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Editorial

Special Issue on Recent Advances in Sensors for Chemical
Detection Applications

Michele Penza

Brindisi Research Center, Division of Technologies and Advanced Materials for Sustainable Manufacturing
Industry, Department for Sustainability, ENEA—Italian National Agency for New Technologies, Energy and
Sustainable Economic Development, I-72100 Brindisi, Italy; michele.penza@enea.it

Abstract: This Special Issue based on 15 articles/reviews focusses on low-cost sensor
technology, gas sensors, chemical sensors, advanced active materials, sensing nanomateri-
als, sensor nodes, hardware innovation, data communication, system integration, sensor
testing, functional characterization, sensor modeling, processing and correction algorithms,
new sensing solutions, advanced proof of concepts, and chemical detection applications.
Proper calibration techniques of chemical sensors have been explored, both in the labo-
ratory and in field applications. Sensing solutions have been applied in the context of
biochemical detection and gas monitoring.

Keywords: gas sensors; chemical sensors; sensor active materials; advanced functional
nanomaterials; portable chemical sensor-systems; chemical sensor modeling; IoT devices;
sensor engineering; chemical sensor applications; new concepts in chemical sensing

1. Introduction

Chemical detection based on low-cost sensor technologies [1–4] has become increas-
ingly popular for several emerging applications, such as industrial process control, chemical
threat monitoring, green chemistry, environmental sustainability, smart cities, hydrogen
economy, energy saving, wearable devices, IoT applications, public health protection,
sustainable mobility, autonomous vehicles, and community sensing.

Functional materials [5–9] are cross-cutting technologies for chemical detection to pro-
vide advanced gas sensors at the laboratory level and real-world testing in many industrial
applications. Low-power consumption, high-quality data, and optimal performance are
some important parameters for a new generation of low-cost chemical sensors. Portable
sensor systems and wireless sensor networks are typical approaches to monitoring chemical
threats in long-term operation [10–14].

Current low-cost sensor technologies include numerous types of transducers, such
as chemiresistors, electrochemical, transistor, optical, mass-sensitive, catalytic, and other
hybrid configurations, evolving quickly with different open questions and considerable
challenges, such as sensitivity, selectivity, stability, limit of detection, calibration, accuracy,
and so on. Understanding the limitations and capabilities of current low-cost sensor
technologies for chemical detection is a key issue for future applications.

This Special Issue of the Sensors (MDPI journal), titled “Recent Advances in Sensors
for Chemical Detection Applications”, brings together fifteen articles presenting the recent
developments in these areas. The publications range from advanced sensing materials, sen-
sor devices, chemical detection, biosensing, calibration algorithms, new sensing solutions,
proof of concepts, practical applications for environmental monitoring, and bio-sensing

Sensors 2025, 25, 5422 https://doi.org/10.3390/s25175422
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measurements. The featured research highlights significant advancements in biochemical
sensing applied as smart technology for a sustainable future based on environmental, social,
and governance methodology.

2. Overview of Published Papers

José Carlos Santos-Ceballos et al. (Contribution 1—Article) present a study devoted
to the electrochemical modification of laser-induced graphene (LIG) with polyaniline
(PANI), which led to the development of a chemo-resistive nanocomposite (PANI@LIG)
for detecting ammonia levels at room temperature. The composite is characterized by
Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform InfraRed (FTIR),
and Raman and X-ray Photoelectron Spectroscopy (XPS). Gas sensing mechanisms and
functional tests have been discussed to fix sensing performance. The proposed sensor
may offer higher response to ammonia, processing convenience, low-cost scalability, and
a low limit of detection (LOD) of 2.38 ppb, as well as the sensor’s performance in real-
world conditions, making this sensor a candidate for applications such as environmental
monitoring and industrial safety. This work marks the first utilization of PANI@LIG for gas
sensing and introduces a simple but effective approach for fabricating low-cost wearable
gas sensors with high sensitivity and flexibility.

Rongqing Dong et al. (Contribution 2—Review) present a review devoted to con-
ducting polymer-based gas sensors. Conducting Polymers (CPs) are promising materials
for gas sensors due to their organic nature coupled with unique and versatile optical,
electrical, chemical, and electrochemical properties. The fundamental gas sensing mecha-
nisms in CPs-based sensors are elucidated, covering diverse transduction modes including
electrochemical, chemo-resistive, optical, piezoelectric, and field-effect transistor-based
sensing. Various types of conducting polymers employed in gas sensors, such as polypyr-
role, polyaniline, polythiophene, and their composites, are introduced, with emphasis on
their synthesis methods, structural characteristics, and gas-sensing response properties.
Finally, the wide range of applications of these sensors is discussed, spanning industrial
process control, environmental monitoring, food safety, biomedical diagnosis, and other
fields, as well as existing issues such as long-term stability and humidity interference.
The review has presented a comprehensive understanding of the CP-based sensors by
examining their sensing mechanisms, sensitive materials, and device components. It
also highlights future research directions, including device miniaturization, AI-assisted
gas identification, multifunctional integrated sensing systems, and wearable and flexible
sensor platforms.

Mahmoud Torkamani Cheriani et al. (Contribution 3—Review) present a review
devoted to the plasma-treated nanostructured resistive gas sensors. Resistive gas sensors
are among the most widely used sensors for the detection of various gases. In this type
of gas sensor, the gas-sensing capability is linked to the surface properties of the sensing
layer, and accordingly, modification of the sensing surface is of importance to improve the
sensing output. Plasma treatment is a promising way to modify the surface properties of
gas sensors, mainly by changing the amounts of oxygen ions, which have a central role in
gas sensing reactions. After an introduction to air pollution, toxic gases, and resistive gas
sensors, the main concepts regarding plasma are presented. Then, the impact of plasma
treatment on the sensing characteristics of various sensing materials is also discussed.
Generally, oxygen plasma causes the addition of surface oxygen functional groups on the
sensor surface, and hence, the reactions between adsorbed gases with oxygen increase,
leading to a higher sensing performance relative to pristine sensors. Also, exposure to
other plasma atmospheres such as Ar or He causes the generation of oxygen defects,
which act as favorable sites for oxygen adsorption and accordingly contribute to enhanced
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sensing performance. Different sensing materials such as metal oxides, TMDs, MXenes,
CNTs, graphene, and CPs have been subjected to plasma treatment. In this regard, the
combination of plasma exposure with other high irradiation techniques such as ion beams,
electron beams, and gamma rays can lead to interesting sensing results.

Sanket Naresh Nagdeve et al. (Contribution 4—Review) propose a review devoted
to the perspectives on the application of biosensors for the early detection of oral cancer.
This study evaluates the significance of biomarkers and recent advancements in oral cancer
detection, emphasizing cutting-edge electrochemical methods. The paper provides an
epidemiological and etiological overview, outlining its clinical importance and reviewing
the current state of the art in detection methods. Despite considerable progress, conven-
tional methods exhibit limitations such as invasiveness, long wait times, and a lack of
accuracy, creating a critical need for more robust technologies. This review emphasizes
the significance of oral cancer biomarkers, which are considered promising cues for early
detection, facilitating the development of innovative biosensing technologies. The review
seeks to illuminate the recent advances in early detection and precision diagnostics, along
with the usage of artificial intelligence strategies, ultimately contributing to significant
progress in the battle against oral cancer. Integrating biomarkers and biofluids into the
development and application of biosensors enhances the potential for accurate, reliable,
and non-invasive oral cancer detection methods. Further research and development are
essential to address challenges such as optimization for clinical settings, the validation
of real-world applications, and integration into established diagnostic pathways. As the
field of electrochemical biosensing continues to advance, the strategic integration of these
biosensors into clinical practice holds promise to transform the landscape of oral cancer
detection and management.

Chiheb Walleni et al. (Contribution 5—Article) propose a report on the synergistic
effect of decorating nitrogen-doped reduced graphene oxide (N-rGO) with nickel oxide
(NiO) nanoparticles for developing highly selective and sensitive chemi-resistive NO2 gas
sensors. The N-rGO/NiO sensor was synthesized straightforwardly, ensuring uniform
decoration of NiO nanoparticles on the N-rGO surface. Comprehensive characterization
using SEM, TEM, XRD, and Raman spectroscopy confirmed the successful integration of
NiO nanoparticles with N-rGO and revealed key structural and morphological features
contributing to its enhanced sensing performance. As a result, the NiO/N-rGO nanohy-
brids demonstrate a significantly enhanced response five orders of magnitude higher than
that of N-rGO toward low NO2 concentrations (<1 ppm) at 100 ◦C. In the first tests, the
sensor showed a very high selectivity toward NO2 (the other gaseous species tested were
CO2, ethanol, and NH3). Consequently, NiO NPs proved their potential for boosting the
sensitivity of N-rGO toward NO2 gas, thanks to the p-p junctions created that facilitate
carrier conduction, as explained by the underlying sensing mechanisms. Moreover, the
present device has an outstanding performance, high sensitivity, and very low limit of
detection (<1 ppb). The findings pave the way for integrating these sensors into advanced
applications, including environmental monitoring and IoT-enabled air quality manage-
ment systems. The nanomaterial presented robust performances, such as a high sensitivity
and very low limit of detection, showing high prospects for being integrated in the next
generation of advanced chemo-resistive sensors.

Bogdan-Catalin Serban et al. (Contribution 6—Article) propose a study on the ethanol
vapor sensing performance of a resistive sensor that utilizes a quaternary nanohybrid
sensing layer composed of holey carbon nanohorns (CNHox), graphene oxide (GO), SnO2,
and polyvinylpyrrolidone (PVP) in an equal mass ratio of 1:1:1:1 (w/w/w/w). The sens-
ing device includes a flexible polyimide substrate and interdigital transducer (IDT)-like
electrodes. The sensing film is deposited by drop casting on the sensing structure. The
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morphology and composition of the sensitive film are analyzed using Scanning Electron
Microscopy (SEM), Energy Dispersive X-ray (EDX) Spectroscopy, and Raman spectroscopy.
The manufactured resistive device presents good sensitivity to concentrations of alcohol
vapors varying in the range of 0.008–0.16 mg/cm3. The resistance of the proposed sensing
structure increases over the entire range of measured ethanol concentration. Different types
of sensing mechanisms are recognized. The decrease in the hole concentration in CNHox,
GO, and CNHox due to interaction with ethanol vapors, which act as electron donors, and
the swelling of the PVP are plausible and seem to be the prevalent sensing pathway. The
hard-soft acid-base (HSAB) principle strengthens the proposed chemical analysis. Unlike
conventional ethanol sensors, which primarily rely on metal oxides and rare elements,
this innovative approach combines the synergistic properties of its components to en-
hance performance. CNHox provides high conductivity and porosity, improving electron
transport and gas diffusion, while GO increases surface area and introduces functional
groups that enhance ethanol interaction. SnO2 further strengthens ethanol adsorption and
sensing response, and PVP ensures structural integrity and dispersion stability. Beyond
performance, this sensor offers a cost-effective and environmentally friendly alternative to
traditional designs.

Paniz Vafaei et al. (Contribution 7—Article) propose a study on low-power gas sensors
that can be used in IoT (Internet of Things) systems, consumer devices, and point-of-care
devices that will enable new applications in environmental monitoring and health protec-
tion. We fabricated a monolithic chemi-resistive gas sensor by integrating a micro lightplate
with a 2D sensing material composed of single-layer graphene and monolayer-thick TiO2.
Applying ultraviolet (380 nm) light with quantum energy above the TiO2 bandgap ef-
fectively enhanced the sensor responses. Low (<1 μW optical) power operation of the
device was demonstrated by measuring NO2 gas at low concentrations, which is typical
in air quality monitoring, with an estimated limit of detection less than 0.1 ppb. The
gas response amplitudes remained nearly constant over the studied light intensity range
(1–150 mW/cm2) owing to the balance between the photoinduced adsorption and desorp-
tion processes of the gas molecules. The rates of both processes followed an approximately
square root dependence on light intensity, plausibly because the electron-hole recombi-
nation of photoinduced charge carriers is the primary rate-limiting factor. These results
pave the way for integrating 2D materials with micro-LED arrays as a feasible path to
advanced electronic noses. Finally, the authors developed a monolithic gas microsensor
by integrating a UV microlight plate with a 2D sensing material made by CVD graphene
and a less than a nanometer thick layer of TiO2 for advanced electronic noses with large
sensor arrays.

Hsuan-Yu Chen et al. (Contribution 8—Article) propose a study on chemical analysis
adopting a calibration curve to establish the relationship between the measuring tech-
nique’s response and the target analyte’s standard concentration. The calibration equation
is established using regression analysis to verify the response of a chemical instrument to
the known properties of materials that served as standard values. An adequate calibration
equation ensures the performance of these instruments. There are two kinds of calibration
equations: classical equations and inverse equations. For the classical equation, the stan-
dard values are independent, and the instrument’s response is dependent. The inverse
equation is the opposite: the instrument’s response is the independent value. This study
used measurement data sets from two kinds of humidity sensors and nine data sets from the
literature to evaluate the predictive performance of two calibration equations. Four criteria
were proposed to evaluate the predictive ability of two calibration equations. The study
found that the inverse calibration equation could be an effective tool for complex calibration
equations in chemical analysis. The precision of the instrument’s response is essential to
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ensure predictive performance. The inverse calibration equation could be embedded into
the measurement device, and then intelligent instruments could be enhanced. The results
of this study show that the inverse equation has excellent predictive performance for the
calibration equation of the capacitive humidity sensor. The classical equation has better
accuracy, and the inverse equation has better precision for the predictive performance of
resistive humidity sensors. If the instrument response has good repeatability, the inverse
equation performs excellently for the nine data sets collected in the literature. If the repeata-
bility of the instrument response is poor, two calibration equations have similar predictive
performance.

Trine Juul-Kristensen et al. (Contribution 9—Article) demonstrate a study devoted to
the detection of the malaria-causing Plasmodium parasite in non-invasive saliva samples
(N = 61) from infected individuals by combining a DNA-based Rolling-circle-Enhanced-
Enzyme-Activity-Detection (REEAD) sensor system with a chemiluminescence readout that
could be detected with an in-house-developed affordable and battery-powered portable
reader. The authors’ team successfully transferred the technology to sub-Saharan Africa,
where the malaria burden is high, and demonstrated a proof of concept in a small study
(N = 40) showing significant differences (p < 0.00001) between malaria-positive individuals
(N = 33) and presumed asymptomatic negative individuals (N = 7), all collected in Gabon.
This is the first successful application of the REEAD sensor system for the detection of
malaria in saliva in a high-epidemic area and holds promise for the potential future use
of REEAD for malaria diagnosis or surveillance based on non-invasive specimens in sub-
Saharan Africa. This study was conducted as a pilot investigation; more comprehensive
field trials will be necessary to validate the diagnostic accuracy of the method, assessing its
sensitivity and specificity.

Murugaiya Sridar Ilango et al. (Contribution 10—Article) present a study devoted
to membrane permeability monitoring of the antipsychotic olanzapine using platinum
black-modified electrodes. The blood–brain barrier (BBB) is key to the regular functioning
of the central nervous system. The dysfunction of the BBB has been described in vari-
ous neurological disorders, including schizophrenia. Schizophrenia (SCZ) is a chronic
psychiatric disorder characterized by hallucinations, delusions, and negative symptoms.
The Olanzapine (OLZ) drug is an electroactive species, and its levels can be monitored
using electrochemical sensors. The detection of OLZ was demonstrated previously by
using electrochemical sensors, and this technique can be used to monitor the levels of
OLZ in real time. The challenge is to identify the permeability of OLZ through the BBB,
so a replica model was designed with the BBB based on a Transwell membrane seeded
with endothelial cells. A microfabricated electrode consisting of a 3 mm Au disk was
modified with platinum black; this enables higher selectivity of electrochemical signals
from OLZ. The dose–response of OLZ was characterized in a phosphate-buffered saline
solution (10 mM, pH 7.4) by adding 20–200 nM (in steps of 20) of OLZ stock solution. The
observed chronoamperometric electrochemical signals showed an increasing current at
0.45 V vs. Ag/AgCl with an increasing OLZ concentration. The controls for the experiments
were performed in phosphate-buffered saline solution (10 mM, pH 7.4). The detection
limit was calculated as 9.96 ± 7.35 × 10−6 nM from the calibration curve. The membrane
permeability of the OLZ drug tested with five SCZ patients was monitored by studying
the TEER measurements and permeability rate constant data. This study highlights the
potential of electrochemical sensors for predicting human responsiveness to antipsychotic
drugs. Platinum-black-modified electrodes were employed to detect the concentration
of OLZ after their penetration through the BBB in various cell line models. The effective
surface area of the platinum-black-modified electrodes is 5.23 × 10−2 ± 2.3 × 10−3 cm2,
which is four times higher than the bare gold electrode, 3.81 × 10−2 ± 1.2 × 10−3 cm2. The
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dose–response of OLZ with platinum-black-modified electrodes was characterized using
chronoamperometric electrochemical signals, which showed an increasing current at 0.45 V
vs. Ag/AgCl with an increasing OLZ concentration.

Haixia Mei et al. (Contribution 11—Article) present a study devoted to research on
the binary mixed VOCs gas identification method based on multi-task learning. Traditional
volatile organic compound (VOC) detection models separate component identification
and concentration prediction, leading to low feature utilization and limited learning in
small-sample scenarios. Here, the authors realize a residual fusion network based on multi-
task learning (MTL-RCANet) to implement component identification and concentration
prediction of VOCs. The model integrates channel attention mechanisms and cross-fusion
modules to enhance feature extraction capabilities and task synergy. To further balance
the tasks, a dynamic weighted loss function is incorporated to adjust weights dynamically
according to the training progress of each task, thereby enhancing the overall performance
of the model. The proposed network achieves an accuracy of 94.86% and an R2 score of
0.95. Comparative experiments reveal that using only 35% of the total data length as input
data yields excellent identification performance. Moreover, multi-task learning effectively
integrates feature information across tasks, significantly improving model efficiency com-
pared to single-task learning. In summary, the proposed method offers a new solution
for gas detection tasks in fast detection and low-resource consumption scenarios, which
shows great application potential. Future work can further optimize the network struc-
ture to enhance task collaboration, particularly in more complex gas mixtures or dynamic
response scenarios.

Vadim Platonov et al. (Contribution 12—Article) present a report on the synthesis of
perovskite-type Ba-doped LaFeO3 (La1−xBaxFeO3, x = 0.00, 0.02, 0.04, and 0.06) nanofibers
(NFs) using the electrospinning method. The synthesized La1−xBaxFeO3 materials have a
fibrous structure with an average fiber diameter of 250 nm. The fibers, in turn, consist of
smaller crystalline particles of 20–50 nm in size. The sensor properties of La1−xBaxFeO3

nanofibers were studied when detecting 20 ppm CO, CH4, methanol, and acetone in
dry air in the temperature range of 50–350 ◦C. Doping with barium leads to a significant
increase in sensor response and a decrease in operating temperature when detecting volatile
organic compounds (VOCs). The process of acetone oxidation on the surface of the most
sensitive La0.98Ba0.02FeO3 material was studied using in situ Diffuse Reflectance Infrared
Fourier Transform Spectroscopy (DRIFTS) and Temperature-Programmed Desorption in
combination with Mass Spectrometry (TPDMS). A mechanism for the formation of the
sensor signal is proposed. The obtained materials were single phase, had an orthorhombic
structure, and consisted of nanocrystallites with a size of about 14–16 nm. The introduction
of barium led to the inhibition of crystallite growth during isothermal annealing and
promoted an increase in the sensor response of the LaFeO3 nanofiber-based sensors toward
VOCs. The La0.98Ba0.02FeO3 sample demonstrated the highest sensor response and a
decrease in the operating temperature. The improvement in the gas-sensitive properties
of the doped materials can be explained by the high catalytic activity of the surface of
synthesized materials associated with the formation of oxygen vacancies, highly active iron
cations (Fe4+), and coordinatively unsaturated cations (Fe3+). The mechanism of acetone
oxidation on the sensor surface, studied using DRIFTS and TPD-MS methods, is assumed
to have a multi-stage nature.

Alexey Vasiliev et al. (Contribution 13—Article) analyze the influence of micro hotplate
size on the convective heat exchange of gas sensors. Usually, the role of convection in the
heat exchange of gas sensors is not considered in thermal simulation models because of the
complexity of the convection process. As a result, the contribution of this process to the
overall heat loss of sensors remains without detailed analysis. The authors’ team analyzed
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convection issues in two groups of gas sensors: semiconductor and thermos-catalytic
(calorimetric) sensors and, on the other hand, in the oxygen sensors of the thermomagnetic
type. It is demonstrated that there is a critical size leading to the formation of convective
heat exchange flow. Below this critical value, only thermal conductivity of ambient air,
IR (infrared) radiation from the heated micro hotplate surface, and thermal conductivity
of the micro hotplate supporting elements should be considered as channels for heat
dissipation by the micro hotplate, and the contribution of free convection can be neglected.
Similar results were obtained in the analysis of the behavior of thermal magnetic sensors of
oxygen, which use paramagnetic properties of molecular oxygen for the determination of
O2 concentration. In this case, the critical size of the sensor is also of significance; if the size
of the magnetic sensor is much below this value, the oxygen concentration value measured
with such a device is independent of the orientation of the sensor element. The results of
the simulation were compared with the measurement of heat loss in micromachined gas
sensors. The optimal dimensions of the sensor micro hotplate are given as a result of these
simulations and measurements. The authors’ team investigated the influence of convection
on the heat exchange processes of micro hotplates used in the fabrication of semiconductor
and thermos-catalytic (calorimetric) gas sensors, as well as the heat exchange of thermal
magnetic sensors of oxygen. The analysis was based on the consideration of the competition
of convection flow and back diffusion. It was shown that there is a certain critical size of the
micro hotplate. If the size of the micro hotplate d << dcr, the influence of convection heat
exchange can be neglected, and only the thermal conductivity of air and of the elements
of the sensor, together with the IR (infrared) radiation (if the sensor is heated up to a very
high temperature), should be taken into account as channels of heat losses.

O. L. Gribkova et al. (Contribution 14—Article) report on optical ammonia sen-
sors based on spray-coated polyaniline complexes with polysulfonic acids. The optical
ammonia-sensing properties of water-dispersible polyaniline (PANI) complexes chemically
synthesized in the presence of polysulfonic acids of different structures and chain flexi-
bility were compared for the first time. Flexible-chain poly(styrene-4-sulfonic acid) and
poly-(2-acrylamido-2-methyl-1-propanesulfonic acid), as well as semi-rigid-chain poly-4,4′-
(2,2′-disulfonic acid)diphenylene-iso-phthalamide and rigid-chain poly-4,4′-(2,2′-disulfonic
acid) diphenylene-tere-phthalamide (t-PASA) were used. The sensor films were prepared
by a convenient and scalable method: spray coating of aqueous solutions on glass substrates.
The optical response time and amplitude of the sensor films in the range of ammonia con-
centrations from 5 to 200 ppm were investigated. To overcome the influence of humidity
and the presence of over-stoichiometric protons of the polyacid on the accuracy of ammonia
determination, treatments of the films in aqueous solutions of NaCl, CaCl2, and BaCl2
were tested. The treatment in 1 M CaCl2 solution for all the PANI complexes results in a
significant improvement in the response time, amplitude, and reproducibility. The films of
PANI complexes with the flexible-chain polyacids have the highest response amplitude
in the range of ammonia concentrations 5–25 ppm. PANI-t-PASA film demonstrated the
best sensory properties at ammonia concentrations more than 50 ppm. FTIR spectroscopy
showed that CaCl2 treatment results in cross-linking of sulfoacid groups from adjacent
polyacid chains by Ca2+ ions. Thus, such a treatment results both in the neutralization
of excessive protons and a significant reduction in the films’ swelling at high humidity.
Among the films of the PANI complexes treated with CaCl2, the best sensory proper-
ties were demonstrated by the PANI-t-PASA film at ammonia concentrations more than
50 ppm. The films of PANI complexes give reproducible results at 2–4 reuses, the reversibil-
ity decreased at high ammonia concentration. Therefore, at this stage of the investigations,
these films are preferably to be used as alarm detectors.
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Anas Mohd Noor et al. (Contribution 15—Article) report on a wearable device for
continuous and real-time monitoring of human sweat sodium. Wearable sweat-sensing
devices hold significant potential for non-invasive, continuous health monitoring. However,
challenges such as ensuring data accuracy, sensor reliability, and measurement stability persist.
This study presents the development of a wearable system for the real-time monitoring
of human sweat sodium levels, addressing these challenges through the integration of a
novel microfluidic chip and a compact potentiostat. The microfluidic chip, fabricated using
hydrophilic materials and designed with vertical channels, optimizes sweat flow, prevents
backflow, and minimizes sample contamination. The developed wearable potentiostat, as a
measurement device, precisely measures electrical currents across a wide dynamic range, from
nanoamperes to milliamperes. Validation results demonstrated accurate sodium concentration
measurements ranging from 10 mM to 200 mM, with a coefficient of variation below 4% and
excellent agreement with laboratory instruments (intraclass correlation = 0.998). During
physical exercise, the device measured a decrease in sweat sodium levels, from 101 mM to
67 mM over 30 min, reflecting typical physiological responses to sweating. These findings
confirm the system’s reliability in providing continuous, real-time sweat sodium monitoring.
This work advances wearable health-monitoring technologies and lays the groundwork for
applications in fitness optimization and personalized hydration strategies. Future work will
explore multi-biomarker integration and broader clinical trials to further validate the system’s
potential. The microfluidic chip, fabricated using a water-washable resin and 3D printing
technology, offers high resolution, rapid fabrication, and excellent hydrophilicity. Additionally,
investigating the performance of the proposed device in larger-scale clinical trials could further
validate its potential for real-world applications.

Finally, the research presented is pivotal in shaping the future of chemical sensing by
means of advanced sensor systems and devices integrating innovative functional materials
for advancements in biochemical applications.

3. Statistics and Trend Analysis

Trend analysis is reported in Table 1. The Special Issue offers an outstanding overview
of recent advancements in biochemical sensors for detection applications. The statistics
consisted of 15 published papers, including 3 reviews and 12 articles co-authored by
89 international scientists from 15 countries located in Europe, Africa, Asia, and North
America. The total number of the rejected manuscripts is two.

Table 1. Main features of the papers published in the Special Issue.

Paper Type Nr. of Authors
Corresponding
Author Country

Other Authors’
Countries

Keywords

Contribution 1 Article 6 Spain Spain
laser-induced graphene;
polyaniline; gas sensing; RT
ammonia sensing

Contribution 2 Review 7 China China
conducting polymer; gas
sensor; sensing mechanisms;
environmental monitoring

Contribution 3 Review 2 Iran Iran
plasma treatment; toxic gas;
gas sensor; sensing
mechanisms
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Table 1. Cont.

Paper Type Nr. of Authors
Corresponding
Author Country

Other Authors’
Countries

Keywords

Contribution 4 Review 3 USA USA

biomarkers; biofluids;
electrochemical sensors;
molecular analytical
techniques;
diagnostic tools; commercial
test kits

Contribution 5 Article 4 Spain Spain;
Tunisia

N-doped reduced graphene
oxide; nickel oxide
nanoparticles;
sub-ppb NO2 sensing; gas
sensing

Contribution 6 Article 9 Romania Romania

ethanol sensor;
holey carbon nanohorns;
graphene oxide; swelling;
HSAB (hard soft acid base)
principle

Contribution 7 Article 7 Estonia
Estonia;
Spain;

Germany

gas sensor; NO2 gas sensing;
micro-lightplate;
graphene/TiO2
heterostructure

Contribution 8 Article 2 Taiwan Taiwan

calibration; classical
equation;
inverse equation;
predictive performance

Contribution 9 Article 13 Denmark
Denmark;

Gabon;
Germany

malaria; diagnosis;
rolling circle amplification;
saliva; topoisomerase 1

Contribution 10 Article 6 Israel Israel

olanzapine;
platinum black;
blood–brain barrier;
electrochemical sensors;
schizophrenia

Contribution 11 Article 6 China China
gas sensor; multi-task
learning; mixed gases;
feature fusion

Contribution 12 Article 5 Russia Russia

Ba-doped LaFeO3;
perovskites;
semiconductor gas sensor;
VOCs; DRIFTS (diffuse
reflectance infrared Fourier
transform spectroscopy);
TPD-MS
(temperature-programmed
desorption in combination
with mass spectrometry)

Contribution 13 Article 4 Russia Russia
microheater; convective heat
losses; thermal conductivity;
Grashof number

Contribution 14 Article 6 Russia Russia

polyaniline complexes;
polyacid; spray coating;
ammonia sensors; optical
gas sensors
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Table 1. Cont.

Paper Type Nr. of Authors
Corresponding
Author Country

Other Authors’
Countries

Keywords

Contribution 15 Article 9 Malaysia Malaysia;
Japan

microfluidic chip;
sweat sodium measurement;
wearable device

Total Authors involved 89

Total Author Countries 15

Total Rejected Papers 2

Total Published Papers 15

The challenges of the Special Issue deal with advanced sensing materials (graphene-
based materials, carbon nanomaterials and composites, metal oxide nanoparticles, het-
erostructures, perovskites, hybrid functional materials, and polymeric complexes) and
related material processing (laser and plasma) for optimal biochemical sensing properties.
Furthermore, the findings push the knowledge in the advanced transduction of biochemical
sensing (electrochemical, chemo-resistive, optical, analytical, spectroscopic, microfluidic,
micro-hotplate, thermal, biomarker, and test kit). The calibration of sensors, predictive
performance, multi-task learning, and feature fusion have been explored as well.

Challenging applications have been addressed, such as sub-ppb detection of toxic
gases and volatile organic compounds for environmental monitoring, malaria detection
by fast test kits for in-field biosensing, schizophrenia by the biomarker of olanzapine
using platinum electrodes, and sweat sodium measurement by microfluidic chip for
wearable applications.

4. Summary and Conclusions

The work presented in this Special Issue reflects the drive to increase the knowledge
in chemical sensors by applied research in advanced materials, sensing devices, new
transducers, and practical applications. In this Special Issue, front-line scientists have been
kindly invited to submit original research and review articles on exploring recent advances
in sensors for chemical detection applications.

Potential topics included, but were not limited to, gas sensors, chemical detection,
advanced materials for chemical sensing, novel gas sensor materials, sensor calibration,
sensor systems, machine learning algorithms, wireless sensor networks, chemical threat
monitoring, environmental measurements, sensors for smart city applications, sensors for
environmental sustainability, sensors for energy applications, sensors for IoT applications,
sensors for industrial applications, sensors for sustainable mobility, case studies of chemical
detection campaigns, and new concepts and trends in chemical sensing.

The impactful achievements presented in this Special Issue are a valuable contribution
to the theory and practice of chemical sensing. Additional development of these trends can
be expected in the future to consolidate the development of a new generation of chemical
sensors applied for practical applications.
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Abstract: Chemical analysis adopts a calibration curve to establish the relationship between the mea-
suring technique’s response and the target analyte’s standard concentration. The calibration equation
is established using regression analysis to verify the response of a chemical instrument to the known
properties of materials that served as standard values. An adequate calibration equation ensures the
performance of these instruments. There are two kinds of calibration equations: classical equations
and inverse equations. For the classical equation, the standard values are independent, and the
instrument’s response is dependent. The inverse equation is the opposite: the instrument’s response
is the independent value. For the new response value, the calculation of the new measurement by the
classical equation must be transformed into a complex form to calculate the measurement values.
However, the measurement values of the inverse equation could be computed directly. Different
forms of calibration equations besides the linear equation could be used for the inverse calibration
equation. This study used measurement data sets from two kinds of humidity sensors and nine data
sets from the literature to evaluate the predictive performance of two calibration equations. Four
criteria were proposed to evaluate the predictive ability of two calibration equations. The study found
that the inverse calibration equation could be an effective tool for complex calibration equations
in chemical analysis. The precision of the instrument’s response is essential to ensure predictive
performance. The inverse calibration equation could be embedded into the measurement device, and
then intelligent instruments could be enhanced.

Keywords: calibration; classical equation; inverse equation; predictive performance

1. Introduction

Calibration is essential to ensuring the performance of sensors or instruments in
chemical analysis. Many quantitative analytical techniques, such as high-performance
liquid chromatography (HPLC), ultraviolet–visible spectroscopy (UV-Vis spectroscopy),
gas chromatography/mass spectrometry (GC-MS), and electrophoresis, must establish
a calibration equation to express the relationship between the measuring technique’s
response and the target analyzer’s standard values [1,2].

In practical work, standard concentrations or environments are prepared. These values
are called regressors or independent values, x. The responses from the measuring technique
are called the dependent values, y. The data sets (xi, yi) model the relationship between
x and y. The practical measuring case detects a sample with unknown conventions, x0;
the new response is y0. The new concentration, x0, will be calculated using the previously
established calibration equation [3,4].
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Two types of calibration equations were proposed. The first calibration equation is the
classical calibration. The function of this equation is yi = f (xi). If the dependent variable yi
and the independent variance, xi, exist in the linear relationship, the calibration model is [5]

yi = b0 + b1xi+εi (1)

where b0 is the intercept, b1 is the slope, and εi represents random errors.
The assumptions of regression analysis are that the εi represents random errors,

independent, and normal distribution, and the xi values are non-measurement errors [6].
In a further application, the unknown x0 was detected. The y0 was detected by

measuring instrument, and the predicted x̂0 value is calculated as

x̂0 =
y0 − b0

b1
(2)

The second calibration is called the inverse equation. The function of this equation is
xi = g(yi). In the inverse regression, xi is treated as the response, and yi is the regressor. If
the linear relationship exists, the calibration model is

xi = c0 + c1yi + εi (3)

As the new response, x0, is detected, the predicted x̂0 value is calculated directly
using Equation (3).

x̂0= c0+c1y0 (4)

One of the regression analysis assumptions is the negligible measurement error for the xi
value. For the inverse equation, the assumption is invalid. However, different opinions are
presented in different studies. Krutchkoff [7] compared the classical and inverse equations
using the Monte Carlo methods and found the inverse equation had a lower mean square
error value. Krutchkoff [8] found the inverse equation demonstrates better extrapolation
performance. Centner [9] compared two calibration equations using Monte Carlo methods
and two practical examples and found the inverse equation to be more reliable than the
classical one. Tellinghuisen [10] evaluated two calibration equations for small data sets and
claimed that the inverse equation is more efficient over an extensive range of the variable xi.
Shalabh [11] compared the measurement errors of two calibration equations with the balanced
loss function. He suggested that the comparison should not be limited to linear equations and
that more variables and nonlinear relationships should be considered.

Tellinghuisen [12] proposed sample algorithms for nonlinear calibration equations of the
classical equation to calculate the prediction of new measurement values easily. However, this
study did not mention the convenience of the inverse equation. Parker et al. [13] claimed that
the inverse linear equation is simple and easy to use but violates some regression assumptions
and found the inverse linear equation had more variability and bias in the prediction interval
as the predicted value is away from the center of the data. In the study of Besalu [14],
the inverse calibration has a better prediction ability than the classical calibration equation
and gives lesser mean square error interpolations. Granovskii and Sirala [15] presented
different conditions and included a known parameter to estimate experimental data and homo-
variance when selecting classical or inverse calibration equations. Witkovsky and Wimmer [16]
introduced a method to calculate the measurement uncertainty of polynomial equations for
two calibration equations. Delgado [17] used the Beer–Lambert law to illustrate the misuse
of the calibration equations for this calibration curve. To predict new measurements, the
hypothesis of regressions does not necessarily have to be fulfilled for the nonlinear equation,
and the inverse equation has a more extraordinary predictive ability than the classical equation.

Francois et al. [18] proposed two criteria to evaluate calibration equations: the max-
imum and the average prediction variance, and concluded that the predictive quality of
both calibration equations was equal. Kannan et al. [19] compared the classical and inverse
equations with the Pitman closeness criterion and showed that the inverse equation had
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better predictive ability than the classical equation as the calibration point is far from the
average values of standards.

Most of the literature concerns only the linear relationship of the calibration equation.
Delgado [17] mentions the misuse of linear equations in calibration equations. Chen and
Chen [20] proposed six calibration equations for calibration curves in chemical analysis.
The linear equation is one of their calibration equations. In this study, the calibration curves
of two types of hygrometers were established. These data were divided into two sets: one
for the model established and the other for evaluating the accuracy and precision of the
adequate equation. Nine data sets were collected from previous studies to evaluate the
predictive performance of two calibration equations. These data sets are listed in Table 1.
Four criteria were proposed to evaluate the predictive ability of two calibration equations.
The effect of the instrument’s precision on the predictive ability was assessed.

Table 1. Published data in the literature for evaluating the predictive performance of two calibration
equations.

Study Equipment Target Standard Range Response Range
Calibration

Equation
Statistic Criteria

Mulholland and
Hibbert [21] HPLC 1 Daidzein 0.162–10.96 mg/50 mL 0.243–30.75 peak

area Linear y = X1.1 R2, residual plot

Desimoni [22] Flow injection
analysis Sulfides 0.88–81.2 μm 0.170–15.94 μA Linear R2, residual plot

Lavagnini and
Magno [23] GC-MS 2 Chloromethane 0~4 μg/L 0.111975~0.465813

peak area ratio Linear polynomial s, residual plot

Ortiz et al. [24] Pulse polarography Benzaldehyde 0.0198~0.1740 mnol/L 0.033~0.366 μA Linear Residual plots,
S

Rawski et al. [25] Spectrophotometry Albumin 0~20 μg/mL 0~450
peak height × 10−3 Linear Lack of fit, R2

Desharnais et al.
[26] LC-MS 3 Cocaine 5~1000 ng/mL 0.049~9.209

area ratio Linear Partial F-test

Martin et al. [27] HPLC Blood 0~90 ng/mL 0.002~0.272 area
ratio

High-order
polynomial

R2

Residual plots
Martin et al. [28] LC-QqQ-MS 4 PrP 2150–3,054,469 Linear R2

array
Lavin et al. [29] BICELLS 5 Anti-IgG 1~100 μg/mL 0.00~6.14 Polynomial AICs 5, R2

Note: 1. HPLC: high-performance liquid chromatography; 2. GC-MS: gas chromatography/mass spectrometry;
3. LC-MS: liquid chromatography–tandem mass spectrometry; 4. LC-QqQ-MS: liquid chromatography–mass
spectrometry; 5. BICELLS: biophotonic sensing cells.

2. Materials and Methods

2.1. Relative Humidity Sensors

This study used two types of humidity sensors: a capacitive Vaisala HMP-143A
(Vaisala Oyj, Vantaa, Finland) and a resistive Shinyei THI-B141 (Shinyei Kaisha Technology,
Kobe, Japan). The specifications of these sensors are listed in Table 2.

Table 2. The specifications of two humidity sensors.

Resistive Sensor Capacitive Sensor

Name THT-B121 HMP 140A
Sensing element Macro-molecule HPR-MQ HUMICAP
Operating range 0–60 ◦C 0–50 ◦C
Measuring range 10–99% RH 0–100%

Nonlinearity and repeatability ±0.25% RH ±0.2% RH

2.2. Saturated Salt Solutions

Eleven saturated salt solutions, made from LiCl, CH3COOK, MgCl2, K2CO3, Mg(NO3)2,
NaBr, KI, NaCI, KCI, KNO3, and K2SO4, were used to maintain the standard relative humid-
ity values for calibration. The standard humidity values produced by these salt solutions
were listed using Greenspan’s equation [30].
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2.3. Calibration of Humidity Sensors

Two types of humidity sensors were calibrated using saturated salt solutions. The
procedures for producing saturated salt solutions were according to the OIMO R121 [31].
Chen’s study [32] describes the detailed calibration procedures. Both data sets, the response
data of sensors, and the standard values from saturated salt solutions for two types of
humidity sensors were used to compare the classical and inverse calibration equations.

2.4. Establish the Calibration Equation

The standard humidity values of a saturated salt solution are called regressors or
independent variables, xi. The reading values of humidity sensors are called response or
dependent variables, yi.

2.4.1. The Classical Equation

The form of this equation is a high-order polynomial equation.

y = b0 + b1x + b2x2+ . . . + bkxk (5)

where b0, b1, b2, and bk are constants.

2.4.2. The Inverse Equation

The form of the inverse equation is

x = c0 + c1y + c2y2 + · · · ..cnyn (6)

where c0, c1, c2, and cn are constants.

2.5. The Evaluation Criteria for Calibration
The Criteria of Fitting Agreement

The quantitative criteria for assessing the fitting ability for different calibration equa-
tions of the same data sets are the coefficients of determination, R2, and the standard error
in the estimate errors, s. The qualitative criterion is the residual plot [6,33,34].

For the classical equation, the standard error in the estimate errors, sx, is

sx =

√
Σ(yi − ŷi)

2

n − p
(7)

where yi is the dependent variable, ŷi is the predated value for this calibration equation, n
is the number of data points, and p is the number of parameters.

For the inverse equation, the standard error in the estimate errors, sy, is

sy =

√
Σ(xi − x̂i)

2

n − p
(8)

where xi is the dependent variable, x̂i is the predated value for this calibration equation, n
is the number of data points, and p is the number of parameters.

The residual plots are used to assess the fitting ability of these equations. If the residual
plots’ distribution was uniform, this equation was adequate. If a fixed pattern was found
for the residual plots, it showed that this equation was inadequate. More variables need to
be considered.

2.6. Compare the Predictive Performance for Two Calibration Equations
2.6.1. The Criteria for the Predictive Performance of Two Calibration Equations

Four criteria were proposed for the comparison of predictive performance [35].
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The predictive errors were defined as the difference between predicted values from
calibration equations and standard values:

ei = xi0 − x̂i0 (9)

where xi is the standard value, and x̂i0 is the measurement value calculated by calibration
equations.

1. The minimum ei value, ei,min.
2. The maximum ei value, ei,max.
3. Mean absolute error (MAE):

MAE =
Σ|ei|

n
(10)

where |ei| is the absolute ei value.

MAE is used to evaluate the accuracy of the equation. The smaller the MAE, the
greater the accuracy of the predicted equation.

4. Root mean square error (RMSE):

RMSE = (
Σei

2

n
)0.5 (11)

RMSE is used to evaluate the precision of the equation. The smaller the RMSE, the
greater the precision of the predicted equation.

2.6.2. The Criteria for the Comparison of the Predictive Performance of Two Calibration
Equations

Two criteria were proposed to compare the predictive performance of the two calibra-
tion equations for the same data sets:

REMAE = (MAEcla − MAEinv)/MAEcla (12)

where MAEcla is the MAE value of the classical equation, and MAEinv is the MAE value of
the inverse equation.

RERMSE = (RMSEcla − RMSEinv)/RMSEcla (13)

where RMSEcla is the RMSE value of the classical equation, and the RMSEinv is the RMSE
value of the inverse equation.

The REMAE and RERMSE compare the accuracy and precision of two calibration equa-
tions. If MAEcla > MAEinv, the inverse equation has better accuracy, and the REMAE value
is positive. The REMAE values also showed the degree of the two calibration equations’
different accuracy abilities.

If RMSEcla > RMSEinv, the inverse equation has better precision, and the RERMSE
value is positive. The RERMSE values also showed the degree of the difference in precision
between the two calibration equations.

2.7. Data Splitting

All data measured from two humidity sensors or collected from the literature were
divided into two data sets. The first data set was used to evaluate the adequate form of the
calibration equation, and the second was used to evaluate the equation’s predictive ability.

For example, sixty-six values (xi, yi) were collected from a humidity sensor. The
thirty-three values from (x1, y1) to (x33, y33) were used to assess the adequate form of the
classical equation yi = f(xi) and the inverse equation xi = g(yi). The response value, yi,
of the other 33 data points (y34 to y66) were substituted into f(xi) and g(yi) equations to
calculate the predicted values ( x̂34 to x̂66). The difference between xi (standard values) and
x̂i (calculated values) is the predicted error, ei.
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2.8. The Calculation of the New Measurement

After the calibration equations are established, the new observation from the sensors is y0.
The calculation of the new measurement values, x0, is different for two calibration equations.

1. The inverse equation.

The new measurement value x0 is calculated directly from this equation.

x̂0 = c0 + c1y0 + c2y0
2 + . . . + cny0

2 (14)

2. The classical equation.

For the linear equation, y0 = b0 + b1x0, and x̂0 is calculated by

x̂0 = (y0 − b0)/b1 (15)

For the two other polynomial equations, y0 = b0 + b1x0 + b2x0
2, and x̂0 is calculated by

x̂0 =
−b1 ±

(
b1

2 − 4(b2(b0−y0))
)0.5

2b2
(16)

For high-order polynomial equations, y0 = b0 + b1x +b2x0
2 +. . . + bkxk; the calculation

of x0 is very complex and solved by numeric software (The Jenkins-Traub UDF).

2.9. Data Source for Comparing Two Calibration Equations

Nine data sets from the literature were collected to compare the predictive ability
between the classical and inverse equations. The published literature is shown in Table 2.
All original data for the response of chemical analysis instrumentation was divided into
two data sets: one for the model established and the other for evaluating the accuracy and
precision of the adequate calibration equation.

Adequate classical and inverse equations were established with modeling data sets.
Then, the evaluation data of the response were substituted into these equations to calculate
the measurement value. The predicted errors were used to compare the performance.

The forms of the calibration equations for the literature data are as follows [20]:

1. Higher-order polynomial equation:

y = b0 + b1x + b2x2 + . . . + bkxk (17)

2. Exponential decay equation:

y = d0*exp(−d1*x) (18)

3. Power equation:

y = e1xe2 (19)

4. Exponential rise to maximum equations (ERTM equations):

y = f1 (1 − Exp(−f2x)) (20)

3. Results

3.1. The Capacitive Humidity Sensor
3.1.1. The Calibration Equation of Capacitive Humidity Sensors

Figure 1 presents the relationship between the reading values of capacitive humidity
sensors and the standard values produced by the saturated salt solutions.
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Figure 1. The distribution of the relative humidity data for reading values versus the standard
humidity values for Vaisala HMP-143A capacitive sensors.

1. The classical equation

From the criteria, the adequate calibration equation established from the calibration
data of the capacitive sensor is

y = −3.60919 + 1.1626x − 0.0017933 x2 (21)

where R2 = 0.9996, and sy = 0.5780.
For the new response y0, the corresponding values of the new measurement are

calculated as follows:

y0 = −3.60919 + 1.1626x0 − 0.0017933x0
2 (22)

x0 = 338.0968 ± 290.811
(

1.326816 − 6.87731 × 10−3y0

)0.5
(23)

2. The inverse equation of capacitive humidity sensors

From the criteria, the adequate calibration equation established from the calibration
data of the capacitive sensor is

x = 3.5299 + 0.83231y + 0.001842y2 (24)

where R2 = 0.995, and sx = 0.6344.
For the new response of y0 from sensors, the corresponding value of the new measure-

ment is calculated directly.

x0 = 3.5299 + 0.83231y0 + 0.001842y0
2 (25)

3.1.2. The Evaluation of the Calibration Equation of Capacitive Humidity Sensors

The other data set, independent of the previous data sets used to establish the calibration
equation, is used to evaluate the predictive performance of two types of calibration equations.
The new data sets (x1

′, y1
′), (x2

′, y2
′), . . . (xn

′, yn
′) were substituted into Equations (23) and (25).

The difference between the standard and calculated measurement values is eiy and eix.
Table 3 lists four criteria: ei,min, ei,max, MAE, and RMSE.
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Table 3. The predictive performance of two calibration equations for a capacitive humidity sensor.

Criterion Classical Equation Inverse Equation

ei,min −1.9395 −1.0464
ei,max 0.2198 0.2414
MAE 0.9855 0.4944
RMSE 1.229 0.6064

In Table 3, the inverse equation has a smaller ei,min value and a larger ei,max value. The
inverse equation’s MAE and RMSE values are smaller than those of the classical equation.
The MAE is the accuracy of the calibration equation, and the RMSE is its precision. The
inverse calibration equation has better predictive performance than the classical equation
for capacitive humidity sensors.

3.2. The Resistive Humidity Sensor

The relationship between the reading values of resistive humidity sensors and the
standard values is shown in Figure 2.
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Figure 2. The distribution of the relative humidity data for reading values versus the standard
humidity values for THT-B121 resistive sensors.

3.2.1. The Calibration Equation of Resistive Humidity Sensors

The adequate calibrations established from the calibration data of the resistive sensor
established by regression analysis are described below:

1. The classical equation.

y = 5.8524 + 0.4728x + 0.0099x2 − 5.1025 × 10−5x3 (26)

where R2 = 0.996, and sy = 0.5757.
For the new response of this humidity sensor, y0, the measurement value, x0, is

calculated by the following equation:

5.1025 × 10−5x0
3 − 0.0099x0

2 − 0.4729x0 − 5.8524 + y0 = 0 (27)

Equation (27) is a three-order polynomial equation; the x0 value needs to be solved by
numeric software.

2. The inverse equation.
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The adequate calibration equation established from the calibration data of the capaci-
tive sensor is

x = −6.1370 + 1.5446y − 0.0103y2 + 5.0 × 10−5 y3 (28)

where R2 = 0.996, and sx = 0.6344.
For the new response, y0, the measurement, x0, can be calculated directly.

x0 = −6.1370 + 1.5464y0 − 0.0103y0
2 + 5.3 × 10−5y0

3 (29)

3.2.2. The Evaluation of the Calibration Equation of Resistive Humidity Sensors

The other data set, independent of the data sets used to establish calibration equations,
was used to evaluate the predictive ability.

The criteria for the evaluation of two equations are listed in Table 4.

Table 4. The predictive performance of two calibration equations for the resistive humidity sensor.

Criterion Classical Equation Inverse Equation

ei,min −1.9150 −0.9950
ei,max 0.7311 0.8908
MAE 0.5431 0.5536
RMSE 0.4894 0.4807

The classical equation has smaller ei,min, ei,max, and MAE values. The inverse calibra-
tion equation has a smaller RMSE value. However, the differences in these criteria between
the two calibration equations were limited. No significant difference could be found in the
predictive performance of the two equations. However, the new measurement values of
the inverse equation can be calculated directly. The calculation of new measurement values
for the classical equation is very complex.

3.3. The Evaluation of Two Calibration Equations from Previous Data in the Literature
3.3.1. The Measurement of Chloromethane Concentration with GC-MS

Lavagnini and Magno [23] measured chloromethane concentration with GC-MC.
There are nine concentration levels (μg/L) and ten replicates for each concentration. The
first data set contained 45 data points for establishing the calibration equation. The other
45 data points were used to evaluate the predictive ability. The distribution between
the response of the peak area and the standard concentration is shown in Figure 3. The
regression analysis results of two calibration equations are listed in Table 5.
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Figure 3. The distribution of the chloromethane data for the ratio of peak areas versus the standard
concentrations for GC-MS.
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Table 5. The criteria of the calibration regression equations for the chloromethane concentration (xi)
and the ratio peak area (yi) for GC-MC.

Classical Equation R2 Residual Plots

1. y = 0.0187 + 0.089x 0.9842 F.P.
2. y = 0.0113 + 0.1158x − 0.0071x2 0.9893 U.D.
3. y = 0.3033(1 − exp(−0.2245x)) 0.9863 U.D.

4. y = 0.0109 + 0.7477(1 − exp(−0.1585x)) 0.9873 U.D.
5. y = 0.1232x0.7874 0.9867 F.P.

Inverse Equation R2 Residual Plots

1.x = −0.1782 + 10.7494y 0.9773 F.D.
2. x = −0.1114 + 8.920y + 4.9491y2 0.9791 U.D.

3. x = 1911.776(1 − exp(−0.0053y)) 0.9691 U.D.
4. x = −0.1899 + 925.325(1 − exp(−0.012y)) 0.9841 U.D.

5. x = 12.9265y1.2093 0.9793 F.P.

Note: F.P.: fixed pattern; U.D.: uniform distribution.

From the criteria for different equations, the adequate calibration equation for the
classical equations is

y = 0.0109 + 0.7477(1 − exp(−0.1585x)) (30)

For the new response (the ratio of peak area), y0, the measurements of two equations
are calculated as follows:

x0 = −6.30915Ln(1.01458 − 1.3374 y0) (31)

The criteria for evaluating these calibration equations are listed in Table 6.

Table 6. The criteria for evaluating the predictive ability of these calibration equations for measuring
chloromethane concentration with GC-MS.

Criterion Classical Equation Inverse Equation

ei,min −0.3859 −0.3835
ei,max 1.4983 0.9350
MAE 0.4758 0.3328
RMSE 0.2695 0.2043

The results indicated that the inverse equation had smaller values for these criteria
than the classical equation.

3.3.2. Using Spectrophotometry to Measure Albumin

In the test conducted by Rawski et al. [25], there were 11 albumin standards (μg/mL)
and three replicates for each concentration. The response of this instrument, yi, was the
peak height. The distribution between response and standard values of model development
data is shown in Figure 4. The results of the regression analysis are listed in Table 7.

