure 8)
then m = 6 (Figure 9), the previous positioning remains to a large extent consistent, usually
only one marker/sensor is added, and the previous selection (m−1) is preserved. In
particular, the Ridge regression consistently reproduces previously selected positions. The
Lasso method shows small shifts of the previously selected areas. The analysis of all
combinations shows in this respect the biggest differences. The areas selected for smaller m
are only partially preserved for larger m. Some sensors are no longer selected at all. For
example, the dorsal region at m = 5 (Figure 8) is no longer selected when m is increased.
This marker/sensor might be irrelevant due to the three fixed included sensors/datum
markers along the spine.

Since the sensor positions did not differ significantly amongst the evaluated methods,
both regression methods can support the development of smart shirts for respiratory
volume estimation. For larger sensor subsets, the complex and exhaustive search is no
longer possible and methods, such as the Ridge/Lasso, must be used.

There were some limitations in this study. One limitation was that the size of the
shirt led to some error. This was clearly observed between tall and short participants
(Figure 12). In particular, the positions of the markers were in slightly different positions
on the upper body due to the uniform compression shirt and were not exactly in the same
place. However, this error would also occur in a smart shirt, as the shirt is not individually
tailored to the particular subject. Different shirt sizes can limit this error within certain
limits; however, a tight fit of the shirt is essential in this context. Despite this fact, the results
remained within acceptable bounds for these subjects.
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Figure 12. Illustration of variations in anatomical marker positions for subjects of different body
shapes (visualized via subject 3 (left) and subject 1 (right)).

Another limitation was that the shirt could slip on the skin surface during respira-
tion [47]. This error was only observed with very large breaths. Therefore, it represents
a systematic error, which cannot be avoided without disturbing the subject. It would be
possible to reduce the shirt-to-skin movement with a very tight fit of the smart shirt and/or
an adhesive or clinging inner material in the shirt. However, such an approach may not
improve results sufficiently to justify the irritation the subject may feel as a result of the
adhesive. Multiple tissue interfaces exist between the alveoli and the skin surface, and
these shift against each other during respiration. Adding another layer to the skin–shirt
interface seems unlikely to be a confounding factor.

Further measurements with more subjects of different ages and body shapes should
confirm the results of this study and provide better insights into the systematic nature
of sensor selection. With more subjects, a subgroup analysis would also be possible (for
example, to examine the effects of different breathing patterns, such as abdominal or
chest breathing). Most participants in our study were male (13/16) and young adults
(13/16 ≤ 30 years) in the healthy BMI range (15/16). This leads to bias that must be
corrected prior to clinical application. A study with subjects with a lung disease, such as
chronic obstructive pulmonary disease or cystic fibrosis, could provide further insight into
optimal sensor selection. Additionally, extremely lung-sick patients who have only a small
portion of their lung capacity available might be outside the range of tidal volumes covered
by our subjects. In the case of subjects with lung disease, other aspects could play a decisive
role that is not apparent in the case of lung-healthy subjects. In particular, the current
study used subjects who did not have significant asymmetry in their pulmonary filling.
In contrast, individuals with cystic fibrosis or other lung diseases may have significant
asymmetries with respect to the left and right sides of the thorax and abdomen.

5. Conclusions

This study shows that the selection of sensors with linear regression depends on the
regression method itself. The Lasso method is preferable to the Ridge regression because
it provides both more robust and sparser solutions. However, both regression methods
have their justification in this field of application, as they significantly reduce computation
time and effort but with the disadvantage that their performance suffers compared to the
performance of the optimal subset.

Both regression methods can support smart shirt development for respiratory volume
estimation by guiding the type and optimal location of the required sensors. A smart shirt
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for respiratory volume estimation could replace spirometry and would allow for a more
comfortable and long-term measurement of respiratory parameters in homecare or clinic.
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Abbreviations

The following abbreviations are used in this manuscript:

Cx Cervical vertebrae x (1 ≤ x ≤ 7)
Lasso Least absolute shrinkage and selection operator
Lx Lumbar vertebrae x (1 ≤ x ≤ 5)
MoCap Motion capture system
Tx Thoracic vertebrae x (1 ≤ x ≤ 12)
vm+3 Volume obtained via the selected MoCap marker subset of m MoCap

markers and the additional 3 MoCap marker along the spine
vspiro Volume obtained with spirometer
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Abstract: In this paper, a machine learning (ML) approach to estimate blood pressure (BP) using
photoplethysmography (PPG) is presented. The final aim of this paper was to develop ML methods
for estimating blood pressure (BP) in a non-invasive way that is suitable in a telemedicine health-
care monitoring context. The training of regression models useful for estimating systolic blood
pressure (SBP) and diastolic blood pressure (DBP) was conducted using new extracted features from
PPG signals processed using the Maximal Overlap Discrete Wavelet Transform (MODWT). As a
matter of fact, the interest was on the use of the most significant features obtained by the Minimum
Redundancy Maximum Relevance (MRMR) selection algorithm to train eXtreme Gradient Boost
(XGBoost) and Neural Network (NN) models. This aim was satisfactorily achieved by also comparing
it with works in the literature; in fact, it was found that XGBoost models are more accurate than NN
models in both systolic and diastolic blood pressure measurements, obtaining a Root Mean Square
Error (RMSE) for SBP and DBP, respectively, of 5.67 mmHg and 3.95 mmHg. For SBP measurement,
this result is an improvement compared to that reported in the literature. Furthermore, the trained
XGBoost regression model fulfills the requirements of the Association for the Advancement of Medical
Instrumentation (AAMI) as well as grade A of the British Hypertension Society (BHS) standard.

Keywords: blood pressure (BP); digital health; machine learning (ML); physiological monitoring

1. Introduction

Hypertension is a health condition in which blood pressure (BP) at rest is higher than
the physiological standards for a long time. It is one of the most common diseases; in
fact, it affects about 20% of the adult population, representing one of the major clinical
problems, and it is associated with chronic diseases and an increase in mortality and
morbidity. BP is related to the force that blood exerts against the walls of blood vessels due
to the pumping action carried out by the heart and its value depends on various factors.
Moreover, BP is one of the so-called vital signs, also including respiratory rate, heart rate
(HR), oxygen saturation (SpO2), and body temperature, which require adequate monitoring
on the general population.

For this reason, there is the spread of the development of practical and reliable
telemedicine solutions [1–4] to guarantee monitoring at home and at hospital with the aim
of ensuring early identification and prevention of cardiovascular diseases, hypertension,
and other related diseases. As concerns BP measurement, traditional cuff-based devices
have several disadvantages because they are not always accurate, they need appropriate
calibration, and they do not allow continuous monitoring since performing a measurement
requires about one minute or more. On the contrary, there is a strong tendency today to
monitor health at home by using wearable, affordable, and small devices that are simple to
use, non-invasive, and even wireless to obtain measurements continuously [5–7]. Hence,
researchers are investigating ways to perform cuff-less and non-invasive BP measurements.
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As a matter of fact, the monitoring of the health of individuals is also made possible by the
spread of artificial intelligence in healthcare [8–10].

Nowadays, a measurement technique that is spreading for real-time monitoring of
vital signs is photoplethysmography (PPG) [11–14]. Indeed, PPG is a simple, low-cost, and
non-invasive optical measurement method that, in addition to the estimation of HR, SpO2,
and respiration rate, provides important health information regarding atherosclerosis and
arterial stiffness. It is a type of plethysmography (PG) that exploits optical properties
unlike other types of PG, such as those based on capacitive, inductive, and piezoelectric
properties [15,16].

Recently, the use of PPG to also estimate BP values has become an active area of
research. However, quite often, studies have focused on the simultaneous use of both
electrocardiogram (ECG) and PPG signals or on the use of multi-site PPG acquisition [17,18]
which introduces system complexity and the need for synchronization between those
signals [19]. In fact, PPG for the estimation of BP presents criticalities and limitations, such
as the development of multi-photodetectors, noise elimination, the event detection, the
need of individual calibration, and calibration drift. A useful algorithm that can be used to
overcome motion artifacts’ problems is the adaptive neuro fuzzy inference system (ANFIS)
that allows improvements in the signal to be obtained [20]. Moreover, this algorithm has
proved to be versatile for other fields of application [21].

As a matter of fact, the single-site PPG signal approach has great potential even though
it has some criticalities and limitations. Its deployment has also increased thanks to the
encouraging results obtained by exploiting machine learning (ML) algorithms trained on
purposely selected PPG signal features [22–28].

In a previous work carried out by the authors [29], PPG signals were analyzed to select
the most significant features for BP estimation by using several selection algorithms, i.e.,
RReliefF [30,31], Correlation-based Feature Selection (CFS), and Minimum Redundancy
Maximum Relevance (MRMR) [32,33]. That methodology has led to the justification of the
application of the Maximal Overlap Discrete Wavelet Transform (MODWT) to enhance the
single-site PPG signal and to the selection of new proposed features [29]. Following this
line of research, in this paper, our focus is on the actual development of ML techniques
to find the best algorithm to measure BP, showing the usefulness of the already analyzed
features and, in particular, those selected by means of MRMR, including those obtained
after the enhancement with MODWT. The novelty of the research is in the use of new
extracted features from PPG signals, whose significance was evaluated by using several
criteria, and in the use of ML algorithms.

For this purpose, eXtreme Gradient Boost (XGBoost) models with Bayesian opti-
mization and Neural Network (NN) models were trained for regression using significant
features selected with the MRMR algorithm. A comparison of results between XGBoost
and NN models was presented and the improvements with respect to the literature, by
using XGBoost models and the proposed features, are shown.

The paper is structured as follows: in Section 2, the description of the dataset used
to train ML models is provided; in Section 3, the ML approach for both XGBoost and NN
models is presented; in Section 4, the results obtained using the best model are reported
and compared with the literature, focusing on standard medical protocols for performance
assessment; and finally, there are the conclusions.

2. Dataset

In this work, the MIMIC-III Waveform Database [34–36] was used to obtain the dataset
for training and validation following the same processing reported in detail in [29]. The
MIMIC-III Waveform Database is a large and open access database where protected health
information has been deidentified. It includes waveform records of digitized signals
acquired at 125 Hz, such as arterial blood pressure (ABP) measured invasively, PPG,
ECG, and respiration for neonatal and adult patients admitted to intensive care units and
monitored with iMDsoft MetaVision ICU or Intellivue MP-70 monitors. Among these
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acquired data, ABP and PPG signals have proved useful for our work. Many processing
steps, shown in Figure 1, were performed such as alignment between ABP and PPG signals,
pre-processing of PPG signals with denoising, Z-score standardization, baseline correction,
quality, similarity tests, and ABP and PPG pulses segmentation and labeling.

Figure 1. Workflow of the processing steps.

After the processing briefly described above, the features presented in [29] were
calculated on the PPG signal. Many features were extracted in the time and frequency
domain, others were related to the amplitude of the characteristic points (max slope point,
systolic peak, dicrotic notch, inflection point, and diastolic peak), times and durations
of characteristic points, areas, non-linear functions (logarithm of positions of dicrotic
notch and inflection point), statistics (mean, STD, skewness, percentiles) and first and
second derivatives. In this way, a dataset has been created containing, for each PPG
pulse, 195 features and the target values of systolic blood pressure (SBP) and diastolic blood
pressure (DBP) measured on the ABP signal. Then, the dataset was reduced to SBP in the range
80 mmHg to 180 mmHg and DBP in the range 60 mmHg to 110 mmHg to facilitate comparisons
of the literature because similar distributions are used in other works [22,23,26,27,37–40].
Indeed, SBP under 80 mmHg and DBP under 60 mmHg correspond to a severe hypotension
condition while SBP over 180 mmHg and DBP over 110 mmHg correspond to a severe
hypertension condition and, in these cases, there were few observations in the initial dataset.

At the end of the processing, performed in MATLAB R2022a, the dataset contained
9.1 × 106 observations of PPG pulses from 1080 patients. The distribution of systolic and
diastolic blood pressure values of the dataset processed in this work are shown in Figure 2.
The described dataset was used to train and validate ML models developed in Python
language, as discussed in the following sections. The dataset used to train and validate ML
models included 9 × 106 observations; of these, the 90% constituted the training set and
the 10% constituted the validation set. Instead, the test set included 100,000 observations.
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(a) (b) 

Figure 2. (a) Systolic and (b) diastolic blood pressure occurrences in 2 mmHg bins. Only the
observations with 80 mmHg ≤ SBP ≤ 180 mmHg and 60 mmHg ≤ DBP ≤ 110 mmHg were considered
since outside these ranges there were few observations and, also, DBP less than 60 mmHg corresponds
to a severe hypertension condition.

3. Machine Learning Models

ML offers powerful techniques to identify and evaluate cardiovascular risk and health
conditions. In this paper, it has been exploited to train supervised regression models able
to measure BP starting from features extracted from the PPG signal. For training purposes,
each observation of the dataset is provided with systolic and diastolic labels obtained from
the corresponding ABP signal, which serves as ground truth, as reported in [29].

In this paper, an XGBoost model was trained because of advantages such as execution
speed and model performance, which have turned out to be suitable for our goal, while
an NN model was trained to carry out a comparison of the results and it was chosen
because it is an approach common to several researchers [27,28,37,41] and is characterized
by higher training speed. Moreover, XGBoost models were used in the literature for a
variety of purposes, such as wearable running monitoring [42], but recently also for PPG
signal processing to estimate blood glucose levels [43], blood pressure (by using multisite
PPG acquisition and Pulse Transit Time features) [44], and vascular aging [45].

XGBoost is an efficient open-source implementation of the gradient boosting algorithm
and is also available in Python using the Scikit-learn library utilized in this work. Overall,
gradient boosting refers to a class of ensemble ML algorithms that can be used both
for classification and regression; ensembles, as a matter of fact, are based on decision
tree models. In fact, trees are added to the ensemble to correct prediction errors made
previously and these models are fitted using a differentiable loss function and a gradient
descent optimization algorithm in order to minimize the loss gradient; moreover, this
algorithm provides hyperparameters that can be tuned, such as the number of trees or
estimators, the learning rate, the row and column sampling rate, the maximum tree depth,
the minimum tree weight, and the regularization terms alpha and lambda. Indeed, XGBoost
adds a regularization term in the objective function to make the model less vulnerable
to overfitting.

Moreover, in this work, Bayesian hyper-parameter optimization [46] was used to
tune the hyper-parameters of the XGBoost model in the chosen search space. Bayesian
optimization allows the optimization of a proxy function rather than the true objective
function and the search balances the exploration against exploitation, so at the beginning, it
randomly explores to build the surrogate function with the objective of minimizing the cost
function at a global level. In this work, the Bayesian Optimization implementation offered
by the Python library Scikit-optimize was used. The Root Mean Square Error (RMSE)
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evaluation metric was defined using a Scikit-learn function to allow the conversion of
optimization into a minimization problem as required by Scikit-optimize.

The Bayesian optimization was set providing the basic regressor, the search space, the
evaluation metric, the cross-validation strategy (chosen to be 7-fold), the max number of
trials, and the optimizer parameters for which the Gaussian Process (GP) was used. Then,
the best hyper-parameters were obtained and used to instantiate the XGBoost model to be
trained using the 10-fold cross-validation.

In the next paragraphs, there will be a focus on the XGBoost and NN models that
were trained.

3.1. XGBoost Models

For both SBP and DBP, the entire dataset was used. The training and cross-validation
were made using 9 × 106 observations (out of 9.1 × 106 observations). In total, 20 features
for SBP and 25 features for DBP were used and selected in order of highest MRMR score
among the 195 features listed in [29], which include those derived from the MODWT
enhanced PPG signal. The number of features used to train the models has been chosen
using the RReliefF algorithm for systolic and diastolic cases. In fact, using the RReliefF
algorithm, the 20 features for SBP and the 25 features for DBP have an importance score
greater than 0.001. We have considered lower scores as not significant because lower
values are related to uncorrelated features to the output. That reduction in the number of
features was operated to decrease the complexity of models and training; as a matter of
fact, removing the noisy features helps with memory and computational cost but also helps
avoid overfitting. Moreover, a normalization of columns into the range [0, 1] was carried
out before the training.

Then, the first step consisted of finding of the best hyper-parameters in a specified
search space for the Bayesian optimization using the selected features for both SBP and
DBP measurements.

The search spaces and the best hyper-parameter values for SBP and DBP measurements
are, respectively, shown in Tables 1 and 2.

Table 1. Search spaces and best values of hyper-parameters for SBP.

Hyper-Parameter Range Best

Learning rate [0.01, 1.0] 0.226

Maximum tree depth [2, 15] 15

Subsample [0.1, 1.0] 0.894

Subsample ratio of columns by tree [0.1, 1.0] 1.0

Lambda [1 × 10−10, 200] 120.0

Alpha [1 × 10−10, 200] 1 × 10−10

Estimators [50, 5100] 5000

Table 2. Search spaces and best values of hyper-parameters for DBP.

Hyper-Parameter Range Best

Learning rate [0.01, 1.0] 0.136

Maximum tree depth [2, 20] 15

Subsample [0.1, 1.0] 0.894

Subsample ratio of columns by tree [0.1, 1.0] 1.0

Lambda [1 × 10−9, 200] 120.0

Alpha [1 × 10−10, 200] 1 × 10−10

Estimators [50, 6000] 5200
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An explanation of XGBoost hyper-parameters is reported below. The learning rate
is the step size shrinkage used for the update to make the model more robust and to
prevent overfitting by shrinking the feature weights; it is chosen in the range [0, 1] with
typical values in [0.01, 0.2]. The maximum depth of a tree is used to control over-fitting as
higher depth will make the model more complex and more likely to overfit; the value 0
is only accepted in a loss-guided growing policy while large values bring an aggressive
consumption of memory. Any positive value is admissible, with typical values in [3, 10]; in
this work, trial and error was used to modify the upper bound of the range to obtain better
results. The subsample is, instead, the fraction of observations to be randomly sampled
for each tree and is useful to prevent overfitting; in fact, lower values make the algorithm
more conservative while too small values might lead to under-fitting. For this reason,
the range is [0, 1] and typical values are in [0.5, 1]. The subsample ratio of columns by
tree is the subsample ratio of columns when constructing each tree; this parameter has a
range of [0, 1] and the default value of 1. Lambda is the L2 regularization term on weights
and the increase in this value makes the model more conservative while Alpha is the L1
regularization term on weights and it is used in case of very high dimensionality so that
the algorithm runs faster when implemented. Finally, estimators are the number of trees in
an XGBoost model.

For the three last hyper-parameters, a trial and error method was used to define
the range.

3.2. NN Models

In Python, TensorFlow 2.9.1 was used to define a sequential model with an input layer
of size n, nine hidden layers, and an output layer. For all the layers, the activation function
chosen was the Rectified Linear Unit (ReLU). The number of hidden layers and of neurons
has been set making several trials. The NN model is shown in Figure 3. For SBP estimation,
n = 20 while for DBP estimation, n = 25.

Figure 3. NN with nine hidden layers with 1024, 1024, 1024, 512, 512, 512, 128, 64, and 64 neurons.

Moreover, several optimizers were tested such as Adadelta, Adagrad, Adam, Adamax,
Nadam, RMSprop, and SGD but the best result for both SBP and DBP estimations was
obtained using the Nesterov-accelerated Adaptive Moment Estimation (Nadam) algorithm.

The fit was made using a batch size of 4096, 150 epochs, and a validation split of 0.2.
The NN architecture was chosen after trials and errors, by adding hidden layers since

there was not an improvement in the results. The ReLU activation function was chosen
because it is suitable for the normalized inputs and this function has allowed better results
to be obtained. The batch size needs to fit the memory requirements of the GPU and the
architecture of the CPU since too low values did not perform well while too high values
were not allowed considering the memory requirements. Hence, the maximum possible
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batch size was set. The number of epochs was chosen in the range [50, 200] but beyond the
150 epochs there were not improvements.

4. Results and Discussion

In this section, the performance of ML algorithms will be shown. The two models,
XGBoost and NN, were trained using the features selected by the MRMR algorithm and
these features also include the new ones obtained on MODWT enhanced PPG pulses as
reported in [29]. As pointed out in that previous work, it has been found that by using the
MODWT, the PPG signal is enhanced, with an improvement in the identification of the
characteristic points and making it more similar to the ABP signal.

The criteria used to evaluate the performance of ML models for estimating BP are the
RMSE, Mean Absolute Error (MAE), correlation coefficient (R), and Mean Error (ME).

The results were then compared with other methods reported in the literature as well
as with BP measurements standard guidelines focused on the classification of hypertension
states. The predicted BP values from the regression model and the true values were used to
verify the correct classification into the seven classes defined by the guideline considering
the range of values of SBP and DBP. The classification results are evaluated by means of a
confusion matrix.

4.1. Training and Test of XGBoost and NN Models

In this paragraph, the results obtained after training and validation are reported. In
Table 3, XGBoost and NN results are reported considering the RMSE and MAE.

Table 3. Validation results for SBP and DBP estimations.

Model RMSE (mmHg) MAE (mmHg)

XGBoost
SBP 5.60 3.11

DBP 3.92 2.09

NN
SBP 7.80 5.00

DBP 5.56 3.53

After validation, a test was made for both models using a set of 100,000 new observa-
tions (out of the entire dataset of 9.1 × 106 observations) not included in the training set.
The results were reported in Table 4 in which performance parameters are reported for SBP,
DBP, and Mean Arterial BP (MAP).

Table 4. Test results using XGBoost and NN models.

Model
RMSE

(mmHg)
MAE

(mmHg)
R

ME
(mmHg)

XGBoost

SBP 5.67 3.12 0.95 0.020

DBP 3.95 2.11 0.91 −0.001

MAP 3.24 2.01 0.93 0.006

NN

SBP 7.81 5.00 0.90 −0.420

DBP 5.60 3.55 0.81 −0.250

MAP 4.56 3.12 0.85 −0.310

In addition to SBP and DBP, MAP was considered because it is linked to the total
peripheral resistance and to cardiac output and is associated with HR [47,48]. MAP is a
popular BP parameter, and it is defined as the average pressure of the artery of a subject
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during one cardiac cycle (1). It is considered as a better indicator of perfusion to vital
organs when compared with SBP [49].

MAP =
SBP + 2·DBP

3
, (1)

The results reported in Tables 3 and 4 show that the use of XGBoost models rather
than NN allows better results for both systolic and diastolic pressure measurement to
be obtained.

Moreover, the results for XGBoost models obtained in the final test phase, shown in
Table 4, are similar and confirm the ones obtained during the training and cross-validation
phase, shown in Table 3.

Error probability densities of SBP, DBP, and MAP estimations are shown in Figure 4,
where it is possible to notice that errors obtained using the XGBoost model have a narrower
and more concentrated distribution around zero than the distribution obtained using the
NN model. From regression plots reported in Figure 5, it is possible to notice that best
predictions are obtained by using XGBoost models; in fact, R is in the three cases higher
than those obtained using NN models.

Figure 4. Error probability density of SBP, DBP, and MAP estimations. Errors were defined as the
difference between the predicted pressures (using XGBoost model or NN model) and measured ones;
then, their histograms were normalized to obtain the probability densities shown in the plot.

During the training phase, it was noticed that the training time for NN was smaller
than the training time for the XGBoost models. The inference time was significantly reduced
for XGBoost models so considering this aspect, it is possible to use the trained model for
real time predictions useful for continuous monitoring.

Considering the computational complexity of current implementations for features
extraction and ML models, onboard processing on a wearable device is not viable. So, a
cloud-based solution would be required. The future aim is to streamline feature extraction
by including only those selected in the present study and simplify models to permit
onboard processing, reducing the computational complexity and assessing the minimal
hardware requirements.
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 5. (a,c,e) Regression of the predicted output and true response for SBP, DBP, and MAP
estimations using the XGBoost model; (b,d,f) Regression of the predicted output and true response
for SBP, DBP, and MAP estimations using the NN model.
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4.2. Comparison with Other Methods

A comparison of results with the literature is difficult due to the different evaluation
criteria and the different datasets. In this paper, the type of the algorithms and the use of
features have been used as the criteria to select and identify other works in the literature
to make a comparison. In this context, the criterion is the training of ML algorithms with
features extracted from the PPG signal, namely, the research’s methodology.

In Table 5, the performance of other methods is shown.

Table 5. Comparison with other works.

Work Method Data Size
Performance
Evaluation

SBP DBP

Kachuee et al. [37]
Support vector machine

(SVM)
MIMIC II (1000 subjects)

RMSE / /

MAE 12.38 6.34

R / /

ME / /

Kim et al. [50] ANN
180 recordings,

45 subjects

RMSE / /

MAE 4.53 /

R / /

ME / /

Cattivelli et al.
[51]

Proprietary algorithm MIMIC database
(34 recordings, 25 subjects)

RMSE 8.37 5.92

MAE / /

R / /

ME / /

Zhang et al. [52] SVM
7000 samples

from 32 patients

RMSE / /

MAE 11.64 7.62

R / /

ME / /

Zadi et al. [53]
Autoregressive
moving average
(ARMA) models

15 subjects

RMSE 6.49 4.33

MAE / /

R / /

ME / /

Chowdhury et al. [24]
Gaussian process
regression (GPR)

222 recordings,
126 subjects

RMSE 6.74 3.59

MAE 3.02 1.74

R 0.95 0.96

ME / /

Hasanzadeh et al. [26] AdaBoost
MIMIC II

942 subjects

RMSE / /

MAE 8.22 4.17

R 0.78 0.72

ME 0.09 0.23

Kachuee et al. [38] AdaBoost 1000 subjects

RMSE / /

MAE 8.21 4.31

R / /

ME / /
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Table 5. Cont.

Work Method Data Size
Performance
Evaluation

SBP DBP

Wang et al. [54] ANN
58,795 PPG

samples

RMSE / /

MAE 4.02 2.27

R / /

ME / /

Kurylyak et al. [28] ANN 15,000 PPG heartbeats

RMSE / /

MAE 3.80 2.21

R / /

ME / /

Fleischhauer et al. [55] XGBoost
MIMIC, Queensland, PPG

BP (273 subjects and
259,986 single beats)

RMSE / /

MAE 6.366 /

R 0.874 /

ME / /

Liu et al.
[56] SVR

MIMIC II
910 good PPG
pules cycles

RMSE / /

MAE 8.54 4.34

R / /

ME / /

Zhang et al.
[57]

Gradient Boosting
Regressor (GBR)

MIMIC II
2842 samples from 12,000

data points

RMSE / /

MAE 4.33 2.54

R / /

ME / /

Proposed method XGBoost

MIMIC III
9.1 × 106 PPG pulses

from 1080 subjects

RMSE 5.67 3.95

MAE 3.12 2.11

R 0.95 0.91

ME 0.01 0.02

The comparison with other works has shown that our models, based on the use of
XGBoost, the MRMR selection algorithm, and features obtained on MODWT, enhanced
PPG pulses, obtained small estimation errors for both systolic and diastolic blood pressure
measurements [29]. In fact, XGBoost is derivative-free so it might have some advantage
when the fitting problem has a lot of degrees of freedom. Moreover, the use of MODWT
enhancement has allowed characteristic points of PPG pulses such as the diastolic point to
be emphasized; these two aspects can be decisive in obtaining such results. As a matter of
fact, for SBP measurement, the proposed method has allowed a smaller RMSE compared
to the other works reported in the Table 5 to be obtained. Obviously, as mentioned at the
beginning of this section, a comparison of results is difficult; in fact, as reported in Table 5,
different datasets were used as well as different ML algorithms. For example, it should be
noted that Chowdhury et al. [24] obtained a smaller RMSE for DBP, which may depend
on the different dataset used and on the use of demographic features that are a powerful
means to predict BP values because gender, age, and height are related to the shape of
the PPG pulses and to the arterial stiffness. Considering Zhang et al. [57], they use a GBR
algorithm obtaining slightly worse results than those reported in this paper as well as in
Fleischhauer et al. [55] using XGBoost; as a matter of fact, in this paper, the best results are
obtained implementing the Bayesian optimization for our XGBoost models and a different

68



Sensors 2023, 23, 8342

selection of features also obtained after the MODWT enhancement. This seems to be a
better solution also compared with other ML algorithms as reported in Table 5.

4.3. Compliance to Standards and Classification Guidelines

The correct estimation of BP is critical for the detection of states of hypertension and
health status and hence, accuracy requirements for BP measurement devices and methods
have been standardized.

In this paper, the protocols proposed by the Association for the Advancement of
Medical Instrumentation (AAMI) [58,59] and by the British Hypertension Society (BHS) [60]
were considered to make a comparison with results reported in this paper as also made
in [23–26,61–63].

Since the best results in this paper were obtained using the XGBoost models rather
than using the NN models, the following comparisons regard only the XGBoost models.

As shown in Tables 6–9, the proposed method is compliant to AAMI and BHS grade
A standards. The dataset included 1080 patients and a total of 9.1 × 106 observations of
PPG pulses.

Table 6. Comparison of results for the validation set with AAMI standard.

ME
(mmHg)

STD
(mmHg)

Results

SBP 0.009 5.60

DBP 0.019 3.92

MAP 0.0157 3.21

AAMI
SBP

≤5 ≤8
DBP

Table 7. Comparison of results for the test set with AAMI standard.

ME
(mmHg)

STD
(mmHg)

Results

SBP 0.020 5.67

DBP −0.001 3.95

MAP 0.006 3.24

AAMI
SBP

≤5 ≤8
DBP

Table 8. Comparison of results for the validation set with BHS standard.

Cumulative Error Percentage

≤5 mmHg ≤10 mmHg ≤15 mmHg

Results

SBP 80.85% 93.00% 96.84%

DBP 89.56% 96.86% 98.74%

MAP 90.89% 98.18% 99.49%

BHS

Grade A 60% 85% 95%

Grade B 50% 75% 90%

Grade C 40% 65% 85%
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Table 9. Comparison of results for the test set with BHS standard.

Cumulative Error Percentage

≤5 mmHg ≤10 mmHg ≤15 mmHg

Results

SBP 80.96% 92.91% 96.73%

DBP 89.48% 96.87% 98.68%

MAP 90.84% 98.07% 99.44%

BHS

Grade A 60% 85% 95%

Grade B 50% 75% 90%

Grade C 40% 65% 85%

As is possible to notice in Tables 6 and 7, our results fulfill AAMI standard require-
ments; indeed, according to this protocol, the mean and the STD of the errors for both
SBP and DBP estimations should not be more than 5 mmHg and 8 mmHg, respectively.
Requirements of the BHS standard are also satisfied since the absolute error of more than
60% of the data is less than 5 mmHg, hence the method is considered as Grade A.

Moreover, as established in [26], another guideline was used to evaluate our regression
models; for this purpose, the guideline [64] provided by the European Society of Hyperten-
sion (ESH) and the European Society of Cardiology (ESC) was considered. This guideline
is focused on the state of hypertension and, in fact, categorizes it into seven classes:

• Optimal: if SBP < 120 mmHg and DBP < 80 mmHg;
• Normal: if 120 mmHg ≤ SBP ≤ 129 mmHg and/or 80 mmHg ≤ DBP ≤ 84 mmHg;
• High Normal: if 130 mmHg ≤ SBP ≤ 139 mmHg and/or 85 mmHg ≤ DBP ≤

89 mmHg;
• Grade 1 Hypertension: if 140 mmHg < SBP ≤ 159 mmHg and/or 90 mmHg ≤ DBP ≤

99 mmHg;
• Grade 2 Hypertension: if 160 mmHg ≤ SBP ≤ 179 mmHg and/or 100 mmHg ≤ DBP

≤ 109 mmHg;
• Grade 3 Hypertension: if SBP ≥ 180 mmHg and/or DBP ≥ 110 mmHg;
• Isolated Systolic Hypertension: if SBP ≥ 140 mmHg and DBP < 90 mmHg.

Since hypertension is a state of health of interest to be identified, we also used
ESH/ESC guidelines to evaluate our regression models with a classification of the predicted
values into seven classes. The BP ground truth and the BP predicted by the XGBoost model
were labeled according to the previously described classification to evaluate the consis-
tency between the classified predicted values and the classified true values in the different
states of hypertension. The results are shown in Figure 6 and in Table 10. In the table, the
accuracy, sensitivity, specificity, and F1-score are provided. There are two classes with a low
sensitivity that are “Grade 3 Hypertension” and “Isolated Systolic Hypertension”. The low
sensitivity is due to the few training cases in the dataset. Indeed, “Grade 3 Hypertension”
is a critical condition while “Isolated Systolic Hypertension” has low frequency in young
and middle-aged subjects.

As is possible to see in Table 10, the average of accuracy, sensitivity, specificity, and
F1-score are, respectively, 90.3%, 76.9%, 93.5%, and 77.0%.
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Figure 6. Confusion matrix for BP level classification according to ESH/ESC guidelines.

Table 10. Results of BP level classification according to ESH/ESC guidelines.

Class Accuracy Sensitivity Specificity F1-Score
Actual Class

Members

Grade 1
Hypertension 91.9% 75.8% 95.6% 77.9% 18.9%

Grade 2
Hypertension 97.7% 66.0% 99.3% 73.6% 4.9%

Grade 3
Hypertension 99.8% 25.6% 99.9% 28.6% 0.1%

High Normal 87.5% 73.3% 91.4% 71.4% 21.3%

Isolated Systolic
Hypertension 97.9% 29.3% 98.9% 28.9% 1.4%

Normal 86.0% 72.8% 89.8% 70.1% 22.5%

Optimal 93.1% 87.5% 95.6% 88.6% 30.8%

Average 90.3% 76.9% 93.5% 77.0%

4.4. Bland–Altman Analysis

Finally, to test the validity of the prediction of the XGBoost models for SBP, DBP, and
MAP, a Bland–Altman analysis was performed which was used to determine the limits
of agreement (LOA) between two different measurements in clinical practice [65,66]. The
mean and STD of the differences between two measurements are used for statistical limits.
The mean bias (mean of the differences) and its LOA are provided by the Bland–Altman
plot that is shown in Figure 7.
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(a) 

 
(b) 

(c) 

Figure 7. Bland–Altman plots for (a) SBP, (b) DBP, and (c) MAP.

The black line represents the mean of differences (BIAS) while the red lines represent
the upper and lower limits (BIAS ± 1.96 × STD) of the LOA [67]. The LOA for errors of
SBP is [−11.09, 11.13] mmHg and the percentage of points outside the LOA is 5.91%; the
LOA for errors of DBP is [−7.75, 7.75] mmHg with a percentage of 5.08% points outside
while for MAP the LOA for errors is [6.35, 6.36] mmHg with a percentage of 5.73% points
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outside. So, considering these results, it is possible to confirm the good accuracy of the
proposed model.

5. Conclusions

The possibility of measuring BP by using PPG signals is advantageous for the monitor-
ing of this vital sign since it avoids the use of cumbersome cuff-based devices, and it allows
continuous monitoring. However, PPG for the estimation of BP has several criticalities
and limitations, such as noise elimination, individual calibration, and calibration drift, that
must be overcome.

In our previous work [29], the focus was on the extraction of new features from PPG
signals, including those obtained after the enhancement with MODWT, whose signifi-
cance was evaluated by using several criteria, such as MRMR. In this paper, the features
selected by the MRMR algorithm were used to train ML models to estimate BP, giving
improved results.

Among the ML models, the XGBoost model with Bayesian optimization proved to
be suitable for estimating purposes, giving better results than an NN model trained on
the same data; as a matter of fact, the XGBoost model combined with the use of novel
features allowed an improvement for systolic blood pressure measurement with respect to
the literature.

In addition, the SBP and DBP estimators proved to fulfill the requirements of the
AAMI and BHS grade A standards, but also, good classification results were obtained
according to the ESH/ESC guideline.

Considering these results, future work will focus on the realization of a portable
measurement device to acquire PPG signals and implement the proposed BP estimator
permitting onboard processing by reducing the computational complexity and assessing
the minimal hardware requirements.
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Abstract: Synchronous monitoring electroencephalogram (EEG) and functional near-infrared spec-
troscopy (fNIRS) have received significant attention in brain science research for their provision of
more information on neuro-loop interactions. There is a need for an integrated hybrid EEG-fNIRS
patch to synchronously monitor surface EEG and deep brain fNIRS signals. Here, we developed a
hybrid EEG-fNIRS patch capable of acquiring high-quality, co-located EEG and fNIRS signals. This
patch is wearable and provides easy cognition and emotion detection, while reducing the spatial
interference and signal crosstalk by integration, which leads to high spatial–temporal correspondence
and signal quality. The modular design of the EEG-fNIRS acquisition unit and optimized mechanical
design enables the patch to obtain EEG and fNIRS signals at the same location and eliminates spatial
interference. The EEG pre-amplifier on the electrode side effectively improves the acquisition of
weak EEG signals and significantly reduces input noise to 0.9 μVrms, amplitude distortion to less
than 2%, and frequency distortion to less than 1%. Detrending, motion correction algorithms, and
band-pass filtering were used to remove physiological noise, baseline drift, and motion artifacts from
the fNIRS signal. A high fNIRS source switching frequency configuration above 100 Hz improves
crosstalk suppression between fNIRS and EEG signals. The Stroop task was carried out to verify its
performance; the patch can acquire event-related potentials and hemodynamic information associated
with cognition in the prefrontal area.

Keywords: co-located; EEG-fNIRS; noise suppression; crosstalk suppression; acquisition module
design; acquisition module mechanical design

1. Introduction

Electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) dual-
modal synchronous brain signal monitoring systems can accurately and continuously measure
the neuronal electrical signal of the surface area and hemodynamic activity of the brain deep
area. It combines the advantages of the high spatial resolution of fNIRS and high temporal
resolution of EEG to provide a comprehensive picture of brain function [1]. EEG-fNIRS
systems have been applied across various fields of brain science. Clinically, EEG-fNIRS
systems have been proven to provide important diagnostic information for the evaluation or
treatment of stroke [2], seizure [3], and Alzheimer’s disease [4], among other diseases [5,6]. In
the field of brain–computer interfaces (BCIs) [7,8], the EEG-fNIRS system has been utilized
to fabricate a hybrid BCI (hBCI) to improve classification accuracy [9,10]. To better study the
spatiotemporal associations between the hemodynamic–electrical patterns of brain functions
and further improve the classification and decoding accuracy of BCIs, co-located EEG-fNIRS
signals attract attention because of their high spatial and temporal coupling and adaptation to
tight time synchronization requirements [11].
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In order to obtain functional imaging of EEG and fNIRS simultaneously, many discrete
or integrated EEG-fNIRS systems or ICs have been developed, such as discrete commer-
cial EEG systems and fNIRS systems and combined EEG-fNIRS system [12], NIRS/EEG
monitoring of ASIC [13], and modular hybrid systems [14]. However, acquiring co-located
EEG-fNIRS signals still remains a challenge due to the spatial interference between the EEG
and fNIRS acquisition modules, signal crosstalk between EEG-fNIRS signals, and signal
synchronization problems. Especially, as shown Figure 1, the prefrontal cortex region,
which is related to cognition and emotions, needs to be monitored via simultaneous EEG
and fNIRS signals in a limited area.

Figure 1. (a) Overall system architecture. (b) Layout of EEG and fNIRS sensors. (c) Positioning
structure of EEG electrodes, LEDs, and PDs.

In this article, we report an integrated EEG-fNIRS patch with a novel circuit archi-
tecture and optimized acquisition module design, which can achieve two-channel EEG
and ten-channel fNIRS measurements simultaneously. The patch achieves synchronized,
low-noise, and low-crosstalk EEG-fNIRS acquisition by integrating the following features
and structures.

• EEG-fNIRS acquisition module design and optimized mechanical design enables
the acquisition module to obtain EEG and fNIRS signals at the same location and
eliminates spatial interference, while increasing the scalability of the patch.
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• EEG pre-amplifier design is utilized on the electrode side for EEG preprocessing,
which can effectively improve weak EEG signal acquisition and noise suppression.

• ADS1299- and AFE4404-based analog front-end (AFE) architecture is designed, which
achieves synchronous, high-resolution EEG and fNIRS signal measurements.

• Crosstalk between fNIRS signals and EEG signals is minimized through above 100 Hz
high LED switching frequency configuration.

Several evaluation tests were performed to verify the co-located EEG-fNIRS hybrid
data acquisition performance. We demonstrate that the patch performs with low input
noise (0.9 Vrms), low frequency distortion (<1%), and low amplitude distortion (<2%).
Based on these ideal properties, we show that the developed patch can acquire event-
related potentials and hemodynamic information at prefrontal areas in the event-related
Stroop task. Our approach provides a step towards highly coupled spatial and temporal
EEG-fNIRS signal acquisition, laying the foundation for the comprehensive exploration of
brain functional activity.

2. Materials and Methods

2.1. Overall System Architecture

The overall system architecture is shown in Figure 1a. This patch was used to support
the co-located EEG-fNIRS signal acquisition in the forehead, and provides synchronous,
low-noise, and low-crosstalk dual-mode signal acquisition while realizing integration
and wireless data transmission. As shown in Figure 1b, according to the international
10–20 system, two EEG electrodes were placed at Fp1 and Fp2. Four optical sources and
four optical detectors were located over the prefrontal area around Fp1, Fpz, and Fp2.

