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Preface

This reprint compiles recent scientific advances in monitoring, simulating, and predicting
drought amid the accelerating impacts of climate change. Its scope includes atmospheric processes,
hydrological responses, agricultural effects, and socio-ecological consequences, emphasizing the
complex interactions that influence drought risk. The goal is to create a comprehensive platform
that integrates diverse methods, from remote sensing and climate modeling to data fusion and risk
assessment, to improve the understanding and management of drought hazards.

The reason for compiling this reprint is the urgent need to address the increasing challenges
caused by more frequent and severe droughts. These events threaten food security, strain water
supplies, and weaken ecosystem resilience, making it crucial to develop innovative monitoring tools
and adaptive strategies.

This reprint is aimed at researchers, practitioners, and policymakers involved in atmospheric
sciences, hydrology, agriculture, and environmental management. By providing interdisciplinary
insights, it aims to support informed decision-making and encourage collaboration to build resilience

against one of the most urgent climate-related issues of our time.

Muhammad Abrar Faiz
Guest Editor
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Deep Learning for Flash Drought Detection: A Case Study in
Northeastern Brazil
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Abstract: Flash droughts (FDs) pose significant challenges for accurate detection due to their short
duration. Conventional drought monitoring methods have difficultly capturing this rapidly in-
tensifying phenomenon accurately. Machine learning models are increasingly useful for detecting
droughts after training the models with data. Northeastern Brazil (NEB) has been a hot spot for
FD events with significant ecological damage in recent years. This research introduces a novel 2D
convolutional neural network (CNN) designed to identify spatial FDs in historical simulations based
on multiple environmental factors and thresholds as inputs. Our model, trained with hydro-climatic
data, provides a probabilistic drought detection map across northeastern Brazil (NEB) in 2012 as its
output. Additionally, we examine future changes in FDs using the Coupled Model Intercomparison
Project Phase 6 (CMIP6) driven by outputs from Shared Socioeconomic Pathways (SSPs) under the
SSP5-8.5 scenario of 2024-2050. Our results demonstrate that the proposed spatial FD-detecting
model based on 2D CNN architecture and the methodology for robust learning show promise for
regional comprehensive FD monitoring. Finally, considerable spatial variability of FDs across NEB
was observed during 2012 and 2024-2050, which was particularly evident in the Sao Francisco River
Basin. This research significantly contributes to advancing our understanding of flash droughts,
offering critical insights for informed water resource management and bolstering resilience against
the impacts of flash droughts.

Keywords: flash drought; convolutional neural network; encoder-decoder architecture; Caatinga;
climate change; hydro-climatic data

1. Introduction

Drought is a water shortage phenomenon caused by an imbalance in long-term water
supply and demand [1,2]. According to a recent study, over 60% of the world’s regions
are affected by drought disasters annually, and the socio-economic and agricultural pro-
ductions have been most affected [3]. In recent years, the academic community has shown
that extremely high temperatures and rainfall deficits [4-6] can cause a very rapid onset
and evolution of droughts, which have been referred to as flash droughts (FDs) [7-9].
Their identification and analysis are essential problems for risk management, informing
governmental policy decisions, and advancing our fundamental understanding of the
climate system. With human-induced climate change from increased CO? and other heat-
trapping gases in the atmosphere, it is anticipated that the future will witness a progressive
intensification and proliferation of climate extremes [8]. Among extreme events, FDs are
ranked first in hazard characteristics given their severity on the ecological environment
and their generated socio-economic losses [10].

Atmosphere 2024, 15, 761. https:/ /doi.org/10.3390/atmos15070761 1 https:/ /www.mdpi.com/journal /atmosphere
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The complex causes of FDs make their monitoring challenging. Although a com-
mon term, a universally accepted definition of what constitutes an FD does not exist
(e.g., [11]). Nevertheless, from a broad physical standpoint, droughts are meso-climatic
events that arise from interconnected atmospheric and hydrological processes [12], being
self-supported by a positive feedback mechanism [13] (Figure 1). As soil moisture crosses a
critical threshold, evapotranspiration potential rates decrease, lowering the atmospheric
relative humidity and making the saturation point for rainfall harder to achieve. Overall,
because of the stochastic nature of water demands across different regions of the world,
a uniform operational definition of FD has become difficult to establish (e.g., [14]). Thus,
rainfall is less likely, which exacerbates dryness.
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Figure 1. Schematic representation of a heat dome which involves high-pressure areas that trap and
heat up the air below. This figure illustrates over a region that high pressure (1 *) in the atmosphere
pushes warm air down toward the ground; hot air masses (2 *) expand vertically into the atmosphere
as the air sinks (3 *) and it warms by compression; and the ground warms and loses its moisture,
which makes it easier to heat even more (4 *). The dome of high pressure inhibits clouds and
local rainfall and deflects away storms (5 *). These conditions lead to the onset of a flash drought,
and consequences of the persistence of hydro-climatic anomalies over days or weeks can lead to
substantial land degradation and desertification [4].

Commonly used drought indices in different types of gridded datasets are 3D climate
model outputs from drought model simulations and 2D data from satellite retrievals.
Drought indices have some limitations that make their performance region-specific [15].
Firstly, they are often defined with only one type of drought in mind. Secondly, they are
local and do not account for spatiotemporal links. Thirdly, they assume specific probability
distributions over the variables involved or simple thresholding ratios. Lastly, they are
limited to inherent time scales. While they are simple to use, these limitations mean that
they can lack the adaptability required to correctly identify the concept of FD, which shifts
over time as climate change deviates climate conditions from normality. The complex causes
of FDs make their detection and prediction systems challenging. Although considering
convolutional neural networks (CNNs) can yield acceptable accuracy for classifying well-
known types of extreme weather events, the choice of supervised learning can lead to
variations in the effectiveness of data-driven approaches of drought events [16].

Nevertheless, the origins of Deep Neural Networks (DNNs) date back to the 1950s.
The development and utilization of DNNs have recently accelerated rapid achievement of
state-of-the-art results on classification, change and anomaly detection, forecasting, and
model emulation tasks, among others [17-19]. For example, [20] recognizes their ability
to learn optimal representations specifically from the data. Recent work has shown that
fully supervised convolutional neural networks (CNNs) can yield acceptable accuracies
for classifying well-known types of extreme weather events [21]. There is a specific benefit
when applying the DNN algorithm to the detection of extremes. It helps to identify a
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specific type of extreme event from the anomalous data cloud and allows for better fitting
of its distribution.

Deep learning is a new evolution of traditional machine learning research, designed
to enable the computer to learn inherent characteristics of a dataset from a large pool of
sample data, and classify and predict the newly received samples. CNNs are one of the
more common deep learning architectures. They utilize layers of convolutional filters
to automatically detect and learn hierarchical patterns and features from the input data.
Through a combination of convolutional layers, pooling layers, and fully connected layers,
CNN:s effectively capture spatial and temporal dependencies. Thus, machine learning has
been gradually applied to the study of drought detection because it can effectively deal
with the nonlinear relationship between various drought factors [7,8]. However, given
the novelty of the method and the challenges in implementation, there are few studies on
drought monitoring using machine learning [20]. To overcome this shortcoming, this study
develops a drought identification model using machine learning architecture, validates it
with an independent set of data, and describes the spatial variability of flash drought events
in northeastern Brazil (NEB). This model is based on a convolutional neural network (CNN)
model. A comparative analysis with outcomes from the method’s implementation relying
on ground observations and satellite retrievals was carried out in 2012. In addition, the FD
identification method was applied to the future emission scenario of CMIP6 (SSP5-8.5) to
quantify the FD events occurring in NEB from 2024 to 2050. The research’s contribution is
introducing a convolutional encoder-decoder framework for identifying flash droughts.

The study is organized as follows. Section 2 describes the study area, datasets for the
hydro-climatic variables, and drought index. Section 3 details the proposed spatial drought
detection model. The evaluation of the results and discussions provided by the architecture
in northeastern Brazil is presented in Sections 4 and 5, respectively. Finally, conclusions are
drawn in Section 6.

2. Materials
2.1. Study Area

Northeastern Brazil (NEB) spans from approximately latitude 1.3° to 18.2° S and
longitude 34.4° to 48.4° W, encompassing a land area of approximately 1.55 million square
kilometers [4]. Located in northeastern South America, the region features both inland
and coastal characteristics. The terrain slopes from high in the west to low in the east. The
eastern area, being closer to the ocean, receives more precipitation and is relatively humid.
The western region, situated inland and away from the ocean, is characterized by less
precipitation and higher evapotranspiration, with more drought conditions compared to the
east. Due to the complexity of the terrain and climate zones, along with a large population
(53 million inhabitants), water scarcity is becoming increasingly severe, manifested in
frequent drought events, significantly affecting agricultural development [22]. Furthermore,
climate models described by Marengo et al. [23] suggest that the drought frequency in
NEB will increase in the future due to a higher evaporative demand and persistent dry
conditions associated with global warming. Consequently, flash droughts across NEB are
also expected to increase in response to global warming, particularly as the region is an
agriculture center where increasing CO2 will impact plant growth [4], which is closely tied
to the hydrologic cycle [24].

According to the Koppen—Geiger climate classification map published by Beck et al. [25],
the study area mainly encompasses nine subtypes within three categories and its vegetation
cover includes caatinga, rainforests, riparian forests, savannas, and montane forests, among
others. Caatinga vegetation accounts for approximately 62% of NEB [26,27], with a rich
diversity of vegetation types (Figure 2). The main plant species covered by Caatinga are
Angico (Anadenanthera colubrina), Barriguda (Ceiba glaziovii), Cacto (Cactaceae), Carnatuba
(Copernicia prunifera), Catingueira (Caesalpinia pyramidalis), Cumaru (Amburana cearensis),
Facheiro (Pilosocereus pachycladus), and Juazeiro (Ziziphus joazeiro). These plant species
withstand drought conditions and are used as food sources for humans and animals, and
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also play a crucial role in maintaining nutrient cycling within this biome [4]. Other climatic
features of the study region are the annual mean rainfall of 400-800 mm, the annual average
air temperature variation from 23 °C to 27 °C, and the potential evaporation (PET) of about
2000 mm year —1[26].
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Figure 2. Caatinga vegetation map. It comprises the following states in Brazil: Alagoas (AL), Bahia
(BA), Ceara (CE), Minas Gerais (MG), Maranhao (MA), Paraiba (PB), Piaui (PI), Pernambuco (PE),
Rio Grande do Norte (RN), and Sergipe (SE).

2.2. Data Sources

We obtained hydro-climatic data from the Brazilian Daily Weather Gridded Data
(BR-DWGD) developed by Xavier et al. [28], a data product derived from a collection
of algorithms and computer software designed to interpolate and extrapolate from daily
meteorological observations to produce gridded estimates of daily weather parameters. The
BR-DWGD were used to assess and identify periods of flash drought across northeastern
Brazil from 2010 to 2022. The precipitation (P) and potential evapotranspiration (PET)
variables shared a common spatial grid of 0.1° with daily data. The BR-DWGD variables
used for this assessment were (P) precipitation and potential evapotranspiration (PET), at a
common spatial grid of 0.1° on a daily scale. Therefore, referring to the calculation method
of the Standardized Precipitation Evapotranspiration Index (SPEI), this study calculated
the water deficit based on P and PET data in northeastern Brazil, fitted the water deficit
data series using the log-logistic method [29], and used python tools to calculate SPEI data
on a 3-month scale. Daily surface soil moisture (SSM) data were obtained from the SMOS
L3 SSM product provided by the Barcelona Expert Center over the period of 2010-2022. An
overview of the retrieved values is provided by Gonzalez-Zamora et al. [30]. For example,
the correlation between P and SSM portrays a linearity (Figure 3), which guarantees a
physical relationship between the two variables.
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Figure 3. An example of (a) the observed precipitation (P) and (b) satellite retrievals for surface
soil moisture (SMOS-based SSM data) obtained in an agricultural area across the study area. The
linear correlation between these two variables is indicated by the R? = 0.70 from January 2016 to
December 2020.

Daily NDVI data were provided by the Laboratory for Analyzing and Processing
Satellite Images (LAPIS)’s archive [31], with a spatial resolution of 3 km. To synchronize the
precipitation data’s temporal scales (Figure 4), we generated monthly and annual NDVI
data series. Subsequently, all raster datasets were resampled to a 5 km resolution to facilitate
analysis and discussion, and details of each data source are provided in Table 1. Previous
studies have shown that the SPEI data from the BR-DWGD have a strong relationship with
the soil moisture and vegetation response in NEB [27,28].
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Figure 4. As in Figure 3 (a) the observed precipitation but referring to (b) NDVI [dimensionless]. The
NDVI was derived from the MSG-SEVIRI product. The dry spell occurred in 2012 and is highlighted
with red bars.
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Table 1. Details of data sources.

Product/Data Name T11?1e Tempm:al Spatla.l Data Source Accessed on
Period Resolution Resolution
P 2010 to 2020 Daily 0.1° https:/ /github.com/Alexand
PET 2010 to 2020 Daily 0.1° reCandidoXavier/BR-DWGD 1> November 2023
SMOS L3 SSM (asc) 2010 to 2020 Daily 0.225° http:/ /bec.icm.csic.es 10 October 2023
SMOS L3 SSM (des) 2010 to 2020 Daily 0.225° http:/ /bec.icm.csic.es 10 October 2023
NDVI 2010 to 2020 Daily 3km https:/ /lapismet.com.br/ 12 November 2023

For testing, in addition to the soil moisture validation dataset described in Table 1, we
also ensured all data were at are at the same spatial resolution and scale. NDVI data were
resampled to a 10 km resolution using the bilinear interpolation method in GEE (Google
Earth Engine). The spatial resolution of the NDVI data was about 3 km.

3. Methods
3.1. The Standardized Precipitation Evapotranspiration Index (SPEI)

In this study, the SPEI was computed as a daily-scale drought index, which considers
both P and PET from the BR-DWGD. The SPEI computation involves fitting the cumulative
moisture deficit (D) series with an appropriate probability distribution function, followed
by normalization to derive SPEI categories [29]. A log-logistic distribution was then used
to fit the D time series [32]. Additionally, the Kolmogorov-Smirnov (K-S) test with a
0.05 significance level was used to determine the optimal probability distribution for
northeastern Brazil using the gma library in Python. Negative SPEI values indicate water
deficit, while positive values denote surplus moisture (Figure 5). We employed the log-
logistic probability distribution function to fit D and conducted SPEI calculations for
northeastern Brazil using the gma library in Python.
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Figure 5. As in Figure 4 (a) the observed precipitation but referring to (b) the SPEI [dimensionless;
base period January 2010-December 2020].
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The PET is the sum of the amount of evaporation and transpiration from a reference
vegetation of grass. It can be calculated with the Thornthwaite, Hargreaves, or Penman—
Monteith equations [29]. The Thornthwaite equation is computed as follows:

L\ /N /10Td\*
PET = 16 (12> (30> (1) 1)

o= (6.75 x 10—7)13 - (7.71 x 10—5)12 n (1.792 X 10—2)1+0.49239 2)
1 1514
= Z(T““> @)
=\ o

where PET is the estimated potential evapotranspiration (mm/month), Td denotes the
mean monthly temperature (degrees Celsius), N is the number of days for each month, L
indicates the local insolation (hours/month), and I is the annual heat index, which depends
on the monthly mean temperatures (Tmi in degrees Celsius).

We analyzed the correlations between the monthly hydro-climatic variables” time
series spanning from 2010 to 2022 and the SPEI sequence with various offsets (e.g., 0 months,
1 month, 2 months, and 3 months) over the study area. Utilizing an area-averaged time
series of grid-scale R calculations, we detrended each variable to evaluate its response to
drought (SPEI). Then, utilizing the maximum value, we identified the optimal response
correlation for each variable and its corresponding lag intensity, employing a significance
level of 95%. Subsequently, we applied a wavelet squared coherence analysis to reveal
underlying oscillation patterns and changes in periodicities in a time—frequency domain
between the area-averaged values of the SPEI against the SSM during their common
time periods.

3.2. Model

The processing pipeline of the model is illustrated in Figure 6. First, given a set of
hydro-climatic variables, we select spatial data for northeastern Brazil. During training, we
select variable data around drought events (further details in Section 3.4). The resulting
batch of selected variable defines the sample to feed the model. Then, a Spatial Convolu-
tional Encoder-Decoder (S-CED) architecture processes this sample by extracting relevant
SSM information (encoder) and transforming it into a probabilistic drought detection map
through time (decoder). During training, the resulting map is compared with the ground
truth map for drought detection to define the penalty by which the model is optimized.
Later, the drought detection map through time is provided for the entire area of study by
concatenating the sample in the sequential order it was taken. Adding convolutions to
neural networks promotes two biases in the model: (i) nearby pixels (locations) are related
to each other, and (ii) targets can appear anywhere in the input data [29].

The convolutional neural networks (CNNs) model can yield acceptable accuracy for
classifying well-known types of extreme weather events. Further, it has been gradually
applied to the study of drought construction because it can effectively deal with the
nonlinear relationship between various drought factors [17]. This is consistent with what
others have observed. Wei and Li [21] found that the overall performance of deep learning
is comparable to that of a random forest, and its multi-layer method can find the best
output in the case of high-dimensional data features. However, the pooling layer of the
CNN model leads to the loss of some important features during training, which may be
one of the reasons why the accuracy of the training model is lower than that of the random
forest model.
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Figure 6. Schematic overview of the individual steps of the deep learning processing for FD detection.
The input-selected hydro-climatic variable (1 *) is taken by following a different sampling strategy
for the training stages (2 *). A batch of selected variables (3 *) defines a sample received as input by
the model, and a 2D convolutional encoder-decoder architecture provides probabilistic scores (4 *)
for an FD as its output.

3.3. Model Architecture Design

Detecting an FD requires network architectures capable of learning complex represen-
tations and exploiting interconnections in space and time. Adding convolutions to neural
networks encourages two biases in the model: (i) nearby pixels (locations) are related to
each other, and (ii) targets can appear anywhere in the input image [29]. Using convolu-
tions significantly reduces the number of learnable parameters, resulting in faster learning
and more scalable networks for deployment in real-case scenarios. Motivated by these
properties, we propose an encoder—decoder architecture [33] that uses 2D convolutional
layers to process hydro-climatic variables in space for FD detection as a binary classification
task (FD vs. non-drought conditions) at the grid level. The splits are defined such that
the amount of flash drought grids in each is similar, with the corresponding drought vs.
non-drought ratios being 0.8%, excluding water. In a nutshell, the network receives as
input a batch of data variables of size (lat, lon), with lat and lon being the latitude and
longitude sizes, respectively. The model comprises two 2D convolutional layers for the
encoder and two corresponding 2D convolutional layers for the decoder. CNNs utilize
layers of convolutional filters to automatically detect and learn hierarchical patterns and
features from the input data. Due to a reduction in the number of learnable parameters,
deep learning offers high accuracy and efficiency in processing large datasets [34,35]. The
architecture is shown in Figure 7.

The model uses a batch normalization, a normalization layer, a modified linear unit
layer (ReLU), and a fully connected layer. At the encoder, max pooling is used after
dropout layers to reduce the spatial dimensions by a factor of two. Likewise, residual
skip connections [35,36] connect the encoder and the decoder blocks. At the top of the
decoder, a final 2D convolutional layer followed by a sigmoid activation produces the
class probabilities for each pixel, which constitute FD detection maps through time. In
this study, we present the selected hydro-climatological data of size (240, 240) and output
the probabilistic drought detection map of size (240, 240). Convolutional layers typically
employ padding to extend the range of the convolution operation at image borders and
produce an output that is the same size as the input [16,37]. Using valid convolutions has
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the noticeable caveat that each convolution produces feature maps with fewer elements. In
a nutshell, the network receives as input a batch of selected data of variable size (lat, lon),
with lat and lon being the latitude and longitude sizes, respectively. The model comprises
2D convolutional layers for the encoder and two corresponding 2D convolutional layers
for the decoder. Exploiting convolutions significantly reduces the number of learnable
parameters, resulting in faster learning and more scalable networks for deployment in
real-case stages.
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Figure 7. Schematic overview of the proposed SCED for drought detection. The model receives as
input a selected data variable and provides a probabilistic FD detection map for multiple timesteps
as its output. Represented by color are the 2D convolution + 2D batch normalization + LeakyReLU
activation, 2D (spatial) pooling, 2D (spatial) upsampling, and 2D out convolution. At the bottom of
each 2D convolution + 2D batch normalization layer + LeakyReLU activation, the output spatial size
in terms of (lat, lon) is indicated. Skip connections are placed between the input of an encoder block
and the activation layer of the corresponding decoder block.

3.4. Flash Drought Identification

FDs were identified over the period 2010-2022 using SPEI and SSM values. The SPEI
was spatially averaged for the study area. To enhance the accuracy of FD identification, the
five-day average of the SSM time series was taken. The daily SPEI can exhibit noise due
to short-term meteorological variability that can potentially obscure the FD onset [14,38].
By averaging the SPEI values over five-day intervals, the variability was mitigated while
still being sufficient to capture the rapid intensification period characteristic of FDs. Flash
drought events were identified using multi-criterion guidelines as defined in previous
studies [4]. This method employs the following criteria: (1) the total decrease in the SPEI
should be 2 or greater in a 30-day period; (2) at the end of the same 30-day period, the
SPEI value should be less than —1.5 (or the SSM should be below the 20th percentile);
and (3) after crossing the drought threshold value of —0.5, the SPEI should remain below
—0.5 for at least 30 days. The first criterion captures the rapid intensification aspect of FDs
and confirms that the identified events are not affected by temporary fluctuations in the
SPEI or SSM due to increased rainfall, decreased temperatures, or increased cloud cover.
The second and third criteria help separate FDs and dry spells and identify flash drought
events that may have potential environmental impacts over more extended periods. The
SSM is expressed in a percentage format. The daily values of the SSM data are assigned to
different percentile categories of FDs, including 20th-25th, 15th-20th, 10th-15th, and <10th
(Table 2). The quantile values provide a useful way of comparing the SPEI with varying
orders of magnitude. They help to standardize the data and make them easier to compare
and analyze FD categories across different regions. Although drought categories are binary,
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i.e., drought/non-drought, we rely on the assumption that the FD detection system should
be continuous and capture the evolution of the phenomena. This is achieved by taking the
probability distribution by which an example is labeled as belonging to one category and
not to another (i.e., the similarity structure), as shown in Table 2.

Table 2. Thresholds used for flash drought classification.

Drought Category SPEI Probability [%] ! SSM

Non-drought >1.00 >77.50 >25th
Near normal (FD1) 0.99 to —0.99 68.30 20th-25th
Moderate dry (FD2) —1.00 to —1.49 9.20 15th-20th
Severe dry (FD3) —1.50 to —1.99 4.40 10th-15th

Extreme dry (FD4) <—2.00 2.30 <10th

! The cumulative probability of non-exceedance for each SPEI drought category.

Furthermore, the Coupled Model Intercomparison Project Phase 6 (CMIP6) was used
to calculate the SPEI3 for identifying future stages of FD based on the SPEI under a high-
emission scenario. The following variables were employed: water evapotranspiration
flux, maximum air temperature, minimum air temperature, and precipitation. These data
were derived from historical simulations and Shared Socioeconomic Pathways (SSPs) that
characterize four future scenarios; we chose to use the SSP5-8.5 of CMIP6. The historical
simulation data cover the period from 2010 to 2015, while the data for the future scenario
cover the period from 2024 to 2050. We used the NorESM Climate Modeling Consortium
(NCC) agency, which has a spatial resolution of 1.25°.

4. Results
4.1. Evaluation of Hydro-Climatic Data in Response to Drought

In the analysis of wavelet coherence between the SPEI and SSM (Figure 8a), it is evident
that the periodicity of 8-12 months is predominantly high from 2010 to 2016 (significant at
a 95% level). The cone area denotes the cone of influence under which the period (month)
can be considered for the analysis. Hence, it is evident from the wavelet analysis that
the SPEI changes are in accord with the different periodicities of the SSM, which are also
interpreted as drought-induced temporal effects on the SSM over NEB. Considering that
the SPEI has a stronger explanatory power on the intensity of drought, which includes
information on temperature, precipitation, and potential evapotranspiration, this study
selected the SSM, NDVI, and PET as independent hydro-climate variables.

7 ()

Lag 3
Lag 2 +
Lag 1
Lag 0

PET A

Period [Month]

NDVI A

Figure 8. Results of the analysis on the driving hydro-climatic data of temporal responses over the
entirety of NEB during 2010-2016. (a) The squared wavelet coherence of the SPEI against the SSM,
and (b) the lagged correlations between the SPEI and the variables involved (S5SM, NDVI, and PET).
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Figure 8b reflects the interactive effects of each variable on the temporal impact of
drought (SPEI). The SSM and NDVI dominate as the driving factors, followed by the
PET. We identified the lag effect durations of each variable during drought as follows:
SSM > NDVI > PET. In addition, we observed significant negative correlations between
the PET and drought, indicating a stronger response of the PET to lagging drought (i.e.,
higher sensitivity). Longer lag effect times imply that the SSM is more likely to be affected
by the lingering effects of previous months” droughts and is less likely to recover from
earlier droughts. Compared to other commonly used meteorological drought indices, the
SPEI exhibits a greater capability to measure the impacts of drought on agricultural and
ecological responses [27,29]. Thus, we conclude that the SSM was the optimal variable for
drought detection.

4.2. Identifying and Mapping Flash Drought Events

To showcase the ability of the SSM to capture FDs, the well-studied 2012 NEB event
was examined. This drought event occurred during the autumn, winter, and spring of 2012
and was a historically unprecedented event in NEB, ranked as the third-largest drought in
terms of aerial extent since 1901. The event was preceded by La Nifia conditions during
the summers of 2011-2012, resulting in drier-than-normal conditions at the beginning of
the year [26,31]. Figure 9 shows the rapid onset and progression of the 2012 flash drought
demonstrated by SSM values every 5 days (i.e., pentads) from 1 March to 28 December. The
drought reached its peak severity at the end of August, with nearly three-fourths of NEB
classified as having severe or extreme drought conditions according to the SPEI categories.
The mean and median lengths of the flash drought events in 2012 were 24 and 114 days. This
indicates that the flash drought events identified in NEB lasted approximately 1-4 months.
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Figure 9. (a) Time series of the five-day moving average of the daily SMOS-based SSM values over
the entirety of NEB from 1 March to 28 December 2012. The dashed orange line and dashed red line
represent the 40th and 20th percentiles for soil moisture, respectively. The blue dot represents non-FD
(condition 1), and the green dot represents FD (condition 2). (b) The blue—orange vertical time series
of anomaly values represents the period of precipitation (P) and potential evapotranspiration (PET)
data from 2 May to 28 November 2012. The vertical dashed blue lines indicate the period between
the FD conditions.

By examining Figure 9, we see that the minimum SSM values were experienced in
August-October, reaching less than the 10th percentile. The synchronization of the P and
PET during the onset of the 2012 flash drought highlights the connection between the
onset of flash drought conditions indicated by the SSM and subsequent reductions in
precipitation, offering insights into the linked dynamics of the atmospheric and hydrologi-
cal responses.
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The analysis of FD events in 2012 within NEB reveals variations in the visual compar-
ative analysis between SMOS-based SSM retrievals and the CNN model simulation. The
employed criteria ensured robust identification of FDs by considering the multi-criterion
approach outlined in Section 3.4. Figure 10 shows the five-day averages of the SSM and
CNN from 1 March to 28 December 2012. Each map is represented by a mean grid-point
(pixel level), with red indicating instances where the SSM caused an FD, and green indi-
cating non-drought locations. Non-drought conditions fall within typical hydro-climatic
conditions and are comparable to easy-to-classify locations. Moreover, FDs have various
stages in their development, as shown in Figure 9a.
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Figure 10. Visual comparison of the performance of (a) the SMOS-based SMOS L3 SSM product and
(b) the S-CED model trained with SSM data for the 2012 FD events identified from 1 March to 28
December 2012. The red color represents the higher scores of the model trained with the SSM. In
contrast, green means lower values of the model. The Brazilian drylands boundary is displayed as
the blue line (left side), and northeastern Brazil and its states in blue lines (right side).

We provide a visual comparison of the performance of the S-CED model trained with
the SSM and SMOS L3 SSM product. First, in Figure 10, we present the northeastern Brazil
probabilistic drought detection map provided by the S-CED model during the 2012 FD
events. A more intense red color in the S-CED model corresponds to higher scores. This
visualization is used to identify the model’s distribution results of all the grids in the study
region compared to soil moisture conditions estimated from the SSM product. The red
areas in the maps delimit the areas of flash drought events identified for the region, and
a green colormap is used to represent the non-drought category. Thus, the probabilistic
scores of the S-CED model in non-drought category areas (the green color) are higher than
those obtained by the SSM product. The blue contours encompass the Brazilian drylands,
where the visual accuracy is higher between two maps. We also obtain clear signals of
potential non-droughts, highlighting the usefulness of the proposed model and the benefits
of the method for flash drought identification.
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FD events were identified in the growing season (February—May) from 2024 to 2050
within NEB using the CMIP6 predictions. Our focus was on capturing the FD events to
better comprehend their impact on the main rainy season of NEB. Figure 11 shows the
intensity (percentile/year) of FDs in the SSP5-8.5 scenario. The primary impact is primarily
concentrated in the Sdo Francisco River Basin, within NEB’s semi-arid region. The entire
basin is engulfed in FD conditions, characterized by increased severity in its central region,
where the dominant FD4 and FD3 are observed. These categories indicate the severity
of FD conditions, which are close to the extreme drought category defined by the SPEI,
and pose significant challenges to water resources, agriculture, and ecosystems within
those areas. Additionally, the results revealed the FD intensity, showing that 28% of the
region was categorized as FD1. FD2 accounted for 23%, while FD3 and FD4 comprised
21% of the NEB-FD area. It indicates that NEB’s semi-arid region (i.e., the Caatinga biome)
will face significant challenges in terms of FD risk under future scenarios. Therefore,
understanding the interconnected nature of water management within the entire basin is
crucial for comprehensively assessing and addressing the impacts of severe flash droughts
in those areas.
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Figure 11. FD severity in SSP-8.5 identified in the growing season (February-May) from 2024 to 2050
within northeastern Brazil. Brazilian drylands boundary denoted by blue line.

5. Discussion

We present a new method for FD identification using different types of input data.
An FD is a rapid drought in a short period caused by severe heat waves and rainfall
deficiency [4,25]. It is very difficult to accurately detect an FD [7,12]. The occurrence
of an FD is related to the complex interaction of soil moisture, evapotranspiration, and
vegetation. This research adopts the CNN architecture for FD identification to output data
from model simulations in northeastern Brazil (NEB) by integrating multiple sources of
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hydrometeorological data that represent the atmosphere (P and PET data), surface (NDVI
data), and subsurface (SSM data). We selected SSM data to train the proposed model using
a cross-correlation analysis and tried to avoid splitting the responses of multiple drought
types. The complete area was divided into data of the same size as the samples used for
training, and the model generated probabilistic scores for surface soil moisture data. These
scores were then used to reconstruct the entire region.

The method-based neural representation has been applied in northeastern Brazil, and
it can identify an FD after training with SSM data. The comparison against outcomes
from the CNN model implementation reveals a slight increase in its capability to properly
identify FD areas, which is more substantial when forcing the algorithm with surface soil
moisture. Examination of the CNN's ability to effectively capture FD events revealed its
proficiency in identifying the development phase. The spatial mapping of the 2012 FD
showcased variations in intensity across NEB, with distinct patterns in different regions.
The southwest NEB region experiences frequent FDs, while the northeast encounters less
frequent events, and its semi-arid region faces severe FD conditions. Additionally, our study
underscores the lag effects of drought on different environmental factors, enriching our
comprehension of soil moisture’s response to drought. The delayed response emphasized
the complex relationship between meteorological and hydrological factors during FD
events, highlighting the challenge of predicting and mitigating the consequences of FDs on
the NEB drylands.

The NEB drought events of 2012 showed an evident accuracy in the spatial domain,
as shown in Figure 7. The soil moisture dataset from satellite observations is at the root
of it. We can see how the learned models obtain distinctive simulations for the registered
FD events. We also find clear signals of potential unregistered droughts, highlighting the
usefulness of the proposed model and the benefits of the method for drought detection.
CNN s offer high accuracy and efficacy in processing large datasets, though they may
lose some features due to pooling layers, slightly lowering the accuracy compared to the
random forest model [39].

We found that the model had enough representational capacity with two layers for
the encoder and two for the decoder. More layers decreased the performance results for
the validation data. Convolutional layers typically employ padding to extend the range
of the convolution operation at image borders and produce an output that is the same
size as the input [39,40]. Multiple values for the padding exist, with the zero-valued one
being the most common. However, padding introduces artificial distortions that do not
align with the actual behavior of hydro-climatological variables. As such, we refrained
from using padding in the convolutions and performed valid convolutions. Using valid
convolutions has the noticeable caveat that each convolution produces feature maps with
fewer elements.

Nevertheless, uncertainties persist. Comparing the CNN with the surface soil moisture
provided a holistic perspective on the interconnected dynamics during FD events. The
synchronization observed between the severity of FD conditions indicated by the CNN
and subsequent reductions in soil moisture highlighted the potential of our proposed
approaches to improve FD detection algorithms. The uncertainty and bias in the SSM data
are at the root of unregistered FD events. We acknowledge that validating the model under
categories of drought and non-drought settings is challenging since these problems also
affect the validation data. This can lead to poor estimation of generalization capabilities
and wrongly tuned models [41]. Since the number of drought and non-drought grids varies
considerably, we balanced their contribution by computing a correction factor for each
location based on [41].

By leveraging the CMIP6 (S5P5-8.5) as a predictive tool, our findings revealed that the
FD severity in the Sao Francisco River Basin within NEB will increase in the future due to
higher persistent dry conditions associated with global warming. In general, an expansion
of the area under FD events in the context of high-emission scenarios was observed the
middle and south areas of the basin from 2024 to 2050 (Figure 11). By examining Figure 11,
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we see that a wide range of minimum SPEI values are observed across NEB, spanning
from 0.99 to <—2.00 (see Table 1). These values indicated the severity of flash drought
conditions, with lower SPEI values representing more intense flash droughts (FD4). NEB's
areas with minimum SPEI values higher than —2.00 are likely to experience more extreme
flash drought events, posing significant challenges to water resources, agriculture, and
ecosystems within those areas.

Nevertheless, as shown in Figure 11, the high dependence of the NEB rainy season
(February-May) on weather conditions with insufficient rainfall has raised concern about
the risk climate change poses to the entire regional economy [26]. These concerns are even
greater since climate change projections suggest that future flash droughts will be more
severe. In the context of the growing season, agricultural activities that are dependent on
consistent water availability face disruptions that can impact crop yields and overall food
production [23]. Changes in plant growth and transpiration due to climate change will
have a direct impact on watershed processes, potentially leading to an increased intensity
of drought conditions in the Sao Francisco River Basin in northeastern Brazil [26]. However,
because of the uncertainties in the independent climate models of CMIP6, multi-model
ensembles were typically used to minimize the impact of the models” uncertainties in the
prediction results.

6. Conclusions

Flash drought (FD) detection and its prediction is of utmost importance in the present
scenario because of its increase due to climate change. Our research introduces a novel
methodology based on a deep learning model which, after training, can identify an FD. This
process embeds spatiotemporal FD-identifying thresholds into the process of generating
probabilistic scores from models that are trained with surface soil moisture data. In
conclusion, the goals of the study were met by introducing a 2D convolutional encoder—
decoder architecture and integrating multiple sources of hydro-climatic data to identify
the complexity of spatial FD events across northeastern Brazil. As flash droughts pose
challenges to accurate detection due to their complex spatial-temporal features, the insights
gained from this research provide a foundation for further studies.
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Abstract: Drought is a natural disaster that occurs globally and can damage the environment, disrupt
agricultural production and cause large economic losses. The accurate prediction of drought can
effectively reduce the impacts of droughts. Deep learning methods have shown promise in drought
prediction, with convolutional neural networks (CNNs) being particularly effective in handling
spatial information. In this study, we employed a deep learning approach to predict drought in the
Fenhe River (FHR) basin, taking into account the meteorological conditions of surrounding regions.
We used the daily SAPEI (Standardized Antecedent Precipitation Evapotranspiration Index) as the
drought evaluation index. Our results demonstrate the effectiveness of the CNN model in predicting
drought events 1~10 days in advance. We evaluated the predictions made by the model; the average
Nash-Sutcliffe efficiency (NSE) between the predicted and true values for the next 10 days was
0.71. While the prediction accuracy slightly decreased with longer prediction lengths, the model
remained stable and effective in predicting heavy drought events that are typically difficult to predict.
Additionally, key meteorological variables for drought predictions were identified, and we found
that training the CNN model with these key variables led to higher prediction accuracy than training
it with all variables. This study approves an effective deep learning approach for daily drought
prediction, particularly when considering the meteorological conditions of surrounding regions.

Keywords: drought; prediction; deep learning; CNN

1. Introduction

Drought, which has been exacerbated by climate change, is currently one of the most
complex natural disasters with a significant global impact [1-4]. Climate change has led to
rising global temperatures and decreasing precipitation, resulting in drought as a major
natural disaster worldwide. Prolonged droughts can make soil moisture deficient, which
in turn seriously threatens food security [5]. China has been significantly impacted by
drought, with increasing losses threatening agricultural production and socio-economic
development [6-9]. The Huang-Huai-Hai River (HHH) basin, in particular, is vulnerable
to drought due to the combined effects of climate change and human activities [10,11].

The early warning and accurate assessment of drought is crucial for the effective
mitigation of its damage [12,13]. Various methods have been developed for drought
prediction, including traditional and machine learning-based approaches. Early approaches
include Autoregressive Integrated Moving Average (ARIMA) and Multiplicative Seasonal
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Autoregressive Integrated Moving Average (SARIMA), which are good at dealing with
more complex time series problems and can take seasonal factors into account when making
drought predictions [14]. Li et al. [15] developed a physical-empirical prediction model
for predicting drought in northeastern China. However, due to the limitation of computer
performance, the prediction accuracy obtained by previous methods is generally low.

In recent years, there has been a surge in the development of machine learning-based
drought prediction models, resulting in a significant improvement in their predictive
accuracy [16]. Feng et al. [17] used three machine learning methods, namely bias-corrected
random forest (BRF), support vector machine (SVM), and the multi-layer perceptron
neural network (MLP), to monitor drought, in which BRF outperformed the other two
models in terms of prediction. The method was later used by Nie et al. [18] to assess
soil moisture, which is also one of the important factors affecting drought. Drought is
a complex phenomenon influenced by various factors, and its non-linear characteristics
make it challenging to predict accurately [19]. Neural networks do not rely on the mutual
independence of variables; deep learning methods can effectively learn the complex features
in drought and are an effective tool for drought prediction [20]. There has been a great
deal of research showing that deep learning has gained good performance in the field
of prediction [21,22]. Agana et al. [23] used the Deep Belief Network to make long-term
predictions about drought, and they found that this method is better than the traditional
MLP method and SVM method in terms of root mean square error (RMSE) and mean
absolute error (MSE). Mokhtar et al. [24] used random forest (RF), extreme gradient boosting
(XGB), the convolutional neural network (CNN), and long short-term memory (LSTM) to
analyze drought on the eastern edge of the Qinghai-Tibet Plateau, obtaining favorable
results. However, most drought predictions have focused on time series and ignored spatial
scale impacts [25,26]. Droughts in a particular region are often influenced not only by local
factors but also by climate conditions in distant areas. For instance, evaporation and
precipitation are key components of the water cycle system, and some of the evaporated
water can travel over long distances before it condenses into precipitation, affecting regions
located hundreds of kilometers away [27,28]. Ham et al. [29] utilized the CNN for the
long-term prediction of El Nifio/Southern Oscillation (ENSO) and later optimized the
method [30]. Their study aimed to predict Nino3.4, incorporating a broad range of spatial
data during training to consider the influence of various regions on ENSO events.