The adequate calibrations are listed as follows:

1. The classical equation is

y = 626.5993(1 − exp(−0.0635x)) (32)

For a new response, y0, the new measurement of x0 could be calculated by

x0 = −15.748 Ln(1 − y0/626.5933) (33)

2. The inverse equation is

x = 0.2443 + 0.0164y + 5.8629 × 10−5y2 (34)
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The new measurement, x0, can be calculated directly using an equation.

Table 7. The calibration regression equation and criteria for the albumin concentrations and the peak
height with spectrophotometry.

Classical Equation R2 sy Residual Plots

1. y − 43.5066 + 22.1861 0.9651 29.081 F.P.
2. y = 0.9519 + 36.726x − 0.7250x2 0.9980 5.5069 F.P.

3. y = 626.5993(1 − exp(−0.0635x)) 0.9985 6.0221 U.D.
4. y = −1.9587 + 623.7546(1 − exp(−0.0646x)) 0.9985 6.1770 U.D.

5. y = 57.5278x0.6959 0.9939 12.184 F.P.

Inverse Equation R2 sx Residual Plots

1. x = −1.5344 + 0.0435y 0.9651 1.2876 F.P.
2. x = 0.2443 + 0.0164y + 5.8629 × 10−5y2 0.994 0.5430 U.D.

3. x = 9363.3Exp
(
1 − 4.18 × 10−6y

)
0.9522 1.5030 F.P.

4. x = −1.5372 + 6695.5366
(
1 − exp

(−6.2466 × 10−6y
))

0.9646 1.3361 F.P.
5. x = 0.0023y1.4809 0.992 0.6153 U.D.
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Figure 4. The distribution of the albumin concentration data for the peak heights versus the standard
concentrations with spectrophotometry.

The criteria for evaluating predictive ability for two calibration equations are listed in Table 8.

Table 8. The criteria for evaluating the predictive ability of these calibration equations for measuring
the albumin concentrations using spectrophotometry.

Criterion Classical Equation Inverse Equation

ei,min −0.4849 −0.7791
ei,max 1.1608 1.3347
MAE 0.4770 0.5416
RMSE 0.4147 0.4214

The classical equation had better predictive ability. The MAE and RMSE values
showed better accuracy and precision in the classical equation.

3.3.3. The Measurement of Anti-IgG by Biophotonic Sensing Cells

The calibration of a biochip composed of a set of BICELLS (biophotonic sensing cells)
for anti-IgG [29] was studied for adequate calibration equations. The response (yi) is the
transduction signal, and the standard concentration (μg/mL) is the regressor (xi). The
calculation regression results are as follows:

The classical equation is

y = −0.3135 + 2.109x − 0.002827x2 + 1.335 × 10−5x3 (35)
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where R2 = 0.9863, and sy = 0.2331.
The inverse equation is

x = −0.2732 + 12.8733y − 5.259y2 + 1.0162y3 (36)

where R2 = 0.9833, and sx = 0.1957.
The comparison of the predictive performance of two calibration equations is listed in Table 9.

Table 9. The criteria for evaluating the predictive ability of these calibration equations for the
measurement of anti-IgG by biophotonic sensing cells.

Criterion Classical Equation Inverse Equation

ei,min −8.0672 −10.2422
ei max 4.3461 5.8671
MAE 2.2862 2.2715
RMSE 2.9587 3.3921

The classical equation performed better in terms of ei,min, ei,max, and RMSE (precision),
and two calibration equations had similar predictive performance for the MAE values.

3.3.4. The Measurement of Drug Concentration in Blood with an HPLC Assay

The drug concentration in blood (xi) was measured with an HPLC assay, and the
response (yi) ranged from 0.002 to 0.272 [27].

The adequate calibration equations are as follows:

1. The classical equation is

y = 0.0199 + 1.3940( 1 − exp(−0.5084x)) (37)

where R2 = 0.9921, and sy = 0.0348.
2. The inverse equation is

x = −2.7006 + 3.7037y0.5377 (38)

where R2 = 0.9912, and sx = 0.0896.

The predictive performance of the two calibration equations is listed in Table 10.

Table 10. The criteria for evaluating the predictive ability of these calibration equations for measuring
drug concentration in blood with an HPLC assay.

Criterion Classical Equation Inverse Equation

ei,min −0.5011 −0.475
ei,max 0.4713 0.482
MAE 0.1924 0.1847
RMSE 0.1171 0.1110

The class equation had smaller ei,min values, and the inverse equation had smaller
ei,max values and better accuracy (smaller MAE) and precision (smaller RMSE). However,
the predictive ability between two equations is not significantly different.

3.3.5. Detection of EtP Compound by QqQ-MS

Martin et al. [28] reported determining EtP compound pollution by QqQ-MS. The
instrument’s response is area (yi), and the standard concentration is xi.

The adequate classical equation is

y = −18360.5421 + 1577.4319x − 0.1277x2 (39)

where R2 = 0.9986, and sy = 28310.3.
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The adequate inverse equation is

x = −0.5654 + 8.197 × 10−4y − 2.402 × 10−10y2 + 9.719 × 10−17y3 (40)

where R2 = 0.9998, and sx = 28310.3.
The predictive performance of the two calibration equations is listed in Table 11.

Table 11. The criteria for evaluating the predictive ability of these calibration equations for measuring
the EtP compound by QqQ-MS.

Criterion Classical Equation Inverse Equation

ei,min −33.0861 −34.4825
ei,max 22.0372 23.6656
MSE 15.6931 15.5105

RMSE 12.6058 13.3721

The classical equation has lower values of ei,min, ei,max, and RMSE, which indicates
better precision. The inverse equation has a lower MAE value.

3.3.6. The Measurement of Sulfides by Flow Injection Analysis

Desimoni [22] reported the calibration data set of sulfides in flow injection analysis at
a palladium-vitreous carbon-modified electrode. The xi is the standard concentration, and
the response yi is the current (μA).

The adequate classical equation is

y = 0.1658x1.0369 (41)

where R2 = 0.9998, and sy = 0.117.
The adequate inverse equation is:

x = 596.3756( 1 − Exp(−0.009238y)) (42)

where R2 = 0.9999, and sx = 0.295.
The predictive performance of two calibration equations is listed in Table 12.

Table 12. The criteria for the evaluation of the predictive ability of these calibration equations for the
measurement of sulfides by flow injection analysis.

Criterion Classical Equation Inverse Equation

ei,min −0.3948 −0.1498
ei,max 0.4439 0.2781
MSE 0.2134 0.1355

RMSE 0.2449 0.1137

With smaller ei,min, ei,max, MAE, and RMSE values, the inverse equation performed
better than the classical equation.

3.3.7. Measurement of Daidzein by HPLC Analysis

Mulholland and Mibbert [21] detected the daidzein concentration with a HPLC analyzer.
The standard concentration is xi (mg/50 mL), and the HPLC response is the pear area (yi).

The adequate classical equation is

y = −0.4955 + 3.222x0.9471 (43)

where R2 = 0.9995, and sy = 0.2459.
The adequate inverse equation is

x = 0.1535 + 0.2992y1.055 (44)
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where R2 = 0.9946, and sy = 0.0845.
The predictive performance of the two calibration equations is listed in Table 13.

Table 13. The criteria for evaluating the predictive ability of these calibration equations for the
measurement of daidzein with HPLC analysis.

Criterion Classical Equation Inverse Equation

ei,min −0.0698 −0.1562
ei,max 0.1701 0.0684
MAE 0.0837 0.0823
RMSE 0.0668 0.073

The classical equation has a lower ei,min and RMSE (precision), and the inverse equa-
tion has a lower ei,max and MAE (accuracy).

3.3.8. Measurement of Cocaine Concentration by LC-MS-MS

Desharnais et al. [26] measured cocaine concentrations with an LC-MS-MS instru-
ment. The standard concentration is xi, and the response, yi, is the instrument’s area ratio.
The response data did not have a constant variance. These xi values were logarithmic
transformations which require further analysis.

The adequate classical equation is

y = 0.1832 + 0.008991 ln(x)5.0619 (45)

where R2 = 0.9994, and sy = 0.1401.
The adequate inverse equation is

Lnx = −30.5041 + 34.2735 y0.3119 (46)

where R2 = 0.9991, and sx = 0.0604.
The predictive performance of the two calibration equations is listed in Table 14.

Table 14. The criteria for evaluating the predictive ability of these calibration equations for measuring
cocaine concentration by LC-MS-MS.

Criterion Classical Equation Inverse Equation

ei,min −71.2154 −82.0002
ei,max 46.0926 36.4611
MAE 47.4945 27.3709
RMSE 35.4701 12.6038

The classical equation has lower ei,min, and the inverse equation has lower ei,max,
MAE (accuracy), and RMSE (precision).

3.3.9. Measurement of Benzaldehyde Using Pulse Polarography

Ortiz et al. [24] reported the calibration data for determining benzaldehyde concen-
tration by pulse polarography. The standard concentration (m/mol) is xi, and the current
response (μA) is yi.

The adequate classical equation is

y = 2.0923 − 2.1131 Exp(−1.0328x) (47)

where R2 = 0.9762, and sy = 0.0204.
The adequate inverse equation is

x = 0.0308 − 0.01089y +3.6389y2 − 6.0929y3 (48)
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where R2 = 0.9821, and sx = 0.0037.
The predictive performance of the two calibration equations is listed in Table 15.

Table 15. The criteria for evaluating the predictive ability of these calibration equations for measuring
benzaldehyde using pulse polarography.

Criterion Classical Equation Inverse Equation

ei,min −0.02174 −0.01608
ei,max 0.00858 0.007406
MAE 0.008197 0.006503
RMSE 0.009711 0.007014

The classical equation has lower ei,max, and the inverse equation has lower ei,min, MAE
(accuracy), and RMSE (precision).

4. Discussion

The standard values (xi) are prepared without measurement errors for the calibration
procedure. One of the regression assumptions is the negligible error for the xi value. For
the classical equation, the xi value of the standard values corresponded to this requirement.
The instrument’s response, yi, is the regressor value. The measurement errors exist in the
regressor variables. If the response variance is limited, the effect of measurement error on
the regressor can be ignored with a minor effect [6].

The coefficient of variation (CV) can be used to evaluate the effect of measurement
errors. The CV is defined as

CV = (s/ymean) × 100% (49)

where s is the standard deviation of the instrument’s responses and ymean is the mean of
the response values at the fixed standard value.

The results of comparing the predictive performance of two calibration equations for
the measurement data of this study and the literature data are listed in Table 16. If the
REMAE and RERMSE are positive, the inverse calibration equation has better accuracy and
precision than the classical equation.

For the capacitive humidity sensor, the REMAE is 49.83%, and the RERMSE is 50.66%.
This indicates that the inverse calibration equation has significantly better predictive
performance than the classical calibration equation. The resistive humidity sensor’s REMAE
is −1.93%, and the RERMSE is 1.78%. This shows that the classical equation has better
accuracy, and the inverse equation has better precision. However, these differences in the
predictive performance of resistive humidity sensors are insignificant.

Figure 5 indicates the data distribution of the standard deviation of the responses of
two humidity sensors in the same standard humidity environment. The capacitive sensor
has excellent replicative ability, with standard deviations < 0.1%. However, the resistive
sensor’s standard deviations range from 0.14% to 0.44%. The larger standard deviations in
the response in the same standard environment for resistive humidity sensors induced the
problems. As the response (yi) is recognized as the dependent variable (regressor) and the
measurement errors are significant, the severity of the assumption of regression analysis
influences the predictive performance of the inverse calibration equation. In other words,
smaller standard deviations of the measurement values could ensure the better predictive
performance of the inverse calibration equation.
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Table 16. Comparison of the predictive performance of two calibration equations from this study and
the literature data.

REMAE
1 (Accuracy)

RERMSE
2

(Precision)

I. Hygrometer
1. Capacitive 49.83% 50.66%
2. Resistance −1.93% 1.78%

II. Literature data
1. GC-MS [23]

2. Flow injection
Analysis [22]

3. LC-MS-MS [26]

4. Pulse
polarography [24]

5. Spectrophotometry [25]

6. BICELLS (biophotonic sensing cells) [29]

7. HPLC [27]
(drug in blood)

8. LC-QqQ-MS [28]

9. HPLC [21]
(daidzein)

48.56%

36.5%

42.37%

20.67%

−13.54%

−0.64%

4.0%

1.16%

1.67%

46.53%

53.57%

64.47%

27.78%

−1.62%

14.65%

5.2%

−6.08%

−9.28%

Note: 1. REMAE = (MAEcla − MAEinv)/MAEcla, where MAEcla is the MAE value of the classical equation, and
MAEinv is the MAE value of the inverse equation. The REMAE is used to evaluate the accuracy. 2. RERMSE =
(RMSEcla − RMSEinv)/RMSEcla, where RMSEcla is the RMSE value of the classical equation, and the RMSEinv is
the RMSE value of the inverse equation. The REMAE is used to evaluate the precision.
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Figure 5. The distribution of the standard deviation values of the response and the standard relative
humidity values for two humidity sensors.

The distribution of the CV values of the response and standard humidity values is
shown in Figure 6. The CV values of the capacitive humidity sensor were <0.6%. However,
the resistive humidity sensor’s CV values range from 0.5 to 6.0%.
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Figure 6. The distribution of the response’s CV values and the standard relative humidity values for
two humidity sensors.

The inverse equation was first proposed last century. In this equation, the response
values of instruments serve as independent variables, violating the assumption of no
errors for the regressor. For this reason, many researchers adopted the classical calibration
equation. However, calculating new measurement values from the new response of the
instrument values is needed to transform the original classical equation. So, only the
linear equation was selected as the adequate calibration equation. However, much of
the literature indicates that high-order polynomial and nonlinear equations are adequate
equations [11,13,17,20]. The transform forms of these classical calibration equations are
very complex and impractical with regard to calculating the measurement values.

Francois et al. [18] concluded that two calibration equations have equal predictive
ability. In this study, we found some calibration data sets have similar results, especially
for the response values with a higher coefficient of variance (CV).

Many studies have mentioned the better-predicted performance of the inverse cal-
ibration equation [9,10,13,14]. Their results were based on small data sets or theoretical
discussions. This study used the measurement data sets from two kinds of humidity sen-
sors and nine data sets collected from the literature to evaluate the predictive performance
of two calibration equations and confirmed the same results. Shalabh [11] mentioned that
measurement errors must be considered for prediction accuracy. This study found the same
results with the evaluation of the MAE values. Center [9] found an improvement in the
predictive ability of inverse calibration with the decrease in measurement variance. In this
study’s results, the inverse equation’s predicted predictive ability is superior to the classical
equation if the CV values of the instrument’s response are smaller. Krutchkoff’s [7,8] study
showed the inverse equation has a more minor average error. This study proposed the
criterion of the RMSE values to confirm this statement.

In Table 16, the inverse calibration equation had significant predictive ability for GC-
MS, flow injection analysis, LC-MS-MS, and pulse polarography. The CV values of the
GC-MS, flow injection analysis, LC-MS-MS, and pulse polarography ranged from 4.0 to
8.2%, 0.3 to 1.7%, 0.4 to 1.4%, and 2.5 to 3.5%, respectively. The classical calibration equation
performed similarly to the inverse calibration equation for spectrophotometry, BICELLS,
HPLC, and QqQ-MS calibration data. The CV values of the spectrophotometry, BICELLS,
HPLC, and QqQ-MS ranged from 3 to 24%, 13.5 to 24.5%, and 30 to 34%, respectively.

The results indicated that the better predictive performance of the inverse calibration
equation is more significant than that of the classical equation if the response of this instrument
has excellent replicative ability. The CV values of the response in each standard environment
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could serve as an index to express its replicative ability. In the case when the CV < 5%,
the inverse calibration equation has a better predictive performance. In the case when the
CV > 5%, the classical calibration equation has a better or similar predictive performance.

Recently, measurements of intelligent instruments have been used to embed calibration
equations into this device. The inverse calibration equation can work well and easily. That
is, an adequate inverse calibration equation could be used for intelligent measurement.

In the sensor industry, most of the sensors are physical sensors, accounting for 90%,
while chemical sensors account for 9%, and biological sensors account for 1% [36]. Research
on chemical sensors is, therefore, declining. However, chemical sensor application objects
include medicine, food, the chemical industry, semiconductor manufacturing processes,
etc. The measurement performance of chemical sensors has a significant impact. Chemical
sensing requires the establishment of a calibration equation. Therefore, this paper should
be valued in academic research.

Recently, researchers have been concerned about the impact of calibration equations on
measurement performance. Their measurement objects include solvent-independent molec-
ular weight [37,38], tiny mass [39], soil moisture [40], and pesticide concentrations [41]. The
results of this study for two calibration equations could be applied to different instruments
to improve their measurement performance.

5. Conclusions

There are two kinds of calibration equations: classical equations and inverse equations.
The classical equation is widely used, and the linear equation is the main one used for
calculating new measurement values. The inverse equation can compute the new mea-
surement directly and efficiently. However, some researchers suspect it violates the basic
assumptions of regression analysis. In this study, the actual calibration data sets of two
types of humidity sensors were collected. Nine calibration data sets of various instruments
were collected from the literature. Four criteria were proposed to evaluate the predictive
performance of the two calibration equations.

The results of this study show that the inverse equation has excellent predictive perfor-
mance for the calibration equation of the capacitive humidity sensor. The classical equation
has better accuracy, and the inverse equation has better precision for the predictive perfor-
mance of resistive humidity sensors. If the instrument response has good repeatability, the
inverse equation performs excellently for the nine data sets collected in the literature. If
the repeatability of the instrument response is poor, two calibration equations have similar
predictive performance. The CV value of measurement in standard conditions is used as
a criterion. A CV value of less than 5% can be used as a threshold basis for the inverse
calibration equation.
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Abstract: The reliable detection of ammonia at room temperature is crucial for not only maintaining
environmental safety but also for reducing the risks of hazardous pollutants. In this study, the
electrochemical modification of laser-induced graphene (LIG) with polyaniline (PANI) led to the
development of a chemo-resistive nanocomposite (PANI@LIG) for detecting ammonia levels at room
temperature. The composite is characterized by field emission scanning electron microscopy, Fourier
transforms infrared, and Raman and X-ray photoelectron spectroscopy. This work marks the first
utilization of PANI@LIG for gas sensing and introduces a simple but effective approach for fabricating
low-cost wearable gas sensors with high sensitivity and flexibility.

Keywords: laser-induced graphene; polyaniline; gas sensing; ammonia

1. Introduction

Graphene is a carbon nanomaterial with sp2 bond structures forming a hexagonal
honeycomb arrangement in a two-dimensional (2D) layer [1–3]. Due to its excellent electri-
cal and thermal conductivity, high specific surface area, charge density, carrier mobility,
strength, flexibility, and robustness, graphene is widely used in electronics applications like
sensors, biosensors, batteries, supercapacitors and wearable devices [4–11]. The commonly
used graphene synthesis processes, including chemical vapor deposition, micromechanical
liquid phase exfoliation, electrochemical exfoliation and oxidation–reduction, involve high
costs, complex processes with toxic chemicals, long processing times, difficulties for mass
production and integration into flexible electronic devices, making graphene production
challenging [12–17].

In 2014, Tour et al. introduced a viable alternative technology for graphene synthesis,
a one-step simple, scalable, and low-cost method for producing three-dimensional (3D)
porous graphene films from commercial polymer films prepared by direct laser writing
with a CO2 infrared laser; this nanomaterial is known as LIG [18–20]. LIG is valuable for
its attributes, including high surface area, porosity, mechanical flexibility and excellent
electrical conductivity [21]. These micro/nanostructures have hydrophilic/hydrophobic
surfaces and outstanding electrochemical performance [19,22]. This material’s simple fabri-
cation process and properties enable its application in various fields, such as microfluidic
systems, catalysis systems, water purification systems, electronic devices, sensors and
biosensors [21,23–28].

In recent years, researchers have used LIG in chemo-resistive gas sensors, serving
as electrodes [29–33], as a sensitive layer [34,35], or doped with other nanomaterials like
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metals, metal oxides (MOXs), transition metal dichalcogenides (TMDs) and conductive
polymers [36–42]. These LIG composites provide the capability to detect multiple gas
species like nitrogen oxides (NOx) [29–32,35,37], volatile organic compounds (VOCs) [33],
carbon dioxide (CO2) [34] and ammonia (NH3) [42]. In the case of NH3, only few studies
have been reported where LIG was used for its detection [43].

NH3 measurement has broad applications such as air quality monitoring [44], agricul-
tural and livestock practices regulation [45], human breath analysis for medical diagnos-
tics [46], wastewater monitoring [47], and in the chemical industry [48]. Due to the hazards
of NH3, it is important to develop a real-time monitoring system to identify potential risks
and ensure safety [49,50]. These sensors need to meet conditions such as being low-cost,
having high precision, showing durability, and consuming low energy. The ability to detect
ammonia at room temperature with no need for heating is important for low-power and
portable devices. Traditional sensors often work at high temperatures, which limits their
use in wearable and flexible applications.

Polyaniline’s (PANI) ability to switch between its emeraldine and leucoemeraldine
forms plays a critical role in its gas sensing performance. Upon exposure to ammonia,
the protonation/deprotonation process causes a shift between these oxidation states, al-
tering the electrical conductivity of the material. The emeraldine form (conductive state
of PANI) undergoes deprotonation while exposed to NH3, resulting in the formation of
the leucoemeraldine form of PANI, which reduces the conductivity of the polymer [51,52].
The exploration of PANI as a functional material for gas sensors gained traction in the
late 1980s, largely due to its unique doping/de-doping capability via protonation and
deprotonation reactions [53]. This intrinsic property of PANI, allowing it to modulate
its electrical conductivity in response to acidic or basic environments, makes it an ideal
candidate for chemo-resistive sensing applications across various chemical analytes. Early
breakthroughs in PANI-based ammonia sensors were reported by Hirata et al. (1994) and
Kukla et al. (1996), demonstrating impressive gas response levels. These studies high-
lighted the material repeatability, room-temperature operation, and high environmental
stability [53,54].

While there have been previous efforts to use PANI for ammonia detection, they usu-
ally involve complex chemical fabrication procedures or non-scalable fabrication methods.
Graphene, as an inorganic material with conjugated π electrons, can be combined with
PANI to enhance sensitivity and selectivity at room temperature [55–59]. However, such
combinations often involve multi-step syntheses or require additional materials for stability.
In contrast to the previous study, our approach utilizes a direct electrochemical deposition
of PANI onto LIG electrodes on a flexible substrate for the first time [60]. The choice of
LIG as a substrate for PANI arises from its unique properties, including high conductivity,
a large surface area for gas interactions, and mechanical flexibility. These characteristics
complement PANI’s intrinsic sensitivity to NH3, creating a composite material that not only
improves scalability and stability but also enables applications in flexible and wearable
sensing platforms. This method is easy, cost-effective, and scalable compared to the chemi-
cal oxidative polymerization often employed in PANI–graphene composites. Moreover, the
LIG itself is fabricated using a one-step laser patterning method, eliminating the need for
high-cost, multi-step graphene synthesis methods such as chemical vapor deposition. This
strategy provides fast and straightforward integration of the sensing material in flexible
substrates suitable for wearable applications. The suggested method not only reduces the
complexity of the fabrication process but also allows precise control over the thickness and
morphology of the PANI layer via electrochemical polymerization. Based on this concept
and our previous experience with LIG composites, this research marks the first time that
an electrochemical deposition of PANI has been used to fabricate ammonia gas sensors on
LIG electrodes, creating new possibilities for industrial-scale production of low-cost and
flexible gas sensors [43].
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2. Materials and Methods

2.1. Fabrication of LIG Electrode

An LIG electrode was fabricated using a CO2 pulsed infrared laser system (48-2, SYN-
RARD), with a wavelength of 10.6 μm and a max power of 25 W. The laser was focused
on a 50 μm thick commercial polyimide film through a 74 mm focal length lens, and the
laser beam was scanned at 200 mm/s, with a pulse frequency of 12 kHz and power of 12%.
These are fundamental parameters in controlling the quality and characteristics of the LIG.
They influence the LIG’s conductivity, morphology, and suitability for electrochemical poly-
merization. These parameters were optimized using a digital twin tool that we previously
reported [61], as they are key to controlling LIG quality, conductivity, and morphology [62].
The LIG electrode integrates with an 18 mm2 sensing area of a 3D porous graphene layer,
Ag-ink-coated contact pads, and LIG connection legs into a single structure.

2.2. Electrochemical Deposition of PANI on LIG Electrode

A three-electrode system was used to carry out the electrochemical polymerization
process (Figure 1a). The system consists of the LIG electrode as a working electrode,
a platinum-wire auxiliary electrode, and an Ag/AgCl reference electrode with a salt
bridge containing aqueous 3M NaCl. For the electrochemical polymerization, an aqueous
electrolyte containing aniline (Sigma-Aldrich, St. Louis, MO, USA) with a concentration
of 0.1 M, along with 1 M H2SO4 (Sigma-Aldrich), was prepared. The electrochemical
polymerization of aniline was performed by using a potentiostat (pocketSTAT2, IVIUM
Technologies, Eindhoven, The Netherlands) by cycling the potential between −0.5 and
1.3 V. Figure S1 (Supporting Materials) shows the cyclic voltammograms with a scan rate
of 50 mV/s for 20 cycles. The electrodeposited LIG electrode was then rinsed with distilled
water and dried in air.

 

Figure 1. Schematic of (a) fabrication process of the PANI@LIG gas sensor and (b) interactions
between PANI and LIG.

The possible interactions that may occur between aniline–LIG and PANI–LIG are
shown in Figure 1b. The XPS analysis shows that the LIG has oxygenated functional groups
(such as hydroxyl groups) on the surface and edges of the 3D porous graphene. By these
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functional groups, aniline monomers can be attached to LIG. Moreover, the LIG has good
conductivity, which is required for electrochemical deposition. During the electrochemical
deposition, PANI fibers grow on the surface and edges of LIG through electrostatic inter-
action, hydrogen bonding and π-π stacking between the two components [63]. It is also
expected that hydrogen bonds are created between the hydroxyl groups on the LIG and
PANI radicals; this causes the attraction of PANI chains on the LIG. The structure of the
composite is further stabilized by π-π interaction between the PANI rings and π bonds of
LIG [64,65].

2.3. Materials Characterization Techniques

Characterizations of the materials were performed in the Scientific and Technical
Resources Service (SRCiT) of the University Rovira i Virgil (URV). The Raman analysis
of the material was performed using a Renishaw InVia confocal Raman Spectrometer
(Wotton-under-Edge, UK) with a coupled confocal microscope (Leica DM2500 Microsys-
tems, Wetzlar, Germany). A 514 nm wavelength laser was employed, with the beam
focused onto the LIG surface through a 50× objective lens. A Scios 2 DualBeam field emis-
sion scanning electron microscope (FESEM) was used to explore morphology. An optical
microscope (Leica DMS300 Microsystems, Wetzlar, Germany). A 514 nm wavelength laser
was employed, with the beam focused onto the LIG surface) was employed for visual
inspection. The JASCO FT/IR 6700 (Asia portal) spectrophotometer (Tokyo, Japan) was
employed for infrared spectroscopy analysis, and X-ray photoelectron spectroscopy (XPS)
measurements were performed with ProvenX-NAP, SPECS (Berlin, Germany) using an
AlKα—1486.7 eV X-ray monochromatic with μ-FOCUS 600, SPECS source.

2.4. Gas Sensing Tests

The fabricated PANI@LIG sensors were placed in a sealed Teflon chamber (35 cm3),
to evaluate their gas sensing performance at room temperature (Figure 2). The chamber
was isolated from ambient humidity and had the capacity for four sensors. The sensor’s
electrical resistance was measured and recorded at a sampling frequency of 0.2 Hz, using a
data acquisition system (34972A LXI, Keysight, Santa Rosa, CA, USA) controlled with a PC
application (BenchLink Data Logger 3, Agilent Technologies, Santa Clara, CA, USA).

Figure 2. Schematic illustration of measurement system used for gas sensing tests.

Different gas concentrations were delivered into the chamber with the help of a mass-
flow controller (MFC) system (EL-FLOW, Bronkhorst, Ruurlo, The Netherlands), controlled
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using PC applications (Flow View and Flow Plot, Bronkhorst). This system mixes gases
from a zero-grade dry air cylinder as the carrier and a calibrated gas cylinder with 100 ppm
of NH3 (balanced in dry air) and delivers it to the chamber at a constant rate of 100 mL/min.
The sensors were stabilized under dry air for 105 min and then exposed to cyclic exposure
of 30 min of NH3 (with different concentrations of 5, 10, 25, 50, and 100 ppm) and 75 min
of dry air between each concentration. These concentration ranges were selected based on
the NH3 occupational exposure limits (OELs) according to the European Chemical Agency
(ECHA) which specifies a long-term exposure limit (LTEL) of 20 ppm and a short-term
exposure limit (STEL) of 50 ppm. The sensor’s relative responses, expressed in percentage,
were then calculated as a function of the resistance using the formula ΔR/R0, where ΔR
represents R-R0, R corresponds to the value of the resistance after the target gas exposure
and R0 is defined as the sensor’s baseline resistance in air [66–68]. The response time (tresp)
and recovery time (trecov) were calculated as the time to reach 90% of total resistance change
for NH3 exposure and air re-exposure, respectively [67,68].

The gas sensing performance of sensors under a humid atmosphere was characterized
using a controller evaporator mixer (W-202A, Bronkhorst) positioned in series between the
gas mixer system and the chamber inlet. In addition, to monitor the environmental condi-
tions during the measurements, a temperature and humidity sensor (SHT85, SENSIRION)
was placed at the chamber outlet. The same gas measurement setup was employed to
assess the sensor selectivity, replacing the NH3 cylinder with a different gas cylinder. Other
reducing species were used, including 100 ppm of carbon monoxide, 100 ppm of hydrogen,
20 ppm of ethanol, and aromatic volatile organic compounds such as 10 ppm of benzene
and 10 ppm of toluene. Also, the sensor was exposed to 100 ppm of nitrogen dioxide as an
oxidizing gas.

3. Results and Discussion

3.1. Structural and Morphological Characteristics

Figure 3 shows the FESEM images of bare LIG and PANI@LIG. The well-defined
porous network seen at both 500 μm and 50 μm scales highlights the rough and intercon-
nected structure of bare LIG demonstrated in Figure 3a,b. It depicts the surface morphology
of LIG with a high surface area. The surface of LIG after the electrochemical polymerization
is depicted in Figure 3c,d. The surface of the PANI@LIG composite appears to be less dense,
with the PANI on the LIG surface covered. This can be seen particularly in the images (d)
and (e) where the PANI has been extended in layers upon nanostructures, enhancing the
material’s porosity and surface area. Images (e) and (f) further zoom in on the PANI@LIG
composite, showing the PANI fibrils forming a fine network at the nanoscale down to
500 nm. Also, Figure S2b,c (Supplementary Materials) comprises optical microscope images
of the bare LIG and PANI@LIG, clearly showing the difference between them.

The Raman spectra of LIG and PANI@LIG are shown in Figure 4a. Several additional
peaks appear in the PANI@LIG spectrum, showing PANI’s successful polymerization on
the LIG surface. Key peaks located around 1591, 1475, 1346, and 1162 cm−1 were assigned
to the C=C stretching of the quinoid and benzenoid rings [69], C–N+ stretching modes,
confirming the presence of conductive PANI. The peak at 1162 is for C–H bending and
stretching of C–N, and some of the peaks in PANI@LIG at the lower frequency range are
indicative of different stretching modes and ring deformations which are typical of PANI’s
molecular structure. For example, the peaks near 420 cm−1 to 580 cm−1 are associated with
C–N stretching and ring deformation, while peaks near 810 cm−1 to 1011 cm−1 are linked to
C–H out-of-plane bending and in-plane deformations. These low-frequency peaks provide
additional evidence for the structural integrity of PANI and confirm its deposition on the
LIG substrate. For the LIG spectrum, characteristic peaks are observed near 1573 cm−1

and 1343 cm−1, which correspond to the G-band and D-band, respectively. The G-band is
associated with the in-plane vibrations of sp2 carbon atoms in graphitic materials, while the
D-band is linked to structural defects and disorder in the graphene structure. Additionally,
a peak at approximately 2690 cm−1 corresponds to the 2D band, which is another key
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feature of graphene and its multilayer formation. There is a slight shift in the positions of
the G-band and D-band in the PANI@LIG spectrum compared to the pure LIG spectrum.
This shift can indicate structural changes or interaction between PANI and LIG through
π-π stacking and hydrogen bonding [70].

Figure 3. FESEM images of bare LIG (a,b), PANI@LIG (c–f).

 

Figure 4. Raman spectra of bare LIG and PANI@LIG (a); ATR-FTIR spectra of bare LIG and PANI@LIG (b).
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In order to investigate the infrared absorption properties, FTIR analysis was employed,
and the ATR-FTIR spectra are shown in Figure 4b for LIG and PANI@LIG. The LIG sample
(the black spectra) exhibits the large band in peak 3743 cm−1, which can be attributed to O-H
groups [71]. The intense absorption bands around 1651 cm−1 are related to C=C stretching
vibrations of the aromatic ring [72]. Peaks at 1593 cm−1, 1455 cm−1 and 1159 cm−1 also
correspond to different in-plane vibrations or deformation modes [73]. The peaks at
around 1032 cm−1 correspond to C-O stretching vibrations, indicating characteristics of
O-containing functional groups on the LIG surface [60]. The peak at 786 cm−1 is associated
with C–H out-of-plane bending, which typically occurs in aromatic compounds, and it
indicates some residual hydrogen or defects within the graphene structure [74]. The upper
green spectra show the PANI@LIG spectrum, indicating distinctive absorption bands
which appear to confirm the successful polymerization of PANI. The 3743 cm−1 peak
associated with the O-H group also appears in this spectrum, as well as the 3229 cm−1

peak attributed to the N-H group [75]. Notably, peaks near 1560 cm−1, 1486 cm−1 and
1244 cm−1 correspond to the C=C and C-N stretching of quinoid and benzenoid rings
in PANI [76]. Peaks reaching the higher wave number 1080 cm−1 with their shoulders
are often assigned to N=Q=N stretching [77]. A peak located at 792 cm−1 corresponds
to the aromatic ring and arises from the out-of-plane bending vibration of C-H [78]. The
differences between the spectra of LIG and PANI@LIG, especially the emergence of these
specific peaks related to PANI, demonstrate the successful electrochemical polymerization
of PANI onto the LIG substrate.

Figure 5a presents XPS analysis, giving us an idea of the surface chemistry of the
PANI@LIG composite after being used as sensor. In the high-resolution C1s spectrum,
shown in Figure 5b, the C-C/C=C bonds due to sp2 hybridized carbon found in the
graphene structure are represented by a peak at 284.5 eV [79]. The main peak at 285 eV was
found to be associated with C-N bonds and represent PANI on the graphene surface [80].
The peak at 286.5 eV corresponds to C-O or C-N groups and can be attributed to either the
oxygenated functional groups on the LIG or carbon–nitrogen interactions in PANI [79]. The
peak at 287.3 eV is attributed to carbonyl groups, while the peak at 288.6 eV corresponds to
carboxyl groups, more confirmation for the presence of oxygenated species on the LIG [81].
Moreover, the peak at 290.7 eV could be associated with π-π* infarction satellites, suggesting
aromatic components in agreement with the conjugation of the graphene structure [79].

The N1s spectrum in Figure 5c further demonstrates nitrogen in the PANI@LIG
composite. The peak centered at 398.8 eV is associated with imine groups originated from
the structure of PANI, specifically when it adopts its oxidized emeraldine state [81]. The
peak at 400.2 eV corresponds to the amine groups, which also originate from the PANI
structure [80]. These two peaks confirm the coexistence of the two oxidation states of PANI.
The peak at 402.2 eV is assigned to protonated nitrogen species, indicating PANI was in
its conductive state known as emeraldine salt [80]. The higher binding energy peak at
405.5 eV is attributed to nitrogen oxide species, which may result from adsorbed NO2
while checking the selectivity. The existence of oxygen-containing functional groups on the
PANI@LIG composite is further proved by O1s spectrum displayed in Figure 5d. The peak
at 530.4 eV is attributed to oxygen in carbonyl groups [82]. The peak at 531.6 eV is assigned
to hydroxyl or ether groups, which are typically present in the edges of graphene and
give them more water-wettability features [81]. The peak at 532.9 eV is related to carboxyl
groups, indicating a further degree of oxidation on the surface [82].
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Figure 5. X-ray photoelectron spectroscopy (XPS) survey spectra of PANI@LIG (a), and high-
resolution spectra fitting results of C1s (b), N1s (c) and O1s (d) of PANI@LIG.

3.2. Gas Sensing Performance Analysis

The gas sensing performance was analyzed at varying concentrations of ammonia with
a continuous electrical resistance measurement, in dry ambient conditions. Figure 6a shows
the electrical resistance of the PANI@LIG gas sensor increased when exposed to varying
concentrations of ammonia. This performance confirms that the PANI@LIG nanocomposite
acts as a p-type material on exposure to a reducing gas, with ammonia donating electrons
and neutralizing holes (positive charge carriers), thus reducing electrical conductivity.
Moreover, the figure highlights the sensor’s baseline stability and minimal noise levels.
Figure 6b depicts the sensor regression model as a power function (y(x) = 0.194*x 0.532) of
the calibration curve. This model was used to calculate the theoretical limit of detection
(LOD), following a standard method consistent with the IUPAC definition. According to
IUPAC, the LOD is the smallest concentration or absolute amount of analyte that has a
signal significantly larger than the signal from a suitable blank. It is calculated based on
Equation (1):
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xL = xB + ksB (1)

where xB is the mean value of blank measurements (100 baseline points of the sensor’s
relative response were analyzed), sB is the standard deviation of the blank measures, and k
is a numerical factor (k= 3 for commonly used level of confidence = 99.7%). Then, LOD is
estimated by Equation (2) as follows:

LOD = (ksB/a)1/n (2)

where a is the proportionality constant, and n is the exponent from the power regression
curve. The PANI@LIG sensor shows an LOD of 2.38 ppb for NH3. This sensitivity demon-
strates the potential efficacy of PANI@LIG for low-concentration detection, comparable to
other high-performance materials used in gas sensing applications.

Figure 6. Gas sensing performance of PANI@LIG NCs gas sensors in dry ambient conditions.
(a) Electrical resistance response to different concentrations (5, 10, 25, 50, and 100 ppm) of NH3 at
room temperature. (b) Regression curve. (c) Sensor repeatability testing at successive exposures of
25 ppm of NH3. (d) Response to 5 ppm of NH3 and analysis of response/recovery time.
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Figure 6c shows the sensor repeatability; it was evaluated by applying eight successive
cycles of 25 ppm of NH3 for 30 min and recovery steps of 75 min between gas exposures,
in which the PANI@LIG sensors present a standard deviation of about 0.029%. Figure 6d
indicates the response time (tresp = 18.0 min) and recovery time (trecov = 51.0 min) of the
sensor to 5 ppm of NH3. Considering that this concentration is below the STEL defined
by ECHA and no fast detectors are required, a response time in the order of minutes is
sufficient. It can be concluded that these times are adequate for this sensor to be used in
real-time monitoring of the environment.

Indeed, the influence of environmental moisture on gas sensor performance has
emphasized humidity as a key parameter that essentially modulates sensor response. An
experiment was carried out under 50% and 30% relative humidity (RH) levels, and the
results were compared with those obtained under dry conditions. Figure S3b (Supporting
Materials) indicates that variations in RH affect the sensor resistance. As RH increases, the
sensor baseline decreases. This effect may be attributed to the further protonation of PANI
through absorbed water or the generation of conductive H3O+. Figure 7a shows that the
sensor’s sensitivity improves with an increase in RH. Generally, the sensor response at 50%
RH was greater than the responses at 30% RH and in dry conditions. The sensor response
for 100 ppm at 50% RH was 2.9 times higher than in dry air. This performance hints that
moisture promotes the NH3 adsorption on the sensor’s surface. This probably occurs
through swelling of the active material by water molecules, causing conductive domains to
move further apart, thus leading to higher overall resistance in the film [83]. Additionally,
the humid environment may facilitate more efficient proton exchange between the water
molecules and NH3, further amplifying the sensor’s response. Consequently, an increase
in humidity will lead to a higher sensitivity for ammonium detection. Furthermore, sensor
response/recovery times (Figure S3b) also improve (decrease) with rising RH.

Figure 7. Calibration curves obtained for dry ambient conditions, 30%RH and 50%RH (a) and
responses to different gas compounds (CO, C2H6O, C6H6, C7H8, NH3, H2, and NO2) (b).

Selectivity is an important parameter to be considered in gas detection since it demon-
strates the ability of the sensor to discriminate the target gas from interfering gases The
selectivity was assessed (Figure 7b) by measuring high concentrations of other gases
(benzene, toluene, carbon monoxide, ethanol, hydrogen, nitrogen dioxide). Therefore,
the PANI@LIG gas sensor exhibited lower responses to these analytes compared with 5
ppm NH3, and the fabricated PANI@LIG gas sensors showed acceptable performances for
potential detection of environmental ammonia.

The sensor response was checked 45 days after the first test. During this period, the
sensors were regularly exposed to ammonia and changing humidity conditions, and were
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exposed towards different gas species for selectivity tests. Figure S4a (Supporting Materials)
shows the long-term stability of responses towards 50 ppm ammonia at room temperature.
The sensor response decreased by 30% from day 1 to day 45. Also, the evolution of the
baseline resistance can be found in Figure S4b, where the resistance value increases by 3%.
We perceive that the decrease in the sensor response is due to the aging of the surface.

Table S1 (Supporting Materials) presents a comparison of various NH3 gas sensors
reported in the literature, all utilizing graphene–PANI nanocomposites capable of operating
at room temperature. In general, the sensing performance was increased when the PANI
was present in the sensitive material. However, many studies lack crucial details such as
the applied flow rate, the type of carrier gas, and the effect of the influence of ambient
humidity on performance. Although our sensor showed a lower response in comparison to
those of other studies, its low LOD of the 2.38 ppb combined with the advantage of the
electrochemical polymerization and a simple laser drawing method to produce graphene
highlight its novelty. This is a simpler method in comparison to those used in most
other studies and offers better control over both the thickness and morphology of PANI.
Moreover, the sensor and ammonia detection operate at a lower flow rate and use synthetic
air instead of nitrogen as the carrier gas, conditions closer to those needed in real-time
monitoring for ammonia. Those experimental parameters are likely to influence the sensor
response to some extent since higher flow rates or detection in a nitrogen atmosphere can
boost the resistance changes.

3.3. Gas Sensing Mechanisms

Figure 8 shows the sensing mechanism of ammonia by the PANI@LIG composite.
While the sensor is exposed to ammonia, the gas molecules are adsorbed on the surface. The
porous structure of the PANI@LIG facilitates fast diffusion of ammonia on the sensor. Dur-
ing electrosynthesis in an acidic electrolyte, PANI molecules become protonated and exhibit
p-type semiconductor properties as a result. When an ammonia molecule encounters PANI,
it absorbs protons from the polymer so that ammonium ions form. This deprotonation
changes the electronic structure of PANI, causing an increase in the sensor’s resistance. The
process is reversible; returning the sensor to air allows ammonium ions to convert back to
ammonia and a proton, restoring the sensor to its original state [84]. The previous studies
showed that the composite of graphene and PANI shows significantly enhanced sensing
performance compared to pure PANI [85]. The high surface area of LIG increases the
number of adsorption sites that are available for gas molecules and improves the sensor’s
sensitivity. LIG’s three-dimensional porous structure with defects and high-energy binding
sites helps efficient gas diffusion and adsorption. Additionally, the highly conductive
nature of LIG sheets provides a rapid carrier transport network, facilitating swift electron
transfer within the sensor. Also, π–π interactions between PANI and LIG enhance electron
mobility and create a synergistic effect that improves the ammonia sensing capability of
the sensor. The I–V curve in Figure S5 (Supporting Materials) shows the linear relationship
between the applied voltage and the flowing current through the sensor, which indicates
that under the conditions of exposure, the sensor behaves as a resistive device in which an
ohmic contact exists between the gas-sensitive film and the electrodes. The decrease in the
slope of the curves when exposed to 50 ppm and 100 ppm NH3 compared to synthetic air
indicates an increase in the resistance of the sensor. It confirms that when NH3 interacts
with PANI@LIG, the number of charge carriers decreases due to deprotonation, leading to
an increase in resistance.
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Figure 8. Schematic of the interaction between ammonia and PANI@LIG.

4. Conclusions

In summary, a flexible, low-cost and room-temperature-operating ammonia sensor
with high sensitivity and selectivity was developed based on a PANI@LIG composite. The
suggested method not only reduces the complexity of the fabrication process but also allows
precise control over the thickness and morphology of the PANI layer via electrochemical
polymerization. Wearable and portable low-cost devices can directly benefit from this
simple fabrication process of a PANI/LIG sensor. While some sensors may offer higher
response to ammonia, the convenience, low-cost scalability, low LOD of 2.38 ppb, as well
as the sensor’s performance in real-world conditions, make this sensor a candidate for
applications such as environmental monitoring and industrial safety.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24237832/s1. Figure S1: Cyclic voltammograms; Figure S2:
Picture of the PANI@LIG gas sensor and optical images of the bare LIG electrode and the PANI@LIG
gas sensor; Figure S3: Relationship between sensor baseline resistance and relative humidity, and
the correlation between sensor response/recovery times and relative humidity; Figure S4: long-
term stability analysis; Figure S5: Current-voltage (I–V) characteristics of the gas sensor; Table S1:
Comparison with previously reported results.
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Abstract: Malaria poses a serious global health problem, with half the world population being at
risk. Regular screening is crucial for breaking the transmission cycle and combatting the disease
spreading. However, current diagnostic tools relying on blood samples face challenges in many
malaria-epidemic areas. In the present study, we demonstrate the detection of the malaria-causing
Plasmodium parasite in non-invasive saliva samples (N = 61) from infected individuals by com-
bining a DNA-based Rolling-circle-Enhanced-Enzyme-Activity-Detection (REEAD) sensor system
with a chemiluminescence readout that could be detected with an in-house-developed affordable
and battery-powered portable reader. We successfully transferred the technology to sub-Saharan
Africa, where the malaria burden is high, and demonstrated a proof of concept in a small study
(N = 40) showing significant differences (p < 0.00001) between malaria-positive individuals
(N = 33) and presumed asymptomatic negative individuals (N = 7) all collected in Gabon. This
is the first successful application of the REEAD sensor system for the detection of malaria in saliva in
a high-epidemic area and holds promise for the potential future use of REEAD for malaria diagnosis
or surveillance based on non-invasive specimens in sub-Saharan Africa.

Keywords: malaria; diagnosis; rolling circle amplification; saliva; topoisomerase 1

1. Introduction

Malaria is among the most serious global health issues. It is a major cause of death
and illness in many low- and middle-income countries with an estimated 249 million cases
and 608,000 deaths in 2022, particularly among young children and pregnant women [1].
Today, nearly half of the world population is at risk of malaria. These numbers may even
increase with climate change that alters the geographic distribution of malaria by altering
the habitats suitable for malaria-parasite-carrying mosquitos [2–4]. This development
underlines the importance of regular screening in populations at risk of infection and in
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areas where malaria is currently under control. The World Health Organization (WHO)
has set ambitious goals for malaria elimination in 26 countries by 2025 [5], bringing the
number of certified malaria-free countries to 69 [6]. Screening and treating asymptomatic
carriers allow us to break the transmission cycle and are vital steps toward these targets.
Moreover, regular screening and surveillance of malaria can provide valuable data on how
climate change impacts the pattern of malaria transmission.

Malaria is caused by infections with Plasmodium parasites, which typically reside in
red blood cells [7,8]. Consequently, malaria is currently diagnosed in blood. The gold
standards are light microscopy of thick or thin blood smears or polymerase chain reaction
(PCR) [9,10]. These methods are often either unavailable or limited in low-resource settings
where malaria is prevalent. Here, antigen rapid diagnostic tests (RDTs) are commonly
used. However, the sensitivity of RDTs is low for patients with low-level parasitemia, and
they fail to detect all malaria-causing Plasmodium species [11]. Due to these limitations
and cultural reluctance to give blood in many malaria-endemic areas, new diagnostic tools
allowing for sensitive and specific detection of all malaria-causing Plasmodium species in
non-invasive samples at low-resource settings are highly needed [12].

DNA sensors or sensor systems composed of DNA may present attractive solutions
to this challenge. DNA sensors for the sensitive and specific detection of biomarkers
benefit markedly from advances of this century in the chemical synthesis of modified
DNA oligonucleotides. During the past 15+ years, a large number of DNA sensors or
sensor systems for the detection of different biomarkers, including small molecules [13–16],
proteins [17,18], or enzyme activities [18–26], have been described. Besides the ease by
which the secondary structure and functionality of DNA molecules can be manipulated
for the detection of specific biomarkers [25,27,28], DNA can be amplified by polymerases,
making it an excellent material for detection systems with enhanced sensitivity [29–31].
DNA sensor systems that rely on isothermal amplification systems such as rolling circle
amplification (RCA) catalyzed by highly processive polymerases such as phi29 polymerase
offer the additional advantage of being directly quantitative. When employing an enzyme
activity as a biomarker for detection, the sensitivity is further increased as each enzyme gen-
erates many products that can each be amplified before detection without being consumed
by the process (see schematic outline in Figure 1A).

Figure 1. The REEAD sensor system. (A) The advantage of using pTOP1 as a biomarker for the
detection of Plasmodium infections. Each parasite contains a high number of pTOP1 enzymes that each
generate multiple DNA products without being consumed in the process. (B) The top panel shows the
sequence and structure of the pTOP1-specific DNA substrate with the primer annealing site shown
in blue. Cleavage–ligation by pTOP1 converts the substrate to a closed circle that is hybridized to
a glass slide and amplified by RCA in the presence of (i) dNTPs with biotin-conjugated dCTPs for
chemiluminescence readout (left lower panel) or (ii) without modified dNTPs followed by hybridization
to fluorescently labeled probes for readout in a fluorescence microscope (right lower panel).
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By taking advantage of linear DNA substrates that could be converted to a closed DNA
circle and act as a template for phi29-mediated amplification only by their specific target
enzyme, we previously reported Rolling-circle-Enzyme-Enhanced-Amplification-Detection
(REEAD) DNA sensor systems for detecting disease-causing human pathogens such as
Plasmodium, Mycobacteria, and HIV [26,32–35]. For the detection of Plasmodium, we utilized
a single-stranded DNA substrate that folds into a hairpin structure with a primer annealing
sequence in the single-stranded loop region and a recognition site that can be cleaved
and ligated specifically by the life-essential Plasmodium-expressed enzyme topoisomerase1
(pTOP1) [36,37]. As illustrated in Figure 1B, pTOP1 converts the substrate to a single-
stranded DNA circle that can function as a template for RCA in a solid support format or
solution. Detection can be achieved by fluorescence labeling or coupling with Horse Radish
Peroxidase (HRP), which enables different readouts [38]. Using this setup, we have demon-
strated the specific detection of all human malaria-causing Plasmodium species in blood and
saliva with estimated detection limits of 0.06 and 2 parasites/μL, respectively [39]. How-
ever, all previous testing of the malaria-specific REEAD was performed in high-resource
laboratory facilities using samples from confirmed positives collected in sub-Saharan Africa
or Asia that were tested against negative samples collected in Denmark [33,39]. Moreover,
all previous tests relied on a rather complicated microfluidics-based extraction system to
release active enzymes from the Plasmodium parasites, while a simple colorimetric readout
was applied to a few tests with promising results [33,39].

In the present study, we demonstrate the detection of Plasmodium parasites in saliva
from confirmed infected individuals in a malaria clinic in Gabon. This was achieved using
an extraction method combined with a chemiluminescent-based readout for enhanced
detection. For readout, we present an in-house built battery-driven affordable 3D printed
portable reader optimized for the detection of chemiluminescence REEAD signals. Using
3D printing enables the rapid, cost-effective manufacturing of lightweight devices, making
it ideal for low-resource settings by addressing affordability and logistical challenges,
including ease of transport and deployment in remote areas. Using this reader for testing
saliva for the presence of Plasmodium parasites in Lambaréné, Gabon, we demonstrate
significant (p < 0.00001) differences between a population of confirmed malaria-positive
(N = 33) and a population of presumed asymptomatic negative individuals (N = 7) all
locally collected in Gabon. These results hold promise for the applicability of the malaria-
specific REEAD in sub-Saharan Africa where the reported detection of Plasmodium parasites
in saliva may also be relevant for surveillance programs.

