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1. Introduction

Since the rise of deep learning around a decade ago, the field of object detection and
classification using a convolutional neural network (CNN) and its variants has grown
exponentially. This technology has been applied in domains such as the manufacturing,
construction, surveillance and monitoring, sports, transports, and medical sectors. An
attractive quality of CNNSs is their ability to take images in their raw form without the
traditional feature extraction step of reducing input dimensionality. However, a signif-
icantly larger amount of training samples is required for CNNs to extract features and
automatically classify objects. Labelling a large amount of data samples is costly and
time-consuming, and as a result, the availability of training data is limited, particularly
in domains outside of the science sectors. The labelling quality can also impact classifica-
tion performance and reliability as wrong or erratic labelling can lead to poor or biassed
classification performance. The availability of quality data has become a bottleneck, and it
hinders CNNs’ use in wider applications.

2. Learning with Limited Training Data

To address this bottleneck, the research community has developed various strategies
to reduce the reliance on large amounts of training data. Data augmentation and data
generation is one approach to produce more data from existing data. While data augmenta-
tion produces more variations of data by transforming the existing data in different ways,
data generation achieves this by using generative models such as Generative Adversarial
Networks [1]. However, as the produced data are derived from the original data, they do
not often contain the extra features found in the original data samples.

Transfer learning [2] is a different approach to address the data scarcity bottleneck.
It re-trains some parts, often the outer layers, of an existing model that was designed for
classifying different but related objects. As the inner layers of the existing model have
already learnt to recognise certain common features between old and new objects, less data
are required to train the model to classify new objects.

Based on a similar idea, n-shot learning [3] aims to learn how to recognize new objects
with just one or a few samples. It typically involves a meta learning process which aims to
help a model quickly learn new tasks by training it on a variety of tasks with a few data
samples. Training a model to predict the similarity between data points helps it generalise
well with new tasks. Models also commonly use an embedding method in which the model
learns to map inputs into a space where similar items are situated nearby. The model is
often fine-tuned for a specific task with a small dataset through transfer learning.

Appl. Sci. 2025, 15, 6842 https://doi.org/10.3390/app15126842



Appl. Sci. 2025, 15, 6842

3. Conclusions

With advances in data generation and transfer and meta learning, it is becoming
feasible to train a model with limited labelled data. This will enable object detection to
be applied to domains in which this was previously impossible due to a lack of labelled
data. However, regarding computer vision, current object detection applications are still
merely focused on detecting specific objects in images or videos rather than attempting
to understand the holistic view of the image that is being represented. The first step of
understanding an image is knowing what objects are in the image. However, understanding
the relationships and interactions between these objects and predicting their future actions
and behaviours, for example, are also necessary to reveal the deeper context of an image.
Many more studies are needed to bring computer vision closer to human vision.
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Abstract: This study presents a development plan for a vision Al system to enhance productivity in
industrial environments, where environmental control is challenging, by using Al technology. An image
pre-processing algorithm was developed using a mobile robot that can operate in complex environments
alongside workers to obtain high-quality learning and inspection images. Additionally, the proposed
architecture for sustainable Al system development included cropping the inspection part images to
minimize the technology development time, investment costs, and the reuse of images. The algorithm
was retrained using mixed learning data to maintain and improve its performance in industrial fields.
This Al system development architecture effectively addresses the challenges faced in applying Al
technology at industrial sites and was demonstrated through experimentation and application.

Keywords: vision Al; industrial sites; Al technology; image pre-processing; mobile robot; sustainable
Al system

1. Introduction

In recent years, extensive research has been conducted on the development of ma-
chine vision technology for product quality and work-ability improvement in industrial
fields [1,2]. The rapid development of deep learning technology has enabled us to perform
quality inspections on products with a diversity and complexity that was difficult to achieve
in the past. However, the implementation of deep learning technology enables quality
inspection primarily on small unit parts that can obtain relatively high-quality inspection
images in an extremely limited environment. However, it is challenging to implement an
inspection system using deep learning technology in an industrial environment where it is
difficult to obtain high-quality images due to the structural diversity and frequent environ-
mental changes, such as the assembly process of automobile manufacturing plants. Over
70% of automobile manufacturing plants use automated systems for assembly. However,
parts such as wiring and connectors, which are difficult to automate due to their flexibility
and versatility, still depend on manual assembly. Due to the structural characteristics of
automobiles, during the assembly of parts, the next assembly part covers the previous
assembly part, making it impossible to detect assembly defects through visual inspection
using the human eye in the next process. If defects and omissions are detected through
electrical inspection after the vehicle is assembled, the parts must then be disassembled
in the reverse order to rectify these assembly defects, which involves considerable time
and cost. Additionally, defective assembly of fixing clips, bolts, nuts, and so on cannot
be detected electronically due to field claims such as vibration and noise produced while
driving a vehicle. Recently, there has been a shift in the assembly process from the conveyor
method to a cellular production method that is efficient for the small-volume production of
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multiple vehicles and options. The cellular method enables the assembly of up to five times
more parts than conventional conveyors within a single process. This has increased the
probability of parts assembly omission as well as erroneous assembly by workers, and has
also increased the cost of poor assembly quality. Therefore, it is crucial to develop a new
visual inspection system technology for real-time image acquisition and assembly defect
detection after manual assembly by workers in an environment where it is difficult to
obtain high-quality images in real-time. Two factors must be considered for real-time visual
inspection in the manual assembly processes. Firstly, images must be obtained in real-time
by collaborating with workers. Secondly, a visual inspection algorithm must be developed
to detect assembly defects using the obtained images.

1.1. Image Acquisition Device

It is difficult to control lighting and environmental changes during manual assem-
bly processes in the automobile industry, unlike small parts inspections. Furthermore,
the mixed production of multiple vehicle models presents difficulties in image acquisition
due to frequent changes in the inspection items. Therefore, highly mobile robots and
manipulators with excellent flexibility are necessary for image acquisition in automobile
manual assembly processes. Additionally, a device with high safety standards, obstacle
avoidance, and excellent mobility that can be operated by workers must be developed.
Various commercial devices have been implemented for image acquisition, but it is difficult
to find a suitable device for manual assembly processes in the automobile industry. More-
over, it is challenging to acquire images inside the vehicle with a fixed camera. Although a
360-degree camera can be installed inside the vehicle before assembly to capture images,
it is not suitable for inspection purposes due to low image resolution. Wearable glasses
produce low-quality images due to shaking, and drones are not applicable due to safety
and noise issues. A device must be developed that can collaborate flexibly with workers
in automobile manual assembly processes and acquire high-quality image data through
stability, obstacle avoidance, and excellent mobility.

1.2. Vision Inspection Algorithm Development

When a new car is introduced into a car production plant, the car body, color, and parts
are changed. For approximately 100 days after the production of the vehicle, there are
several defective parts assemblies due to the inexperience of the workers. After 100 days,
the skill level of the operator improves, and the number of assembly defects is drastically
reduced. Therefore, an assembly defect inspection system must be established at the initial
stage of the production of new cars. However, the effect of implementing the existing rule-
based visual inspection system is insufficient since an engineer requires at least six months
to develop the visual inspection algorithm corresponding to the parts to be assembled in
a new car. Several attempts are being made to apply deep learning technology to reduce
the development period of the rule-based algorithm [3]. However, deep learning vision
technology also requires high-quality learning data to develop new car assembly inspection
algorithms. It takes more than 100 days to acquire the normal and defective data required
for deep learning algorithm learning, due to which the visual inspection of assembly parts
in the early stages of new car production is impossible, similar to the existing rule-based
vision system. In this study, we propose a solution for the manual process, such as car
assembly in the production plant, where it is difficult to implement the existing visual
inspection system due to environmental changes and inspection item modifications. Our
proposed solution includes a mobile robot suitable for image acquisition and a method for
developing Al algorithms that can reduce the development period. We also demonstrate
the performance of our proposed solution.

2. Related Works

Deep learning technology has been reported to outperform conventional rule-based
visual inspection systems in detecting various types of assembly defects and conducting
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quality inspections in complex industrial settings [4-6]. However, high-quality training
images are required to improve the performance of deep learning-based inspection systems.
Most studies conducted on deep learning technology have been implemented on small-
scale inspection targets with limited variation under controlled lighting and environmental
conditions. In several industrial settings, it is difficult to obtain high-quality training images
due to uncontrolled lighting and environmental conditions, along with frequent changes
in the inspection targets, making it difficult to acquire sufficient training data. Previous
studies have attempted to implement image acquisition and deep learning inspection
under conditions similar to those of actual industrial sites. In Wang’s study, assembly
workers directly used wearable lenses and headsets to acquire images. The time required
to capture the part images was set by using the worker’s position and gaze information [7].
The evaluation results demonstrated that the system accuracy was low, at 85%. This was
because even in a laboratory environment where the lighting conditions were consistent,
there were image variations based on the distance and angle at which the worker captured
the image. In Mazzetto’s study, deep learning technology was implemented to inspect
the surface treatment quality of automobile assembly parts. After sufficient training data
were obtained, deep learning technology showed superior inspection performance when
compared to the existing rule-based visual inspection method [3]. However, the inspection
algorithm was only limited to the surface inspection of brake pedal parts that did not
change when a new vehicle was released, and it was developed only after obtaining
sufficient training data. Research is being conducted to address the challenge of obtaining
sufficient data in industrial settings. The data acquired in actual industrial settings are
small in quantity, but there is a significant difference in the OK and NG ratios. In the case
of manual assembly processes for automobiles, data acquisition can be performed with
an OK rate of 99% and an NG rate of 1%. Therefore, NG items must be created arbitrarily
to acquire sufficient training data within a short period. This involves substantial time
and cost. The one-class neural-network method, a type of semi-supervised learning, has
been proposed to address this issue. This method learns using only a small number of
normal images and detects samples that differ from the normal samples as outliers [8].
However, uncontrollable environments such as lighting can cause severe image variations
due to image exposure. In the case of automobile parts comprising flexible cables and
connectors, the position of the cable varies even in normal images, along with the position
of the surrounding parts. Therefore, it is difficult to determine the boundary between
bad and normal images. Even if an appropriate boundary is set, it frequently changes
due to the rapidly changing environmental conditions, resulting in decreased inspection
accuracy and increased maintenance costs. Therefore, a system must be developed that
can acquire and inspect images under conditions where it is difficult to secure learning
data of sufficient quality due to frequent changes in the inspection parts at industrial sites.
Additionally, the high time and cost requirements for repeatedly maintaining detection
algorithms due to frequent changes in the inspection items make it difficult to implement
deep learning technology. In actual industrial sites, developing and implementing a
deep learning inspection system can be challenging owing to the high cost required for
the development and maintenance of the inspection system. In this study, we present
a development methodology for a deep learning visual inspection system that can be
implemented in an actual industrial field. First, image acquisition and pre-processing
techniques using mobile robots acquire high-quality image data required to train the deep
learning algorithms. Second, we propose a method to improve the performance of deep
learning algorithms by using a small amount of data that can be acquired within a short
period of time in actual industrial sites. Third, we propose a deep learning algorithm
for the re-learning method to respond to frequent changes in the inspection parts and
environmental conditions in industrial sites and to maintain the detection performance.
Finally, the proposed technology is demonstrated through empirical evaluation.
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3. Proposal Method

In this study, we propose a methodology to develop visual Al technology that enables
the effective inspection of assembly defects in automobile production from the early stages,
using mobile robot technology for image acquisition. We focus on the development process
and system architecture to create a visual Al inspection system capable of accurately
detecting incorrect parts assembly by workers in the manual assembly process of an
automobile manufacturing plant, as illustrated in Figure 1.
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Figure 1. Flowchart of the proposed Al system for industrial site inspection.

We propose a new system to overcome the difficulties faced in implementing visual
Al inspection in industrial settings, as depicted in Figure 2. Based on a standard visual Al
inspection framework, this enhanced system additionally compensates for the variation in
the images acquired by mobile robots due to changes in the industrial environment (@),
and utilizes this information to crop specific component images (@) to generate optimized
images that are crucial for assessing the assembly quality. Since automobile production facil-
ities use more than 100 different components, each assembled in unique ways, the efficiency
of visual Al inspections must be enhanced by individually applying tailored algorithms for
each component (®), rather than employing a single generic algorithm. This methodology
enables the straightforward reuse of algorithms for similar parts upon the introduction
of new vehicle models or the application of simple transfer learning, thereby enhancing
the operational management efficiency. From an operational perspective in industrial
settings, we propose introducing an ‘inspection error (NA)" category in deep learning
image classification (@) beyond the conventional OK/NG criteria to mitigate productivity
loss due to pseudo-defects and prevent the leakage of assembly defects. This raises the
benchmark and requires operator verification when the criteria are not met, enabling the
system to be operational even before sufficient training data have been accumulated. The in-
spection error images selected by the operators (®) can then be used as evaluation data
for algorithm retraining, which streamlines the algorithm assessment and improvement
process. A separate system must be established to maintain and manage the algorithm
performance in case environmental changes in the industrial site cause variations in the
mobile robot’s positioning, potentially degrading the performance of pre-set detection
algorithms (©—1), as suggested in Figure 1. This involves calculating the variance in the
images during the cropping process, extracting a T-Matrix (@) through feature detection
and matching (®), and storing the T-Matrix for each robot position (®) to calculate the
range of variance. By employing this approach in deep learning algorithms, it enhances
the algorithm performance through image augmentation techniques (©), utilizing the
T-Matrix to define the range of variance within which the robot can acquire images, thus
improving the detection algorithm performance. This strategy maintains and enhances the
algorithm performance (1), enables the development of new algorithms through retrain-



Appl. Sci. 2024, 14, 2750

ing (@), and uses evaluation data created by operator selection processes to compare and
evaluate the performance of old and new algorithms, facilitating algorithm replacement if
necessary (@). This approach ensures the continuous improvement in and maintenance of
the algorithm performance.
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Figure 2. Integrated vision Al inspection system flowchart for quality testing in industrial environments.

4. Detailed Proposed Technology and Test Results
4.1. Acquisition of High-Quality Deep Learning and Inspection Data

In environments such as the manual assembly process in car production factories,
which are narrow and complex, and where obstacles like bolts and nuts exist, a visual
acquisition device must be developed that can acquire images in real-time and in the
same space as the operator. In this study, we utilized a Boston Dynamics’ (Waltham,
MA, USA) four-legged robot, called SPOT, which has a relatively small body and the
ability to move through narrow spaces with its four-legged walking system, as well as
the self-SLAM technology that enables it to avoid obstacles. Additionally, the 4K camera
attached to the SPOT package’s seven-axis robot arm enables the easy acquisition of the
part images [9]. However, due to the characteristics of the four-legged walking system,
the repeated positioning accuracy exhibits a deviation of more than 200 mm from the
body base; there is also deviation when acquiring images using the camera attached to the
arm. This is a common problem with all mobile robots used in industrial sites, and it can
degrade the quality of the data, thereby affecting the performance of Al inspection. Unlike
stationary robots that employ positional constraints, mobile robots utilizing methods such
as visual SLAM can experience location errors ranging from 10 cm to 1 m. This variation in
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the positioning accuracy further complicates data acquisition and can significantly impact
the effectiveness of Al-based inspections. Therefore, a solution must be developed to
address this issue.

4.1.1. Landmark (Fiducial Mark) Centering Technique for Improving the Repeat
Positioning Accuracy of SPOT

The SPOT robot uses five ToF cameras on its body for visual SLAM-based position
movement. However, the reference vehicle moves using an AGV or conveyor for compo-
nent imaging, causing position dispersion. Furthermore, the characteristics of quadrupedal
walking result in poor repeat positioning accuracy with errors of over £200 mm, as shown
in Figure 3a. To address this problem, short-range communication devices, such as UWB
technology, have been used to improve the repeat positioning accuracy in the industrial
field [10,11]. However, this method incurs additional costs for installing infrastructure such
as UWB transceivers in the surrounding environment, as well as AGV or vehicle attachment
and removal of UWB. The location accuracy may also be reduced in environments such
as car factory structures that can cause wireless signal fading. In this study, a landmark
(Fiducial Mark) was attached to the AGV to consider the characteristics of the industrial
field and minimize investment costs, which serves as the reference for position movement.
A vertical reference point was specified between the SPOT body and the F-Mark to align
the body accurately. This method does not require additional modification or cost even
when the process changes or when new vehicles are introduced, as only the F-Mark must
be attached without requiring additional infrastructure installation. Using this proposed
method, the SPOT robot utilizes its front-facing camera to recognize the size of the attached
F-Mark and measures its size and angle upon reaching the inspection site, as depicted in
Figure 3b. By centering the SPOT body to be perpendicular to the F-Mark and adjusting
the pre-set distance values, the positional error was reduced from £200 mm to as low as
£14 mm. However, even if the error of the SPOT body is small, the positional error of the
camera at the end of the arm that acquires the image accumulates based on the arm pose,
causing a large deviation in the acquired image.

Fiducial M@l

(b) Slam + Centering

by =
(a) Visual Slam

Figure 3. Improvement in repeat positioning accuracy with the centering technique using the
Fiducial Mark.

4.1.2. Automatic Correction Algorithm for Image Matching Deviation Caused by
Positional Precision Error

Additional hardware improvements to increase the positional accuracy would require
excessive cost and time to reduce the deviation in the images acquired from the mobile
robot or arm. In the industrial field, there is a trade-off between performance improvement
and cost; therefore, an appropriate performance improvement method must be developed.
In this study, we propose a visual software algorithm that can correct image deviation with
relatively low investment cost. We used the speeded-up robust feature (SURF) algorithm to
detect feature points between the first image and the repeatedly acquired images, and cor-
rected the deviation using affine, projective, and other transformation techniques [12,13].
However, during feature point detection, there were problems with recognizing the back-
ground as a feature point instead of the inspection area, or recognizing parts incorrectly
installed as the same feature point, resulting in degraded performance, as shown in Figure 4
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(top). To address this issue, we limited the feature point search area to the vehicle body,
as shown in Figure 4 (bottom). This prevents the recognition of the background as a feature
point outside the vehicle body. Additionally, the image-matching performance is improved
by masking the part area and excluding it from the search area to prevent the recognition
of incorrect feature points when parts are installed incorrectly.
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Figure 4. (a) Image registration and cropping using the proposed algorithm, (b) quality scoring of
cropped images, (c) changes in Al accuracy according to cropped image quality.

Equation (1) is used to detect features within the intersection of the search area
specified by the reference image’s feature search area, R, and the image mask, M, that
includes the areas outside the feature search area. H;; represents the Gaussian kernel used
in the Harris corner detector, and Ly (x + i,y + j) represents the result of differentiation and
smoothing using the image’s Rob operator with a Gaussian filter. (x + i,y + j) represents
the position of the kernel. Conversely, there are two ways to perform a feature search
on a newly acquired image. If the image distortion is small, Equation (2) can be used,
which utilizes the image mask, M, that includes the areas outside the feature search area.
In this case, the area for feature detection is reduced since the same image masking area is
included, resulting in an increase in the speed. However, it was observed that the accuracy
of feature detection decreases with the increase in the image distortion. This is because
the difference between the reference image and the masked area caused by the image
distortion is severe. To improve this, I represents the entire area of the newly acquired
image, enabling the feature search area to be assigned without a separate mask, as shown
in Equation (3). This improves the alignment performance. However, it was also observed
that the expansion of the search area increases the time required by approximately 30%.
Therefore, Equation (2) must be used when the image distortion is small, and Equation (3)
must be used appropriately when the distortion is significant. Consequently, only the
feature points of the vehicle body that do not change before and after mounting the parts
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were detected, as shown in Figure 5; further, the image registration algorithms can be
implemented through the image conversion methods, affine and Projective Transform,
using the feature points between the two detected images [14]. The inspection image of the
part was extracted from the registered image by using the ROI coordinates of the part set
in the initially acquired image of SPOT, and high-quality learning data necessary for Al
algorithm development could be obtained, as shown in Figure 5.
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Figure 5. Evaluation of SURF algorithm performance with mixed image search area and image search
exclusion area.

4.2. Image Pre-Processing Strategy for Minimizing Lighting Changes Caused by
Environmental Variations

Lighting control is possible for small parts, but it is difficult to control lighting in
automobile assembly processes due to the large size of the vehicle. Frequent changes
in illumination occur due to the inability to control lighting. Additionally, the camera
shooting angle changes due to the positional deviation of the mobile robot during image
acquisition, causing variations in the gain, exposure, brightness, gamma, and other image
features. Contrast changes in the image can degrade the performance of feature point
detection through image comparison. Furthermore, changes in the brightness can cause
excessive variations at the edges of the image, causing the performance degradation of the
CNN network. To address these issues, an algorithm was applied to match the histogram
of the acquired image to that of the initial reference image, thereby compensating for
overexposure and brightness changes in the image [15,16].

The formula for matching each pixel value, ppew (i, j), in the new image, Ly, to the
histogram of the reference image, I,.r, as shown in Figure 6, is given as follows:

o K (k)
o) = X 30
k—0 /tnew

max

max(0, min(pjias, k + P — puy (i, )

Here, hy.f(k) and hyew (k) represent the histograms of I,.f and Inew, respectively. L
denotes the range of pixel values and pjs denotes the maximum pixel value of I,¢,. This
formula matches the histogram of I,;¢, to that of I, s thereby improving the contrast of
Inew. In software-based image processing after image acquisition, the original image is
fixed and the range for change is set. Registration cannot be performed if there is a large
difference from the original image. To solve this problem, it is more effective to acquire
an image similar to the initially acquired image while changing the camera parameters

during image acquisition. However, this is not suitable for automobile production plants
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where production cycle time is important since image acquisition time increases. Therefore,
the operating time must be considered when developing a system in an industrial setting.

Histogram matched

Reference image Acquisition image ;
output image
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Histogram

5
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Figure 6. Image brightness correction using histogram matching algorithm.

4.3. Development Plan for Vision-Based Al Algorithms Enabling Maintenance and
Continuous Management

In the manual assembly process of an automobile manufacturing plant, the new vehi-
cle release cycle is fast, due to which the parts subject to inspection are frequently changed.
Therefore, the cost of developing an inspection algorithm is high, and it is crucial to reduce
the development period for inspection from the beginning of production. Additionally,
several algorithms must be developed that can inspect a large number of parts due to mixed
production, and excessive costs are incurred to maintain the performance. To effectively
apply Al technology at industrial sites such as automobile manufacturing plants, maintain-
ing appropriate development costs and reducing the development period are critical issues.
In industrial settings, excessive investment costs are incurred for the re-development of al-
gorithms when changing the inspection targets, and there are often cases where equipment
is unused because it does not satisfy the required detection performance. Consequently,
Al algorithms have a negative perception. In this study, we propose a development plan
that can reduce the cost of developing multiple algorithms and drastically reduce the
development period to effectively implement Al algorithms in industrial sites.

4.3.1. Cropping Technique to Reduce Learning Data Acquisition Time

The period for acquiring the training images must be reduced to reduce the develop-
ment period of the deep learning algorithm. However, in industrial settings where product
change cycles are fast, it is practically impossible to acquire learning images within a short
period. Therefore, a method must be developed to acquire learning data within a short
period. In this study, we aimed to maximize the reuse of learning data even when the
product changes. Specifically, image pre-processing was performed to crop the inspection
parts as large as possible, to exclude the highly variable vehicle structure and color from the
images. This ensures that learning and inspection images can be reused even if the vehicle
is changed during automobile production. Thus, even if the vehicle is changed, since the
structure of parts such as the wiring, clips, connectors, and bolts assembled in the vehicle
is similar, a deep learning inspection algorithm can be developed by using the learning
data collected from previous vehicles. Figure 7 shows that visual inspection can be applied
quickly during new car production by using the deep learning algorithm created for the
previous car since the type of clip used for fixing the wiring is similar. Moreover, since
the learning data are continuously accumulated and diversity is secured, the performance
of the algorithm can be continuously upgraded. To verify this, when launching a new
car with a similar but not the same part type, a short algorithm development test was
conducted through transfer learning after securing the minimum quantity of data for the
new parts that are similar. The detection performance decreases when performing deep
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learning with only a small number of new part images of less than 20, as shown in Figure 8.
However, the results of transfer learning using the existing algorithm of similar parts
exhibit higher accuracy.

Figure 7. Inspection part unit cropping images for reuse of car assembly part types and learning images.
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Figure 8. Comparison of results between training from scratch and transfer learning using OK
(20 images) and NG (20 images) training data with the resnet101 model.

4.3.2. Minimizing the Development Period and Investment Cost of Algorithm
Development Plan

Deep learning techniques are broadly classified into three categories, based on their
detection performance and resource utilization: image classification, object detection,
and segmentation [17]. The accuracy of the analysis increases in the order of classification,
object detection, and segmentation, but the processing resources required also increase
with the increase in the amount of data to be processed. Additionally, as the accuracy
increases, the cost and labeling period for the training data also increase, which are crucial
issues in industrial sites where there are frequent changes in the inspection items. Extensive
research is being conducted on auto-labeling to address this issue [18-20]. Although this
demonstrates a certain level of performance that can be achieved in industrial sites, separate
confirmation is required since even one or two mislabeled data points can significantly
impact the algorithm’s performance. In this study, classification was applied to the data
format used in manual assembly processes for inspecting the automobile parts, considering
cost and data acquisition time. Since the classification technique exhibits a lower accuracy
than other techniques, it must be improved. To improve the inspection accuracy, we focused
on implementing image pre-processing algorithms that can obtain high-quality images and
improve the algorithm performance.

4.4. Automation Technology for Maintaining the Performance of Al Algorithms

4.4.1. Automatic Image Augmentation Technology That Accounts for Deviation in Mobile
Robot’s Shooting Position

The image augmentation technique involves creating new data by appropriately
transforming the original image during CNN deep learning training. It is effective in
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making the model robust when there is insufficient training data, and is important to
improve the performance of deep learning algorithms [21,22]. When acquiring images using
amobile robot in an automobile assembly process, the range of image acquisition deviations
caused by robot position errors can be statistically calculated. Using the calculated image
deviation range value, the image augmentation range can be specified during deep learning
training. Thus, the image can be augmented within the same range as the image deviation
that can occur due to the positional error of the mobile robot.

Therefore, learning data with the same range of deviation as that of the inspection
image can be additionally created, thereby improving the detection performance of the
deep learning algorithm. Additionally, it is very effective at maintaining the algorithm
performance when the error range changes due to environmental changes and robot
deterioration since the algorithm can be automatically re-learned within the calculated
deviation range for a certain period of time without the need for an engineer. The T-Matrix
value of the image deviation information measured in the image error registration SW of
Figure 1 is stored. The image acquisition deviation range for each robot position can be
calculated as shown in Figure 9. It can be observed that the deviation of the error caused
by the different position of the robot and the different pose of the arm for part shooting
is different. Essentially, when training the deep learning algorithm using different robot
position deviations for each part shooting position, an appropriate image augmentation
value for each position can be used as shown in Figure 10. This method can prevent the
degradation of the algorithm performance by learning with an image that is completely
different from the inspection image during algorithm learning. Additionally, the error
range analyzed by the image error registration software can be automatically parameterized
for image augmentation without the intervention of an engineer.
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Figure 9. For each set of 100 images captured by the robot at each position, T-Matrix can be used to
extract the range of augmentations.
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Figure 10. Using the range of image deviation caused by robot position errors as image augmenta-
tion parameters.

To verify the effectiveness of the image augmentation technique using T-Matrix values,
we compared the results of learning with parameters set by engineers to the results of
learning with parameters set automatically using the T-Matrix values. The results indicated
equivalent algorithm performance, as shown in Figure 11. Conversely, we observed
that the algorithm’s performance deteriorated when the image was augmented with a
difference of 5% or more from the error range for each robot position. This implies that
incorrect parameter settings by engineers during deep learning can degrade the algorithm
performance, and there is a high possibility of algorithm performance deviation based
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on the engineer’s ability. Additionally, maintenance costs can be minimized because the
system can automatically learn the algorithm’s performance despite environmental changes
or robot deterioration, without requiring an engineer.
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Figure 11. Comparison graph of learning accuracy for each representative network according to
image augmentation error range of +5%, T-Matrix (auto), and engineer’s experience level.

4.4.2. Automatic Data Acquisition Method for Re-Learning Al Algorithms

It is difficult to implement the Al vision inspection system in the industrial field
because the performance of the algorithm deteriorates due to changes in the inspection
environment. When the algorithm performance degrades, it is essential to manage per-
formance through algorithm re-learning immediately. However, it is difficult to maintain
the performance of the algorithm owing to the high time and cost requirements incurred
during the labeling task to transform the acquired data into learning data. Essentially,
an automatic data labeling method is required to maintain algorithm performance for the
implementation of Al technology in industrial sites. In this study, a classification score
was used to automatically label the acquired data. To automatically secure the re-learning
data, the cross entropy score value was set as high as possible in the Softmax step of the
image classification process to ensure that it was OK, as shown in Figure 1. The OK data
is automatically classified without operator intervention, and NG and NA, which require
operator correction, can be labeled as data by clicking through a GUI that enables the
operator to determine whether it is OK, NG, or NA.

4.5. Industrial Field Al Algorithm Development Plan

To improve the performance of deep learning algorithms, obtaining sufficient-quality
training data is the most important aspect. However, obtaining sufficient learning data
for developing vision Al algorithms within a short period that corresponds to the time
of product production in industrial settings such as automobile assembly processes is
extremely challenging. Since adequate data cannot be used when developing Al algorithms
in industrial settings, a method must be developed to satisfy the algorithm’s performance
requirements using only a small amount of data that can be initially acquired. Acquiring
learning data in industrial settings is very difficult, as mentioned earlier, and problems can
arise due to the imbalance of the OK and NG data. The anomaly detection technique is
being analyzed to solve this problem; however, it is still inadequate for implementation in
industrial settings with diverse inspection images. In this study, we developed algorithms
with various combinations of similar or different part images to improve the Al algorithm
performance using a small amount of data, as shown in Figure 12. By selecting and using
the inspection algorithm for parts with high accuracy among the developed algorithms,
a high-performance detection algorithm was developed within a short period using only a
small amount of learning data. To improve the algorithm detection performance, a large
amount of learning data with diversity must be obtained. However, the best and easiest
way to increase the diversity and accuracy of learning data is to mix between automobile
parts to reduce the variance and bias, which is practically impossible to achieve under
industrial settings.
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Figure 12. Create categories of similar parts, repeatedly learn with mixed categories, evaluate the
accuracy of each part, and use the algorithm of the part with the highest performance.

The Boosting technique is one of the methods that can be used to solve the gen-
eralization problem of machine learning algorithms. Boosting assigns more weight to
misclassified samples from previous training results on the same data to predict more
accurate results [23,24]. However, Boosting has dependencies between data and network
models, requiring various tuning operations to achieve the optimal performance. Con-
versely, the proposed learning method is very simple and intuitive, making it easy to use
in industrial automation systems. Additionally, mixing similar parts of data can increase
the generalization performance while reducing the variance and bias by increasing the
diversity and quantity of the training data. This algorithm takes three primary inputs:
the total number of car parts (N), an accuracy threshold (t) for effective model evaluation,
and the number of iterations (I) to refine the models through repeated training. The output
obtained is the trained models (M) for each car part that satisfy the accuracy threshold.
The core process includes initializing a tracking table (T), selecting random subsets of parts
for model training, comparing their accuracy against ¢, and iterating until the most accurate
algorithms for each part are identified. After randomly mixing inspection part images as
shown in Algorithm 1 and training the model, only the parts with high inspection accuracy
are used in the Al algorithm. For parts with low accuracy, the algorithm is retrained using
a different mix of parts until the inspection accuracy is sufficiently high to be used in the
Al algorithm. Using this method, we were able to improve the performance of the Al
algorithm with minimal data and resources within a short period. Using the proposed Al
algorithm development method, the results of training on the same data, same network
model, and same parameter setting presents higher accuracy than training for a single
part, as shown in Figure 13. In particular, applying the category technique to parts with an
accuracy of 0.5 or less increased the accuracy to 0.9 or higher.
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Figure 13. Performance improvement in algorithms through finding optimal Al algorithm by pro-

posed similar part mixing.
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Algorithm 1 Finding optimal algorithm for car parts

Input: Number of car parts N, accuracy threshold t, number of iterations I.
Output: Trained models M for each part.
1: Initialize an empty table T to store the part number, algorithm number, and accuracy.
2: fori <+ 1toIdo
3 forj < 2to N do
4 Randomly select j parts to form a training dataset.
5 Train a model M; on the training dataset.
6: for each part p in the j parts do
7: Evaluate the model M; on the test dataset FOR part p.
8 if the accuracy of M; for part p is above the threshold ¢ then
9 Store the part number, algorithm number, and accuracy in the table T.

10: end if
11: end for
12: end for

13: end for

14: Group the parts by the algorithm number that achieved the highest accuracy for each part.
15: Save the trained model for each part and its corresponding algorithm number.
16: Display the table, T, with part numbers, algorithm numbers, and accuracies.

5. AI System Empirical Evaluation

In this study, we present the development and application of a vision Al system that
can acquire images of the assembly process and inspect assembly defects using a vision
Al algorithm, by utilizing the mobile robot ‘SPOT". This robot can operate in conjunction
with workers on the manual assembly lines of automobile manufacturing plants. In previ-
ous studies, there was no device capable of acquiring images while operating alongside
workers, and developing a solution to inspect dozens of assembly parts incurred excessive
costs. Furthermore, high maintenance expenses post-system-implementation presented
challenges for mass production. This paper addresses and resolves these issues. Currently,
the system is being applied and operated in the prototype phase 1 process at the Singapore
plant of Hyundai Motors, where it has successfully identified multiple instances of defects
caused by the assembly mistakes of inexperienced workers at the initial stages of vehicle
production in real-time. Additionally, this paper proposes a method for the continuous
automatic collection of training data to address the lack of training data during the initial
development phase. Consequently, while the average performance of the algorithm for
39 parts was initially 88%, continuous data collection and the proposed algorithm learning
method have enhanced the performance to 97.4%.

6. Future Work

Several studies have been conducted on the application of Al technology in various
industries. However, most of these studies approach technology development under
the assumption that Al can solve everything, and this presents a major obstacle to im-
plementing Al technology in industrial applications. To implement Al technology for
improving industrial productivity, it is important to develop good deep learning networks
as well as to collect training data, improve algorithm detection performance in constrained
environments, maintain algorithms, and reduce the time and cost. If Al algorithms are
implemented in industrial fields without such strategies, there is a high risk of failure due
to real problems. Research is currently being conducted to obtain training data using 3D
data because it is difficult to obtain training data at industrial sites; however, this approach
is impractical [25,26]. Therefore, more realistic solutions must be developed. To enable
the widespread application of Al technology in industrial fields, continuous research is
required to realistically reduce the costs of developing and maintaining Al technology.

7. Conclusions

This paper analyzed the problems of industrial sites where the sustainable application
of a visual Al inspection system was difficult due to frequent changes in the environmental
conditions and inspection targets, and developed technologies to solve these problems.
We developed image acquisition technology using the mobile robot SPOT to obtain high-

16



Appl. Sci. 2024, 14, 2750

quality learning data and inspection images for the real-time visual inspection of the manual
assembly process of automobiles. We proposed an Al system development architecture
that could be effectively applied to industrial sites. We also improved the development of
Al inspection algorithms by applying technologies to reduce the learning data acquisition
period, save investment costs, improve algorithm performance, and automate the algo-
rithm maintenance. This helped in drastically reducing the existing problems. In particular,
the similarity of vehicle parts was used to develop the algorithm for new B-vehicle parts by
utilizing the algorithm developed for A-vehicle parts, as shown in Figure 14. If the new
B-vehicle parts were identical to the A-vehicle parts, the inspection could be performed
using the A-vehicle part algorithm. If the new B-vehicle parts were not identical to the
A-vehicle parts but similar, the development period of the algorithm could be reduced
by transferring the learning of the B-vehicle parts to the A-vehicle part algorithm. Conse-
quently, a vision Al system with the required detection performance during the early stages
of production could be applied to detect assembly defects. Furthermore, it was possible to
detect many defects caused by the low skill level of workers during the initial production
of new cars in automobile production factories, which could significantly improve the
quality of automobile assembly. Lastly, the effective Al technology development method
proposed in this study will serve as a useful guide for the implementation of Al technology
in industrial sites.
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Figure 14. Algorithm development is shortened through transfer learning with same/similar part
algorithms and Al algorithm improvement through continuous accumulation of automobile assembly
part image data.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

SLAM Simultaneous Localization and Mapping
SW Software

ToF Time-of-Flight

UWB Ultra-Wideband
SURF Speeded-Up Robust Features

ROI Region of Interest

CNN Convolutional Neural Network
OK Acceptable or Correct

NG Not Good or Incorrect

NA Not Applicable or Not Available
AGV Automated Guided Vehicle

T-Matrix Transformation Matrix
F-Mark Fiducial Mark
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Abstract: This paper primarily investigates enhanced object detection techniques for indoor service
mobile robots. Robot operating systems (ROS) supply rich sensor data, which boost the models’
ability to generalize. However, the model’s performance might be hindered by constraints in the
processing power, memory capacity, and communication capabilities of robotic devices. To address
these issues, this paper proposes an improved you only look once version 5 (YOLOvV5)-Lite object
detection algorithm based on efficient multi-scale attention and bounding box regression combined
with ROS. The algorithm incorporates efficient multi-scale attention (EMA) into the traditional
YOLOV5-Lite model and replaces the C3 module with a lightweight C3Ghost module to reduce
computation and model size during the convolution process. To enhance bounding box localization
accuracy, modified precision-defined intersection over union (MPDIoU) is employed to optimize the
model, resulting in the ROS-YOLOv5-FleetEMA model. The results indicated that relative to the
conventional YOLOv5-Lite model, the ROS-YOLOv5-FleetEMA model enhanced the mean average
precision (mAP) by 2.7% post-training, reduced giga floating-point operations per second (GFLOPS)
by 13.2%, and decreased the params by 15.1%. In light of these experimental findings, the model was
incorporated into ROS, leading to the development of a ROS-based object detection platform that
offers rapid and precise object detection capabilities.

Keywords: ROS; efficient multi-scale attention; C3Ghost; MPDIoU; YOLOvV5-Lite

1. Introduction

Object detection is an important branch of machine vision. Its purpose is to automati-
cally identify and locate targets of interest in images or videos. In the field of service robots,
object detection technology is mainly used to identify various objects and people in the
environment, so as to realize functions such as autonomous navigation, task execution, and
human-computer interaction [1]. However, due to the diversity and complexity of service
robot application scenarios, object detection faces many challenges, such as illumination
changes, occlusion, scale changes, etc. Therefore, object detection is an indispensable
function for service robots.

Due to the high accuracy and high stability of deep learning technology in image
processing, many researchers have begun to use deep learning technology to solve the
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problem of target detection in computer vision [2]. At present, the commonly used object
detection network based on deep learning can be roughly divided into the following two
categories: one-stage and two-stage [3].

For two-stage object detection, Ross Girshick et al. proposed the classical region-based
convolutional neural network (R-CNN) [4] algorithm. Firstly, about 2000 region proposals
are obtained using selective search, then the features of region proposals are extracted by
AlexNet4 [5], and then these features are regressed by multiple classifiers. Subsequently,
He et al. proposed a spatial pyramid pooling network [6] (SPPNet), which extracts more
feature information by performing convolution operations on the entire image to avoid
the problem of computational redundancy when R-CNN extracts features for all candidate
regions. Therefore, the fully connected neural network (F-CNN) [7] adds an SPPNet
between the last convolutional layer and the fully connected layer to extract a fixed-length
feature vector and avoid the normalization of the region proposal. Ross Girshick et al.
proposed fast R-CNN [8] by referring to SPPNet, which simplifies the SPP layer to the region
of interest (ROI) layer and applies singular value decomposition (SVD) to the output of
the fully connected layer to accelerate the test process. Fast R-CNN combines classification
with a bounding box, but fast R-CNN has the problem of excessive calculation. In this
regard, Ross Girshick and others then proposed faster R-CNN [9], which uses a region
proposal network (RPN) instead of a selective search algorithm to extract region proposal,
which greatly improves the detection efficiency. On the basis of faster R-CNN, Lin et al.
proposed the feature pyramid network (FPN) [10], which uses RPN to extract candidate
regions on the feature pyramid. By fusing deep and shallow feature information, prediction
is performed at different scales to enhance the semantic understanding of shallow feature
maps, thereby improving the accuracy of small target detection. In order to further improve
the detection speed, Dai et al. proposed a region-based fully convolutional network (R-
FCN) [11], replacing the fully connected layer with a fully convolutional layer, allowing
the features of each candidate region to perform convolution operations directly to obtain
the confidence of each category. Although two-stage object detection has high detection
accuracy, it does not perform well in real time. In this regard, target detection technology
usually uses the one-stage target detection algorithm. The one-stage target detection
algorithm can achieve real-time detection, and the detection accuracy can maintain the
same level as the two-stage target detection algorithm [12].