As a complex natural disaster, it is difficult for a definition of drought to be unani-
mously accepted by the public due to the many factors affecting drought. Consequently,
various drought indices have been developed, each with its own advantages and disad-
vantages [31]. The Palmer Drought Severity Index (PDSI) [32] is one of the classic drought
indices, and many studies have used self-calibrating PDSI (scPDSI) for drought assess-
ment [33]. There are also other drought indices, such as the standardized precipitation
index (SPI) [34] and the standardized precipitation evapotranspiration index (SPEI) [35].
The SPEI is based on a water balance; related studies also showed that the SPEI can better
reveal drought conditions in China [36]. Short-term drought prediction remains a chal-
lenging task [12], and early warnings for flash droughts are essential in the short term [37].
A new index called the Standardized Antecedent Precipitation Evapotranspiration Index
(SAPEI) has been proposed; it utilizes precipitation and potential evapotranspiration and
represents the surplus or deficit of surface water. The daily scale SAPEI helps authorities to
make early and timely warnings [38].

Drought prediction is essential to effectively mitigate the impacts of drought [39].
However, existing drought prediction methods have generally performed well on monthly
or longer time scales, while our study aimed to predict drought on a daily scale. Short-term
drought is more difficult to predict than long-term drought, mainly because short-term
meteorological and hydrological processes are relatively complex. Besides precipitation,
temperature, and potential evapotranspiration, other variables will have a significant
impact on short-term drought [12,40]. The prediction of drought in this study is not
limited to the effect of a single meteorological factor on the time series; the method is
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a multivariate prediction that takes into account the effect of spatial extent. This also
enhances the reliability of the findings. Deep learning methods can effectively learn the
characteristics of different meteorological elements and greatly improve the prediction
accuracy. The aim of our study is to make a daily prediction of the drought climate in a
particular basin. The SAPEI data and an all-season CNN (A_CNN) model [30] are used for
daily drought prediction at different time leads. Experiments are conducted in the Fenhe
River (FHR) basin, which is a sub-basin in the middle of the HHH basin. The spatially
averaged SAPEI of the FHR basin is predicted. More importantly, the spatially explicit
meteorological conditions of the HHH basin are used as CNN model inputs to consider
the impacts of surrounding regions. Here, we summarize the innovation of the research.
Firstly, daily-scale drought prediction can provide timely and effective early warnings
for droughts. Secondly, our experiment uses less training data to obtain better prediction
results, and training on key variables affecting drought helps to improve the prediction
accuracy. Thirdly, the drought prediction of the FHR basin has taken into account the
influence of the surrounding environment, which makes the prediction more scientific
and reliable.

2. Materials and Methods
2.1. Study Area

The Fenhe River is the second largest tributary of the Yellow River, with a basin area
of 39,741 km? [41]. It is an important ecological function area with high population density
and a developed agricultural economy. It appears to be a highly drought-prone area in the
warming climate. The HHH basin (95°~123° E, 30°~43° N) is located in the eastern part of
China. It consists of three basins, namely the Yellow River Basin, the Huaihe River Basin,
and the Haihe River Basin. The HHH basin covers an area of 1.433 x 10° km? and is a
relatively developed economic region in China. However, climate change is more frequent
in this region, and there is also a high incidence of meteorological disasters [42,43]. It is
particularly vulnerable to extreme droughts with significant impacts [44—46].

This experiment used data from the HHH basin to train the model and then predicted
the drought conditions in the FHR basin for the next ten days. Figure 1 shows the location
of the study area.
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Figure 1. The study area of the Fenhe River basin, which is located in the middle of the HHH basin.
The blue and black lines represent the river, and the red part is the FHR basin.
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2.2. Datasets

Interpolated meteorological data are used in this study, and the variables are shown
in Table 1. These data were developed by interpolating observations from more than
2400 ground-based meteorological stations in China [47]. Our study used data from 1961
to 2020; all variables were based on daily data with a spatial resolution of 0.5° x 0.5°. Since
atmospheric stress on evapotranspiration is an essential factor of land drought, we further
calculated daily potential evapotranspiration (PET) and vapor pressure deficit (VPD) from
interpolated daily observations, which were then used as inputs of the model [35,38,48].

Table 1. Meteorological variables used in this study.

Variables Unit
precipitation (PRE) mm
relative humidity -
wind velocity m/s
mean temperature °C
max temperature °C
min temperature °C
sunshine duration h
potential evapotranspiration (PET) mm
vapor pressure deficit (VPD) kPa
SAPEI -

We used the data from 1961 to 2000 as a training set and those from 2001 to 2010 as a
validation set. And we used data from 2011 to 2020 to evaluate the model’s performance.
The ratio of the training set, validation set, and test set was 4:1:1. For network prediction,
the data of the previous 30 days were used to forecast drought conditions in the FHR basin
for the next 10 days, resulting in a total of 14,461 training samples, and both the validation
set and the test set contained 3611 samples each. To accelerate the model convergence,
we standardized the data pixel-wisely using Equation (1). X*: indicates the value after
standardization at time ¢. )

Xt _ szn

*
X' = Xmax _ Xmin

)
where X; denotes the grid value for a day at a certain latitude and longitude, X" denotes
the minimum value on the corresponding latitude and longitude time series, and X"~
denotes the maximum value on the corresponding latitude and longitude time series.

2.3. Methods
2.3.1. SAPEI Calculation

The daily SAPEI was used as a measure of drought in the FHR basin [38]. The calcula-
tion of the SAPEI requires the construction of the daily difference between precipitation
(PRE) and PET, which can be estimated by Equation (2). The Penman—Monteith method
was used to estimate PET, which has a more physical basis than other methods [49].

D= i a"(PRE — PET),, @)
n=0

aN =c¢ 3)

In Equation (2), D indicates the daily difference between PRE and PET, a is the attenu-
ation constant, N is the number of days ahead, and c is the fraction of contribution of the
last day of precipitation. Based on previous studies [38,50], 2 = 0.98 and ¢ = 13%, resulting
in N = 100. After that, we could obtain the SAPEI based on the sequence D [35,51].

The SAPEI values were divided into nine classes, namely extreme wet, severe wet,
moderate wet, mild wet, normal, mild drought, moderate drought, severe drought, and
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extreme drought, as detailed in Table 2 [52]. We calculated the cumulative probability of
the SAPEI in the test set in order to facilitate the evaluation of the forecast results at a
later stage.

Table 2. Different categories of SAPEI

Threshold Value of SAPEI Grade Name Cumulative Probability (%)
SAPEI > 2.0 Extremely wet 0.64
1.5 <SAPEI < 2.0 Severe wet 5.61
1.0<SAPEI<1.5 Moderate wet 11.50
0.5<SAPEI < 1.0 Mild wet 20.50
—0.5<SAPEI <05 Normal 45.03
—1.0<SAPEI < —-0.5 Mild drought 11.81
—1.5<SAPEI < —1.0 Moderate drought 4.13
—2.0<SAPEI < —-1.5 Severe drought 0.78

SAPEI < —-2.0 Extremely drought 0

2.3.2. The A_CNN Model

The A_CNN model was used to predict the daily SAPEI [30]. This model combines
the advantages of the CNN in spatial information processing, comprehensively considers
the influence of the surrounding climate environment on the FHR basin, and learns the
characteristics of continuous changes in drought in different seasons. It contains three con-
volutional layers. After convolutional layerl and layer2, a max pooling layer is connected,
and the three convolution layers are followed by two fully connected layers (as shown
in Figure 2). We set a fixed time step p for the historical data X = {x¢, xt 1, ..., xt—p} as
input time series, where xt is the value of the variable at time t. The model output was a
time series Y with length g, Y = {x;,1, X1, ..., Xt+4}. For defining p and g, we needed to
pay attention to the periodic characteristics of the original data, so we set the time step
to one month (30 days), and the output time of the model was 10 days. In our study, the
input data were the spatio-temporal cubes of two sets of variables at time t —30tot — 1,
and the output was the average value of the SAPEI index of the FHR basin from ¢ + 0 to
t + 10 days. M denotes the number of convolutional kernels (the value is 10), and N denotes
the number of nodes in the FC layer (the value is 50). It is worth noting that our inputs
were multiple spatio-temporal datasets with a spatial range of (95°~123° E, 30°~43° N),
which was different from the traditional multivariate time series forecasting. The SAPEI
index of the FHR basin was spatially averaged to show the basin-scale drought, which was
used as the output of the model.

spatio-temporal gridded data

& & &

S //f}}“‘ il ten days SAPEI value

et . W \/\
v Y
56 e
56x28xM 28x14xM 14x7>xM
convolutional max pool convolutional max pool convolutional densel (N) dense2 (N)

layerl layer2 layer3

Figure 2. The core structure of the model consists of three convolutional layers, two max-pooling
layers, two fully connected layers, and an output layer. Model components are differentiated by color
and the red wavy line indicates the SAPEI value.

In the training process, the convolutional kernel size was set to 8 x 4 in the first
convolutional layer and to 4 x 2 in the last two convolutional layers. The number of epochs
was 100, with each epoch containing 56 iterations, and the Adam optimizer was used. The
hyperbolic tangent function (tanh) was used for the activation function, and the learning
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rate of training was fixed at 0.0005. The output shapes of each layer in the model are
summarized in Table 3.

Table 3. Output shape for each layer of the model.

Layer Output Shape
input layer 56 x 28 x 120
convolutional layerl 56 x 28 x 10
max pool 28 x 14 x 10
convolutional layer2 28 x 14 x 10
max pool 14 x 7 x 10
convolutional layer3 14 x 7 x 10
densel 50
dense2 50
output layer 10

PRE, PET, and VPD play a crucial role in the water cycle and have significant impacts
on the variability in drought levels in a region [53-55]. VPD is mainly expressed as the
difference between the water vapor pressure at saturation and the actual water vapor
pressure at a certain temperature [48,56]. To improve the prediction accuracy and speed
up the convergence of the model, we designed two sets of experiments for comparison. In
the first experiment, the SAPEI and three important variables affecting drought (PRE, PET,
VPD) were used as input variables, which we named EXP4. In the second experiment, we
took all meteorological variables as input (as shown in Table 1), which we named EXP10.
We wanted to explore whether we could improve the prediction accuracy by capturing the
key factors affecting drought.

2.3.3. Evaluation Metrics

To evaluate the model performance, the mean squared error (MSE) was used as the
loss function; the mean absolute error (MAE), BIAS, Nash—Sutcliffe efficiency (NSE), Kling—
Gupta efficiency (KGE), and the Pearson correlation coefficient (R) were also calculated
for the test set. To minimize the impact of RMSE deviations, we employed the unbiased
root mean square difference (ubRMSD) metric, which combines R and standard deviation
(Std) to evaluate the effect of EXP4 and EXP10. The calculation of the evaluation metrics is
summarized as follows:

n C_yh)?
MSE(y,y/) _ i=1 (y;l yl ) (4)
/ 1 Z !
MAE(y,y') = EZW:‘ —yi'| (5)
i=1
BIAs = Zi=t W Y1) (31/1"/ — ) ©)
i Coulyy)
RO =ty Var @) 7
n 7 )2
NSE(y,y) = 1~ S ULV ®)
?:1 (vi—v)
KGE(y,y) =1— /(R 1)+ (a — 12+ (B 1)° ©)
RMSD = v/MSE (10)
ubRMSD = v/ RMSD? — BIAS? (11)

In Equations (4)—(9), y; denotes the value of SAPEI on day i, y;/ denotes the predicted
value, « denotes the ratio between the Std of predicted results and the Std of true values,
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and B denotes the ratio between the mean of predicted results and the mean of true values.
Var(y) and Var(y') mean the variance in the observations and predictions, and Cov(y,y’) is
their covariance.

3. Results
3.1. Identifying Key Variables to Enhance Prediction Accuracy

In this experiment, the SAPEI was predicted for the next 10 days in the FHR basin.
Non-meteorological parameters such as the SAPEI were calculated in our study; we re-
moved non-meteorological parameters and trained the model, which we named EXP7.
Table 4 shows the prediction results for all parameters (EXP10) and the removal of non-
meteorological parameters (EXP7). We show the predictions for days 1,3, 5,7, and 9, and
the five prediction lengths are denoted as PL1, PL3, PL5, PL7, and PL9. When we remove
the non-meteorological parameters, the model’s prediction results significantly deteriorate
and become inaccurate. A higher R and lower MSE indicate a better prediction effect. The
R value for the predicted results of EXP7, as shown in Table 4, is significantly lower than
that of EXP10, while the MSE is noticeably higher than that of EXP10. Non-meteorological
parameters play a crucial role in the prediction process. Therefore, we chose to include
non-meteorological parameters in both sets of comparative experiments.

Table 4. Comparison of results for different prediction lengths.

PL1 PL3 PL5 PL7 PL9
EXD7 MSE 0.413 0.498 0.503 0.703 0.648
R 0.695 0.693 0.673 0.631 0.588

EXP10 MSE 0.100 0.193 0.273 0.310 0.411
R 0.926 0.883 0.838 0.795 0.740

We compared the predictions on day 1, 3, 5, 7, and 9 from two experiments. A
Taylor diagram is used to compare the evaluation metrics between predicted and actual
values. Figure 3 displays the training results obtained using two experiments for different
prediction lengths (indicated by colors). The R values range from 0.8 to 0.96, indicating that
both experiments have achieved good results for different prediction lengths. However,
upon comparison, it was concluded that the results obtained by training with EXP4 were
significantly better than EXP10. This is evident in the distribution of the squares, which
is consistently below the circles of the same color, indicating a higher correlation than
the results obtained by training with all variables. In addition, the ubRMSD of EXP4 is
significantly lower than EXP10, which shows that for different prediction lengths, EXP4
gives better results than EXP10. The Std in the Taylor diagram is the ratio value between
the Std of predicted data from the model and true values. The ratio closer to 1 indicates
the better prediction of results. As can be seen from the Taylor diagram, for a prediction
length of 3, EXP10 is slightly better than EXP4. However, EXP4 outperforms EXP10 in the
rest of the predicted lengths. Combining the three evaluation metrics, EXP4 achieves a
better performance. To verify this conclusion, the test set samples of the two experiments
were stitched together, and the MSE was calculated for predicting day one to day ten,
respectively. The mean of the ten-day prediction MSE reached 0.169 for the EXP4 and only
0.272 for the mean of the EXP10, which further confirms the previous conclusion.

While deep learning methods often require a substantial amount of data to produce
optimal results, the size of the dataset does not always guarantee improved performance.
The properties of the data and the model itself can significantly impact the training outcome,
and it is essential to evaluate them within the context of the specific experiment. In our
experiment, we obtained favorable outcomes for EXP4. By focusing on the important
variables, the model could more easily discern the time series’ characteristics. Furthermore,
increasing the data quantity did not improve the results, so we mainly present the EXP4
findings in the following section.
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Figure 3. Comparison of the results of EXP4 and EXP10: We record the predictions for the two
sets of experiments one day ahead as EXP4_1 and EXP10_1, and so on. The Taylor diagram shows
the predictive effect of different models in considering Standard deviation (dotted), Correlation

Coefficient (alternating lines and dots), and ubRMSD (dashed).

The MAE is commonly used to assess the deviation between the predicted and actual
SAPEI values; it is calculated in a way that avoids the influence of some extreme values
on the overall results, making the results more stable [57-59]. Figure 4 shows that the
MAE of the test set gradually rises as the prediction length increases. The MAE for each
prediction length is shown as a red line, and the shaded area indicates the standard
deviation. Although the effect becomes progressively worse as the prediction length
increases, the MAE for the next ten-day forecast of the FHR basin remains stable below 0.4,
indicating that the model’s performance is generally relatively consistent.
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Figure 4. The MAE from 1- to 10-day prediction, and the shaded area indicates the standard deviation.

This study also applied the NSE and KGE to evaluate the model’s predictions; Table 5
shows the different evaluation metrics of the model in the test set. It can be seen from
Table 5 that the model’s predictions are more accurate when the prediction length is 1 day
(PL1) or 3 days (PL3). However, the model’s predictions deteriorate when the prediction
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length increases. When the prediction length changes to 9 days (PL9), the R of the predicted
results is acceptable, and in terms of the KGE, the model does not give accurate predictions.

Table 5. Evaluation metrics for models with different prediction lengths.

Prediction Length NSE KGE MSE R
PL1 0.922 0.875 0.046 0.961
PL3 0.845 0.757 0.091 0.923
PL5 0.736 0.522 0.154 0.877
PL7 0.637 0.438 0.212 0.830
PL9 0.508 0.122 0.286 0.793

In order to provide a more intuitive representation of the model’s prediction perfor-
mance, we extracted the prediction results on days 1, 3, 5, 7, and 9 for the test set samples
and plotted time series graphs for comparison. Figure 5 displays the time series of predicted
values and true values from 2011 to 2020. The true value is represented by the black line,
which is the SAPEI calculated from meteorological data. The other five colors correspond
to the five different prediction lengths. For each predicted time series, we calculated the
R and MSE. The model performed the best in predicting the next day, with an R of 0.96.
As the prediction time increased, the effect of model deteriorated slightly, but the overall
performance remained relatively stable. Severe drought events were defined as SAPEI
values below —1.5, which are represented by a black dashed line in the figure. Although
the frequency of severe drought events in the FHR basin was low over the past decade, the
model accurately predicted them. Additionally, the model showed promising performance
in predicting gradual climate changes from wet to drought conditions.
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Figure 5. The true and predicted SAPEI values; five different prediction lengths were selected for
presentation. The black line indicates true SAPEI values, and the other colored lines indicate 1-day,
3-day, 5-day, 7-day, and 9-day predictions, respectively. The dotted line indicates a SAPEI value of
—1.5, beyond which, it is a severe drought.

Then, the prediction performances of different SAPEI categories as listed in Table 2
were evaluated using the ten-year test dataset spanning from 2011 to 2020 (as shown in
Figure 6). Clearly, the prediction bias increased for SAPEI extremes with increasing predic-
tion lengths. From a model training perspective, this is not unexpected since the SAPEI has
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fewer extreme samples, making it difficult for the model to learn their features, leading to
relatively poor prediction skills. It is striking to find that the used model overestimated
the drought conditions and underestimated the wet conditions. The prediction biases
of drought events are relatively smaller than those of wet events, indicating the better
performance of the used model for drought prediction.
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Figure 6. The prediction BIAS of each SAPEI category at different prediction lengths.

3.2. Predicting Severe Drought

We used a case of severe drought to evaluate the model performance. In early 2019,
there was high temperature with significant precipitation deficit in the HHH region, leading
to a severe drought. Such a drought event is reflected in the SAPEI data, and thus, we
used it for the case study. In Figure 7a, 1-day, 3-day, 5-day, 7-day, and 9-day predictions
against the realistic SAPEI values are shown. There was significant precipitation deficit in
March, and PET was increasing due to high temperature, which caused a decreasing SAPEI
and thus a severe drought. In April, several precipitation events alleviated the drought. It
appears that the basin-scale severe drought event was well predicted by the used model,
especially when short prediction lengths were used, suggesting the model’s credibility in
the prediction of extreme events.
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Figure 7. (a) The SAPEI predictions in early 2019 in the FHR basin. The black line represents the real
SAPEI value, and the other colored lines represent the predictions at different lengths. (b) The PRE
and PET.
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4. Discussion

In this study, the SAEPI was selected as a drought index to assess drought conditions in
the FHR basin. We used a deep learning approach to predict the next 10 days of drought in
the FHR basin. Overall, the predictions of the model are accurate. As shown in Figure 5, the
model’s R reaches 0.79 even when the prediction length is 9 days. However, the accuracy
of model predictions inevitably decreases as the length of the prediction increases; this is
also consistent with previous research [60]. The higher prediction accuracy obtained by
using fewer key variables for training also reflects that deep learning can overcome the
limitations of numerical weather prediction [61,62]. Xu et al. [26] have demonstrated that
deep learning methods can efficiently process time series, while our study takes spatial
factors into account, making the prediction of drought more scientific. The training data
for the model contain non-meteorological parameters, which also has some limitations.
Non-meteorological parameters enhance prediction accuracy, but they are calculated from
meteorological parameters and are not independent.

Although the experiment used these as key variables affecting drought, it does not
mean that the other variables have little influence on drought. Temperature changes can also
have a significant impact on drought conditions [63]. We also tried to add variables such as
temperature and wind speed for training; the results were stable, but the optimal solution
was not obtained. We need to note that a single increase in predictors does not necessarily
improve model performance [19]. Dikshit et al. [64] mentioned that exploring the effects
of different meteorological elements in drought prediction can improve the accuracy of
predictions. The purpose of this study is to make timely and effective predictions of short-
term drought; this contributes to a timely response by policy makers, farmers, and other
stakeholders [65].

In our study, we calculated mean values for the SAPEI within the FHR basin to
produce labels for our model. While this approach provides an overview of the drought
situation in the study area, it also presents a challenge of weakening extreme values that
could significantly impact the overall analysis. In addition, predictor selection plays an
important role in drought prediction [25]. Our study takes into account the influence of
the spatial environment; in addition to natural factors, the impact of human activities
on climate change should not be ignored. Combining the impact of multiple factors will
allow us to refine our model, contributing to the development of better disaster prevention
strategies.

5. Conclusions

Our study utilized a deep learning method to predict drought in the FHR basin on
a daily scale. Our methodology takes into account the effects of multiple meteorological
elements and spatial scales on drought. The results of the study show that the prediction
accuracy of the model decreases with increasing prediction lengths. As can be seen in
Table 4, the NSE of the prediction results reaches 0.922 when the prediction length is 1 day,
but the accuracy of the model decreases when the prediction length increases. The long-
term prediction of the model did not reach a high level of confidence in terms of the KGE.
However, previous studies have also demonstrated that this is an acceptable phenomenon.

It is concluded from our study that for predicting drought in the FHR basin, EXP4,
which used the important variables affecting drought as network inputs, obtained a better
result compared to EXP10. We used relatively little data to obtain better predictions.
Capturing the characteristics of several important variables that affect drought allows the
model to make more effective predictions. This reduces computational costs significantly
compared to traditional numerical weather prediction methods [62].

The model is able to capture fluctuations in SAPEI and predict heavy drought events
in advance, which effectively mitigates the losses caused by natural disasters. Timely
access to drought-related early warning information is key for early warning institutions
to select adaptation strategies [66]. Therefore, this research has important implications in
drought prevention.
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Abstract: The Lancang-Mekong River Basin (LMRB) is one of the major transboundary basins globally,
facing ongoing challenges due to flood and drought disasters. Particularly in the past two decades, the
basin has experienced an increased frequency of meteorological drought events, posing serious threats
to the local socio-economic structures and ecological systems. Thus, this study aimed to analyze
the meteorological drought characteristics in the LMRB and identify the impact and correlation of
atmospheric circulation on the meteorological drought in the basin. Specifically, the different levels
of meteorological drought events were defined using the Run Theory based on the seasonal and
annual SPEI from 1980 to 2018. The time lag correlation between meteorological drought events
and the EI Nino-Southern Oscillation (ENSO), Arctic Oscillation (AO), North Atlantic Oscillation
(NAO), and Pacific Decadal Oscillation (PDO), were analyzed in the LMRB. Our results indicated
that, from a temporal perspective, the period from November to April of the following year was
particularly prone to meteorological droughts in the basin. In terms of spatial distribution, the primary
agricultural regions within the basin, including Thailand, Eastern Cambodia, and Vietnam, were
highly susceptible to meteorological droughts. Further analysis revealed a teleconnection between
drought events in the LMRB and atmospheric circulation factors. The sensitivity of the basin’s
drought timing to its response decreased in the order of the ENSO > AO > NAO > PDO. In general,
the ENSO had the most substantial influence on drought events in the basin, with the strongest
response relationship, while the upper reaches of the basin displayed the most significant response to
the AO; the occurrence and progression of meteorological droughts in this area synchronized with the
AO. These findings enhance our understanding of drought-prone areas in the LMRB, including the
meteorological factors and driving mechanisms involved. This information is valuable for effectively
mitigating and managing drought risks in the region.

Keywords: meteorological drought; atmospheric circulations; lag response; Lancang-Mekong
River Basin

1. Introduction

A meteorological drought refers to an imbalance in the water balance caused by
evaporation exceeding precipitation over a certain period, typically indicated by a shortage
of precipitation [1]. The world is currently undergoing climate change, manifested by
a rise in temperatures [2]. This temperature increase has led to a reinforcement of the
water cycle, subsequently impacting precipitation, evaporation, and runoff [3]. Anomalous
variations in ocean temperatures or atmospheric circulations are increasingly impacting
regional climates [4]. This has amplified the frequency and severity of meteorological
droughts, disrupting and posing threats to the economic development and ecological
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systems within the basin [5,6]. Therefore, it is imperative to delve into the spatio-temporal
characteristics of meteorological droughts in the basin and unravel the intricate patterns
governing their evolution [7]. These efforts are crucial for enhancing the basin’s resilience
against drought risks.

In terms of drought quantification, assessment, and monitoring, drought indices
serve as crucial parameters for investigating drought characteristics [8]. Currently, the
Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Index (SPI) are
widely employed as drought indices for monitoring and analyzing global and regional
drought phenomena [9,10]. Nonetheless, in the backdrop of global change, the escala-
tion in temperature has emerged as a significant factor intensifying the drought process.
Consequently, an objective depiction of the drought situation necessitates the combined
impact of alterations in precipitation and temperature [11]. The Standardized Precipitation
Evapotranspiration Index (SPEI) provides an enhanced approach to evaluating drought
conditions as it effectively incorporates the impacts of both precipitation patterns and
potential evapotranspiration fluctuations. This comprehensive index seamlessly integrates
the sensitivity of the PDSI to variations in evaporation demand, induced by temperature
oscillations and trends. Additionally, it harnesses the simplicity of the computation as-
sociated with the SPI, while simultaneously leveraging its inherent multi-temporal and
spatial characteristics [12]. This makes it an ideal instrument for monitoring desertification
and studying the impact of warming on the desertification process [13,14]. The World
Meteorological Organization (WMO) currently recognizes and endorses the SPEI as the
primary meteorological indicator for monitoring meteorological droughts [14]. It is now
widely employed across various global regions [13,15] and has demonstrated considerable
applicability within the LMRB [16].

In terms of the mechanisms of drought formation, past research has primarily focused
on issues such as the relative contribution of local land-atmosphere interactions to drought
formation [17]. However, it is now recognized that atmospheric circulation factors, includ-
ing the ENSO, NAO, AO, and PDO, can have a significant impact on drought formation
over longer periods of time [18,19]. As a large-scale atmospheric phenomenon on a global
scale, anomalies in atmospheric circulation can lead to sudden changes in temperature and
evapotranspiration, altering the spatio-temporal distribution of precipitation and resulting
in regional drought events. This climatic phenomenon is also known as teleconnection [20].
At the same time, atmospheric circulation has proven to have stable periodicity and per-
sistence, and its impact on regional climate has a lag effect [21]. Therefore, the use of
atmospheric circulation factors to predict meteorological drought events has become one of
the hotspots, and has been used in China [19], Africa [18], Iran [22], and other countries [16],
as well as in the Pearl Lake Basin [21], and the Yangtze River Basin [23]. Consequently,
establishing a robust response relationship between atmospheric circulation patterns and
meteorological drought indices within a basin can significantly contribute to a profound
analysis of the mechanisms underlying drought occurrence and progression. This, in
turn, facilitates effective intervention strategies and preventive measures against recurrent
drought events in the basin [24].

The LMRB is globally recognized as one of the most crucial transboundary basins,
offering invaluable water and energy resources, freshwater resources, and ecological re-
sources to the countries within the basin [25,26]. It not only serves as the pillar of fishery
development and food production in the riparian countries, but also acts as the economic
link among the countries in the basin [27]. However, in recent years, the LMRB has been
experiencing a worrisome escalation in both the frequency and severity of drought events,
primarily attributed to the pervasive influence of global climate change. This distressing
trend has resulted in far-reaching consequences for various sectors, including domestic
water consumption, agricultural irrigation, ecological balance, and navigational activities
across the countries encompassing the basin [28,29]. Thus, this study aimed to analyze the
meteorological drought characteristics in the LMRB and identify the impact and correla-
tion of atmospheric circulations on the meteorological drought in the basin. The specific
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research was as follows: (1) We analyzed the spatio-temporal variation characteristics
of SPEI through the Run Theory and Mann-Kendall test to clarify the spatio-temporal

evolution characteristics and changing trends of meteorological droughts in the LMRB.

(2) By examining the time-lag correlation between atmospheric circulation indices and
SPEI, we established a reliable basis for monitoring and predicting meteorological drought
in the LMRB.

In comparison to previous research, the novelty of this manuscript is reflected in the
following aspects. Firstly, this study diverges from the conventional approach of utilizing
a 6-month time scale of SPEI Instead, it takes into consideration the distinct wet and dry
seasons in the LMRB, calculating the SPEI separately for the dry season (November to
April) and the rainy season (May to October). This approach provides a more accurate
depiction of the characteristics and trends of meteorological drought during both the dry
and rainy seasons. Secondly, this study analyzed the teleconnections between atmospheric
circulation patterns and drought and provided insights for predicting meteorological
droughts in the LMRB. Furthermore, the research findings enable real-time monitoring of
the synchronicity or lagged effects between the ENSO, AO, NAO, PDO, and meteorological
drought. This allows for the implementation of effective measures in preventing and
mitigating meteorological drought events within the basin. Ultimately, these findings serve
as valuable scientific foundations for water resource management in the LMRB.

2. Materials and Methods
2.1. Research Area

The Lancang-Mekong River originates in Qinghai Province, China, traverses the
Tibet Autonomous Region and Yunnan Province, and meanders through Myanmar, Laos,

Thailand, Cambodia, and Vietnam, ultimately converging with the South China Sea to the
west of Ho Chi Minh City, Figure 1a [30].
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Figure 1. Location of the LMRB. (a) Location and water system distribution, (b) Elevation, (c) Land
use types, (d) Climate type, (e) Average precipitation.

The LMRB covers an area of approximately 812,400 km?, with a main stream that
stretches about 4880 km in length, making it the first longest river in Southeast Asia [31].
Figure 1 illustrates the geographic location, water system distribution, elevation, and land
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use types. The rainy season (May to October) in the LMRB is dominated by the southwest
monsoon from the ocean, resulting in a humid and rainy climate [32]. Conversely, during
the dry season (November to April of the subsequent year), the basin is influenced by
the northeast monsoon from the continent, leading to dry and less rainy conditions [7].
Generally, the annual precipitation upstream of the Lancang River is less than 1000 mm,
while it is approximately 1500 mm downstream. The average annual precipitation in
the Mekong River basin, on the other hand, exceeds 1500 mm [27]. The climate in the
Lancang River basin exhibits a variety of climate types, with an annual average temperature
range of 21 °C to 4.7 °C. In contrast, the temperature in the Mekong River basin shows a
relatively uniform variation, with an annual average temperature ranging from around
25 °C to 27 °C [33]. The average annual runoff is approximately 4.75 x 10'! m3 of the
LMRB, and the land utilization status in the LMRB exhibits regional variations, as depicted
in Figure 1b,c. The Mekong Delta, Khorat Plateau, and Tonle Sap Lake Basin are the
predominant agricultural cultivation areas in the region (Figure 1b,c) [34]. Owing to its
unique geographical location, diverse climate types, and high sensitivity to climate change,
the LMRB has become a focal point for global climate change research [27].

2.2. Materials and Methods
2.2.1. Meteorological Data

This study utilized meteorological data, including precipitation and temperature,
obtained from the Climatic Research Unit TS v.4.03 (CRU) database (https://crudata.uea.ac.
uk/cru/data/hrg/cru_ts_4.03/ accessed on 1 January 2021). The CRU database provides
monthly-scale data with a spatial resolution of 0.5° x 0.5°. The advantage of using the CRU
dataset to calculate SPEI is that the CRU dataset is obtained based on a large number of site
data, with excellent data quality, comprehensive coverage, and continuous time series [35].
Considering that calculating the SPEI index requires at least 30 years of meteorological
data, the CRU database has sufficient data support in this regard [4].

The bias in the CRU data has been corrected using data from meteorological stations
in the LMRB. Our approach entails interpolating CRU data to specific meteorological obser-
vation stations within the study area with data sourced from the China Meteorological Data
Network. When choosing interpolation methods, we employed two prevalent techniques:
inverse distance weighted interpolation and bilinear interpolation. The calculation methods
or basic principles of the two interpolation methods selected in this study were as follows.

Specifically, the calculation method employed the inverse distance weighted interpo-
lation as: n 1y
i=1 [ P&

- M

n
=1 (oy)”

N>
Il

In the equation above, Z represents the estimated value, Z; represents thei (i = 1,
..., n) sample, and D; represents the power of distance. P is a weighting factor that
has a significant influence on the interpolation results. The selection criterion is based
on the minimum average absolute error. Generally, higher powers result in a smoother
interpolation effect. In this specific context, P was chosen as 2, which corresponded to the
inverse squared distance.

The bilinear interpolation algorithm geometric operation is generally defined as
follows:

g(xy') =f(xy) = fla(x,y),b(xy)] €

In the equation above, g(x’,y’) represents the output image, f(x,y) represents the
input image, and the function a(x,y), b(x,y) describes the spatial relationship between the
two in the Cartesian coordinate system.
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To evaluate the accuracy of these methods, we conducted an analysis based on statisti-
cal measures including the correlation coefficient I, mean absolute error (MAE), and root
mean square error (RMSE). The specific calculation methods are as follows:

R — S - 3)
i (y; — Vi)z
MAE — @ )

©)

“__ 1

In this context, “R” symbolizes the correlation coefficient, while “n” represents the
sample size, and “y;” and “y,”, respectively, allude to the CRU data and the site data. The
domain of “R” is [0,1], whereby values closer to 1 signify heightened data consistency. The
range of MAE is [0,—o0], with an optimal value of 0. Similarly, the range of RMSE is [0,—o0],
with an optimal value of 0.

These metrics were derived from the validation results and are presented in Table 1
to provide a comprehensive overview. The bilinear interpolation results were found to
align more closely with the actual measurements (Table 1), leading us to select bilinear
interpolation for calibrating anomalous values in this study.

Table 1. Verification of the bias correction results for the meteorological station data in the study area
compared to the corresponding CRU precipitation and temperature data.

Method Data Type R MAE RMSE
. . . . Temperature 0.756 8.21 10.56
Distance weighted interpolation Precipitation 0.864 6.34 7 69
e . . Temperature 0.951 2.32 4.82
The bilinear interpolation Precipitation 0,935 3.03 418

2.2.2. Atmospheric Circulation Indices

Based on the current understanding of important teleconnections of atmospheric
circulations to regional climate variability, this study selected the most commonly used
four atmospheric circulation factors (Table 2). The monthly time series (1980-2018) for
all these four atmospheric circulations were obtained from different sources and they are
given in Table 2.

Table 2. Summary of atmospheric circulation indices used.

NO Atmospheric Circulation ID Data Source
1 EI Nino-Southern Oscillation ENSO NOAA Physical Sciences Division (PSD)
2 North Atlantic Oscillation NAO NOAA Climate Prediction Centre (CPC)
3 Arctic Oscillation AO NOAA Physical Sciences Division (PSD)
4 Pacific Decadal Oscillation PDO National Centre for Atmospheric Research (NCAR)

2.2.3. Standardized Precipitation Evapotranspiration Index

The LMRB exhibits well-defined seasonal variations, characterized by distinct dry and
wet seasons. The wet season spans from May to October, while the dry season extends
from November to the subsequent April. However, due to climate and environmental
changes, meteorological droughts have become increasingly frequent in the region, affect-
ing both the rainy and dry seasons and exacerbating the overall impact of drought [7].
The SPEI is suitable for monitoring the characteristics of meteorological droughts under
global warming [36], due to the advantageous feature of SPEI encompassing multiple time
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scales [32]. Therefore, this paper calculated the SPEI on different time scales of 1 month,
6 months, and 12 months for 38 years, respectively. A one-month SPEI (SPEI-1) can indicate
the occurrence of drought on a monthly basis. A three-month SPEI (SPEI-3) can depict
the seasonal moisture conditions. A six-month SPEI for both the wet and dry seasons
can, respectively, represent the moisture conditions of the basin during these periods. A
twelve-month SPEI (SPEI-12) can demonstrate the persistence of interannual moisture
conditions.

The SPEI index calculation method in this paper is based on Vicente-Serrano [37].
Given that the Thornthwaite method is more practical in the absence of complete and
high-quality meteorological data [38], this paper utilized the Thornthwaite method to
compute the potential transpiration (PET) for the LMRB.

Subsequently, the disparity between monthly precipitation and potential evapotran-
spiration was computed:

Dm = Pm — ETom (6)

where, m is the number of months, P, is the monthly precipitation, and ETyy, is the
potential evapotranspiration.
Third, Dy, is aggregated and normalized according to different time scales:

{Din,n - Z]'£134+n Dm-1+Y%Dmj ,n<i )
D}n,n = Z]n:nfiJrl Dm,j ,n>i
Then, fitting Dy, using log-logistics:
511
048
F(D) = 1+(D—v> @

where, the parameter «, 3, and 'y denote the scale, shape, and position parameters estimated
by linearity, respectively.
Finally, we can normalize the cumulative probability density:

_ _ C1+COW+C3w
SPEl =W T+tyw+thwZ+cawd ©)

W= /~2In(p)

In the equation, when |p| < 0.5,p = 1—p;and whenp > 0.5,p =1 —p, ¢; =2.515517,
¢y = 0.802853, c3 = 0.010328, t; = 1.432 788, t, = 0.189269, t3 = 0.001308 [10].

Considering the geographical attributes of the LMRB along with relevant research, the
drought conditions prevailing in this region are categorized into five distinct levels based
on the SPEI, as presented in Table 3.

Table 3. The classification of meteorological drought and wetness grade based on SPEIL

Level Type SPEI Value
1 Normal/Wetness —0.5 < SPEI
2 Mild drought —1.0<SPEI < —-0.5
3 Moderate drought —15<SPEI< —1.0
4 Severe drought —20<SPEI< —15
5 Extreme drought SPEI < —2.0

2.2.4. The Run Theory

The Run Theory, initially introduced by Yevjevich [39], has gained widespread accep-
tance in the identification and characterization of drought events. In this study, a drought
event is defined based on three predetermined criteria: (1) a persistent SPEI < 0, (2) a
duration of at least 2 months during the period of negative SPEI values, and (3) a minimum
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SPEI < —1 [40]. According to the run theory, the severity of a drought is determined by
summing the SPEI values that fall below the specified threshold level [41,42].

Drought duration refers to the consecutive period during which the SPEI value remains
below the specified threshold level. The frequency of drought is determined by counting
the occurrences when the SPEI falls below the threshold level. The Run theory is a widely
recognized approach for identifying drought events. In this study, particular attention was
given to three essential factors for drought risk analysis: drought duration (Dd), drought
severity (Ds), and drought peak (Dp) [7]. Figure 2 depicts the three meteorological drought
events and their key features, as identified through the application of the Run Theory.

Run

time

_2 -

3 /

—4 P—D'l
d

Figure 2. Run Theory identifies meteorological drought variables (1, 2, 3 respectively represent three
distinct meteorological drought events identified using the Run Theory).

2.2.5. Mann-Kendall Trend Test

The non-parametric Mann-Kendall (M-K) test, initially introduced by Mann and
Kendall, is widely endorsed and recommended by the WMO [43]. This test is valuable
for evaluating trends or changes in meteorological time series, as it does not rely on
specific distribution assumptions for the samples [16]. This study employs the M-K trend
testing method to compute and analyze the trend of the SPEI in the LMRB, calculated as
follows [44]:

n—-1 n
Q=L L snl) (10)
j=1 k=j+1
_ _ yvP e .
var(Q) = M- U@+ “ b, Gl - D26+ S) a
Q-1
Var(T) Q>0
2= 0 Q=0 (12)
Q+1
Var(Q) Q<0

The test statistic used in this study is denoted as ‘Q’, representing the number of
tied groups in the data, which indicates the frequency of data repetition. The length of
the data series is represented by ‘n’, and “x, j" refers to the data values at times ‘i" and
‘j’. The standardized statistic for the Mann—Kendall test is denoted as ‘Z’, with positive
and negative values indicating upward and downward trends, respectively. The trend is
deemed statistically significant at the 0.05 (or 0.01) significance level when the absolute

value of the Z-score, denoted as | Z1, exceeds or equals 1.96 (or 2.33) respectively [36].