As shown in Figure 1c, in order to acquire neuronal activity from the same location, the
EEG electrode was placed in the middle between the source (LED) and the detector (PD),
so as to achieve the same channel configuration [15]. An LED was used as the light source
because it can be directly attached to the scalp without fiber cables, which greatly increases
the flexibility of the acquisition module layout. Each LED can provide 1 fNIRS channel,
which has the same acquisition location as the EEG channel. And, 4 fNIRS channels were
placed at the same acquisition location as the EEG channel. This patch can provide a total
of 10 fNIRS channels and 2 EEG channels, in which 4 fNIRS channels are at the same
acquisition location as the EEG channel. The patch can measure the EEG and fNIRS signals
at Fp1 and Fp2 simultaneously while covering the active frontal brain regions as much as
possible [16], which can support the monitoring needs of cerebral hemodynamic response
and EEG response in depressive disorder, cognitive event classification, and other cognitive
or emotional tasks [17,18].

2.2. System Design

EEG and fNIRS signals are highly sensitive to noise and prone to crosstalk. There-
fore, the hardware architecture illustrated in Figure 2a has been designed to improve
small-amplitude EEG signals acquisition, noise, and crosstalk suppression, which is in
concordance with the system concept of “co-located EEG and fNIRS acquisition”. As is
shown in Figure 2a, EEG electrodes, LEDs, and detectors were integrated into separate
EEG-fNIRS acquisition modules. This allows the monitoring range to be extended to the
whole brain by simply adding EEG-fNIRS acquisition modules. The patch implements in
this paper contains 4 EEG-fNIRS acquisition modules and 1 main board.

The acquired EEG signal was firstly processed by the EEG pre-circuit on the EEG-
fNIRS acquisition module illustrated in Figure 2a. The EEG pre-circuit included a two-stage
filter and amplifier circuit. High-frequency noise was filtered out using an OPA333-based
active low-pass filter with a cutoff frequency of 50 Hz.
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Figure 2. (a) The system circuit block diagram. (b) The proposed acquisition board. (c) The barrel,
cap, and optical filter to fix the LED and PD. (d) The EEG-fNIRS acquisition module of the proposed
patch. (e) Front and back view of the entire patch.

An INA333-based signal amplifier was employed to provide a voltage gain of 1000 v/v
(60 dB), which was capable of improving the acquisition performance of small amplitude
EEG signals and providing high input impedance (100 GΩ). EEG signals from multiple
acquisition modules were fed into ADS1299 in parallel, and the multiplexer in ADS1299
allows low-crosstalk, multi-channel synchronous input without sampling and holding
circuits, which improved the integration of the patch. Digitized by a 24-bit resolution ADC,
the EEG signals were transmitted to MCU via an SPI bus. The module can acquire EEG
signals at a sampling rate up to 16 kSPS.

The acquired bio-optical signal was input into AFE4404 on the acquisition module,
converted into a voltage signal by an integrated transimpedance amplifier (TIA), and then
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digitized by an integrated 24-bit analog-to-digital converter (ADC). The high dynamic
range (100 dB) enables an excellent signal to noise ratio (SNR), even for small amplitude
bio-optical signals in the presence of large signal artifacts. The ADC data were subse-
quently transmitted to the micro controller unit (MCU) via an IIC bus. The module can
acquire fNIRS signals at a sampling rate up to 100 Hz. The switching time between the
two measured wavelengths was controlled by the “Data Ready” pin (DRDY) of ADS1299
to ensure that synchronization between EEG and bio-optical signals can be obtained even
if there are errors in the reference clocks of the two AFEs.

As shown in Figure 2d, the LEDs and PDs were are connected to the acquisition
board by wire, and a copper-plated disk was used to connect the EEG electrodes and the
acquisition board to form an EEG-fNIRS acquisition module.

The whole system was embedded in a framework made up of an ATSAMS70N20A
(Microchip) MCU on the main board. A detailed diagram of the signal processing workflow
can be found in Figures S1 and S2. The MCU will send the packetized EEG and fNIRS data
to the PC via the external ESP8285 module for further processing. Please see Note S1 for
details of the data processing flow in the PC.

LEDs of 760 nm and 850 nm dual-wavelengths (Ushio epitex L760_850−04A) were
used for fNIRS light sources. Each LED adopted wavelength time division multiplexing.
Silicon photodiodes (Hamamatsu S5972) were used for fNIRS detectors. The PD exhibited
high photoelectric sensitivity (>0.5 A/W) at both 760 nm and 850 nm while having the
features of small size, low power dissipation, and a high level of noise suppression. As
shown in Figure 2c, the fNIRS light sources and detectors were fixed using a probe. Each
probe is consisted of a circular filter (LP900), a 3D-printed cap, and a 3D-printed barrel.
The circular filter uses long-wave pass filter, which meets the high transmittance of emitted
light at 760 nm and 850 nm while filtering out ambient light interference signals.

A claw-shaped dry electrode (CGX) was used for EEG acquisition [19]. The electrode
was small in size, easy to install, and the surface was plated with a Ag/AgCl layer, which
helped to realize miniaturization and high integration, overcoming the problem of signal
quality degradation and the discomfort of the participants in continuous EEG acquisition
based on traditional wet electrodes. The dry electrode can support continuous high-quality
acquisition for a long time (>30 min) and provides high user comfort and reusability.

Considering the wearing comfortability and convenience of the participant, 3D print-
ing was used to make the fixing belt shown in Figure 2e. The fixing belt was made of
thermoplastic polyurethane (TPU), which has good flexibility and flexibility, and ensured
that the EEG dry electrodes, LEDs, and PDs closely fit the skin on the forehead.

2.3. System Crosstalk Analysis and Suppression

The co-located dual-modal signal acquisition patch will introduce crosstalk between
the dual-modal signals. In fact, for example, the instantaneously high current in fNIRS light
source driving circuit can easily distort small-amplitude EEG and bio-optical signals [20].
A previous study also showed that switching of NIRS channels may cause high-amplitude
noise in the same frequency of EEG, which would cause misjudgment of real neural activ-
ity [21]. Therefore, when designing an integrated EEG-fNIRS system, crosstalk between
EEG signals and fNIRS signals must be taken into account. In our proposed patch, hard-
ware architecture and software configuration were carefully designed to minimize crosstalk
between the dual-modal signals.

To minimize crosstalk between fNIRS signals and EEG signals, first, the LED current
switching frequency of the dual-wavelength LED current was configured to be >100 Hz,
which far exceeds the EEG frequency band of interest (0–50 Hz), so the crosstalk related to
the EEG signal could be clearly separated using a low-pass filter with a cutoff frequency
of 50 Hz. Second, integrated EEG AFE circuits on the main board also provided higher
crosstalk suppression performance for EEG signals by current path optimization and
shielding optimization.
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The crosstalk between the EEG signal and fNIRS signal was also minimized by a
separate ground design on the acquisition board, ensuring electrical isolation of the EEG
and fNIRS signals.

3. Evaluation and Experimental Procedure

3.1. Evaluation of EEG Acquisition Performance

We first evaluated the input-referred noise of the EEG acquisition circuit in the LED
flashing condition and in the no-LED flashing condition. As shown in Figure 3a, it can be
found that in the absence of LED flashing, the input-referred noise was 0.81 μVrms. Even
with the LED flashing condition, an input-referred noise of 0.89 μVrms was measured and
no fNIRS crosstalk component was observed in the spectrum in Figure 3b. These results
show that the proposed patch has an excellent noise suppression performance of less than
0.9 μVrms. In addition, we evaluated the amplitude distortion and frequency distortion
of the acquired EEG signals. As shown in Figure 3c,d, the amplitude distortion and the
frequency distortion were less than 2% and less than 1%, respectively. The results verify
that the measured EEG signals have low frequency distortion and amplitude distortion.
The EEG acquisition module is capable of obtaining high-quality EEG signals. More details
about the evaluation experiment can be found in Note S2.

Figure 3. (a) EEG input-referred noise in no-LED flashing condition and LED flashing condition;
(b) EEG input-referred noise spectrum in LED flashing condition; (c) EEG amplitude distortion
measurement; (d) EEG frequency distortion measurement; and (e) ΔHbO2, ΔHbR trend in forearm
block experiment.
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3.2. Evaluation of fNIRS Acquisition Performance

Referring to the experiment in [20,22], a forearm block experiment was performed to
verify the performance of fNIRS acquisition. The experiment was carried out in a quiet
laboratory with no strong light interference. The participants put their arm flat on the table
with palm facing up and the wristband was tied to the participant’s forearm. fNIRS light
sources and detectors were attached to the participant’s forearm.

We obtained the ΔHbO2 and ΔHbR values by analyzing the fNIRS data and the
results are plotted in Figure 3d. When the wristband sphygmomanometer was inflated,
ΔHbO2 dropped slowly and ΔHbR rose slowly due to blood blockage in the forearm.
When the wristband sphygmomanometer was deflated and the forearm blood flow was
released again, ΔHbO2 and ΔHbR dramatically changed toward the baseline, overshooting
occurred, and then they gradually converged to the baseline. The experimental results can
be mutually verified with the results of the previous forearm blocking experiment [20],
indicating that the patch can effectively collect changes in human hemodynamics.

3.3. Event-Related Stroop Task

To further validate the ability to acquire the co-located EEG-fNIRS signals, referring
to the experiment in [22], an event-related Chinese character Stroop task was designed.
The experimental paradigm was used to induce conflicts in cognitive psychology and the
activation in participant’s prefrontal cortex can be assessed by EEG and fNIRS signals.

As shown in Figure 4a, the stimuli consisted of a Chinese character with the same
or different color and meaning. Under the interference of the meaning of the character,
the participants were instructed to judge the color of the Chinese character and press the
corresponding key on the keyboard with the right index finger within the time limit. Each
task comprised 30 trials, with on-third of trials being congruent (the color and meaning
coincided, e.g., the character means “Red” printed in the color red) and two-thirds of trials
being incongruent (the word and color did not coincide, e.g., the character means “Red”
printed in the color green). The congruent trial and incongruent trial were administered
randomly. Each trial was displayed for 500 ms, with a randomly selected interval of
350–750 ms between trials. A detailed experimental design for the event-related Stroop
task can be found in Note S3.

Figure 4. (a) Schematic diagram of incongruent and congruent trial. (b) Experimental paradigm for
Stroop task.
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The experimental paradigm flow used in this study is shown in Figure 4b. The
experimental paradigm was divided into a waiting period, task period, and rest period.
During the task period, participants were asked to perform the Stroop task. During the
waiting period and rest period, the participants were asked to remain in a relaxed state.

Thirteen healthy volunteers (right-handed, native Chinese speakers, aged 20–29 years;
four women and nine men) participated in this experiment. All participants had normal
or corrected-to-normal vision, normal color vision, and normal cognitive function. Each
participant was seated on an adjustable chair in a sound- and light-attenuated room. The
PC monitor was placed 65 cm in front of the participant’s eyes. As shown in Figure 1a, the
acquisition module of the EEG-fNIRS patch was worn on the forehead of the participant
to acquire EEG signals and fNIRS signals at Fp1 and Fp2. Prior to the formal experiment,
participants were asked to run eight trials to make sure they were familiar with the experi-
mental process and could respond correctly. During the experiment, the patch collected
EEG signals and fNIRS signals at a sampling rate of 1 kHz and 100 Hz, respectively.

The original EEG signal was analyzed using MATLAB 2023a. Epochs were extracted
ranging from −250 ms before to 750 ms after stimulus onset, and baseline signal from
−250 ms to 0 ms were corrected. After that, the averaged event-related potentials (ERPs)
were band-pass filtered with a cut-off frequency of 0.8 Hz to 17 Hz. On the basis of ERP
data, three feature-based components, P450 (positive component from 400 to 450 ms),
N500 (negative component from 450 to 550 ms), and P600 (positive component from 600 to
700 ms), were measured at Fp1 and Fp2.

Figure 5a shows the raw EEG data of Fp1 and Fp2. And, the ERP results from a trial
are shown in Figure 5b. Figure 5c shows the average amplitude of three ERP components in
Fp1 and Fp2 across all trials. The amplitude of P450 was −2.70 ± 0.14 and −2.63 ± 0.16 μV
(Mean ± SD) in Fp1 and Fp2, respectively, while the amplitude of N500 component was
−4.05 ± 0.20 and −4.37 ± 0.25 μV (Mean ± SD) in Fp1 and Fp2, respectively. And,
the amplitude of P600 was −2.06 ± 0.27 and −1.67 ± 0.19 μV (Mean ± SD) in Fp1 and
Fp2, respectively. Repeated measure analysis of variance (ANOVA) indicated statistically
significant differences between the N500 component at the right prefrontal cortex and left
prefrontal cortex (p = 0.03 < 0.05) and the P600 component at the right prefrontal cortex and
left prefrontal cortex (p = 0.042 < 0.05). N500 had a stronger response at Fp2, and compared
to right prefrontal cortex, P600 had a stronger response at Fp1. The P450 component at
the right prefrontal cortex and left prefrontal cortex were not significantly different from
each other (p = 0.31 > 0.05). The results shows that three ERP components activated in the
forehead, which is consistent with the experimental phenomena in the previous literature
obtained by the proposed patch [23].

Event-related fNIRS signals are highly susceptible to interference from physiological
noise (e.g., 0.2–0.3 Hz respiration component, ~1 Hz heartbeat component, and ~0.1 Hz
Mayer waves component) and motion artifacts [24]. Therefore, detrending, motion cor-
rection and band-pass filtering are used to remove physiological noise, baseline drift, and
motion artifacts from the original fNIRS signal. As shown in Figure 5d, firstly, the modi-
fied Beer–Lambert law was utilized to calculate the concentration changes of oxygenated
hemoglobin (HbO2), deoxygenated hemoglobin (HbR), and total hemoglobin (HbT) ac-
cording to the calculation method in previous studies [25]. Then, a first-order polynomial
regression model was used to remove linear detrends and a temporal derivative distri-
bution repair (TDDR)-based motion correction function was used to remove both spike
artifacts and baseline shifts. Considering the hemodynamic response after neural activation
embedded in 0.03–0.1 Hz [26], a third-order band-pass IIR filter with a cut-off frequency of
0.01 Hz to 0.08 Hz was applied to remove physiological noise components.
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Figure 5. (a) Raw EEG data of Fp1 and Fp2; (b) ERP results in a trial; (c) average amplitude of three
ERP components in Fp1 and Fp2; (d) comparison of original fNIRS signal and preprocessed fNIRS
signal; and (e) the ΔHbO2, ΔHbR, and ΔHbT values of the brain Fp1 point in the Stroop task.

The ΔHbO2, ΔHbR, and ΔHbT values of the brain Fp1 point and Fp2 point collected in
fNIRS channels D1-S2 and D4-S3 (shown in Figure 1c), respectively, are shown in Figure 5e.
During the waiting period, the concentrations of both HbO2 and HbR remained stable.
When the first Stoop task began, the HbO2 concentration increased rapidly. At the cessation
of the task and entry into the rest period, the HbO2 concentration gradually returned to the
baseline level. During this process, the concentration of HbR showed a roughly opposite
trend to the change in the concentration of HbO2, which is consistent with the analysis
of the mechanism of neural–vascular coupling. It can also be found that the change in
the concentration of HbR is smaller than the change in the concentration of HbO2. From
the perspective of brain activity, when the Stroop task starts, there is an increase in the
oxygen demand of the prefrontal cortex involved in cognitive activity, which primarily
leads to an increase in cerebral arterial blood flow and dominates the changes in local
blood oxygen concentration, and this leads to an increase in HbT. In arterial blood, the
proportion of HbO2 is higher, which leads to a higher increase in the concentration of
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HbO2 than in the proportion of HbR. Additionally, Pearson correlation analysis showed
that the peak amplitude of P600 at Fp1 had a strong correlation with the second peak
value of ΔHbR (r = 0.752, p = 0.009 < 0.01). The peak amplitude of N500 at Fp1 also had a
significant correlation with the first peak value of ΔHbR (r = 0.724, p = 0.012). However,
peak amplitudes of P450 were not found to correlate with any peak of ΔHbR or ΔHbO2.
Therefore, a linear regression model can be established using the peak amplitude of P600
and N500 and peak values of ΔHbR to represent the hemodynamic–electrical patterns of
brain functions. These conclusions are in good agreement with the findings in [23].

The co-located EEG and fNIRS signals in the Stroop task were effectively detected
by our proposed patch, providing brain activation information such as the ERP response
and trend in the ΔHbO2, ΔHbR response. A conclusion can be drawn that the proposed
EEG-fNIRS patch was capable of acquiring neuroelectric and hemodynamic responses at
the same location.

4. Conclusions

In this study, a two-channel EEG and ten-channel fNIRS hybrid EEG-fNIRS brain
monitoring patch has been proposed that can measure EEG and brain cerebral hemody-
namic information at the same location. As shown in Table 1, compared with previous
research, the proposed EEG-fNIRS acquisition module design and optimized acquisition
module layout can acquire co-located EEG-fNIRS signals while eliminating spatial location
interference, which can also easily extend the acquisition range to the whole brain. The
EEG pre-amplifier on the electrode side effectively provided a high EEG signal noise sup-
pression capability of less than 0.9 μVrms, low-amplitude distortion to less than 2%, and
low-frequency distortion to less than 1%. Moreover, high LED switching frequency config-
uration greatly reduces the high crosstalk between bio-optical signals and EEG signals. In
addition, detrending, motion correction, and band-pass filter design effectively removed
physiological noise, baseline drift, and motion artifacts, effectively improving the SNR. The
forearm block experiment and Stroop task showed that the system is sufficiently capable
for acquiring neuronal electrical signal and hemodynamic activity at the same location.
The small size (about 78.54 mm2) and lightweight (about 21.8 g) EEG-fNIRS acquisition
module, EEG dry electrodes, and TPU flexible fixing belt can ensure long-term monitoring
and wearing comfort to meet the co-located EEG-fNIRS acquisition needs of emotional or
cognitive tasks or patients with mild cognitive impairment and major depressive disorder
in the home or clinic. It is expected to provide new information and phenomena that cannot
be detected when EEG and fNIRS are measured at separate locations, offering richer data
for the comprehensive exploration of brain functional activities and introducing new signal
acquisition methods for EEG-fNIRS research.

A limitation of our proposed system is that our EEG and fNIRS channels were limited
and only covered the forehead, compared to discrete commercial EEG systems, fNIRS
systems, and combined EEG-fNIRS system. Although our highly scalable acquisition
module design can quickly extend the acquisition range to the whole brain, the low SNR
caused by hair absorption and occlusion still limits its application in motor imagery,
visual stimulation, and other clinical applications where hemodynamic measurements are
required in parietal, occipital, or temporal lobe regions. In addition, a newly designed
fixing belt is also needed to ensure that EEG measurements conform to the international
10–20 system. However, the current system has met our design goal of using a wearable,
portable patch that allows high-quality acquisition of co-located EEG-fNIRS signals to
support cognitive and emotional measurements at the prefrontal lobe. Therefore, our
next steps should focus on how to reconstruct fNIRS signals impaired by extra-cranial
confounds using both algorithms and hardware approaches to improve the usability of the
system for brain–computer interfaces and brain research.
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Table 1. Comparison of features between the proposed and previous EEG-fNIRS systems.

System [13] [14] [20] [27] [28] Our Work

EEG input-referred noise 1.21 μVrms 1.39 μVpp 0.14 μVrms 29.9 μVrms 0.44 μVrms 0.89 μVrms
EEG sampling rate - 16 kSPS 250 Hz 250 SPS 2 kSPS 16 kSPS

fNIRS sampling rate 512 SPS 500 SPS 5 Hz 8 SPS 10 Hz 100 Hz
EEG resolution 15 24 24 24 12 24

fNIRS resolution - 24 16 24 12 24
Dry EEG electrode No No Yes No Yes Yes

Co-located EEG/fNIRS
acquisition Yes No No No No Yes

Crosstalk suppression No Yes Yes Yes No Yes
fNIRS physiological noise

removal
16 Hz Low-pass

filter - RC Low-pass
filter Low-pass filter - 0.01–0.08 Hz

Band-pass filter

fNIRS detrending - - Baseline
correction - -

First-order
polynomial
regression

fNIRS motion artifacts
removal - - - - - TDDR

- This parameter is not provided in the reference.
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EEG acquisition performance evaluation method. Note S3: Experimental design for the event-related
Stroop task.
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Abstract: Wearables with photoplethysmography (PPG) sensors are being increasingly used in
clinical research as a non-invasive, inexpensive method for remote monitoring of physiological health.
Ensuring the accuracy and reliability of PPG-derived measurements is critical, as inaccuracies can
impact research findings and clinical decisions. This paper systematically compares heart rate (HR)
and heart rate variability (HRV) measures from PPG against an electrocardiogram (ECG) monitor
in free-living settings. Two devices with PPG and one device with an ECG sensor were worn by
25 healthy volunteers for 10 days. PPG-derived HR and HRV showed reasonable accuracy and
reliability, particularly during sleep, with mean absolute error < 1 beat for HR and 6–15 ms for HRV.
The relative error of HRV estimated from PPG varied with activity type and was higher than during
the resting state by 14–51%. The accuracy of HR/HRV was impacted by the proportion of usable data,
body posture, and epoch length. The multi-scale peak and trough detection algorithm demonstrated
superior performance in detecting beats from PPG signals, with an F1 score of 89% during sleep. The
study demonstrates the trade-offs of utilizing PPG measurements for remote monitoring in daily life
and identifies optimal use conditions by recommending enhancements.

Keywords: wearables; ECG; PPG; heart rate; heart rate variability; pulse rate; pulse rate variability;
autonomic nervous system; remote monitoring; beat detection; multi-scale peak and trough detection
algorithm

1. Introduction

The continuous assessment of heart rate (HR) and heart rate variability (HRV) in daily
life is crucial for pre-emptive health monitoring and management of chronic diseases [1,2].
Diseases such as inflammatory bowel disease, including Crohn’s disease and ulcerative
colitis, are linked to complex interactions between the autonomic nervous system and
gut inflammation, with stress exacerbating the condition [3]. HRV, as a reliable indicator
of autonomic nervous system balance, can reflect physical and emotional stress and is
predictive of cardiovascular morbidity and mortality [4]. Continuous HR monitoring assists
in detecting arrhythmias and other heart conditions that may go unnoticed in episodic
clinical tests [5,6]. Thus, daily life variability in HR and HRV can provide a more accurate
picture of an individual’s health. Wearable PPG based devices are increasingly being used
in continuous monitoring of HR and HRV. PPG devices use optical sensors to detect blood
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volume changes in tissue and are convenient for a variety of settings, including personal
health applications. The PPG sensors, however, do not technically measure HR but rather
specifically measure the pulse rate (PR) from the blood volume change. Therefore, they do
not measure HRV, but they do technically measure pulse rate variability (PRV). However,
for the purpose of simplicity, we will use the terms HR and HRV for both ECG- and
PPG-derived measurements but specifically note if they have been derived from a PPG or
ECG sensor. Various studies [7–9] have validated the utility of PPG in different contexts,
including resting, post-exercise, and field conditions, demonstrating its versatility and
effectiveness.

Despite their promise, the utilization of PPG-based devices in clinical research presents
several limitations that must be first understood and addressed before deploying them
in clinical trials. A key issue is the impact of individual differences, such as skin tone,
age, and gender, on PPG readings [10–14]. Physiological aspects like respiration, venous
pulsation, and body temperature can introduce noise in PPG signals [15–18]. Additionally,
external factors such as motion artifacts, ambient light, and pressure applied to the skin
can affect the accuracy of PPG devices [19–23]. Since this can negatively impact the quality
of the data, careful consideration is necessary in the selection and use of PPG devices for
health monitoring.

PPG-based devices can provide a plethora of features primarily categorized into HR
and HRV. HRV features can be further categorized into time domain, frequency domain,
and non-linear domain features [4]. The previous studies validating physiological measures
from PPG devices have been primarily conducted in controlled environments, which do not
represent the challenges encountered in data quality, compliance, and reliability when used
in free-living settings. Furthermore, the results reporting accuracy of PPG-derived HRV
vary in literature, and there is a paucity of studies evaluating HRV features in free-living
conditions. For example, Polar H10 reported good agreement with an ECG-based device
for interbeat intervals (R-R intervals) and HR; however, results were not reported for any
HRV feature [24]. Polar V800 showed weak absolute agreement (intra class correlation
(ICC) < 0.3) with an ECG-based device for time domain HRV features such as root mean
square of successive differences (RMSSD) and standard deviation of normal RR (NN)
intervals (SDNN) [25]. In another study [26], six wearable devices were evaluated in sleep
lab settings, where good agreement was found for HR and poor agreement for RMSSD. The
validation of PPG-derived R-R intervals and HR was performed in [27], where analysis was
conducted under a resting state and over a very short recording time of 45 s. Another study
validated the Samsung smartwatch during awake and asleep state against an ECG-based
device using an epoch length of 5-min, showing weak to moderate correlation for HR and
HRV during awake state and moderate to strong correlation during asleep state [28].

For precise heartbeat detection, especially under varying cardiac conditions, it is
crucial to collect and analyze raw PPG data [29]. Innovative algorithms play a pivotal role
in this context. For example, a study employed a peak detection algorithm for smartwatch
PPG signals, resulting in significantly enhanced heart rate estimation accuracy in scenarios
including atrial fibrillation [30]. A bidirectional recurrent denoising auto-encoder method
demonstrated effectiveness in denoising and accentuating PPG waveform features, thereby
improving signal quality and heart rate detection [31]. Additionally, the implementation of
a novel hybrid motion artifact detection-reduction method using support vector machines
has been shown to improve the accuracy of motion artifact detection, which is crucial
for real-time vital sign monitoring [32]. However, before application of such complex
algorithms, there is a need to first understand the baseline performance of traditional
algorithms [33].

In this study, we address the gap in the existing research by performing a rigorous
validation of PPG-derived physiological measures. Specifically, the objectives are as follows:

(1) Assessment of the feasibility of collecting continuous data from PPG devices and their
usability in daily life settings.
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(2) Validation of the HR and HRV derived from PPG devices during awake, asleep, or
the full day period compared to that of an ECG sensor.

(3) Investigation of impact of data quality, body posture, activity types, epoch length for
HRV estimation, use of dominant vs. non-dominant hand on estimation of HR and
HRV from PPG devices.

(4) Assessment of the test–retest reliability of PPG-derived HR and HRV features in the
daily life settings under awake, asleep, and full day periods.

(5) Investigation of the performance of seven algorithms to detect beats from the raw
PPG waveform signal to identify potentially superior approaches to analyze noisy
sensor data in the daily life.

2. Methods

2.1. Study Participants

Twenty-five healthy volunteers participated in this non-interventional exploratory
study. The clinical study was performed at a single clinical pharmacology unit in Belgium
during November 2022 to March 2023. The individuals were 18 years of age or older
and determined to be healthy based on physical examination, medical history, and vital
signs recorded during screening. The participants were required to comply with study
instructions: wear two PPG devices and an ECG sensor simultaneously for two consecutive
five-day periods and complete daily morning questionnaires and an end-of-study survey.
The participants were excluded from the study if they had current or prior medical condi-
tions, concomitant therapies, and current or prior participation in a clinical study within
28 days of the start of this study. Furthermore, they were also excluded if they had any
constraints on sleep schedule, exposure to high frequency equipment during monitoring
period, or tattoos on their wrist or torso potentially interfering with PPG/ECG measure-
ments. They were not allowed to perform intensive exercise nor activities submerging
devices in water during the monitoring period. The study received approval from the ethics
committee of UZA/UAntwerp (3738-BUN B3002022000126). All participants provided
written informed consent. This study followed the procedure according to the Declaration
of Helsinki.

2.2. Measurement Setup

Two PPG-based devices (the Whoop 4.0 [34] and the Corsano CardioWatch 287-1B [35])
and one ECG device (Vital Patch [36]) were used in this study. The Corsano CardioWatch
287-1B (manufacturer: Corsano Healthcare BV, Den Haag, The Netherlands) is a wrist-worn
research-based home monitoring device and consists of an accelerometer, PPG sensors,
and a battery. The bracelet connects via Bluetooth to a mobile app and then to Corsano’s
secure cloud. It sampled acceleration and PPG signals at 25 Hz and used firmware version
4.13. In addition the to raw data, it also provides the following readings: heart rate, R-R
intervals, heart rate variability (e.g., RMSSD), respiration rate, activity count, activity type,
steps, energy expenditure, and sleep stages.

The Whoop 4.0 (manufacturer: Whoop, Boston, MA, USA) is a wrist worn commercial
device and captures continuous data from its accelerometer and PPG sensors. The Whoop
strap containing the actual measuring device connects via Bluetooth to a mobile app and
then to secure cloud storage. The firmware version 41.9.2-11.5 was used for Whoop. The
device measures the following: sleep duration, sleep staging, sleep disturbances, sleep
efficiency, resting heart rate, heart rate variability (RMSSD), respiratory rate, SpO2, heart
rate, R-R intervals, and skin temperature.

The Vital Patch device (manufacturer: VitalConnect Inc, San Jose, CA, USA) is adhered
to the chest and provides high quality single-lead ECG readings of heart rate and heart
rate variability. The VitalConnect device wirelessly transmits data from the Vital Patch
sensor to a smartphone and then to the PhysIQ (manufacturer: PhysIQ, Chicago, IL, USA)
cloud for storage and analysis [2]. The firmware version used for PhysIQ was 3.5.1.4. The
patch is equipped with ECG and accelerometer sensors to measure various physiological
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parameters such as heart rate, R-R intervals, respiratory rate, body temperature, skin
temperature, fall detection, activity (including step count), posture (body position relative
to gravity), and sleep stages.

2.3. Study Design

This study included two periods of data collection (Figure 1) from daily life for passive
home-based remote monitoring. The first data collection period included Day 1 through
Day 6. The second data collection period included Day 8 through Day 13. On Day 1, the
participants began wearing all three devices (Whoop 4, Corsano Cardiowatch 287-1B, Vital
Patch) simultaneously. During the first data collection period, the Vital Patch was worn
on the chest. The Whoop 4 was worn on the participant’s non-dominant hand, while the
Corsano Cardiowatch 287-1B was worn on their dominant hand. The devices were worn
for 5 consecutive days and nights, which included at least 1 weekend night. On Day 8, the
participants began the second data collection period wearing all three devices. The Vital
Patch was worn in the designated location on the chest as indicated during the site visit.
The Corsano Cardiowatch 287-1B was worn on the participant’s non-dominant hand, while
the Whoop 4 was worn on their dominant hand. The devices were worn for an additional 5
consecutive days and nights, which included at least 1 weekend night. During the whole
data collection period, on every third day participants were instructed to charge the devices
for at least three hours in the evening.

Figure 1. Study design, device attachments, and continuous data collection periods.

Participants completed a daily morning questionnaire, prompted at 9 a.m., which
asked two questions: the time at which the participant went to bed the previous night
and the time at which the participant woke up that day. Responses from the morning
questionnaire were collected on Day 2–Day 6 and Day 9–Day 13. A participant was
considered to have completed the study if the participant had completed the two data
collection periods of five consecutive days and nights, daily device assessments, and the
end of study survey.

2.4. Device Usability Assessment

An end-of-study survey was used to evaluate the usability of each device in daily life.
The following usability aspects of each device were assessed on a Likert scale from 1–5
(1 indicates strongly disagree to 5 indicates strongly agree) based on the modified version
of the standardized questionnaire for the system usability scale [37].

(1) I thought it was easy putting the device on and taking it off
(2) I experienced discomfort wearing the device
(3) I experienced trouble sleeping due to the device
(4) My device stayed in place
(5) I would like to use the device frequently
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(6) I found the device easy to use
(7) I needed support of a technical person to be able to use the device
(8) I experienced restrictions in my daily activities due to device
(9) I felt confident wearing the device
(10) I needed to learn a lot of things before I could get going with the device
(11) I found various functions of the device were well integrated (wearing, charging,

application features, etc.)
(12) I found the device very cumbersome to use
(13) I experienced skin irritability wearing the device

3. Data Analysis

3.1. Coverage Assessment

To assess the feasibility of the PPG devices to be used for daily continuous monitoring,
coverage of each PPG device data was calculated in two different ways. The first assessment
focused on the collection of continuous raw PPG/Acceleration data in daily life, and the
second assessment concentrated on the ability of the devices to be used for continuous
beat detection in daily life. For the first assessment, the raw data coverage of each device
was calculated on an hourly basis as a percentage of the available sample data points in
a particular hour to the intended number of samples in this hour. Hourly coverage was
further aggregated into full day (across 24 h) and different parts of the day (midnight to 8
a.m., 8 a.m. to 8 p.m., and 8 p.m. to midnight) for reporting. To assess the feasibility of the
PPG devices for continuous beat detection in daily life, R-R intervals obtained from the
devices were utilized. For simplicity, we use R-R intervals to refer to beat-to-beat intervals
for PPG and R-R intervals for ECG. For coverage estimation, a 5-min epoch length was
considered for the analysis. The data coverage within this epoch was calculated first, and
if there were at least 40% of the data present, this epoch was considered valid. Further,
the processed data hourly coverage was estimated by counting the valid epochs within an
hour divided by the intended possible number of 5-min epochs in that hour. The hourly
coverage was further aggregated into full-day periods (24 h) and specific time intervals for
reporting: midnight to 8 a.m., 8 a.m. to 8 p.m., and 8 p.m. to midnight. The charging times
of the devices were not adjusted in the coverage calculation to simulate real-world daily
life scenarios.

3.2. PPG/ECG Device Data (R-R Intervals) Processing

From each device, valid 5-min epoch R-R interval data were further processed before
feature engineering. The R-R interval data provided by each device were processed first
by sorting it based on the timestamps and removing any duplicates. The R-R intervals
were then cleaned by removing the outliers based on unrealistic physiological values and
ectopic beats to extract the cleaned normal-to-normal (N-N) intervals for robust feature
engineering [38]. The procedure for computing normal-to-normal (N-N) intervals from
R-R intervals consisted of several sequential steps. Initially, R-R interval outliers, defined
as the ones outside of the 300–2000 ms range [4,39], were identified and replaced with NaN
values to clean the data. Subsequently, any NaN values in between the reliable R-R interval
values were interpolated using a linear interpolation. This step ensures continuity in the
data by filling gaps with interpolated values. Following this, ectopic beats, or abnormal
heartbeats, were removed from the interpolated R-R intervals using the Malik method
(where the consecutive interval deviation is more than 20% from the previous one) [40].
This generated a series of N-N intervals representing the time intervals between consecutive
normal heartbeats. However, the ectopic beat removal may introduce new NaN values,
necessitating a second interpolation step. The same interpolation method applied earlier
was utilized again to fill in any remaining NaN values within the N-N intervals. Due
to the validation nature of this work in daily life, the same interpolation technique was
used for all features instead of considering different interpolation techniques for each
HRV feature [41]. The result is a list of interpolated N-N intervals, where physiological
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unrealistic and ectopic beats have been systematically removed, and missing values have
been filled in. This comprehensive pre-processing approach ensures a robust and adaptable
foundation for further heart rate variability (HRV) analysis. However, an ablation study
was also conducted to compare the impact of the current interpolation technique with that
of no interpolation of HRV features (Appendix B).

3.3. Feature Engineering

Cleaned epochs of 5-min N-N intervals from each device were further used to extract
HRV features related to time, frequency, and non-linear domains along with the mean value
of heart rate and N-N intervals. For the further validation analysis, only representative
features from each domain were considered and described in Table 1. More information
regarding feature definitions can be found in the work by Shaffer and Ginsberg [4].

Table 1. List of HR and HRV features, along with their definitions, used in the validation analysis.
HRV features were extracted from 5-min epochs of N-N intervals.

Feature (Units) Domain Definition

Mean HR (BPM) Time The average heart rate.

Std HR (BPM) Time Standard deviation of heart rate

Mean N-N (ms) Time The mean of the N-N intervals, which are the normal-to-normal intervals or the
time between successive normal heartbeats.

SDNN (ms) Time The standard deviation of the N-N intervals, indicating overall HRV.

SDSD (ms) Time The standard deviation of successive differences between adjacent N-N intervals,
emphasizing short-term variations.

RMSSD (ms) Time The square root of the mean of the sum of the squares of differences between
adjacent N-N intervals.

CVSD Time Coefficient of variation of successive differences between adjacent N-N intervals.

CVNN Time Coefficient of variation equal to the ratio of SDNN divided by Mean N-N intervals

LF (ms2) Frequency Low-frequency power spectral density (0.04 to 0.15 Hz)

HF (ms2) Frequency High-frequency power spectral density (0.15 to 0.40 Hz)

LF/HF Frequency A ratio of LF to HF

Sample Entropy Non-linear A non-linear measure that quantifies the complexity or irregularity of the HRV signal

3.4. Factors Affecting the PPG Device Performance

In addition to measuring HR and HRV throughout the full day (from midnight to
next midnight for each day), it is crucial to consider the influence of the body’s circadian
rhythm. This natural rhythm can cause HR/HRV features to vary between day and night,
subsequently affecting their accuracy. Particularly during periods of sleep with minimal
wrist movement, HRV features tend to be more accurate compared to wakeful periods
when daily activities are performed. Morning questionnaire responses were used to crop
the data based on subjective asleep and awake timings for each day.

Moreover, there are several other factors, including data coverage within epochs used
for HRV estimation, postural transitions, activity types, walking vs. non-walking, epoch
length, and device position, which can impact the estimation of PPG derived HR/HRV
features.

Coverage within a 5-min epoch used for HRV estimation: Continuous detection of beats
from PPG raw data without gaps is key for reliable HRV feature calculation. The impact
of R-R data coverage within 5-min epochs was investigated by increasing the coverage
threshold from 40% to 100% with increments of 10%.

Postural transitions: Body posture in daily life can also impact the PPG data reliability.
Postural information obtained from Vital Patch, such as upright, reclined, lying right, lying
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left, prone, and supine information, was used to label each 5-min epoch of data used for
HR/HRV estimation. A specific posture label was assigned based on its dominance within
the 5-min epoch of data in case the participant changed a posture with this 5-min time
interval.

Activity type: Performance of the PPG devices was also assessed under various daily
living activities such as cycling, rest, walking, and running provided by the Corsano device
after processing the accelerometer data.

Walking vs. non-walking: Specifically, walking detected by the chest-worn device (Vital
Patch), which can be more reliable compared to wrist-worn devices, was also used to check
the performance of the PPG devices.

Epoch length: The impact of epoch length on the error rate of HRV estimation during
asleep, awake, and full day periods was explored by using epoch lengths of 10, 30, and 60 min.
Apart from these epoch lengths, whole asleep and awake periods were also investigated.

Dominant vs. non-dominant hand: Five complete days of data from each collection
period from each subject were used to investigate the impact of wearing the PPG devices
on dominant vs. non-dominant hands during the asleep, awake, and full day periods.

3.5. Data Consideration for Reliability Assessment of HRV Features

Reliability of the HRV features was further explored. For reliability assessment, as
shown in Figure 2, the data were considered separately when the device was attached to the
dominant and non-dominant hand. Within each period of device attachment, two separate
full days (24 h) were considered. To compute reliability, the spearman correlation was
performed between HRV estimates obtained from synchronized 5-min epochs between
day 1 and day 2. Similarly, a reliability assessment was performed during the first day
awake/asleep period with the second day awake/asleep period based on the synchronized
5-min epochs of the HRV features.

Figure 2. Data consideration for the reliability assessment of the HR and HRV features.

3.6. Algorithms for Beat Detection from Raw PPG and ECG Data

Only Corsano provided raw PPG data at 25 Hz frequency. Seven open-source algorithms,
which performed well on PPG data in a previous study [33], were employed to detect beats
from the raw PPG data. A short description of each algorithm is provided in Table 2. The
methodology for beat detection from raw PPG data methodology was adopted from the prior
work [42]. Briefly, raw PPG green signals were subjected to band-pass filtration to remove
extraneous cardiac frequencies. Beats were identified over specific length PPG intervals
with certain overlap. Redundant detections from overlaps were excluded. Segments with
a continuous flat signal exceeding 0.2 s, often due to sensor disengagement or saturation,
were discarded. For validation, the beat (R peaks) detected from the simultaneously recorded
ECG signal by two different beat detectors were used as reference following the previous
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work [33]. The two beat detectors utilized were the ‘jqrs’, which employ the Pan and Tompkins
technique [43,44], and Clifford’s ‘rpeakdetect’ ECG beat detector [42]. Outputs from these
two algorithms were aligned and then merged, with ‘correct’ beats in the merged signal being
those identified by both within a 150 ms interval. Any 20-s segments without consensus
between the two detectors were omitted from the analysis.

Table 2. Brief description of the beat detection algorithms used during validation analysis.

Algorithm Name Description

1. Automatic Beat Detection
(ABD) by [45]

This algorithm computes a Fourier-based power spectral density (PSD) to isolate the signal’s
primary energy bands. Subsequently, the signal undergoes band-pass filtering, emphasizing
distinct heart rate frequencies. This is complemented by derivative-based filtering, which
makes rapid signal transitions prominent. A modification is made to the percentile threshold,
initially set around the 90th percentile in the original algorithm but later modified to the 75th
percentile, to detect peaks in the derivative (75th percentile used in this work). After filtering,
the algorithm identifies pulse peaks. To enhance accuracy, it corrects potential peak location
errors, removes false positives based on interbeat intervals and median heart rate thresholds,
and integrates missing peaks to account for false negatives.