The you only look once (YOLO) algorithm is an object detection algorithm that divides
the trained image into a grid system. Each unit in the grid is responsible for detecting
its own internal objects. The YOLO algorithm has occupied an important position in the
field of target detection, with its excellent detection speed and accuracy, since it was first
proposed in 2016. The YOLOV1 [13] algorithm regards the target detection problem as a
regression problem, which is an end-to-end method with fast detection speed and good
real-time performance. However, the detection accuracy of the algorithm is low, and it
is difficult to detect when the target object is small. In order to improve this problem,
Redmon et al. improved YOLOv1 by introducing batch normalization and dimension
clustering to improve the detection accuracy and called the algorithm YOLOv2 [14]. On
the basis of YOLOv2, Redmon et al. further improved it through a series of improvements,
such as using a residual network to improve the network structure to achieve multi-scale
output, thereby improving the accuracy of detection, and named the improved algorithm
YOLOVS3 [15]. Since the accuracy rate has been greatly improved after using the YOLOv3
algorithm, it has become one of the most used algorithms. Bochkovskiy et al. proposed
the YOLOV4 algorithm [16] for some shortcomings in the YOLOv3 algorithm and made
a series of improvements. The algorithm uses the cross-stage partial darknet-53 (CSP-
Darknet53) [17] structure to optimize the network structure and uses the data enhancement
method in the training phase to further improve the training speed and accuracy. In 2020,
Ultralytics developed an open-source version. The backbone network of the YOLOv5
algorithm [18] takes into account both the detection efficiency and image recognition effect.
The volume of the algorithm model can be adjusted, and the recognition result is more
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accurate than other detection methods, but the calculation amount of the model is large, and
the structure is redundant. In response to these challenges, this paper proposes an improved
YOLOv5-Lite target detection algorithm that combines multi-scale attention and bounding
box regression, aiming to further improve the detection performance while maintaining
the lightweight characteristics of the algorithm. As a widely used robot software platform,
ROS1 provides a wealth of tools and libraries to support the development and integration
of algorithms. The improved YOLOv5-Lite algorithm is integrated with ROS, which can not
only realize the rapid deployment of the algorithm but also facilitate the interaction with
other robot perception and decision-making modules through the modular characteristics
of ROS. Next, the design and implementation of the improved YOLOv5-Lite algorithm
will be introduced in detail, as well as the experimental process and result analysis in the
ROS environment.

2. Related Work

As a one-stage object detection algorithm, the YOLO series algorithm has high detec-
tion accuracy and achieves a good balance between accuracy and recognition, which is
suitable for object detection in complex natural environments [19]. As the latest lightweight
version of this series, YOLOv5-Lite is designed for computing resource-constrained en-
vironments. It provides acceptable accuracy while maintaining high detection speed.
Although YOLOvb5-Lite performs well in some application scenarios, there is still room for
improvement in specific robot vision tasks, for example, the detection accuracy of small
targets in a dynamic environment, or the robustness under different lighting conditions.

2.1. YOLOv5-Lite Network Model

The YOLOV5-Lite model adopts a lightweight design to reduce computational complex-
ity and improve operating efficiency while maintaining high detection accuracy. This struc-
tural optimization makes the algorithm more suitable for running on resource-constrained
devices. The network structure is shown in Figure 1.

The structure can be roughly divided into the backbone network, neck network, and
detection head network. The algorithm removes the focus structure layer, reduces the
volume of the model, and makes the model lighter; at the same time, four slice operations
are removed, which reduces the occupation of the computer chip cache and reduces the
processing burden of the computer. Compared with the YOLOV5 algorithm, the YOLOvV5-
Lite algorithm can avoid repeated use of the C3 layer module [20]. The C3 layer module
will occupy a lot of running space on the computer, thus reducing the processing speed.
In this way, the accuracy of the YOLOv5-Lite algorithm model can be controlled within a
reliable range, making it easier to deploy. At the beginning of the backbone, YOLOv5-Lite
uses the Conv_Batch_Norm_ReLu structure [21] to replace the traditional focus structure.

The deep stacking module of ShuffleNet V2 [22] divides the input feature channels
into two parts directly through the channel splitting function. The left side does not
participate in convolution and is constant, which plays the role of residual edge. After
feature fusion, a channel shuffle is performed, and the left and right features can be
effectively communicated. Because the down-sampling module changes the size of the
feature map, a deep separable convolution is also added to the original residual edge on
the left side, and the number of feature channels is changed so that the two sides after
convolution can be fused. The two modules finally fuse and communicate the features after
grouping through channel shuffle. The basic unit of ShuffleNet V2 is shown in Figure 2.

The ShuffleNet V2 model has a good trade-off between the speed and accuracy of
image recognition. At the expense of certain prediction accuracy, a faster inference speed
and smaller model parameters are obtained. YOLOv5-Lite uses a large number of Shuf-
fle_Block operations in its backbone, which can reduce memory access, reduce the number
of convolution operations, and meet lightweight design requirements.
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Figure 1. YOLOv5-Lite network structure.
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Figure 2. Basic units of ShuffleNet V2. (a) Deep stacking module Stage 1; (b) deep stacking module
Stage 2.

2.2. Efficient Multi-Scale Attention

Scientists” research on human vision shows that the human brain only selectively
extracts the visual information of its own region of interest while ignoring the visual
information of other regions. For example, when reading, humans will only focus on some
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key words and ignore some non-key words. In recent years, deep learning scholars have
used the method of human brain processing vision to apply this attention mechanism to
deep learning models. The experimental results show that the performance of the model
can be improved to a certain extent.

EMA [23] is an efficient multi-scale attention mechanism, which reshapes some chan-
nels into batch dimensions, thereby avoiding the situation of channel dimension reduction
s0 as to retain the information of each channel and reduce the computational cost. EMA not
only adjusts the channel weight of parallel sub-networks using global information coding
but also fuses the output features of two parallel sub-networks through cross-latitude
interaction. The overall structure of EMA is shown in Figure 3.
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Figure 3. Efficient multi-scale attention.
In the figure, “c” denotes the number of channels in the input feature map, “h” and
“w” represent the height and width of the feature map respectively, “g” denotes the number
of groups, “X Avg Pool” denotes the 1D horizontal global pool, and “Y Avg Pool” denotes
the 1D vertical global pool. The expression “c//gxhxw” calculates the total number of
elements in the entire feature map by first dividing the channel count (c) by the group
count (g) to determine the channels per group and then multiplying this value with the
height (h) and width (w) of the feature map.

For the input features, EMA divides them into g sub-features according to the number
of channels to learn different semantics. Without losing generality, it is assumed that the
learned weight descriptor will be used to enhance the feature representation of the region
of interest in each sub-feature.

In deep learning, convolution kernels of different sizes can capture features at different
scales. Convolutional kernels sized 1 x 1 are typically used to capture fine-grained detail
information, while 3 x 3 convolutional kernels can capture a wider range of contextual
information. By combining these two sizes of convolution kernels, EMA can simultane-
ously obtain local and slightly global features, thereby enhancing the expressive power of
the features.

EMA extracts the weight descriptor of the grouping feature map through two parallel
paths on the 1 x 1 branch and one on the 3 x 3 branch. In the 1 x 1 branch, two 1D global
average pooling operations are used to encode the channel along two spatial directions,
and the two coding features are connected so that it does not reduce the dimension on
the 1 x 1 branch. Then, the output after 1 x 1 convolution is re-decomposed into two
vectors, and two Sigmoid nonlinear functions are used to fit the 2D binary distribution on
the linear convolution. Finally, the cross-channel interaction is realized by multiplying the
channel attention. In the 3 x 3 branch, a 3 x 3 convolution is used to capture the multi-scale
feature representation.
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The 2D global average pooling is used to encode the global spatial information in
the outputs of 1 x 1 branches and 3 x 3 branches. The output will be converted into the
corresponding dimension shape. Finally, the nonlinear function Softmax is added to fit
the linear transformation. The output of the same size of the two branches is connected
and converted into the R1 x H x W format. The matrix dot product operation is used to
multiply the results of the above parallel processing to obtain a spatial attention map, which
can collect spatial information at different scales. The final output of EMA is the same size
as the input X, which is convenient to be directly added to the YOLOv5-Lite network.

2.3. MPDIoU Loss Function

Bounding box regression (BBR) [24] has an important influence on the accurate posi-
tioning and recognition of the model and is the key link to achieving efficient and accurate
object detection. At present, most of the existing BBR loss functions can be divided into
the following two categories: loss function based on In norm and loss function based on
intersection over union (IoU). The traditional bounding box regression loss function has
the same aspect ratio in the prediction box and the actual annotation box, so it cannot be
optimized. The MPDIoU loss function combines the concept of minimum point distance
and improves the regression efficiency and accuracy by minimizing the distance between
the upper left and lower right points between the prediction box and the real box. This
process can be described as follows:

B = (e xt) + (s ) )
B= (=) + (- ud) @
MPDIoy — 208 & i 3)

AUB w2+ w?+ 12

The parameters A and B denote two arbitrary convex images, w is the width, and &
is the height; (x{!, y7!) and (x3!, y4') represent the coordinates of the upper left corner and
the lower right corner of A, respectively; (x?, yP) and (xF, yJ) represent the coordinates
of the upper left corner and the lower right corner of B, respectively; d7 is the square of
Euclidean distance between the upper left corner of A and B; d3 is the square of Euclidean
distance between the lower right corner points of A and B; and MPDIou is the intersection
and union ratio (IoU) of A and B minus the normalized minimum point distance.

2.4. C3Ghost Module

GhostNet is a new lightweight deep neural network architecture proposed by Huawei
Noah’s Ark Laboratory [25]. In general, a large number of redundant feature maps gen-
erated by convolution have little complementary effect on the main feature maps in the
actual detection task, which is not helpful for the network to improve detection accuracy.
However, generating these redundant feature maps consumes a lot of computing power.
Therefore, GhostNet constructs the ghost module and uses it to generate redundant feature
maps faster and more efficiently. The GhostNet lightweight network can greatly reduce
the amount of calculation and parameters of the network while maintaining the size and
channel size of the original convolution output feature map. The implementation principle
is to divide the traditional convolution into two steps, which are ordinary convolution
and cheap linear calculation. Firstly, a part of the feature map is generated by using fewer
convolution kernels, then the channel convolution is performed on this part of the feature
map to generate more feature maps, and finally, the two sets of feature maps are spliced to
generate the GhostNet feature map. The traditional convolution and GhostNet convolution
processes are shown in Figure 4.
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Figure 4. Traditional convolution and GhostNet convolution processes.

The head part of YOLOv5-Lite adopts multiple C3 structures, which have a large
number of parameters and a slow detection speed. Therefore, this study replaces the new
C3Ghost module with the C3 module to achieve a lightweight effect. The specific structure
is shown in Figure 5.
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The GhostBottleneck module is an innovative network structure component, and its
design inspiration comes from the ghost module. The module is mainly composed of two
GhostConv modules and a residual block. Among them, the first GhostConv module acts
as an extension layer, and its core function is to increase the number of channels of the
input feature map. This step is crucial because it provides a richer feature representation
for subsequent deep feature extraction and information fusion. The second GhostConv
module undertakes the task of dimensionality reduction, which aims to reduce the number
of channels of the output feature map. This not only helps to reduce the computational
complexity but also ensures that the output feature map matches the other structures in the
network (such as the diameter structure) in the number of channels so as to achieve more
efficient information transmission and processing. Between the two GhostConv modules,
a residual edge with deep convolution processing is also embedded. This design enables
the features to be effectively fused with the features of the residual edge after expansion
and dimensionality reduction, thereby enhancing the expression ability of the model. In
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addition, the main purpose of introducing depthwise convolution (DWConv) is to further
reduce the number of parameters of the model, thereby reducing the computational burden
and improving the practicability of the model. The C3Ghost module is an improvement
based on the C3 block. It replaces the traditional residual component Resunit with a
reusable GhostBottleneck module. This replacement not only reduces a large number of
convolution operations in the traditional structure but also significantly compresses the
size of the model and reduces the computational complexity of the model. In this way, the
C3Ghost module achieves a lightweight model while maintaining its performance, making
it more suitable for deployment and operation in resource-constrained environments. This
design not only improves the efficiency of the model but also enhances its adaptability and
flexibility in practical applications.

3. Experimental Test and Result Analysis

The background of the robot system and the related technologies to realize ROS
robot object detection are described in the previous section. Combined with the above
technology, EMA is inserted into the YOLOvb5-Lite model, and a lightweight C3Ghost
module is designed to replace the C3 module in the traditional network to compress
the calculation amount and model size of the convolution process. In order to further
improve the positioning accuracy of the bounding box, the MPDIoU loss function is used
to optimize the ROS-YOLOv5-FleetEMA algorithm. This chapter will introduce the basic
service platform of object detection built during the experiment and train the model of the
algorithm proposed in this paper. The contrast experiment and ablation experiment are
designed. Finally, the object detection technology is integrated and deployed to the robot
equipment for testing. The experimental process and experimental results are as follows.

3.1. Hardware Equipment

In this paper, an Ackerman differential car integrated with ROS is selected as the ex-
perimental equipment. The robot integrates a variety of sensors and computing equipment.
It is equipped with laser radar for environmental perception, a camera for visual informa-
tion capture, an inertial measurement unit (IMU) for attitude and motion information, a
motor with an encoder for the precise control of motion, and embedded computing hard-
ware for data processing and algorithm execution. Servo motors and stepper motors are
used to precisely control the motion of robots. IMU can provide data on robot acceleration
and angular velocity, which is crucial for robot positioning and navigation. Laser lidar
is commonly used to detect static and dynamic obstacles. The camera is the main visual
sensor for object detection, which is used to capture two-dimensional images of the scene.
Through the image processing and computer vision algorithms of Raspberry Pi 4B, objects
in images can be recognized and classified. The detailed layout and configuration of the
hardware structure are shown in Figure 6.

3.2. Experimental Equipment

This paper uses the ROS melodic version, and the corresponding Ubuntu version is
18.04, which is installed on a virtual machine.

3.2.1. SSH Remote Connection

When we are debugging the car, we usually need to run the command line on the
ROS host. However, if the display, keyboard, mouse, and other input devices are directly
connected to the car to operate, when the car is in the process of movement, this method
would be very inconvenient and may even affect the safety and efficiency of the operation.
In order to avoid this situation and to ensure that flexible debugging and control are still
possible when the car is moving, we adopted the method of remote control to realize the
control of the car.

Usually, we use secure shell (SSH) login for remote control. SSH is a widely used
network protocol that provides security for remote login sessions and other network
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services. Through SSH, we can safely execute commands on the remote host on the local
computer, just like operating directly next to the car.
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Figure 6. Hardware structure of Ackerman differential car.

3.2.2. Deep Learning Environment

First, install miniforge3 for the car; after installation, enter the following command to
create a virtual environment:

e conda create -n yolo python=3.8
e conda activate yolo
e conda install pytorch torchvision torchaudio cpuonly-c pytorch

3.3. ROS-Based Object Detection Service Platform

In order to simplify the complex compilation and parameter modification process in
the use of ROS, this part designs an object detection service platform based on ROS. The
platform combines Qt and ROS technology; through the intuitive graphical user interface
(GUI) [26], the use of buttons, input boxes, and other controls to achieve a key operation
greatly improves the user experience and operational efficiency. For example, users can
easily complete the SSH login device, mount the device file, open the object detection
function, and conduct other operations by clicking the button, making the debugging
process more convenient and clear.

After ensuring that the host and the car are in the same network environment, start
the software; first, click the SSH button to remotely connect the device. Since the SSH
password-free login has been configured, this step does not require additional password
input, thereby simplifying the connection process. Next, in order to view and modify
the car’s source files in the virtual machine, you need to use a network file system (NFS)
mount to mount the device’s files to the virtual machine. Just click the NFS button, and
you can automatically complete the file mount operation. After the file is mounted, it first
needs to enter the object detection deep learning environment and then start the object
detection function. To this end, this section developed a powerful target detector. Firstly, a
node handle is created, and it is used to create image transmission objects and subscribe
topics. When a new message is received, the callback function is called to convert the
ROS image information into Opencv format, and then the function is used to convert the
Opencv format object into Qt’s QImage object of different depths according to the depth
and channel number of cv.Mat so as to realize the visual display of the image. The workflow
is shown in Figure 7.
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Figure 7. Workflow of object detection function.

3.4. Experimental Test

Based on the abovementioned platform technology, this part will carry out model
training on the algorithm proposed in this paper, design comparative experiments and
ablation experiments, and finally, integrate the object detection technology into the robot
equipment for testing. The experimental process and experimental results are as follows.

3.4.1. Model Training

The computer configuration used for model training is shown in Table 1.

In this paper, a series of training parameters and strategies are used to ensure that
the model can learn efficiently and stably. The weight used for training is v5lite-s.pt. The
specific file and label path are input through the yaml file, in which the Batch_size is set to
16, the iteration period epochs are set to 150, the confidence threshold is 0.45, and the iou
threshold is 0.65. The warmup learning rate method is used for training. When the model
is in the initial epochs, a smaller learning rate value will be selected to increase the stability
of the model in the initial training stage. After stabilization, the training will be continued
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with a preset cyclic learning rate to improve the convergence speed. The hyperparameter
settings in the training process are shown in Table 2.

Table 1. Experimental environment.

Environment Configuration Name Related Configuration
CPU Intel(R) Core (TM) i7-7700HQ CPU@2.80GHz
Hardware environment Running memory 8G
GPU NVIDIA GeForce GTX 1050Ti
Operating system Windows10
Sof . Python 3.8
oftware environment Deep learning framework Pytorch
CUDA 11.3

Table 2. Hyperparameter settings.

Parameter Parameter Description Value
1r0 Initial learning rate 0.001
Irf cyclical learning rates 0.2
weight_decay Weight attenuation parameter is used to prevent model over-fitting 0.0005
warmup_epochs Warmup learning rounds 3.0
momentum Warmup learning momentum 0.8
warmup_bias_Ir Warmup learning rate 0.1
IoU loss coefficient It is used to measure the overlap between the predicted bounding box and the real bounding box 0.05
cls loss coefficient It is used to measure the prediction accuracy of the model for the target category 0.5
cls BECLoss Positive sample weight 1.0

3.4.2. Dataset

The pattern analysis, statistical modeling, and computational learning visual object
classes challenge (PASCAL VOC) represents a challenge in the field of international com-
puter vision. This paper selects PASCAL VOC 2007. PASCAL VOC 2007, as one of the early
datasets, holds an important historical position in the field of computer vision. PASCAL
VOC 2007 covers over 12,000 labeled objects and is one of the commonly used standard
test datasets for the YOLO algorithm. Due to its high-quality annotation information and
various common target categories, it is more consistent and accurate in category definition
and annotation, including more occlusions or more complex scene layouts, making it
suitable for robot object detection and fully testing the performance of the model.

3.4.3. Comparative Experiment

The specific indicators for evaluating the performance of the algorithm in this paper
include precision (P), recall (R), and mAP, where mAP @ 0.5 represents the average precision
mean when the intersection over the Unio IOU (IOU) threshold is 50% and mAP0.5-0.95
represents the average precision mean of the IOU threshold in the range from 50% to 95%.
This process can be described as follows:

TP

P=Tp17p )
TP
R= TP+ FN ©®)
Y7 PR
AP = =k=1"7
m i ©®)

In the formula, TP represents the number of correct positive samples, FP represents the
number of wrong positive samples, FN represents the number of wrong negative samples,
and N represents the number of types in the sample.
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Params are an important indicator for measuring model complexity. The more pa-
rameters a model has, the more computing resources and data it requires for training and
inference. GFLOPS stands for the computational efficiency and speed of a model. It denotes
the number of floating-point operations needed to run a network model once. It measures
the number of floating-point operations a model performs during a forward propagation.

In order to verify the effectiveness of the improvement of the attention mechanism,
the added attention mechanism is replaced, including squeeze-and-excitation (SE) [27], the
convolutional block attention module (CBAM) [28], efficient channel attention (ECA) [29],
coordinate attention (CA) [30], and EMA. The effects of different attention mechanisms
on the model detection effect are compared and analyzed. The “-* indicates that the
attention mechanism is not applied to the model. The same parameters are used in the
training process, and experiments are performed on the VOC dataset. The results are
shown in Table 3.

Table 3. Comparison of attention improvement effects.

Model mAP @ 0.5 mAP @ 0.5-0.95 Precision Recall
- 0.765 0.515 81.2 66.8
SE 0.761 0.523 78.4 68.1
CBAM 0.763 0.505 83.6 60.5
ECA 0.768 0.525 83.2 63.9
CA 0.769 0.521 73.7 66.3
EMA 0.776 0.534 85.6 69.1

SE is a classic channel attention mechanism, which strengthens the importance of
feature channels by compressing and stimulating processes. As another form of channel
attention, ECA enhances feature representation by effectively capturing cross-channel
correlations but ignores spatial location information. CA integrates location information
into channel attention and processes features in different spatial directions through two
feature coding steps, thereby generating weights that fuse channel and spatial information.
CBAM combines the advantages of channel and spatial attention mechanisms and models
the channel and spatial weights independently, which not only strengthens the relationship
between channels but also considers the spatial interaction and realizes the comprehensive
optimization of features. The experimental results reveal the specific effects of different
attention mechanisms on model performance. The model with SE and CBAM attention
mechanisms suffered a 0.4% and 0.2% decrease in detection accuracy, respectively, indi-
cating that the two mechanisms did not effectively improve performance on the current
dataset. In contrast, when the model combines the CA, ECA, and EMA attention mecha-
nisms, the detection accuracy is improved by 0.4%, 0.3%, and 1.1%, respectively. For the
latter two attention mechanisms, the detection accuracy is significantly improved. On the
whole, the introduction of the EMA attention mechanism not only accelerates the detection
speed but also effectively improves the detection accuracy of the model, which makes it
more advantageous in practical applications.

In order to verify the performance of the ROS-YOLOv5-FleetEMA model proposed in
this paper, the model is compared with the traditional YOLOv5-Lite model based on deep
learning. In the case of using the same dataset and experimental environment, the average
accuracy improvement effect is shown in Table 4.

Through the analysis of the results, the mAP @ 0.5 of the ROS-YOLOv5-FleetEMA
model proposed in this paper is 2.7% higher than that of the traditional YOLOv5-Lite
model, and in a wider accuracy range mAP @ 0.5-0.95, the ROS-YOLOv5-FleetEMA model
proposed in this paper is 4.3% higher than the traditional YOLOv5-Lite model.

In order to evaluate the lightweight improvement effect of the ROS-YOLOv5-FleetEMA
model more comprehensively, this paper introduces the traditional YOLOv5 s model as the
comparison benchmark. The experimental results are shown in Table 5.
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Table 4. mAP improvement effect comparison.

Model mAP @ 0.5 mAP @ 0.5-0.95
YOLOvV5-Lite 0.765 0.515
ROS-YOLOv5-FleetEMA 0.792 0.558

Table 5. Lightweight improvement effect comparison.

Model GFLOPS Param
YOLOvV5s 159 7,064,065
YOLOv5-Lite 3.8 1,566,561
ROS-YOLOv5-FleetEMA 3.3 1,332,471

The results show that the ROS-YOLOv5-FleetEMA model proposed in this paper has
achieved significant optimization in the two key indicators of GFLOPS and Param. Com-
pared with the traditional YOLOv5s model, the GFLOPs of the ROS-YOLOv5-FleetEMA
model are reduced by 79.3%, and the parameter amount is reduced by 81.1%. This opti-
mization not only reduces the consumption of computing resources but also makes the
model more suitable for deployment on resource-constrained devices. At the same time,
compared with the YOLOv5-Lite model, the GFLOPs of the ROS-YOLOv5-FleetEMA
model are reduced by 13.2%, and the amount of parameters is reduced by 15.1%.

By comparing the experimental results, it is verified that the ROS-YOLOv5-FleetEMA
model shows significant advantages in computational efficiency and resource consumption
while maintaining high detection accuracy, which proves its practicability and effectiveness
in a resource-constrained environment.

3.4.4. Ablation Experiment

In order to further verify the effectiveness of the improved method ROS-YOLOv5-
FleetEMA model proposed in this paper, the following ablation experiments are designed:
Conduct ablation experiments to explore the effectiveness of improvement methods on the
model. Combine EMA, C3Ghost, and MPDIoU with the traditional YOLOv5-Lite model
in different ways. By comparing the performance of models with different configurations,
ablation experiments can help us understand how each component affects the overall
performance of the model, including detection accuracy, computational efficiency, and
resource consumption. The ablation experiment systematically removes or replaces various
components in the model, observes the impact of these changes on model performance,
provides an empirical basis for model design decisions, and ensures the practicality and
effectiveness of the proposed ROS-YOLOv5-FleetEMA model in resource-constrained
environments. In the experimental design, “—" indicates that an improvement has not
been applied to the model, while “+” indicates that the improvement has been integrated.
In this way, the specific impact of each combination on the performance of the model can
be clearly demonstrated. The specific results are shown in Table 6 and Figure 8.

Through experimental analysis, the EMA attention module is introduced into the
traditional YOLOv5-Lite model, and the mAP @ 0.5 is significantly improved, while
the number of model parameters does not increase much. In addition, the traditional
CloU loss function is replaced by the MPDIoU loss function, which further optimizes the
performance of the model in terms of bounding box positioning accuracy. The MPDIoU loss
function makes the model more accurate in predicting the bounding box by considering
the center point and diagonal distance of the bounding box, and the predicted bounding
box has a higher degree of coincidence with the real bounding box. The experimental
results show that mAP @ 0.5 is increased by 0.4%, which indicates that the MPDIoU loss
function can make the regression of the model to the bounding box more stable, and
the prediction accuracy is higher. After the introduction of the C3Chost module, the
parameters of the model and the GFLOPS are significantly reduced while maintaining a
high detection accuracy. The C3Chost module reduces the consumption of computing

32



Appl. Sci. 2024, 14, 7591

resources by optimizing the feature extraction process without affecting the detection effect.
Finally, all these improved methods are applied to the YOLOvV5-Lite model; not only has
mAP @ 0.5 been significantly improved but the number of parameters of the model has
been reduced by 15.1%. This shows that these optimization strategies can significantly
reduce the computational complexity and resource consumption of the model without
sacrificing the detection accuracy, making the model more suitable for deployment on
resource-constrained devices, such as mobile devices and embedded systems.

Table 6. Ablation experimental results.

Method EMA C3Ghost MPDIoU mAP®@ 0.5 mAP @ 0.5-0.95 GFLOPs Param
YOLOv5-lite - - - 0.768 0.515 3.8 1,566,561
YOLOvV5-lite + EMA + - - 0.776 0.534 3.8 1,566,575
YOLOvV5-lite + C3Ghost - + - 0.769 0.519 3.3 1,328,617
YOLOv5-lite + MPDIoU - - + 0.772 0.522 3.8 1,566,561
YOLOv5-lite + EMA + C3Ghost + + - 0.783 0.539 3.3 1,328,617
YOLOv5-lite + EMA + MPDIoU + - + 0.778 0.536 3.8 1,566,575
YOLOv5-lite + C3Ghost + MPDIoU - + + 0.771 0.533 3.3 1,328,617
ROS-YOLOv5-FleetEMA + + + 0.792 0.558 3.3 1,332,471
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0.51
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—— YOLOv5-1ite+ C3Ghost +MPDIoU
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Figure 8. Ablation experimental results.

3.4.5. Integrated Experiment

The Jilin Provincial Key Laboratory of Human Health Status Identification and Func-
tion Enhancement was selected as the experimental site.

In order to realize the object detection function, this paper deploys deep learning
object detection technology to the robot equipment. For this reason, this paper develops
an object detection function package based on ROS-YOLOv5-FleetEMA, enters the src
directory in the working space catkin_ws, and opens the terminal; input conda activate
yolo, enter the virtual environment, enter the function package directory, enter sudo pip
install -r requirements.txt, and install the object detection-related dependency library.

After the installation is completed, enter the roslaunch yolov5_ros yolo.launch com-
mand and start the usb_cam and the object detection function based on ROS-YOLOv5-
FleetEMA at the same time. The usb_cam is a package used for interacting with the USB
camera. This package allows users to subscribe to camera image topics and publish them

33



Appl. Sci. 2024, 14, 7591

to ROS, allowing them to use USB cameras in ROS. By subscribing to the image topic
published by usb_cam, we employ cv-bridge to transform ROS image messages into the
OpenCV image format. Within the callback function, we execute YOLOV5 object detection
on the transformed image, subsequently convert the processed image back into ROS image
messages, and publish them to a new YOLOVS5 topic.

At this point, open the ROS-based object detection service platform, set the IP address
of the car, and then connect the device; by using the QT button to subscribe to newly
established YOLOVS5 topics with just one click, the results will be displayed on the ROS-
based object detection platform, as shown in Figure 9.

ROS-based object detection platform

App Robot

_Start | Setting = Navigation Control  Single point | Cruise Objectdetectionr

/yolov5/detection_image

usb_cam-test

Subscribe

Figure 9. ROS-based object detection platform.

Through experimental analysis, the application effect of the ROS-YOLOv5-FleetEMA
model proposed in this paper in the ROS robot system is verified. The model not only
performs well in a resource-constrained environment but also integrates with a ROS-based
object detection platform to achieve efficient and fast object detection. Specifically, the
system can accurately identify and track multiple targets, such as pedestrians, monitors,
etc. When the car maintains a speed of 0.5 to 1.5 m per second, it takes 34.4 milliseconds
to identify the object, up to 30 FPS, ensuring the fluency of the detection process. This
optimization not only improves the robot’s perception ability in complex environments but
also provides strong support for further decision-making and execution.

4. Conclusions

This paper comprehensively introduces the development process of ROS and makes
an in-depth analysis of object detection technology. Along with the hardware equipment
and software platform of the ROS robot, the experimental environment is built. On this
basis, an improved YOLOVS5-Lite object detection algorithm combining multi-scale atten-
tion and bounding box regression is proposed to form the ROS-YOLOv5-FleetEMA model,
and the object detection function is integrated and deployed on the platform of the ROS
robot. Through experimental analysis, relative to the conventional YOLOv5-Lite model,
the ROS-YOLOv5-FleetEMA model enhanced the mAP @ 0.5 by 2.7%, reduced GFLOPS
by 13.2%, and decreased the params by 15.1%; it has been proven that the ROS-YOLOv5-
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FleetEMA model proposed in this paper can achieve near real-time object detection function.
Compared with the traditional model, ROS-YOLOv5-FleetEMA shows significant advan-
tages in a resource-constrained environment, including but not limited to high detection
accuracy, small model size, low cost, and fast inference speed. These advantages give
the ROS-YOLOv5-FleetEMA model an extremely high reference value and use value in
practical applications. Although the ROS-YOLOv5-FleetEMA model proposed in this
paper performs well in a specific experimental environment, its generalization ability for
other types of datasets or practical application scenarios may be insufficient. In the future,
we will study how to improve the generalization ability of the model further so that it can
adapt to a wider range of application requirements.
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Abstract: In industrial vision, the lack of defect samples is one of the key constraints of depth vision
quality inspection. This paper mainly studies defect detection under a small training set, trying
to reduce the dependence of the model on defect samples by using normal samples. Therefore,
we propose a Knowledge-Embedding Relational Network. We propose a Knowledge-Embedding
Relational Network (KRN): firstly, unsupervised clustering and convolution features are used to
model the knowledge of normal samples; at the same time, based on CNN feature extraction
assisted by image segmentation, the conv feature is obtained from the backbone network; then, we
build the relationship between knowledge and prediction samples through covariance, embed the
knowledge, further mine the correlation using gram operation, normalize the power of the high-order
features obtained by covariance, and finally send them to the prediction network. Our KRN has
three attractive characteristics: (I) Knowledge Modeling uses the unsupervised clustering algorithm
to statistically model the standard samples so as to reduce the dependence of the model on defect data.
(IT) Covariance-based Knowledge Embedding and the Gram Operation capture the second-order
statistics of knowledge features and predicted image features to deeply mine the robust correlation.
(ITT) Power Normalizing suppresses the burstiness of covariance module learning and the complexity
of the feature space. KRN outperformed several advanced baselines in small training sets on the
DAGM 2007, KSDD, and Steel datasets.

Keywords: defect detect; small training set; knowledge embedding relational network; gram operation

1. Introduction

Industrial quality inspection is one of the important application directions of computer
vision in smart factories. However, in the industrial environment, defect samples are very
scarce, and there may even be zero samples for some defect categories [1]. This makes
small training sets a key constraint on the industrial implementation of many data-driven
algorithms [2].

In the context of small training datasets, industry scholars have explored two main
approaches: increasing the amount of data and reducing the dependency of algorithms on
data. The former approach mainly generates new data through augmentation or introduces
new data from other datasets [3,4], while the latter focuses on model improvement [5] and
algorithm optimization [6] to enhance the feature extraction capabilities of small training
sets. However, these methods from other machine learning applications in industrial
manufacturing may not be directly applicable to industrial computer vision problems.
For instance, in defect detection, defects may not be consistently present, or only a limited
number of samples may be available over an extended period. Publicly available defect
datasets also suffer from a scarcity of defect samples: the KolektorSDD dataset [7] contains
only 52 defect samples out of 399 total, the AITEX dataset [8] has only 105 defect samples,
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and each category in the RSDDs dataset [9] has only 300 samples. This makes it challenging
to effectively apply the aforementioned methods in these contexts.

Therefore, we believe that the small training set of industrial vision requires the
introduction of external knowledge. Crucially, we noticed that there is an important
difference between defect detection and target detection, that is, in addition to defect
samples in the support set of defect detection, standard samples of products are also given,
but target detection only has a small number of object samples [10].

Most of the existing automatic inspection equipment manufacturers do not use data-
driven Al algorithms for automatic optical inspection, and their equipment generally still
uses artificially designed features, although these thresholds test the engineer’s ability to
adjust parameters [11]. In fact, the deep learning algorithm can capture some latent features
so that it far exceeds the ability of traditional algorithms in a single dataset, but in the
actual industrial production environment, it cannot mine the correct features from limited
samples, that is, the dataset External defect characteristics. The traditional “statistical
modeling + similarity matching” algorithm can be more robust.

Inspired by this, we propose an idea to perform statistical modeling on standard
samples as an auxiliary knowledge representation. This standard sample will participate
in prediction and assist in identifying product quality inspection. Unlike other algorithms,
we use standard samples as a priori knowledge rather than an input. Specifically, we
introduce the Gram Matric for Knowledge Modeling. The Gram Matric has achieved
outstanding results in the field of style transfer [12]. Some scholars have introduced it into
few-shot classification and showed amazing results [13]. We believe that the covariance
operation in the Gram Matric can deeply mine pixel-level feature correlations, which
can also be considered to be related to texture features. Therefore, we introduce it into
Knowledge Modeling and use it as an adjunct to enhance the identification of known and
unknown defects.

The main contributions of this paper are as follows:

1.  Anaim at the lack of defect samples in industrial quality inspection scenarios, start-
ing from external knowledge, using statistical modeling methods to build standard
templates, using them as prior knowledge, and designing a defect detection network
enhanced by prior knowledge;

2. In order to measure the difference between the standard sample and the predicted
sample, as well as to embed this difference into the feature for subsequent head defect
identification, a Knowledge-Embedding module based on self-attention was designed;

3. Inorder to obtain the relationship between features in the vector space and mine weak
clues, we designed an eccentric covariance matrix to extract the characteristics of each
dimension of the statistic, we automatically adjusted the unnecessary information in
the extraction process avoiding interference from the cluttered background.

4. We demonstrated the effectiveness of this method on the public DAGM2007 [14],
KolektorSDD [15], and Severstal Steel defect detection datasets.

2. Literature Review

Small Training Sets. Small training sets has always been a huge challenge in the
application practice of deep machine vision. Even small training sets leads to a machine
learning task of “decomposing the dataset into different meta tasks to understand the
generalization ability of the model when the category changes”—otherwise known as
Few-Shot Learning [16]. There are three methods of small training sets: data augmentation,
model improvement, and algorithm optimization [17]: Data augmentation is used to
expand the training data through various image methods to achieve the effect of increasing
training samples, such as mixup [18], adding noise [19], and generating samples based
on GANSs [20]. In recent years, Pseudo-Labeling [21,22] has also become an effective
method to improve performance points. Model improvement refers to adjusting the model
structure to enhance the feature extraction ability [23]. The optimization algorithm is
used to adjust learning strategies to improve algorithm performance. Semisupervised and
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unsupervised have also become a popular idea (to solve small training set problems) [24].
This paper focuses on introducing a priori knowledge and improving the model to reduce
the dependence of the algorithm on defect data.

Active Shape Model. The statistical model of the PCB standard board has a strong
positive impact on defect detection. The statistical shape modeling technology was pro-
posed by Cootes in his paper [25] in 1995. It is a deformable model in computer vision,
which is used to model the shape in the image. This method only needs to establish a
flexible mathematical model and only needs to compare each time. Using this method,
the debugging efficiency of the AOI is accelerated, and the misjudgment rate is reduced.
Inspired by this, this paper encodes the standard image through CNN, makes statistical
analysis on the standard samples by using the clustering algorithm, obtains representa-
tive standard samples, and constructs the standard template as the representation of a
priori knowledge.

Self-Attention Modules. They have been successfully applied in NLP [26] and phys-
ical system modeling [27]. The self-attention mechanism can capture the relationship
between the original sentence and the target sentence in natural language processing,
and replace the recurrent neural network with an attention model, so as to realize parallel
implementation and more efficient learning. These works inspire us to deduce the variant
of knowledge embedding based on correlation mining. We converted the original elements
from words to conv features and employed the knowledge model of the predicted image.
We used this mechanism to establish the knowledge embedding method in the feature
mapping from the low dimension to the high dimension.

Gram Matrix. In fact, it can be regarded as an eccentric covariance matrix between
features, that is, a covariance matrix without mean subtraction. Second-order statistics have
been studied in the context of texture recognition through so-called regional covariance de-
scriptors (RCDs), which were further applied to object class recognition [28]. Co-occurrence
patterns can also be used in the CNN setting. A recent approach [29] extracted feature
vectors at two separate locations in a feature map and performed an outer product to form
a CNN co-occurrence layer. Higher-order statistics have also been used for fine-grained im-
age classification [30] and domain adaptation [31]. SoSN utilizes second-order information
and power normalization for end-to-end training with one- or few-shot learning. Based on
the second-order statistics applied to these matrics, we designed a multi-relational feature
descriptor that captures deep relationships between proposals before being passed to the
classification network for defect identification.

3. Research Methods

Below, we introduce our deep template matching defect detector network and then
describe its individual components.

3.1. Overview

In this paper, this method operates on the so-called small training set defect detection,
which is essentially a classification task. However, in different scenarios, defects are
detected, and segmentation is also a task requirement. Taking classification as the main
goal, we evaluate the segmentation and detection of defects.

Different from some defect detection schemes that simply add negative samples,
we use standard samples as a priori knowledge to identify defects by mining feature
relationships. Our Knowledge-Embedding Relational Network (KRN) consists of (i) an
encoding network, (ii) Knowledge Modeling, (iii) Knowledge Embedding, (iv) a Gram
Operation, and (v) a Prediction Network. Figure 1 shows an example of an architecture
that supports images.

The role of the Encoding Network is to generate image-level convolutional feature
vectors (descriptors), and our Encoding Network includes the segmentation part. The task
of the Knowledge Modeling part is to perform statistical modeling on multiple standard
samples in order to obtain a knowledge representation that can assist in enhancing defect
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detection. The knowledge association embedding module is an operation of mining the
relationship between prior knowledge and predicted samples, aiming to promote the
fusion of prior knowledge and predicted samples. The task of the Gram Operation is
to use the Gram Matrix to mine the latent relationship between each feature vector so
as to make the defect salient. Finally, the Predictive Network learns and recognizes this
knowledge-embedded relation mining feature.

Conv 1+1 © Normal model
Knowledge

Embedding

Gram Predictive
Operation Network

Input Encording Network Knowledge Embedding Gram Operation  Predictive Network Output

1/8 18 1/32

1
|
7

Figure 1. The architecture of general Defect Detection models. (1) Encoding Network; (2) Knowl-
edge Embedding consist of knowledge model, correlation fusion module, and Gram Operation;
(3) Predictive Network.