2.2.6. Frequency of Meteorological Drought

In this study, we first identified drought events based on the Run Theory for the time
scales of rainy season, dry season, and interannually using the SPEI. Secondly, using the
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results obtained, we calculated the occurrence frequencies of drought events for different
severity levels according to Equation (13).

P, — (”N) % 100% (13)

In the above equation, “P;” is used to evaluate the frequency of drought occurrence at
a specific grid point in the study area from 1980 to 2018. “N” represents the total number
of years considered which is N = 39. “n;” represents the number of years when drought
occurred at the “i-th” grid point. The occurrence frequencies for each drought severity
level are calculated based on the number of years of occurrence for each level.

2.2.7. Cross-Correlation Function

The Cross-correlation Function (CCF) is a valuable tool for assessing the resemblance
between two variables at various time lags [45]. This method enables the determination
of correlation coefficients between variables and previous occurrences [10]. One notable
advantage of the cross-correlation approach is its ability to assess correlation coefficients at
various lags, including positive and negative lags [46]. In this study, the CCF coefficient
was used to examine asynchronous relationships between variables, considering lag times
from 0 to 12 months. The significance of these correlations was determined using a t-test at
a confidence level of 95%. Specifically, CCF was utilized to examine the lagged impact of
ocean-atmospheric oscillation patterns on drought indices. The CCF can be formulated as
follows [47]:

Ca
Iy =

- va y) (14)
6xéy-&-a

whereas the covariance and standard deviation of the sample are expressed as follows,
respectively:

Ca= ﬁ Zl (Xi =X)(Yisa = Vita)
i=
. [ 4 nca o 3
Ox = | o=k 21 (xi —%j) (15)
i=
. ] n-a %
Oy+a = |:r1—a (Yita — Xita) }

Additionally, the mean value is:

1 n—a
Xi=pa X
=
) A (16)
Yita = n-a ) Yita
1:

where, x; is the number of sample sequences and y; denotes the time lag with a unit of
month. As a rule of thumb, the absolute value of the time delay ‘a’ should be less than
n/4. It is noteworthy that this paper employs Python to conduct a 0-12 month lag cross-
correlation analysis on the SPEI-1 of each grid point within the study area from 1980 to 2018
and the monthly atmospheric circulation data. Owing to the extensive data set, the range
of correlation coefficient values was somewhat reduced. Studies indicate that although the
correlation coefficients are low, their ability to pass the significance test means that we can
discount results that are due to chance [24,44]. Thus, affirming the meaningfulness of the
relationship between drought events and atmospheric circulation factors.
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3. Results
3.1. Temporal Variation Characteristics of LMRB Drought

This study identified meteorological drought events and their characteristics in the
LMRB using the Run Theory. Figure 3 illustrates the variations in SPEI at 1, 3, 6, and
12 months throughout the study period (1980-2018).

1980 1990 2000 2010
Figure 3. Temporal variation of SPEI at different time scales in the LMRB-based Run Theory (Blue

represents positive values of SPEI, while red represents negative values of SPEI).

As illustrated in the figure, the SPEI showcased distinct oscillations between positive
and negative values, particularly on the temporal scales of 1 month and 3 months. Generally,
with an increase in the time scales, the cumulative effects of the SPEI became more obvious
with longer wet and dry periods. This observation implies that the LMRB undergoes
frequent transitions between periods of dryness and wetness, both on a monthly and
seasonal timeframe. From November to April of the subsequent year, the SPEI consistently
showed negative values, indicating a period that was susceptible to meteorological drought.
Moreover, it is evident that since 1990, there is a potential for meteorological drought events
to occur in all months of the year, and the risk of meteorological drought in summer and
autumn has escalated. From SPEI-6 and -12, it is apparent that the basin had significant
and continuous negative values in 1983, 1987-1989, 1991-1993, 1998, 2004, 2005, 2009—
2010, 20122013, and 2015-2016. This suggests that meteorological drought events may
have transpired in these years. Furthermore, we have statistically analyzed the duration,
severity, and intensity of drought across different SPEI time scales, culminating in the
results presented in Table 4. Our findings indicate that with the extension of the SPEI time
scale, both the duration and severity of meteorological drought events in the LMRB tend to
increase. The average durations of SPEI-1, SPEI-3, SPEI-6, and SPEI-12 are 6, 10, 13, and
18 months, respectively. By classifying meteorological drought levels based on the SPEI
(as shown in Table 3), and considering the temporal variability of SPEI-6 and SPEI-12 as
depicted in Figure 3, it was revealed that for the meteorological drought events occurring
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in the LMRB during the periods of 1991-1993, 1998, and 2015-2016 (Table 4), the severity of
these drought events surpassed the average level of previous years.

Table 4. Historical drought characteristics of SPEI at 1-, 3-, 6- and 12-month time scales.

Time Scale Number of Events Average Duration Average Severity Average Intensity
1 82 6 4.57 1.33
3 50 10 8.06 1.43
6 29 13 10.45 1.67
12 17 18 13.56 1.45

3.2. Spatial Variation Trend of LMRB Drought

In light of the distinct wet and dry seasons characteristic of the LMRB, this study
proceeded to calculate the SPEI for both seasons within the basin, with a temporal resolution
of May to October (wet season) and November to April of the following year (dry season),
each spanning a 6-month period. To differentiate from the previously mentioned SPEI-6,
the SPEI values for the dry and wet seasons in this study are denoted as SPEI-dry and
SPEI-wet, respectively. Based on the drought classification criteria, this study categorized
the drought events in the LMRB between 1980 and 2018 into various levels of drought
severity. In particular, a drought event is categorized as mild when the SPEI value drops
below —0.5 but remains above —1.0. A moderate drought is identified when the SPEI value
is less than —1.0 but more than —1.5. A severe drought is recognized when the SPEI value
is less than —1.5 but more than —2.0, and an extreme drought event is characterized by
an SPEI value below —2.0. This section calculates and analyzes the spatial variations of
SPEI-dry, SPEl-wet, and SPPEI-12 during the period of 1980-2018. The objective of this
research was to portray the frequency of drought occurrences in the LMRB from 1980 to
2018 by evaluating the proportion of drought events across different levels of severity
during the specified study period. Figure 4 visually demonstrates the spatial distribution
of drought frequency at various severity levels within the LMRB.

By analyzing the occurrence frequencies of different levels of meteorological droughts
during different time periods (rainy season, dry season, and interannual), it can be observed
that the frequency of mild meteorological drought was the highest in this basin, followed
by moderate, severe, and extreme meteorological drought events. Furthermore, the dry
season served as the peak period for meteorological drought events. The frequencies of
mild, moderate, severe, and extreme meteorological drought occurrences were 17.94% to
51.28%, 0% to 25.64%, 0% to 20.51%, and 0% to 10.25%, respectively (Figure 4e-h).

It is worth noting that the occurrence frequency of meteorological droughts was
higher during the rainy season. The frequencies of mild, moderate, severe, and extreme
meteorological drought occurrences during this period were 12.84% to 41.08%, 0% to 23.07%,
0% to 17.94%, and 0% to 10.25%, respectively, as shown in Figure 4a—d. Further statistical
analysis and comparison of the different levels of meteorological drought occurring during
the rainy season and dry season within the basin revealed the following patterns: After
further statistical comparison of different levels of meteorological drought occurring during
the wet and dry seasons within the basin, we found that during the wet season, the Three
Rivers Source Region, the lower of the Lancang River, the Northern Plateau, and the Tonle
Sap Lake Basin were high-incidence areas for mild meteorological drought; the Khorat
Plateau was a high-incidence area for severe meteorological drought events, with a low
frequency of extreme drought during the wet season, and occasional occurrences of extreme
meteorological drought in the Long Mountains area, as shown in Figure 4a—d.
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Figure 4. The spatial variation of meteorological drought frequency at different severity levels in the
Lancang-Mekong River Basin ((a-d): variation of meteorological drought frequency during the wet
season, (e-h): variation of meteorological drought frequency during the dry season, (i-1): variation of
meteorological drought frequency in interannual).
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However, the spatial differentiation of different levels of meteorological drought events
was more pronounced during the dry season. As can be seen from Figure 4e-h, the western
parts of the Lancang River Basin, the Northern Plateau, and the Khorat Plateau were
high-incidence areas for mild meteorological drought (Figure 4e) and severe meteorological
drought (Figure 4f); the high-incidence area for severe meteorological drought events was
the eastern part of the Northern Plateau (Figure 4g). Compared to the rainy season and
dry season, at the annual scale within the basin, the occurrence frequency of different
levels of meteorological drought was relatively average. The high-frequency zone for mild
meteorological drought was located in the western parts of the Khorat Plateau and the
Tonle Sap Lake Basin, as shown in Figure 4i. The western part of the Northern Plateau
was the high-frequency zone for moderate meteorological drought (Figure 4j), while the
lower reaches of the Lancang River were the high-frequency zone for severe meteorological
drought (Figure 4k). By comparing the occurrence frequencies of meteorological drought
in the same region at different time scales, we obtained the following information. Whether
during the rainy season or dry season, the occurrence frequency of mild meteorological
drought in the Lancang River basin was higher than in other areas of the basin, with an
average occurrence rate of approximately 25%. The occurrence frequencies of moderate
and severe meteorological droughts in the downstream area of the basin were higher than
in the upstream area, primarily concentrated in the western parts of the Northern Plateau,
Khorat Plateau, and Tonle Sap Lake Basin, as shown in Figure 4c,f,g.

It is worth noting that the upper reaches of the Lancang River basin, Khorat Plateau,
Mekong Delta, and the central part of the Tonle Sap Lake Basin were high-frequency zones
for extreme meteorological drought events. We observed that extreme meteorological
drought events primarily occurred in the Khorat Plateau, Tonle Sap Lake Basin, and
Mekong Delta during the rainy season, with occurrence frequencies that ranged from
2.5% to 10.25%, as shown in Figure 4d. On an annual scale, the upper reaches of the
Lancang River Basin, and the northern and eastern parts of the Khorat Plateau, had a
frequency of extreme meteorological drought events ranging from 2.5% to 10.25%, which
was higher than other areas, as shown in Figure 4i. In summary, the LMRB has the highest
frequency of mild meteorological drought, with nearly the entire basin experiencing such
events from 1980 to 2018. At the same time, the high-incidence areas for moderate and
severe meteorological drought were concentrated in the Northern Plateau and the Khorat
Plateau. Extreme meteorological drought events (SPEI < —2) occurred throughout the
basin between 1980 and 2018, with a frequency of 0 to 10.26%, and the incidence of extreme
drought events (SPEI < —2) was notably prevalent in the upper reaches of the Lancang
River, Khorat plateau, Tonle Sap Lake Basin, and the Mekong Delta (Figure 4c,f,j k). It
is noteworthy that despite the LMRB being situated in the heart of the Asian tropical
monsoon region, and being influenced by the southwest monsoon from May to the end
of September characterized by high humidity and heavy rainfall, meteorological drought
events still persisted (Figure 4a-h).

3.3. Spatial Variation of Drought Trends in Dry and Wet Season

Based on the aforementioned analysis, it is evident that meteorological drought occur-
rences are apparent in the LMRB, even during the rainy season. Therefore, we calculated
and analyzed the trends of SPEI-dry, SPEI-wet, and SPEI-12 using the Mann-Kendall trend
test. This study further analyzed the dry-wet trend in the basin during the dry season and
rainy season, and annually (Figure 5).
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Figure 5. Spatial variation of meteorological drought and wetness trends in the LMRB (a) wet season
(b) dry season (c) annual, * represents that the trend of SPEI has passed the significance test at the
0.05 level. ** represents that the trend of the SPEI has passed the significance test at the 0.01 level.

From the preceding analysis, it was evident that meteorological drought events tran-
spired in the LMRB even during the rainy season. Therefore, this study further analyzed
the dry-wet changes in the basin during the dry season and rainy season, and annually
(Figure 5a,b). During the rainy season, the drought trends in the Long Mountains region
of the basin, as well as in the Tonle Sap Lake Basin and Mekong Delta, were statistically
significant (p < 0.01), while the Northern Plateau region showed a significant moistening
trend (p < 0.05), as shown in Figure 5a. During the dry season, the upper reaches of the
LMRB, as well as the Khorat Plateau and the central part of the Tonle Sap Lake Basin,
exhibited a drying trend, while the Northern Plateau showed a moistening trend, although
not statistically significant, as shown in Figure 5b. This also indicated that the changes in
wetness during the rainy season were more pronounced in the LMRB, as shown in Figure 5a.
Further investigation showed that, regardless of the season, the northern plains within the
basin (encompassing Myanmar, southern Laos, and southern Thailand) demonstrated a
significant trend towards wetter conditions, as shown in Figure 5a,b. On an annual scale,
the dry-wet changes in the LMRB aligned closely with those observed during the wet
season, as shown in Figure 5c. The middle and lower reaches of the Lancang River, the
eastern segment of the Khorat Plateau, the Tonle Sap Lake Basin, and the Mekong Delta
revealed a discernible propensity towards drought (p < 0.01), while the northern plateau
exhibited a pronounced trend towards wetter conditions (p < 0.01). The dry-wet change
trends in other areas were not significant, as shown in Figure 5c. Therefore, overall, the
changes in dryness and wetness in the basin showed spatial heterogeneity. The northern
region has abundant precipitation and large river flow, and the trend of wet changes is
becoming more significant. Nevertheless, during both the dry and rainy seasons, key areas
with elevated water demand, such as fisheries and agriculture, exhibit a noteworthy trend
towards desertification, such as the Mekong Delta. Therefore, in these regions where there
is a significant differentiation between dryness and wetness, the possibility of suffering
from drought/flood disasters will increase.
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3.4. Response of the Meteorological Drought to Atmospheric Circulations

The influence of atmospheric circulation factors on meteorological elements such as
precipitation and temperature is a continuous process. It requires a certain amount of
time to culminate in a meteorological drought event, a phenomenon referred to as “lag
response” [24]. Therefore, this study aimed to explore the long-distance connection between
the changes in monthly atmospheric circulation factors (ENSO, NAO, AO, and PDO) and
meteorological drought events (SPEI-1) in the LMRB. This was achieved by establishing the
lag correlation between these factors and meteorological drought events and visualizing
the spatial distribution using GIS.

As depicted in Figures 6-9 the lag correlation between atmospheric circulation factors
and meteorological drought events in the LMRB demonstrated a descending order of
response strength from the ENSO, AO, and NAO to PDO. Specifically, the meteorological
drought events in the LMRB were most sensitive to the ENSO, as shown in Figure 6. In par-
ticular, the western regions of the Mekong River basin (western Northern Plateau, western
Khorat Plateau, western Tonle Sap Lake Basin, and Mekong Delta) exhibited synchronous
meteorological drought events with the ENSO, showing a negative correlation (p < 0.05),
as shown in Figure 6 (lag-0). From the spatial distribution of the lagged cross-correlation
between the ENSO and meteorological drought, we observed that meteorological drought
in the Lancang River basin exhibited a positive lagged correlation with the ENSO. On the
other hand, meteorological drought in the Mekong River basin showed a negative lagged
correlation with the ENSO.

ENSO-SPEI

Y

(lag-10) (lag-11) (lag-12) Coefficient of lag correlation
B -0.223--0.187++[]-0.08~-0.06
B -0.187- -0.160%* [ |-0.06~ ~0.04
B-0.160--0.148* [ |-0.04-0
Bo148--0120 [Jo
l—o. 120~ -0.105  [J0~0.16
-0.105~-0.08  [Jo.16~0.17

Figure 6. Distribution of correlation coefficients between the meteorological drought and NAO in the

(lag-0)

LMRB (Lag-0, lag-1, lag-3, ... lagl2 represents lagged 0, 1, 2, 3 . . . 12 months between meteorological
drought and ENSO, * represents that correlation coefficient has passed the significance test at the
0.05 level, ** represents that correlation coefficient has passed the significance test at the 0.01 level).
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AO-SPEI
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Figure 7. Distribution of correlation coefficients between the meteorological drought and AO in the
LMRB (Lag-0, lag-1, lag-3, ... lag12 represents lagged 0, 1, 2, 3 . . . 12 months between meteorological
drought and AO, * represents that correlation coefficient has passed the significance test at the
0.05 level, ** represents that correlation coefficient has passed the significance test at the 0.01 level).

(lag-0) (lag-4)
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(lag-6)
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Figure 8. Distribution of correlation coefficients between the meteorological drought and NAO in the
LMRB (Lag-0, lag-1, lag-3, . .. lag12 represents lagged 0, 1, 2, 3 . . . 12 months between meteorological
drought and NAO, * represents that correlation coefficient has passed the significance test at the
0.05 level).
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Figure 9. Distribution of correlation coefficients between the meteorological drought and PDO in the

LMRB (Lag-0, lag-1, lag-3, . .. lag12 represents lagged 0, 1, 2, 3 . . . 12 months between meteorological
drought and PDO, * represents that correlation coefficient has passed the significance test at the
0.05 level, ** represents that correlation coefficient has passed the significance test at the 0.01 level).

Specifically, the strongest negative lagged correlation was observed on the western
bank of the Mekong River, and the lagged correlation gradually decreased from west to
east along the western bank of the Mekong River, as shown in Figure 6 (lag-0-lag-5). As the
lag time between the ENSO and meteorological drought increased, the area exhibiting a
positive lagged correlation between the two gradually expanded. However, the significance
level did not pass the statistical test, as shown in Figure 6 (lag-0-lag-12).

The lagged positive correlation between the AO, NAO, and the meteorological drought
events in the LMRB was more significant, as shown in Figures 7 and 8. The meteorological
drought in the LMRB exhibited the strongest positive correlation with the AO at a lag of
0-2 months, as depicted in Figure 7 (lag-0-lag-2). As the lag time between meteorological
drought and the AO increased, the lagged negative correlation between the two decreased,
as shown in Figure 7 (lag-3-lag-12). In the lower regions of the Lancang River basin,
meteorological drought events exhibited synchronous behavior with the AO at a significant
level (p < 0.01), as illustrated in Figure 7 (lag-0). Conversely, in the Khorat Plateau, Long
Mountains, and Tonle Sap Lake Basin of the Mekong River basin, meteorological drought
events displayed a significant correlation with a lag of 2 months to the AO (p < 0.01), as
depicted in Figure 7 (lag-2).

In contrast to the AO, although meteorological drought in the LMRB exhibited a
relatively strong positive correlation with the NAO at a lag of 0-2 months, the area demon-
strating significantly lagged cross-correlation was smaller, as shown in Figure 7 (lag-0-lag-2)
and Figure 8 (lag-0-lag-2). Notably, a significant positive lagged correlation was observed
between meteorological drought occurrences in the lower regions of the Lancang River
basin and the southern Long Mountains with the NAO, with respective lag times of 1
and 2 months, as depicted in Figure 8 (lag-1-lag-2). As the lag time increased, the area
within the basin exhibiting a positive correlation between meteorological drought and
the NAO gradually expanded. When the lag time reached 10 months, the region with a
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positive correlation between the two variables was maximized, although it did not pass
the significance test, Figure 8 (lag-0-lag-10). The lagged negative correlation between
the PDO and the meteorological drought events in the LMRB was more significant. In
meteorological drought events in the lower reaches of the Mekong River, particularly in
the northern part of the Long Mountains, there was synchrony with the PAO, displaying a
significant negative correlation (p < 0.01), as illustrated in Figure 9. Based on the research
results, monitoring the ENSO, AO, NAO, and PDO, and their synchronization or lag with
meteorological drought can help in proactively intervening and preventing drought events
in the basin.

4. Discussion

This study utilized CRU data and applied the multi-time scale SPEI (1-, 3-, 6-, 12-month)
and run theory to analyze the spatio-temporal variation characteristics of meteorologi-
cal drought in the LMRB. The findings revealed that meteorological drought events oc-
curred frequently in the basin in recent years, particularly during the periods of 20042005,
2009-2010, 2012-2013, and 2015-2016, with long durations and severe drought conditions.
These results are consistent with the historical natural disaster records of the LMRB in
the international disaster database (https://public.emdat.be/data/ accessed on 1 Octo-
ber 2023) and with the results of previous studies [27,29]. In addition, by comparing the
frequency and spatial distribution characteristics of meteorological drought events in the
rainy season and dry season, and interannually in the LMRB, it was observed that even
during the rainy season, meteorological drought events still occurred in the basin. During
the dry season, the frequency of meteorological droughts increased, particularly impacting
the upstream areas of the basin, such as Thailand, eastern Cambodia, and Vietnam. These
findings are consistent with previous results [31,48], and they also verify the applicability
of the research methods and data used in this study in the LMRB.

The LMRB is a crucial transboundary river, and the socio-economic development of
the riparian countries is heavily reliant on its water resources, with agricultural usage
comprising over 80% of the total water consumption [4,42]. However, due to uneven water
resource distribution and differences in technological levels, the overall development level
of water resources in the basin is not high [28,49]. Meanwhile, the uneven distribution
of precipitation in the LMRB, compounded by the impact of climate change, has led to
frequent meteorological drought events in the basin. These events pose severe threats
and have significant impacts on socio-economic development and production activities
within the basin [25,30]. According to the land use situation in the LMRB (Figure 1c), and
the spatial characteristics of the frequency of meteorological drought events of different
severities (Figure 4), it can be seen that the Khorat Plateau and the Tonle Sap Lake Basin,
as part of the Mekong Delta region, are agricultural planting areas. However, these areas
frequently experience meteorological drought events, especially the Mekong Delta region,
which shows a significant trend of aridification (Figure 5), increasing the risk of agricultural
planting.

According to the irrigation water use in the dry and rainy seasons in 2018 (Table 5),
it can be seen that in 2018, the irrigation water used in the dry season accounted for
the majority of the total water use in all basin countries except Thailand. However, the
water production within each basin country can support the current irrigation demand for
crop development so far (Table 5). Although Laos has abundant surface water resources,
there are few agricultural irrigation projects. Currently, there are over 700,000 hectares of
arable land, with a maximum irrigation area of 150,000 hectares during the wet season
and only 4% of the arable land can be irrigated during the dry season. Thailand has an
existing irrigation area of about 500,000 hectares, with an actual irrigation rate of less than
6% for arable land. Vietnam’s Mekong River Basin, within its territory, has rich water
energy reserves. Due to the serious problem of seawater intrusion in Vietnam, a large
amount of freshwater resources need to be consumed, leaving a small amount of water
available for use. Therefore, Vietnam mainly utilizes the water resources of the Mekong
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River for agricultural irrigation, with about 2.4 million hectares of arable land and only
500,000 hectares of irrigable area. These are issues that deserve attention, especially during
meteorological droughts, which can pose greater risks. Vietnam’s water use in the dry
season has already exceeded its capacity. Considering that the dry season is the peak period
for agricultural water use in the Mekong River Basin [25,32], and our research has found
that the main areas with high water demand for fisheries and agriculture in the basin in
recent years have shown a significant trend of drought, these areas are more likely to be
affected and threatened when a meteorological drought occurs in the basin. Therefore, it
is recommended that all regions in the basin properly manage the seasonal allocation of
water resources to ensure the agricultural production and water resource security of each
community and improve their ability to cope with Meteorological drought [50,51].

Table 5. The water resource and irrigation water of countries along the LMRB in 2018.

Type Time China Myanmar Laos Thailand Cambodia Vietnam
Basin area (10* km?) / 16.5 24 20.2 18.4 15.5 6.5
average water yield (m3/s) / 2410 300 5270 2560 2860 1660
Irrigated area (10* hm?) / 42 — 70 50 58 240
Irrigation water consumption (10° m?) Dry season 20.48 — 34.4 63.23 79.59 193.75
Rainy season 512 — 11.47 94.84 34.11 68.07

/: nothing —: no data

The prediction of meteorological drought occurrence and development is of great
significance for implementing drought mitigation measures and ensuring the sustainable
development of water resources and ecosystems in the LMRB [33]. The ENSO phenomenon
is the most important predictable source of drought in many areas worldwide, charac-
terized by its stable cycle and strong persistence [52]. Our results also indicate that the
meteorological drought in the LMRB is most sensitive to the ENSO, showing synchronicity.
Therefore, the ENSO can serve as a crucial early warning signal for meteorological drought
in the basin, effectively forecasting and intervening in meteorological drought, thereby
providing support for drought assessment, drought prediction, and early warning in this
region [53,54]. It is recommended to fully utilize the synchronicity between meteorological
drought in the LMRB and the ENSO for effective monitoring and forecasting of meteo-
rological drought [55]. Long-term drought forecasts are crucial for proactive measures,
including adjusting and optimizing crop planting strategies. For regions at high drought
risk, planting drought-resistant crops is recommended [56]. In areas with medium to low
drought risk, it is advisable to consider planting crops with higher water demand [42].
Additionally, it is important to expedite the selection and cultivation of drought-resistant
crops with specific genes [57,58]. Modern technologies such as seawater irrigation and
seawater crop cultivation can also be employed in agricultural drought prevention and
control [51,59], and can also be a topic worthy of in-depth research.

5. Conclusions

The present study determined variations and the trends of SPEI throughout the LMRB
during 1980-2018 in the rainy season, dry season, and annual scale. The annual variations
of SPEI were related to four atmospheric circulation factors. The major conclusions were:

(1) During the research period (1980-2018), the LMRB experienced frequent dry and wet
changes on a monthly and seasonal scale. November to April of the following year
is a period prone to meteorological drought. Especially after 1990, the distinction
between dry and wet years became more pronounced. The risk of meteorological
drought events increased annually, especially in 2015 with greater intensity than in
previous years, posing a significant threat to the basin.

(2) The LMRB has well-defined dry and wet seasons, with the southwest monsoon
bringing humidity and rainfall from May until the end of September. However,
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meteorological drought events continue to persist, particularly in the western region
of the Khorat Plateau, the Tonle Sap Lake Basin, where a drought trend has been
observed. These areas correspond to the main agricultural areas in the basin. The
frequency of severe and extreme meteorological droughts during the dry season
has significantly risen, particularly in the upper reaches of the Lancang River and
western Khorat Plateau. In comparison to other regions, this area experiences a higher
frequency of severe meteorological droughts, accounting for approximately 10% of
occurrences.

(3) There are differences in the response relationship between meteorological drought
events in the LMRB and different atmospheric circulations (ENSO, AO, NAO, and
PAO), with the strongest response being observed between the ENSO and meteo-
rological drought events in the basin. Specifically, meteorological drought events
occurring in the Northern Plateau, western parts of the Khorat Plateau, western parts
of the Tonle Sap Lake Basin, and the Mekong Delta exhibit synchronicity with the
ENSO. Meteorological drought events in the lower regions of the Lancang River
basin show synchronicity with the AO, and there is a significant correlation between
meteorological drought events in the Long Mountains and a lag of 2 months in the AO.

This study provides valuable insights for predicting meteorological drought in the
LMRB by analyzing the teleconnections between atmospheric circulation and drought.
Especially, the areas prone to meteorological drought and high-risk areas in the LMRB
coincide with the main agricultural areas in the basin, increasing the risk of agricultural
planting and production activities. Based on the above results, we can monitor the ENSO,
AO, NAOQ, and PDO and their synchronicity or lag with meteorological drought, intervene
and prevent meteorological drought events in the basin in advance, and provide beneficial
scientific support for effective water resource management in the basin.
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Abstract: Recent above-normal temperatures, which exacerbated the impacts of precipitation deficits,
are recognized as the primary driver of droughts in the Upper Colorado River Basin (UCRB), USA.
This research aims to enhance drought prediction models by addressing structural changes in non-
stationary temperature time series and minimizing drought misclassification through the ES-CBS-
SVR model, which integrates ESSVR and CBS-SVR. The research investigates whether this coupling
improves prediction accuracy. Furthermore, the model’s performance will be tested in a region
distinct from those originally used to evaluate its generalizability and effectiveness in forecasting
drought conditions. We used a change point detection technique to divide the non-stationary time
series into stationary subsets. To minimize the chances of drought mis-categorization, category-
based scoring was used in ES-CBS-SVR. In this study, we tested and compared the ES-CBS-SVR
and SVR models in the Upper Colorado River Basin (UCRB) using data from the Global Land Data
Assimilation System (GLDAS), where the periods 1950-2004 and 2005-2014 were used for training
and testing, respectively. The results indicated that ES-CBS-SVR outperformed SVR consistently
across of the drought indices used in this study in a higher portion of the UCRB. This is mainly
attributed to variable hyperparameters (regularization constant and tube size) used in ES-CBS-SVR
to deal with structural changes in the data. Overall, our analysis demonstrated that the ES-CBS-SVR
can predict drought more accurately than traditional SVR in a warming climate.

Keywords: Upper Colorado River Basin; drought; identification; categorization; prediction; non-stationarity

1. Introduction

The Colorado River Basin, the most overallocated basin in the world [1], provides
water to about 40 million people in the southwest United States and Mexico [2] and water
for irrigation of 2.2 million hectares of land [3]. Despite the critical importance of the
basin, the scarce water resources have faced big challenges due to climate change [4] and
anthropogenic factors [2,5], Many climate change scenarios involve decreases in the late-
summer precipitation and mean annual streamflow [6] and thus more severe droughts [7]
and more wildfires in the Upper Colorado River Basin (UCRB) [2]. The most extreme
low-frequency drought occurred in the mid-1100s, characterized by a decrease in mean
annual flow and the absence of high annual flows over six decades [8,9]. The drought from
1923 to 2004 is the worst in the recorded period, ranking 6th to 14th in magnitude and 1st
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to 12th in severity in the past 500 years [10]. The current millennium drought (2000-2022)
has an average flow far lower than the historical record [11]. Thus, it is critical to improve
identification, categorization, and prediction of drought in the UCRB.

Snow, snowpack, and snowmelt play essential roles in the UCRB’s hydrologic system.
McCabe et al. (2020) [12] demonstrated that winter precipitation deficits are the primary
drivers of droughts in the UCRB rather than warm temperature anomalies. Eight drought
periods were identified during the 1901-2014 period. The driest drought period spanned
1901-1904, whereas the longest drought period occurred between 1943 and 1956 [12]. Miller
etal. (2011) [13] indicated that the timing of the last day of the snow season corresponds
well to the volume of runoff observed over the traditional peak flow season (April through
July); conversely, the timing of the first day of the snow season does not correspond well to
the volume of runoff observed over the peak flow season [13]. Standardized precipitation
and evapotranspiration index (SPEL [14]) and standardized precipitation index (SPI; [15])
in the UCRB show similar temporal and spatial patterns, but the inclusion of temperatures
in SPEI leads to more extreme magnitudes in SPEI than in SPI [16]. Thus, it is essential to
consider temperature and snow-based drought indices in drought analysis in the UCRB.

Increasing temperatures, combined with moderate precipitation deficits and soil
moisture deficits, are causing amplifications in recent droughts. This has resulted in
marked increases in warm years with lower flows than expected, given the precipitation
received. A simple statistical model of water year streamflow with temperatures increased
by 1-4 °C in the UCRB showed reductions in flow and runoff efficiency with each degree
of warming [4,17]. Estimates of Colorado River flow sensitivity to temperature, along with
climate model-based temperature projections, indicate that continued warming will lead to
temperature-induced declines in river flow, ranging from —20% by mid-century to —55%
by the end of the century [18]. The more significant effect of warm-season temperature
(April to September) on the variability of UCRB flow suggests that evaporation or snowmelt
has driven recent reductions in UCRB flow [19]. The model simulations indicate that soil
moisture deficits could persist for 12 years or more in the future, and sustained water
supplies in parts of the UCRB will be a challenge as the climate continues to warm [20].
Soil moisture anomalies were lower than —10 mm in 15 out of 19 drought years [21].

Drought prediction in the UCRB is of interest to the researchers. Mohsin and Pilz
(2021) [22] reported a reliable forecast of the interarrival time of drought by using explicit
distribution based on the convolution of stochastic variables derived from the Bivariate
Affine-Linear Exponential (BALE) distribution. Madadgar and Moradkhani (2013) [23]
used the standardized streamflow index [24] in a multivariate probabilistic framework to
forecast spring flow (April-June) as a representative of hydrologic droughts with different
severities in the UCRB. The spring flow showed higher correlations with the previous
winter (January—March) than with fall (October-December). Two major predictors, tele-
connection indices and landscape variables, have been used for drought prediction in
the UCRB. Teleconnection—drought relationships are not highly correlated for the UCRB
compared with the southern portion of the Colorado River Basin [25]. Conversely, applying
landscape variables (e.g., precipitation, percent snow, potential evapotranspiration, soils,
and drainage area) for predicting low flow metrics has been more successful [6].

With the hydroclimatic changes due to climate change and/or variability, the validity
of historical stationarity assumptions in the hydroclimatic variables has been increasingly
questioned [26,27]. The drought prediction models are based on the stationarity assumption
that the generating process is in equilibrium around an underlying mean and that variance
remains constant over time [27]. Thus, the performances of drought prediction models may
not be satisfactory if this stationary assumption is not satisfied [28,29]. It is critical to con-
sider non-stationarity in drought prediction models [30,31]. Non-stationary and statistically
significant increases in temperature time series have been reported in the UCRB. Although
Murphy and Ellis (2014) [27] indicated no persistent reduction and non-stationary in precip-
itation and runoff time series in the UCRB, non-stationary in streamflow over decadal and
longer timescales is frequently reported in other studies. Talsma et al. (2022) [32] applied
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an unsupervised machine learning based on Non-Negative Matrix Factorization using
K-means clustering (NMFK) to efficiently identify behavioral changes in drought indicators
such as snowpack, snowmelt timing, precipitation, and evapotranspiration across space
and time and to quickly analyze and interpret hydro climate model results [32]. Significant
shifts in peak runoff have been reported in snowmelt-dominant sub-watersheds, with the
complete disappearance of the snowmelt signal for some sub-watersheds. This significant
non-stationarity makes short-term records inappropriate for most planning and forecast
applications with critical implications for the UCRB water resource management [5,33].

Change point detection methods have been increasingly used in drought studies to
overcome the above-mentioned non-stationarity problem in different models [30,34,35].
Bazrkar and Chu (2021) [26] developed a new ensemble stationary-based support vector
regression (ESSVR) method to improve the prediction of droughts in a changing climate. A
change point detection technique has been specifically coupled with the widely used SVR
to enhance its performance for drought prediction.

Accurate predictions of drought categories are crucial for stakeholders to decide how
to prepare for potential droughts. However, using the existing standard performance
metrics such as RMSE for training SVR-based drought prediction models potentially leads
to the mis-categorization of droughts since such metrics minimize the difference between
the actual and predicted values by only accounting for this numerical difference and
not categorical discrepancies. Bazrkar and Chu (2022) [36] developed a category-based
scoring SVR (CBS-SVR) method compared with the traditional SVR and support vector
classification (S5VC) since these models share some similarities in their concepts. SVR is a
numerical model with the potential for mis-categorization.

The objective of this research is to improve drought prediction in the UCRB by devel-
oping an ensemble stationery-based and category-based scoring support vector regression
(ES-CBS-SVR), which is a coupled application of ESSVR [26] and CBS-SVR [36]. The re-
search explores whether coupling these models enhances drought prediction accuracy.
Additionally, the model’s effectiveness can be further evaluated by applying it to other
regions to assess its capability in forecasting drought under varying climatic and hydrologic
conditions. This paper is organized as follows: Section 2 describes the methodology, algo-
rithm and framework of the ES-CBS-SVR model and evaluation of ES-CBS-SVR. Section 3
provides the results of ES-CBS-SVR and traditional SVR and their comparisons. Section 4
discusses the results. Finally, Section 5 presents the conclusions.

2. Methodology

The proposed ES-CBS-SVR method combines ESSVR [26] and CBS-SVR [36] to enhance
drought prediction. ESSVR addresses non-stationarity in temperature time series by
applying change point detection to divide the data into stationary subsets. SVR models are
trained on each subset, and their predictions are weighted to improve accuracy. CBS-SVR
introduces a category-based scoring approach to optimize hyperparameters, reducing
misclassification. By integrating these models, the study aims to minimize the risk of
failure in drought prediction. Figure 1 illustrates the flowchart detailing the approach for
developing ES-CBS-SVR.

2.1. Study Area

The UCRB drains an area of more than 279,720 km? in seven states (Figure 2) and
generates water for 26 million people within the basin states and the adjoining regions.
Approximately 64% of the basin is considered arid or semi-arid, with annual precipitation
of 370 mm and an average yearly temperature of 6 °C [13]. Elevation ranges from 900 m in
the southwest to 4300 m in the northeast. The UCRB land cover is dominated by rangeland
(65%) and evergreen forest (25%). One of the prominent droughts in the UCRB occurred
in 2000 and resulted in an accumulative streamflow deficit of 11 km? or approximately
two years of average streamflow [21]. Droughts combined with an increased water supply
demand have severely affected the storage of the major reservoirs at the Colorado River
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Cross Validation

1

Cross Validation

Basin [21]. To lessen the effects of drought and increase water storage for use during dry
periods, several dams were constructed on the mainstem and tributaries of the Colorado
River upstream of Lake Buchanan since the late 1940s. Analysis of flow at the gauge above
Lake Buchanan indicated streamflow was significantly reduced during the recent drought
(2009-2014), compared with streamflows during the ‘drought of record” (1950-1957) [37].
Temperature also plays a critical role in droughts and wet conditions on Colorado River
flows [38].
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Figure 1. Cross-validation process in the ES-CBS-SVR model (adapted from [26,36]).

On average, 56% of the streamflow in the UCRB originated as base flow, and precipita-
tion was identified as the dominant driver of spatial variability in base flow at the scale of
the UCRB, with the majority of base flow discharge to streams occurring in upper elevation
watersheds. The model estimates an average of 1.8 x 10'® m3/y of base flow in the UCRB,
greater than 80% of which is lost during in-stream transport to the Lower Colorado River
Basin via processes including evapotranspiration and water diversion for irrigation. Miller
etal. (2016) [13] indicated that surface waters in the Colorado River Basin are dependent on
base flow and that management approaches that consider groundwater and surface water
as joint resources will be needed to effectively manage current and future water resources
in the Basin.
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Figure 2. Location of the Upper Colorado River Basin (UCRB).

2.2. ES-CBS-SVR Model

A fast-approximate window-based change point detection method, window slid-
ing [39], is used to split non-stationary time series into multiple stationary time series.
SVR is further conducted on each stationary subset of the training data. An initial weight
is assigned to the predicted values by SVR on each subset of data, and it is updated by
comparison with the actual values and higher weights assigned to those with higher accu-
racy. Finally, the prediction with the higher weight is selected as the final prediction using
category-based scoring [26].

A fast, approximate window-based change point detection method, window slid-
ing [39], is employed to partition non-stationary time series into stationary segments. SVR
is applied to each stationary subset, with initial weights assigned to predicted values and
updated based on accuracy compared to actual data. Higher weights are given to more
accurate predictions, and the final prediction is selected using category-based scoring.

SVR, originally proposed by [40], models relationships between predictors and predic-
tands. Bazrkar and Chu (2021) [26] enhanced it to address non-stationarity in temperature
datasets for drought prediction in a warming climate. Hyperparameter tuning, critical to
model performance, involves optimizing Cost (C), epsilon (¢), and gamma (G) using grid
search cross-validation within each stationary subset. Predictions closest to actual values
(based on RMSE) are selected, with an ensemble technique applied to combine outputs.

Traditional SVR uses numerical scoring (e.g., RMSE), but ES-CBS-SVR adopts
category-based scoring, reducing misclassification risk. The risk scoring approach [36]
compares actual and predicted categories, selecting the lowest-risk prediction for optimal
model performance.