2. Automatic Multi-Scale Peak
Detection (AMPD) by [46]

The PPG signal is first detrended and then segmented into overlapping windows of 6 s in
duration with 20% overall. Within these windows, the algorithm constructs a local maxima
scalogram (LMS) matrix. Rows of the LMS corresponded to scales, spanning from a single
sample up to half of the window’s duration, while columns represent individual PPG samples.
The algorithm updates specific LMS matrix entries to zero when a PPG sample surpasses its
neighboring values at a given scale, indicating a local maximum. By analyzing the LMS, the
algorithm determines the optimal scale (lambda), which represents the scale capturing the
most local maxima. The LMS matrix is then truncated to retain only scales smaller than this
optimal lambda. The final beat detection step identifies beats as those PPG samples that are
recognized as local maxima across all the retained scales in the truncated LMS.

3. Event-Related Moving
Averages (ERMA) by [47]

The algorithm processes the PPG signal with a Butterworth bandpass filter, limiting the
frequency range to 0.5 Hz to 8 Hz. The filtered signal was subsequently squared, ensuring
non-negative values. Two specific moving averages are then applied: the first, with a 111 ms
duration, is designed to emphasize systolic peaks, while the second, spanning 667 ms, makes
individual beats prominent. A threshold is computed as 2% of the squared signal’s mean.
Within 111 ms windows, beats are pinpointed when the first moving average exceeds the sum
of the second moving average and the defined threshold.

4. HeartPy by [48]

This algorithm starts by processing the PPG signal through multiple iterations of squaring
and normalization, emphasizing its peaks. Following this, the signal is subjected to a rolling
mean over a 0.75-s duration. A sliding window approach then segments the signal, with each
window’s size being the product of the window duration and the sampling rate. For
acceptable peak detection, constraints are set with a beats per minute (BPM) range of 40 to
180, and peak-to-peak (PP) intervals were of particular focus. A PP range is established
around the mean PP interval, using either a fixed 300 milliseconds or 30% of this mean to
define the upper and lower thresholds. These thresholds are crucial for discerning acceptable
PP intervals, facilitating the identification of significant peaks. Furthermore, signal segments
with more than three unreliable detections within 10 beats are discarded to ensure the
reliability of the detected peaks.

5. Multi-Scale Peak and Trough
Detection (MSPTD) by [49]

This algorithm operates by segmenting the PPG signal into overlapping windows, each
spanning 6 s with a 20% overlap. Within each window, the algorithm employs the modified
AMPD algorithm. This algorithm initiates by detrending the signal and computing local
maxima and minima scalograms. These scalograms are matrices indicating the presence of
local maxima and minima at varying scales. The method then determines the scales with the
most local maxima and minima and truncates the scalograms accordingly. Peaks and onsets
are identified based on these processed scalograms. After this pulse peak and pulse onset
detection, the algorithm refines the peak and onset indices by searching within a 5% tolerance
of the sampling frequency around the detected positions to pinpoint the exact maxima (for
peaks) or minima (for onsets). After processing all windows, the detected peaks and onsets
are ordered chronologically, with redundant detections discarded to ensure a unique set of
pulse events.
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Table 2. Cont.

Algorithm Name Description

6. Adapted Onset Detector
(qppgfast) by [50]

The algorithm employs a slope sampling approach over a defined window size of 170 ms to
compute the signal’s slope. For peak identification, dynamic thresholds are set. One threshold
is adjusted based on a running peak value observed in the current processing interval, with
this peak value being incremented by one-tenth of its difference from the threshold. A
secondary threshold is established as one-third of the primary threshold. After a peak is
detected, a specific lockout interval (340 ms) is applied, preventing the detection of
subsequent beats for a set duration. Additionally, if no pulse was detected over an extended
period, the primary threshold is reduced, provided it exceeds a minimum limit, to capture
potential low-amplitude beats.

7. Symmetric Projection Attractor
(SPAR) by [51,52]

This algorithm first segments the PPG data into windows, each spanning 20 s. Within each
window, the average cycle length is derived using autocorrelation, due to the periodic nature
of the PPG signal. This technique is bound by an HR range of 40 to 200 BPM, ensuring that
the detected cycle lengths were physiologically plausible. The derived average cycle length
subsequently informs the time delay parameter, which is integral to the symmetric projection
attractor reconstruction (SPAR) method. This method maps the signal into two values, based
on delay coordinates and specific mathematical projections. After a rotation using an optimal
angle, beats are detected by pinpointing crossings of a particular line in the rotated
coordinates. To ensure thorough beat detection, the algorithm adjusted for potential
mismatches between windows and incorporated mechanisms to handle missed or extra beats.

The alignment between PPG and ECG detected beats is not always exact. There-
fore, we used the methodology proposed by Charlton et al. [33]. Briefly, to synchronize
the PPG beats with ECG, the time discrepancy between each ECG beat and its nearest
PPG counterpart was computed. If this difference was less than 150 ms, the beat was
deemed accurately identified. In increments of 20 ms for shifting either PPG or ECG beat
sequence, this alignment procedure was repeated while offsetting the beats by lags ranging
from −10 to 10 s. The offset yielding the most accurate beat identifications was taken as
the genuine lag and utilized to harmonize beat timings.

3.7. Validation Approach and Statistical Analysis

The validation workflow is shown in Figure 3, where the performance of the devices
was assessed based on the provided R-R intervals. Each PPG device feature extracted from
N-N intervals was compared with the ECG-derived features during the same time interval.
All the devices were synchronized based on local UTC time. During this validation analysis,
depending on the coverage and pre-processing of the R-R intervals, HRV features from
various domains were calculated (Table 1). To assess the accuracy of measurements, the
relative error and absolute error were quantified. The relative agreement between HRV
features of the PPG device and ECG was assessed with correlation coefficient. Absolute
agreement between the devices was calculated with the ICC coefficient. The relationship
between the PPG and ECG features was further visualized through the scatter plots.
In addition, to analyze the difference between devices (PPG vs. ECG), Bland–Altman
plots were used, and other validation metrics such as bias (mean error) and 95% limit of
agreements were calculated. The reliability of the HRV features was assessed with the ICC
coefficient within each data collection period for the dominant and non-dominant hands
during asleep, awake, and full day periods. The feasibility of continuous remote data
collection in home settings was assessed by an evaluation of the coverage and usability of
devices. Average values of the coverage and usability along with the standard deviation
were reported as bar plots.
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Figure 3. Validation workflow of wearable PPG-based devices for HR and HRV.

The performance of the beat detectors on the raw PPG data was assessed by comparing
the detected beats with the reference ECG beats. A tolerance window of ±150 ms as
described in Section 3.6 was used for assessing the correctness of beat detection between
PPG and ECG. For example, if the detected beat from the PPG data is present within this
window of the reference ECG beat, then it is considered to be correctly identified. For full
day, asleep, and awake periods, the numbers of correct beats, reference beats, and PPG
beats were identified to calculate the sensitivity and positive predictive value (PPV). The
harmonic mean of PPV and sensitivity, as well as the F1 score, was used to identify the
best performing beat detectors. Furthermore, for time points corresponding to each beat,
the HR was using the preceding 8 s interval [33]. The performance of HR estimation for
different beat detectors was assessed as mean absolute percentage error (MAPE). All the
performance metrics for the evaluation of beat detectors are reported as median values
along with 95% confidence intervals.

A mathematical formulation of the evaluation metrics is given below.
Mean Absolute Error (MAE): MAE is the average of the absolute differences between

measured (PPG) and true values (ECG), calculated as

MAE =
1
n

n

∑
i=1

|xmeasurement, i − xtrue,i|

where

• xmeasurement,i is the i-th measured value of the epoch,
• xtrue,i is the i-th true value of the epoch,
• n is the total number of measurements.

Mean Relative Error (MRE): MRE measures the average relative error as a percentage
of the true value:

MRE =
1
n

n

∑
i=1

|xmeasurement, i − xtrue,i|
xtrue,i

× 100

Spearman Correlation: This correlation coefficient (ρ) assesses the rank-order relation-
ship between two variables, which is non-parametric and useful when there is a non-linear
relationship between the variables:
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ρ = 1 − 6 ∑ d2
i

n(n2 − 1)

where

• di is the difference between the ranks of xmeasurement,i and xtrue,i
• n is the total number of measurements.

Intra-Class Correlation (ICC): ICC 2,1 (two-way random effects, single measurement)
quantifies the degree of agreement between two sets of measurements, considering both
individual variability and systematic differences:

ICC(2, 1) =
MSR − MSE

MSR + (k − 1)MSE + k(MSC−MSR)
n

where

• MSR is the mean square of rows (subjects)
• MSE is the mean square error (residual)
• MSC is the mean square for columns (devices)
• k is the number of devices
• n is the number of subjects

Sensitivity: The proportion of true positives (TP) correctly identified by the algorithm
to TP and FN (false negative):

Sensitivity =
TP

TP + FN

Positive Predictive Value (PPV): The proportion of predicted positives that are true
positives to TP and FP (false positive):

PPV =
TP

TP + FP

F1 Score: The F1 score is the harmonic mean of precision (PPV) and sensitivity:

F1 = 2 × PPV × Sensitivity
PPV + Sensitivity

4. Results

The demographic characteristics for the participating subjects collected at screening
are shown in Table 3. The average age of participants was 46.9 years, with majority (n = 17)
being female (F). Participants had a body mass index in the range of 24.68 ± 3.10 kg/m2.

Table 3. Demographic characteristics of 25 study participants collected at screening.

Demographic Characteristics
Total Participants (n = 25)

(Mean ± Standard Deviation)

M/F (n) 8/17

Age (years) 46.92 ± 16.61

Height (cm) 168.72 ± 10.07

Weight (kg) 70.54 ± 12.40

BMI (kg/m2) 24.68 ± 3.10

Race White (n = 24)
American Indian or Alaska Native (n = 1)

99



Sensors 2024, 24, 6826

4.1. Feasibility of PPG Devices in Daily Life

The feasibility analysis is divided into (1) the coverage analysis of the raw PPG and
the R-R interval data processed by the device and (2) the usability analysis of the PPG
device deployment in daily life.

4.1.1. A Coverage Analysis

The coverage for raw ECG/PPG/Acceleration data and processed R-R interval data is
presented as median value along with min and max values in Table 4. Additionally, the
coverage of the processed R-R intervals is also shown in Figure 4 as average values along
with a 95% confidence interval. Vital Patch provided 100% coverage of the raw ECG data
during most of the study days whenever it was attached to the body. Corsano had similar
coverage for the raw PPG data. However, the Whoop device had slightly less coverage
each day when compared to Corsano.

Table 4. Raw data coverage from all devices—where min, max, and median values are based on the
coverage across all subjects.

Day Timings

Vital Patch
Median [min, max]

Corsano
Median [min, max]

Whoop
Median [min, max]

Raw ECG R-R Raw PPG R-R R-R

Full Day 100 [1, 100] 98 [0, 100] 100 [33, 100] 52 [0, 94] 44 [0, 79]

Midnight to 8 a.m. 100 [1, 100] 100 [0, 100] 100 [33, 100] 88 [0, 100] 77 [0, 100]

8 a.m. to 8 p.m. 100 [1, 100] 98 [0, 100] 100 [39, 100] 31 [0, 93] 19 [0, 68]

8 p.m. to midnight 100 [3, 100] 100 [0, 100] 100 [33, 100] 75 [0, 100] 68 [0, 100]

Figure 4. R-R interval data coverage—where the height of the bars indicates the average coverage
values while the whiskers correspond to 95% confidence intervals.

As demonstrated in Figure 4 and Table 4, it is clear that the ECG-based device detected
more beats in the data and had better coverage than PPG devices. PPG devices detected
fewer beats during the daytime as compared to night. Therefore, the median coverage
varied from 44–52% during a full day period to 77–88% only during the night. Overall,
Corsano has better coverage for the processed R-R interval data as compared to Whoop.
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4.1.2. Usability Analysis

The second aspect of the feasibility assessment was to investigate the usability of the
wearables. A 13-item questionnaire (Section 2.4) was answered by each participant at the
end of the study, and their responses are shown in Figure 5. The results indicated that all
devices were easy to use, they stayed in place, had low discomfort when wearing, were not
cumbersome, and functioned well. However, for Whoop, participants indicated a slight
need to learn more before one could get going with the device and a need for more technical
support when compared to Corsano. Furthermore, Vital Patch had higher skin irritation,
followed by Whoop and then Corsano.

Figure 5. Usability evaluation of devices. Participants completed an end-of-study survey comprising
a 13-item questionnaire assessing the usability of each device. Figure here shows abbreviated versions
of the questions described in Section 2.4.

4.2. Mutual Data for Validation

Based on coverage analysis in Section 4.1.1, Vital Patch had more processed R-R
interval data each day when compared to the Corsano and Whoop. Therefore, it is critical
to understand when the majority of the data are available for the validation. Since validation
could be performed only using data from such epochs, which are considered valid for both
devices under comparison, we computed the number of such mutually valid epochs for
different times a day for Corsano–Vital Patch and Whoop–Vital Patch pairs. Figure 6 shows
the comparison for both Corsano and Whoop with Vital Patch, where each bar corresponds
to the matched number of valid 5-min epochs between an ECG- and PPG-based device
across all participants and days. Figure 6 is further divided into the night, day, and evening.
During night and evening, both devices had more matched data when compared to daytime
for the validation.
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Figure 6. Bar plot showing the availability of 5-min epochs, which are valid for both devices, across
days and participants.

4.3. Performance of the PPG Devices

The results of the comparison of HR/HRV features obtained from PPG devices to the
same features derived from ECG device are shown in Table 5. The performance comparison
is reported based on three time intervals: when participants were asleep, awake, and
during the full day. Scatter plots and Bland–Altman plots showing alignment between the
N-N interval and heart rate are shown in Figure 7.

During the full day period, Whoop had higher error in N-N intervals and HR com-
pared to Corsano. However, both PPG devices had good relative and absolute agreement
in N-N intervals and HR with the ECG device. For time domain HRV features like RMSSD,
and SDNN, both devices performed similarly in terms of their agreements with ECG. In
the frequency domain, both devices had a high error rate during the full day and low
absolute agreement.

The error rate during asleep time was lower than awake time for all HR/HRV features.
The mean error for HR during asleep time was less than one beat and for N-N intervals was
less than 10 ms. However, both devices overestimated the N-N intervals during both awake
and asleep periods when compared to the ECG device. Time domain HRV during asleep
time had errors in a range of 6–10 ms for Corsano, while Whoop had errors in a range of
7–15 ms. For frequency domain features, the error rate was drastically lower during the
asleep time compared to awake time for both devices, the reduction being more in the case
of Corsano than Whoop. Both PPG devices had a lower error rate and good agreement
with the ECG device during asleep time as compared to awake time.
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Figure 7. Scatter and Bland–Altman plots showing the performance of the PPG devices compared to
ECG device for (A) mean N-N intervals (top) and (B) HR (bottom) across 5-min epochs.
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Table 5. Performance of PPG-based devices compared to ECG for HR and HRV features. Accuracy
between PPG- and ECG-derived measurements was quantified with mean absolute error. Agreement
between PPG- and ECG-derived measurements was quantified with the spearman correlation co-
efficient, ICC coefficient, and Bland–Altman analysis. Bold text for each feature indicates the best
performing device for the specific part of the day.

Time Device
Mean

Absolute Error

Spearman
Correlation ρ

(p-Value)

ICC
(p-Value)

Mean Error
(Bias)

Bland–Altman Limits
of Agreement CI 95%

(+, −)

Heart Rate, BPM

Full Day
Corsano 1.36 0.98 (<0.001) 0.97 (<0.001) 1.14 [5.99, −3.71]

Whoop 1.50 0.96 (<0.001) 0.93 (<0.001) 0.80 [7.47, −5.86]

Awake
Corsano 1.84 0.96 (<0.001) 0.95 (<0.001) 1.59 [7.17, −3.98]

Whoop 1.71 0.95 (<0.001) 0.94 (<0.001) 0.90 [7.37, −5.58]

Asleep
Corsano 0.85 0.98 (<0.001) 0.98 (<0.001) 0.65 [4.2, −2.9]

Whoop 1.31 0.96 (<0.001) 0.92 (<0.001) 0.71 [7.38, −5.96]

Variability in Heart Rate (SD of HR), BPM

Full Day
Corsano 1.65 0.73 (<0.001) 0.44 (<0.001) 0.93 [7.03, −5.18]

Whoop 1.92 0.65 (<0.001) 0.35 (<0.001) 0.68 [7.74, −6.38]

Awake
Corsano 1.98 0.56 (<0.001) 0.31 (<0.001) 0.80 [7.6, −6]

Whoop 2.12 0.54 (<0.001) 0.33 (<0.001) 0.16 [7.42, −7.1]

Asleep
Corsano 1.27 0.87 (<0.001) 0.57 (<0.001) 1.04 [6.02, −3.95]

Whoop 1.72 0.75 (<0.001) 0.38 (<0.001) 1.13 [7.74, −5.48]

N−N Intervals, ms (Mean of the N-N intervals)

Full Day
Corsano 13.20 0.98 (<0.001) 0.98 (<0.001) −10.38 [32.33, −53.08]

Whoop 16.04 0.97 (<0.001) 0.96 (<0.001) −9.49 [54.94, −73.92]

Awake
Corsano 17.10 0.97 (<0.001) 0.97 (<0.001) −14.70 [31.88, −61.28]

Whoop 17.93 0.96 (<0.001) 0.96 (<0.001) −10.74 [52.78, −74.26]

Asleep
Corsano 9.04 0.99 (<0.001) 0.99 (<0.001) −5.83 [29.6, −41.26]

Whoop 14.28 0.97 (<0.001) 0.96 (<0.001) −8.33 [56.12, −72.79]

SDNN, ms (SD of the N−N intervals)

Full Day
Corsano 13.89 0.78 (<0.001) 0.69 (<0.001) 4.41 [50.67, −41.85]

Whoop 17.31 0.72 (<0.001) 0.57 (<0.001) 3.18 [64.11, −57.75]

Awake
Corsano 16.47 0.62 (<0.001) 0.55 (<0.001) 1.08 [52.28, −50.12]

Whoop 19.71 0.62 (<0.001) 0.48 (<0.001) −3.01 [62.55, −68.57]

Asleep
Corsano 10.92 0.91 (<0.001) 0.8 (<0.001) 7.91 [45.7, −29.89]

Whoop 15.06 0.82 (<0.001) 0.66 (<0.001) 8.79 [62.11, −44.53]

SDSD, ms (SD of successive differences between adjacent N-N intervals)

Full Day
Corsano 12.52 0.7 (<0.001) 0.65 (<0.001) −9.43 [22.77, −41.64]

Whoop 9.42 0.76 (<0.001) 0.75 (<0.001) −2.96 [26.07, −31.99]

Awake
Corsano 17.99 0.58 (<0.001) 0.43 (<0.001) −15.43 [20.04, −50.9]

Whoop 11.86 0.67 (<0.001) 0.63 (<0.001) −6.45 [24.4, −37.3]

Asleep
Corsano 6.89 0.89 (<0.001) 0.87 (<0.001) −3.57 [18.27, −25.4]

Whoop 7.14 0.86 (<0.001) 0.84 (<0.001) 0.13 [25.46, −25.19]
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Table 5. Cont.

Time Device
Mean

Absolute Error

Spearman
Correlation ρ

(p-Value)

ICC
(p-Value)

Mean Error
(Bias)

Bland–Altman Limits
of Agreement CI 95%

(+, −)

RMSSD, ms (Square root of mean of the sum of squares of differences between adjacent N-N intervals)

Full Day
Corsano 12.53 0.7 (<0.001) 0.65 (<0.001) −9.43 [22.78, −41.64]

Whoop 9.42 0.76 (<0.001) 0.75 (<0.001) −2.96 [26.07, −31.99]

Awake
Corsano 17.99 0.58 (<0.001) 0.43 (<0.001) −15.43 [20.04, −50.91]

Whoop 11.86 0.67 (<0.001) 0.63 (<0.001) −6.45 [24.4, −37.3]

Asleep
Corsano 6.89 0.89 (<0.001) 0.87 (<0.001) −3.57 [18.27, −25.4]

Whoop 7.14 0.86 (<0.001) 0.84 (<0.001) 0.13 [25.46, −25.19]

CVSD (Coefficient of variation of successive differences between adjacent N-N intervals)

Full Day
Corsano 0.01 0.66 (<0.001) 0.53 (<0.001) −0.01 [0.03, −0.05]

Whoop 0.01 0.71 (<0.001) 0.66 (<0.001) 0.00 [0.03, −0.04]

Awake
Corsano 0.02 0.49 (<0.001) 0.32 (<0.001) −0.02 [0.03, −0.06]

Whoop 0.01 0.6 (<0.001) 0.54 (<0.001) −0.01 [0.03, −0.05]

Asleep
Corsano 0.01 0.87 (<0.001) 0.82 (<0.001) 0.00 [0.02, −0.03]

Whoop 0.01 0.82 (<0.001) 0.76 (<0.001) 0.00 [0.03, −0.03]

CVNN (Coefficient of variation equal to the ratio of SDNN divided by Mean N-N intervals)

Full Day
Corsano 0.02 0.74 (<0.001) 0.59 (<0.001) 0.01 [0.06, −0.05]

Whoop 0.02 0.68 (<0.001) 0.48 (<0.001) 0.00 [0.08, −0.07]

Awake
Corsano 0.02 0.56 (<0.001) 0.42 (<0.001) 0.00 [0.07, −0.06]

Whoop 0.02 0.57 (<0.001) 0.4 (<0.001) 0.00 [0.08, −0.08]

Asleep
Corsano 0.01 0.9 (<0.001) 0.75 (<0.001) 0.01 [0.05, −0.03]

Whoop 0.02 0.8 (<0.001) 0.57 (<0.001) 0.01 [0.07, −0.05]

LF: variance (power) in HRV in the low Frequency (0.04 to 0.15 Hz), ms2

Full Day
Corsano 392.70 0.76 (<0.001) 0.45 (<0.001) 21.02 [1906.22, −1864.18]

Whoop 427.39 0.7 (<0.001) 0.33 (<0.001) 119.11 [2195.07, −1956.84]

Awake
Corsano 479.81 0.62 (<0.001) 0.34 (<0.001) −41.58 [2002.9, −2086.06]

Whoop 464.56 0.61 (<0.001) 0.32 (<0.001) 44.94 [2069.97, −1980.09]

Asleep
Corsano 282.50 0.89 (<0.001) 0.61 (<0.001) 75.75 [1627.54, −1476.04]

Whoop 386.94 0.78 (<0.001) 0.35 (<0.001) 182.01 [2218.12, −1854.1]

HF: variance (power) in HRV in the High Frequency (0.15 to 0.40 Hz), ms2

Full Day
Corsano 312.58 0.66 (<0.001) 0.29 (<0.001) −49.69 [1519.79, −1619.16]

Whoop 268.87 0.68 (<0.001) 0.25 (<0.001) 63.74 [1769.18, −1641.71]

Awake
Corsano 404.71 0.56 (<0.001) 0.21 (<0.001) −142.96 [1525.31, −1811.23]

Whoop 298.56 0.6 (<0.001) 0.22 (<0.001) 4.81 [1591.43, −1581.81]

Asleep
Corsano 202.24 0.84 (<0.001) 0.43 (<0.001) 34.86 [1351.93, −1282.2]

Whoop 236.42 0.78 (<0.001) 0.28 (<0.001) 112.07 [1845.99, −1621.85]
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Table 5. Cont.

Time Device
Mean

Absolute Error

Spearman
Correlation ρ

(p-Value)

ICC
(p-Value)

Mean Error
(Bias)

Bland–Altman Limits
of Agreement CI 95%

(+, −)

Ratio: LF/HF

Full Day
Corsano 1.62 0.65 (<0.001) 0.51 (<0.001) 1.24 [6.17, −3.7]

Whoop 1.34 0.69 (<0.001) 0.59 (<0.001) 0.80 [5.24, −3.65]

Awake
Corsano 2.16 0.55 (<0.001) 0.29 (<0.001) 1.93 [7.6, −3.74]

Whoop 1.58 0.57 (<0.001) 0.44 (<0.001) 1.15 [6.03, −3.72]

Asleep
Corsano 1.13 0.8 (<0.001) 0.73 (<0.001) 0.60 [4.46, −3.26]

Whoop 1.17 0.78 (<0.001) 0.69 (<0.001) 0.51 [4.57, −3.55]

Sample Entropy

Full Day
Corsano 0.41 0.45 (<0.001) 0.4 (<0.001) −0.23 [0.69, −1.15]

Whoop 0.45 0.45 (<0.001) 0.4 (<0.001) 0.21 [1.3, −0.87]

Awake
Corsano 0.46 0.32 (<0.001) 0.26 (<0.001) −0.30 [0.7, −1.29]

Whoop 0.59 0.32 (<0.001) 0.25 (<0.001) 0.41 [1.62, −0.8]

Asleep
Corsano 0.36 0.58 (<0.001) 0.53 (<0.001) −0.17 [0.67, −1.01]

Whoop 0.33 0.65 (<0.001) 0.61 (<0.001) 0.05 [0.88, −0.79]

4.4. Factors Impacting the Performance of a PPG-Based Device

The impact of coverage within epoch, body posture, daily life activities, epoch length,
dominant vs. non-dominant hands, on the performance of the PPG-based device was
explored only for the Corsano device, which provided the raw PPG data. While exploring
the impact of these factors, a relative error in percentage is reported for the representative
HR/HRV features.

We hypothesized that increasing the threshold for quantifying a valid epoch will lead
to a more accurate estimation of HR/HRV features. Therefore, we experimented with the
coverage threshold for a 5-min epoch from 40% to 100% and investigated its impact on
the performance of HR/HRV features as shown in Figure 8. The relative error decreased
for all the HR/HRV features on increasing the coverage. The error rate for RMSSD and
SDNN reduced by approximately around 20% and 10%, respectively. Similar trends were
observed for frequency and non-linear domain HRV features.

The impact of a variety of body postures, such as upright, reclined, lying left and
right, prone, and supine positions, on PPG-derived HR/HRV features was investigated
and presented in Figure 9. In all HR/HRV features, a higher error was observed during
the upright and reclined positions. Specific lying positions played a critical role, such
as lying face down in the prone position, which had a higher error rate compared to the
supine position for the HR/HRV features. Similarly, lying on the right side has higher
error than lying on the left side. The most appropriate position for PPG HRV features
engineering was the lying position and especially lying on the left side. Various repetitive
and cyclic daily living activities such as cycling, walking, and running resulted in a higher
error rate in all the HR/HRV features, as shown in Figure 10. The lowest relative error
was observed during rest, where the SDNN has a relatively lower error than RMSSD.
Mobility, here, walking vs. non-walking, influenced the accuracy of PPG features, as shown
in Figure 11. During walking, the relative error was higher than non-walking for all the
HR/HRV features. The difference in the relative error between the two activities was
10% for SDNN and 15% for RMSSD. This difference increased further for the frequency
and non-linear features as shown in Figure 11. Wearing the device on the dominant or
non-dominant hand did not exhibit any significant difference (Appendix A).
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Figure 8. Impact of coverage within a 5-min epoch on the accuracy of PPG-derived HR and HRV
features.

Figure 9. Impact of body posture on accuracy of PPG-derived HR and HRV features.
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Figure 10. Impact of daily life activities on accuracy of PPG-derived HR and HRV features.

Figure 11. Impact of mobility on accuracy of PPG-derived HR and HRV features.
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The impact of epoch length was explored under the awake (Figure 12A), asleep
(Figure 12B), and full day periods (Figure 12C). Various epoch lengths, such as the default
5 min, 10 min, 30 min, and 60 min, whole awake time during the day, and whole asleep time
during the night for all HR and HRV features estimation, were investigated. Interestingly,
the correspondence of different PPG-derived HR and HRV features to ECG-derived ones
behaves differently under various epoch lengths. The relative error rate increased for
the mean HR and mean N-N intervals under both asleep and awake conditions while
increasing the epoch length from 5 to 60 min. In contrast, for the majority of the time
domain HRV features, the error rate reduced while increasing the epoch lengths. However,
the relative error increased for the SDNN during the asleep period and did not follow the
same trend as during the awake period. Similarly, the frequency domain HRV features also
resulted in a lower error rate while increasing the epoch length. For non-linear features
such as the sample entropy, the relative error went up with the increase in the epoch
length. The asleep period resulted in the lowest relative error for the RMSSD. Again, SDNN
behaved differently than RMSSD, where the SDNN performed well during the awake
period compared to the asleep period.

Figure 12. Impact of epoch length on accuracy of PPG-derived HR and HRV features.

4.5. Test–Retest Reliability of the HR and HRV Features in Daily Life

The test–retest reliability of the HRV features obtained from Corsano is shown in
Table 6. Scatter plots for alignment of N-N intervals and HR estimated at the same time at
two different adjacent days are provided in Figure 13 for both dominant and non-dominant
hands. The dominant hand had higher reliability than non-dominant hands under awake,
asleep, and full day periods. For all time domain HRV features, test–retest reliability was
higher during the asleep periods compared to the awake periods. Frequency domain
features also showed higher reliability during the asleep period compared to the awake
period, except the LF/HF ratio, which had higher reliability during the awake period.
Among all features, RMSSD from time domain HRV and HF from the frequency domain
HRV had better reliability.
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Table 6. Reliability assessment of HR and HRV features in daily life. Values in the table indicate
the magnitude of intraclass correlation between Day 1 and Day 2 and their corresponding p-values
in parenthesis.

Feature

Timings of the Day

Full Day Awake Asleep

Dominant Non-Dominant Dominant Non-Dominant Dominant Non-Dominant

Heart Rate 0.72 (<0.001) 0.66 (<0.001) 0.65 (<0.001) 0.47 (<0.001) 0.68 (<0.001) 0.66 (<0.001)

SD HR 0.26 (<0.001) 0.33 (<0.001) 0.25 (<0.001) 0.20 (<0.001) 0.33 (<0.001) 0.35 (<0.001)

Mean N-N 0.76 (<0.001) 0.70 (<0.001) 0.71 (<0.001) 0.55 (<0.001) 0.67 (<0.001) 0.69 (<0.001)

SDNN 0.44 (<0.001) 0.42 (<0.001) 0.31 (<0.001) 0.26 (<0.001) 0.47 (<0.001) 0.42 (<0.001)

SDSD 0.70 (<0.001) 0.61 (<0.001) 0.30 (<0.001) 0.38 (<0.001) 0.77 (<0.001) 0.68 (<0.001)

RMSSD 0.70 (<0.001) 0.61 (<0.001) 0.30 (<0.001) 0.38 (<0.001) 0.77 (<0.001) 0.68 (<0.001)

CVSD 0.63 (<0.001) 0.59 (<0.001) 0.21 (<0.001) 0.31 (<0.001) 0.73 (<0.001) 0.66 (<0.001)

CVNN 0.32 (<0.001) 0.35 (<0.001) 0.20 (<0.001) 0.19 (<0.001) 0.41 (<0.001) 0.41 (<0.001)

LF 0.33 (<0.001) 0.31 (<0.001) 0.22 (<0.001) 0.09 (0.015) 0.34 (<0.001) 0.27 (<0.001)

HF 0.62 (<0.001) 0.59 (<0.001) 0.40 (<0.001) 0.33 (<0.001) 0.65 (<0.001) 0.60 (<0.001)

Ratio: LF/HF 0.39 (<0.001) 0.30 (<0.001) 0.69 (<0.001) 0.50 (<0.001) 0.28 (<0.001) 0.20 (<0.001)

Sample Entropy 0.11 (<0.001) 0.09 (<0.001) 0.05 (0.151) 0.08 (0.035) 0.20 (<0.001) 0.09 (0.001)

Figure 13. Test–retest reliability of mean N-N intervals (top row) and HR (bottom row) from dominant
(left column) and non-dominant (right column) hands. Each black dot represents a synchronized
5-min epoch. *** indicates p-value is <0.001.
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4.6. Performance of Beat Detection Algorithms on the Noisy PPG Sensor Data

A suite of seven beat detection algorithms was investigated to evaluate their per-
formance in analyzing raw PPG signals collected in daily life settings. The performance
of each algorithm to detect beat and mean absolute percentage error (MAPE) for HR es-
timation is shown in Figure 14A,B and Table 7. Considering all the recorded data, the
performance of the algorithms for the beat detection assessed via F1 score appeared to
be similar (Figure 14A). When the performance was evaluated using MAPE for HR esti-
mation, differences between algorithm performance emerged, with only three algorithms,
MSPDT, ERMA, and AMPD, having MAPE lower than 10%. The beat detection F1 score
performance of these algorithms was around 62% with a 95% CI in the range of 44% to
87%. The median sensitivity was 59–61% with a 95% CI in the range of 42% to 95%. The
positive predictive value (PPV) was 63–64%. For HR estimation, apart from MAPE, the
mean absolute error (MAE) for three top-performing algorithms was 7 BPM with a negative
bias of around 2–3 beats. For the interbeat interval estimation, the MAE error for the top
performing algorithms ranged in between 249 ms and 337 ms (Table 7).

Figure 14. Performance of various beat detectors on the noisy PPG data compared to R-peak detected
from ECG in daily life recordings.
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The top-performing algorithm, MSPDT, which is a modified version of the AMPD
algorithm, was explored further on a subset of data corresponding to the asleep and awake
periods separately. The results are shown in Figure 14C,D and Table 8. The F1 score for
beat detection with MSPTD went up from 55% during the awake period to 89% during
the asleep period. The sensitivity of the MSPTD during asleep was 89% and 54% during
the awake period. Furthermore, the PPV was also 89% during the asleep and 57% during
the awake period (Figure 14C). The MAPE for HR estimation significantly reduced from
12.58% during the awake period to 1.78% during the asleep period (Figure 14D). The MAE
for HR estimation was around 1 beat during asleep and 10 beats during the awake period.
Additionally, MSPTD MAE for the interbeat intervals was also significantly reduced to
54 ms during the asleep period compared to 220 ms during the awake period.

Table 8. Top performing PPG beat detector (MSPTD) performance under awake and asleep periods.
All the performance metrics are reported as median values along with 95% confidence intervals.

Task Metric
MSPTD Performance During Awake and Asleep Period

Awake Asleep

Beat Detection

F1 Score 55.90 [43.26, 83.75] 89.25 [50.91, 99.37]

Sensitivity 54.76 [43.79, 86.48] 89.94 [50.85, 99.46]

PPV 57.62 [41.18, 86.27] 89.45 [50.98, 99.34]

HR Estimation, BPM

MAPE 12.58 [3.17, 22.91] 1.78 [0.65, 18.60]

MAE 10.01 [3.67, 20.84] 1.12 [0.41, 14.47]

Bias −3.44 [−15.47, 3.29] 0.03 [−4.39, 7.66]

LOA [14.64, 59.31] [2.44, 75.21]

Inter Beat Interval, ms

MAE 219.99 [107.23, 421.95] 53.80 [25.94, 205.58]

Bias 67.29 [−243.54, 189.07] −4.50 [−58.29, 65.19]

LOA [450.25, 2534.76] [129.31, 1457.40]

5. Discussion

In this paper, we performed a systematic validation of physiological measures derived
from PPG devices collected over multiple days in free living settings, which, to the best
of our knowledge, is the first of its kind. Specifically, we investigated the feasibility of the
remote collection of physiological measures from PPG devices in daily life, the usability
of such devices, and the accuracy of derived features at different time intervals of day:
awake, asleep, or throughout the day. We examined the impact of body posture, mobility,
and data coverage on the accuracy of the features and evaluated their test–retest reliability.
Furthermore, we quantified the performance of various algorithms to detect heartbeats
from noisy raw PPG signals.

5.1. Feasibility of PPG Data Collection and Device Performance

Our results showed that users found PPG devices comfortable and easy to use, re-
sulting in positive usability ratings. While the ECG data yielded 100% coverage for most
days and consistent beat detection throughout the day, PPG devices showed variability
in coverage and detected fewer beats at daytime compared to nighttime. The prior work
has shown coverage rates ranging from 70% to 90% for estimating heart rate and 50% to
90% for estimating pulse arrival time (PAT) or pulse amplitude variability (PAV), with
variations based on sensor location and quality [53].

Corsano generally had a lower error in estimating N-N intervals and HR compared to
Whoop. Both devices showed good relative and absolute agreement with ECG-derived
features and performed similarly for time-domain HRV features like RMSSD and SDNN.
In the frequency domain, both devices showed higher error rates and lower absolute
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agreement. This is in line with the previous work, which showed that the frequency-domain
HRV features explored previously in elderly vascular patients, especially those associated
with high-frequency content, were systematically overestimated [54]. This overestimation
resulted in a relatively large bias, indicating that care should be taken in interpreting these
parameters when derived from wrist-worn wearable devices. The error rates in our work
were lower during asleep than awake periods for all HRV features. Corsano demonstrated
superior performance, particularly during asleep periods, with mean errors for heart rate
and N-N intervals being minimal. This finding from Corsano and Whoop aligns with
the general observation that wearable PPG devices tend to perform better in situations
with minimal motion, such as during sleep [28,55]. However, these conclusions cannot
be generalized to all PPG devices without further comparative evaluations. Both devices,
however, tended to overestimate N-N intervals across all conditions. This is due to the
inherent limitations of PPG technology in accurately capturing beat-to-beat intervals under
varying conditions. Motion artifacts, diverse skin types, and signal crossover, among others,
could contribute to such potential inaccuracies in PPG-derived measurements [56].

5.2. Factors Impacting the Performance of PPG-Based Devices and Derived Features

The performance of PPG devices was influenced by several factors. The coverage
within a 5-min epoch significantly impacted the accuracy of HR/HRV features. Increasing
the epoch coverage from 40% to 100% decreased the relative error in HR/HRV features,
with a 20% reduction in error rate for RMSSD and over 10% for SDNN. The estimation
of SDNN showed small biases when compared with the ECG reference, while RMSSD
exhibited systematic overestimation in the range of 10%. This indicates that the accuracy
and reliability of HRV measurements from PPG can significantly vary based on the quality
and coverage of the data [54].

Human body posture during daily life activities influenced the estimation of PPG-
derived features. Higher error rates in HR/HRV features were observed in upright and
reclined positions compared to specific lying positions. The prone position showed a
higher error rate than the supine position. Lying on the right side resulted in higher
errors than lying on the left side, irrespective of whether the device was on the right or
left hand. The most suitable position for PPG HRV features engineering was the lying
position, particularly on the left side. It is likely that during upright positions, there is more
movement in the upper body and hands compared to lying positions. Daily life activities
like cycling, walking, and running resulted in higher error rates in all PPG HR/HRV
features. The difference in relative error between walking and non-walking was significant,
nearly 10% for SDNN and 15% for RMSSD. This difference increased further for frequency
and non-linear HRV features, suggesting that PPG data should ideally be recorded during
non-walking activities for more accurate results. According to a prior study, absolute
error across wearable devices was 30% higher on average during motion than during
rest for HR/HRV [56]. Another study showed that wearable devices can detect heart
rates accurately under resting conditions; however, daily life physical activities impact the
performance of these PPG-based devices [57].

Different epoch lengths (5, 10, 30, 60 min) for HR and HRV feature estimation were
analyzed. There was an increase in error for mean HR and N-N intervals with longer
epochs and a decrease in error for most time domain HRV features. For frequency domain
and non-linear features, error generally increased with longer epochs. The lowest error for
RMSSD was noted during the asleep period. Short-term spectral HRV analysis, typically
conducted over a few minutes, is useful for tracking rapid changes in cardiac autonomic
function. In contrast, long-term spectral HRV analysis, ranging from an hour to a full day,
provides a more stable assessment of autonomic function, capturing longer fluctuations and
better predicting prognosis. However, long-term analyses are more resource-intensive and
susceptible to noise and variability due to environmental factors and daily activities [58].
Furthermore, HRV indices vary significantly across distinct sleep epochs, challenging the
practice of aggregating HRV indices across these epochs from the whole asleep period.
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The previous work [59] found that both rapid eye movement (REM) and non-REM stage 2
(N2) sleep epochs showed a change in HRV indices throughout the night. This variabil-
ity suggests that aggregating HRV indices across sleep stages could obscure important
transient effects.

5.3. Reliability of the PPG-Based Assessments in Daily Life

Different levels of reliability based on hand dominance and state of consciousness
(awake/asleep) were observed in this study. Generally, the features extracted from a sig-
nal recorded from the dominant hand showed higher reliability across all periods. Time
domain HRV features exhibited greater test–retest reliability during asleep periods than
awake periods. Similarly, frequency domain HRV features, except the LF/HF ratio, showed
better reliability during asleep periods. In contrast, the LF/HF ratio had improved reliabil-
ity during awake periods. Non-linear HRV features displayed better reliability with the
dominant hand during asleep periods. In the context of HRV reliability during repetitive
low-intensity activities, a study found that the time interval between repeated measure-
ments did not influence the HRV values, indicating HRV’s reliability under different low
intensity activities [60]. Furthermore, the previous work [61] also showed HRV’s potential
as a reliable measure in varying states of consciousness, supporting our observed findings
of varying levels of HRV reliability based on the state of consciousness (awake/asleep).