3.2. Encoding Network

The feature encoding network is responsible for generating convolutional feature vec-
tors, which serve as image descriptors. To address the challenges of sample concentration,
high resolution, and small target scenes in industrial visual defect detection tasks, this
paper utilizes a convolutional neural network architecture based on ESDN [32]. Specif-
ically, we employed the Segmentation Network and Decision Network, which perform
downsampling by a factor of 32, as the feature encoding network. It is important to note
that the segmentation component was used as an auxiliary module for feature extraction.

The Encoding Network can be described as f : (RWXH SRIF ‘) — RW*H where W
and H represent the width and height of the input image.The Encoding Network f is
a convolutional neural network specifically designed for feature extraction in industrial
visual defect detection tasks. It takes an input image of size W x H and produces a feature
map of the same spatial dimensions. This network includes multiple convolutional layers,
which downsample the input by a factor of 8. After downsampling, the output is split
into two branches: one branch undergoes segmentation using a 1 x 1 convolution, and the
result is concatenated with the original downsampled feature map. This architecture is
optimized to retain defect details by operating at a middle scale, balancing the trade-off
between computational efficiency and the preservation of important features.

3.3. Correlation Knowledge Embedding
3.3.1. Knowledge Modeling

Defect detection is a small training sets recognition task, and a large number of normal
samples can be used as a reference. Therefore, we specially designed the Knowledge
Modeling module, which aims to perform knowledge mining on normal samples for the
reference of defect recognition.

Specifically, we used resnet50 to map standard samples to high-dimensional features
and convert them into tensors. The weight is trained on Imagenet and has extensive
classification ability. Then, n representative images are selected from a large number of
standard samples by a clustering algorithm, and then a multi-dimensional image composed
of overlapping standard images is defined as Xyorm € RWxH that is, the constructed
statistical knowledge.
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3.3.2. Knowledge Embedding

Then, we designed a knowledge embedding method based on self-attention, as shown
in Figure 2.

Maxpoolingx3
I: Convo3 ] P Flatten
>
Cx[W=H]
] Softmax —
Normal images
16=Wx=H
CxC
Flatten+Transpose
I >
[W=xH]xC
Conv features Reshape
CxWxH
I Flatten
> CxWxH
Cx[WxH]

Figure 2. Knowledge mining based on embedded relation module. The input is the conv characteris-
tics of the predicted samples and the prior knowledge processed into tensors. The correlation between
the two is captured with the help of covariance operation and then fused in the form of attention.

The simplest knowledge fusion is concat and add operations, but we hope that this
fusion can excavate the correlation between the two to a certain extent for fusion. Referring
to the self-attention mechanism, we designed a knowledge embedding method based on
relationship mining. In our Knowledge Embedding module, the input consists of conv
feature @, and knowledge feature ®@py/u; Ppre comes from the last convolution output
feature of the Encoding Network. ®;o, is the shallow tensor obtained by X,,oy» through
three maxpoling and three groups of convolution sampling, as shown in formula (1).

Dorm = fnorm(Xnorm}F)/ Dorm € RKXN (1)

where F are the parameters to learn of three convolution layers in the Knowledge Model.

A dot product is performed between the conv features and knowledge features to
obtain their correlation. A softmax function is applied to obtain the weights on the values.
Given matrices ¢yorm (by flattening @y, ) and matrices ¢pre (by flattening ®yor1y), their
correlation is computed as follows:

M = S(CDnormr chre) = softmax <¢norm¢grg) (2)

This correlation will be embedded into the original conv feature through multiplication.
The output is computed as

Pout = mul (M, ¢ppre) = softmax (dot (([)norm, 4),%) ) Ppre 3)

Finally, the feature matrix after Knowledge Embedding will be reshape as a fea-
ture maps.

In addition, after visiting an electronic factory, we speculated that adding the stan-
dard template would help the consumer electronics industry with some wrong parts and
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defects. They had no appearance damage defects, but the welded components were incon-
sistent with the design drawings. Having been limited by this dataset, we may test it in
future practice.

3.4. Gram Operation

The Gram Matrx is an operation to deeply mine the correlation between features, as
shown in Figure 3. We used it as a feature mining tool for defect textures and normal
textures. Its input is a feature vector from Knowledge Embedding, which we define as
® = {¢n}nen- Then, we used ¢p¢p’ =1 ®r¢ to denote the covariance operation of the
eigenvectors. Taking ® for example,

1 1
Y(Pn) = N Y. PO = ‘F({¢"}n€/\/s) =N Y udy 4)
neN; neNs

b g)} b % ™ % S Gram 1\-'Iatrix

b e B a . (N 4 ” ?lo
(OFF) DD 1@, [} i & Lo GM) ggg repeat R

) - o it
o & >

Figure 3. Gram Operation module. We flatten conv features into feature vectors, capture second-order
features by covariance operation, and then send them to PN. Finally, self replication is carried out for
the subsequent diversity and fusion promotion operation.

KE and GO capture feature correlation through covariance, which essentially in-
troduces second-order statistics. Second-order statistics have to deal with the so-called
burstiness, which is “the property that a given visual element appears more times in an
image than a statistically independent model would predict”. Power Normalization [13] is
known to suppress this burstiness and has been extensively studied and evaluated in the
context of Bag-of-Words and Few-Shot Learning. Therefore, we adopted SigmE PN which
is defined as

2
Gsigme(M, 1) = ———7— — 1 (5)
1 + e TOM+X

where 1 < 7 ~ N interpolates between counting and detection, A ~ le~ is a regularization
constant, and the trace Tr() stops the diagonal from exceeding 1.

After calculating the Gram Matrix, it is replicated 16 times in the channel dimension
to ensure compatibility with the subsequent predict network layers, which are designed
to process a specific number of input channels. While using a single-channeled Gram
Matrix could reduce computational redundancy, this would require significant architec-
tural changes to the predict network, potentially affecting its performance and stability.
The replication maintains the continuity and integrity of the convolutional bottleneck
structure without altering the network’s existing architecture.

3.5. Predictive Network

The function of the Prediction Network is to mine and judge the features of the
Knowledge Embedding, as well as realize the detection of the target image. We did not
directly predict the features of the Knowledge Embedding but used three Conv Blocks:
the specific parameters are two Conv 1 x 1 with channel 32 and one Conv 3 x 3 with
channel 16, implemented using convolution operations to facilitate feature mining between
standard templates and predicted samples.
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3.6. Loss Function

The loss function of the Knowledge-Embedding Relation Network (DKER) consists
of two parts: the loss Ls.y for segmentation that is assisted and the classification loss L.
The total loss can be denoted as L = ALseg + (1 — A)L.5(M), where A is a simple linear
function, and ¢ is a weight coefficient with a small value. The detailed sets were defined as
in [32].

4. Experiments

Below, we experimentally demonstrate the merits of our Knowledge-Embedding
Relation Network. Our method was mainly evaluated on the DAGM2007, KolektorSDD,
and Severstal Steel datasets. We compared with other advanced algorithms, designed a
small training sets test, and conducted ablation experiments.

4.1. Datasets

DAGM2007 contains texture data of 10 categories, and each category contains 1000 neg-
ative samples and 150 positive samples saved in grayscale 8-bit PNG format. The training
set and test set of each category were allocated in a proportion of 1:1, and the size was
a 512 x 512 image. In addition, we explored small training sets scenarios of 5, 10, 15, 20,
and 25 positive samples in proportion. It should be pointed out that the standard sample
modeling in all training was established from the standard samples of the complete dataset.

The KolektorSDD dataset includes eight non-overlapping images collected from each
commutator surface of 50 defective electronic commutators, and a total of 399 images were
obtained, including 52 defective images and 347 defect-free images. All data settings refer
to dagm, except that the image size was 1408 x 512 for smaller datasets. In addition, our
ablation experiment was evaluated on the KSDD dataset with five positive samples.

The Severstal Steel dataset is from the Kaggle Challenge, which contains 12,568 images
and involves four kinds of defects. In the effectiveness demonstration of this method,
we adopted the scheme of 1000 positive samples, and the size of the input image was
256 x 1600. In the small training sets scenario, our data settings were the same as above,
but the number of test sets was not changed (in order to be more consistent with the
real scenario).

4.2. Implementation Details

All codes were implemented in PyTorch. All experiments were tested in the PyTorch
framework under the Ubuntu system, and two Titan Xs were used for GPU acceleration.
For the learning rate, we followed the learning scheme [32], and DAGM adopted LR = 0.01
and 6 = 1. KSDD adopted LR = 0.5 and § = 0.01, as well as LR = 0.1 and § = 0.1.
However, for the number of learning iterations, due to the introduction of high-order
moments, the high-dimensional mapping of features dragged down the convergence speed
to a certain extent at the beginning of training, so we adjusted the number of iterations of
the experiment: in the small training sets of 5, 10, 15, 20, and 25 positive samples, we trained
350, 190, 170, 150, and 140 epochs, respectively. In the complete experiment, the three data
trained 150 epochs.

We conducted less exploration on training tricks and paid more attention to less
sample training. In the following experiments, we compare the research results with
several advanced methods, and we report the commonly used matrices for KRN, such as
AP, FP, and FN.

4.3. Comparison with the State of the Art
4.3.1. DAGM2007

The proposed KRN was evaluated on the DAGM 2007 dataset, and the obtained true
positive rate (TPR) and true negative rate (INR) are shown in Table 1. Our method achieved
100% TPR and TNR on all folds, which means its completely solved this dataset. Practically,
the ESDN had achieved this goal before that. Some other explorations also achieved high
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scores, such as Racki et al. [33], who obtained nine 100% outcomes and a 98.5% in a ten
fold, and Kim et al. [34], who obtained 100%, except fold 1 and fold 4 Dagm, as a classic
dataset of material texture, whih has sufficient data samples. We tested it above to prove
that the KRN guarantees a high score on this complete dataset. We visualized some results
in Figure 4.

Table 1. mAP on four methods (DAGM, 150 positive samples).

y Our ESDN Racki et al. Kim et al. Scholz et al. [35]
Surface TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR
1 100 100 100 100 100 988 998 100 99.7 99.4
2 100 100 100 100 100  99.8 100 100  80.0 94.3
3 100 100 100 100 100 963 100 100 100 99.5
4 100 100 100 100 985 998 999 100 96.1 92.5
5 100 100 100 100 100 100 100 100  96.1 96.9
6 100 100 100 100 100 100 100 100  96.1 100
7 100 100 100 100 100 100 - - - -
8 100 100 100 100 100 100 - - - -
9 100 100 100 100 100 999 - - - -
10 100 100 100 100 100 100 - - - -

Input

DGMA

Baseline

Figure 4. Cont.
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Figure 4. Examples of images, defects, and detections with segmentation output from the DAGM (top),
KolektorSDD (middle), and Steel (bottom) datasets.

4.3.2. KolektorSDD

The proposed KRN is compared with the ESDN, SDN, and EfficientNet in Table 2.
The KSDD is a totally industrial few-shot dataset with only 53 positive samples. Its
author defines it as a classification problem and especially adds small-scale segmentation
annotation as an auxiliary. Assisted by segmentation, the SDN obtained a higher score
of 99.00%. After a series of optimizations such as dynamic balance loss and gradient
adjustment, the ESDN became an end-to-end defect detection model, and it achieved a
99.49% AP and 1 + 2 (FP + FN) in our experiments. According to Table 2, Our KRN achieved
a further performance of 100.00% AP and realized 0 + 0 (FP + EN).

Table 2. mAP on four methods (KSDD, 33 positive samples).

Method AP/% FP + FN
EfficientNet - -
SDN 99.00 1+0
ESDN 99.49 1+2
Ours 100.00 0+0

4.3.3. Severstal Steel

Table 3 compares our KRN with the ESDN, SDN, and EfficientNet on Severstal steel
for 1000 positive samples. As shown in the table, in contrast, the KRN was the best among
all methods. Its performance on the AP was 1.18%, 7.38%, and 8.17% higher than the ESDN,
SDN, and EfficientNet, respectively.
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Table 3. mAP on four methods (Steel, 1000 positive samples).

Method AP/% FP + FN
EfficientNet 91.56 -
SDN 92.35 -

ESDN 98.45 68 + 85

Ours 99.73 40 + 32

4.4. Ablation Study

Below we analyze the effectiveness of each component of the proposed KRN approach.
We designed six groups of experimental variants (except for the ablation experiment of
each component), including variants used by all components and variants not used by all
components. The following ablation studies were based on the KSDD dataset with the
five positive samples setting. For some components, we further designed comparative
experiments for in-depth analysis. For example, the Knowledge Embedding part also
adopted add, concat, and mat operations.

Knowledge Modeling (KM): We conducted KM on flawless samples. In this part of
the ablation experiment, we changed the KM to predict the conv feature of the image to
simulate the effect of no KM. The experimental results show that KM has a great impact on
the KRN (97.39% vs 94.88%). For KSDD settings, it shows that without statistical modeling
in Table 4, the AP scores of our KRN on fold 0 and fold 1 decreased by 6.2% and 3.28%,
respectively. The analysis shows that KM brings additional knowledge and enhances the
recognition performance of the model.

Table 4. mAP on four methods (ablation study on KSDD Dataset with 5 positive samples).

Knowledge Knowledge Gram Power

Fold0  Fold1 Fold2 Mean Model Embedding Operation Normalizing

9490 90.01 9847 94.46
93.18 9470 96.75  94.88 N4 Vv N4

99.43  91.58 8.47 96.49 v Vv Vv
9428  95.00 96.08 95.12 Vv v Vv
96.84 9121 9631 94.79 v Vv vV

99.38 9798 9480 97.39 v vV v Vv

Knowledge Embedding (KE): In the ablation experiment of KE, our KRN performed
the variant (97.39% vs. 96.49%), which levers the regular concat fusion in Table 4. concat
had the best AP value on fold 0 and fold 2, but fold 1 had only a 91.58% AP. The KE
module has the ability to capture knowledge features and predict the relationship between
sample features in design, because the module has been significantly enhanced in the defect
identification of fold 1 (97.39% vs. 91.58%).

We additionally analyzed the impact of concat, add, and mul operations on KE.
The experimental results are shown in Table 5. Among them, the add operation was the
roughest for feature fusion through simple addition, with the AP score being the lowest,
which was 95.26%. The concat operation retained the original features and knowledge
features, which was 1.23% higher than add. Mul enlarged the local difference, and the
multiplication between the conv feature and knowledge feature was conducive to mining
the relationship between the two features; its ap score was close to KE. Our KE not only
retains the original features, but also constructs the relationship between the quasi-sample
and the predicted sample, deeply excavates the potential differences, and shows the best
performance (97.39% vs. 95.26%, 96.49%, and 97.26%).

Gram Operation (GO): The GO is a supplement to KE, mining the relationship be-
tween features after KE. As shown in Table 4, the performance of the GO defect detection
algorithm had a 2.27% drop (97.39% vs. 95.12%). GO mines the relationship between
features of the final total features. Based on the experimental results of three folds (94.28%,
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95.00%, and 96.08%), the GO was one of the main components to improve the performance
of the model. The results in fold 0 show that its contribution to the KRN is second only
to KM.

Table 5. mAP on four variants of KE (KSDD, 5 positive samples).

Method AP/% FP + FN
Add 95.26 2+1

Concat 96.49 1+1
Mul 97.26 1+1
KE 97.39 0+1

Power Normalizing (PN): We also analyzed the improvement brought by the PN,
which considers a Burst suppressor on second-order statistics. It can be seen from the
previous experiments that the KE and GO introduced negative effects. The analysis shows
that it was due to the burst of high-order statistics. In Table 6, it can be seen that after
adding the PN operation, the negative effects brought by KE and GO were suppressed.
The AP on fold 0 and fold 1 increased by 2.54% and 6.77%, respectively, and the average
AP increased by 2.60%.

Table 6. mAP on Two PNs (KSDD, 5 positive samples).

Method AP/% FP + FN
None 94.79 2+2
AsinhE 96.89 0+2
SigmE 97.39 0+1

In particular, we explored two different PN strategies: Asinhe and SigmE. Without any
power normalization, the AP score was only 94.79%, and FP + FN was 2 + 2. After adding
Power Normalization, the performance was optimized, the false detection and missed
detection were reduced from 4 to 2, and the AP increased to 96.89% and 97.39%, respectively.
Our knowledge model relationship detector with sigma pooling is beneficial for small
training sets defect detection.

In summary, KM, the GO, and PN have a significant impact on the three folds.
Among them, KM and GO have a greater gain on fold 0, KE and PN have a greater
impact on fold 1, and Ke seems to have a negative effect on fold 2. KM introduces external
knowledge, KE embeds and fuses the knowledge, and GO and PN further promote the
integration. The four modules cooperate with each other to form gain, mine potential
features, and improve the performance of the small training sets defect detection model.

4.5. Small Training Sets

We paid special attention to the scene, where it is difficult to obtain defect samples in
the industrial scene, that is, a small number of positive samples. We used positive samples
of 5,10, 15, 20, and 25 for each dataset. The results are shown in Table 7.

For the DAGM2007 dataset, originally based on 150 positive samples, EfficientNet
and ESDN could have good performance, but when the number of positive samples
decreased, the detection performance of all algorithms showed different decline, as shown
in the figure. The details of the decline can be seen in Table 7. When the number of
positive samples decreased from 150 to 25 and then to 5, the AP value of the baseline was
100%-90.11%-82.39%; the AP value of the KRN 100%-99.11%-82.39%. When the training
samples were sufficient, their AP scores were very high. When the number of positive
samples decreased to 25, ESDN decreased by 3%, and KRN decreased by 1.47%; when the
number of positive samples turned to five, the AP of the baseline decreased significantly
(14%), and the KRN performed better, which only decreased by 9%.
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For the KSDD dataset, all three methods achieved good scores. After analysis, we
believe that this is because KSDD itself is a small dataset, and the test set is not complex,
which makes it possible to obtain a good recognizer with only a small number of samples.
However, five positive samples still brought differences to the performance of the various
methods. According to Table 7, when the number of positive samples was greater than 20,
the AP of each of the three methods was close to 100%. However, with the decrease in the
number of positive samples to five, the baseline decreased by 4.18%, while the KRN was
the least affected by the standard template KE and relationship mining module, which was
only 2.65%

Regarding the performance for the Steel dataset, like DAGM, all methods were greatly
reduced: in the scenario of five positive samples, the AP of the baseline decreased to 58.45%,
and there were false detection and missed detection values of 490 + 25; the AP performance
of the KRN was the best, which was 63.28%, and the false detection and missing detection
came out to only 467 + 34. Although these benefits are lower than the DAGM and KSDD,
they are consistent and significant considering that the Steel dataset is more challenging in
terms of complexity and dataset size.

Table 7. mAP on Three Methods (DAGM, KSDD, STEEL).

Num of Positive Samples

Model Dataset 5 10 15 20 25
AP/% FP + FN AP/% FP + FN AP/% FP + FN AP/% FP + FN AP/% FP + FN
baseline DAGM 85.58 43 +12 91.02 43 +5 98.09 2+3 99.27 2+2 99.18 1+2
Our 90.12 23 +16 96.23 3+7 98.04 2+3 99.65 1+1 99.11 1+1
baseline KSDD 95.82 2+2 97.25 2+2 97.96 1+2 98.74 1+1 99.78 0+1
Our 97.35 1+2 97.84 1+2 99.15 1+1 99.29 0+1 100.00 0+0
baseline STEEL 58.45 490 + 25 54.27 508 + 18 64.81 334 + 65 62.87 419 + 56 67.04 401 + 61
Our 63.28 467 + 31 60.13 438 + 53 65.57 346 +70 68.13 349 + 48 75.46 315+ 83
We visualized the experimental results,as shown in Figure 5. The AP and FP + FN
increased by varying degrees with the increase in positive samples. It reveals the general-
ization fragility of the baseline under the small training sets: without adequate training
images, it detected poorly defected from input images. In contrast, for our KRN, the KE
and GO demonstrated superior performance on small training sets defect detection.
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Figure 5. Smaller training set size results of DAGM, KSDD, Steel. The three figures above are the
change curve of map with the number of positive samples, and the three figures below are the
corresponding FP + FN.
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4.6. Visualization of Detection Results

The following shows some test images on the DAGM, KSDD, Steel, and other datasets.
We output the segmentation results, including the original image, ground truth, baseline,
and KRN. Our model is more classification-based , and segmentation is the auxiliary part
of conv feature extraction. Therefore, segmentation only needs shallow segmentation in the
small and medium scale. Based on the visual results, the defect part in the segmented image
will be larger than ground truth, which is normal. In addition, from Figure 5, in “the first
sample of DAGM, the third sample of KSDD and the second sample of Steel”, it can also
be seen that the difference was amplified by the KRN after introducing the second-order
moment of covariance. But at the same time, the higher-order feature increased the burst
(the noise in the upper right of the second sample of Steel).

5. Conclusions

In this paper, we proposed a Knowledge-Embedding Relation Network (KRN) for
the small training sets Defect Detection to address few-shot defect detection. Our model
extends the ESDN through embedding standard templates and second-order statistics into
CNN features of segmentation excitation. The standard template provides external knowl-
edge for defect samples, while KE and GO provide high-latitude potential relationship
features. In order to demonstrate the effectiveness of the KRN, we have conducted extensive
quantitative and qualitative experiments on several datasets. In particular, we simulated
the industrial detection scene of small training sets and carried out relevant experiments.
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Abstract: In the field of studies on the “Neural Synapses” in the nervous system, its experts
manually (or pseudo-automatically) detect the bio-molecule clusters (e.g., of proteins) in many TIRF
(Total Internal Reflection Fluorescence) images of a fluorescent cell and analyze their static/dynamic
behaviors. This paper proposes a novel method for the automatic detection of the bio-molecule
clusters in a TIRF image of a fluorescent cell and conducts several experiments on its performance,
e.g., mAP @ IoU (mean Average Precision @ Intersection over Union) and Fl-score @ IoU, as an
objective/quantitative means of evaluation. As a result, the best of the proposed methods achieved
0.695 as its mAP @ IoU = 0.5 and 0.250 as its F1-score @ IoU = 0.5 and would have to be improved,
especially with respect to its recall @ IoU. But, the proposed method could automatically detect bio-
molecule clusters that are not only circular and not always uniform in size, and it can output various
histograms and heatmaps for novel deeper analyses of the automatically detected bio-molecule
clusters, while the particles detected by the Mosaic Particle Tracker 2D /3D, which is one of the most
conventional methods for experts, can be only circular and uniform in size. In addition, this paper
defines and validates a novel similarity of automatically detected bio-molecule clusters between
fluorescent cells, i.e., SimMolCC, and also shows some examples of SimMolCC-based applications.

Keywords: object detection; particle detection; similarity; neural synapses; computer vision

1. Introduction

In recent years, Al (Artificial Intelligence) technologies have started to become perva-
sive/ubiquitous in various situations of the real world (towards Society 5.0 [1], which was
proposed by the Cabinet Office, Government of Japan): dialogue systems based on LLMs
(Large Language Models) such as OpenAl’s ChatGPT and Google’s Gemini, Text-to-Image
generation [2] such as Stable Diffusion and Midjourney, DX (Digital Transformation) in
companies, more advanced ITSs (Intelligent Transport Systems) and automated driving,
and a diverse array of Al technologies in education (such as EduTech [3]), medical care and
nursing care (such as MedTech and SleepTech [4,5]), finance (such as FinTech), clothing,
food, and housing [6,7], various forms of entertainment, such as sports [8] and video
games [9,10], and so forth.

An Artificial Neural Network (ANN) [11], especially a Deep Neural Network (i.e.,
Deep Learning), which is playing a starring role in them, is a model for Machine Learning,
inspired by the neuronal organization found in the biological neural networks in animal
brains. An ANN is composed of connected units called artificial neurons, which loosely
model the natural neurons in a brain and receive signals from connected artificial neu-
rons, process the signals, and send signals to other connected artificial neurons. Artificial
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neurons are connected by edges, which model the “Neural Synapses” in a brain. There-
fore, more advancement in Brain Science contributes to more advancement in ANNSs and
Brain Computing.

In such a field of studies as the “Neural Synapses” in the nervous system, its experts
observe and manually (or pseudo-automatically) detect bio-molecule clusters (e.g., of
proteins) in many TIRF (Total Internal Reflection Fluorescence) images of a fluorescent cell
and analyze their static/dynamic behaviors. Most of the conventional methods for “Bright
Spot Analysis” and “Particle Tracking” fit the point spread function of not multiple but a
single fluorescent particle to a 2D Gaussian function and apply template matching to an
input image [12], e.g., the Mosaic Particle Tracker 2D /3D [13].

As shown in Figure 1, information transmission in the nervous system occurs at the
Neural Synapses, which conjugate neuron cells:

* In the presynaptic terminal of a neuron cell, which transmits information, synaptic
vesicles are recruited to the release sites at the active zone and release message-carrying
chemicals rapidly upon Ca?* influx outside the neuron cell towards its corresponding
postsynaptic site. Note that the docked vesicles at the release sites are considered to
be the vesicles within the so-called RRP (Readily Releasable Pool) [14];

* In the postsynaptic site of the corresponding neuron cell, which receives information,
the released message-carrying chemicals act on postsynaptic receptors and evoke
postsynaptic responses.

O Biomolecule cluster labelled by FM1-43 without fluorescence
© Biomolecule cluster labelled by FM1-43 with fluorescence

Synaptic vesicles with
message-carrying chemicals TIRF field 00 o o
@ (100nm)/ 0 © © ~o
0000 O
L R
il /\

Neural Synapses

Presynaptic terminal

Release sites G £ a 2 1
at the active zone 3 Samphng Manually
o Receptors 1
Postsynaptic site ; k 2 SEtHe BCtvEToHe Detectlng .
St Automatically
ynaptic responses : 4
TIRF Imaging $
(Total Internal Reflection Fluorescence)
Visualization

Examples of deeper analyses and SimMolCC-based applications:

Various Histograms ~ and Heatmaps

Area of clusters
p o=
g 3
g8 8 o

Area of bio-molecule clusters 100 600 1100 1600 2100 2600
(after Step 4(c) for Cell #6) Mean intensity of bio-molecule clusters
(after Step 4(c) for Cell #6)

Similarity-based Retrieval (Ranking) and Clustering

Figure 1. Direct imaging bio-molecule clusters in a fluorescent cell, e.g., in the presynaptic terminal
of a neuron cell, using TIRF (Total Internal Reflection Fluorescence) microscopy and detecting them
manually by human experts or automatically by the proposed method.

TIRF microscopy is explained as follows in Chapter 13 [14] of the book whose title is
“Exocytosis from molecules to cells”, published by IOP Publishing;:

Zenisek et al. [15] pioneered the imaging of single-vesicle dynamics in dissociated
goldfish retinal bipolar cells using total internal reflection fluorescence (TIRF)
microscopy. TIRF microscopy has very good resolution in the z-axis (50-100
nm), which provides detailed vesicle dynamics near the plasma membrane.
On the other hand, the resolutions of the x- and y-axes are diffraction-limited,
which means that single vesicles (30-50 nm in diameter) appear as single dots.
Sparse labeling of synaptic vesicles with FM1-43 (FM1-43 emits fluorescence
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when excited by TIRF microscopy’s Evanescent field.) allows one to look at the
dynamics of synaptic vesicles before and during fusion. One can see the fusion of
synaptic vesicles, which accompanies the loss of dyes in the center and a transient
increase in the surrounding fluorescence, reflecting the diffusion of dyes along
the plasma membrane.

Moreover, an example of observation (especially direct imaging) by TIRF microscopy
of a target phenomenon, e.g., rapid tethering, of synaptic vesicles accompanying exocytosis
at a fast central synapse is also shown as follows:

Miki et al. [16] applied TIRF microscopy to cerebellar mossy fiber terminals.
They found that the RRP (Readily Releasable Pool) corresponds to those vesicles
already resident and ready for fusion upon Ca®* influx. Following depletion of
the RRP, vesicles which are within the TIRF field (100 nm) are fused in response
to sustained depolarization or a train of action potentials, suggesting that newly
replenished vesicles are already close to the membrane. At the same time, vesicles
are recruited to the TIRF field more rapidly than they are to the calyx synapse. In
addition, newly tethered vesicles can be fused with maturation times of several
hundreds of milliseconds, which is much faster than that of the calyx of Held.
Therefore, cerebellar mossy fiber terminals have more efficient vesicle recruitment
and priming processes than those of the calyx of Held synapse.

For more advances in Brain Science with more advances in ANNs and Brain Com-
puting, in the nervous system, the following features, i.e., properties and static/dynamic
behaviors, of bio-molecule clusters in many TIRF images of a fluorescent cell need to be
observed and analyzed from various directions.

e  Properties: each bio-molecule cluster’s size (e.g., the width and height of its detected
Bounding Box), segmented area, shape (e.g., circle/spot-like, narrow, or odd-looking),
2D /3D position (x-, y-, and z-axes), fluorescence intensity, etc.

e  Static/dynamic behaviors: each bio-molecule cluster’s change in state, tethering at
the active zone, releasing message-carrying chemicals, vanishing from the active zone,
moving in a cell, receiving and responding to message-carrying chemicals, and fusing
with a membrane or with the other bio-molecule cluster(s), etc.

In addition, there are various methods of analysis, as indicated: temporal analysis,
spatial analysis, spatio-temporal analysis, state analysis, similarity analysis (e.g., retrieving
similar cells with similar features, or clustering cells based on a similarity between cells),
network/community analysis, etc.

However, huge costs, e.g., a long time for manually detecting the bio-molecule clusters
in many TIRF images of a fluorescent cell as well as a large sum of money for making
them by TIRF microscopy, have been hindering speeding up the advancements in Brain
Science, and there are other problems including biased detection and missing some of them.
Therefore, as shown in Figure 1, this paper proposes a novel method for the automatic
detection of the bio-molecule clusters in a TIRF image of a fluorescent cell to reduce the
manual costs and solve the manual problems, and several experiments have been conducted
on its performance, e.g., mAP @ IoU (mean Average Precision @ Intersection over Union)
and Fl-score @ IoU, as an objective/quantitative means of evaluation. The proposed
method can automatically detect bio-molecule clusters that are not only circular and not
always uniform in size, and it can output various histograms and heatmaps for novel
deeper analyses of the automatically detected bio-molecule clusters, while the particles
detected by the Mosaic Particle Tracker 2D /3D [13] can be only circular and uniform in size.
In addition, this paper defines and validates a novel similarity of automatically detected
bio-molecule clusters between fluorescent cells, i.e., SImMolCC, and also shows some
examples of SimMolCC-based applications.

The remainder of this paper is organized as follows. Section 2 introduces two kinds of
related studies and compares them with this paper. Section 3 describes the novel method
in detail for the automatic detection of the bio-molecule clusters in a TIRF image of a
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fluorescent cell. Section 4 defines a novel similarity of automatically detected bio-molecule
clusters between fluorescent cells, i.e., SimMolCC. Section 5 shows several experimental
results to validate the proposed method. Finally, Section 6 concludes this paper.

2. Related Work
2.1. Object Detection on Cells

In such a broad field of studies on general-purpose/specific “Computer Vision”, many
object detection and segmentation techniques, e.g., YOLO (You Only Look Once) [17], and
their practical applications have been proposed [2,18-22]: automatic driving/traffic [23-26],
maritime [27,28], aerial [29], remote sensing [30], agriculture [31,32], and power line infras-
tructure [33].

Meanwhile, many object detection and segmentation techniques that are not general-
purpose but specific to (the region of) cells have also been proposed: from classical tech-
niques [34] based on conditional opening and closing [35], Laplace edge features and
SVM (Support Vector Machine) [36], HOG (Histogram of Oriented Gradients) features
and SVM [37], SIFT (Scale-Invariant Feature Transform) features, Random Forests, and
Hierarchical Clustering [38], or other features [39], to Deep Learning techniques [40,41]
such as cellpose [42], Residual U-Net [43,44], which combines U-Net [45] and Residual-
Net [46], and R2U-Net [47], which is a Recurrent Residual convolutional neural network
based on U-Net.

However, few object detection and segmentation techniques to detect the micro-objects
in a cell, e.g., a nucleus in a cell [36,48-51], and melanin [52-54] in a microscopic image of
the stratum corneum for skin diagnosis, have been proposed, as shown in Table 1. This
paper proposes novel methods to detect the nano-objects, e.g., bio-molecule clusters (of
proteins) in a TIRF (Total Internal Reflection Fluorescence) image of a cell for neuroscience,
and to analyze their size and fluorescence intensity, e.g., as various histograms (size/area
— frequency, or intensity — frequency) and heatmaps (size/area X intensity — frequency).

Table 1. Comparison between methods to detect micro-objects in a cell.

[51] [52] This Paper
Targets Cell Nuclei M (Fontana—Mas:son) Stained Bio-Molecule Clusters *!
Melanin

in Blue/red-stained Buccal . . .

Cells for Liquid Cytology in Face Epidermal Corneocyte in a Fluorescent Cell
1280 x 1024 [pixels] 736 x 440 [pixels] 512 x 512 [pixels]
21? nm per pixel * 272 nm per pixel 65 nm per pixel

TIFF (Full? Color) BMP (24-bit RGB) TIFF (16-bit Grayscale)

-
Input image 4

Main techs to detect Sliding Window Method Template matching Filtering by thresholds
micro-objects in a cell Mask-RCNN Edge extraction
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Table 1. Cont.

[51] [52] This Paper

Output image

=
| 4

red: cell nuclei with a black: background black: not bio-molecule clusters

probability over 0.90 gray: laminated Corneocyte gray: bio-molecule clusters

yellow: cell nuclei with a white: Corneocyte with a fluorescence intensity

probability over 0.50 pink: Melanin spots

“1 The size of 1 target bio-molecule is about 10 nm, observed as 200-300 nm (2D Gaussian, o = 120-130 nm)
because the TIRF’s resolutions of x- and y-axes are diffraction-limited. Therefore, it is applied to Step 4(c) of
the proposed method that a target bio-molecule cluster would occupy at least 5 pixels in an input TIRF image.
*2 Maybe 21 nm per pixel = 271.7 - 736,/300 - 40/1280, which is not clearly specified in [51] but is estimated from
40x in [51], while 300 x in [52].

2.2. Similarity on Cells

In the field of studies on general-purpose “Image Recognition” and “Content-Based
Image Retrieval (CBIR)”, various graphic similarities between images based on their bag of
features (i.e., visual words) have been defined [55]. The image features are divided into two
kinds: global features, e.g., a color histogram [56], which are extracted by globally describ-
ing the features of an image, while the local features, e.g., SIFT (Scale-Invariant Feature
Transform) [57], SURF (Speeded Up Robust Features) [58], HOG (Histogram of Oriented
Gradients) [37], and LBP (Local Binary Pattern) [56], are extracted by detecting the points
of the local features in an image and locally describing the feature for each point. In recent
years, image features based on DNNs (Deep Neural Networks) have also been proposed.
DELG [59] unifies deep local and global features for Google Landmark Recognition.

Meanwhile, a few similarities between those images that are not general-purpose
but specific to cells have been defined. CellSim [60] has been developed as a software
of bioinformatics for researchers to calculate the similarity between different cells by the
semantic similarity algorithm [61] based on the cell ontology network and cell-specific
regulation network in over 2000 different human cell types, e.g.,

Auditory Epithelial Cell; Blood Progenitor Cell; Connective Tissue Cell; Dendritic
Cell; Embryo Cell; Epithelial Cell; Epithelial Stem Cell and Muscle Myoblast;
Germ Cell; Germ Cell and Spore; Hematopoietic Cell; Keratinocyte Cell; Kidney
Cell (part); Kidney Epithelial; Lymphocyte; Macrophage; Marrow Cell; Microfold
Cell; Muscle Cell; Myoepithelial Cell; Neurecto-epithelial Cell; Neurogliocyte;
Neuron; Neuron Cell; Osteoblast Mesenchymal Stem Cell; Pigment Cell; Se-
creting Cell; Sensory Epithelial Cell; Somatic Stem Cell; Step Cell (mixed); and
Vessel Endothelial,

from FANTOM Ontology [62] and provides the sharing regulation networks of part cells.
CellSim can also predict cell types by inputting a list of genes as a query, including more
than 250 human normal-tissue-specific cell types and 130 cancer cell types, and provide the
prediction results in both tables and spider charts, which can be preserved easily and freely.

The proposed similarity, SimMolCC, in this paper is a graphic similarity between
instances of cells by automatically detecting the bio-molecule clusters in an image of a
fluorescent cell and describing its global features based on their size/area, fluorescence
intensity, ratio of width to height of Bounding Box, and ratio of area to Bounding Box,
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while CellSim is a semantic similarity between types (i.e., classes in the context of “Object-
Orientation”; categories in the context of “Image Categorization”) of cells.

For your information, two kinds of SimCells are not related to this paper: one [63],
developed at the Tokyo Institute of Technology, is a processor simulator for multi-core
architecture research, and the other [64], developed at the University of Oxford, is a
platform for human health — cells made simple.

3. Automatic Detection of Bio-Molecule Clusters in a Fluorescent Cell Image

This section describes in detail novel methods for automatic detection of bio-molecule
clusters in a TIRF image of a fluorescent cell.

3.1. Overview

Figure 2 provides an overview of the proposed methods, which have the following
input and outputs (as shown in Figure 3), and the following five steps (with fourteen
sub-steps):

Input  is a TIRF image (.tif, unsigned 16-bit grayscale, 512 x 512 [pixels]) of a fluores-
cent cell.

Outputs are bio-molecule clusters in a fluorescent cell, and also their size/area, fluores-
cence intensity, ratio of area to Bounding Box, and ratio of width to height of
Bounding Box. In addition, various histograms (size/area — frequency, etc.) and
heatmaps (size/area x intensity — frequency, etc.) can be outputted.

Step 1. Segmenting the target cell in an input TIRF image (described in Section 3.2).

Step 1(a). Filtering out pixels outside the target cell by an automatically calculated
threshold Ostep1a-

Step 1(b). Averaging (i.e., filtering out some sort of noise).

Step 2. Segmenting and dividing the regions of the target bio-molecule clusters in an
input TIRF image of a fluorescent cell (described in Section 3.4).

Step 2(a). Filtering out pixels that seem not to be candidates for the target bio-molecule
clusters of a fluorescent cell by an automatically calculated threshold 9;’tep1a
at Step 1(a).

Step 2(b). Laplacian edge extraction with the size of kernel, kernel_size € [1,13].

Step 2(c). Dividing all the regions of the target bio-molecule clusters into each region
of bio-molecule cluster.

Step 3. Clustering and assigning the regions of the target bio-molecule clusters in an
input TIRF image of a fluorescent cell with their ID (described in Section 3.5).

Step 3(a). Canny edge extraction for the target cell’s edges and the target bio-molecule
clusters’ edges by applying Otsu method [65,66].

Step 3(b). Filtering Canny edges out from the target bio-molecule clusters to make
them independent.

Step 3(c). Clustering and assigning the target bio-molecule clusters with their ID
(Identification Data).

Step 3(d). Integrating Canny edges filtered out at Step 3(b) back into one of the target
bio-molecule clusters.

Step 4. Filtering bio-molecule clusters (described in Section 3.6).

Step 4(a). Filtering out bio-molecule clusters that do not touch any Canny edges (i.e.,
any outline of candidates for bio-molecule clusters) in the target cell in an
input TIRF image.

Step 4(b). Filtering out bio-molecule clusters that touch the Canny edge (i.e., the
outline) of the target cell in an input TIRF image.

Step 4(c). Filtering out bio-molecule clusters whose size/area is less than 5 pixels.

Step 4(d). Filtering bio-molecule clusters based on their fluorescence intensity.
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Step 5. Calculating the size/area, fluorescence intensity, ratio of area to Bounding Box,
and ratio of width to height of Bounding Box of each automatically detected
bio-molecule cluster, and also creating various histograms and heatmaps of
automatically detected bio-molecule clusters as visualization.