2.3. Drought Identification

The target variables include multivariate, bivariate, and univariate standardized
drought indices. The multivariate Hydroclimatic Aggregate Drought Index (HADI) [41]
is calculated using principal component analysis (PCA) on rainfall, snowmelt, surface
runoff, and soil moisture. Bivariate indices, such as SPEI and SMRI, are derived from
differences in precipitation-evapotranspiration and the sum of snowmelt and rainfall,
respectively. Univariate indices, including SPI, SRI, and SSI, standardize cumulative
distribution functions (CDFs) of precipitation, runoff, and soil moisture, using Gringorten
plotting positions for consistency with methods by [42]).
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2.4. Drought Categorization

Drought categorization is crucial in this study as it influences SVR hyperparameters
and affects drought predictions. Traditional fixed thresholds often fail to capture spatial
and temporal variations, prompting the adoption of a Customized Drought Categorization
(CDC) proposed by Bazrkar et al. (2020) [41]. The CDC employs cell-by-cell analysis
and uses joint probability distribution and conditional expectation to determine average
drought category probabilities. Variable thresholds are derived through K-means clustering,
with categories aligned to [43], ranging from exceptional drought (D4) to exceptional wet
conditions (W4). Due to the limited study period, extreme thresholds were predefined at
—2and 2.

2.5. Drought Prediction

To set up the ES-CBS-SVR model for drought prediction, three types of drought indices
in monthly time scales are used. The target variables are six drought indices. Depending
on the specific drought index that is used as the target variable in the prediction model,
different types of predictor(s) are used. Precipitation (P) is a common predictor in all
drought indices. Temperature (T) is also used for the prediction of SPEI and SMRI. In
addition, actual evapotranspiration (ET) and DFCT are added to the prediction of HADI,
SSI, and SRI.

The training and testing periods range from 1950 to 2004 and 2005 to 2014, respectively.
The input data for calculating the drought indices and prediction model are obtained from
the Global Land Data Assimilation System (GLDAS) [44]. The goal of GLDAS is to ingest
satellite- and ground-based observational data products, using advanced land surface
modeling and data assimilation techniques, to generate optimal fields of land surface states
and fluxes [44]. The data are globally available at resolutions of 2.5 degrees to 1 km in
near-real time from1948 to present simulations. The required data for this study were
limited to 2014.

To evaluate the overall (areal average) performances of ES-CBS-SVR and the traditional
SVR, we used the Mean absolute error (MAE), the mean square error (MSE), the Root mean
square error (RMSE), and the coefficient of determination (R?). These performance metrics
were calculated for each model by comparing the predicted and actual (monitored) values.
A comparison between two models was further conducted based on these metrics.

3. Results
3.1. Drought Identification and Categorization in the UCRB

SPI, SPEI, SMRI, SRI, SSI, and HADI are based on different hydroclimatic variables.
Thus, each index provides information about different types of droughts and their severity
(Table 1). The results for SPI in the UCRB show that exceptional droughts occurred in
October 1952, September 1953, November 1964, November 1976, June 1978, May 1979, June
1980, and June 2013. The SPEI results indicated that exceptional drought occurred in June
1978, May 1979, June 1980, June 1985, June 1987, July 1993, July 1995, and July 2005. The
SMRI and SRI identified similar exceptional drought episodes and covered a significant
portion of the UCRB in October 1952, October 1964, and June 2013. The SSI results showed
that the exceptional drought occurred in September 1956, August 1960, June 2002, July 2002,
August 2002, August 2012, and September 2012. HADI identified October 1972, February
1979, September 1982, April 1993, and May 1995 as exceptional droughts.

Considering the abnormal dry, moderate, severe, extreme, and exceptional drought
categories, the droughts were identified in different durations based on each drought index
(Figures 3 and 4). According to SPI, the most prolonged dry period was six consecutive
months, from January to February 2002 and May to June 2002. There were two two-month
dry periods with the one-month normal condition between May to June 1974 and August
to September 1974. The other long dry periods were identified from October to December
1976 and November 1980 to February 1981. The last relatively long dry period occurred in
March 2012 and May to June 2012, with a one-month abnormal dry condition in between.
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For the SPEI the most severe and long dry period occurred from April to September 1979.
Generally, based on SPE], long-term droughts were identified in 1952, 1958, 1960, 1962,
1973, 1979, 1988, 1994, 1995, 1997, 1998, 2000, and 2005. According to the results for SMRI,
there are relatively long dry periods for SRI compared with the other drought indices.
The 1963-1964, 1973, 1976, 1999, 2002, and 2012 were dry years based on the SMRI. The
SRI results indicated that 1956, 1974, 2002, and 2012 were dry years with the deficit in
runoff and streamflow in the UCRB. Lack of soil moisture, which is reflected in the SSI, was
observed in almost a significant portion of the 50s decade, including 1950, 1954 to 1956,
1958, 1964, 1974, 1976, 1977, 1989, 1994, 2002, 2003, 2012. The longest and the most severe
deficit in soil moisture was associated with 1956 from June to December. The most extended
dry period based on the HADI lasted three consequence months from April to June 2002.
In this period, all the drought indices except SPEI showed dry conditions (Figure 4).

Table 1. Exceptional droughts based on SPI, SPEI, SMRI, SRI, SSI, and HADL

SPI SPEI SMRI SRI SSI HADI
Oct-52 + — + + — —

Sep-53 + — — — — —

Sep-56 - — - — + -

Aug-60 - - - — + -
Oct-64 — — + + - —
Nov-64 + — — — — —
Oct-72 - - - - - +
Nov-76 + - — - - —

Jun-78 + + — - - —

Feb-79 - - - - — +

May-79 + + — - - —

Jun-80 + + — — — -

Sep-82 — — — — — +
Jun-85 - + - — — -

Jun-87 - + — — — —
Apr-93 — - — — — +
Jul-93 - + — — — -
May-95 - - - — - +
Jul-95 — + — — — —
Jun-02 — - - - + —
Jul-02 — — — — + —
Aug-02 — - — - + —
Jul-05 - + - — - -

Aug-12 — — — — + —

Sep-12 — — — — + —

Jun-13 + - + + — —

Note: “+” and “—" refer to occurrence and non-occurrence of drought by the specified drought index, respectively.
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Figure 3. Drought identification in the UCRB (red and blue color show dry and wet conditions,

respectively).
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M-Y SPI SPEI  SMRI SRI SSI HADI M-Y SPI SPEI SMRI SRI SSI HADI M-Y SPI SPEI  SMRI SRI SSI HADI
Aug-50 May-73 -0.94

Sep-50 -0.90 Jun-73 | 189 | Jun-95

Oct-50 -1.01 Jul-73 -1.24 Jul-95

May-52 -1.12 Aug-73 -1.33 Aug-95

Jun-52 -1.33 May-74 -1.37 May-97

Jul-52 -1.02 Jun-74 | -1.26 =113 Jun-97

Aug-52 -0.40 Jul-74 0.44 -0.16 -1.02 Jul-97

Sep-52 -0.42 Aug-74 | -0.96 -1.19 May-98

Oct-52 -0.79 Sep-74 | -0.99 -1.17 Jun-98

Jun-54 -0.89 Oct-76 -1.12 -1.03 Jul-98

Jul-54 -1.27 Nov-76 Aug-98

Aug-54 | 159 Dec-76 0Oct-99

Sep-54 -0.91 Jun-77 Nov-99

Jul-55 -1.39 Jul-77 -1.18 Dec-99

Aug-55 Aug-77 -0.82 May-00

Sep-55 Sep-77 -1.20 Jun-00

Oct-55 Oct-77 -1.13 Jul-00

Jun-56 Apr-79 -1.00 Jan-02 -0.73

Jul-56 May-79 -0.63 Feb-02 -1.04
Aug-56 Jun-79 - Mar-02 022
Sep-56 Jul-79 Apr-02 -0.56 -0.71
Oct-56 Aug-79 -0.50 May-02 -1.32 -1.19 -1.01
Nov-56 -1.34 -1.23 Sep-79 -1.07 Jun-02 -1.06
Dec-56 -0.96 Nov-80 | -0.79 Jul-02 -1.06
May-58 Dec-80 | -1.04 Aug-02 -0.90
Jun-58 Jan-81 | -0.91 Sep-02 -0.96
Jul-58 -0.97 Feb-81 | -1.14 Jul-03 15|
Aug-58 -1.13 May-88 -1.13 Aug-03 -1.24
Sep-58 -1.02 Jun-88 Sep-03 0.99
Oct-58 -0.98 Jul-88 Oct-03 -1.02
May-60 -1.03 Jul-89 -1.26 May-05 -1.14

Jun-60 -1.32 Aug-89 -1.02 Jun-05 -1.38

Jul-60 -0.91 Sep-89 -1.35 Jul-05

May-62 -0.96 Oct-89 -1.16 Aug-05

Jun-62 Nov-89 -1.09 Sep-05

Jul-62 il Dec-89 -0.97 Mar-12 | -1.20 -0.76

Aug-62 -0.93 Jun-90 -0.91 Apr-12 | -0.53 -0.43

Dec-63 -1.16 Jul-90 -1.01 May-12 | -1.26 -1.09 -1.01
Jan-64 -1.06 Aug-90 142 Jun-12

Feb-64 -1.10 May-94 -1.05 Jul-12 -0.03  -1.29
Jul-64 -1.16 Jun-94 Aug-12 -1.19
Aug-64 -1.17 Jul-94 -1.30 -1.27 Sep-12 -0.97
Sep-64 =1:22 Aug-94 -1.10 Oct-12 -1.08
Oct-64 Sep-94 =102 Nov-12 =1.07

Figure 4. Coincidence of dry years based on SPI, SPEI, SMRI, SRI, SSI, and HADI. Note: The dark
and light brown colors show exceptional to abnormal droughts, respectively. The gray color shows
normal condition.

Spatial distributions of droughts across the UCRB were also estimated and mapped
using the monthly average from 2004 to 2014 (Figures 5-7). This period was selected since
it was used for testing the prediction model. The driest months were June and November,
based on the SPI. The SRI results showed the same months as the driest months through a
year, plus December, in which droughts cover a significant portion of the UCRB (Northern
and central parts). SSI and SPEI showed a more consistent pattern. Based on the SSI results,
January is in wet conditions until May. Then, the drought starts covering the basin from
the southern part and the entire UCRB in June. July to October remains in the severe
dry conditions until November, when a change of status to milder drought conditions
initiates from the southern parts. Then, the drought evidence started to disappear from the
southern part of the UCRB. Based on the SPEI results (Figure 6), December and January
are the months with the most extreme wet conditions. The wet condition starts to become
milder in February, and abnormally dry conditions appeared in March. The most severe
dry condition, which covers the entire UCRB, is observed in June. July and August remain
dry. The evidence of abnormally wet conditions initiate in September from south of the
UCRB. October, November, and December are moderately wet, severe to extreme wet,
and exceptionally wet, respectively. Considering the SMRI results (Figure 6), the driest
months are November, December, and June. The wettest months are July, August, and
September. According to the HADI results (Figure 7), the entire UCRB is never in totally
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dry or wet conditions with the same severity. There is a mixture of different categories in
each month. For instance, the basin is covered with a mix of normal and abnormally dry
and moderate drought in January. The wet condition appeared in the southern, central,
and northern parts of the UCRB in February, March, and April to June, respectively. The
entire UCRB is covered by a normal condition except the southeastern area, which is in
abnormally wet to moderate wet conditions in July. In August, the northern part is in
abnormally wet condition, and the southern part is in abnormal to moderate droughts. A
major portion of the UCRB is in normal condition in September and October except in the
southern part and some other scattered areas. Normal condition covers the whole UCRB in
November. Southern UCRB is abnormal to moderate wet conditions, and Central East and
Northeastern are abnormal to moderate dry conditions in December.
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o 1
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Figure 5. Spatial pattern of drought based on standardized univariate indices (SPI, SRI, and SSI) in
the UCRB.

63



Atmosphere 2024, 15, 1505

Jan Feb Mar Apr May Jun
» | Q
‘ A r
' ' * -
E Jul Aug Sep Oct Nov Dec
7 I . |
Jan Feb Mar Apr May Jun
ot . '\ 2 h
= _k‘ F ; -"‘ Jr ’-. - - G‘.
- - . i ‘
g Jul Aug Sep Oct Nov Dec
P ;- : | - O
s -~ '.%
- e G A
B T [ ]

£$353s£z238238¢8¢

Figure 6. Spatial pattern of drought based on standardized bivariate indices (SPEI and SMRI) in the

UCRB.
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Figure 7. Spatial pattern of drought based on HADI in the UCRB.

Three major change points were detected in the temperature time series of the UCRB
(Figure 8). The early years of the 1950s decade (March and August 1951, November 1952,
and February 1954) were the primary time points for the first change points. The end
of the 1970s (September 1978 and December 1979) and the beginning of the 1980s (May
and October 1980) were detected as the second change points. The third change points
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JULIAN DAY

Temperature (degree celecious)

were mainly identified at the end of the 1990s (September 1998 and December 1999) and
the beginning of the 21st century (May and October 2000 and September 2003). Both the
monthly temperature time series and the 12-month moving average show some changes
in the statistical properties. Based on these three detected change points, the average
temperature values in the four timeslots are 5.88, 6.32, 6.71, and 6.63. The corresponding
standard deviations are 8.84, 8.97, 8.8, and 9.04.

Change Point 1 Change Point 2 Change Point 3
©CP1 ©CP2 ©CP3 (cp1) (cp2) (cp3)

Julian Month- Julian Month- Julian Month-

day Year day Year day Year
15 Mar-51 35 Nov-52 50 Feb-54
20 Aug-51 50 Feb-54 345 Sep-78
35 Nov-52 160 Apr-63 350 Feb-79
50 Feb-54 235 Jul-69 360 Dec-79
270 Jun-72 270 Jun-72 365 May-80
345 Sep-78 405 Sep-83
360 Dec-79 540 Dec-94
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Temperature time series (red line) and 12 months moving average (dashed blue line)
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Figure 8. The first, second, and third change points of different grids, temperature time series and
the 12-month moving average in the UCRB.

3.2. Drought Prediction Results

Figure 9 shows the results for the comparison of the performances of SVR and ES-
CBS-SVR in predicting drought in the UCRB. The violin plot in Figure 9a shows that R?
values are quite similar and close to 1 in both models. However, the R? for ES-CBS-SVR
is more accumulated around 1, demonstrating the best performance. The horizontal bar
in the same figure also shows that ES-CBS-SVR performs better than SVR in a higher
percentage of the UCRB. MSE and RMSE also showed the same results. However, the
performance of SVR is better than ES-CBS-SVR in a slightly higher portion of the UCRB
based on the MAE. The SPEI results show the same pattern for both models based on
all the performance indicators. This can be interpreted as the similarities (not significant
differences) of the performance indicators’ values. However, the horizontal bar shows a
significantly higher percentage of the UCRB with better performance of the ES-CBS-SVR.
Although the differences between performance indicators were not significant according
to the violin plots, the differences in the percentage of the area in the performance of the
prediction models were substantial. The performance of SVR was better than ES-CBS-SVR
for SMRI and SRI. When SSI was used in the prediction models, the ES-CBS-SVR was better
than the SVR for all the performance indicators except the MAE. Like SPEI, when the HADI
was employed in the prediction models, the performance of the ES-CBS-SVR was better in
a significantly higher portion of the UCRB. Therefore, the performance of the ES-CBS-SVR
was better in a higher percentage of the UCRB when SPI, SPEI, SSI, and HADI were used.
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Figure 9. Comparison of the performances of SVR and ES-CBS-SVR for (a) SPI, (b) SPEI, (c) SMRI,
(d) SRI, (e) SSI, and (f) HADI. The graph on the left side for each drought index is a violin plot,
while the horizontal bar graph represents a comparison of the number of grids in the study area with
accurate predictions for each drought index.
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4. Discussion

The identified droughts based on the SPI, SPEI, SMRI, SRI, SSI, and HADI are similar
to the other drought studies [37,45]. However, unlike Timilsena and Piechota (2008) [46],
which demonstrated that the average drought duration in the UCRB was 3-14 years, the
most prolonged dry periods lasted less, considering the wet conditions among the dry
periods. The SPEI results show that droughts are more prevalent in the warm seasons (May,
June, and July) in the UCRB. Droughts are aggravated by enhanced, globally warmed tem-
peratures that reduce spring snowpack and late spring and summer soil moisture [20]. The
critical role of temperature in the SPEI and thus the impact of temperature on evapotran-
spiration and water deficit is associated with the common droughts in the warm seasons.

Drought from June to August 2002 is the longest consistent exceptional drought based
on SSI. SSI also shows that a two-month exceptional drought occurred between August and
September 2012. However, the other drought indices show less consistency for exceptional
drought. Since SMRI is related to snowmelt and SPI did not identify any drought, the
droughts in 1976, 2002, and 2012 can be classified as snow droughts. Lack of snow or late
snowmelt due to later than normal increases in temperature can cause a deficit in water
originating from snowmelt.

The results for HADI showed that the most extended dry period was from April
to June 2002. Remarkably, it coincides with the sole period in the study period (1950 to
2014) that SPI, SMRI, SRI, and SSI showed extreme drought conditions. The results of
Woodhouse et al. (2006) [45] also indicated that this dry period was long and severe. They
showed evidence of drought disappearance from the UCRB in the winter of 2004-2005.
However, the drought impacts (e.g., abnormally low water level in the major reservoirs on
the Colorado River) remained until 2005 [45]. HADI is estimated based on anomalies in
rainfall, snowmelt, runoff, and soil moisture, and this coincidence verifies the accuracy of
the HADI and emphasizes its application case. Thus, HADI can be a good substitute for a
combined application of SPI, SMRI, SRI, and SSI.

The results demonstrated a spatial pattern in drought appearance and disappearance.
The southern part of the UCRB is the first area affected by drought, and the disappearance
of drought is also initiated from this area. Woodhouse et al. (2006) [45] also indicated
that the southern portion of the UCRB gained a measure of drought relief in the winter
of 2004-2005. The less evident spatial pattern and a mixture of drought categories in the
UCRB are associated with the nature of the HADI, which reflects the anomalies in different
hydroclimatic variables.

SMRI reflects the anomalies in immediately available water, which is the sum of rainfall
and snowmelt. The dry conditions in the warm seasons (e.g., June) can be associated with
a rainfall deficit or high temperature. Since June is one of the driest months based on the
SPEI, the relatively high temperature in June can be one of the primary drivers. In contrast,
the dry conditions in the cold seasons (November) can be related to the precipitation types
in the form of snowfall or, generally, precipitation deficit.

The changes in the statistical properties of the temperature time series confirm the
accuracy of the detected change points and the existence of non-stationarity. According to
the climatic change scenarios, a shift in the ratio of snowfall to rainfall and earlier snowmelt
and runoff [47,48] will likely compound the strain on water resources throughout the
entire Colorado River Basin [45]. Thus, it is crucial to overcome this non-stationarity in
drought analyses.

The significantly higher percentage of the UCRB with better performance of the ES-
CBS-SVR than SVR using SPEI is associated with the importance of temperature in this
index. The ES-CBS-SVR is developed based on the variability /changes in temperature time
series. Thus, the performance of the ES-CBS-SVR model was better when the model used
SPEI. Unlike other indices, HADI was the same as SPEI. HADI has been accustomed to
cold climate regions, and temperature also plays a vital role in this index.
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5. Conclusions

Six drought indices, SPI, SPEI, SMRI, SRI, SSI, and HADI, were used to identify
droughts in the UCRB. A customized drought categorization was used to consider both spa-
tial and temporal distributions of drought in drought categorization. The non-stationarity
issue in a warming climate in drought prediction was removed by developing ES-CBS-SVR.
The foundation of ES-CBS-SVR is based on dividing the non-stationary dataset into station-
ary subsets based on the change points in the temperature time series. The ES-CBS-SVR
uses category-based scoring for tuning the hyperparameters.

Droughts are more prevalent in the warm seasons (May, June, and July) in the UCRB
based on the SPEI due to the critical role of temperature in SPEL The dry conditions in June
or other months in the warm seasons based on the SMRI can be associated with the deficit
of rainfall or high temperature. Other studies also confirmed that increasing temperature
in the warming climate plays a prominent role in recent droughts [49]. SSI identified the
longest consistent, exceptional drought. SPI, SPEI, SMRI, SRI, and HADI show relatively
less consistency for exceptional drought. The SMRI identified droughts in 1976, 2002, and
2012 that can be classified as snow droughts. HADI identified the most prolonged dry
period from April to June 2002. SPI, SMRI, SRI, and SSI showed extreme drought conditions
in the same period. Thus, HADI can be a good substitute for a combined application of SPI,
SMRI, SRI, and SSI, which reflect anomalies in precipitation, rainfall and snowmelt, runoff,
and soil moisture, respectively. A spatial pattern in drought appearance and disappearance
was identified in the UCRB, demonstrating the southern part of the UCRB is the initial
point of drought.

The existence of non-stationarity in the UCRB was identified in the early years of
the 1950s, the end of the 1970s, the beginning of the 1980s, the end of the 1990s, and the
beginning of the 21st century. The changes in the statistical properties of the temperature
time series confirm the accuracy of the detected change points.

The performance of the ES-CBS-SVR was better in a higher portion of the UCRB when
SPI, SPEI, SSI, and HADI were used. The significantly higher percentage of the UCRB with
better performance of the ES-CBS-SVR than SVR using SPEI and HADI is associated with
the importance of temperature in these indices.

This study covers different types of droughts and six drought indices: SPI, SPEI,
SMRI, SRI, SSI, and HADI. SVR was used for drought prediction, as this model was highly
suggested in other studies. Thus, the application of other drought indices and other
prediction models, such as artificial neural networks and deep learning, can be considered
for future studies. Finally, the current study focused primarily on droughts in the UCRB.
To generalize the applicability of the findings, future studies should expand the analysis
to other basins with diverse climatic and hydrologic conditions. This would help to test
the adaptability and performance of ES-CBS-SVR and the indices used in this study under
varying environmental and anthropogenic influences.
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Abstract: Climate change has increased the risk of snow drought, which is associated with a deficit in
snowfall and snowpack. The objectives of this research are to improve drought identification in a
warming climate by developing a new snow-based hydroclimatic aggregate drought index (SHADI)
and to assess the impacts of snowpack and snowmelt in drought analyses. To derive the SHADI, an
R-mode principal component analysis is performed on precipitation, snowpack, surface runoff, and
soil water storage. Then, a joint probability distribution function of drought frequencies and drought
classes, conditional expectation, and k-means clustering are used to categorize droughts. The SHADI
was applied to the Red River of the North Basin (RRB), a typical cold climate region, to characterize
droughts in a mostly dry period from 2003 to 2007. The SHADI was compared with the hydroclimatic
aggregate drought index (HADI) and U.S. drought monitor (USDM) data. Cluster analysis was
also utilized as a benchmark to compare the results of the HADI and SHADI. The SHADI showed
better alignment with cluster analysis results than the HADI, closely matching the identified dry/wet
conditions in the RRB. The major differences between the SHADI and HADI were observed in cold
seasons and in transition periods (dry to wet or wet to dry). The derived variable threshold levels for
different categories of drought based on the SHADI were close to, but different from, those of the
HADI. The SHADI can be used for short-term lead prediction of droughts in cold climate regions
and, in particular, can provide an early warning for drought in the warming climate.

Keywords: snow drought; drought; cold climate; drought monitoring; Red River of the North Basin;
snow-based hydroclimatic aggregate drought index (SHADI)

1. Introduction

Climate change and global warming have caused a shrinkage in average snow cover
and montane snowpack [1-3]. The function of snowpack is similar to that of a seasonal
natural reservoir, where snowmelt leads the equivalent stored water to be released by an
increase in temperature. Shifts in temperature and precipitation patterns due to climate
change have heightened the risk of snow drought [4,5].

Snow drought and its impact on water resources availability were introduced by
Schneider & Matson (1977) [6] and Wiesnet (1981) [7]. Snow drought occurs in a period
characterized by unusually low snowpack (depth of accumulated snow) resulting from
either below-average cold-season precipitation or insufficient snow accumulation despite
near-normal precipitation levels, typically due to warm temperatures causing rain instead
of snow or early snowmelt [8]. Based on the definition of snow drought, the drought drivers
include (1) quantity and (2) timing. The first drought driver is associated with the deficit in
the amount of precipitation and/or high or low levels of temperatures, while the second
drought driver is characterized by an early or late occurrence of hydroclimatic processes
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such as snowfall and snowmelt. Depending on the primary driver of drought—temperature
or precipitation—snow drought can be categorized into two types: temperature-driven
or precipitation-driven. Temperature-driven drought occurs when warmer-than-normal
temperatures reduce snow accumulation, even if precipitation levels are near or above
average. In this case, precipitation falls as rain instead of snow, or accumulated snow melts
prematurely. Precipitation-driven drought occurs when there is below-normal precipitation
during the snow accumulation season, leading to reduced snowpack regardless of tempera-
ture conditions [9-11]. Harpold et al. (2017) [12] also classified snow drought into dry snow
drought and warm snow drought based on these climatic drivers. Dry snow droughts
are caused by a deficit in winter precipitation, while above-normal winter temperatures
(consequently, late onset of snow season), midseason snowmelt or rainfall events, and early
spring snowmelt cause warm snow drought [13]. For instance, a temperature threshold
of —3.1 °C and 1.4 °C led to a rapid increase in the risk of warm snow drought in south-
western Canada [14]. Therefore, the first step in drought identification is to understand the
dominant hydroclimatic processes and drought drivers and types [15]. Carrying out this
essential step ensures the use of the correct tools or drought indices [16].

Each region has its own distinct drought drivers [17]. For example, low precipitation,
high temperature, and low initial soil moisture caused a considerable reduction in snowmelt
runoff in the Canadian prairies [18]. Generally, a low amount of precipitation (snowfall
and rainfall) because of high temperature in winter may bring about “warm snow season
drought”. Moreover, in regions where the winter temperatures normally are far below zero
for a long time (e.g., more than 6 months of a year), a mild anomaly in winter temperature
may affect snow accumulation, snow water equivalent, and streamflow. In such areas, a
lack of snow accumulation due to snowfall deficit or high temperature in winter provokes
a shift in the timing of snowmelt and causes “snowmelt drought” [19,20]. These drought
classes accentuate the necessity of consideration of snow storage and release (snowmelt) in
identification of drought in regions with snow accumulation and snowmelt processes.

Snow drought can cause some challenges for water resource management in cold
climate regions. On the one hand, the lack of snowpack causes a reduction in available
water resources in warm seasons, and on the other hand, a substitution of rain for snow
in unusually warm winters leads to a higher risk of flood in mountainous regions. Corre-
spondingly, snow drought can cause serious ecological and socioeconomic impacts [14].
For example, the agricultural losses caused by the 2015 dry snow drought in the Sierra
Nevada region of the U.S. were estimated at approximately USD 1.84 billion, resulting
from a 20-60% reduction in normal precipitation [21]. In this region, extreme early season
precipitation, frequent rain-on-snow events, and low-precipitation years were the main
causes of snow drought [22]. Therefore, understanding the mechanisms of droughts and
their drivers in cold climate regions is important to identify snow droughts and to mitigate
their impacts.

To mitigate the impacts of droughts in the changing climate, a special drought index
for the identification of snow droughts is essential. There exist a few drought indices
which account for the anomalies in snowpack. Huning and Aghakouchak (2020) [23]
developed a standardized snow water equivalent index (SWEI) by considering snow
water equivalent (SWE) to assess global snow drought. Since a below-normal SWE in cold
seasons can be compensated by a high antecedent soil water storage or an upcoming rainfall
event in warm seasons, consideration of other hydroclimatic variables can provide more
information about drought. The surface water supply index (SWSI) [24] and aggregate
drought index (ADI) [25] account for snowpack amounts in addition to other hydroclimatic
variables. In contrast, other indices account for available water instead of the stored
water sources. For example, the standardized snowmelt and rainfall index (SMRI) [26]
and hydroclimatic aggregate drought index (HADI) [27] consider snowmelt and rainfall.
Some studies demonstrated the critical roles of snow-based drought indices [23] and their
capabilities for short-term lead prediction of drought [28] in a changing climate. However,
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some researchers (e.g., Livneh and Badger 2020) [29] found drought less predictable by
using snow-based approaches under declining future snowpack in a warming climate.

The key question is which drought index is most applicable in a snow-dominated, cold
climate region. To address this, it is crucial to compare drought indices that consider stored
water sources (e.g., snowfall and accumulated snow) with those that examine anomalies
in available water resources (e.g., rainfall and snowmelt) for identification and short-term
lead prediction of droughts. The objectives of this research are (1) to improve drought
identification in cold climate regions and in the warming climate by developing a new
snow-based hydroclimatic aggregate drought index (SHADI) and (2) to assess the impacts
of snowpack and snowmelt in drought analyses by comparing the SHADI with the HADI.
The structure of this paper is organized as follows: Section 1 introduces the background,
objectives and scope of the study. Section 2 outlines the methodology and describes the
study area. The results of the research are presented in Section 3, followed by the conclusion
and recommendations in Section 4.

2. Methodology
2.1. Study Area

The Red River of the North Basin (RRB) (Figure 1), located in the Northern Great
Plains, covers over 90,000 km? in the states of Minnesota, North Dakota (ND), and South
Dakota. In the RRB, cold and dry winters are common due to a strong continental climate, a
very low amount of air moisture, and cold intrusions from the polar and arctic regions [30].
Remarkably, the precipitation in the six cold months from October through March accounts
for only about 22% of the annual precipitation. In contrast, a slow transition in low-level
wind flow brings about a high amount of moisture from the Gulf of Mexico in spring.
Therefore, springs and summers are generally warm and wet [30]. The climate divisions
(CDs) in the RRB are shown in Figure 1. CDs 3203, 3206, and 2101 are entirely within the
boundaries of the RRB. This is why these CDs were selected for analyzing the results. In
CD 3203, the average, maximum, and minimum temperatures were recorded as 3.16 °C,
9.27 °C, and —2.88 °C, respectively, with a total precipitation of 480 mm. For CD 3206, these
values were 4.44 °C, 10.61 °C, and —1.72 °C, along with 510 mm of precipitation. Similarly,
in CD 2101, the average temperature was 3.55 °C, the maximum temperature reached
9.55 °C, the minimum dropped to —2.44 °C, and the precipitation totaled 559 mm [31]. In
addition to climate factors, the CDs were organized based on geographic features, drainage
basins, river districts, and/or designated forecast responsibility areas [32]. A divisional
dataset has been assembled containing year-monthly averages (daily averages for each
year and month) of temperature and water-equivalent precipitation for each division in the
contiguous United States dating back to 1895. From this foundational dataset, statistics on
drought, prolonged wet weather events (moisture anomalies), and heating/cooling degree
days have been derived. The National Climatic Data Center (NCDC) uses this dataset in its
monthly Climate Variations Bulletin [32].

According to the 118-year data (1901-2019), the mean discharge of the Red River is
12.77 m3 /s, and the minimum and maximum discharges at the Fargo Station are 0.045 m3/s
(1937, known as the Great Drought) and 226.8 m3/s (1998), respectively [33]. The low-
est precipitation and the highest temperature in the cold seasons occurred in the 1990s,
which can be referred to as snow drought. The precipitation in the cold seasons in the
last two decades was relatively low. Therefore, a drought index with the capability of
addressing snow drought is required. To test the performance of the SHAD], it was applied
to the RRB for a period from 2003 to 2007, the longest dry period after 2000 in the area [34].

2.2. Calculation of SHADI and Input Data

Precipitation, snowpack, surface runoff, and soil water storage of the root zone are
used to derive the SHADI. Snowpack is the primary variable in the identification of snow
drought. Thus, the SHADI can potentially address the anomalies in stored water as a
snow drought index. The other hydroclimatic variables (i.e., precipitation, surface runoff,
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and soil water storage) are also integrated to address other types of droughts. Similar to
the HADI [27], the SHADI accounts for the impacts of available water or stored water on
drought characterization. However, the SHADI uses precipitation and snowpack, while
the HADI uses rainfall and snowmelt. The daily snowpack, surface runoff, and soil water
storage simulated by a grid-based hydrologic model (GHM) (Chu et al., 2019 [34]) are used
after being converted to monthly values. The GHM model simulates key hydroclimatic
processes in cold climate regions, including snow, snow accumulation, frozen soil, and
snowmelt, at a spatial resolution of 4 km. The GHM models rainfall-runoff and snowfall-
snowmelt processes based on a daily mean temperature threshold. In a snow-covered
area, snowmelt is simulated using the degree-day method, where melting begins when the
daily mean temperature exceeds a specified base temperature. The curve number (CN) is
adjusted to account for frozen soil conditions. Moreover, as the RRB is a region dominated
by surface depressions, the model includes a component of surface depression storage
which is identified by a delineation algorithm [35]. Figure 2 presents the flowchart for
calculating the HADI and SHADI and for categorizing droughts.
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Figure 1. Red River Basin (RRB) and its associated climate divisions. CDs 3203, 3206, and 2101 are
entirely within the boundaries of the RRB.

To overcome the high covariance of these variables, they are standardized by:

P j— ut
4 ]
Pf,t]'? = — 1)
]
SPZ' i }tSP
tz _ ] j
SPfﬁ = (2)
)
Rj j— pu
’ ]
R} = —r 3)
]
WS; i — HSWS
tz ] )
SWSfj = SIS (4)

]
where P;'%, SP;'5, R}, and SWS;!

Z
i j’ , ]
surface runoff, and soil water storage of grid j in month i, respectively; P; jr SpP; jr R; jr and
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SWS,;, j are the precipitation, snowpack surface runoff, and soil water storage of grid j in

>WS are the mean values of precipitation, snowpack,

month 7, respectively; ],t]P , pt]S , uR i and %
surface runoff, and soil water storage of grid j in the entire period, respectively; and (T]P ,

P (TR and O.SWS

] I
runoff, and soﬂ water storage of grid j in the entire period, respectively. By performing a
correlation-based R-mode principal component analysis (PCA) [36] on the standardized
variables, the SHADI is estimated for grid j and month i. The principal components (PCs)

are provided by [36]:

are the standard deviation values of precipitation, snowpack, surface
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to a?*, 23! to a3, and a;“ to a** are, respectively, the normalized eigenvectors of the ﬁrst,
second third, and fourth PC in month i. The elements of the eigenvector are unequal
weights in the PCs for month i.
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Figure 2. Flowchart for calculating HADI and SHADI and for categorizing drought.

The PCs should be standardized to be independent of time and space and, thus,

comparable for any normal conditions. The mean and standard deviation values of the
first PCs throughout the study period in each grid are calculated. The SHADI is computed
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by standardization of the first PCs for each grid and month or the ratio of the difference
between each first PC value and its mean to its standard deviation:

p Czl, i~ Hpct
SHADI ;= — " (6)

UPC}

where SHADI ij is the SHADI of grid j in month i; PC}, i is the first PC of grid j in month i;
and pp-1 and 0,1 are the mean and standard deviation of the first PC of grid j. The first
] ]

PC is selected for estimation of the SHADI, since a high proportion of information is found
in the first PC.

To categorize droughts, a customized drought categorization based on variable thresh-
old levels [27] is implemented. According to the range of the SHADI values, they are
divided into a defined number of classes. To estimate the spatial and temporal frequencies
of the SHAD], a cell-by-cell-based analysis is performed. The frequency of each drought
class during the study period is estimated for each cell, and the temporal frequencies of all
drought classes for all cells are also estimated. The frequency and class of droughts form a
bivariate function. Thus, a joint probability distribution function (JPDF) is determined. To
find the probability of the occurrence of each class of drought, the conditional expectation
is calculated. The lower the conditional expectation, the lower the probability of occurrence
and the higher risk of rare drought. The conditional expectation for each class of drought is

provided by [37]:
g(0[1)  g(0]2) ... g(0[n)
sl = Egfe = SO w0 sl %
g(m[1) g(m|2) g(m|n)
in which:
8(0,1)  g(0,2) 8(0,n)
o(f, ) = |81 8(12) g(Ln) ®)
g(m, 1) g(m,2) ... g(m,n)

g(C) - Zgzl Z?zl g(f’ C) )
where g(f,c) is the JPDF of frequency f and drought class ¢; g(c) is the probability

distribution function of drought class c; and g(f | ¢) is the conditional probability. The
conditional expectation of different frequencies for each associated class, P; or E(f | ¢) can
be expressed as:

P. = E(fle) = Y 5, (f-8(fl)) (10)

To derive the threshold levels for different drought categories, the k-means cluster-
ing method [38] is used. The k-means clustering employs a partitioning approach in
which the observations are separated into n clusters without using a hierarchical method.
Partitioning is the most commonly used method among nonhierarchical methods of clus-
tering. The specific procedures for determining the variable threshold levels using k-means
include [38]: (1) select n items to serve as seeds (i.e., initial cluster centroids); (2) assign
each observation in the dataset to the cluster with the nearest seed/centroid based on the
squared Euclidean distance; (3) recalculate the centroid for each cluster (i.e., the mean
vector of all observations in the cluster); and (4) repeat steps 2 and 3 until no observations
move to different clusters.

To account for the slow emergence and recession of drought, Svoboda et al. (2002) used
six categories (exceptional, extreme, severe, moderate, abnormal, and normal) in the U.S.
drought monitor (USDM) [39]. The same numbers of drought categories in the USDM are
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used in this study. Four wet classes (including exceptional, extreme, severe, and moderate
wet) are also considered to categorize the wet conditions. Thus, the customized drought
categorization is based on these ten dry and wet clusters. Ten points that are mutually
farthest apart are selected as initial seeds in the k-means clustering. The observation vector
can be expressed as:

y, = (c1, P1)
Yy = (.CZI P,) (1)
yn - (Cn/ P”)

where c; is representative of the lower class limit for class 1 of the SHADI; and P; is the
expected value of probability of occurrence of class 1. The k-means method clusters these n
observations into ten groups. The initial centroids are the ten observations that are farthest
apart. The procedure starts by calculating the squared Euclidean distance between each
pair of observations:

P (Y Ypsq) = (ck — k1)’ + (Pe— Piia)’
P (Y Yra) = (ck — Ckr2)” + (P — Piya)’

P (Y1 Vsa) = (ki1 — ckr2)® + (Pera — Prra)? (12)

4 (yn—Z' yn) = (cp2— Cn)z + (P2 — Pn)z
d2 (ynflf yn) = (Cflfl - Cn)z + (Pnfl - Pn)z

where d%(yy, Y1) is the squared Euclidean distance between y; and v, ; observation
vectors for k (k =1, ..., n). Ten points with the longest pairwise distances are selected as
the initial seeds. The distances from each observation to the initial seeds are calculated.
Then, the centroid of each cluster and the distance from each observation to each centroid
are calculated. These processes are repeated until the cluster assignments in the last step
are the same as those in the previous step.

2.3. Assessment of SHADI in Identification and Categorization of Droughts

To assess the performance of the SHADI in identification of droughts, it was compared
with the HADI and USDM. After the assessment of the SHADI, the new customized
drought categorization was applied to the RRB. The results based on the SHADI and HADI
were further compared, and their performances were evaluated for the entire RRB and
separately for CDs 2101, 3203, and 3206 (Figure 1).

The SHADI, HADI, and USDM (Svoboda et al., 2002; USDM 2019) were compared
in the form of drought severity and coverage index (DSCI) [40]. The DSCI turned the
USDM categorical drought into one value. The DSCI is used to compare both severity and
coverage of droughts in the USDM, SHADI, and HADI. The DSCI is provided by [40]:

4

DSCI =Y (i+1) x ACD(i) (13)

where ACD (i) is the percentage of area coverage of drought in category i. The USDM
(Svoboda et al., 2002) is “a composite product” based on the Objective Drought Indicator
(ODI) Blends. The USDM product is a blend of six main drought indicators and other objec-
tively selected ancillary indices, including the Palmer drought severity index (PDSI) [41],
CPC soil moisture model (percentiles), USGS weekly streamflow (percentiles), percent of
normal, SPI, and satellite vegetation [39]. Additional information about the conditions of
soil moisture and snowpack is added by other ancillary indices (e.g., SWSI).
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There are some differences in the derivations of USDM, HADI, and SHADI. Soil
moisture and observed streamflow are used in the USDM, while the simulated surface
runoff and soil water storage in the root zone are used in the SHADI and HADI. Although
precipitation and snowpack are considered in the derivation of the USDM products, the
separation of rainfall and snowfall, on the one hand, and snowmelt are ignored in the
USDM. In contrast, the SHADI and HADI account for these dominant hydroclimatic
processes in cold climate regions (precipitation and snowpack in the SHADI and rainfall
and snowmelt in the HADI).