5.4. Algorithms for Beat Detection from Noisy PPG Sensor Data During Daily Life

In the evaluation of algorithms for processing noisy PPG data, three out of seven
algorithms—MSPDT, ERMA, and AMPD—stood out by achieving heart rate estimation
accuracy with a MAPE below 10%. Furthermore, MSPDT showed significantly better
performance during asleep than when awake, with improvements in beat detection and a
substantial reduction in both MAPE and MAE for inter-beat intervals. In terms of algorith-
mic logic, the AMPD algorithm’s [46] strength lies in its local maxima scalogram matrix,
which identifies optimal scales for capturing the most local maxima in a PPG signal. This
scale-based approach allows for more precise beat detection amidst variable signal quality.
ERMA [47] uses Butterworth bandpass filtering and applies specific moving averages to
emphasize systolic peaks and individual beats. This method enhances the signal’s features
relevant for accurate beat detection, even in the presence of noise. MSPDT [49] employs a
modified version of the AMPD algorithm, optimizing the detection of local maxima and
minima in PPG signals. This approach is particularly effective in differentiating true signal
peaks from noise, which is crucial in noisy environments. The previous work also highlights
the importance of choosing the right PPG beat detector algorithm, noting that algorithms
like MSPDT show complementary performance characteristics in different conditions, such
as rest and exercise, and in different patient demographics [33,62]. More details on the
MSPDT algorithm and their implementation can be found in a prior work [63].

5.5. Key Insights and Recommendations

This study provides crucial insights into the use of PPG devices for HRV monitoring
in daily life settings. It reveals that while PPG devices like the Corsano and Whoop show
reasonable accuracy in comparison to ECG data, especially during sleep, their performance
is affected by various factors such as data coverage, body posture, activity types, and
epoch length. Time domain HRV features exhibit higher reliability during asleep periods.
Frequency domain features, except for the LF/HF ratio, show better agreement during
asleep periods. Additionally, algorithms like MSPDT, ERMA, and AMPD are effective in
processing noisy PPG data, with MSPDT being particularly effective during asleep periods.

Based on these insights, several recommendations are proposed. There is a need
for manufacturers to enhance data coverage and optimize algorithms to improve PPG
device accuracy, particularly during daytime activities. Emphasis should be placed on
design aspects like sensor placement and stability to minimize motion artifacts. Users and
clinicians should be informed of the optimal conditions for PPG device use, understanding
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their limitations, especially during high-intensity activities. Future research should focus
on reducing the impact of motion artifacts and other external factors on PPG data quality
and developing more robust algorithms for various real-life conditions. Finally, while
PPG devices offer a convenient means for HRV monitoring, caution is advised in inter-
preting data for clinical decisions, especially in scenarios where high precision is required.
These recommendations highlight the potential of PPG devices in HRV monitoring while
acknowledging the necessity for further improvements in technology and usage guidelines.

5.6. Study Limitations

The study presents several limitations. It focused on healthy individuals, limiting its
assessment to the patient population. The scope of this work has been limited to two PPG
devices, and future work should explore a broader range of PPG technologies, such as
those worn on fingers. Future work should also include heterogenous demographics to
assess the impact of skin tone, which has not been investigated in this work. In this study,
the impact of charging on data coverage has not been explored, which may be investigated
in future studies through the collection of self-reported questionnaires on participant’s
charging times or duration throughout the study. Moreover, the use of signal-processing-
based beat detectors, while reliable, highlights the necessity for the development of novel
algorithms. These new algorithms would be instrumental in enhancing beat detection
accuracy in challenging scenarios, marking a key direction for future advancements in
wearable health technology.

6. Conclusions

This work evaluated the performance of wearable PPG devices for HR and HRV
monitoring in daily life settings, thus enhancing the applicability of our findings to real-
world scenarios, which is vital for both consumer and clinical applications. Our results
showed that, overall, PPG-based devices showed promise in monitoring physiological
features. The data coverage of PPG devices was lower during active daytime hours, and
beat detection capability was noticeably diminished during the day. Data coverage and
beat detection accuracy were high, especially when the users were sleeping. Agreement
varied by coverage threshold, epoch length, body posture, and activity type. Users found
the devices comfortable and user-friendly, resulting in good positive usability ratings. A
MSPDT algorithm performed best in detecting beats from noisy raw PPG signals. The
study recommends optimal PPG data collection strategy and analysis methodologies that
should be employed in a clinical trial where such devices may be used for remote health
monitoring to minimize estimation error of HR and HRV and thus aid in accurate clinical
decision making.
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Appendix A. Impact of Dominant vs. Non-Dominant Hand on PPG Device

Performance

Impact of the dominant vs. non-dominant hand wearing position on the accuracy
of PPG derived HR/HRV features was explored during awake (Figure A1A), asleep
(Figure A1B), and full day periods (Figure A1C). Overall, for all the HR/HRV features, the
difference between the dominant and non-dominant hands was not significant. During the
awake period, the dominant hand had slightly higher error for time domain HRV compared
to the non-dominant hand. However, during the asleep period, the non-dominant hand
had a slightly higher error compared to the dominant hand for all HRV features. During
the full day period, the difference between the dominant and non-dominant hand was
negligible.

Figure A1. Impact of dominant vs. non-dominant wrist on accuracy of PPG-derived HR and HRV
features.

Appendix B. Impact of Interpolation and No-Interpolation Within the 5-min Epoch of

N-N Intervals on the Accuracy of the HRV Features (e.g., SDNN, RMSSD)

This topic of signal preprocessing and its impact on heart rate variability (HRV) metrics
has already been investigated in greater detail, particularly in a study such as “Effects of
Missing Data on Heart Rate Variability Metrics” by [41]. According to this paper, “The
optimal correction methodology for HRV metrics varies: correction without gap filling is superior
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for SDNN, RMSSD, and Poincaré plot metrics when missing beats occur predominantly in bursts,
while gap-filling methods are advantageous for instances of sporadic missing beats. Gap-filling
methodologies achieved optimal performance regarding frequency-domain parameters”. There are
mixed results in terms of which features to interpolate. This study [41] highlights that
different interpolation techniques (including linear interpolation) have varying effects
on HRV metrics, depending on the nature of the missing data. For example, while linear
interpolation works well for scattered missing beats, other approaches may be more suitable
for burst-type data loss. However, to simplify the preprocessing for our validation study,
we opted to use linear interpolation for all HRV features rather than adopting different
interpolation strategies for each feature. We prioritized the practical application in real-
world settings, allowing for typical interruptions like motion artifacts or signal dropouts,
with a 40% data presence threshold per epoch to ensure robustness. Additionally, an
ablation study comparing SDNN and RMSSD metrics, with and without interpolation,
showed improved results with longer epoch coverage, as seen in Table A1.

Table A1. Impact of interpolation and no-interpolation on the performance of the HRV features (e.g.,
SDNN, RMSSD) when extracted from a PPG-based device and compared with an ECG-based device.

Time
Interpolation/

No-Interpolation
Mean Absolute

Error

Spearman
Correlation
ρ (p-Value)

ICC (p-Value)
Mean Error

(Bias)

Bland–Altman
Limits of Agreement

CI 95% (+, −)

SDNN, ms (SD of the N-N intervals)

Full Day
Interpolation 13.89 0.78 (<0.001) 0.69 (<0.001) 4.41 [50.67, −41.85]

No-Interpolation 12.67 0.80 (<0.001) 0.72 (<0.001) 4.36 [46.60, −37.87]

Awake
Interpolation 16.47 0.62 (<0.001) 0.55 (<0.001) 1.08 [52.28, −50.12]

No-Interpolation 14.92 0.66 (<0.001) 0.59 (<0.001) 1.53 [48.22, −45.15]

Asleep
Interpolation 10.92 0.91 (<0.001) 0.80 (<0.001) 7.91 [45.7, −29.89]

No-Interpolation 10.09 0.92 (<0.001) 0.82 (<0.001) 7.34 [42.07, −27.37]

RMSSD, ms (Square root of mean of the sum of squares of differences between adjacent N-N intervals)

Full Day
Interpolation 12.53 0.7 (<0.001) 0.65 (<0.001) −9.43 [22.78, −41.64]

No-Interpolation 16.76 0.65 (<0.001) 0.53 (<0.001) −10.97 [38.31, −60.25]

Awake
Interpolation 17.99 0.58 (<0.001) 0.43 (<0.001) −15.43 [20.04, −50.91]

No-Interpolation 23.98 0.50 (<0.001) 0.32 (<0.001) −18.92 [35.92, −73.75]

Asleep
Interpolation 6.89 0.89 (<0.001) 0.87 (<0.001) −3.57 [18.27, −25.4]

No-Interpolation 9.13 0.85 (<0.001) 0.79 (<0.001) −3.16 [30.86, −37.18]

The ablation study in Table A1 shows that for SDNN, no-interpolation slightly im-
proves performance, especially during awake periods, while RMSSD performs better with
interpolation, particularly when handling larger data gaps. These findings confirm our
methodology’s robustness, suggesting that no-interpolation may be beneficial for SDNN,
but linear interpolation helps manage RMSSD variability due to missing data.
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Abstract: This pilot study examines the relationship between pain intensity and trunk
sitting postural control in 10 office workers with chronic spinal pain, using field-based
real-time inertial sensors. Pain intensity was assessed with the Numeric Pain Rating Scale
(NPRS) before and after work across three non-consecutive workdays, while postural
control was evaluated through estimated center of pressure (COP) displacements. Linear
and nonlinear metrics, including sway range, velocity, the Hurst exponent, and sample
entropy, were derived from the estimated COP time series. Pearson correlation coefficients
(r) and corresponding p-values were used to analyze the relationship between pain intensity
and postural control. Significant correlations, though limited to specific metrics, were found
(r = −0.860 to 0.855; p < 0.05), suggesting that higher pain intensity may be correlated
with reduced postural variability. These findings provide preliminary insights into the
potential link between pain intensity and postural control. Understanding trunk posture
dynamics could inform the development of targeted ergonomic interventions to reduce
musculoskeletal stress and improve sitting comfort in office environments.

Keywords: musculoskeletal disorders; chronic pain; pain intensity; postural control;
variability; inertial sensors

1. Introduction

Musculoskeletal disorders (MSDs), particularly chronic spinal conditions such as neck
and lower back pain, represent a significant global occupational health challenge. By 2050,
low back pain is projected to affect 843 million people, up from 619 million in 2020 [1],
while neck pain, which impacted 203 million in 2020, is expected to rise to 269 million [2].
The increasing prevalence of sedentary office work, combined with aging populations and
obesity rates, is expected to exacerbate this problem [1,3,4]. Office workers are especially
vulnerable due to prolonged sitting, highlighting the urgent need for ergonomic strategies
to mitigate the impacts of MSDs [5–8].
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Addressing this issue requires innovative approaches, such as those proposed within
the framework of Industry 4.0 and 5.0. These paradigms introduce opportunities to improve
workplace health through technology integration and human-centered design. While
Industry 4.0 emphasizes automation and digital transformation, Industry 5.0 prioritizes
worker well-being and sustainable ergonomics [9–11]. In this context, addressing the health
risks of prolonged sitting is essential. For example, nearly 40% of EU workers report sitting
for excessive durations [5], prompting the EU-OSHA to recommend limiting sitting to less
than half of the workday [5].

Movement variability and variation in posture represent complementary ergonomic
principles that are particularly relevant in this regard. Movement variability refers to
the natural, inherent fluctuations in motor performance across task repetitions [12]. This
intrinsic property of biological systems [12,13] facilitates the redistribution of muscle
activity, reducing localized fatigue, and improving activation patterns [14]. In contrast,
variation in posture and movement involves intentional changes in body position, such
as alternating between sitting and standing [15]. These postural adjustments are linked to
enhancing comfort and productivity by up to 6.5% [16].

Recent reviews reinforce the benefits of these principles in workplace settings. Stand-
ing interventions have been shown to effectively reduce sedentary behavior without com-
promising productivity [17], while active breaks incorporating postural changes can alle-
viate pain and discomfort [18]. Advances in technologies, such as inertial measurement
units (IMUs), further support ergonomic interventions by enabling the detailed analysis of
movement and postural behaviors [19–23]. Together, these findings highlight the critical
importance of movement variability as a central component of strategies to reduce back
pain and improve workplace well-being.

Despite this growing recognition of the role of movement variability in reducing
musculoskeletal discomfort, there remains a limited understanding of how specific aspects,
such as trunk posture variability, influence pain intensity. Inconsistencies in kinematic
data and a lack of focused studies hinder a comprehensive understanding of the role of
movement in the management of chronic spinal pain [24,25].

This study aims to address these gaps by investigating the relationship between motor
variability—measured through linear and nonlinear postural sway metrics derived from
the estimated center of pressure (COP) time series—and pain intensity in office workers
with chronic spinal pain, particularly those in tax authorities engaged in computer-based
tasks while seated. By utilizing IMUs integrated into smartphones, this research seeks
to advance our understanding of motor patterns and contribute to the development of
interventions and digital health solutions tailored to this population. Based on the existing
literature, the following is hypothesized:

1. Higher pain intensity is associated with reduced variability and complexity in
trunk sway (e.g., lower entropy), reflecting increased trunk stiffness and a shift towards
a more rigid and predictable postural control strategy. These adaptations likely serve as
a compensatory mechanism to minimize movement-related stress and protect the spine
during prolonged sitting [26–29].

2. Work-related activities modulate postural control and pain perception, leading to
increased pain intensity and reduced movement variability in the post-work period (PM)
compared to the pre-work period (AM). This effect may be attributed to cumulative biome-
chanical strain and fatigue associated with sustained "static" postures during prolonged
occupational sitting [28,30].
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2. Materials and Methods

2.1. Study Design

This cross-sectional study, part of the PrevOccupAI Project (Prevention of Occupational
Disorders in Public Administrations using Artificial Intelligence), was conducted at offices
of the Portuguese Tax and Customs Authority (AT) located in the Lisbon Metropolitan
Area. A multidisciplinary team accomplished risk assessments for randomly selected tax
enforcement professionals from the AT’s Human Resources department. As an incentive
to participate in this study, evidence-based recommendations were developed to improve
resilience and address occupational health challenges, informed by sources such as the
ILO [31], the EU-OSHA [5], and Slater et al. [32]. Ethical approval was granted by NOVA
University Lisbon (No. CE/FCT/005/2022) in accordance with the Declaration of Helsinki
and GDPR. Informed consent was obtained from all participants.

2.2. Participants

A total of 10 workers were eligible to participate in this study. All participants were
adults aged 18 years or older, with no history of neurological, orthopedic, rheumatic,
oncological, or cardiorespiratory conditions; pregnant women were excluded. To meet the
eligibility criteria, participants were required to have a history of non-specific spinal pain
lasting at least three months, as defined by the International Association for the Study of
Pain (IASP) and the International Classification of Diseases, 11th Revision (ICD-11) [33].

2.3. Procedures

A standardized data collection protocol was implemented using a dedicated cross-
platform application developed within the PrevOccupAI project. This application enabled
the acquisition of multimodal biosignals and self-reported questionnaire responses via
smartphone and computer interfaces. Data collection spanned one workweek, adhering
to protocols established in prior studies [34]. Each workday began with participants re-
porting to a designated workplace room for device setup. They first completed a daily
pain questionnaire before the recording schedule was configured in the PrevOccupAI
application. A smartphone, securely positioned on the chest, continuously recorded iner-
tial sensor data and ambient noise throughout the workday, ensuring the uninterrupted
monitoring of postural sway and movement patterns in a real-world occupational setting.
Participants engaged in their regular work tasks while the smartphone passively captured
movement-related data. At the end of the workday, participants returned for device re-
moval and disinfection, followed by a second pain questionnaire to assess changes in pain
perception. This methodology facilitated a comprehensive, ecologically valid evaluation
of postural sway dynamics, leveraging smartphone-based sensing for continuous and
unobtrusive monitoring.

2.3.1. Demographics

Demographic data, including age, gender, height, and body mass, were captured using
an integrated questionnaire module. The Body Mass Index (BMI) was calculated based on
the standard formula BMI = mass (kg) / height (m)2. Data regarding work (years of work
experience, weekly work schedule in hours) were also collected. Subjective assessments
were conducted using validated instruments to assess physical activity levels, psychosocial
risks, and chronic pain experiences.
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2.3.2. Pain Experience

In 2020, the IASP [35] revised its definition of pain to include both physical and
emotional dimensions. Accordingly, pain perception was evaluated along three dimensions:
intensity, distress, and interference [33].

Pain intensity was assessed daily using the Numerical Pain Rating Scale (NPRS), where
participants reported their pain levels at the beginning and end of each workday, ranging
from 0 (“no pain”) to 10 (“worst pain imaginable”). Pain-related distress, representing the
emotional impact of persistent or recurrent pain, was measured weekly on an 11-point
numerical scale, with 0 indicating “no distress” and 10 indicating “extreme pain-related
distress”. Pain-related interference, quantifying the extent to which pain disrupted daily
activities, was self-reported on a scale from 0 (no interference) to 10 (complete inability to
perform activities) [33].

To optimize pain assessment, this project’s app integrated a body map tool, which
allowed participants to precisely localize pain and quantify symptom distribution (Figure 1).
Unmarked regions were assigned a pain intensity value of 0, ensuring a comprehensive
and personalized representation of pain across anatomical regions.

Figure 1. Interface for assessing pain location and intensity.

2.3.3. Physical Activity Levels

The European Portuguese version of the Short-Form International Physical Activity
Questionnaire (IPAQ-SF) assessed physical activity, categorizing participants’ weekly ac-
tivity as low, moderate, or high based on metabolic equivalents. This tool, validated for
adults aged 18–65, captures vigorous, moderate, walking, and sitting activities over a past
week [36].

2.3.4. Psychosocial Risks

Workplace psychosocial risks were evaluated using the Portuguese version of the
Copenhagen Psychosocial Questionnaire II (COPSOQ II) [37], covering multimodal do-
mains such as work demands, interpersonal relations, and health and well-being [38]. This
tool includes 76 items rated on a 5-point Likert scale. Results were grouped into their
domains, expressed as percentages, and used to descriptively characterize the sample
population, with input from occupational health stakeholders, management, and worker
representatives [37].

2.3.5. Data Collection and Analysis

Data acquisition was performed using a Xiaomi Redmi Note 9 smartphone, which
captured signals from the accelerometer (ACC), gyroscope (GYR), magnetometer (MAG),
and rotation vector (RV). Sampling rates were constrained by the Android OS, with the
ACC, GYR, and RV recorded at 100 Hz and MAG at 50 Hz. Motor biosignals were collected
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using these integrated sensors within the smartphone, which was securely fixed on the
sternum with straps. The COP displacement time series represented an estimated COP
derived from smartphone inertial sensor data. The collected data were represented in
the orthogonal components of the anteroposterior (AP) and mediolateral (ML) directions,
reflecting forward–backward (AP) and side-to-side (ML) trunk sway (see Figure 2). This
approach provides a reliable method for quantifying postural sway, as supported by
previous studies using force plates and smartphone-based inertial sensors to assess postural
stability with demonstrated accuracy and consistency [39–44].

Figure 2. Illustration of COP sway during seated posture.

Linear measures of postural sway were computed from the COP time series. Key
metrics included mean acceleration (in m/s2), standard deviation (SD) (in m/s2), sway
range (in mm), sway area (in mm), sway path (in mm), and sway velocity (in mm/s). Sway
range and area represent the maximum COP displacement in the resultant (overall) or AP
and ML directions, sway path reflects the total COP distance traveled, and sway velocity
indicates the rate of COP movement, offering insights into postural adjustment speed and
variability [45–47]. These measures are indicators of centrality, describing magnitude and
variability around a central point, and thus characterize movement quantity in data [48,49].

Nonlinear metrics, including Sample Entropy (SaEn) and Multifractal Detrended
Fluctuation Analysis (MF-DFA), were used to assess postural control complexity (i.e.,
to describe the structure within the time series) [47]. SaEn quantifies sway regularity,
where higher values indicate more complex and adaptable movement strategies. It also
reflects how physiological health influences postural regulation by identifying signals under
stationary conditions, such as reduced variability in less adaptable postural states. The
Hurst exponent, derived from DFA, measures the long-term persistence and fractality of
sway behavior. DFA analyzes time series by removing short-term fluctuations (detrending)
to reveal long-term correlations, highlighting complex patterns in postural sway. DFA is
assessed across different q-orders, which provide varying levels of detail: higher q-orders
focus on fine-grained fluctuations, while lower q-orders capture broader trends. This
multiscale analysis offers deeper insights into the dynamics and adaptability of postural
control across different time scales [47,50–53].

The combination of these features was selected due to their widespread use in studies
on seated posture, particularly in ergonomic and occupational contexts [54–57].

2.3.6. Data Processing

All acquired signals were synchronized using timestamp alignment and resampled to
a uniform frequency of 100 Hz to ensure consistency across modalities. The preprocessing
pipeline for the ACC and RV data followed validated methodologies from previous stud-
ies [58]. The ACC data underwent a multi-step processing approach to remove noise and
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extract movement-related features. A low-pass filter with a 10 Hz cutoff was applied to
suppress high-frequency noise and sensor artifacts. The gravitational acceleration compo-
nent was then removed using an adaptive filtering technique to isolate dynamic movement.
Systematic biases were corrected through detrending by subtracting the mean acceleration
value from each sample, and a 150-sample moving average filter was used to smooth signal
fluctuations. Similarly, RV signals were processed using a 5-sample moving average filter
to minimize transient sensor noise and improve orientation stability. Given the extended
duration of data collection (approximately 5 h per day), segmentation was performed using
a 15-minute windowing approach to facilitate analysis. Data segments were classified into
morning (AM1–AMx), lunch, and afternoon (PM1–PMx) periods.

To ensure that only seated postural sway data were analyzed, an algorithm was imple-
mented to detect and exclude non-seated intervals based on acceleration magnitude thresh-
olds. The magnitude of acceleration (mag) was computed as mag =

√
x2

acc + y2
acc + z2

acc,
with a threshold of 2 m/s² derived from biomechanical analyses and metabolic equivalent
(MET) calculations [59,60]. This threshold effectively distinguished seated from non-seated
activities, ensuring that only relevant data were retained.

Postural sway was quantified by estimating the COP displacement from inertial
sensor data. The RV signal was converted into quaternions and transformed into Euler
angles to derive COP projections in the AP and ML directions. To ensure alignment across
participants, the median of each Euler angle was subtracted to establish a reference position
at the origin (0,0). The chest-mounted smartphone’s orientation was used to project Euler
angles into the xz-plane, mapping postural movements throughout the workday (Figure 3).
To standardize postural sway analysis, an elliptical boundary was applied based on prior
research [61], with an AP radius of 25 mm and an ML radius of 18 mm. Data outside this
predefined region were excluded to maintain consistency in postural sway assessment [58].

Figure 3. Coordinate system for smartphone-assisted postural analysis.

2.4. Previous Reporting on This Dataset

Previous analyses utilizing this dataset have examined how chronic spinal pain influ-
ences trunk movement patterns and postural dynamics in office settings. Ref. [58] applied
a mixed ANOVA to analyze trunk sway, revealing that pain-free participants displayed
distinct trunk movement characteristics in certain features compared to those with chronic
spinal pain, particularly regarding fine motor adjustments. In another analysis, ref. [62]
assessed postural variability among 40 office workers throughout the workday without
segmenting by pain status or utilizing nonlinear metrics. The results indicated increased
posture variability from morning to afternoon, with a notable rise in positional adjustments
later in the day. This paper presents novel analyses focused on the relationship between
postural dynamics and pain intensity, specifically within the cohort experiencing chronic
spinal pain.
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2.5. Statistical Analysis

Descriptive and inferential statistics were performed using SPSS 29. Sample demo-
graphics and questionnaire scores were used to characterize the participants. For con-
tinuous variables, normally distributed data were summarized with the mean and SD,
while non-normally distributed data were described using the median and interquartile
range (IQR). Categorical variables were reported as counts and proportions. Parametric
assumptions were verified for normality using the Shapiro–Wilk test. To examine changes
in pain intensity over time, Friedman’s Related-Samples Two-Way Analysis of Variance was
applied. For correlations, Pearson’s (r) correlation coefficients were calculated to explore
associations between sitting postural control dynamics (trunk displacement features in the
AP and ML directions, along with resultant trunk sway time series) and perceived pain
intensity (NPRS Sum of neck, upper back, and lower back pain). As Pearson’s r represents
both the correlation coefficient and the effect size, it allows for a direct interpretation of
the strength of relationships between variables. NPRS scores were summed across spinal
regions to create an NPRS index. Summed pain intensity scores were analyzed for each
day (Day 1: Monday; Day 3: Wednesday; Day 5: Friday) and period (AM: pre-work; PM:
post-work). A significance threshold of α = 0.05 was applied.

3. Results

The study sample consisted of 10 participants, 80% of whom identified as female.
Physical activity levels, as assessed by the IPAQ-SF, indicated that 30% of participants
engaged in low physical activity, 40% in moderate activity, and 30% in high activity
levels. The mean age of the participants was 54 years (SD = 6.5). The average BMI
was 26.75 kg/m² (SD = 6.14), with participants having an average of 18.2 years of work
experience (SD = 14.06) and a typical weekly work schedule of approximately 40 h (SD =
4). On average, participants reported spending 9.4 h per day sitting (SD = 3.44), with a
reduced average of 4.18 h of sitting on weekends (SD = 1.78). The characteristics of the
participants are summarized in Table 1.

Table 1. Sample characterization.

Variable Outcome

Gender 80% Female (8 Females, 2 Males)
Physical Activity Levels Low: 30%; Moderate: 40%; High: 30%
Mean Age (years) 54 ± 6.5
Mean BMI (kg/m²) 26.75 ± 6.14
Work Experience (years) 18.2 ± 14.06
Weekly Work (h) 40 ± 4
Daily Sitting Time (h) 9.4 ± 3.44
Weekend Sitting Time (h) 4.18 ± 1.78

The COPSOQ II results indicated moderate job demands (67.5; SD = 2.7) and neutral
perceptions of health and well-being (50.0; SD = 6.1). No offensive behavior was reported
(0.0; IQR: 0–10). Social relations and leadership scored moderately (38.1; SD = 3.5), as
did values’ alignment within the workplace (31.3; SD = 4.8) and the work–individual
interface (42.6; SD = 11.8). Work organization and job content (41.7; SD = 4.6) also received
moderate ratings.

3.1. Pain Experience

The distribution of reported pain locations among participants revealed that three
(30.0%) experienced isolated neck pain, five (50.0%) reported a combination of neck and
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lower back pain, one (10.0%) had upper back pain, and one (10.0%) experienced pain in
both the neck and upper back regions.

The disability levels, assessed using the 11-point NPRS, revealed the following median
scores: neck disability, 2.00 (IQR: 0–4); upper back disability, 0.90 (IQR: 0–5); and lower
back disability, 0.80 (IQR: 0–5). In terms of classification, 20% of participants reported no
disability, 50% reported mild disability, and 30% reported moderate disability for neck
pain. For upper back disability, 80% reported no disability, while 20% reported moderate
disability. Regarding lower back disability, 70% reported no disability, 10% reported mild
disability, and 20% reported moderate disability.

Regarding pain-related distress, also assessed using the NPRS, the median distress
scores were as follows: neck distress, 2.50 (IQR: 0–6); upper back distress, 1.10 (IQR: 0–6);
and lower back distress, 1.20 (IQR: 0–5). For neck distress, 10% of participants reported
no distress, 70% reported mild distress, and 20% reported moderate distress. For upper
back distress, 80% reported no distress, and 20% reported moderate distress. For lower
back distress, 60% of participants reported no distress, 30% reported mild distress, and 10%
reported moderate distress.

Regarding pain intensity, which was assessed both before and after work each day, a
detailed description can be found in Table 2. No statistically significant differences were
found across days, periods, and pain locations (p > 0.05).

Table 2. Pain intensity scores based on the NPRS.

Variable
AM PM

Median IQR 95% CI Median IQR 95% CI

Day 1
Neck 0.00 4 (−0.26, 3.06) 0.00 2 (−0.61, 3.01)
Upper Back 0.00 1 (−0.47, 2.27) 0.00 1 (−0.55, 2.35)
Lower Back 0.00 5 (0.12, 3.88) 0.00 4 (−0.29, 3.09)

Day 3
Neck 0.00 3 (−0.27, 2.47) 0.00 3 (−0.22, 2.62)
Upper Back 0.00 0 (−0.63, 1.63) 0.00 1 (−0.55, 2.35)
Lower Back 0.00 0 (0.00, 0.00) 0.00 4 (−0.29, 3.09)

Day 5
Neck 0.00 3 (−0.23, 2.43) 0.00 3 (−0.30, 2.70)
Upper Back 0.00 1 (−0.37, 1.77) 0.00 5 (−0.02, 3.82)
Lower Back 0.00 3 (−0.17, 2.17) 0.00 4 (−0.09, 3.49)

NPRS Sum
Day 1 4.0 9 (1.10, 7.50) 2.5 6 (0.54, 6.46)
Day 3 0.0 3 (−0.72, 3.92) 3.5 5 (0.76, 6.24)
Day 5 0.0 6 (−0.32, 5.92) 3.5 8 (0.51, 9.09)

AM: pre-work; PM: post-work; NPRS: Numeric Pain Rating Scale; IQR: interquartile range; CI: Confi-
dence Interval.

3.2. Correlations

Daily pain intensity (NPRS Sum) analysis across six assessment points (Day 1 AM/PM,
Day 3 AM/PM, Day 5 AM/PM) revealed occasional correlations with postural sway
metrics. While most correlations did not reach statistical significance (p > 0.05), several
moderate-to-strong correlations were observed, indicating potential relationships that merit
further investigation. A summary of significant correlations between the NPRS and trunk
sway metrics is provided in Table 3, with comprehensive correlation matrices for both
linear and nonlinear sway features available in Appendix A.
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For linear measurements (Tables A1–A6), significant correlations with the NPRS Sum
were observed at different time points. On Day 1 in the morning, the NPRS Sum had a
significant negative correlation with overall sway range (r = −0.688; p < 0.05). In contrast,
on Day 1 in the afternoon, the NPRS Sum exhibited a positive correlation with overall
sway range (r = 0.750; p < 0.05) and with range in the AP direction (r = 0.855; p < 0.01).
Additionally, on Day 5 in the morning, a strong negative correlation between the NPRS Sum
and the standard deviation in the AP direction (SD AP) was noted (r = −0.719; p < 0.05).

Nonlinear sway parameters showed varied correlations with the NPRS Sum across
time points (Tables A7–A12). On Day 3 in the AM, several strong correlations were ob-
served. The Hurst exponents at the scale H(0) in both the AP (r = −0.812; p < 0.01)
and ML (r = −0.860; p < 0.01) directions, as well as at the scale H(4.5) in the AP
(r = −0.786; p < 0.01) and ML (r = −0.780; p < 0.01) directions, were significantly nega-
tively correlated with the NPRS Sum. SaEn in the ML direction also exhibited a significant
negative correlation with the NPRS Sum (r = −0.703; p < 0.05). On Day 3 in the PM,
no significant correlations were found between the NPRS Sum and the nonlinear sway
parameters. However, on Day 5 in the PM, the NPRS Sum showed a negative correlation
with the Hurst exponent at the scale H(2) in the AP direction (r = −0.722; p < 0.05).

Table 3. Significant correlations between NPRS Sum and linear/nonlinear metrics.

Day Period Metric Direction Correlation

NPRS vs.

1 AM Overall range Negative −0.688 *
1 PM AP range Positive 0.855 **
1 PM Overall range Positive 0.750 *
3 AM H(0) AP Negative −0.812 **
3 AM H(0) ML Negative −0.860 **
3 AM H(4.5) AP Negative −0.786 **
3 AM H(4.5) ML Negative −0.780 **
3 AM SaEn ML Negative −0.703 *
5 AM SD AP Negative −0.719 *
5 PM H(2) Negative −0.722 *

Abbreviations: NPRS: Numeric Pain Rating Scale; SD: standard deviation; AP: anteroposterior; ML: mediolateral;
H: Hurst exponent. Significance levels: * p < 0.05; ** p < 0.01.

Furthermore, moderate to strong positive intercorrelations were found among both
linear and nonlinear postural sway parameters (Appendix A).

4. Discussion

This study investigated the relationship between pain intensity, measured using the
NPRS Sum for neck, upper, and lower back pain, and postural sway characteristics in
office workers with chronic spinal pain. IMUs were employed for real-time, field-based
posture assessment. Both linear and nonlinear sway metrics were analyzed during pre-
and post-work periods on Days 1 (Monday), 3 (Wednesday), and 5 (Friday) to assess their
potential as objective indicators of pain intensity within occupational settings.

The findings revealed limited and variable correlations between pain intensity and
postural sway metrics across different time points, illustrating the intrinsic intricacy of
postural control systems in the context of chronic pain.

4.1. Interpretation of Results

Linear metrics, including range (in mm), mean acceleration (in m/s2), SD (in m/s2),
velocity (in mm/s), sway path length (in mm), and sway path area (in mm2), were used
to assess postural control. Nonlinear techniques, MF-DFA and SaEn, were applied to
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capture the postural control complexity, reflecting subtle changes that linear metrics might
have missed.

Variations in correlations among linear metrics highlighted the nuances of seated
postural dynamics. On Day 1, reduced morning sway variability (negative correlation
with overall sway range) indicated more rigid postural control, while increased afternoon
fluctuations (positive correlations with overall sway range and AP range) suggested com-
pensatory adjustments. By Day 5, greater AP sway variability (negative correlation with
SD) was linked to higher pain intensity. These findings are consistent with previous studies.
For instance, Søndergaard et al. [54], reported positive correlations between discomfort and
the standard deviations of COP displacement in both the AP and ML directions, alongside
negative correlations with SaEn. This suggests that increased sway variability and reduced
postural control complexity during seated tasks can be associated with greater perceived
discomfort. Similarly, Madeleine et al. [63] observed that prolonged sitting led to a greater
SD and lower SaEn in COP signals, reflecting decreased postural complexity and increased
discomfort. Overall, these findings highlight the link between postural variability degrada-
tion and increased discomfort, reflecting the interplay between adaptive posture control
and pain perception.

Correlations between nonlinear metrics and pain intensity varied notably across time
points. No significant correlations were observed on Day 1 (AM and PM), Day 3 in the
PM, or Day 5 in the AM. However, on Day 3 in the AM, strong negative correlations were
observed for H(0) (AP and ML), H(4.5) (AP and ML), and SaEn (ML), suggesting a decline
in postural sway complexity. On Day 5 in the PM, a significant negative correlation was
also found for H(2) in the AP direction, indicating reduced postural adaptability. This
reduction in variability aligns with the concept of a more periodic, less adaptive postural
strategy, characterized by the loss of multiscale fractal complexity under pathological
conditions [12,64]. These findings suggest that higher pain intensity is correlated with
diminished variability at both micro-scale fluctuations (H(0)) and larger sway deviations
(H(4.5)), as well as reduced entropy (SaEn), which reflect a shift toward more rigid, less
flexible postural control [12]. The absence of consistent correlations across other periods
underscores the dynamic and context-dependent nature of postural regulation in response
to pain, consistent with theories of adaptive control in motor behavior [27].

Although most postural sway parameters showed weak correlations with the NPRS
Sum, specific linear and nonlinear metrics demonstrated moderate to strong correlations
at particular time points, indicating pain-related changes in postural stability. Hypothesis
2, predicting stronger evening (PM) correlations, was not supported. Overall, our results
suggest a weak link between pain intensity and postural sway dynamics, likely due to
the multifactorial nature of chronic pain, influenced by biopsychosocial factors [26,65,66].
Furthermore, variability in sitting habits and postural adjustments also contributes to
inconsistent sway patterns (e.g., “breakers” vs. “prolongers”) [56].

Our findings highlight the potential for the development of personalized ergonomic
interventions aimed at protecting office workers from prolonged exposure to postural stress
and pain. By understanding trunk posture dynamics, tailored strategies can help reduce
MSDs and improve comfort, as optimal postures vary between individuals [32].

4.2. Limitations and Future Research

Several limitations should be considered. Data were collected from an adult population
with an average age of 54 years (SD = 6.5), while previous studies emphasize age-related
differences in variability [49,67], particularly in office workers [55]. Thus, the kinematic
measurements in this study may not reflect those of other age groups or occupations. The
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use of smartphone IMUs, while practical, introduced limitations, as placement variability
and daily reapplication increased the risk of random errors in postural sway measurements
due to inconsistent placement [68], despite the use of standardized straps and consistent
researcher handling.

As this study was conducted in a field setting, variations in cognitive load (e.g.,
focused computer work) may have influenced postural sway. Prior research suggests
that cognitive dual-tasking can reduce postural sway in chronic low back pain, though
effects are more pronounced in complex balance tasks [69]. Similar effects were observed in
healthy adults, where cognitive demands altered postural complexity without significantly
affecting displacement measures [70]. Cognitive task difficulty has also been linked to
changes in postural variability, particularly in children and older adults, who demonstrate
increased sway area and complexity under more challenging conditions [71]. Future
studies should integrate controlled cognitive-load assessments to better isolate the effects
of attentional demands on postural control, such as using EEG [72].

Customer service roles in public administration and finance face substantial psychoso-
cial risks. For example, 31% of EU workers report suppressing emotions due to customer
anger and abuse [73]. In tax offices, depression has been linked to high trait anxiety,
workplace conflicts, and low job satisfaction, making tax workers particularly vulnerable
to MSDs [74–77]. These psychosocial hazards limit the applicability of the findings to
other office roles, such as programmers and call center staff. However, the non-alarming
COPSOQ II results in this study suggest a lower psychosocial risk in the analyzed sample.

While our findings suggest a weak correlation between pain intensity and postural
sway metrics, they underscore the complexity of chronic pain management. This highlights
the need for individualized, multidimensional approaches to postural assessment and
ergonomic interventions, where pain intensity is considered alongside other psychosocial
and physical factors. Future interventions may benefit from a combination of sensor data
and self-reported measures to provide more accurate assessments of pain and postural
dynamics, guiding more effective ergonomic strategies in the workplace.

Although a one-week observation period was chosen to align with this study’s pri-
mary objectives, future research could benefit from longer observation durations to capture
greater variability in postural dynamics and explore potential long-term trends. Addition-
ally, while the small sample size limits the generalizability of the findings, future studies
with larger, more diverse samples will offer more robust and conclusive insights. Given
the multiple comparisons conducted in this study, the potential for Type I errors must be
considered. Future research should apply corrections to account for multiple tests, thereby
enhancing the robustness of the findings.

5. Conclusions

Although postural sway parameters showed weak correlations with pain intensity,
specific metrics revealed stronger correlations, suggesting potential links between pain
and postural stability. These findings highlight the need for more research on motor
variability and pain intensity to inform ergonomic interventions. While our findings were
not strongly significant, they contribute to assessing postural sway in real-world settings
and provide exploratory insights into how movement-based metrics may inform pain
assessment, ergonomic interventions, and future rehabilitation strategies for individuals
with chronic spinal pain.

Hypothesis 1 was partially supported, with pain intensity correlated with the reduced
complexity of postural sway at specific points, although the effects were inconsistent. Hy-
pothesis 2 was not supported, as work activities did not consistently increase post-work
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pain or reduce variability, suggesting that other factors may influence postural control and
pain intensity. Future research should involve larger sample sizes, longitudinal designs,
randomized controlled trials, and consider pain location to better explore these relation-
ships. Furthermore, utilizing a full range of digital health resources, including wearable
sensors, could provide valuable information on postural dynamics and pain management.
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Appendix A

The following tables present the correlation matrices for various sway metrics and
pain intensity. Tables A1–A6 summarize the linear correlations between sway metrics and
pain intensity across different days and time periods. Tables A7–A12 provide the nonlinear
correlation matrices for the same metrics and conditions.

Table A1. Correlation Matrix of Linear Measurements on Day 1 During the AM Period and NPRS
Sum (Day 1 AM).

Mean SD Range Area Path Velocity

AP ML AP ML AP ML Overall

NPRS Sum −0.064 −0.348 0.351 0.041 −0.592 −0.461 −0.688 * −0.552 −0.594 −0.593
Mean AP 0.449 −0.174 −0.013 −0.119 −0.424 −0.253 −0.226 −0.070 −0.073
Mean ML −0.662 * −0.099 0.339 −0.112 0.221 0.071 0.057 0.033
SD AP 0.662 * −0.457 0.257 −0.241 −0.529 −0.383 −0.371
SD ML −0.328 0.241 −0.168 −0.651 * −0.580 −0.582
Range AP 0.173 0.904 ** 0.612 0.547 0.547
Range ML 0.571 0.475 0.552 0.545
Range Overall 0.706 * 0.700 * 0.698 *
Area 0.956 ** 0.954 **
Path 0.999 **

AM: Pre-work; NPRS: Numeric Pain Rating Scale; SD: Standard Deviation; AP: Anteroposterior; ML: Mediolateral;
*: p < 0.05; **: p < 0.01.
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Table A2. Correlation Matrix of Linear Measurements on Day 1 During the PM Period and NPRS
Sum (Day 1 PM).