Step 1. Cell Segmentation

Step 1(a) Step 1(b)
Filtering outside the cell Filtering noises
by threshold 0, by the averaging filter

\ ¢

Step 2. Bio-molecule Cluster Segmentation

$ Step 2(a) |$ Step 2(c)
Filtering . R
by threshold 0.0, Filtering edges

X <L

(the remainder)
Step 2(b)
Laplacian edge extraction
with kemnel_size, e.g., =3

Step 3. Bio-molecule Cluster Clustering

(the remainder)

ﬁ? Step 3(b) ,_J‘> ,_J‘> Step 3(¢)
Filtering edges Clustering

Canny edges of clusters
Canny edges of cell U

Step 3(a)
Canny edge extraction Step 3(d)
with Otsu method Integrating back

R 2

Step 4. Bio-molecule Cluster Filtering

Step 4(a) & Step 4(b) Step 4(c) Step 4(d)
Filtering based on Canny Filtering based on area, Filtering based on
edges of clusters & cell e.g., less than 5 [pixels] n histograms of intensity

|4

X

Step 5. Visualization

Generating graphs: Generating (0,40, 25, 45,37, 23, SimMolCC-based
* 4 kinds of histograms : global feature vector 21, 16,4 2,3,0, applications, e.g.,
* 6 kinds of heatmaps for SimMolCC [‘)- g~ [‘)- 1 X L12, retrieval and clustering

Figure 2. An overview of the proposed method for an input TIRF image of fluorescent cell #6 to

automatically detect its bio-molecule clusters by Steps 1 to 4 and to output histograms, heatmaps,
and its global feature vector for SimMolCC by Step 5.
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The proposed method:

* Size/area = 41

* Mean of fluorescent intensities = 1702.756
* Width of BB = 6

* Height of BB =9

* Ratio of area to BB=41/54=0.759

* Ratio of width to height =6 /9 = 0.667

BB = Bounding Box of a bio-molecule cluster

Mosaic Particle Tracker 2D/3D (radius = 3):

* Size/area = 29 (constant)

* Mean of fluorescent intensities = 1658.897

* Width of BB = 7 (constant)

* Height of BB = 7 (constant)

* Ratio of area to BB =29 /49 = 0.592 (constant)

* Ratio of width to height =7 /7 = 1.000 (constant)

Figure 3. Comparison of a bio-molecule cluster’s features between the proposed method and Mosaic
Particle Tracker 2D/3D [13] for an input TIRF image of fluorescent cell #6.
3.2. Step 1—Cell Segmentation

Step 1 segments the target cell in an input TIRF image by the following two sub-steps
as precisely as possible as shown in Figure 4:

B-B-B-

Input Image

Figure 4. Step 1 has two sub-steps, Step 1(a) and Step 1(b), to segment the target cell in an input TIRF
image (fluorescent cell #6) as precisely as possible.

Step 1(a). First, the histogram of fluorescence intensity of each pixel € 512 x 512 [pixels]
in an input TIRF image of a fluorescent cell is calculated as shown in Figure 5,
where the number of bins, bins, is set based on the following Sturges’ rule [67]:

Sturges’ optimal number of bins = [log, N + 1] 1)

where N means the number of samples for the histogram, e.g., N = 512 - 512, at
the initial Step 1, and the symbol [x] means “ceiling”, i.e., round the answer x
up to the nearest integer. As a result, Sturges” optimal number of bins is always
calculated as 20 at Step 1(a).
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Generating the histogram
q of fluorescence intensity
of an input TIRF image

Finding 1% highest peak Finding 2" highest peak
in the histogram in the histogram,
e.g., 202.0 e.g. 0o = 5797

Finding 6y, whose frequency is Filtering out pixels
the lowest between the 1% and 21 q outside the target cell q
highest peaks, e.g., Oyep1, = 452.8 by threshold Oyqp,

Figure 5. A flowchart of Step 1(a) with the histogram of fluorescence intensity of each pixel € 512 x

512 [pixels] in an input TIRF image of fluorescent cell #6.

Step 1(b).

Next, peaks are found in the histogram by find_peaks () of signal processing
of SciPy [68], and the local minimum between the 1st- and 2nd-highest peaks is
also found. For example, in the histogram as shown in Figure 5,

—  the 1st-highest peak’s fluorescence intensity is 202.0.

- the 2nd-highest peak’s fluorescence intensity 6,1, is 579.7.

—  the fluorescence intensity 6step1a Whose frequency is the lowest between the
1st- and 2nd-highest peaks is 452.8.

Finally, any pixel of the input TIRF image of a fluorescent cell whose fluorescence
intensity is lower than or equal to the above-calculated fluorescence intensity
Ostep1a Of the local minimum between the 1st- and 2nd-highest peaks is filtered
out as shown in Figure 5.

The filtered TIRF image of a fluorescent cell by the fluorescence intensity Ostep1a
is averaged by the averaging filter, whose size of kernel is set to 19 x 19, and
any pixel of the filtered TIRF image of a fluorescent cell whose averaged value is
lower than or equal to % = 0.543 is filtered out as shown in Figure 4 because
some sort of noise, e.g., salt-and-pepper noise, has to be filtered out.

3.3. Step 2—Bio-Molecule Cluster Segmentation

Step 2 segments and divides the regions of the target bio-molecule clusters in an input
TIRF image of a fluorescent cell by the following three sub-steps as precisely as possible as
shown in Figure 6:

Step 2(a).

Step 2(b).

Step 2(c).

Any pixel of the filtered TIRF image of a fluorescent cell after Step 1(b) whose
fluorescence intensity is lower than or equal to the 2nd-highest peak’s fluo-
rescence intensity Géltepla at Step 1(a) is filtered out. The remainder seems to
include not-independent candidates for the target bio-molecule clusters of the
fluorescent cell.

Laplacian edges are extracted from the filtered TIRF image of a fluorescent cell
after Step 1(b) by OpenCV’s Laplacian operator [69], cv2.Laplacian(), which
has the size of kernel to be optimized, kernel_size € [1,13], in this paper.
Laplacian edges are filtered out from the filtered TIRF image of a fluorescent cell
after Step 2(a) in order to divide all the regions of candidates for the target bio-
molecule clusters of the fluorescent cell into each region of bio-molecule cluster.
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" after Step 1(b)

1l

kernel _size =1 kernel_size =3 " l:erngl_sige =5

‘“(the A‘rem;;indgr)

g |

(Laplacian edges)

Figure 6. Step 2 has three sub-steps, Step 2(a), Step 2(b), and Step 2(c), to segment the regions of
bio-molecule clusters in an input TIRF image of fluorescent cell #6 as precisely as possible.

3.4. Step 3—Bio-Molecule Cluster Clustering

Step 3 divides the regions of the target bio-molecule clusters in an input TIRF image
of a fluorescent cell into each region of bio-molecule cluster by the following four sub-steps
as precisely as possible as shown in Figure 7:

Step 3(a).

Step 3(b).

Step 3(c).

Step 3(d).

First, Canny edges are extracted from the filtered TIRF image of a fluorescent
cell after Step 1(b) by OpenCV’s Canny [70], cv2.Canny (), which has the first
and second thresholds to be optimized. This paper automatically optimizes the
two thresholds by applying Otsu method [65,66].

Next, Canny edges are divided into the target cell’s ones or the target bio-
molecule clusters’” ones depending on whether or not they touch any pixel
outside the target cell, which has already been filtered out and thus whose
intensity has already been set to “0 (zero).”

Canny edges are filtered out from the filtered TIRF image of a fluorescent cell
after Step 2(c) in order to divide all the regions of candidates for the target
bio-molecule clusters of the fluorescent cell into each region of bio-molecule
cluster. The remainder seems to include independent candidates for the target
bio-molecule clusters of the fluorescent cell.

The regions of the target bio-molecule clusters in the filtered TIRF image of
a fluorescent cell after Step 3(b) have “Clustering” applied. As a result, each
bio-molecule cluster becomes independent and is assigned the sequential ID
(Identification Data); e.g., the number of bio-molecule clusters is calculated as
5507 in Figure 7.

Canny edges filtered out at Step 3(b) are integrated back into one of the target bio-
molecule clusters in the filtered TIRF image of a fluorescent cell after Step 3(c).
Note that the number of bio-molecule clusters at Step 3(c) and also at Step 3(d),
e.g., 5507, seems to be too many. Therefore, the following Step 4 is required.
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after Step 2(c)

after Step 1(b)

-l

Canny edges of clusters (the remainder)

N E

Canny edges of the cell

Figure 7. Step 3 has four sub-steps, Step 3(a), Step 3(b), Step 3(c), and Step 3(d), to divide the regions
of bio-molecule clusters in an input TIRF image of fluorescent cell #6 as precisely as possible, and

finally each bio-molecule cluster is independent and assigned the sequential ID.

3.5. Step 4—Bio-Molecule Cluster Filtering

Step 4 filters bio-molecule clusters by the following four heuristic rules:

Step 4(a). “Correct bio-molecule clusters have to have their edge (i.e., outline) in the target

cell.” Therefore, Step 4 filters out bio-molecule clusters that do not touch any
Canny edges (i.e., any outline of candidates for bio-molecule clusters) in the
target cell in an input TIRF image.

Step 4(b). “Correct bio-molecule clusters have not to exist in protrusions near the edge (i.e.,

outline) of the target cell.” Therefore, Step 4 filters out bio-molecule clusters that
touch the Canny edge (i.e., the outline) of the target cell in an input TIRF image.

Step 4(c). “The size of 1 correct bio-molecule is about 10 nm, observed as 200-300 nm (2D

Gaussian, o = 120-130 nm)” because the TIRF’s resolutions of x- and y-axes are
diffraction-limited. Therefore, Step 4 filters out bio-molecule clusters whose area
is less than 5 [pixels] in an input TIRF image of a fluorescent cell.

Step 4(d). “Correct bio-molecule clusters have to have unusually higher fluorescence inten-

sity in the target cell.” First, the n kinds of sampled histograms of fluorescence
intensity of each pixel that has not yet been filtered out and thus whose value has
not yet been “0 (zero)” in the filtered TIRF image of a fluorescent cell after Step
4(c) are calculated, where the number of bins, bins, is set based on the Sturges’
optimal number of bins [67] from +0 to +(n — 1), as shown in Figure 8. Note
that the number 7 of sampled histograms is set to 5 in this paper.

Next, the threshold to filter out bio-molecule clusters that do not have unusually
higher fluorescence intensity in the target cell is automatically searched by either
of the following two kinds of ways:

Ist: The threshold flagged as “1st” is set to be the average of the n fluorescence
intensities of the bin that first violates “Monotone Decreasing” in each
sampled histogram.

3rd: The threshold flagged as “3rd” is set to be the average of the # fluorescence
intensities of the bin that violates “The difference of frequency (between the
bin and the bin followed by it) is not 3rd compared with its pre-difference
and its post-difference” in each sampled histogram.

Note that the number of bio-molecule clusters at Step 4(d) (kernel_size = 3
flagged as “3rd”) is calculated as 237 in Figure 8.

62



Appl. Sci. 2024, 14, 7958

BER-E-E

after Step 3(d) @
The n kinds of sampled histogram of fluorescence intensity

18t=1769.138 15t =1682.826 13t=1608.022

1st=1738.929

Ist=1577.221

31d=1769.138 3= 672.975 3= 665.495 3rd=855.309 3d= 837.983
_J
1st=1675.227 after Step 4(d) w "3rd"
3d=960.180

Figure 8. Step 4 has four sub-steps, Step 4(a), Step 4(b), Step 4(c), and Step 4(d), to filter bio-molecule
clusters by four kinds of heuristic rules.

3.6. Step 5—Visualization

Step 5 can calculate four kinds of features such as the size/area, fluorescence
intensity, ratio of area to Bounding Box, and ratio of width to height of Bounding Box
of each automatically detected bio-molecule cluster in the target cell of an input TIRF
image at each above-mentioned step, and also create various histograms and heatmaps
of automatically detected bio-molecule clusters as visualization. For example, Figure 9
shows the four kinds of histograms of the size/area, fluorescence intensity, ratio of
area to Bounding Box, and ratio of width to height of Bounding Box of each of the 237
automatically detected bio-molecule clusters in an input TIRF image of a fluorescent
cell #6 at Step 4(d) (kernel_size = 3 flagged as “3rd”), and Figure 10 shows the six
kinds of heatmaps between four kinds of features such as the size/area, fluorescence
intensity, ratio of area to Bounding Box, and ratio of width to height of Bounding Box of
each of the 237 automatically detected bio-molecule clusters in an input TIRF image of a
fluorescent cell #6 at Step 4(d) with the size of kernel, kernel_size = 3, for OpenCV’s
Laplacian operator and flagged as “3rd.” These figures could help experts to conduct
deeper analyses of bio-molecule clusters in a TIRF image of a fluorescent cell.
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Figure 9. The four kinds of histograms of the size/area, fluorescence intensity, ratio of area to
Bounding Box, and ratio of width to height of Bounding Box of each of the 237 automatically detected
bio-molecule clusters in an input TIRF image of fluorescent cell #6 at Step 4(d) with the size of kernel,
kernel_size = 3, for OpenCV’s Laplacian operator and flagged as “3rd”.
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Figure 10. Cont.
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Figure 10. The six kinds of heatmaps between four kinds of features, such as the area, fluorescence
intensity, ratio of area to Bounding Box, and ratio of width to height of Bounding Box of each of the
237 automatically detected bio-molecule clusters in an input TIRF image of fluorescent cell #6.

4. SimMolCC: Similarity of Automatically Detected Bio-Molecule Clusters between
Fluorescent Cells

This section defines a novel similarity of automatically detected bio-molecule clusters
between fluorescent cell images, i.e., SImMolCC, as follows:

SimMolCC(imgy,imgy) := cosine-similarity (97, 93) (2)
01 - 03
TS = (©))
1] - [[o2]]

where 7], 7 mean each global feature vector extracted from an input TIRF image of a
fluorescent cell.

In the following Experiment II, the four kinds of histograms will be adopted as the
global feature vector v; of each input TIRF image of a fluorescent cell. For example,

*  area: the histogram of size/area of Figure 9, where range = (0,200) and bins = 40,
is converted to the 40-dimensional global feature vector ; of an input TIRF image of a
fluorescent cell #6, (0,40, 25,45,37,23,21,16,4,5,6,2,3,0,1,0,1,1,1,2,1,1,2,0,0,0, ...);

*  intensity: the histogram of mean fluorescence intensity of Figure 9, where range =
(0,4096) and bins = 64, is converted to the 64-dimensional global feature vector ; of
an input TIRF image of a fluorescent cell #6, (0, ..., 0,97, 65, 24,19, 11, 10, 2,3,2,0, 1,0,
1,1,0,0,0,0,1,0,0,0,..);

65
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® ratio_area_BB: the histogram of ratio of area to Bounding Box of Figure 9, where
range = (0.0,1.0) and bins = 50, is converted to the 50-dimensional global feature

vector 7; of an input TIRF image of a fluorescent cell #6, (0, ...,0,1,0,0,0,0,3,5,2,6, 3,

6,4,6,8,9,10,7,5,11,11,3,11,17,8,7,20,8,4,18,12,5,6,5,1,3,4,1,7);
® ratio_width_height: the histogram of ratio of area to Bounding Box of Figure 9,

where range = (0.0,1.0) and bins = 50, is converted to the 50-dimensional global
feature vector 7; of an input TIRF image of a fluorescent cell #6, (0,0,0,0,0,0,1,0,0,

0,1,0001,00,0,2041,200,18,0,5,2,1,8,7,0,19,5,4,1,14,4,1, 28,19, 12,6,

6,4,3,0,0,58).

Note that the six kinds of heatmaps and various hybrids with some of the four kinds
of histograms and/or some of the six kinds of heatmaps can also be adopted as the global
feature vector 7; of each input TIRF image of a fluorescent cell, and note that frequencies
of a global feature vector can be converted by the log,() function, like TE-IDF (Term
Frequency-Inverse Document Frequency).

5. Experiments

This section shows the experimental results to validate the two kinds of proposed
methods in this paper:

Experiment I on automatic detection of bio-molecule clusters in a fluorescent cell image
(as described in Section 3).

Experiment II on SimMolCC, a similarity of automatically detected bio-molecule clusters
between fluorescent cell images (as described in Section 4).

5.1. Datasets

As shown in Figure 11, the dataset, Dataset I, for Experiment I on automatically
detected bio-molecule clusters in a fluorescent cell image, has 15 sets of the following data:

1.  Araw fluorescent cell movie (.tif) consisting of 100 frames (unsigned 16-bit grayscale,
512 x 512 [pixels]).

2. Anaveraged fluorescent cell image (.tif, unsigned 16-bit grayscale, 512 x 512 [pixels])
by Fiji's Z Projection [71] with “Average Intensity” as the projection type. Note
that it is used as an input image to the proposed method for automatic detection of
bio-molecule clusters in a fluorescent cell image.

3. Anaveraged fluorescent cell image (.tif, unsigned 24-bit RGB, 512 x 512 [pixels]) with
its particles detected by the Mosaic Particle Tracker 2D /3D [13] with the parameters,
radius = 3 (default), Cutoff = 0.001 (default), and Per/Abs (absolute is unchecked
and not used. The parameter Per, which means percentile to determine which intense
(bright) pixels are accepted as particles, was set to 0.50 (default) or 0.80 resultantly.)
optimized manually by the 3rd author. Note that it tends to include noisy particles,
e.g., particles outside the target cell and particles in protrusions near the edges of the
target cell, and has not yet been able to be adopted as a ground truth for the proposed
method for automatic detection of bio-molecule clusters in a fluorescent cell image,
and also note that its particles detected by the Mosaic Particle Tracker 2D /3D [13] can
be only circular and uniform in size, while the proposed method could automatically
detect bio-molecule clusters that are not only circular and not always uniform in size.

4. An averaged fluorescent cell image (.tif, unsigned 24-bit RGB, 512 x 512 [pixels]) with
its particles filtered manually by the 1st author and checked by the 2nd author. Note
that it filtered noisy particles out, e.g., particles outside the target cell and particles in
protrusions near the edges of the target cell, as precisely and exhaustively as possible,
and has been adopted as a ground truth for the proposed method for automatic
detection of bio-molecule clusters in a fluorescent cell image.

Note that plasma membranes of HEK293 cells attached to a coverslip were stained
with wheat germ agglutinin lectin conjugated fluorescent dye (CF488 WGA Dye, biotium),
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and images of the membranes attached to the coverslip were acquired by TIRF (Total
Internal Reflection Fluorescence) microscopy.

2. Input Image 3. Mosaic Particle Detection 4. Ground Truth

Figure 11. The averaged image (i.e., an input image for the proposed method), the averaged image
with its particles detected by the Mosaic Particle Tracker 2D /3D [13], and the averaged image with
its particles filtered manually (i.e., a ground truth for the proposed method) of an input movie
(fluorescent cell #6 or #14).

The dataset, Dataset II, for Experiment II on SimMolCC, a similarity of automatically
detected bio-molecule clusters between fluorescent cell images, has 105 (= 15C) simi-
larities on bio-molecule clusters between the above-mentioned 15 averaged fluorescent
cell images and 15 similarities on bio-molecule clusters between each of the 15 averaged
fluorescent cell images and itself; i.e., the latter 15 similarities should be recognized as 100%
(perfectly matched) by human subjects. Each similarity of bio-molecule clusters between
two averaged fluorescent cell images is 11-grade-evaluated by two of three human subjects:
one expert and one candidate for an expert on Cell Physiology at the Faculty of Medicine,
Akita University, the former of whom responded “I am very familiar with it and/or an
expert.” and the latter of whom responded “I am familiar with it and/or a candidate for an
expert.” Meanwhile, the remainder who responded “I am not at all familiar with it.” were
filtered out. More specifically, a human subject was randomly offered one of 120 pairs of
15 averaged fluorescent cell images and selected the 11-grade similarity for each pair: from
“10: 100% (perfectly similar/matched)” to “0: 0%.” Note that, as a result, two accepted
human subjects precisely evaluated “10: 100% (perfectly similar/matched)” for any pair of
each of the 15 averaged fluorescent cell images and itself.

5.2. Experiment I

Experiment I shows the experimental results to validate the proposed method for
automatic detection of bio-molecule clusters in a fluorescent cell image (as described in
Section 3) using Dataset I.

Figure 12 shows the mAP @ IoU and Fl-score @ IoU of the proposed method of Step
4(c) and Step 4(d) flagged as “1st” or “3rd” by manually optimizing the size of kernel,
kernel_size, for OpenCV’s Laplacian operator [69], cv2.Laplacian(), at Step 2(b), and
Figure 13 shows each example of automatically detected bio-molecule clusters by the
proposed methods of Step 4(c) and Step 4(d) flagged as “1st” or “3rd” of an input image.
In addition, Table 2 compares the mAP @ IoU = 0.5 and Fl-score @ IoU = 0.5 of the
proposed methods of Step 4(c) and Step 4(d) flagged as “1st” or “3rd” for each input of
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mAP (mean Average Precision) @ IoU
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15 average fluorescent cell images. An analysis of these figures and table provides the

following findings:

¢ The proposed method of Step 4(c) performs not low with respect to Fl-score @ IoU,
while it performs too low with respect to mAP @ IoU (i.e., precision @ IoU).

e The proposed method of Step 4(d) flagged as “1st” performs the best with respect
to mAP @ IoU, while it performs too low with respect to Fl-score @ IoU (i.e., recall
@ IoU).

e The proposed method of Step 4(d) flagged as “3rd” performs the best with respect to
F1-score @ IoU and also performs not low with respect to mAP @ IoU.

¢ The particles detected by the Mosaic Particle Tracker 2D /3D [13] can be only circular
and uniform in size (e.g., radius = 3), while the proposed method could automatically
detect bio-molecule clusters that are not only circular and not always uniform in size,
as shown in Figures 3 and 13.

®  Fl-score @ IoU of the proposed method is lower than mAP @ IoU. More specifically,
the recall @ IoU is worse than the precision @ IoU. It seems to be caused by over-
filtering of Step 4(d) and the limitations of Dataset I; e.g., the ground truth is based on
the particles detected by the Mosaic Particle Tracker 2D /3D [13], which can be only
circular and uniform in size , while the proposed method could automatically detect
bio-molecule clusters that are not only circular and not always uniform in size. The
future work will make the dataset larger and more ground-true.

Therefore, this paper has concluded that the proposed method of Step 4(d) flagged as
“3rd” is the best for automatic detection of bio-molecule clusters in a fluorescent cell image
using Dataset I.

0.5
045 Step 4(c) (kernel_size=5)
0.4 Step 4(d) (kernel_size=1, 1st)

Step 4(d) (kernel_size=5, 3rd)

Step 4(c) (kernel_size=5)

Fl-score @ IoU

Step 4(d) (kernel_size=1, 1st)

Step 4(d) (kernel_size=5, 3rd)

0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IoU (Intersection on Union) IoU (Intersection on Union)
between Ground-true biomolcule clusters and Detected ones between Ground-true biomolcule clusters and Detected ones

Figure 12. The mAP @ IoU and F1-score @ IoU of the proposed methods of Step 4(c) and Step 4(d)
flagged as “1st” or “3rd” by manually optimizing the size of kernel, kernel_size, for OpenCV’s
Laplacian operator [69], cv2.Laplacian(), at Step 2(b).
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(177 clusters) (1305 clusters ) (3 clusters) (300 clusters )
Ground Truth Step 4(c) Step 4(d) w “1st” Step 4(d) w “3rd”

(b)

(210 clusters ) (902 clusters ) (2 clusters) (9 clusters)
Ground Truth Step 4(c) Step 4(d) w “1st” Step 4(d) w “3rd”

Figure 13. The ground truth, Step 4(c), and Step 4(d) flagged as “1st” or “3rd” of an input image
(fluorescent cell #6 or #14) for automatic detection of bio-molecule clusters with the size of kernel,
kernel_size = 1, for OpenCV’s Laplacian operator [69], cv2.Laplacian(), at Step 2(b). (a) Cell #6;
(b) Cell #14.

Table 2. The mAP @ IoU = 0.5 and F1-score @ IoU = 0.5 of the proposed methods of Steps 4(c) and
4(d) flagged as “1st” or “3rd” for each input of 15 average fluorescent cell images with the size of
kernel, kernel_size = 5, for OpenCV’s Laplacian operator [69], cv2.Laplacian(), at Step 2(b).

Cell # Step 4(c) Step 4(d) w “1st” Step 4(d) w “3rd”
mAP F1-Score mAP F1-Score mAP F1-Score

Cell #1 0.288 0.186 1.000 0.019 1.000 0.019
Cell #2 0.604 0.284 0.741 0.114 0.698 0.460
Cell #3 0.309 0.140 0.554 0.130 0.554 0.127
Cell #4 0.385 0.166 0.609 0.152 0.491 0.229
Cell #5 0.364 0.261 0.833 0.019 0.506 0.119
Cell #6 0.478 0.135 1.000 0.044 0.584 0.411
Cell #7 0.440 0.177 0.806 0.031 0.747 0.041
Cell #8 0.573 0.256 0.735 0.300 0.641 0.458
Cell #9 0.593 0.216 0.686 0.055 0.695 0.423
Cell #10 0.424 0.192 0.975 0.099 0.921 0.122
Cell #11 0.536 0.283 1.000 0.015 0.639 0.404
Cell #12 0.393 0.233 0.729 0.069 0.729 0.069
Cell #13 0.491 0.337 0.833 0.028 0.618 0.283
Cell #14 0.603 0.300 1.000 0.037 0.899 0.123
Cell #15 0.609 0.415 0.565 0.088 0.698 0.458
Avg. (1) 0.472 0.239 0.804 0.080 0.695 0.250
SD (0) 0.107 0.075 0.157 0.072 0.144 0.165

Figure 14 shows the dependency of the mAP @ IoU and F1-score @ IoU of the proposed
method of Step 4(d) flagged as “3rd” and n = 5 (set as the default for the number of sampled
histograms for Step 4(d) in this paper) on the size of kernel, kernel_size, for OpenCV’s

69



Appl. Sci. 2024, 14, 7958

Laplacian operator [69], cv2.Laplacian(), at Step 2(b), respectively. An analysis of the
figures provides the following findings:

¢  The dependency of mAP @ IoU on the size of kernel is more stable, while the de-
pendency of Fl-score @ IoU on the size of kernel is less stable. More specifically, the
dependency of recall @ IoU on the size of kernel is less stable than the dependency of
precision @ IoU on the size of kernel. It might be caused by the limitations of Dataset
I. The future work will make the dataset larger and more ground-true.

e The curve of mAP over loU is the best when the size of kernel is set to 1 and the 2nd
best when the size of kernel is set to 5, and then, the larger the size of kernel is, the
slightly worse the curve of mAP over IoU is.

e The curve of Fl-score over IoU is the best when the size of kernel is set to 5 and the
2nd best when the size of kernel is set to 3, and then, the larger the size of kernel is,
the worse the curve of F1-score over IoU is.

e Opverall, the curves of both mAP over IoU and F1-score over IoU come in a slamming
1st place when the size of kernel is set to 5.
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Figure 14. The mAP and Fl-score @ IoU of Step 4(d) flagged as “3rd” and n = 5 depend on the size
of kernel, kernel_size, for OpenCV'’s Laplacian operator [69], cv2.Laplacian(), at Step 2(b).

Figure 15 shows the dependency of the mAP @ IoU and F1-score @ IoU of the proposed
methods of Step 4(d) flagged as “3rd” and kernel_size = 5 (which is manually optimized
as the overall finding of the dependency analysis of mAP @ IoU and F1-score @ IoU on
the size of kernel) on the number of sampled histograms, n, for Step 4(d), respectively. An
analysis of the figures provides the following findings:

e  The dependency of mAP @ IoU on the number of sampled histograms is more stable,
while the dependency of F1-score @ IoU on the number of sampled histograms is less
stable. More specifically, the dependency of recall @ IoU on the number of sampled
histograms is less stable than the dependency of precision @ IoU on the number of
sampled histograms. This might be caused by the limitations of Dataset I. The future
work will make the dataset larger and more ground-true.

e The larger the number of sampled histograms is, the slightly worse the curve of mAP
over IoU is. Note that it seems to converge.

¢  The larger the number of sampled histograms is, the better the curve of Fl-score over
IoU is. Note that it seems to converge.

e Opverall, the curves of both mAP over IoU and F1-score over IoU come in 1st place
when the number of sampled histograms is set to 5 as the default in this paper. Note
that, the larger the number n of sampled histograms is, the greater the computation
time for sampling n kinds of histograms is.
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Figure 15. The mAP and F1-score @ IoU of Step 4(d) flagged as “3rd” and kernel_size = 5 depend
on the number of sampled histograms, 7, for Step 4(d).

Finally, Figure 16 shows the mAP @ IoU and Fl-score @ IoU of the proposed methods
of from Step 3(d) and Step 4(c) by manually optimizing the size of kernel, kernel_size, for
OpenCV'’s Laplacian operator [69], cv2.Laplacian(), at Step 2(b). The proposed method
of Step 4(c) is superior to its following methods from Step 3(d) to Step 4(b); i.e., Step 4(a)
to Step 4(c) as well as Step 4(d) have good effects on automatic detection of bio-molecule
clusters in a fluorescent cell image using Dataset I.
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Figure 16. The mAP @ IoU and F1-score @ IoU of the proposed methods from Step 3(d) to Step
4(c) by manually optimizing the size of kernel, kernel_size, for OpenCV’s Laplacian operator [69],
cv2.Laplacian(), at Step 2(b).

Note that the pre-trained models of YOLOvS [72] on the COCO dataset and ImageNet
dataset, which is a state-of-the-art object detection for general purposes, cannot detect
any bio-molecule clusters in an input TIRF image of a fluorescent cell. To achieve good
performance while avoiding experts’ (i.e., supervisors’) biases, the existing Al technologies
based on supervised ML (Machine Learning) or DL (Deep Learning) specific to the practical
purpose of this paper need a larger dataset of TIRF images (maybe at least 1000 images) of
fluorescent cells and their ground truth of bio-molecule clusters manually annotated by as
many experts as possible. This is too expensive and takes too much time. Meanwhile, the
proposed method does not need any large dataset for pre-training but only needs heuristics
and statistics.

5.3. Experiment 11

Experiment II shows the experimental results to validate the proposed SimMolCC,
a similarity of automatically detected bio-molecule clusters between fluorescent cells (as
described in Section 4) using Dataset II.
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It has been finally found that ratio_area_BB at Step 3(d) (kernel_size = 5) provides
the best Pearson Correlation Coefficient with two human subjects’” 11-grade similarity (i.e.,
ground truth in the Dataset II). Figure 17 compares the Pearson Correlation Coefficient
between two human subjects’” 11-grade similarity and the proposed SimMolCC by cosine-
similarity between two vectors of input images of a fluorescent cell based on the following
4 kinds features (i.e., histograms) of its automatically detected bio-molecule clusters at
Step 3(d), and shows their dependency on the size of kernel, kernel_size, for OpenCV’s
Laplacian operator [69], cv2.Laplacian(), at Step 2(b):

® area: The histogram of area of each automatically detected bio-molecule cluster, where
range = (0,200) and bins = 40.

e intensity: The histogram of mean fluorescence intensity of each automatically de-
tected bio-molecule cluster, where range = (0,4096) and bins = 64.

® ratio_area_BB: the histogram of ratio of area to Bounding Box of each automatically
detected bio-molecule cluster, where range = (0.0,1.0) and bins = 50.

e ratio_width_height: the histogram of ratio of width to height or ratio of height to
width, whichever is smaller, of Bounding Box of each automatically detected bio-
molecule cluster, where range = (0.0,1.0) and bins = 50.

Figure 17 also compares the Pearson Correlation Coefficient between two subjects” 11-
grade similarity and the proposed SimMolCC by cosine-similarity between two vectors of
input images of a fluorescent cell based on ratio_area_BB at Step 3(d), Step 4(c), and Step
4(d) (3rd), and shows their dependency on the size of kernel, kernel_size, for OpenCV’s
Laplacian operator [69], cv2.Laplacian(), at Step 2(b).

An analysis of the figures has found the following:

®* ratio_area_BB at Step 3(d) (kernel_size = 5) provides the best Pearson Correlation
Coefficient with two human subjects’ similarity (i.e., ground truth in the Dataset II)
and could help experts to conduct deeper analyses of bio-molecule clusters in a TIRF
image of a fluorescent cell as their global features (not local features).

® ratio_area_BB (and ratio_width_height) of our proposed SimMolCC can represent
the “shape” of each automatically detected bio-molecule cluster with not a uniform
size, while Mosaic Particle Tracker 2D /3D [13], which is one of the most conventional
methods for experts, can detect only circular one with a uniform size (e.g., radius = 3
of the target particles, meaning that the area is uniformly 29 [pixels]).

e  Meanwhile, intensity provides too low Pearson Correlation Coefficient with two hu-
man subjects’ similarity, independent of the size of kernel, kernel_size, for OpenCV’s
Laplacian operator [69], cv2.Laplacian(), at Step 2(b).
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Figure 17. The Pearson Correlation Coefficient between two human subjects” 11-grade similarity
and the proposed similarity, SimMolCC, depends on the size of kernel, kernel_size, for OpenCV’s
Laplacian operator [69], cv2.Laplacian(), at Step 2(b). (a) A comparison between histograms
when Step 3(d) is constantly adopted. (b) A comparison between steps when ratio_area_BB is
constantly adopted.
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Figure 18 shows the scatter plot of two human subjects’” 11-grade similarity and
our proposed SimMolCC by cosine-similarity between two vectors of input images of a
fluorescent cell based on ratio_area_BB at Step 3(d) (kernel_size = 5) for each of 105
(= 15C2) pairs between the above-mentioned 15 averaged fluorescent cell images, and also
shows the scatter plot of two human subjects’ similarity and the converted SimMolCC’
from our proposed SimMolCC by the following formula:

1
SimMolCC' (imgy,imgs) = 0 (563.18 - SImMolCC(imgy,img,) — 554.67) 4)

where y = 563.18 - x — 554.67 has been obtained by simple linear regression from SimMolCC
(as x) for two human subjects’ 11-grade similarity (as y).
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Figure 18. The scatter plots of two human subjects’ 11-grade similarity and the proposed SimMolCC,
or the converted SimMolCC’ from the proposed SimMolCC by simple linear regression.

Finally, Figure 19 shows an example result of similarity-based retrieving (ranking)
by inputting a TIRF image (fluorescent cell #14) as a query and calculating its SimMolCC’
with the other 14 TIRF images. The ranking based on the converted SimMolCC’ from the
proposed SimMolCC by simple linear regression has achieved similar results as the ranking
based on two human subjects’ 11-grade similarity.
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Figure 19. An example result of similarity-based retrieval (ranking) by inputting a TIRF image
(fluorescent cell #14) as a query and calculating its SimMolCC” with the other 14 TIRF images.

6. Conclusions

In the field of studies on the “Neural Synapses” in the nervous system, its experts
manually (or pseudo-automatically) detect bio-molecule clusters (e.g., of proteins) in many
TIRF (Total Internal Reflection Fluorescence) images of a fluorescent cell and analyze their
static/dynamic behaviors. This paper has proposed a novel method for the automatic
detection of the bio-molecule clusters in a TIRF image of a fluorescent cell and conducted
several experiments on its performance, e.g., mAP @ IoU (mean Average Precision @ Inter-
section over Union) and F1-score @ IoU, as an objective/quantitative means of evaluation.
As a result, the best of the proposed methods has achieved 0.695 as its mAP @ IoU = 0.5 and
0.250 as its F1-score @ IoU = 0.5 and would have to be improved, especially with respect to
its recall @ IoU. But, the proposed method could automatically detect bio-molecule clusters
that are not only circular and not always uniform in size, and can output various histograms
and heatmaps for novel deeper analyses of the automatically detected bio-molecule clusters,
while the particles detected by the Mosaic Particle Tracker 2D /3D [13], which is one of the
most conventional methods for experts, can be only circular and uniform in size.

In addition, this paper has defined and validates a novel similarity of automatically
detected bio-molecule clusters between fluorescent cells, i.e., SIimMolCC. As a result, the
best of the proposed methods has achieved 0.518 (p-value < 0.001, statistically signif-
icant [73,74]) as its Pearson Correlation Coefficient with two human subjects’” 11-grade
similarity, which would have to be improved in the future. But, the findings include that
the histogram of the ratio of area to Bounding Box, ratio_area_BB, of each automatically
detected bio-molecule cluster is superior to the histogram of its intensity as its global
features help experts to conduct deeper analyses of the bio-molecule clusters in a TIRF
image of a fluorescent cell; i.e., the “shape” of each automatically detected bio-molecule
cluster with a non-uniform size plays an important role in novel deeper analyses by experts.

In the near future, the implemented tools with the proposed method will be developed
for experts and applied in various studies on “Neural Synapses” for more advances in both
Brain Science and Artificial Neural Networks. In addition, the future work includes validat-
ing the other definitions of SimMolCC based on the six kinds of heatmaps and also various
hybrids with some of the four kinds of histograms, e.g., a hybrid of ratio_area_BB at Step
3(d) with kernel_size = 5 and ratio_width_height at Step 3(d) with kernel_size = 13,
and/or some of the six kinds of heatmaps, such as the global feature vector v; of each
input TIRF image of a fluorescent cell, with or without converting their frequencies of
a global feature vector 7; by the log,() function, like TF-IDF (Term Frequency-Inverse
Document Frequency).
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Abstract: Owing to the low detection accuracy of camera-based object detection models, various
fusion techniques with Light Detection and Ranging (LiDAR) have been attempted. This has resulted
in improved detection of objects that are difficult to detect due to partial occlusion by obstacles or
unclear silhouettes. However, the detection performance remains limited in low-light environments
where small pedestrians are located far from the sensor or pedestrians have difficult-to-estimate
shapes. This study proposes an object detection model that employs a Gaussian-Sobel filter. This
filter combines Gaussian blurring, which suppresses the effects of noise, and a Sobel mask, which
accentuates object features, to effectively utilize depth maps generated by LiDAR for object detection.
The model performs independent pedestrian detection using the real-time object detection model You
Only Look Once v4, based on RGB images obtained using a camera and depth maps preprocessed
by the Gaussian-Sobel filter, and estimates the optimal pedestrian location using non-maximum
suppression. This enables accurate pedestrian detection while maintaining a high detection accuracy
even in low-light or external-noise environments, where object features and contours are not well
defined. The test evaluation results demonstrated that the proposed method achieved at least 1-7%
higher average precision than the state-of-the-art models under various environments.

Keywords: pedestrian detection; Gaussian-Sobel; depth map; low light; point cloud

1. Introduction

Autonomous driving technology has recently gained widespread acceptance among
consumers and is becoming increasingly integrated into our daily lives, while making signif-
icant contributions to improving the quality of human life. It is projected to become a ubig-
uitous technology that will be easily accessible everywhere in the near future. Furthermore,
it can overcome the physical or mental human limitations, improve safety and reliability,
reduce the accident rate, and cut labor costs, thereby reducing social costs and increasing
commercial value [1,2]. For autonomous driving in the mobility domain, a camera-based
object detection system is fundamental for identifying lanes, vehicles/pedestrians, traffic
signals, and other obstacles. However, in some environments, object detection becomes
impossible owing to the difficulty of acquiring high-quality images using a camera. More-
over, object detection models that solely utilize visual data from cameras have exhibited
considerably poor performance in pedestrian detection tasks, which is attributable to the
inherent challenges in representing the diverse appearances of pedestrians within a unified
shape [3,4].

Hsu and Yang [5] developed a two-stage pipeline to mitigate the inherent limitations
in camera-based object detection systems. First, they leveraged Super-Resolution Gen-
erative Adversarial Networks to upscale low-resolution images obtained from cameras.
The resulting high-resolution images were subsequently fed into a faster region-based
convolutional neural network (Faster R-CNN) for pedestrian detection, demonstrating
considerable enhancement in detection accuracy. Zhang et al. [6] improved pedestrian
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detection performance in occluded environments by suppressing feature extraction from
object-free background images. Mushtaq et al. [7] proposed a single-image super-resolution
network model based on CNNSs, combining conventional autoencoders with residual neural
network approaches. By removing the noise present in images, they improved the image
quality and enhanced detection accuracy. Xu et al. [8] also proposed a method to enhance
image quality by directly embedding a physical lighting model into a deep neural network
to improve object detection performance in low-light conditions. This method captures
the difference between the local content of an object and the preferred region of its local
neighborhood. However, these techniques exhibit shortcomings in object detection when
parts of objects are obscured by other objects, or when noise induced by light reflection,
scattering, and other low-light conditions results in the loss of some contour information.

Given the limitations of camera-based object detection systems due to various external
environmental factors such as low-light conditions, supplementary sensors have been
incorporated into these systems to enhance their performance. Gilroy et al. [9] enhanced
pedestrian detection performance in low-light conditions by generating a depth map
based on Light Detection and Ranging (LiDAR) and stereovision sensors, mitigating the
effects of light noise. Lin et al. [10] explored the use of CNNs to improve small object
detection performance based on both three-dimensional (3D) point cloud data (PCD)
and two-dimensional (2D) images. Qi et al. [11] predicted the location of objects in 2D
images based on CNNs and converted the corresponding regions into three dimensions,
thus improving the detection performance. Although all the aforementioned studies
demonstrated enhanced detection accuracy of invisible objects by employing multiple
sensors, their performance in detecting small objects in low-light environments and at a
large distance from the sensor remained suboptimal, primarily owing to the challenges
associated with object shape estimation in such environments. Although LiDAR was
additionally used, object detection in low-light scenarios continued to be challenging
because of the low-resolution depth maps produced by the LiDAR, which hindered accurate
object detection. Hence, to improve the performance, supplementary image processing
is essential to highlight the features of an object. A sharpening filter presents a viable
option for this enhancement. Additionally, the PCD generated by LiDAR is susceptible to
particle-based external noise, which is another factor to be considered when choosing a
sharpening filter.