2. Materials and Methods

2.1. Reagents

All chemicals were purchased from Sigma Aldrich, Søborg, Denmark. CodeLink Acti-
vated HD slides (#DHD1-0023) were from SurModics (Saint Paul, MN, USA),
Pertex glue (#00801) was from Histolab (Askim, Sweden), a PAP Pen was from Super
HT (Japan), a silicone Wellmaker grid was custom-made by Grace bio-labs (Bend, OR, USA),
Vectashield without DAPI (#H-1000) was from Vector Laboratories (Burlington, ON, Canada),
exonuclease I and III were from Thermo Scientific (Roskilde, Denmark), and glass beads
150–212 μm (#70-100 U.S. sieve) were from Sigma Aldrich (Steinheim, Germany).

2.2. DNA Oligonucleotides

DNA oligonucleotides were synthesized by Sigma Aldrich, Søborg, Denmark. The
sequences were as follows:

• 5′-Amine REEAD primer:
5′-[AmC6] CCAACCAACCAACCAAGGAGCCAAACATGTGCATTGAGG-3′;

• pTOP1substrate:
5′-TCTAGAAAGTATAGGAACTTCGAACGACTCAGAATGACTGTGAAGA
TCGCTTATCCTCAATGCACATGTTTGGCTCCCATTCTGAG
TCGTTCGAAGTTCCTATTCTTT-3′;

51



Sensors 2024, 24, 7947

• hTOP1substrate:
5′-AGAAAAATTTTTAAAAAAACTGTGAAGATCGCTTATTTTTTTAAAAAT
TTTTCTAAGTCTTTTAGATCCCTCAATGCACATGTTTGGCTCCGATCTAAAA
GACTTAGA-3′;

• Fluorescent probe:
5′-[FAM] CCT CAA TGC ACA TGT TTG GCT CC-3′.

2.3. Saliva and Blood Samples from Malaria Patients and Uninfected Individuals

Saliva samples from patients diagnosed with malaria were obtained at the CERMEL,
Albert Schweitzer Hospital, Lambaréné, Gabon [40]. The patients were diagnosed first
using a rapid diagnostic test (RDT) in matching blood, followed by thick smear microscopy.
The study was conducted in accordance with the Declaration of Helsinki, and samples were
collected and analyzed following local regulations and guidelines. Patients’ samples were
obtained from the malaria screening activities conducted at CERMEL according to ethical
clearance granted for ongoing studies and informed consent provided by each individual
or their representatives. Thick smear microscopy was performed by two independent
readers using the Lambaréné method [41]. A third reading was performed if required
(e.g., if the first and second readings differed more than 50% of parasite count or if the same
slide was read positive/negative by different readers). The number of counted parasites
per μL blood was recorded. The final parasitemia was determined as the average of the
first and second readings (or, if a third reading was performed, the average of the two
closest results). In the case of testing by RDTs, the “Paracheck Pf” test was used.

2.4. REEAD
2.4.1. Preparation of Slides

A CodeLink Activated HD slide was cut into an appropriate size. The slide was either
attached to an object glass by Pertex glue followed by drawing squared-shaped fields with
a Mini PAP Pen (for the fluorescence microscope readout) or attached to a custom-made
silicone grid to create delimited rectangular-shaped wells of 1.2 mm × 2.8 mm dimensions
termed the Wellmaker. Then, 10 μM of the 5′-Amine REEAD primer in 300 mM Na3PO4
pH 8 was coupled to the slide. The slide was incubated overnight in a humidity chamber
with saturated NaCl. The slide was subsequently blocked in blocking buffer (50 mM Tris,
50 mM Tris-HCl, and 50 mM ethanolamine, pH 9) for 30 min at 50 ◦C and washed twice in
ddH2O before it was washed in wash buffer 1 (4× SSC and 0.1% SDS) for 30 min at 50 ◦C
and finally washed twice in ddH2O.

2.4.2. Extraction of Saliva Samples

Frozen saliva samples were thawed on ice. Subsequently, 200 μL of the saliva was
homogenized by passing through a 0.5 mL tube with a hole in the bottom by centrifugation
at 1000× g for 3 min. The homogenized saliva was collected in a 1.5 mL tube containing
25 mM HEPES pH 7.9, 30 mM NaCl, 0.02% Triton x-100, and 1 mM DTT. The samples were
incubated for 15 min on ice before the addition of glass beads (1:1 vol/vol). The samples
were vortexed using an automated vortex (Scientific Industries #SI-D258) for 30 s with a
1 min break on ice. Vortexing was repeated 2–5 times as described.

2.4.3. Circularization with Saliva Samples

Circularization of the pTOP1 substrate was carried out by incubating 4 μL of the
extracted saliva with 0.5 μM of the substrate in the presence of a buffer containing
250 mM NaCl, 10 mM Tris-HCl pH 7.5, and 1 mM EDTA for 1 h at 37 ◦C in a total
volume of 20 μL. The reaction was stopped by heat inactivation at 95 ◦C for 5 min. The
circles were hybridized to the 5′-Amine REEAD primer coupled slides overnight in a hu-
midity chamber at room temperature and subsequently washed in 100 mM Tris-HCl pH 7.5,
150 mM NaCl, 0.3% SDS for 1 min, followed by washing in 100 mM Tris-HCl pH 7.5,
150 mM NaCl, 0.05% Tween20 for 1 min, and finally dehydrated for 1 min in 70% EtOH.
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2.4.4. Circularization with P. falciparum TOP1 Spiked in Saliva

Saliva was extracted as described above and mixed with purified pfTOP1 (different
concentrations as indicated) before being added into a buffer containing 250 mM NaCl,
10 mM Tris-HCl pH 7.5, and 1 mM EDTA. The circularization reaction with the pTOP1
substrate incubated was carried out for 1 h at 37 ◦C and subsequently stopped by heat
inactivation at 95 ◦C. The circles were hybridized to the 5′-Amine REEAD primer coupled
slides as described above.

2.4.5. Circularization with Purified P. falciparum TOP1 and Human TOP1

Circularization of the substrate with either pfTOP1 or hTOP1 substrate was carried
out by incubating 1 ng/μL pfTOP1 or 120 ng/μL hTOP1 with 0.5 μM of the specific
substrate in the presence of a buffer containing 10 mM Tris-HCl pH 7.5 and 5 mM EDTA
and supplemented with 250 mM NaCl (pfTOP1) or 50 mM NaCl (hTOP1) for 1 h at 37 ◦C.
The reaction was stopped either by heat inactivation at 95 ◦C for 5 min (pfTOP1) or by
adding NaCl to a final concentration of 250 mM (hTOP1). The circles were hybridized to
the 5′-Amine REEAD primer coupled slides as described above.

Before hybridizing some of the circles, the circularization product was digested with
40 units of exonuclease III and 4 units of exonuclease I for 1 h at 37 ◦C. Exonuclease
digestion was heat inactivated at 95 ◦C for 5 min.

2.4.6. Rolling Circle Amplification and Detection Using Fluorescence Microscope

The rolling circle amplification reaction was performed in 1× Phi29 buffer (50 mM
Tris-HCl pH 7.5, 10 mM MgCl2, 10 mM (NH4)2SO4, 4 mM DTT) supplemented with 0.2 μg
BSA, 1 mM dNTP, and 1 unit of Phi29 polymerase. The reaction was carried out for 1 h at
37 ◦C in a humidity chamber, followed by washing as previously described. The rolling
circle products were detected by hybridizing 2 μM of the fluorescent probe in a buffer
containing 2× SSC, 20% formamide, and 5% glycerol for 30 min in a humidity chamber at
37 ◦C. The slides were washed as previously described, mounted with Vectashield, and
covered with cover glass. The slides were analyzed in an Olympus IX73 fluorescence
microscope with a 60× objective. Twelve images of the fluorescent signals were acquired
for each sample and quantified using Image J.

2.4.7. Rolling Circle Amplification and Detection Using CCD Camera or VPCIReader

Rolling circle amplification was performed in 1× Phi29 buffer (50 mM Tris-HCl pH
7.5, 10 mM MgCl2, 10 mM (NH4)2SO4, 4 mM DTT) supplemented with 0.2 μg BSA,
100 μM dATP, 100 μM dTTP, 100 μM dGTP, 90 μM dCTP, 10 μM biotin-dCTP, and
1 unit Phi29 polymerase. The reaction was carried out for 2 h in a humidity chamber
at 37 ◦C. The Wellmaker was then washed as previously described for the microscope slide.
Subsequently, HRP-conjugated anti-biotin antibody was diluted 1:300 in a buffer containing
1x TBST (20 mM Tris-HCl pH 9, 150 mM NaCl, 0.05% Tween20 pH 9) supplemented with
5% skimmed dry milk, and 5% BSA and added to the wells of the Wellmaker for 1 h at
room temperature. The Wellmaker was washed 3 × 5 min in 1x TBST, and finally, 2 μL of
1:1 ECL mixture was added to allow chemiluminescence readout using a CCD camera or
the VPCIReader.

2.4.8. VPCIReader Usage

The VPCIReader is operated through a web application. Upon connecting to the
VPCIReader, the device undergoes calibration to a tray that does not contain a slide,
utilizing a dark frame image for this process. Following calibration, the slide is inserted
into the plate assemblers located within the tray. With the slide placed in the VPCIReader,
the light intensity emitted by each sample can be measured using the web application. The
VPCIReader delivers an image of the slide along with a corresponding table that presents
quantitative values of light intensity. For a comprehensive overview of the usage, see
Supplementary Materials S2.
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2.5. Protein Purifications
2.5.1. P. falciparum TOP1

Purified as previously described [39].

2.5.2. Human TOP1

Purified as previously described [42].

2.5.3. Phi29 Polymerase

Purified as previously described [42].

2.6. Statistical Analysis

For statistical description, see Supplementary Materials (S1A and S1B).

3. Results and Discussion

3.1. Semiquantitative Detection of the Plasmodium-SPECIFIC Biomarker pTOP1 by the Use of
Chemiluminescence Readout

In the original pTOP1-specific REEAD setup, the hybridization of fluorescently labeled
probes to the generated RCA products allowed for the visualization of each product as a
fluorescent spot in a fluorescence microscope [33]. As each RCA product corresponded
to one circle generated by one pTOP1 cleavage–ligation event, the assay was directly
quantitative, allowing for measurement of pTOP1 activity at the single-catalytic-event level.
This readout is highly sensitive but tedious to perform and requires a rather sophisticated
fluorescence microscope. Hence, it is unsuited for diagnostic purposes in low-resource
settings. More suitable for user-friendly detection in rural areas, we here demonstrate
semiquantitative detection of pTOP1 using a chemiluminescent readout and describe the
design and construction of a portable reader for quantitative detection of signals.

To enable a chemiluminescent readout, biotin-conjugated nucleotides were incor-
porated in the RCA products. This allowed for the binding of HRP-conjugated anti-
biotin antibodies and subsequent chemiluminescent visualization of the products upon
HRP-catalyzed conversion of luminol to 3-aminophthalate that emits light at 425 nm
(see Figure 1B). This protocol was previously used to demonstrate semiquantitative detec-
tion of human Topoisomerase 1 (hTOP1) activities with a detection limit approximately
10x higher than the detection limit observed in a fluorescence microscope [43]. In the
present study, the detection of purified recombinant pTOP1 using chemiluminescence
versus fluorescence REEAD was investigated. To mimic clinical specimens, pTOP1 was
diluted in saliva from uninfected individuals as described in the materials and methods
section and incubated with the pTOP1-specific REEAD substrate in concentrations ranging
from 1 ng/μL to 0.015625 ng/μL. The results of the chemiluminescence or fluorescence
readout of the same samples are shown in Figure 2A,B. As evident from Figure 2A,B, the
detection limit of the ECL readout is approximately 10x higher than the detection limit of
the microscopic readout. This is similar to what we observed for purified hTOP1 [43].

Moreover, comparing the chemiluminescence or microscope reading of signals ob-
tained with the same concentration of pTOP1 in a reaction mixture with or without added
saliva demonstrated that the addition of saliva reduced the intensity of the obtained REEAD
signals by approximately 50%. As the reaction steps succeeding the circularization reaction
only contained trace amounts of saliva due to repeated dilutions, the reduced REEAD
signals were most probably the result of inhibition of the pTOP1 cleavage–ligation reaction.
Although the REEAD signals will increase with increasing pTOP1 concentrations, the
inhibitory effect of the sample specimen, saliva, poses a limitation to the sample volume
that can be added to the circle reaction mixture. We restricted the addition of the saliva to
reaction mixtures to 20% vol/vol based on the effect observed in the current experiment
where 20% vol/vol saliva was added to the circle reactions where indicated (Figure 2A,B).
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Figure 2. Detection of pfTOP1 with chemiluminescence REEAD. (A,B) Bar charts showing the results
of analyzing 1, 0.5, 0.25, 0.125, 0.0625, 0.03125 ng/μL pfTOP1 spiked in saliva by REEAD using the
fluorescence readout detected using a microscope (A) or the chemiluminescence readout detected
using a commercial CCD camera (B). As controls, samples without pfTOP1 (one with and one without
saliva) were included. As a positive control, a sample with 1 ng/μL pfTOP1 without saliva was used.
The identity of the samples is indicated below the bar charts. The experiments were performed in
triplicates (indicated by each dot). To compensate for slide-to-slide variations, the signals obtained by
either the microscope or chemiluminescence readout were normalized to the average of the samples
with saliva and 0 ng/μL pfTOP1 and plotted as mean +/− standard deviation (SD). (C) Graphic
depiction of the results obtained when testing the effect of removing unreacted DNA substrate before
chemiluminescence readout. The identity of the samples is shown below the graph. Each experiment
was repeated four to six times (indicated by dots). To compensate for slide-to-slide variations, the
chemiluminescence REEAD signals were normalized to the average intensity of samples without
pfTOP1 without exonuclease digestion (Exo) and plotted as mean +/− SD.

Detection of pTOP1 by REEAD is based on the principle that a signal is only generated
when the pTOP1-specific linear DNA substrate is converted to a circle and amplified by
RCA as illustrated in Figure 1. The chemiluminescence readout is based on the label-
ing of RCA products by biotins via the incorporation of biotin-conjugated dCTPs each
time the polymerase encounters a Guanine in the template. As evident from Figure 1,
Phi29 elongation from the primer annealing site of the pTOP1 substrate to the 5′-end of the
unreacted substrate will result in the incorporation of 12 biotin-conjugated dCTPs in a trun-
cated amplification product. In principle, this can allow the binding of an HRP-conjugated
anti-biotin antibody and result in chemiluminescence background signals. Such potential
background signals could be avoided by removing unreacted pTOP1 substrate by exonucle-
ase digestion before RCA. To investigate if the incorporation of biotin-conjugated dCTPs in
truncated amplification products templated by unreacted substrate resulted in unspecific
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background signals high enough to create a problem for malaria detection, we investigated
the effect of exonuclease digestion of the circles before adding Phi29 polymerase. This treat-
ment removes un-circularized substrate and is expected to eliminate potential background
signals. Figure 2C shows the results of subjecting a DNA circle mixture generated by
1 ng/μL of pTOP1 (Figure 2B, light purple bar) to RCA and chemiluminescence readout
with or without exonuclease digestion. As evident from the figure, we observed no dif-
ference between the two samples. Likewise, a negative control sample without pTOP1
resulted in a minimal background signal, which was not affected by exonuclease digestion.
For simplicity, we therefore decided to continue our studies using a protocol that does not
involve exonuclease digestion before RCA.

3.2. Detection of Plasmodium in Saliva from Malaria-Positive Individuals in High-Resource
Laboratory Settings

Detection of Plasmodium parasites in clinical samples using the pTOP1-specific REEAD
depends on the release of active enzymes from the parasites in a sample preparation
step. We previously demonstrated effective lysis of parasites and circle generation using a
droplet microfluidic setup [39]. However, even though this procedure could be performed
with a simplified handheld device [33], it was difficult to handle, required extensive
training, and was not suitable for routine testing of many samples. In the present study,
we investigated the possibilities of releasing active enzymes from Plasmodium using a
simple vortex protocol that is easy to perform and suitable for testing several samples
simultaneously in modestly equipped test laboratories. Saliva from symptomatic malaria-
positive individuals (confirmed by RDT in matching blood collected in Gabon) and from
asymptomatic malaria-negative individuals collected in Denmark was vortexed repeatedly
with glass beads as described in the materials and methods. The resulting lysates were
mixed with the pTOP1 substrate to generate DNA circles that were subsequently amplified
by RCA and detected using chemiluminescent readout. As evident from Figure 3A, two
vortex repetitions of the samples did not result in any detectable difference in signals
obtained from positive versus negative samples, probably due to insufficient enzyme
extraction; some difference could be observed after three to four vortex repetitions, but
only after five vortex repetitions was a clear difference between the positive and negative
samples evident. Increasing the number of vortex repetitions did not add to signals obtained
in positive samples, and seven vortex repetitions even decreased the obtained REEAD
signal. We therefore continued the studies using five vortex repetitions for 30 s. Note that
due to difficulties in obtaining sufficient sample volumes from the same individual, the
experiment was only repeated twice. Also, due to the lack of sufficient sample volume,
experiments investigating more vortex treatments were performed on samples from other
patients and are, therefore, not included in the graph shown in Figure 3A. It has been a
matter of debate if saliva from malaria-positive individuals contains intact Plasmodium
parasites. Traces of the parasite, including DNA and proteins, have been observed by us
and others [33,39,44], but it has been unclear if these components were remnants of already
lysed parasites or if they resided inside intact parasites present in the saliva. The necessity
of five vortex repetitions with glass beads before pTOP1 activity could be detected, as
demonstrated in the present study, strongly argues for the presence of intact Plasmodium
parasites in saliva from malaria-positive individuals. Our studies do, however, not provide
any information on the viability of such parasites.

To address if the procedure including extraction of pTOP1 by repeated vortex com-
bined with chemiluminescence REEAD detection could distinguish between malaria-
positive and negative individuals in saliva specimens, we tested 30 saliva samples collected
in Gabon from confirmed malaria-positive individuals (based on RDT analysis in matching
blood) in comparison to 31 saliva samples from asymptomatic presumed malaria negative
individuals collected in Denmark. The results were detected using a commercial CCD
camera and the signal intensity was plotted as a function of malaria status, as shown in
Figure 3B. As evident from the plot, most of the samples from malaria-positive individuals
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resulted in signals higher than signals obtained from samples from malaria-negative in-
dividuals, and the two populations of samples were significantly different (p < 0.0001) as
demonstrated by Kruskal–Wallis test (see Supplementary Materials S1A). These results sup-
port the applicability of the protocol for the detection of malaria in saliva. Approximately
three false positives and three false negatives could be observed. The false negatives could
be the result of long-time storage and transportation of the samples collected in Gabon
and/or insufficient extraction of pTOP1 from these samples. The molecular background
for the false positive samples is less clear and requires further investigation.

Figure 3. Detection of Plasmodium in clinical saliva samples. (A) (Left panel) Graphical depiction of
chemiluminescence REEAD results obtained when measuring extracts from two saliva samples from
confirmed malaria positives and two saliva samples from presumed negative individuals prepared by
2–5 vortex repetitions with glass beads. The average of the results from two individual experiments
is shown by horizontal lines. (Right panel) Raw data obtained with a CCD camera. (B) The results
were obtained by analyzing 30 saliva samples from confirmed malaria-positive individuals and
31 saliva samples from presumed malaria negatives using chemiluminescence REEAD. The average
of the results is shown by horizontal lines. Statistics are shown in Supplementary Materials S1A. To
compensate for slide-to-slide variations, the chemiluminescence REEAD signals were normalized
to the average of the signals obtained by analyzing negative samples vortexed 2 times (A) or to the
average of the signals obtained by analyzing negative samples (B).

3.3. Development and Proof-of-Concept Testing of an Affordable Portable Reader for Measuring
Chemiluminescence REEAD Signals

The detection of chemiluminescence REEAD signals shown above was performed
using a commercial CCD camera. This option is expensive and not suited for most test
laboratories in malaria-endemic areas. Therefore, to enable REEAD detection of malaria in
low-resource areas, we designed and constructed a miniaturized, cost-efficient, and portable
chemiluminescence assay reader (termed VPCIReader) that provides high-precision image
acquisition and analysis capabilities, specifically designed for chemiluminescence REEAD
(see Figure 4 and Supplementary Materials S2 for specifications and construction details).
The reader was constructed with an integrated battery with an autonomy of approximately
6–8 h and designed to be easily operated through a web application.

The software architecture was developed with four modules: i. the Image Analysis module
that interacts with the sensor for image acquisition to finally quantify the REEAD signal, ii. the
Data Storage module, iii. the Web Application module that serves as the user interface and
links image acquisition and analysis with data storage, iv. the System Configuration.

The performance of the portable chemiluminescence VPCIReader was compared to a
commercial CCD camera (Amersham Imager 600) concerning quantitative and sensitive
detection of REEAD signals. For this purpose, we used a serial dilution of test circles
split in two aliquots each subjected to RCA on two different test slides using the standard
chemiluminescence readout protocol as outlined in Figure 1. ECL was applied to each of
the slides before they were visualized using the commercial CCD camera (Figure 4B) and
the portable VPCIReader (Figure 4C), respectively.
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Figure 4. Comparison of CCD camera and portable chemiluminescence reader (VPCIReader).
(A) Left panel, schematic showing the construction of the chemiluminescence VPCIReader. Right
panel, photo of the VPCIReader. (B,C) Bar charts showing the results of analyzing titrations of test
DNA circles (diluted 0 to 32 times and indicated) by capturing the results of chemiluminescence
REEAD by a commercially available CCD camera (B) or by the developed chemiluminescence VP-
CIReader. The readings of each of the three individual experiments are shown by dots. The sample
marked “Neg” contains non-circularized DNA with a sequence matching the test DNA circles. To
compensate for slide-to-slide variations, the chemiluminescence REEAD signals were normalized
to the “Neg” sample and plotted as mean +/− SD. **** = p < 0.0001, ordinary one-way ANOVA.
“E” refers to an empty well only containing 5′-Amine REEAD primer.

As demonstrated by the graphical depiction of the results of three repetitive experi-
ments (Figure 4B,C, lower panel), the commercial CCD camera and the portable reader gave
comparable results when comparing quantifiability and detection limit with the utilized
dilutions (note that only the relative readings and not the absolute numbers provided by
the two systems can be compared). Concerning the signal-to-noise ratio, a tendency of
the portable reader to perform slightly better than the CCD camera was indeed observed.
The same tendency was observed when directly comparing the images generated by the
two reader systems, where the portable reader produced considerably sharper pictures
than the CCD camera (see representative images Figure 4B,C, top panel). Additionally, the
VPCIReader web application provides direct access to the intensity values of each rectan-
gular area, while the CCD camera only captures images that necessitate further processing
through software-based densitometric analysis. Based on these results, we proceeded to
investigate the performance of the portable VPCIReader for the detection of malaria by
chemiluminescence REEAD in sub-Saharan Africa.

3.4. Detection of Malaria in Saliva from Infected Individuals in Sub-Saharan Africa

To investigate the feasibility of chemiluminescence REEAD in combination with a
readout using the above-described custom-made portable reader in sub-Saharan Africa,
we tested saliva from 33 malaria-positive individuals (confirmed positive with RDT in
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matching blood) and seven asymptomatic presumed negative individuals at the CERMEL
test site, Lambaréné in Gabon [40]. The results shown in Figure 5 demonstrate that most of
the saliva samples collected from malaria-positive individuals resulted in signals above
signals obtained from presumed negative individuals, and the two groups were found to
be significantly different (p < 0.0001) using a Kruskal–Wallis test (Supplementary Materials
S1B). As evident from the plot in Figure 5 and the table showing the exact readings
(Supplementary Materials S1B), four of the samples from presumed negative individuals
and approximately seven of the samples of confirmed individuals resulted in readings
within the same interval. The relatively low readings in some of the samples from confirmed
positive individuals may correlate with lower parasitemia in these individuals. However,
as the malaria status of most of the symptomatic individuals was confirmed only by RDT in
matching blood, the parasite number is not known. Incomplete extraction of active pTOP1
or suboptimal conditions during transport of some of the samples from rural areas may
also explain the relatively low readings. Moreover, the relatively high readings in some of
the asymptomatic presumed negative individuals may be the result of these individuals
having low Plasmodium infection numbers, undetected by the RTD. This is often the case
for asymptomatic individuals in populations living in malaria-endemic areas [45].

Figure 5. Detection of Plasmodium in clinical saliva samples by using VPCIReader. The results
obtained by analyzing 33 saliva samples from confirmed malaria-positive individuals and 7 saliva
samples from presumed malaria negatives using chemiluminescence REEAD. The average of the
results is shown by horizontal lines. Statistics are shown in Supplementary Materials S1B. To
compensate for slide-to-slide variations, the chemiluminescence REEAD signals were normalized to
a well only containing 5′-Amine REEAD primer.

4. Conclusions

In the present study, we present a modified protocol for pTOP1-specific REEAD
based on a chemiluminescence readout that allows for the testing of malaria in saliva from
suspected individuals in moderately equipped test laboratories. Moreover, we describe the
construction and validation of a cost-effective portable reader custom-made for measuring
Plasmodium-specific chemiluminescence signals obtained by the modified REEAD protocol
in malaria-endemic areas. A direct comparison of readings obtained from the same samples
using a commercially available CCD camera and the custom-made reader demonstrated
that the performance of the developed reader was comparable to the CCD camera for image
acquisition and quantification of the REEAD results. Consistently, the portable reader, in
combination with the simplified REEAD protocol, was successfully employed to detect the
presence of Plasmodium parasites in saliva from confirmed malaria-positive individuals
in sub-Saharan Africa. Hence, the chemiluminescence REEAD in combination with the
availability of an affordable, simple, and portable reader presents a potential new attractive
method for diagnosis or screening of malaria using non-invasive samples.

Readings from some of the samples from presumed negative individuals were in
the same range as some of the lower readings obtained from samples from confirmed
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positives. The reason for this overlap is not clear. It could be due to low-level infections in
the persons presumed negative in the current study; it could be that some of the samples
from positive individuals were damaged during transportation, or that the active enzyme
was not extracted efficiently. To address these potential issues, future studies would benefit
from improved logistics, such as the use of portable refrigeration or temperature-controlled
transport, to ensure the stability of the samples. Additionally, refining enzyme extraction
protocols with increased sample size will help reduce potential variability in results.

This study was conducted as a pilot investigation; more comprehensive field trials
will be necessary to validate the diagnostic accuracy of the method, assessing its sensitivity
and specificity. Future studies should aim to determine the robustness of this system across
diverse malaria-endemic settings, investigate its performance in larger, more heterogeneous
populations, and optimize the protocol for broader application. With these advancements,
the chemiluminescence REEAD method, coupled with the portable reader, could become
a valuable tool for malaria screening using non-invasive sample specimens, in resource-
limited environments.
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tion and web application User Manual of the portable reader for chemiluminescence REEAD.
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Abstract: Low-power gas sensors that can be used in IoT (Internet of Things) systems,
consumer devices, and point-of-care devices will enable new applications in environmental
monitoring and health protection. We fabricated a monolithic chemiresistive gas sensor
by integrating a micro-lightplate with a 2D sensing material composed of single-layer
graphene and monolayer-thick TiO2. Applying ultraviolet (380 nm) light with quantum
energy above the TiO2 bandgap effectively enhanced the sensor responses. Low (<1 μW
optical) power operation of the device was demonstrated by measuring NO2 gas at low
concentrations, which is typical in air quality monitoring, with an estimated limit of
detection < 0.1 ppb. The gas response amplitudes remained nearly constant over the studied
light intensity range (1–150 mW/cm2) owing to the balance between the photoinduced
adsorption and desorption processes of the gas molecules. The rates of both processes
followed an approximately square-root dependence on light intensity, plausibly because the
electron–hole recombination of photoinduced charge carriers is the primary rate-limiting
factor. These results pave the way for integrating 2D materials with micro-LED arrays as a
feasible path to advanced electronic noses.

Keywords: gas sensor; NO2; micro-lightplate; graphene; TiO2

1. Introduction

Air quality assurance and environmental protection require monitoring of toxic and
polluting gases with different spatial resolutions, from satellite surveillance to ground
IoT networks and personal gas detection, which provide the most localized sensing [1,2].
Microsensors embedded in consumer devices, including mobile phones and wearables,
would enable personal compliance with the cleanliness of the environment and, if exhaled
air is detected, monitoring of the health situation [3]. A small footprint and low power con-
sumption are of paramount importance for wearables and self-powered IoT devices. In this
regard, chemiresistor-type gas sensors stand out for their potential for miniaturization and
mass production in the semiconductor industry. Although the lowest power consumption
can be achieved with sensors capable of reversible operation at room temperature [4], such
devices frequently have very slow signal recovery and may not function stably enough in
outdoor conditions without a miniature heater or light source.

Sensors 2025, 25, 382 https://doi.org/10.3390/s25020382
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Metal oxide-based sensors on MEMS platforms with micro-hotplates have reached a
footprint of a few mm2 and power consumption of 10 mW [5,6]. The energy consumption is
due to the heating required to accelerate the desorption of gases and bring the response and
recovery times of the sensor within acceptable limits. An alternative to providing external
energy for the amplification and acceleration of sensor responses is to use light instead
of heat [7,8]. Light, especially if its quantum energy surpasses the bandgap energy of the
sensor material, effectively produces electronic excitations that facilitate surface reactions.

Recently, it was demonstrated that instead of using a separate light source, an effective
way to couple the light energy into the sensing material is to integrate it with a micro-LED
(μLED) or, by analogy with a micro-hotplate, with a micro-lightplate (μLP) [9]. With ZnO
nanoparticles coated on the isolating layer on top of a blue (455 nm) μLED’s active area
(190 μm × 250 μm), NO2 gas was detected at 25 ppb with power consumption as low as
30 μW [10]. With a different design of a monolithic GaN-based μLED and sensing material
composed of In2O3 nanowires, the power level was further reduced below the microwatt
level, albeit at the expense of higher (1 ppm) NO2 concentration [11]. In Ref. [12], ultraviolet
(UV) μLP (390 nm) was used, and a significant increase in power efficiency was achieved
by reducing the size of the μLED from 200 μm to 30 μm. A NO2 limit of detection (LoD) of
15 ppb was demonstrated at a power consumption of ~200 μW.

The major driving forces for μLED development are the lighting and display markets,
with the trends being a reduction in power consumption and pixel size of the arrays for
micro-displays [13]. Beyond display technology, the integration of LED nitride and CMOS
technologies may open avenues for groundbreaking applications such as highly efficient
nanosensors and miniaturized neuromorphic networks [14]. Chemical sensors and sensor
arrays [15] may benefit from the miniaturization trend if the technology for forming sensor
materials on top of the LED array keeps track. The thickness of the metal oxide (MOX)
layers in the μLP devices described above was 100s nm, and it is typically even more in
commercial hotplate-based solutions. For light-assisted sensors, the power can be relatively
easily reduced by shrinking the area of the sensor. This, in turn, means that thinner sensing
layers are needed to match the small μLED size (≤3 μm [16]) as well as to ensure efficient
light absorption in the sensing layer.

An excellent opportunity for this could be the use of 2D materials [17,18], which are
not only atomically thin and have a large surface-to-volume ratio, an essential prerequisite
for the material’s high gas sensitivity, but can also be technologically handled for mass pro-
duction [19]. Graphene is an excellent transducer of environmental perturbations because
of its low density of charge carriers, and it has the high electrical conductivity needed for
microscopic sensing areas [20]. Pristine graphene, however, has low gas sensitivity because
of its inertness (e.g., the binding energy of NO2 is only approximately 0.06 eV [21]) and
has to be functionalized by introducing defects, functional groups, or nanoparticles [22–25].
It was demonstrated that the sensitivity of graphene could be increased by two orders
of magnitude by adding a nanolayer of ZrO2 via pulsed laser deposition [26]. In such a
layered heterostructure, graphene acts as a transducer, owing to its low electron density
but high conductivity, and the metal oxide serves as a receptor for gas molecules. Recently,
an even more efficient heterostructure of single-layer graphene with TiO2, a well-known
photocatalytic material [27], was shown to be perfectly suitable for air quality applications,
owing to its optimal sensitivity and high stability [28]. An efficient charge transfer from
graphene to NO2 molecules adsorbed on titania was demonstrated.

In this study, we developed a monolithic gas sensor by integrating a graphene-TiO2

heterostructure (Gr/TiO2) with UV μLP and demonstrated the detection of NO2 gas at
typical concentrations for air quality monitoring (20–150 ppb) at low power levels (electrical
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power down to 100 μW, optical power < 1 μW). We analyzed the performance characteristics
related to gas response power dependence and discussed the underlying processes.

2. Experimental Section

2.1. Device and Sensor Material Fabrication

The InGaN-based μLPs had a layout similar to that in Ref. [8] with a μLED and
interdigitated electrode (IDE) area of 190 μm × 250 μm. A schematic cross-section and
a photograph of the device are shown in Figure 1a,b, respectively. The μLPs grown on
sapphire wafers were diced in pairs, and the dimensions of a die with two devices on it
are 4.05 × 5.6 mm2. Single-layer CVD graphene grown on a polycrystalline copper foil
(Graphenea, San Sebastian, Spain) was transferred onto the μLP die using a wet transfer
procedure [Figure 1c]. After cutting the graphene/Cu/graphene sheet with an appropriate
size and covering it with a layer of PMMA, argon plasma treatment (Diener Tetra 30/50,
Plasma Surface Technology, Ebhausen, Germany) was applied to remove the graphene
from the uncovered side of the sheet. The next step was to remove copper from the
PMMA/graphene/Cu sheet by keeping it in a 1 M ammonium persulfate (Sigma-Aldrich,
Steinheim, Germany) solution for two hours. The PMMA/graphene film was then rinsed
several times with deionized water, transferred onto the μLP in water, and left to dry
overnight. Finally, the μLP with the transferred PMMA/graphene layer was baked at
120 ◦C for an hour and then placed in pure acetone (≥99.8%, Thermo Fisher Scientific,
Seelze, Germany) for 2 h to dissolve the polymer layer. After drying the device, a part
of the graphene was selectively removed from its surface to galvanically separate the
LED and sensor circuits (see Figure 1b). The electrical isolation between the sensor and
LED circuits was accomplished in two stages: by a short 1 min Ar plasma etching while
masking the middle area around the interdigitated electrodes (IDE) and then by laser
cutting of graphene near the IDE. The black rectangle in Figure 1b shows the masked area
during plasma etching for graphene removal, and the dotted lines show the laser-cutting
trajectory. A femtosecond laser (ORIGAMI O-05LP, Istanbul, Turkiye) with a pulse energy
density of 0.7 mJ/cm2 was used to cut a few μm wide path through graphene without
damaging the underlying μLP. Thereafter, pulsed laser deposition (PLD) was applied to
produce a functionalizing layer on top of the graphene. Before deposition, the μLPs with
graphene were heated in a PLD chamber at 150 ◦C in a vacuum (10−6 mbar) for 1.5 h. PLD
was performed at 45 ◦C in 0.05 mbar N2 gas using a KrF excimer laser (COMPexPro 205,
Coherent Lambda Physic GmbH, Göttingen, Germany) with a pulse frequency of 5 Hz and
an energy density of 5 J/cm2 for target ablation. The number of laser pulses used for target
ablation was 100, which resulted in a TiO2 layer with a thickness of about 0.5 nm [28].

2.2. Gas Response Measurement Set-Up

The experimental setup for the gas sensitivity measurements is shown in Figure 2. The
test gas was prepared from cylinder gases (N2, O2, NO2/N2 of 99.999% purity, AS Linde
Gas, Tallinn, Estonia), which passed through mass flow controllers (model SLA5820, Brooks
Instrument, Hatfield, PA, USA) into a 180 cm3 micro-probe chamber (Nextron, Busan,
Korea). The total gas flow rate through the chamber was maintained at 200 sccm. The
O2 content in the gas mixture was kept constant at 21% to simulate a typical atmospheric
composition. The relative humidity of the testing gas was held either at 0, 20, or 40%
by bypassing part of the N2 through the water bubbler. In the cross-sensitivity tests, the
gases were supplied from cylinders, except for ozone, which was produced with a UV
lamp-based generator (SOG-1, UPV/Analytic Jena, Jena, Germany) and monitored using
an analyzer (model 430, Teledyne API, San Diego, CA, USA). The electrical conductance of
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the sensors was measured with a Keithley 2400 source measure unit, using a typical 50 mV
bias voltage.

(a) 
(b) 

(c) 

Figure 1. (a) Schematic cross-section of the device, (b) photograph of the μLP with a magnified area
of interdigitated electrodes, and (c) sequence of sensor layer fabrication on the μLP.

 

Figure 2. Schematic illustration of the gas sensing setup.

2.3. Characterization Methods and Instruments

The sensor materials were characterized by scanning electron microscopy (Nova
NanoSEM 450, FEI, Hillsboro, OR, USA) and Raman spectroscopy (inVia, Renishaw,
Gloucestershire, UK; 514.5 nm excitation). The electrical current of the μLP was regu-
lated with a laser diode controller LDC500 (SRS, Sunnyvale, CA, USA, and the optical
power was measured using a model 1918-C power meter (Newport, Irvine, CA, USA). The
μLP optical power was evaluated from the measured data by assuming that the source
was Lambertian. The electroluminescence spectrum was recorded using FLAME-T-XR1-ES
spectrometer (Ocean Optics, Largo, FL, USA; spectral resolution < 2 nm).
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3. Results and Discussion

3.1. Characterization

The characteristics of the μLP are shown in Figure 3, where (a) shows the working
device with microprobe contacts and panel (b) plots its volt–ampere characteristic curve.
The peak emission wavelength of the μLP was 380 nm [see the spectrum in Figure 3c].
Figure 3d shows the optical power and intensity on the sensor area versus the consumed
electrical power. The external quantum and wall-plug efficiencies had incidentally very
similar numerical values, being 0.4 ± 0.04% near the threshold current of 40 μA and
increasing to 7% at higher currents.

(a) 

 

 

(b) 

 
(c) 

 

(d) 

 

Figure 3. (a) Image of the μLP with a working LED, its above-threshold (b) volt–ampere characteristic,
(c) electroluminescence (EL) spectrum, and (d) dependence of the μLP optical power and surface
intensity on the applied electrical power.

SEM images of graphene in the electrode gap of the μLP are shown in Figure 4a,b.
The spots that are darker in color in Figure 4a are commonly observed in CVD graphene
and are related to the multilayer graphene. The dark linear features, which are also
commonly observed, are due to the topography of the polycrystalline Cu-foil used in the
synthesis process and the grain boundaries of graphene. The Raman spectrum [Figure 4c]
contains mainly two bands, a G-band at 1577 cm−1 and a 2D-band at 2664 cm−1, with an
intensity ratio of 1:3, which is characteristic of single-layer graphene [29]. The XPS spectra
of the graphene used in the present study were recently analyzed in detail in Ref. [30].
Deconvolution of the C1s peak resolved sp2 carbon (87%), sp3 carbon (7.5%), and oxidized
(C–O, C=O, O=C–O) species (5–6%). After the PLD of TiO2 on top of graphene, a defect-
related band D (1344 cm−1) emerges in the Raman spectrum. The SEM image [Figure 4d]
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shows the granular morphology of the deposited material, uniformly coating the graphene.
The linear features observed in the pristine graphene image “shine” through a thin TiO2

coating and are also visible in Figure 4d. For comparison, Figure 4b shows an image of
pristine graphene at exactly the same scale, which does not have a granular oxide layer on
top but instead shows characteristic streaks formed by the copper substrate during growth.

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4. (a,b) SEM images of CVD graphene on μLP. (c) Raman spectra of graphene before and
after the PLD of TiO2. (d) SEM image of the sensor material after coating the graphene with a TiO2

nanolayer.

3.2. Gas Sensing Performance

The sequences of conductance measurements when the sensor was exposed to a
series of NO2 concentrations in the dark and under μLED illumination are presented in
Figure 5a,b for pristine graphene and Gr/TiO2, respectively. The measured conductance
is solely due to graphene in both cases, and the approximately monolayer-thick TiO2

(bandgap 3.2 eV [25]) plays a negligible role. NO2 gas was injected at three different
concentrations (20, 50, and 150 ppb), each for 5 min, followed by 5 min intervals in clean air.
The responses of the device with pristine graphene [Figure 5a] were relatively small (~1%)
even under high intensity (~1 W/cm2) of UV light. The insensitivity of pristine (defect-free)
graphene to toxic gases has been observed in several previous publications [22,28,31].

The sequence in Figure 5b starts with NO2 gas exposures in the dark; three relatively
small raising steps in conductance can be seen. CVD graphene is p-doped by adsorbed
oxygen and water molecules in air [32,33], and MOX-coated graphene retains this conduc-
tivity type [26]. Because NO2 acts as an electron acceptor during adsorption, hole doping
is further promoted in the presence of NO2, increasing the conductivity. However, the gas
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response in the dark was slow and showed prolonged recovery. After switching on the
μLED at its lowest power (see Figure 4b; 70 min after the start of the measurement), the
conductance of the samples held in synthetic air starts to decrease and stabilizes at a lower
level. Such a persistent photoresistance effect has also been observed in pristine graphene
and is explained by the photoinduced removal of oxygen and the associated decrease in
the density of electron holes in graphene [34]. It can be seen from the figure that under the
influence of UV radiation, the gas responses become faster, and the recovery is improved
with increasing optical power. The values of the applied optical power are indicated on top
in Figure 5b as being directly relevant to the photoinduced phenomena; the values of the
electrical power applied were 0.12, 0.18, and 0.24 mW, respectively.

(a) 

 

(b) 

(c) 

Figure 5. (a) Dynamic responses of pristine graphene to NO2 gas at concentrations of 20, 50, and
150 ppb at different irradiation intensities on μLP. (b) The same for the Gr/TiO2 μLP sensor, recorded
in the dark and under incremental UV illumination with the μLED optical power of 0.46, 1.9, and
5.5 μW (corresponding to 0.8, 3.3, and 9.7 mW/cm2). Synthetic air was used as the background gas.
(c) Sensor conductance during the exposures to 150 ppb of NO2 gas at different levels of μLP optical
power. The power levels in μW units are shown in the gray area at the bottom. Synthetic air with a
relative humidity (RH) of 20% was used as the background gas.

To investigate the dependence of photoinduced processes on light intensity, measure-
ments were made with the same NO2 concentration but at different irradiation powers
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[Figure 5c]. Longer clean air intervals between the gas injections were used for more
complete signal recovery. This figure shows a relatively strong gas response under dark
conditions, unlike that shown in Figure 5b. The difference is that the sensor was exposed
to UV shortly (an hour) before the measurements, whereas in the case of Figure 5b, the
sensor was held in the dark for several days. Persistent photoresistance can, indeed, last
many hours [33] and seemingly also affects the surface properties of Gr/TiO2 with respect
to NO2. The processes occurring in the sensor material can be summarized in simple terms
as follows:

Gr/TiO2 +hν → e− + h+ (1)

O−
2 (ads)+h+ → O2(gas) (2)

After the photoelectrons and holes are formed, the previously chemisorbed oxygen is
partly released, and the hole conductivity decreases. As a result, more sites were becoming
available for NO2 adsorption, written as follows:

NO2(gas)+e− → NO−
2 (ads) (3)

This process is more dominant than oxygen adsorption because of the significantly
larger electron affinity of NO2 (2.273 eV) than that of O2 (0.450 eV) [35]. The recovery of
conductance was due to the NO2 desorption process, written as follows:

NO−
2 (ads)+h+ → NO2(gas) (4)

Clearly, both the response and recovery processes became faster with increasing light
power, as seen in Figure 5.

For quantitative characterization, the response and recovery curves were approxi-
mated using biexponential kinetics, written as follows:

F(t) = A0 + A1(1 − exp(−k1t)) + A2(1 − exp(−k2t)) (5)

The average response and recovery rate kav was defined as follows:

kav =
A1k1 + A2k2

A1 + A2
(6)

We used average parameters, allowing us to compare the data in cases where the
fitting procedure converged to only a single exponent in Equation (5). Moreover, there is a
distribution of rates on an amorphous metal oxide surface [36], rather than just one or two
discrete values. The two kinetic components are still a reasonable approximation, although
they are somewhat dependent on the time span of the approximated curve.

Initially, the response rates to the step-like NO2 gas injection increase rapidly with the
increasing light intensity (Figure 6). The rate dependence can be fitted with the power de-
pendence, but it clearly reaches a plateau above 60 mW/cm2. Saturation can be considered
an artifact because it is actually determined by the instrumental gas exchange rate, which
can be estimated from the chamber volume and the flow rate to be slightly above 1 min−1.
The recovery process was slower and could be fitted with a power law for the entire range
of light intensities. Both approximations using the power law led to exponents close to 0.5.

This dependence can be explained as follows. Let us assume that the surface processes
involving NO2 are described by the Langmuir kinetic model, written as follows:

dθ

dt
= ka(1 − θ)− kdθ (7)
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where ka and kd are adsorption and desorption rates, respectively, and θ is the coverage of
occupied adsorption sites. The processes (3) and (4) imply the following:

ka = a·ne·p (8)

kd = d·nh (9)

where ne and nh are the density of electrons and holes, respectively, and p is the gas pressure.
The parameters a and d have constant values at a given temperature.

Figure 6. The dependence of average response and recovery rates on light intensity. Approximations
with power functions and power exponents of the intensity (I) dependence are shown in red. The
inset shows the response curves approximated with Equation (5).

The general solution of Equation (7) is written as follows:

θ(t) = θ(0)·e−kt +
ka

k
·
(

1 − e−kt
)

(10)

where
k = ka + kd = a·ne·p + d·nh (11)

and θ (0) is the initial coverage at t = 0.
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If, in addition, we assume that only photogenerated charge carriers participate in
adsorption–desorption processes and the carriers are annihilated by the bimolecular pro-
cess [37] much faster than the adsorption–desorption processes, then we obtain the following:

dne

dt
=

dnh
dt

= Iκ − bnenh (12)

where I is photon flux, κ is the absorption constant, and b is the annihilation constant. As
the equilibrium in Equation (12) is established much faster than in Equation (7), we can
assume the following:

0 =
dne

dt
=

dnh
dt

= Iκ − bnenh (13)

and evaluate the quasi-static values of charge carrier densities for Equations (7)–(11):

ne = nh =

√
Iκ

b
(14)

Consequently, the rates ka, kd, and k in Equations (8), (9) and (11) are proportional
to the square root of the light intensity. This result persists for a more general case of
inhomogeneous Langmuir adsorption, for example for two (or more) adsorption sites, and
consequently, the average rates (Equation (6)) behave similarly in accordance with the
experimental results shown in Figure 6.

The total response amplitude A1 + A2 obtained by fitting decreased by approximately
25% in the full light intensity range spanning from 1 to 150 mW/cm2, mainly at the expense
of the slower component. This differs from the behavior of MOX-based sensors coated
directly on the μLP, which showed a bell-shaped (log-normal) dependence of the response
amplitude on light intensity [10,12]. Obviously, an optimal intensity exists in the latter
case corresponding to the bell-curve maximum. For the sensor studied in this work, there
seems to be no optimal intensity owing to the physics of the device; the optimum intensity
is determined by practical considerations (a trade-off between the response and recovery
rates vs. power consumption).

Another difference between graphene-based materials and semiconducting metal
oxides is the significantly higher conductivity of the former. As a result, the electrodes
can be accommodated in a much smaller area, and measurements can be made with a
higher signal-to-noise ratio. In our measurements, the sensitivity was S = 25 μS/ppb at
the lowest studied concentration, whereas the rms noise amplitude (N) was typically only
0.2 μS within a 1 Hz bandwidth. If estimating the level of detection (LoD) of NO2 with a
common rule LoD = 3N/S (≥99% confidence level), the result is LoD = 0.024 ppb.

Finally, to characterize the selectivity, we checked the cross-sensitivity to several other
toxic gases and humidity (Figure 7). Panel (a) compares the dynamic relative responses
(relative change in conductance) to NO2 gas at three different RH levels at the irradiation
intensity of 60 mW/cm2. The responses appeared to be somewhat stronger and faster
in the humid air. The impact of humidity is a common and complex phenomenon in
chemiresistive sensors [38]. In a recent study [39], the dependence of the light-assisted
response to NO2 on humidity was ascribed to the decrease in active sites and increase in
carrier concentration owing to adsorbed water molecules and OH groups. The latter factor
also explains our results through the deactivation of the recombination centers by adsorbed
water molecules.

The relative conductance changes during 15 min of gas exposure to different toxic
gases in dry air under 5 mW/cm2 irradiations are shown in Figure 7b. As expected, the
sensitivity to O3 was similar to that of NO2, as both molecules are strong oxidizers, with
electron affinities of 2.103 and 2.273 eV, respectively [34]. In the case of the reducing toxic
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gases CO, NH3, and H2S, the concentrations had to be several orders of magnitude higher
in order to observe sizeable effects.

(a) 

 

(b) 

Figure 7. Relative responses to (a) 150 ppb of NO2 at different levels of relative humidity and
(b) different toxic gases at concentrations as indicated.

4. Conclusions

In summary, we assembled monolithic gas microsensors by integrating a UV micro-
lightplate with a 2D sensing material made of CVD graphene and a less than a nanometer
thick layer of TiO2. The low-power (0.5 μW optical, 100 μW electrical) operation of the
device was demonstrated while detecting NO2 concentrations typical of air quality moni-
toring with an extrapolated limit of detection of 0.02 ppb. The gas response amplitude was
nearly constant over the studied light intensity range (1–150 mW/cm2) because of the bal-
ance between the photoinduced adsorption and desorption processes. The rates of both the
response and the recovery processes followed an approximately square-root dependence
on the light intensity, implying that bimolecular electron–hole recombination is the primary
mechanism of the photoinduced charge carrier relaxation and the rate-limiting factor of the
sensor. In practical terms, such a dependence on light intensity is useful because there is
relatively little loss in reaction speed when reducing power. The integration of 2D materials
with high-density μLED arrays can provide a feasible path for advanced electronic noses
with large sensor arrays.
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Abstract: The study presents the ethanol vapor sensing performance of a resistive sensor
that utilizes a quaternary nanohybrid sensing layer composed of holey carbon nanohorns
(CNHox), graphene oxide (GO), SnO2, and polyvinylpyrrolidone (PVP) in an equal mass
ratio of 1:1:1:1 (w/w/w/w). The sensing device includes a flexible polyimide substrate
and interdigital transducer (IDT)-like electrodes. The sensing film is deposited by drop-
casting on the sensing structure. The morphology and composition of the sensitive film
are analyzed using scanning electron microscopy (SEM), Energy Dispersive X-ray (EDX)
Spectroscopy, and Raman spectroscopy. The manufactured resistive device presents good
sensitivity to concentrations of alcohol vapors varying in the range of 0.008–0.16 mg/cm3.
The resistance of the proposed sensing structure increases over the entire range of measured
ethanol concentration. Different types of sensing mechanisms are recognized. The decrease
in the hole concentration in CNHox, GO, and CNHox due to the interaction with ethanol
vapors, which act as electron donors, and the swelling of the PVP are plausible and seem
to be the prevalent sensing pathway. The hard–soft acid-base (HSAB) principle strengthens
our analysis.

Keywords: ethanol sensor; holey carbon nanohorns; graphene oxide; swelling; HSAB
principle

1. Introduction

Ethyl alcohol is a volatile, flammable, colorless liquid with a typical wine-like aroma
and pungent taste [1]. It is a common industrial raw material encountered in many chem-
ical industrial processes and consumer products [2]. Thus, ethanol is extensively used
in medicine (manufacturing processes of pharmaceutical preparations such as lotions,
tonics, rubbing compounds, as well as antidote for both methanol and ethylene glycol
poisoning) [3,4], cosmetics (mouthwash products, soaps, perfumes) [5], chemical industry
(excellent solvent for oils, fats, resins, dyes, inks, waxes, platform molecule for the synthesis
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of key chemical compounds such as acetaldehyde, acetic acid, ethene, butadiene, elas-
tomers, biofuel synthesis processes, etc.) [6–8], as well as food and drink industry (used as a
natural product to extract and concentrate flavors and aromas, antimicrobial agent in pizza
crust) [9]. A large amount of ethanol vapors present in the air may cause adverse central
nervous system effects such as headache, mental excitement or depression, unconscious-
ness, and coma. Monitoring the level of ethanol is an essential process in various fields,
such as environmental monitoring (air pollution caused by ethanol emissions) [10], food
quality assessment (ethanol, along with CO2, are the primary spoilage metabolites of the
freshly cut fruit) [11], traffic management (breath alcohol concentration is the routine test
for Measurement of drunkenness level for drivers) [12,13], agriculture (measuring ethanol
levels in crops) [14], medical field (breathalyzer) [15], alcoholic beverage industry [16],
and ethanol production in biofuel plants [17]. Thereby, in recent decades, a lot of sensing
principles and technologies such as conductometric [18], resistive [19,20], field effect tran-
sistor [21], FTIR, RAMAN, UV-VIS [22,23], surface acoustic wave [24], optical fiber [25],
electrochemical [26], capacitive [27] have been developed or improved to manufacture
ethanol sensor with superior performances.