2.4. Cluster Analysis

k-means clustering was applied to define dry and wet conditions. The outputs of the
cluster analysis for precipitation, rainfall, snowpack, snowmelt, surface runoff, and soil wa-
ter storage (i.e., the inputs for HADI and SHADI) were compared with their corresponding
indices. Cluster analysis is a multivariate technique that identifies an optimal grouping,
where each cluster contains observations that are as similar as possible. A nonhierarchical
k-means clustering method [38] was used in this study.

In k-means clustering, the number of clusters must be specified. For the hydro-
climatic variables in this study, only two clusters (dry and wet) were defined to avoid
unnecessary complexity.

2.5. Correlation Analysis

Pearson and Spearman correlations are widely used statistical methods to measure the
strength and direction of the relationship between two variables. The Pearson correlation
coefficient assesses the linear relationship between variables, assuming that the data are
normally distributed and have a linear association. It provides values between —1 and
1, where values close to 1 or —1 indicate a strong positive or negative linear relationship,
respectively, and values near 0 indicate no linear relationship. In contrast, the Spearman
rank correlation coefficient is a non-parametric measure that evaluates the monotonic
relationship between variables, making it suitable for data that do not meet the assumptions
of normality or linearity. Spearman correlation ranks the data and calculates the correlation
based on the ranked values, making it robust against outliers and useful for analyzing
non-linear associations. Both correlations were used in this study to evaluate the agreement
between the indices (the HADI and SHADI).

3. Results and Discussion
3.1. Categorization and Classification of Droughts by SHADI and HADI

The droughts in the study period were characterized by using the customized drought
categorization method for both the SHADI and HADI. The threshold levels for different
categories of drought based on the SHADI and HADI were close (Table 1). The differences
in variable threshold levels between the HADI and SHADI are minimal, with a negligible
value of 0.1. The lower limits for the categories based on the SHADI are as follows:
exceptional wet (4.7), normal condition (—1.2), abnormal drought (—1.5), moderate drought
(—1.6), severe drought (—1.8), and extreme drought (—1.9). In comparison, the lower limits
for the same categories based on the HADI are exceptional wet (4.6), normal condition
(—1.1), abnormal drought (—1.4), moderate drought (—1.5), severe drought (—1.7), and
extreme drought (—1.8). Similarly, the upper limits for the SHADI are abnormal drought
(—1.2), moderate drought (—1.5), severe drought (—1.6), extreme drought (—1.8), and
exceptional drought (—1.9). For the HADI, the corresponding upper limits are abnormal
drought (—1.1), moderate drought (—1.4), severe drought (—1.5), extreme drought (—1.7),
and exceptional drought (—1.8). Since the study period and the study area remained
unchanged, the threshold levels did not alter. This similarity can confirm the variability of
the derived threshold levels by time and geographic locations.
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Table 1. Variable threshold levels and drought categories based on the SHADI and HADI.

SHADI Values HADI Values Category Symbol
SHADI > 4.7 HADI > 4.6 Exceptional wet W4
2.9 < SHADI < 4.7 29 <HADI<4.6 Extreme wet W3
1.3 < SHADI < 2.9 1.3 <HADI <29 Severe wet W2
0.2 <SHADI< 1.3 0.2<HADI<1.3 Moderate wet W1
—1.2<SHADI < 0.2 —-1.1<HADI<0.2 Normal condition N
—1.5<SHADI < —1.2 —14<HADI< -1.1 Abnormal drought DO
—1.6 <SHADI < —1.5 —-1.5<HADI< —-14 Moderate drought D1
—1.8 <SHADI < —1.6 —1.7<HADI< —-1.5 Severe drought D2
—1.9<SHADI < —1.8 —-1.8<HADI< -17 Extreme drought D3
SHADI < —1.9 HADI < —1.8 Exceptional drought D4

3.2. Comparison of the Results of SHADI and HADI in the RRB

Figure 3 shows the comparison of temporal and spatial distributions in the HADI and
SHADI. Notable dissimilarities were observed in the cold seasons and in the dry-wet or
wet—dry transitions (Figure 3a). The maximum difference between the HADI (1.73) and
SHADI (—0.46) was observed in April 2004, featuring a transition from wet to dry condi-
tions. Another transition period from dry to wet occurred in January 2006 (HADI = —0.46;
SHADI = 0.23). In this month, the HADI remained negative, while the SHADI preidentified
the upcoming wet condition. Moreover, in the middle of the long dry period (2004-2006),
the HADI (1.41) identified a high-intensity wet condition in February 2005 (Figure 3c,e).
In contrast, the SHADI (0.47) showed a wet condition with considerably less intensity
in this month (Figure 3b,d), indicating that the SHADI exhibited fewer fluctuations than
the HADL

Table 2 presents the statistical properties of the SHADI and HADI. A slightly higher
maximum value was observed for the SHADI (2.01), while the HADI exhibited a lower
minimum value (—0.87). However, the average and standard deviation of the two indices
were quite similar, indicating comparable overall variability and central tendencies. The
Pearson and Spearman correlation coefficients of the SHADI and HADI were 0.75 and
0.78, respectively. The Spearman correlation coefficient indicated that the intensities of
dry or wet conditions identified by the HADI and SHADI and their corresponding ranks
among different months in the study period were close in the warm seasons. The Pearson
correlation coefficient also showed the similarity between the HADI and SHADI values
in the warm seasons. In fact, the differences were negligible from May to September in
all years.

Table 2. Statistical properties of SHADI and HADI.

SHADI HADI
Max 2.01 1.94
Min —0.85 —0.87
Average 0 0
Standard deviation 0.70 0.69
Pearson correlation 0.75
Spearman correlation 0.78

The analysis of the dissimilarities in the spatial distributions of the HADI and SHADI
helps determine the sensitivity of the indices to drought drivers (e.g., temperature-driven
or precipitation-driven droughts). There was a minor difference between the HADI and
SHADI for 2003 (Figure 4a,f) and 2007 (Figure 4e,j). However, major differences were
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observed between the HADI and SHADI in 2004 (Figure 4b,g), 2005 (Figure 4c,h), and
2006 (Figure 4d,i). These significant differences were in the upper RRB in 2004, the lower
RRB in 2005, as well as the upper and northeast part of the RRB in 2006.
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Figure 3. Comparison of temporal and spatial distributions of HADI and SHADIL

As shown in Figure 5, the HADI and SHADI had similar values in 2003 (Figure 5a,f)
and 2007 (Figure 5e,j). However, the SHADI indicated more intense droughts in the upper
RRB in 2003 (Figure 5b,g) and in the lower RRB in 2004 (Figure 5c,h). By the end of the
2004-2006 drought (Figure 5d,i), the SHADI identified a wetter condition in the upper and
northeast part of the RRB. The lowest annual precipitation occurred in 2003 (Figure 5k)
and 2006 (Figure 5n). In addition, the western side of the RRB had a lower amount of
precipitation than that of the eastern side. Figure 5p—t show the spatial distribution of the
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mean annual temperatures from 2003 to 2007. The lowest and the highest temperatures
occurred in 2004 and 2006, respectively. The year 2004 was the coldest in the study period.
However, the high temperature in the upper RRB caused rainfall instead of snow. Thus,
the SHADI identified a dry condition with higher drought intensity due to the lack of
snowpack (Figure 5b,g). Both precipitation and temperature in the lower RRB in 2005 were
relatively low, and the intensity of drought based on the SHADI was higher (Figure 5ch).
The low precipitation and high temperature in the upper and northeast part of the RRB
in 2006 led to high-intensity drought based on the HADI (Figure 5d,i). Therefore, it can
be concluded that the SHADI is more sensitive to low temperatures, and the intensity of
droughts identified by the SHADI can be higher in cold climate conditions.
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Figure 4. Differences between HADI and SHADI in the RRB. (a—e) Absolute differences between
HADI and SHADI values from 2003 to 2007. (f-j) Raw differences between HADI and SHADI values

from 2003 to 2007.
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Figure 5. Spatial and temporal distributions of HADI, SHADI, temperature, and precipitation in the
RRB. (a—e) Spatial distribution of HADI from 2003 to 2007. (f-j) Spatial distribution of SHADI from
2003 to 2007. (k—o) Spatial distribution of precipitation from 2003 to 2007. (p—t) Spatial distribution of
temperature from 2003 to 2007.

3.3. Comparison of SHADI, HADI, and USDM in the Form of DSCI

To compare the DSClIs of the SHADI, HADI, and USDM, the dry span in the study
period was divided into three short dry spells: (1) from the end of 2003 to the end of 2004,
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(2) from the beginning of 2005 until the end of 2005, and (3) from the beginning of 2006 to
the beginning of 2007. As shown in Figure 6, despite the differences in the values of the
DSCI of the USDM, SHADI, and HAD], they identified the first dry spell at the same time
in all CDs. The DSCIs of the USDM were higher than those of the HADI in all CDs. In
contrast, the DSCIs of the SHADI were higher than those of the USDM in CDs 2101 and
3203. The peak DSCIs of the HADI and SHADI occurred with a shorter delay than the
DSCI of the USDM in the second dry spell. The DSCI of the SHADI was higher than those
of the USDM and HADI in CDs 2101 and 3203. The DSClIs of the USDM and HADI were
close to or higher than the DSCI of the SHADI in CD 3206. The DSCI of the USDM was
noticeably higher than those of the SHADI and HADI in the third dry spell.
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Figure 6. Severity and coverage drought index of the USDM, SHADI, and HADI in climate divisions
(a) 2101, (b) 3203, and (c) 3206.
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The dissimilarities among the results of the SHADI, HADI, and USDM can be associ-
ated with three main reasons. First, different numbers and types of inputs (hydroclimatic
variables as drought indicators or drought indices) were used for the derivation of these
indices. The SHADI accounted for snowpack and snow drought, and the HADI considered
snowmelt and rainfall. However, the USDM did not consider the separation of rainfall
and snowfall, snow accumulation, and snowmelt as the dominant hydroclimatic processes
in cold climate regions. Second, the approach of one-weight-fits-all can be a limitation
of the USDM in weighting coefficients of the involved indices and in the representation
of seasonal changes. However, by using the PCA, the weighting coefficients for different
hydroclimatic variables in the HADI were derived based on the employed time series
instead of the fixed coefficients used in the USDM. Third, in this research, the variable
threshold levels were used in drought categorization for the HADI and SHADI instead
of the fixed threshold levels based on the percentages for the USDM. Since a dry period
was intentionally chosen to test the SHADI and HADI, these discrepancies in the results
were expected. The main purpose for the derivation and utilization of variable threshold
levels in drought categorization is to fulfil the necessity of consideration of both spatial
and temporal distributions of droughts [42]. Hence, different thresholds for each drought
category would be expected if different periods were selected. Therefore, the properties of
the HADI and SHADI, which were incorporated to improve drought identification and
categorization, resulted in these discrepancies among the indices.

3.4. Cluster Analyses of the Inputs of HADI and SHADI

Figure 7 shows the HADI and SHADI and the clustering analysis results based on their
associated inputs in CD 2101 (Figure 7a,b), CD 3203 (Figure 7c,d), and CD 3206 (Figure 7e,f).
The SHADI and cluster analysis identified the same dry/wet conditions in 47%, 72%, and
68% of times for CDs 2101, 3203, and 3206, respectively. Results of the HADI and cluster
analysis for identification of dry/wet conditions agreed in 43%, 53%, and 52% of times for
CDs 2101, 3203, and 3206, respectively.

In CD 2101, the first dry period occurred from fall 2003 to the end of winter 2004. In
this dry period, the monthly temperature was lower than the mean monthly temperature
in CD 2101, especially in the cold seasons. As a result, the precipitation was in the form of
snowfall, and the snowpack increased over time, reaching its capacity by the end of the
cold season in February 2004. Then, the snowmelt process was initiated by a temperature
increase in March 2004. The snowmelt-induced surface runoff and soil water storage
increased with a one-month delay. The SHADI identified this dry period two months
earlier than the HADI (in October 2003). In the second dry period, the monthly temperature
was higher than the mean monthly temperature in the cold seasons. Therefore, the majority
of precipitation was in the form of rainfall. Although the rainfall was higher than that in the
other years in the study period, both HADI and SHADI identified a dry condition in this
period. The snowpack and snowmelt were relatively low. The drought identified by the
HADI can be justified by the low snowmelt in this period, since there is certain relationship
between the HADI and snowmelt. However, there was no direct correlation between the
SHADI and temperature, precipitation, snowpack, surface runoff, and soil water storage.
This can be verified by the similar loadings of the PCs or the weighting coefficients of all
inputs. Thus, the SHADI represented a combination of all hydroclimatic variables. Due to
the relatively low values of these variables, the SHADI identified a dry condition in this
period. The third period was a short dry period from the end of 2006 to March 2007. In this
period, both the HADI and SHADI identified a dry spell with below-normal precipitation
and soil water storage. The deficit in the antecedent precipitation during 2006 led to a
decrease in the available soil moisture. Thus, this drought can be categorized as a classical
rainfall deficit drought.

The drought intensity based on the SHADI was higher than that of the HADI in CD
3203 in November 2003. This can be justified by the lower temperature in CD 3203 than
that in CD 2101 and CD 3206. In addition, the SHADI exhibited more consistency in the
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second dry period than the HADI in CD 3203. For example, the HADI identified a wet
condition in October 2005 (middle of the second dry period) due to an increase in snowmelt,
while the SHADI remained negative in this month.
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Figure 7. Clustering results based on the inputs of the HADI and SHADI and their comparisons with
their associated indices in climate divisions (a,b) 2101, (c,d) 3203, and (e,f) 3206.

Two types of major differences were observed between the HADI and SHADI in CD
3206. First, in some months, the HADI values were positive, while the SHADI values were
negative. For instance, the HADI values were 0.19 and 0.77 in November 2003 and February
2004, respectively. However, the SHADI values were —0.43 and —0.52. Compared with
the HADI (1.98), which showed a high-intensity wet condition in April 2004, the SHADI
(—0.44) identified a dry condition in this month, which can be interpreted as a short-term
lead prediction of the forthcoming dry period by the SHADI. Second, in some months
close to the end of the 2004-2006 dry period, the SHADI turned to positive values, whereas
the HADI remained negative. For example, the SHADI values were 0.18, 0.44, and 1.81 in
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January, February, and April 2006, respectively. However, the HADI values were —0.45,
—0.31, and —0.69 for these months. In fact, by the end of this long dry period, the SHADI
preidentified a wet condition in January 2006, two months prior to the HADI, since SHADI
is based on snowpack and precipitation rather than available water, such as rainfall and
snowmelt, used in the HADI.

The longest similarity between the indices and the clustering results on their inputs
was observed from January to December of 2005 in CD 3206 for the SHADI (Figure 7f).
Thus, the results of the SHADI were closer to those from the cluster analysis especially for
CD 3203. It can be concluded that despite some discrepancies, the results of cluster analysis
verified the results of the HADI and SHADI in most cases.

4. Conclusions

To enhance drought identification in cold climate regions and assess the impacts of
precipitation, snowpack, and snowmelt in drought analysis, a new snow-based hydro-
climatic aggregate drought index (SHADI) was developed. It was applied to the RRB,
and the results were compared with those of the HADI. Discrepancies were specifically
observed between these two drought indices in cold seasons and in dry—wet or wet—dry
transitions, which can be attributed to the effects of consideration of available water (rain-
fall and snowmelt) in the HADI and stored water sources (precipitation and snowpack)
in the SHADI. Cluster analysis was performed as a benchmark to compare the results of
the HADI and SHADI. The SHADI outperformed the HADI in aligning with the cluster
analysis results, matching the identified dry/wet conditions 47%, 72%, and 68% of the time
for three selected CDs (2101, 3203, and 3206, respectively). Thus, the SHADI is particularly
suitable for identification of snow droughts.

The anomalous snowpack and snow-based drought indices can provide early warn-
ing of droughts. Accounting for the snowpack impact in the SHADI facilitated short-
term lead predictions of droughts for two months, which was also demonstrated by
Abel’s et al. (2018) [28,42]. Thus, the SHADI can be used for identifying snow droughts and
providing short-term lead predictions of upcoming droughts to mitigate the drought impacts.

As a result of the use of the customized drought categorization, the SHADI and HADI
yielded similar DSCI values, which were different from those of the USDM. These discrep-
ancies can be attributed to the incorporation of effective hydroclimatic variables in cold
climate regions, implementation of different methods for derivation of weighting coeffi-
cients, and application of the customized drought categorization approach and variable
threshold levels in the SHADI and HADI for drought identification and categorization.

Precipitation, snowpack, surface runoff, and soil water storage were used to monitor
droughts in this study. Other alternative water sources, such as snow cover or SWE, could
be explored in future studies. Only the first PC was used for derivation of the SHAD], as it
accounted for the highest proportion of variance. However, in the second and third quarters
of the year (i.e., spring and summer), the first eigenvalue percentages were lower due to
collinearity. Collinearity occurs when some independent variables are highly correlated,
which can affect the representation of drought conditions. Thus, it is important to note
that the first PC alone may not fully capture the complexities of drought conditions. As
discussed by Bazrkar et al. (2020) [27], relying solely on the first PC can overlook important
drought dynamics that may be better represented by other components.

The RRB was selected as the study area due to its snow-dominated, cold climate
characteristics. The broader applicability of the SHADI to other cold climate regions can
be explored in future research. Additionally, future studies could evaluate the SHADI by
comparing it with other existing drought indices beyond the HADI and the USDM. Such
analyses would offer a more comprehensive understanding of the SHADI's performance
and its potential utility across diverse regions and climatic conditions, further assessing
its relevance and effectiveness in capturing drought dynamics in snow-dominated, cold
climate areas. The GHM model was chosen for this study, as it was the available tool
specifically designed to simulate hydroclimatic processes in depression-dominated, cold
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climate regions like the RRB. However, it does not account for certain snow processes such
as snowpack sublimation and redistribution. To address these limitations, Tahmasebi Nasab
and Chu (2020) [43] developed an enhanced version, Macro-HyProS, which incorporated
a snowfall correction factor for sublimation and redistribution losses. The SHADI can be
utilized for real-time monitoring and short-term lead prediction of droughts, providing
valuable information to help mitigate the impacts of droughts.
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Abstract: In this study, we analyzed the predictions of hydrological droughts in the Lam Chiang
Kri Watershed (LCKW) by using the Soil and Water Assessment Tool (SWAT) and streamflow data
for 2010-2021. The objective was to assess the streamflow drought index (SDI) for 5-, 10-, 25-, and
50-year return periods (RPs) in 2029 and 2039 in two representative concentration pathway (RCP)
scenarios: the moderate climate change scenario (RCP 4.5) and the high-emission scenario (RCP 8.5).
The SWAT model showed high accuracy (R? = 0.82, NSE = 0.78). In RCP4.5, streamflow is projected
to increase by 34.74% for 2029 and 18.74% for 2039, while in RCP8.5, a 37.06% decrease is expected
for 2029 and 55.84% for 2039. A historical analysis indicated that there were frequent short-term
droughts according to SDI-3 (3-month-period index), particularly from 2014 to 2015 and 2020 to
2021, and severe droughts according to SDI-6 (6-month-period index) in 2015 and 2020. The RCP8.5
projections indicate worsening drought conditions, with critical periods from April to June. A wavelet
analysis showed that there is a significant risk of severe hydrological drought in the LCKW. Drought
characteristic analysis indicated that high-intensity events occur with low frequency in the 50-year RP.
Conversely, high-frequency droughts with lower intensity are observed in RPs of less than 50 years.
The results of this study highlight an increase in severe drought risk in high emission scenarios,

emphasizing the need for water management.

Keywords: climate change; CMIP5; hydrological drought characteristics; Streamflow Drought
Index (SDI)

1. Introduction

Climate change exerts a significantly influence on extreme events [1], particularly
droughts [2], which have long-lasting impacts on human life, the environment, industry,
and the economy [3]. Hydrological droughts, characterized by below-average streamflow,
are crucial issues to consider in water resource planning and management due to increasing
demand and population growth [4]. As climate change continues to alter weather patterns,
predicting droughts becomes essential to ensuring efficient water resource management,
irrigation system operation, agricultural production, and national economic stability [5].

However, predicting hydrological droughts is challenging due to the nonstationary
nature of hydrological processes influenced by climate change [5]. These challenges com-
plicate integrated water resource management, as droughts significantly reduce available
water resources; therefore, it is necessary to design strategies to balance supply and de-
mand [6]. Moreover, climate change exacerbates drought severity on a global scale, making
it imperative to evaluate hydrological drought in various climate scenarios. Human ac-
tivities, such as water over-extraction and land-use changes, further influence drought
characteristics [7]. The increasing frequency, duration, and intensity of droughts underscore
the importance of effective monitoring. Among the various indexes used to assess the
severity of these phenomena, the streamflow drought index (SDI) is widely recognized as
a simple yet effective method for evaluating hydrological droughts. Numerous studies
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conducted in regions such as Northern Europe [8], Australia [9], Ethiopia [10], India [11],
and Turkey [12] have demonstrated the severity of droughts, highlighting the need for ro-
bust mitigation measures and a deeper understanding of the relationship between drought
and climate change [13,14]. Furthermore, the Intergovernmental Panel on Climate Change
(IPCC) and the Coupled Model Intercomparison Project (CMIP) have been instrumental
in developing models to predict future climate changes, with CMIP5 showing enhanced
performance in simulating global precipitation trends [15].

Northeastern Thailand is significantly affected by climate change, leading to de-
creased rainfall and streamflow, with projections indicating a 13-19% reduction in annual
streamflow and shifts in seasonal patterns [16]. This decline has severely impacted the
agricultural sector, especially rice farming, where yields are expected to decrease due to
higher temperatures and altered rainfall patterns [15]. The Lam Chiang Kri Watershed
(LCKW) is particularly vulnerable due to its geographical limitations and sandy soil, whose
water-holding capacity is poor. The region experienced a 24.52% decrease in rice produc-
tion during strong El Nifio events, further illustrating the severe impact of drought [17].
Additionally, the region’s climate variability, frequent droughts, and issues such as soil
erosion and salinity exacerbate existing agricultural challenges. Consequently, sustainable
water resource management and improved agricultural practices are essential to address-
ing these issues [18-20]. This study presents a novel perspective on the hydrological and
climatic characteristics of Northeastern Thailand, a region whose unique features have
been largely underexplored in existing literature. By integrating hydrological drought
analysis with return period assessments under climate change scenarios, the research ad-
dresses a significant knowledge gap [21]. By focusing on Northeastern Thailand’s unique
challenges, the study provides valuable insights into the region’s vulnerability to future
droughts and contributes to the development of effective water resource management and
planning strategies.

In this study, we aimed to fill the existing research gap by evaluating the impact of
climate change on streamflow in the Lam Chiang Kri Watershed, assessing hydrological
drought by using the streamflow drought index (SDI), and characterizing this phenomenon
across different return periods in two climate change scenarios. We utilized the SWAT
model, a well-established tool for simulating streamflow, based on downscaled climate
projections from selected global climate models (GCMs) in two emission scenarios: RCP4.5
and RCP8.5. The analysis focuses on projections for the years 2029 and 2039, incorporating
observational streamflow data for the reference period to estimate future streamflow and
calculate hydrological drought.

2. Materials and Methods
2.1. Study Area

The Lam Chiang Kri Watershed (LCKW) is located in northeastern Thailand, within the
Isan Plateau, and serves as the upper branch of the Mun Watershed. Covering 2959.59 square
kilometers, it has an elevation range of 145 m to 593 m above sea level (Figure 1) [22]. The
terrain slopes from west to east, with predominantly laterite soil, which is a type of sandy
loam with poor water-holding capabilities. As a result, hydrographs in this region display
sharp rising limbs, high peaks, and steep recess limbs, indicating that rainfall quickly runs off
rather than soaking into the ground, leading to rapid changes in streamflow levels [23].

The LCKW experiences lower rainfall and higher temperatures than other regions in
Thailand. According to data from the Thai Meteorological Department (TMD), the area
receives an average annual rainfall of 947.66 mm and has an average temperature of 33 °C.
The LCKW has distinct wet and dry seasons driven by monsoons [24]. The southwestern
monsoon brings heavy rain from mid-May to mid-October, while the northeastern mon-
soon causes the dry season from mid-October to mid-February, with a transitional period
occurring from mid-February to mid-May. Additionally, the Roy-al Irrigation Department
of Thailand (RID) reports an average annual streamflow of 2661.51 m3/s, with 91.78%
occurring during the rainy season and the remaining 8.22% in the dry season. Furthermore,

90



Atmosphere 2024, 15, 1136

15°20'0"N

15°0'0"N

an analysis by Thailand’s Land Development Department (LDD) indicated that 88.89%
of the land use in the LCKW is agricultural, yet only 22.09% is irrigated. This highlights
the area’s high vulnerability to drought, with 45.89% of land being classified as high risk,
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Figure 1. The geographical location, topographical features, historical drought patterns, and weather
stations of the study area.

2.2. Data Collection
2.2.1. Meteorological Data

Daily meteorological data, including precipitation, temperature, humidity, wind speed,
and radiation, were obtained from the Thai Meteorological Department for the period from
1992 to 2022 [24]. Within the Lam Chiang Kri Watershed, data were collected from five
meteorological stations: P431003 (Dan Khun Thot), P431014 (Non-Thai), P431017 (Non-
Sung), P431034 (Theparak), and P431039 (Phra Thong Kham). We applied the Thiessen
method to ensure an accurate representation of rainfall across the watershed. This spatial
interpolation technique divides the area into polygons, with each polygon assigned the
rainfall data from the nearest meteorological station. As a result, it provides a precise
and reliable distribution of rainfall data across the region [25]. By doing so, the method
provides a more representative average of rainfall distribution across the watershed. The
processed data were then used as inputs for bias correction in climate models to evaluate
past, present, and future climate scenarios.
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2.2.2. Hydrological Data

Daily streamflow data in this study were obtained from the Irrigation Hydrology
Center, Royal Irrigation Department Thailand [26]. This station is M188 (Ban Bua). The
data covers April 2010-March 2021.

2.2.3. Topographic, Soil, and Land Use Data

The digital elevation model (DEM) was used in this study to represent the topographic
condition of the study area. This DEM has a resolution of 12.5 m. These data were retrieved
from the National Aeronautics and Space Administration (NASA) [27].

This study used a 2021 land use map and soil map of the LCKW, created by Thailand’s
Land Development Department (LDD), with reference to a spatial resolution suitable for
detailed watershed analysis.

2.3. Methodology

In this study, we utilized daily rainfall data from five gauges of the Thai Meteorological
Department (TMD), covering the historical period from 1992 to 2022. Additionally, daily
streamflow data from the gauge at the M188 station, provided by the Royal Irrigation
Department of Thailand (RID), were used for the historical period from 2010 to 2021. The
locations of these gauges are illustrated in Figure 1, while a schematic diagram of the
overall framework is shown in Figure 2. For the projected periods, two specific years were
selected, the 5th year (2029) and the 15th year (2039) from the current year, to assess the
impact of climate change on hydrological drought. Observational rainfall and streamflow
data were crucial to calibrating and validating the Soil and Water Assessment Tool (SWAT)
model version 2012, as well as calculating the baseline (2010-2021) hydrological drought
index. After performing bias correction, the ability of the global climate models (GCMs) to
generate streamflow for the baseline period was evaluated. The output from all selected
GCMs was then analyzed, with particular emphasis on the drought index results obtained
from the best-performing GCMs.

RCM rainfall

Observed Bias correction
rainfall RCMs rainfall

Select the appropriate model
from the Taylor Diagram.

DEM, Land use, / Future 7
Soil type SWAT model rainfall
Future
streamflow
Calibrated
Parameter set

Historical
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« Validation: 2018-2021
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Figure 2. Overview of global climate model (GCM) methodology for hydrological drought assessment.
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2.3.1. Global Climate Models (GCMs) and Climate Scenarios

In this study, we employed three well-regarded global climate models (GCMs) from
the CMIP5 dataset: EC-Earth3, HadGEM?2, and MPI-ESM-MR [28,29]. These models were
selected for their strong capabilities in simulating historical climate variability and accu-
rately projecting future scenarios. EC-Earth3 is particularly effective in high-resolution
assessments of extreme events like floods, droughts, and heatwaves. HadGEM?2 is known
for its precision in modeling global warming and extreme weather conditions, making
it ideal for hydrology and drought studies. MPI-ESM-MR excels in simulating complex
climate interactions, such as monsoon dynamics, and is especially useful for assessing long-
term drought risks in Southeast Asia [30-32]. These models were chosen for their proven
ability to represent precipitation, which is a crucial variable in hydrological responses
and potential future hydrological drought scenarios. These scenarios include projected
frequency, duration, and severity of droughts as influenced by different climate change
pathways. Specifically, CMIP5 was chosen for its ability to address the diverse and complex
geography of Southeast Asia, which includes mountain ranges, major rivers, and coastal
regions highly vulnerable to climate change. Its validation in numerous regional studies
ensures its suitability for addressing local complexities [28]. To analyze future climate
impacts, we used precipitation data from these models under two Representative Concen-
tration Pathways (RCPs), which are greenhouse gas concentration trajectories adopted by
the Intergovernmental Panel on Climate Change (IPCC). Specifically, RCP 4.5 represents
a moderate climate impact scenario where radiative forcing stabilizes at 4.5 W/m? by
2100 [33], while RCP 8.5 depicts a high-emission scenario with radiative forcing reaching
8.5 W/m? by 2100, while RCP 8.5 depicts a high-emission scenario with radiative forcing
reaching 8.5 W/m? by 2100. The comprehensive datasets and extensive validation of these
models in similar climates ensure the reliability and robustness of our projections.

To ensure the accuracy of the projected climate data, we refined the GCM outputs
through dynamic downscaling [34], improving alighment with local climate patterns and
enhancing their suitability for regional impact assessments. The downscaled models
were validated by comparing their outputs with observed climate data from 1992 to
2022, using statistical metrics such as correlation coefficient (r), root mean square error
(RMSE), and standard deviation (SD). The models” performance was visually summarized
using a Taylor diagram, allowing for comparative evaluation [35]. For our analysis of
future climate impacts, we focused on two specific years, 2029 and 2039, representing the
5th and 15th years within the projected timeframe. These years were chosen to capture
both near-term and mid-term climate impacts, offering insights into potential changes
in hydrological patterns, particularly regarding drought conditions under different RCP
scenarios. To further ensure the accuracy of these projections, we compared the models’
rainfall predictions for these years with observed rainfall data from 2004 to 2022, allowing
us to assess the models’ reliability in projecting future climatic conditions.

2.3.2. SWAT Model
(1) Model Description

The SWAT model, a semi-distributed, process-based hydrological tool developed
by the United States Department of Agriculture (USDA), was employed in this study to
simulate watershed processes [36], with a particular focus on assessing the impacts of
climate change. The model utilized a comprehensive set of input data, including climate
variables sourced from the Thai Meteorological Department, topographical data derived
from a 12.5-m resolution DEM, soil characteristics provided by the Land Development
Department of Thailand, and land use data reflecting both current and historical patterns.
The construction of the model involved delineating the watershed, creating hydrologic
response units (HRUs) based on land use, soil type, and slope, and integrating these datasets
to accurately represent the hydrological processes within the watershed. Calibration
and validation of the model were conducted using multi-temporal observed streamflow
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data from 2010 to 2021, ensuring the model’s precision and reliability in simulating the
watershed’s behavior under various climate scenarios [37].

In this study, the SWAT model was also utilized to delineate the watershed, divide
it into sub-watersheds, and create HRUs based on land use, soil type, and slope data.
The Land Development Department of Thailand classified land use into twelve primary
categories, while the soil map identified forty-four distinct soil types within the study area.
Additionally, the slope was categorized into five classes: flat (0—2%), sloping (2-5%), hilly
(5-15%), steep (15-35%), and very steep (>35%).

A water balance equation was the basis for the SWAT model, represented as follows
(Equation (1)):

SWi = SWo + Z(Rd{zy - qurf — Eq — Wseed — ng) (1)

where SWj and SW; (mm) are the initial and final soil water on a given day, and Ry,
Qsur £ Eay Wseed, and Qg (mm) are the rainfall, runoff, ET, water seepage to the upper soil
layer, and return flow on that day, respectively.

The SWAT model used the Soil Conservation Service curve number (SCS-CN) ap-
proach to compute surface runoff in the study area. The SCS-CN equation is shown by

Equation (2), as follows:
2
(Raay 1)
qurf = (

— e)
Raay — o +5)

where Qg is daily surface runoff (mm); R4, is daily rainfall depth (mm); I, is the initial
abstraction (mm); and S is the retention parameter (mm). The retention parameter

S is not fixed and can be affected by factors such as slope, soil, and land-use man-
agement. Mathematically, the retention parameter can be represented as Equation (3),

as follows: 100

where S is the retention parameter (mm), and CN is the curve number. The curve number
ranges from 0 to 100, with 100 indicating no potential retention and 0 reflecting infinite
potential retention [38].

(2) Model Setup

The SWAT model calibration and validation process requires careful consideration
of observation streamflow data from the M188 station. The data are divided into 80% for
calibration and 20% for validation, with periods selected from 2010 to 2021. The simulation
runs for 12 years, starting from 1 January 2010, to 31 December 2021. Nine sub-watersheds
were created in the study area, with a threshold of 10% for land use, 10% for soil, and 10%
for slope, resulting in 108 hydrologic response units.

(3) Model Evaluation

The study used SWAT-CUP software version 5.1.6 with the Sequential Uncertainty
Fitting (SUFI) algorithm to calibrate a model [39], which can handle a large number of
parameters and combine sensitive analysis and improvement [37].

The model’s performance was compared using three statistical performance indices:
Nash and Sutcliffe Efficiency (NSE) following Equation (4) [40]; the coefficient of determina-
tion (R?), following Equation (5) [41]; percent bias (PBIAS), following Equation (6) [42]; and
Kling-Gupta Efficiency (KGE), following Equation (7) [43], to evaluate its daily stream-flow
performance during calibration and validation phases.

Y 1 (Qos — Qsim)”

NSE=1- sim_
E?:l (Qobs - Qobs)

)
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2
R2 _ Zizl [(%bs _Z%Ebs) (Qsim - Qsin:)] 05 (5)
[Zln:1 (Qohs - Qobs) } [Z?_1 (Qsim - Qsim) }
PBIAS — Z?:l(Qobs - Qsim) %« 100 (6)
Qobs
KGE:1-—¢@—1f+ma—1f+wﬁ—1f @)

Qops and Qgjyy, represent observed and simulated values, respectively. The NSE value
of the model should be more than 0.50, while the R? should be at least 0.7. PBIAS should
not exceed 25 percent to be acceptable. KGE can be categorized as good (KGE > 0.75),
intermediate (0.75 > KGE > 0.5), poor (0.5 > KGE > 0), and very poor (KGE < 0).

2.3.3. Hydrological Drought Index

The streamflow drought index (SDI) is a key tool for assessing hydrological drought
severity, where positive values indicate wetter conditions, and negative values signal
the presence of drought. Calculated using monthly streamflow data, the SDI aids in
managing drought and water scarcity across various time frames, encompassing both
dry and wet seasons [44]. Specifically, the SDI-3, which tracks drought over a 3-month
period, is particularly valuable for monitoring agricultural droughts and their impact on
crops, whereas the SDI-6, calculated over 6 months, offers deeper insights into hydrological
droughts that affect both surface and groundwater resources [45]. By analyzing both SDI-3
and SDI-6 together, a more comprehensive understanding of drought conditions can be
achieved across both short-term and long-term time scales. Moreover, these time scale
choices can be further refined depending on the specific climate and water resource focus
of the study area, as detailed in Equation (8) [44].

Vn,q - qu

SDI =
5‘7

®)

where V,, ; represents the cumulative streamflow volume for period (1) and quarter (q)
while Vg, and S, are the mean and the standard deviation of cumulative streamflow
volumes of the reference period, respectively. The classification of hydrological drought
based on the SDI (Table 1) offers a detailed understanding of drought characteristics.

Table 1. Classification of hydrological drought based on SDI.

State Description Range
1 No drought 0 <SDI
2 Mild drought —-1<SDI<0
3 Moderate drought —1.5<SDI< -1
4 Severe drought —2<SDI< —-1.5
5 Extreme drought SDI < -2

The Theory of Runs (ToR) is a statistical method used to analyze drought characteris-
tics [46], including drought event (DE), drought duration (DD), drought severity (DS), and
drought intensity (DI) (Figure 3). DE is identified when the SDI value falls below a critical
threshold. DD represents the duration of drought in months with negative SDI values,
while DS is the sum of the absolute values of the SDI during a DE. DI can be defined as the
absolute lowest value of the index (DI1) or the ratio of DS to DD in a DE (DI2).
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Figure 3. A Theory of Runs illustration of a drought event and the drought indicators [47].

2.3.4. Scenarios Analysis in Different Return Periods

The CumFreq software version 5.0. (https://www.waterlog.info/cumfreq.htm; ac-
cessed on 28 January 2024) was employed to determine the most suitable statistical distribu-
tion for characterizing drought events across various return periods (5, 10, 25, and 50 years)
and time scales (3 and 6 months). CumFreq utilizes multiple probability distribution
functions to analyze the input data and subsequently recommend the most appropriate dis-
tribution for drought characterization [48]. The absolute values of the streamflow drought
index (SDI) were input into CumFreq to derive these distributions.

To further analyze the impact of droughts over different periods, wavelet analysis was
applied to assess the variability of SDI values at different time scales and across varying re-
turn periods. This method provided deeper insights into the temporal patterns and severity
of droughts under different climate scenarios. Additionally, a geostatistical approach was
employed to interpolate streamflow and SDI values, which were then visualized as contour
maps. These maps were generated using accurate variogram models, which are crucial
for interpreting the spatial distribution of natural phenomena like drought [49]. Moreover,
the relationship between streamflow and absolute SDI was explored using Surfer 21.1.158
software, enabling the creation of three-dimensional diagrams with contour lines based on
the Kriging interpolation method [50].

3. Results

The investigation of critical hydrological droughts in the Lam Chiang Kri Watershed
(LCKW) in CMIP5 climate change scenarios was divided into three key areas, i.e., the
calibration and validation of the SWAT model, identification of historical drought charac-
teristics, and assessment of climate change impacts on hydrological drought, as detailed in
the following sections.

3.1. Calibration and Validation of SWAT Model

The SWAT model simulation for the period from 2010 to 2021, supported by data from
a hydrological station within the Lam Chiang Kri Watershed, allowed us to effectively
analyze the watershed’s hydrological responses to varying meteorological conditions. The
calibration and validation performed by using the SUFI-2 algorithm within SWAT-CUP
ensured the accuracy of the streamflow patterns, significantly enhancing the reliability of
the results (Table 2).

Table 2. Sensitivity parameters in the SWAT-CUP model of LCKW.

Parameter t-Stat p-Value Fit Value Min Value Max Value
1: R_CN2.mgt —5.48 0.01 40.395 35 100
2: R_SOL_AWC((..).sol —2.84 0.04 0.343 —0.2 0.4
3: R_ESCO.hru 2.16 0.08 0.21525 0.1 0.35
4: V_GW_DELAY.gw 1.82 0.14 155.5 0 500
5: R__SLSUBBSN.hru -1.71 0.17 56.90 50 150
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A sensitivity analysis identified five critical parameters—CN2, ESCO, SOL_AWC,
GW_DELAY, and SLSUBBSN—highlighting their significant influence on the streamflow
simulation. These findings provide a robust foundation for future water resource manage-
ment and drought mitigation strategies in the LCKW.

The calibration and validation phases in SWAT model development depend on accu-
rate observational streamflow data. For this study, data from the M188 station, covering the
period from 2010 to 2021, were utilized. Figure 4 shows that the calibrated SWAT model for
the M188 station closely matched the observational data patterns.

calibration validation
. R? = 0.83 R? = 0.81 \
1
b NSE = 0.78 NSE = 0.78 ;
]

o

2011 2012 2013 2014

2015

2016 2017 2018 2019 2020 2021

Time (Years)

I Rainfall - Observed —Simulated

Figure 4. The monthly simulated and observed streamflow comparison for the M188 station during
the calibration (2010-2017) and validation (2018-2021) periods. The two periods are separated by
vertical dashed lines within the graphs.