Over the years, researchers have explored various methods of image enhancement
using sharpening filters. Maragos and Pessoa [12] achieved image enhancement by ex-
panding pixels at the presumed locations of objects in all directions through morphological
operations, thereby highlighting object contours. The image quality was enhanced by cen-
tering the structural elements on the foreground pixels. If a foreground pixel was present
in the area where the elements overlapped, the central pixel of that area was designated
as the foreground pixel, thereby enlarging the size and outline of the objects. Deng [13]
enhanced the sharpness of objects by applying an unsharp mask filter that increases object
density. This filter was created using a mask obtained from the difference between a blurred
image and the original image, thereby increasing the contrast between pixels. Ali and
Clausi [14] utilized a Canny edge filter to identify pixels with the greatest rate of change as
edges and employed hysteresis edge tracking to reduce noise effects and eliminate isolated
edges, thereby enhancing the sharpness of object contours. The application of reconstructed
images using these filters to object detection models is expected to lead to considerable
performance improvements. However, object detection performance could be degraded
instead if some object information is missing owing to image filtering or if nearby objects
appear to be overlapped. Furthermore, the inadvertent amplification of external noise may
also adversely affect object detection performance.

To mitigate the aforementioned adverse effect, we propose a novel object detection
model that employs a Gaussian—Sobel filter as a preprocessor. This filter effectively com-
bines Gaussian blurring to suppress noise effects and the Sobel mask to accentuate object
features, enabling effective object detection from LiDAR-derived depth maps. The pro-

79



Appl. Sci. 2024, 14, 8326

posed model employs RGB images and depth maps, preprocessed with the Gaussian—-Sobel
filter, to obtain respective detection results using the real-time object detection model, You
Only Look Once (YOLO). The YOLO object detection model has been widely used to date.
Moreover, new versions of the model are being continuously developed, which exhibit
overall better performance in terms of speed and accuracy compared with other object
detection models, including single-shot multibox detector (SSD) and Faster R-CNN. Fur-
thermore, YOLO is a lightweight model that can be embedded into on-board systems with
limited resources while maintaining a high detection performance. In particular, YOLOv4 is
best suited for real-time object detection in real-world environments, as it enables real-time
object detection through on-board systems and can detect objects, including small objects,
in complex environments [15,16]. Optimal object locations are estimated by eliminating
redundant bounding boxes through non-maximum suppression (NMS). This enables ro-
bust object detection, even under challenging conditions such as low-light environments
or high-speckle-noise environments, by preserving a high detection accuracy despite the
lack of distinct object features or contours. Our test evaluation results demonstrated that
the proposed model outperformed existing state-of-the-art models by achieving a 1-7%
improvement in average precision (AP), depending on the experimental conditions. The
contributions of this study are as follows:

- We improved image resolution and enhanced object-background segmentation by
preprocessing LiDAR-derived depth maps using a fusion of Gaussian blurring and
the Sobel mask.

- We proposed a versatile object detection model that effectively combines RGB im-
ages from cameras and depth maps preprocessed by the Gaussian-Sobel filter. This
convergence enables robust object detection in diverse lighting conditions, ranging
from bright daylight to low-light environments, complementing the strengths and
weaknesses of cameras and LiDAR.

- By applying the Gaussian—Sobel filter, we enhanced the robustness of LiDAR, leading
to improved detection performance in environments with speckle noise, which is
commonly found in adverse weather conditions.

2. Materials and Methods
2.1. Object Detection

Object detection models can be broadly classified into one-stage and two-stage detec-
tors. One-stage detectors, which jointly learn to localize and classify objects using CNNSs,
are generally faster but less accurate than two-stage detectors. This makes them ideal for
real-time object detection applications [17,18]. Representative one-stage detectors include
SSD [19] and YOLO [20]. YOLO, which is the most commonly used one-stage detector, ex-
cels at extracting and detecting object and background features, as it learns from individual
objects as well as the surrounding information and entire image domain.

The image input to YOLO is partitioned into a grid, S x S, to extract object features
through a convolutional layer and generate predicted tensors through a fully connected
layer. Subsequently, for each partitioned grid cell, localization and classification are per-
formed simultaneously to produce B candidate bounding boxes, along with the corre-
sponding confidence score (CS) for each bounding box. Each bounding box contains
information of (x, y, w, h, CS), where (x, y) refers to the coordinates of the center point
of the bounding box normalized to each grid cell, and (w, h) refers to the width and height
of the bounding box. CS reflects the probability that the bounding box contains an object,
i.e., the accuracy of the predicted box, and is defined as follows:

CS = Pypj x loU(pred, true) 1)

Here, P,p; refers to the probability that the bounding box contains the object, with
a value of 1 if the grid cell correctly contains the object and 0 otherwise. IoU(pred, true)
refers to the Intersection over Union (IoU) between the ground truth and predicted box,
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which is the width of the overlapping area and indicates how accurately the bounding box
predicts the geometric information of the object. Moreover, the grid cell is expressed as a
conditional probability of belonging to one of the C object classes within the bounding box,
as presented below.

P,jass = Pr(class;|object) ()

The class-specific confidence score (CCS), which represents the probability of an object
being contained within each bounding box and the probability that the detected object
matches the ground truth, is calculated as follows:

CCS = CS x Pejgss 3)

The bounding box with the maximum CCS among the predicted B bounding boxes is
chosen as the final bounding box for the target object.

2.2. Proposed Multi-Sensor-Based Detection Model

We propose a robust multi-sensor-based object detection model to prevent potential
safety accidents caused by pedestrian detection failures in low-light or unexpected external
noise environments. The proposed model performs object detection on RGB images using
YOLO and simultaneously preprocesses the depth map generated by LiDAR using the
proposed Gaussian-Sobel filter to increase the clarity of object contours; subsequently, this
model performs object detection through a separate YOLO. At this time, to sensor-fuse
the 2D image of the camera and the 3D PCD of LiDAR in parallel, a registration process is
required to unify the type of image used for learning individual YOLO. Thereafter, NMS
is applied to the individual detection results from the two sensors to determine the final
object, as depicted in the block diagram presented in Figure 1. The proposed model is
summarized by Algorithm 1.

YOLO

Camera

Non-
Maximum
Suppression

BBs, scores, labels

-~
iy >

L, YRR

-, 5. *¢

Figure 1. Block diagram of the proposed multi-sensor-based detection model.
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Algorithm 1 Image Processing and Object Detection

1: Input: List of images (camera images and LiDAR Depth Maps)
2: Output: Performance metrics for each image
3: for each image in image_list do

4: if image is camera_image then

5 bboxes<-YOLO(image)

6: filtered_bboxes«—NMS(bboxes, threshold)

7: else

8 filtered_depth_map+«+GAUSSIAN_SOBEL_FILTER(image)

9: bboxes«+YOLO(filtered_depth_map)

10: filtered_bboxes«—NMS(bboxes, threshold)

11:  endif

12:  performance«~EVALUATE_PERFORMANCE(filtered_bboxes)
13:  PRINT performance

14: end for

2.2.1. Creating a Depth Map for Image Registration

To effectively fuse data from heterogeneous sensors like cameras and LiDAR for object
detection, it is essential to align the dimensions of 2D images and 3D PCD. This is typically
achieved by transforming 3D PCD into a depth map. Furthermore, 3D PCD represent a
set of 3D coordinate points, generated when laser signals emitted from LiDAR bounce off
surrounding objects. To apply this transformation to a 2D setting, a calibration process
is necessary to reconcile the disparate viewpoints of the two sensors beyond dimension
transformation. This allows the (x, y, z) coordinate of the PCD to be mapped to the (1, v)
coordinate of a 2D image, as expressed in the following equation [21]:

x x
u fu 0 u R A\ [y y
vl =10 fu v ( ) - - 4)
1 0 0 1 1 1

Here, f;, and f, are the eigenvalues of the camera, representing the focal lengths in the
horizontal and vertical directions, respectively; 1y and vy denote the principal points of
the 2D image; and R and t denote the rotational transformation and parallel translation
matrices, respectively. They are computed using singular value decomposition as described
in [22]. Consequently, a depth map, aligning with the camera’s viewpoint, is created and
employed for training YOLO. Figure 2 depicts the process of creating a depth map by
aligning a LiDAR-acquired PCD point with a camera. Figure 2a presents an image acquired
by an RGB camera, while Figure 2b displays a point map projected onto the image by
aligning the 2D-transformed PCD with the camera. Moreover, Figure 2c¢ illustrates the
resulting depth map.

Figure 2. Cont.
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Figure 2. Process for generating a depth map for image registration: (a) RGB image; (b) PCD projected
on RGB image; (c) depth map.

2.2.2. Preprocessing with the Gaussian-Sobel Filter

Object detection with RGB cameras suffers from significant performance degradation
in night-time environments compared with daytime environments. To address this limita-
tion, we propose a method that leverages depth maps obtained from LiDAR to enhance
pedestrian detection in low-light conditions. Given that the depth map is derived from low-
resolution PCD, object contours exhibit reduced sharpness. Consequently, an enhancement
process is necessary, and a sharpening filter is additionally applied to address this issue.
First, a Gaussian filter is applied to suppress the variance of depth information caused by
the different sampling intervals of PCD depending on the LiDAR channel. Subsequently,
a Sobel filter is utilized to accentuate the line edges of objects whose boundaries with
the background become blurred owing to Gaussian blurring, thereby facilitating feature
extraction of objects. By doing so, the model most effectively preserves pixel values of the
depth information while further accentuating object contours.

A Gaussian filter generates a natural blurring effect on images by using a filter mask
created by approximating a Gaussian distribution [23,24]. A 2D Gaussian distribution
function with a mean of (0, 0) and standard deviations of 0, and g along the a and
axes, respectively, is defined as follows:

2 P

1 —(E=t53)
AUatTﬁ ((x, 'B) = 27Tgagﬁe 20 5 " 2052 )

The depth map, L, can be expressed as follows after undergoing preprocessing by a
Gaussian filter:

Ld,g = Aoaoﬁ("‘/ﬁ) * Ly (6)

The Gaussian function peaks at Ag,s,(0,0) and decreases as the distance from the
center increases. Furthermore, in the filter mask, pixels near the filtering target receive
higher weights, whereas those further away receive lower weights, which helps mitigate
the effects of noise pixels in the depth map.
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Thus, the Gaussian filter suppresses the effects of noise in the depth map and blurs
the overall image, resulting in a decrease in contrast. To compensate for this drawback,
a Sobel filter is directly applied to preserve as much depth information of the object as
possible while still accentuating object contours. The Sobel filter uses two 3 x 3 kernels
to detect edges: one is for finding changes along the horizontal direction, while the other
is for finding changes in the vertical direction. Edges are points where the instantaneous
rate of change of a function is large. Therefore, if a value exceeding a certain threshold is
derived by calculating the differential value at each pixel of the image, the corresponding
point is determined as an edge [25,26]. The two kernels are convolved with the original
image to approximate the rate of change; if we define L} o ;and LZ, g—s as two images
containing approximations of the horizontal and vertical derivatives, respectively, then the
corresponding calculation is as follows:

1 0 —1 -1 -2 -1
— Y —
g,g—s =12 0 2| *Lgg, Ld,gfs =10 0 0| =*Lgg (7)
1 0 -1 1 2 1

Here, the x-coordinate is defined as increasing to the right, and the y-coordinate

is defined as increasing downward. Furthermore, at each pixel in the image, L} oms and
2 2
LZ, s are combined to determine the size, Ly, 5 = \/ (Lfi‘, o S) + (LZ, o s) , and direction,

Ly
©® = atan ( Lx'g
8

d,qg—s

—s

), of the gradient. Consequently, the variance and noise of LIDAR PCD’s

depth information are suppressed, and the object is simultaneously separated from the
background. This can be verified by referring to Figure 3, which shows an example of the
sequential application of two filters to the depth map.

(b)

Figure 3. Cont.
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(d)

Figure 3. Preprocessing of depth maps using the Gaussian-Sobel filter: (a) depth map; (b) depth map

after Gaussian filtering; (c) depth map after Gaussian—Sobel filtering; (d) depth map after Canny
edge filtering.

As mentioned earlier, Figure 3a illustrates the variance of depth information in PCD,
which varies with the data generation interval. To suppress this, we applied a Gaussian
filter (Figure 3b), which suppresses the effects of noise and smooths out the contour
information of the object. Moreover, we applied an additional Sobel filter, resulting in a
clearer delineation of object contours, as shown in Figure 3c.

Notably, the use of Gaussian blurring and Sobel operators is also a process included
in the Canny edge filter. Furthermore, the reasons for the mandatory use of the Gaussian—
Sobel filter are as follows: after Gaussian blurring and Sobel masking, the Canny edge
filter [27] further applies NMS and hysteresis edge tracking. However, the noise from
the LiIDAR channel is mistakenly enhanced along with the edges, resulting in a failure
to properly segment objects from the background, thereby leading to inaccurate object
detection. This phenomenon is illustrated in Figure 3d. Thus, by applying a Gaussian
filter and Sobel operator, it is possible to suppress the effects of noise that deteriorates the
object detection performance of the depth map; moreover, more accurate object detection is
possible while maintaining the original pixel values for object contours.

2.2.3. Object Estimation Using NMS

We obtain object detection results from a YOLO model applied to RGB images and
another YOLO model applied to preprocessed depth maps. By fusing these results, we
achieve optimized object estimation. The bounding boxes of objects detected through
two independent YOLOs have CS, and the degree of overlap of each bounding box is
determined based on the IoU. To fuse the results of individually performed object detection
and ensure higher object estimation performance, it is necessary to select bounding boxes
with high confidence by recognizing overlapping bounding boxes and their respective CS
values; NMS is performed for this purpose [28]. If the IoU value between two bounding
boxes is greater than a specified threshold, it is determined that the bounding boxes have
detected the same object, and the bounding box with a higher CS is selected. This process
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is repeated until there are no more remaining bounding boxes (Figure 4), thereby selecting
the bounding box with the highest CS from the remaining bounding boxes each time.

b 2
Arrange detection boxes
In order of confidence score

I

Select detection box
with the highestscore

Areall NO
detection boxes

processed?

Go back and select
detection box with the next
highest confidence score

Is loU with
selected detection

box above the T
threshold?
Remove overlapping Keep the detection
detection boxes boxes
[ X

Figure 4. Flowchart for non-maximum suppression (NMS).

3. Experimental Results

To evaluate the performance of the proposed method, we generated RGB images,
images with various filters applied to the LIDAR depth map, and simulated images con-
sidering the presence of noise in LIDAR. Based on this, we aimed to verify the superiority
of the proposed object detection model through comparisons with existing models that
utilize RGB images or LiDAR depth maps for object detection, as well as models that fuse
preprocessed depth maps.

3.1. Experimental Environment

Our proposed model is designed to reliably detect pedestrians under challenging con-
ditions such as low light and adverse weather. It employs YOLOv4 for object detection and
is implemented on an NVIDIA RTX 3060 (Santa Clara, CA, USA) and an Intel Core i7-12700
CPU (Santa Clara, CA, USA). YOLOv4 [15] is compatible with a range of deep learning
frameworks, including TensorFlow and PyTorch, and offers versatility and scalability in
various environments. This is particularly relevant in domains such as autonomous driving
and CCTV monitoring, where real-time pedestrian detection is of paramount importance.
The selection of YOLOvV4 as our detection model was driven by the necessity to detect
pedestrians of varying shapes in complex environments. Furthermore, there is a potential
for extending its capabilities to embedded systems in the future. For the test evaluation,
we used the KITTI Open Dataset [29], which consists of 1467 RGB camera images and
LiDAR PCD acquired at the same time and location. Of these images, 1200 (approximately
80%) were employed for model training, with the remaining 267 being used for testing. All
images were resized to 1242 pixels x 375 pixels, ensuring consistency between the RGB
and depth maps. Moreover, the dataset was restricted to pedestrian-class instances.

The proposed object detection model, trained on various environments of autonomous
driving scenarios, was evaluated using AP as a performance metric. AP evaluates the
model performance by calculating the area under the precision—recall curve. Precision is
defined as TP /(TP + FP), representing the proportion of correctly detected instances among
all detected instances, while recall is defined as TP /(TP + FN), representing the proportion
of correctly detected instances among those that need to be detected. Here, TP, FP, and FN
stand for True Positive, False Positive, and False Negative, respectively [30].
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3.2. Performance Evaluation of Object Detection under Varying Brightness Levels

To evaluate the performance of our proposed model, we compared it with state-of-the-
art models that fuse RGB cameras and LiDAR data and share similar architectures. The
comparative results are tabulated in Table 1. The experimental results indicate that the
RGB-LiDAR fusion models, which represent the most common architecture, and the novel
model proposed in this study achieved high performance levels during daytime scenarios,
with the brightness set to 100%. No significant performance gap was observed between
the RGB-LiDAR fusion models and the proposed model. However, the performance of
both models gradually deteriorated as the lighting conditions worsened, primarily due to
the RGB camera’s hypersensitivity to low light. When the image brightness was reduced
to 40% of its original level, the proposed model demonstrated a slightly higher average
AP compared to the baseline model, with a performance gap of approximately 1.5%. We
also compared our proposed model with models that apply preprocessing filters to depth
maps with a similar architecture, such as Maragos and Pessoa [12], Deng [13], and Ali
and Clausi [14]. It was found that all models perform well in daylight and do not seem to
differ significantly, while in darkness, our proposed model shows 1-2% higher APs and a
relatively small improvement in detection accuracy.

Table 1. Comparison of pedestrian detection performance based on average precision (AP) [%]
between the proposed model and similar models under varying brightness levels.

Filter Used for Depth Brightness Level
Model Map Preprocessing 100% 70% 40%
Depth Map - 83.49 83.49 83.49
Depth Map + RGB - 91.99 91.32 85.60
Maragos and Pessoa [12] Morphology dilation 91.94 91.00 86.05
Deng [13] Unsharp Mask 92.13 90.72 85.76
Ali and Clausi [14] Canny Edge 92.43 91.09 85.08
Proposed model Gaussian—Sobel 92.07 91.49 87.03

Figure 5 shows an example of pedestrian detection results in daylight, i.e., when the
brightness level is 100%. In the figure, the white bounding box indicates the ground truth,
the blue box indicates a successful pedestrian detection, and the thick yellow box indicates
a missed detection. Figure 5a shows the result of detecting pedestrians using only the
depth map obtained from LiDAR, while Figure 5b shows the result of fusing LIDAR with
an RGB camera to detect pedestrians. Figure 5c—f show the detection results of the Maragos
and Pessoa [12] model, which sequentially accentuates the contours of objects with the
Dilation filter; the Deng [13] model, which emphasizes the density of objects with the
unsharp mask filter; the Ali and Clausi [14] model applied with the Canny edge filter; and
the proposed model, respectively. As can be seen, when the illumination was sufficiently
high, both existing models with similar architectures detected most of the objects except for
one or two, and no substantial difference was observed in their performance. However, a
closer inspection reveals that the proposed model distinctly identifies a pedestrian located
centrally in the scene, which is overlooked by all other methods. The proposed model’s
superior reconstruction quality facilitates more accurate detection.

To evaluate the effectiveness of the proposed model for detecting objects in low-light
environments, we conducted a pedestrian detection experiment by artificially manipulating
the image to decrease its brightness to <40% of the brightness of the original image;
an example of the results is shown in Figure 6. The false alarms represented by the
thick pink boxes shown in Figure 6a,b were generated by models that did not apply a
sharpening filter to the depth map, which can be attributed to the difficulty of distinguishing
inaccurate pedestrian shapes with the depth map alone, or to the fact that the camera’s
role considerably decreases with decreasing illumination. However, Figure 6¢c—f show that
by sharpening the objects with a preprocessing filter on the depth map, the false alarm
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issue disappears altogether. Furthermore, Figure 6c,e show that the preprocessing of the
depth map actually blurs the contours of some objects, resulting in non-detections. This
demonstrates that the use of a sharpening filter can positively affect the shape of certain
objects, while adversely affecting others, leading to blurred object contours. Nevertheless,
the proposed model solved the problems of missed detection and false alarms of other
models by making object contours clearer compared with other models and stably detected
all pedestrians.

(b)

(d)

Figure 5. Cont.
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Figure 5. Comparison of pedestrian detection performance of the proposed model and similar models
at 100% brightness: (a) depth map; (b) RGB + depth map; (c) Maragos and Pessoa [12]; (d) Deng [13];
(e) Ali and Clausi [14]; (f) proposed model.

(b)

Figure 6. Cont.
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(d)
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Figure 6. Comparison of pedestrian detection performance of the proposed model and similar
models at 40% brightness level: (a) depth map; (b) RGB + depth map; (c) Maragos and Pessoa [12];
(d) Deng [13]; (e) Ali and Clausi [14]; (f) proposed model.

3.3. Evaluation of Detection Performance under Varying Noises

As shown by the aforementioned experimental results, the performance of the pro-
posed model is slightly better than the existing models in various low-light environments.
Owing to its robustness against external factors such as light reflection, shadows, and
darker conditions, LiDAR is far more reliable in low-light environments than cameras are.
However, as LIDAR data are generated in the form of point clouds, the model may be sus-
ceptible to adverse weather conditions such as snow, rain, and fog. Therefore, to evaluate
the proposed model’s coping ability when LiDAR is exposed to external environmental
noise, additional experiments were carried out by adding Gaussian noise, a common
type of noise encountered in real-world conditions, to the original images. To isolate the
impact of low-light conditions on detection performance, we conducted experiments by
varying the Gaussian noise variance in an environment with 40% ambient brightness. The
pedestrian detection performance of our proposed model was compared with those of
similar models. The results are summarized in Table 2. Our findings indicate that the object
detection model relying solely on depth maps exhibited a substantial decline in detection
performance as the noise levels increased, with its accuracy reaching as low as 50%. By
integrating this model with camera data, this performance degradation was mitigated.
Similarly, models that incorporated additional preprocessing on depth maps suffered from
performance degradation due to increased noise. However, a camera mitigated this issue,
ensuring that the detection performance remained at a reasonable 60-70% level. Compared
with other models, our proposed model exhibited superior robustness to noise, maintain-
ing approximately 80% of its performance even under increased noise. Existing models
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are deficient in noise effect suppression and solely focus on the contour information of
all objects. Alternatively, our proposed model, which smoothens the scale of LiDAR by
considering it to be noise and further overlaying the contour information of potentially
occluded objects, demonstrates the most superior performance.

Table 2. Comparison of pedestrian detection performance based on AP [%] with the proposed model
and similar models under noise variation in a 40% brightness environment.

Filter Used for Depth Noise Level

Model Map P . o o o
ap rreprocessing 0% 0.2% 0.5%
Depth Map - 83.49 69.84 51.26
Depth Map + RGB - 85.60 80.34 75.37
Maragos and Pessoa [12] Morphology dilation 86.05 74.88 65.55
Deng [13] Unsharp Mask 85.76 77.87 68.75
Ali and Clausi [14] Canny Edge 85.08 81.96 77.62
Proposed model Gaussian-Sobel 87.03 86.29 84.72

Figure 7 shows the object detection results based on an image generated by assuming
that Gaussian noise with a variance of 0.5% can be introduced through LiDAR. Figure 7a
shows that in the case of detecting objects using only the depth map, most objects cannot be
detected, and it completely fails to function as a detection model. In contrast, Figure 7b—f
show a considerable decrease in the number of undetected objects by fusing RGB images
and applying preprocessing to the depth map. In particular, the proposed model had a
higher detection performance than other models and detected all objects. These results
indicate that the proposed model exhibits strong noise robustness, demonstrating its
reliability in various low-light night-time scenarios and noisy environments.

Figure 7. Cont.
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Figure 7. Comparison of the pedestrian detection performance of the proposed model and similar
models at 40% brightness and 0.5% noise level: (a) depth map; (b) RGB + depth map; (c) Maragos
and Pessoa [12]; (d) Deng [13]; (e) Ali and Clausi [14]; (f) proposed model.

4. Discussion

Despite advancements in autonomous vehicle technology and increasing utilization
rates, object detection models that are reliant on cameras and LiDAR remain susceptible
to causing pedestrian collision accidents under adverse conditions such as night-time
or inclement weather. Therefore, this study proposes a new pedestrian detection model
utilizing multiple sensors and fusion filters to improve pedestrian detection performance
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by compensating for the weaknesses of such detection models, thereby demonstrating an
innovative method for enhancing object identification in low-light conditions. To effectively
utilize depth maps created through LiDAR for object detection, we combined three key
elements: a Gaussian blurring function to suppress the effects of noise, in combination
with the Sobel operator to accentuate pedestrian features, and optimization of pedestrian
detection estimation through the fusion of heterogeneous sensors, camera, and LiDAR.
Through experimentation, we verified the potential of this combination to considerably
improve pedestrian detection accuracy. Our results indicate that this approach outperforms
traditional methods in terms of detection accuracy. In particular, this approach maintains
a remarkable detection accuracy even in low-light and noisy environments where object
features and contours are not clearly visible. Moreover, this approach demonstrates its
efficiency by achieving at least a 7% improvement in AP compared with previously reported
approaches. Future research will focus on overcoming these limitations and enhancing
the robustness of the system. Furthermore, we aim to implement the proposed model on
embedded systems and reduce its size for deployment on devices with limited computing
resources, thereby facilitating practical applications. To address these limitations and
explore future possibilities, we anticipate advancements in approaches for developing
more robust low-light object detection models that can be deployed on a wider range
of devices.
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Abstract: Accurate and efficient object detection in UAV images is a challenging task
due to the diversity of target scales and the massive number of small targets. This study
investigates the enhancement in the detection head using sparse convolution, demon-
strating its effectiveness in achieving an optimal balance between accuracy and efficiency.
Nevertheless, the sparse convolution method encounters challenges related to the inad-
equate incorporation of global contextual information and exhibits network inflexibility
attributable to its fixed mask ratios. To address the above issues, the MFFCESSC-SSD,
a novel single-shot detector (SSD) with multi-scale feature fusion and context-enhanced
spatial sparse convolution, is proposed in this paper. First, a global context-enhanced group
normalization (CE-GN) layer is developed to address the issue of information loss resulting
from the convolution process applied exclusively to the masked region. Subsequently, a dy-
namic masking strategy is designed to determine the optimal mask ratios, thereby ensuring
compact foreground coverage that enhances both accuracy and efficiency. Experiments on
two datasets (i.e., VisDrone and ARH2000; the latter dataset was created by the researchers)
demonstrate that the MFFCESSC-SSD remarkably outperforms the performance of the SSD
and numerous conventional object detection algorithms in terms of accuracy and efficiency.

Keywords: UAV image object detection; SSD; multi-scale feature fusion; context-enhanced
spatial sparse convolution

1. Introduction

Vehicles (UAVs), as a novel and prominent sensing platform, have become increasingly
significant in a variety of fields due to their ability to capture high-resolution images.
Object detection based on UAV images, which aims to detect object instances of predefined
categories, has become a popular research topic. However, unlike objects in natural scene
datasets such as COCO [1], the objects in UAV images are characterized by large numbers
with complex backgrounds. Most of these objects are small in size (Figure 1), which
significantly increases the difficulty of object detection in UAV images. Meanwhile, UAV
hardware is often resource-constrained, leading to an urgent need for lightweight models
for fast inference. Accurate and fast object detection is a typical problem encountered in
the application of UAV images.
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Figure 1. A visualization of objects in a sample image from VisDrone2019 (classical UAV dataset),
and a comparison of objects in the UAV image and COCO datasets. The number of objects in each
VisDrone2019 sample is uniformly distributed between 10 and 300, while the number of objects in
each COCO sample is mostly less than 20. The percentage of small objects (with a ratio of 0.05 to the
entire background) in VisDrone is up to 72.45%.

A single-shot multibox detector (SSD), which combines the regression idea of YOLO
and the anchor mechanism of Faster R-CNN to perform regression in multi-scale feature
maps, demonstrated promising performance in multi-scale object detection tasks, both in
terms of efficiency and accuracy [2]. For multi-scale feature maps, the shallow feature is
used to detect small objects, while the deep layer feature is utilized to detect large objects.
This strategy improves detection accuracy because small objects retain sufficient spatial
information in shallow layers, while large objects are recognized and located by deep layer
features with large receptive fields. In conclusion, the SSD showed potential in multi-scale
object detection tasks [3].

However, each layer of multi-scale feature maps is individually responsible for de-
tecting its corresponding size object, which leads to the poor performance of the SSD in
detecting dense small objects. One reason is that the features of small objects generated
by Conv4-3 lack sufficient semantic information. Additionally, small objects also heavily
rely on contextual information. Aiming to address the aforementioned problems, various
strategies and methods have been explored. A feature fusion single-shot multibox detector
(FSSD) extracts features from different layers and concatenates them together, followed
by down-sampling some blocks to generate a feature pyramid [4]. Furthermore, attention
mechanisms are introduced into the SSD structure. For instance, an attention and feature
fusion SSD (AF-SSD) uses the attention mechanism to enhance or suppress the channel
dimension of the feature [5]. Similarly, an improved SSD network employs a hybrid atten-
tion unit and focal loss to improve the imbalance of positive and negative samples [6]. In
UAV imagery, the target typically constitutes a minor fraction of the foreground. Extensive
computation of the entire foreground and background by the SSD using dense detection
heads significantly impacts the efficiency and real-time capabilities of the detection process.

Spatial sparse convolution (SSC) [7] only performs convolution on sparse regions via
a mask, which represents a promising alternative for increasing the speed of training and
testing. SSC was first applied for object detection tasks based on 3D data, such as LIDAR
or RGB-D data [8]. Detection heads must handle numerous bounding boxes, especially
in one-stage methods, which are generated by general 2D image detection algorithms.
Several approaches have recently used SSC as a detection head to save computation costs
and increase efficiency. For instance, QueryDet based on cascade sparse query initially
predicts the coarse location of objects on low-resolution feature maps and then guides
the high-resolution feature maps to infer the accuracy of the location based on this coarse
location [9]. A fine-grained dynamic router provides three kinds of different scale features
for each detection head and adopts SSC to release the efficiency of fine dynamic routers [10].
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The above study established a meaningful foreground by setting a fixed mask ratio, which
reduces the number of parameters and the number of floating-point operations. However,
a fixed mask ratio ignores the fact that the size of the foreground region varies with the
flight altitude and viewing angle, reducing the flexibility of the network.

An SSD is leveraged in this paper, and a novel model, namely a multi-scale feature
fusion and context-enhanced spatial sparse convolution SSD (MFFCESSC-5SD), is proposed
to facilitate effective object detection in UAV images. First, a multi-scale feature fusion
(MFF) scheme is defined to project and concatenate features obtained from different scales
followed by a batch normalization (BN). Self-attention units (SAUs) are used to capture the
internal correlation between features and suppress the effect of background noise while
obtaining global contextual information. Then, down-sampling and horizontal connection
are applied to generate a new feature pyramid, which is then fed to the detection heads.
Second, context-enhanced spatial sparse convolution (CESSC) is developed to optimize the
detection heads and enhance meaningful areas within the foreground, which comprises
context-enhanced group normalization (CE-GN) and an optimal mask estimation mecha-
nism based on ground-truth labeling. MFF merges the local detailed and global semantic
features to confirm the detection of small objects in UAV images, significantly improving
detection accuracy. Meanwhile, CESSC aims to optimize the detection heads in different
layers and integrate focal and context-enhanced information via limiting computations by
only performing convolution on sparse regions. Therefore, the MFFCESSC-SSD can reach a
successful balance between accuracy and efficiency.

The MFFCESSC-SSD is evaluated on VisDrone2019 datasets. The result demonstrates
the effectiveness of the proposed approach. This method is further extended to practical de-
tection tasks, such as identifying rodents in grassland based on UAV images, demonstrating
the superiority of the proposed approach in dealing with small objects in vision tasks.

The contributions of the current study are listed as follows:

(1) A multi-scale feature fusion scheme is designed based on the feature maps of an
SSD (i.e., MFF) to add global semantic features to the shallow feature maps, while
context mining and self-attentive learning are integrated into an SAU to obtain global
contextual information.

(2) Context-enhanced spatial sparse convolution (i.e., CESSC) is performed to reinforce
global contextual information and enhance focal features, while a dynamic mask ratio
mechanism is proposed that can be automatically updated based on the information
of the feature layer.

2. Related Work
2.1. Object Detection in UAV Image

The field of target detection has seen significant advancements; in particular, convolu-
tional neural networks (CNNs) have surpassed traditional object detection methods. CNN-
based object detection schemes have been dominated by anchor-based detectors, which can
generally be divided into one-stage object detection algorithms based on regression analy-
sis [11-14] and two-stage object detection algorithms based on region suggestion [15-17].
One-stage methods simultaneously complete the classification and localization tasks, mak-
ing them more efficient than two-stage methods. Meanwhile, two-stage methods refine
anchors several times, generating more accurate results than the former, but the training
process is more complex and time-consuming [18]. These algorithms utilize the topmost
layer of a CNN to recognize objects at multiple scales, which imposes a great burden for a
single layer.

Due to the large variations in object size in UAV images, building feature pyramids
based on image pyramids is a basic solution. By featuring each level of an image pyramid,
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online hard example mining (OHEM) produces a multi-scale feature representation in
which all levels have rich semantic features, including the high-resolution ones [19]. How-
ever, in real applications, this approach is impractical because of its long inference time [20].
The SSD is one of the first attempts employing ConvNets to produce a feature pyramid,
which achieves faster detection than other mainstream object detection methods [2]. Re-
cently, numerous studies have optimized feature pyramid networks, allowing them to
outperform other methods in the field of target detection based on UAV images [21,22].

In order to mitigate the interference caused by complex backgrounds in UAV images,
attention mechanisms are widely used in detection tasks. One notable application of at-
tention mechanisms in UAV target detection is in the development of transformer-based
models, such as the foreground enhancement attention Swin transformer network (FEA-
Swin), which integrates contextual information into the Swin transformer backbone to
improve the accuracy of dense object detection in UAV images [23]. Speeded up robust
features (SURFs) is a proposed architecture for feature selection using foveated images
that is guided by visual attention tasks and that reduces the processing time required to
perform these tasks [24]. The UAV-YOLOv8 model incorporates an attention mechanism
called BiFormer to optimize the backbone network, enhancing the model’s focus on critical
information and improving the detection of small objects in UAV aerial photography sce-
narios [25]. Similarly, the weather-domain transfer-based attention YOLO model employs
an attention mechanism to improve the detection and classification of insulator defects in
UAV images, demonstrating the versatility of attention mechanisms in various detection
tasks [26].

Overall, the integration of attention mechanisms in UAV target detection models has
enhanced detection accuracy and efficiency across various applications and environments.

2.2. Multi-Scale Feature Fusion

Effectively representing and fusing multi-scale features is a major challenge in object
detection. Feature pyramid networks (FPNs) build a feature fusion architecture via merging
a top—down pathway and lateral connection, combining semantic features and detail
information [27]. Scale transformer object networks utilize a scale-transfer layer to obtain
shallow features while using a pooling layer to generate feature maps with a large receptive
field. These features are directly embedded into the basic detector [28]. The multi-level
feature pyramid network (M2Det) [29] leverages a U-shaped module to construct feature
pyramids. Efficient object detection (EfficientDet) [30] designs a bi-directional feature
pyramid network with cross-scale connection, which reveals that a normalized multi-scale
feature fusion approach can achieve a better accuracy and efficiency trade-off.

2.3. Detail of Spatial Sparse Convolution

Spatial sparse convolution involves using a spatial mask to distinguish between
‘important’ and “unimportant’ regions in the feature maps, assigning a value of 0 to the
latter and 1 to the former [31]. The view of UAVs is large, and the foreground containing
the target occupies a small part of the entire image. UAV images are inherently a type of
spatially non-intensive data, and spatial sparse convolution has been shown to improve
the efficiency of processing such data [32]. Given a feature map of size C x H x W, SSC
performs convolution using a shared kernel with dimensions of C x 3 x 3. The convolution
result is a matrix with dimensions of 1 x H x W which can then be further normalized by
a mask matrix. Only those positions with value 1 in the mask matrix will be convolved
in the next step. Nevertheless, the mask matrix is derived from a mask ratio r € [0,1]
according to Gumbel-Softmax [33]. Therefore, the value of the mask ratio determines the
efficiency of SSC. Context-enhanced adaptive sparse convolution (CEASC) [34] proposes an
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adaptive multilayer masking scheme to introduce a mask network for each head, replacing
the convolution layer with an SC layer. These methods typically perform inference on one
feature map multiple times, limiting their applications on UAV platforms.

3. Method

As shown in Figure 2, ResNet-50 with a residual structure is applied to replace the
VGG backbone network in the conventional SSD. ResNet uses skip connections to learn
more complex features without degradation and has been shown to improve detection
accuracy, especially in challenging scenarios such as detecting small objects or objects with
complex backgrounds [35]. MFF aims to fuse feature maps from different layers by applying
a lightweight and efficient structure and then generating an FPN. According to the previous
study, feature maps with a spatial size smaller than 10 x 10 have limited information for
application. Therefore, three different feature layers are selected for concatenation, and the
corresponding feature sizes are 38 x 38,19 x 19, and 10 x 10. CESSC integrates regions of
interest with global context through spatial sparse convolution and group normalization.
An optimal mask estimation mechanism based on ground-truth labeling is designed to
control the activation ratio.
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Comv.8 l 5 ™~ _» Head Global Feature — . E
1x 1x 256 - Gi —— assification %
Conv 7 P7/* » Head { CESC i §
3x ?X 256 * : H; I GT T Regression %

: * — 5

Conv_4 P4 / ly. Head Optimal Mask Ratio [%
91x 9x 512 e e = ~ g
? R Context-Enhanced Sparse Conv (CESC) N 2
Conv 3 / G; .8
8 385 51 2 >lead /%O g
J 3x3 =
Xij (O—> Sparse CE-GN ® M; ; g
: Conv Z

mam  3x3 Conv Kemel\\\

@ Concatenation

i SR

\
\
I
Conv_5 ! Conv+BN-+ReLU
i
| ’/' @ Addition
Camw 2 ! @ Multiplication
Conv 3 -~ g g >N
38x 38x 512 / Self-attention Unit (SAU) A\

ResNet-50 backbonge / Bilinear|
Interp

—_—

Input image 300x 300

Figure 2. The MFFCESSC-SSD framework based on the SSD (highlighted in green). MFF aims to
utilize information from different feature maps and suppress the impact of background noise by
using AU blocks; CESSC replaces the detection head in each FPN layer by using a mask feature H;

and a global feature G;. The mask ratio of H; is a spatial sparse mask generated from the feature
statistics for each layer.

3.1. Multi-Scale Feature Fusion Model

First, bilinear interpolation is used to up-sample the feature maps with sizes smaller
than 38 x 38. Convl x 1 is then applied to every feature map to reduce the feature
dimension. Afterward, batch normalization (BN) and shallow layers (ReLU) are utilized
to accelerate the learning speed of the model and alleviate gradient vanishing. The three
feature maps are concatenated with the same size in the spatial dimension, and SAU blocks
are applied to guide the model to focus on objects in complex backgrounds.
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In SAU blocks, the given feature map is F; € RH*W*Ck from the i-th layer of the
FPN, where Cg, H, and W refer to the channel size, height, and width of the source feature
maps, respectively. F; is transformed into queries Q = F;W,, keys K = F;W}, and values
V = F;W, by embedding the matrices (W,;, Wi, W;). Each embedding matrix is generated
by convl x 1. Notably, the key is encoded using a k x k kernel so that the local contextual
information between neighbors can be obtained by Equation (1).

R=Kx*xQ 1)

The global weighted feature mapping matrix is computed by applying convolutions
and the Softmax function to local contextual information, and the formula is expressed as

Equation (2).
eRij
HxW R;;’
Ej:ﬁ e

A= i,j=123...HxW ()
where A; ; represents the elements of the i-th row and j-th column, all of which make up
the global weighted feature matrix A.

V is subjected to matrix multiplication with matrix A to obtain a weighted summation
across all positions within the same feature map. Subsequently, the resultant matrix
multiplication is added to the original series of features to produce the output F' of the
SAUs, as described in Equation (3).