Mean SD Range Area Path Velocity

AP ML AP ML AP ML Overall

NPRS Sum 0.007 0.199 −0.196 −0.600 0.855 ** 0.143 0.750 * 0.345 0.378 0.393
Mean AP −0.245 0.152 −0.040 −0.061 −0.138 −0.108 −0.318 −0.304 −0.306
Mean ML 0.322 −0.387 −0.026 −0.688 * −0.234 0.014 −0.106 −0.053
SD AP 0.247 0.032 −0.220 −0.055 −0.118 −0.212 −0.196
SD ML −0.341 0.377 −0.174 0.150 0.169 0.171
Range AP 0.467 0.965 ** 0.582 0.596 0.594
Range ML 0.678 * 0.628 0.718 * 0.678 *
Range Overall 0.660 * 0.698 * 0.685 *
Area 0.984 ** 0.987 **
Path 0.997 **

PM: Post-work; NPRS: Numeric Pain Rating Scale; SD: Standard Deviation; AP: Anteroposterior; ML: Mediolateral;
*: p < 0.05; **: p < 0.01.

Table A3. Correlation Matrix of Linear Measurements on Day 3 During the AM Period and NPRS
Sum (Day 3 AM).

Mean SD Range Area Path Velocity

AP ML AP ML AP ML Overall

NPRS Sum 0.148 0.456 0.095 −0.127 −0.006 −0.368 −0.163 −0.047 0.085 0.059
Mean AP −0.278 −0.447 −0.449 0.039 −0.068 −0.008 −0.306 −0.074 −0.077
Mean ML 0.375 −0.066 −0.072 −0.497 −0.256 0.211 0.009 −0.017
SD AP 0.765 ** −0.377 −0.382 −0.403 −0.136 −0.305 −0.310
SD ML −0.333 −0.082 −0.240 −0.170 −0.323 −0.313
Range AP 0.695 * 0.947 ** 0.743 * 0.914 ** 0.915 **
Range ML 0.888 ** 0.550 0.720 * 0.732 *
Range Overall 0.721* 0.905 ** 0.911 **
Area 0.887 ** 0.889 **
Path 0.999 **

AM: Pre-work; NPRS: Numeric Pain Rating Scale; SD: Standard Deviation; AP: Anteroposterior; ML: Mediolateral;
*: p < 0.05; **: p < 0.01.

Table A4. Correlation Matrix of Linear Measurements on Day 3 During the PM Period and NPRS
Sum (Day 3 PM).

Mean SD Range Area Path Velocity

AP ML AP ML AP ML Overall

NPRS Sum 0.505 −0.366 −0.011 −0.370 0.573 0.210 0.478 0.214 0.297 0.269
Mean AP −0.504 0.049 0.031 −0.194 −0.193 −0.236 −0.180 −0.291 −0.279
Mean ML 0.316 0.164 0.067 0.200 0.164 −0.199 −0.088 −0.101
SD AP 0.495 −0.223 0.298 0.026 −0.417 −0.362 −0.373
SD ML −0.282 0.491 0.024 −0.128 −0.188 −0.139
Range AP 0.588 0.926 ** 0.674 * 0.842 ** 0.829 **
Range ML 0.843 ** 0.433 0.556 0.580
Range Overall 0.591 0.777 ** 0.734 **
Area 0.969 ** 0.974 **
Path 0.996 **

PM: Post-work; NPRS: Numeric Pain Rating Scale; SD: Standard Deviation; AP: Anteroposterior; ML: Mediolateral;
*: p < 0.05; **: p < 0.01.
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Table A5. Correlation Matrix of Linear Measurements on Day 5 During the AM Period and NPRS
Sum (Day 5 AM).

Mean SD Range Area Path Velocity

AP ML AP ML AP ML Overall

NPRS Sum 0.288 −0.085 −0.719 * −0.054 −0.134 −0.082 −0.112 −0.247 −0.165 −0.173
Mean AP −0.286 −0.467 −0.115 0.096 −0.218 0.025 0.086 −0.190 −0.191
Mean ML 0.217 −0.449 −0.295 −0.367 −0.351 −0.291 −0.230 −0.219
SD AP 0.506 0.457 0.363 0.435 0.378 0.393 0.410
SD ML 0.546 0.687 * 0.642 * 0.507 0.568 0.579
Range AP 0.637 * 0.957 ** 0.855 ** 0.743 * 0.748 *
Range ML 0.826 ** 0.730 * 0.907 ** 0.908 **
Range Overall 0.912 ** 0.878 ** 0.883 **
Area 0.879 ** 0.885 **
Path 0.999 **

AM: Pre-work; NPRS: Numeric Pain Rating Scale; SD: Standard Deviation; AP: Anteroposterior; ML: Mediolateral;
*: p < 0.05; **: p < 0.01.

Table A6. Correlation Matrix of Linear Measurements on Day 5 During the PM Period and NPRS
Sum (Day 5 PM).

Mean SD Range Area Path Velocity

AP ML AP ML AP ML Overall

NPRS Sum −0.229 −0.501 −0.379 −0.391 0.367 0.493 0.429 0.211 0.201 0.182
Mean AP 0.416 0.233 −0.090 −0.254 0.067 −0.162 −0.060 −0.180 −0.197
Mean ML 0.327 0.405 −0.691 * −0.677 * −0.717 * −0.489 −0.501 −0.497
SD AP −0.116 0.250 0.024 0.182 0.417 0.377 0.397
SD ML −0.669 * −0.642 * −0.680 * −0.664 * −0.539 −0.532
Range AP 0.842 ** 0.983 ** 0.951 ** 0.944 ** 0.943 **
Range ML 0.926 ** 0.759 * 0.806 ** 0.775 **
Range Overall 0.918 ** 0.929 ** 0.916 **
Area 0.941 ** 0.944 **
Path 0.996 **

PM: Post-work; NPRS: Numeric Pain Rating Scale; H: Hurst Exponent; SaEn: Sample Entropy; AP: Anteroposte-
rior; ML: Mediolateral; *: p < 0.05; **: p < 0.01.

Table A7. Correlation Matrix of Nonlinear Measurements on Day 1 During the AM Period and NPRS
Sum (Day 1 AM).

H(−5) H(0) H(2) H(4.5) SaEn

AP ML AP ML AP ML AP ML AP ML

NPRS Sum 0.255 −0.100 0.212 −0.107 −0.300 −0.403 0.098 −0.273 0.263 0.378
H(−5) AP −0.079 0.221 0.116 0.058 −0.218 0.460 −0.120 −0.061 0.057
H(−5) ML 0.462 0.615 0.712 * 0.486 0.220 0.261 0.211 0.016
H(0) AP 0.231 0.625 0.057 0.555 −0.084 −0.388 −0.065

H(0) ML 0.654 * 0.862
** 0.335 0.787 ** −0.029 −0.486

H(2) AP 0.655 * 0.718 * 0.391 −0.487 −0.513
H(2) ML 0.212 0.864 ** −0.260 −0.750 *
H(4.5) AP 0.072 −0.606 −0.397
H(4.5) ML −0.083 −0.752 *
SaEn AP 0.671 *

AM: Pre-work; NPRS: Numeric Pain Rating Scale; H: Hurst Exponent; SaEn: Sample Entropy; AP: Anteroposterior;
ML: Mediolateral; *: p < 0.05; **: p < 0.01.
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Table A8. Correlation Matrix of Nonlinear Measurements on Day 1 During the PM Period and NPRS
Sum (Day 1 PM).

H(−5) H(0) H(2) H(4.5) SaEn

AP ML AP ML AP ML AP ML AP ML

NPRS Sum −0.075 0.278 −0.257 0.153 −0.112 −0.236 −0.366 −0.100 −0.372 −0.437
H(−5) AP 0.462 0.533 0.524 0.671 * −0.044 0.648 * −0.090 0.146 −0.201
H(−5) ML 0.338 0.733 * 0.252 0.204 0.463 0.241 −0.068 −0.462
H(0) AP 0.745 * 0.639 * 0.278 0.568 −0.069 0.100 −0.177
H(0) ML 0.420 0.030 0.329 0.169 −0.272 −0.589
H(2) AP 0.320 0.674 * 0.032 0.480 0.134
H(2) ML 0.599 0.281 0.688 * 0.573
H(4.5) AP −0.063 0.601 0.321
H(4.5) ML 0.348 0.189
SaEn AP 0.856 **

PM: Post-work; NPRS: Numeric Pain Rating Scale; H: Hurst Exponent; SaEn: Sample Entropy; AP: Anteroposte-
rior; ML: Mediolateral; *: p < 0.05; **: p < 0.01.

Table A9. Correlation Matrix of Nonlinear Measurements on Day 3 During the AM Period and NPRS
Sum (Day 3 AM).

H(−5) H(0) H(2) H(4.5) SaEn

AP ML AP ML AP ML AP ML AP ML

NPRS Sum −0.631 −0.587 −0.812 ** −0.860 ** −0.330 −0.455 −0.786 ** −0.780 ** −0.451 −0.703 *
H(−5) AP 0.932 ** 0.708 * 0.728 * 0.005 0.255 0.542 0.627 0.542 0.613
H(−5) ML 0.569 0.714 * −0.060 0.409 0.575 0.661 * 0.513 0.490
H(0) AP 0.893 ** 0.384 0.451 0.765 ** 0.764 * 0.342 0.557
H(0) ML 0.281 0.553 0.770 ** 0.885 ** 0.454 0.500
H(2) AP 0.522 0.613 0.271 −0.454 0.137
H(2) ML 0.667 * 0.633 * 0.075 0.170
H(4.5) AP 0.778 ** 0.072 0.475
H(4.5) ML 0.565 0.462
SaEn AP 0.608

AM: Pre-work; NPRS: Numeric Pain Rating Scale; H: Hurst Exponent; SaEn: Sample Entropy; AP: Anteroposterior;
ML: Mediolateral; *: p < 0.05; **: p < 0.01.

Table A10. Correlation Matrix of Nonlinear Measurements on Day 3 During the PM Period and
NPRS Sum (Day 3 PM).

H(−5) H(0) H(2) H(4.5) SaEn

AP ML AP ML AP ML AP ML AP ML

NPRS Sum −0.195 0.008 −0.207 −0.019 −0.404 0.060 −0.190 0.368 0.260 0.103
H(−5) AP −0.163 0.923 ** −0.002 0.528 −0.579 0.811 ** −0.207 −0.058 0.365
H(−5) ML 0.099 0.793 ** −0.302 0.179 −0.151 0.530 −0.308 −0.038
H(0) AP 0.219 0.593 −0.562 0.860 ** −0.046 −0.127 0.455
H(0) ML 0.078 0.273 −0.006 0.601 −0.712 * −0.275
H(2) AP −0.022 0.780 ** 0.014 −0.369 0.285
H(2) ML −0.257 0.478 −0.331 −0.149
H(4.5) AP −0.074 −0.012 0.674 *
H(4.5) ML −0.539 0.023
SaEn AP 0.325

PM: Post-work; NPRS: Numeric Pain Rating Scale; H: Hurst Exponent; SaEn: Sample Entropy; AP: Anteroposte-
rior; ML: Mediolateral; *: p < 0.05; **: p < 0.01.
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Table A11. Correlation Matrix of Nonlinear Measurements on Day 5 During the AM Period and
NPRS Sum (Day 5 AM).

H(−5) H(0) H(2) H(4.5) SaEN

AP ML AP ML AP ML AP ML AP ML

NPRS Sum −0.012 −0.046 0.129 −0.130 0.129 −0.415 −0.064 −0.308 0.240 0.457
H(−5) AP 0.738 * 0.846 ** 0.724 * 0.589 −0.448 0.685 * 0.532 0.350 0.623
H(−5) ML 0.878 ** 0.969 ** 0.504 0.077 0.848 ** 0.755 * 0.176 0.632
H(0) AP 0.888 ** 0.550 −0.197 0.856 ** 0.728 * 0.388 0.753 *
H(0) ML 0.406 0.085 0.810 ** 0.819 ** 0.223 0.593
H(2) AP 0.042 0.750 * 0.542 −0.021 0.314
H(2) ML 0.229 0.345 −0.418 −0.442
H(4.5) AP 0.801 ** 0.071 0.457
H(4.5) ML 0.283 0.436
SaEn AP 0.769 **

AM: Pre-work; NPRS: Numeric Pain Rating Scale; H: Hurst Exponent; SaEn: Sample Entropy; AP: Anteroposterior;
ML: Mediolateral; *: p < 0.05; **: p < 0.01.

Table A12. Correlation Matrix of Nonlinear Measurements on Day 5 During the PM Period and
NPRS Sum (Day 5 PM).

H(−5) H(0) H(2) H(4.5) SaEN

AP ML AP ML AP ML AP ML AP ML

NPRS Sum −0.276 −0.280 −0.215 −0.349 −0.722 * −0.562 −0.317 −0.506 −0.071 −0.309
H(−5) AP 0.995 ** 0.742 * 0.542 0.034 0.136 −0.507 0.132 −0.587 0.005
H(−5) ML 0.745 * 0.596 0.070 0.173 −0.530 0.144 −0.592 −0.017
H(0) AP 0.696 * −0.004 0.445 −0.453 −0.027 −0.318 0.303
H(0) ML 0.326 0.663 * −0.426 0.352 −0.333 0.161
H(2) AP 0.649 * 0.309 0.721 * 0.387 0.096
H(2) ML −0.025 0.530 0.404 0.500
H(4.5) AP −0.001 0.392 0.502
H(4.5) ML 0.330 −0.069
SaEn AP 0.245

PM: Post-work; NPRS: Numeric Pain Rating Scale; H: Hurst Exponent; SaEn: Sample Entropy; AP: Anteroposte-
rior; ML: Mediolateral; *: p < 0.05; **: p < 0.01.
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Abstract: Electrodermal activity (EDA) reflects the variation in the electrical conductance
of the skin in response to sweat secretion, constituting a non-invasive measure of the
sympathetic nervous system. This system intervenes in reactions to stress and is strongly
activated in emotional states. In most cases, EDA signals are collected from the hand
(fingers or palms), which is not an ideal location for a sensor when the participant has to
use their hands during tasks or activities. This study aims to explore alternative locations
for retrieving EDA signals (e.g., the chest, back, and forehead). EDA signals from 25
healthy participants were collected using a protocol involving different physical stimuli that
have been reported to induce an electrodermal response. The features extracted included
the Skin Conductance Response (SCR) height, SCR amplitude, and peak prominence.
An analysis of these features and the analysis of the correlation between the standard
position with the different locations suggested that the chest, while a possible alternative
for EDA signal collection, presents some weak results, and further evaluation of this site
is needed. Additionally, the forehead should be excluded as an alternative site, at least in
short-term measurements.

Keywords: electrodermal activity; alternative site; skin conductance response; skin
conductance level

1. Introduction

The Autonomic Nervous System (ANS) controls most of the body’s visceral
functions [1], innervating the endocrine glands, the exocrine glands (e.g., sweat glands),
and the viscera. It is divided into the sympathetic and parasympathetic nervous systems
and operates involuntarily through autonomic reflexes and central control [2]. Electroder-
mal activity (EDA) is a manifestation of the activity of the eccrine sweat glands, which
are innervated by the ANS [3]. The EDA is considered to be a peripheral indicator of
sympathetic activation [4], and it refers to the variation in the electrical conductance of the
skin in response to sweat secretion [5].

The EDA response is categorized by a tonic component and a phasic component.
The tonic component refers to gradual and soft changes in the EDA response, which oc-
cur in the absence of stimuli [6]. The most common measure of this component is the
Skin Conductance Level (SCL). Research suggests its variations seem to reflect the global
changes in the autonomic excitation and occur typically in a period of dozens of seconds
to minutes [6], in the absence of stimuli [7]. On the other hand, the phasic component,
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designated by the Skin Conductance Response (SCR), refers to sudden and rapid changes
in the EDA response [6]. These phasic responses of conductivity seem to correspond
to arousal states, with SCR amplitudes providing information on the intensity of those
states [8]. The EDA signal reflects a combination of different processes—attentional, af-
fective, motivational [1]—and it has been used in different studies targeting emotional
arousal [9] and stress [10].

The human body contains between 1.6 and 4.0 million eccrine sweat glands in total,
with densities per square centimeter of 64 on the back, 181 on the forehead, 600–700 on the
palms and soles (Sato et al., 1989, as cited in [11]), and 20 on the chest (Wilke et al., 2004,
as cited in [12]). Most researchers use the palms or the volar surfaces of the fingers as
active sites for EDA recording, and this is the preferred Standard Position (SP) for EDA
collection [11]. However, as the hands are usually used in tasks or activities performed
during experimental studies or daily monitoring, research has been conducted to investigate
EDA signals retrieved from different body locations.

Several studies have investigated the relationship between the signal retrieved from
the fingers (SP) and other body locations, such as the wrist [13,14], feet [15,16], or
ankle [13]. However, few studies explore several locations simultaneously.

One study investigated SCR in the context of emotion elicitation through the
visualization of emotional film clips, comparing 16 different recording positions in
17 participants [17]. The highest SCL and SCR were observed for the forehead, foot,
fingers, and shoulders. Conversely, the lowest SCR was found for the arm, armpit, thigh,
buttock, back, and abdomen. The highest correlations between the fingers (SP) and other
positions were found for the foot, followed by the forehead, which was among the top
three most responsive body locations for SCL and SCRs. Thus, the authors suggest that
sensors could be embedded into headbands or headphones to unobtrusively measure EDA.
However, in addition to a small sample size, the study also had an imbalanced gender ratio
(five females).

Another study compared multiple nonpalmar sites (e.g., the wrist, abductor hallucis
of the foot, foot arch, toes, and forehead) with the fingers [18], during the visualization of
19 images from the International Affective Picture System (IAPS; Lang, Bradley & Cuthbert,
2008, as cited in [18]) and an arithmetic stress task. The results revealed that nonpalmar
sites are generally less responsive, with the wrist providing the lowest SCL values and
the toes the highest, obtaining SCL values closer to the ones obtained from the fingers.
Within-participant correlations between the fingers and other sites were higher for the
plantar sites and lowest for the forehead, followed by the wrist [18]. In conclusion, toes
are the most equivalent alternative in terms of responsiveness to stimuli, followed by the
abductor hallucis location (recommended by Boucsein, 2012, as cited by [18]).

In another study, 115 participants performed a breathing exercise (4 min long) and lis-
tened to four musical segments (conveying different emotions) and one emotionally neutral
computer-generated tone (lasting 7 s each), while EDA was measured from five anatomical
sites bilaterally (finger, foot, wrist, shoulder, and calf [19]). The response magnitudes of
SCRs to breathing exercises, music segments, and neutral tones were higher at the feet (most
likely due to the high density of eccrine sweat glands). Within-subject correlations were also
higher for the feet, followed by the wrists (when comparing these locations with the fingers),
in all tasks. In summary, among the sites explored in this study, feet are the recommended
alternative location for EDA collection. Even though lower SCR amplitudes were found for
the wrists (when compared to the fingers), authors recommend this alternative site if the
feet are not available. Furthermore, they also highlight that with adequate hydration time
(20 min), the calves become comparable to the wrists in terms of response frequency, mag-
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nitude and correlation [19]. However, the sample was composed predominantly of females
(n = 89). Another limitation identified is related to the hydration time, which might be
shorter than the amount of time needed for the alternate sites to become electrodermally
active. Also, the wide range of ambient temperature in the experiment may have affected
the results [19].

A more recent study compared the SP with three other body locations (forehead, neck
and foot) in 23 participants [20]. A high correlation between EDA signals from the SP and
the foot was obtained, even when analyzing the phasic and tonic components separately.
Again, the authors highlight the foot as the best alternative location for EDA acquisition.
Moreover, the forehead was considered to be the most robust against motion artifacts and,
with adequate hydration (although this could be an issue for short-time applications), it
may become more responsive and provide a more accurate SCR. One limitation of this study
is the gender balance of the sample (four females), which makes it difficult to generalize
the findings.

The present study focuses on analyzing EDA collected in different body locations
(forehead, back, and chest) and comparing these signals to the ones retrieved at the SP
for EDA acquisition (fingers on the non-dominant hand). The motivation for this study
was set in the context of selecting an alternative EDA site, other than the SP, for the
collection of EDA signals from Medical First Responders participating in the H2020 project
MED1stMR (Medical First Responder Training using a Mixed-Reality Approach featuring
haptic feedback for enhanced realism—is an H2020 project that developed scenarios of mass
casualty incidents to train Medical First Responders in several different skills, including
first triage. The project involved the collection of participants’ biosignals, including EDA
and ECG signals (https://www.med1stmr.eu/, accessed on 16 December 2024)), since the
participants were required to wear gloves on their hands, which were used to command
avatars in a virtual reality scenario (therefore, it was not feasible to have EDA sensors on
the hands or fingers as well).

Nonetheless, results can be extended to support studies where the hands are used
when performing tasks or activities (using a specific item, writing, etc.). This research
includes body locations that are less commonly studied in EDA research, and thus holds
relevance for validating the reliability and consistency of EDA signals from non-standard
sites. Determining whether EDA can be reliably measured at alternative sites is essential
for facilitating unobtrusive biosignal collection. This could significantly improve device us-
ability and enable the deployment of portable devices to be used with various populations
and settings.

The novelty of this study lies in its exploration of less commonly studied body loca-
tions for EDA measurement, addressing a gap in the literature regarding non-standard
EDA collection sites. Furthermore, by examining whether EDA can be reliably measured
at alternative sites, the study contributes to the development of more unobtrusive biosig-
nal collection systems, which is particularly valuable for scenarios where hand usage is
restricted (e.g., writing, using tools). This work has practical implications for improv-
ing wearable device usability, facilitating the deployment of portable technologies across
diverse populations and settings.

2. Materials and Methods

2.1. Data Collection

The physiological data were collected using biosignalsplux acquisition devices from
PLUX (PLUX—Wireless Biosignals, S.A., Lisbon, Portugal, https://www.pluxbiosignals.com/,
accessed on 16 December 2024), at 10 Hz and 16-bit resolution, with pre-gelled Ag/AgCl
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electrodes. The EDA data were collected using an exosomatic approach, with an external
constant current applied between two electrodes.

EDA data were collected from four different body locations: the fingers, forehead,
back and chest. The sample comprised 25 healthy participants (aged 18–51 years old,
M = 29.3, SD = 8.9; 14 females). The data collection was performed in an area specifically
designated for this purpose, namely a room containing two researchers and each participant.
This study was approved by the Ethics Committee of the NOVA School of Science and
Technology (protocol code CE-FCT-006-2022).

The inclusion criteria were as follows: aged above 18 years old; no pathology asso-
ciated; alcohol consumption limited to no more than two times per week (as alcohol is a
known psychotropic depressant of the central nervous system [21]); no consumption of
psychotropic drugs; no medication (except occasionally); no caffeine consumption in the
three previous hours (as caffeine intake leads to elevated electrodermal activity [22]).

To all participants that met the inclusion criteria and gave consent for their partic-
ipation, the following protocol was applied. First, the study was briefly explained and
informed consent was collected. Then, participants answered questions related to the
sample characterization and to their health and well-being. Afterwards, each pair of EDA
electrodes was positioned in the following locations (see Figure 1):

1. On the hand (SP/gold standard): one of the electrodes was placed on the proximal
phalange of the index finger and of the middle finger, on the non-dominant hand;

2. On the anterior face of the torso (chest): the two electrodes were placed next to each
other, on the Rectus Abdominis, at the sternum level;

3. On the posterior face and superior part of the torso (back): the two electrodes were
placed next to each other, on the inferior zone of the trapezius muscle;

4. On the forehead: the two electrodes were placed next to each other, on the frontal
area, approximately 2 cm above the procerus.

placed next to each other, on the inferior zone of
4. On the forehead: the two electrodes were place

area, approximately 2 cm above the procerus.

Figure 1. Electrodes positioning (1—fingers of non-dominant hand; 2—chest; 3—back; 4—forehead).

To ensure consistency in electrode placement and facilitate reliable comparisons across
participants, we selected a specific location on the forehead—2 cm above the procerus—for
all measurements.

After placing the electrodes, a performance test to verify the correct positioning and
respective visualization of the EDA signal was performed, followed by a 5 min sample
acquisition period to increase the electrodermal contact with the sweat glands ducts [23].

The experiment itself included a 3 min EDA signal acquisition to characterize each
individual baseline and the EDA signal acquisition during the performance of tasks that
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induced an electrodermal response. These tasks were performed by one of the researchers,
who very carefully applied the materials/items to the skin surface of the subject to allow
them to feel the physical sensation of touching different materials, so that the subject did not
need to move. The items/materials used for touch sensation included a mug with hot water
inside; a cooling pad; sandpaper; cotton; and a needle (stimuli that generate an electrodermal
response according to [24]). An additional task—holding breath—was added [23].

The acquisition of the EDA signal from the four different locations was not performed
simultaneously. Each signal was acquired using a different device to avoid any potential
mutual interference between the signals, using a customized sync cable to enable the
acquisition of signals (using two devices) while ensuring precise temporal synchronization
of the recorded data.

The experience consisted of three rounds: SP was compared with the chest; then SP
was compared with the back; and lastly, SP was compared with the forehead. There was
a baseline period of 3 min before each round and tasks were applied in a randomized
sequence for each round. Each of the tasks was interpolated by a 30 s period of rest.

After the data collection, electrodes were removed, and the areas where they were
placed were cleaned.

The diagram presented in Figure 2 summarizes the protocol described above.

Figure 2. Diagram of the experimental procedure: from sensor attachment to task performance.

2.2. Data Processing

The acquired EDA signal was filtered using a low-pass filter with a bandwidth
of 0–3 Hz, as specified in the sensor datasheet (https://support.pluxbiosignals.com/
wp-content/uploads/2021/11/Electrodermal_Activity_EDA_Datasheet.pdf, accessed on
16 December 2024). We have also applied a bandpass filter with a bandwidth of 0.045–0.25 Hz.

The tools used for EDA analysis included Python 3.10.9 (Anaconda, Inc., Loca-
tion Austin, TX, USA) programming language using the NeuroKit2 [25] and SciPy
(https://scipy.org/citing-scipy/, accessed on 16 December 2024) packages. Extracted
features included the SCR onset, SCR latency or rise time, SCR peak amplitude, and SCR
peak prominence (see Figure 3).

Figure 3. Typical EDA signal response pattern and relevant features.
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SCR height includes the tonic and phasic components, while SCR amplitude excludes
the tonic component. SCR peak prominence was also calculated, and it measures how
much a peak rises above the surrounding baseline of the signal. It represents the vertical
distance between the peak and its lowest contour line. The threshold 0.02 μS was chosen
to be the same as in [17], so that the results could be compared more directly, and also
to consider the literature that suggests thresholds between 0.015 μS and 0.3 μS [26]. This
threshold was considered as the minimum value for each response. Everything below this
threshold was ignored to avoid detection of features that were caused by non-task-related
artifacts such as movements. Specific time windows in which stimuli were applied were
analyzed. For the correlation analysis, we considered the complete time window, whereas
for the SCR analysis, we only considered the first peak appearing after applying the stimuli.

3. Results

3.1. SCR Results by Location

After applying the NeuroKit2 EDA tool [25] to the time windows of the events, we
extracted the features for all peaks that appeared within the time windows that were
above the mentioned threshold. Afterwards, we only considered the first peak of each
time window, averaging the results across all participants with the same sensor position
and task. The primary rationale for considering only the first peak was our interest in
examining the EDA feedback immediately following the initial stimulus, as this event’s
time point could be precisely defined, unlike subsequent stimuli/events within the same
time window. Furthermore, this approach was chosen to enhance comparability across
different tasks and sensor positions, recognizing that each stimulus might elicit distinct
responses over time and a different number of detectable responses. By isolating the first
peak, we aimed to ensure consistency and reliability in our analysis across conditions.

Table 1 displays the SCR results by position, presenting the mean value (in μS)
and standard deviation in brackets, for the following features: height, amplitude
and prominence.

Table 1. SCR results by location (in μS).

Location SCR Height SCR Amplitude SCR Prominence

SP 0.19 (0.31) 0.34 (0.48) 0.26 (0.43)
Chest 0.05 (0.10) 0.17 (0.18) 0.07 (0.13)

SP 0.33 (0.44) 0.75 (0.99) 0.40 (0.52)
Back 0.03 (0.09) 0.21 (0.24) 0.04 (0.13)

SP 0.06 (0.06) 0.10 (0.09) 0.07 (0.08)
Forehead 0.01 (0.03) 0.02 (0.00) 0.01 (0.01)

As shown in Table 1, the chest was the location for which the values obtained were
closer to the SP in the three features (even though the results were lower than the ones
obtained for the SP) . The forehead was the position that resulted in the lowest values of all
the positions in all features. Figure 4 depicts a boxplot comparing the positions, regarding
SCR Height, SCR Amplitude, and SCR Prominence.
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Figure 4. SCR Height, SCR Amplitude, and SCR Prominence per location.

Regarding the amplitude, the peak amplitude of the SCR appears to be the feature
that reflects values closer to the SP value (0.17 μS on the chest and 0.21 μS on the back).
This suggests that peak amplitude may be a reliable feature for comparing physiological
responses across different sensor placements and stimulus conditions.

3.2. Correlations with the Standard Position

The correlations between the EDA signals collected at the SP (fingers) and the alternative
locations (chest, back, and forehead) were calculated using Pearson’s correlation coefficient [27]
for both the tonic and phasic components of the EDA, as presented in Table 2.

As indicated in the table, the EDA signals recorded from the chest exhibit a higher
correlation with those collected at the SP, for both the phasic and tonic components, in
comparison to other locations, for all tasks except the breathing task.

On the other hand, with the exception of the hot water task, the forehead displayed
lower and, in some cases, negative correlations with the EDA from the SP, for both the
phasic and tonic components of the EDA.

Table 2. Correlation coefficients between EDA signals from the SP and other locations.

Location Task Tonic Phasic

Chest Hot 0.526 0.357
Sandpaper 0.401 0.285

Pin 0.551 0.244
Cold 0.069 0.192

Cotton 0.359 0.234
Breath 0.041 0.253

Back Hot 0.462 0.143
Sandpaper 0.190 0.114

Pin 0.054 0.084
Cold 0.105 0.243

Cotton 0.026 0.068
Breath 0.219 0.167

Forehead Hot 0.501 0.110
Sandpaper 0.105 0.116

Pin −0.316 0.211
Cold −0.175 −0.057

Cotton −0.222 0.087
Breath 0.080 0.122

When computing the mean value for all tasks for each position, the chest yielded the
highest values for both the tonic (0.325) and phasic (0.261) components of the EDA. In
contrast, the back produced notably lower values (0.176 for tonic and 0.137 for phasic) and
the forehead presented the lowest values (−0.005 for tonic and 0.098 for phasic).
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These results suggest that, among the alternative measurement sites analyzed, the
chest demonstrates relatively stronger signal responsiveness, while the back indicates
weaker EDA responsiveness, and the forehead, with a near-zero tonic value and the lowest
phasic value, appears to be the least effective site for EDA measurement.

Figure 5 presents the phasic component around the first peak of the hot water task, for
the different locations (SP1—SP round 1—and chest; SP2—SP round 2—and back; SP3—SP
round 3—and forehead, respectively), for one of the participants.

Figure 5. Phasic component of hot water task, for the different locations, for one of the participants.

The EDA response for the chest follows a similar trend to SP1, showing a clear onset
and peak. On the other hand, the back shows a much weaker EDA response compared to
SP2, with the signal remaining nearly flat. The forehead EDA signal is flat, with no clear
onset or peak. These findings seem to support the exclusion of the back and forehead as
viable sites for EDA measurement.

4. Discussion

This study explored EDA signal collection from multiple locations on the body, specif-
ically the chest, back, and forehead, comparing them to the standard position (fingers). The
objective was to determine viable alternative locations for EDA measurement, particularly
when the hands are unavailable due to task performance. Our findings provide meaningful
insights into the suitability of alternative EDA collection sites, contributing to advancements
in wearable sensor technology and real-world biosignal monitoring applications.

The chest showed relatively better suitability for EDA collection compared to the
back and forehead, based on several key indicators. First, it consistently demonstrated
signal features that approximated those of the SP across the analyzed parameters, including
SCR height, amplitude, and prominence. Secondly, the chest also presented the highest
correlation values with the SP for both tonic and phasic components (Table 2), suggesting
that it may capture autonomic nervous system responses with acceptable reliability.

Conversely, the forehead consistently produced low and sometimes negative cor-
relations, indicating that this site may not be reliable for EDA collection in short-term
applications. Factors such as lower sweat gland density likely contributed to this reduced
performance. These findings align with previous research suggesting that forehead EDA
signals require specific conditions, such as extended hydration periods, to produce reliable
measurements [20]. However, unlike our findings, previous research reported a moderate
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correlation between EDA measured at the forehead and finger EDA, with the correlation
being notably lower for the phasic component [20]. In [17], this site also recorded the high-
est SCL and the second-highest SCRs value among the 16 locations explored. Regarding
correlation with the SP, amongst the 15 alternative sites explored, the forehead ranked fifth
highest, while the chest placed ninth, still showing a moderate positive correlation. The
back ranked 14th, displaying a low–moderate positive correlation.

In our study, the back also showed poor performance, with correlations lower than
those of the chest but still higher than those observed for the forehead. Its performance was
task-dependent, particularly in response to thermal stimuli such as the hot water task. This
variability suggests that the back may be conditionally useful, depending on the specific
monitoring context. Further investigation into task-dependent variability and its influence
on sensor reliability at different body locations should be developed.

Considering the results presented in Tables 1 and 2, we suggest that, while the chest
may serve as an alternative site for EDA data collection, its reliability remains limited.
Additionally, the forehead should be excluded as a suitable alternative location, particularly
for short-term biosignal acquisitions.

A comparison of experimental methodologies reveals differences between our protocol
and the one followed by [20], where participants had to relax in a supine position, perform
the Stroop Task (a neuropsychological test used to assess the ability to inhibit cognitive
interference [28]), walk at 3mph, and lift a dumbbell (each task lasting 120 s). We focused
on collecting EDA data while participants experienced the sensation of different materi-
als/items coming into contact with the skin. While these had been reported as stimuli
that generate electrodermal response [24], our findings suggest that certain tasks were
more effective at inducing noticeable responses than others. Notably, the hot water task
consistently generated strong responses across all sensor positions, while the sandpaper
and pin tasks were particularly effective when sensors were positioned on the chest. These
results highlight the variability in response intensity depending on the nature of the stimuli
and sensor placement. Future studies should explore alternative, non-harmful stimuli
that may generate more robust and consistent electrodermal responses, contributing to the
refining of methodologies for studying EDA.

Ensuring gender diversity in research samples is another fundamental aspect to
ensure that we reach conclusions that can be generalized and that are inclusive. In our
study, particular attention was given to achieving a balanced sample to ensure adequate
female representation. Indeed, 56% of our sample was composed of women, addressing a
common limitation found in similar studies (e.g., [20]) and strengthening the relevance and
applicability of our results across genders.

Finally, our study was not conducted without some limitations. The sample size was
relatively small and derived from a convenience sample, which may limit the generalizabil-
ity of the findings. Furthermore, EDA acquisitions were conducted sequentially rather than
simultaneously, leading to variability in SP values across different rounds of data collection,
conditioning the comparison of results between location sites.

Future research should focus on collecting data from larger sample sizes using ran-
domized sampling techniques and standardizing acquisition protocols to improve the
reliability and comparability of results. Increasing the sample size would also enable more
detailed analyses of demographic variables such as gender and age, thereby expanding
the understanding of EDA signals and their variability. This is particularly relevant for
enhancing the accuracy and robustness of applications in relation to stress monitoring and
emotion recognition. By accounting for demographic factors, these applications could be
refined to deliver more personalized and context-sensitive assessments, thereby improving
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their effectiveness in real-world contexts, including mental health monitoring, workplace
productivity, and adaptive human-computer interaction systems.

Several practical and methodological aspects emerged during this study. The decision
to analyze only the first SCR peak following each stimulus minimized signal contamination
from overlapping responses, ensuring that the results primarily reflected initial autonomic
responses rather than cumulative effects. However, future studies should consider multi-
peak analysis to capture more complex response patterns. The sequential rather than
simultaneous data acquisition may have constrained the generalizability of the findings;
thus, future studies implementing simultaneous multi-site recordings would improve data
reliability. Additionally, incorporating a wider range of tasks and environmental conditions
would provide a more comprehensive evaluation of alternative EDA measurement sites.
Future studies could also aim to explore EDA measurement in more naturalistic settings
to complement our findings. Finally, future research could incorporate simultaneous
respiratory monitoring (using inductive respiration or accelerometer signals) to quantify
and account for signal influences due to breathing frequencies.

In summary, the chest shows some potential as an alternative site but still presents a
weaker response than the standard finger placement. More research is needed to further
characterize the chest as a feasible alternative site for EDA measurement. This alternative
placement would be important, especially in scenarios where hand-based monitoring is
impractical. The back may serve as a complementary site, particularly when task-specific
responses are considered. The forehead, however, appears unsuitable for short-term EDA
monitoring due to its inconsistent signal quality. These findings can contribute to the
development of more versatile wearable biosensors and expand the possibilities for real-
world EDA monitoring in contexts such as stress detection, human–computer interaction,
and rehabilitation therapies.

5. Conclusions

This study collected EDA signals from three different body locations (chest, back,
and forehead) and compared them to the finger EDA, which is considered the standard
position for EDA collection. To the best of our knowledge, this is the first study to explore
EDA from different sites using physical stimuli that induce electrodermal activity, with
a gender-balanced sample. Based on the results, we conclude that although the chest
may serve as an alternative site for EDA collection, it is not an ideal replacement for the
standard finger placement. Additionally, the forehead should be ruled out as a viable site,
particularly for short-term measurements.
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Abstract: This study explores nursing students’ stress responses while they are being
trained in a mixed reality (MR) setting that replicates highly stressful clinical scenarios.
Using measurements of physiological indices such as heart rate, electrodermal activity,
and skin temperature, the study assesses the level of stress when the students interact
with digital patients whose vital signs and symptoms interact dynamically to respond
to student inputs. The simulation consists of six segments, during which critical events
like hypotension and hypoxia occur, and the patient’s condition changes based on the
nurse’s clinical decisions. Machine learning algorithms were then used to analyze the
nurse’s physiological data and to classify different levels of stress. Among the models
tested, the Stacking Classifier demonstrated the highest classification accuracy of 96.4%,
outperforming both Random Forest (96.18%) and Gradient Boosting (95.35%). The results
showed clear patterns of stress during the simulation segments. Statistical analysis also
found significant differences in stress responses and identified key physiological markers
linked to each stress level. This pioneering study demonstrates the effectiveness of MR
as a training tool for healthcare professionals in high-pressured scenarios and lays the
groundwork for further studies on stress management, adaptive training procedures, and
real-time detection and intervention in MR-based nursing training.

Keywords: physiological measures analysis; wearable sensors; mixed reality; nursing

1. Introduction

Stress is a dominant concern in the nursing field, and it greatly impacts the general
well-being of nurses and patient care quality. Various studies emphasized reducing the
stress level among medical professionals. A study conducted by [1] focused on the psycho-
logical effect of stress experienced by medical personnel serving at the frontline amidst the
COVID-19 pandemic. Loss of control, personal illness, and susceptibility to infection were
among the variables the study recognized as significant sources of stress. Similarly, ref. [2]
emphasized the need to examine the level of stress among nurses in acute care to be able to
establish the stressors that can compromise the provision of quality patient care.

Stress levels were shown through research to impact the competency and work perfor-
mance of nurses, specifically in ICU settings. The environment of the ICU and the emotional
impact of working in areas with high levels of stress are contributing factors to the stress of
nurses [3]. Workload was shown to be associated with physiological stress responses in
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nurses; hence, it is essential to eliminate work overload and have sufficient rest to prevent
stress elevation [4]. Moreover, studies focusing on specific nursing departments reveal
that stress levels can vary significantly between different specializations. Research shows
that nurses working in internal medicine departments report higher stress levels than their
surgical counterparts, suggesting that the work environment and patient characteristics
play critical roles in stress experiences [5].

There is evidence that high levels of stress in nursing students are related to low
academic performance and satisfaction. For instance, ref. [6] confirmed that increased
levels of stress while learning online, particularly during the COVID-19 pandemic, led to
decreased satisfaction and poorer academic performance in nursing students. Similarly,
ref. [7] confirmed that common stressors included academic workload and clinical envi-
ronment problems, which cumulatively impacted students’ learning experiences. This
is also emphasized by [8], who confirmed that stressors in clinical education greatly in-
fluence students’ learning abilities and overall educational performance. In support of
this, ref. [9] explored the perspectives of nursing educators and undergraduate nursing
students engaging in mixed reality-based remote simulations. Their study highlighted that
integrating mixed reality into nursing education not only enhanced students’ engagement
but also exposed them to realistic clinical stressors, providing opportunities to develop
stress management strategies in a safe learning environment.