Apart from the working principle of sensors and their design, the materials selected as
the sensing layer appear as a key element in developing ethanol gas sensors with improved
characteristics such as sensitivity, selectivity, response time, recovery time, hysteresis,
and repeatability. Consequently, several materials have been explored as sensing layers
within the design of ethanol sensors: metal–organic frameworks [28], metal oxide semicon-
ductors [29], porous silicon [30], conducting polymers [31], metal sulfides [32], dielectric
polymers [33], porphyrins [34], or SiC [35]. However, most of these sensors operate at high
temperatures, leading to high energy consumption. Only a few studies have demonstrated
metal oxide-based ethanol sensors functioning at room temperature.

Furthermore, many carbon-based materials are extensively used as sensing layers
within the design of the ethanol gas sensors. Outstanding properties of these materials,
such as large specific surface area, ability to interact with target molecule at room tempera-
ture, high mechanical strength, fast charge transfer, high stability, versatile covalent and
noncovalent functionalization, and environmentally friendly have triggered substantial
research to investigate their potential as ethanol gas sensing materials [36–41]. Carbon
nanotubes [36], graphene oxide [37], reduced graphene oxide [38], carbon nanofiber [39],
carbon nanodots [40], and graphene [41] are some of the carbonaceous nanomaterials
studied for ethanol sensing applications. In recent years, carbon nanohorns (nanostructures
composed of sp2-hybridized carbon atoms forming a conical shape with diameters of
2–5 nm and lengths of 30–50 nm [42]) have garnered growing attention for gas sensing ap-
plications. This interest is driven by their exceptional properties, including clean synthesis
methods, the availability of high-purity samples, excellent chemical and thermal stability,
large specific surface area, and low toxicity. Thus, both pristine and functionalized carbon
nanohorns and their nanocomposites/nanohybrids were used as sensing layers within the
design of resistive sensors for the detection and monitoring of relative humidity [43–51],
ammonia [52], and ozone [53]. Moreover, holey carbon nanohorns (CNHox) were used as
a sensing layer to detect and monitor ethanol gas [54,55]. In recent years, scientists have
increasingly focused on designing room-temperature ethanol sensors due to their potential
for real-time monitoring and low power consumption. This study aims to explore the
room-temperature ethanol sensing properties of a novel nanohybrid, to discover new ways
to reduce electric power consumption in next-generation, environmentally friendly sensors
for Internet of Things (IoT) applications.

This paper presents the ethanol detection response of a resistive sensor based on a
novel sensitive layer, a quaternary nanohybrid comprising CNHox, GO, SnO2, and PVP
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at 1/1/1/1 w/w/w/w mass ratio. The proposed nanohybrid sensing layer for resistive
detection of ethanol vapors includes four components whose chemical, physical, and
electrical properties recommend them as key elements for the sensitive material. CNHox
exhibits outstanding properties, such as high conductivity, high dispersibility, uniform
size, excellent porosity, thermal and chemical stability, high adsorption capacity, superior
permeability, exceptional catalytic properties, large specific surface area, low toxicity, and
clean synthesis process (no metal catalyst is involved in their synthesis; thus, the produced
CNHox are free of metal impurities) [55].

2. Materials and Methods

2.1. Materials

All the chemicals used in the sensing experiments were bought from Sigma Aldrich
(Burlington, MA, USA). The chemicals used were of the highest available purity and
were utilized without further modification. The metal-free CNHox powder (0% metallic
compound) is characterized by a specific surface area of around 1300–1400 m2/g (according
to the Brunauer–Emmett–Teller evaluation method) with lengths between 40 nm and 50 nm
and diameters between 2 and 5 nm (Figure 1a).

(a) (b) (c)

Figure 1. Structure of: (a) holey carbon nanohorns, (b) polyvinylpyrrolidone, and (c) graphene oxide.

According to the supplier, the amorphous graphite of CNHox cannot exceed 10%. PVP
has an average molar weight of 29,000 Da (Figure 1b). CNHox powder is used as received.
GO (4–10% edge-oxidized, average number of layers 15–20) is used as a dispersion in
water, 2 mg/mL (Figure 1c). Tin (IV) oxide (SnO2) purchased as a powder (99.9% purity)
has an average nanoparticle size lower than 100 nm and a specific surface area of around
10–25 m2/g 2-Propanol used in the synthesis is anhydrous (99.5%).

2.2. Sensing Layer Characterization

Raman spectra were recorded at room temperature using a Witec Raman spectrometer
(Alpha-SNOM 300 S, WiTec GmbH, Ulm, Germany) with 532 nm excitation. A 532 nm
diode-pumped solid-state laser, delivering 145 mW of power, was focused onto the sample
with a 6 mm working distance objective on a Thorlabs MY100X-806 (Newton, NJ, USA)
microscope, producing a laser spot size of ~1.0 μm. The spectra were collected in back-
scattering geometry with 600 grooves/mm grating, using an exposure time of 20 s per
accumulation. Calibration was performed with the 520 cm−1 Raman line of a silicon wafer;
data acquisition and processing were conducted using WiTec Project Five software (WITec
Project 5.1).

Scanning electron microscopy (SEM) was used to examine the surface topography of
the sensing films. Surface visualization was performed using a field emission gun scanning
electron microscope (FEG-SEM), Nova NanoSEM 630 (Thermo Scientific, Waltham, MA,
USA), offering high-resolution imaging at low voltages and excellent surface sensitivity.
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The samples were analyzed without any preparation, and a measurement current of 1 nA
was applied.

2.3. Preparation of the Sensing Layer

The synthesis of the sensing layer based on nanohybrid CNHox/GO/PVP/
SnO2 = 1/1/1/1 (w/w/w/w) was conducted as described in the following section [56].
PVP solution was prepared by dissolving 6 mg of polymer in 10 mL of 2-propanol un-
der stirring in the ultrasonic bath. Then, 6 mg of CNHox is added slowly to the PVP
solution, under stirring. The suspension homogenization was achieved by employing a
mild sonication bath at 42 kHz, with an output power of 70 W. Then, 3 mL of GO water
dispersion was added to the prepared alcoholic PVP and CNHox suspension solution and
stirred in the ultrasonic bath for 6 h at room temperature. In the last step of the dispersion
preparation, 6 mg of SnO2 was added and stirred for 3 h in an ultrasonic bath at room
temperature. An annealing process was performed for solvent evaporation by heating the
prepared dispersion for 12 h at 100 ◦C in a vacuum oven under low pressure (1 mbar). This
procedure yields a uniform distribution of the CNHox, GO carbon nanoparticles, and the
metal oxide semiconductor (SnO2) nanoparticles in the hydrophilic PVP polymer network.

Microelectronic lift-off processes prepared the flexible polyimide substrate containing
the metallic interdigitated structure; firstly, a photoresist layer was deposited, thermally
treated, and patterned on the flexible substrate. Then, the Au/Cr layer was deposited
on the entire substrate by electron gun evaporation, with chromium deposited first as an
adherence layer for the Au layer. The Au/Cr layer adhesion test using tape confirmed that
the Au/Cr layer adheres strongly to the polyimide substrate. Then, the photoresist and
the metal deposited over it were removed by the well-known photoresist development
process. Thus, the Au/Cr metal layer remained only in the desired layout regions, as
shown in Figure 2, where the entire geometry of the IDT was present. The metal stripes of
the Interdigitated Transducer (IDT) consisted of chromium with a thickness of 10 nm and
gold with a thickness of 100 nm. The width and spacing of the digits were both 10 microns,
and there is a separation of 0.6 mm between the digits and the bus bar. Finally, after
masking the contact areas on the IDT structure from Figure 2, dispersing and sonicating the
above final quaternary nanocomposite in isopropyl alcohol (IPA), the drop-casting method
followed by 60 ◦C drying was used to generate the sensing film to be used in the ethanol
detection experiments.

Figure 2. Layout of IDT sensing structure (chip area: 5 × 7 mm2).

The ethanol chemiresistive sensor’s performance was evaluated by exposing it to vary-
ing ethanol concentrations in a 0.27 L testing chamber. To minimize moisture interference,
after sealing the testing box, it was purged with nitrogen until the relative humidity (RH)
was below 2%, as indicated by the commercial sensor SHT31 Sensirion (±2% RH accuracy).
Ethanol was introduced in a controlled manner: a micropipette (0.1–2 μL range) dispensed
volumes of 0.5–2.5 μL for low concentrations. For higher concentrations, a micro-syringe de-
livered 2.4 mg ethanol drops [56]. A magnetic stirrer (500 rpm for 8 min) ensured complete
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ethanol evaporation and homogeneous vapor distribution before measurements began.
Ethanol drops were repeatedly weighed to minimize pipetting and syringe dispensing
errors, with the mean drop weight used for calculations. Minimal measurement errors
in three repeated cycles confirmed a strong correlation between the calculated ethanol
concentration and the sensor’s resistance variations.

Before each test, nitrogen purging continued until the sensor’s resistance returned
to its baseline value (Ri = 308 ohms), ensuring a zero relative variation in the measured
resistance. The 8 min ethanol evaporation time was determined through preliminary tests
to mitigate vaporization and diffusion errors, guaranteeing a stable resistance reading over
time. Magnetic stirring was employed to prevent non-uniform ethanol distribution and
adsorption onto chamber walls, as the latter contributed to sensor response variability
at ethanol concentrations above 0.15 mg/cm3. All sensing experiments were conducted
at room temperature in a temperature-controlled white chamber to prevent fluctuations.
The high CNHox content (25% w/w) in the quaternary nanocomposite, well above the
percolation threshold, ensured low and easily measurable electrical resistance, allowing for
ultralow-power operation.

3. Results

The Raman spectra of the composite material CNHox/GO/SnO2/PVP reflect the
individual contributions of these materials and provide insights into their interactions,
structure, as well as modification in intensities due to the composite formation (Figure 3).
PVP introduces new peaks, particularly in the C-H and C=O regions, as its Raman bands
overlap with the bands of GO and CNHox.

Figure 3. Raman spectra of the CNHox/GO/SnO2/PVP sensing layer deposited on a silicon substrate.

The positions and analysis of the vibration modes of each material in the composite
were summarized in Table 1 [57–61].

The discontinuous character of particles’ distribution on the sensitive layer’s surface
can be observed in all recorded SEM (Figure 4). The nanoscale images show a particle size
distribution in the range of 10–100 nm, similar to the size of synthesis precursors, proving
an excellent dispersion process in the selected solvent. In addition, a very high porosity of
the quaternary nanocomposite is revealed, supporting the high sensitivity of the sensing
layer at room temperature.
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Table 1. Analysis of the vibration modes of each material in the composite.

Material Vibration Mode
Position
(cm−1)

Analysis

CNHox
[45,57]

D ~1350 Defects in the carbon network, oxygenated groups
(epoxide, carboxyl)

G ~1580 C-C vibrations in the carbon network (sp2 bond)

2D ~2700 C-C stretching vibration in the graphite network

D’ ~1620 Defect vibrations, interactions with oxygenated groups

OH (hydroxyl) ~3000–3200 Signal associated with -OH groups on nanohorns

GO
[58,59]

D ~1350 Defects and discontinuities due to oxygenated groups

G ~1580 C-C vibration in the carbon network

2D ~2700 C-C stretching vibration

D’ ~1620 Structural defects and interactions with oxygenated groups

OH (hydroxyl) ~3400 -OH groups on graphene oxide

COOH (carboxyl) ~1700 C=O vibration of carboxyl groups

Epoxid (C-O-C) ~1050 C-O vibration of epoxide groups

SnO2

A1g ~630 Symmetric Sn-O stretching vibration in the
crystalline network

B2g ~450 Asymmetric Sn-O bond vibration

B1g ~750 Vibration around the tin atom in the tetragonal network

E1g ~200 In-plane vibration of the network

Lattice vibration ~120–180 Related to collective movements of oxygen and tin atoms
throughout the entire crystalline network

PVP
[60,61]

C-H ~1300 Stretching and deformation of C-H bonds in
methylene groups

C-C ~750–900~1350 Bending of C-C bonds in the polymer chain

C-N ~1200–1250 Interactions between carbon and nitrogen atoms in the
amide group

C=O ~1650 C=O stretching vibration in the amide group

C-H ~2800–3000 Stretching vibrations of C-H bonds in methylene (-CH2) and
methyl (-CH3) groups

(a) (b) (c)

Figure 4. SEM images of the CNHox/GO/SnO2/PVP = 1/1/1/1 at 1:1:1:1 w/w/w/w ratio: (a) mag-
nification 100,000; (b) magnification 400,000; (c) magnification 50,000.
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SEM-EDX analysis results are shown in Figure 5, which reveals the elemental composi-
tion of the sensitive film (symbolized in both atomic and weight percentages). The method
confirmed the presence of the elements C, Sn, O, N, and Si in agreement with the chemical
composition of the synthesized nanohybrid. However, these quantitative evaluations
may undergo errors specific to the EDX analysis due to the unavoidable inhomogeneous
distribution of CNHox, GO, and SnO2 in the PVP network.

Figure 5. Surface composition of a quaternary nanohybrid comprising CNHox, GO, SnO2, and PVP
(1:1:1:1 w/w/w/w) obtained by EDX spectroscopy coupled with SEM.

The sensing results are presented in Figures 6 and 7, showing that the sensor’s response
is reproducible for the three measurement cycles in the 0–0.16 mg/cm3 concentration range.

Figure 6. Graphical representation of the tested sensing device on three different cycles.
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Figure 7. The measured response of the chemiresistive sensor to ethanol concentrations below
0.16 mg/cm3.

The transfer function of the sensor was presented by calculating the electrical resistance
change relative to the initial resistance ((Rf − Ri)/Ri) as a function of ethanol concentration
in the testing chamber (Figures 6 and 7).

This makes the results dimensionless and more manageable to compare across different
experiments, regardless of the absolute resistance values. Another reason for using relative
change in the resistance is directly related to the sensitivity of the chemiresistive sensor.
Using a relative change emphasizes how significant the response was compared to the
sensor’s baseline performance. Uncontrollable factors, such as variations in fabrication,
temperature, or environmental conditions, can influence absolute resistance values. The
relative change minimizes the effect of variations induced during the fabrication process,
with a focus on the dynamic response caused by the stimulus. At the same time, proper
monitoring and control of the environment (temperature and relative humidity) was
implemented throughout the experimental work.

In the representation of the relative variation in resistance as a function of ethanol
concentration, three response zones of the sensor are highlighted (Figure 6). In the
0–0.088 mg/cm3 concentration range, the relative resistance variation in the sensor shows
a quasi-linear increase, the slope of the trend line being lower than that associated with the
linear response for the 0.088–0.16 mg/cm3 ethanol range (Figure 7).

Figure 6 presents the variation of (Rf − Ri)/Ri with ethanol vapors concentration,
where Ri is the resistance of the sensing film before exposure to ethanol, and Rf is the
resistance after ethanol exposure. The chemiresistive sensing structure exhibits a good
response to alcohol vapor concentrations varying from 0.008 to 0.16 mg/cm3, with re-
sistance increasing over almost the entire range of ethanol concentrations, showing a
maximum for ethanol concentration of 0.16 mg/cm3. From the transfer function as shown
in Figure 7, it is evident that the sensor response is not linear, but it can be linearized for
ethanol concentrations. Thus, one can observe that for low ethanol concentration (0.008 to
0.08 mg/cm3), the linearity is good (R2 = 0.88), with a slope of 1.606 (Figure 7), while for
larger ethanol concentration (0.088 to 0.160 mg/cm3), the linearity is very good (R2 = 0.98),
with a slope of 20.638 (Figure 7). The analysis of the experimental results also showed that
the sensitivity for the range of high ethanol concentration (0.088 to 0.160 mg/cm3) was
approximately 12 times higher than for low ethanol concentration (0.008 to 0.08 mg/cm3).
The resistance of the tested sensor was measured after its readings were stabilized. In the
concentration range of 0 to 0.089 mg/cm3, the stabilization time ranged from 80 to 120
s. However, when the ethanol concentration in the test chamber exceeded 0.089 g/cm3,
the sensor’s equilibration time increased by 10 to 20 s. The performance of already tested
ethanol sensors varies significantly. Some studies report response times ranging from a
few seconds to tens of seconds, while others indicate that response times can decrease from
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tens of seconds to just a few seconds. Similarly, recovery times can drop from several hours
to just a few minutes, depending on the sensor’s configuration, detection method, sensing
layer, and operating temperature [62].

At concentrations higher than 0.16 mg/cm3 (inset III in Figure 6), the sensor’s re-
sponse shows an increase in the relative variation in resistance value compared to the
ethanol concentration. Still, the calculated values no longer follow a linear trend, and the
response is not reproducible. Saturation effects are likely the primary reason for this result.
Additionally, capillary condensation may influence the performance of the manufactured
sensor at elevated ethanol concentrations.

4. Discussion

Considering the possible interactions between ethanol and the materials within the
quaternary nanohybrid-based sensing layer employed, three distinct ethanol detection
mechanisms can be identified and analyzed:

4.1. Ethyl Alcohol Acts as an Electron Donor for CNHox and GO

The first mechanism explaining the ethanol detection considers that CNHox and
GO exhibit typical electrical behavior for p-type semiconductor materials (the movement
of holes inside them causes the main current flow in such nanocarbon materials). At
an interaction with CNHox and GO, ethanol molecules donate their electron pairs to
these p-type semiconductor materials, which recombine with the holes from their valence
band, and thus, the number of holes (majority carriers) is decreasing in both carbon
structures. Accordingly, the sensitive layer becomes less conductive, which agrees with the
experimental result from Figure 6 in the ethanol concentration range from 0 to 0.16 mg/cm3.
Moreover, the interaction of ethanol molecules with CNHox and GO can be analyzed from
the perspective of the hard–soft acid-base (HSAB) theory. Examples of hard, soft, and
borderline acids and bases are given in Table 2. According to this theory, the chemical
species react preferentially with similar hardness or softness species. As a result, hard bases
tend to interact with hard acids, soft bases favor interactions with soft acids, and borderline
acids generally bond with borderline bases. Like other chemical species containing oxygen
atoms with lone electron pairs, ethanol molecules are classified as hard bases.

Table 2. Examples of hard, soft, and borderline acids and bases according to the HSAB theory.

Hard Borderline Soft

Bases
C2H5OH, RO−, HO−, (CH3)2O,

H2O, N2H4, R-NH2, CO3
2−,

F−, Cl−
C6H5NH2, C5H5N(pyridine),

N2, Br−, N3
−, Cl−

RSH, R2S, H2S, C2H4, CO, CN−,
RCN, H2

−, R3P, C6H6, RS−, I−

Acids
BCl3, SO3, H3O+, Li+, Mg2+, BF3,
Al3+, Co3+, Sn4+, Ti4+, La3+, CR3

+,
In3+, Zr4+, CO2

Bi3+, Ni2+, Zn2+, Fe2+, Pb2+,
Cu2+, Pb2+, BMe3

Cd2+, Cu+, Ag+, carbenes, I2,
Hg2+, NO2, bulk metals

Table 2 shows carbocations (positively charged carbon ions) categorized as hard acids.
Consequently, the holes within the structures of CNHox and GO can be regarded as hard
acids. These holes neutralize each other through multiple recombination processes [63,64].
Finally, according to HSAB theory, Sn4+ ions are classified as hard acids, making a “hard
acid–hard base” interaction between ethanol and SnO2 highly probable.

Thus, HSAB theory supports the feasibility of interactions between all components of
the sensitive layer and ethanol, as well as the recombination of electrons and holes in the
p-type semiconductor materials, CNHox and GO, aligning with the reasoning above based
on the charge carrier recombination principle in semiconductors.
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4.2. Electron Trapping and Generation from the SnO2-Oxygen-Ethyl Alcohol Interaction

SnO2 is a semiconducting metal oxide with n-type conductivity, meaning the electron
concentration is much higher than the hole concentration for this material. Therefore, the
electrical conductivity is mainly performed by electrons. It is well known that, at the SnO2

grain boundaries between different SnO2 nanoparticles, there are depletion regions due to
interface defects trapping the electrons, and these depletion regions act as energy barriers
in the electrical conduction process.

During the detection process, the following chemical processes occur as follows:
(i) firstly, gaseous residual oxygen molecules are adsorbed on the surface of the exposed
SnO2 nanoparticles; (ii) secondly, the electrons from the conduction band of the SnO2

nanoparticles are attracted by these adsorbed oxygen molecules; and then (iii) converted to
oxygen anions (O2

−) according to the set of reactions shown below:

O2 (gas) → O2 (ads) (1)

O2 (ads) + e− → O2
− (ads) (2)

O2
− (ads) + e− → 2O− (3)

O− + e− → O2− (4)

Therefore, according to Equations (2)–(4), the concentration of free electrons in SnO2

will decrease, expanding the depletion regions. Subsequently, (ii) the adsorbed ethanol as
a reducing gas will remove the oxygen anions from the SnO2 surface by generating CO2

and H2O (Equations (5) and (6) from below), and finally, the electrons from these oxidation
reactions return to the body of the SnO2 nanoparticles, and the Fermi level of SnO2 also
returns to a near-initial state. Simultaneously, the potential energy barrier is lowered, and
the depletion layer becomes thinner. As a result, electrons can move more easily between
nanoparticles, decreasing the sensing structure’s resistance [65].

CH3CH2OH (ads) + 6O−(ads) → 2CO2 (g) + 3H2O (g) + 6e− (5)

CH3CH2OH (ads) + 6O2
− (ads) → 2CO2 (g) + 3H2O (g) + 12e− (6)

Based on this plausible explanation, the sensitive layer is expected to become more
conductive due to the interaction between SnO2 nanoparticles and ethanol molecules.
However, according to Figure 6, the experimental chemiresistive sensor response to the
ethanol concentration increase shows a continuous rise in the electrical resistance with
the concentration of ethanol in the range of 0–0.16 mg/cm3, which indicates that this
mechanism is not prevailing, at least in this concentration range.

4.3. Swelling of PVP

According to Zereshki et al. [66], ethanol molecules have a strong interaction with
PVP chains, and the dielectric polymer swells; the higher the ethanol concentration is,
the higher the swelling is. The generation of the local water molecules, as described by
Equations (5) and (6) above, may also contribute to the PVP swelling [67]. However, when
the swelling process is developing, the distances between the conductive CNHox and
low energy bandgap GO nanoparticles increase, and the number of electrical percolating
pathways [68] decreases, as shown in Figure 8, and the overall electrical resistance increases.

85



Sensors 2025, 25, 1299

Figure 8. The swelling of PVP upon contact with ethanol molecules disrupts the percolating pathways
of the CNHox and GO.

According to this perspective, the sensitive layer is expected to become more resistive
as the ethanol concentration steadily increases. The high sensitivity value in the ethanol
concentration range of 0.08–0.16 mg/cm3 can be best explained by the increased hoping dis-
tance between these conductive segments, which may provide a much-increased value of the
slope of the resistance dependence in Figures 6 and 7. Therefore, the swelling phenomenon
explains the experimental results in the ethanol concentration range of 0.08–0.16 mg/cm3.
As we can see, when the ethanol concentration is higher than 0.16 mg/cm3, some regions
where the sensitive layer becomes more conductive are identified.

Two alternative hypotheses can be taken into account. First, electron trapping and
generation from the SnO2-oxygen-ethyl alcohol interaction (mechanism II, discussed
above) may become prevalent. Secondly, the ionization of some water generated from
reactions (5) and (6) may decrease the resistance of the sensing layer. Last but not least,
capillary condensation can affect the behavior of the manufactured sensor at higher
ethanol concentrations.

Besides these described mechanisms, the mutual interactions between nanohybrid con-
stituents can be considered. Thus, π-π stacking interaction between GO and the nanohorns,
as well as the hydrogen bonds between both nanocarbon materials and PVP, yield a possible
supramolecular organization as presented in Figure 9.

Figure 9. Possible architecture for supramolecular structure generated by CNHox, GO, SnO2, and PVP.

It is also reasonable to assume the formation of islands of p-n semiconductor hetero-
junctions between graphene oxide, holey carbon nanohorns, and SnO2, which diminishes
mutual interaction between organic constituents of nanohybrid. As a consequence, the
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specific surface area will be increased. Last but not least, mutual interaction between
metal oxide semiconducting, yields changes in the pore distribution, which increases the
specific surface area of nanohybrid exposed to ethanol vapors, affecting the number of
active sensing sites. Considering that the resistance of the sensing layer increases across
nearly the entire range of measured ethanol concentrations, it can be inferred that the
p-type semiconductor behavior of both nanocarbon materials, along with the swelling of
PVP, are the primary mechanisms responsible for the overall resistance of the sensitive
layer when exposed to ethanol.

Each component of the quaternary nanohybrid used for resistive ethanol monitoring
played a specific role. Unlike conventional ethanol sensors, which primarily rely on metal
oxides and rare elements [69–72], CNHox and GO are derived from carbon-based materials
recognized for their excellent electrical properties [73]. CNHox demonstrated exceptional
properties, including increased conductivity (as a p-type semiconductor), high uniformity,
a large surface area, easy synthesis (without metallic compounds), and sensitivity to
alcohol molecules. These characteristics make CNHox a strong candidate for monitoring
ethanol vapors at room temperature. GO offers several advantages, such as being a
good charge carrier, enabling scalable fabrication, and serving as an effective dispersant
for functionalized carbon nanohorns. Through intermolecular hydrogen bonding and
π–π stacking interactions, GO can act as a dispersant for CNHox, helping to redisperse
bundles of oxidized carbon nanohorns. Additionally, GO is a p-type material that shows
reduced electrical conduction when exposed to ethanol. Polyvinylpyrrolidone (PVP) is an
electrically insulating polymer with excellent binding properties and strong interactions
with ethanol molecules.

A potential quantitative model to describe ethanol adsorption onto the sensing layer
is the Freundlich adsorption isotherm. This model defines the relationship between the
amount of gas adsorbed on a solid surface and the gas pressure. The Freundlich isotherm
describes multilayer adsorption on a heterogeneous surface with varying binding energies,
leading to the formation of multiple layers. Since adsorption sites have different affinities,
the adsorption energy decreases as surface coverage increases. A key feature of the Fre-
undlich model is the absence of a maximum adsorption capacity, meaning the adsorbent
can continue adsorbing indefinitely, though at a diminishing rate [74].

Figure 9 illustrates the adsorption model. At ethanol concentrations below 0.08 mg/cm3,
the ratio of [EtOH]adsorbed/madsorbent (x/m) increases rapidly due to the abundance of free
adsorption sites. This results in a slow change in resistance, as only a small number of
ethanol molecules are adsorbed at the interface, as shown in Figures 6 and 7. When the
ethanol concentration exceeds 0.08 mg/cm3, an inflection point appears in the graph show-
ing the sensor’s measured response. This inflection point aligns with the one observed
in the Freundlich isotherm. Beyond 0.08 mg/cm3, adsorption slows at the interface be-
cause the sensing layer surface becomes saturated with ethanol molecules. At this stage,
the swelling of PVP accelerates, leading to a rapid increase in resistance as presented in
Figures 6 and 7.

This behavior demonstrates a clear correlation between the ethanol concentration and
the Freundlich adsorption isotherm, where the rapid adsorption at lower concentrations
and the subsequent saturation at higher concentrations align with the principles of the
Freundlich model, explaining the dynamics of the sensor response dynamics observed in
Figures 6 and 7.

5. Conclusions

This study introduces a quaternary nanohybrid sensing layer (CNHox/GO/SnO2/PVP
in a 1/1/1/1 mass ratio) designed explicitly for resistive ethanol vapor detection. Unlike
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conventional ethanol sensors, which primarily rely on metal oxides and rare elements,
this innovative approach combines the synergistic properties of its components to en-
hance performance. CNHox provides high conductivity and porosity, improving electron
transport and gas diffusion, while GO increases surface area and introduces functional
groups that enhance ethanol interaction. SnO2 further strengthens ethanol adsorption and
sensing response, and PVP ensures structural integrity and dispersion stability. Beyond
performance, this sensor offers a cost-effective and environmentally friendly alternative
to traditional designs. GO is a more affordable material than CNHox, helping to reduce
production costs without compromising sensor quality, while SnO2 remains a low-cost
yet effective complement to both GO and CNHox. By integrating these materials, the
proposed sensor benefits from the high sensitivity of carbon-based nanomaterials while
maintaining affordability and sustainability, making it a practical and scalable solution for
ethanol-sensing applications. Last but not least, low power consumption (below 2 mW)
makes these sensors promising alternatives in wireless sensor networks for Internet of
Things applications, where energy constraint is one of the biggest challenges.

The sensing structure includes a flexible polyimide substrate and IDT-like electrodes.
The sensing film used is a quaternary nanohybrid comprising two types of nanocarbon
materials, CNHox and GO, a metal oxide semiconducting (SnO2) and a hydrophilic polymer
(PVP), in a 1/1/1/1 mass ratio. The experimental setup was manufactured to investigate
the response of the sensing layer deposited onto the substrate to various concentrations of
ethanol vapors in a dry atmosphere. The developed resistive sensing structure showed good
sensitivity to ethanol vapors over a broad range of concentrations (0.008–0.16 mg/cm3).
In addition, the linearity of the sensor’s response was investigated at different ethanol
concentration intervals, and the best sensing results were found in the range of ethanol
concentrations between 0.088 and 0.160 mg/cm3. The analysis of the experimental sensing
results emphasized that the sensitivity (i.e., the relative variation in the sensor resistance)
for the range of high vapors ethanol concentration (0.088–0.16) mg/cm3 was approximately
12 times higher than for low analyte concentration (0.008 to 0.088 mg/cm3). Different
mechanisms for explaining the ethanol vapors detection behavior of the developed sensing
structure were discussed and assessed. Based on the obtained experimental data, it was
argued that the p-type semiconductor behavior of CNOs and GO in conjunction with
swelling of PVP are the dominant sensing mechanisms and yield an overall increase
in the sensitive layer electrical resistance with ethanol vapor concentration. The HSAB
principle is an additional solid argument that supports our interpretations regarding the
sensing mechanism
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61. Dumitraşcu, M.; Albu, M.G.; Vîrgolici, M.; Vancea, C.; Meltzer, V. Characterization of electron beam irradiated

polyvinylpyrrolidone-dextran (PVP/DEX) blends. Solid State Phenom. 2012, 188, 102–108. [CrossRef]
62. Ponzoni, A. A statistical analysis of response and recovery times: The case of ethanol chemiresistors based on pure SnO2. Sensors

2022, 2, 6346. [CrossRef]
63. Pearson, R.G. The HSAB principle—More quantitative aspects. Inorganica Chim. Acta 1995, 240, 93–98. [CrossRef]
64. Serban, B.C.; Brezeanu, M.; Cobianu, C.; Costea, S.; Buiu, O.; Stratulat, A.; Varachiu, N. Materials selection for gas sensing. An

HSAB perspective. In Proceedings of the 2014 International Semiconductor Conference (CAS), Sinaia, Romania, 13–15 October
2014; IEEE: Piscataway, NJ, USA, 2014; pp. 21–30.

65. Choi, K.S.; Park, S.; Chang, S.P. Enhanced ethanol sensing properties based on SnO2 nanowires coated with Fe2O3 nanoparticles.
Sens. Actuators B Chem. 2017, 238, 871–879. [CrossRef]

66. Zereshki, S.; Figoli, A.; Madaeni, S.S.; Simone, S.; Esmailinezhad, M.; Drioli, E. Effect of polymer composition in PEEKWC/PVP
blends on pervaporation separation of ethanol/cyclohexane mixture. Sep. Purif. Technol. 2010, 75, 257–265. [CrossRef]

67. Shooshtari, M.; Salehi, A.; Vollebregt, S. Effect of humidity on gas sensing performance of carbon nanotube gas sensors operated
at room temperature. IEEE Sens. J. 2020, 21, 5763–5770. [CrossRef]

68. Serban, B.C.; Cobianu, C.; Dumbravescu, N.; Buiu, O.; Bumbac, M.; Nicolescu, C.M.; Pachiu, C.; Brezeanu, M. Electrical
Percolation Threshold and Size Effects in Polyvinylpyrrolidone-Oxidized Single-Wall Carbon Nanohorn Nanocomposite: The
Impact for Relative Humidity Resistive Sensors Design. Sensors 2021, 21, 1435. [CrossRef] [PubMed]

69. Li, Z.; Liu, J.; Yi, X.; Wu, W.; Li, F.; Zhu, Z.; Li, H.; Shi, J.; Xu, Y.; Zhou, F.; et al. Metal–Organic Frameworks-Based Fabry− Pérot
Cavity Encapsulated TiO2 Nanoparticles for Selective Chemical Sensing. Adv. Funct. Mater. 2022, 32, 2109541. [CrossRef]

70. Li, Z.; Liu, J.; Feng, L.; Pan, Y.; Tang, J.; Li, H.; Cheng, G.; Li, Z.; Shi, J.; Xu, Y.; et al. Monolithic MOF-based metal–insulator–metal
resonator for filtering and sensing. Nano Lett. 2023, 23, 637–644. [CrossRef]

71. Liu, J.; Feng, L.; Li, Z.; Wu, Y.; Zhou, F.; Xu, Y. Plasma-etching on monolithic MOFs-based MIM filter boosted chemical sensing.
Nano Res. 2024, 17, 2800–2807. [CrossRef]

72. Li, Z.; Tian, L.; Wu, W.; Feng, L.; Khaniyev, B.; Mukhametkarimov, Y.; Ibraimov, M.; Zhou, F.; Liu, W.; Liu, J. Colorimetric
Fabry-Pérot Sensor with Hetero-Structured Dielectric for Humidity Monitoring. Small Methods 2024, 2401485. [CrossRef]

91



Sensors 2025, 25, 1299

73. Shooshtari, M. Ammonia gas sensors based on multi-wall carbon nanofiber field effect transistors by using gate modulation.
Colloids Surf. A Physicochem. Eng. Asp. 2025, 704, 135563. [CrossRef]

74. Vigdorowitsch, M.; Pchelintsev, A.; Tsygankova, L.; Tanygina, E. Freundlich isotherm: An adsorption model complete framework.
Appl. Sci. 2021, 11, 8078. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

92



Article

Synergistic Enhancement of Chemiresistive NO2 Gas Sensors
Using Nitrogen-Doped Reduced Graphene Oxide (N-rGO)
Decorated with Nickel Oxide (NiO) Nanoparticles:
Achieving sub-ppb Detection Limit

Chiheb Walleni 1,2,3,4,5, Mounir Ben Ali 5,6, Mohamed Faouzi Ncib 4,5 and Eduard Llobet 1,2,3,*

1 MINOS, School of Engineering, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain;
chiheb.walleni@estudiants.urv.cat

2 IU-RESCAT, Research Institute in Sustainability, Climatic Change and Energy Transition, Universitat Rovira
i Virgili, Joanot Martorell 15, 43480 Vila-seca, Spain

3 TecnATox—Centre for Environmental, Food and Toxicological Technology, Universitat Rovira i Virgili,
Avda. Països Catalans 26, 43007 Tarragona, Spain

4 Higher School of Sciences and Technologies of Hammam Sousse, University of Sousse,
Hammam Sousse 4011, Tunisia; mohamed.faouzi.ncib@gmail.com

5 NANOMISENE Laboratory, LR16CRMN01, Center of Research on Microelectronics and
Nanotechnology (CRMN), Technopole of Sousse, B.P334, Sahloul 4054, Tunisia; mounirbenali@crmn.mesrs.tn

6 Higher Institute of Applied Science and Technology of Sousse, University of Sousse, Sousse 4003, Tunisia
* Correspondence: eduard.llobet@urv.cat; Tel.: +34-977-558-502

Abstract: Detecting low nitrogen dioxide concentrations (NO2) is crucial for environmental
monitoring. In this paper, we report the synergistic effect of decorating nitrogen-doped
reduced graphene oxide (N-rGO) with nickel oxide (NiO) nanoparticles for developing
highly selective and sensitive chemiresistive NO2 gas sensors. The N-rGO/NiO sensor
was synthesized straightforwardly, ensuring uniform decoration of NiO nanoparticles
on the N-rGO surface. Comprehensive characterization using SEM, TEM, XRD, and
Raman spectroscopy confirmed the successful integration of NiO nanoparticles with N-rGO
and revealed key structural and morphological features contributing to its enhanced
sensing performance. As a result, the NiO/N-rGO nanohybrids demonstrate a significantly
enhanced response five orders of magnitude higher than that of N-rGO toward low NO2

concentrations (<1 ppm) at 100 ◦C. Moreover, the present device has an outstanding
performance, high sensitivity, and low limit of detection (<1 ppb). The findings pave the
way for integrating these sensors into advanced applications, including environmental
monitoring and IoT-enabled air quality management systems.

Keywords: N-rGO; NiO; NO2; gas sensing

1. Introduction

In addition to promoting green energy, safeguarding the environment and human
health from harmful gases such as NOx, NH3, COx, H2S, and VOCs is a critical priority
in advancing a sustainable lifestyle. Among air pollutants, NO2 has garnered significant
attention due to its substantial impact on air quality and its association with the formation
of ground-level ozone, acid rain, and climate change through disruptions in atmospheric
chemical balance. Furthermore, NO2 poses serious health risks, including respiratory
disorders, chronic bronchitis, asthma, and various cardiovascular and pulmonary diseases,
depending on exposure duration [1,2].
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To address these challenges, the development of highly sensitive NO2 gas sensors has
become indispensable. Researchers and industries alike share the responsibility of advanc-
ing this technology, which has found increasing relevance in cutting-edge applications such
as the Internet of Things (IoT) and Micro-Electro-Mechanical Systems (MEMS) [3]. Effective
NO2 sensors require several critical attributes, including high selectivity and stability, low
power consumption, optimal device architecture, and, most importantly, a carefully chosen
sensing material.

Chemiresistive gas sensors have emerged as a preferred choice due to their cost-
effectiveness, miniaturization potential, and compatibility with NO2 detection [4,5]. Among
sensitive materials, graphene-based substances have gained prominence, thanks to their
remarkable properties, including a large surface area, high carrier mobility, and excellent
electrical and thermal conductivity [6–8]. Nitrogen-doped reduced graphene oxide (N-rGO)
stands out among graphene derivatives for applications such as energy storage, catalysis,
and gas sensing [9–12]. Its superior performance in gas sensing compared to pristine
graphene stems from features like enhanced bandgap engineering, increased active sites for
catalytic activity, a high surface area, a defect-rich structure, and low operating temperature.
However, a few studies have reported its application in chemiresistive NO2 sensors [13–15].

In parallel, transition metal oxides (TMOs), known for their semiconducting properties,
have demonstrated considerable potential as sensitive materials for chemiresistive gas sensors.
TMOs offer advantages such as ease of production, high sensitivity, excellent stability, and
rapid response/recovery times [16–18]. Despite these benefits, challenges such as high
operating temperatures and limited selectivity persist [19,20]. TMOs can be categorized into
n-type oxides (e.g., SnO2, ZnO, In2O3, WO3, and TiO2) and p-type oxides (e.g., NiO and
CuO). In gas sensing, n-type oxides typically exhibit resistance changes upon exposure to
reducing or oxidizing gases, while p-type oxides demonstrate the opposite behavior [17].

Nickel oxide (NiO), a p-type metal oxide, boasts unique physical properties, including
a wide bandgap (3.6–4 eV), excellent thermal conductivity, and stability. These charac-
teristics make it a versatile material for energy storage, optoelectronics, and gas sensing
applications [21–23]. However, its role as a sensitive material for chemiresistive gas sensors
remains relatively rare, even in combination with other materials like graphene derivatives.
Studies have suggested synergistic effects when combining NiO with graphene-based
materials for detecting gases such as H2, H2S, NH3, CO, and VOCs [24–28]. Nonetheless,
its potential for NO2 detection under optimized conditions has not been widely discussed.

This study aims to bridge this gap by leveraging the complementary properties of
N-rGO and NiO to develop enhanced chemiresistive NO2 gas sensors. The sensor materials
are synthesized through straightforward methods and evaluated for their performance
at sub-ppm NO2 concentrations under varying conditions. Their structural and func-
tional attributes are characterized using techniques such as SEM, TEM, XRD, and Raman
spectroscopy. Finally, the gas sensing results and mechanisms are thoroughly discussed,
highlighting their significance for future applications.

2. Materials and Methods

2.1. Synthesis of Materials

The synthesis of nitrogen-doped reduced graphene oxide (N-rGO) began with the
preparation of graphene oxide (GO) as a precursor, which was synthesized using a modified
Hummer’s method [29]. In brief, 50 mg of GO powder was dispersed in 50 mL of distilled
water and subjected to ultrasonication for 2 h to ensure complete dispersion. Subsequently,
an appropriate quantity of urea, serving as the nitrogen dopant source, was added to the
GO solution and stirred for 30 min. The resulting mixture was transferred to a Teflon-lined
autoclave and subjected to hydrothermal treatment at 180 ◦C for 12 h. This process not only
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reduced the GO to reduced graphene oxide (rGO) but also incorporated nitrogen dopants
into the graphene structure, yielding N-rGO (Figure 1a).

Figure 1. (a) Preparation of N-rGO and (b) NiO nanoparticles. (1) and (2) illustrate the airbrushing
process used to coat the electrode area of the transducer substrate. (c) fabrication of the NiO/N-rGO
sensor device.

The synthesis of nickel oxide (NiO) nanoparticles was carried out using the co-
precipitation method (Figure 1b). Initially, 3 g of hydrated nickel nitrate (NiNO3·6H2O)
was dissolved in 125 mL of distilled water and stirred at 50 ◦C for 40 min. Subsequently,
10 mL of 0.1 M NaOH solution was added dropwise to the mixture until the pH reached 8.
The resulting precipitate was thoroughly washed and dried at 80 ◦C. Finally, the dried
product was calcined at 400 ◦C for 3 h to obtain nickel oxide nanoparticles (NiO NPs).

2.2. Preparation of Sensors

In this stage, the airbrushing technique was employed to decorate nitrogen-doped
reduced graphene oxide (N-rGO) with nickel oxide nanoparticles (NiO NPs). The sen-
sor fabrication process is illustrated in Figure 1c. To begin, 5 mg of N-rGO powder was
dispersed in 10 mL of ethanol and subjected to ultrasonication for 1 h to create a stable
suspension. Separately, 5 mg of NiO NPs was dispersed in 10 mL of ethanol. The de-
position process was carried out using airbrushing at a temperature of approximately
55 ◦C, with nitrogen (N2) serving as the carrier gas. Initially, the N-rGO suspension was
airbrushed onto platinum screen-printed electrodes (alumina substrates from CeramTech
GmbH, Plochingen, Germany) as a chemiresistive gas sensor. Subsequently, NiO NPs were
deposited onto the N-rGO layer to complete the decoration process. The film resistance
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was monitored continuously using a multimeter, ensuring improved reproducibility across
devices. The final thickness of the deposited sensing layers was measured to be 50 ± 5 μm.

2.3. Gas Sensing Measurements

In the final stage of the experiment, the as-fabricated NiO/N-rGO sensors were posi-
tioned within an airtight Teflon test chamber with a volume of 35 cm3, designed with two
openings to accommodate UV lamps. The chamber was equipped with an inlet for gas
delivery and an outlet connected to an exhaust system. The entire setup was integrated into
a fully automated gas flow measurement system capable of supplying diluted gas mixtures
via mass flow controllers (Bronkhorst High-Tech B.V., Ruurlo, The Netherlands). For gas
sensing experiments, calibrated gas cylinders balanced in dry synthetic air (Air Premier, purity:
99.999%) were utilized. The sensors’ operating temperatures were regulated by connecting
their meander heaters to an external power supply (Agilent U8002A, Santa Clara, CA, USA).

The sensor responses were recorded using an Agilent 34972A data acquisition system,
which continuously monitored the resistance of the sensing materials during exposure
to varying concentrations of target gases, including NO2, ethanol, NH3, and CO2. Ad-
ditionally, the effect of humidity on sensor performance was assessed using a controller
evaporator mixer (CEM) to generate a controlled humidity level of 70% RH, simulating real
environmental conditions at the optimal operating temperature. The overall gas sensing
measurement setup is illustrated in Figure 2.

Figure 2. Experimental setup of gas sensing measurements.

To optimize power consumption and simulate realistic testing conditions, the total
gas flow rate was maintained at a low rate of 100 mL/min. Before measurements, the
sensors were stabilized under synthetic dry air for 1 h at both room temperature and 100 ◦C.
Following stabilization, the sensors were exposed to the target gases diluted in synthetic
dry air for 15 min, followed by a 1 h recovery period in pure dry air. Throughout the
measurements, the temperature inside the test chamber was maintained at 25 ◦C, with a
residual ambient humidity of 4% relative humidity (R.H.), equivalent to approximately
1250 ppm of water vapor.

Sensor response, R (%), was defined as follows:

R (%) = [|R − R0|/R0] × 100

where R0 is the resistance under dry air, and R is the resistance measured during exposure
to the target gas.
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2.4. Material Characterization

The morphological characteristics of the samples were examined using scanning
electron microscopy (SEM) with a FEI Quanta 450 instrument from FELMI-ZFE (Graz, Aus-
tria). Furthermore, transmission electron microscopy (TEM) imaging was performed using
an ultra-high-resolution transmission electron microscope (UHR-TEM), specifically the
Libra® 200MC model (Zeiss, Jena, Gemrnay). Structural analysis was carried out through
X-ray diffraction (XRD) measurements using the Shimadzu Corporation LabX XRD-600
instrument (Midland, ON, Canada), equipped with CuKα radiation (λ = 1.54056 Å). The
XRD patterns were recorded at room temperature over a 2θ range of 10◦ to 80◦. Raman
spectroscopy was employed to analyze the structural features of the samples within a wave-
length range of 100–3000 cm−1, using a Renishaw inVia Raman Microscope (Changchun
New Industries Optoelectronics Technology Co., Ltd., Changchun, China).

3. Results

3.1. Characterization

SEM micrographs provide detailed insights into the morphological characteristics of N-
rGO and NiO NPs and NiO/N-rGO deposited film. As shown in Figure 3a, N-rGO exhibits
a distinctive folded 2D graphene flake structure, reflecting the effects of the reduction
and nitrogen doping processes [14]. The observed wrinkles and corrugations are likely
due to the intercalation of nitrogen atoms within the graphene layers [9]. In contrast, the
NiO surface, presented in Figure 3b, reveals a distribution of spherical nanoparticles with
comparable sizes. Additional details on the size distribution of NiO nanoparticles are
presented in the histogram shown in Figure S2 (Supplementary Information). Figure 3c
confirms the successful attachment of the deposited NiO NPs onto N-rGO sensing film.
This is further supported by TEM analysis results.

Figure 4 showcases the detailed morphological analysis of N-rGO and NiO/N-
rGO using high-resolution transmission electron microscopy (HRTEM), supported by
Energy Dispersive Spectroscopy (EDS) data (additional EDS results are provided in
Figure S1, Supporting Information). To prepare the samples, a copper grid was immersed
in a NiO/N-rGO suspension dispersed in ethanol and treated with ultrasonication to
ensure even distribution.

The HRTEM image in Figure 4a reveals the characteristic two-dimensional nanos-
tructures of graphene, displaying thin, flake-like layers folded around darker regions.
In contrast, Figure 4b,c illustrates the successful and uniform decoration of nickel oxide
nanoparticles across the N-rGO surface. The NiO nanoparticles exhibit a nanocrystalline
structure with an interplanar spacing of 2.28 Å, corresponding to the (200) plane. This
spacing, slightly offset by approximately 0.2 nm compared to the standard value (ICDD
card number: 73-1519), is attributed to lattice distortions induced by interactions with the
N-rGO substrate, as confirmed by XRD analysis [30].

The oxygen functional groups and nitrogen dopants present on the N-rGO surface
serve as active sites for heterogeneous nucleation, enabling the formation of densely
packed and monodisperse nickel oxide nanoparticles [31]. This distinctive morphological
configuration of the NiO/N-rGO hybrid not only highlights the structural integrity of the
material but also emphasizes its enhanced reactivity, making it a promising candidate for
NO2 gas sensing applications.

Figure 5a shows the XRD diffractograms for the NiO, N-rGO, and GO samples. The
X-ray diffraction (XRD) pattern of the nanocomposite displays distinctive broad peaks,
which are localized at 37.08◦ (111), 43.32◦ (200), 62.75◦ (220) and 75.15◦ (311) [32–35]. These
diffraction peaks correspond to the ones observed in the case of NiO nanoparticles. They
match with a cubic phase of NiO (ICDD card number: 73-1519), with a lattice constant
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a = 4.168 Å belonging to the Fm-3m space [34]. Conversely, the diffractogram of GO
displays a broad peak at about 2θ = 11◦ (001). This peak indicates the presence of oxygen
functional groups in the GO structure after the oxidation of graphite [35]. Nevertheless, this
distinctive peak of GO vanishes completely in the XRD pattern of the N-rGO nanomaterial,
and a new characteristic peak appears at 25◦ (002), This means that most of the oxygen-
containing groups in GO were efficiently eliminated after the reduction and doping with
nitrogen [36]. This also indicates that the π-conjugated structure of graphene has been
restored considerably at the produced rGO. For the NiO/N-rGO deposited film, XRD
analysis was performed to examine its crystalline structure. Given the thin nature of this
film on top of the alumina substrate, Al2O3 peaks highly interfere with the ones that are
characteristic for NiO and N-rGO in the XRD diffractogram pattern (see Figure S3).

Figure 3. SEM images of (a) N-rGO and (b) NiO nanoparticles. (c) NiO/N-rGO deposited film.
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Figure 4. TEM images of (a) N-rGO and (b,c) NiO/N-rGO. The lower panel on the right shows a
magnification of the circled area as indicated in panel c.

Figure 5. (a) XRD pattern of GO, N-rGO, and NiO. (b) Raman Spectra of N-rGO, NiO, and NiO/N-rGO.

Raman spectroscopy, a vital technique for identifying structural fingerprints, was uti-
lized to gain detailed insights into the structural characteristics of samples. Figure 5b depicts
the Raman spectra of N-rGO, NiO, and NiO/N-rGO nanomaterials within the range of
250 to 2500 cm−1. The N-rGO spectrum exhibits a D band at 1339 cm−1 and a G band at
1570 cm−1 [37]. The intensity ratio of the D band to the G band (ID/IG) indicates a higher
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intensity of the D band, confirming the presence of structural defects associated with oxygen
functional groups and nitrogen doping [9]. In the case of NiO, two prominent peaks are
observed at 518 cm−1 and 1058 cm−1, corresponding to the Ni-O stretching mode (1LO)
and the two-phonon vibration mode (2LO), respectively [38]. The 1LO mode represents
the longitudinal optical phonon vibrations of atoms within the crystal lattice, while the
2LO mode involves the simultaneous vibration of two phonons [39]. The Raman spectrum
of the NiO/N-rGO nanocomposite integrates all characteristic peaks from both NiO and
N-rGO, highlighting the successful formation of the composite material. Additionally, the
peak at 518 cm−1 is asymmetric, featuring a shoulder on the left side around 400 cm−1,
corresponding to the 1TO peak of the first-order phonon. It is typically absent in an ideal
cubic NiO structure. Its presence, however, is attributed to lattice distortions and defect
states, resulting in non-stoichiometry within the Ni-O framework, such as nickel and oxygen
vacancies [40].

3.2. Gas Sensing Characterization

The as-fabricated N-rGO and NiO/N-rGO sensors were evaluated for nitrogen dioxide
(NO2) detection by monitoring their relative resistance changes when exposed to vary-
ing NO2 concentrations. As seen in Figure 6a, initial gas sensing measurements were
conducted at NO2 concentrations of 800 ppb under room temperature (RT), 100 ◦C, and
150 ◦C conditions over multiple cycles. The results underscore the significant role of oper-
ating temperature in enhancing the sensitivity and reliability of the NiO/N-rGO sensor
for NO2 detection. Upon exposure to NO2, an oxidizing gas, both sensors exhibited be-
havior consistent with p-type semiconductors, characterized by a decrease in resistance
(Figure 6b,c). This response aligns with previous studies on NO2 sensing [9], where the
adsorption of NO2 molecules onto the N-rGO surface triggers charge transfer. Specifically,
NO2 molecules accept electrons from the N-rGO, leading to a reduction in resistance. Both
sensors demonstrated stable and reproducible responses to the target gas, with effective
baseline recovery after each exposure cycle.