For statistical evaluation, R?, NSE, PBIAS, and KGE values were used. Throughout the
calibration and validation periods, the streamflow station data exhibited R? and NSE values
above 0.75, indicating good to very good performance. The PBIAS values were maintained
below 25%, aligning with the preferred threshold. The KGE values were classified in the
intermediate category, as detailed in Table 3.

Table 3. Statistical parameters of the SWAT model based on SWAT-CUP.

Statistic Parameters  Calibration (2011-2017) Validation (2018-2021)  Total (2011-2021)

R? 0.83 0.81 0.82
NSE 0.78 0.78 0.78
PBIAS 12.0 28.04 20.02
KGE 0.64 0.46 0.55

3.2. Identification of Historical Drought Characteristics

The historical drought characteristics were calculated using the streamflow drought
index (SDI) and divided into two periods: SDI-3 and SDI-6. The figure illustrates the SDI
variations in the LCKW from 2010 to 2021, focusing on these two different accumulation
periods. According to the 3-month accumulation period (SDI-3) analysis, the graph indi-
cates frequent fluctuations in the SDI values (Figure 5), with significant drought periods
around 2014-2015, where the mean SDI-3 value dropped to approximately —1.75. During
2020-2021, the SDI-3 values decreased to levels as low as —2.25, suggesting that short-term
drought events are common and often occur annually. The 6-month accumulation period
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SDI-3

SDI-6

(SDI-6) analysis showed less frequent but more severe and prolonged droughts (Figure 5).
Notably, in 2015, the SDI-6 value reached approximately —2.5, and in 2020, it dropped
further, to around —2.74, indicating that medium-term droughts, while less frequent, tend
to be more intense and prolonged. Both the SDI-3 and SDI-6 analyses indicated that severe
and extreme drought events occurred almost every year, highlighting the persistent and
recurring nature of drought conditions in the region.

3-month accumulation period
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Figure 5. The temporal variation in the spatial averaged time series of the SDI in the LCKW at the 3-
and 6-month time scales calculated based on the period of 2010-2021. The color scale from yellow to
red represents mild to moderate, severe, and extreme drought categories, respectively.

The analysis indicated an average of 2.67 drought events per year, with a maximum
duration of 3 months and a peak severity of —31.97. The SDI-6 analysis showed less
frequent yet more severe and prolonged droughts, notably in 2015 and 2020, with an
average of 1.25 drought events per year, a maximum duration of 6 months, and a peak
severity of —43.04. Both indexes underscore the persistent and recurrent nature of drought
conditions, highlighting the necessity for effective water resource management strategies
to mitigate both short-term and medium-term drought risk. The maximum intensity values
for SDI-3 were —2.44 in 2015 (DI1) and —1.35 (DI2), whereas for SDI-6, they were —2.74
(DI1) in 2020 and —1.69 (DI2) (Table 4).

Table 4. The historical drought characteristics in the LCKW represented by the SDIs for 3- and
6-month accumulation periods.

Hydrological Drought
SDI-3 SDI-6
Average drought event (time/year) 2.67 1.25

Total number of drought events (times) 32 15

Maximum drought duration (months) 23 36
Maximum drought severity —31.97 —43.04
Maximum drought intensity based on DI1 —2.44 —2.74
Maximum drought intensity based on DI2 —1.35 —1.69

3.3. Assessment of Climate Change Impacts on Hydrological Drought
3.3.1. The Selection of the Fittest GCM

In this study, we utilized daily rainfall observations from five weather stations located
within the Lam Chiang Kri Watershed (LCKW) (as shown in Figure 1). The rainfall data
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were aggregated and analyzed by using the Thiessen method to accurately represent
the spatial distribution of rainfall across the watershed. The observational data covered
the historical period from 1992 to 2022, which was divided into two distinct phases:
1992-2005 for calibration and 20062022 for validation. These periods were used to assess
the performance of three selected CMIP5 GCMs, i.e., EC-Earth3, HadGEM2, and MPI-ESM-
MR, in the RCP4.5 and RCP8.5 scenarios.

The data were processed to ensure consistency and accuracy before being used in
Taylor diagram analysis. To create the Taylor diagram, data for 1992-2022 were used to
assess how accurately the models predicted results compared with the observational data
during that period, which were employed to assess the fit of these models. Among the
models, the EC-Earth3 model (red dot) demonstrated the highest correlation with the
observational data, with a correlation coefficient of 0.65, a standard deviation (SD) of 1.98,
and a root mean square error (RMSE) of 3.41, making it the most accurate model. The
HadGEM2 model (blue dot) also showed a strong correlation but had a higher RMSE.
The MPI-ESM-MR model (green dot) exhibited moderate correlation and RMSE values

(Figure 6).
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Figure 6. The Taylor diagram illustrates the suitability of different climate models for projecting
rainfall in the LCKW.

3.3.2. Future Rainfall

The future rainfall analysis compared monthly averages from the observational peri-
ods with projections in the RCP4.5 and RCP8.5 scenarios. Figure 7 presents the EC-Earth3
model’s average monthly rainfall predictions for 2029 and 2039, alongside the baseline data
for 20042022 (Table 5), to evaluate changes in both climate scenarios.

In 2029, which represents the 5th year from the baseline reference year (2024), in
the RCP4.5 scenario, the projected annual rainfall totals 1311.94 mm, with the highest
monthly rainfall value occurring in September (383.03 mm) and the lowest one in January
(11.46 mm). This represents a predicted increase of 38.44% in future rainfall compared with
the baseline. In the RCP8.5 scenario, the projected annual rainfall is 892.97 mm, with the
highest value in August (215.53 mm) and the lowest one in February (11.90 mm), indicating
a decrease of 5.77% compared with the baseline.

In 2039, which represents the 15th year from the baseline reference year (2024), in the
RCP4.5 scenario, the projected annual rainfall is 1101.06 mm, with the highest monthly
rainfall value in August (248.36 mm) and the lowest one in January (14.80 mm), marking a
16.19% increase compared with the baseline. In the RCP8.5 scenario, the projected annual
rainfall totals 805.46 mm, with the highest value in October (218.96 mm) and the lowest one
in January (1.33 mm), reflecting a 15.00% decrease compared with the baseline (Table 5).
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The findings indicate that there are considerable differences in the variability of
monthly rainfall between the two future periods, with more substantial changes being
predicted for 2039, particularly in the RCP8.5 scenario, where the most significant rainfall
declines are anticipated.
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Figure 7. A comparison of streamflow between the baseline period (2004—2022) and the projections
for 2029 (a) and 2039 (b) in the RCP4.5 and RCP8.5 future climate scenarios.
Table 5. Future rainfall changes in the RCP4.5 and RCP8.5 scenarios for 2029 and 2039 compared
with the baseline period of 2004-2022.
Baseline (2004-2022) RCP4.5 RCP8.5
Ti
e (mm) (mm) % Change (mm) % Change
2029 947.64 1311.94 38.44 892.97 -5.77
2039 947.64 1101.06 16.19 805.46 —15.00
3.3.3. Future Streamflow
In this study, we analyzed variations in streamflow by comparing historical data with
model simulations, focusing on mean annual streamflow in the RCP4.5 and RCP8.5 climate
scenarios. Figure 8 presents the predicted average monthly streamflow for 2029 and 2039
compared with the baseline period of 2010-2021 (Table 6) to evaluate potential changes in
each scenario.
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Figure 8. A comparison of streamflow between the baseline period (2010-2021) and the projections
for 2029 (a) and 2039 (b) in the RCP4.5 and RCP8.5 future climate scenarios.
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Table 6. A comparison of the amount of streamflow between the baseline (2010-2021) and the RCP4.5
and RCP8.5 future climate scenarios for both 2029 and 2039.

Future Streamflow (m?3/s)

Baseline RCP4.5 RCP8.5
3 . .
Months (m>/s)
2029 2039 2029 2039
Observation Simulation Simulation Simulation Simulation Simulation
January 45.96 46.59 60.83 45.78 494 494
February 19.30 19.30 1.20 10.92 0.00 5.76
March 9.77 10.66 0.13 9.66 0.00 6.69
April 24.54 25.14 0.13 9.66 0.19 0.19
May 62.52 63.23 12.08 6.08 0.07 116.05
June 122.29 123.02 30.30 7.45 0.33 128.14
July 205.78 206.47 46.95 15.21 4.57 114.43
August 329.76 330.48 249.36 159.97 80.37 378.82
September 626.43 671.42 624.79 474.93 225.28 325.10
October 652.15 653.03 1495.52 1495.52 708.20 65.79
November 419.28 419.99 691.80 593.66 421.28 10.70
December 143.72 119.69 410.01 363.35 247.15 30.93
Total runoff 2661.51 2689.02 3623.09 3192.18 1692.38 1187.54
Wet period (rn3 /s) 2442.76 2492.78 3150.93 2762.47 1440.29 1139.21
Dry period (m3/s) 218.74 196.24 47217 429.71 252.09 48.33
(%) Percentage ; ; 34.74 18.71 ~37.06 5584

change

In 2029, in the RCP4.5 scenario, the annual streamflow is projected to be 3623.09 m3/s,
with the highest flow value occurring in October (1495.52 m3/s) and the lowest one
in February and March (0.13 m®/s). The monsoon season is expected to contribute
86.97% (3150.93 m3/s) of the total streamflow, with the dry season contributing 13.03%
(472.17 m3/s), indicating a 34.74% increase compared with the baseline period. In the
RCP8.5 scenario, the streamflow is projected to decrease to 1692.38 m?3 /s, with the highest
flow in October (708.20 m?/s) and no flow in February and March. The monsoon season is
expected to contribute 85.10% (1440.29 m3/s) of the total streamflow, with the dry season
contributing 14.90% (252.09 m3/s), representing a 37.06% decrease compared with the
baseline period (Table 6).

In 2039, in the RCP4.5 scenario, the projected streamflow is 3192.18 m3/s, reflect-
ing an 18.71% increase compared with the baseline. October again has the highest flow
(1495.52 m3/s), and the lowest flows are expected in March and April (9.66 m3/s). The
monsoon season is projected to contribute 86.54% (2762.47 m3/s) of the total streamflow,
with the dry season contributing 13.46% (429.71 m3/s). Conversely, in the RCP8.5 scenario
for 2039, streamflow is projected to further decrease to 1187.54 m®/s, a 55.84% decrease
compared with the baseline. The peak flow is expected in August (378.82 m?/s) and the
lowest value in April (0.19 m3/s). The monsoon season is expected to contribute 95.93%
(1139 m3/s) of the total, with the dry season accounting for only 4.06% (48.33 m3/s).

The results highlight significant disparities in the variability in monthly streamflow
between the two future time frames, with more pronounced changes being observed in 2039,
especially in the RCP8.5 scenario, where the steepest declines in streamflow are projected.
These changes in streamflow mirror the patterns seen in rainfall variability, indicating a
strong correlation between precipitation and streamflow responses to climate change.

3.3.4. Future Hydrological Drought Characteristics

The future hydrological drought characteristics, as projected based on the SDI for the
years 2029 and 2039, were analyzed in two climate scenarios, RCP4.5 and RCP8.5, based on
3-month (SDI-3) and 6-month (SDI-6) accumulation periods (Figure 9), as detailed below.
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3-month accumulation period in RCP4.5 and RCP8.5
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Figure 9. The temporal variation in the spatial averaged time series of the SDI in the LCKW at 3- and
6-month time scales calculated based on the EC-Earth3 model: 2029 (a); 2039 (b). The color scale from
yellow to red represents mild to moderate, severe, and extreme drought categories, respectively.

The analysis shows that in 2029, the SDI-3 values in RCP4.5 indicate drier conditions
from January to April, with improvements from May to September and a decline towards
the year’s end. The RCP8.5 scenario follows a similar pattern but with more severe droughts.
In terms of the SDI-6 values, both scenarios exhibit dry conditions early in the year, with
some recovery from April to July and a decline towards the year’s end, with RCP8.5
showing more intense droughts. For 2039, both SDI-3 and SDI-6 projections in RCP4.5 and
RCP8.5 suggest worsening droughts, particularly in RCP8.5, with severe droughts expected
from April to July. The projections highlight an increasing trend in drought severity and
frequency, especially in the higher-emission scenario (RCP8.5), emphasizing the urgent
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need for effective water management and climate adaptation measures to mitigate the
adverse impacts of these projected changes.

3.3.5. Analysis of SDI in Different Return Periods

We further investigated the relationship between streamflow and the absolute SDIs
across different return periods and time scales by using wavelet analysis (Figure 10).
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Figure 10. The wavelet analysis results showing the relationship among streamflow (m?/s), absolute
SDIs, and return periods for the baseline (a), RCP4.5 (b), and RCP8.5 (c). The horizontal axis represents
return periods (years), and the vertical axis represents average streamflow (m?/s). Bold blue lines
indicate areas of low drought severity, while bold red lines mark areas of high severity. Contour lines
highlight transitions between severity levels, with the color gradient further illustrating drought
severity (blue for low and red for high).

For SDI-3, return periods of 2-10 years exhibit the highest drought severity, with
SDI values ranging from 2.08 to 2.86, indicating that the most severe droughts occur over
shorter periods. In contrast, longer return periods (over 10 years) show less intense and
shorter droughts. In the RCP4.5 scenario, the most severe droughts are observed within
2-10 year return periods, rather than increasing with longer return periods. Conversely,
the RCP8.5 scenario shows more severe and widespread droughts, particularly in return
periods of 25-50 years, with absolute SDI values ranging from 2.26 to 4.34. Return pe-
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riods of 1-25 years in RCP8.5 also show moderate drought severity across most of the
watershed area.

For SDI-6, we found that return periods of 10-50 years exhibit the greatest drought
severity, with absolute SDI values ranging from 2.24 to 2.74. These severe droughts cover
longer periods and have a relatively long duration. In shorter return periods of 1-10 years,
fewer droughts are observed. In the RCP4.5 scenario, severe droughts are primarily seen in
25-50 year return periods, with absolute SDI values ranging from 2.31 to 3.76, indicating
continuous drought severity over a long period. For return periods of 0-10 years, no
droughts occur in the first 5 years, and moderate droughts are observed in the 5-10 year
period, with absolute SDI values ranging from 1.56 to 1.97. However, the RCP8.5 scenario
shows a more extensive and severe drought distribution. In return periods of 10-50 years,
high severity covers a wide area of the watershed, with absolute SDI values ranging from
2.38 to 4.38. For return periods of 1-10 years, a moderate level of drought severity covers
most of the watershed area.

We found that the probability of severe hydrological drought in the LCKW is quite
high due to low annual recurrence. The severity of drought varies across different periods,
showing distinct behavior at different recurrence intervals. In all scenarios for SDI-3 and
SDI-6, drought severity generally increases with longer return periods, except for SDI-3 in
the RCP4.5 scenario, where the most severe droughts are associated with shorter return
periods. Notably, SDI-6 exhibits greater severity and duration of droughts than SDI-3, as it
better captures the lag between reduced rainfall and its impact on streamflow, providing a
clearer indication of hydrological drought conditions.

Overall, the results of this study highlight the significant impact of higher greenhouse
gas emissions on drought severity and distribution. The RCP8.5 scenario consistently
indicates more severe and widespread drought conditions than the RCP4.5 scenario. The
analysis underscores the importance of considering different time scales and return periods
when assessing drought severity to understand the potential future impacts in varying
climate change scenarios. Effective water resource management and climate mitigation
efforts are crucial to addressing the increasing severity and frequency of droughts associated
with higher greenhouse gas emissions.

4. Discussion
4.1. Trends in Future Rainfall

In this study, we analyzed future rainfall patterns in northeastern Thailand in two
climate change scenarios, RCP4.5 and RCP8.5, by using simulations based on the EC-Earth3
model. These simulations provide valuable insights into the region’s future climate, as
confirmed by Pimonsree et al. (2023) [51], who proved their accuracy based on a high
spatial correlation coefficient and observational rainfall data across Southeast Asia. The
findings suggest a significant increase in both annual and seasonal rainfall, particularly
during the rainy season from May to November [52,53]. Despite the overall increase in
rainfall, the pattern of daily rainfall remains stable, which is consistent with the findings of
other studies [54].

First, in the RCP4.5 scenario, researchers such as Tammadid et al. (2023) [55] and
Boonwicahi et al. (2018) [56] predicted a significant increase in rainfall in northeastern
Thailand by the period 2030-2035, with annual precipitation expected to increase by 13%.
Additionally, for the nearby watershed area, Li et al. (2021) [57] indicated that rainfall
during the wet season is projected to increase substantially in RCP4.5, which is particularly
crucial for agriculture and water resource management in the region. These changes are
attributed to the warming of global climate, as noted by the IPCC, which forecasted an
intensified water cycle in Southeast Asia [58]. This scenario also suggests higher surface
temperatures and stronger winds, potentially leading to more frequent tropical cyclones,
increased rainfall, and heightened flood risk [59].

Conversely, in the RCP8.5 scenario, which assumes a higher trajectory of greenhouse
gas emissions, the outlook changes significantly. Shrestha et al. (2021) [59] and Okwala
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et al. (2020) [60] predicted a reduction in rainfall, with a forecasted 11% decrease by
2050 in two watershed areas close to the LCKW, which have the same climate. These
nearby watersheds are relevant to our study because they share similar hydrological and
meteorological characteristics, making them a useful proxy for understanding potential
impacts in our primary study area. The reduction in rainfall is more pronounced during the
wet seasons, which could critically impact the region’s hydrology. The decrease in rainfall,
combined with expanded irrigation practices and the increasing frequency and intensity of
El Nifio events, suggests that streamflow and water availability will be significantly affected,
potentially leading to more severe drought conditions and water scarcity [61]. The results
of the examination of future rainfall trends in these two distinct climate scenarios, RCP4.5
and RCP8.5, highlight significant variations in regional climate responses. This underscores
the importance of considering the impacts of climate change on water management in
northeastern Thailand.

4.2. Effects on Future Streamflow

This study assessed the impacts of climate change on streamflow, focusing on how
decreases in precipitation during the rainy season contribute significantly to reductions in
annual streamflow. In Southeast Asia, our findings are consistent with previous studies,
such as Promping et al. (2020) [62], who projected a 3.39-6.15% decrease in streamflow
from 2020 to 2050 in the RCP8.5 scenario, with rainy season flows potentially being reduced
by 31-47% in the Pasak River Basin, a neighboring watershed. The Pasak River Basin
shares similar climatic and hydrological characteristics with our study area, making it a
valuable reference point for understanding the broader regional impacts of climate change
on water resources.

Conversely, in the RCP4.5 scenario, increased rainfall could lead to significant increases
in streamflow. For example, Kimmany et al. (2020) [63] reported 8% and 22% increases in
dry season and annual streamflow, respectively. Similarly, Li et al. (2021) [57] projected that
streamflow in the Mun River, which is the main river basin of the LCKW, could increase by
10.5%, 20.1%, and 23.2% during 2020-2093, due to high concentrations of greenhouse gases
altering, cloud formation, increasing temperatures, and changing precipitation patterns [64].
Increased aerosol levels can lead to more reflective clouds [65], which are less effective
in producing rain [66], while weakened atmospheric circulation further reduces storm
occurrence, exacerbating water scarcity in the region [67].

However, these increases are not consistent across all regions and are influenced by
various factors, including land-use changes, soil moisture retention, and evapotranspi-
ration rates, all of which are impacted by climate change. This complexity suggests that
while some regions may experience higher streamflow, others may not see corresponding
increases, even with greater rainfall, underscoring the nuanced effects of climate change
on hydrology [68]. Given this variability, the accuracy of hydrological model predictions
becomes crucial. However, in regions with limited streamflow measurement stations,
the scarcity of data can significantly hinder accurate predictions. Therefore, expanding
the network of streamflow stations is essential, as it would provide more comprehen-
sive data, thereby improving the accuracy of hydrological models and enhancing climate
change projections.

4.3. Characteristics of Hydrological Drought

The findings suggest that climate change scenarios in RCP8.5 are likely to increase
drought severity compared with historical data. Climate change is expected to alter precip-
itation patterns, leading to more intense and frequent drought events. These results are
consistent with previous research, including the study by Satoh et al. (2022) [69], where
increased drought severity due to these changes was predicted. Altered precipitation pat-
terns are expected to exacerbate water scarcity in vulnerable areas, as highlighted by Ullah
et al. (2023) [70]. While the RCP8.5 scenario projects increased drought severity, the higher
emissions associated with this scenario present a greater risk, leading to more widespread
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and intense droughts. These severe drought conditions could result in substantial ecological
impacts, including biodiversity loss and the degradation of water resources [71].

The findings also indicate a high probability of very severe droughts in the Lam
Chiang Kri Watershed (LCKW), primarily due to low annual recurrence rates. This finding
is supported by Maithong et al. (2022) [45,72], who investigated the spatial distribution of
drought return periods in the Mun Watershed, of which the LCKW is a branch watershed.
In their study, they found increased drought severity in rivers with high streamflow over
extended periods, influenced by natural variations and human activities such as dam
operations and water diversions [73,74]. The diverse conditions of the selected rivers
provide a comprehensive understanding of drought occurrences across different return
periods. Furthermore, the choice of the SDI (e.g., SDI-3 and SDI-6) influences the results
of drought behavior. SDI-3, as noted by Hasan et al. (2022) [75], is sensitive to short-term
fluctuations and detects more frequent but less severe droughts [76]. In contrast, SDI-6
captures longer-term trends, reflecting more prolonged droughts [77].

While natural factors drive drought occurrences, human activities, such as land-use
change and water extraction, can further exacerbate their impacts. Therefore, understand-
ing these complexities is crucial to developing effective water management and adaptation
strategies to mitigate the socioeconomic consequences of drought [78]. Although focusing
on the specific years 2029 and 2039 provides valuable insights into near-term and mid-term
climate impacts, this approach has its limitations. Specifically, single-year projections can ef-
fectively highlight extremes but are also susceptible to anomalies and may not fully capture
long-term trends. Consequently, to enhance the reliability of future research, it would be
beneficial to analyze broader periods spanning multiple decades. Such an approach would
offer a more stable assessment of drought trends, thereby providing a comprehensive
understanding that better informs water resource management and adaptation strategies.

4.4. Management Implications and Future Perspectives

Based on the results of this study, we suggest using Reservoir Operation Study (ROS)
technology to optimize water storage and drainage management, particularly in the north-
eastern region, where unique geographical challenges complicate water management [79].
ROS technology is particularly effective in addressing these issues by enabling more precise
control of water resources, ensuring that water is available when needed for agriculture,
and reducing the risk of both water shortages and flooding. Additionally, farmers are
encouraged to shift to less water-intensive crops and zone their cultivation based on soil
and water availability. Sustainable farming practices, such as alternating wet and dry
farming, using fertilizers, avoiding burning stubble and rice straw, and integrating pest
management, are crucial to reducing greenhouse gas emissions and improving rice farming
efficiency [80].

In the context of drought preparedness, particularly in regions such as Thailand, adopt-
ing integrated water resource management (IWRM) principles can enhance water manage-
ment efficiency [81]. Developing and planting drought-resistant crops, which require less
water and are more resilient to dry conditions, can significantly reduce agriculture’s vul-
nerability to drought [82]. Empowering local communities in drought management is also
essential, as community-based approaches integrate local knowledge into preparedness
and response strategies.

The methodology proposed in this study can be applied globally, especially in regions
such as the one studied, facilitating strategic drought management. This involves engag-
ing stakeholders, policymakers, and water resource managers in monitoring, prediction,
modeling, and disaster risk reduction. However, we acknowledge the uncertainties of
this study, such as limited observational streamflow data, which affected model accuracy.
Future research should incorporate changes in climate variables, land use, soil conditions,
and population growth, especially in agricultural regions reliant on irrigation.

By investing in research and data collection, we can improve our ability to predict
future changes and inform decision-making processes, ensuring more resilient and sustain-
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able water and agricultural management practices. Finally, continued research and data
collection are essential to refine our understanding of climate change impacts and develop
effective adaptation and mitigation strategies.

5. Conclusions

Climate change impacts in Thailand, particularly in the LCKW region, are expected to
vary significantly. In RCP4.5, an increase in annual and seasonal rainfall, especially during
the rainy season, is projected, while RCP8.5 predicts a decrease, particularly in wet seasons,
potentially leading to water scarcity. Streamflow projections show potential increases in
RCP4.5, but a significant decrease is anticipated in RCP8.5.

The findings suggest that future droughts in RCP8.5 scenarios may be more intense
and frequent compared with historical periods. Severe droughts are likely to occur more
frequently and with greater intensity in RCP8.5. The SDI-3 analysis indicates quick-
developing, short-duration droughts, whereas the SDI-6 analysis shows more widespread
and prolonged drought conditions, especially in RCP8.5.

These projections underscore the urgent need for the implementation of proactive
water management strategies in the LCKW, such as expanding reservoir capacity, improving
irrigation efficiency, and promoting water conservation. The expected changes in rainfall
and drought patterns will likely have significant socio-economic impacts, particularly on
agriculture and water supply. Policymakers should prioritize investments in early warning
systems, drought-resistant crops, and community-based adaptation to enhance resilience
and ensure water security.
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Abstract: In research on monitoring drought events, analysis is often carried out using a single
period as a reference. On the other hand, changing this default period in drought calculations causes
the drought index values obtained from research to differ. As a gap in the literature, this point
highlights the necessity of investigating the effect of various time periods on drought characteristics.
It underscores the need to propose a new concept and methodology to address this gap effectively.
This research aims to analyze critical drought characteristics through dynamic time period scenarios.
For the first time in the literature, drought indices and potential and critical characteristics were
analyzed for various (dynamic) time periods. Drought analysis was carried out for 13 time period
scenarios with 10-year intervals from a meteorological station in Durham (1872-2021) by changing
the initial time condition using the Standardized Precipitation Index (SPI). The results showed that
in addition to the similarities, there are significant differences between drought characteristics. For
example, in some time period scenarios, a drought event was recorded during a specific period,
while in other scenarios (S5-57, S10-513), no drought was detected during the same period, like in
SPI 1. Additionally, for SPI 12, the drought duration varied significantly, lasting between 20 and
29 months, and for SPI 6, the drought duration varied between 3 and 13 months. Regarding the
intensity, SPI 1 ranged between —0.89 and —1.33, indicating a 33% difference, and the SPI 3 intensity
ranged between —1.08 and —1.91, indicating a 50% increase in intensity. This research significantly
contributes to the field by providing a novel approach using dynamic time period scenarios to
determine critical drought characteristics, offering valuable insights for water resource management,
drought mitigation planning, and design purposes.

Keywords: potential drought characteristics; critical drought; drought evaluation; standardized
precipitation index (SPI); dynamic

1. Introduction

Precipitation plays a crucial role in the hydrological cycle, impacting agricultural pro-
ductivity, regional climate, and broader interactions within atmospheric and terrestrial sys-
tems [1,2]. It serves as a key indicator for evaluating the effects of climate change, directly
affecting variables like soil moisture levels, streamflow, and groundwater replenishment [3-6].
Global climate changes, which are among the most significant environmental challenges,
are resulting in the heightened frequency and severity of extreme weather events, notably
droughts [7,8]. Recent research, such as that carried out by Gu et al. [9], anticipates a
substantial increase in both the intensity and socioeconomic vulnerability of worldwide
droughts under climates warmer by 1.5 and 2 °C, confirming the increasing imperative
of understanding and mitigating drought effects. Droughts, observed in diverse climatic
conditions, have extensive consequences in many sectors, such as agriculture, energy, water
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resources, and ecosystems [10,11]. A recent report from the United Nations on World
Water Development [12] indicates that approximately four billion people worldwide expe-
rience water scarcity for at least one month annually. According to the World Economic
Forum [13], economic losses from climate-related disasters, including droughts, amounted
to nearly $1.5 trillion in the decade leading up to 2019. Also, Africa’s drought-related eco-
nomic losses in the past 50 years have been about 70 billion USD [14]. Considered among
the most catastrophic natural events globally according to their widespread geographical
impact [15], understanding the complex temporal patterns of droughts is vital for proficient
water resource management and the formulation of strategies to mitigate their effects.

Various standardized drought indices have been employed to evaluate and assess
drought. Each index relies on either a singular or multiple hydro-meteorological parameters
determining a specific kind of drought, including the Standardized Precipitation Index
(SPI) [16], the Standardized Precipitation Evapotranspiration Index (SPEI) [17], the Palmer
Drought Severity Index (PDSI) [18], and the Reclamation Drought Index (RDI) [19]. Despite
the challenge of determining a universal drought index, the SPI has wide acceptance
because of its simplicity and its sole dependence on precipitation data, providing a more
straightforward index compared to more complicated indices, and this simplicity makes
the SP1I particularly well suited to regions with restricted data availability [20]. Its efficiency
across diverse time scales has been demonstrated in numerous studies, confirming the SPI's
vital role in drought evaluation, particularly under the urgent considerations associated
with global climate change [21-23].

After a thorough evaluation of the literature and the calculation and use of drought
indices, it is noticed that these indices are generally used and performed for a single time
period, determined by taking the available time period of the data as a reference [24-26].
Abu Arra and Sigsman [24] analyzed the difference between the used time period and an
acceptable time period using different statical metrics and indicated that, for meteorological
droughts, a 10-year period and, for hydrological droughts, a 20-year period can be used
with high confidence to yield acceptable results for the used time period. It is seen that
these time periods vary in research conducted in the same or proximate study areas. For
example, Gumus [27] evaluated drought in Tiirkiye using the SPI method for the period
between 1970 and 2021, while Dabanl: et al. [28] evaluated drought in Tiirkiye using SPI
for the period between 1931 and 2010, leading to different results. However, the research
topics, study regions, and used methodologies overlap significantly. It is noticeable that
this difference in basic assumptions, which is often ignored in analysis, calculations, and
evaluations, brings incomplete and erroneous results. Therefore, the index calculations in
drought analysis using a single time period selected in the classical way are insufficient
for monitoring and evaluating potential and critical drought events that have been and/or
may be seen. In order to solve this problem, instead of classical approaches in drought
calculations, there is a need to define systematic, innovative concepts and frameworks
in which datasets from different periods can be evaluated. Within the framework of the
new concept(s) to be developed, potential drought characteristics should be determined
according to dynamic time period scenarios, and critical drought characteristics should be
determined according to these scenarios.

The aim of this research is to (1) analyze the effect of changing the initial time condition
on the drought characteristics, (2) propose a new framework and concepts to identify critical
drought characteristics by determining potential drought characteristics based on dynamic
time period scenarios instead of the traditional method, and (3) compare the resulting
drought characteristics based on different time period scenarios. The calculation of drought
characteristics is based on individual drought events. Therefore, the characteristics must
be determined for each specific drought event. For this purpose, in this study, drought
analysis was carried out with the SPI method for different dynamic time period datasets,
prepared by taking precipitation data from the Durham meteorological station (1872-2021)
as a reference and application; the drought characteristics were calculated for each period
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using SPI theory / definitions; and critical drought characteristics were determined for the
region in the relevant years.

2. Materials and Methods
2.1. Application

The specified methods and determination of the critical drought characteristics using
the SPI and dynamic time period scenarios are applied to Durham meteorological station.
Durham City is situated in the northeastern part of the United Kingdom. It experiences
a hybrid temperate maritime climate characterized by relatively mild summers and cool
winters when viewed globally. Typically, July stands out as the warmest month during
summer, while January is recognized as the coldest month in winter. The average tempera-
ture fluctuates between 5.2 °C (in winter) and 12.5 °C (in summer), with an annual average
precipitation of 643 mm (Table 1). The meteorological data for total monthly precipitation
(P) span from 1872 to 2021, covering 150 years and originating from the Durham University
meteorological station, and have previously been obtained [29]. Notably, the Durham
Observatory’s weather records are the third longest continuous climate series in the United
Kingdom. This dataset was selected because it is a continuous series with a long time
period (150 years), it includes high-quality data, and more scenarios can be developed to
answer and achieve the purposes of this research in the best way possible. Figure 1 shows
the cumulative probability of the original monthly precipitation data and the average
monthly time series of the precipitation dataset. Table 1 summarizes the main climatic
information of the Durham station, including minimum, maximum, and average monthly
precipitation, standard deviation and skewness, and the average and standard deviation of
the temperature.

Table 1. Climatic information of the Durham station.

Average Monthly Standard Min. Monthly Max. Monthly
Station’s Name Lat. (N)  Lon. (W) Precipitation s Precipitation Precipitation Skewness
Deviation (mm)
(P)—mm (mm) (mm)
Durham Station 54.77 1.59 54.37 31.74 1.30 209.70 1.14
Monthly Temperature (T)—°C Standard Deviation °C
8.6 4.46
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Figure 1. (a) Cumulative probability of monthly precipitation data for Durham station (1872-2021),

(b)

(b) average monthly time series of the precipitation dataset between 1872 and 2021.

2.2. Homogeneity Tests

Variations within homogeneous data series are influenced by weather and climate
changes. Thus, ensuring the homogeneity of time series data is essential for accurate climate
and drought analysis. Using non-homogeneous data in climate research can lead to biased
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results. Therefore, this study will first test the homogeneity of the data before conducting
drought analysis. To assess homogeneity, several absolute homogeneity tests are commonly
used, including Pettitt [30], Buishand [31], and the Standard Normal Homogeneity Test
(SNHT) proposed by Wijngaard et al. [32]. Homogeneity is evaluated based on the null
hypothesis (H0), which assumes no changes within the data. Classifications are then
assigned based on the number of tests that accept or reject the null hypothesis as follows:

1. Set1is labeled “Homogeneous” if all three methods accept the null hypothesis (HO).

2. Set2islabeled “Doubtful” if two of the homogeneity tests accept the null hypothe-
sis (HO).

3. Set 3 is labeled “Suspect” if only one or none of the homogeneity tests accept the null
hypothesis (HO).

2.3. The Standardized Precipitation Index (SPI)

The SPI calculates the drought index at several time scales, such as 1-month, 3-month,
6-month, and 12-month, depending on the monthly precipitation datasets. The selection of
time scales plays a crucial role in determining different types of droughts. Short time scales,
such as the commonly used 1-month and 3-month SPIs, indicate meteorological droughts.
These shorter durations capture variations in weather patterns and highlight deviations
from normal precipitation levels over a relatively brief period. On the other hand, longer
time scales, spanning multiple months or even years, provide insights into hydrological
droughts [16,20]. As for the method, the original monthly precipitation datasets are fitted
to a suitable probability density function. The Gamma PDF has been determined as
the best PDF for SPI calculations in most research, as stated by Wang et al. [33]. The
selection process for a suitable PDF is carried out using goodness-of-fit tests for the original
datasets (precipitation for SPI), including Chi-Square and Kolmogorov-Smirnov [34]. The
probabilities are derived through computation of cumulative distribution functions applied
to monthly precipitation datasets. Subsequently, these probabilities undergo a probabilistic
standardization process, transforming them into a standard index value characterized by
a mean of 0 and a standard deviation of 1, as shown in Figure 2. A critical point that
must be mentioned is that the probabilistic standardization process differs from statistical
standardization. The difference between them in SPI calculation has been studied in detail

by Sen and Sisman [25].
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Figure 2. Probabilistic standardization process [25].

2.4. Drought Characteristics

The initial phase in drought analysis and evaluation involves computing the drought
index. Subsequently, three key characteristics, namely duration (D), severity (S), and
intensity (I), are derived based on this index. These drought characteristics are calculated
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using the drought index and based on the drought definition. The run theory introduced by
Yavjevich [35] and the SPI theory developed by Mckee et al. [16] are two widely accepted
definitions for drought characteristics. Yavjevich [35] states that a drought event commences
when the drought index falls below zero and ends when it rises back above zero. Secondly,
in identification, Mckee et al. [16] defined drought events (start) using —1 instead of
0 thresholds. A notable difference exists in the computation of drought characteristics
between run theory and SPI theory. The run theory tends to yield more extreme duration
values, while the SPI theory results in more extreme intensity values, as highlighted in [36].
This research uses SPI theory because the higher extreme intensity values are used to
calculate the drought characteristics.

The main characteristic and parameter used in this research is drought duration (D),
and based on the SPI theory, D is defined as the total number of months when the drought
index is less than —1 until it returns to a positive value. The second parameter is the
summation of the drought index over the drought duration (sum), and the biggest value
of the drought indices is called the drought peak. Additionally, dividing (sum) by the
drought duration gives the drought intensity. This research also calculates the average and
median values for drought intensity for the first time to explore and compare the variations
between different time period scenarios. Figure 3 shows the drought index values, drought
duration for each drought theory, and drought peak values.

Drought Index
V'S

I ]
0 D_Run‘/\ho_aunaf\

b
T"
ime
Aleee - % ........
Peak
Peak
v

Figure 3. Drought duration based on SPI theory (D_SPI, blue line) and run theory (D_Run, red line)
and drought index peak value (Peak) relying on drought index values [36].

The main drought characteristics and statistics used in this research are summarized
as follows:

1. Drought duration (D) is defined as follows:

Dspy theory = Number of months between DIlstyonth < —1 and Dlynil any month returns positive.

2. Drought severity (sum): Summation of drought index values within the drought
duration.
3. Drought intensity (I):

Drought intensity = Drought severity /Drought duration (2)
4. Median and peak values for the drought event.

The potential drought characteristics are identified as the drought characteristics
associated with each selected time period dataset scenario. It contains the drought duration
(D), intensity (I), severity (sum), peak, and median values of DI. Considering and using
these characteristics, scenarios will be used for specific hydraulic design purposes, such as
dam design and water resource and drought management.

2.5. Dynamic Time Period Scenarios

To identify potential and critical drought characteristics, this research employs a
methodological approach involving the generation of dynamic time period scenarios, with
variations in the initial time conditions. The range of these time periods may include
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intervals such as 1, 5, or 10 years, changing based on the longest available time period for
each condition, the purpose of the drought characteristics, and the climate of the study
area. For each time period scenario, the drought index values and associated characteristics
are meticulously calculated. Subsequently, a comparative analysis is conducted for specific
drought events, considering their characteristics across different time periods. This compar-
ative assessment aims to discern critical and potential drought characteristics by evaluating
how the drought index and its related parameters evolve under diverse temporal condi-
tions. Through this systematic exploration of varying time periods and associated drought
characteristics, the research aims to contribute valuable insights into understanding the
dynamics and critical factors influencing drought events, aiding in more effective drought
management and mitigation strategies. Figure 4 shows the methodological approach in
this research.

Data quality and
consistency control

Drought characteristics for
each time period scenario

v

including

Determining the potential
drought characteristics for

SPI calculation for 2
homogeneity tests s : f B each scenario
each time period = o .
l scenario at different = ML UL
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and 12 month)

Drought severity
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drought characteristics
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Drought intensity

Drought definition

Interval difference =

regarding - Determining the

10 years

McKee et al., 1993 Peak and median values

corresponding periods
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Figure 4. Methodological approach [16].

3. Results

This research study provides a comprehensive and detailed analysis of Durham station
(1872-2021). The SPI drought index values and characteristics are calculated using SPI
theory. Based on the longest available period (150 years) and the minimum (ideal) period
(30 years), this period is divided into 13 time period scenarios, with 10 years as an interval.
The 10-year interval reflects the practical use of the SPI in the literature and leads to 13 time
period scenarios which can be analyzed and explained. In the analysis of potential drought
characteristics across thirteen different time period scenarios, ranging from 30 to 150 years,
and according to the framework of the proposed concept, the results demonstrate significant
variability in the response of drought characteristics when assessed over different historical
spans. The comparison focuses on the common last 30 years for all scenarios, utilizing
the SPI to evaluate the drought duration, intensity, severity, median, and peak values
during specific drought events. The time period scenarios with the start and end years for
each scenario and the duration for each scenario are presented in Table 2. The results are
organized into distinct sub-sections for each time scale to simplify and enhance clarity in
the Results section.

Table 2. Time period dataset scenarios.