Several recent studies emphasized the importance of utilizing physiological measures
in occupational stress quantification among nurses. Some of the key physiological cor-
relations such as heart rate, electrodermal activity, and skin temperature are crucial in
ascertaining stress in nurses [10]. For instance, ref. [11] utilized wearable ECG devices
to assess heart rate and HRV among nurses, establishing a correlation between these
physiological metrics and subjective stress responses, thus reinforcing HRV’s applicability
in occupational health assessments. Similarly, ref. [12] demonstrated the effectiveness
of various wearable sensors, including EDA, in monitoring stress in intensive care unit
(ICU) nurses in real-time. However, further studies are needed in taking advantage of
physiological measures in continuous stress and fatigue monitoring in nursing due to the
existence of research gaps [13].

Additionally, immersive virtual scenarios with real-time feedback have been applied
in psychological stress management, with encouraging results in enhancing coping skills
and self-efficacy among nurses [14]. Virtual reality (VR) training was found to elicit similar
stress responses to realistic face-to-face scenarios, demonstrating the effectiveness of VR
in simulating high-stress environments for stress monitoring [15]. Furthermore, ref. [16]
conducted a systematic review of virtual reality simulation effectiveness in nursing and
midwifery education with a focus on its superiority in enhancing students’ procedural
knowledge. Similarly, ref. [17] reviewed the role of digitally assisted mindfulness interven-
tions in improving self-regulation and sustaining mental health. Their systematic review
emphasized that incorporating digital tools into mindfulness practices significantly im-
proved individuals’ ability to manage stress, suggesting potential applications of such
technologies in nursing education to enhance mental resilience.

The continuous monitoring of physiological parameters during immersive training
sessions can give valuable feedback on the levels of stress in nurses and allow the tailoring
of interventions to reduce occupational stress more effectively [18]. The findings from [19]
indicate that while various technology-delivered interventions exist, the integration of
MR into stress management programs tailored for nursing is still limited. Therefore,
further research is needed to explore the potential of mixed reality environment in nursing
education, particularly regarding stress management [20,21].
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Therefore, this study conducted a novel experiment to assess the stress levels of nurse
learners in a mixed reality environment that was designed to simulate actual healthcare
scenarios. The learners were equipped with an Empatica E4 wristband (manufactured
by Empatica Inc. based in Cambridge, Massachusetts) to capture the key indicators of
heart rate, electrodermal activity, and skin temperature. These markers were continuously
recorded as the learners interacted with digital patients through the segments of the
simulation. In recording real-time physiological data, the goal was to determine the change
in stress level throughout the simulation and how it impacted clinical performance.

2. Experiment Design

The experiment was facilitated using a Microsoft HoloLens 2 MR headset (manufactured
by Microsoft Inc., Redmond, WA, USA). All the digital patients and medical equipment were
developed using the Unity 3D game engine (version 2022.3.19). Figure 1 shows a learner
using the system, and Figure 2 shows what they viewed inside the headset.

Figure 1. Learner engaged in the experiment, interacting with the digital patient and equipment
within a physical environment.

Figure 2. View inside of the HoloLens Headset.
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Through the headset, the learner experienced a blend of digital and real elements,
with digital patients and medical equipment overlaid onto the real-world objects. The
digital patients were also equipped with an advanced conversational artificial intelligence
(AI) model that allowed them to communicate naturally with the learner during the
simulation. This model was developed using MindMeld conversational AI platform
in Python 3.11.7, and could respond to the learner’s questions, actions, and remarks,
simulating the interaction in a more realist way as a natural conversation with a patient.
This contributed to realism, mimicking what nurses normally encounter in real life. The
patient’s facial expressions also changed based on the health condition, responding to what
learner has intervened and therefore made the whole experience more realistic [22].

Each training session took a duration of approximately 2 h per learner. At the begin-
ning, the learners were given a tutorial to become familiar with the system and learn to use
the digital equipment. Upon its completion, they were then introduced to an overview of
the patient’s situation, medical history, physical findings, nursing recommendations, and
orders from the physician. After preparing, the learners started the session and worked
with the digital patient. They controlled the pace of simulation by pressing a “Next Seg-
ment” button, moving the scenario 2 h ahead, for a total of six segments. Depending on the
learners’ actions and decisions, the status of the patient may improve or degrade. However,
the patient would encounter hypotension and hypoxia at some point, simulating a medical
emergency. At the end of the experiment, the learners were given a set of debriefing ques-
tions where they stated their objectives, patients’ needs, risks, and interventions during
the simulation.

The main goal of the experiment was to measure the learner’s stress and perform anal-
ysis of features with respect to it while using the MR system. To that end, the physiological
signals of the learners were captured with the Empatica E4 wearable sensor, which tracks
heart rate, electrodermal activity, and skin temperature. As an initial step for the training,
the physiological data of learners were recorded for 10 min to identify each learner’s
pre-simulation initial stress level. This baseline measurement was taken as a reference basis
for measuring any changes in stress during the simulation.

3. Methodology

3.1. Pre-Processing and Feature Extraction

Pre-processing is a crucial step in working with physiological data as it enables us
to denoise the data, deal with missing values and prepare the data for proper analysis
and modeling. For this purpose, a Python script was developed to preprocess the data,
select significant features and prepare it for machine learning. Some of the key libraries
utilized in the script are “pandas” for data manipulation and data arrangement, “numpy”
for calculation operations, and “scipy” for statistical functionality. Figure 3 demonstrates
all the steps followed in this pre-processing.

The process began with using each learner’s Heart Rate (HR), Skin Temperature
(TEMP), and Electrodermal Activity (EDA) data. Since these signals have different sampling
rates, they were first resampled to a unified rate of 4 Hz to ensure consistent data alignment
and reduce information loss. Next, the data were cleaned to ensure that high-quality data
were used in the model. A small percentage (1.02%) of missing values were present in the
dataset. Therefore, missing values in each signal (EDA, HR, and TEMP) were replaced
with the median of the respective feature, ensuring that data imputation did not distort the
overall signal characteristics.
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Figure 3. Steps of the data preprocessing.

To extract relevant features, a sliding window technique was employed with a window
size of 40 samples and a step size of 20 samples (50% overlap). Within each window, we
computed statistical descriptors (minimum, maximum, mean, and standard deviation) for
EDA, HR, and TEMP. For the EDA signal, additional shape-related features (skewness
and kurtosis) were calculated to capture asymmetry and tailedness. Furthermore, EDA-
specific dynamic features were derived using peak analysis, including the number of
peaks (indicative of phasic responses), total peak amplitude, and total peak duration (both
representing the intensity and temporal extent of EDA fluctuations).

The HR and TEMP signals had their root mean square (RMS) of first differences
computed to quantify variability and short-term fluctuations within the window. In total,
this resulted in 18 features describing the windowed physiological activity.

To account for temporal dependencies and trends in physiological responses, lagged
features were generated. Specifically, the mean values of EDA, HR, and TEMP over the
previous 1 to 10 windows were concatenated to the current feature vector. This yielded
30 additional lag-based features, which, combined with the 18 current-window features,
formed a comprehensive feature set of 48 dimensions.

Prior to training the machine learning models, all features were normalized using
min-max scaling to rescale their values into the [0, 1] range. Although min-max scaling can
be sensitive to outliers, it was appropriate in this context because the windowed features
exhibited stable ranges, and no extreme outliers were present after preprocessing.

3.2. Stress Detection Models

The models in this study were trained using the AffectiveROAD dataset [23], which
was specifically designed to collect a broad set of physiological and environmental mea-
surements in actual driving conditions. Drivers wore Empatica E4 wristbands and Zephyr
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BioHarness 3 chest straps (manufactured by Zephyr Technology Corporation, Annapolis,
MD, USA) which recorded physiological signals including electrodermal activity from both
wrists, heart rate, breathing rate, and skin temperature. In addition to these physiological
signals, the dataset includes contextual data such as GPS location, in-car temperature,
humidity, sound level, and synchronized video recordings of both the vehicle interior
and the external driving environment. A continuous, real-time stress metric was also
recorded during each drive. This metric was annotated by an observer seated in the rear
seat of the vehicle, who used a slider to indicate the perceived overall stress level on a
scale from low (0) to high (1). After each driving session, the driver reviewed the video
footage and validated or corrected the stress annotations to ensure their accuracy. This rich
dataset is particularly beneficial for the investigation of levels of stress and attention in the
participants. The class labels in our models were assigned according to the mean stress
levels throughout the session: ‘no stress’ for class 0, ‘medium stress’ for class 1, and ‘high
stress’ for class 2. These thresholds were initially established using the AffectiveROAD
dataset and further validated by participant survey response [24].

We used the Random Forest Classifier and Gradient Boosting Classifier as two base
models. For each base classifier, a randomized search strategy was applied over a prede-
fined hyperparameter space, with 100 iterations. The Random Forest classifier was tuned
across the following hyperparameters: number of estimators (n_estimators, range 50–300),
maximum tree depth (max_depth, range 10–30), number of features considered at each
split (max_features, either ‘sqrt’ or ‘log2’), minimum samples required to split an inter-
nal node (min_samples_split, range 2–20), minimum samples required at a leaf node
(min_samples_leaf, range 1–10), and bootstrap sampling (bootstrap, either True or False).
For the Gradient Boosting classifier, the tuned hyperparameters included n_estimators
(range 50–300), max_depth (range 3–10), and learning_rate (continuous uniform distri-
bution between 0.01 and 0.31). We then employed nested cross-validation using two
levels of Stratified 5-Fold cross-validation. In inner cross-validation, the training dataset
was split into 5 folds to optimize the hyperparameters. In outer cross-validation, the
entire dataset was split into 5 folds to evaluate the model with best-performing inner
cross-validation hyperparameters.

The reason why the Stratified K-Folds method was employed in this study is because
the dataset was imbalanced, and this ensured that class distribution was the same in each
fold. After hyperparameter tuning, the best hyperparameters were selected, and the models
were trained on the training set. Their performance was then measured on the test set,
using precision, recall, and F1 score metrics. The performance statistics of each base model
are presented in Table 1 (for Random Forest) and Table 2 (for Gradient Boosting).

Table 1. Random Forest test set performance.

Metric Class 0 Class 1 Class 2

Precision 0.99 0.95 0.98
Recall 0.99 0.94 0.98

F1 Score 0.99 0.94 0.98
Support 1082 450 957

Accuracy 0.98 0.98 0.98
Macro Avg Precision 0.97 0.97 0.97

Macro Avg Recall 0.97 0.97 0.97
Macro Avg F1 Score 0.97 0.97 0.97
Macro Avg Precision 0.98 0.98 0.98
Weighted Avg Recall 0.98 0.98 0.98

Weighted Avg F1 Score 0.98 0.98 0.98
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Table 2. Gradient Boosting test set performance.

Metric Class 0 Class 1 Class 2

Precision 0.99 0.96 0.96
Recall 0.99 0.91 0.98

F1 Score 0.99 0.93 0.97
Support 1082 450 957

Accuracy 0.97 0.97 0.97
Macro Avg Precision 0.97 0.97 0.97

Macro Avg Recall 0.96 0.96 0.98
Macro Avg F1 Score 0.96 0.96 0.97
Macro Avg Precision 0.97 0.97 0.97
Weighted Avg Recall 0.97 0.97 0.97

Weighted Avg F1 Score 0.97 0.97 0.97

The Random Forest model performed well in nested cross-validation and testing.
It averaged 96.18% accuracy in cross-validation, indicating that the model is capable of
generalizing to new data. The best hyperparameters had a high number of trees (178 esti-
mators), a deep tree structure (maximum depth of 29), and log2 for feature selection. On
the test data, the model achieved 98% accuracy with high precision and recall in all classes.
The precision and recall values in class 0 and class 2 were close to 1, whereas in class 1,
where the lowest result was obtained, the corresponding precision and recall values were
at 0.95 and 0.94.

The Gradient Boosting model also performed well, although slightly lower than the
Random Forest. Its nested cross-validation scores averaged 95.35%, which reflected good
performance but with greater sensitivity to parameter variation. The optimized parameters
were a learning rate of 0.228 and depth of 9. In the test set, it had an overall accuracy of 97%.
The performance metrics were high for all classes, particularly for classes 0 and 2. Class 1
had a lower recall of 0.91 in comparison to Random Forest but possessed high precision
at 0.96.

The results of inner and outer cross-validation scores showed no overfitting. Overfit-
ting would generally occur when a model has high performance on training data but low
performance on unseen data, and this would reflect in a large gap between training and
validation scores. However, the model results show consistent performance in inner and
outer loops with no significant differences in scores.

In addition, a Stacking Classifier was employed to combine the Random Forest and
Gradient Boosting models’ classification outcomes. Stacking is designed to take advantage
of each model’s strengths, with the potential to enhance overall predictive accuracy. The
stacked model also underwent an identical process of testing, and performance metrics
were generated to verify its capacity to generalize to unseen data. The model achieved the
best performance with cross-validation accuracy at 96.4%.

This indicated that the merging of the power of both models gave improved perfor-
mance. The Stacking model also achieved an accuracy of 98% in the test set, the same
as the Random Forest (as seen in Table 3). Recall, accuracy, and F1 scores across all the
classes were high with high performance in class 2 and competitive scores in classes
0 and 1. This confirmed that the stacking approach worked in combining the strengths
of the individual models as they complemented one another, resulting in overall better
classification performance.
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Table 3. Stacking classifier test set performance.

Metric Class 0 Class 1 Class 2

Precision 0.99 0.93 0.98
Recall 0.99 0.94 0.97

F1 Score 0.99 0.94 0.98
Support 1082 450 957

Accuracy 0.98 0.98 0.98
Macro Avg Precision 0.97 0.97 0.97

Macro Avg Recall 0.97 0.97 0.97
Macro Avg F1 Score 0.97 0.97 0.97
Macro Avg Precision 0.98 0.98 0.98
Weighted Avg Recall 0.98 0.98 0.98

Weighted Avg F1 Score 0.98 0.98 0.98

The selection of physiological features, such as heart rate, skin temperature, and
electrodermal activity was guided by prior literature indicating their strong association
with sympathetic nervous system activation and stress responses. Electrodermal activity,
in particular, has been widely validated as a sensitive marker of acute stress and arousal in
both laboratory and applied settings, which justified its prioritization. The machine learning
models (Random Forest, Gradient Boosting, and Stacking Classifier) were selected due to
their robustness, capacity to handle complex, non-linear relationships, and proven high
performance in prior stress classification studies. Random Forest offers interpretability and
resistance to overfitting; Gradient Boosting enhances predictive power through iterative
refinement; and the Stacking Classifier capitalizes on model complementarity to improve
generalization. These models align with our research objective of developing a reliable and
accurate classification framework to assess stress levels from physiological data within the
MR simulation.

We also evaluated several other machine learning models to ensure thorough anal-
ysis of the data. These included Logistic Regression, Support Vector Machine (SVM),
K-Neighbors, and Adaptive Boosting. Tables 4–7 display the optimal hyperparameters and
classification reports for each model. Despite the capabilities of these individual algorithms,
the Stacking Classifier consistently outperformed them and showed its ability to effectively
combine the predictive strengths of both the Random Forest and Gradient Boosting models.

Table 4. Logistic regression.

Metric Value

Fitting Details 5 folds for each of 45 hyperparameter candidates, totaling 225 fits
Best Parameters {‘C’: 0.001, ‘max iteration’: 100, ‘solver’: liblinear}
Best Accuracy 0.6105

Test Set Accuracy 0.6102
Test Set Precision 0.6180

Test Set Recall 0.4957
Test Set F1 Score 0.4513

Table 5. Support Vector Machine (SVM).

Metric Value

Fitting Details 5 folds for each of 24 hyperparameter candidates, totaling 120 fits
Best Parameters {‘C’: 100, ‘gamma’: ‘scale’, ’kernel’: radial basis function}
Best Accuracy 0.7612
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Table 5. Cont.

Metric Value

Test Set Accuracy 0.7794
Test Set Precision 0.7473

Test Set Recall 0.7231
Test Set F1 Score 0.7311

Table 6. K-Neighbors.

Metric Value

Fitting Details 5 folds for each of 16 hyperparameter candidates, totaling 80 fits
Best Parameters {‘metric’: Manhattan, ‘number of neighbors’: 3, ‘weights’: distance}
Best Accuracy 0.9054

Test Set Accuracy 0.9274
Test Set Precision 0.9118

Test Set Recall 0.9113
Test Set F1 Score 0.9115

Table 7. Adaptive Boosting.

Metric Value

Fitting Details 5 folds for each of 125 hyperparameter candidates, totaling 625 fits
Best Parameters {‘base estimator max depth’: 5, ‘learning rate’: 0.1, ‘number of estimators’: 300}
Best Accuracy 0.9035

Test Set Accuracy 0.9206
Test Set Precision 0.9197

Test Set Recall 0.8954
Test Set F1 Score 0.9049

3.3. Features Analysis

To illustrate the impact of each feature in prediction results, feature importance scores
were calculated using the Mean Decrease in Impurity (MDI) method, as implemented in
the scikit-learn library. This approach quantifies the contribution of each feature to the
predictive performance of the ensemble model by measuring the extent to which the feature
reduces node impurity across all trees.

Specifically, the importance of a feature ƒ was calculated as the total reduction in the
criterion (Gini impurity) brought by all splits on f across all trees, averaged and normalized.
Formally, the feature importance I(ƒ) for feature ƒ can be represented as:

I() =
1
T ∑T

t=1 ∑n∈Nt
f

Δi(n)

where T is the total number of trees in the ensemble, Nt
f denotes the set of nodes where

feature ƒ was used to split in tree t, and Δi(n) represents the impurity decrease at node n.
To ensure comparability between models, raw feature importance values were then nor-
malized such that the sum of all importances for each model equaled one. Normalization
was achieved by dividing each importance score by the total sum of importances.

Figure 4 indicates the most significant features that were identified through each
model. As illustrated in the figure, in the Random Forest model, the highest feature score
was the mean value of EDA (EDA_Mean), which suggested that changes in EDA_Mean
hold significant information about stress. Following EDA_Mean, EDA minimum value
(EDA_Min) and skin temperature maximum value (TEMP_Max) were ranked second. Such
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features contribute to understanding the extremes and ranges of the values of EDA and
temperature, which are important in assessing stress.

Figure 4. Normalized feature importance from Random Forest and Gradient Boosting models.

Skin temperature minimum value (TEMP_Min) and EDA maximum value (EDA_Max)
also improved the model’s predictive ability by providing more information about tem-
perature extremes and peak EDA values, respectively. Factors like heart rate standard
deviation (HR_Std), temperature standard deviation (TEMP_Std), and heart rate minimum
value (HR_Min) were of lesser importance but still played a role in capturing fluctuations
related to stress intensity.

On the other hand, the Gradient Boosting model attributed more weight to EDA_Mean.
EDA_Duration was also an important feature in this model, and it represents the total
time that the EDA signal stayed elevated within the time window. Minimum tempera-
ture (TEMP_Min) was another important feature for Gradient Boosting; however, EDA
skewness value (EDA_Skew) and EDA amplitude value (EDA_Amplitude) were features
but to a lesser degree than EDA_Mean and EDA_Duration, meaning that while they were
significant, their influence was slight.

In comparing both models, EDA_Mean is a significant feature in both Gradient Boost-
ing and Random Forest but is more significant in Gradient Boosting. This discrepancy is
what indicates that Gradient Boosting’s modeling approach is more capable of identifying
the mean EDA value in the case of stress. The different level of significance of features like
EDA_Min and TEMP_Min across the models indicated that both models utilize different
data parameters. Random Forest may be more attuned to changes in these features, while
Gradient Boosting may be able to detect more subtle patterns of stress.

Secondly, we examined the correlation between these features presented in Figure 5.
The correlation matrix indicates that all three metrics correlate which confirm that changes
in one metric are related to changes in the others.
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Figure 5. Correlation matrix of the features.

The correlation matrix further reveals interrelationships among the physiological
measurements. Firstly, it shows an inverse relationship between body temperature and
EDA. In other words, EDA_Mean is inversely related to TEMP_Mean (−0.49), TEMP_Min
(−0.49), and TEMP_Max (−0.50). This relationship persists across the measurements of
EDA, because EDA_Max is also inversely related to TEMP_Mean (−0.50). This suggests
that with increases in stress levels, as indicated by EDA increases, there is an accompanying
decrease in skin temperature. This inverse effect suggests a physiological phenomenon in
which increased stress or arousal is accompanied by a decrease in surface temperature as
vasoconstriction redirects blood to the core of the body [25].

In addition, EDA is positively correlated with heart rate. EDA_Mean is correlated with
HR_Mean (0.26) and HR_Max (0.26), indicating that higher levels of EDA are associated
with increased heart rates. This confirms that as individuals experience more stress, their
heart rate increases. The same goes for EDA_Min, but with a poorer though still significant
correlation with HR_Mean (0.23), indicating that even the lowest values of EDA are in
some way associated with heart rate means.

EDA amplitude and duration also yield useful information. EDA_Amplitude is
positively related to both EDA_Mean (0.53) and EDA_Max (0.58) at a moderate level,
suggesting that larger fluctuation in skin conductance is associated with larger overall
levels of EDA. Moreover, EDA_Duration is positively related to HR_Min (0.29), which
means that longer durations of high electrodermal activity are associated with lower
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minimum heart rates. This could imply that long-lasting stress responses are associated
with a decrease in the baseline heart rate.

Finally, relations are seen between the distribution measures of EDA, i.e., kurtosis and
skewness. EDA_Kurtosis is positively correlated with EDA_Std (0.72) at high significance
levels, such that increased deviation from the mean is associated with more variability in
EDA. EDA_Skew, on the other hand, is not highly correlated with other variables, and this
suggests that asymmetry in EDA distributions is unlikely to have a significant in-fluence on
other physiological variables. These findings offer a glimpse into the intricate relationship
between EDA, heart rate, and temperature and how they all react as a coordinated system
to stress in the body.

4. Pilot Study Results

A total of nine pre-licensure nursing students and three nurse faculty members of
the University of Arizona College of Nursing, aged between 20 and 49 years (mean = 29.6,
SD = 10.1), volunteered to participate in our pilot study approved by the IRB. Each par-
ticipant spent approximately 2 h on the experiment, yielding a total of 86,400 s of data
collected. The participant demographic information is indicated in Table 8, offering a mix of
levels of education and experience that reflect a diverse group of participants in the study.

Table 8. Demographics of study participants.

Demographics Percentage of Participants

Nursing Education

Less than one semester of nursing courses 25%
One to two semesters of nursing courses 42%

Bachelor’s degree 8%
Master’s degree 25%

Experience Level

No experience 33%
Less than 2 years 8%

2 to 5 years 17%
6 to 10 years 25%

21 to 25 years 17%

Types of healthcare simulations participated in

Standardized patient 33%
Manikin 50%

Virtual screen-based 17%
Virtual with headset 17%

Mixed reality with headset 8%

Experience with Virtual Reality headset 8%

Very little 58%
None 50%

Experience with Mixed Reality headset

Very little 67%
None 58%

A representation of the distribution of time over different stress levels for all the
subjects in our experiment is given in Figure 6. This result gives a clear view of stress level
distributions across subjects by showing how much time each subject spent in each of the
different stress states. Additionally, the participants’ answers to the debriefing questions at
the end of the simulation are summarized in Table 9.
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Figure 6. Distribution of time spent by each learner across different stress levels: 0 (low), 1 (medium),
and 2 (high).

Table 9. Summary of participants’ simulation goals, patient priorities, risks, required equipment,
actions taken, and success.

Participant
Number

Goal During
Simulation

Patient’s
Priority Needs

Patient’s Risks Essential Items Actions Taken Succesfull?

208,815 Keeping my
patient alive

Watching for
hypovolemia

and sepsis

Sepsis,
hypovolemic

shock,
hemorrhage

Oxygen, Blood
pressure, IV

pump/suction

Recognized low
blood pressure,

patient
unresponsive, called

rapid response,
initiated protocols

Yes

265,733
Contribute to
education and

patient survival

Blood pressure,
perfusion to
major organs

Loss of
oxygenation,

internal bleeding

IV fluids,
Oxygen,

electrolytes

Adjusted IV rate,
monitored vitals,

called rapid
response, bolus of
Lactated Ringer’s,

4L O2

No

266,551
Becoming

oriented with
virtual tools

Assessing
the patient

Impaired gastric
motility, altered

bowel habits,
pressure injury

Oxygen, call
light, Blood

pressure
machine

Thorough
assessment,

evaluated chart
before engaging

No

495,779 Improve patient
assessment skills

Follow doctors’
orders,

monitor vitals

Pulmonary
embolism, low

O2, hypertension

Ambu bag,
supplemental
O2, code cart

Assessed patient,
applied oxygen Yes
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Table 9. Cont.

Participant
Number

Goal During
Simulation

Patient’s
Priority Needs

Patient’s Risks Essential Items Actions Taken Succesfull?

584,657
Learn AR benefits

for nursing
education

Pain and
infection control

Sepsis, severe
pain,

malnutrition

Ambu bag, IV,
monitors

Monitored vitals,
IV fluids,

assessment, used
call light,

reviewed orders

Yes

590,359
Checking vitals,

administering IV,
oxygen

Oxygen, IV
Blood infection,

sepsis,
hypotension

Oxygen, IVs,
blood glucose

Used oxygen mask,
administered IV No

654,162
Implement

interventions,
monitor vitals

Oxygen, NG
suction, IV bolus,

vital sign
observation

Hypotension,
hypoxia, pain

Oxygen,
suction,
IV bolus

Adjusted IV rate,
turned on

O2/suction,
administered bolus,

notified MD,
monitored vitals

No

707,877

Provide
competent care in

a safe
environment

Addressing safety
errors, pain

management,
responding

to sepsis

Cardiac
arrhythmias,
organ failure,

death

Ambu bag,
oxygen source,

code cart

Verified call light,
placed patient on
suction, changed
IVF rate, called
rapid response,

followed protocol

No

751,998
Learn MR, use

HoloLens,
navigate space

Fluid
resuscitation,

oxygen,
antibiotics

Septic shock,
severe

hypotension,
hypoxemia

Pressure bag,
surgical team,
vasopressors

Locked bed, raised
side rails,

administered fluids,
called rapid

response, updated
provider, assessed
for deterioration

Yes

860,223

Maintain
patient’s O2,

ensure breathing,
contact provider

Oxygen, chest
pain, circulation

Heart attack,
low O2,

circulation loss

EKG, heart
shock kit,

CPR equipment

Increased oxygen,
positioned patient
upright, monitored

BP

No

241,348
Practice nursing

and critical
thinking

Oxygenation,
monitoring chest
pain, breathing

pattern, BP

Myocardial
infarction,

pulmonary
embolism, stroke

Oxygen,
IV site, AED

Administered
oxygen, constant

monitoring, called
rapid response and

provider

Yes

241,349

Follow
hypotension

protocol, manage
NG tube suction

Stabilizing vitals Infection, low O2,
hypotension

Oxygen,
suction,

code cart

Lowered bed,
monitored vitals,

called rapid
response and

doctor, applied
oxygen, allowed

family access

No

Based on Figure 6 and Table 9, we identified that all participants who experienced
stress levels of 2 for more than 25% of the simulation time, reported that they were not
successful in fully treating the patient. This highlights the point that stress level 2 during
the training had an impact on the participants’ performance outcomes. This insight can be
used to further personalize the training by decreasing the complexity of the simulation or
offering supportive cues in the mixed reality environment when the stress reaches level 2.

4.1. Scenario-Based Validation

To ensure the applicability of the stress classification model to actual settings, we
employed scenario-based validation within the context of the pilot study. This validation
involved a critical segment of the simulation (segment 4) in which participants had to
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react to an emergency medicine scenario where the patient was on the verge of developing
hypotension and hypoxia; situations that need prompt and effective decision-making.

The result of this validation showed that the model correctly classified all partici-
pants as being under a higher level of stress (Stress Level 1 or Stress level 2) during the
emergency scenario. This consistent classification across all test populations suggests that
the model is sensitive and accurate in detecting heightened stress reactions to critical,
high-stakes situations.

This scenario-based validation supports both the accuracy of the model’s classifications
and its practical value in real clinical settings. The model holds significant potential for use
in training environments focused on understanding and managing stress, as it accurately
reflects the stress responses typically seen in such situations. This can help improve clinical
performance and patient outcomes.

4.2. Variation in Physiological Markers Across Stress Levels

To further analyze the stress levels, Figures 7–9 illustrate the way mean heart rates,
skin temperature, and electrodermal activity vary amongst learners across the different
stress levels.

Figure 7. Average heart rate across stress levels for each learner.

Figure 8. Average skin temperature across stress levels for each learner.
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Figure 9. Average electrodermal activity across stress levels for each learner.

We then used paired t-tests to determine differences in physiological measurements
across the three levels of stress (Stress Level 0, 1, and 2). The analysis was performed over
86,400 s of data and the summaries of the results are presented in Tables 10 and 11.

Table 10. Mean comparison results.

Metric Stress Level 0 Stress Level 1 Stress Level 2

Heart Rate Mean 82.23 86.30 84.79
Skin Tempreture Mean 31.81 31.49 31.23

Electrodermal Activity Mean 0.68 2.09 1.87

Table 11. T-test results.

Comparison T-Statistics p-Value Significance

Stress Level 1 vs. Stress Level 0 (HR_Mean) 13.7554 p < 0.001 Statistically significant
Stress Level 2 vs. Stress Level 0 (HR_Mean) 11.0204 p < 0.001 Statistically significant

Stress Level 1 vs. Stress Level 0 (TEMP_Mean) −6.8260 p < 0.001 Statistically significant
Stress Level 2 vs. Stress Level 0 (TEMP_Mean) −14.7139 p < 0.001 Statistically significant
Stress Level 1 vs. Stress Level 0 (EDA_Mean) 28.2458 p < 0.001 Statistically significant
Stress Level 2 vs. Stress Level 0 (EDA_Mean) 36.7045 p < 0.001 Statistically significant

There were considerable differences in heart rate in both analyses. Under Stress
Level 1, the heart rate was significantly higher compared to Stress Level 0 (t-statistic = 13.7554,
p-value ≈ 0.0), indicating a substantial increase in heart rate with elevated stress. Similarly,
the comparison of Stress Level 2 versus Stress Level 0 also showed an increase in heart rate
at significance level (t-statistic = 11.0204, p-value ≈ 0.0).

Mean skin temperature showed significant decrease through levels of stress. Stress
Level 1 recorded a lower skin temperature than Stress Level 0 (t-statistic = −6.8260,
p-value ≈ 0.0), and the difference was even larger at Stress Level 2 (t-statistic = −14.7139,
p-value ≈ 0.0).

EDA also recorded significant differences by levels of stress, where under Stress Level
1 was significantly higher than Stress Level 0 (t-statistic = 28.2458, p-value ≈ 0.0), and
the same significant rise was achieved under Stress Level 2 compared to Stress Level 0
(t-statistic = 36.7045, p-value ≈ 0.0). The rise in EDA is reflective of heightened sympathetic
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nervous system activity, leading to heightened sweating and greater skin conductance due
to stress.

In conclusion, the outcome of the t-test indicated that heart rate, skin temperature,
and electrodermal activity varied significantly with the variation in stress level. In other
words, such physiological measures could be reliable indicators for the assessment of stress
and may aid in the design of effective stress management interventions within the mixed
reality settings.

4.3. Participants Feedback

Participants reported that the MR simulations presented realistic and engaging clinical
scenarios that elicited cognitive and emotional demands similar to real-world patient care.
Many noted feeling mentally challenged when prioritizing patient needs such as fluid
resuscitation, oxygen administration, and infection management. The integration of digital
patients who could communicate and respond added an additional layer of realism that
increased situational awareness and heightened stress, particularly when monitoring for
critical risks like hypotension.

While several participants acknowledged moments of increased stress due to man-
aging complex tasks and interpreting patient responses, they also highlighted that the
simulation environment provided a safe space to practice under pressure without risking
patient safety. One participant emphasized, “Keeping my patient alive was my primary fo-
cus, which made the experience intense but rewarding”. Another shared, “I was constantly
watching for signs of deterioration, which kept me engaged and aware of time pressures”.

Participants consistently expressed that the MR simulations enhanced their clinical
competence and decision-making skills. They appreciated the opportunity to interact with
digital patients using both verbal communication and physical actions, such as adminis-
tering oxygen or preparing vasopressors. Several participants stated that the experience
improved their understanding of prioritizing care under dynamic clinical conditions.

Most participants rated the MR system as superior or comparable to traditional
manikin-based training. They found that the interactive and immersive nature of the
simulation helped solidify nursing procedures and improve communication skills with
patients. One participant noted, “Compared to a manikin, this felt more realistic, and it
helped me better prepare for actual patient interactions”.

5. Conclusions

Stress is a significant concern in the nursing field that impacts both the nurses’ health
and the quality of patient care. To address the issue, we conducted an experiment aimed at
measuring levels of stress in nursing students in a mixed reality training system. In the
experiment, subjects were exposed to digital patients and clinical equipment, replicating
real-life health environments.

The research included 2 h training per learner, divided into six segments. Learners
were exposed to clinical scenarios developed to replicate high-pressure healthcare envi-
ronments, and they directly interacted with the digital patients. The virtual patients had
been integrated with a conversational AI model that allowed for natural-sounding voice
interactions. In addition, the patient’s facial expressions were scripted to react based on
their medical condition and emotional state, adding to the realism of the simulation.

Physiological signals such as heart rate, electrodermal activity, and skin temperature
were continuously recorded using the Empatica E4 wristband. These measurements were
employed as objective indices to assess the nurses’ stress levels during the simulation.
Physiological signals were pre-processed to achieve accuracy and consistency for all mea-
surements. Afterwards, statistical measures such as mean, standard deviation, skewness,
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and kurtosis were extracted for each physiological signal. Additionally, dynamic changes
in the signals such as peak detection in electrodermal activity and root mean square values
in heart rate and temperature were examined.

A Stacking Classifier of Gradient Boosting and Random Forest was then used to
classify the participant’s level of stress. Nested cross-validation was implemented for
hyperparameter tuning and model selection. The Stacking Classifier performed the best
among all, which had a 98% accuracy on the test set. The model combined well the
strengths of Random Forest and Gradient Boosting and achieved superior predictive power
in classifying stress levels.

Our findings highlight that the high-pressured mixed reality training environment
significantly impacts the physiological level of stress in nursing students. Participants
displayed measurable responses to stress, with elevations in heart rates and electrodermal
activity on high-stress sections of the simulation.

The findings of this study can inform the integration of MR simulations into nursing
education to enhance both technical competencies and stress management skills. For
example, MR scenarios replicating high-acuity patient care situations could be embedded
into simulation-based courses to allow students to practice managing stress while making
clinical decisions in a safe environment. Additionally, MR modules could be used as
refresher training for practicing nurses in critical care or emergency settings to maintain
readiness and resilience. These applications support a more experiential, self-regulated
approach to developing both clinical and emotional competencies essential for high-stakes
healthcare delivery.

6. Discussion and Future Work

Although this study identified nursing students’ stress levels in MR settings, there
are certain avenues for future research that can assist in improving the understanding and
application of MR in nursing education.

An important avenue for future research involves investigating the long-term impact
of MR-based training on stress management and clinical performance. Although the
present study focused on immediate stress responses during simulation sessions, it remains
unknown whether repeated exposure to MR scenarios can enhance nurses’ resilience and
stress-coping skills in real clinical environments. Longitudinal studies assessing retention
of stress-management strategies and transferability to practice (potentially through follow-
up assessments weeks or months post-training) would provide valuable insights into
the sustained benefits of this approach. Such research could also explore whether MR-
based training reduces stress-induced decision errors or improves patient outcomes in
high-pressure clinical scenarios.

Another course for future work will be real-time stress detection with adaptive inter-
ventions during training. Since this study was aimed at recording physiological data, for
example, heart rate, skin temperature, and electrodermal activity in order to measure the
level of stress, future research could involve real-time analysis of these data with mech-
anisms for automated feedback. For example, adaptive systems can be programmed to
offer relaxation techniques, such as guided breathing, when heightened levels of stress
are detected. This real-time feedback would enhance the learning experience by enabling
nursing students to manage their levels of stress more effectively, so they are buffered
during stressful training exercises but still reap the benefits of the pressure that comes with
realistic environments.

This would also give a more profound understanding of the stress level by varying
the physiological data that is recorded. Whereas the experiment made use of heart rate,
electrodermal activity, and skin temperature, future experiments may consider using other
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biomarkers, such as respiratory rate or brain-wave activity (EEG), thereby adding more
proof of the multi-responses of the physiological systems occurring under stress in XR
environments. In addition, the inclusion of these markers could increase the accuracy of
stress detection, allowing for a more comprehensive view of the nurse’s physiological state
during training.

Additionally, the relatively small sample size of our study limits the generalizability
of the results. The participants were drawn from a specific population of nursing students
within a single institution, which may not fully represent the broader diversity of practicing
nurses or students from different educational backgrounds. Future research should aim to
replicate and extend these findings using larger and more diverse participant groups to
enhance external validity and deepen the understanding of individual differences in stress
responses within extended reality environments.

Furthermore, monitoring physiological data in educational settings raises impor-
tant ethical considerations that warrant careful attention. Participants’ privacy must be
safeguarded through secure storage of sensor data, anonymization protocols, and clear
communication about data usage. Consent procedures explicitly outlined the nature of
data collection, how data would be used, and participants’ right to withdraw at any time
without penalty. Additionally, continuous monitoring during simulations may introduce
psychological discomfort or heightened self-awareness, potentially influencing behavior.
To mitigate this, participants were thoroughly briefed and given opportunities to express
concerns. Future applications of such technologies in education should prioritize trans-
parency, minimize intrusiveness, and ensure that physiological monitoring is framed as
a tool to enhance learning, not as an evaluative measure that could induce anxiety or
judgment.

By addressing these areas in future research, MR-based training for nurses can be
an even more powerful, more specific, and more effective way of preparing healthcare
professionals to manage high-stress environments with greater resilience and effectiveness.
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Abstract

Dynamic oxygen uptake (VO2) reflects moment-to-moment changes in oxygen consump-
tion during exercise and underpins training design, performance enhancement, and clinical
decision-making. We tackled two key obstacles—the limited fusion of heterogeneous
sensor data and inadequate modeling of long-range temporal patterns—by integrating
wearable accelerometer and heart-rate streams with a convolutional neural network–LSTM
(CNN-LSTM) architecture and optional attention modules. Physiological signals and VO2

were recorded from 21 adults through resting assessment and cardiopulmonary exercise
testing. The results showed that pairing accelerometer with heart-rate inputs improves pre-
diction compared with considering the heart rate alone. The baseline CNN-LSTM reached
R2 = 0.946, outperforming a plain LSTM (R2 = 0.926) thanks to stronger local spatio-temporal
feature extraction. Introducing a spatial attention mechanism raised accuracy further
(R2 = 0.962), whereas temporal attention reduced it (R2 = 0.930), indicating that attention
success depends on how well the attended features align with exercise dynamics. Stacking
both attentions (spatio-temporal) yielded R2 = 0.960, slightly below the value for spatial
attention alone, implying that added complexity does not guarantee better performance.
Across all models, prediction errors grew during high-intensity bouts, highlighting a bot-
tleneck in capturing non-linear physiological responses under heavy load. These findings
inform architecture selection for wearable metabolic monitoring and clarify when attention
mechanisms add value.

Keywords: oxygen uptake; deep learning; neural network; attention mechanism

1. Introduction

Cardiorespiratory fitness is an important indicator of all-cause mortality risk [1] and
also plays a key role in endurance performance [2]. Oxygen consumption (VO2) and its
dynamic response during exercise are widely used in the assessment of cardiorespiratory
fitness. The analysis of VO2 during exercise provides important physiological information
about the components of the aerobic metabolism system, including the cardiopulmonary
and muscular systems [3]. Furthermore, abnormal oxygen consumption responses during
exercise may precede clinical manifestations of disease, thereby demonstrating significant
practical value in disease warning and exercise risk screening [4].

Traditional oxygen consumption monitoring relies on laboratory metabolic chambers
(such as the TrueOne 2400, ParvoMedic Inc., Salt Lake City, UT, USA), which can obtain
energy metabolism data at rest and during exercise through high-precision gas analysis
systems. However, their operation is strictly limited to laboratory environments, and the
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equipment is bulky and expensive, making it difficult to meet the dynamic monitoring
requirements of sports venues [5]. Portable oxygen consumption monitoring devices
currently available on the market (such as K5, Cosmed S.r.l., Rome, Italy and VO2 Master,
VO2 Master Health Sensors Inc., Vernon, BC, Canada) have broken through the limitations
of laboratory environments and enabled the on-site detection of respiratory data during
exercise. However, during testing, factors such as wearing respiratory masks that alter
the natural breathing pattern of participants, frequent gas calibration procedures, and the
high cost of equipment purchase resulted in a certain degree of error between the actual
measured oxygen uptake data of exercisers and their true physiological values [6].