At room temperature, while both sensors exhibited resistance changes (Figure S4),
these changes were not distinguishable from baseline drift. The response magnitudes of
the as-fabricated N-rGO and NiO/N-rGO sensors were calculated as 5.71% and 7.28%,
respectively. This indicates that the incorporation of NiO nanoparticles into N-rGO offers
limited improvement in response performance at room temperature. This modest enhance-
ment is attributed to the high activation energy required for the NiO/N-rGO sensor [41].
In contrast, when operated at 100 ◦C, both sensors demonstrated significantly improved
responses and a more stable resistance baseline (Figure 6b,c). The calculated responses
were 7.28% for N-rGO and 28.25% for NiO/N-rGO. Notably, the NiO/N-rGO sensor exhib-
ited a response magnitude approximately three times higher than that observed at room
temperature, indicating a substantial enhancement in sensing performance. This improved
response is ascribed to the low activation energy of the NiO/N-rGO sensor influenced
by the rise in temperature [41]. However, at 150 ◦C (Figure S4), both sensors exhibited a
decreased response to NO2 gas, further confirming that the optimal operating temperature
for achieving excellent sensing performance is 100 ◦C. Meanwhile, the decrease observed
at 150 ◦C may be attributed to the increased desorption rate of NO2 molecules from the
sensor surface, which reduces the overall sensor response.

The response and recovery times were determined to be (tresp = 11 min, trec = 45 min),
respectively, for the NiO/N-rGO sensor and (tresp = 10 min, trec = 44 min) for the N-rGO
sensor, as shown in Figure S5. The response time is defined as the duration required for the
sensor to reach 90% of its final stable resistance upon exposure to the target gas. Conversely,
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the recovery time refers to the time needed for the sensor to return to 10% of its baseline
resistance after the removal of the target gas.

 

Figure 6. (a) Sensor responses as a function of their operating temperature toward 800 ppb of NO2.
Dynamic response and recovery curves for repeated exposure cycles to 800 ppb NO2 for (b) N-rGO
and (c) NiO/N-rGO. The sensor operating temperature was 100 ◦C.

The dynamic resistance changes in the as-fabricated sensors were further recorded
across a wide range of NO2 gas concentrations—50, 100, 250, 500, 800, and 1000 ppb—at an
operating temperature of 100 ◦C, as illustrated in Figure 7a,b. The calculated responses for
the N-rGO sensor were 1.18%, 1.75%, 3%, 5.9%, 7.28%, and 7.56%, respectively, while the
NiO/N-rGO sensor demonstrated responses of 10%, 12.42%, 15.8%, 22.1%, 28.25%, and
33.63%, respectively. Both sensors exhibited stable and reproducible sensing responses, as
evidenced by their small standard deviation errors on the order of 10−4 [42].

Notably, as depicted in Figure 7c, both sensors demonstrated the capability to detect
NO2 concentrations below 50 ppb, a value significantly lower than the threshold limit
of 0.2 ppm (200 ppb) for an 8 h time-weighted average (TWA) recommended by the
American Conference of Industrial Hygienists (ACGIH). The NiO/N-rGO sensor showed a
noticeably enhanced response for each exposure to NO2, outperforming the N-rGO sensor
by approximately five orders of magnitude. This significant improvement highlights the
remarkable influence of NiO nanoparticles on enhancing the responsiveness of the N-rGO
sensing film to NO2 gas.

The enhanced sensing performance of the NiO/N-rGO sensor can be attributed to the
large surface area of the NiO/N-rGO nanohybrids, which promotes efficient charge carrier
transfer between NO2 molecules and the hybrid material. Additionally, XRD and Raman’s
analysis confirmed the excellent crystallinity of NiO, along with the presence of oxygen
vacancies, which may enhance electron mobility and strengthen NiO–NO2 interactions [43].
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This synergistic effect highlights the significant role of NiO nanoparticles in improving gas
sensing capabilities, particularly for the detection of trace levels of NO2.

Figure 7. (a) N-rGO and (b) NiO/N-rGO gas sensing films’ resistance changes as a function of time
toward different NO2 concentrations at 100 ◦C. (c) N-rGO and NiO/N-rGO sensors’ response as a
function of NO2 concentration at 100 ◦C.

The sensitivity and limit of detection (LOD) are calculated following the expression
shown below:

LOD = 3 × RMSnoise
b

where b is the slope of the calibration curve (sensitivity) and RMSnoise is the root-mean-
square deviation at the baseline [44]. RMSnoise is the standard deviation of the noise level.
Under dry air, the RMS noise values were determined from 100 baseline data points before
NO2 exposure, yielding values of 9.22 × 10−2 for N-rGO and 0.77 × 10−2 for NiO/N-rGO,
respectively. Consequently, the calculated limit of detection (LOD) was approximately
39 ppb for the N-rGO sensor and 0.96 ppb for the NiO/N-rGO sensor.

As demonstrated in Table 1, the as-fabricated NiO/N-rGO sensor exhibits significantly
improved sensitivity and a lower limit of detection (LOD) (<1 ppb) compared to its pristine
N-rGO counterpart. This enhancement underscores the pivotal role of NiO nanoparticles
in augmenting the gas sensing properties of N-rGO, particularly for NO2 detection.

The gas sensing performance of N-rGO and NiO-decorated N-rGO was also evaluated
for other gases, including CO2, NH3, and ethanol. The typical resistance response dynamics
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for 100 ppm CO2, 20 ppm ethanol, and 10 ppm NH3 are presented in Figure S6, respectively
(Supplementary Information). A summary of the sensing results for each gas is provided
in the histogram in Figure 8a. The results clearly demonstrate that the incorporation of
NiO into N-rGO significantly enhances the response to NO2 while effectively reducing
cross-sensitivity to CO2, NH3, and ethanol. NiO was reported as a highly sensitive mate-
rial for VOCs such as ethanol at high operating temperatures (<300 ◦C) [22]. Therefore,
this temperature range is unsuitable for the current application. Operating at such high
temperatures could compromise the stability of the N-rGO film and contradict the goal of
achieving low power consumption for the device [45].

Table 1. Sensitivity and LOD values.

Sensors N-rGO NiO/N-rGO

Sensitivity (10−2 ppm−1) 709 2398
LoD (ppb) 39 <1

Figure 8. (a) Response histogram of N-rGO and NiO/N-rGO gas sensors to NO2 (800 ppb), Ethanol
(20 ppm), NH3 (10 ppm), and CO2 (100 ppm). (b) N-rGO and NiO/N-rGO sensors’ resistance
variations to 800 ppb of NO2 under 70% RH. Sensors operated at 100 ◦C. (c) NiO/N-rGO sensor
response to 800 ppb of NO2 gas at 100 ◦C over a 9-week period.

Ambient moisture interference is a critical parameter in evaluating the sensitivity
of gas sensors under working conditions. To investigate this, the prepared sensors were
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tested in a highly humid environment (70% RH) at 100 ◦C, alongside an 800 ppb NO2

concentration. As shown in Figure 8b, the N-rGO sensor exhibited an increased response to
ambient moisture, rising from 7.28% under dry conditions to 13.89% at 70% RH. In contrast,
the NiO/N-rGO sensor showed a decreased response in the humid environment compared
to its dry condition response of 23.26%.

This observation suggests that the p-type sensitivity of N-rGO improves in the pres-
ence of NO2, likely due to water molecules promoting the adsorption of NO2 through
redox reactions. During this process, nitrogen dioxide dissociates into NO2

− and H+ ions,
facilitating the movement of H+ protons. This proton mobility decreases the resistance,
resulting in an enhanced electrical response [46]. On the other hand, the notable decrease in
sensitivity for the NiO/N-rGO sensor under high humidity can be attributed to two factors.
Firstly, the presence of water molecules inhibits the chemisorption of oxygen molecules
by covering the surface of NiO/N-rGO with adsorbed moisture. Secondly, the interaction
of water molecules with oxygen species leads to the formation of hydroxyl groups on the
sensor surface, which partially hinders the adsorption of NO2 molecules. These factors
significantly alter the sensor’s resistance and diminish its response to NO2 gas in a highly
humid environment [47,48].

All measurements were conducted over a period of 9 weeks in which, even though
a drift appeared in the value of the baseline resistance (see Figure S7 in Supporting Infor-
mation), no significant changes were observed in sensor responses (see Figure 8). This
confirms the stability of both N-rGO and NiO/N-rGO sensors in NO2 detection.

As presented in Table 2, the as-fabricated NiO/N-rGO sensor exhibits a markedly su-
perior response to trace levels of NO2 gas compared to previously reported MO/graphene-
based sensors. This improvement emphasizes the effectiveness of the synergistic interaction
between nitrogen-doped reduced graphene oxide and nickel oxide nanoparticles in enhanc-
ing NO2 gas sensing performance.

Table 2. Comparison of the performance in the detection of NO2 between this work and previously
reported results.

Material-Based Sensor T (◦C) NO2 (ppm) Response (%) Tresp/Trec (s) LOD (ppb) Ref.

NiO NPs/N-rGO 100 0.8 28.25 660/2700 <1 This work

N-rGO 100 0.8 7.28 600/2640 39 This work

SnO2/rGO 150 100 97.24 14/509 1000 [49]

NiO NS/rGO 200 1 ~670 - - [50]

ZnO/rGO 110 2.5 33.11 182/234 5 [51]

NiO Honeycomb 200 20 57.3 - 20 [52]

CuO/rGO RT 20 58.1 30/- 1000 [53]

ZnO/SnO2/rGO RT 5 141 33/92 - [54]

4. Discussion

The interaction mechanism between the NiO/N-rGO sensing film and NO2 gas
molecules is further elucidated in Figure 9.

To begin, it is essential to describe the systematic interaction between pristine N-rGO
and NO2 molecules. Upon exposure to an oxidizing gas like NO2, the resistance curves
exhibit a p-type response, consistent with the intrinsic behavior of reduced graphene oxide
(rGO) as a p-type semiconductor [55]. Nitrogen doping, as an element from Group V, en-
hances n-type conduction in rGO by incorporating pyrrolic, pyridinic, and graphitic bonds
within the graphene basal plane and donates one p-electron to the aromatic π system [10].
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This nitrogen doping introduces excess electrons, promoting stronger interactions with
NO2. Furthermore, nitrogen atoms can bind with the oxygen atoms of NO2 molecules [56].
In contrast, this study demonstrates that N-rGO exhibits a p-type response toward NO2,
confirming its p-type semiconducting behavior. This phenomenon can be attributed to
the interaction between NO2 molecules and the aromatic π-system of N-rGO, where ni-
trogen dopants (as verified by EDS analysis) play a crucial role. It is hypothesized that
NO2 molecules withdraw electrons from the π-system at the nitrogen-doped sites, thereby
reinforcing the p-type semiconducting behavior of N-rGO. As a result, when N-rGO reacts
with NO2, its Fermi level shifts closer to the valence band, increasing the number of holes in
the valence band and thus causing a significant decrease in sensor resistance upon exposure
to nitrogen dioxide.

Figure 9. Formation of core–shell structures of charge carriers in NiO to (a) air (O2), (b) NO2, and
(c) the sensing mechanism of NiO/N-rGO sensitivity to NO2 at 100 ◦C. At the interface between
p-type N-rGO and p-type NiO, a Hole Accumulation Layer (HAL) forms in both cases under air or in
the presence of NO2.
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Turning to the NiO/N-rGO sensing film mechanism, Figure 9 illustrates the sequential
interactions. Initially, as shown in Figure 9a, when the sensing film is exposed to air, oxygen
molecules are adsorbed onto the surface of NiO nanoparticles (NPs). At an operating
temperature of 100 ◦C, these oxygen molecules are ionized into O2

− and O− species. On
the p-type NiO surface, these ionized oxygen species attract the majority carriers (holes),
forming a well-defined Hole Accumulation Layer (HAL).

In the presence of NO2 gas, as depicted in Figure 9b, the adsorbed NO2 molecules act
as strong electron acceptors and capture electrons from the p-type NiO, forming NO2

−.
This process significantly increases the hole concentration in the NiO NPs, leading to an
expansion of the HAL. Consequently, the potential barrier height decreases due to the high
electron affinity of NO2, which surpasses that of oxygen.

Furthermore, as illustrated in Figure 9c, the hybrid configuration of N-rGO sheets
and NiO nanoparticles facilitates the formation of a p-p junction. N-rGO may donate
electrons to the NiO NPs, enhancing the binding with NO2 and O2 and further widening
the depletion layer [57]. Additionally, nitrogen-doped rGO contains active sites, such as
nitrogen dopants not bound to NiO NPs, which provide further interaction opportunities
with NO2 gas. N-rGO also serves as an efficient charge transport channel due to its high
carrier mobility, enabling faster electron transfer to the electrodes for collection.

These attributes collectively endow the NiO/N-rGO nanohybrids with exceptional NO2

sensing performance and enhanced sensitivity, stability, and carrier transport efficiency.

5. Conclusions

In summary, we have successfully prepared a NiO/N-rGO nanohybrid-based NO2

gas sensor based on an alumina transducer substrate using facile and inexpensive routes.
The sensing materials were widely investigated for their main structures and analyzed
using SEM, TEM, XRD, and Raman techniques. Interestingly, NiO NPs were well attached
to the surface of N-rGO, giving insights into the sensing mechanism, as confirmed by
characterization results. Accordingly, the NiO/N-rGO sensor exhibited excellent sensitivity
toward trace amounts of nitrogen dioxide (NO2) at a moderate operating temperature of
100 ◦C. This represents the first demonstration of a high-yield synthesis technique that
produces NiO/N-rGO nanohybrids, which can be readily deposited on a wide range of
substrate materials. In the first test, the sensor showed a very high selectivity toward NO2

(the other gaseous species tested were CO2, ethanol, and NH3). Consequently, NiO NPs
proved their potential for boosting the sensitivity of N-rGO toward NO2 gas, thanks to
the p-p junctions created that facilitate carrier conduction, as explained by the underlying
sensing mechanism. The nanomaterial presented robust performances such as a high
sensitivity and very low limit of detection, showing high prospects for being integrated in
the next generation of advanced chemoresistive sensors.
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sensors toward 800 ppb of NO2 at room temperature and 150 ◦C; Figure S5: Response and recovery
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Abstract: The blood–brain barrier (BBB) is key to the regular functioning of the central
nervous system. The dysfunction of the BBB has been described in various neurological
disorders, including schizophrenia. Schizophrenia (SCZ) is a chronic psychiatric disorder
described by hallucinations, delusions, and negative symptoms. The Olanzapine (OLZ)
drug is an electroactive species, and its levels can be monitored using electrochemical sen-
sors. The detection of OLZ was demonstrated previously by using electrochemical sensors,
and this technique can be used to monitor the levels of OLZ in real time. The challenge is
to identify the permeability of OLZ through the BBB, so a replica model was designed with
the BBB based on a Transwell membrane seeded with endothelial cells. A microfabricated
electrode consisting of a 3 mm Au disk was modified with platinum black; this enables
higher selectivity of electrochemical signals from OLZ. The dose–response of OLZ was
characterized in phosphate buffer saline solution (10 mM, pH 7.4) by adding 20–200 nM (in
steps 20) of OLZ stock solution. The observed chronoamperometric electrochemical signals
showed an increasing current at 0.45 V vs. Ag/AgCl with an increasing OLZ concentration.
The controls for the experiments were performed in phosphate-buffered saline solution
(10 mM, pH 7.4). The detection limit was calculated as 9.96 ± 7.35 × 10−6 nM from the cal-
ibration curve. The membrane permeability of the OLZ drug tested with five SCZ patients
was monitored by studying the TEER measurements and permeability rate constant data.

Keywords: olanzapine; platinum black; blood–brain barrier; electrochemical sensors;
schizophrenia

1. Introduction

Olanzapine (2-Methyl-4-(4-methyl-1-piperazinyl)-10H-thieno[2,3-b][1,5]benzodiazepine)
is an antipsychotic drug used for schizophrenia (SCZ) diseases such as alogia, anhedonia, avoli-
tion, and other psychotic diseases [1–3]. Olanzapine (OLZ) is a widely used second-generation
antipsychotic drug for the treatment of schizophrenia and bipolar disorder due to its broad-
spectrum efficacy and fewer side effects compared to first-generation antipsychotics [2,4–6].
Schizophrenia is a multifactorial disease that can be treated most effectively using drugs that
interact with multiple neurotransmitter systems [3,6,7]. Olanzapine is one of these drugs and
shows a high affinity for neurotransmitters such as dopamine D1, D2, D4, serotonin 5-HT2A,
5-HT2C, 5-HT3, α1-adrenergic histamine H1, and muscarinic receptors [8–11].
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The pharmacological action of OLZ largely depends on its ability to cross the blood–
brain barrier (BBB) efficiently and interact with dopamine and serotonin receptors within
the central nervous system (CNS) [12]. However, predicting its BBB permeability and sys-
temic responsiveness remains a significant challenge in drug development and therapeutic
optimization [13,14]. The role of the BBB is to control the transportation of various metabo-
lites, which consist of amino acids, lipids, peptides, nucleic acids, carbohydrates, vitamins,
and minerals, along with drugs used for CNS-related disease treatment, between the blood
and brain compartments. In this way, the BBB acts as both a safeguard and preserves the
interstitial conditions of the CNS [15]. It remains unclear to what extent OLZ, particularly
at dosages near the upper limit of its therapeutic range, influences the function of BBB cells.
Such effects may have significant implications for the transport of OLZ across the BBB, its
pharmacokinetics, and its overall impact on CNS function and clinical outcomes. Notably,
OLZ concentrations comparable to those observed in the serum of patients receiving high
doses have been shown to induce substantial changes in BBB permeability [16,17]. Psychos-
timulant drugs of abuse alter BBB function and increase permeability, likely contributing to
their associated neurotoxicities. For instance, acute administration of 5 mM chlorpromazine
increases the permeability of the BBB to 59Fe3+, mannitol, and inulin [18,19]. This observed
effect suggests a breach in the BBB at a drug concentration comparable to that occasionally
detected in human serum (3 mM, 1000 ng/mL). Detecting OLZ in Transwell systems seeded
with cells is crucial for understanding its pharmacokinetics and pharmacodynamics at the
cellular level [20]. Accurate measurement of OLZ concentrations in this in vitro model
helps to study its cellular uptake, distribution, metabolism, and potential cytotoxic effects.
This information is vital for optimizing dosing regimens and improving therapeutic out-
comes. Wang et al. investigated the penetration of OLZ into mice brains [16]. The results
indicated that the expression of p-glycoprotien in the BBB significantly limits the penetra-
tion of olanzapine into the central nervous system. Moreover, the OLZ concentration was
analyzed using the HPLC technique, which is a very expensive tool and time-consuming
analysis. Traditional methods to assess BBB permeability, such as in vivo models and
in vitro cell-based assays, often involve labor-intensive and time-consuming protocols [21].
Among in vitro techniques, the measurement of transepithelial electrical resistance (TEER)
has been a cornerstone for evaluating BBB integrity, yet it lacks the precision to quantify
drug penetration rates [22–24]. Developing sensitive, cost-effective, and reproducible ana-
lytical platforms is essential to overcome these limitations. Numerous analytical techniques
have been reported for the quantification of OLZ in pure as well as in dosage form. These
include high-performance liquid chromatography (HPLC) [9,25–27], mass spectroscopy
(MS) [26], gas chromatography (GC) [28], GC-MS and liquid chromatography coupled with
MS [26,29], spectrophotometry [30], and electroanalytical techniques [31] and in combi-
nation with these techniques [32]. However, traditional chromatographic, spectroscopic,
and analytical methods exhibit several limitations, including low sensitivity, high sample
volumes, expensive equipment, complex sample pretreatment and dilution requirements,
and time-intensive extraction and separation procedures. In contrast, electroanalytical
methods offer notable advantages, such as rapid response, simplicity, cost-effectiveness,
broad applicability in both qualitative and quantitative analyses, high accuracy, and the po-
tential for miniaturization. These distinctive attributes have led to the widespread adoption
of electrochemical methods for the analysis of environmental and pharmaceutical samples
in recent years.

There are different materials used for olanzapine estimation by electrochemical tech-
niques. Azab et al. used polyethylene glycol and silver nanoparticles to improve the
sensitivity of the carbon paste electrode for electrochemical estimation of OLZ [33]. Ahmed
et al. used the voltammetric technique to determine olanzapine in tablets and human urine
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samples with modified carbon paste electrodes by incorporating gold nanoparticles and
glutamine in a micellar medium [34]. Platinum-black-modified electrodes, in particular,
offer enhanced surface area and catalytic activity, making them highly suitable for detecting
low-concentration analytes [35–39]. Previous studies have demonstrated the utility of
such sensors in monitoring small-molecule drugs, but their application in antipsychotic
permeability assessments, especially for OLZ, remains unexplored.

In our previous study, the OLZ was analyzed by an electrochemical technique using
platinum-black-modified microelectrodes [35]. The OLZ content in undiluted serum with
a limit of detection (LOD) of 28.6 ± 1.3 nM and a sensitivity of 0.14 ± 0.02 μA/cm2 nM
was analyzed. In this study, platinum-black-modified electrodes were utilized to monitor
OLZ concentrations across an in vitro BBB model. The sensor-based data were corre-
lated with TEER measurements to provide insights into OLZ permeability dynamics.
The present work on the OLZ sample diluted with organic solvent achieved an LOD of
9.96 ± 7.35 × 10−6 nM and a sensitivity of 0.027 ± 0.001 μA/cm2 nM. In this study, the per-
meability of OLZ through the BBB was investigated. The OLZ concentration was analyzed
using an electrochemical technique using the platinum-black-modified electrode.

2. Materials and Methods

The following chemicals and materials are used in the experiment: OLZ (CAS num-
ber: 132539-06-1, Sigma-Aldrich, College park, MD, USA), sodium chloride (CAS number:
7647-14-5, Merck, Nantong, China), 2-propanol (CAS number: 67-63-0, Bio-Lab, Ltd.,
Jerusalem, Israel), potassium hexacyanoferrate (II) trihydrate (‘Ferrocyanide,’ CAS number:
14459-95-1, Merck, Darmstadt, Germany), Dihydrogen hexachloroplatinate (IV) hexahy-
drate (chloroplatinic acid; CAS number: 26023-84-7, Alfa Aesar, Petach Tikva, Israel),
potassium hexacyanoferrate(III) (‘Ferricyanide,’ CAS number: 13746-66-2, Merck, Darm-
stadt, Germany), 99% Lead(II) acetate trihydrate (lead acetate; CAS number: 6080-56-4,
Alfa Aesar, Petach Tikva, Israel), hydrochloric acid 32% (CAS number: 7647-01-0, Bio-
Lab, Ltd, Jerusalem, Israel), di-sodium hydrogen phosphate dehydrate (CAS number:
10028-24-7, Merck, Raanana, Israel), sodium dihydrogen phosphate dihydrate (CAS num-
ber: 13472-35-0, Merck, Darmstadt, Germany), acetone (CAS number 67-64-1, Sigma-
Aldrich, Darmstadt, Germany), and deuterium- depleted water (>18 MΩ) from Millipore
(Millipore system, Thermo Scientific, Waltham, MA, USA). The solutions were diluted us-
ing PBS solution (10 mM, pH 7.4). The electrochemical experiments were conducted using
the three-electrode system, a platinum wire counter electrode (catalog number: 012961,
ALS Co., Ltd, Tokyo Japan), an Ag/AgCl reference electrode (catalog number: 011464, BAS,
Inc., Kent Avenue, West Lafayette, USA), and an in-house fabricated gold electrodes on a
glass substrate as the working electrode.

The OLZ solutions were prepared in 2-propanol [35] and stored at −20 ◦C. The calibra-
tion was performed by mixing the OLZ solution with PBS (10 mM, pH 7.4). The preparation
of the platinum black solution [40], fabrication of the electrodes, and electrodeposition of
the platinum black solution are elaborated on in the Supplementary File. The effective
surface area of the platinum-black-modified electrodes was calculated using the Randles–
Sevick relationship [41,42] is 5.23 × 10−2 ± 2.3 × 10−3 cm2, which is higher than the bare
Au electrode, 3.81 × 10−2 ± 1.2 × 10−3 cm2. The higher surface area is due to non-identical
and uneven roughness on the surface of the platinum black [43].

The induced pluripotent stem cells are collected from five different cell lines (Labelled
as Line 1, 3, 5, 7, and 9) and used to prepare brain microvascular endothelial cells. These
cells were transferred to the Transwell to identify the movement of OLZ through them
to analyze the effect of the OLZ drug on different individual lines. The preparation of
the Transwell is explained schematically in Figure 1. The samples were collected at five
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different times (0, 3, 6, 9, and 12 min) from the basolateral side. We collected a drug
sample immediately after introducing it in the upper chamber to determine its initial
concentration. Detecting the concentration of drugs that permeate from top to bottom was
the objective. Hence, we collected and detected drug concentrations in the lower chamber.
The electrochemical behavior of the OLZ was measured using chronopotentiometry before
and after inducing the drug for all the individual lines at different concentrations with
different potentials.

Figure 1. Schematic of preparing the BBB membrane from human induced pluripotent stem cells
in a dual Transwell separated by a membrane and the introduction of OLZ with electrochemical
measurements.

TEER measurements on Transwells were taken using an STX2 electrode and an EVOM2
Voltammeter (World Precision Instruments, Sarasota, FL, USA). This epithelial voltammeter
uses two pairs of electrodes, one applying current and the other measuring the output
voltage, on each side of a monolayer, for example, a Transwell membrane [23]. After 24 h
of plating iBMECs onto Transwells, TEER measurements were taken every 24 h for three
subsequence days. The STX2 electrode was positioned within the well and the resistance
(Ω) was taken once equilibrated, before repeating in two more locations on each Transwell,
to calculate the mean resistance. The resistance of the BBB is measured to identify the
dose requirement for different individuals. The correlation between the TEER value and
permeability was investigated to indicate the effect of OLZ on different individuals.

The platinum-black-modified electrodes were used to detect OLZ, and their electro-
chemical signals were recorded for the stock solution and solutions obtained from the
Transwell. A chronoamperometry (CA) technique with a potential of 0.45 V was used
to calibrate the response of OLZ. From the calibration curve, the LOD and sensitivity
were analyzed. The response and the OLZ concentration curve were plotted to find the
slope of the linear regression, which shows the sensitivity, and three standard deviations
give the LOD. The modified electrodes were used to test different concentrations of OLZ
ranging from 20 to 200 nM in steps of 20 nM with three modified electrodes. These
three platinum-black-modified electrodes were used for measuring the OLZ signals with
10 repeats. The background signal was taken from 10 mM PBS solution with 40 repeats.
After every measurement, the electrodes were cleaned with deionized water and dried
using nitrogen gas.
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3. Results and Discussion

3.1. Olanzapine Sensing

The sensing performance of the platinum-black-modified electrode for olanzapine was
characterized with cyclic voltammetry (CV) of 100 nM OLZ in PBS solution and compared
with CV of PBS solution (Figure 2A). The plot showed the peak around 0.4 V. To further
characterize the OLZ, the chronopotentiometry technique was used by measuring current
at three different potentials 0.35, 0.4, and 0.45 (Figure 2B). The response at 0.45 V shows a
linear correspondence with the increase in OLZ concentration from 20 nM to 200 nM. So, the
response at 0.45 V is considered for further analysis and sensitivity, and LOD calculations
(Figure 2C) from Equations (1) and (2).

LOD = (3 × Std. Dev of PBS)/Slope of the analyte from the calibration curve (1)

Error of LOD = (3 × Std. Dev × Error of slope)/(slope)2 (2)

Figure 2. (A) Cyclic voltammetry of 100 nM OLZ in PBS solution and PBS solution, (B) Chronoamper-
ometric current measured at 20 s for different concentrations of OLZ with three different potentials
(0.35, 0.4, and 0.45 V), (C) Dose–response plot for platinum-black-modified electrode at 0.45 V.

The sensitivity of the measured response was 0.027 ± 0.001 μA/cm2, and LOD was
9.96 ± 7.35 × 10−6 nM.

3.2. Rate Constant for Precision Dosing of OLZ

The platinum-black-modified electrodes were used to test the response from the sam-
ples obtained (Transwell). The samples are obtained from schizophrenia patients. This
approach to SCZ patients can contribute to understanding the molecular mechanism of SCZ
and the pathophysiology of treatment resistance. Human-induced pluripotent stem cells
(hiPSCs) give an interesting new road to investigate the function of BBB disruption [44].
We aimed to generate iPSCs from five SCZ patients. We utilized these iPSCs to induce
pluripotent stem cell-derived brain microvascular endothelial cells (iBMECs) and devel-
oped in vitro models for the BBB to study the function in SCZ compared to HC. iBMECs
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were seeded on Transwell and barrier properties were evaluated by measuring TEER and
paracellular permeability. The TEER values commonly examined the permeability of the
epithelial and endothelial cell monolayers [45]. The values of TEER state the resistance
to an electrical current passed through the cell monolayer to assess permeability to small
inorganic ions [45]. Table 1 illustrates the variation in TEER values for different lines and
also the effect of OLZ on the TEER value for all the membranes. Reduced TEER values
indicate higher permeability and impaired barrier integrity. The permeability increased
with the increase in OLZ concentration, which is the reason for the higher current observed
in CA plots.

Table 1. TEER value of each line taken before the permeability of OLZ and after the permeability of
the OLZ.

Lines
Line 1

(Ω cm2)
Line 3

(Ω cm2)
Line 5

(Ω cm2)
Line 7

(Ω cm2)
Line 9

(Ω cm2)

Before Permeability 1879 2689 2877 3145 2851

After Permeability 1496 2371 2613 2773 2579

The media were collected from five different patients from the bottom of the Transwell
after adding OLZ drug at 100 nM concentration. The samples were collected at five different
times (0, 3, 6, 9, and 12 min) from the time of OLZ addition. These samples were tested for
OLZ response using platinum-black-modified electrodes for all the patients. Figure 3 shows
the results of the measured current for different samples at 20 s of chronoamperometry
(CA). Lower TEER values exhibit a high transfer of OLZ through the membrane, which
is reflected in the higher current in CA. Line 1 shows a higher current, which has a lower
TEER value compared to other cell lines [46].

Figure 3. Current data from chronoamperometry measured at 20 s for different lines at 0.45 V.

The CA data obtained for all the cell lines at different times (0, 3, 6, 9, and 12 min)
were normalized using the following equation. After normalization, the current at 20 s was
used in Figure 4.

Inormalized =
Iij√
ΣjI

2
ij

(3)

where ‘i’ is the time [min] and ‘j’ represents current [A].
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Figure 4. Permeability rate constant calculation of 5 SCZ patient’s cell lines (1, 3, 5, 7, and 9) from the
normalized current data obtained after the drug transportation through the membrane.

The permeability rate constant is calculated using the normalized response plot of the
platinum-black-modified electrode (Equation (5)) [47,48].

Normalized concentration =
Ct

C0
= 1 − e−kt (4)

Here, C
C0
(t → ∞) = 1 C

C0
(t = 0) = 0

asC(t) ∝ I(t), Inormalized = 1 − e−kt (5)

where Ct is the concentration of OLZ that passed the barrier (bottom area), C0 is the initial
concentration of OLZ that was in the top area, I is the response current [A], k is the rate
constant, and t is the time [min].

The above equation can qualitatively describe drug transport through a membrane,
particularly in scenarios where drug accumulation follows first-order kinetics. The equation
assumes a single-compartment model and may not fully capture complex active transport
mechanisms or saturation kinetics (e.g., facilitated diffusion or carrier-mediated transport).
The rate constant describes how fast the drug permeates through the membrane. It is
directly influenced by factors such as membrane thickness, drug lipophilicity, surface area
available for diffusion, and drug concentration gradient [49,50]. If passive diffusion is
the primary transport mechanism, this equation provides an exponential growth model
for drug accumulation. The model is plotted with an orthogonal distance regression
iteration algorithm to fit the normalized current data from each line. Figure 4 shows the
fitting of normalized current data with Equation (5) to determine the permeability rate
constant. The nonlinear fitting of the data (Figure 4) for all the cell lines is not the best fit;
however, to calculate the permeability rate constant, we considered the drug accumulation
as first-order kinetics and calculated the rate constant. The rate at which drug transport
through the membrane approaches equilibrium is determined by the permeability rate
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constant. A higher k means faster transport. The k values determined from the nonlinear
fitting (Figure 4) are plotted along with TEER values in Figure 5 for the five SCZ patients
(cell lines 1, 3, 5, 7, and 9). The data show that SCZ patients of lines 1 and 5 have faster
transportation of the OLZ drug through the membrane, whereas 3, 7, and 9 cell line
patients have slower transportation of the OLZ drug. The TEER value is a measure of ionic
permeability through intercellular clefts [45]. Estimation of TEER guarantees noninvasive
determination, which can also evaluate the barrier integrity of epithelial or endothelial
cells at various stages of differentiation and growth [23]. The TEER is influenced by other
parameters, including medium composition, temperature, and use of the equipment [51].
These parameters may also cause changes in the TEER values. The correlation between
the TEER values and the permeability rate constant for the transport of the OLZ drug
across the membrane is illustrated in Figure 5. Based on the TEER data and the predicted
permeability rate constants, the membrane permeability of OLZ across the cell lines derived
from five SCZ patients follows the order: Line 7 < Line 9 < Line 3 < Line 5 < Line 1.
However, it is important to note that the TEER values and permeability rate constants do
not exhibit a consistent trend across all cell lines; moreover, they are from five different SCZ
patients. This discrepancy can be attributed to differences in the experimental methods
and instrumentation used for data collection.

 

Figure 5. Correlation between the TEER value and permeability rate constant of OLZ.

For TEER measurement, the positioning of the chopstick electrodes is critical and
requires careful attention, as improper placement can lead to inaccurate resistance readings
when compared to measurements obtained through other techniques, such as electrochem-
ical analysis using a potentiostat. In some cases, it may be difficult to accurately assess
high drug permeability using TEER measurements, due to errors introduced by inaccurate
resistivity values. Furthermore, the integrity of the cell monolayer may be compromised
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during transfer procedures or due to fluctuations in environmental conditions, such as
temperature and pH, which can lead to significant variations in TEER measurements.

Additionally, the reproducibility of TEER measurements using chopstick electrodes
presents a notable challenge, as variations in electrode positioning, the limited surface
area of the electrodes, and their geometry relative to the membrane can all contribute to
inconsistencies in the data [52]. These factors complicate the comparison of TEER values
and permeability rate constants across different patients. In this study, we attempted to
correlate TEER with the permeability rate constant, which was estimated by fitting current
data to Equation (5); however, the fit was not optimal. This poor fitting further explains
why TEER values and permeability rate constants did not exhibit a strong correlation in
this analysis. Based on the current data, a decrease in the TEER value shows that the barrier
has become less intact, which means higher permeability and the same trend was observed
in Figure 5, where Line 1 has a higher rate constant and lower TEER value.

4. Conclusions

This study highlights the potential of electrochemical sensors for predicting human
responsiveness to antipsychotic drugs. Platinum-black-modified electrodes were employed
to detect the concentration of OLZ after their penetration through the BBB in various
cell line models. The effective surface area of the platinum-black-modified electrodes is
5.23 × 10−2 ± 2.3 × 10−3 cm2, which is four times higher than the bare gold electrode,
3.81 × 10−2 ± 1.2 × 10−3 cm2. The dose–response of OLZ with platinum-black-modified
electrodes was characterized using chronoamperometric electrochemical signals, which
showed an increasing current at 0.45 V vs. Ag/AgCl with an increasing OLZ concentration.
The detection limit of OLZ was calculated as 9.96 ± 7.35 × 10−6 nM. The OLZ concentration
data were utilized to predict its permeability rate, which was further compared with the
TEER values. Based on the TEER values and predicted permeability rate constant data,
the decreasing order of the membrane permeability of the OLZ drug tested with five
SCZ patients is Line 1, Line 5, Line 3, Line 9, and Line 7. Here, we were able to monitor
the olanzapine permeability across the membrane, which demonstrates the efficacy of
platinum-black-modified electrodes as a robust analytical tool for evaluating antipsychotic
drug transport.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s25072266/s1, Figure S1: Schematic representation of the fabrication
of gold electrodes. Figure S2: (A) Electrodeposition of platinum black using chronopotentiometry;
(B) CV measured in 5 mM ferrocyanide/ferricyanide at different scan rates (0.05 to 0.5 V/s) using
bare gold electrode; (C) CV measured at different scan rates for the platinum-black-modified electrode;
plot of oxidation peak current vs. square root of the scan rate of (D) bare gold and (E) platinum-
black-modified electrode; and (F) Optical microscopic image of platinum-black-modified electrode.
Reference [53] is cited in the Supplementary Materials.
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Highlights:

What are the main findings?

• A multi-task residual network (MRCA) which generates dynamic feature depending
on the cross-fusion module was invented to perform VOCs gas component identifica-
tion and concentration prediction.

• The dynamic weighted loss function, which can dynamically adjust the weight accord-
ing to the training progress of each task.

What is the implication of the main finding?

• The MRCA model showed a high classification accuracy of 94.86%, as well as achieving
an R2 score up to 0.95.

• Using only 35% of the total data length as input data leads to excellent identifica-
tion performance.

Abstract: Traditional volatile organic compounds (VOCs) detection models separate com-
ponent identification and concentration prediction, leading to low feature utilization and
limited learning in small-sample scenarios. Here, we realize a Residual Fusion Network
based on multi-task learning (MTL-RCANet) to implement component identification and
concentration prediction of VOCs. The model integrates channel attention mechanisms and
cross-fusion modules to enhance feature extraction capabilities and task synergy. To further
balance the tasks, a dynamic weighted loss function is incorporated to adjust weights
dynamically according to the training progress of each task, thereby enhancing the overall
performance of the model. The proposed network achieves an accuracy of 94.86% and an
R2 score of 0.95. Comparative experiments reveal that using only 35% of the total data
length as input data yields excellent identification performance. Moreover, multi-task
learning effectively integrates feature information across tasks, significantly improving
model efficiency compared to single-task learning.

Keywords: gas sensor; multi-task learning; mixed gases; feature fusion
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1. Introduction

Volatile organic compounds (VOCs) are widely present in industrial production, ve-
hicle emissions, and building materials, posing both short-term and long-term health
risks [1–5]. Therefore, effective monitoring and control of VOCs are crucial for environ-
mental protection and human health [6–12]. Compared to spectroscopy [13–18] and mass
spectrometry [19–22], which have high equipment and environmental requirements [23],
artificial olfaction technology [24] has gained widespread attention in recent years due to
its miniaturization, intelligence, and low cost [25].

However, judging from the recent research trends of artificial olfaction technology, the
reason why it has stagnated is due to the poor selectivity [26,27] of gas sensors, which leads
to cross-sensitivity issues [28,29]. Recently, advanced artificial intelligence has been acceler-
ating the development of artificial olfactory systems [30–34]. For example, Xia et al. [35]
used Principal Component Analysis for feature extraction in a mixed gas classification task,
achieving 96.88% accuracy with K-Nearest Neighbors (KNNs). Li et al. [36] improved gas
concentration prediction by combining Variational Mode Decomposition with Extreme
Learning Machine. Martono et al. [37] evaluated multiple algorithms for blood alcohol
concentration prediction, with LightGBM achieving the best performance (accuracy: 0.908,
F1 score: 0.617), highlighting the effectiveness of blood gas analysis for alcohol concentra-
tion estimation.

While traditional machine learning methods achieve gas detection, their reliance on
manual feature extraction limits generalizability. Deep learning approaches like Convolu-
tional Neural Network (CNN) [38] and Recurrent Neural Network (RNN) [39] have gained
traction for automatic feature extraction, excelling in gas identification and concentration
prediction. Chu et al. [40] transformed gas response data into grayscale images, effectively
distinguishing CO and NO2 under varying humidity. Song et al. [41] used LASSO-RNN for
mine gas concentration prediction, reducing mean squared error (MSE) (0.0029) and mean
absolute error (MAE) (0.0084). Zeng et al. [42] improved mixed gas concentration regression
with a dual-channel Temporal Convolutional Network (TCN), surpassing Long Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU), and standard TCN in prediction accuracy.

With deep learning achieving remarkable success, researchers have shifted focus to-
ward faster and more efficient detection methods. Li et al. [43] proposed a low-cost method,
which uses only 60% of rising-phase response data, enabling mixed gas concentration
prediction within 10 s. However, traditional qualitative and quantitative gas analysis relies
on separate systems, rendering them impractical for resource-constrained portable devices.
Multi-task learning (MTL) has emerged as a promising solution. Wang et al. [44] intro-
duced an MTL-CNN that simultaneously identifies gas types, concentrations, and states of
12 VOCs. Wang et al. [45] proposed LSTM-Attention combined with MTL (MTL-LSTMA),
which achieved the classification accuracy and concentration prediction up to 98% within
30 s. Fu et al. [46] developed a real-time Progressive Prediction Algorithm integrating TCN
and GRU, enabling early detection of harmful gases with enhanced speed and accuracy.
Kang et al. [47] applied a multi-task CNN with a 10 s time window to classify and predict
concentrations of five gases.

However, until now, there is still the challenge of improving task collaboration and
feature utilization in multi-task learning. In this study, we proposed the Residual Fusion
Network based on multi-task learning (MTL-RCANet) method, which aims to simultane-
ously perform gas identification and concentration prediction while facilitating efficient
information exchange between different tasks. The method dynamically extracts local
peak features from gas response data through time windows, which enhances the model’s
ability to focus on key features. It introduces a channel attention mechanism and a cross-
fusion module, which strengthen task collaboration by sharing information between tasks.
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Additionally, a dynamic weighted loss function is used to adjust the weight of each task
based on its specific requirements, further improving the overall performance of the model.
This approach not only improves the utilization of multi-task parameters but also pro-
vides an efficient and reliable solution for resource-constrained scenarios that require
rapid identification.

2. Gas Experiment

The sensors used in this experiment were provided by Henan Weisheng Technology,
with SnO2 as the sensing material. Table 1 presents the gas response characteristics of
each sensor. During the experiment, ethanol and n-propanol were mixed at different
concentrations. As shown in Figure 1, a total of seven tests were conducted, including two
single-gas response tests and five mixed-gas response tests with varying concentration
ratios. Each test yielded five gas sensor response data. In the mixed-gas experiments, the
concentration of one gas remained constant, while the other increased gradually from 0
to 100 parts per million (ppm) in increments of 20 ppm. G1 represents the experimental
scheme for pure ethanol gas, G2 represents the experimental scheme for pure 1-propanol
gas, and G3–G7 represent the experimental schemes for mixtures of ethanol and 1-propanol
gases. Each point in the figure corresponds to a specific ethanol-to-1-propanol concentration
ratio. Throughout the experiment, fixed time intervals were used to define the response
and recovery phases in gas response testing. In the gas concentration gradient cycling
response test, the sensor was exposed to the target gas for 5 min, followed by a 5 min
recovery period in air. The gas sampling frequency was set to 2 Hz, and each test was
repeated at least five times, resulting in a total of 175 gas sensor responses.

Table 1. Sensor model and corresponding response gases.

Model Number Response Gas

MQ-2 Liquefied Gas, C3H8, H2
MQ-3 C2H5OH
MQ-4 CH4
MQ-5 C4H10, C3H8, CH4
MQ-6 C3H8, C4H10
MQ-7 CO
MQ-8 H2
MQ-9 CO

Figure 1. Gas experimental setup.

Figure 2a–g presents the time-resistance/response curves of the gas sensor array for
each experimental group. Specifically, Figure 2a and 2b depict the sensor array’s response
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to ethanol and n-propanol, respectively, while Figure 2c–g illustrate the responses to their
mixed gases. The response is calculated as follows:

s =
R0

R
(1)

where R0 is the resistance of the gas sensor in air, and R is the resistance of the gas sensor
in the measured gas.

Figure 2. (a) Sensor output for single ethanol gas; (b) response curve for single n-propanol gas;
(c–g) response curves for the mixed gases of both.

3. Method

3.1. Data Preprocessing

As shown in Figure 3, the data preprocessing in this study involves three key stages:
segmenting the response signals, selecting relevant features, and normalizing and reshaping
the feature matrix.

Figure 3. Data preprocessing flow.

3.1.1. Response Fragment Segmentation

The gas response data undergo peak identification, where local peaks are classified
based on a predefined threshold, which groups peaks within the threshold into the same
category. The maximum peak from each category is then selected, which serves as a
reference to segment the complete response signal. The calculation process is as follows:
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The peak detection algorithm (find_peaks) is used to identify the index set P =

{p1, p2, · · · , pn} of all local peak points in the gas response data yi, where each pj satisfies
the following:

ypj > ypj−1

∧
ypj > ypj+1 , j ∈ [1, n] (2)

Calculate the distance set between adjacent peak indices, D = {d1, d2, · · · , dn−1}, where

d = pj+1 − pj, j ∈ [1, n − 1] (3)

Set the threshold dthreshold, which is determined by the gas sampling frequency and the
response recovery time of the gas sensor (i.e., the descending phase of the response curve).
In the gas experiments of this study, the response recovery time of the gas sensor is 5 min
(corresponding to 600 sample points). Therefore, the distance between peak point indices
in each gas sensor response should be less than 600. Peak points satisfying d < dthreshold

are grouped into the same cluster, forming the final grouping set G.

G = {g1, g2, · · · , gm}, g = {pk1, pk2, · · · , pkl}, k ∈ [1, m] (4)

For each group g, identify its corresponding maximum peak index pmax:

pmax = argmax
p∈g

y[p] (5)

The set of maximum peaks is Pmax = {pmax1 , pmax2 , · · · , pmaxm}.
Using each maximum peak index pmax as a reference, set a left offset loffset and a right

offset roffset to determine the index range of each response segment. This results in the
response segment set S = {s1, s2, · · · , sm}. The determination strategy for loffset and roffset

is as follows: After identifying the maximum peak point, the left side corresponds to the
gas sensor’s response phase, while the right side corresponds to the recovery phase. In
this study, the gas sensor’s response phase lasts for 5 min (i.e., 600 sample points). The
data from the response phase will be fully utilized for feature extraction. To ensure data
sufficiency, loffset is set to 700. In the initial part of the recovery phase, we assume the
presence of “numerical features” since the final response values at the end of the response
vary for mixed gases with different concentration ratios. Therefore, roffset is set to 400.

3.1.2. Feature Selection

We apply a sliding time window with a step size of 0.5 s along the time axis to the
segmented response fragments, which allows calculating the ratio between data varia-
tion within the window and the window width. Then, extracting the segment with the
maximum ratio as the feature data. Additionally, we set the window width to a square
value (e.g., n2) to facilitate subsequent convolution operations. The calculation process is
as follows:

Rt =
Δyt

w
, Δyt =

t+w−1

∑
i=t

(yi+1 − yi) (6)

Here, t is the starting position of the time window, Δyt represents the total variation
within the current time window, w is the width of the time window, and Rt is the variation
rate of the window starting at position t. Among all the sliding time windows, the time
segment with the maximum variation rate is selected as the feature data, and the starting
position of the corresponding time window is denoted as tmax. The final feature data
segment is as follows:

ytmax = {yi | tmax ≤ i < tmax + w} (7)
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3.1.3. Feature Matrix Normalization and Reshaping

The response segment ytmax selected is normalized using the min-max normalization
method, with the formula:

ynorm =
ytmax − min(ytmax )

max(ytmax )− min(ytmax )
(8)

For each gas sensor response, the response data from individual gas sensors are first
reshaped into independent square feature layers using the reshape function. These layers
are then stacked along the channel dimension to form multi-layer feature maps, enhancing
feature extraction and analysis. As shown in Figure 3, where C represents the number of
channels, H denotes the feature layer height, and W represents the feature layer width.
The final gas compositions and their corresponding labels after preprocessing are shown
in Table 2.

Table 2. Gas composition.

Gas Type
Single

n-Propanol
Single

Ethanol
n-Propanol and Ethanol

Label 01 10 11

Finally, each gas sensor response was divided into five folds based on acquisition time
and different test groups. One fold was used as the test set, while the remaining four folds
were used as the training set, maintaining a 4:1 ratio between the training and test sets for
model training and validation.

3.2. Multi-Task Learning Model

The proposed MTL-RCANet (hereafter referred to as MRCA) model, shown in Figure 4,
consists of a multi-task residual network, a channel attention mechanism module, and a
cross-fusion module.

Figure 4. (a) Overall model architecture. (b) Channel attention mechanism module. (c) Cross-fusion module.
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3.2.1. Channel Attention Mechanism

In residual networks (ResNet), the convolution operation primarily focuses on extract-
ing deep features in spatial dimensions (H × W) but pays less attention to inter-channel
dependencies (C), which may limit the network’s ability to capture channel relationships
and impact feature representation [48]. To address this, we incorporate a channel attention
mechanism that adaptively assigns weights to each channel based on the data’s inher-
ent characteristics, emphasizing key channel features while suppressing secondary or
irrelevant ones. The details of the channel attention mechanism are as follows:

The input to the channel attention mechanism is Xi, with a shape of C × H × W,
and it consists of two branches. The first branch is retained and will be weighted after
the second branch has been computed, which highlights the key channel features. In the
second branch, the global average value Ca and the maximum value Cm are computed
separately for each channel.

Ca(c) =
1

H × W

H

∑
i=1

W

∑
j=1

Xi(c, i, j), ∀c ∈ [1, C] (9)

Cm(c) =maxH,W
i=1,j=1Xi(c, i, j), ∀c ∈ [1, C] (10)

After global average pooling and global max pooling, two 1 × 1 convolutions are
applied, with a ReLU activation layer in between, to compress and aggregate features at
the channel level, learning the correlation between channels. The final outputs are Z and V.

Z = Conv2(ReLU(Conv1(Ca))) (11)

V = Conv2(ReLU(Conv1(Cm))) (12)

The two sub-branches, Z and V, are summed and passed through a Sigmoid activation
function to output the final weight S. The weight S is then element-wise multiplied with
Xi to produce the output.

S = Sigmoid(Z + V) (13)

Output = S 	 Xi (14)

3.2.2. Cross-Fusion Module

A key challenge in multi-task learning is how to effectively sharing beneficial weight
information between tasks to enhance model performance. A typical hard parameter
sharing strategy directly shares network weights. However, this approach can be unstable,
with interfering weights dominating between tasks. In contrast, the cross-fusion module
employs a soft parameter sharing strategy, which facilitates dynamic weight sharing that
enables more flexible coordination of information flow between tasks [49]. Its core concept
is to dynamically adjust the degree of feature sharing between tasks using a learnable
weighting mechanism, allowing efficient fusion of task features. The fusion formula is
as follows: [

T′
A

T′
B

]
=

[
αA,A αA,B

αB,A αB,B

][
TA

TB

]
(15)

Here, TA and TB are the feature maps after the second convolution for the gas compo-
nent identification and concentration prediction tasks (as shown in Figure 3). T′

A and T′
B are

the new feature maps after the fusion of the two tasks. The learnable matrix α contains αA,A

and αB,B, which represent the self-preserved feature weights for tasks A and B, respectively.
αA,B and αB,A are the contribution weights from task B to task A and from task A to task B,
respectively. The matrix α is a learnable parameter that is dynamically adjusted based on
the data, with its initial state as the identity matrix.
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3.2.3. Multi-Task Residual Network

Residual neural networks have inherent advantages in parallel execution of multiple
outputs and tasks, enabling them to handle various task requirements based on shared fea-
tures. Additionally, through residual connections, they effectively preserve and propagate
feature information, improving the model’s training efficiency. In the backbone network
(excluding the channel attention mechanism and cross-fusion modules), all convolution
operations use a 3 × 3 kernel size, a stride of 1, and a padding size of 2, with ReLU as the
activation function. The design process for each layer is as follows:

1. Input Layer: After preprocessing, the shape of the gas response data is 8 × H × W
(where H = W). The number eight represents the number of input feature maps
corresponding to the number of gas sensors in the array, and H × W refers to the
height and width of the feature maps.

2. Convolutional Layer: In the backbone structure of the multi-task residual network,
the convolution kernel is set to the common 3 × 3 size. To avoid information loss
at the edges of the feature map due to convolution, the padding size is set to two,
ensuring that edge regions fully participate in feature extraction. The main purpose
of convolution is to extract deeper features, so after each convolution operation, the
number of channels doubles compared to the previous layer. For example, after the
second convolution, the number of channels increases to 32, gradually enhancing the
network’s expressive power.

3. Batch Normalization and Activation Function: To accelerate model convergence, batch
normalization is applied after each convolution operation to standardize intermediate
feature distributions. Since the length of the gas response data samples is relatively
short, pooling and dropout operations are omitted, but batch normalization helps
reduce overfitting. The ReLU activation function is chosen to improve the model’s
non-linear representation and reduce computational complexity.

4. Fully Connected Layer: After completing feature extraction and fusion for tasks A
and B, the feature maps are flattened and passed through three fully connected layers
for transformation. These layers gradually compress and map the high-dimensional
feature space, enhancing the model’s ability to represent the target task. Finally, task
A outputs gas component recognition results using the Softmax function to calculate
the probability distribution for each category, while task B predicts the concentrations
of the two gases.