F =F+AVT (3)

The features F’ extracted from all SAUs undergo a feature fusion process (as shown in
Equation (4)). To address the issue of exponential growth in magnitude, a non-parametric
averaging operation is employed, which facilitates the derivation of the final fused
feature layer.

R A S+ 5
3 /
where the i-th layer is comparatively shallower than the i + 1-th layer and the i + 2-th layer,

X; ien—1 @)

and the fl.l *1 is employed to decrease the number of channels.

The key is encoded using a k x k kernel to address the issue of limited receptive fields
in convolutional operations, effectively capturing local contextual information. Concur-
rently, the self-attention mechanism within each SAU retains the capacity to acquire global
contextual information, a characteristic of traditional self-attention, thereby enhancing
visual representation. Meanwhile, this study integrates the output of the SAUs into the
sparse convolution operation (F' = G;) to mitigate the lack of contextual information
associated with convolving only the foreground of a UAV image.

3.2. Context-Enhanced Spatial Sparse Convolution

As displayed in Figure 1, global contextual information G; from the SAUs is introduced
to compensate for the degradation of recognition accuracy due to sparse convolution. Then,
CESSC is performed, which takes the feature map X; ;, the mask matrix H;, and the global
feature G; as input, where j indicates the j-th SSC layer. H; € {0, 1}1XHXW is generated
and formulated according to Equation (5):

H Sigmoid(@) > 0.5, For training 5)
! S; >0, For inference
where S; € RIH*W 5 a soft feature generated by convolving X;, and &1, e, € RP*HXW

refer to two Gaussian random noises. As shown in Equation (5), only the region with a
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mask value of 1 is involved in convolutions, thereby lowering the total computational
expense. During inference, the sparsity of Hi is determined by a mask ratio ¢ € [0,1],
which has often been manually set to be higher than 0.9 in recent studies. Considering the
different flight altitudes and application scenarios of UAVs, the percentage of meaningful
foregrounds in the image varies greatly, and the fixed mask ratio leads to an increase in
floating-point operations, while dynamic mask ratios can optimize computational resources.
Therefore, Equation (6) is employed to estimate the optimal mask ratio.
_ _Epx(G)
7= Allpx(C;) ©)

where C € R"*@ix¢ is the ground-truth classification result; Fpx(C;) and Allpx(C;) indi-
cate the number of pixels belonging to the foreground and that of all pixels, respectively.

The mean value and standard deviation of G; are introduced to normalize the feature
map after applying SSC to X; ;. The context-enhanced feature M; ; is defined by context-
enhanced group normalization (CE-GN), as expressed in Equation (7).

L;; — mean|G;]

Mij = kX =G

+b (7)
where L; ; denotes the output after applying SSC; mean|.] and std|[.] denote the mean and
standard deviation, respectively; and k and b are learnable parameters. By incorporating the
global feature G;, CESSC can better understand the spatial relationships and interactions
between objects, leading to improved performance.

In response to the high proportion of small objects in UAV images, (1 — p)” is further
added to the cross-entropy, and focal loss (Equation (8)) is defined to guide the algorithm
to focus more on positive targets than on backgrounds.

FL(p) = —a(1—p)"log(p) 8)

where p denotes the predicted probability, v € [0, 5] is the focusing parameter used to adjust
the rate of change in the weighting factors (1 — p)”, and a« € [0,1] is a hyperparameter
balancing the contribution of positive and negative samples to the loss.

4. Experiments

First, extensive ablation studies on the object detection task using the VisDrone2019
dataset are conducted to compare the performance of the MFFCESSC-SSD with that of
the conventional SSD in terms of accuracy and efficiency and to test the effect of each
component. In addition, using this dataset, the MFFCESSC-SSD is compared against
other algorithms such as Cascade R-CNN, CenterNet, SyNet, and so on to evaluate the
improvement in object detection. Experiments are conducted on the Aerial Rat-Hole dataset
(ARH2000), which was acquired by M200 UAVs (D]I-Innovations, Shenzhen, China), for
April 2020 and April 2021 to further validate the MFFCESSC-SSD framework.

4.1. Datasets and Evaluation Indicators

VisDrone2019 is a conventional dataset widely used to evaluate algorithms of multi-
category object detection based on UAV images. The dataset contains 6471 training images
and 548 testing images with a resolution of 1360 x 765 from 10 classes. In the VisDrone2019
dataset, the scales of objects are diverse, and the size of most objects is less than 32 x 32.

ARH?2000 is established in this study for monitoring mouse pests. We collected aerial
images of five sample plots with different densities of effective gerbil holes in April 2020
and April 2021. We used quadrotor M200 UAVs (D]I-Innovations, Shenzhen, China) as
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the data acquisition platform and selected clear and cloudless days from 12:00 to 14:00 to
minimize the impact of shadows on the classification results. The altitude was set to 30 m,
and the forward and side overlaps were set to 70% and 80%, respectively. A total of 445
images were collected, with each sample plot having 89 images of size 5280 pixels x 3956
pixels. We used Pix4Dmapper 4.5.6, a professional drone mapping software, to correct
and mosaic the images and generate digital orthophoto maps (DOMs) with a resolution
of 0.4 cm. The mouse holes (black patches with specific textures and shapes) in the UAV
images are carefully labeled with a labeling tool and then cropped to 300 x 300 to obtain
the dataset. This dataset comprises 1728 images for training and 432 images for testing. A
considerable amount of black patches in the data, which were formed by withered grass
shadows, increases the difficulty of identifying mouse holes.

Average precision (AP) and mean average precision (mAP) are used as evaluation
indicators of accuracy, and FPS (frames per second) and model parameters are indicators
of efficiency.

4.2. Implementation Details

The network is implemented based on PyTorch 1.7 The network learning rate is set
to 0.001, momentum is set to 0.9, and the learning rate decay coefficient is set to 0.1. For
VisDrone2019, one image is split into 300 x 300 and independently processed. All models
are pretrained on ImageNet to increase efficiency, and the BN layers in the backbone
network are frozen during training. In addition, focal loss is introduced to guide the
models to focus on small objects. The MFFCESSC-SSD network and other baseline models
are trained on NVIDIA RTX 3060Ti GPU.

4.3. Ablation Study

First, every component of MFFCESSC-5SD is evaluated by adopting the SSD as the
baseline in all ablation experiments. Table 1 shows that the mAP increases by 3.3% and
2.8% on VisDrone2019 and ARH2000, respectively, by applying the ResNet as a backbone.
However, incorporating the enormous parameters of ResNet, the inference speed signif-
icantly decreases by 32.7% and 25.3%. The proposed MFF component adds multi-scale
semantic features to shallow feature maps and mitigates the impact of the background,
which effectively improves the detection accuracy of the model for small objects. Therefore,
combining multi-scale feature fusion with an attention mechanism increases the mAP by
13.5% and 5.5% on VisDrone2019 and ARH2000, respectively, while further decreasing the
inference speed. The CESSC component reduces the parameters by 39.2% on VisDrone2019
and 52.5% on ARH2000 by adopting global contextual information and SC. Due to the
sparsity of targets in the ARH2000 dataset, CESSC more significantly reduces the number
of parameters and speeds up inference The CE-GN layer can generate contextual features
and global correlations. Thus, the CESSC component further boosts the mAP by 8.7%
and 11.2%. Focal loss increases the importance of small objects in the loss function of
the MFFCESSC-SSD, and the mAP is slightly boosted by 6.4% and 1.0% on VisDrone2019
and ARH2000, respectively. The introduction of focal loss leads to a small decrease in the
model’s inference speed due to the fact that the loss function guides the optimization pro-
cess of the model, and more complex loss functions tend to involve additional parameters
or computations.
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Table 1. Ablation studies on VisDrone2019 and ARH2000.

Dataset Baseline ResNet MFF CESSC 1;;:::: mAP (%) Parameters/MBFPS/s

v 19.9 229 55

v v 25.2 39.8 37

VisDrone2019 v v v 28.6 46.4 31
v v v v 31.1 28.2 57

e Ve v v Ve 33.1 28.4 56

v 78.9 229 138

v v 81.7 39.8 103

ARH2000 v v v 84.2 46.4 92
v v v v 93.6 222 176

e ve v v Ve 94.3 22.3 176

4.3.1. Effect of MFF

Figure 3 illustrates the thermal comparison map depicting the UAV image both before
and after MFF processing. Initially, the feature information of targets is obscured by signifi-
cant noise and background data. However, after applying MFF, the feature information
is extracted with a much higher accuracy, which indicates that MFF successfully reduced
noise and background interference.

(a) Original image (b) Before MFF (c) After MFF

Figure 3. Visualized thermal comparison of UAV images before and after MFF processing.

VisDrone2019 contains numerous small targets. These targets occupy only a few pixels
and are characterized by similarity between categories, which leads to poor detection of
small targets. The MFF component fuses deep features into shallow feature maps, which
increases the accuracy of the model by 5.4%. ARH2000 contains only one type of target
(rat hole). The shallow features of the targets, such as shape, color, and texture, are highly
prominent. The improved detector achieves an accuracy of 86.2% and runs 3.8 times faster
than on the former dataset. The addition of MFF increases the accuracy by 4.5%, which is
less than on VisDrone2019. Figure 4 provides a visualization of the two UAV datasets.

4.3.2. Effect of CESSC

SSC only processes convolution in the foreground covered by the mask ratio H;, which
sharply decreases model complexity. Compared to ARH2000, VisDrone2019 has more
targets. Therefore, when CESSC is used in the detection head, the inference accelerates
by 91.3% and 83.8% on the former and latter datasets, respectively. A precise mask ratio,
combined with CE-GN in enhancing the global context, compensates for the loss induced
by extracting only foreground features due to SSC. Therefore, the CESSC component
further promotes detection accuracy with the two datasets. The above experimental results
demonstrate the capability of CESSC to balance accuracy and efficiency.
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ARH2000
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mousehole mousehole

Validation set image SSD SSD+MFF

Figure 4. Visualization of detection results. Yellow ovals highlight small objects in validation set,
which cannot be detected by SSD. By adding MFF to SSD, model generated denser detection boxes
on VisDrone2019 and successfully detected small objects in two datasets.

4.4. Contrast Experiments

The MFFCESSC-SSD is compared with other conventional detectors on VisDrone2019
to further verify the performance of the proposed network, and the results are shown in
Table 2. Earlier studies based on VisDrone2019 focused on improving accuracy, includ-
ing Cascade region-based convolutional neural networks (Cascade R-CNN) [36], Center-
Net [36], Synergistic Network (SyNet) [37], and Transformer Prediction Head YOLOvV5
(TPH-YOLOV5) [38]. Among them, SyNet is a synergistic architecture that combines Cas-
cade R-CNN and CenterNet using a weighted box. Therefore, SyNet obtains superior
results in terms of mAP. YOLO with CSPDarknet as its backbone is widely used and proven
to be effective for UAV image object detection. The methods’ accuracy increases by 31% and
they achieve 16 FPSs with an image size of 416 x 416, which is still below the threshold of
30 FPSs for real-time detection. Notably, model performance is improved with the increase
in input size. CESAC and the Self-Attention Guidance and Multi-Scale Feature Fusion-
Based Network (SGMFNet) obtain a detection accuracy of 31.7% with high-resolution
images. However, the inference speed is still insufficient to meet the requirements of
real-time processing. The visualization of the detection results of each algorithm on the
VisDrone2019 dataset are shown in Figure 5.

Table 2. Comparison results of different algorithms using VisDrone2019.

Method Base Detector Image Size Backbone mAP (%) FPS/s
Cascade R-CNN [36] R-CNN 960 x 540 ResNet-50 24.7 -
CenterNet [36] CornerNet 512 x 512 Hourglass-104 14.3 -
SyNet [37] R-CNN 960 x 540 ResNet-50 26.2 -
TPH-YOLOVS5 [38] YOLOvV5 1536 x 1152 CSPDarknet53 31.0 -
Improved YOLOV4 [39] YOLOv4 416 x 416 CSPDarknet 27.0 16
CEASC [34] GFL V1 1333 x 800 ResNet18 28.7 22
SGMFNet [40] - 1536 x 1536 CSPDarkNet53 31.7 23
SSD - 960 x 540 ResNet-50 19.9 55
MFFCESSC-SSD (ours) SSD 960 x 540 ResNet-50 33.1 56

Cascade R-CNN, CenterNet, SyNet, TPH-YOLOV5, Improved YOLOv4, CEASC, and SGMFNet are all influential
algorithms in the field of UAV image recognition proposed in recent years.

104



Appl. Sci. 2025, 15,924

Improve YOLOv4

SGMFNet SSD MFFCESC-SSD

Figure 5. Comparison of detection results of different algorithms using VisDrone2019 dataset. The
green boxes are the detected targets, and the MFFCESSC-SSD has the lowest leakage rate.

The SSD with ResNet as its backbone is faster than the above object detection algo-
rithms, but its mAP is only 19.9%. The MFFCESSC-SSD outperforms the conventional
SSD by 13.2% in terms of mAP while having limited parameters. The MFFCESSC-SSD
is 1.4% more accurate than SGMFNet and runs 1.41 times faster. The contrast experi-
ments reveal that the MFFCESSC-SSD is a competitive algorithm in terms of accuracy and
inference speed.

5. Conclusions

A novel and efficient model, namely the MFFCESSC-SSD, is designed in this study
to perform object detection in UAV images. A multi-scale feature fusion (MFF) scheme is
initially applied to add semantic features to the shallow feature maps and suppress the
impact of background noise using self-attention unit blocks. Notably, context mining is
integrated into the SAUs to obtain global contextual information. The experiments showed
that MFF successfully reduces noise and background interference. CESSC with CE-GN
and SSC, which enhances contextual relationships while reducing module complexity, is
designed. A dynamic mask ratio mechanism is proposed that can be automatically updated
based on the information of the feature layer. Furthermore, CESSC introduces focal loss
to address scale changes. As demonstrated in our experiments, our proposed approach
yields the highest mAPC and FPS with both VisDrone and ARH2000 when compared to
the most recently proposed state-of-the-art object detection algorithms. In conclusion, our
approach opens up a new dimension for object detection, i.e., efficient target detection in
2D images using sparse convolution. We hope that this dimension will provide insights for
object detection in UAV images for other applications.
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Abstract: Defect detection is still challenging to apply in reality because the goal of the
entire classification assignment is to identify the exact type and location of every problem
in an image. Since defect detection is a task that includes location and categorization, it
is difficult to take both accuracy factors into account when designing related solutions.
Flaw detection deployment requires a unique detection dataset that is accurately annotated.
Producing steel free of flaws is crucial, particularly in large production systems. Thus,
in this study, we proposed a novel deep learning-based flaw detection system with an
industrial focus on automated steel surface defect identification. To create processed images
from raw steel surface images, a novel method was applied. A new deep learning model
called the Parallel Attention—-Residual CNN (PARC) model was constructed to extract
deep features concurrently by training residual structures and attention. The Iterative
Neighborhood Component Analysis (INCA) technique was chosen for distinguishing
features to lower the computational cost. The classification assessed the SVM method using
a convincing dataset (Severstal: Steel Defect Detection). The accuracy in both the binary
and multi-class classification tests was above 90%. Moreover, using the same dataset, the
suggested model was contrasted with pre-existing models.

Keywords: steel surface defects; PARC model; classification

1. Introduction

Improving productivity and preserving product quality are crucial in production
systems [1]. One of the most crucial aspects of quality control is the detection of surface
defects. Traditional detection techniques rely on expert inspection for control, which has
disadvantages such as time wastage, poor productivity, and poor reliability [2]. Specifically,
automatic surface defect detection is becoming increasingly important in steel industries
having extensive production fields. Due to heat treatment, non-metallic inclusion, corrosion,
and emulsification, flat-rolled steel can develop flaws such as cracks, pitted surfaces,
scratches, and patches [3]. Evaluating defect geometry and generating a sizable sample
of statistical data is crucial for improving the surface defect process. As a consequence,
automated detection and classification systems can prevent unforeseen equipment failure.

Automatic surface defect detection has frequently been accomplished using traditional
machine learning and deep learning-based techniques [4]. Conventional classification
approaches including model-based, statistical-based, and spectral-based methods typically
rely on statistical data and visual features. These techniques, such as thresholding, Sobel,
Local Binary Patterns (LBPs), Fourier transform, and Canny’s algorithm, are used to convert
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features obtained manually, but factors including the background, lighting, and camera
angle directly impact the effectiveness of defect identification [5]. Additionally, these
techniques have limitations when used on various surfaces, making them unsuitable for
use in practical situations [6]. Deep learning-based methods are now used to improve
defect-detection capabilities in computer vision [7]. When using deep learning techniques,
the algorithm can function by producing prompt and precise predictions even in the
absence of supervision. Thus, labor and time saving by detecting automatically in the
steel factories have made important advantages in comparison with manual control by
technicians and engineers [8].

2. Related Studies

The number of studies using machine learning to identify surface defects of steel
has increased during the past few years. Martins et al. [9] performed automatic surface
fault detection of rolled steel using artificial neural networks with image processing. The
classification of certain defects, including clamps, holes, and welding, was detected by
the image analysis Hough Transform method, while other complicated defects, such as
exfoliation, oxidation, and waveform, were detected by applying Self-Organizing Maps and
Principal Component Analysis to extract features. The system achieved an overall accuracy
of 87% after managing real-world datasets. Li et al. [10] designed a feature fusion-based
method to improve steel surface defect detection in their proposed model. In this method, a
multiscale feature extraction (MSFE) strategy is adopted from a YOLO-based model. With
the MSFE algorithm, features with different scales are extracted from multidimensional
kernels of different convolution layers. An efficient feature fusion technique is then used
to maximize feature discriminability. This model, developed on the publicly available
NEU-DET dataset, achieved an optimum accuracy of 73.08%. Pang and Tan [11] developed
a graph neural network-based method for detecting steel surface defects. They also used a
novel attention mechanism called HDmA in this approach. This strategy was also successful
in detecting defects in different fields of view. This method was tested on NEU-DET and
GC-10 datasets and achieved 79.04% and 66.93% accuracy, respectively. Zhang et al. [12]
presented a model based on YOLO v5 for detecting defects on steel surfaces. A multi-
feature fusion technique, Res2Attention blocks, was used to improve the performance of
the model. Model performance was tested on the NEU-DET and GC10-DET datasets. The
classification accuracies were 78.5% and 67.3%, respectively. A vision-based automatic
detection method with three-section defect detection, region extraction, and industrial
liquid quantification was proposed by Zhao et al. [13]. They discovered that industrial
liquids were measured with an accuracy rate of 90%. The accuracy rate of the recognition
of cracks and scratches was obtained as 91% or more. By creating a dataset with six defects:
scars, scratches, inclusions, burrs, seams, and iron scales. Li et al. [14] explored the surface
defect recognition of steel strips by converting You Only Look Once (YOLO) completely
into convolutional layers. The rates of detection, recall, and mAP were 99%, 95.86%, and
97.55%, respectively. Fu et al. [15] applied the SqueezeNet model by pre-training on the
dataset of ImageNet for the classification of six different defects, which are rolled-in scales,
inclusions, patches, scratches, crazing, and pitted surfaces. They came to the conclusion
that the learned features significantly outperformed the hand-crafted ones for datasets that
were heterogeneous and unseen. By using the strong time-sequenced properties of defects,
Liu et al. [16] studied steel defect detection periodically by using a convolutional neural
network (CNN) and a long short-term memory (LSTM) to detect roll mark defects. After
extracting the defect features of samples with CNN, vectors were added to the long- and
short-term memory to detect defects. As a result, the proposed method reached 81.9% of the
performance of defect detection and outperformed the CNN approach. The performance
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of the system was raised to a rate of 6.2% by enhancing the attention mechanism. Liu
et al. [17] utilized the dataset of NEU-CLS to improve the concurrent convolutional neural
network (ConCNN) with light weight by using different scales of samples. The method’s
accuracy performance was found to be 98.89% with a duration of 5.58 ms. The classification
pre-training of surface defects was conducted using VGG19 by Guan et al. [18]. Feature
extraction from the various levels of the defect weight model was performed using VGG19.
Following that, SSIM and a Decision Tree were used to estimate the structure of VGG19 and
the quality of the feature picture. The experiment used a dataset from Northeast University
with six different types of steel surface defects, crazing, inclusions, patches, pitted surfaces,
rolled-in scales, and scratches, each with 300 samples and a total of 1800 grayscale images.
Following 23,000 steps, it was discovered that the VSD model’s validation rate was 89.86%
higher than that of ResNet and VGG19. By using U-net and Deep Residual techniques for
the classification of four different defects, Amin and Akhter [19] concluded that their system
performances were 0.731 and 0.543 in terms of the Dice coefficient accuracy, respectively.
In total, 12,568 training images and 1801 test images were created with a 1600 x 256 x 1
image size. A privacy dataset was explored by Zhao et al. [3] utilizing enhanced Faster
R-CNN. By enhancing the conventional Faster R-CNN algorithm, the network structure of
the Faster R-CNN was rebuilt. Following the testing, upgraded Faster R-CNN was proven
to have a greater mean average accuracy performance for crazing, inclusions, patches,
rolled-in scales, and pitted surface defect types with the following values of 0.501, 0.791,
0.792, 0.905, and 0.649, respectively.

After a detailed search of datasets studied at the academic level, it was understood that
studies of classification are limited to surface defect detection and classification. However,
surface flaws in real-world practices often affect only a small portion of the overall steel
surface. As a result, using such data makes success more challenging. Because the Steel
Surface Defect Database is a difficult dataset, a deep learning-based strategy that will
perform well with it is used in this work.

3. Literature Gap, Motivation, and Contributions

To summarize the literature in general, in terms of deep learning, pre-trained models or
lightweight CNN models have been used to classify defects on steel surfaces. Additionally,
no frequency—time conversion algorithm has been used to increase the discrimination
in the images. Looking at the literature, it is evident that many deep learning-based
studies have been conducted to minimize defects in steel production. In studies focusing
on the classification problem, the classification accuracy ranged between 80% and 90%.
Especially in YOLO-based fault detection studies, the classification accuracy performance
was between 65% and 75%. When these accuracy values are considered, it is obvious that
the error performance of steel surfaces is still open to improvement. In a steel mill with a
high production capacity, even a 2-3% increase in the defect detection performance will
significantly improve the production quality. Therefore, there is a serious need for a deep
learning-based application that detects steel surface defects with high performance.

This study was carried out to distinguish and classify defects on steel surfaces, as a
small improvement in defect detection in high-capacity steel production will provide a
large number of defect-free steel products. The proposed approach is designed in four
main stages. The first stage is the processing of raw images. The second stage is responsible
for extracting features from the Parallel Attention—Residual CNN (PARC) model. The third
stage involves feature selection with the Iterative Neighborhood Component Analysis
(INCA) algorithm. The final stage includes classification with a powerful algorithm. The
proposed approach has three important contributions, as outlined below.
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e  Attention and residual structures in the CNN model were added to the PARC model
and trained in parallel. This increased the representation power of the features ex-
tracted from the PARC model. Therefore, the classification performance was improved.
Although the parallel integration of attention and residual blocks has been studied
in previous works, our proposed PARC architecture introduces a distinct combina-
tion specifically tailored for defect recognition in steel surface images. To validate
its superiority, we conducted comparative experiments against baseline CNNs with
only residual blocks, only attention modules, and sequential Attention-Residual de-
signs. The results demonstrate that PARC achieves a consistently higher accuracy and
robustness across both multi-class and binary classification tasks.

e Raw images were processed with a new approach. In this approach, 1D stack data
are used instead of a signal to obtain spectrogram images. For 1D stack data, the
gradient of the raw images was taken and then converted into sequential 1D stack data.
The gradient operation highlighted the differences in pixel values in the image. As a
result, the classification performance is improved with this pre-processing procedure.
Existing methods all use pixel data. In this study, thanks to the transformation of
the image into 1D stack data, it was possible to access the frequency information of
images that form a pattern with each other, such as scratches and cracks. In this case,
it increased the classification performance compared to raw images.

4. Dataset

The suggested methodology was tested using a challenging dataset from the Kaggle
database called Severstal: Steel Defect Detection (2019) [20]. Two tasks involving binary
and multi-class classification used the dataset. Images of steel faults (6666 images) and
images of no defects (5902 images), obtained using specialized imaging equipment to
identify defects, were employed in the binary classification. The multi-class classification
work used 6668 steel defect images with pitted surfaces, crazing, scratches, patches, and
multi-defect class labels. Each sample of the collection was saved as a 1600 x 256 JPG
image. To lessen the hardware requirements for this study, each sample was re-saved in a
size of 200 x 32. Figure 1 shows a few samples for each class.
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Figure 1. Dataset samples of classified shapes with defects: (a) pitted surface, (b) crazing, (c) scratches,
(d) patches, (e) non-defect [21].
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5. Proposed Methodology

The methodology of this study introduces a novel and robust approach to enhance
the classification performance for surface defect detection, consisting of five distinct yet
interconnected stages. Figure 2 shows the representation of the proposed approach. The
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innovative aspect of the approach begins with the pre-processing of raw images, where
a unique method is employed. Unlike traditional image pre-processing techniques, this
study applies a spectrogram algorithm to time series signals derived from images that
contain surface defects. This step transforms 2D image data into a 1D stack by utilizing
pixel values, enabling the extraction of spectrogram images. This novel transformation
provides a powerful representation of pixel variations in defect regions, enhancing the
model’s ability to capture subtle details crucial for classification.
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Figure 2. The framework of the proposed methodology.

In the second stage, the processed spectrogram images are used to train a newly
designed architecture known as the Parallel Attention—Residual CNN (PARC) model.
Figure 3 shows the layer connections of the PARC model. The innovation in this model lies
in its dual use of attention and residual mechanisms within a customized CNN framework,
operating in parallel. Attention mechanisms focus on emphasizing critical areas within
the image, while residual connections allow the preservation of feature information from
earlier layers by passing it forward to subsequent layers. This synergy ensures that vital
details, which may have otherwise been diminished or lost in deep layers, are retained
and utilized, thus improving the learning capability of the network. While state-of-the-art
architectures such as Swin Transformer, EfficientNetV2, and YOLOv7 have demonstrated
remarkable performance across a variety of vision tasks, they are primarily designed as
general-purpose models and often involve high computational costs and large parameter
counts. In contrast, the proposed PARC (Parallel Attention and Residual Convolution)
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model is specifically tailored for steel surface defect recognition, focusing on enhancing
subtle and fine-grained texture variations that are commonly present in such industrial
inspection tasks. The parallel integration of attention and residual mechanisms in PARC
enables it to capture both local defect features and global structural information more
effectively, without significantly increasing the computational complexity. Compared
to Transformer-based models like Swin Transformer, which require large datasets and
extensive training resources to generalize well, PARC achieves a competitive or superior
accuracy with a lightweight and task-optimized architecture. Furthermore, unlike YOLOV7,
which is object-detection-focused and might exhibit overkill or be less efficient for fine-
grained classification tasks, PARC offers a better balance between precision, speed, and
model complexity. Its compact design makes it more suitable for real-time deployment
in edge environments commonly found in industrial inspection systems. Detailed layer
information of the PARC model is given in Table A1 in the Appendix A section.

The third stage focuses on feature extraction from the fully connected (FC) layers of the
PARC model, where deep features are drawn from both the activations and the processed
input data. This stage sets the foundation for the next key novelty: instead of relying solely
on the softmax classifier typically employed in CNN models, the extracted features are
evaluated using a range of highly effective classification algorithms. This offers a fresh
perspective on model training, allowing for a more versatile comparison of classifiers.

In the fourth stage, an efficient feature selection algorithm called INCA is applied.
INCA stands out for its ability to significantly reduce computational costs while simul-
taneously improving classification performance. This step ensures that only the most
relevant and influential features are retained, minimizing the overhead associated with
large datasets and complex models. The Iterative Neighborhood Component Analysis
(INCA) technique offers distinct advantages over more traditional feature selection and
dimensionality reduction methods such as Principal Component Analysis (PCA) and
Minimum Redundancy Maximum Relevance (mRMR).

Unlike PCA, which performs unsupervised dimensionality reduction by projecting
data onto directions of maximum variance regardless of class labels, INCA is a supervised
method that directly optimizes class separation by maximizing the classification accuracy.
This makes INCA particularly effective in tasks where discriminative power is more
important than variance preservation, such as defect detection or fine-grained classification.

Compared to mRMR, which focuses on selecting features that are most relevant to the
target variable while minimizing redundancy between features, INCA iteratively refines the
feature subset based on its impact on classification performance. This iterative refinement
process allows INCA to dynamically adapt to the dataset structure and learn an optimal
feature subset tailored to the classifier used, which often leads to a higher accuracy and
better generalization.

In summary, while PCA and mRMR are powerful and widely used, INCA provides a
more targeted and performance-driven approach to feature selection by integrating label
information and classifier feedback during feature optimization.

Finally, in the fifth and final stage, this study implements seven popular classifica-
tion algorithms, including Decision Tree (DT), Support Vector Machine (SVM), K-Nearest
Neighbor (KNN), Naive Bayes (NB), Linear Discriminant (LD), Subspace KNN, Subspace
Discriminate, and RUSBoosted Trees. Through extensive testing, the SVM algorithm demon-
strated the best performance, highlighting the efficiency and accuracy of this method in
classifying surface defects. This comprehensive methodology not only demonstrates signif-
icant advancements in pre-processing and model design but also introduces innovative
techniques in feature selection and classifier evaluation, making it a substantial contribution
to the field of surface defect detection and classification.
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Figure 3. The layer structure of the proposed PARC model.

6. Images-to-Spectrogram Image Transform

Obtaining image-to-image spectrogram images for surface defect detection offers a
powerful way to leverage frequency information, enhance feature representation, reduce
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noise, and enable the application of advanced analysis techniques, ultimately leading to
more accurate and reliable defect detection.

The primary motivation for using the spectrogram lies in its ability to represent
localized frequency variations over space, analogous to how time—frequency analysis is
used in signal processing. Surface defects, although visually subtle, often introduce local
structural irregularities that manifest as distinct frequency patterns when observed in a
gradient-enhanced 1D representation. By transforming these data into a spectrogram, we
can effectively capture these localized textural anomalies in a way that traditional spatial
or frequency domain techniques might overlook.

Moreover, spectrograms offer a dual representation—combining gradient magnitude
variations with localized frequency content—which enhances the model’s ability to distin-
guish fine-grained defect features. This is particularly beneficial in scenarios where defects
are embedded within noisy or highly textured steel surfaces.

One of the most popular techniques in the field of signal processing is the processing
of signals in the time-frequency domain. The most crucial information reveals how and
when the spectral information of the signals analyzed in the time-frequency domain
changes [22]. In procedures that are linearly time-invariant (LTI), like Fourier transforms,
such information cannot be seen. The optimum method for observing a signal’s spectrum
information in the time—frequency domain is through the use of a spectrogram. The
spectrogram, which employs a sliding window to determine the Fourier transform of
the signal, is often employed in the spectrum analysis of many non-stationary signals,
including biological, voice, music, and seismic data [23].

The graph showing the change in 1D stack data with the gradient applied for each
class is presented in Figure 4. As observed in this figure, the gradient operation yields
different amplitude values depending on the type of surface defect. Particularly in the
non-defect class, the gradient output values are minimal, indicating little change across the
dataset for this class.
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Figure 4. One-dimensional stack data with the gradient operation for each class.

In the final step, spectrogram images were generated from the 1D stack data. The
Hamming window was selected for signal windowing due to its advantages, especially its
narrow main lobe and rapidly decaying side lobes in the frequency domain. These features
help prevent spectral leakage, which can weaken the accuracy of spectral information. A
sample size of 512 was chosen for the window, and the overlapping ratio was set at 0.125.
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This overlap helps reduce data loss in the 1D stack, but it also increases the computational
load required to produce the spectrogram images.

To enhance the clarity of the spectral data, special attention was given to amplitude
values while generating the spectrogram images. A threshold was applied to filter out
points with low amplitude values, as high-amplitude points are generally more reliable
in terms of spectral information. This approach simplifies the images, which is benefi-
cial when using neural network classifiers, as less complex images tend to improve the
classification performance. A 512-point FFT length was applied to ensure consistency.
The resulting spectrogram images for each class are displayed in Figure 5, where distinct
patterns can be observed for each class, demonstrating the effectiveness of this approach
for capturing class-specific spectral features. The colormap viridis option was selected for
spectrogram coloring.

Pitted Surface Crazing Scratches

Patches Multi-class Defect Non-Defect

Figure 5. Conversion samples from raw images to spectrogram images for each class.

Using colormap options like viridis in spectrogram visualization offers several ad-
vantages. Viridis provides perceptual accuracy, as it is designed with evenly spaced color
differences that allow users to distinguish variations in data more easily. It also maintains
readability in monochrome formats, ensuring that important information is preserved even
when printed or viewed in low-resolution settings. The smooth, linear color transitions of
Viridis avoid abrupt shifts, making it easier to interpret differences in intensity or frequency.
Additionally, Viridis ensures that small changes in data are accurately represented, reducing
the risk of misinterpretation, which is particularly important for scientific visualizations.

As shown in Figure 5, there is sudden color darkening or sudden appearance and
disappearance of color lines in all classes except the class with no error. This shows that the
Viridis option is ideal for spectrogram transformation.

The convolution layer of the CNN method intends to extract characteristic features
processing input samples with convolution filters [24]. The mathematical computing of
two functions is described as convolution. By conducting element-wise multiplication
on each element, the convolution computing in the CNN technique implements a filter
or kernel function utilized for the raw data’s transformation into processed data [25,26].
Each window’s output in a shift operation is determined by the total multiplication of the
element information [27,28].

The batch normalization (BN) technique is used to design a more regular convolutional
neural network. Moreover, during training, the CNN extinction gradient becomes more
resistant [29,30].
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In the Rectified Linear Unit layer (ReLU), the full “f(k) = max(0, k)” formula is used
for all inputs as the layer activation function [31,32]. ReLU’s derivative is more appro-
priate and performs faster for algorithms like backpropagation as it is simpler than the
sigmoid function.

The softmax function is typically used for the output in deep learning models [33].
The function converts the class scores from the fully connected layer to probabilistic values
ranging from 0 and 1. The softmax function is denoted by S (aj) in Equations (1) and (2).
It obtains an N-dimensional input vector, then produces a subsequent input vector with
N-dimensional, having values between 0 and 1 [34,35]. Additionally, even though the
softmax function is frequently chosen for the output layer in deep learning models, an
SVM classifier can be preferred [36]. The exponential feature of the softmax function makes
the differences across classes more certain.
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Figure 6 represents the attention module utilized in this research. The gating signal
vector, symbolized by g; , has a wider scale at the feature map of output for ith layer “(x;)”,
determining the focus region for each pixel [37]. Equations (3) and (4) give a computed
output by applying element-wise multiplication.

output = w; X x; 3)

o = 0'<(PT (waxi + nggi + bg) + b(p) 4)

S

1x1x1 conv

® Element-wise multiplication
E] Sigmoid

Figure 6. The illustration for the proposed attention layer.

The linear transformations w and ¢ using the 1 x 1 x 1 dimensional convolution
operator are the bias terms b, and by, respectively. The weights of the attention modules
are adjusted randomly at first when the entire deep architecture is trained from end to
end [38].
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In conventional neural networks, each layer provides information to the next layer.
Each layer enhances the subsequent layer directly for the network having residual blocks,
then advances to layers, which are two to three hops away [39]. In multi-layer networks,
the gradient vanishing problem is decreased by residual blocks. The two significant points
of residual blocks are given below.

- The inclusion of new layers would not harm the model performance because regular-
ization will disregard them if not necessary.

- When incoming layers are convenient, layer weights or kernels are not “0” because of
present regularization. Therefore, the model performance can slightly improve.

The training of the attention mechanism and the residual blocks were applied concur-
rently in parallel in the developed PARC model. The main target is to transfer feature maps
in residual and attention structures into one feature map. Hence, during the training phase,
optimization determines the characteristic values from every two structures obtained from
the feature map.

7. INCA Algorithm

Increased system speed without reducing approach success is the most important aim
of feature selection techniques. The literature on machine learning algorithms has been
enhanced by several feature selection methods [40-42]. Specifically, the feature selection
techniques reduce the computational cost of the deep learning algorithms having a lot
of features. The performance of the feature selection approach on the feature set should
be profoundly assessed [43]. However, in deep learning methods, the application of this
analysis method is not time-saving. While the Minimum Redundancy Maximum Relevance
(mRMR) technique performs better by using a non-parametric feature set, Principal Com-
ponent Analysis and the Linear Discriminant analysis techniques outperform by applying
a linear feature set [44]. For classification problems, current research mostly depends on
feature extraction-based algorithms in terms of feature weight relations [45-47].

The NCA is one of the most popular features of importance-based selection algorithms
since they offer a variety of classification strategies. Additionally, the computational time
for these approaches outperforms the PCA and mRMR algorithms.

Neighborhood Component Analysis (NCA), a method for feature selection and di-
mensionality reduction that is widely used in classification studies, is one of the most
reliable supervised learning approaches for classifying multidimensional data into distinct
classes [48,49]. The classification tasks performed by NCA are carried out with learning
vector optimization criteria related to the categorization accuracy performance of the near-
est neighbor classifier. In particular, a linear projection chosen by NCA maximizes the
projected area’s performance of the nearest neighbor classifier. In NCA, training data with
related class labels are applied to choose the projection that divides the classes effectively in
the detected area. Nevertheless, the NCA makes assumptions about the distribution of each
class, which are not reliable. It offers an equivalent fit to Gaussian mixtures for distribution
modeling. To maximize the objective function F(w) for w, the regularized objective function

is used in Equation (5).
1
F(w)= Y Pi=A (5)

n

where the overall sample size is 1, the value of the probability of ith the specimen is “P;”,
the parameter of regularization is “A”, the dimension of the feature is “p” and the weight
of the feature is “w,”. The weight values for the feature may be very near to “0” in case the
selection of “A” is performed at random. The relevant features have no importance for the

method when weights are very near to zero. Thus, the parameter A has to be arranged.
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Iterative Neighborhood Component Analysis (INCA) holds advantages over Neigh-
borhood Component Analysis (NCA) primarily due to its adaptive feature selection mech-
anism. Unlike NCA, INCA iteratively selects features, allowing it to dynamically adjust
and optimize the learning process by choosing the most relevant features for a given task.
This adaptability enhances the discriminative power, robustness, and generalization per-
formance. By reassessing and modifying feature selections during each iteration, INCA
is better equipped to handle diverse datasets and mitigate the impact of noisy or irrele-
vant features. The flexibility offered by INCA in tailoring its approach to specific dataset
characteristics makes it a promising choice for various machine learning applications.

Choosing the parameter A randomly may not give the best feature selection result.
Here, the most reliable way to select the lambda parameter is to use an optimization algo-
rithm. The Stochastic Gradient Descent (SGD) algorithm provides exemplary performance
in many optimization problems. In this study, the lambda parameter used in INCA was se-
lected with the SGD optimization algorithm. The pseudocode expression of this algorithm
(INCA) is given in Algorithm 1.

Algorithm 1. Pseudocode of the PARC model

Inputs: features from the PARC model, labels,
Output: the selected feature (features_out)

1: features_out = INCA_algorithm (features, labels)
2: begin

3: nca = fscnea (Xtrain, ytrain, ‘sgd’, bestlambda);
4: fori=1toNdo

5 search the best lambda parameter by using the NCA
6 end for i

7 compute feature weights with the best lambda

8 indeces = weights (indices)

9: forj =1 to length (features) do

10: if weights (j) >= threshold

11: append j to the new indices list
12: end if

13: end for j

14: features_out = fea[new_indeces]

15: return features_out

16: end

The parameter N is the number of optimization iterations and is set to 20 (default
value). The threshold value is used to eliminate features including low-weight values.
For the binary and multi-class classification, threshold values were selected as 0.5 and
0.2, respectively.

8. Experimental Studies

The computer used in the experimental studies has a 4 GB graphics card, i7 intel 5500U
processor (Intel, Santa Clara, CA, USA), and 16 GB RAM, and the MATLAB 2021a program
was installed on Windows 11 and used to code the suggested technique. Training the
suggested Parallel Attention—Residual CNN (PARC) model was carried out for multi-class
and binary classification at the first step of the suggested methodology. The epoch value
was chosen as 100 to achieve maximum performance. This ensured sufficient training
iterations. The mini-batch size was chosen as 32. This was the maximum allowed by
the hardware for the PARC model used. The initial learning rate was chosen as 0.001.
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For smaller values, the training time increased and for larger values, the classification
performance decreased. The SGDM technique was used as the optimization solver. The
validation method employed was the 10-fold cross-validation, and the loss function was
the cross-entropy. It took around 2 h to train the PARC model with the available hardware.