The development of wearable sensor technology has provided new ideas for non-
invasive oxygen consumption monitoring. Early studies primarily used the heart rate
(HR) as an assessment indicator and employed traditional statistical models such as linear
regression [7] to estimate oxygen uptake at each moment during exercise [8]. However, the
above studies did not fully explore the dynamic information contained in the evolution of
heart rate sequences over time. In recent years, artificial intelligence technologies repre-
sented by deep learning have opened up more development opportunities for real-time,
dynamic oxygen consumption calculations. Deep learning algorithms can more deeply
explore the relationship between other physiological signals and oxygen consumption,
making oxygen consumption monitoring during exercise more convenient and accurate.
Therefore, recent studies have begun to focus on utilizing the time-dependent nature of
oxygen uptake during exercise and its correlation with multiple physiological indicators,
combined with more complex deep learning prediction models to predict real-time oxygen
uptake responses during exercise [9].

A multi-indicator model refers to an oxygen consumption prediction model that uses
multiple relevant factors from different data sources as inputs. Typical input indicators
include static characteristics (e.g., age, BMI, etc.) and dynamic movement characteristics
(e.g., heart rate, acceleration, etc.). They are associated with oxygen consumption by re-
flecting metabolic basis and exercise intensity. When performing in-depth information
mining on the above multi-dimensional features, convolutional neural networks (CNNs)
are commonly used because they can extract potential features from adjacent input in-
dicators as spatial features in deep learning models [10]. However, there is no spatial
adjacency relationship between the characteristics during the movement process similar
to image pixels, and the order of the indicators does not have a clear spatial structure.
Therefore, although local convolutions using CNNs can extract some potential features, it
is still difficult to comprehensively capture the complex potential relationships between
multiple indicators.

A time series refers to the temporal correlation between monitored data sequences.
Indicators such as the heart rate, acceleration, and oxygen consumption during exercise tend
to change with the duration of exercise, and past data sequences are correlated with future
data sequences. Long Short-Term Memory (LSTM) networks are capable of remembering
time series information. However, as the time series in the data lengthens, LSTM may not
remember early data points well enough [11], requiring further improvement to strengthen
temporal modeling.

In summary, existing VO2 prediction studies still have shortcomings in the deep
integration of multi-indicator information, the modeling of long-term dependencies in tem-
poral features, and the dynamic extraction of key features. This paper proposes an oxygen
consumption prediction model based on the CNN-LSTM structure and incorporates spatial
and temporal attention mechanisms into the model to enhance prediction performance.
As shown in Figure 1, the main tasks are as follows: (1) conducting resting experiments
and cardiopulmonary exercise tests (CPETs) to collect physiological data, (2) constructing
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LSTM and CNN-LSTM dynamic oxygen consumption prediction models based on input
features derived from the integration of static and dynamic indicators, and, (3) based on
the CNN-LSTM model, adding a time, space, and spatio-temporal attention mechanism to
construct an oxygen consumption prediction model and conduct a comparative analysis.

 

Figure 1. Attention-CNN-LSTM framework for VO2 prediction using multi-source temporal features.

2. Materials and Methods

2.1. Participants

This study recruited 21 participants, including 14 males and 7 females, aged between
21 and 28 years. Table 1 shows the demographic characteristics of the subjects. This
study was approved by the Institutional Review Board, and all participants signed written
informed consent forms. Each participant underwent a health assessment screening to
assess potential risks, had had no hospitalization records in the past six months, and was
able to complete the Physical Activity Readiness Questionnaire (PAR-Q) for the physical
activity programmed. We excluded participants with medical implantable electronic
devices, those who had sustained running injuries, or those at high risk of injury.

Table 1. Basic information of the subjects.

Male (n = 14) Female (n = 7)

Age 24 ± 3 25 ± 3

Height (cm) 176 ± 8 163 ± 5

Weight (kg) 70.6 ± 13.3 52.3 ± 6

BMI 22.8 ± 3 19.8 ± 1.5

Body fat percentage (%) 16.2 ± 5.8 23.7 ± 3.4

2.2. Experimental Design and Data Collection

The data sources included two parts: resting test and CPET. Before the resting test,
subjects were asked to fast for at least 4 h and refrain from consuming caffeinated beverages
or alcohol for 24 h. They were also asked to avoid strenuous exercise for 48 h before the test
to ensure that they were in a resting state before the test. Each subject was asked to close
their eyes and lie still for 15 min before the test began to ensure that they were completely
relaxed. After the resting testing began, the subjects continued to lie quietly with their
eyes closed and wore a heart rate belt (H10, Polar Electro Oy, Kempele, Finland) with a
sampling frequency of 1 Hz. At the same time, a gas metabolism analyzer (Powercube-Ergo,
Ganshorn, Niederlauer, Germany) was used to conduct a 10-min resting oxygen uptake
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test, with a sampling frequency of 0.1 Hz. The device recorded their breathing data and
heart rates.

Before the CPET, the subjects first did a 10-min slow jog to warm up. After entering
the formal testing phase, participants used a treadmill to perform incremental exercise
according to the Ramp protocol [12], with the treadmill speed increasing by 1 km/h per
minute and the incline remaining at 0%. During the test, accelerometers (WT901BLECL5.0,
Witmotion, Shenzhen, China) were worn on the wrists of the subjects’ non-dominant hands
to collect acceleration data at a frequency of 10 Hz. Heart rate belts collected heart rate data
and gas metabolism analyzers collected and recorded oxygen consumption during exercise.
The test was terminated when the subject met any two of the following criteria: heart rate
reached 90% of maximum heart rate; Respiratory Quotient > 1.15; Rating of Perceived
Exertion > 17; oxygen uptake plateaued. The maximum heart rate was calculated using the
following equation: HRmax = 208 − 0.7 × age.

2.3. Data Preprocessing

For multi-source heterogeneous data such as heart rate, acceleration, and gas pa-
rameters during exercise, time synchronization was first performed based on the exper-
imental records before preprocessing. To suppress random noise and obtain smooth
one-dimensional acceleration estimates, this study applied a Kalman filter to the original
acceleration signals. The following example uses the original acceleration sequence (ax)
on the X-axis to illustrate the implementation details of the Kalman filter. The remaining
Y- and Z-axis signals use the same model and hyperparameters and are processed inde-
pendently in parallel. The sampling frequency of the original acceleration data is 10 Hz
(Δt = 0.1 s). The filter uses a one-dimensional random walk assumption, and its state-
observation model is xk = xk−1 + wk−1, zk = xk + vk. Here, xk denotes the ‘true’ X-axis
acceleration (in units of g) of frame k, zk denotes the corresponding raw measurement value,
wk−1 ∼ N(0, Q), and vk ∼ N(0, R). Based on the stationary segment noise calibration and
Allan variance analysis, the parameters are set as A = H = 1, Q = 0.01g2, and R = 0.10g2.
The initial state estimate is set as the first frame measurement x0 = ax(0), and the initial
covariance P0 = 1g2. After that, the three directional accelerations are combined into a
scalar composite value, VM.

VM =
√

AccX2 + AccY2 + AccZ2 (1)

To address the issue of accelerometer sampling frequency being higher than heart rate
belt frequency, a down sampling method was used to align the accelerometer data with
the heart rate data. After that, the features were divided into dynamic features and static
features (Table 2) and standardized using Z-scores (Equation (2)).

X′ = X − μ

σ
(2)

μ represents the mean of all sample data and σ represents the standard deviation of all
sample data.

To coordinate the sampling frequency of the gas analyzer with other devices, a 10-s
non-overlapping time window was constructed, and the dynamic characteristics within
the window were serialized in 1-s increments. The absolute oxygen consumption values
collected by the gas analyzer were used as label values for each window of the model. The
missing acceleration and heart rate values in the window were filled in using the average
values in this window.
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Table 2. Classification of dynamic and static characteristics.

Feature Category Feature

Static Features Weight (kg)
Height (m)

BMI (kg/m2)
Body fat percentage (%)

Resting oxygen consumption (L/min)
Resting heart rate (Beats/min)

Dynamic Features Exercise heart rate (Beats/min)
X-axis acceleration (G)
Y-axis acceleration (G)
Z-axis acceleration (G)

VM (G)

2.4. Model Construction
2.4.1. Attention Mechanism

Attention mechanisms (AMs) are often used to solve temporal and spatial problems
encountered in modeling. By dynamically allocating weights to different indicators or time
steps, AMs can highlight key information based on their correlations, thereby assisting
predictive models in more accurately capturing key features [13]. This study adopted
three attention mechanisms to optimize the spatio-temporal features of multi-source het-
erogeneous data for oxygen consumption prediction: Spatial Attention Module (SAM),
Temporal Attention Module (TAM), and Spatio-temporal Attention Module (STAM). SAM
can extract potential features from multiple input variables and analyze their importance
to the predicted target indicator. This solves the limitation of CNNs in feature modeling
of adjacent input indicators. TAM focuses on the most critical part of time sequence in
accurate time prediction. It assigns corresponding weights, reducing the time information
that LSTM needs to remember [14].

(1) Time Attention Mechanism (TAM)

The Squeeze-Excitation (SE) module is a temporal attention mechanism that enhances
the representational capacity of convolutional neural networks through dynamic channel
feature re-labelling [15]. The actual implementation process is shown in Figure 2. In the fig-
ure, X represents the input data, C′ and C represent time series, W′ and W represent spatial
dimensions (multiple indicators), F represents feature maps, Ftr represents convolution,
Fsq represents feature map compression, Fex represents feature map excitation, and Fscale
represents feature re-calibration.

Figure 2. Squeeze-Excitation (SE) module.

The core idea of this mechanism lies in explicitly modeling the non-linear interaction
between channel dimensions. Specifically, it consists of two stages:

179



Sensors 2025, 25, 4062

a. Squeeze: Spatial features (channel number C and two-dimensional spatial dimen-
sions H × W) are compressed along the spatial dimension into channel description
vectors through global average pooling. Compared with the C × H × W structure
of image data, this paper omits the spatial dimension H × W of the time series and
retains only the time channel C and the spatial dimension W composed of multiple
indicators. The calculation method is shown in Equation (3). FC denotes the feature
matrix F on the Cth channel and FC(i) denotes its value at the ith time step.

FC = F[:, C] ∈ RW , ZC =
1

W

W

∑
i=1

FC(i) (3)

b. Excitation: We introduce a fully connected layer with a bottleneck structure to
generate channel attention weights S:

S = σ(W2·δ(W1·Z)) (4)

W1 ∈ R
C
r ×C and W2 ∈ RC× C

r are learnable parameters (r is the dimension reduction
ratio), δ is the Relu activation function, and σ is the Sigmoid gate function.

Finally, the original features are re-calibrated using channel-wise weight SC.

F′
C = SC·FC (5)

(2) Spatial Attention Mechanism (SAM)

According to the spatial attention mechanism mentioned by Woo in their study [16],
we define ‘spatial attention’ as modeling the importance of feature dimensions at different
positions in a time series to characterize ‘which feature dimensions should be focused on at
different time steps’.

The SAM implementation process is shown in Figure 3, where C represents the time
series, W represents the spatial dimension (multiple indicators), F represents the feature
map, Fst represents feature concatenation, Ftr represents convolution, and M represents the
spatial attention map. First, we perform maximum-pooling and average-pooling opera-
tions on the input features F along the time dimension C to obtain two one-dimensional
representations: FS

avg, FS
max ∈ R1×W . These two representations reflect the average response

intensity and strongest response across all time steps for each feature dimension, thereby
comprehensively modeling the importance of each dimension. Subsequently, we concate-
nate the two in the channel dimension to form a 2 × W fusion feature representation,
which is then inputted into a one-dimensional convolutional layer to extract local structural
information and generate attention weights. Finally, the output is normalized using the
Sigmoid function to obtain the spatial attention map MS ∈ R1×W , which is then multiplied
element-wise with the original input features (F) to achieve weighted adjustment in feature
dimension. The calculation equations are shown in Equations (6) and (7).

MS(F) = σ( f ([AvgPool(F); MaxPool(F)])) = σ( f ([FS
avg; FS

max])) (6)

F′ = MS(F)⊗ F (7)

(3) Spatio-temporal Attention Mechanism (STAM)

The Spatio-temporal Attention Mechanism consists of a TAM and a SAM (Figure 4),
which can jointly model the temporal dynamics of time series and the multi-indicator
spatial correlation. This mechanism adopts a cascading structure: input features first pass
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through TAM, which aggregates information along the indicator dimension to generate
temporal step importance weights, highlighting key temporal segments. Subsequently,
pooling is performed along the time axis and the dependencies between multiple indicators
are learned, and indicator weights are generated through convolution. Finally, the temporal
and spatial attention weights are applied to the input features in stages to refine the features
in both the temporal and metric dimensions.

Figure 3. Spatial attention mechanism.

Figure 4. Spatio-temporal Attention Mechanism.

2.4.2. VO2 Prediction Model

This paper proposes a deep learning model for dynamic oxygen uptake prediction.
First, to validate the effectiveness of CNNs for multi-indicator fusion, an independent
LSTM model (Figure 5A) was constructed, which directly receives raw time-series inputs
and ignores spatial feature extraction across indicators. Second, we constructed a CNN-
LSTM model and used it as the baseline model for this study (Figure 5B). It extracts spatial
features between multiple indicators through convolution operations and captures time
dependency using LSTM.

In order to improve the model’s sensitivity to key features, we introduced the
three attention mechanisms described in Section 2.4.1 to the baseline model. The CNN-
TAM-LSTM (CLTA) model embeds TAM before the LSTM layer (Figure 5C), aggregates
the mean and maximum values along the indicator dimension, generates time step
weights, and enhances the feature responses of key time periods. The CNN-SAM-LSTM
model (CLSA) embeds SAM before the LSTM layer (Figure 5D) to learn indicator im-
portance weights through time dimension pooling. CNN-SAM-TAM-LSTM (CLSTA)
cascades SAM and TAM (Figure 5E) achieve joint optimization of temporal sensitivity and
indicator correlation.
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Figure 5. Structure of oxygen uptake prediction models: (A)—LSTM; (B)—CNN-LSTM; (C)—CLTA;
(D)—CLSA; (E)—CLSTA.

The model inputs six static features and five dynamic features (Table 2) separately
and predicts the oxygen uptake at the current time step as the output. Using the Adam
optimizer, the learning rate is set to 0.001 and the batch size is set to 32. We divide the data
of all 21 people into two groups: 3 people as an independent test set and the remaining
18 people for six-fold cross-validation. In each round of division, we divide the 18 people
into 6 groups, take 1 group as the validation set in turn, and use the remaining 5 groups as
the training set. The specific parameters of each layer of the model are shown in Table 3.
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Table 3. Model structure.

Dynamic Feature
Input Layer

Static Feature
Input Layer

CNN SAM TAM LSTM Output Layer

Number of neurons 10 × 5 6 64 64 64 128 1
Activation functions \ \ ReLU Sigmoid Sigmoid Tanh Linear

2.5. Model Evaluation Indicators

In order to comprehensively quantify the accuracy, stability, and time alignment
capability of the dynamic oxygen uptake prediction model, this study comprehensively
selected evaluation indicators.

(1) Root Mean Square Error (RMSE)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (8)

We measure the average deviation between the predicted value and the actual value.
N is the total number of samples; yi and ŷi are the true value and predicted value of the
i-th sample, respectively.

(2) Mean Absolute Error (MAE)

MAE =
1
N

N

∑
i=1

|yi − ŷi| (9)

We calculate the absolute average value of the prediction error. The symbols have the
same meanings as in the RMSE equation.

(3) Deciding Coefficient (R2)

R2 = 1 − ∑N
i=1 (yi − ŷi)

2

∑N
i=1 (yi − yi)

2 , y =
1
N

N

∑
i=1

yi (10)

We evaluate the explanatory power of the model for changes in oxygen uptake,
ranging from [0, 1], where values closer to 1 indicate a higher degree of model fit. y
represents the arithmetic mean of the actual oxygen uptake values, and the meanings
of the other symbols are the same as in the RMSE equation.

3. Results

3.1. Sequential Dynamic Characteristics

We plotted the time-series changes in the dynamic indicators (including triaxial accel-
eration, heart rate, VM, and oxygen uptake) of a subject during exercise with increasing
load, as shown in Figure 6. The dynamic response patterns of the physiological indica-
tors of this subject were consistent with the group data in this study and can be used as
typical examples to intuitively illustrate common patterns. The three-axis acceleration
signals (Figure 6A) showed obvious fluctuations at the beginning of the movement due to
the insufficient coordination of movements. After entering the stable running phase, the
acceleration of each axis showed rhythmic fluctuations around the average value due to
the regular alternation of steps. Finally, during the sprinting phase, the violent kicking
movements and large trunk swings together led to a significant increase in the intensity of
the fluctuations. The heart rate (Figure 6B) increased gradually from the resting value with
the increase in random exercise intensity and remained generally upward throughout the
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exercise, approaching the maximum heart rate at the end. The amplitude of VM (Figure 6C)
increased continuously with increasing movement intensity. Due to vector synthesis, single-
axis-specific noise was suppressed, and the local variance was significantly lower than that
of single-axis data. VO2 rose slowly in the initial stage and eventually reached a plateau
as intensity continued to increase, tending toward the individual’s maximum oxygen
uptake (Figure 6D).

 

Figure 6. Time dynamics of three-axis acceleration, heart rate, VM, and oxygen uptake during
incremental exercise: (A)—three-axis acceleration, (B)—heart rate, (C)—VM, and (D)—VO2.

3.2. Construction of VO2 Prediction Model Based on Dynamic-Static Feature Fusion

In developing the oxygen uptake prediction model, an LSTM network was initially
constructed to process time-series data. In order to compare and analyze the impact of
integrating different dynamic indicators with static indicators on the performance of the
prediction model, static features plus heart rate and static features plus acceleration data
and the heart rate were used as model inputs. In Table 4, the RMSE, MAE, and R2 values
for the training set, validation set, and test set after six-fold cross-validation are given. The
results indicate that relying solely on heart rate signals to predict VO2 during exercise is
less effective overall than models that combine heart rate and acceleration signals. Among
these, after adding the acceleration signal, the RMSE of the LSTM model on the test set
decreased from 0.3335 to 0.2317, and R2 increased from 0.8882 to 0.9460, indicating that
the model could more accurately and reliably characterize changes in VO2. This result
was consistent with the dynamic characteristic analysis in Section 3.1. It was precisely
because acceleration could capture short-term violent movements and other intensity
fluctuations that it compensated for the delay in heart rate response to VO2 changes,
thereby significantly improving the estimation accuracy of energy expenditure and oxygen
consumption.

A CNN can extract deep features more effectively, so we further compared the per-
formance of the LSTM and CNN-LSTM models in dynamic VO2 prediction. The results
showed that all models performed better on the training set than on the test set. The models
minimized the loss function during the training phase while the test phase measured their
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generalization ability on unseen data. Therefore, a certain degree of performance degrada-
tion was normal. The hybrid model with a CNN layer (CNN-LSTM) outperformed the pure
LSTM model in VO2 prediction accuracy. When using heart rate and static characteristics as
input variables, the CNN-LSTM model achieved an RMSE of 0.3232 on the test set, which
was better than the corresponding LSTM model’s 0.3335; R2 was improved from 0.8882 for
the LSTM model to 0.8950. After adding acceleration data to the input variables, the CNN-
LSTM model achieved an RMSE of 0.2317 on the test set, outperforming the corresponding
LSTM model’s 0.2720; the R2 value improved from 0.9256 for the LSTM model to 0.9460.
This indicates that the introduction of the convolutional structure effectively enhanced the
model’s ability to capture real VO2 change trends.

Table 4. Performance comparison of feature combinations and models for VO2 prediction.

Feature
Model Train Validation Test

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

HR + Static Features
LSTM 0.0851 0.0626 0.9918 0.2006 0.1342 0.9536 0.3335 0.2305 0.8882

CNN-LSTM 0.0306 0.0224 0.9981 0.2095 0.1477 0.9499 0.3232 0.2950 0.8950

HR + Acc Data + Static Features
LSTM 0.0892 0.0649 0.9908 0.1031 0.0764 0.9871 0.2720 0.2078 0.9256

CNN-LSTM 0.0044 0.0035 1.0000 0.0504 0.0302 0.9971 0.2317 0.1566 0.9460

3.3. VO2 Prediction Model with Integrated Attention Mechanism

Attention mechanisms are generally believed to enable models to learn to ‘focus on
key points’ when processing information, like humans do, thereby improving their ability
to model complex data and their interpretability. This section proposes a dynamic VO2

prediction model based on the fusion of time, space, and spatio-temporal attention in the
CNN-LSTM model. Since the combination of heart rate and acceleration data with static
characteristics is beneficial to model performance, this combination will be used as input
in subsequent analyses. The results are shown in Table 5. Compared with the original
CNN-LSTM model without the attention mechanism in Section 3.2, the performance of the
model was significantly improved after introducing the Spatial Attention Module (CLSA).
On both the validation set and the test set, the CLSA model achieved lower RMSE and
MAE values and higher R2 values (the R2 value on the test set increased from 0.9460 to
0.9621) compared to the best-performing CNN-LSTM model in Section 3.2. In contrast,
the CLTA model, which only introduced time attention, did not bring any performance
gains. The error on the test set was even slightly higher than that of the original model
(RMSE = 0.2648, MAE = 0.1881, R2 = 0.9295).

Table 5. Comparison of VO2 prediction performance metrics across models on training, validation,
and test sets.

Model
Train Validation Test

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

CLSA 0.005 0.0038 1.0000 0.0517 0.0290 0.9968 0.1942 0.1241 0.9621
CLTA 0.0051 0.0040 1.0000 0.0519 0.0285 0.9968 0.2648 0.1881 0.9295

CLSTA 0.0041 0.0031 1.0000 0.0609 0.0304 0.9955 0.2030 0.1279 0.9586

At the same time, the CLSTA model, which combined temporal and spatial attention,
achieved extremely high goodness of fit on the training set (training set R2 = 1.000), but its
performance in the validation and testing phases (testing set R2 = 0.9586) was not optimal
(as shown in Figure 6), being slightly inferior to the CLSA model containing only spatial
attention (testing set R2 = 0.9621).
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3.4. VO2 Prediction Performance Across Exercise Intensity Zones

As shown in Figure 7, the model fit well at the initial time steps of the experiment, but
its performance declined in the later stages. For an in-depth analysis, this paper presents
the scatter plot regression results of the predicted values and actual VO2 values of the five
models on the test dataset (containing data from three individuals) in Figure 8. The intensity
grading thresholds were based on the guidelines proposed by the American College of
Sports Medicine (ACSM) in the 11th edition of the ‘Exercise Testing and Prescription
Guidelines’: low intensity (<46% VO2max, <1.80 L·min−1), moderate intensity (46–63%
VO2max, 1.80–2.47 L·min−1), and high intensity (≥64% VO2max, ≥2.51 L·min−1) [17]. At
low intensities, all five models showed a tendency to overestimate, with LSTM showing the
largest deviation. As the intensity reached moderate levels, the model prediction shifted to
a slight underestimation. Convolutional feature extraction effectively converged the error,
with the CNN-LSTM slope approaching 1 and the CLSA points being the most concentrated.
During high-intensity exercise, all models showed underestimated prediction errors that
were significantly larger than those in the moderate-to-low intensity stages, indicating that
the models had difficulty accurately capturing VO2 changes in this intensity range. Among
them, LSTM performed the worst, while CLSA and CLSTA, which fused channel attention,
were closest to the ideal line. The performance of the five models was consistent with the
R2 ranking in Tables 4 and 5, indicating that ‘convolutional feature extraction + spatial
attention’ is an effective means of suppressing errors and improving R2.

Figure 7. Predicted vs. actual VO2 curves during exercise from different models: (A) CLSA, (B)
CLTA, and (C) CLSTA.
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Figure 8. Predicted vs. true VO2 scatter-regression plots on the test set for five models: (A)—LSTM,
(B)—CNN-LSTM, (C)—CLSA, (D)—CLTA, and (E)—CLSTA.

4. Discussion

Previous studies predicting VO2 during exercise were limited in terms of both ‘input
dimensions’ and ‘model depth.’ Most studies only used heart rate, or simply added
breathing parameters on top of that; on the other hand, algorithms mainly relied on simple
regression or RNN models without the systematic exploration of feature extraction. Lu
et al. (2024) used a backpropagation neural network with chest strap ECG/PPG-HR
combined with respiratory rate and minute ventilation as input variables to obtain an
MAE of 165 mL·min−1 [18]. Bangaru et al. (2025) used forearm IMU + electromyography
signals and a Bi-LSTM to achieve a lower error of 1.26 mL·kg−1·min−1, but this required
additional sensor deployment [19]. To address the above limitations, this study constructed
and compared five models—LSTM, CNN-LSTM, CLSA, CLTA, and CLSTA—within the
same dataset. These models combined spatial, temporal, and spatio-temporal attention
mechanisms and were evaluated for their performance in predicting oxygen consumption
during exercise. Compared with previous studies, we attempted to use commonly available
and easily collected three-axis accelerometers and heart rate as dynamic input variables. At
the algorithm level, we not only introduced a convolution module to extract local motion
patterns but also systematically examined the benefits and limitations of the attention
mechanism. The CLSA model with the best performance in the model constructed in this
study achieved an R2 of 0.96, which was an improvement over previous studies. The
results showed the following. (1) Combining accelerometer and heart rate data improved
the accuracy of oxygen uptake prediction compared to using the heart rate alone. (2) The
introduction of the CNN module improved model performance compared to using the
LSTM model alone. (3) The introduction of attention mechanisms led to performance
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fluctuations. Among them, the SAM could improve model performance while the TAM
alone did not improve model performance compared to the baseline CNN-LSTM, indicating
that attention mechanisms do not always bring gains. At the same time, the CLSTA model,
which simply stacked spatial and temporal attention mechanisms, also did not perform
optimally. (4) In terms of the predictive accuracy of oxygen uptake at different exercise
intensity stages, the five models constructed all showed lower predictive performance at
high-oxygen-uptake stages than at moderate and low-oxygen-uptake stages.

4.1. Enhanced VO2 Prediction Using Accelerometer–Heart Rate Fusion

In this study, we used accelerometer and heart rate signals as dynamic features in
the input variables of the VO2 prediction model. In fact, accelerometer signals reflect the
mechanical work generated by the movement itself while the heart rate reflects the body’s
physiological response to the movement stimulus. The two respectively reflect the internal
and external load conditions during exercise.

Research indicates that cumulative triaxial acceleration data is highly correlated with
various physiological indicators (such as muscle oxygen content and maximum oxygen
uptake) [20]. In this study, the fluctuation characteristics of the accelerometer signals
(Figure 6A) and their vector integrals VM (Figure 6C) further corroborated the above corre-
lation. As can be seen from Figure 6, VM fluctuated violently during high-intensity exercise
and at the beginning of exercise (when the exercise amplitude changed significantly). How-
ever, when the subjects adapted to the running rhythm and performed regular exercises
with small amplitude changes, the VM fluctuation frequency decreased significantly. This
phenomenon was consistent with Sheridan’s limitation that ‘slow movements are easily
ignored by the system,’ revealing the bottleneck in identifying low-dynamic activities
through accelerometer signals [21].

The heart rate reflects the body’s physiological response to exercise stimuli and is
one of the most widely used means of quantifying internal load. This is also consistent
with Fick’s principle, whereby an increase in cardiac output increases oxygen delivery
and uptake, resulting in a positive correlation between the heart rate and VO2 in a steady
state [22]. However, using the heart rate alone also has its limitations. On the one hand,
the heart rate is influenced by physiological factors such as the maximum heart rate and
resting heart rate. On the other hand, in exercises with rapidly changing rhythms, the heart
rate alone cannot accurately reflect sudden changes in intensity, and it is easily affected by
factors unrelated to exercise (e.g., the heart rate may increase due to emotional tension) [23].

VO2 is an output of complex physiological processes and is determined by both
external exercise power and internal physiological status. Accelerometer data ensures that
the model knows ‘what exercise was performed,’ while heart rate data lets the model know
‘what kind of response the body experienced.’

Previous studies have shown that inputting motion measurement signals such as
acceleration and physiological signals such as the heart rate into a non-linear model can
significantly reduce VO2 estimation errors [21]. As shown in Table 4, this study also
found that the combined model was able to capture changes in exercise intensity, thus far
exceeding single data source models in terms of prediction accuracy and reliability [24].

4.2. The Key Role of CNN in Predicting Oxygen Uptake

In one-dimensional time series applications, CNNs slide over continuous inputs (such
as the heart rate or accelerometer signals). This type of local feature learning is well suited
for capturing waveform patterns in motion data. This study shows that, compared with
the independent LSTM model, introducing a CNN layer can significantly reduce prediction
errors and improve the goodness of fit (Table 4). This finding is highly consistent with
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research conclusions in exercise physiology and related fields. For example, Lee’s energy ex-
penditure study based on IMU found that when predicting steady-state energy expenditure,
their CNN-LSTM hybrid model demonstrated the best performance among three models
(CNN, LSTM, and CNN-LSTM) [25]. Hossain pointed out in energy estimation research
that CNN-LSTM models show better performance than simpler networks [26]. Amelard
also found that convolutional networks achieved high VO2 prediction accuracy [27]. The
CNN layer effectively captures key action features related to VO2 changes by extracting
local spatial patterns in time series, thereby improving feature extraction capabilities. The
subsequent LSTM layers further model the dynamic evolution of these features over time.
The combination of the two achieves collaborative modeling of spatial and temporal char-
acteristics, thereby significantly improving the model’s ability to characterize VO2 change
trends [28].

4.3. The Impact of the Attention Mechanism on Predicting Oxygen Uptake

As shown in Table 5, compared with the original CNN-LSTM model without attention
mechanisms, the introduction of spatial and temporal attention mechanisms resulted in
different changes in the model, indicating that the introduction of attention modules does
not necessarily improve performance in all cases. Improper or mismatched attention
mechanism designs may cause fluctuations in model performance. This phenomenon is
consistent with the conclusions of some existing studies: as pointed out by Vaswani, the
use of attention mechanisms needs to be combined with task characteristics for targeted
design to avoid blindly adding them and causing negative effects [29]. The CLSTA model,
which combines temporal and spatial attention, performs worse than the CLSA model,
which only includes spatial attention, on the training set. This suggests that simply stacking
temporal and spatial attention modules may introduce optimization conflicts or learning
redundancy, thereby weakening the actual improvement of the model. Previous studies
have also observed similar phenomena: excessive stacking of attention layers does not
effectively fuse multiple dependent features [30,31].

The spatial attention mechanism used in this study employs an SE attention module,
which is essentially a channel attention mechanism. In the context of the heart rate and
acceleration fusion, different channels represent different physiological meanings: the
heart rate channel reflects the heart’s oxygen supply response, while the three acceleration
channels reflect the intensity of movement in different directions of the body. The SE atten-
tion module can automatically adjust the weights of these channels based on the motion
state, allowing the model to focus on more informative signals at different stages [32].
For example, during steady moderate-intensity exercise, the heart rate is approximately
linearly correlated with VO2 and responds relatively smoothly. At this time, heart rate
signals are more indicative of VO2 predictions, and the SE module may increase the weight
of heart-rate-related features. Similarly, during high-intensity interval training, acceleration
signals fluctuate dramatically while the heart rate increases with a delay. The model can
use channel attention to focus more on features related to instantaneous exercise intensity
in the acceleration channel.

In contrast, in time series applications, the temporal attention mechanism is typically
viewed as attention to time steps, i.e., assigning weights to the features at each time point.
Ideally, temporal attention allows the model to ‘focus’ on the moments that contribute most
to the current VO2 prediction [33]. However, physiological changes in the VO2 are smooth
and continuous, with a delayed effect. When the intensity of exercise changes, oxygen
consumption does not instantly reach a new level but gradually changes through several
stages. This means that the VO2 value at a given moment is the result of the cumulative
effect of exercise intensity over a period of time, rather than being determined solely by the
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current instantaneous heart rate and exercise conditions [34]. After introducing temporal
attention, the model may tend to assign excessive weight to certain time points and ignore
information from other time periods. For example, the model shown in Figure 6 may
overemphasize the heart rate and acceleration peaks at the end of the input sequence,
where changes are dramatic. However, due to the lagging characteristics of VO2, this
approach may mislead the model: short-term dramatic changes do not mean that VO2 will
immediately surge proportionally. The improper allocation of time attention may sever
the continuous cumulative relationship of the VO2 signal, causing the model to miss early
information that contributes to the current VO2.

The results indicate that attention mechanisms have great potential for improving
model performance, but their effectiveness depends on reasonable module design and
integration methods. In subsequent studies, attention modules will be optimized ac-
cording to task requirements to maximize performance gains and avoid unnecessary
performance degradation.

4.4. Increased Error in VO2 Prediction Model During High-Intensity Exercise Phases

During high-intensity exercise, all models showed significantly increased prediction
errors compared to the moderate- and low-intensity phases. In Figure 8, the deviation of the
scatter points from the ideal line was significantly larger in each sub-figure. Amelard also
pointed out that deep learning models perform well in VO2 time series prediction, but their
performance under different exercise intensity conditions needs further validation [27].
First, this may be related to the fact that as exercise intensity increases, physiological re-
sponses (such as the relationship between the heart rate and oxygen consumption) become
more complex and non-linear. Some literature indicates that at very low or very high
exercise intensities, the relationship between the heart rate and VO2 becomes significantly
non-linear [9]. Secondly, the duration of high-intensity exercise maintained by the subjects
was short, resulting in a sample size that was significantly lower than that in the moderate-
to-low intensity range. In addition, the attention mechanism had a defect of ‘weak local
perception,’ i.e., limited ability to capture instantaneous rapid changes [35]. Finally, during
high-intensity exercise (exceeding the lactate threshold or critical power), human VO2 kinet-
ics exhibit greater delays and fluctuations [36]. These multiple factors together exacerbated
the uncertainty of the model’s predictions during high-intensity exercise phases.

Furthermore, research has shown that when continuous targets have a skewed dis-
tribution, the lack of observations in certain intervals makes it difficult for a model to
‘see’ and learn the correct mapping relationships in these intervals, thereby reducing its
generalization ability across the entire target range [37]. For the oxygen uptake prediction
dataset, high-intensity exercise samples account for only about 36%, which is a relatively
small proportion. This imbalance in the target output distribution weakens the model’s
generalization performance in the high-intensity range. During training, the model primar-
ily optimizes the overall loss, thus paying more attention to medium- and low-intensity
samples, which account for a large proportion of the data, and not paying enough attention
to high-intensity samples, which account for a relatively small proportion of the data. In
addition, high-intensity exercise data itself may have high physiological heterogeneity and
noise. Different individuals have large differences in VO2 responses at extreme intensities,
making it more difficult to learn reliable patterns when there are insufficient samples.
Therefore, for the model used in this study, the high-intensity portion of the training data
was relatively limited, causing the model to make predictions based on limited experience
in this range, which naturally led to a decrease in accuracy. In future research, we will
further consider appropriate data augmentation, reweighting, or stratified modeling for
high-intensity samples to mitigate the impact of sample imbalance on the model.
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5. Conclusions

This study used dynamic and static physiological data obtained from resting test
and CPET to construct five models based on LSTM, CNN-LSTM, and CNN-LSTM with
three attention mechanisms introduced. The models successfully predicted oxygen uptake
during exercise. We proposed two innovations: first, we established a multi-source input
fusion strategy to optimize feature representation by combining accelerometer dynamic
signals with static heart rate data; second, we designed an attention-optimized path to
systematically explore the synergistic mechanisms of three attention mechanisms in the
CNN-LSTM architecture. The results indicate the following. (1) Combining accelerometer
and heart rate data improves the accuracy of oxygen uptake prediction compared to using
the heart rate alone. (2) The introduction of the CNN module is beneficial for improving the
performance of the oxygen consumption prediction model. (3) Attention mechanisms do
not always improve oxygen uptake predictions, and simply stacking attention mechanisms
in a prediction model does not necessarily yield the best results. (4) The model’s predictive
performance is poor at high oxygen uptake levels, and further consideration is needed
to resolve this issue. This paper not only provides a new methodological reference for
predicting physiological parameters but also offers practical application value for real-time
monitoring in the field of sports science. However, this study was still limited by its small
sample size and limited data diversity. In future studies, we will expand the cross-group
sample size and develop high-intensity error compensation algorithms to achieve more
accurate oxygen uptake predictions.
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Abbreviations

The following abbreviations have been used in this manuscript:

VO2 Oxygen Uptake
HR Heart Rate
ACC Accelerate
CPET Cardiopulmonary exercise testing
BMI Body Mass Index
LSTM Long Short-Term Memory
CNN Convolutional Neural Network
SAM Spatial Attention Module
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TAM Time Attention Mechanism
STAM Spatio-temporal Attention Module
CLSA CNN-SAM-LSTM model
CLTA CNN-TAM-LSTM model
CLSTA CNN-STAM-LSTM model
RMSE Root Mean Square Error
MAE Mean Absolute Error

References

1. Laukkanen, J.A.; Isiozor, N.M.; Kunutsor, S.K. Objectively Assessed Cardiorespiratory Fitness and All-Cause Mortality Risk.
Mayo Clin. Proc. 2022, 97, 1054–1073. [CrossRef]

2. Jones, A.M.; Carter, H. The Effect of Endurance Training on Parameters of Aerobic Fitness. Sports Med. 2000, 29, 373–386.
[CrossRef] [PubMed]

3. Whipp, J.B.; Ward, A.S. Gas Exchange Dynamics and the Tolerance to Muscular Exercise: Effects of Fitness and Training. Ann.
Physiol. Anthropol. 1992, 11, 207–214. [CrossRef]

4. Guazzi, M.; Adams, V.; Conraads, V.; Halle, M.; Mezzani, A.; Vanhees, L.; Arena, R.; Fletcher, G.F.; Forman, D.E.; Kitzman,
D.W.; et al. Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations.
Circulation 2012, 126, 2261–2274. [CrossRef] [PubMed]

5. Crouter, S.E.; Antczak, A.; Hudak, J.R.; DellaValle, D.M.; Haas, J.D. Accuracy and Reliability of the ParvoMedics TrueOne 2400
and MedGraphics VO2000 Metabolic Systems. Eur. J. Appl. Physiol. 2006, 98, 139–151. [CrossRef]

6. Van Hooren, B.; Souren, T.; Bongers, B.C. Accuracy of Respiratory Gas Variables, Substrate, and Energy Use from 15 CPET
Systems During Simulated and Human Exercise. Scand. J. Med. Sci. Sports 2024, 34, e14490. [CrossRef] [PubMed]

7. Wicks, J.R.; Oldridge, N.B.; Nielsen, L.K.; Vickers, C.E. HR Index—A Simple Method for the Prediction of Oxygen Uptake. Med.
Sci. Sports Exerc. 2011, 43, 2005–2012. [CrossRef]

8. Keytel, L.; Goedecke, J.; Noakes, T.; Hiiloskorpi, H.; Laukkanen, R.; Van Der Merwe, L.; Lambert, E. Prediction of Energy
Expenditure from Heart Rate Monitoring During Submaximal Exercise. J. Sports Sci. 2005, 23, 289–297. [CrossRef]

9. Davidson, P.; Trinh, H.; Vekki, S.; Müller, P. Surrogate Modelling for Oxygen Uptake Prediction Using LSTM Neural Network.
Sensors 2023, 23, 2249. [CrossRef]

10. Li, F.; Chang, C.-H.; Chung, Y.-C.; Wu, H.-J.; Kan, N.-W.; ChangChien, W.-S.; Ho, C.-S.; Huang, C.-C. Development and Validation
of 3 Min Incremental Step-In-Place Test for Predicting Maximal Oxygen Uptake in Home Settings: A Submaximal Exercise Study
to Assess Cardiorespiratory Fitness. Int. J. Environ. Res. Public Health 2021, 18, 10750. [CrossRef]

11. DiPietro, R.; Hager, G.D. Deep learning: RNNs and LSTM. In Handbook of Medical Image Computing and Computer Assisted
Intervention; Elsevier: Amsterdam, The Netherlands, 2020; pp. 503–519.

12. Porszasz, J.; Casaburi, R.; Somfay, A.; Woodhouse, L.J.; Whipp, B.J. A Treadmill Ramp Protocol Using Simultaneous Changes in
Speed and Grade. Med. Sci. Sports Exerc. 2003, 35, 1596–1603. [CrossRef] [PubMed]

13. Mei, P.; Li, M.; Zhang, Q.; Li, G.; Song, L. Prediction Model of Drinking Water Source Quality with Potential Industrial-Agricultural
Pollution Based on CNN-GRU-Attention. J. Hydrol. 2022, 610, 127934. [CrossRef]

14. Guo, M.-H.; Xu, T.-X.; Liu, J.-J.; Liu, Z.-N.; Jiang, P.-T.; Mu, T.-J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S.-M. Attention
Mechanisms in Computer Vision: A Survey. Comput. Vis. Media 2022, 8, 331–368. [CrossRef]

15. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

16. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Computer Vision—ECCV 2018; Ferrari,
V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham,
Switzerland, 2018; Volume 11211, pp. 3–19, ISBN 978-3-030-01233-5.