4. Experimental Results and Analysis

4.1. Hyperparameter Settings

Table 3 presents the hyperparameters of the backbone network, including a batch size
of 5. Specifically, the table defines several key parameters: Map represents the number of
channels in the output feature maps generated by the convolutional operations; K denotes
the kernel size used in the convolution; S refers to the stride applied during convolution;
P indicates the padding around the feature maps during convolution; D corresponds to
the channel dimension in batch normalization. In addition, TA and TB represent the gas
component recognition and concentration prediction tasks, respectively. The term “1st
Convolutional” refers to the convolutional layer within the first residual block, whereas
“2.1st–2.2nd Convolutional” refers to the convolutional layers within the second residual
block, which are dedicated to handling tasks TA and TB. This setup ensures that each task
is processed with specific configurations to optimize their individual performances within
the network.
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Table 3. Hyperparameter list of the backbone network.

Layer Configuration Input Shape

1st Convolutional Map: 16, K: 3, S: 1, P: 2 8 × H × W
CA Module / 16 × H × W

BN, Activation D : 16, ReLU /
2.1st–2.2st Convolutional Map: 32, K: 3, S: 1, P: 2 /

BN, Activation D : 32, ReLU 32 × H × W
FC1 32 × H × W, 128 /
FC2 128, 64 128
FC3 64, 3 (TA) || 2 (TB) 64

Output TA: 5 × 3, TB: 5 × 2 /

4.2. Model Training and Validation

All experimental results are the averages from 5-fold cross-validation. The gas component
recognition task is a three-class classification, and the gas concentration prediction task is a
two-variable regression, each with distinct loss functions: cross-entropy loss for recognition and
MSE for prediction. Since the values of cross-entropy loss lie in the range [0, 1], whereas MSE
has no upper limit, the numerical difference between the two loss functions is large. A simple
addition would cause the cross-entropy loss to have little impact on the final loss. Therefore,
this study proposed a learnable dynamic weighting loss function to balance the numerical
differences between the various losses. Three learnable parameters are defined: σp for the
propane concentration prediction, σe for the ethanol concentration prediction, and σci for the
gas component recognition. These parameters can be dynamically optimized through neural
network gradient descent. The total loss function is defined as follows:

TotalLoss =
1

2σ2
p
· Lossp +

1
2σ2

e
· Losse +

1
σ2

ci
· Lossci + log10

(
σpσeσci

)
(16)

In the above formula, TotalLoss is the final total loss, Lossp is the training loss for propane
concentration prediction, Losse is the training loss for ethanol concentration prediction, and
Lossci is the training loss for gas component recognition. This adaptive mechanism addresses
the large numerical differences between the loss values, allowing for effective optimization of
all tasks during training. The term log10

(
σpσeσci

)
acts as a regularizer, preventing σp, σe, and

σe from growing or shrinking excessively, thus ensuring model stability. Figure 5 shows the
loss curves and evaluation metrics during the training and validation processes, comparing the
dynamic weighted loss function with the direct sum of individual losses.

Figure 5. (a) Overall MSE loss for both gases during the training process; (b) overall R2 value for
both gases during the validation process; (c) cross-entropy loss for gas component recognition during
the training process; (d) accuracy of gas component recognition during the validation process.
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Figure 5a,b show that while directly summing individual losses leads to faster con-
vergence, the R2 score on the validation set is about four percentage points lower than
with the dynamic weighted loss function. The dynamic weighted loss function accelerates
convergence and improves accuracy by approximately five percentage points compared to
direct summation, as shown in Figure 5c,d.

4.3. Model Performance

The experimental results for gas component identification and concentration predic-
tion are shown in Figure 6. Through 5-fold cross-validation, the model achieved 94.86%
classification accuracy and an R2 score of 0.95 for the regression task. Table 4 presents the
key evaluation metrics for both tasks, along with their standard errors.

Figure 6. (a) Confusion matrix for the component recognition task; (b) ROC curve for each gas
component classification; (c) accuracy, precision, recall, and F1 score for the classification task;
(d) comparison between the true and predicted values for propanol; (e) comparison between the true
and predicted values for ethanol.

Table 4. Model evaluation metrics.

Accuracy Std. F1 Std. MAE Std. R2 Std.

94.86% 0.03 0.94 0.03 5.40 1.26 0.95 0.03

Figure 6a presents the confusion matrix for the classification task. On average, only 2
out of 35 validation samples per fold are misclassified, while the remaining samples
are correctly identified. Figure 6b displays the Receiver Operating Characteristic (ROC)
curves for each gas component, with all gas types achieving an area under the curve
exceeding 0.98, indicating excellent classification performance. Figure 6c summarizes the
accuracy, precision, recall, and F1 score of the classification task, which are 94.86%, 95.45%,
94.86%, and 0.94, respectively. Figure 6d,e illustrate scatter plots comparing the true and
predicted values for propanol and ethanol under five-fold cross-validation. Some data
points exhibit noticeable deviations, which we attribute to data drift occurring during
long-term sample collection.

To evaluate the performance differences between the proposed model and baseline
models, we conducted a systematic comparison with various mainstream machine learning

131



Sensors 2025, 25, 2355

and deep learning models. The baseline models include traditional machine learning
methods (such as KNN, Support Vector Machine (SVM), and Random Forest (RF)) as
well as deep neural networks (such as RNN, LSTM, CNN, and ResNet). Experimental
results indicate that the proposed model surpasses all baseline models in both classification
accuracy and regression prediction precision. The corresponding results are presented in
Figure 7, while Table 5 provides a detailed comparison of each model’s performance.

Figure 7. Performance evaluation metrics of eight algorithms in 5-fold cross-validation: (a) MAE,
(b) R2 score, (c) accuracy, and (d) F1 score, with the mean values and standard errors.

Table 5. Classification and regression performance of different models.

Algo. MAE R2 Accuracy F1

KNN 6.8000 0.8164 0.9257 0.8975
SVM 27.3700 0.0914 0.7143 0.2778
RF 10.4900 0.8263 0.8971 0.8249

RNN 20.8944 0.4151 0.8400 0.8463
LSTM 20.6333 0.4397 0.8171 0.8086
CNN 8.1681 0.8712 0.9200 0.9092

ResNet 7.3927 0.8882 0.8914 0.8984
MRCA 5.3961 0.9471 0.9486 0.9449

To validate the effectiveness of multi-task learning in jointly performing gas compo-
nent identification and concentration prediction, we removed the cross-fusion module from
the MRCA model and divided it into two separate networks: MRCA-C for gas component
identification and MRCA-R for concentration prediction. Each network was trained inde-
pendently on its respective task. The performance comparison among the three models is
presented in Table 6.

Table 6. Performance comparison between multi-task and single-task models.

Algo. MAE R2 Accuracy F1

MRCA-C / / 0.9142 0.9068
MRCA-R 6.7737 0.9182 / /

MRCA 5.3961 0.9471 0.9486 0.9449
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To determine the optimal training sample length, we set different time window widths,
11, 12, 13, 14, 15, 16, 17, 19, 21, 23, 25, and 27 squared, and conducted comparison exper-
iments using CNN, ResNet, and the MRCA network. The results show that when the
sample length is 162 (i.e., 256 data points), the model performance is comparable to that of
the data with a sample length of 272 (i.e., 729 data points). This indicates that appropriately
shortening the sample length not only does not significantly reduce the model’s prediction
accuracy but can actually improve the model’s running efficiency. The experimental results
are shown in Figure 8. The pink area represents the evaluation metrics corresponding to
the optimized sample length.

Figure 8. (a–d) MAE, R2 score, classification accuracy, and F1 score of the three algorithms: CNN,
ResNet, and MRCA at different sample lengths.

4.4. Ablation Experiment

To evaluate the contribution of each module to the model’s performance, we conducted
ablation experiments by sequentially removing or modifying key modules. The three core
modules examined were the dynamic weighted loss function, the channel attention mecha-
nism, and the cross-fusion module. We hypothesize that the channel attention mechanism
enhances the model’s focus on critical features, the cross-fusion module improves feature
layer interaction and fusion, and the dynamic weighted loss function facilitates gradient
descent optimization. To verify these hypotheses, we designed the following experiments:

1. MRCA-1: The dynamic weighted loss function’s weight parameter σ is initialized based
on experience to evaluate the impact of weight initialization on model performance.

2. MRCA-2: The dynamic weighted loss function’s weight parameter σ is not initialized,
aiming to evaluate the impact of not initializing the weights on model performance.

3. MRCA-3: The total loss is calculated by directly adding the individual losses to
evaluate the impact of the dynamic weighted loss function on model performance.

4. NO Attention: The channel attention mechanism module is removed to evaluate its
impact on model performance.

5. NO Cross: The cross-fusion module is removed to evaluate its contribution.
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6. BaseLine: The baseline model, which removes both the channel attention mechanism
and the cross-fusion module.

The experimental results are shown in Figure 9, and specific experimental perfor-
mances are provided in Table 7.

Figure 9. Ablation experiment performance evaluation metrics: (a) MAE, (b) R2 score, (c) accuracy,
(d) average F1 score, and standard error.

Table 7. Ablation experiment.

Algo. MAE R2 Accuracy F1

MRCA-1 5.3961 0.9471 0.9486 0.9449
MRCA-2 5.7812 0.9445 0.9486 0.9456
MRCA-3 7.2567 0.8953 0.9014 0.9011

NO Attention 7.3411 0.9017 0.9029 0.9009
NO Cross 6.7503 0.9179 0.9371 0.9378
BaseLine 7.3927 0.8882 0.8914 0.8984

The experimental results show that the performance difference between using
experience-initialized weight parameters (σ) and uninitialized weight parameters (σ) in the
dynamic weighted loss function is minimal. This suggests that the dynamic weighted loss
function is less sensitive to initial weights and allows the model to adaptively optimize
loss weights, thereby simplifying the initialization process. In contrast, the MRCA-3 model,
which lacks the dynamic weighted loss function, performs poorly in both classification and
regression tasks.

When either the channel attention mechanism or the cross-fusion module is removed
individually, model performance declines. However, when both modules are removed,
performance deteriorates significantly, with the R2 score dropping by approximately 6%
points and accuracy decreasing by 5% points.
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These ablation results highlight the positive impact of the channel attention mechanism
and the cross-fusion module on model performance. Additionally, the dynamic weighted
loss function not only optimizes performance but also improves training efficiency.

5. Conclusions

This study proposed the MTL-RCANet, which simultaneously achieves a classification
accuracy of 94.86% and an R2 score of 0.95 for concentration prediction. Compared to single-
task models, MTL-RCANet significantly improves the performance of both classification
and regression tasks by efficiently extracting and sharing key feature information across
tasks. Additionally, a dynamic weighted loss function was introduced to address the
varying loss requirements of different tasks during training. By dynamically adjusting
the loss weight for each task based on its importance and difficulty, the model’s overall
performance is further enhanced. Therefore, our approach not only accelerates training
convergence but also effectively balances the training processes of different tasks. Further
research indicates that the model can still perform detection tasks efficiently, even with just
35% of the gas response data.

In summary, the proposed method offers a new solution for gas detection tasks in fast
detection and low-resource consumption scenarios, which shows great application potential.
Future work can further optimize the network structure to enhance task collaboration,
particularly in more complex gas mixtures or dynamic response scenarios.
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Abstract: In this work, we report the synthesis of perovskite-type Ba-doped LaFeO3

(La1−xBaxFeO3, x = 0.00, 0.02, 0.04, and 0.06) nanofibers (NFs) using the electrospinning
method. The synthesized La1−xBaxFeO3 materials have a fibrous structure with an average
fiber diameter of 250 nm. The fibers, in turn, consist of smaller crystalline particles of
20–50 nm in size. The sensor properties of La1−xBaxFeO3 nanofibers were studied when
detecting 20 ppm CO, CH4, methanol, and acetone in dry air in the temperature range of
50–350 ◦C. Doping with barium leads to a significant increase in sensor response and a
decrease in operating temperature when detecting volatile organic compounds (VOCs).
The process of acetone oxidation on the surface of the most sensitive La0.98Ba0.02FeO3

material was studied using in situ diffuse reflectance infrared Fourier transform spec-
troscopy (DRIFTS) and temperature-programmed desorption in combination with mass
spectrometry (TPD-MS). A mechanism for the sensor signal formation is proposed.

Keywords: Ba-doped LaFeO3; perovskites; semiconductor gas sensor; VOCs; DRIFTS;
TPD-MS

1. Introduction

Intensive development of chemical and metallurgical industries, use of power plants
operating on biofuel, and high-temperature waste processing and combustion processes
lead to an increase in environmental pollution. To control air quality in residential and
industrial areas, it is necessary to create selective, stable, and highly sensitive gas sensors.
Traditional semiconductor gas sensors based on nanocrystalline oxides (MOx = ZnO, SnO2,
WO3, In2O3) have a number of serious drawbacks for the quantitative determination of
the concentration of toxic impurities in the air, primarily due to low selectivity and drift of
parameters caused by low stability of the microstructure during long-term operation at a
temperature of 300–500 ◦C, which is necessary for the detection of reducing gases, including
volatile organic compounds (VOCs) [1–4]. The factors responsible for the instability of the
parameters of a semiconductor gas sensor can be classified as follows [5]: (i) structural
changes in microheaters and electrodes; (ii) changes caused by processes in the layer of the
sensitive material; (iii) changes caused by the processes occurring at the boundaries between
the sensitive layer, substrate, and electrodes; and (iv) changes caused by the interaction
of the sensitive layer with the components of the surrounding gas phase. The processes
occurring in the layer of the sensitive material include structural and phase transformations,
as well as the diffusion of oxygen vacancies and other point defects in the volume of the
semiconductor oxide. These processes occur with greater intensity under high working
temperatures. So, the problem of the stability of the sensor’s characteristics can be solved
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(at least partially) by creating materials that provide high sensor response at low operating
temperatures. Metal oxide perovskites offer tunable electronic properties and the capability
for low-temperature operation [6]. Several perovskite materials have been studied as
gas sensors due to their stability [7]. Of particular interest as a gas-sensitive material is
lanthanum ferrite (LaFeO3), a compound belonging to the class of orthoferrites with a
distorted orthorhombic perovskite structure. Lanthanum ferrite is a p-type semiconductor
with a band gap of 2.1–2.6 eV.

Due to its crystal structure, LaFeO3 has the ability to substitute atoms in A and
B positions within one structural type that provides ample opportunities for creating
materials with controlled chemical, electrophysical, sensor, and catalytic properties [8].
The nature of the cations occupying the A and B positions has a very important effect on
the electronic structure of materials. The electrostatic potential created by a given cation
and the hybridization of its orbitals with the orbitals of the nearest ions affect the width
of the energy bands and their arrangement on the energy diagram. In addition, the size
of the A cation affects the degree of distortion of the perovskite structure [9]. For this
reason, the cationic composition of the A-position also has an important effect on the
main properties of perovskite materials (electrophysical, chemical, sensor, and catalytic
properties). Based on the available literature data, heterosubstitution of La3+ with alkaline
earth metal cations (Ba2+, Sr2+, Ca2+) as well as Mg2+ and Pb2+ cations can increase the
sensitivity of the sensor material to volatile organic compounds (VOCs) [10–17] when
detecting carbon monoxide [18], sulfur dioxide (SO2) [19], carbon dioxide (CO2) [20–23].
Thus, changing the chemical composition of the A-position of perovskite can improve the
sensitivity of materials to many analyte gases due to a change in the base resistance of the
compounds and the appearance of various point defects (oxygen vacancies, a change in
the population of A-positions, a change in the oxidation state of the B-cation) capable of
entering into physicochemical interactions with gases in the environment.

The morphology of the LaFeO3-based material is another key factor influencing
sensor characteristics. Of considerable interest is the production of perovskite oxides
with unique morphology and improved properties using new synthesis methods [24].
Gas-sensitive materials based on nanofibers/nanorods/nanowires/nanotubes/etc. can
provide high gas permeability even with a small crystallite size and a high surface-to-
volume ratio, making them promising for creating gas sensors [25]. The most widely
used methods for obtaining nanocrystalline semiconductor oxides are co-precipitation
or separate chemical precipitation from aqueous solutions with subsequent annealing
in the temperature range of 300–500 ◦C. The main disadvantage of such methods is the
formation of a surface hydrate-hydroxyl layer, which affects the sintering process during the
formation of sensitive porous layers and the sensor properties of materials. An alternative
is the electrospinning (electroforming) method—the process of forming nanofibers from an
electrically charged polymer solution or melt under the action of electrostatic forces [26].
This method allows for a smaller number of steps from non-aqueous polymer solutions
to obtain highly dispersed materials of complex composition in the form of fibers, from
which a porous structure is formed during synthesis and thermal annealing. Detection
of analyte gases by chemoresistive sensors is associated with processes occurring on the
surface of a solid; thus, the availability of the surface for the adsorption of detected gases
is an important parameter that directly affects the efficiency of the material. The bimodal
pore distribution characteristic for materials synthesized by electrospinning improves their
sensor properties due to the formation of numerous branched channels in the sample mass,
through which the diffusion of molecules of the analyzed gas and reaction products occurs
faster than, for example, in sintered powders. In this regard, electrospinning has become
widespread in the synthesis of semiconductor oxide materials [27–37]. Successful synthesis
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of LaFeO3-based nanofibers by electrospinning has been reported [38–40]. However, the
sensor properties of electrospun lanthanum ferrite have been poorly studied to date [41,42].

In this work, La1−xBaxFeO3 (x = 0.02, 0.04, and 0.06) nanofibers were synthesized by
electrospinning precursor-filled polymer solutions with subsequent heat treatment. The ef-
fect of Ba content on the structure, morphology, surface properties, and electrophysical and
sensor properties in detecting gases of various chemical natures (CO, CH4, methanol, and
acetone) was studied. Based on the results obtained by in situ diffuse reflectance infrared
Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption cou-
pled with mass spectrometry (TPD-MS), a mechanism for the multi-stage decomposition of
acetone on the surface of the sensor material is proposed.

2. Materials and Methods

2.1. Materials Synthesis

The following reagents were used in the synthesis: polyvinylpyrrolidone (PVP)
(Mw = 1,300,000), lanthanum nitrate (La(NO3)3 × 6 H2O), iron acetylacetonate (Fe(acac)3),
barium nitrate (Ba(NO3)2), N,N-dimethylformamide (C3H7NO, DMF), and ethanol
(C2H5OH) (all from Sigma-Aldrich (Saint Louis, MO, USA), analytical pure grade).
Nanofibers of pristine LaFeO3 and La1−xBaxFeO3 (x = 0.02, 0.04, and 0.06) were synthesized
by electrospinning precursor-filled polymer solutions with subsequent heat treatment.

To obtain pure LaFeO3 nanofibers, 1.2987 g of lanthanum nitrate and 1.0595 g of iron
acetylacetonate were dissolved in a mixture of ethyl alcohol (25 mL) and dimethylfor-
mamide (25 mL). When preparing barium-doped lanthanum ferrite nanofibers, the molar
ratio of [La]:[Ba]:[Fe] = (1 − x):x:1 (x = 0.02, 0.04, and 0.06) was selected. After complete
dissolution of the cation’s precursors, 9 g of polyvinylpyrrolidone was added and stirred
until complete dissolution of the polymer and homogenization of the solution. To effec-
tuate the electrospinning process, the polymer solution was placed in a medical syringe,
which was fixed in a syringe infusion pump. The solution was fed at a rate of 1 mL/h
through a G21 gauge metal needle with an internal diameter of 510 μm. The polymer
fibers were formed on a metal collector under a potential difference of 10–11 kV and at a
distance of 120–130 mm between the needle and the collector. The resulting polymer fibers
were annealed at 600 ◦C for 5 h, at a heating rate of 1 K/min. This heat treatment mode
was selected based on the data obtained for a series of pure LaFeO3 samples annealed at
different temperatures [43].

2.2. Materials Characterization

The elemental composition of the synthesized materials was studied by X-ray fluores-
cence microanalysis with full external reflection using a S2 PICOFOX spectrometer (Bruker
Nano GmbH, Berlin, Germany). Mo Kα radiation was used to excite X-ray fluorescence.
The spectrum set time was 250 s. A 5 μL aliquot of the sample solution was applied to a
quartz substrate using a dispenser, dried, and analyzed.

The phase composition of the samples was determined by powder X-ray diffraction
(XRD). The diffractograms were recorded at room temperature using a DRON-4-0.7 diffrac-
tometer (Burevestnik, St. Petersburg, Russia; λ = 1.54051 Å, CuKα1+α2 radiation) in the
20–70◦ 2θ range with 0.1◦ step and 1◦/min speed. Phase identification was effectuated
with the use of PDF-1 and PDF-2 databases. The diffraction patterns were processed using
the STOE “WinXPOW” software package (Version 1.06). The size of the coherent scattering
region (dXRD) was calculated from the reflection broadening using the Scherrer formula:

dXRD =
kλ

βcosθ
, (1)
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where dXRD is the average size of the coherent scattering region, β is the full width at
half maximum (FWHM) of the corresponding diffraction peak, λ is the wavelength of the
radiation used, θ is the diffraction angle, and k is the shape coefficient for spherical particles
(k = 0.9). β was determined as follows:

β2 = β2
sample + β2

standard, (2)

where βsample is the FWHM of the diffraction peak of the sample, and βstandard = 0.085 is
the FWHM of the diffraction peak of the standard with a crystallite size over 200 nm.

The specific surface area was determined by low-temperature nitrogen adsorption
using a Chemisorb 2750 apparatus (Micromeritics, Norcross, GA, USA) with a thermal
conductivity detector. The BET (Brunauer–Emmett–Teller) model was used to calculate the
surface area available for gas adsorption. The powder (~100 mg) was placed in a flowing
quartz reactor and annealed in 99.999% He flow at 50 mL/min and 300 ◦C for 1 h to remove
adsorbed impurities. Then, a flow of N2/He mixture (30 vol.% N2) was passed through the
reactor at a rate of 12 mL/min, and the sample was cooled to 77 K.

The microstructure and morphology of the nanofibers were studied by scanning
electron microscopy (SEM) using a Zeiss Supra 40 FE-SEM electron microscope (Carl Zeiss,
Inc., Oberkochen, Germany) with an intralens secondary electron detector at an accelerating
voltage of 10 kV and an aperture of 30 μm.

The sample designation, elemental and phase compositions, as well as the microstruc-
ture parameters of the synthesized nanofibers are summarized in Table 1.

Table 1. Sample designations, elemental and phase compositions, and microstructure parameters of
synthesized nanofibers.

Sample Material
[Ba]/([La]+[Ba]) at.%,

RSD 1 = 4% (XRF)
Phase

Composition
dXRD, nm

LFO LaFeO3 -
lanthanum ferrite

LaFeO3
ICDD [37-1493]

17 ± 2
LBFO-2 La0.98Ba0.02FeO3 2 14 ± 1
LBFO-4 La0.96Ba0.04FeO3 4 14 ± 1
LBFO-6 La0.94Ba0.06FeO3 6 14 ± 1

1 Relative standard deviation.

The surface composition and the charge state of elements were studied by infrared (IR)
and X-ray photoelectron (XPS) spectroscopies. IR-spectra were recorded in the transmission
mode in the wavenumbers range of 4000–400 cm−1 with a step of 4 cm−1 using a Perkin
Elmer Frontier spectrometer (Perkin Elmer, Waltham, MA, USA). The survey was carried
out with potassium bromide tablets (7 mm diameter) containing 1 mass% of the test sample.
The tablets were prepared by carefully grinding KBr together with the sample, followed by
pressing into tablets at a pressure of 50 bar.

In situ surface composition studies were carried out by diffuse reflectance IR Fourier
transform spectroscopy (DRIFTS) using a DiffusIR set-top box and a heated flow chamber
HC900 (Pike Technologies, Cottonwood, WI, USA) enclosed by a KBr window. DRIFT
spectra were recorded in the region of 4000–1000 cm−1 with 4 cm−1 resolution. Powder
samples weighing 30 mg were placed in aluminum oxide crucibles (5 mm diameter). Before
measurement, the samples were heated in a stream of purified air at 450 ◦C to remove
adsorbed impurities.

Studies of the charge state of the elements were carried out using an Axis Ultra DLD
spectrometer (Kratos Analytical, Manchester, UK) with monochromatic Al Kα radiation
(hν = 1486.7 eV, 150 W) in a vacuum not lower than 10−9 Torr. The charge shift was
compensated by the C1s ground state peak with a binding energy of 285 eV. Survey spectra
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in the range of 1300–0 eV with 0.5 eV step were obtained for all samples. The spectra of
the Fe2p, La3d, Ba3d, O1s, and C1s regions were recorded with increments of 0.05 eV. The
Unifit 2014 program was used to process the spectra, the background was described using
the Shirley method, and the spectra were approximated by mixed Gauss–Lorentz functions.

The adsorption/desorption of acetone and its oxidation products on the surface was
analyzed using an MS7–200 mass spectrometer (Atomtyazhmash, St. Petersburg, Russia)
equipped with an RGA–200 analyzer (Stanford Research Systems, Sunnyvale, CA, USA)
during stepwise heating of a sample placed in a quartz tube with an inner diameter
of 10 mm. Before the experiment, the sample was kept at 450 ◦C for 1 h in a flow of
He/O2 mixture (99:1 vol.%, 30 mL/min) to remove molecules adsorbed from the air on
the surface. After cooling the sample to room temperature, a helium–oxygen mixture
containing 200 ppm acetone was passed through the sample, and the temperature was
gradually raised to 500 ◦C.

2.3. Gas Sensor Measurements

The electrophysical and sensor properties of the synthesized materials were studied
in situ by measuring the electrical conductivity of thick films. Materials in the form of a
terpineol-based paste were deposited on Al2O3 micro hotplates with platinum contacts.
After applying the paste, the thick films were dried for 5 h at 50 ◦C, then heated to 550 ◦C
(2 K/min) and kept at this temperature for 3 h to completely remove the binder. The
temperature of the films was controlled via resistance heating of the hotplates, and a
heating rate of 2 K/min was necessary to prevent destruction of the films due to the
difference in the thermal expansion coefficients of the ceramic substrate and deposited
material. Three sensors were made from each material.

Measurements of the electrical conductivity of the fibers were carried out in DC
stabilized voltage mode using an automated flow cell (PTFE, 100 mL). An RRG-12 electronic
gas flowmeter (Eltochpribor, Zelenograd, Russia) was used to create stable flows and obtain
gas mixtures with specified concentrations of analyte gases. The IVTM-7 humidity and
temperature meter (EXIS, Zelenograd, Russia) was used to control the humidity. The
attested gas mixtures were used as sources of analyte gases: 2540 ppm CO in N2, 4060 ppm
CH4 in N2, 1020 ppm methanol in N2, and 1460 ppm acetone in N2. To create gas mixtures
containing analyte gases at a given concentration (20 ppm), the attested gas mixtures (from
cylinders) were diluted with dry air obtained from a GCHV-2.0-3.5 pure air generator (NPP
Chemelectronics, Moscow, Russia). The same dry air was used as the reference gas. The
selected concentration (20 ppm) was close to the maximum permissible concentration of
the working area for CO (20 ppm) and methanol (15 ppm). In order to be able to compare
the sensor signal during the detection of acetone and methane, it was decided to use the
same concentration of 20 ppm.

In all experiments, the gas flow through the cell was 100 mL/min. During mea-
surement, the resistance of the sensors was recorded depending on the temperature of
the sensor material and the composition of the gas mixture. The sensor response S was
calculated as follows:

S =
Rgas − Rair

Rair
=

Rgas

Rair
− 1, (3)

where Rair is the resistance of the material in the background air, and Rgas is the resistance
of the material in the presence of the target gas.
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3. Results and Discussion

3.1. Morphology, Microstructure, Elemental and Phase Composition

Using X-ray powder diffraction, it was shown that all materials from this series were
single phase. The XRD patterns corresponded to LaFeO3 with an orthorhombic crystal
structure (ICDD card [37-1493]) (Figure 1). The absence of any extraneous reflections
indicated the successful incorporation of Ba2+ into the La3+ sites, which was enabled by
the similarity of the effective ion radii between Ba2+ (1.61 Å) and La3+ (1.36 Å), all of
which were in a cuboctahedral environment (coordination number CN = 12). In turn,
the introduction of Ba2+ into the perovskite B-sublattice was excluded from geometric
considerations due to significant discrepancies between the effective radii of these ions
(1.35 Å for Ba2+) compared to HS Fe3+ (0.645 Å) in an octahedral site (CN = 6).

Figure 1. XRD patterns of pure LaFeO3 and La1−xBaxFeO3 series with different Ba contents.

The calculation of the Goldschmidt tolerance factor was carried out according to
the formula:

t =
rA + rO√

2 ∗ (rB + rO)
, (4)

where rA, rB, and rO are the effective ionic radii of atoms A, B, and O, respectively, which
are part of the perovskite composition ABO3. For oxygen in an octahedral environment,
rO = 1.4.

In the case of pure LaFeO3, the tolerance factor was t = 0.95. For the limiting composi-
tion of BaFeO3, t was approximately 1.04, which confirmed the possibility of heterovalent
substitution of La3+ cations by Ba2+ ions at the A-position within the same structural type
(perovskite 0.85 < t < 1.11) [44]. At the same time, according to the XRD data, the perovskite
lattice was distorted and had orthorhombic symmetry with the Pnma space group, while
ideal perovskites had a primitive cubic structure (Pm3m space group). This may be due
to oxygen vacancies, the concentration of which may increase because of heterovalent
substitution to maintain electroneutrality [14,18,21,22]. Lattice distortion can occur due to
another factors, such as changes in the relative positions of the octahedral units relative
to each other (e.g., swing-rotation), as well as compression and stretching of these octahe-
drons [45,46]. The presence of distortions in the perovskite structure after doping was also
indicated by a slight shift in the diffraction peaks toward larger angles, despite the larger
ionic radius of Ba2+ compared to La3+. As the dopant concentration increased, the distance
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between planes tended to decrease, which can be explained by nonstoichiometric oxygen
and the inclination of octahedra BO6 [47].

The specific surface area of the materials, determined by the low-temperature nitrogen
adsorption method using the BET model, was 2–5 m2/g. In turn, the introduction of barium
into lanthanum ferrite led to a decrease in the crystallite size (Table 1).

The morphology of the La1−xBaxFeO3 samples was investigated using scanning elec-
tron microscopy (Figure 2). The samples exhibited a fibrous structure, with an average
fiber diameter of 250 ± 20 nm. The fibers, in turn, consisted of smaller crystalline particles
with a size of 20–50 nm. Therefore, it could be inferred that the doping process did not
significantly alter the macroscopic structure of the materials, which was mostly determined
by the synthesis parameters (needle diameter, distance between the needle and collector,
voltage, etc.).

Figure 2. SEM images of pure LaFeO3 and La1−xBaxFeO3 series with different Ba contents.

3.2. Surface Properties

The analysis of the surface composition of La1−xBaxFeO3 fibers was carried out using
the IR spectroscopy method (Figure 3). The IR spectra of all of the studied samples
contained the same set of vibration bands. The broad band at 3700–3050 cm−1 and the
band at 1635 cm−1 were associated with the stretching vibrations of various hydroxyl
groups and the deformation vibrations of water molecules adsorbed from atmospheric
air. The vibration bands in the range of 2920–2840 cm−1 corresponded to C–H bonds,
the presence of which was associated with the remains of organic molecules used in the
synthesis of LaFeO3 nanofibers. The presence of bands at 1480 cm−1 and 1400 cm−1 was
associated with the formation of surface carbonates during annealing, as well as during
the adsorption of CO2 from air [48]. The band at 844 cm−1 was attributed to vibrations of
the La–O bond [48]. For an ideal cubic perovskite, the optically active internal vibrations
can be classified as Γvib = 3 F1u + F2u; of which the F1u modes are IR active, while the F2u
modes are inactive. These vibrations can be roughly described as follows: the v1(F1u) mode
is the B–O stretching vibration of BO6 octahedra; the v2(F1u) mode is the deformation
vibration of the OBO angle, weakly coupled to the vibrations of the A–O bond; the v3(F1u)
mode is associated with the vibration of the A sublattice relative to the BO6 octahedra;

144



Sensors 2025, 25, 2790

and the inactive v4(F2u) mode is also associated with deformation vibrations of the OBO
angle [49,50]. The expected order of the bands was v1 > v3 > v4 > v2. Since the v4 mode
was inactive and the v2 mode was at very low frequencies, the infrared spectrum of cubic
perovskite should have two bands. In the case of distorted and low-symmetry perovskites,
the v1(F1u) mode may split. Thus, in the recorded spectra (Figure 3), the bands at 594 and
550 cm−1 were attributed to vibrations of the Fe–O bonds in the octahedral FeO6 groups,
corresponding to the v1(F1u) mode [51]. The observed splitting, which appeared as an
additional band in the spectrum of the pure lanthanum ferrite sample and as a shoulder
in the spectra of barium-doped samples, was apparently due to the distorted crystalline
structure. This statement was supported by the X-ray diffraction results, according to
which the materials under study had an orthorhombic crystal structure.

Figure 3. FTIR spectra of pure LaFeO3 and La1−xBaxFeO3 series with different Ba contents.

Using the method of X-ray photoelectron spectroscopy, we determined the charge
state of the elements in the samples. Among them, the spectra of O1s, Fe2p, and Ba3d were
the most informative. In the oxygen spectra (Figure 4a), three main components could be
distinguished, corresponding to lattice oxygen, adsorbed oxygen, and oxygen in the surface
hydroxyl groups. The calculation of the proportions of each component in the spectra
showed that the proportion of adsorbed components increased for Ba-doped materials.
This indirectly indicated an increase in the number of oxygen vacancies in the LaFeO3

structure with the introduction of Ba2+. Due to the fact that the oxidation of reducing gases
by the Mars–van Krevelen mechanism [52] is unlikely at low temperatures, an increase in
adsorbed oxygen may contribute to improving the sensor properties of the doped materials
through reactions by Langmuir–Hinshelwood [53] or Eley–Rideal [54] mechanisms.

Because of the complexity of describing the Fe2p region resulting from the various
Fe charge states, it was decided to describe the experimental spectrum with the minimum
possible number of components (Figure 4b). The most intense components were attributed
to Fe3+, located in different coordination environments, while the remaining component,
located at high energies, was attributed to Fe4+ [17,18]. Based on this, it could be concluded
that, as the amount of dopant increased, the ratio of Fe4+ to Fe3+ also increased.

The Ba3d region (Figure 4c) showed that barium had a single charge state of Ba2+ on
the surface. This, together with the XRD data, allowed us to exclude the possibility of
a separate barium-containing phase forming on the grain surface of lanthanum ferrite’s
main phase.
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(a) (b) (c)

Figure 4. XP-spectra in O1s (a), Fe2p (b), and Ba3d (c) regions of pure LaFeO3 and La1−xBaxFeO3

series with different Ba contents.

Based on an analysis of the literature data, it is known that charge compensation
during the doping of LaFeO3 with Ba2+ ions can occur through the following mecha-
nisms [14,18,21,22]:

(a) Formation of Fe4+ ions, La3+
1−xBa2+

x Fe3+
1−xFe4+

x O3;
(b) Oxygen nonstoichiometry, La3+

1−xBa2+
x FeO3−x/2;

(c) Combination of mechanism (a) and (b), La3+
1−xBa2+

x Fe3+
1−yFe4+

y O3−(x−y)/2.

An increase in the amount of oxygen vacancies and of Fe in a higher charge state
indicated the possibility of charge compensation through the combination of oxygen
nonstoichiometry and Fe4+ formation.

3.3. Electrical and Gas Sensor Properties

Measuring the temperature dependence of the materials’ resistance in dry air showed
that, with an increase in the dopant content, the base resistance decreased (Figure 5). This
can be explained by an increase in the concentration of free charge carriers in a p-type
semiconductor during heterovalent substitution, according to the quasi-chemical equation
below (Wink–Kröger notation):

Ba×La → Ba′La + h· (5)

The temperature growth leads to a decrease in the base resistance, which is typical for
semiconductors. It follows from Figure 5 that the temperature dependence of conductivity,
plotted in Arrhenius coordinates (lnG vs. 1/T), was divided into two regions with different
activation energies (Table 2). The low-temperature region (region II in Figure 5) could
be attributed to the conductivity associated with the ionization of acceptor levels formed
with Ba doping. Conductivity in the high-temperature region (region I in Figure 5) can be
described using the small polaron hopping (SPH) mechanism. The introduction of barium
into lanthanum ferrite can be considered as the dissolution of BaFeO3 in LaFeO3 [55]:

BaFeO3
LaFeO3→ Ba′La + Fe·Fe + 3O×

O , (6)
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This leads to the formation of Fe·Fe. The defect equilibrium is ensured by the incorpora-
tion of oxygen into the perovskite matrix, leading to the disappearance of oxygen vacancies
and the formation of Fe4+ cations:

V··
O + 2Fe×Fe +

1
2

O2 ↔ O×
O + 2Fe·Fe. (7)

Charge disproportionation is also possible:

2Fe×Fe ↔ Fe·Fe + Fe′Fe. (8)

Figure 5. Temperature dependence of the conductivity of pure LaFeO3 and materials with different
Ba contents.

Table 2. Activation energies of the conductivity of pure LaFeO3 and materials with different Ba
contents in high- (EaI) and low-temperature (EaII) regions (Figure 5). Tk denotes the kink temperature
on the lnG vs. 1/T dependences (Figure 5).

Sample EaI, eV EaII, eV Tk, ◦C

LFO 0.91 1.48 290
LBFO-2 0.87 1.59 290
LBFO-4 0.50 1.16 260
LBFO-6 0.46 1.02 230

Within the SPH mechanism, it is assumed that the electronic conductivity in ferrites
with a perovskite structure occurs via the path · · · Fe4+ − O − Fe3+ · · · [56]. The degree of
overlap of the O2p and the Fe3d orbitals depends on the distance and angle between the
iron and oxygen atoms, that is, on the local symmetry of the iron cations. Thus, the distor-
tion of the perovskite crystal structure affects the electronic conductivity realized by the
SPH mechanism. At low concentrations of acceptor impurity (x ≤ 0.2 in the La1−xSrxFeO3-δ

system), electron charge compensation, which is realized by changing the degree of ox-
idation of iron from 3+ to 4+, occurs predominantly [57]. Since the ionic radii of Fe4+

(0.585 Å) and Fe3+ (0.645 Å) differ significantly, distortion of the crystal structure is very
likely. In this regard, the binding energy of the hole with the iron cation in the polaron may
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decrease, resulting in a lower activation energy of SPH conductivity and a decrease in the
kink temperature (Tk) on the lnG vs. 1/T dependences (Table 2).

The sensor properties of LaFeO3 nanofibers were studied when detecting CO, CH4,
methanol, and acetone. The concentration of all analytes in the gas phase was 20 ppm.
The measurements were performed in the mode of periodic change of the gas phase
composition (15 min of clean air, 15 min of air with a pollutant gas) in the temperature
range of 50–350 ◦C. Figure 6 shows the dynamic change in the resistance of pure LaFeO3

and materials with different Ba contents when detecting 20 ppm acetone in dry air at
different operating temperatures. The figure shows five stages of measurements effectuated
sequentially at temperatures of 320, 290, 260, 230, and 200 ◦C. At each stage, three injections
of a gas mixture containing acetone were carried out in the sensor cell, followed by purging
with clean air at the same temperature. In the presence of the reducing gas, the resistance
of the samples increased, corresponding to the p-type conductivity of LaFeO3. When
the sensor chamber was blown with pure air, the resistance of the materials decreased
and reproducibly reached the initial value. As the detection temperature decreased, the
base resistance of the sensors increased in pure air, reflecting the semiconductor nature of
the materials.

Figure 6. Dynamic change in the resistance of pure LaFeO3 and materials with different Ba contents
when detecting 20 ppm acetone in dry air at different working temperatures.

The temperature dependences of the sensor signal toward 20 ppm CO, CH4, methanol,
and acetone are shown in Figure 7. The formation of the sensor response of semiconductor
oxide-based materials was due to the oxidation reaction of the analyte gases by oxygen
chemisorbed on the surface:

CO(gas) +
1
m

On−
m (ads) → CO2 (gas) +

n
m

e−, . (9)

CH4 (gas) +
4
m

On−
m (ads) → 2H2O(gas) + CO2 (gas) +

4n
m

e−, (10)

CH3OH(gas) +
3
m

On−
m (ads) → CO2 (gas) + 2H2O(gas) +

3n
m

e−, (11)
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CH3C(O)CH3 (gas) +
8
m

On−
m (ads) → 3CO2 (gas) + 2H2O(gas) +

8n
m

e−. (12)

where CO(gas), CH4(gas), CH3OH(gas), and CH3C(O)CH3(gas) are molecules in the gas
phase; On−

m(ads) is a particle of chemisorbed oxygen (m = 1 or 2, n = 1 or 2, possible options:

O−
2 , O−, O2−); e− is an electron that is injected into the conduction band as a result of the

reaction; and CO2(gas) and H2O(gas) are molecules of reaction products desorbed from the
surface of the material into the gas phase.

Figure 7. Temperature dependence of the sensor response (S) of La1−xBaxFeO3 series with different
Ba contents toward 20 ppm CO (a), CH4 (b), acetone (c), and methanol (d).

The measurement error of the sensor response (based on the reproducibility of data ob-
tained from three sensors made of each material) was no more than 10%. It is worth noting
the significantly greater sensor responses of barium-doped and pure LaFeO3 when detect-
ing volatile organic compounds compared to CO and CH4 (Figure 7). On the one hand,
this effect can be explained by the “multi-electron” nature of the oxidation process of VOC
molecules on the surface of the sensor material by chemisorbed oxygen (Equations (9)–(12)).
The more chemisorbed oxygen molecules are involved in the oxidation of the analyte gas
molecule, the more electrons released during the reaction are injected into the conduction
band, leading to a greater change in the conductivity of the material and, accordingly, a
greater sensor response. On the other hand, this may be due to the high catalytic activity of
coordinatively unsaturated iron cations on the La1−xBaxFeO3 surface. As is known, iron
oxides are used as a catalyst for the oxidation of methanol and acetone [58–61]. In addition,
the high sensor responses to acetone and methanol may be due to both the lower dissoci-
ation energy of bonds in VOC molecules relative to carbon monoxide and methane [62]
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(Table 3) and the lower adsorption energy of VOC molecules due to the formation of a
bond between the coordinatively unsaturated Fen+ cations and the oxygen of the organic
molecule. From the obtained results, it followed that the introduction of barium led to some
decrease in the operating temperature (Figure 7) and, in the case of VOCs (methanol and
acetone), to a significant increase in the sensor response (Figure 8). The above discussed
combined mechanism of charge compensation when replacing La3+ cations with Ba2+

cations provided an increase in the amount of chemisorbed oxygen and the concentration
of Fe4+, which, in turn, facilitated the oxidation of VOCs on the surface of barium-doped
materials. A comparison of the sensor responses of LaFeO3-based materials described in the
literature and obtained in this work (Table 4) led to the conclusion that the combination of
nanofiber morphology and barium doping made it possible to form materials that provide
a high sensor response to acetone at a reduced operating temperature.

Table 3. Bond dissociation energies in selected gas molecules [62].

Molecule Bond ΔHdis, kJ/mol

CO C≡O 1075

CH4 H–CH3 431

Acetone
C=O 745
C–H 414
C–C 347

Methanol
C–O 384
C–H 337
O–H 428

Figure 8. The ratio of the maximum sensor response of barium-doped materials to the response of
LaFeO3 nanofibers when detecting VOCs, CO, and CH4 at appropriate operating temperatures.
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Table 4. Summary of the sensor response values toward acetone of LaFeO3-based materials described
in the literature and obtained in this work.

Material Synthesis Method
Working

Temperature (◦C)
Acetone

Concentration, ppm
Sensor

Response
Ref.

La0.7Sr0.3FeO3 Sol-Gel 275 500 0.7 [10]
(La,Ba)(Fe,Ti)O3 Sol-Gel 132 100 19 [11]
La0.75Ba0.25FeO3 Sol-Gel 275 20 2.1 [12]
La0.75Ba0.25FeO3 Sol-Gel 240 500 172 [14]
La0.98Ba0.02FeO3 hydrothermal 200 100 8 [15]
La0.9Sr0.1FeO3 PLD 303 4 0.77 [16]

La0.98Mg0.02FeO3 PMMA template method 190 100 50 [17]
La0.8FeO3 electrospinning 180 100 6 [63]

La0.98Ba0.02FeO3 electrospinning 230 20 194 This work

To assess the prospects of practical use of sensors based on La1−xBaxFeO3 nanofibers,
we estimated the response (τres

90 ) and recovery
(
τrec

90 ) times when detecting acetone (Figure 9).
Even though the absolute τres

90 and τrec
90 values are strongly dependent on the parameters of

the testing system, they are useful for comparing the characteristics of materials if the mea-
surements are performed under identical conditions. It was noted that the measurement
temperature had a major influence on the τres

90 and τrec
90 values, while the composition of the

material was of minor importance for the dynamic characteristics. This is not surprising
since the morphology of nanofibers (which may be an important parameter determining the
transport of gases to the surface of crystallites of a sensitive material) did not change when
La3+ cations were replaced by Ba2+ cations. It should be noted that, at a temperature of 230
◦C, which corresponded to the maximum sensor response toward acetone, a minimum
response time was observed, while the recovery time was significantly longer. To speed
up sensor recovery when operating under real conditions, a two-temperature operation
mode can be used, in which the sensor is shortly heated (for several seconds) to a higher
temperature (for example, up to 300 ◦C). This operation mode will not lead to a significant
increase in power consumption; however, it will ensure effective desorption of the products
of oxidation of the analyte gas from the surface of the sensitive layer.

(a) (b)

Figure 9. The temperature dependences of response time ( τres
90

)
(a) and recovery time (τ rec

90
)

(b) of
La1−xBaxFeO3 nanofibers when detecting acetone.
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3.4. Model of Forming La1−xBaxFeO3 Nanofibers’ Sensor Response

It is noteworthy that the temperature range at which the sensor response was observed
during VOC detection was quite narrow (170–290 ◦C), which may be due to a non-trivial
mechanism of the oxidation reaction of the VOC molecules on the surface of the sensor
material. To establish the reaction pathway during acetone oxidation on the La1−xBaxFeO3

surface, additional studies were carried out, including in situ IR spectroscopy in the
diffuse reflectance mode (DRIFTS) and temperature-programmed desorption of acetone in
combination with mass-spectral analysis of desorption products (TPD-MS). The LBFO-2
sample characterized by the maximum sensor response in acetone detection was selected
for this study.

Figure 10 shows the evolution of the LBFO-2 DRIFT spectra in the presence of 200 ppm
acetone with increasing temperature. After keeping the sample in a flow of acetone at
a temperature of 50 ◦C, bands appeared in the spectra at 1094, 1235, 1370, 1706, 1740,
2925, 2970, 3652, and 3686 cm−1, corresponding to vibrations of ω(CH2), ν(C–C), δs(CH3),
ν(C=O), ν(C–O), νas(CH3), νs(CH3), and ν(O–H) of the acetone molecule adsorbed on the
surface, respectively [64–67]. The spectra also contained low-intensity bands at 1425, 1575,
and 2850 cm−1, the intensity of which increased significantly with increasing temperature;
the intensity of the bands at 1740 and 1370 cm−1 did not change; and the intensity of the
bands corresponding to acetone decreased sharply. The band at 1425 cm−1 may have
corresponded to νs(C–O–C); the bands at 1575 and 1370 cm−1 were related to νas(COO–)
and νs(COO–), respectively; and the band at 2850 cm−1 was related to νs(CH2) vibrations
in formate groups formed on the surface during acetone oxidation [64,65,68–70]. The
retention of the intensity of the band at 1740 cm−1 may have been related to the formation
of carbonates on the surface of the material. At temperatures above 300 ◦C, the bands
corresponding to the vibrations of formate groups disappeared. The signals at 1740 and
1437 cm−1 corresponded to vibrations of ν(C–O) and νs(O–C–O) of carbonates formed
during the oxidation of formates, respectively.

Figure 10. DRIFT spectra of La0.98Ba0.02FeO3 nanofibers (sample LBFO-2) under acetone adsorption
(200 ppm in dry air) in the temperature range of 50–500 ◦C.

At the same time, according to the mass spectra, starting from a temperature of 300 ◦C,
significant increases in the amounts of water and CO2 occurred when the sample was
purged with acetone (Figure 11). It was assumed that, under these conditions, acetone com-
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bustion occurred, which was probably facilitated by Fe ions in the perovskite composition
acting as a catalyst.

Figure 11. Acetone oxidation on the surface of La0.98Ba0.02FeO3 nanofibers (sample LBFO-2).

If we consider the average temperature interval, increasing the temperature up to
250 ◦C led to the disappearance of carbonyl groups and the appearance of formate groups.
The greatest sensor signal was observed in the same temperature interval, indicating that it
was the process of acetone oxidation to formate groups and their further decomposition
to CO2 and H2O that included the largest amount of chemisorbed oxygen, which greatly
changed the concentration of free charge carriers in the semiconductor.

Based on this, we can propose the following mechanism for the reaction of acetone
with the surface of the sensing material and the formation of the sensor response.

At low temperatures, acetone adsorbs on the active centers of the lanthanum ferrite
surface and forms formates (region 50–190 ◦C in Figure 11).

CH3COCH3(gas) → CH3COCH3(ads), . (13)

CH3COCH3(ads) +
2
β

Oα−
β(ads) → 3HCOH(ads) + 2αe−. (14)

At temperatures above 250 ◦C, acetone oxidation occurs mostly due to oxygen from
the surrounding air and not due to oxygen chemisorbed on the surface. This assumption
was supported by a decrease in the ion current corresponding to oxygen in the mass spectra.
It appears that acetone combustion occurs at the surface of the material, forming carbon
dioxide and water, without intermediate stages (region 250–500 ◦C in Figure 11).

CH3COCH3(gas) + O2(gas)
FexOy→ 3CO2(gas) + H2O(gas). (15)

The processes occurring in the temperature range of 190–250 ◦C (Figure 11) can be
described by the following reactions of multi-stage oxidation of formate to CO2 and H2O,
accompanied by the release of a large number of localized electrons from chemisorbed
oxygen [71]. Schematically, the multi-stage process of acetone oxidation on the surface of
the sensor material is shown in Figure 12.

β·HCOH(ads)+Oα−
β(ads) → β·H2COO−

(ads) + (α − 1)·e−, (16)
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β·H2COO−
(ads)+Oα−

β(ads) → β·HCOO2−
(ads) + β·OH(α−1)−

(ads) , (17)

2β·HCOO2−
(ads)+Oα−

β(ads) → 2β·CO2(gas) + β·H2O(gas) + (4β + α)·e− (18)

Figure 12. Scheme of step-by-step oxidation of acetone to formate on the La1−xBaxFeO3 surface.

4. Conclusions

Ba-doped LaFeO3 nanofibers (La1−xBaxFeO3, x = 0.00, 0.02, 0.04, and 0.06) with an
average diameter of about 200 nm were obtained by electrospinning. The obtained materials
were single phase, had an orthorhombic structure, and consisted of nanocrystallites with
a size of about 14–16 nm. The introduction of barium led to the inhibition of crystallite
growth during isothermal annealing and promoted an increase in the sensor response of the
LaFeO3 nanofiber-based sensors toward VOCs. The La0.98Ba0.02FeO3 sample demonstrated
the highest sensor response and a decrease in the operating temperature. The improvement
in the gas-sensitive properties of the doped materials can be explained by the high catalytic
activity of the surface of synthesized materials associated with the formation of oxygen
vacancies, highly active iron cations (Fe4+), and coordinatively unsaturated cations (Fe3+).
The mechanism of acetone oxidation on the sensor surface, studied by DRIFTS and TPD-MS
methods, is assumed to have a multi-stage nature.
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Abstract: The analysis of the influence of microhotplate size on the convective heat ex-
change of gas sensors is presented. Usually, the role of convection in the heat exchange of
gas sensors is not considered in thermal simulation models because of the complexity of
the convection process. As a result, the contribution of this process to the overall heat loss
of sensors remains without detailed analysis. We analyzed convection issues in two groups
of gas sensors: semiconductor and thermocatalytic (calorimetric) sensors and, on the other
hand, in the oxygen sensors of the thermomagnetic type. It is demonstrated that there is a
critical size leading to the formation of convective heat exchange flow. Below this critical
value, only thermal conductivity of ambient air, IR (infrared) radiation from the heated
microhotplate surface, and thermal conductivity of the microhotplate-supporting elements
should be considered as channels for heat dissipation by the microhotplate, and the contri-
bution of free convection can be neglected. The expression for the critical size contains only

fundamental constants of air, dcr~4· g
D⋅ν , where ν is the kinematic viscosity of air, D is the

diffusion coefficient, and g is the acceleration of free fall, dcr~0.5 cm. Therefore, if the size
of the microhotplate d <<dcr, the influence of convection heat exchange can be neglected.
Similar results were obtained in the analysis of the behavior of thermal magnetic sensors of
oxygen, which use paramagnetic properties of molecular oxygen for the determination of
O2 concentration. In this case, the critical size of the sensor is also of significance; if the size
of the magnetic sensor is much below this value, the oxygen concentration value measured
with such a device is independent of the orientation of the sensor element. The results of
the simulation were compared with the measurement of heat loss in micromachined gas
sensors. The optimal dimensions of the sensor microhotplate are given as a result of these
simulations and measurements.