The loss values and accuracy graphics during optimization are presented in
Figures 7 and 8. The training-validation accuracy scores for the binary classification
reached 100% and 95.38%, and the training—validation loss values reached 0.035 and
0.1, respectively. The training—validation accuracy scores for the multi-class classification
reached 99.21% and 91.89%, and the training—validation loss values reached 0.15 and
0.12, respectively.
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Figure 7. Accuracy and loss graphs of the PARC model during the training process for binary
classification: (a) accuracy graph, (b) loss graph.
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Figure 8. Accuracy and loss graphs of the PARC model during the training process for multi—class
classification: (a) accuracy graph, (b) loss graph.

By using learnable parameters and input data, the extraction of five hundred deep
features was performed by “fc4”, which is a fully connected layer in PARC. Therefore, the
SVM algorithm could be used for the classification task instead of the softmax classifier.
The Iterative Neighborhood Component Analysis (INCA) algorithm selected the most
distinctive features and the computational cost decreased the execution time of the SVM
classifier code. The number of the nearest neighbor (hyperparameter) was chosen as 10
(default value). Figure 9 shows the computed feature weights for each feature index. The
threshold weights for the features to be selected with the INCA algorithm are set to 0.5 and
0.2 for binary and multi-class classification, respectively.
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Figure 9. Features weighted with the INCA algorithm: (a) binary classification and (b) multi—
class classification.

For binary and multi-class classification problems, 20 and 59 distinctive features
were automatically selected by the INCA algorithm. Three-dimensional representations
of the selected features are given in Figures 10 and 11 for two classification problems.
In Figures 10 and 11, it is seen that the distinguishing characteristics of the features are
increased with the feature selection process. In both figures, the rows represent classes
and the columns show whether the feature selection process has been performed. The
x-direction in the figures indicates the number of features. The y-direction provides the
features” amplitude values while the z-direction represents the feature depth. To show the
features in three dimensions, this parameter has been added. For each display, it is set to 2.

No Feature
Selection

INCA Feature
Selection

Defect Non Defect

Figure 10. Three-dimensional feature representation for no feature selection and INCA feature
selection cases (binary classification).
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Figure 11. Three—-dimensional feature representation for no feature selection and INCA feature
selection cases (multi—class classification).

The accuracy scores according to feature selection cases and different classifiers are
given in Table 1 for two classification problems. DT, SVM, KNN, NB, LD, Subspace KNN
(SK), Subspace Discriminate (SD), and RUSBoosted Trees (RT) were classifier algorithms in
the Classification Learner (CL) tool in the Matlab program. The default hyperparameters
were selected in the CL tool for the classification process. This ablation study was per-
formed to evaluate the feature selection operation’s effectiveness and detect which classifier
algorithm gave the best accuracy.

Table 1. Accuracy variations according to feature selection cases and different classifiers.

. No Feature Selection INCA Feature Selection
Classifier Binary Multi-Class Binary Multi-Class
DT 90.2 88.7 91.3 90
SVM 95.4 94.6 98.3 97.5
KNN 92.5 93.1 95.1 94.9
NB 93.2 87.9 95.1 20
LD 92.8 93.5 94.1 95,2
SK 90.1 92.8 92.3 95.6
SD 88.7 93.6 90.1 95.4
RT 89.3 85.6 91.8 88.5

As seen in Table 1, the SVM with the Gaussian kernel provided the best accuracy for
two classification problems. In the case without feature selection, for binary and multi-class
classification problems, the accuracy scores were 95.4% and 94.6%, respectively. In the
case of the INCA feature selection, for binary and multi-class classification problems, the
accuracy scores were 98.3% and 97.5%, respectively. Subspace Discriminant and RUS-
Boosted Trees provided the worst accuracies for two classification problems. In multi-class
classification and binary classification without feature selection, the worst performance
of the accuracy rate was 88.7% (Subspace Discriminant) and 85.6% (RUSBoosted Trees),
respectively. In multi-class classification and binary classification with the INCA feature
selection, the worst performances of the accuracy rate were 90.1% (Subspace Discriminant)
and 88.5% (RUSBoosted Trees), respectively.

Figure 12 shows the confusion matrices of the proposed approach for the binary and
multi-class classification tasks. In Figure 12a, the classes named 1, 2, 3, 4, and 5 represent
the pitted surface, crazing, scratches, patches, and multi-class defect classes, respectively.
In Figure 12b, the classes named 1, 2, 3, 4, and 5 represent the defect and non-defect classes,
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respectively. For the binary and multi-class classification problems, the accuracy scores
were 98.3% and 97.5%, respectively.

ACC: 97.5% ACC:98.3%
1 739 5 19 1 5
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w
I
i
.
~
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PI+PARCHINCA+SVM PI+PARC+INCA+SVM

(a) (b)

Figure 12. Confusion matrices of the proposed approach: (a) multi-class classification (classes:
(1) pitted surfaces, (2) crazing, (3) scratches, (4) patches, (5) multi-class defect), (b) binary classification
(1: defect 2: non-defect).

Performance metrics, including the sensitivity (SN), specificity (SP), precision (PR),
and F-score, were computed by using true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) values. The results of the computed metrics are given in

Table 2.
Table 2. Other performance metric results of the proposed approach for binary and multi-class
classification.
Classification Classes SN SP PR F-Score
Mode
Binar Defect 0.986 0.98 0.983 0.984
y Non-defect 0.98 0.986 0.984 0.982
Pitted surfaces 0.961 0.995 0.963 0.962
Crazing 0.938 0.997 0.91 0.924
Multi-Class Scratches 0.992 0.96 0.985 0.988
Patches 0.924 0.996 0.952 0.938
Multi-class defects  0.881 0.996 0.933 0.906

For the binary classification, the SN, SP, PR, and F-score values of the defect class were
0.986, 0.98, 0.983, and 0.984, respectively. The SN, SP, PR, and F-score values of the non-
defect class were 0.98, 0.986, 0.984, and 0.982, respectively. For the multi-class classification,
the best SN (0.992), SP (0.996), PR (0.985), and F-score (0.988) values were obtained for the
scratches, patches and multi-class defects, scratches, and scratches classes, respectively.
The worst SN (0.881), SP (0.96), PR (0.985), and F-scores (0.988) values were obtained for
the multi-class defects, scratches, crazing, and multi-class defect classes, respectively.

Figures 13 and 14 show the ROC curves and AUC values for the two classification
problems. In Figure 13, positive classes 1 and 2 include the defect and non-defect classes,
respectively. In Figure 14, positive classes 1, 2, 3, 4, and 5 include pitted surfaces, crazing,
scratches, patches, and the multi-class defect classes, respectively.
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As seen in Figure 13a,b, the AUC values were 0.99 for positive classes 1 and 2. As seen
in Figure 14a—e, the AUC values were 0.99, 1.00, 0.99, 0.99, and 0.98 for positive classes 1, 2,
3,4, and 5, respectively.

Ir Ir
r (0.02,0.99) ( (0.01,0.98)
0.8 0.8+
o] o]
£ £
» 0.6 0 0.6
B Positive class: 1 2 Positive class: 2
= = = =
2 2
0 0.4F 0 0.4F
=] =
= =
= =
0.2 02+
——ROC curve ——ROC curve
0F Area under curve (AUC) 0F Area under curve (AUC)
® Current classifier ® Current classifier

0 0.2

0.4 0.6 0.8 1
False positive rate

(@)

0.2 0.4 0.6 0.8 1
False positive rate

(b)

Figure 13. ROC curves and AUC values of the proposed approach: binary classification ((a) class 1:
defect, (b) class 2: non-defect).
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Figure 14. ROC curves and AUC values of the proposed approach: multi-class classification (classes:
(a) pitted surfaces, (b) crazing, (c) scratches, (d) patches, (e) multi-class defects).

9. Discussion

In this section, ablation studies for the proposed approach were performed and the
proposed approach was compared with state-of-the-art methods. Figures 15 and 16 show
the effect of processed images (PI) and residual attention strategies on classification accuracy.
Descriptive summary information about these ablation studies is provided in Table 3 for
binary and multi-class classification, respectively.

Table 3. Summarizing information about the ablation study for the proposed approach ((a) binary
classification, (b) multi-class classification).

Model Name Model Info Acc(@ Acc(b)

RI + CNN Raw images + PARC model without 93.00%  87.20%
attention and residual structures
Processed images + PARC model

PI+ CNN without attention and residual 93.50%  89.20%
structures

PI + A-CNN Processed images + PARC model 93.90%  89.90%
without residual structures

PI + R-CNN Processed images + PARC model 94.50%  91.20%
without attention structures
Processed images + PARC model (no

PI + PARC feature selection with INCA and no 95.40%  91.90%
SVM classifier)
Processed images + PARC model

PI + PARC + SVM +SVM (no feature selection with 96.80%  93.90%
INCA)

PI + PARC + INCA + SVM  Proposed approach 98.30%  97.50%

As seen in Figure 15 for the binary classification, the best accuracy was obtained
by the proposed approach (PI + PARC + SVM) while the worst accuracy was obtained
by the raw image (RI) + CNN strategy (Figure 15a). In Figure 15b, PI instead of RI
was used for the classification and the classification accuracy was improved by 3.5%. In
Figure 15¢, the attention structure (PI + A-CNN) was added to the CNN model in Figure 15b.
The classification accuracy was improved by 0.4%. In Figure 15d, the residual structure
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(PI + R-CNN) was added to the CNN model in Figure 15b. The classification accuracy was
improved by 1.0%. In Figure 15e, the parallel residual and attention structure (PI + PARC)
was added to the CNN model in Figure 15b. The classification accuracy was improved by
1.5%. In Figure 15f, the SVM classifier with INCA feature selection algorithm was applied
in place of the softmax classifier in the proposed Parallel Attention-Residual CNN (PARC)
model and the accuracy of classification was improved by 2.9% compared to the model in

Figure 15e.
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Figure 15. Confusion matrices for ablation studies of the proposed approach (binary classification
(classes 1: defect 2: non-defect)).

As seen in Figure 16 for the multi-class classification, the best accuracy was obtained
by the proposed approach (PI + PARC + SVM) while the worst accuracy was obtained by
the raw image (RI) + CNN strategy (Figure 16a). In Figure 16b, PI instead of RI was used
for the classification, and the accuracy performance of classification was increased by 2.0%.
In Figure 16¢, attention structure (PI + A-CNN) was added to the CNN model in Figure 16b.
The classification accuracy was improved by 0.7%. In Figure 16d, the residual structure
(PI + R-CNN) was added to the CNN model in Figure 16b. The classification accuracy was
improved by 2.0%. In Figure 16e, the parallel residual and attention structure (PI + PARC)
was added to the CNN model in Figure 16b. The classification accuracy was improved
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by 2.7%. In Figure 16f, the SVM classifier with the INCA algorithm was used instead of
the softmax classifier in the suggested PARC method, and the accuracy performance of
classification was improved by 5.6% in comparison with the model in Figure 16e.
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Figure 16. Confusion matrices for ablation studies of the proposed approach (multi-class classification
(classes: (1) pitted surfaces, (2) crazing, (3) scratches, (4) patches, (5) multi-class defects)).

Table 4 presents the performance results of the proposed approach and state-of-the-art
models using the dataset named “Severstal: Steel Defect Detection”. Fadli and Herlis-
tiono [50] used the Xception network, a pre-trained CNN model for automated steel surface
classification. For the binary and multi-class classification, the classification accuracies were
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94% and 85%, respectively. Guo et al. [51] performed automated surface steel detection
with a specific GAN model. The binary class classification performance reached 96.80%
accuracy. A hybrid approach with Faster R-CNN models and ResNet50 was proposed by
Wang et al. [21]. The prediction values obtained from weight activations of the ResNet
model were utilized for the thresholding operation. If the scores were less than 0.3, the steel
samples were considered to be defect-free. If scores were larger than 0.3, the samples were
described as defective. With this method, the binary classification accuracy was 97.47%.
Additionally, four copies of each steel sample image from the dataset were created, along
with new class labels, using this method. The dataset was therefore multiplied by four. Steel
surface flaw classification was conducted by Chigateri et al. [52] using the Exception model.
They achieved an accuracy of 88% for binary classification and the same accuracy of 88% for
multiple classification. A combination of the ResNet model with the squeeze-and-excitation
networks suggested by Hu et al. [53] produced an accuracy value of 87.5% for the two-class
classification task and 94% for the four-class classification problem.

Table 4. The classification accuracies of studies and the proposed model using the same dataset.

Methodol Accuracy (%)

Auth ethodolo

uthors &Y Binary Multi-Class
Proposed model PI + PARC + INCA + SVM 98.9 94.5

Wang et al. [21] ResNet50 + Faster R-CNN 97.47 -

Guo et al. [51] GAN model 96.8 -

Chigateri et al. [52]  Exception model 87.6 85.0

Hu et al. [53] SEResNET50 94.0 87.5

Fadli et al. [50] Transfer learning (Xception) 94.0 85.0

The efficacy of the proposed method was assessed by employing an alternate dataset,
specifically the NEU Surface Defect Database [54]. Consequently, the dependability of
the suggested approach was enhanced. This dataset comprised six distinct types of sur-
face defects: crazing (class 1), inclusions (class 2), patches (class 3), pitted surfaces (class
4), rolled-in scales (class 5), and scratches (class 6). Through the utilization of 10-fold
cross-validation, the dataset, consisting of a total of 1800 samples distributed evenly with
300 examples in each class, underwent evaluation. Within this dataset, the suggested
technique demonstrated a classification accuracy of 99.77%, as depicted in the confusion
matrix presented in Figure 17.

Accuracy:99.77%

True Class

1 2 3 4 5 6
Predicted Class

Figure 17. Confusion matrix results of the proposed approach on the NEU Surface Defect Database.
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As can be seen from the results in Tables 4 and 5, the proposed model improved the
classification performance compared to other models using the same dataset. However,
given that the methods’ training parameters and training—evaluation methodology differ,
this finding does not necessarily imply that the proposed strategy is better than the others.

Table 5. The classification accuracies of studies and the proposed model using the NEU Surface

Defect Database.

Author Method Accuracy (%)
Yeung et al. [54] Fused Attention CNN model 89.3

Tian et al. [55] SegNet + CNN 89.6

Yi et al. [56] Deep CNN 99.05

Lietal. [14] Transfer learning (ResNet) 99.0

Fuetal. [15] Lightweight CNN 99.61
Proposed approach PARC, NRMI, SVM 99.77

Table 5 presents the performance results of the proposed approach and state-of-the-
art models on the NEU Surface Defect Database. Yeung et al. [54] introduced a novel
hybrid model, which underwent training from the ground up by incorporating the CNN
architecture and five attention layers. The resultant CNN model, enriched with integrated
attention, demonstrated an accuracy of 89.30%. Meanwhile, Tian et al. [55] employed
the SegNet model to reconstruct and segment images of steel surfaces, and subsequent
classification using a CNN model with an end-to-end learning approach yielded a success
rate of 89.60%. Yi et al. [56] utilized a 14-layer CNN model featuring five convolutional
layers, achieving an impressive classification accuracy of 99.05%. Li et al. [14] implemented
a transfer learning system based on the ResNet model, attaining a classification accuracy
of 99.00% with the ResNet CNN model. In another approach, Fu et al. [15] leveraged
the SqueezeNet framework to construct a lightweight CNN model, incorporating a blur
operation for raw photo processing, resulting in a remarkable success percentage of 99.61%.

The proposed approach outperformed the CNN, pre-trained CNN, R-CNN, transfer
learning, and GAN models due to its novel and task-specific design. Key innovations
included the use of a spectrogram algorithm in pre-processing, which transformed image
data into a more detailed representation of surface defects, and the Parallel Attention—
Residual CNN (PARC) model, which combined attention mechanisms for highlighting
critical regions and residual connections for preserving important feature information.
Unlike traditional models that relied on softmax for classification, this approach extracted
deep features and evaluated them using multiple classifiers, with the SVM yielding the
best results. Additionally, the INCA feature selection algorithm reduced the computational
complexity while improving the classification accuracy. This tailored methodology en-
hanced defect detection by focusing on capturing subtle pixel variations and optimizing
performance for the specific task.

Commonly used CNN models in both datasets include either pre-trained CNN models,
such as ResNet, or lightly weighted CNN models. The network file sizes of the proposed
PARC model and other popular pre-trained models with weights are given in Table A2. The
PARC model has less weight than the other pre-trained CNN models, except the MobileNet
model. Therefore, the execution time is optimal for both training and testing. In addition,
accurate classification is more important than speed in the detection of steel surface defects.

Table 6 presents the classification accuracy results for both multi-class and binary
classification tasks using various image enhancement techniques followed by CNN-based
classification. The proposed spectrogram-based method shows superior performance in
both scenarios.

129



Appl. Sci. 2025, 15, 4255

Table 6. Comparison of the proposed pre-processing method with basic image enhancement algorithms.

Method Description Multi-Class Accuracy Binary Accuracy

(%) (%)

Raw Images + CNN Baseline mgthod without any 93 872
pre-processing.

Histogram Equalization + CNN Enhan;es glob.al contrast b}.’ . 93.4 88.7
redistributing image intensities.

Gamma Correction Ad]qsts br.1 ghtngss usimg 93.2 87.9
nonlinear intensity mapping.
Applies adaptive histogram

CLAHE + CNN equalization locally to improve 93.3 88.9
contrast in homogeneous areas.

Unsharp Masking Sharpens the image by 93 87.5

emphasizing edges and details.

Enhances low-intensity pixels,

Log/Power-Law Transform useful for improving contrast in 93.2 88.6
dark regions.

The experimental results demonstrate the effectiveness of the proposed spectrogram-
based method in enhancing the discriminability of surface defects for both multi-class
and binary classification tasks. While the baseline approach using raw images with CNN
achieved a 93.0% accuracy for multi-class and 87.2% for binary classification, applying
conventional image enhancement techniques such as histogram equalization, gamma
correction, CLAHE, unsharp masking, and log/power-law transforms led to modest im-
provements. Among these, CLAHE and histogram equalization performed relatively better
due to their ability to improve the local and global contrast, respectively. However, the
proposed method outperformed all the others, achieving the highest classification accuracy
of 93.5% in the multi-class scenario and 89.2% in binary classification.

This superior performance can be attributed to the spectrogram’s ability to transform
gradient-derived signals into the time—frequency domain, enabling the capture of both
spatial patterns and frequency-based features related to surface defects. Unlike conven-
tional techniques that primarily operate in the spatial domain and focus on intensity or
contrast, the spectrogram representation provides a richer and more informative input to
the CNN by highlighting subtle defect structures. These results quantitatively validate the
advantage of the proposed method over traditional enhancement techniques in terms of
feature extraction and defect classification performance.

10. Conclusions

This study focuses on the automatic detection of surface defects, which is an impor-
tant issue in steel fabrication. It has been made to increase the automatic classification
performance with a specific deep learning-based strategy. The classification performance is
enhanced by processed images and feature extraction in the Parallel Attention—-Residual
CNN (PARC) model. The PARC model outperformed the CNN model (no residual and at-
tention structures), the R-CNN (Residual-CNN), and the A-CNN (Attention-CNN) models.
In addition, the Iterative Neighborhood Component Analysis (INCA) algorithm efficiently
reduced the size of the feature set and improved the classification performance for both
datasets. The classification performance values obtained for the Severstal Dataset (SD) and
the Neu-Surface Dataset (NSD) are summarized in Table 7. As can be seen from Table 7,
both datasets achieved 0.94 and above in all the performance metrics. In both datasets,
the classification accuracy was improved according to the model that achieves the best
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performance out of the existing models. The classification performance is improved by
1.43%, 7.0%, and 0.16% for SD 2-class, SD 4-class, and NSD, respectively.

Table 7. Summary of the experimental results of the proposed method.

Criteria SD 2-Class SD 4-Class NSD
Accuracy (%) 98.9 94.5 99.7
Sensitivity 0.98 0.94 0.99
Specificity 0.98 0.98 0.99
Precision 0.98 0.94 0.98
F-score 0.98 0.94 0.98
Performance improvement (%)  1.43 7.0 0.16

The good classification performance of the proposed approach makes it possible to
use it for the real-time detection of steel surface defects. In the next phase, the recorded
weights of the proposed approach can be tested on an artificial intelligence development
kit such as an NVIDIA Jetson Orin Nano (NVIDIA, Santa Clara, CA, USA). Thus, once the
test performance of the model is confirmed, it can be used in enterprises.

The most important limitation of the proposed model is that it is difficult to implement
in real-time embedded systems due to the size of the model. This limitation can be solved
with server-based systems. However, this may increase the financial cost.
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Appendix A

Table Al. Layers of the PARC model.

Layer Layer Order Layer Layer Info
1 ‘conv2d_1" 2D Convolution In total, 1§ 5 >,< 5 x /3 convolutions with stride [1 1]
and padding ‘same
2 ‘batchnorm_1’ Batch Normalization Batch normalization with 16 channels
3 ‘relul’ ReLU ReLU
, , . In total, 2 x 2 max pooling with stride [1 1] and
4 maxpool2d_1 2D Max Pooling padding[0 0 0 0]
5 ‘conv2d2. 17 2D Convolution In total, 8 3 x 3 x 16 convolutions with stride [1 1]

and padding ‘same’
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Table A1. Cont.

Layer Layer Order Layer Layer Info

6 ‘batchnorm_2’ Batch Normalization Batch normalization with 8 channels

7 ‘relu2’ RelLU ReLU

. , . In total, 2 x 2 max pooling with stride [1 1] and

8 maxpool2d2 2D Max Pooling padding[0 0 0 0]

9 ‘conv2d_ 2’ 2D Convolution In total, 8 2 ></2 X 8/convolut10ns with stride [1 1]
and padding ‘same

10 ‘relu_2_1_1.5 RelLU ReLLU

11 ‘conv2d_ 3’ 2D Convolution In total, 8 3 X,3 X 8/convolut10ns with stride [1 1]
and padding ‘same

1 ‘maxpool2d_2’ 2D Max Pooling In totfal, 2/ X 2 n/lax pooling with stride [1 1] and
padding ‘same

13 ‘conv2d2. 2’ 2D Convolution In total, 8 5 ><15 X 8’C0nvolut10ns with stride [1 1]
and padding ‘same

14 ‘relu2 116 ReLU ReLU

15 ‘conv2d2. 3 2D Convolution In total, 8 3 ></3 X 8/convolut10ns with stride [1 1]
and padding ‘same

16 ‘sigmoid_1_1_1_3"  sigmoidLayer sigmoidLayer

17 ‘mul 1.1 13 ElementWiseMultiplication Element-Wise Multiplication of 2 inputs

18 “fc0’ Fully Connected In total, 350 fully connected layers

19 ‘ReLu2’ ReLU ReLU

. , In total, 32 x 200 x 3 images with “zero center’

20 input Image Input L
normalization

71 ‘convinp’ 2D Convolution In total, 1§ 3 >,< 3 x ,3 convolutions with stride [1 1]
and padding ‘same

22 ‘BNInp’ Batch Normalization Batch normalization with 16 channels

23 ‘relulnp’ ReLU ReLU

o 'S1ULconv1” 2D Convolution In total, 1§ 3 >f 3 x }6 convolutions with stride [1 1]
and padding ‘same

25 ‘S1TU1BN1’ Batch Normalization Batch normalization with 16 channels

26 ‘S1UTlrelul’ ReLU ReLU

o7 'S1ULconv?’ 2D Convolution In total, 1§ 3 >f 3 x }6 convolutions with stride [1 1]
and padding ‘same

28 ‘SIU1BN2’ Batch Normalization Batch normalization with 16 channels

29 ‘add11’ Addition Element-wise addition of 2 inputs

30 ‘relull’ RelLU ReLLU

31 ‘S1U2conv]” 2D Convolution In total, 1§ 3 >f 3 x }6 convolutions with stride [1 1]
and padding ‘same

32 ‘S1U2BN1’ Batch Normalization Batch normalization with 16 channels

33 ‘S102relul’ ReLU ReLU

34 ‘S1U2conv?’ 2D Convolution In total, 1§ 3 >f 3 x }6 convolutions with stride [1 1]
and padding 'same

35 ‘S1U2BN2’ Batch Normalization Batch normalization with 16 channels

36 ‘add12’ Addition Element-wise addition of 2 inputs

37 ‘relul2’ RelLU RelLU

38 'SOUTconv1” 2D Convolution In total, 32 3 >f 3 x }6 convolutions with stride [2 2]
and padding ‘same

39 ‘S2U1BN1’ Batch Normalization Batch normalization with 32 channels

40 ‘S2U1relul’ ReLU ReLU

i1 'SOUTconv?’ 2D Convolution In total, 32 3 >f 3 x C/’>2 convolutions with stride [1 1]
and padding ‘same

42 ‘S2U1BN2’ Batch Normalization Batch normalization with 32 channels

43 ‘add21’ Addition Element-wise addition of 2 inputs

44 ‘relu2l’ RelLU RelLU
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45 ‘SOURconvl’ 2D Convolution In total, 3% 3 >f 3 x Z/’>2 convolutions with stride [1 1]
and padding ‘same

46 ‘S2U2BN1’ Batch Normalization Batch normalization with 32 channels

47 ‘S2U02relul’ ReLU ReLU

48 ‘SOUDconvd’ 2D Convolution In total, 32 3 >f 3 x C/’>2 convolutions with stride [1 1]
and padding ‘same

49 ‘'S2U2BN2’ Batch Normalization Batch normalization with 32 channels

50 ‘add22’ Addition Element-wise addition of 2 inputs

51 ‘relu22’ ReLU ReLU

50 'S3UTconvl’ 2D Convolution In total, 64% 3 >f 3 x C/’>2 convolutions with stride [2 2]
and padding ‘same

53 ‘S3U1BN1’ Batch Normalization Batch normalization with 64 channels

54 ‘S3Ulrelul’ ReLU ReLU

55 'S3UTconv?’ 2D Convolution In total, 64 3 >f 3 x ?4 convolutions with stride [1 1]
and padding ‘same

56 ‘S3U1BN2’ Batch Normalization Batch normalization with 64 channels

57 ‘add31’ Addition Element-wise addition of 2 inputs

58 ‘relu31’ ReLU ReLU

59 ‘S3U2conv1’ 2D Convolution In total, 64 3 >f 3 x ?4 convolutions with stride [1 1]
and padding ‘same

60 ‘S3U2BN1’ Batch Normalization Batch normalization with 64 channels

61 ‘S3U2relul’ ReL.U ReLU

62 'S3U2conv?’ 2D Convolution In total, 64% 3 >f 3 X ?4 convolutions with stride [1 1]
and padding ‘same

63 ‘S3U2BN2’ Batch Normalization Batch normalization with 64 channels

64 ‘add32’ Addition Element-wise addition of 2 inputs

65 ‘relu32’ ReLU ReLU

66 ‘globalPool’ 2D Average Pooling ;r;;?;ﬂ'g 8{; 80avgra%e]: pooling with stride [1 1] and

67 “fc3’ Fully Connected In total, 350 fully connected layers

68 ‘relu_3’ ReLU ReLU

69 ‘add42’ Addition Element-wise addition of 2 inputs

70 “fcd’ Fully Connected In total, 150 fully connected layers

71 ‘relu_4’ ReLU ReLU

72 ‘fcFinal’ Fully Connected In total, 2 fully connected layers

73 ‘softmax’ Softmax softmax

74 ‘classoutput’ Classification Output crossentropyex with classes ‘defect” and ‘non_defect’

75 ‘skipConv1’ 2D Convolution ;rrll ;O;;l(,jilzir}gﬁol >E)16Ocor(1)\]folut10ns with stride [2 2]

76 ‘skipBN1’ Batch Normalization Batch normalization with 32 channels

ok ‘skipConv2’ 2D Convolution ir;l :jo;a;agnlgﬁol >B 320cor6\]101ut10ns with stride [2 2]

78 ‘skipBN2’ Batch Normalization Batch normalization with 64 channels

Table A2. Sizes of the PARC model and popular pre-trained CNN models.

CNN Model Model File Size (MB)
ResNet 93.2

VGGNet 502.9

AlexNet 222.03

MobileNet 12.95

PARC Model 64.7
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Table A3. Pseudocode for the implementation steps of the proposed method.

1. Begin with raw images containing surface defects.
2. Stage 1: Pre-processing
a. Apply spectrogram algorithm to the time series signals of the raw images.
b. Convert 1D data using all pixel values from the images.
c. Obtain spectrogram images representing pixel changes in defect regions.
3. Stage 2: Model Training with PARC (Parallel Attention-Residual CNN)
a. Design and initialize the PARC model.
i. Combine attention and residual modules with a customized CNN.
ii. Train attention module to highlight important image regions.
iii. Use residual module to pass feature maps from earlier layers to later
convolutional layers.
b. Train the PARC model with the processed spectrogram images.
4. Stage 3: Feature Extraction
a. Extract deep features from the fully connected (FC) layer of the PARC model.
b. Use these features (instead of the softmax classifier) to test with other classifier
algorithms.
5. Stage 4: Feature Selection
a. Apply the INCA feature selection algorithm.
b. Reduce computational cost and improve classification performance by selecting
the most relevant features.
6. Stage 5: Classification
a. Train seven popular classifiers on the selected features:
i. Decision Tree (DT).
ii. Support Vector Machine (SVM).
iii. K-Nearest Neighbor (KNN).
iv. Naive Bayes (NB).
v. Linear Discriminant (LD).
vi. Subspace KNN.
vii. Subspace Discriminate.
viii. RUSBoosted Trees.
b. Evaluate the classification performance of each algorithm.
c. Select the best-performing algorithm (SVM) for the final classification.

7. End
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Abstract: Accurate segmentation of pavement cracks from high-resolution remote sensing
imagery plays a crucial role in automated road condition assessment and infrastructure
maintenance. However, crack structures often exhibit asymmetry, irregular morphology,
and multi-scale variations, posing significant challenges to conventional CNN-based meth-
ods in real-world environments. Specifically, the proposed ETAFHrNet focuses on two
predominant pavement-distress morphologies—linear cracks (transverse and longitudinal)
and alligator cracks—and has been empirically validated on their intersections and branch-
ing patterns over both asphalt and concrete road surfaces. In this work, we present ETAFHr-
Net, a novel attention-guided segmentation network designed to address the limitations of
traditional architectures in detecting fine-grained and asymmetric patterns. ETAFHrNet
integrates Transformer-based global attention and multi-scale hybrid feature fusion, en-
hancing both contextual perception and detail sensitivity. The network introduces two key
modules: the Efficient Hybrid Attention Transformer (EHAT), which captures long-range
dependencies, and the Cross-Scale Hybrid Attention Module (CSHAM), which adaptively
fuses features across spatial resolutions. To support model training and benchmarking,
we also propose QD-Crack, a high-resolution, pixel-level annotated dataset collected from
real-world road inspection scenarios. Experimental results show that ETAFHrNet signif-
icantly outperforms existing methods—including U-Net, DeepLabv3+, and HRNet—in
both segmentation accuracy and generalization ability. These findings demonstrate the
effectiveness of interpretable, multi-scale attention architectures in complex object detection
and image classification tasks, making our approach relevant for broader applications, such
as autonomous driving, remote sensing, and smart infrastructure systems.

Keywords: pavement crack segmentation; transformer neural networks; multi-scale
feature fusion; global attention mechanism; high-resolution remote sensing; deep learning;
infrastructure monitoring; interpretable classification

1. Introduction

Pavement cracks are critical indicators of road infrastructure integrity, and their
early and accurate detection plays a vital role in supporting preventive maintenance,
extending service life, and ensuring traffic safety. According to global statistics, surface
cracks contribute to over 30% of road-related traffic accidents annually [1]. If left unrepaired,
they allow moisture penetration, accelerating substructure deterioration and significantly
increasing maintenance costs. Studies have shown that untreated cracks can raise annual
road maintenance expenditures by approximately 15%.

Conventional manual inspections suffer from low efficiency and high subjectivity.
Reported detection rates fall below 80%, with false detection rates exceeding 30% [2]. While
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experienced inspectors can recognize visible damage, manual approaches are difficult to
scale and insufficiently accurate for large road networks. In contrast, automated vision-
based systems have reduced false positive rates to under 5% [3], offering a promising
direction for smart pavement monitoring.

Traditional methods based on threshold segmentation [4] or edge detection [5] perform
poorly under complex lighting and noise conditions. The emergence of deep learning has
led to substantial progress in crack segmentation. Encoder-decoder networks such as
U-Net [6] enable end-to-end detection. DeepCrack [7], for instance, achieves high IoU
through multi-scale fusion but struggles to retain fine-grained structural details.

To improve spatial resolution, HRNet [8] was introduced, maintaining high-resolution
representations via parallel branches. Yang et al. [9] and Fan et al. [10] adopted multi-
resolution and adaptive thresholding strategies, yet their models still underperform in
detecting fine or net-like cracks.

In recent years, researchers have increasingly adopted attention mechanisms and
Transformer-based architectures to improve global perception and feature representation
in crack segmentation tasks. Chen et al. [11] and Wang et al. [12] introduced channel and
non-local spatial attention, significantly enhancing discriminability and context awareness.
However, these methods typically incur high computational overhead.

Further developments such as SENet [13], CBAM [14], and Pyramid Attention Net-
works [15] improved adaptability to crack morphology but still lack flexible weighting
mechanisms and robust generalization under noisy backgrounds.

In the Transformer domain, ViT [16] enables long-range modeling but demands exten-
sive computation. Swin Transformer [17] reduces complexity via window partitioning but
compromises spatial continuity. SegFormer [18] merges CNN and Transformer strengths,
achieving balanced performance, but fixed attention fusion often weakens fine-detail
segmentation [19,20].

Recent improvements by Zheng et al. [21], Ding et al. [22], and Huang et al. [23]
demonstrate progress in contextual interaction and structural awareness. However, many
models still struggle to address high-resolution, multi-scale, and complex crack geometries
encountered in practical deployments.

Two major challenges remain unresolved:

(1) Accurate identification of intersecting cracks. In real scenarios, cracks often branch
or intersect. Without sufficient receptive field or contextual awareness, models tend to
miss or misclassify these areas [24].

(2) Continuous modeling of long-range cracks. Cracks are typically thin and extended.
In the absence of strong global context modeling, segmentation results become frag-
mented, particularly under high-resolution or multi-scale settings [7].

To address these issues, we propose a novel segmentation framework—ETAFHrNet
(Efficient Transformer-Enhanced and Adaptive Fusion Attention Network)—which inte-
grates convolutional and Transformer paradigms to balance accuracy and efficiency.

(1) Global-local collaborative feature modeling: We introduce an Efficient Hybrid Atten-
tion Transformer (EHAT) module into HRNet’s high-resolution branches, combining
axial positional encoding and window attention to capture long-range dependencies
while controlling computation [25,26].

(2) Adaptive multi-scale fusion: A novel Cross-Scale Hybrid Attention Module (CSHAM)
adaptively weights spatial and directional features through cascaded axial and cross-
scale attention, enhancing the detection of intersecting or subtle crack patterns [27,28].
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The overall workflow of the proposed method is illustrated in Figure 1, which outlines
the entire pipeline from data acquisition to output segmentation. This structured design
ensures reproducibility and operational scalability in pavement crack detection tasks.

Dataset Collection Image Annotation  Image Fnhancement

v
‘ e . - ! :
sl-l,l.l;
Model Evaluation Network Prediction Export Results Network Training

Figure 1. Workflow of the proposed pavement crack detection framework.

2. Related Work

In recent years, deep learning has demonstrated substantial potential in the domain
of image segmentation, particularly within structural health monitoring applications.
Among emerging trends, convolutional neural networks (CNNs) enhanced by attention
mechanisms and Transformer-based architectures have attracted increasing research at-
tention. Against this backdrop, this section presents a structured review of recent ad-
vancements in pavement crack detection, organized from three key perspectives: (1) the
evolution of classical segmentation models; (2) the development and refinement of at-
tention mechanisms; (3) recent breakthroughs in global context modeling. In addition,
we critically assess the applicability and limitations of these methods in addressing the
unique challenges posed by crack detection, including scale variation, spatial discontinuity,
and background complexity.

2.1. Segmentation Model Evolution

Regarding the evolution of classical segmentation models, Fully Convolutional Net-
works (FCNs) [29] were the first to introduce end-to-end, pixel-level prediction frameworks,
thereby laying the groundwork for modern semantic segmentation. U-Net [30] advanced
this concept by proposing an encoder-decoder architecture with skip connections, achiev-
ing notable success in biomedical image segmentation and inspiring subsequent model
designs. Building on these foundations, multi-scale feature fusion strategies have been
widely adopted to further enhance segmentation performance. The DeepLab series [11]
employed atrous (dilated) convolutions to expand the receptive field without compromis-
ing spatial resolution. PSPNet [31] introduced a Pyramid Pooling Module to effectively
capture multi-scale contextual information. More recently, HRNet improved segmentation
accuracy by maintaining high-resolution representations through parallel multi-branch
architectures, enabling the precise localization of fine structural details.

Zhang et al. [32] applied HRNet to pavement crack detection and demonstrated the
advantages of multi-resolution feature fusion for identifying elongated cracks under com-
plex background conditions. However, conventional CNN-based models often rely on
local convolutional operations, which struggle to simultaneously achieve global semantic
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understanding and fine-grained representation, particularly when cracks are morpholog-
ically diverse, sparsely distributed, or embedded in noisy surfaces [10]. For example,
although U-Net preserves low-level features through skip connections, its fixed receptive
field restricts its ability to capture the global topological continuity of cracks across vary-
ing scales. DeepLabv3+ extends contextual awareness through atrous convolutions, yet
remains vulnerable to false positives caused by background surface noise and exhibits
inadequate continuity modeling for slender, elongated cracks. PSPNet incorporates pyra-
mid pooling for multi-scale context aggregation, but its coarse-grained feature integration
tends to overlook small or subtle crack patterns. Even though HRNet excels at maintaining
high-resolution features via parallel multi-branch structures, its reliance on traditional
convolutions limits its capacity to model long-range dependencies in complex scenes.

Recent work by Yin et al. [33] introduced DCRNet, a dual-context residual network
that jointly models local detail and global structure using parallel pathways. This dual-
path design aligns closely with our use of the EHAT and CSHAM modules, which aim
to enhance crack connectivity and multiscale representation. DCRNet has shown strong
performance in capturing complex crack morphologies and thus provides a meaningful
comparative reference for dual-context segmentation architectures.

These observations underscore two persistent challenges in CNN-based crack de-
tection: (1) insufficient global perception to capture long-range crack structures, and
(2) limited local feature representation for accurately identifying fine, fragmented, or inter-
secting cracks.

2.2. Attention Mechanisms

The introduction of attention mechanisms has provided new opportunities for ad-
dressing the challenges of feature selection and fusion in pavement crack detection. Early
methods such as SENet [13] utilized global average pooling to capture inter-channel depen-
dencies and dynamically reweight channel responses. However, due to the absence of spa-
tial interaction, SENet remains insufficient for detecting elongated or spatially distributed
crack structures. CBAM [14], which incorporates both channel and spatial attention, im-
proves segmentation performance by focusing on locally salient features. Yet, it still lacks
the capability to model long-range spatial dependencies, which are critical for capturing
the continuity of dispersed crack segments.

To enhance global context modeling, DANet [20] introduced a dual-path attention
structure, while non-local modules [34] employed self-attention mechanisms to establish
pixel-level global correlations. Despite these advancements, many existing approaches
rely on fixed-weight fusion strategies. For instance, in the work by Li et al. [35], CBAM
and the non-local module are combined in series, yet the static integration scheme fails
to adapt to the morphological diversity of cracks. In contrast, Guo et al. [36] proposed a
dynamic convolutional attention network that employs learnable weights to adaptively
assign attention across features, offering a promising approach for handling multi-scale
and complex crack patterns.

Li et al. [37] proposed CrackCLEF, a closed-loop feedback-based segmentation network
that iteratively refines predictions by incorporating previous outputs as inputs. This
dynamic correction mechanism complements our adaptive attention design and represents
a promising direction for improving segmentation stability in noisy environments.

The design of attention mechanisms is especially critical in pavement crack detection,
where the structures of interest are typically slender, elongated, and oriented in diverse
directions. Detection algorithms must therefore balance the preservation of local detail
with the need for global continuity [38]. While traditional attention modules such as CBAM
are effective in enhancing local contrast, they often fail to establish relationships between
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spatially separated crack fragments. Recent studies suggest that directional and topological
cues are key to improving detection accuracy. In particular, axial attention has been shown
to enhance the recognition of horizontal and vertical crack components by independently
modeling one-dimensional spatial dependencies [39].