17. American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 11th ed.; Wolters Kluwer: Philadel-
phia, PA, USA, 2021; ISBN 978-1-9751-5326-4.

18. Lu, Z.; Yang, J.; Tao, K.; Li, X.; Xu, H.; Qiu, J. Combined Impact of Heart Rate Sensor Placements with Respiratory Rate and
Minute Ventilation on Oxygen Uptake Prediction. Sensors 2024, 24, 5412. [CrossRef] [PubMed]

19. Bangaru, S.S.; Wang, C.; Aghazadeh, F.; Muley, S.; Willoughby, S. Oxygen Uptake Prediction for Timely Construction Worker
Fatigue Monitoring Through Wearable Sensing Data Fusion. Sensors 2025, 25, 3204. [CrossRef]

20. Gómez-Carmona, C.D.; Bastida-Castillo, A.; Ibáñez, S.J.; Pino-Ortega, J. Accelerometry as a Method for External Workload
Monitoring in Invasion Team Sports. A Systematic Review. PLoS ONE 2020, 15, e0236643. [CrossRef]

192



Sensors 2025, 25, 4062

21. Sheridan, D.; Jaspers, A.; Viet Cuong, D.; Op De Beéck, T.; Moyna, N.M.; de Beukelaar, T.T.; Roantree, M. Estimating Oxygen
Uptake in Simulated Team Sports Using Machine Learning Models and Wearable Sensor Data: A Pilot Study. PLoS ONE 2025, 20,
e0319760. [CrossRef]

22. Nakamura, T.; Kiyono, K.; Wendt, H.; Abry, P.; Yamamoto, Y. Multiscale Analysis of Intensive Longitudinal Biomedical Signals
and Its Clinical Applications. Proc. IEEE 2016, 104, 242–261. [CrossRef]

23. Ernst, G. Heart-Rate Variability—More than Heart Beats? Front. Public Health 2017, 5, 240. [CrossRef]
24. De Brabandere, A.; Op De Beéck, T.; Schütte, K.H.; Meert, W.; Vanwanseele, B.; Davis, J. Data Fusion of Body-Worn Accelerometers

and Heart Rate to Predict VO2max during Submaximal Running. PLoS ONE 2018, 13, e0199509. [CrossRef]
25. Lee, C.J.; Lee, J.K. IMU-Based Energy Expenditure Estimation for Various Walking Conditions Using a Hybrid CNN–LSTM

Model. Sensors 2024, 24, 414. [CrossRef] [PubMed]
26. Hossain, M.B.; LaMunion, S.R.; Crouter, S.E.; Melanson, E.L.; Sazonov, E. A CNN Model for Physical Activity Recognition and

Energy Expenditure Estimation from an Eyeglass-Mounted Wearable Sensor. Sensors 2024, 24, 3046. [CrossRef] [PubMed]
27. Amelard, R.; Hedge, E.T.; Hughson, R.L. Temporal Convolutional Networks Predict Dynamic Oxygen Uptake Response from

Wearable Sensors Across Exercise Intensities. NPJ Digit. Med. 2021, 4, 156. [CrossRef]
28. Zhu, C.; Liu, Q.; Meng, W.; Ai, Q.; Xie, S.Q. An Attention-Based CNN-LSTM Model with Limb Synergy for Joint Angles

Prediction. In Proceedings of the 2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Delft,
The Netherlands, 12–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 747–752.

29. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In
Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017; Volume 30.

30. Cao, F.; Yang, S.; Chen, Z.; Liu, Y.; Cui, L. Ister: Inverted Seasonal-Trend Decomposition Transformer for Explainable Multivariate
Time Series Forecasting. arXiv 2024, arXiv:2412.18798.

31. Zhou, X.; Sheil, B.; Suryasentana, S.; Shi, P. Multi-Fidelity Fusion for Soil Classification via LSTM and Multi-Head Self-Attention
CNN Model. Adv. Eng. Inform. 2024, 62, 102655. [CrossRef]

32. Zheng, B.; Luo, W.; Zhang, M.; Jin, H. Arrhythmia Classification Based on Multi-Input Convolutional Neural Network with
Attention Mechanism. PLoS ONE 2025, 20, e0326079. [CrossRef]

33. Khan, M.; Hossni, Y. A Comparative Analysis of LSTM Models Aided with Attention and Squeeze and Excitation Blocks for
Activity Recognition. Sci. Rep. 2025, 15, 3858. [CrossRef]

34. Schneider, D.A.; Wing, A.N.; Morris, N.R. Oxygen Uptake and Heart Rate Kinetics During Heavy Exercise: A Comparison
Between Arm Cranking and Leg Cycling. Eur. J. Appl. Physiol. 2002, 88, 100–106. [CrossRef]

35. Zhao, B.; Xing, H.; Wang, X.; Song, F.; Xiao, Z. Rethinking Attention Mechanism in Time Series Classification. Inf. Sci. 2023,
627, 97–114. [CrossRef]

36. Gløersen, Ø.; Colosio, A.L.; Boone, J.; Dysthe, D.K.; Malthe-Sørenssen, A.; Capelli, C.; Pogliaghi, S. Modeling Vo2 On-Kinetics
Based on Intensity-Dependent Delayed Adjustment and Loss of Efficiency (DALE). J. Appl. Physiol. 2022, 132, 1480–1488.
[CrossRef]

37. Yang, Y.; Zha, K.; Chen, Y.; Wang, H.; Katabi, D. Delving into Deep Imbalanced Regression. In Proceedings of the International
Conference on Machine Learning, PMLR, Online, 18–24 July 2021; pp. 11842–11851.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

193



Article

A Comparative Study Between ECG- and PPG-Based Heart Rate
Sensors for Heart Rate Variability Measurements: Influence of
Body Position, Duration, Sex, and Age

Alexandre Coste 1,*, Geoffrey Millour 1,2 and Christophe Hausswirth 1,3

1 BeScored Institute, 06560 Valbonne, France
2 Laboratoire Motricité, Interactions, Performance, MIP, UR 4334, Nantes Université, 44109 Nantes, France
3 Inserm CAPS UMR 1093, UFR STAPS, Université Bourgogne Europe, 21078 Dijon, France
* Correspondence: alexandre@bescored.fr

Abstract

This study evaluated the validity of a photoplethysmography (PPG)-based sensor (Polar
OH1) for measuring heart rate variability (HRV), compared to an electrocardiography
(ECG)-based reference device (Polar H10), considering body position (supine vs. seated),
recording duration (2 vs. 5 min), sex, and age (≤40 vs. >40 years). HRV parameters (RMSSD
and SDNN) were analyzed in 31 healthy adults using intraclass correlation coefficients
(ICCs) and Bland–Altman analyses. Excellent reliability was observed between the devices
in the supine position (RMSSD: ICC = 0.955; SDNN: ICC = 0.980), and good to excellent
reliability in the seated position (RMSSD: ICC = 0.834; SDNN: ICC = 0.921). Mean biases
ranged from −2.1 ms to −8.1 ms, with wider limits of agreement in the seated condition.
The change in posture from supine to seated resulted in moderate reliability for both metrics,
regardless of the device. Only marginal differences were found between 2- and 5-min
recordings. Moreover, agreement was less consistent in older participants and females,
suggesting potential effects of age and sex on signal quality. These findings support the
use of PPG-based devices for short-term HRV assessment at rest, while highlighting the
importance of considering posture, age, and sex when interpreting the results.

Keywords: autonomic nervous system; RMSSD; SDNN; photoplethysmography;
electrocardiography; wearable sensors

1. Introduction

In recent years, photoplethysmography (PPG) sensors gained widespread popularity
for monitoring heart rate (HR) and heart rate variability (HRV) in wearable devices such
as smartwatches and fitness trackers [1]. Unlike electrocardiography (ECG)-based chest
straps, which directly measure the heart’s electrical activity, PPG relies on optical sensors
to estimate HRV by detecting blood volume changes in the peripheral circulation, typically
from the wrist or forearm [2]. This approach makes HRV monitoring more accessible
and convenient for applications such as lifestyle management, stress assessment, and
athletic performance monitoring [1,3–5]. However, despite these advantages, comparative
studies evaluating the accuracy and reliability of PPG-based HRV measurements remain
limited, particularly when compared to ECG-based measurements, which are considered
the gold standard [6].

A fundamental difference between ECG and PPG lies in their measurement mecha-
nisms and recording sites. ECG-based sensors capture the heart’s electrical activity directly
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from the chest, providing precise R–R intervals that enable accurate HRV analysis. In con-
trast, PPG sensors estimate HRV by detecting peripheral blood volume fluctuations, which
are influenced by several factors, such as vascular compliance, pulse arrival time (PAT),
pulse transit time (PTT), and microcirculatory regulation [7,8]. As a result, PPG-derived
HRV—often referred to as pulse rate variability (PRV)—may differ from ECG-derived HRV
due to variations in pulse wave propagation and autonomic regulation at peripheral sites.
To such an extent, some authors argue that PRV should be considered a distinct biomarker
rather than a surrogate for HRV [9,10].

Several factors may influence the accuracy and comparability of HRV measurements
obtained through ECG and PPG. One critical factor is body position. Previous research has
shown that autonomic nervous system (ANS) activity varies across postural conditions,
with the supine position favoring parasympathetic dominance, while seated or upright
positions are associated with increased sympathetic activity [2,6]. PPG has been reported
to overestimate parasympathetic activity, particularly in non-supine positions, due to
variability in pulse arrival time (PAT) and pulse transit time (PTT) [11,12]. As a result,
differences in body position may amplify discrepancies between HRV metrics derived from
PPG and those obtained from ECG.

Another important factor influencing HRV measurements is the duration of the record-
ing. Standard HRV assessments typically rely on 5 min recordings, as recommended by the
Task Force of the European Society of Cardiology and the North American Society of Pacing
and Electrophysiology [13]. However, ultra-short-term recordings (e.g., 2 min) have been
proposed as a more practical alternative for use in applied settings [14]. While frequency
domain and non-linear HRV metrics can often be reliably estimated from shorter recordings,
time domain parameters such as the root mean square of successive differences (RMSSD),
and the standard deviation of normal-to-normal intervals (SDNN) generally require longer
durations to ensure accuracy [11,13]. Moreover, shorter recordings are more vulnerable to
noise and motion artifacts, especially when using PPG-based sensors, as peripheral blood
flow is highly sensitive to external disturbances [15,16]. It is therefore recommended to
perform HRV measurements at rest.

Individual factors, such as age and sex, also play a key role in HRV variability and
measurement accuracy. HRV tends to decline with age due to reduced autonomic flexibility,
with time domain metrics such as RMSSD and SDNN showing a gradual decrease [17,18].
For example, [18] analyzed 24 h ECG recordings from 1743 subjects aged 40 to 100 years
and observed a linear decline in SDNN. Interestingly, RMSSD followed a U-shaped pattern,
decreasing between ages 40 and 60 before increasing again after 70, suggesting complex
interactions between aging and autonomic function. Similarly, [19] found that the most
significant HRV reductions occur between the second and third decades of life. Sex-related
differences in HRV have also been extensively documented. Females generally exhibit
greater parasympathetic activity, which influences HRV parameters and results in shorter
R–R intervals compared to males [20]. This relative vagal dominance in females has been
linked to cardiovascular protective effects but may also lead to differences in HRV mea-
surement reliability across sensor modalities. In contrast, males tend to show greater sym-
pathetic dominance, which can cause more pronounced discrepancies in HRV parameters
between ECG and PPG due to their differing sensitivities to autonomic fluctuations [2,19].
Additionally, vascular properties, such as arterial stiffness and endothelial function, which
vary between males and females, may further affect PPG-derived HRV measurements by
influencing pulse wave propagation and peripheral circulation dynamics [21].

In light of these considerations, the aim of this study is to investigate differences in
HRV parameters, specifically RMSSD and SDNN, obtained from ECG and PPG signals. We
assess how body position (supine vs. seated), measurement duration (2 min vs. 5 min),
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and individual factors, such as age and sex, affect the comparability of HRV measures
between these two modalities. By accounting for these variables, we aim to improve
our understanding of the reliability of PPG-based HRV and its applicability in different
populations and settings.

2. Materials and Methods

2.1. Participants

Thirty-one healthy participants were recruited for the study. Their characteristics,
including age, height, and body mass, are summarized in Table 1. Inclusion criteria required
participants to be between 18 and 70 years old, free of known heart conditions or diseases,
and without hypertension. Additionally, due to the influence of skin pigmentation on
PPG measurements [22], only individuals with Fitzpatrick skin phototypes I, II, or III were
included. Exclusion criteria were regular use of medications affecting the cardiovascular
or endocrine systems, current smoking, or pregnancy. All participants received detailed
information about the study’s purpose, procedures, potential risks, and benefits, and
provided written informed consent prior to participation. The study protocol was approved
by the National Ethics Committee (ethical approval: IRB00012476-2024-13-11-352) and
conducted in accordance with the 2024 Declaration of Helsinki [23].

2.2. Apparatus

Two commercially available devices were used to collect HRV data during the study:

Polar H10 Chest Strap

The Polar H10 (Polar Electro Oy, Kempele, Finland) is a high-precision chest strap
heart rate monitor widely used in sports and research for HRV analysis [24]. Equipped
with two electrodes embedded in the chest strap, it detects the electrical signals generated
by the heart with each beat. These signals are used to calculate the R–R intervals, which
represent the time intervals between successive R-wave peaks in the ECG signal. R–R
intervals are essential for HRV analysis, as they reflect the autonomic nervous system’s
regulation of cardiac function. In this study, raw R–R interval data were recorded using
the Elite HRV app (Elite HRV, Inc., Asheville, NC, USA) and analyzed with the MATLAB
software (R2022a, The MathWorks, Natick, MA, USA).

Polar OH1 PPG Sensor

The Polar OH1 (Polar Electro Oy, Kempele, Finland) is a wearable heart rate sensor
that uses PPG technology to measure HR by detecting changes in blood volume. It has
been validated in sports settings, demonstrating high accuracy for heart rate measure-
ment, particularly when chest and arm movements are limited [25]. Worn on the upper
arm, it employs the same PPG technology found in many modern fitness trackers and
smartwatches, utilizing green LEDs. In this study, the peak-to-peak interval (PPI) mode
of the Polar OH1 was activated using the official Polar Software Development Kit (SDK,
https://github.com/polarofficial/polar-ble-sdk accessed on 4 November 2024), enabling
the extraction of pulse rate variability (PRV) data. The sensor was connected via Bluetooth
to a custom-built web application developed in JavaScript using the Web Bluetooth API,
which enabled real-time acquisition and storage of PPG data. To minimize interference
from arm movements, the Polar OH1 was worn on the non-dominant arm (i.e., left forearm
for right-handed participants and right forearm for left-handed participants). This place-
ment was chosen to avoid any potential movement-related interference, even though all
measurements were taken at rest in a static position.
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2.3. Study Design and Procedures

We employed a cross-over design where all participants completed both seated and
supine conditions in a randomized order. Data were collected from December 2024 to
March 2025, between 11:00 A.M. and 7:00 P.M. Testing was conducted on a massage
table for the supine position and a comfortable office chair for the seated position. All
measurements took place in a controlled environment (quiet, dark room) to minimize
sensory interference. Participants were instructed to relax, breathe normally, and keep
their eyes closed throughout the 5 min measurement sessions, each preceded by a 1 min
stabilization phase to allow heart rate to return to baseline. The Polar H10 and Polar OH1
sensors were synchronized for simultaneous recording, enabling direct comparison of
ECG- and PPG-based HRV measurements.

2.4. Data Analysis

All data were stored in an electronic database, then preprocessed and analyzed using
MATLAB and Microsoft Excel (Redmond, Washington, DC, USA). Time domain HRV met-
rics, including RMSSD and SDNN, were extracted from both the Polar H10 and Polar OH1
devices using the HRVTool MATLAB toolbox [26,27]. Two filters were tested [26,28] to iden-
tify the most accurate method for processing R–R intervals. We selected the HRV.RRfilter
function, which minimizes fluctuations exceeding 15% of the previous interval, helping to
remove artifacts while preserving physiologically relevant HRV variations [26]. To compare
HRV parameters between devices and conditions, we used intraclass correlation coefficients
(ICCs), mean absolute error (MAE), root mean square error (RMSE), and Bland–Altman
analysis. ICCs were interpreted according to [29]: <0.50 = poor, 0.50–0.75 = moderate,
0.75–0.90 = good, and >0.90 = excellent reliability. Bland–Altman analysis calculated
mean differences and 95% limits of agreement (LoA). Measurements were analyzed over
2 and 5 min intervals, with primary focus on the 5 min window to enable comparisons
by sex (male vs. female) and age group (≤40 years vs. >40 years). The 5 min duration is
standard for short-term HRV assessment, providing stable results during normal breath-
ing [6]. The 2 min segment was taken from the middle of the 5 min recording, starting
1 min 30 s after onset and ending 1 min 30 s before completion, to avoid artifacts typically
present at the beginning (due to stabilization) and the end (due to anticipatory movements)
of measurements [30].

3. Results

3.1. Participant Characteristics

Table 1 shows the general characteristics of our study sample. Descriptive statistics
are provided for age, height, and body mass.

Table 1. General participant characteristics and subgroup breakdown by age (≤40 vs. >40) and sex
(male vs. female). Values are presented as mean ± standard deviation, with minimum and maximum
values in brackets. n: number of participants.

Overall Participants (n = 31)

Sex (number) Female: 18—Male: 13
Age (years) 43 ± 12 [21–66]
Height (m) 1.71 ± 0.09 [1.50–1.89]
Body mass (kg) 72 ± 16 [46–115]
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Table 1. Cont.

Overall Participants (n = 31)

≤40 years old (n = 14) >40 years old (n = 17)

Sex (number) Female: 8—Male: 6 Female: 10—Male: 7
Age (years) 33 ± 5 [21–40] 52 ± 7 [41–66]
Height (m) 1.73 ± 0.10 [1.59–1.89] 1.69 ± 0.09 [1.50–1.85]
Body mass (kg) 77 ± 19 [50–115] 67 ± 13 [46–89]

Females (n = 18) Males (n = 13)

Age (years) 44 ± 12 [23–66] 43 ± 12 [21–63]
Height (m) 1.65 ± 0.06 [1.50–1.75] 1.78 ± 0.07 [1.64–1.89]
Body mass (kg) 67 ± 18 [46–115] 78 ± 12 [62–100]

3.2. Impact of Sensor Type on HRV Parameters

The comparison between the two sensors demonstrated good agreement for HRV
measurements across both recording durations, particularly in the supine position (see
Figure 1 and Table 2). For RMSSD, ICCs (3,1) between the Polar H10 and OH1 were good to
excellent in the supine position (ICC = 0.955 for 5 min; 0.869 for 2 min) and remained good
in the seated position (ICC = 0.834 for 5 min; 0.868 for 2 min). Mean differences between the
H10 and OH1 were relatively small when supine (−3.21 ms for 5 min; −2.91 ms for 2 min),
increasing slightly in the seated position (−8.05 ms for 5 min; −6.14 ms for 2 min). A similar
pattern was observed for SDNN, with excellent ICCs (3,1) in both supine (ICC = 0.980 for
5 min; 0.929 for 2 min) and seated (ICC = 0.921 for 5 min; 0.916 for 2 min) positions. Mean
differences for SDNN were small in the supine position (−2.11 ms for 5 min; −2.63 ms for
2 min) and slightly larger in the seated position (−6.02 ms for 5 min; −5.23 ms for 2 min),
accompanied by wider limits of agreement (LoA). MAE and RMSE values mirrored these
trends, with lower errors observed in the supine position compared to seated.

3.3. Impact of Body Position on HRV Parameters

When comparing the effect of body position, HRV values remained generally con-
sistent between the supine and seated conditions for both sensors, although reliability
decreased and variability increased. ICCs (3,1) for the OH1 were slightly lower than those
for the H10 and fell within the moderate range (RMSSD 5 min: 0.560 vs. 0.608; SDNN
5 min: 0.674 vs. 0.728). A similar pattern was observed for 2 min recordings, with ICCs
(3,1) dropping into the poor-to-moderate range (RMSSD 2 min: 0.468 vs. 0.482; SDNN
2 min: 0.507 vs. 0.621). Notably, SDNN consistently showed higher reliability than RMSSD
across all durations and sensors. Mean differences between body positions were small
to moderate for both sensors (−5.32 ms to 1.35 ms for H10; −7.92 ms to −1.89 ms for
OH1), but the limits of agreement remained wide across devices, regardless of HRV met-
ric or recording duration. MAE and RMSE values between postures followed a similar
trend, with slightly larger errors observed for the OH1, particularly in the 2 min condition
for SDNN. Nonetheless, the magnitude of error remained comparable between RMSSD
and SDNN.

3.4. Influence of Age on HRV Parameters

When comparing HRV parameters between age groups (≤40 vs. >40 years),
a general decline in RMSSD and SDNN values was observed with increasing age (see
Figure 2 and Table 3). For RMSSD, ICCs (3,1) between the H10 and OH1 were good to
excellent across both age groups and body positions (ranging from 0.812 to 0.981), though
slightly lower in the seated position and among older participants. Mean differences
between sensors were greater in the seated than in the supine position for both younger
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(−3.31 ms vs. −1.94 ms) and older participants (−12.08 ms vs. −4.47 ms), with wider
limits of agreement (LoA) in the older group. MAE and RMSE values were also higher
among older participants, particularly in the seated condition. For SDNN, ICCs (3,1)
remained excellent across positions and age groups (0.912–0.984), yet mean differences
and LoA were again larger in the older group. MAE and RMSE followed the same pat-
tern, with higher errors observed in older participants and in the seated position. When
comparing body positions, RMSSD values were relatively consistent between supine and
seated conditions across age groups and sensors, with moderate to good reliability (ICCs:
0.581–0.623). However, mean differences, LoA, MAE, and RMSE were all higher in the
older group. For SDNN, ICCs between positions were lower in the younger group than in
the older group (0.598 and 0.624 vs. 0.754 and 0.693 for H10 and OH1, respectively), though
younger participants displayed smaller mean differences, narrower LoA, and lower MAE
and RMSE values.

Figure 1. Bland–Altman analysis of RMSSD and SDNN across the different body position conditions
(supine and seated) and devices (H10 vs. OH1). The continuous grey line represents the bias, while
the dashed grey lines indicate the upper and lower limits of agreement. Markers indicate participant
groups: circles for participants aged ≤40 years, squares for participants aged >40 years; blue for men
and pink for women.
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Table 2. Comparison of RMSSD and SDNN across the different body position conditions (supine and
seated) and devices (H10 vs. OH1) using intraclass correlation coefficients (ICC), mean absolute error
(MAE), root mean square error (RMSE), and Bland–Altman analysis.

Variables
Conditions

(1 vs. 2)
Mean ± SD

(1 vs. 2)
ICC

(95% CI)
MAE RMSE

Mean
Diff.

Lower
LoA

Upper
LoA

RMSSD
5 min
(ms)

H10sup. vs.
OH1sup.

37 ± 21 vs.
41 ± 20

0.955
(0.911–0.978) 4.32 6.09 −3.21 −13.51 7.09

H10seat. vs.
OH1seat.

36 ± 25 vs.
44 ± 23

0.834
(0.699–0.912) 8.33 13.92 −8.05 −30.69 14.59

H10sup. vs.
H10seat.

37 ± 21 vs.
36 ± 25

0.608
(0.338–0.786) 13.99 19.85 1.22 −38.25 40.69

OH1sup. vs.
OH1seat.

41 ± 20 vs.
44 ± 23

0.560
(0.270–0.756) 14.38 20.23 −3.61 −43.28 36.05

RMSSD
2 min
(ms)

H10sup. vs.
OH1sup.

36 ± 18 vs.
39 ± 21

0.869
(0.757–0.931) 5.64 9.98 −2.91 −21.93 16.12

H10seat. vs.
OH1seat.

34 ± 22 vs.
41 ± 20

0.868
(0.756–0.931) 6.89 10.72 −6.14 −23.65 11.37

H10sup. vs.
H10seat.

36 ± 18 vs.
34 ± 22

0.482
(0.169–0.707) 13.12 19.90 1.35 −38.19 40.88

OH1sup. vs.
OH1seat.

39 ± 21 vs.
41 ± 20

0.468
(0.145–0.701) 13.46 20.95 −1.89 −43.47 39.69

SDNN
5 min
(ms)

H10sup. vs.
OH1sup.

51 ± 22 vs.
54 ± 22

0.980
(0.959–0.990) 2.72 4.32 −2.11 −9.62 5.40

H10seat. vs.
OH1seat.

54 ± 31 vs.
60 ± 29

0.921
(0.848–0.960) 6.43 11.96 −6.02 −26.60 14.57

H10sup. vs.
H10seat.

51 ± 22 vs.
54 ± 31

0.728
(0.545–0.845) 14.00 19.54 −2.02 −40.75 36.72

OH1sup. vs.
OH1seat.

54 ± 22 vs.
60 ± 29

0.674
(0.454–0.817) 15.44 20.90 −5.92 −45.86 34.02

SDNN
2 min
(ms)

H10sup. vs.
OH1sup.

45 ± 21 vs.
48 ± 22

0.929
(0.861–0.964) 4.89 7.96 −2.63 −17.60 12.34

H10seat. vs.
OH1seat.

51 ± 31 vs.
56 ± 29

0.916
(0.833–0.957) 6.77 12.28 −5.23 −27.36 16.90

H10sup. vs.
H10seat.

45 ± 21 vs.
51 ± 31

0.621
(0.392–0.778) 13.79 22.56 −5.32 −48.99 38.35

OH1sup. vs.
OH1seat.

48 ± 22 vs.
56 ± 29

0.507
(0.223–0.712) 17.04 25.92 −7.92 −57.09 41.25

Table 3. Comparison of RMSSD and SDNN between age groups (≤40 vs. >40 years) across the
different body position conditions (supine and seated) and devices (H10 vs. OH1) using intraclass
correlation coefficients (ICC), mean absolute error (MAE), root mean square error (RMSE), and
Bland–Altman analysis.

Variables
Conditions

(1 vs. 2)
Mean ± SD

(1 vs. 2)
ICC

(95% CI)
MAE RMSE

Mean
Diff.

Lower
LoA

Upper
LoA

RMSSD
≤40 years old

(ms)

H10sup. vs.
OH1sup.

42 ± 21 vs.
44 ± 23

0.981
(0.944–0.994) 3.17 4.22 −1.94 −9.89 6.01

H10seat. vs.
OH1seat.

35 ± 16 vs.
38 ± 15

0.951
(0.870–0.982) 3.31 4.47 −3.31 −9.91 3.29

H10sup. vs.
H10seat.

42 ± 21 vs.
35 ± 16

0.584
(0.207–0.810) 14.11 17.60 7.28 −22.39 36.95

OH1sup. vs.
OH1seat.

44 ± 23 vs.
38 ± 15

0.585
(0.228–0.804) 12.93 17.35 5.91 −25.16 36.99
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Table 3. Cont.

Variables
Conditions

(1 vs. 2)
Mean ± SD

(1 vs. 2)
ICC

(95% CI)
MAE RMSE

Mean
Diff.

Lower
LoA

Upper
LoA

RMSSD
>40 years old

(ms)

H10sup. vs.
OH1sup.

31 ± 18 vs.
36 ± 17

0.912
(0.787–0.965) 5.27 7.27 −4.47 −16.06 7.12

H10seat. vs.
OH1seat.

36 ± 31 vs.
49 ± 28

0.812
(0.594–0.919) 12.45 18.36 −12.08 −40.01 15.85

H10sup. vs.
H10seat.

31 ± 18 vs.
36 ± 31

0.623
(0.335–0.805) 13.89 21.52 −5.11 −47.34 37.13

OH1sup. vs.
OH1seat.

36 ± 17 vs.
49 ± 28

0.581
(0.286–0.775) 15.57 22.33 −12.72 −49.80 24.37

SDNN
≤40 years old

(ms)

H10sup. vs.
OH1sup.

55 ± 17 vs.
56 ± 19

0.977
(0.941–0.991) 1.89 3.68 −1.08 −8.55 6.39

H10seat. vs.
OH1seat.

53 ± 17 vs.
55 ± 18

0.984
(0.957–0.994) 2.46 2.96 −2.46 −6.22 1.30

H10sup. vs.
H10seat.

55 ± 17 vs.
53 ± 17

0.598
(0.129–0.849) 12.43 14.57 1.97 −28.46 32.39

OH1sup. vs.
OH1seat.

56 ± 19 vs.
55 ± 18

0.624
(0.167–0.860) 12.26 15.08 0.58 −31.17 32.33

SDNN
>40 years old

(ms)

H10sup. vs.
OH1sup.

48 ± 25 vs.
51 ± 25

0.980
(0.949–0.992) 3.40 4.79 −3.01 −10.53 4.52

H10seat. vs.
OH1seat.

53 ± 40 vs.
62 ± 37

0.912
(0.787–0.965) 9.70 15.92 −9.07 −35.50 17.36

H10sup. vs.
H10seat.

48 ± 25 vs.
53 ± 40

0.754
(0.542–0.875) 15.31 22.84 −5.50 −50.30 39.30

OH1sup. vs.
OH1seat.

51 ± 25 vs.
62 ± 37

0.693
(0.423–0.850) 18.05 24.69 −11.57 −55.63 32.49

Figure 2. Bar plots of ICC, MAE, and RMSE for RMSSD and SDNN according to age groups
(≤40 years vs. >40 years) across different body position conditions (supine and seated) and devices
(H10 vs. OH1). Light gray bars represent participants aged ≤40 years and dark gray bars represent
participants aged >40 years. Error bars on ICC indicate 95% confidence intervals.
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3.5. Influence of Sex on HRV Parameters

When comparing HRV parameters between sexes, females exhibited lower abso-
lute RMSSD and SDNN values than males in both supine and seated positions (see
Figure 3 and Table 4). For RMSSD, ICCs (3,1) between H10 and OH1 in the supine po-
sition were good for females and excellent for males (0.851 vs. 0.974), with mean differences
of −3.76 ms and −2.46 ms, respectively. In the seated position, ICCs were lower, partic-
ularly among females (0.521 vs. 0.870), and mean differences increased in both groups
(−8.27 ms for females vs. −7.74 ms for males). MAE and RMSE values were higher in
the seated condition but remained similar between sexes. Comparable patterns were ob-
served for SDNN, with excellent ICCs in the supine position for both females and males
(0.939 vs. 0.980). In the seated position, reliability decreased in females (ICC = 0.513) but
remained excellent in males (ICC = 0.967). As with RMSSD, MAE and RMSE values were
higher in the seated condition, with similar magnitudes of error across sexes. Regarding
the effect of body position, RMSSD showed reduced reliability in females, with poor ICCs
between supine and seated positions for both sensors (0.450 for H10 and 0.251 for OH1). In
contrast, ICCs in males remained moderate (0.555 for H10 and 0.524 for OH1). For SDNN,
reliability between positions was higher in males (ICC = 0.702 for H10 and 0.720 for OH1)
than in females (ICC = 0.317 for H10 and −0.031 for OH1). Despite relatively small mean
differences across positions and sexes (ranging from −8.27 to 2.09 ms), LoA remained wide,
occasionally exceeding ±50 ms. MAE and RMSE values confirmed this variability, with
consistently larger errors in the seated condition.

Figure 3. Bar plots of ICC, MAE, and RMSE for RMSSD and SDNN according to sex (male vs. female)
across different body position conditions (supine and seated) and devices (H10 vs. OH1). Pink bars
represent women and blue bars represent men. Error bars on ICC indicate 95% confidence intervals.
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Table 4. Comparison of RMSSD and SDNN between males and females across the different body posi-
tion conditions (supine and seated) and devices (H10 vs. OH1) using intraclass correlation coefficients
(ICC), mean absolute error (MAE), root mean square error (RMSE), and Bland–Altman analysis.

Variables
Conditions

(1 vs. 2)
Mean ± SD

(1 vs. 2)
ICC

(95% CI)
MAE RMSE

Mean
Diff.

Lower
LoA

Upper
LoA

RMSSD
Female

(ms)

H10sup. vs.
OH1sup.

29 ± 13 vs.
33 ± 11

0.851
(0.678–0.934) 4.66 6.41 −3.76 −14.24 6.72

H10seat. vs.
OH1seat.

29 ± 12 vs.
37 ± 10

0.521
(0.196–0.743) 8.30 11.93 −8.27 −25.62 9.07

H10sup. vs.
H10seat.

29 ± 13 vs.
29 ± 12

0.450
(−0.002–0.750) 9.17 12.49 0.59 −24.57 25.75

OH1sup. vs.
OH1seat.

33 ± 11 vs.
37 ± 10

0.251
(−0.198–0.613) 9.49 12.90 −3.92 −28.70 20.86

RMSSD
Male
(ms)

H10sup. vs.
OH1sup.

48 ± 25 vs.
51 ± 26

0.974
(0.921–0.991) 3.86 5.60 −2.46 −12.73 7.82

H10seat. vs.
OH1seat.

46 ± 34 vs.
54 ± 32

0.870
(0.646–0.956) 8.36 16.28 −7.74 −36.96 21.49

H10sup. vs.
H10seat.

48 ± 25 vs.
46 ± 34

0.555
(0.076–0.826) 20.66 26.89 2.09 −52.61 56.79

OH1sup. vs.
OH1seat.

51 ± 26 vs.
54 ± 32

0.524
(0.010–0.819) 21.15 27.31 −3.19 −58.53 52.15

SDNN
Female

(ms)

H10sup. vs.
OH1sup.

41 ± 11 vs.
43 ± 11

0.939
(0.851–0.976) 2.49 3.86 −2.13 −8.62 4.35

H10seat. vs.
OH1seat.

42 ± 12 vs.
50 ± 13

0.513
(0.145–0.757) 7.19 13.09 −7.07 −29.28 15.14

H10sup. vs.
H10seat.

41 ± 11 vs.
42 ± 12

0.317
(−0.157–0.672) 10.22 13.28 −1.33 −27.98 25.31

OH1sup. vs.
OH1seat.

43 ± 11 vs.
50 ± 13

−0.031
(−0.424–0.373) 14.61 18.28 −6.28 −40.90 28.35

SDNN
Male
(ms)

H10sup. vs
OH1sup.

66 ± 25 vs.
68 ± 26

0.980
(0.937–0.993) 3.03 4.89 −2.09 −11.11 6.93

H10seat. vs.
OH1seat.

69 ± 42 vs.
73 ± 39

0.967
(0.902–0.989) 5.37 10.19 −4.55 −23.15 14.04

H10sup. vs.
H10seat.

66 ± 25 vs.
69 ± 42

0.702
(0.419–0.860) 19.26 25.82 −2.96 −55.29 49.36

OH1sup. vs.
OH1seat.

68 ± 26 vs.
73 ± 39

0.720
(0.409–0.881) 16.58 24.07 −5.43 −53.26 42.40

4. Discussion

The aim of this study was to assess the validity of PPG-based HRV measurements in
comparison with ECG-based measurements, and to examine the influence of recording
duration, body position, age, and sex on measurement accuracy.

Our main findings indicate generally good to excellent agreement between the ECG-
based Polar H10 and the PPG-based Polar OH1 for the time domain HRV parameters
RMSSD and SDNN in healthy individuals. This agreement was consistent across both
supine and seated positions, supporting previous research demonstrating the reliability
of PPG technology for HRV assessment under controlled conditions [5]. Furthermore,
recording duration had a limited impact on measurement accuracy. Although shorter
recordings introduced slightly greater variability, our results are consistent with prior
studies indicating that 2 min recordings can provide sufficiently accurate RMSSD and
SDNN values [14]. This finding is particularly relevant for practical applications, where
longer recordings may be impractical. However, ensuring that participants are in a stable
physiological state before measurement remains essential to ensure data validity [13].
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A more detailed analysis revealed that agreement between sensors varied depending
on body position. Specifically, concordance between PPG- and ECG-derived measures
was higher in the supine position, but significantly lower in the seated position. These
discrepancies were reflected by larger errors, greater mean differences, and wider lim-
its of agreement, particularly for PPG-derived measurements. This suggests that sensor
agreement is reduced under certain physiological conditions associated with posture. Fur-
thermore, within-sensor comparisons between supine and seated positions also showed
consistently lower agreement, indicating that the observed discrepancies reflect genuine
physiological changes rather than sensor inaccuracies alone. The transition from supine
to seated posture is known to increase sympathetic activity and reduce parasympathetic
tone [11] resulting in distinct autonomic states and, consequently, reduced agreement
between positions. Several factors may account for this increased variability. First, PTT
introduces fluctuations in PRV that are not directly related to cardiac autonomic modula-
tion [31,32]. These fluctuations—driven by respiration-induced changes in intrathoracic
pressure—may be amplified in the seated position due to postural effects on vascular
dynamics. Second, the accuracy of beat-to-beat interval extraction from PPG signals is
limited, particularly in individuals with increased vascular stiffness or altered pulse wave
morphology. For example, reflected waves can distort peak detection in older adults,
reducing the reliability of HRV estimates [33]. These limitations primarily affect short-
term HRV indices, such as RMSSD and SDNN, although alternative approaches, such
as valley-to-valley interval detection, have shown promise in improving accuracy [33].
Together, these findings highlight the importance of considering both sensor type and body
position when interpreting HRV data.

When considering the effects of age, our analysis of HRV parameters over a 5 min
recording period revealed a general decline in RMSSD and SDNN values with increasing
age, which is consistent with previous findings [17,18]. This reduction in HRV among older
participants reflects an age-related decrease in autonomic nervous system adaptability [19].
However, prior research suggests that the decline in RMSSD with age does not follow
a strictly linear trajectory, but rather a U-shaped pattern, with a slight increase observed
beyond the age of 70 [18]. Since our study included only participants aged 18 to 70 years, we
were unable to explore this potential non-linear trend. Moreover, the agreement between
HRV values derived from the OH1 and H10 was generally lower in participants over
40 years of age, regardless of body position. This may be partially explained by age-related
increases in arterial stiffness. In older individuals, the reflected wave in the PPG signal
becomes more pronounced, potentially complicating peak detection and reducing the
accuracy of HRV estimation [33]. Sex-related differences were also observed, with females
displaying lower absolute RMSSD and SDNN values compared to males. These results
align with previous literature indicating that women tend to have higher resting heart rates
and lower overall HRV, likely due to differences in autonomic regulation [20]. Additionally,
the accuracy of PPG-derived HRV measures was slightly reduced in females, particularly in
the seated position. This may be attributed to sex-related differences in vascular compliance
and endothelial function, which affect pulse wave dynamics and thus the accuracy of PRV
estimation [19,21]. Hormonal fluctuations may also contribute to increased intra-individual
variability in HRV among females, potentially affecting agreement between ECG- and
PPG-based measurements [34]. Nevertheless, given the relatively small sample size, these
subgroup-specific observations should be interpreted with caution.

Despite its strengths, this study has several limitations that should be considered
when interpreting the findings. First, our sample included only healthy participants
aged 18 to 70 years, limiting the generalizability to younger, older, or clinical populations.
Additionally, the participants had light skin tones (Fitzpatrick phototypes I–III), which may
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affect the applicability of results to individuals with darker skin. Indeed, recent research [22]
suggests that green-light PPG sensors such as the Polar OH1 may show reduced accuracy in
darker skin due to increased light absorption and scattering. Secondly, we focused solely on
two time domain HRV metrics, RMSSD and SDNN, commonly used in consumer devices.
Although informative, these parameters do not capture the full complexity of autonomic
regulation. Future studies should include additional indices, especially frequency domain
measures (e.g., LF, HF, and LF/HF ratio), for a more comprehensive evaluation of PPG
accuracy. Another limitation is the lack of repeated measurements within each body
position. HRV exhibits intra-individual variability even under stable conditions, making it
difficult to fully isolate the effect of posture from natural fluctuations. While we randomized
the order of recordings and included rest periods to mitigate this, repeated measures
would strengthen estimates of measurement reliability and better attribute differences to
posture. Future research should address these issues by including more diverse populations,
assessing a broader range of HRV parameters, and incorporating repeated recordings.
Moreover, applying machine learning techniques to long-term HRV data could reveal
health-related trends over time, building upon the foundational validation of PPG-based
HRV accuracy provided here.

5. Conclusions

The present findings support the use of PPG-based HRV monitoring for practical as-
sessments in healthy individuals, demonstrating good agreement with ECG-based sensors
across conditions. However, as the data were collected exclusively from healthy partic-
ipants with Fitzpatrick skin phototypes I–III, the results may not be fully generalizable
to the wider population. Furthermore, while the observed postural differences likely re-
flect physiological variations, these findings may not extend to all body positions or PPG
sensor types.
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Abbreviations

The following abbreviations are used in this manuscript:

ANS Autonomic nervous system
ECG Electrocardiography
HR Heart rate
HRV Heart rate variability
LoA Limits of agreement
PAT Pulse arrival time
PPG Photoplethysmography
PPI Peak-to-peak interval
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PTT Pulse transit time
PRV Pulse rate variability
RMSSD Root mean square of successive differences
SDNN Standard deviation of normal-to-normal intervals
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