Keywords: microheater; convective heat losses; thermal conductivity; Grashof number

1. Introduction

Sensors of different physical and chemical parameters of air (or of a gas, in general)
have recently offered a variety of important online information about the systems that
control the environment, technological processes, and atmosphere in residential and office
buildings. Sensors of airflow, pressure, chemical composition and impurities in the air are

Sensors 2025, 25, 2830 https://doi.org/10.3390/s25092830
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based on different physical and chemical principles. However, many such sensors rely
on the temperature difference between elements of the sensor as a main measurement
parameter, ultimately providing information about the target value characterizing the
ambient environment.

Among these sensors are the following: thermal anemometers, which measure gas flow
velocity using the temperature difference between hotplates placed in a series within the
gas flow [1]; thermocatalytic (calorimetric) sensors, which measure temperature difference
between two hot elements coated and uncoated with a catalyst, active in the process
of surface oxidation of target combustible gas [2]; and magnetic oxygen sensors, which
measure gas flow rate of oxygen-containing gases using hot elements placed in a magnetic
field. This flow arises due to the paramagnetic properties of oxygen, the only paramagnetic
gas commonly present in the atmosphere (aside from relatively rare NO) [3].

Another group of sensors includes semiconductor gas sensors [4,5], which use a single
hotplate to maintain a desirable high temperature required for fast catalytic oxidation of the
target gas on the surface of the semiconducting catalytic nanomaterial, and Pirani pressure
gauges [6,7]. In these sensors a microhotplate serves as a heating element with either
stabilized (in semiconductor gas sensors) or measured (in Pirani gauges) temperature.

A current trend in the fabrication of all these sensors is the application of micro-
hotplates made using one of the possible microelectronic technologies, such as silicon
MEMS, thin ceramic alumina or LTCC (low temperature co-fired ceramic) membranes [8],
screen-printed glass-ceramic membranes or cantilevers [9], and others. The main reason
for using microfabrication technologies, aside from the optimization of sensor cost, is the
minimization of the power consumption of the sensor’s hotplate.

In order to minimize the power consumption of these microhotplates, it is necessary
to analyze the paths of heat loss. This analysis is relatively simple in the case of losses due
to radiation or thermal conduction, but an analysis of convection is always problematic
because of the complex characteristics of this process. In this paper, we formulate criteria
enabling the contribution of convection to the heat losses of a sensor operating at high
temperature to be neglected.

2. Heat Dissipation by Microhotplates

A microhotplate dissipates heat in four ways (Figure 1):

(1) Conduction through supporting structures, such as wires suspending the hotplate,
or a membrane supporting the microhotplate in the case of MEMS-based sensor
elements;

(2) Conduction through ambient gas, resulting from the thermal conductivity of the
surrounding medium;

(3) Natural thermal convection occurring in the air gap between the microhotplate and
the sensor housing;

(4) Thermal radiation emitted by the surface of the microhotplate.

Sensor radiation losses are negligible under typical sensor dimensions and oper-
ating temperatures. Indeed, the radiation loss from the sensor microhotplate obeys
the Stefan–Boltzmann law, W = σ·T4·s, where W—power dissipated due to radiation;
σ—Stefan–Boltzmann constant; σ = 5.67 × 10−8 W·m−2·K−4; T—absolute temperature
of the sensor; and s—the area of the sensor. Under typical conditions, s is of the order
of 1 mm2 and T = 700 K. Taking into account these values, radiation heat losses can be
estimated as W~2 mW. This value is significantly lower than the power consumption of
microhotplates commonly used in, for example, methane sensors operating at 450 ◦C,
where the power consumption is approximately 200 mW [8].
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Figure 1. The paths of heat loss in a MEMS microhotplate, assembled in housing: (1) heat transfer by
the supporting elements; (2) heat transfer due to heat conductivity of ambient gas; (3) free thermal
convection; (4) thermal radiation.

In these estimations, the microhotplate is assumed to behave as a black-body emitter.
In reality, its emissivity is lower, so the actual radiation losses are even smaller than this
maximum theoretical estimate.

Understandings of the thermal conductivity of air and of the sensor elements are more
or less clear. The heat losses related to these effects are proportional to the temperature
difference between the microhotplate and the housing of the sensor. Heat loss due to the
thermal conductivity of the supporting elements is independent of the microhotplate area,
while loss due to the thermal conductivity of air is proportional to the area.

For example, as demonstrated in [8], in membrane-type microhotplates consisting
of a platinum microheater on 1.2 μm thick SiO2/Si3N4 dielectric membrane, heat losses
exhibit a monotonic dependence on membrane size. With a fixed size of the microheater
itself equal to 250 × 250 μm, the thermal losses decrease as the membrane size increases,
eventually reaching a minimum constant value. This saturation occurs when the ratio of
membrane size to microheater size reaches approximately 8. Further increase in membrane
size doesn’t reduce heat losses but significantly increases the membrane’s fragility.

Based on both simulation results and experimental data, the optimal size of the
membrane supporting a 250 × 250 μm microheater was determined to be approximately
1.5 × 1.5 mm.

In contrast to heat conduction and radiation losses, the role of convection in the
heat dissipation of the microheater has, to the best of our knowledge, never been thor-
oughly investigated. This remains a common and unresolved issue in the design of low
power-consuming semiconductor and thermocatalytic (calorimetric) gas sensors based on
microhotplates [10,11], as well as other sensors working at elevated temperatures, such as
thermoconductometric sensors of gas concentration [12], airflow sensors, magnetic sensors
of oxygen concentration, etc.

In principle, convection could be important, because it may not only increase total heat
loss and, consequently, power consumption, but can also introduce orientation-dependent
effects in the sensor’s response. In most thermal simulations, however, only heat conduction
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through the air and through the supporting structures of the microhotplate is considered,
while radiation is typically neglected, as previously discussed.

Yet, clear estimates of the minimum microhotplate size required for the onset of natural
convection are rarely found in the literature.

From an intuitive standpoint, if the microhotplate is extremely small, essentially
acting as a hot point, then natural convection is unlikely to be initiated. In such a case,
the buoyant (Archimedean) force acting on the heated air above the microhotplate is
insufficient to generate convective flow. On the other hand, it is also clear that, if the
temperature difference between the microhotplate and housing is too small, the convection
also cannot start. Therefore, in our consideration, we should take into account these two
boundary conditions.

In this work, we aim to estimate the critical size below which the contribution
of convection to total heat loss can be neglected. This threshold is essential for opti-
mizing the design of gas sensors that utilize microhotplates and operate under high-
temperature conditions.

Another issue, which should be taken into account, is the optimization of sensor
microhotplate size from both technological and physical points of view. Currently, the
majority of metal oxide semiconductor and thermocatalytic gas sensors are fabricated using
sensing layers prepared by sol–gel, plasma, or other technologies, giving this material in
powder form. This approach offers higher stability and higher responses of such materials
compared to sputtered ones. Therefore, the sensing material should be deposited onto
the microhotplate in the form of ink or paste, and this restricts minimum size of the
microhotplate by a value of about 200 μm.

On the other hand, the size of the total membrane supporting the sensing layer should
be chosen by taking into account the minimization of power consumption at the appropriate
working temperature, for example, at 450 ◦C for methane detection. This balance between
minimizing power consumption and ensuring effective sensor performance is crucial.

The most comprehensive classical consideration of all aspects of the heat and mass
transfer processes and their influence onto the kinetics of chemical reactions was presented
many years ago in the book [13]. While this work provides a broad overview of thermal and
mass transfer considerations, the discussion of convection is relatively brief. Unfortunately,
this analysis does not provide significant insight into the specific role of convection in
heat exchange within microhotplates. In fact, the author only mentions a dimensionless
parameter, which can be related to convection, the so called Grashof number:

Gr =
g·L3·β·(T − Tr)

v2

where g is the gravitational acceleration, L is the typical geometrical size of the surface,
T is the temperature of the hot surface, Tr is the ambient temperature, ν is the kinematic
viscosity of air, and β is the coefficient taking into account the heat exchange process on
the surface.

This number was constructed to form a dimensionless value, taking into account all
parameters, which could control the process of convection.

Unfortunately, there is no recommendation on how to use this number for the analysis
of heat transfer from microhotplates.

In the sensor community, there are some legends, which are not confirmed by reference
to any published documents. For example, we found an opinion that the authors of the
book [14] analyzed this problem and found the criteria (the critical size of the hot element),
which permits the neglecting of free convection. In fact, the authors of this book analyzed
the operation of thermocatalytic sensors based on platinum spirals and supposed that
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the small dimension of the spiral, equal to ~100 μm, permitted them not to consider the
influence of the free convection of air in housing as a mechanism of cooling the microsensor.

3. Convection in Thermomagnetic Sensors of Oxygen

A similar problem arises in the design and analysis of the operation of magnetic
sensors of oxygen.

The operation principle of magnetic sensors of oxygen is based on paramagnetic
properties of molecular oxygen [15]. There are two different approaches to the application
of magnetic properties of oxygen for the measurement of its concentration.

The first one is the use of bulk properties of oxygen as paramagnetic gas and the use
of its attraction by the magnetic field [15]. The second and, perhaps more interesting, is
the application of the so-called Senftleben effect [16–18]. The Senftleben effect consists in a
change in the diffusion cross-section of the triplet-state oxygen molecules in the magnetic
field. The reason for this increase in the cross-section is the precession of oxygen molecules
in the magnetic field. Therefore, in magnetic field, the coefficients of temperature conduc-
tivity and thermal conductivity decrease, and this change can be detected by measuring
the variation in microhotplate temperature in the pulsing magnetic field.

This effect depends on the ratio of magnetic-field strength to gas pressure. Therefore,
this effect is valuable at a low pressure of 0.01–2 Torr. The threshold of O2 detection is very
low and is about 10−5 Torr. Due to its high sensitivity, this effect is particularly valuable for
leak detection in vacuum systems.

However, in the present work, we focus primarily on more conventional devices that
exploit the bulk magnetic properties of gases containing paramagnetic components.

The contemporary state of the art in the field of magnetic sensors of oxygen concentra-
tion is presented, for example, in a review article [15].

The paramagnetic properties of oxygen are related to the electronic configuration
of the oxygen molecule. It is known that according to Hund’s law, electrons in oxygen
molecules occupying π-orbital first occupy the state with parallel spins. Therefore, the
total magnetic moment of the oxygen molecule is unity, and, as a result, it has a magnetic
moment in contrast to almost all common gases in the atmosphere, except nitrogen oxide.
The magnetic moment of oxygen exceeds the moment of all other gases by a factor of 100,
and this property enables selective detection of oxygen in the presence of other gases.

On the other hand, this property imposes limitations on the minimum detectable
concentration of oxygen. As a result, magnetic oxygen sensors are predominantly em-
ployed for industrial monitoring and medical diagnostics, where oxygen concentrations
are relatively high and comparable to those found in ambient air.

The magnetic susceptibility of oxygen follows Curie’s law, being inversely propor-
tional to absolute temperature. Therefore, the interaction of oxygen with the magnetic field
is much stronger at a low temperature; this property enables the fabrication of the most sim-
ple and the most widely usable instrument [15]. The scheme of this instrument is presented
in Figure 2, and in our work we will analyze mostly the instruments of this type.

The operating principle of the sensor based on the so-called “magnetic wind” effect is
illustrated in the schematic diagram and description provided in Figure 2. The sample gas
passes through two symmetrical sections of the ring-shaped chamber, designed to balance
the pressure and velocity at the inlet and outlet of a glass (diamagnetic) tube connecting
these sections. A wire coil is wound around this tube and forms two arms of a Wheatstone
bridge used both for gas heating and for the measurement of its velocity; these coils work
as a thermal anemometer.
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Figure 2. The scheme of the magnetic oxygen sensor based on the “magnetic wind” effect. The
instrument consists of two branches (the left and the right ones). The gas that is to be analyzed enters
from the “gas in” tube and is divided into two flows. As a result, gas pressures and velocities are the
same in the left and right ends of the horizontal tube (point P1 and P2, respectively). The wire coil is
made of platinum and is wound around a horizontal glass (diamagnetic) tube. This coil is used at the
same time as a heater and as a thermoanemometer measuring gas velocity in the horizontal tube.
This velocity is measured using a Wheatstone bridge composed of two parts of the coil and resistors
R1 and R2. If the gas flows in the tube from left to right, the temperature of the left part of the coil
is lower than the temperature of the right part of the coil (temperature in the circular branches is
equal to room temperature). The left part of the horizontal tube is placed between the poles of the
magnet, and paramagnetic oxygen is attracted by the magnetic field. Gas moving from left to right
is heated gradually by the coil and loses paramagnetic susceptibility due to Curie’s law. Therefore,
gas from the left side is attracted by the magnetic field more strongly than gas from the right side.
This force difference assures permanent gas flow in the horizontal tube, and that the velocity of gas is
proportional to the oxygen content in the gas to be analyzed.

The working principle of this instrument is based on a decrease in magnetic suscepti-
bility of oxygen with an increase in temperature (Curie’s law). Consequently, the magnetic
susceptibility of gas on the left end of the glass tube is higher than the susceptibility on the
right side, and this creates the macroscopic gas motion from left to right. The velocity of
this flow is directly related to the oxygen concentration in gas.

The key problem restricting the limit of detection of such a sensor is the competing
influence of the free convection of gas. If the sensor tube is not perfectly horizontal, gas
can move in the same (or opposite) direction due to unforced convection. The analysis
presented in [19] demonstrates that the limit of detection of such sensors can be of the order
of 100 ppm of oxygen in a diamagnetic background gas.

Therefore, it is crucial to determine the optimal geometry of thermal magnetic oxygen
sensors that would eliminate or minimize the influence of free thermal convection, ensuring
that measurement results are independent of sensor orientation. Achieving such immunity
to orientation effects would significantly improve the sensor’s applicability in portable
devices. Moreover, miniaturization of the sensor design would reduce the characteristic
diffusion time and make the sensor applicable for the monitoring of oxygen in real-time
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breath analysis, even in sport medicine, where the quantification frequency should be up
to 100 Hz.

The primary objective of this study is to investigate the influence of microhotplate and
magnetic sensor geometry on the effects of free thermal convection, and to establish design
criteria that allow its contribution to be reliably neglected.

4. Methods and Analysis

4.1. Convection Effects in Semiconductor and Thermocatalytic Sensors

As noted previously, there is a common consensus that, if a microhotplate with a size of
a few tens of hundreds of microns is used as a heater of a semiconductor or thermocatalytic
gas sensor, it is possible not to take into account the influence of free thermal convection
on the heat exchange processes of gas sensors. This conclusion stems both from available
experimental observations and from the inherent complexity of modeling convective
processes. However, it remains difficult to find rigorous justification for the assumption
that convection is negligible in systems involving micro-scale heating elements.

For the evaluation of the minimum size of microhotplate capable of inducing an
ascending (buoyant or flowing up in gravitation field) air flow from the hotplate to, for
instance, the colder wall of the sensor housing, we formulated a model based on the
following assumptions.

(1) There is competition between two processes: the ascending air flow due to free
thermal convection and the back-diffusion of air molecules. If the convection of
gas plays an important role in heat transfer, the characteristic time of convective
transfer should be shorter (or, preferably, much shorter) than that of diffusion. If
the diffusion (it is known that the diffusion coefficient in ideal gas is equal to the
temperature conductance coefficient) of gas is faster than the convection flow, the
role of convection is negligible, and all heat exchange processes are only due to the
process of heat conductivity.

(2) The convective flow in a virtual convection tube is laminar, because the velocity of
this flow is very small, and the Reynolds number Re = v·L/ν, where v—average
velocity of gas flow, v < 10 cm/s, L—characteristic size of the sensor, L < 1 cm, and
ν—kinematic viscosity of air, ν~1 cm2/s. Therefore, Re < 10, and the flow is in the
deep laminar zone. A virtual convection tube is a tube placed over the hot surface
with gas flowing up due to free convection.

(3) Air in this ascending flow (convection tube), heated by a microheater, is then cooled
by surrounding room-temperature air due to the heat conductance of air along the
sides of the virtual convection tube.

(4) The result should meet the criteria of reasonability: under isothermal conditions, the
convection is suppressed, and, for a point-like heat source, the Archimedes’ force is
insufficient to establish a stable upward flow.

Let us consider a microhotplate with diameter d and, respectively, radius
r = d/2 (Figure 3). We suppose that there is a convection tube over this microhotplate,

the temperature of lower end of this tube is equal to the temperature of the microhotplate
T, and the temperature of the upper end is equal to the room temperature Tr. The height
of the tube is equal to h. The convection velocity of gas in the tube is v. The condition,
which should be met to neglect convection is t > τ, or, better, t >> τ (t—is convection time,
τ—diffusion time) or

h/v > h2/D, (1)

where D is diffusion coefficient.
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Figure 3. Microhotplate and convection tube over it. The microhotplateis is located in the bottom of
the convection tube, the diameter and radius of the microhotplate are equal to d and r, respectively, the
temperature of the microhotplate is T, and the ambient temperature is equal to Tr. The temperature
of gas surrounding the cylindrical part of convection tube is also equal to Tr.

The gas flow in the convection tube is laminar; therefore, there is no gas mixing, and
the cooling time of the gas in the tube is equal to τ1 = r2/D. As a result, the height of the
tube, necessary for the cooling of gas in it, is equal to h = v·τ1 = v·r2/D. This is the height
of the diffusion tube in Figure 3. Formula (1) can be rewritten as

v·r
D

< 1 (2)

The velocity of gas in the convection tube can be evaluated using the Poiseuille formula

Q =
π·r4

8·η·h ·ΔP, η = ν·ρ, Q = π·r2·v,

where ν—kinematic viscosity of air, η—dynamic viscosity, ρ—air density, Q—gas flow,
v—linear velocity of gas, and ΔP—pressure difference on the ends of the convection tube.

Therefore, gas velocity in the convection tube is equal to

v =
r2

8·η·h ·ΔP. (3)

Let us try to estimate the Archimedes’ force acting on the gas in the convection tube.
The mass of the gas over the microheater at room temperature Tr and at high temperature
T are equal to, respectively,

mr =
μ·P·V
R·Tr

=
μ·P·π·r2·h

R·Tr

and

mT =
μ·P·V
R·Tr

=
μ·P·π·r2·h

R·T
The Archimedes’ force acting on the air in the convection tube is equal to the difference

between the weights of hot and cold air in the convection tube:

F = g·(mr − mT) =
g·μ·P·π·r2·h

R
(

1
Tr

− 1
T
),

where μ—mass of mole of air, P—ambient pressure, and R—universal gas constant. There-
fore, the Archimedes’ pressure is of

ΔP =
F

π·r2 =
g·μ·P·h

R
(

1
Tr

− 1
T
)
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We can rewrite this expression (3) as

v =
r2

8η·h ·ΔP =
g·μ·P·h·r2

8η·h·R ·( 1
Tr

− 1
T
) =

g·μ·P·r2

8η·R ·( 1
Tr

− 1
T
) (4)

We should account for the ideal gas laws and relationship between kinematic and
dynamic viscosity. As a result, the expression (4) can be written as

v =
g·r2·Tav

8ν
(

1
Tr

− 1
T
), (5)

where Tav is a certain average temperature in the convection tube.
Substituting this expression into Formula (2), it is possible to obtain the following

limit for the microhotplate.

g·r3

8ν·D ·(Tav

Tr
− Tav

T
) < 1or r < 3

√
8·ν·D

g·( Tav
Tr

− Tav
T )

. (6)

For usual methane sensors, for example [8], the value of temperatures used in ex-
pression (6) are Tr = 300 K, T = 750 K, and Tav = 525 K. Therefore, the term in brackets
is equal to 1.05. However, if the temperature of the microhotplate is very low, close to
room temperature, the critical size of the microhotplate is very big, and convection is
not observed more or less at any size of hotplate according to the reasonable boundary
condition of this problem.

However, for usual conditions and usual gas sensor microhotplates, the cubic route
of the term in brackets is close to unity; therefore, generally, the convection part can be
neglected, if the following condition is met:

d < 4· 3

√
ν·D

g
≈ 0.5cm

Of course, the condition of the negligible convection role in the heat exchange process
of the microhotplate is better met, if the size of the microhotplate is

d << 4· 3

√
ν·D

g
≈ 0.5cm (7)

This means that the majority of microhotplates fabricated using microelectronic tech-
nology satisfy this condition. In practice, the cooling of the microhotplate occurs primarily
through the thermal conductivity of the surrounding air and the thermal conductivity of
the supporting elements that suspend the microhotplate.

This expression defines the conditions under which only thermal conductivity and
radiation should be taken into account for the estimation of heat loss of a microhotplate.

Formula (7) can be compared with the aforementioned Grashof number Gr. It is known
that, for ideal gas, the values of the diffusion coefficient and kinematic viscosity coincide
with each other. The analysis presented here shows that, to neglect the convective cooling
of the sensor microhotplate, the value of the Grashof number of the system, including the
microhotplate and surrounding gas, should be Gr << 64 or, to be more realistic, Gr << 50.

4.2. Convection Effects in Thermal Magnetic Oxygen Sensors

A similar analysis can be applied to the consideration of the requirements used in
the design of thermal magnetic gas sensors. As previously mentioned, a very important
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problem is how to minimize the influence of free thermal convection in the readings of
oxygen sensors.

The magnetic sensor of oxygen consists of a tube made of a diamagnetic material
placed within a magnetic field of a permanent magnet. This tube is equipped with a heater
and thermoanemometer for measuring gas flow through the tube. Oxygen containing
gas is attracted by the magnetic field; on the other hand, magnetic susceptibility of this
paramagnetic gas is inversely proportional to its temperature. Therefore, if the gas is heated
within the tube, the gradient of the temperature leads to asymmetry in the system, causing
a continuous flow of gas from the cooler part to the hotter part of the system.

A very important advantage of this type of gas sensor is its ability to function even in
an aggressive atmosphere. However, a significant drawback is the need to maintain the
orientation of the device because of the competition between the magnetic and natural
convection, due to the gradient of the temperature.

To minimize this effect, it is crucial to examine the interplay between thermomagnetic
and natural convection. The ideal scenario occurs when the natural convection could be
entirely neglected, ensuring that the thermomagnetic convection remains independent of
the orientation of the tube placed in the magnetic field. In addition, to achieve a response
time sufficient for the measurement of oxygen concentration with a characteristic time of
less than 10 ms, the dimension of the tube should be below a certain value defined by the
diffusion processes.

Here, we will utilize the results of the previous section of this paper, which considered
the role of convection in the heat exchange of the microhotplate. In that analysis, we
suggested that over a microhotplate exists a virtual tube of upstreaming gas. In the case
of “magnetic wind” oxygen sensors, this corresponds to a real tube with diameter d and
radius r heated up to temperature T. It is evident that the most critical case, when the
natural convection is most important compared to the “magnetic wind”, occurs, when the
tube is oriented vertically.

Natural convection can be neglected if the time required for the gas to move through
the tube due to convection (with length h) exceeds the time for the gas to diffuse back.

h
v
>>

h2

D
, or v <<

D
h

;

substituting Formula (5) for the last one, we obtain
g·r2·Tav

8·ν ( 1
Tr

− 1
T ) <

D
h , and r2h << 8D·ν

g·( Tav
Tr − Tav

T )
, in our case Tav = T, therefore

r2h <<
8D·ν

g·( T
Tr

− 1)
(8)

Taking into account that both the values of the diffusion coefficient and the kinematic
viscosity of air at working temperature of the magnetic oxygen sensor are equal to about
2 cm2/s, we can evaluate the dimension of the sensing element that would render the gas
sensor insensitive to its orientation in the gravitation field and, therefore, suitable for use in
portable instruments.

Let us consider the usual macroscopic gas sensor that is a glass tube equipped with a
flow meter and put to a magnetic field. If the diameter of this tube is, for example, 0.1 cm,
T = 2·Tr, the length of the tube should be by the order of magnitude h << 3 × 10−2/r2~3 cm,
that is about, or less than, 0.1 cm; the total size of the sensor is, in this case, a small cylinder
with a diameter and length of less than 1 mm.

It is clear that the fabrication of such a small sensor using conventional macroscopic
tools is rather complicated. Therefore, a thermomagnetic oxygen sensor free of the influence
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of the sensor orientation should be fabricated using alternative methods, such as microfab-
rication, which requires extremely small and precise machinery or similar instrumentation.

5. Discussion

5.1. Microhotplates

As discussed in the Introduction, the heat exchange processes of microhotplates have
been extensively described in the literature by various research groups. One of the recent
examples of such a detailed consideration is presented in [20]. In this comprehensive
review, the authors overviewed the application of thermoconductometric gas sensors for
the analysis of gases. However, even in this article, there is no well pronounced criterion
enabling the neglect of the influence of free thermal convection on the heat exchange
processes in gas sensors based on thin wires or microhotplates as heating sources.

This situation is similarly observed in other publications describing the heat exchange
in microhotplates used for thermocatalytic and semiconductor gas sensors. For example,
in our early publications [8], we supposed that, for the rather small microhotplates with
250 × 250 μm size, the influence of convection could be disregarded. This conclusion was
confirmed by the good agreement between the results obtained by the simulation of the
heat exchange process and the experimental results. In both cases, we had approximately
25 mW heating power necessary to heat the sensor up to a working temperature of 450 ◦C
used for methane detection with MOS (metal oxide semiconductor) and thermocatalytic
gas sensors.

The same assumptions were applied in the design of thermocatalytic gas sensors
based on microspirals and microhotplates [21]. In this study, the authors fabricated a small
microhotplate based on thin anodic alumina film (thickness is of about 30 μm). The size of
the hot area was of about 200 × 200 μm. Power consumption at a working temperature of
450 ◦C was of about 35 mW for continuous heating to this temperature.

On the other hand, today there is another tendency in gas sensor development. It
consists of the analysis of multisensory responses, and one of the possible solutions is
the application of multi-heater and multi-electrode sensor chips [22,23]. In cases where
the sensor array is fabricated as a single microhotplate, the size of the hotplate becomes
significantly larger, typically around 2 × 2 cm. In such instances, convection heat exchange
processes must be taken into account.

Another scenario, in which the application of relatively big hotplates is reasonable, is
the investigation of chemical, gas sensing, and other properties of sensing materials [24].
The authors of this work used a hotplate fabricated by screen printing, and the size of the
hot area of this hotplate is about 6 × 3 mm (Figure 4). It consumes ~3 W at a working
temperature of 350 ◦C.

Figure 4. The hotplate with similar dimensions was used in [24] for the physical and chemical
investigation of sensing materials.

The main reasons for using a large hotplate are to ensure uniformity of the temperature
field over the hotplate and the possibility to easily deposit the sensing layer using both
a screen-printing process and inkjet printing and to easily control the uniformity of the
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deposited sensing layer. In both last cases, the convection heat loss should be taken
into account. The same situation also occurs with the application of early gas sensors
manufactured by Figaro Inc., such as the TGS 812 and related models.

The application of different types of microfabricated hotplates is now widespread.
In addition to the microhotplates mentioned above, it is possible to discuss commercial
microhotplates fabricated by companies such as Figaro Inc. (Osaka, Japan) [25], Sensirion
(Stäfa, Switzerland) [26,27], and SGX (Corcelles-Cormondreche, Switzerland) [28], and the
microhotplates developed by a number of research groups. In the most part, for these
microhotplates, condition (7) is met and, therefore, the free convection as a channel for heat
losses can be neglected.

5.2. Thermomagnetic Sensors

Our colleagues [29] made an attempt to fabricate an oxygen sensor, which can be
applied in portable devices (including medical instruments) using microfabrication. The
sensor was fabricated as a small spiral made of 10 μm Pt glass-coated wire and the thickness
of glass was of about 1 μm. The spiral diameter was about 100 μm and the length was about
150 μm. The spiral was made by winding the Pt wire around hot NiCr (Nickel-Chromium)
wire followed by etching away the NiCr wire. The high temperature during the winding
process facilitated the sintering of the glass insulation around the Pt wire, resulting in a
structure resembling a very small glass tube containing the Pt wire spiral. The spiral was
suspended on two platinum wires within a TO-18- or TO-46-type housing and placed in a
magnetic field gradient. The orientation of the spiral in the magnetic field was more or less
random. A schematic representation of this sensor is presented in Figure 5.

Figure 5. The scheme of the thermomagnetic oxygen sensor, which meets the requirements of
Equation (8). The spiral is made of 10 μm platinum coated wire with a spiral size is of ~150 × 100 μm.

Figure 6 presents a photograph of the thermomagnetic sensor with a magnetic system
consisting of two neodymium (Nd) magnets with iron magnetic conductors. The Pt wire
coil is placed within the gap, and another arm with a reference coil is placed within the
gap between two details made of diamagnetic Al alloy. The results of the measurement
of oxygen concentration are presented in Figure 7. (This figure presents results obtained
in [29]). The plot shows the potential difference between two branches of a Wheatstone
bridge similar to those presented in Figure 2. The configuration of the particular microsen-
sor is given in Figure 6. This potential difference is due to gas flow through the tubes
formed by the Pt wire spiral. As previously discussed, there is a permanent gas flow of
oxygen-containing gas in the gap of the permanent magnet, whereas no flow occurs in the
tube positioned between the poles made of aluminum. Therefore, the spiral within the
magnetic field is cooled by the gas flow, and this leads to the different resistance of the two
spirals. This difference results in a potential difference between the two branches of the
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Wheatstone bridge, as shown in Figure 7. This potential difference is proportional to the
concentration of the paramagnetic component (oxygen) in the gas-analyte.

 
Figure 6. Photo of the thermomagnetic sensor [29].

Figure 7. Thermomagnetic sensor response as a function of oxygen concentration in diamagnetic gas.
This plot presents the potential difference between two branches of a Wheatstone bridge presented in
Figure 2; the configuration of the particular sensor is given in Figure 6. The voltage indicated in the
plot is a heating voltage supplied to the Wheatstone bridge heating two spirals (Figure 5) connected
in series. The potential difference (Y axis) is a misbalance of two branches due to additional cooling
of the spiral into the magnetic gap between the two poles of the magnet.

The results presented in [29] show that the thermomagnetic sensor is capable of
determining oxygen concentrations as low as approximately 0.1 vol.%. The response time
of the sensor is below 0.1 s. The small size of the sensor (~10−2 cm, diffusion time of ~1 ms),
together with the low thermal response time of the miniaturized Pt coil (~50 ms), results
in a total response time of around 0.05 s. Consequently, the sensor is suitable for medical
monitoring at a normal breath rate (12 min−1) and can even function at a high rate of up to
100 min−1.

Additionally, it was demonstrated that the measurement of oxygen concentration
is less influenced by the orientation of the sensor compared to the macro sensor shown
in Figure 1 (where the tube length is 12 mm). These findings support our conclusion regard-
ing methods to mitigate the influence of free convection on the response of thermomagnetic
oxygen sensors.
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However, the sensor described in [29] requires further optimization. This concerns,
first of all, the strong fixation and orientation of the microcoil with respect to the magnetic
field. The suspension with two 10 μm Pt wires is insufficient for ensuring stable orientation.
This issue will be addressed in future developments of the sensor, particularly in the
advanced microelectronic versions of both thermomagnetic sensors and sensors based on
the Senftleben effect.

6. Conclusions

We investigated the influence of convection on the heat exchange processes of mi-
crohotplates used in the fabrication of semiconductor and thermocatalytic (calorimetric)
gas sensors, as well as the heat exchange of thermal magnetic sensors of oxygen. The
analysis was based on the consideration of the competition of convection flow and back
diffusion. It was shown that there is a certain critical size of the microhotplate equal to

dcr~4· 3
√

ν·D
g , where ν is kinematic viscosity of air, D is the diffusion coefficient, g is the

acceleration of free fall, and d~0.5 cm. If the size of the microhotplate d << dcr, the influence
of convection heat exchange can be neglected and only the thermal conductivity of air and
of the elements of the sensor together with the IR (infrared) radiation (if the sensor is heated
up to a very high temperature) should be taken into account as channels of heat losses.
This expression involves only the fundamental constants of ambient gas (air, for example).
It can be compared with the Grashof number Gr = gL3/ν2, where g is the gravitational
acceleration, L is the typical geometrical size of the surface, and ν is the kinematic viscosity
of air, designed to form a dimensionless value, taking into account all parameters, which
could control the process of convection.

Similarly, for the thermal magnetic oxygen sensor consisting of a hot dielectric tube
placed within a magnetic field gradient and used to measure the concentration of paramag-
netic gas oxygen, certain conditions must be met to avoid the influence of free convection
on the measurement results. In this case, the convection can be neglected and, respectively,
the results of the measurements of oxygen concentration should not depend on the sensor
orientation, if the size of the sensor size satisfies the following condition: r2h << 8D·ν

g·( T
Tr −1)

,

where r is the radius of the dielectric tube of the sensor and h is the length of the tube.
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Abstract: The optical ammonia-sensing properties of water-dispersible polyaniline (PANI)
complexes chemically synthesized in the presence of polysulfonic acids of different struc-
ture and chain flexibility were compared for the first time. Flexible-chain poly(styrene-4-
sulfonic acid) and poly-(2-acrylamido-2-methyl-1-propanesulfonic acid), as well as semi-
rigid-chain poly-4,4′-(2,2′-disulfonic acid)diphenylene-iso-phthalamide and rigid-chain
poly-4,4′-(2,2′-disulfonic acid)diphenylene-tere-phthalamide (t-PASA) were used. The sen-
sor films were prepared by a convenient and scalable method—spray coating of aqueous
solutions on glass substrates. The optical response time and amplitude of the sensor films
in the range of ammonia concentrations from 5 to 200 ppm were investigated. To overcome
the influence of humidity and presence of over-stoichiometric protons of the polyacid on
the accuracy of ammonia determination treatments of the films in aqueous solutions of
NaCl, CaCl2 and BaCl2 were tested. The treatment in 1 M CaCl2 solution for all of the PANI
complexes results in a significant improvement in the response time, amplitude and repro-
ducibility. The films of PANI complexes with the flexible-chain polyacids have the highest
response amplitude in the range of ammonia concentrations 5–25 ppm. PANI-t-PASA film
demonstrated the best sensory properties at ammonia concentrations more than 50 ppm.
FTIR spectroscopy showed that CaCl2 treatment results in cross-linking of sulfoacid groups
from adjacent polyacid chains by Ca2+ ions. Thus, such a treatment results both in the
neutralization of excessive protons and a significant reduction in the films’ swelling at high
humidity.

Keywords: polyaniline complexes; polyacid; spray coating; ammonia sensors; optical
gas sensors

1. Introduction

One of the current trends in the progress of materials science is the development and
production of new functional materials with predetermined properties. From this point of
view, electrically conductive polymers (ECP) are of great interest. The advantages of these
polymers (polyaniline (PANI), poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole
(PPy)) show high conductivity and optical transparency in the conducting state, and high
stability in the doped state. They have a unique combination of physicochemical, electri-
cal and optical characteristics that makes these materials promising for use in chemical
sensors [1–3].

PANI is distinguished by the capability of detecting both oxidation-reduction and
pH active gases, such as ammonia, amines, etc. [4]. Most of these gases are dangerous
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to humans and are among the most common industrial pollutants. Also, the detection
of amines is one of the methods for controlling freshness, quality and safety of food
products [5].

Chemical sensors can be classified based on their operating principle: electrochem-
ical [6], thermochemical [7], resistive [8–10], mass-sensitive [11] and optical [12]. The
majority of ammonia and amines sensors based on conductive polymers operate using the
resistive detection mechanism [1,2]. For example, PANI obtained by chemical synthesis
in the presence of hydrochloric acid and indium oxide nanotubes was used for detecting
sprayed pesticides [13]. The resistive method of ammonia determination is simple to
implement and is currently well studied. However, the resistance value can be affected by
external factors. At the same time, optical sensors can provide high sensitivity and short
response time, while they are less affected by external factors such as electromagnetic inter-
ference, humidity and temperature. Also, the optical analytical signal can be transmitted
over long distances without distortion [1,14].

Upon exposition to ammonia, PANI film undergoes deprotonation, which results in
a transition from the salt form to the base one [15]. This change in the PANI electronic
structure is reflected in the change in the absorption spectrum of the film.

PANI films can be obtained in various ways, for example, by electrochemical deposi-
tion on a conductive substrate during electropolymerization. Chemically synthesized PANI
can be applied on a substrate using various methods: casting onto a horizontal substrate,
spin coating, spray coating, inkjet printing, etc. Many studies have shown that the method
of film fabrication significantly affects both the mechanical properties and morphology of
the resulting film (adhesion to the substrate, thickness uniformity, roughness), as well as
the sensory properties [12,15,16].

The comparative studies of the optical ammonia-sensing properties of PANI, PEDOT
and polypyrrole obtained electrochemically in inorganic electrolytes [17] and in the pres-
ence of polyelectrolytes of different structure [12] were presented, and the prospects of such
films for ammonia detection in air were shown. Also, double layer films of PANI/PEDOT
electrodeposited in inorganic electrolytes were used as optical ammonia sensors [18,19].

The literature contains enough work on the development of optical sensors for am-
monia based on chemically synthesized PANI. PANI films obtained in the presence of
dodecylbenzenesulfonic and laurylsulfonic acids and TiO2 nanoparticles can be used to
detect ammonia in solution [20]. A significant influence of the film deposition method
(sedimentation from the synthesis solution or spin coating) and the nature of dopant (hy-
drochloric acid, camphorsulfonic acid or iodine) on the sensitivity of PANI to ammonia was
demonstrated [15]. A more developed surface area of the film contributes to the improve-
ment of sensing characteristics. An optical sensor for detecting ammonia and amines that
can be connected to a smartphone was developed [5]. It is intended to be used to determine
the freshness of fish. It was shown that a chemically synthesized complex of PANI with
polystyrene sulfonic acid can be applied to filter paper and used as a colorimetric sensor
for amines [21].

The synthesis of PANI in the presence of polysulfonic acids of various structures makes
it possible to control the optical and electrical properties of the resulting PANI complexes,
the morphology of their films [22,23] and, consequently, their sensory characteristics.
The use of water-soluble polysulfonic acids in PANI synthesis allows the preparation of
water-soluble polymer compositions, films of which can be applied to various substrates,
including flexible ones, using scalable methods (spray coating, inkjet printing, etc.).

The deposition of PANI layers by inkjet printing has been mostly used to create bio-
logical and chemical sensors based on the resistive sensing mechanism [24,25]. In this case,
solutions of PANI synthesized in the presence of camphorsulfonic, dodecylbenzenesul-
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fonic and polystyrene sulfonic acids were used for printing. High-boiling organic solvents
(dimethyl sulfoxide, N-methylpyrrolidone) or water with the addition of sodium dodecyl
sulfonate served as solvents in these works. Resistive sensing properties of films prepared
by spray coating and inkjet printing of aqueous solutions of PANI synthesized chemi-
cally in the presence of polyvinylpyrrolidone were compared in [16]. The studies showed
that the spray-coated film has 2–3 times greater roughness and demonstrates twice the
conductivity change. PANI obtained in the presence of dodecylbenzenesulfonic acid in
water can be used to determine the level of ammonia in the blood by spectrophotometry or
electrochemical impedance spectroscopy [6]. A composition of PANI with CuCl2 applied
by spray coating onto paper was used as a hydrogen sulfide sensor [26]. Also, PANI com-
positions with 2-D carbides of transition metals deposited on cotton fabrics were developed
for detection of ammonia [14]. Most of the above mentioned PANI compositions were
prepared based on conventional water-insoluble PANI prepared in HCl, which was then
processed and/or mixed with various additives to obtain water-dispersible PANI compo-
sitions. Only in the work [24], aqueous solutions of PANI were prepared in the presence
of an organic sulfonic acid for designing printed flexible humidity sensors and in [27] a
composite of cellulose/PANI–poly-(2-acrylamido-2-methyl-1-propanesulfonic acid) was
used as resistive humidity sensor and biomedical sensor for heart rate or respiration activity.
Spray-coated films of PANI complexes with sulfonated polysulfone demonstrated good
sensing properties in optical sensors for ammonia in air [28].

Earlier, we proposed treating the films of PANI complexes with 1M aqueous solution
of CaCl2. Such treatment did not influence the electronic structure or morphology of PANI
films and was shown to decrease the solubility of drop-cast films of chemically synthesized
PANI complexes with polyacids [22]. Such treatment has also led to an improvement in the
ammonia-sensing properties of electrochemically deposited films of ECP complexes with
sulfonated polyelectrolytes [12,29].

A more or less similar approach was used in [30]: the treatment of inkjet-printed
PEDOT:PSS film on paper in FeCl3 solution improved the ammonia-sensing properties.
The authors hypothesized that the sensor’s high humidity tolerance was achieved by the
molecular interaction between the sulfonate groups in PSS and the iron(III) ions which
suppressed the swelling of the PSS shell surrounding PEDOT in high humidity, resulting
in the maintenance of electronic coupling between PEDOT chains. Also, calcium salts are
commonly used for crosslinking of biopolymers such as alginate [31,32] and pectin [33] to
prepare hydrogels with the purpose of improving their mechanical properties (including
swelling) and/or regulate their gas and vapor permeability.

In this work, we have first performed a comparative study of the optical ammonia-
sensing properties of water-dispersible PANI complexes chemically synthesized in the
presence of polysulfonic acids of different structures and chain flexibility. The films were
prepared by spray coating onto transparent glass substrates. The effect of the structure and
flexibility of the polyacid dopants on the morphology spray-coated films and ammonia-
sensing properties is considered. Also, the influence of treatment of PANI films in aque-
ous solutions of different cations (Na+, Ca2+, Ba2+) on the ammonia-sensing properties
is discussed.

2. Materials and Methods

2.1. Materials

PANI was synthesized by oxidative chemical polymerization of aniline in aque-
ous solutions of polymeric sulfonic acids of various structures (Figure 1): flexible-chain
poly(styrene-4-sulfonic acid) (PSSA) and poly-(2-acrylamido-2-methyl-1-propanesulfonic
acid) (PAMPSA), as well as semi-rigid-chain poly-4,4′-(2,2′-disulfonic acid)diphenylene-
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iso-phthalamide (i-PASA) and rigid-chain poly-4,4′-(2,2′-disulfonic acid)diphenylene-tere-
phthalamide (t-PASA). The polymerization was carried out at room temperature (~24
◦C) according to the method described in [22,34]. Prior to the synthesis, aniline (Sigma-
Aldrich, St. Louis, MO, USA, reagent grade) was distilled under reduced pressure with
nitrogen bubbling. PAMPSA (MW 2,000,000, 15% aqueous solution) was purchased from
Sigma-Aldrich. Sodium salts of i-PASA, t-PASA were synthesized as described in [34,35].
PSSNa (Sigma-Aldrich, MW 1,000,000, 25% aqueous solution), i-PASNa and t-PASNa were
converted into H+-forms using ion-exchange column. All polyacid solutions were puri-
fied via dialysis (cellulose membrane ZelluTrans MWCO 8000–10,000, Roth, Karlsruhe,
Germany) against 18 MOhm deionized water for 3 days and diluted by 18 MOhm deion-
ized water to achieve necessary concentration. We have determined viscosity-average
molar weight of polysulfonic acids using the method described in [34]: PSSA—600,000,
PAMPSA—1,100,000, i-PASA—17,000, t-PASA—59,000.

PANI 

 

 
PSSA PAMPSA 

i-PASA t-PASA 

Figure 1. Chemical structure of PANI and polysulfonic acids used in the paper.

The ratio of the concentrations of aniline to sulfoacid groups of the polyacids was
0.5 mol/g-eq. of sulfogroups: for the single base polyacids (PAMPSA, PSSA) one aniline
molecule corresponded to two monomer units of the polyacid, while for the double base
polyacids (t-PASA and i-PASA) (Figure 1) this ratio was 1:1. Ammonium persulfate (APS,
Sigma-Aldrich, reagent grade) was used as the oxidizing agent, and the ratio of the concen-
trations of aniline to APS was 1:1 mol/mol. The concentration of aniline was 0.01 M for the
synthesis in the presence of PAMPSA (0.02 g-eq. SO3), PSSA (0.02 g-eq. SO3) and i-PASA
(0.01 g-eq. SO3). In the case of the synthesis in t-PASA, in order to prevent sedimentation
of the resulting solution and ensure it is suitable for spray coating, the aniline and the
polyacid were taken in 0.005 M and 0.005 g-eq. SO3 concentrations, respectively. The
progress of the synthesis was controlled by in situ registration of electronic absorption
spectra (AvaSpec 2048 spectrophotometer, Avantes BV, Apeldoorn, The Netherlands) of
the reaction solution. After the polymerization was completed, the PANI complexes with
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polyacids were purified from oligomers, residues of unreacted oxidizer and aniline via
dialysis (ZelluTrans MWCO 8000–10,000) against deionized water for 3 days. The mass
concentrations of the aqueous solutions of PANI complexes thus obtained were: 3.7 g/L
PANI-PSSA, 4.9 g/L PANI-PAMPSA, 3.2 g/L PANI-i-PASA, 2.9 g/L PANI-t-PASA.

The films of PANI complexes were obtained by spraying the aqueous solutions onto
glass substrates. Before spraying, the solutions were treated in an ultrasonic bath for 10 min.
The substrates were placed onto a horizontally leveled platform of an IKA MSC BASICS
magnetic stirrer (IKA-Werke GmbH, Staufen, Germany), heated up to 70–80 ◦C. After
thermal stabilization of the glass substrates during 3–4 min, spray coating was performed
using a JAS 1147 aerograph (nozzle diameter 0.3 mm, JAS, Shanghai, China), fixed at a
distance of 20 cm from the platform. The solutions were spray-coated step by step, with
drying intermediate layers.

Samples for investigating the sensing properties were prepared as follows: for each
PANI–polyacid complex, 5 samples were taken as-coated, 5 samples were treated during
30 min in 1 M aqueous solution of NaCl, 5 samples in CaCl2 and 5 samples in BaCl2. After
the treatment excess of the salts’ solutions was removed from the films by keeping them in
deionized water for 5 min, followed by air drying (Figure S1, Supplementary materials, see
the link after the Conclusions).

2.2. Characterization Techniques

The thickness of the films was measured by the MII-4 microinterferometer (LOMO, St.
Petersburg, Russia). The thicknesses of PANI–polyacid films depending on the polyacid
used were (nm) as follows: 275 ± 125 (PANI-PSSA), 375 ± 50 (PANI-PAMPSA), 185 ± 15
(PANI-i-PASA) and 425 ± 25 (PANI-t-PASA). The wide spread of thickness for PANI-PSSA
is due to its rough surface (see AFM data below), which increases the possibility of error
in thickness determination by interferometry. The differences in thickness are explained
by (1) different molecular weights of the polyacids; (2) possibly different yield of aniline
polymerization in the presence of different polyacids; (3) necessity to prepare films with
comparable absorbance changes in the spectral area of optical sensor response to ensure
accuracy of the determination.

The surface morphology of PANI films was recorded using Enviroscope atomic force
microscope (AFM) with a Nanoscope V controller (Bruker, Billerica, MA, USA) in tap-
ping mode. The roughness of PANI films was averaged from 5 different areas of 3 films.
Scanning electron microscopy (SEM) images were taken using a Tescan Amber GMH scan-
ning electron microscope. Images were obtained using Everhart-Thornley SE detector at
×3000–100,000 magnifications and at an accelerating voltage of 0.5–1.0 kV.

The ammonia-sensing properties of PANI films were studied similarly as described
in [29]. The spray-coated films on glass substrates were placed into a closed 5 cm spec-
trophotometric quartz cell filled with ammonia vapors in equilibrium (at 22–25 ◦C), with a
5 mm layer of the aqueous solutions of different ammonia concentrations on the bottom of
the cell (Figure S2). Using literature reference data on the equilibrium concentrations of
ammonia in the aqueous and gas phases at 25 ± 0.1 ◦C [36], we have calculated the volume
of the 30% NH3 solution (analytical grade, Chimmed, Russia) necessary to obtain different
NH3 concentrations in 3 mL of water. Then, the concentrations of ammonia in water were
recalculated to the concentrations in air expressed in ppm.

UV–visible–NIR (350–1000 nm) absorption spectra of PANI films in air and their
evolution when exposited to the ammonia vapors was registered in situ using the AvaSpec
2048 spectrophotometer. The recording time of each spectrum was 2 s.
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The sensor response (ΔA) was calculated as the relative variation of the absorbance
amplitude at characteristic wavelengths (different for different PANI complexes)

ΔA =
ANH3vap − Aair

Aair
100% (1)

where ANH3vap is the value of absorbance when the sample is exposed to NH3, and Aair is
the value of absorbance when the sample is exposed to air.

The response time (tr) was calculated as the time necessary to reach 90% of the response
amplitude. The diffusion coefficient (D) was calculated as described in [12]

At − A0

Ak − A0
=

2
l

(
Dt

π

)0.5
(2)

where A0 and Ak are the optical absorbance at characteristic wavelength in the initial
and final moments of sensing, respectively, At is the optical absorbance at characteristic
wavelength at the time t and l is the film thickness.

FTIR spectra were registered in the range from 4000 to 400 cm–1 on a Nicolet NEXUS
scanning single-beam Fourier transform IR spectrometer (CsI beam splitter, TGS–CsI
detector, photometric accuracy of 0.1%, resolution of 2 cm–1). The samples were spray-
coated on pieces of Ge wafer. The spectra were recorded in transmission mode. The
measurements were performed under standard conditions.

3. Results and Discussion

3.1. Spectral Changes in PANI Films During Exposition to Ammonia

Typical evolutions in time of the electronic absorption spectra of the films of PANI
complexes with different polyacids measured in situ during exposition to 50 ppm NH3 are
presented in Figure 2. The blue arrows indicate simultaneous growth/drop of absorbance
at characteristic wavelengths. One can see that PANI complexes have different electronic
structures depending on the structure of polyacid. The flexibility of the polyacid chain, the
distance between the sulfoacid groups on the polymer chain and the length and rigidity
of the side chains containing sulfoacid groups affect the character of the synthesis and
the spectral properties of the PANI complexes [22]. The presence of rigid-chain polyacids
(Figure 2c,d) in the complexes facilitates the electron exchange between neighboring PANI
chains, which is manifested in the increased absorption in the NIR spectral range. In
contrast, flexible-chain polyacids (Figure 2a,b) are able to adjust their conformation to the
conformation of PANI and possibly isolate PANI chains from each other, which leads to
increased absorption of localized polarons (800 nm) [37].

In the case of PANI complexes with flexible-chain PSSA and PAMPSA (Figure 2a,b),
during exposition to ammonia we observe the decrease in absorption in the region of local-
ized polarons and near 420 nm, which is related to the radical cations [37]. Simultaneously,
an increase in absorption in the region of 500–650 nm corresponding to the deprotonated
form of PANI [37,38] is observed. Such changes indicate the transition of PANI from the salt
to the base form. Two isosbestic points confirm mutual transitions between the fragments
of chemical structure of PANI. For PANI complexes with rigid-chain i-PASA and t-PASA
(Figure 2c,d), one can see the noticeable absorption growth in the range of 600–750 nm.

For building the optical response transients, we have chosen the wavelength areas
where response amplitudes were highest: for PANI-PSSA and PANI-PAMPSA—570 nm,
for PANI-i-PASA—630 nm and for PANI-t-PASA—670 nm.
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Figure 2. Time evolution of UV–visible–NIR electronic absorption spectra of PANI-PSSA (a), PANI-
PAMPSA (b), PANI-i-PASA (c) and PANI-t-PASA (d) films during exposition to 50 ppm NH3. The
blue arrows indicate simultaneous growth/drop of absorbance at characteristic wavelengths.

3.2. Specific Features of Ammonia-Sensing Properties of PANI–Polyacids Films

When studying the sensing properties of PANI complexes with polyacids, some
specific features should be taken into account. First, hydrogen ions in the films of PANI
complexes with polyacids can easily migrate through sulfonic acid centers to the film
surface, where they can react with ammonia molecules. This can lead to a faster sensor
response. The second important feature is possible neutralization of some ammonia
molecules by excessive protons of the polyacids, which are not ionically linked with the
positively charged fragments of PANI chain. This neutralization does not cause spectral
changes in the PANI films, thus reducing the response amplitude. The over-stoichiometry
excess of sulfoacid groups is needed to ensure reproducible chemical synthesis of PANI–
polyacid complexes [34]. However, the presence of these excessive protons can reduce the
sensitivity of the films.