Scenario Start and End Year Time Period Duration (Years)
S1 1992-2021 30
S2 1982-2021 40
S3 1972-2021 50
S4 1962-2021 60
S5 1952-2021 70
S6 1942-2021 80
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Table 2. Cont.

Scenario Start and End Year Time Period Duration (Years)
S7 1932-2021 90
S8 1922-2021 100
S9 1912-2021 110
S10 1902-2021 120
S11 1892-2021 130
S12 1882-2021 140
S13 1872-2021 150

3.1. Homogeneity Test Results

The monthly precipitation data from the Durham meteorological station were first
subjected to absolute homogeneity tests using the two-stage approach suggested by Wijn-
gaard et al. [32]. Three methods were employed: Pettitt, Buishand, and SNHT. The results
were checked for homogeneity regarding a 95% confidence level. Table 3 summarizes the
main homogeneity results, including the tests” names, test statistics, and the homogeneity
results. As a result of these tests, the precipitation data were found to be homogenous.

Table 3. Homogeneity test results for precipitation data.

Test Name Test Statistics p-Value Result Homogeneity
Pettitt 48,958 0.378 Accept Set 1:

Buishand 47.583 0.629 Accept Homogenous
SNHT 6.671 0.328 Accept &

3.2. Drought Characteristics for SPI 1

The results of SPI11 are interpreted and compared for thirteen different time period
scenarios. Two drought events (Drought 1 (September 1996-October 1996) and Drought 2
(March 2011-June 2011)) are selected as examples and representative events, summarized
in Table 4. Because SPI 1 is based on a 1-month time scale, the drought duration is
generally low, ranging from 0 to 4 months. For the first drought event, increasing the time
period above 110 years leads to no drought events (zero values), and the fifth, sixth, and
seventh scenarios have no drought events. The duration in scenarios where the drought
was recorded ranged consistently from 2 months upward across scenarios S1 through
54, S8, and S9, indicating a significant difference between these scenarios. The peak SPI
values showed slight variability, ranging from —1.05 in Scenario S1 (30-year period) to
—1 in Scenario S9 (110-year period), indicating a general uniformity in the peak drought
experienced across these scenarios. In contrast, scenarios S5 through 513, which encompass
longer historical records, did not record this drought event, possibly due to the changes
in drought sensitivity over extended periods. The average SPI 1 (intensity) for the first
drought event ranges between —0.73 and —0.78, showing a slight difference in intensities.
However, the intensity for the second drought event ranges between —0.89 and —1.33,
indicating a 33% difference; in this event, the maximum intensity is derived from 512
(140 years).

For Drought 2, a longer duration was observed, with all scenarios that recorded the
drought showing durations from 2 to 4 months. The peak SPI values during this event
were notably more severe, ranging from —2.41 in Scenario S1 to —2.35 in Scenario S13.
This suggests a persistent severity in drought conditions when analyzed over a longer
temporal frame. Notably, the severity, as measured by the sum of SPI, illustrated a marked
increase in negative values. The median SPI values for drought events across all scenarios
remained relatively consistent, underscoring the median as a robust measure of central
drought tendency, less influenced by the extremities captured by the peak values. Because
the number of drought months is low, the average and median values are relatively equal.
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Figure 5 shows the variations in the drought index and characteristics for different
time period scenarios (51, S4, S7, S10, and S13). In Figure 5a, SPI 1 for S1 and 54 is
less than —1, indicating the start of the drought event. However, for S7, S10, and S13,
the SPI 1 values are more than —1, meaning no drought event has started. Figure 5b
depicts the absolute values of peak SPI, intensity (average SPI), and median SPI for the
abovementioned scenarios. Notably, the peak SPI values are relatively uniform across
the scenarios, suggesting that the most intense phase of the drought is captured similarly
regardless of the period. Figure 5c shows the duration of the drought alongside the absolute
summation of SPI values, providing a measure of the cumulative severity of the drought
across different scenarios. Based on the comprehensive analysis of all scenarios for the first
drought event, the critical drought characteristics have been identified as an intensity of
—0.78, a duration of 2 months, a peak SPI of —1.05, and a severity of SPI of —1.56.
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Figure 5. Potential drought characteristics for SPI 1 for the first selected drought event (September
1996-October 1996). (a) The difference between selected scenarios based on SPI 1, (b) the difference
between all time period scenarios using the peak, intensity, and median values, (c) the difference
between all time period scenarios using drought duration and the absolute summation of SPI 1 values.

Figure 6 presents the analysis of the potential drought characteristics for the second
selected drought event (March 2011-June 2011) using the SPI. Figure 6a depicts the SPI
values over the drought period for selected scenarios (51, 54, 57, S10, and S13), highlighting
consistent behavior but differentiating in the starting SPI index value. Figure 6b illustrates
the absolute values of peak SPI, intensity (average SPI), and median SPI for each scenario.
The peak SPI, representing the most severe point in the drought index, shows higher values
for shorter time period scenarios (S1, S4) and slightly less severity in longer time frames
(510, S13), indicating that longer records have lesser peak values due to the longer climatic
periods in the analysis. Conversely, the intensity and median values offer a clearer view of
how the drought persists over its duration, with significant differences (Figure 6c). Based
on the comprehensive analysis of all scenarios for the second drought event, the critical
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drought characteristics have been identified as an intensity of —1.33, a duration of 4 months,
a peak SPI of —2.43, and a severity of the SPI of —3.9.

Table 4. Summary of the drought characteristics for SPI 1 for different 13 time period scenarios.

Drought Characteristics SPI 1

Years Drought 1 (September 1996—October 1996) Drought 2 (March 2011-June 2011)
Scenario D P S A M D P S A M
S1-30Y 1992-2021 2 —1.05 —1.56 —0.78 —0.78 4 —2.41 -39 —0.97 —0.71
S2—40Y 1982-2021 2 —1.02 —1.49 —0.75 —0.75 4 —-2.39 —3.77 —0.94 —0.67
S3—50Y 1972-2021 2 —1.01 —1.48 —0.74 —0.74 3 —2.39 —2.73 —-0.91 —0.32
S4—60Y 1962-2021 2 —1.03 —1.51 —0.76 —0.76 4 —2.43 —3.82 —0.95 —0.68
S5—70Y 1952-2021 0 - - - - 3 —2.36 —2.67 —0.89 —0.30
S6—80Y 1942-2021 0 - - - - 3 —2.36 —2.66 —0.89 —0.30
S7—90Y 1932-2021 0 - - - - 3 —2.37 —2.71 —0.90 —0.32
S8—100Y 1922-2021 2 —1.01 —1.48 —0.74 —0.74 4 —2.39 —3.74 —0.94 —0.66
S9—110Y 1912-2021 2 -1 —1.47 —0.73 —0.73 3 —2.38 —2.72 —0.91 —0.32
S10—120Y 1902-2021 0 - - - - 3 —2.36 —2.67 —0.89 —0.30
S11—130Y 1892-2021 0 - - - - 2 —2.37 —2.66 —-1.33 —1.33
S12—140Y 1882-2021 0 - - - - 2 —2.35 —2.64 —1.32 —1.32
S13—150'Y 1872-2021 0 - - - - 3 —2.36 —2.66 —0.89 —0.89
D: duration, P: peak SPI, S: sum of SPI, A: average SPI (intensity), M: median SPL
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Figure 6. Potential drought characteristics for SPI 1 for the second selected drought event (March
2011-June 2011). (a) The difference between selected scenarios based on SPI 1, (b) the difference
between all time period scenarios using the peak, intensity, and median values, (c) the difference
between all time period scenarios using drought duration and the absolute summation of SPI 1 values.
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3.3. Drought Characteristics for SPI 3

The results of SPI 3 are conducted on and compared for thirteen different time period
scenarios. Two drought events (Drought 1 (November 2011-April 2012) and Drought
2 (July 2018-May 2019)) are selected as representative examples and events, summa-
rized in Table 5 and presented in Figures 7 and 8. For Drought 1, the durations of the
drought events varied between the scenarios, with longer durations observed in the 30-year,
40-year, and 60-year scenarios (S1, S2, and S4), at 6 months each, while the other scenarios
found drought durations of 2 months. The peak SPI 3 values ranged from —2.55 in S1
to —2.42 in S6, indicating severe drought conditions across all scenarios. The sum of SPI
values, representing the severity, also showed significant negative values, underscoring the
intense nature of this drought event (first drought event). Notably, the absolute values of
the median SPI and SPI intensity varied slightly, suggesting a consistent median drought
condition across different historical time period scenarios but variable intensities, which
were slightly more severe in longer period scenarios. The SPI intensity ranged between
—1.08 (52) and —1.91 (S12), indicating a 50% increase in intensity. Based on these results,
the critical drought characteristics have been identified as an intensity of —1.91, a duration
of 6 months, a peak SPI of —2.55, and a severity SPI of —6.74.
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Figure 7. Potential drought characteristics for SPI 3 for the first selected drought event (November
2011-April 2012). (a) The difference between selected scenarios based on SPI 3, (b) the difference
between all time period scenarios using the peak, intensity, and median values, (c) the difference
between all time period scenarios using drought duration and the absolute summation of SPI 3 values.
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Figure 8. Potential drought characteristics for SPI 3 for the second selected drought event (July 2018-May
2019). (a) The difference between selected scenarios based on SPI 3, (b) the box-and-whisker plot
for SPI 3 values, (c) the difference between all time period scenarios using the peak, intensity, and
median values, (d) the difference between all time period scenarios using drought duration and the
absolute summation of SPI 3 values.

Figure 8 presents a detailed analysis of the potential drought characteristics for SPI 3
during the second selected drought event (July 2018-May 2019) across multiple time period
scenarios. Figure 8a shows the SPI 3 values for five selected scenarios (30, 60, 90, 120, and
150 years), where S1, 52, and S4 fell below —1 in July 2018, and the other scenarios fell
below —1 in February 2019. Figure 8b, a box-and-whisker plot, displays the distribution
of SPI values across all scenarios during the drought event, highlighting variability in
the central tendency and SPI values. Figure 8c shows each scenario’s peak, intensity, and
median SPI value, illustrating how these characteristics differ across various historical
time period scenarios. Figure 8d compares the duration and severity of the drought across
all scenarios, revealing that while the duration of the drought is relatively consistent, the
total severity varies, with shorter scenarios tending to accumulate higher negative SPI
values, leading to more intense drought conditions. For 51, S2, and 54, the duration is 11
months. Based on these results, the critical drought characteristics have been identified as
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an intensity of —1.14, a duration of 11 months, a peak SPI of —1.60, and a severity SPI of
—8.19.

Table 5. Summary of the drought characteristics for SPI 3 for different 13 time period scenarios.

Drought Characteristics SPI 3

Years Drought 1 (November 2011-April 2012) Drought 2 (July 2018-May 2019)
Scenario D P S A M D P S A M
51—-30Y 1992-2021 6 —2.53 —6.74 —-1.12 —1.05 11 —1.60 —-8.19 —0.74 —0.82
52—40Y 1982-2021 6 —2.51 —6.46 —1.08 -1.01 4 —1.56 —4.57 -1.14 —-1.12
S3—50Y 1972-2021 2 —2.45 -3.82 -1.91 —-1.91 4 —1.52 —4.41 -1.1 —1.08
54—60Y 1962-2021 6 —2.55 —6.53 -1.09 —-1.02 11 —1.58 —7.62 —0.69 -0.77
S5—70Y 1952-2021 2 —2.45 -3.8 -1.9 -1.9 4 —1.50 —4.35 -1.09 -1.07
S6—80Y 1942-2021 2 —2.42 -3.75 —1.88 —1.88 4 —1.48 —4.28 —-1.07 —1.05
S7—90Y 1932-2021 2 —2.46 -3.83 —-1.92 —-1.92 4 —1.52 —4.42 -1.1 —1.08
S8—100Y 1922-2021 2 —2.47 —3.84 —-1.92 -1.92 4 —1.53 —4.44 -1.11 -1.09
S9—110Y 1912-2021 2 —2.49 —3.88 —1.94 —1.94 4 —1.54 —4.47 —-1.12 -1.10
510—120Y  1902-2021 2 —2.46 -3.82 -1.91 —-1.91 4 -1.51 —4.35 —-1.09 —-1.07
S11—130Y  1892-2021 2 —2.46 —3.81 -1.9 -1.9 4 -1.5 —4.31 —1.08 —1.06
512—140Y 1882-2021 2 —2.47 —-3.83 -1.91 —-1.91 4 —1.51 —4.34 —1.08 —-1.07
S13—150Y  1872-2021 2 —2.45 —3.81 -1.9 -1.9 4 -1.5 —4.34 —1.08 —1.06
D: duration, P: peak SPI, S: sum of SPI, A: average SPI (intensity), M: median SPL
3.4. Drought Characteristics for SPI 6
For a 6-month time scale, two drought events were used to compare the results
obtained for thirteen scenarios using 150 years of precipitation data from Durham station.
The first drought event occurred in 1991-1992 and the second in 2017. Drought indices and
detailed drought characteristics obtained from the classical SPI analysis for each scenario
are summarized in Table 6 and Figures 9 and 10. For the first drought event, the durations
varied significantly across scenarios, with longer durations generally observed in longer
scenarios (40 to 150 years), where drought lasted 12 to 13 months. This contrasts with the
shortest scenario (S1, 30 years), which recorded a duration of only 3 months. The peak
SPI values during this event were notably severe across all scenarios, ranging from —2.53
in S1 to —1.86 in S6, highlighting that this drought event was consistently captured as
intense across different time period scenarios. The maximum intensity was observed in 52
(40 years) with a value of —1 and 13 months of drought.
Table 6. Summary of the drought characteristics for SPI 6 for different 13 time period scenarios.
Drought Characteristics SPI 6
Years Drought 1 (August 1991-August 1992) Drought 2 (May 2017-August 2017)
Scenario D P S A M D P S A M
51—-30Y 1992-2021 3 —1.08 —1.94 —0.65 —0.65 4 —1.42 —2.44 —0.61 —0.45
52—40Y 1982-2021 13 —-2.02 —-13.06 -1 -1 4 -1.35 —2.07 —0.52 —0.35
S3—50Y 1972-2021 13 -191 -12.08 —0.93 —-0.93 2 -1.26 —-1.72 —0.86 —0.86
54—60Y 1962-2021 13 —-198 1269 —-0.98 -0.97 4 -1.32 —1.96 —0.49 -0.32
S5—70Y 1952-2021 13 -190 -11.86 —0.91 —0.91 2 -1.25 —-1.69 —0.84 —0.84
S6—80Y 1942-2021 13 -1.86 —11.59 —-0.89 -0.89 2 —-1.22 —1.65 —0.82 -0.82
S7—90Y 1932-2021 13 -193 -1219 —-0.94 —0.94 2 —-1.27 —1.74 —0.87 -0.87
S8—100Y 1922-2021 13 -194 1231 —-0.95 —0.94 2 —1.28 —-1.76 —0.88 —0.88
S9—110Y 1912-2021 13 -19 1237 —-0.95 —0.95 2 -1.29 —-1.76 —0.88 —0.88
510—120Y  1902-2021 13 -192 -11.84 091 —091 2 —-1.25 —1.68 —0.84 —0.84
S11—130Y  1892-2021 12 -190 -11.62 —-0.97 —0.96 2 -1.23 —1.65 -0.82 -0.82
512—140Y 1882-2021 12 —-191 —-11.68 —-0.97 —-0.97 2 —1.24 —1.66 —0.83 —0.83
S13—150Y  1872-2021 13 -1.89 —-11.65 —0.90 —-0.96 2 -1.23 —1.65 —-0.83 —0.83

D: duration, P: peak SPI, S: sum of SPI, A: average SPI (intensity), M: median SPL
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Figure 9. Potential drought characteristics for SPI 6 for the first selected drought event (August
1991-August 1992). (a) The difference between selected scenarios based on SPI 6, (b) the box-and-
whisker plot for SPI 6 values, (c) the difference between all time period scenarios using the peak,
intensity, and median values, (d) the difference between all time period scenarios using drought
duration and the absolute summation of SPI 6 values.

In Figure 9a, the SPI values for selected scenarios showed that all the scenarios went
below the —1 threshold during the drought event, except the first scenario, which started
in June 1992. The box-and-whisker plot in Figure 9b provides a distribution of the SPI
values during this drought event across all scenarios, illustrating the variability in the
drought index values captured in different time periods. This visualization highlights that
while the median SPI values are fairly consistent, the range of peak and average values can
vary, reflecting different perceptions of drought analysis based on the different time period
scenarios. The bar charts in Figure 9¢,d depict the absolute values of peak SPI, intensity,
median, and drought duration and severity. Based on these results, the critical drought
characteristics have been identified as an intensity of —1, a duration of 13 months, a peak
SPI of —2.02, and a severity SPI of —13.06.
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Figure 10. Potential drought characteristics for SPI 6 for the second selected drought event (May
2017-August 2017). (a) The difference between selected scenarios based on SPI 6, (b) the difference
between all time period scenarios using the peak, intensity, and median values, (c) the difference
between all time period scenarios using drought duration and the absolute summation of SPI 6 values.

Figure 10 presents the analysis of potential drought characteristics for the second
selected drought event (May 2017-August 2017). Figure 10a depicts the SPI values over the
drought period for selected scenarios, highlighting a difference in duration between these
scenarios. For S1 and S4, the duration is 4 months; for other scenarios, the duration is 2.
However, all the scenarios started in the same month, but the SPI value in the third and
fourth months was the main reason for the change in the duration. Figure 10b illustrates
the absolute peak SPI, intensity, and median values for each scenario. Figure 10c shows the
duration and the absolute values of the severity. Based on the comprehensive analysis of
all scenarios for the second drought event, the critical drought characteristics have been
identified as an intensity of —0.88, a duration of 4 months, a peak SPI of —1.42, and a
severity of SPI of —2.44.

3.5. Drought Characteristics for SPI 12

This section explains the findings from an analysis of SPI 12 across 13 different time pe-
riod scenarios for a prolonged drought event that occurred from August 1995 to December
1997, as summarized in Table 7 and shown in Figure 11. The analysis reveals consider-
able variations in the drought’s characteristics based on the time period scenarios used.
The duration of the drought event ranged widely, with the shortest period (S1, 30 years)
experiencing the longest drought duration at 29 months, while most other scenarios had
durations of about 20 to 23 months. This variability in duration highlights how the selected
time period can influence the drought characteristics. Also, the intensity ranged between
—0.93 and —1.09. The maximum duration, severity, and intensity were observed in S1.
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Figure 11. Potential drought characteristics for SPI 12 for the first selected drought event (August
1995-December 1997). (a) The difference between selected scenarios based on SPI 12, (b) the box-and-
whisker plot for SPI 12 values, (c) the difference between all time period scenarios using the peak,
intensity, and median values, (d) the difference between all time period scenarios using drought
duration and the absolute summation of SPI 12 values.

Figure 11a shows that while the SPI values fluctuated, the start and end years differed
for the time period scenarios. For example, 54, S7, S10, and S13 ended in July 1997. In
contrast, S1 ended in January 1998. The box-and-whisker plot in Figure 11b visualizes
the distribution of SPI values for each scenario during the drought. Figure 11c quantifies
the peak, intensity, and median SPI values for each time period scenario, indicating some
consistency in these metrics across the scenarios. Figure 11d compares the duration and
severity of the drought across all scenarios. There is a noticeable difference in how the
duration of droughts and severity are perceived, with shorter scenarios tending to record
longer durations and a higher cumulative severity. Based on the comprehensive analysis of
all scenarios for the second drought event, the critical drought characteristics have been
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identified as an intensity of —1.09, a duration of 29 months, a peak SPI of —2.21, and a
severity of SPI of —31.48.

Table 7. Summary of the drought characteristics for SPI 12 for different 13 time period scenarios.

Drought Characteristics SPI 12

Years Drought 1 (August 1995-December 1997)

Scenario D P S A M
S1—30Y 1992-2021 29 —2.21 —31.48 —1.09 —1.15
52—40'Y 1982-2021 23 -2 —24.89 —1.08 —1.03
S3—50Y 1972-2021 23 —1.85 —22.43 —0.98 —0.92
S4—60Y 1962-2021 23 -1.91 —23.3 -1.01 —0.96
S5—70Y 1952-2021 21 —1.83 —19.82 —0.94 —0.89
S6—80Y 1942-2021 21 —1.81 —19.53 —0.93 —0.88
S7—90Y 1932-2021 23 —1.88 —22.56 —0.98 —0.87
S8—100Y  1922-2021 23 -1.91 —23.06 -1 —0.95
S9—110Y  1912-2021 23 -1.92 —22.99 -1 —0.88

S10—120Y  1902-2021 20 —1.84 —19.66 —0.98 —0.90
S11—130Y  1892-2021 20 —1.83 —19.26 —0.96 —0.88
S12—140Y  1882-2021 20 —1.85 —19.49 —0.97 —0.89
S13—150Y  1872-2021 20 —1.84 —19.57 —0.98 —0.89

D: duration, P: peak SPI, S: sum of SPI, A: average SPI (intensity), M: median SPL

4. Discussion
4.1. Initial Time Condition and Dynamic Time Period Scenarios

The determination of the initial time conditions and dynamic time period scenarios
plays a pivotal role in calculating the drought characteristics, particularly in critical drought
assessments. This step, as a first step, is crucial, as the results heavily depend on it. Dynamic
time period scenarios are established based on the available data, the specific purpose of the
drought characteristics analysis, and the climate conditions of the study area. This study
utilized 10-year intervals, resulting in 13 time period scenarios. However, for more precise
and localized studies, shorter intervals, such as one year, may be necessary. Therefore, the
selection of dynamic time period scenarios should be tailored to both the available data and
the objectives of the drought characteristics analysis. For example, for more accurate and
microscale studies, smaller intervals are recommended. Additionally, in arid regions where
drought events have significant impacts, smaller intervals are recommended to capture
finer-scale variations in drought severity and duration.

4.2. Drought Definition and Critical Drought Characteristics

The definition of drought and its relationship to drought characteristics is a funda-
mental aspect of drought analysis. In this study, we used the drought definition proposed
by the original article on SPI theory [16], which sets the threshold for drought initiation
at an SPI value of —1. However, it is important to recognize that alternative definitions,
such as those based on run theory [35], or different definitions such as —1.0 or 0 [37], can
lead to different results. This highlights the need for further research to understand the
impact of the selected drought definition and threshold on drought characteristics and
critical drought assessments. McKee et al. [16] emphasized the use of a threshold of —1,
arguing that values between 0 and —1 may still reflect normal or wet conditions and thus
do not signify the onset of a drought event. This choice is pivotal, as the SPI provides a
versatile and universally applicable method that is adaptable to different time scales and
sensitive to changes in precipitation patterns [38,39]. Furthermore, employing a threshold
of —1 instead of 0 results in shorter drought durations and a higher intensity, providing a
more conservative approach to identifying critical drought characteristics. Clarifying the
implications of different drought definitions and thresholds is essential for enhancing the
accuracy and reliability of drought assessments and management strategies.
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4.3. Comparison between Critical and Traditional Drought Characteristics

In terms of the drought characteristics obtained in this research, the analysis reveals
noteworthy insights across dynamic time period scenarios and SPI time scales. For SPI
1, the intensity ranges between —0.89 and —1.33, indicating a 33% difference, with the
maximum intensity derived from the longest time period (512, 140 years). This suggests
that increasing the time period for short time scales yields more critical and conservative
results. Additionally, variations in drought duration are observed, with some scenarios
showing no drought events, particularly in longer time period scenarios, implying that
increasing the time period decreases the duration. Conversely, for SPI 3, there is a positive
relationship between time period and drought intensity, while duration exhibits an inverse
relationship, similar to SPI 1, where shorter time periods yield longer durations. Decreasing
the time period leads to longer durations, consequently resulting in reduced intensity, as
intensity is inversely proportional to severity divided by drought duration. However, for
SPI 6, no consistent relationship is observed between duration and intensity, necessitating
careful consideration, especially for short time scales. In contrast, for longer time scales like
SPI 12, an adverse relationship between time period and intensity and duration is observed,
with increasing time periods resulting in decreased intensity and duration. Therefore,
utilizing shorter time periods, such as 30 years, is deemed more conservative. For instance,
the duration decreases from 29 months for a 30-year time period to 20 months for a 150-
year time period, while the intensity decreases from —1.09 to —0.98. This trend may be
attributed to the increased impact of climate change over the last 30 years. These findings
underscore the importance of considering both the time period and SPI time scales in
drought analysis for effective drought management and decision-making.

4.4. Critical Drought Characteristics and Various Sectors

Utilizing critical drought characteristics, which offer a more nuanced and precise
understanding of drought characteristics and impacts compared to traditional drought
characteristics, can significantly enhance decision-making and design across various sec-
tors. For instance, in water resource management, critical drought characteristics provide
insights into the most severe and prolonged drought events, enabling more effective al-
location of water resources and infrastructure planning [40,41]. For example, reservoir
design and operation plans may incorporate critical drought characteristics to ensure a
sufficient water supply during prolonged dry periods. Agricultural stakeholders can ben-
efit from critical drought characteristics by identifying specific crop water requirements
and implementing targeted irrigation strategies to mitigate the impacts of extreme drought
conditions [42]. Moreover, critical drought characteristics are invaluable in ecosystem man-
agement, guiding conservation efforts to protect vulnerable ecosystems and biodiversity
from the adverse effects of severe droughts. By incorporating critical drought characteris-
tics into decision-making processes and design considerations, stakeholders can enhance
resilience to drought and better adapt to the challenges posed by water scarcity.

4.5. Previous Studies

Previous studies, such as those conducted by Wang et al. [43] and Laimighofer and
Laaha [44], have extensively investigated drought uncertainties, including the effect of the
selected time periods. Both studies underscored the observation period as one of the most
significant sources of uncertainty in drought analysis. However, despite acknowledging
this, they primarily focused on drought index values without delving into analysis or
quantification of the observation period’s impact on the drought characteristics and their
corresponding applications. Furthermore, these studies did not provide any perspective or
suggestions on determining the critical drought conditions arising from these uncertainties.
For instance, Laimighofer and Laaha [44] highlighted that the observation period can
account for up to 49% of the uncertainty in SPI calculations. Conversely, Wang et al. [43]
stated that the uncertainty in SPI calculation decreases with an increase in the time scale
and record length. These findings align with previous literature. Also, in terms of criti-
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cal drought characteristics and their corresponding applications, there is no universally
preferable time period. Instead, each drought event and its critical characteristics have an
event-based critical time period. However, our research delved further, aiming to uncover
the nuanced effects of the time period on drought characteristics, particularly focusing on
identifying critical drought characteristics essential for effective drought management and
adaptation strategies.

4.6. New Parameters for Drought Characterization

This study extends beyond the classical drought characteristics traditionally used
in drought analysis, such as duration, severity, and intensity, to incorporate additional
parameters that offer a more accurate understanding of drought dynamics. Drought charac-
teristics offer detailed insights into droughts’ temporal and quantitative aspects, allowing
for a nuanced understanding of their progression and mitigation [35-37]. Specifically,
this research calculates the peak and median values of the drought index during each
identified drought event and scenario. The peak value represents the maximum drought
index, providing insight into the most severe point of precipitation deficiency experienced
during the event. This metric is crucial for understanding the potential stress on ecological
and agricultural systems. Similarly, the median value of the drought index serves as a
robust measure of the typical drought conditions over the event’s duration, offering a more
stable indicator that is less influenced by extreme values than the mean. This helps in
ensuring that the assessment is not skewed by unusually wet or dry values within the
drought period.

4.7. Limitations and Future Opportunities

Like any research, this study has certain limitations. One significant limitation is the
use of data from only a single meteorological station, chosen for its long and continuous
data records. The inclusion of additional stations might yield new insights, potentially
enhancing the robustness and generalizability of the findings. However, given that this
article proposes new concepts and methods regarding selecting the time periods, temporal
drought evaluation, and critical drought characteristics, an application to one station is
sufficient. One station is enough to demonstrate the effectiveness and applicability of the
proposed methodologies. Another limitation is the reliance on a single drought definition,
specifically the one introduced by McKee et al. [16]. Future research could benefit from
exploring various drought definitions and different time period scenarios to provide a
more comprehensive understanding of critical drought characteristics. By addressing these
limitations, subsequent studies can build on this work to refine and expand the applicability
of the proposed methods.

5. Conclusions

This research significantly advances the field of drought analysis by examining the
impact of various time period scenarios on drought characteristics and introducing a novel
methodology that employs dynamic time periods to identify critical drought characteristics.
Through the analysis of drought indices across different time periods, this study under-
scores the importance of temporal variability in understanding drought and provides a
novel approach to filling this gap. The proposed methodology enhances the precision of
identifying critical drought characteristics and offers valuable insights for water resource
management, drought mitigation planning, and infrastructure design. This study lays
a solid foundation for future work to improve the accuracy and adaptability of drought
assessments and management strategies. The key findings can be summarized as follows:

1. Significant differences in drought characteristics were observed across different time
period scenarios.

2. The duration of drought events varied notably when different time periods were
considered. For example, for SPI 12, the drought duration varied significantly from
20 to 29 months, and for SPI 6, the drought duration varied between 3 and 13 months.
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3. The intensity of SPI 1 ranged between —0.89 and —1.33, indicating a 33% increase,
and the SPI 3 intensity ranged between —1.08 and —1.91, indicating a 50% increase.

4. The proposed methodology using dynamic time period scenarios instead of one time
period enhances the precision of identifying critical drought characteristics.

5. The selection of a definition of droughts significantly impacts the resulting drought
characteristics, highlighting the need for careful selection and further research to
understand the implications of different definitions on drought assessments.
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Abstract: Over 80% of corn on Mexico’s eastern side is sown under rainfed conditions.
Therefore, drought represents a constant challenge for local producers. This study aims
to determine the effects of drought on rainfed corn grain production on Mexico’s eastern
side by using the North American Drought Monitor as the primary tool. Drought levels at
the municipal level provided by this monitor and corn production data (surface damage,
yield, and volume) of the two productive seasons (spring—summer and autumn-winter)
during 20 years were correlated at two significant levels (0.05 and 0.01). The significant
values (p < 0.05) were used to obtain regression curves representing corn-drought behaviors.
The National Disaster Statistics and climatological stations were considered, discarding
other phenomena besides drought. Results indicate that, for the significant municipalities,
the years with the highest drought levels (2005, 2011, and 2019) positively correlate with
reduced corn grain yield, volume, and total harvest losses. The regression curves estimated
a yield reduction of 78 kg-ha~! during the spring-summer season and 76 kg-ha~! during
the autumn-winter season. We concluded that the Drought Monitor is valuable for deter-
mining relationships between rainfed corn grain productivity and drought, considering
that no other climatological phenomena affect the region.

Keywords: Zea mays; productivity; drought; disasters; Veracruz; Tamaulipas

1. Introduction
1.1. The North American Drought Monitor

Drought is a low-evolution phenomenon that is challenging to predict due to its
hazardous nature. It is characterized by abnormally dry conditions that cause a hydrological
imbalance that can have destructive effects [1]. According to the impact drought causes, it
can be classified as meteorological, agronomical, hydrological, and socioeconomic [2].

Since drought is considered an extreme event, the United States of America, Canada,
and Mexico implemented a cooperative effort among their drought experts to continuously
monitor drought across their regions. This cooperation gave birth to the North American
Drought Monitor [3]. In Mexico, the National Meteorological Service named its side the
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Mexican Drought Monitor [4]. According to the North American Drought Monitor, drought
levels are established by considering local monitors of air, fires, precipitations, soil moisture,
streamflows, temperatures, vegetation indexes, and dams’ water percentage [3]. Satellite
images are also used to compose the tool and make the information available. This tool
provides historical statistics and a map showing where drought occurs, its spatial extent,
its severity, and the time scale of the associated impacts. It also includes information about
the different drought levels in each municipality of the Mexican territory. According to this
monitor, six possible levels represent drought conditions: (1) 0—No drought conditions
were determined in the region. (2) DO—Abnormally dry: when it occurs at the beginning
of a drought, short-term dryness may cause slow planting and growth of crops or pastures.
When it occurs at the end of a drought period, it may cause lingering water deficits and pas-
tures or crops not fully recovered (3) D1—Moderate drought: which may cause several crop
and pasture damages, a high risk of fires, and low levels in rivers, streams, water reservoirs,
and wells. (4) D2—Severe drought: associated with a high probability of crop damages,
a high risk of fires, water shortage, and limits in water consumption. (5) D3—Extreme
drought: indicates high crop or pasture losses, extreme risk of forest fires, and a general
restriction in water consumption. (6) D4—Exceptional drought: indicates widespread crop
or pasture losses and shortages of water reservoirs, streams, and wells, creating water
emergencies [3]. With these levels, the Drought Monitor provides 15-day reports for each
municipality of the Mexican territory, which can be used by decision-makers, producers,
and ordinary citizens interested in the evolution of drought for research purposes [4].
Considering these definitions, it can be assumed that meteorological, agricultural, and
hydrological droughts are the primary drought types for the Drought Monitor [5].

1.2. Historical Drought Levels in Mexico and Their Relationship with Agricultural Data

Mexico is a country where drought usually affects more than 50% of its territory [6].
Nowadays, this situation worsens if we consider that drought periods are increasing in
more extensive parts of the country. For example, according to the last report of the
Weather Meteorological Organization in Latin America and El Caribe, drought and high
temperatures in 2022 have increased in average values [7].

The historical records of the colonial period and the modern Mexican Drought Mon-
itor [4] indicate that Mexico has experienced periodical droughts [8]. Nevertheless, the
Drought Monitor shows that there have been more increments in their intensity since 2011,
when more than 85% of the territory recorded D1 or above levels of drought. Regarding
agricultural data, old records indicate that severe drought has caused the loss of multiple
crops in the southeastern side of Mexico (mainly in the Yucatan peninsula), forcing people
to displace and leave their home cities since pre-colonial and colonial times [9]. More
recently, three significant dry periods were registered in the Mexican territory for the last
century: 1948-1954, 1970-1978, and 1993-1998. During the first period, the northeastern
side of Mexico (above the parallel 22°) reported 250,000 ha of cotton lost by the drought.
The eastern side of Mexico was entirely affected during the second period, causing the
total loss of corn and cotton sown. For the last period, all the territory was affected by
drought. During this period, corn and wheat were reported to have the highest damaged
surfaces, with more than 300,000 ha lost. Although this information does not mention if the
affected surfaces were rainfed or irrigated lands, these reports specify that corn cultivation
generally recorded the highest surface damage during drought in eastern Mexico [2].

1.3. Corn Production in Mexico

Corn (Zea mays L.) is the most cultivated crop in Mexico, sown in every state of the
Mexican Republic [10,11]. It can be planted under different agroclimatic conditions, from
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sea level up to 3000 m above sea level and in wet to dry climates [12]. Therefore, corn
cultivation is subject to many hydrometeorological phenomena, like excessive rains, strong
winds, cold temperatures, and droughts. In the country, corn has different applications:
corn grain, which is sold as cob grain; fodder corn, which is sold as pasture for animal
feed; popcorn corn, a unique variety for human consumption; and corn seed, sold for
sowing purposes [11]. From these varieties, corn grain is the most cultivated variety in the
country, with more than 27.50 tons harvested in 2022 [13]. It is also used for animal and
human consumption, and the yellow and white varieties are the most common sown in
the country.

1.4. Corn Grain on the Eastern Side of the Mexican Territory

On the eastern side of Mexico, along the Gulf of Mexico, most of the territory includes
two states: Veracruz in the south and Tamaulipas in the north. This area combines a mix
of tropical, subtropical, semidry, and dry climates, where agricultural activities are an
essential part of living for many local producers. Despite climate conditions, seasonal
rainfed crops, which are sown during specific periods of the year and depending on local
climatic conditions, are sown yearly, regardless of possible drought conditions. In Mexico,
according to the National Service for Agrifood and Fisheries Information (SIAP), there
are two seasons for sowing and harvesting: spring-summer and autumn-winter. The
spring—summer period lasts from April to September, while the autumn—winter period
lasts from October to March. In this context, corn is sown in most Mexican territories in
both seasons [11].

In both states (Veracruz and Tamaulipas), corn grain is sown under seasonal conditions
in 247 municipalities out of their 255 locations. This situation represents a yearly average
of 444,861 hectares of land under rainfed corn grain cultivation [11]. Previous research
on the performance of different crops correlated with climatic phenomena in part of the
eastern side of Mexico indicates that tropical cyclones and floods have the highest number
of significant correlations with damaged cornland. However, this study also shows that
drought is in third place, causing total rainfed corn grain losses of 63,705 ha during the
most recent worst drought periods registered on this site [14]. In other studies on Mexico’s
western side, corn has also been affected by prolonged droughts, with a 43% reduction in
crop grain productivity during the dry seasons [15]. One local study in the east determined
a positive correlation between drought and corn productivity; however, the area under
study was only a tiny fraction of the eastern central side of Mexico (8605 km?) [16]. Besides
this, according to future climate change scenarios [17], there will be an increase in drought
periods and temperatures in the Mexican territory.

Since corn is an essential food of the Mexican diet, its production and its relationship
with climate data require an analysis where it is necessary to access local climatologic
records and corn productivity per site. In this regard, the National Meteorological Service
of Mexico (SMN) is the governmental entity responsible for maintaining climatic records
from the Mexican territory [18]. The SMN contains historical data since the beginning of
each local station installation. However, the eastern side of Mexico has poor coverage, with
only approximately 31% of the information accurately updated [19]. This situation is critical
to determining climatic conditions because this region has a complex geography. First, the
whole area has more than ten longitudinal degrees of length, and second, mountain chains
cross from south to north along the territory, with some sites at sea level and, in contrast,
others up to 4000 m above sea level (masl) in less than 200 km of distance from east to
west [20,21].

Due to this lack of information, one study aimed to predict agricultural drought
behavior in the short term for the central part of the Gulf of Mexico using a Long Short-
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Term Memory Network and Landsat 8-9 multispectral images. It required the analysis
of 183 high-resolution images for an area of only 5177.9 km? for 10 years. However, the
prediction level was low when high and low droughts occurred in regions a few kilometers
away [22]. These prediction difficulties can be explained by another study suggesting that
30 or more samples should be used to feed a model [23]. In this case, this model additionally
would need to consider different seasonal and agricultural periods. For example, when the
land is uncovered because of the tillage, when crops cover it completely, and the natural
seasons of the year. These different land covers increase the difficulties in detecting drought
levels in territories dedicated to agronomical activities.

Therefore, considering the extensive territory of the eastern Mexican side and the
difficulties of analyzing drought indexes in municipalities without climatological infor-
mation, the drought levels provided by the Drought Monitor are the only ones available
for all the municipalities cultivating corn grain. The Drought Monitor is also considered
the most holistic measure of drought [5]. Besides this situation, corn grain productivity
and its relationship with drought levels, like the ones reported by the North American
Drought Monitor, have not been studied yet in a land of 152,073 km?, which is the one that
comprises Veracruz and Tamaulipas. For example, the North American Drought Monitor
periodically reports drought conditions in cornfields in the United States of America [24],
which is absent on the Mexican side.

In addition, there is no information regarding drought levels occurring during gov-
ernmental Declarations of Disaster (DD) by drought. A DD by drought is issued when
drought levels cause crop or cattle losses or when the habitant’s capacity to obtain water
for their primary and domestic uses is compromised [25]. Therefore, learning the link be-
tween drought levels and corn grain reduction and losses will allow producers to evaluate
historical corn development under arid conditions, especially considering climate change.

This research aims to evaluate corn grain productivity under different drought levels
provided by the Mexican Drought Monitor on the eastern side of Mexico (Veracruz and
Tamaulipas states).

2. Materials and Methods
2.1. Research Site and Analysis Period

The total territory is situated at 27°40’45" north latitude, 100°08'42” west longitude,
17°10'00” south latitude, and 93°36/29"” east longitude [20,21]. On the southern side of
the territory (below the parallel 23°), the more considerable extension has a warm sub-
humid climate, with summer rains, in 54.13% of the territory, while on the northern
side of the territory, a semiwarm subhumid climate, with summer rains, occupies 29.38%
of the territory, followed by a semidry warm climate, with summer rains, in 23.29% of
the territory. Other climate types, like temperate humid, warm dry, temperate dry, and
semicold subhumid, comprise 3.2% of the territory.