Furthermore, Chen et al. [40] proposed an edge-aware attention network that explic-
itly enhances boundary preservation and continuity through guided refinement. This is
particularly relevant to the directional and topological modeling objectives of our EHAT
and CSHAM modules.

Nonetheless, many attention mechanisms continue to employ fixed-weight config-
urations, which limits their adaptability across diverse scenes. In environments where
reticular and linear cracks coexist, this rigidity results in suboptimal segmentation perfor-
mance [22]. Therefore, the development of dynamically adaptive attention mechanisms
capable of modeling multi-scale, morphologically diverse crack structures remains an open
and significant research challenge.

2.3. Transformer Architectures

In recent years, the remarkable performance of the Vision Transformer (ViT) in com-
puter vision has spurred widespread exploration of global context modeling methods. ViT
achieves holistic semantic representation by segmenting images into fixed-size patches and
applying a multi-head self-attention mechanism to process them. However, its substantial
computational cost and reliance on large-scale datasets limit its practicality in real-world
deployment scenarios.

To balance accuracy and efficiency, a variety of Transformer-CNN hybrid architectures
have been proposed. For instance, TransUNet [41] embeds local features extracted by
convolutional layers into a Transformer encoder while employing skip connections to
preserve spatial detail. CMT [42] introduces a dual-branch structure that facilitates dy-
namic interactions between local and global representations. Similarly, Mobile-Former [43]
adopts a lightweight architecture to reduce computational overhead for mobile and
embedded scenarios.

While these hybrid approaches have demonstrated success in general semantic seg-
mentation tasks, their applicability to pavement crack detection remains limited. For exam-
ple, the window-based partitioning strategy in the Swin Transformer [17] can disrupt the
continuity of linear crack patterns, impairing segmentation accuracy. Likewise, the dual-
branch structure in Mobile-Former incurs significant memory consumption when applied
to high-resolution inputs [44]. Moreover, many hybrid models are based on the U-Net
framework, which may not align well with the architectural design of HRNet, particularly
in terms of maintaining high-resolution feature representations throughout the network [8].

As a representative Transformer-CNN fusion method, SegFormer has achieved a
mean Intersection over Union (mloU) of 79.5% in general segmentation tasks, attributed
to its robust global context modeling capabilities [18]. However, its window partition-
ing mechanism may introduce discontinuities in crack representation, particularly under
ultra-high-resolution inputs. Additionally, its ability to support real-time detection remains
limited. In response, several lightweight Transformer modules have been proposed to
reduce computational burden through local window attention and dimensionality reduc-
tion strategies.

Despite these improvements, a fundamental challenge persists: how to effectively
represent directional crack features while maintaining global perceptual awareness [45].
Recent advances in axial positional encoding and directional feature enhancement mecha-
nisms offer promising solutions, particularly for capturing the elongated and linear nature
of pavement cracks [36]. Future research should continue to explore adaptive attention

141



Appl. Sci. 2025, 15, 6183

mechanisms and high-resolution feature preservation strategies. In particular, integrating
the local sensitivity of CNNs with the global dependency modeling strengths of Transform-
ers represents a promising direction for achieving both fine-grained precision and real-time
performance in practical pavement crack detection systems.

3. Methods
3.1. ETAFHrNet Architecture

This paper presents a novel network architecture, termed the Efficient Transformer-
Enhanced and Adaptive Fusion High-Resolution Network (ETAFHrNet). The overall
architecture is illustrated in Figure 2. Building upon the HRNet framework, the proposed
model preserves HRNet's strength in maintaining multi-resolution feature representations,
while integrating two key innovations: the Efficient Hybrid Attention Transformer (EHAT)
and the Cross-Scale Hybrid Attention Module (CSHAM). These components are specifically
designed to enhance the network’s capacity for crack representation by improving global
context modeling and multi-scale feature fusion.

The architecture comprises three primary components. First, the HRNet backbone
extracts multi-resolution features through parallel branches, maintaining high-resolution
feature flow while generating rich semantic representations. Second, the EHAT module is
embedded into the high-resolution branch to perform lightweight long-range dependency
modeling. This is achieved through a combination of adaptive channel dimensionality
reduction, axial positional encoding, and local window attention-mechanisms that are
particularly effective in enhancing the perception of linear and directional crack structures.
Third, following feature alignment via cross-resolution upsampling, the CSHAM module
conducts cross-scale adaptive fusion and directional enhancement of multi-level features.
This ensures that the segmentation head receives a comprehensive, high-resolution feature
representation, enabling the generation of accurate prediction maps aligned with the
input resolution.

To overcome the limitations of conventional HRNet in pavement crack detection—
specifically, its limited global semantic modeling and rigid feature fusion—this study
introduces two architectural innovations. First, the EHAT module improves linear feature
representation by integrating axial positional encoding and local window attention. Its
hybrid MLP structure combines the local inductive bias of convolutional operations with
the global modeling capacity of Transformers, making it highly effective in capturing
crack features across multiple orientations and scales, particularly in complex or subtle
crack scenarios. Second, the CSHAM module applies a cross-scale attention mechanism
to adaptively weight multi-resolution features and leverages axial attention to enhance
directional feature expression. This design alleviates the information loss often caused
by static fusion in conventional HRNet and performs robustly in scenes where slender,
intersecting, and multi-scale cracks coexist.The following subsections provide a detailed
explanation of the proposed EHAT and CSHAM modules.
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Figure 2. The ETAFHrNet architecture.

3.2. Efficient Hybrid Attent

ion Transformer (EHAT) Module

This module takes an input feature map of shape B x C x H x W, where B denotes

the batch size, C, the number of channels, and H and W, the height and width, respectively.

To preserve the linear structural features of cracks while reducing computational complexity,

the Efficient Hybrid Attention Transformer (EHAT) employs a series of optimization

strategies, including adaptive channel reduction [46], axial enhancement, and local window

attention [47]. An overview of the EHAT module’s architecture is presented in Figure 3.
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Figure 3. The Efficient Hybrid Attention Transformer (EHAT) Module.

A1 x 1 convolution reduces the input channels from C to C' = (C, — ¢)/r, where r

is the reduction ratio, C, the base number of reduced channels, and ¢ a learnable channel
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bias. Spatial downsampling via bilinear interpolation, with a ratio of s, yields dimensions
H' = H/s and W' = W/s, thereby compressing both spatial and channel dimensions to
alleviate the computational burden. Axial positional encoding is subsequently applied
to independently enhance features along the horizontal and vertical axes, introducing
directional priors well suited for representing elongated crack structures.

Foxial = Concat(F, + P, F, + Py) 1)

The downsampled feature map is partitioned into two components, F, and F,, corre-
sponding to horizontal and vertical orientations. Learnable positional parameters P, and
P, are added to each, after which, the results are concatenated via Concat (). This axial
positional encoding introduces explicit directional cues, enhancing the model’s capacity
to identify and preserve linear crack features. To balance computational efficiency with
structural sensitivity, EHAT employs local attention within each axis, enabling efficient
modeling of elongated patterns without incurring the overhead of full self-attention.

T
Attention(Q, K, V) = Softmax (QK) \% ()

Vg

Here, Q, K, and V denote the query, key, and value matrices, respectively, and dj
represents the dimensionality of the query vectors. The local window attention mechanism
divides the feature map into non-overlapping regions, where self-attention is calculated
independently within each window. This formulation preserves local structural integrity
while significantly reducing the computational cost associated with full self-attention.
To further enhance directional sensitivity, EHAT integrates an axial feature enhancement
module, refining the representation of elongated crack patterns across horizontal and
vertical orientations.

Fenhanced = Faxial + ConVaxial(F axial) 3)

Here, Conv,y, () denotes a convolution operation applied along the axial direc-
tion, designed to further refine crack-related feature representations. Departing from the
standard Transformer paradigm, EHAT adopts a hybrid MLP structure [48], integrating
convolutional layers with multilayer perceptrons [49]. This design leverages the local
inductive bias of convolutions alongside the global modeling capacity of MLPs, enhancing
the network’s ability to capture both fine-grained details and long-range dependencies.

thbrid = MLP(F enhanced) + COI’IV(F enhanced ) (4)

MLP(-) denotes a multilayer perceptron (feedforward network), and Conv(-) de-
notes a conventional convolution operation. By summing the outputs of both operations,
the model effectively fuses global context with fine-grained spatial features.

The axial feature enhancement module reinforces the linear characteristics of cracks
along both horizontal and vertical directions. Meanwhile, the hybrid MLP architecture
combines the inductive biases of convolution with the expressive capacity of Transformers.
To complete the EHAT module’s processing pipeline, feature maps are first upsampled to
their original resolution, followed by a 1 x 1 convolution to align channel dimensions.

The EHAT module incorporates several technical innovations within its overall archi-
tecture: it reduces computational complexity through adaptive channel reduction and local
window attention; enhances directional feature perception via axial positional encoding
and feature enhancement mechanisms; and integrates the local inductive bias of convolu-
tion with the global modeling capacity of Transformers through a hybrid MLP structure.
These design innovations enable the EHAT module to maintain a lightweight structure
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while substantially enhancing the network’s capacity to detect cracks across diverse ori-
entations and scales. It performs particularly well in complex backgrounds and subtle
crack scenarios, providing a robust feature representation foundation for high-precision
pavement crack segmentation.

3.3. Cross-Scale Hybrid Attention Module (CSHAM)

In the original HRNet architecture, the multi-scale feature fusion stage performs
feature alignment across different resolution branches via upsampling, followed by direct
fusion through summation or concatenation. This rigid fusion strategy lacks both adaptive
weighting across scales and directional feature enhancement, which limits its effectiveness
in pavement crack segmentation, particularly for elongated structures and scenes involving
the coexistence of multi-scale cracks. In such scenarios, critical morphological information
is often lost due to the uniform treatment of features with varying semantic granularity.

To overcome these limitations, we introduce the Cross-Scale Hybrid Attention Module
(CSHAM) into the multi-scale fusion stage of HRNet. Specifically, after all feature maps are
upsampled to a unified spatial resolution, CSHAM is inserted in place of naive fusion (as
illustrated in Figure 4), enabling both cross-scale adaptive fusion [50] and axial attention
enhancement [39]. This design ensures that the segmentation head receives a comprehen-
sive, structurally-aware representation that integrates multi-scale contextual information
while preserving directional cues critical for detecting complex crack morphologies.

1 3

) Multi-Scale Feamres: 1

[Fi, Fa, ... Fa] I | m==s=== "
| 1 Feature alignment

' and fusion

Figure 4. The Cross-Scale Hybrid Attention Module (CSHAM).

The Cross-Scale Hybrid Attention Module (CSHAM) adopts a hierarchical connection
structure designed to perform adaptive scale-wise feature weighting alongside directional
feature enhancement. The process begins with a cross-scale attention mechanism, which
evaluates the relative importance of each scale-specific feature by aggregating global
contextual information. The computation is formally expressed as:

1
G:NZE %)

Let F; denote the feature map at scale i, where i = 1,2,...,N and N is the total
number of scales. To compute the importance of each scale, a channel dimension reduction
operation is first applied, followed by a weight prediction module that assigns learnable
importance scores. These weights are then used to reweight the corresponding feature maps,
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enabling the network to dynamically emphasize informative scales while suppressing less
relevant representations.
W = Softmax(W, 6(W; G)) (6)

N
Frused = y_ Wi - F; ()

i=1
Here, Wi and W, are learnable projection matrices used for dimensionality reduction
and expansion, respectively, and J represents the ReLU activation function. Once the
attention weights are computed and scale-wise feature reweighting is performed, a fused
feature map Fpyeq is obtained. To further enhance directional awareness, directional
attention is applied by employing one-dimensional convolutions to generate attention
maps along the horizontal and vertical axes. These attention maps are then element-wise
multiplied with Fpseq to selectively amplify features aligned with directional crack patterns.

This process is formally defined as:

Faxial = (T(Convh (Ffused)) © U(COI‘IVU (Ffused )) (8)

In this context, Conv;, and Conv, refer to one-dimensional convolution operations
performed along the horizontal and vertical axes, respectively. The function ¢ represents
the Sigmoid activation, and © denotes element-wise multiplication. This design is partic-
ularly effective in enhancing the model’s sensitivity to linear crack structures, regardless
of orientation.

During backpropagation, the gradients of the cross-scale attention weights can be

computed as:
oL oL dFut

aTNi - aFout ' aFfused .

©)

Let L denote the loss function, which quantifies the discrepancy between model pre-
dictions and ground truth labels. The parameter W; represents the learnable attention
weight for scale i, while F; denotes the corresponding input feature map. Through gradient
backpropagation, the model dynamically adjusts W; to optimize the importance of each
scale relative to the segmentation objective. The fused feature map Fg;seq encapsulates
aggregated multi-scale representations, and the final output produced by the CSHAM mod-
ule is represented as Foyt. This formulation enables the network to selectively enhance both
scale-sensitive and directionally discriminative features, thereby improving segmentation
accuracy and promoting continuity in predicted crack structures.

The CSHAM module serves as a key component in facilitating multi-scale feature fu-
sion within the HRNet architecture. Beyond optimizing the adaptive integration of features
across resolutions, it significantly strengthens directional feature representation. By captur-
ing diverse crack morphologies and preserving fine structural details, CSHAM contributes
directly to improved segmentation performance and more precise edge localization across
a wide range of road surface conditions.

4. Experimental Details
4.1. Dataset Preparation

As a pixel-level classification task, the performance of image segmentation models is
highly dependent on the quality and diversity of the training dataset. However, existing
publicly available road crack detection datasets often lack finely annotated templates
capable of capturing the wide morphological variability of cracks across diverse real-world
conditions. To address this gap, we constructed a dedicated multi-scene segmentation
dataset focused on road surface cracks, referred to as the QD-Crack dataset. This dataset
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is based on high-resolution road surface imagery collected by professional pavement
inspection vehicles operating on expressways in Shandong Province, China, since May
2023. All data collection activities were conducted with the authorization of relevant
municipal authorities. To ensure data privacy and regulatory compliance, all original
images were preprocessed to remove identifiable elements, such as licence plates and
prominent landmarks. The base dataset comprises 500 high-resolution images, captured
under a wide range of environmental conditions, including varying lighting, pavement
materials, and crack types. These images reflect diverse forms of pavement distress and
are stored in JPG format. Annotation was performed by a team of experienced road
maintenance engineers—each with over three years of professional experience—using
the Labelme tool for detailed, vector-based labeling of crack morphology. To ensure
annotation quality and consistency, all labels were cross-verified by two independent
inspection engineers. Discrepancies were resolved through panel-based expert review. The
overall dataset construction workflow is illustrated in Figure 5. The QD-Crack dataset was
collected by the authors from municipal roads in Qingdao, China. While it is not currently
publicly available, it can be accessed upon reasonable request to the corresponding author
for research purposes.

[Image denoising J
original image Data filtering -

h =I - Image preprocessing

data augmentation Data annotation

Figure 5. Dataset construction process.

Given the high cost and labour intensity of pixel-level annotation, we adopted a semi-
automatic labeling strategy inspired by the approach of Jia et al. [51]. This method focuses
on annotating the primary crack structures rather than the intact road surface, thereby
improving labeling efficiency while preserving semantic relevance. Initial annotations were
generated with the assistance of edge detection algorithms, which provided a contour-
based approximation of crack boundaries. The final annotated dataset comprises a JSON
file containing approximately 13.5 million labeled points, subsequently converted into
PNG-format semantic segmentation masks using a custom-developed Python 3.10 script.
To examine the influence of annotation granularity on model performance, we designed two
distinct labeling schemes: (1) a binary scheme with two categories: background and crack;
(2) a three-class scheme, comprising background, linear cracks, and alligator (reticular)
cracks. Representative examples from labeling schemes are shown in Figure 6.
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Figure 6. Examples of labeling schemes for different crack types. Each column from (a-d) represents a
complete sample group, consisting of the following: top row—original pavement image, middle row—
binary annotation, bottom row—overlay mask. Specifically, (a) transverse crack, (b) longitudinal
crack, (c) alligator crack on asphalt pavement, and (d) intersecting crack on cement pavement.

To enhance dataset utility and improve the robustness and generalization capabil-
ity of the trained models, we applied a set of essential image preprocessing procedures,
including image enhancement and geometric correction. A comprehensive data aug-
mentation pipeline was implemented, incorporating random angle rotation, brightness
adjustment, contrast enhancement, sharpness optimization, and horizontal flipping. As a
result, the dataset was expanded from 500 to a total of 2500 samples. These augmentation
techniques not only increase data diversity but also emulate complex real-world engineer-
ing conditions. For instance, random rotation (within £15°) allows the model to recognise
cracks from multiple viewing angles; brightness and contrast adjustments enhance texture
visibility under variable lighting; and sharpness optimization amplifies edge contrast,
thereby improving the distinction between crack regions and the background. An illus-
tration of these effects is provided in Figure 7. Additionally, horizontal flipping augments
data volume while mitigating directional bias, encouraging the model to generalize across
diverse crack orientations and morphologies.

Figure 7. Image preprocessing visualization. The images from top-left to bottom-right are as
follows: (a) original image, (b) contrast-enhanced, (c) brightness-adjusted, (d) horizontally flipped,
(e) sharpness-optimized, and (f) randomly rotated.
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4.2. Training Parameters and Methods

To ensure the accuracy and reproducibility of the experiments, the detailed configura-
tion of the experimental environment is summarized in Table 1.

Table 1. Model training configuration.

Configuration Items Configuration

Operating System Windows 11

Deep Learning Framework PyTorch 1.10.0

Processor Intel Core i7-12700k

RAM 32 GB

GPU NVIDIA GeForce RTX 3070 Ti (8 GB)
GPU Memory 8 GB

CUDA Version 11.3

During the experimental procedure, the dataset was divided into a training set and
a test set at a fixed ratio of 8:2. Model parameters were iteratively optimized using the
training set, whereas the test set was reserved for assessing generalization capability.
To efficiently manage GPU memory limitations, the batch size was configured to 8, enabling
effective utilization of the available computational resources. Based on prior experimental
experience, the number of training epochs was uniformly set to 120, as the loss function
consistently converged near this point across multiple configurations. The convergence
behavior is visualized in Figure 8, which illustrates the decline and stabilization of the loss
function across epochs. The model achieves a stable convergence state by approximately
the 120th epoch, validating the effectiveness of the selected training schedule.

Training and Validation Loss Curve

.
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0 20 10 il 80 100 120
Epoch

Figure 8. The trend of loss function with the number of training rounds.

In image segmentation tasks, accurate delineation of object contours often relies on
spatially consistent feature distributions. Building upon this observation, we incorporated
a transfer learning strategy to enhance model learning efficiency. The core principle of
transfer learning lies in reusing knowledge—specifically, pre-trained model weights—from
one task to accelerate learning in a related but distinct target task, much like how humans
transfer prior experience to new problems. In this work, the model parameters were
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initially pre-trained on a large-scale crack detection dataset, and subsequently fine-tuned
on the target dataset to adapt to the specific task requirements.

The SDNET2018 dataset [52] was selected as the source for pre-training. Comprising
over 56,000 annotated concrete crack images, SDNET2018 is widely recognized in the field
for its utility in training, validation, and benchmarking of crack detection algorithms. Ex-
perimental results demonstrate that this transfer learning approach [53] not only accelerates
convergence but also yields significant improvements in segmentation accuracy. Owing to
the visual feature similarities shared across diverse real-world objects, this strategy closely
aligns with human perceptual learning processes.

To fully exploit the benefits of pre-trained knowledge, we adopted a freeze-thaw
training strategy [54], as opposed to random weight initialization. Given that the network
backbone is responsible for extracting generalizable low-level features, its parameters were
initially frozen, while the remaining layers were fine-tuned on the target data. During the
mid-to-late training phases, the backbone was gradually unfrozen to allow full network
optimization and better task adaptation.

The initial learning rate was set to 0.0001 and dynamically adjusted using a cosine
annealing schedule [55] to improve convergence stability and efficiency. To further stabilize
training, we set the momentum parameter to 0.975 and employed the Adam optimizer [56],
which adaptively adjusts learning rates by incorporating both first- and second-order
moment estimates of the gradients.

4.3. Methods for Evaluation

Evaluations were carried out on the QD-Crack dataset as well as other publicly
available crack segmentation datasets to comprehensively assess both the performance
gains and generalization ability of our model. To assess the effectiveness of the proposed
ETAFHrNet model, we performed comparative analyses against multiple state-of-the-art
segmentation approaches documented in existing studies. The QD-Crack dataset, along
with several other publicly accessible crack segmentation benchmarks, was utilized to
thoroughly evaluate the performance improvements and generalization capability of our
model. For quantitative assessment, six evaluation metrics were adopted: Intersection over
Union (IoU), mean IoU (mloU), Precision, Recall, F1-score, Frames Per Second (FPS), and
Params. These metrics collectively capture the model’s segmentation accuracy, robustness,
and inference efficiency. Specifically, IoU (Intersection over Union) measures the spatial
correspondence between the predicted segmentation and the ground truth. It is calculated
as the ratio of the area of overlap to the area of union between the predicted and actual
regions. A higher IoU value reflects better segmentation performance. The metric is

mathematically defined as:
ANB

AUB

mloU refers to the mean IoU across all classes and provides a comprehensive assess-

IoU = (10)

ment of model performance.
Precision quantifies the proportion of true positive predictions among all samples
predicted as positive, reflecting the reliability of positive classifications. It is formally

expressed as:

TP
Precision = ——— 11
recision = — TP (11)

Recall is the proportion of true positive samples that are correctly identified by the

model, defined as:
TP

Recall = — -
T TPIEN

(12)
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Here, TP denotes the number of correctly identified crack pixels (true positives), while
FP corresponds to background pixels erroneously classified as cracks (false positives).
Conversely, FN represents crack pixels that the model failed to detect, incorrectly labeling
them as background (false negatives).

Relying solely on individual metrics such as Precision or Recall can lead to a skewed
evaluation, particularly when class imbalance is present. For instance, a model may achieve
high Precision yet still perform poorly overall if Recall is substantially low. To mitigate this
issue, we utilize the F1-score, which computes the harmonic mean of Precision and Recall,
offering a more balanced and informative measure of performance in imbalanced scenarios.
The F1-score is defined as:

Precision x Recall
F1- =2 1
score x Precision + Recall (13)

In addition, we introduce FPS (Frames Per Second) as a measure of inference ef-
ficiency. FPS quantifies how many input images the model can process and output
per second. A higher FPS reflects a more efficient network capable of faster real-time
crack detection, which is particularly valuable for practical deployment in infrastructure
monitoring systems.

5. Results and Discussion
5.1. Influence of Semantic Labels and Transfer Learning on Model Performance

This section investigates the impact of semantic labeling granularity and transfer
learning strategies on the performance of segmentation models. We evaluated four main-
stream architectures—U-Net, DeepLabv3+, HRNet, and the proposed ETAFHrNet—across
datasets annotated using both two-class and three-class schemes (see Table 2). The two-
class scheme included only background and crack categories, while the three-class variant
further distinguished between linear cracks and alligator (reticular) cracks. The findings
indicate that models trained using the two-class scheme consistently surpass those trained
with the three-class approach. For example, U-Net exhibited improvements of around
3.2% in mloU and 4.13% in Fl-score when utilizing the two-class dataset. DeepLabv3+
displayed greater robustness to label granularity, with metric fluctuations remaining within
a 3% margin. Notably, ETAFHrNet achieved the best results under the two-class setting,
reaching an mloU of 74.41% and an Fl-score of 83.11%. This superior performance can be
attributed to ETAFHrNet’s architectural design, which emphasizes long-range dependency
modeling and directional feature enhancement. These mechanisms are especially effective
when the task is simplified to binary segmentation, allowing the model to focus entirely on
the structural continuity and contextual consistency of cracks without being distracted by
inter-class ambiguity. In contrast, the three-class setting introduces greater intra-class vari-
ability and semantic overlap, which can interfere with feature representation and degrade
performance. These findings suggest that the simplified two-class labeling strategy is
more appropriate for practical crack detection tasks. Finer-grained class distinctions often
introduce class imbalance and inter-class confusion [57,58], while offering limited added
value in most real-world engineering applications.

We further evaluated the effect of transfer learning, specifically pre-training on a
large-scale dataset followed by fine-tuning on a smaller, task-specific dataset, to assess its
influence on model performance (see Table 3). The results demonstrate that this strategy
leads to consistent and significant improvements across all evaluated models. Notably,
ETAFHrNet achieved an 8.09% increase in mean Intersection over Union (mloU), reaching
a peak value of 74.4%, thereby outperforming all other models by a substantial margin.
U-Net and SegFormer also benefited from transfer learning, with respective gains of 3.73%
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and 5.63% in mloU, further validating the effectiveness of this approach [59]. It is worth
noting that Transformer-based architectures, particularly CNN-Transformer hybrid models,
typically lack inherent spatial inductive biases and often require large-scale training data to
achieve optimal performance. Consequently, pre-training plays a critical role in enabling
these models to generalize effectively, especially when applied to smaller, domain-specific
datasets, such as those used for pavement crack segmentation.

Table 2. Comparison of semantic segmentation model performance across multiple datasets.

Model Classes mloU (%) mRecall (%) mPrecision (%) F1-Score (%)
U-Net two 62.85 70.76 71.23 71.90

three 59.62 67.48 68.07 67.77

two 65.72 73.25 73.86 73.92
DeepLabv3 Plus ) 0o 6247 70.09 70.54 70.31

two 63.49 72.98 70.34 71.58
HRNet three 60.15 69.11 67.32 68.20

two 74.41 83.84 84.51 83.11
ETAFHrNet three 71.08 79.21 76.64 79.42

Table 3. Results of transfer learning experiments.

Model Transfer Learning mlIoU (%) mRecall (%) mPrecision (%)  F1-Score (%)
U-Net No 59.12 66.32 67.28 67.45
Yes 62.85 70.76 71.23 71.90
No 61.47 69.15 69.87 69.90
DeepLabv3 Plus y, o 65.72 73.25 73.86 73.92
No 60.08 68.44 68.93 68.71
HRNet Yes 63.49 72.98 70.34 71.58
SeoF No 63.58 71.72 72.13 72.25
cgrormer Yes 69.21 76.52 76.88 76.73
No 66.32 74.65 75.15 75.38
ETAFHrNet Yes 74.41 83.84 84.51 83.11

Based on the experimental findings, it is evident that both simplified semantic labeling
and transfer learning substantially enhance segmentation performance, with ETAFHr-
Net consistently demonstrating the strongest results across evaluation metrics. Notably,
the transfer learning setup involved pre-training on a composite dataset that included
publicly available sources (e.g., CRACKS500, GAPs384), before fine-tuning on QD-Crack.
This configuration simulates cross-domain adaptation and indirectly reflects the model’s
ability to generalize beyond a localized dataset. To further investigate the critical factors
influencing feature extraction and multi-scale fusion, and to conduct in-depth comparisons
with alternative network architectures, we adopt the two-class labeling scheme and apply
transfer learning as the default training strategy in all subsequent ablation and compara-
tive experiments. This experimental setup is designed to ensure consistency and provide
more reliable technical guidance for the deployment of segmentation models in practical
pavement crack detection applications.

5.2. Ablation Experiment

To verify the synergistic contribution of the proposed CSHAM and EHAT modules
to pavement crack segmentation performance, we conducted a series of systematic abla-
tion experiments on a benchmark crack detection dataset. By progressively removing or
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replacing key architectural components, we quantitatively assessed the impact of each
module on both segmentation accuracy and inference efficiency, measured in Frames Per
Second (FPS).

As shown in Table 4 and Figure 9, the baseline model—comprising solely the original
HRNet without integration of the CSHAM or EHAT modules—achieves an mloU of 63.49%,
with corresponding mPrecision and mRecall scores of 72.98% and 70.34%, respectively.
The Fl-score falls to 71.58%, and the inference speed is recorded at 14.51 FPS. These
results indicate that conventional multi-scale fusion mechanisms, as employed in HRNet,
are inadequate for capturing the elongated, fine-grained, and morphologically diverse
structures characteristic of pavement cracks. Moreover, the visual outputs shown in
Figure 10 reveal pronounced discontinuities and susceptibility to background noise in the
baseline predictions, resulting in coarse segmentation contours and inconsistent structural
delineation. These findings further underscore the importance of enhancing both feature
fusion and directional awareness for high-precision crack segmentation.

Table 4. Ablation experiment performance comparison.

Model EHAT CSHAM mloU (%) mPrecision (%) mRecall (%) F1-Score (%) FPS Params (M)

HRNet No No 63.49 72.98 70.34 71.58 1451 45.0
Yes No 70.18 81.08 77.05 78.93 22.83 475
No Yes 72.69 79.95 80.96 81.45 22.64 482
Yes Yes 74.41 83.84 84.51 83.11 28.56 50.6

From a resource perspective, the baseline HRNet contains 45.0 M parameters. Adding
EHAT or CSHAM alone keeps the footprint below 48.5 M while lifting mloU by at least
7 percentage points and increasing throughput by 60%. Activating both modules brings
the total to only 50.6 M parameters (+12%) yet almost doubles FPS (14.51 to 28.56) and
raises mloU by 10.9 percentage points, delivering the best accuracy—efficiency balance.

When the EHAT module is introduced independently, the model achieves an mloU of
70.18%, with mPrecision and mRecall reaching 81.08% and 77.05%, respectively. The F1-
score rises to 78.93%, and the inference speed improves to 22.83 FPS. As shown in Figure 10,
the inclusion of axial positional encoding and local window attention enhances the model’s
ability to capture directionally oriented crack features, resulting in more continuous and
clearly delineated crack contours.

In contrast, when only the CSHAM module is incorporated, the performance im-
proves further, with an mloU of 72.69%, mPrecision of 79.95%, and mRecall of 80.96%,
yielding an F1-score of 81.45%. The inference speed remains comparably high at 22.64 FPS.
As illustrated in the corresponding visualizations in Figure 10, the cross-scale attention
and adaptive weighting mechanisms in CSHAM facilitate more effective integration of
multi-resolution features. This enables improved detection of fine-grained crack structures,
while preserving smooth and coherent segmentation boundaries.

When both the CSHAM and EHAT modules are enabled, the model achieves its
best overall performance: an mloU of 74.41%, mPrecision of 83.84%, mRecall of 84.51%,
an Fl-score of 83.11%, and an inference speed of 28.56 FPS. As shown in the rightmost
column of Figure 10, crack patterns in examples (a)—(d) are accurately detected across
multiple scales and orientations, with improved line continuity and significantly reduced
background interference. In the regions highlighted by red boxes, the baseline and single-
module variants exhibit noticeable segmentation gaps and discontinuities. In contrast,
the combined use of CSHAM and EHAT yields contours that closely match the ground
truth, demonstrating superior recognition of multi-directional and multi-scale cracks.
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Figure 9. Confusion matrix visualization of ablation experiments.
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Figure 10. Ablation experiment comparison. (a-d) Randomly sampled images from the dataset. The
red boxes indicate regions where differences occur.

In conclusion, the collective findings in Table 4 and Figure 10 underscore the syner-
gistic contributions of the two proposed modules. The EHAT module primarily enhances
the model’s sensitivity to directional crack features, mitigating fragmentation and misclas-
sification, while the CSHAM module improves feature expressiveness and background
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suppression through adaptive multi-scale fusion. Their integration leads to substantial
gains in segmentation accuracy, structural consistency, and robustness under complex
conditions. Additionally, the model achieves fast inference, rendering it highly applicable
to real-time pavement crack detection scenarios.

5.3. Comparison with Existing Advanced Methods

To validate the performance advantages of the proposed ETAFHrNet model in pave-
ment crack detection, we conducted comparative experiments on the self-constructed
QD-Crack dataset against several state-of-the-art segmentation models, including U-Net,
DeepLabv3+, SegFormer, PSPNet, and HRNet. All models were trained and fine-tuned
under identical experimental conditions to ensure fair comparison. As shown in Figure 11,
each model was evaluated using three primary metrics: mean Intersection over Union
(mloU), Fl-score, and mean Recall (mRecall). The results demonstrate that ETAFHrNet
achieves an mloU of 74.41%, representing a 10.92% improvement over HRNet. In addi-
tion, it attains an mPrecision of 83.84%, an mRecall of 84.51%, and an F1-score of 83.11%,
highlighting the model’s significant advantage in segmentation accuracy and overall per-
formance [60].

100%
A mloU B mRecall

90% ®  mPrecision @ Fl-score
0

80%

70%

Indicator

60%

50%

40%

et et popNet oo oo™ R

Figure 11. Performance comparison (mloU, Fl-score, etc.) of models on the dataset.

Besides accuracy, ETAFHrNet also offers a balanced hardware footprint. With 50.6 M
parameters, it is only 12% larger than the HRNet baseline yet 21% smaller than the
Transformer-based SegFormer (64.0 M). Despite this mid-range size, ETAFHrNet deliv-
ers an mloU that is 10.9 percentage points higher than HRNet and 5.2 percentage points
higher than SegFormer, while achieving the highest throughput (28.56 FPS). This accuracy-
capacity-speed triad makes it attractive for edge GPUs and NPUs that typically provide
8-16 GB of RAM.

Furthermore, as presented in Table 5 and Figure 12, ETAFHrNet outperforms U-Net
by 13.08% in mean Precision (mPrecision) and 13.28% in mean Recall (mRecall), indicating
its superior overall segmentation performance. While DeepLabv3+ leverages atrous convo-
lution to expand the receptive field, it exhibits limitations in modeling the continuity of
slender cracks, resulting in a relatively low mIoU of 65.72%. SegFormer, constrained by
its window partitioning strategy, tends to generate fragmented crack predictions during
high-resolution detection tasks. Similarly, PSPNet, due to its coarse-grained context model-
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ing, demonstrates a higher omission rate in fine crack detection, achieving an mRecall of
only 72.64%.
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Figure 12. Comparison of classification performance across different semantic segmentation models
based on their confusion matrices.

Table 5. Performance comparison of various semantic segmentation models on the QD-Crack dataset.
(Bold text highlights better model parameters).

Model mloU (%) mPrecision (%) mRecall (%) F1-Score (%) FPS Params (M)
U-Net 62.85 70.76 71.23 71.90 15.37 31.0
HRNet 63.49 72.98 70.34 71.58 14.51 45.0
PSPNet 64.32 71.85 72.64 72.24 17.22 42.6
DeepLabv3+ 65.72 73.25 73.86 73.92 19.84 42.0
SegFormer 69.21 76.52 76.88 76.73 21.34 64.0
ETAFHrNet 74.41 83.84 84.51 83.11 28.56 50.6

Parameter-wise, all CNN baselines cluster between 31 M and 45 M, whereas SegFormer
scales up to 64 M. ETAFHrNet falls between the two groups, indicating that its performance
boost stems from architectural design rather than brute-force model scaling.

Given this footprint, we further estimate the real-time capacity of ETAFHrNet over
a typical pavement section. Assuming one image covers roughly 1.5 m of pavement,
analyzing a 1 km segment requires about 667 images. At 28.56 FPS, the model can pro-
cess these images in 23.4 s (excluding 1/0), confirming its suitability for near-real-time
mobile inspection.

To provide a clearer illustration of the proposed model’s performance benefits, we
present a visual comparison using representative test samples, as shown in Figure 13.
The figure presents original pavement images, ground-truth segmentation masks, and pre-
diction results from ETAFHrNet, U-Net, and PSPNet, with red boxes marking key areas
of discrepancy. The visual comparisons clearly show that ETAFHrNet offers superior per-
formance in capturing directional and continuous crack features. In particular, for sample
groups 1 and 4, ETAFHrNet accurately preserves crack continuity at junctions, where other
models tend to produce fragmented outputs. In group 3, the model successfully detects
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faint, low-contrast cracks through adaptive multi-scale fusion, effectively mitigating the
information loss seen in DeepLabv3+, which relies on a single-path fusion mechanism.
In more visually complex backgrounds, such as those in groups 2 and 3, the integration
of EHAT and CSHAM enhances both crack-to-background contrast and edge localization
precision. By comparison, U-Net frequently exhibits crack discontinuities, attributed to
its limited receptive field, while PSPNet often generates over-smoothed or mis-clustered
predictions due to its coarse context modeling during feature fusion. These qualitative re-
sults further reinforce the quantitative superiority of ETAFHrNet in accurately segmenting
diverse and challenging crack patterns.

Nevertheless, Figure 13 also reveals that ETAFHrNet is not flawless. (1) Sample a:
the predicted transverse (horizontal) crack appears noticeably blurred compared with
the sharper boundary produced by DeepLabv3+, indicating a tendency towards over-
smoothing along horizontal orientations. (2) Sample c: the forked crack at the bot-
tom is segmented with exaggerated width, resulting in an over-emphasized branch.
These failure cases highlight the remaining optimization space for edge-preservation and
scale-aware refinement.

Although the predicted segmentation maps from different models may appear vi-
sually similar in some cases, high-precision crack pattern identification plays a critical
role in pavement management. Distinguishing between transverse and alligator cracks,
for instance, informs whether surface sealing or full-depth patching is required. Precise
segmentation also improves damage quantification, enabling more accurate cost estimation,
lifecycle prediction, and prioritization of maintenance resources.

(a)

(b)

(c)

Original Picture Ground True U-Net PSPNet DeepLabv3+  ETAFHrNet

Figure 13. Segmentation outcomes comparison among different models. (a—d) Randomly sampled
images from the dataset. The red boxes indicate regions where differences occur.

In summary, ETAFHrNet, empowered by its innovative hybrid attention mechanisms
and adaptive multi-scale fusion strategy, delivers substantial improvements in segmen-
tation accuracy, robustness, and computational efficiency for pavement crack detection.
The model exhibits clear advantages in crack-structure preservation, background-noise
suppression, and fine-detail restoration, underscoring its strong potential for deployment
in real-world road-inspection and maintenance scenarios.

157



Appl. Sci. 2025, 15, 6183

6. Conclusions

This study proposed ETAFHrNet, a Transformer-enhanced segmentation network
specifically designed to tackle the challenges of detecting complex and irregular crack pat-
terns in high-resolution pavement imagery. By integrating the Efficient Hybrid Attention
Transformer (EHAT) and the Cross-Scale Hybrid Attention Module (CSHAM) into the
HRNet backbone, our model effectively captures both long-range contextual dependen-
cies and fine-grained structural features that are critical for accurate object segmentation
and classification.

Comprehensive experiments on the self-constructed QD-Crack dataset confirm that
ETAFHrNet surpasses state-of-the-art approaches, including U-Net, DeepLabv3+, and HR-
Net, in terms of segmentation accuracy, precision, recall, and inference speed. Ablation
studies demonstrate that the two proposed attention modules provide complementary
benefits, particularly in enhancing the representation of directionality, scale variation,
and discontinuity, which are typical characteristics of asymmetric visual objects.

The proposed framework contributes to the development of interpretable and efficient
Al models for infrastructure monitoring, with extensibility to a wide range of applications
such as bridge inspection, tunnel lining analysis, and remote sensing-based structural
assessment. Moreover, the model’s architecture aligns with the broader goals of object de-
tection and image classification, especially under challenging conditions where traditional
models struggle.

Although ETAFHrNet shows promising segmentation accuracy and inference speed,
several practical constraints remain: (1) Data diversity: the QD-Crack dataset mainly
contains dry asphalt surfaces captured in daylight; performance under concrete pavements,
wet conditions, night-time illumination, and extreme weather has not yet been validated.
(2) Micro-crack sensitivity: hairline cracks narrower than two pixels are occasionally
missed, revealing insufficient fine-scale feature capture. (3) Pavement-material dependence:
preliminary trials on concrete surfaces reveal false positives where aggregate texture is
confused with cracks, indicating the need for material-aware domain adaptation. (4) Edge
deployment: the current model still relies on an NVIDIA RTX 3070 Ti GPU; additional
pruning and quantization are required for real-time inference on low-power edge devices.
(5) Continuous video streams: experiments were conducted on discrete images; real-time
tracking of cracks in on-board video sequences demands further pipeline optimization.
(6) Domain generalization: transferability to geographically distinct road networks or other
infrastructure (e.g., bridges, airport runways) remains to be verified through cross-domain
testing. Addressing these issues constitutes our immediate future work.

Looking ahead, future research will focus on optimizing ETAFHrNet for lightweight
deployment on edge devices, enhancing its generalizability across diverse environmental
scenarios, and improving its ability to identify micro-scale defects under varying pavement
materials. More broadly, our findings emphasize the significance of modeling asymmetry
and multi-scale variation in visual data, a principle that is critical for building robust,
generalizable, and explainable object-recognition systems across real-world domains.
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