Since the agrifood system databases and the Drought Monitor used for this research
contain historical information at the municipal level starting in 2003, this research considers
only data from 2003 to 2022 (20 years), the available information period for both databases.

2.2. Extreme Climatic Conditions Causing Disaster Declarations

Besides the Drought Monitor, extreme climatic conditions were considered in this
study because they may affect crop fields during their occurrence, and, in these cases,
the Mexican government issues a Disaster Declaration at a municipal level. The National
Center for Disaster Prevention (CENAPRED) is the official agency that maintains a database
with DD containing the dates and climatic phenomena causing the catastrophe [25]. There-
fore, data can be obtained from CENAPRED and compared with corn production to
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determine other phenomena besides drought affecting the crop. Table 1 defines the most
common climatic phenomena registered by CENAPRED and the classification this research
considers.

Table 1. Classification of climatic phenomena causing disaster declarations in Mexico.

Identification Climatic Conditions

They can be tropical storms, tropical cyclones,
and hurricanes.
Heavy or excessive precipitation that was not

Tropical cyclones

Rains expected and caused severe losses.
Floods occur when a river, lake, or lagoon overflows.
They can also happen when a specific place is
Floods . :
flooded, causing losses to properties, people, cattle,
or crops.

Low temperatures, snow, frost,  They can include low temperatures, snow, frost, or
or hail hail, causing damage to people or crops.
Winds These are strong winds destroying properties

or crops.
High temperatures They are extreme temperatures causing health
problems for humans and animals.
Droughts are considered when rains do not occur
Droughts during their typical period. This phenomenon

causes low water reservoirs, lack of water, and cattle
and crop losses.

Source: National Center for Disaster Prevention [25].

2.3. Meteorological Information

The meteorological information considered temperature and precipitation obtained
from the national meteorological stations in the area [26]. This information was used to
explain the historical climatological behavior of the sites where meteorological information
is available. Of the 283 available meteorological stations operating in the area, only 38
contained the minimum 80% of data recommended by the World Meteorological Organi-
zation [27] for the 42-year base period (1980-2022). This extended period was considered
because the base period reported by the Mexican Meteorological Service started in 1980
and concluded in 2010. However, significant drought levels have been recorded in recent
years (2011, 2013, and 2019) [4], which were considered in this study.

Figure 1 shows the location of the available meteorological stations in the study region
and its most representative climate types. The information on each station is shown in
Table Al.

2.4. Corn Productivity Data

Data for this research considered the 247 municipalities in Veracruz and Tamaulipas
with historical records of corn grain production. Corn grain data were obtained from the
Mexican National Service for Agrifood and Fisheries Information (SIAP) [11]. This service
has provided municipal data since 2003. Data available consider the surface of land sown
(ha), the surface damaged (although without information about the cause), the surface of
land harvested (ha), volume harvested (tons), yield in tons by a hectare (tons-ha—1), and
the selling price by ton (Mexican pesos tons~!). This data is provided for each season
(spring-summer and autumn-winter).
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Figure 1. Study region, climate types, and available meteorological stations. Source: Climate and
cartographic data were obtained from the latest update of the Mexican Institute of Geography
and Statistical Information [28]; meteorological station locations were obtained from the National
Meteorological Service [26].

2.5. Drought Levels and Drought Intensity Estimations

Historical drought levels at the municipal level were obtained from the National
Drought Monitor of Mexico, which started in January 2003. The drought levels provided
by the Mexican Drought Monitor were converted to numerical values as follows: 0 = no
drought condition, 1 =D0, 2 = D1, 3 =D2, 4 = D3, and 5 = D4, to quantify drought intensity.

Since corn grain production data considers the whole six-month period (spring—
summer and autumn-winter seasons), equivalent drought levels were estimated for the
same period according to Equation (1).

Itsenson = (D01 + ED1x2 + ED2x3 + XD3x4 + D4 x5)/m 1)

where Itses0n is the ponderate seasonal drought level of the municipality #.
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2D0, £D1, £D2, £D3, and £D4 represent the sum of drought levels reported by the
Drought Monitor at n municipality, and m is the number of reports during the seasonal period.

Additionally, the mean drought level by season per site period (the average drought
level over the 20 years) was estimated to consider positive and negative oscillations.

Equation (2), which estimates the period’s summary drought intensity by each season
(Itotseason), was used to obtain the municipalities with the highest drought records from
2003 to 2022.

Itotsepson = 2D0X1 + XD1x2 + XD2x3 + XD3x4 + XD4x5 2)

The level of drought occurring during a Declaration of Disaster by drought was
evaluated considering the maximum and average drought level recorded by the Drought
Monitor during the period the statement was issued in the affected municipality.

2.6. Corn Yield and Volume Variation by Year and Season

Corn grain data per site summarized the number of hectares sown, harvested, or
damaged by all the communities in the municipality. Corn grain yield was estimated as the
average of all the municipalities (tons harvested over sown surface). Each period’s average
values (surface sown, surface harvested, surface damaged, yield, and volume) per site were
estimated to determine the total performance of the 2003-2022 period.

Linear regressions were estimated to determine the performance of yield and volume
values during the analysis period. The regressions indicated that yield and volume values
increased periodically during the study period. We assumed this increase could originate
from new technologies or corn varieties. Therefore, for this study, the yield and volume
per year and season were estimated using only the previous year of data, as shown in
Equation (3).

yValue = current year value — previous year’s value (©)]

where yValue can be the yield or volume decrement or increment recorded during the
current year, the current year value can be the yield or volume recorded during the current
year, and the previous year’s value means the yield or volume of the prior year.

This way, we obtained the data series (yield and volume variation by year and season)
to compare drought intensity by year and season.

2.7. Damaged Corn Surfaces and Drought Levels

Only years with drought declarations and the municipalities affected were considered
in determining the correlation between damaged corn surfaces and drought levels because
the study region registers many climatological phenomena other than drought. Drought
levels and their intensities were considered using Equations (1) and (2) to correlate with
damaged corn surfaces.

2.8. Summary of Sources of Information and Data Resolution

Table 2 summarizes the databases, period of study, and the spatial resolution of data
used in this study for better clarification. The land use and climate types of cartographic
information were considered to complement the discussion over the impacts of drought on
corn grain productivity in relationship with their climate types and areas of agricultural
land use.
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Table 2. Database sources for the information consulted during this research.

Data Period Spatla.l Source
Resolution
. . By local Mexican National
Climatological data 1980-2022 meteorological station Meteorological Service [26]
Mexican Institute of
Land use 2020 1:250,000 Geography and Statistical

Information [28]
Mexican Institute of
Climate type 2001 1:250,000 Geography and Statistical
Information [28]
Mexican Drought Monitor is

Drought levels 2003-2022 By municipality provided by the National
Meteorological Service [4]
Disaster s Mexican National Center of
Declarations 2003-2022 By municipality Disaster Prevention [25]
Corn grain Mexican National Service for
.. 2003-2022 By Locality Agrifood and Fisheries
productivity

Information [11]

2.9. Data Analysis

The Pearson correlation was used to determine the correlation coefficients (r) between
drought levels and the number of declarations by drought and between crop data and
drought levels. The statistical tests were performed using the software SigmaPlot 11.0.

For both seasons (spring—summer and autumn-winter), Disaster Declarations by
drought, corn production (yield and volume), and its relationships with drought levels
by municipality and year were correlated with a 0.05 and 0.01 significance. The Argis
Desktop 10.8 software was used to show results with cartographic information. Since the
damaged surfaces registered by the SIAP do not provide the reasons for the damage, only
the municipalities with Disaster Declarations by drought provided by CENAPRED were
considered to exclude other phenomena besides drought, as explained in Table 1.

Only data with significant correlations (p < 0.05) were selected to estimate the regres-
sion equations with the best fit (r?) to determine drought intensity in relation to corn grain
yield and volume production and drought intensity versus damaged surface by using the
SigmaPlot 11.0 program. Figure Al shows the flow diagram of the analytical process.

3. Results
3.1. Drought Levels of the Study Site

Figure 2a shows the study region’s average drought levels per season. During the
spring-summer season, the maximum average drought level was D1. During the autumn-
winter season, two municipalities on the northeastern territory registered average D2 levels.
However, only 9.0% of municipalities did not report drought during spring—summer, while
40.8% did not report drought during the autumn-winter. Figure 2b shows the summary
of drought intensities of the municipalities during the period 2003-2022. Above parallel
25°, the northern side of the region has the highest drought levels during spring—summer,
followed by the southern region, below parallel 18°. The highest sum of drought levels
(351) on the northern side, above parallel 26°, indicates that 58% of the records were D3
and D4 drought levels.
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Figure 2. Drought intensities in the study region. (a) Estimated average drought levels and their
intensity in the study region during 2003-2022. (b) Sums of drought levels (Itofseason) recorded by
municipality during 2003-2022. 0: no drought, D0: abnormally dry, D1: moderate drought, D2: severe
drought. Sources: geographic information was obtained from the Mexican Institute of Geography
and Statistical Information [29]. Drought data was obtained from the Mexican Drought Monitor [4].
Figure 3 shows the historical drought levels recorded in the study site. It can be seen that 2005, 2011,
2019, and 2020 were the years with the highest drought levels. The spring-summer season generally
accounts for the highest drought levels (Figure 3a). For example, during spring—summer 2011, 47%
of the municipalities recorded D3 drought levels, and 2% (six municipalities) recorded D4 levels,
while during the autumn-winter season, only 4% of the sites recorded D3 levels, and D4 levels were
not recorded (Figure 3b). During spring—summer 2019, 37% of the sites recorded D3 levels and 4%
D4; during autumn-winter, only 6% recorded D3 levels, and D4 levels were not registered. By 2020,
during the spring-summer season, from June to September, the number of municipalities without
drought decreased from 93% to 35%, descending to 25% in April 2021 and 5% in May 2022.
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Figure 3. Historical drought records in the study region during (a) spring-summer and (b) autumn—
winter. 0: no drought, DO: abnormally dry, D1: moderate drought, D2: severe drought, D3: extreme
drought, D4: exceptional drought. Source: drought data was obtained from the Mexican Drought
Monitor [4].
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3.2. Disaster Declarations and Drought Levels

Although there have been only five years with records of Disaster Declarations caused
by drought, the levels of drought registered in the affected municipalities differed widely.
Figure 4 shows the levels of drought registered during the 200 Disaster Declarations for the
autumn-winter season and 132 recorded for the spring—summer season during 2003-2002.
The lowest average level of drought recorded during Drought Declarations was D0, with
only three municipalities indicating this level. In contrast, the highest average drought
level recorded was D4, with nine sites recording it. The correlation coefficients between
drought levels and Disaster Declarations by drought were significant at p < 0.01 for the
autumn-winter season (r = 0.303) and the spring—summer season (r = 0.340).
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Figure 4. Drought levels and Disaster Declarations by drought registered in the affected municipalities
of the study region from 2003 to 2022. (a) spring—summer season; (b) autumn—winter season.
DO0: abnormally dry, D1: moderate drought, D2: severe drought, D3: extreme drought, D4: exceptional
drought. Sources: drought data were obtained from the Mexican Drought Monitor [4], and Disaster
Declarations by drought were obtained from CENAPRED [25].

Figure 5 shows the number of Disaster Declarations by drought in each municipality
and its corresponding average drought level recorded during the declarations. The autumn-—
winter season registered 60% of the total number of Disaster Declarations of the two seasons,
with 100% of the municipalities having at least one Disaster Declaration due to drought
above the parallel 22.5° and two sites having up to three Disaster Declarations (Figure 5a).
Nevertheless, the drought levels during the spring—summer season were higher than
during the autumn-winter season, with average levels up to D2, D3, and D4 above parallel
25°. In the South, below parallel 18°, three sites reached D2 levels (Figure 5b). The highest
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number of Disaster Declarations by drought in two municipalities (Tantoyuca and Camarén
de Tejeda (Figure 5a) was three during the autumn-winter season and two during the
spring-summer season.
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Figure 5. (a) Number of Disaster Declarations by drought registered during 2003-2022 and (b) the
corresponding average drought levels recorded during the Disaster Declarations of 2005, 2011, 2013,
2018, and 2019. Geographic data was obtained from the Mexican Institute of Geography and Statistical
Information [28].

Figure 6 shows the monthly temperature behavior during four years with Disaster
Declarations by drought: 2005, 2011, 2013, and 2019, in relation to the long-term clima-
tology (1980-2022). During 2005 (Figure 6a). Positive anomalies occurred during the
spring—summer (June—September) and January (autumn—winter season). These positive
anomalies oscillated between 2% and 8% of the total range and represented tempera-
ture increments between 0.2 °C and 1.4 °C, with average increments of 0.3 °C for the
spring—summer period. These increments were located above the 75th percentile.

For 2011 (Figure 6b), there were seven months with positive anomalies oscillating
between 3% and 9% of the total range, implicating temperature increments between 0.3 °C
and 2.0 °C. These increments were recorded during two months of the autumn-winter
period (January and March) and five months of the spring-summer period, with average
increments of 0.9 °C. These increments were located above the 75th percentile.

For 2013 (Figure 6c), February registered the highest temperature anomaly, 1.5 °C
above the average, followed by October at 4% above the average and June and July at less
than 3%. The other months did not register positive temperature anomalies.

Only March and April registered temperatures below the long-term average during
2019 (Figure 6d). The other months had positive anomalies from 1 to 6% above the
media, with an average temperature increment of 0.7 °C for this year. During the spring—
summer season, the temperature was 1.6 °C higher than the mean of the long-term period,
corresponding to increments above the 75th percentile of the total period.

Figure 7 shows the monthly precipitation behavior during four years with Disaster
Declarations by drought: 2005, 2011, 2013, and 2019 in relation to the long-term climatology
(1980-2022). During 2005 (Figure 7a), the autumn—winter season (November, December,
and January) and the spring—summer season (April and September) recorded negative
anomalies. These anomalies oscillate between —10 and —80%, representing —5.7 and
—54.6 mm of accumulative monthly rain. Nevertheless, October and February registered
higher precipitations, up to 110% above the normal, representing 127.8 mm more than
the average.
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Figure 6. Monthly temperature behavior registered during the years with Disaster Declarations by
drought. (a) 2005, (b) 2011, (c) 2013, and (d) 2019.
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Figure 7. Monthly precipitation behavior registered during the years with Disaster Declarations by
drought. (a) 2005, (b) 2011, (c) 2013, and (d) 2019.

In 2011 (Figure 7b), negative anomalies were recorded in eight months, ranging from
—20 to —70%, representing —6 to —100 mm of less accumulative rain. Positive anomalies
were recorded in January, June, July, and November, ranking from +20 to +45% of the
normal, representing up to 69 mm more accumulative rain during July, with the highest
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precipitation records. Nevertheless, the negative anomalies were below the 75th percentile
in more than 50% of the year. The average reduced precipitation recorded for the spring—
summer season was —126.2 mm, while the autumn-winter season registered —58.6 mm
less than the normal. The total reduction in precipitation during 2011 was 18% lower than
the average of the long-term period.

In 2013 (Figure 7c), eight months had positive anomalies, with precipitations from 10 to
120% higher than average, and November being the month with the highest precipitations.
These positive anomalies represent up to 254 mm more accumulative rain for the spring—
summer season and 104 mm for the autumn-winter season. The negative anomalies were
recorded only during January, February, and April, with average reductions of —10 mm,
representing between —5 and —25% less rain than the long-term average.

In 2019 (Figure 7d), 11 months registered negative anomalies, and only October
registered positive ones. These values oscillated between —2 and —75%, with precipitations
reduced between —1 mm and —102 mm. During this year, six months had accumulative
rainfall below the 25th percentile. Therefore, 2019 registered a total reduction of 30% below
the long-term average.

3.3. Corn Grain Production

Figure 8a,b shows each municipality’s average rainfed corn grain sown during the
study period (2003-2022). The spring—-summer season has the highest proportion of land,
with 68% of the total surface of the year cultivated during this season. Below latitude
20°, the southern region has five municipalities cultivating more than 10,000 ha, while
the northern has only one municipality during the spring—summer season. During the
autumn-winter season, only one municipality cultivated more than 10,000 ha in the region.
Figure 8c,d shows the volume obtained in the study region. Below parallel 21°, three
municipalities produced more than 20,000 tons; above the parallel 22°, only three sites
harvested more than 10,000 tons but less than 15,000 tons.
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Figure 8. Average corn sown and volume obtained in the study region during 2003-2022. (a) Surface
sowed during the spring—summer. (b) Surface sowed during the autumn—winter. (c) Volume
harvested during spring—summer. (d) Volume harvested during the autumn—winter. Sources:
Geographic data was obtained from the Mexican Institute of Geography and Statistical Informa-
tion [28]. Production data obtained from the Mexican National Service for Agrifood and Fisheries
Information [11].

3.4. Drought Levels and Variations in Corn Grain Productivity

There were negative significant correlations between drought levels and yield values
in 11 of 143 municipalities for the autumn—winter season (p < 0.01). In comparison, there
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were ten negative significant correlations of 231 municipalities between drought levels and
yield for the spring—summer season (Figure 9a). Six affected municipalities were above
the 22.5° parallel during spring-summer and four below the parallel 20°. During the
autumn-winter season, only one site with negative correlations was below the parallel 21°.
There were significant negative correlations between drought levels and volume values
in four municipalities during the spring—summer season and 10 for the autumn-winter
season (Figure 9b). During the spring—summer season, two sites were below parallel 19°;
during the autumn—winter season, three sites with negative significant correlations were
located below parallel 21°.
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Figure 9. Coefficient correlations between corn grain yield variation, volume variation, and drought
levels in the study region during 2003-2022. The blank areas indicate no correlation. (a) Yield
variation; (b) volume variation. Sources: Geographic data was obtained from the Mexican Institute of
Geography and Statistical Information [28]. Production data obtained from the Mexican National
Service for Agrifood and Fisheries Information [11].

Correlations between corn grain yield variations and drought intensity registered
nine statistically significant years for the spring-summer and eight for the autumn-winter
season. Four years were statistically significant for the corn grain volume variation during
the spring-summer season and five years for the autumn-winter season (Table 3). For
the spring—summer season, in two years with positive correlations (2005 and 2014), the
drought levels were below the total median of the 2003-2022 period. However, in 2016,
2020, 2021, and 2022, the yields experienced higher increments, independent of the drought
levels. For the autumn—winter season, the years with negative correlations in corn grain
yield corresponded with increments in the drought levels above the long-term average and
vice versa. Similarly, the years with drought levels above the average corresponded with
significantly different decrements in the production volume and vice versa (Figure 10).

Table 3. Correlations between corn grain production variations and drought levels during 2003-2022.

Spring-Summer Season Autumn-Winter Season
Year Yield Volume Yield Volume
r p r 4 r P r p
2004 0.11 0.08 0.13 0.04* —0.41 0.00 ** —0.30 0.00 *
2005 0.22 0.00 ** —-0.13 0.03* 0.19 0.03 0.11 0.07
2006 —0.36 0.00 ** -0.16 0.01* 0.19 0.02* —0.09 0.17
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Table 3. Cont.

Spring-Summer Season

Autumn-Winter Season

Year Yield Volume Yield Volume
r p r 14 r p r p
2007 —0.24 0.00 ** —0.07 0.30 —0.24 0.00 ** —0.09 0.13
2008 0.14 0.03 0.02 0.81 0.27 0.00 ** 0.03 0.67
2009 0.15 0.03 0.12 0.05 0.09 0.32 0.13 0.03 *
2010 —0.28 0.00 ** —0.42 0.00 * —0.02 0.81 —0.09 0.15
2011 —0.15 0.02 * —0.24 0.00 * —0.24 0.01 ** -0.07 0.26
2012 0.03 0.60 —0.13 0.05 —0.10 0.27 —0.07 0.29
2013 0.04 0.50 0.04 0.50 0.08 0.33 0.04 0.49
2014 0.15 0.02* 0.13 0.04 * —0.04 0.66 —0.04 0.49
2015 —0.02 0.75 —0.06 0.34 —0.21 0.01 ** —0.06 0.37
2016 0.23 0.00 ** 0.12 0.06 0.03 0.67 0.01 0.84
2017 —0.02 0.76 —0.01 0.89 —0.19 0.02 % —-0.17 0.01*
2018 —0.07 0.28 —0.16 0.01 * —0.07 0.40 —0.14 0.02 *
2019 —-0.24 0.00 ** —0.04 0.52 —0.01 0.88 0.05 0.45
2020 0.06 0.34 0.10 0.13 0.00 0.99 —-0.13 0.04 *
2021 0.09 0.16 0.11 0.08 —0.18 0.03 * —0.14 0.02 *
2022 0.29 0.00 ** -0.11 0.07 0.24 0.00 ** 0.26 0.00 **
* Statistically significant (p < 0.05), ** statistically significant (p < 0.01).
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Figure 10. Corn grain yield variation and drought levels registered in the study zone during

2003-2023. (a) For the spring—summer season; (b) for the autumn-winter season.

3.5. Corn Grain Productivity Versus Drought Intensity

Figure 10 shows the performance of yield and volume production during the spring—

summer and autumn-winter seasons versus the total drought intensity levels. In all
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cases, yield and volume decrease when drought intensity increases. The higher determi-
nation coefficient was obtained with linear regression, and the highest correlation was
observed for the yield during the spring—summer season (Figure 11a). With the highest
sum of drought intensities (14.33) during the spring—summer season, the yield can de-
crease to —1.77 tons-ha~!. This total drought intensity level represents D2 and D3 levels
recorded during at least 50% of the period of six months. During the autumn-winter season
(Figure 11b), the decrements are slightly lower, with up to —1.38 tons-ha~! for average
drought levels of D2. The volume production indicates that the autumn—winter season
is more affected by drought intensity (Figure 11d), with 22% higher decrements during
autumn-winter than during spring—summer (Figure 11c) and 11% lower intensity levels
during the autumn—winter season.
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Figure 11. Drought levels versus yield and volume production of corn during 2003-2022 on the
eastern side of Mexico. 12 represents the determination coefficient of the regression line. (a) Spring—
summer yield variation; (b) autumn—winter yield variation; (c) spring—summer volume variation;
(d) autumn—winter volume variation. The green dots correspond to the intersection between the sum
of the drought levels and the corresponding production yield or volume. The dashed gray lines are
the results of the regression equations.
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3.6. Damaged Corn Surfaces and Drought Intensity

Figure 12 shows the damaged surfaces of the corn grain and the land uses from
2003 to 2022. During the spring—summer season, the years with Disaster Declarations by
drought reported 86,449.88 ha lost; during the autumn-winter season, only 18,412.87 ha
were lost. This data corresponds to 4.70 times more damaged surfaces in spring—summer
than in autumn-winter. The two municipalities with the highest damaged surfaces during
the spring—summer season (more than 10,000 ha) were Chicontepec, Veracruz, and Tula,
Tamaulipas, located in warn-subhumid and semiwarm dry climates, respectively, both
above the parallel 21°. During the autumn-winter season, only one locality reported more
than 5000 ha, Tantoyuca, Veracruz, in a warm-subhumid climate. Four out of the 231 mu-
nicipalities sowing corn grain were statistically significant for crop grain surface damages
during the spring—summer season (p < 0.05), while five out of the 143 municipalities were
significant for the autumn—winter season. These locations corresponded with the more
extensive land surface used for agriculture. There is no statistical significance for surface
loss and Disaster Declarations by drought during 2005, 2013, 2018, and 2019 in the autumn-
winter season. Still, statistical significance exists between Disaster Declarations by drought
for 2011 in the spring-summer season (r = 0.425, p < 0.001).
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Figure 12. Damaged corn grain surfaces related to drought and land uses reported during 2003-2022
at the study site. (a) During spring—summer; (b) during autumn-winter. Source: land use and
cartographic data were obtained from the latest update of the Mexican Institute of Geography and
Statistical Information [28].

4. Discussion
4.1. Drought Levels in the Study Region

Since the Drought Monitor started recording drought data, drought has been regis-
tered in 91% of the municipalities during the spring-summer season and in 59% of the
municipalities during the autumn-winter season. These results indicate that the study
region is prone to drought, with the spring-summer season being the most sensitive to
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drought. The northern side of the area (above parallel 25°) has climates classified as
warm-semidry and warm-dry [28]. Therefore, high average drought levels (D2, D3, and
D4) should be considered as usual. Unfortunately, no functional meteorological stations
were found at these latitudes to complement the analysis with the Drought Monitor. This
situation emphasizes the need to consider the Drought Monitor as the only available tool to
analyze the drought phenomena in the Mexican sites without available meteorological data.

In the south (below parallel 18°), three municipalities stand out for their high levels
of average drought (D2), which should not be expected in a warm-humid climate, with
average yearly precipitations between 2500 and 3500 mm [20]. They also do not have any
available meteorological data [26]. Therefore, it is impossible to analyze these sites’ climatic
behavior. In this region, there has been a continued productive reconversion of the original
tropical forests of the site to the current grasslands dedicated to cattle [20]. Therefore, these
authors consider that the increment of the grasslands and the consequent decrease in the
tropical forests is causing a climate change, transforming the place from a humid climate to
a subhumid climate with lower precipitation levels, as has been observed in other sites of
the region that have experienced similar transformations [30].

4.2. Disaster Declarations by Drought and Their Relationship with Corn Grain Production

Since the beginning of available national statistics at the municipal level, 2005, 2011,
and 2019 were the years with the highest drought periods during Mexico’s spring—summer
and autumn-winter seasons [4]. At the same time, there were Drought Declarations in
2005, 2011, 2013, 2018, and 2019 in the study region, with 138 during the spring—summer
and 167 during the autumn—winter season [25]. In this regard, the Disaster Declarations
agree with the higher drought levels (D3 and D4) recorded for 2011, 2013, and 2019 for the
municipalities registering corn grain losses due to drought during both seasons (spring—
summer and autumn-winter). For 2005, the Mexican Drought Monitor reported lower
drought levels (the D3 level was the highest). However, this year, 100% of the municipalities
registered DO or D1 levels below parallel 22.5° during January and April, 99% during
February and May, and more than 57% during March and June [4]. Therefore, it can be
considered that these three months affected by abnormal and moderate drought were
catastrophic for corn grain production, increasing the damaged surface by 19% compared
with the previous 2004 [11]. Complementing this information, the anomalies obtained with
the climatological stations indicate that 2005 recorded higher temperatures than the average
long-term data (Figure 6). Thus, these higher temperatures might have contributed to the
damage caused by the droughts recorded in the 2005 national disaster records, especially
during the autumn-winter season, when January registered temperatures above 75% of
the long-term average, as seen in Figure 6. Higher temperatures and lower precipitations
during December, January, April, and September (Figure 7) indicate that precipitation
decrements affected both seasons, as shown in the Drought Monitor.

Unfortunately, the crops affected since 2011 were not recorded in the national agronom-
ical statistics used in this research. The Mexican government replaced the direct economic
support for agricultural damages with independently hired catastrophic insurance [25].
Under this new system, the insurance is only applied if there is 70% or more crop surface
damage; otherwise, damaged croplands are not registered. This situation implies a subreg-
ister of data reported in the Mexican Agrifood Statistical System. For example, for 2019,
the official records only indicate that corn was one of the crops affected by drought that
received insurance payments. Still, they do not specify the names of the municipalities nor
the surface receiving these insurance payments [31]. Table 4 shows a brief resume of data
from different public sources regarding drought and its effects on corn production on the
study site. As seen in the table, local data is scarce and incomplete. However, 2011 and
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2019 are documented as years with total corn surface lost due to drought. This information
confirms our study findings, which indicate that these municipalities reported corn grain
surface damages during the Disaster Declarations due to drought.

Table 4. Documented drought and corn production were affected from 2003 to 2022 in the study site.

Period Site and Situation Study Type and Reference
Atypical drought caused crop damage in 15
municipalities in Veracruz. State Agrifood Report [31].
2019 . . . . . .
A national increment in corn importation was Mexican newspaper [32].
documented due to drought.
The municipality of El Mante, Tamaulipas,
2018-2020 reported that 24% of its corn surface was loose due Direct information from local producers [33].
to a rain deficit.

The ten most productlye mumc.lpahtles in Veracruz Data was obtained from the National System of

2014 reported decrements in corn yield due to drought . -
N . Agrifood Information and the state of Veracruz [34].
and a deficit in government economic support.
2011-2012 The municipality of Tatahuicapan de Juarez, Data was obtained from the National System of

Veracruz, reported a total loss of corn production.  Agrifood Information and the state of Veracruz [35].

San Fernando, Jaumave, Abasolo, Gonzélez, Diaz
2011 Ordaz, Victoria, and El Mante, Tamaulipas, Information was obtained from a Mexican

reported damaged corn lands due to drought newspaper [36].
during the spring-summer season.

Drought affected the northern side of Mexico and Information was obtained from a Mexican

2005 Veracruz, causing corn losses and affecting 950,000

ha of different crops. newspaper [37]

4.3. Drought Levels and Corn Grain Yield and Volume

The number of significant correlations between yield and volume decrements and
drought levels indicates that the spring-summer season has the most significant coefficient
determinations (Figure 10). These results were obtained because more municipalities are
sowing corn grain during this season; therefore, there were more substantial numbers of
data (239 municipalities sown corn grain during the autumn-summer and only 151 during
the autumn-winter season). For example, the droughts recorded during 2011 affected the
spring-summer season more, with an average decrement of —695 kg ha~!, compared to
the autumn-winter season, which registered a decrement of —8.57 kg ha~!. Low yield
associated with drought conditions under rainfed corn has been previously documented
for the eastern side of Mexico compared to irrigated corn production. However, there are
no specific estimations of these decrements [38].

In Mexico, native corn varieties have been selected to be cultivated under the coun-
try’s different agroclimatic conditions, especially considering drought tolerance and fast-
growing and better performance. These studies have found that drought mainly affects
chlorophyll contents, independently of the genetic origin, affecting the root and biomass
development [39]. This situation implies that no matter how many new corn varieties are
developed to tolerate drought, this plant will always be highly vulnerable. One study
reported a drought-tolerant variety of white corn grain produced in the northern side
of the study region. The authors indicated that this corn obtained an average harvest
period of 100-110 days during the spring—summer season and 120-125 days during the
autumn-winter season. Under experimental conditions and 350 mm of precipitation during
the plant cycle, this variety reached a maximum yield of 3.78 tons-ha~! [40], above the
average of the study site production of 2.44 tons-ha~!. Nevertheless, the experimental data
indicate that yield can decrease by 1.75 tons-ha~! under rainfed conditions compared with
irrigated conditions in the same area.
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Local research in the northern side of the region, under a warm subhumid climate, doc-
umented that the average rainfed corn grain yield is between 1.42 and 2.78 tons-ha ! [33].
This research also indicates that the local producers use certified and native corn grains
adapted to their natural climatological conditions. However, these producers also manifest
that drought is the leading cause of their low productivity and crop losses. Conversely,
in the southern part of the study region, there are municipalities with averages between
3.86 and 4.01 tons-ha~! under a warm-humid climate [11]. These results indicate that
precipitation is a crucial factor in incrementing yield. More rain and yield improvement
have been demonstrated in specific studies where hydric stress played an important part
when corn was flowering, decrementing its yield by 55%, even with a highly productive
corn variety, when comparing a tropical humid forest versus a dry forest climate [41].

In a broad sense, national studies suggest that the minimal precipitation estimated
for the Mexican corn was established at 480 mm during the plant’s life cycle. Lower
precipitations are not recommended under rainfed conditions [12]. Therefore, the results
found in this study for the rainfed corn grain sown at the study site indicate that these
national studies are more congruent with the corn varieties used in the study region.
Studies like the one mentioned previously in the northern side of the study region and
others in similar climate types [33,41] reporting yields between 3.4 and 3.7 tons-ha~! under
drought conditions may need further review. The local statistics in this study indicate that
producers may not apply the same care and techniques as the scientific reports document in
their experiments. Additional studies document regional differences in production yields
even with the same white corn variety. The regions with better yields have standard larger-
scale production, improved germplasm, and intensive production systems. In comparison,
the areas with lower yields have common environmental and substantial technological
limitations [38].

Therefore, the study region may need more training in corn grain production and
expert technical directions because national statistics indicate that 57% of these producers
only finished elementary school (six years), and 14.8% do not have any education [42]. This
situation makes it more difficult for corn cultivators to apply new technical developments
and follow the instructions to use the new varieties developed by governmental research
institutions for specific agroclimatic conditions [43].

The national statistics show that the average corn grain yield is 3.9 tons-ha~!. However,
this data includes rainfed and irrigated corn production [13]. For example, in the state with
the highest corn grain production (Sinaloa on the northern and western sides of Mexico),
irrigated corn grain has an average yield of 10.9 tons-ha~!. In this same state, with high
agricultural potential for corn, the rainfed corn averages 2.9 tons-ha~! [11], only slightly
higher than the study region’s average.

The other variable, corn grain volume (tons), is more related to the quantity of culti-
vated land during the period. Therefore, the municipalities with higher surfaces of corn
sown during the driest seasons were the most affected and significantly correlated with
drought levels reported by the Drought Monitor (Figures 8 and 9). Municipalities like
Las Choapas, on the southern side of the region (with an average seasonal surface sown
of 13,300 ha), registered —223.7 and —578.5 tons in the spring—summer season of 2011
and 2019 compared with their previous years. Papantla, in the region’s center, with an
average surface of 13,576 ha, recorded —3652 and —5966 tons in the same season of 2011
and 2019 [11].

Unfortunately, no meteorological stations were available for the Las Choapas and
Papantla municipalities during the study period. Besides, a nearby Las Choapas site
(Coatzacoalcos) did not contain rain precipitation data during 2011 but reported less than
30% of the normal rainfall from February to May 2019. Papantla’s nearest meteorological
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station registered only 41% of the average rain precipitation from March to June and 80% of
the normal from October to December 2011. During 2019, this station recorded 42% of the
normal rainfall from July to September, affecting mainly the spring—-summer season [26].
Therefore, we consider that, even with these scarce meteorological data, it is observable
that corn grain was affected by low precipitations during 2011 and 2019. The year 2019
represented the most significant volume decrements because 2018 also had high drought
levels in both municipalities (DO from May to June, D1 and D2 for July, and D3 for August
and September for Las Choapas, while DO from June to August and D1 in September for
Papantla). Thus, implementing more meteorological stations in the study site to correlate
corn productivity and climate data is advisable to obtain better estimations.

Nevertheless, these results correlate with the higher volume decrements estimated
with the linear regression equation obtained in this study. However, this equation underes-
timates the volume reduction for these two cases and obtains a low correlation with the
drought levels registered at the sites. The lower correlation and coefficient of determination
obtained with the linear models are congruent with sown fluctuations between seasonal
periods. In this case, on average, only 2005 and 2019 recorded significantly decreased
production volume due to drought. However, 2011 was not negatively affected in some
municipalities of the study site compared with the previous year during the spring—summer
season because 2010 registered one category-three hurricane that impacted the study re-
gion’s center. However, in the significant municipalities, 2011 recorded 387.59 tons less than
in 2010 during the spring—summer season and —269 tons during the autumn-winter season.

These peculiarities in corn production decrements and drought intensities indicate
that other phenomena besides drought may affect corn grain production in the study region.
This region is also affected by snow, hail, strong winds, excessive rains, floods, and tropical
cyclones [25], which makes it more challenging to estimate drought and corn production
correlations. Therefore, only the local meteorological stations can provide more reliable
data to analyze the corn grain performance related to drought levels.

5. Conclusions

The North American Drought Monitor and its Mexican part, the Mexican Drought
Monitor, can be a helpful tool to predict corn grain productivity behavior in specific sites
without local meteorological data and when other phenomena, like tropical cyclones, floods,
or excessive rains, were not registered. Under these situations, drought intensities with
levels D3 (extreme drought) and D4 (exceptional drought) during the spring—summer
season and autumn-winter season may cause a total loss of corn grain production, mainly
in warm-subhumid and temperate-subhumid climates. During the spring-summer season,
crop surface damage can be 4.7 times higher than during the autumn-winter season due
to the more considerable land extension cultivated during this season. During the spring—
summer season, corn grain yield can decrease by 1.77 tons-ha~! and 1.38 tons-ha~! during
the autumn-winter season with D2 and D3 drought levels. The spring-summer season
has a higher predictability than the autumn-winter season due to the higher number of
municipalities and land surfaces cultivating this crop during this period, which provides a
more considerable amount of data to correlate drought and corn grain production.

We suggest more detailed in situ studies of drought levels and corn grain production,
considering corn varieties and cultivation techniques, to improve the predictability of the
drought effects on corn grain production under rainfed conditions.
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Appendix A

Table Al. Geographical location of the meteorological stations used in this study.

Meteorological Station Municipality/State Latitude (°) Longitude (°) Altitude (msnm)

Juan Rodriguez Clara Juan Rodriguez Clara, VER. 17.9930556 —95.402778 148

El Raudal Nautla, VER. 20.1561111 —96.721111 10

Tecolutla Tecolutla, VER. 20.4791667 —97.009722 7

Actopan Actopan, VER. 19.5027778 —96.611111 250

Alamo Alamo Temapache, VER. 20.9294444 —97.679444 19

Angel R. Cabada Angel R. Cabada, VER. 18.5972222 —95.447222 28
Villa Tejeda Camaron de Tejeda, VER. 19.0222222 —96.613889 348
Chicontepec De Tejeda (SMN) Chicontepec, VER. 20.9933333 —98.163889 291

Coatzacoalcos (OBS) Coatzacoalcos, VER. 18.1402778 —94.522222 16
Rancho Viejo Emiliano Zapata, VER. 19.4469444 —96.783611 914

El Tejar Medellin de Bravo, VER. 19.0672222 —96.158333 10

Pénuco (DGE) Péanuco, VER. 22.0591667 —98.175556 11

Loma fina Paso de Ovejas, VER. 19.2613889 —96.41 41

Tempoal de Sanchez Tempoal, VER. 21.5188889 —98.410278 34

Tuxpan (OBS) Tuxpan de Rodriguez Cano, VER. 20.9597222 —97.418889 5

José Cardel La Antigua, VER. 19.3647222 —96.374444 28

Platén Sanchez Platén Sanchez, VER. 21.2980556 —98.356389 57

Poza Rica Poza Rica de Hidalgo, VER. 20.5408333 —97.472778 50

San Juan Evangelista (DGE) San Juan Evangelista, VER. 17.8833333 —95.145833 18
Ciudad Victoria (OBS) Victoria, TAM. 23.7477778 —99.171667 336

Soto la Marina (OBS) Soto la Marina, TAM. 23.7666667 —98.2 21
San Nicolas San Nicolas, TAM. 24.6894444 —98.829722 797
Palmillas Palmillas, TAM. 23.3022222 —99.548333 1264
Nuevo Morelos Nuevo Morelos, TAM. 22.5283333 —99.213889 260
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Table A1. Cont.

Meteorological Station Municipality/State Latitude (°) Longitude (°) Altitude (msnm)
Miquihuana Miquihuana, TAM. 23.5738889 —99.753056 1851
E.T.A. 067 CTIUDAD MANTE El Mante, TAM. 22.7425 —98.972222 91
Gliémez Gtiémez, TAM. 23.9186111 —99.004444 229
La Mayeb Gonzalez, TAM. 22.9155556 —98.345556 1371
Ahualulco Go6mez Farias, TAM. 22.9886111 —99.145 99
Cruillas Cruillas, TAM. 24.7541667 —98.534722 229
Paso de Molina Casas, TAM. 23.725 —98.745278 150
Bustamante Bustamante, TAM. 23.4358333 —99.754167 1666
El Carrizal Aldama, TAM. 22.8586111 —98.233333 90
San Gabriel Xicoténcatl, TAM. 23.0841667 —98.7875 135
Conrado Castillo Villagran, TAM. 24.6669444 —99.253889 309
Jaumave (DGE) Jaumave, TAM. 23.4075 —99.375278 324
El Barranco Altamira, TAM. 22.5658333 —97.905 6
Abasolo (DGE) Abasolo, TAM. 24.0655556 —98.39 70
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