To solve the latter problem, we have tried treatment of the films of PANI–polyacid
complexes by aqueous solutions of chlorides of various metals (Na+, Ca2+, Ba2+) and
compared the influence of such treatment on the ammonia-sensing properties. The aim of
using NaCl-treatment was to replace excessive protons of polyacids by cation exchange
process. Ca2+, Ba2+ were chosen because they can form strong ionic bonds with sulfonic
groups of polyacids by analogy with weakly soluble CaSO4 and BaSO4. In addition to
the replacement of excessive protons Ca2+, Ba2+ decrease solubility of PANI complexes
by creating bridges between sulfonic groups belonging to adjacent polyacid molecules (or
different fragments of flexible polyacid chain).

Unfortunately, the treatment of all PANI complexes with NaCl results in unstable
sensory properties (a large spread of response amplitudes, shown in Figure S3a,b), which
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may be due to the influence of humidity. In our opinion, humidity may cause the swelling
of PANI films, as increasing their thickness resulted in a change in the balance of the
absorption/refraction/reflection phenomena at the air/film/glass interfaces. Since the
polymer film has submicron thickness, this influences optical properties of the films in
the visible range of spectrum. Treatment with Ba2+ ions gives a slightly lower response
amplitude (Figure S3e,f) compared to that in the case of Ca2+ treatment (Figure S3c,d).
The reason for this may be the significantly lower solubility of Ba-SO3 salt, resulting in
crosslinking and neutralization of the sulfoacid groups only on the surface of the film,
thus hindering further penetration of the neutralizing agent to the bulk. Therefore, further
investigations in this work were performed for CaCl2 treatment only.

According to the World Health Organization, workplace concentration limit of am-
monia in the air at 8 h exposure is 25 ppm [39]. Figure 3 shows response transients at the
exposition to ammonia concentration of 25 ppm for the PANI films untreated and treated
by Ca2+ ions. It is clearly seen in Figure 3c,d that the treatment of the PANI complexes with
rigid-chain polyacids leads to a greater increase in the response amplitude than in the case
of PANI complexes with flexible-chain polyacids (Figure 3a,b). At the same time, for all
treated PANI complexes, the response amplitudes are comparable.
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Figure 3. Response transients at the exposition to 25 ppm of ammonia for the films of PANI complexes
with PSSA (a), PAMPSA (b), i-PASA (c) and t-PASA (d), untreated (1, 2, 3, 4) and treated with CaCl2
(1′, 2′, 3′, 4′).

On the base of the time dependences of the optical absorbance at the chosen wave-
lengths, we have calculated the dependences of (At − A0)/(Ak − A0) on square root of time
(Figure S4) in accordance with the Equation (2). From the linear parts of these dependences,
we have found the values of the ammonia diffusion coefficients (Table 1). The S-shaped
graph indicates the deviation of ammonia diffusion in these films from Fick’s second law. It
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may be due to structure relaxation (changes in the polymer structure and/or conformation
upon deprotonation) accompanying the diffusion of ammonia in the PANI film. The rate of
these processes may be comparable to the ammonia diffusion rate.

Table 1. Values of the sensor response amplitude (ΔA), response time (tr) and diffusion coefficient
(D) at 50 ppm of ammonia (smell detection limit [40]) of the spray-coated PANI–polyacid films.

ΔA at 50 ppm, %
tr, s

(50 ppm)
D, 10−12, cm2/s

PANI-PSSA 10.3 171 2.5
PANI-PSSA+Ca2+ 22.5 66 7.9
PANI-PAMPSA 12.4 378 3.4
PANI-PAMPSA+Ca2+ 25.8 206 17.4
PANI-i-PASA 7.6 216 3.1
PANI-i-PASA+Ca2+ 21.8 115 9.2
PANI-t-PASA 17.7 142 25.2
PANI-t-PASA+Ca2+ 40.3 104 55.8

From Table 1, it is seen that after the treatment by CaCl2, the diffusion coefficients
increase for all PANI films: PANI-PAMPSA~5 times; PANI-PSSA, PANI-i-PASA~3 times;
PANI-t-PASA~2 times. The response times of all films decrease by about two times. This
value does not correlate with the change in diffusion coefficients due to different morphol-
ogy of PANI complexes (see below). The treatment positively affected the response ampli-
tudes: PANI-PAMPSA-growth~2 times; PANI-PSSA~2.2 times; PANI-t-PASA~2.3 times;
PANI-i-PASA~2.8 times. Importantly, PANI-t-PASA exhibits the highest response ampli-
tude, which directly influences the accuracy of ammonia detection.

FTIR spectroscopy was used to reveal possible interactions between the cations (Na+,
Ca2+) and sulfoacid groups of polyacids in PANI complexes. Since PANI-PAMPSA is a
composite of polyaniline and sulfonic acid, the FTIR spectrum contains bands that describe
the vibrations of PANI (1608, 804 cm−1) and bands that describe the vibrations of exclusively
PAMPSA (1652, 1040, 720, 625 cm−1), as well as combined bands that include both PANI
and PAMPSA (3301, 3260, 3065, 2997, 2986, 2941, 2919, 2850, 1555, 1459, 1393, 1372, 1301,
1215, 1181, 1155 cm−1 (Figure S5)). As we see, most bands are combined.

Since the treatment of PANI-PAMPSA with NaCl and CaCl2 leads to deprotonation
of the acid to form sulfonic acid salts, the most significant changes in the FTIR spectra
are to be expected for the bands describing the sulfoacid fragment: asymmetric stretching
νas(O=S=O), symmetric stretching νs(O=S=O) and stretching ν(S-O).

To determine the spectroscopic criteria of PAMPSA binding in the composition
of PANI-PAMPSA, a preliminary experiment was carried out for PAMPSA+Na+ and
PAMPSA+Ca2+ films (Figure S5). It is shown that in the PAMPSA+Na+ and PAMPSA+Ca2+

spectra, a shift of the SO3
- anion vibration bands relative to the position of the correspond-

ing bands in the sulfonic acid spectrum is recorded (Figure S5). These results allowed us to
unambiguously define bands for the analysis of sulfogroup.

In the PANI-PAMPSA spectrum (Figure 4, curve 1), the sulfonic acid group is charac-
terized by the bands: νas(O=S=O) 1215 cm−1, νs(O=S=O) 1039 cm−1 and ν(S-O) 626 cm−1.
It should be noted that the band at 1215 cm−1 is combined of stretching ν(C-N•+) in the
polaron lattice of PANI [41] and νas(O=S=O), but the main contribution to the position and
intensity of this band is made by an asymmetric stretching vibration.
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Figure 4. The FTIR spectra of spray-coated PANI-PAMPSA film (1), treated with CaCl2 (2) and
NaCl (3).

As observed in the preliminary experiment (Figure S5), the deprotonation of the acid
with the formation of PAMPSA+Na+ does not lead to significant changes in the bands
characterizing ν(O=S=O) (Figure 4, curve 3). A shift to the high-frequency region at
7 cm−1 is recorded for the ν(S-O) band, which is certainly explained by deprotonation of
O2SOH group. However, the formation of a calcium salt linker chain in PAMPSA+Ca2+

leads, in addition to a similar (as for PAMPSA+Na+) shift of the ν(S-O) band at 7 cm−1,
to a significant shift of the symmetric stretching band νs(O=S=O) at 27 cm−1 to the high-
frequency region (Figure 4, curve 2). The shift of this band can be used as a criterion for
the formation of a salt with Ca2+, leading to the formation of a chain structure rather than
simple deprotonation (as in the case of Na+).

Thus, the treatment with CaCl2 leads to cross-linking of the polyacid matrix by strong
ionic bonds of Ca2+ ions with two sulfogroups belonging to neighboring polyacid chains.
This leads to an effective substitution of the excessive protons of the polyacids.

3.3. Morphology

Our studies of the morphology of spray-coated films revealed that they are more
dense and uniform and have roughness lower in small scale (5 μm × 5 μm) than the
electrochemically synthesized films [12]. This is due to the coating procedure, which
includes drying at each step of spraying of nano-sized aqueous dispersions. AFM and
SEM images of the PANI films are shown in Figures 5 and 6. One can see the presence of
macro-roughness with abrupt height peculiarities on the scale of 40 μm × 40 μm and the
intrinsic roughness on the scale of 5 μm × 5 μm. PANI−PSSA film has a very uniform
and smooth morphology on the small scale (Figures 5a and 6a). At the same time, the
macro-roughness of PANI-PSSA is the highest—150 nm, and oval droplets from 14 to 25 μm
are clearly visible, with a height difference of up to 400 nm on the 40 μm × 40 μm scale
(Figure 5b). PANI-PAMPSA film has fibrous morphology (Figures 5c and 6c) and consists
of round, dried-up droplets, with the diameter from 15 to 20 μm; the height of the edges
of droplets is 100 nm (Figure 5d). The cross-section of PANI-PAMPSA and PANI-PSSA
revealed a very dense and homogeneous structure, with lower nanorelief in the case of
PANI-PSSA (Figure 6d,b).
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Figure 5. AFM images of PANI-PSSA (a,b), PANI-PAMPSA (c,d), PANI-i-PASA (e,f) and PANI-t-
PASA (g,h) films applied by the spray coating method in 5 μm × 5 μm (a,c,e,g) and 40 μm × 40 μm
(b,d,f,h) scales.
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For PANI-i-PASA, particles with a diameter of 50–60 nm are clearly visible (Figures 5e and 6e),
dried-up droplets, with a diameter from of 20 to 30 μm; the edges of the drops are thin—
4 μm; the height of the edges is up to 200 nm (Figure 5f). One can observe an even
finer internal morphology of the films with barely noticeable layers along the substrate
(Figure 6f).

In the case of PANI-t-PASA, the droplets are practically not pronounced and the height
fluctuations do not exceed 50 nm (Figure 5h). The roughness of PANI-t-PASA films is the
smallest—22 nm. PANI-t-PASA film has uniform, fibrous morphology on a small scale
(Figures 5g and 6g). At the same time, on a cross-section, one can see the layered-like
structure (Figure 6h). It is seen that the PANI-t-PASA layers are located in parallel to the
substrate, and their number possibly corresponds to the number of spraying steps.

Such differences can relate to molecular structures of the complexes. A more pro-
nounced relief may be associated with the higher molecular weight of PAMPSA. In PANI-
PAMPSA complex, PANI macromolecules, which are rigid in the conjugated emeraldine
form, are surrounded by flexible-chain PAMPSA and formed coiled chains uniformly
distributed on the substrate. Such complex presumably should have a double-strand
structure [22,42]. PANI-PSSA has a fine nanorelief in spite of the similar flexible backbone
of PSSA. However, the phenyl containing side chains bearing sulfonic groups sterically
hinder free bending of the PSSA chain. At the same time, large height fluctuations and
clearly defined dried-up droplets can be caused by the greater hydrophobicity of the PSSA.

 
(a) (b) 

 
(c) (d) 

Figure 6. Cont.
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(e) (f) 

(g) (h) 

Figure 6. SEM images of PANI-PSSA (a,b), PANI-PAMPSA (c,d), PANI-i-PASA (e,f) and PANI-t-PASA
(g,h) films applied by the spray coating method: planar (a,c,e,g) and cross-sectional (b,d,f,h) views.
Cross-sections from left to right: glass, ITO, PANI.

In the case of rigid-chain t-PASA, PANI macromolecules are presumably located
perpendicular to several macromolecules of the rigid-chain polyacid [22] and form less
mobile rigid structures which can be arranged in parallel layers during spraying. The
complex with semi-rigid PANI-i-PASA has a mixed structure [22] in which some of the
fragments of PANI macromolecule units are surrounded by the polyacid chains, while
others are linked by the polyacid with the neighboring ones. This may lead to the imperfect
mutual packing of the macromolecules and, accordingly, to aggregation and sedimentation.
Such an imperfect structure results in a slight deterioration in sensory properties.

Based on the morphology investigation and differences in the complexes’ structure, we
suppose that PANI-t-PASA film with more uniform, self-organized morphology and layered
structure after the treatment in CaCl2 can effectively detect ammonia at concentrations
more than 25 ppm with high sensitivity and low response time.

3.4. Sensing Properties

From the dependences of the maximum response amplitude (ΔA) at the characteristic
wavelengths on the concentration of ammonia in air (Figure 7), it is evident that PANI
complexes with the flexible-chain polyacids (PSSA and PAMPSA) after the treatment in
CaCl2 can detect ammonia at very low concentrations (5 and 10 ppm) and demonstrate
high response amplitude at 25 ppm (Figure 7b,d). The untreated PANI-PAMPSA film
demonstrates the highest response amplitude among all untreated films (Figure 7c). PANI
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complexes with the rigid-chain polyacids, especially t-PASA, after the treatment determine
ammonia in the air with high response amplitude in the range of concentrations above
25 ppm (Figure 7h). The saturation of ammonia-sensing response for PANI-PSSA and
PANI-i-PASA appears after 50 ppm (Figure 7b,f). In the case of PANI-PAMPSA and PANI-
t-PASA the growth of ΔA continues up to higher ammonia concentrations (Figure 7d,h).
Importantly, standard deviation of the determination is the lowest for PANI-t-PASA film
(Figure 7h).
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Figure 7. Dependence of response amplitude on the different concentrations of ammonia for the
films of PANI complexes with PSSA (a), PSSA+Ca2+ (b), PAMPSA (c), PAMPSA+Ca2+ (d), i-PASA (e),
i-PASA+Ca2+ (f), t-PASA (g) and t-PASA+Ca2+ (h).

It should be noted that the films of PANI complexes are reusable 2–4 times, the
reversibility decreasing at high ammonia concentration. These films are therefore preferably
used as alarm detectors.

If we compare the sensory properties of Ca2+-treated spray-coated PANI–polyacid
films with those of electrodeposited PANI–polyacid films [12] (Table 2), one can see the
influence of method of films preparation. The differences may relate to specific features
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of formation of PANI films by electrodeposition and spray coating: in the first case, the
polyacid content in the film is mostly determined by the electrosynthesis conditions, while
in the second case the polyacid content is predetermined by the composition of the synthesis
solution. At the same time, there are several general patterns. The response amplitudes
are higher for all PANI films prepared by spray coating, but the response times (except in
PANI-t-PASA) are longer. The response amplitude of PANI-PAMPSA at 50 ppm is higher
for both methods of preparation. Diffusion coefficient of spray-coated PANI-t-PASA film
is the highest [12]. Electrochemically prepared PANI-PSSA film demonstrated the worst
sensing properties due to its lower doping level [12]. On the contrary, the spray-coated
PANI-PSSA complex has a response amplitude similar to other PANI complexes. Just as in
the case of electrochemically obtained PANI films, treatment by CaCl2 leads to a significant
increase in the sensitivity, especially for PANI-t-PASA film.

Table 2. Comparison of the sensor response amplitude (ΔA) and response time (tr), at 50 ppm of
ammonia of the spray-coated (this work) and the electrodeposited PANI–polyacid films [12] treated
with 1 M CaCl2 solution.

Spray Coating Electrodeposition
ΔA, % tr, s ΔA, % tr, s

PANI-PAMPSA 25.8 206 18.0 70
PANI-t-PASA 40.7 104 19.7 194

Thus, the electrodeposition method results in the sensor films with shorter response
time, but it requires conducting substrates and expensive electrochemical equipment. The
spray coating allows us to obtain films with higher sensitivity to ammonia in air on various
substrates, particularly on flexible ones.

4. Conclusions

In the present work, we have first performed a comparative study of the optical
ammonia-sensing properties of water-dispersible PANI complexes chemically synthesized
in the presence of polysulfonic acids of different structures and chain flexibility. The sensor
films were obtained by a convenient and scalable method—spray coating. The range of
ammonia vapor concentrations from 5 to 200 ppm was studied. It was shown that the
as-coated films of PANI complexes with the flexible-chain polyacids have the highest
response amplitude in the range of ammonia concentrations 5–25 ppm, but it is subject to
bigger fluctuation under the influence of humidity.

To overcome the influence of humidity on the accuracy of ammonia determination,
treatments of the films in aqueous solutions of NaCl, CaCl2 and BaCl2 were tested. All three
variants of treatment produced no influence on the electron absorption spectra of all films.
These treatments were chosen to solve two problems—(1) to remove excessive protons of
the polyacid, which can partly neutralize ammonia molecules penetrated into the films
thus reducing the optical response amplitude and, therefore, the accuracy of determination;
(2) to reduce the solubility and swelling of the spay-coated films of PANI water-dispersible
complexes, which induce fluctuations in their optical absorbance. It was shown that the
treatment of all of the films of PANI complexes in 1 M NaCl solution effectively neutralizes
the excessive protons but does not solve the problem of swelling. The treatment in 1 M
CaCl2 solution for all of the PANI complexes results in a significant improvement in the
response time, amplitude and reproducibility. The treatment in 1 M BaCl2 solution also
improved the ammonia-sensing properties of all the films, but the response amplitudes in
this case were lower in general than those after the CaCl2 treatment. FTIR spectroscopy
showed that CaCl2 treatment results in cross-linking of sulfoacid groups from adjacent
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polyacid chains by Ca2+ ions. Thus, such treatment results both in the neutralization of
excessive protons and significant reduction in the films’ swelling.

AFM and SEM studies of the films revealed no changes in their morphology after
all of the three treatments. From the analysis of AFM cross-sectional profiles of the films
and their ammonia-sensing properties, it was concluded that macro-relief (on the scale of
40 × 40 mm) induced by spray-coating procedure has a smaller influence on the ammonia-
sensing properties than the intrinsic nano-relief predetermined by the peculiarities of
molecular structure of the PANI complexes.

Among the films of the PANI complexes treated with CaCl2 the best sensory properties
demonstrated PANI-t-PASA film at ammonia concentrations more than 50 ppm. The
films of PANI complexes give reproducible results at reusing 2–4 times, the reversibility
decreasing at high ammonia concentration. So, at this stage of the investigations, these
films are preferably to be used as alarm detectors.

Supplementary Materials: The following supporting information “Supplementary materials. Optical
ammonia sensors based on spray-coated polyaniline complexes with polysulfonic acids” can be
downloaded at https://www.mdpi.com/article/10.3390/s25113348/s1.
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Abstract: Wearable sweat-sensing devices hold significant potential for non-invasive, con-
tinuous health monitoring. However, challenges such as ensuring data accuracy, sensor
reliability, and measurement stability persist. This study presents the development of a
wearable system for the real-time monitoring of human sweat sodium levels, addressing
these challenges through the integration of a novel microfluidic chip and a compact poten-
tiostat. The microfluidic chip, fabricated using hydrophilic materials and designed with
vertical channels, optimizes sweat flow, prevents backflow, and minimizes sample contami-
nation. The developed wearable potentiostat, as a measurement device, precisely measures
electrical currents across a wide dynamic range, from nanoamperes to milliamperes. Vali-
dation results demonstrated accurate sodium concentration measurements ranging from
10 mM to 200 mM, with a coefficient of variation below 4% and excellent agreement with
laboratory instruments (intraclass correlation = 0.998). During physical exercise, the device
measured a decrease in sweat sodium levels, from 101 mM to 67 mM over 30 min, reflecting
typical physiological responses to sweating. These findings confirm the system’s reliability
in providing continuous, real-time sweat sodium monitoring. This work advances wearable
health-monitoring technologies and lays the groundwork for applications in fitness opti-
mization and personalized hydration strategies. Future work will explore multi-biomarker
integration and broader clinical trials to further validate the system’s potential.

Keywords: microfluidic chip; sweat sodium measurement; wearable device

1. Introduction

Wearable sweat-sensing devices are transforming health monitoring by offering non-
invasive, real-time analysis of physiological and biochemical parameters. Sweat, as a
biofluid, contains various biomarkers, including electrolytes, metabolites, and hormones,
which provide critical insights into hydration status, electrolyte balance, and overall
health [1,2]. Unlike traditional blood tests, which are invasive and pose risks such as
skin inflammation, wearable sweat sensors enable continuous monitoring, making them
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more convenient and user-friendly [3]. These systems have broad applications, from help-
ing athletes optimize performance and prevent dehydration by tracking electrolyte loss
during exercise to assisting individuals with chronic medical conditions, such as diabetes,
in monitoring biomarkers such as sweat glucose and reducing the need for frequent blood
draws. Physicians also benefit from these devices, as the continuous data stream supports
more informed diagnoses and treatment plans [4].

Wearable sweat-sensing systems typically consist of three main components: (1) a
sweat collection module, (2) sensors for biomarker detection, and (3) an electrochemical
interface, such as a potentiostat, which converts chemical signals into measurable electrical
outputs for real-time monitoring [5,6]. However, effective sweat collection remains a
challenge, as sweat secretion is limited to microliter volumes. Identifying optimal body
locations for efficient sweat collection is critical to device performance. Sweat-mapping
studies have revealed that the forehead produces the highest sweat rates, followed by the
anterior and posterior torso, hands, and legs [7,8]. These findings guide the design of sweat
collection devices capable of capturing limited sweat volumes effectively [9]. However,
challenges such as power efficiency, data security, material stability, and mass production
hinder widespread adoption. Future advancements aim to integrate artificial intelligence,
enhance multifunctionality, and improve interoperability, paving the way for personalized,
remote healthcare solutions [10,11].

Microfluidic chips or devices have emerged as promising solutions for sweat collection
and analysis. These chips offer significant advantages, such as reducing evaporation, mini-
mizing interference from skin debris, and enabling real-time biomarker analysis through
integrated channels [12–15]. Despite these benefits, existing designs face limitations in
controlling sweat flow rates. High flow rates can lead to rapid discharge of sweat before
sensors can capture the data, while low flow rates may cause the mixing of old and new
samples, compromising data accuracy [16–18]. Material properties also pose challenges.
Many microfluidic chips are made from hydrophobic materials, which hinder efficient fluid
flow. Although surface treatments can improve hydrophilicity, these modifications often
degrade over time, reverting to hydrophobicity due to environmental exposure [19,20].
Consequently, robust hydrophilic materials that maintain consistent fluid flow over ex-
tended periods are needed to enhance device performance [21].

Microfluidic methods utilizing passive pumps, such as gravity and capillary forces,
offer cost-effective and energy-efficient fluid manipulation. These methods rely on natural
forces to move fluids through microchannels without requiring external power sources.
Gravity-driven flow uses the force of gravity to drive fluid, while capillary forces exploit
the fluid’s tendency to move through narrow channels. These passive approaches are
ideal for wearable devices, enabling continuous and real-time monitoring, such as sweat
collection [22]. In contrast, active pumping methods use external pumps to control fluid
flow, offering more precise flow regulation. While these systems are versatile and allow for
accurate flow control, they require additional components, increasing system complexity
and power consumption. For sweat collection, passive methods are advantageous because
they simplify design and reduce energy requirements [23,24]. However, both passive and
active methods face challenges. Variations in sweat rate, skin conditions, and environ-
mental factors can impact accuracy. Active systems offer better flow control but are more
complex and power-intensive, while passive systems may face limitations in sensitivity
and consistent flow. The choice depends on balancing efficiency, complexity, and specific
application needs.

Beyond fluid handling, wearable sweat-sensing devices must achieve high accuracy
and selectivity. High accuracy is essential for detecting specific analytes, such as sodium,
particularly at low concentrations [25–27]. Selectivity is equally important to differentiate
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target ions such as sodium from interfering ions such as potassium and calcium, ensuring
reliable data in the complex composition of sweat [23,28]. Additionally, maintaining
stability and consistency in electrical signal measurements over prolonged use remains a
significant challenge, as external factors such as temperature changes and user movement
can introduce variability [29,30].

This study addresses current limitations in wearable sweat sensing by developing a
novel platform for real-time sodium monitoring with three key advancements: (1) a 3D-
printed hydrophilic microfluidic chip featuring vertical inlets to ensure continuous sweat
flow, prevent backflow, and minimize contamination—overcoming the challenges of flow
control and material hydrophobicity in existing designs; (2) integration with our previously
developed We-VoltamoStat [31], a compact, Bluetooth-enabled potentiostat that achieves
lab-grade accuracy in a wearable form factor; and (3) a complete system enabling real-time
wireless monitoring during physical exercise, demonstrated by tracking physiological
sodium dynamics. By combining these innovations in fluid handling, sensor accuracy,
and practical usability, the platform significantly advances wearable health-monitoring
technologies for both fitness and clinical applications.

2. Materials and Methods

2.1. Fabrication of Microfluidic Chip

The design was chosen to leverage gravity-driven fluid dynamics, ensuring uninter-
rupted sweat flow while preventing backflow. This approach minimizes the mixing of old
and new sweat samples, thereby enhancing the accuracy of real-time measurements. Addi-
tionally, the vertical channel design allows for efficient use of space within the wearable
device, making it compact and user-friendly. Water-washable resin is chosen to enhance the
wettability properties of microfluidic chips, which are crucial for fluid flow applications,
especially in microfluidic chips. In contrast to standard non-washable resin, which typically
exhibits low wettability and high contact angles (hydrophobic), water-washable resin offers
improved hydrophilicity.

The microfluidic chip was fabricated using a Creality LD-002H SLA 3D printer (Micro
Center, Hilliard, OH, USA). The device’s geometry was designed in SolidWorks 2020,
sliced with Chitubox software, and printed using a clear, UV-curable, water-washable resin
(E-Sun, W100). Post-processing included cleaning, curing, and assembly. The microfluidic
chip, shown in Figure 1, displays the schematic drawing of the chip and an example of
the printed chip. Magnets were incorporated into the design to enable easy and secure
attachment or removal of the sensor. The Horiba ISE sodium sensor (B722, Laqua Twin
Sensor, Horiba, Kyoto, Japan) was selected for its compact size and reliable performance,
as shown in Figure 1. The sensor casing was dismantled, leaving only the sensor part,
where the electrode connection is used to read the current. The microfluidic chip collects
sweat droplets from the inlet and directs them to the sensing area. The sensor holder part
includes a sensor holder secured by magnets, a lid hinge for the sensor, holes for wires, and
a band for holding the wearable microfluidic chip.

Eight inlets were incorporated into the microfluidic chip to maximize sweat collection
within a short time. The inlets were designed with a channel size width of 1.8 mm to
enhance capillary force and maintain a good flow while reducing contamination. The
microchannel was designed for vertical fluid flow driven by gravity. To control the flow
rate of sweat reaching the outlet and ensure the adequate filling of the sensing area, an
outlet with a width and height of less than 1 mm was designed. This small outlet channel
increases the time required for sweat to flow out due to the high-pressure difference
between the large sensing area and the small outlet channel [32]. Additionally, the design is
based on hydrostatic principles, requiring sweat to flow from a lower position to a higher
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position. This creates increased pressure at the outlet, which generates a back pressure that
opposes the fluid outflow, reducing and controlling the sweat flow rate.

Figure 1. Schematic drawing and 3D print of the microfluidic chip and sodium sensor.

To optimize the printing process and ensure high-quality fabrication, we carefully
adjusted the printing recipe by conducting multiple trials and testing different parameter
values, focusing on slicing settings. The bottom layer requires a time exposure of 12 s, while
the normal layer needs only 2.5 s, optimizing the curing process for different layers. The lift
distance for both bottom and normal layers is set to 5 mm, maintaining uniform detachment
from the resin vat. The speed during operation is also consistent, with both the bottom
and normal layers having a lift speed of 50 mm/min. The retraction speed is adjusted
for efficiency, with the bottom layer retracting at 150 mm/min and the normal layer at
190 mm/min. Optimizing these parameters was crucial for achieving precise dimensions,
smooth surfaces, and consistent device performance. By fine-tuning the slicing settings, we
were able to minimize defects and improve the overall quality of the fabricated microfluidic
chip. Table 1 shows the 3D printer settings used to achieve the chip dimensions.

Table 1. The 3D printer settings used to achieve the chip dimensions.

Setting Parameter Bottom Layer Normal Layer
Bottom Retract

Speed
Normal Retract

Speed

Time Exposure (s) 12 2.5 - -
Lift Distance (mm) 5 5 - -
Speed (mm/min) 50 50 150 190

2.2. Microfluidic Chip Flow Test

The performance of the printed microfluidic chip was assessed through two primary
tests: a hydrophilicity test and an efficiency test for fluid delivery to the sensor channel. The
hydrophilicity test focused on evaluating the wettability of the microfluidic chip, fabricated
with a water-washable resin, by measuring the contact angle of its surface. A contact
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angle of less than 90◦, ideally below 60◦, is considered optimal for promoting efficient
fluid flow [30]. Meanwhile, the efficiency test examined the device’s ability to deliver
sweat to the sensor channel. Several parameters were evaluated, including the volume
of the channel, the time taken for sweat to flow out of the outlet, and the time required
to completely fill the sensing area. The channel volumes were defined using SolidWorks
and remained constant for the inlets and the sensing area, while the outlet channel sizes
varied. The results indicated that the volume of the outlet channel significantly affected the
time required for sweat to exit. To ensure the complete filling of the sensing area, the time
for the fluid to exit the outlet was measured while monitoring the fluid level within the
sensing area, as shown in Figure 2.

Figure 2. Illustration of sweat flow through the microfluidic chip. The sequential images show
sweat entering the sensing channel, filling the sensing area, and flowing out through the outlet,
demonstrating the device’s efficiency in fluid transport.

2.3. Performance Comparison of Developed We-Voltamostat Device with Standard Instrument

The current measurement capabilities of the We-VoltamoStat were evaluated through
a calibration test using a photodiode and a current source (Keithley 6221, Keithley In-
struments, Inc., Cleveland, OH, USA). The photodiode was illuminated by a light source,
and the current source generated a range of currents, as shown in Figure 3. Both the
We-VoltamoStat and the Agilent multimeter (Agilent 34401) measured the generated cur-
rents. By comparing the readings from both instruments across the range of currents, the
accuracy and precision of the We-VoltamoStat were assessed. The photodiode provided an
independent and reliable reference, ensuring the accuracy of the calibration process.

Current Source DMM

We-Voltamostat Photodiode

Figure 3. Setup for calibrating the We-VoltamoStat using a Keithley current source. The calibration
ensures a reliable measurement by comparing the device’s measurements to a standard instrument
across a range of currents.
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2.4. Dummy Cell Test

A dummy cell was used to test the electronic system of the We-VoltamoStat and verify
its ability to accurately detect and resolve potentiostat issues. The dummy cell creates a
stable electrochemical environment, essential for evaluating the device’s performance [33].
Based on the approach outlined by Caux et al., a simple series circuit was used, consisting
of a 1 kΩ resistor and a 1000 μF capacitor [34]. However, the specific configuration of
the dummy cell can vary depending on the potentiostat setup. On the other hand, in a
commercial potentiostat, such as the Metrohm, the dummy cell is connected to the working
electrode (WE) through a resistor, while the counter electrode (CE) and reference electrode
(RE) are connected to a capacitor, as shown in Figure 4. In contrast, the We-VoltamoStat
uses a simplified two-electrode configuration, where the WE is connected to a resistor and
the CE to a capacitor. While this configuration is adequate for current measurement, it
is important to note that a three-electrode configuration can offer more precise results in
certain applications.

(a) (b)

Figure 4. Dummy cell test configurations for validating the We-VoltamoStat. (a) Simplified
two-electrode setup with the We-VoltamoStat, demonstrating its reliability in measuring electro-
chemical currents. (b) Standard three-electrode setup using the Metrohm instrument.

2.5. Accuracy Test

Several tests were conducted to evaluate the accuracy, selectivity, and stability of
the We-VoltamoStat and sensor in detecting sodium ions. These tests involved analyzing
samples with known sodium ion concentrations as artificial sweat, ranging from 10 mM to
200 mM [35]. The artificial sweat is prepared using a standard process involving sodium
chloride (NaCI), potassium chloride (KCI), and calcium chloride (CaCI2), as these are the
major components of sweat ions. Combinations of NaCl solution, KCl solution, and CaCl2
solution were also mixed in a volume ratio of 2:1:1, respectively, aligning with the typical
higher volume and dominance of NaCl compared to other interfering ions commonly
found in sweat. To assess the accuracy of the We-VoltamoStat in measuring sodium ions,
we conducted a series of amperometry tests using a sodium sensor. The tests involved
comparing the electrical currents measured by the We-VoltamoStat to those measured
by a commercial potentiostat, the Metrohm instrument (μStat-i 400s) (Metrohm, Herisau,
Switzerland). For each sodium concentration in artificial sweat, ranging from 10 mM to
200 mM, we performed amperometry measurements for 300 s. The resulting current data
were analyzed to evaluate the graphical similarities and the percentage error of average
electrical currents between the two devices. To assess the statistical significance of the
differences between the two devices, we conducted a Bland–Altman plot analysis, a paired
t-test, and calculated the intraclass correlation coefficient (ICC) and coefficient of variation
(CV). The Bland–Altman plot illustrates the agreement between the devices, identifying any
systematic bias or outliers. The paired t-test determined if there are statistically significant
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differences in the mean currents measured by the two devices. The ICC and CV were used
to evaluate the reliability and consistency of the measurements.

2.6. Selectivity and Stability Test

The selectivity for sodium ions over potassium and calcium was ensured using ion-
selective electrodes (ISEs) optimized for sodium. These electrodes utilize a membrane
composition specifically designed to preferentially interact with sodium ions, thereby
minimizing interference from other ions commonly found in sweat. In the selectivity
tests, solutions containing varying concentrations of sodium, potassium, and calcium
were prepared to simulate real sweat samples. The electrode’s response to each ion was
measured and compared against a reference curve generated for sodium. The statistical
analyses, including graphical representation and two-way ANOVA with Tukey’s HSD
test, demonstrated significant differences between the sodium responses and those of
interference ions. The results indicated a mean difference exceeding 100 nA for potassium
and calcium, which confirms the high specificity of the sensor for sodium ions. This
differentiation ensures accurate sodium measurement even in the presence of interfering
ions. The tests were repeated with a mixture of all three ions to evaluate real-world
scenarios. The consistent performance of the sensor under these conditions validates its
robustness and applicability for the continuous monitoring of sweat sodium levels in
practical applications.

To assess the stability and reproducibility of the amperometry measurements, we
conducted multiple repetitions for each sweat sample concentration and each 10 min
exercise session. Five measurements were performed for each condition, allowing us to
calculate the standard deviation of the measured currents. A standard deviation (SD)
value less than 10 was considered indicative of high stability in the measurements [36].
By repeating the experiments, we were able to evaluate the consistency of the device’s
performance over time and under varying conditions.

2.7. Sweat Sodium Measurement During Physical Exercise

Human volunteer testing was conducted to evaluate the wearable device’s perfor-
mance in real-world conditions, focusing on continuous flow and real-time measurement
of sweat sodium levels. This study, which involved a single volunteer, was approved by the
institutional ethics procedure. The microfluidic chip was placed on the subject’s forehead, a
region known for its high sweat production, as shown in the experimental setup in Figure 5.
This setup allowed for the wireless monitoring of sweat sodium levels, with real-time
data transmitted to a smartphone app for convenient analysis. The volunteer followed a
standardized exercise protocol, running on a treadmill at a speed of 15 km/h for 10 min,
followed by a 3 min rest period. Sweat was collected at 10 min intervals using the microflu-
idic chip over a total duration of 30 min. Amperometry measurements were conducted
at 0 V on the collected sweat samples. The testing protocol was repeated ten times over
10 consecutive days. Sweat sodium concentrations were estimated using the determined
reference curve, providing reliable and repeatable measurements. The conversion from
measured electrical current (I) to sodium ion concentration in an amperometric sensor is
performed using the general empirical calibration formula, as shown in Equation (1). This
curve represents a mathematical relationship derived from experimental measurements of
current at known sodium concentrations.

[
Na+

]
= f(I) = aIn + bIn−1 + . . . + c (1)

where

• [Na+] is the sodium ion concentration (typically expressed in mmol/L);
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• I is the measured current (in nA or μA);
• a, b, c are empirically determined calibration coefficients;
• n is the degree of the polynomial fit (commonly 1 for a linear model, or 2–3 for

nonlinear models).

Figure 5. Wearable microfluidic sweat-sensing system during real-time monitoring. The microfluidic
chip is worn on the forehead, with data transmitted wirelessly to a smartphone app for continuous
sodium analysis.

3. Results and Discussion

3.1. Flow Test

Figure 6 shows the surface of the printed microfluidic chip, which was fabricated
using a commercial water-washable resin (eSUN, Shenzhen, China). To evaluate the
hydrophilicity of the surface, a water droplet was placed on the chip, and its contact angle
was measured. The chip demonstrated excellent hydrophilicity with a contact angle of less
than 45◦. In comparison, a chip made with commercial conventional photopolymer resin
(eSUN, W100, China) exhibited a contact angle greater than 90◦, indicating a hydrophobic
surface. The superior hydrophilic properties of the water-washable resin promote better
wetting and smoother fluid flow within the microfluidic channels, significantly enhancing
the device’s performance. Figure 7 shows the microfluidic chip fabricated in early 2023.
A hydrophilicity test conducted more than two years later, using the same fabrication
materials, shows that the contact angle remains below 45◦. The exact angle measured is
approximately 25◦, determined using ImageJ 1.54f. This confirms that the device maintains
its hydrophilic properties over time, demonstrating stable and long-lasting wettability.

Figure 6. Contact angle measurements of water on microfluidic chip surfaces fabricated with
water-washable resin (hydrophilic) and conventional resin (hydrophobic). The results demon-
strate the superior hydrophilic properties of the water-washable resin, which enhances sweat flow
within the microchannels.
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Figure 7. Wettability test of a microfluidic chip after more than two years, showing a contact angle
below 45◦, indicating that it remains hydrophilic.

3.2. Calibration Test

The We-VoltamoStat exhibited strong comparability to the Metrohm instrument in
measuring electrical currents across varying voltage ranges. Both devices produced nearly
identical current-voltage curves in cyclic voltammetry mode at a scan rate of 25 mV/s,
as shown in Figure 8. This close alignment underscores the high accuracy and reliability
of the We-VoltamoStat for electrochemical analysis. The resulting current-potential curve
displayed a characteristic decay loop, which aligns with patterns reported in earlier stud-
ies [37,38]. This loop shape arises from the exponential decay of current spikes within
the dummy cell, a well-documented phenomenon of resistor–capacitor (RC) circuits. A
detailed comparative analysis of this wearable device against the bench-top instrument
will be presented in the next sections.

Figure 8. The current-voltage curves generated by the We-VoltamoStat and the Metrohm instrument
using a scan rate of 25 mV/s in cyclic voltammetry mode. The nearly identical curves demonstrate
the correlation of the We-VoltamoStat with electrochemical measurements.

3.3. Validation of the We-Voltamostat, Including Accuracy, Selectivity, and Stability
3.3.1. Accuracy

The We-VoltamoStat consistently measured slightly lower current readings compared
to the Metrohm instrument, as illustrated in Figure 9. This discrepancy is primarily at-
tributed to the high current offset setting in the We-VoltamoStat, which can introduce
noise and obscure certain current data points, resulting in a slight underestimation of the
measured values. Despite this limitation, the We-VoltamoStat demonstrated remarkable
accuracy in amperometry measurements, producing current-voltage graphs that closely
aligned with those of the Metrohm instrument, as previously shown in Figure 9. The calcu-
lated percentage errors for average currents across various sodium chloride concentrations
were minimal: 13.7% for 10 mM, 9.9% for 50 mM, 4.2% for 100 mM, 7.8% for 150 mM,
and 8.8% for 200 mM. These findings highlight the We-VoltamoStat’s exceptional precision
and reliability in current measurements, even when accounting for the influence of the
current offset.
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(a) (b)

Figure 9. Measurement comparison between the We-VoltamoStat and the Metrohm instruments.
(a) The graph compares the average currents recorded by the We-VoltamoStat and Metrohm instru-
ments. (b) Bland–Altman plots comparing the sodium ion measurements of the across concentrations
ranging from 1 mM to 250 mM (each black dot represents an individual sample).

Table 2 presents the results of the sodium analysis tests, which evaluated the accuracy
of the We-VoltamoStat in measuring sodium ion concentrations ranging from 1 mM to
250 mM. The calculated percentage errors for average currents were generally low, with
values ranging from 4.2% to 13.7%. While lower concentrations (10 mM and below)
exhibited slightly higher percentage errors, the overall performance of the We-VoltamoStat
was satisfactory. The Bland–Altman plot in Figure 9 reveals an acceptable level of agreement
between the We-VoltamoStat and the reference device for all concentrations.

Table 2. Sensor output for NaCl concentrations ranging from 1–250 mM.

mM

Current Measurement (nA)

Percentage Error (%) Mean Difference (nA)Metrohm We-Voltamostat

Average

1 3.252 −9.054 37.8 12.306

10 46.881 37.203 14.6 9.678

50 91.825 80.586 12.2 11.239

100 121.465 114.126 6 7.339

150 141.76 127.624 9.9 14.136

200 151.221 135.78 10.2 15.441

250 156.882 146.95 6.3 9.932

The slight measurement discrepancies observed between the We-VoltamoStat and the
Metrohm instruments are attributed to the high current offset setting in the We-VoltamoStat.
This offset can mask subtle current data points, particularly at low concentrations, leading
to an underestimation of the measured currents. While these differences were minor (mean
difference of ~11.44 nA), they are within an acceptable range for wearable sensors and do
not compromise practical applications. The We-VoltamoStat’s strong agreement with the
Metrohm instrument, as confirmed by a high intraclass correlation coefficient (ICC) value
of 0.998, ensures its reliability for real-world use. For practical applications, this level of
precision is sufficient for monitoring sweat sodium in dynamic conditions such as exercise,
where relative changes are more critical than absolute values.

Although there are higher percentage errors in current measurements at 1 mM and
10 mM, the Bland–Altman plot (Figure 9) shows that the We-VoltamoStat agrees well with
the reference device across all concentrations, from 1 mM to 250 mM. The We-VoltamoStat
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consistently shows a small bias, approximately 11.44 nA lower than the reference device.
This bias is more noticeable at lower concentrations, where the percentage errors are larger.
However, the mean difference between the two devices for low concentrations (1 mM
and 10 mM) is consistent with this expected bias. The higher errors at low concentrations
are due to challenges in measuring very small sensor currents, where background noise
can also contribute to the accuracy. Overall, the Bland–Altman plot confirms that the
We-VoltamoStat delivers reliable measurements of sodium ions over a wide concentration
range, even at low current values.

The statistical analyses comparing the We-VoltamoStat with the Metrohm instrument
are shown in Table 3. The small standard error of the mean (SEM) of 1.469 nA reflects
minimal measurement uncertainty, underscoring the device’s precision [39]. An ICC value
of 0.998 indicates a high level of agreement between the two devices. The low coefficient
of variation (CV) of 3.5% suggests consistent results across specific concentrations. Al-
though the p-value of 0.0014 slightly exceeds the 0.001 significance threshold, it still points
to no significant differences between the instruments, confirming the We-VoltamoStat’s
comparable performance.

Table 3. Validation of the We-VoltamoStat was performed using a paired sample t-test against the
Metrohm instrument.

Metrohm Instrument—We-VoltamoStat

Mean difference (nA) 11.566
SD of differences (nA) 3.285
SEM 1.469
95% CI of difference (nA) 5.128–17.996
ICC 0.998
Sign. (2-tailed) 0.0014
t 7.873
CV (%) 3.518

SD, standard deviation; SEM, standard error of mean; CI, confident interval; ICC intraclass correlation coefficient;
t-test statistic; CV, coefficient of variation; sign. (2-tailed); two-tailed probability, p < 0.001.

Figure 10 shows the relationship between the sensor current and sodium concentration
during continuous sweat sample flow conditions. As the NaCl concentration decreased
from 200 mM to 10 mM, the sensor current also decreased, reflecting the reduction in
sweat sodium concentration. The average current readings from the We-VoltamoStat
closely followed a polynomial curve, which can be used to estimate unknown sodium
concentrations. The sensor’s current ranged from 37 to 135 nA for sodium concentrations
between 10 mM and 200 mM. The average currents recorded by the We-VoltamoStat and the
Metrohm instruments over five repetitions of amperometry are shown. Both instruments
showed a strong correlation between current readings and sodium concentration, with
the curves closely aligning. The results demonstrated that the sensor can be effectively
modeled with a polynomial curve for sodium concentrations ranging from 1 mM to 250 mM.
This highlights the sensor’s versatility and accuracy in measuring the sodium-related
current across a broad range. Overall, these results demonstrate that the sensor is reliable,
sensitive, and capable of accurately measuring sodium concentrations in sweat across a
wide concentration range.
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(a) (b)

Figure 10. Average current plots for (a) sensor response and (b) sodium concentration range of
1–250 mM.

3.3.2. Selectivity and Stability

Figure 11 shows the sensor’s ability to distinguish sodium ions from interfering ions
such as potassium chloride (KCl) and calcium chloride (CaCl2) across a wide concentration
range. This demonstrates the sensor’s strong selectivity for sodium ions and its resistance
to interference from other common ions in sweat. The close match between the measured
currents and the reference curve indicates minimal interference from KCl and CaCl2, even
at higher concentrations. These findings confirm the sensor’s reliability in measuring
sodium ions in real sweat samples.

Figure 11. Graphical analysis of selectivity test results for the target ion in the presence of the
interference ions.

The sodium-selective sensor evaluated in this study is based on a cation-selective
membrane that operates according to the Nernstian principle. This membrane is engineered
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to respond specifically to monovalent and divalent cations (e.g., Na+, K+, Ca2+) through
the incorporation of selective ionophores, enabling it to differentiate sodium ions from
other ionic species. Importantly, due to its anionic nature, Cl− does not participate in the
ion-exchange process across the membrane, thereby reducing the likelihood of interference
in sodium ion detection [40].

Table 4 presents the mean differences between sodium ions and mixed ions (Na+, K+,
Ca2+) for concentrations ranging from 10 mM to 200 mM. The results further highlight
the sensor’s high selectivity for sodium ions, as the mean differences for K+ and Ca2+ are
significantly higher (over 100 nA) than those observed for sodium ions. While K+ ions typi-
cally exhibit negative deviations from the reference curve, Ca2+ ions contribute to positive
current values, especially at concentrations exceeding 100 mM. However, considering the
typical calcium concentration in sweat (0.07–12 mM), the degree of interference in sodium
ion measurement remains minimal [41]. The amperometric measurements, repeated five
times, exhibited consistently low standard deviations (SD) of less than 7 nA, indicating
stable sensor performance. Moreover, the small standard error of the mean (SEM), typically
less than 5 nA, further underscores the accuracy and consistency of the measurements.

Table 4. Mean differences between Na+ sensor responses in the presence of interfering ions (Ca²+, K+,
and a combination of ions) at varying concentrations (10–200 mM).

Concentration
(mM)

Target Ion
(A)

Interference Ions
(B)

Mean Differences
(A − B)

SEM SD A SD B

10 mM Na+ Combination all ions 14.305 1.7142 1.233 3.428
Ca2+ 118.580 3.5405 4.081
K+ 147.548 2.9386 5.877

50 mM Na+ Combination all ions 23.773 0.4624 4.339 2.813
Ca2+ 106.9358 1.4066 0.925
K+ 143.838 2.1695 1.352

100 mM Na+ Combination all ions 26.442 0.1688 2.613 4.746
Ca2+ 112.956 2.3729 0.338
K+ 152.893 1.3065 0.788

150 mM Na+ Combination all ions 7.294 1.0129 3.182 2.302
Ca2+ 111.592 1.1509 2.026
K+ 150.999 3.3026 6.605

200 mM Na+ Combination all ions 8.222 0.655 1.520 1.937
Ca2+ 109.786 0.968 4.648
K+ 152.873 0.760 1.309

3.4. Real-Time Sweat Sodium Monitoring

In this study, the developed wearable device was used to stream real-time current
data from the Na+-selective ISE sensor during human testing. While the conversion of
current values to Na+ concentration (in mmol/L) is performed offline using a predefined
calibration curve, the measured current is directly correlated with sodium concentration
and provides real-time insight into relative changes in Na+ levels. Two related studies
demonstrated the feasibility of wearable electrochemical sensors for real-time sweat mon-
itoring, with sodium concentrations determined offline. Schazmann et al. developed
a Sodium Sensor Belt (SSB) using a sodium-selective electrode and fabric-based sweat
collection to stream real-time signals, later converted to concentration via calibration [42].
Similarly, Pirovano et al. introduced the SwEatch platform, combining solid-contact ISEs
with a 3D-printed microfluidic system and Bluetooth transmission, with offline conversion
of signals to sodium levels [43].

Figure 12 illustrates the changes in sweat current (measured in nA) over a 30 min
exercise session, with data collected at three distinct 10 min intervals: 0–600 s, 1200–1800 s,
and 2400–3000 s. During these exercise periods, the sweat current showed a gradual
decline, indicating a reduction in sweat sodium concentration over time. Physiologically,
increased sweat rates are often linked to reduced sodium reabsorption efficiency in the
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sweat ducts, which can lead to higher sodium concentrations in sweat [44]. However,
our study observed a progressive decline in sodium levels during the exercise phases, as
reflected by the decreasing current. This trend is consistent with previous findings by
Xu et al., who reported that subject 1 exhibited a reduction in sweat sodium concentration
during low-intensity exercise. In contrast, subject 2 in the same study demonstrated
an opposite trend, underscoring the high degree of inter-individual variability in sweat
composition [45]. Furthermore, Pirovano et al. observed that the sodium concentration in
sweat rose to 2.97 mM at approximately 34 min, before decreasing to 2.21 mM at around
58 min and further to 0.61 mM by 78 min [43]. Such discrepancies in sweat sodium
profiles can be attributed to multiple physiological and environmental factors, including
individual fitness level, heat acclimatization status, hydration practices, dietary sodium
intake, genetics, and the functional responsiveness of eccrine sweat glands. These findings
reinforce the notion that sweat composition is highly individualized, and that the accurate
interpretation of sweat biomarkers necessitates careful consideration of both intrinsic and
extrinsic variables [46].

(a) (b)

Figure 12. (a) Real-time measurement of current (black line) and sodium ion concentration (blue line)
during three sessions of 10-min exercise with two rest intervals. (b) Averaged values of current (black
squares) and sodium concentration (blue circles) during each 10-min exercise session.

3.5. Discussion

This study presents a novel wearable sweat-sensing platform that addresses key
limitations in existing sodium monitoring systems. The integrated platform combines a
sodium-selective ion-selective electrode (ISE), a Bluetooth-enabled miniaturized potentio-
stat (We-VoltamoStat), and a microfluidic chip with vertically oriented, gravity-assisted
channels. Together, these components enable the real-time streaming of current signals
during exercise, with sodium concentrations estimated offline via a predefined calibra-
tion curve. In comparison to previous wearable systems such as those developed by
Schazmann et al. [42] and Pirovano et al. [43], which employed similar offline data pro-
cessing approaches, the current system advances the field by integrating a more compact,
low-power, and accurate electrochemical acquisition module.

The microfluidic chip further distinguishes this work through its vertical fluid trans-
port design, which enhances flow stability and minimizes sample mixing. Fabricated using
a water-washable photopolymer resin, the chip maintains long-term hydrophilicity, as
demonstrated by sustained low contact angles (<45◦) over a year after fabrication. This
eliminates the need for post-fabrication surface treatments commonly required for PDMS-
based systems, which often suffer from hydrophobic recovery within a day [46]. The use of
a passive, gravity-driven system with a controlled outlet geometry also prevents backflow
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and ensures that fresh sweat is consistently delivered to the sensing area, addressing key
challenges noted in earlier microfluidic designs [22].

An important physiological observation from this study is the progressive decline in
sweat sodium concentration during the 30 min exercise session, as measured by decreasing
current values. This phenomenon is consistent with established physiological mechanisms,
in which sweat glands become more efficient at sodium reabsorption over time under the in-
fluence of aldosterone, particularly during prolonged or repeated sweating episodes [44,45].
As the body attempts to conserve electrolytes, sodium is increasingly reabsorbed from
the primary sweat fluid in the duct before reaching the skin surface. This leads to lower
sodium levels in the collected sweat over time, a trend also reported by Xu et al. [45] in
human sweat analysis studies during exercise. Additionally, inter-individual variability
in sweat electrolyte profiles—driven by factors such as fitness level, acclimatization, and
glandular response—may further explain observed differences in sodium dynamics, as
supported by prior research [47].

4. Conclusions

This research demonstrates the successful development of a novel wearable sweat-
sensing platform for real-time monitoring of sodium ions. The microfluidic chip, fabricated
using a water-washable resin and 3D printing technology, offers high resolution, rapid
fabrication, and excellent hydrophilicity. The We-VoltamoStat potentiostat exhibited high
accuracy and precision in measuring electrical currents, with minimal deviations from
the reference instrument. The sensor’s current measurements exhibited less than 15%
error compared to the Metrohm instrument across the 10 to 200 mM NaCl range. Bland–
Altman analysis confirmed a 95% difference interval, while statistical analyses revealed
low variation, with a SEM of 1.469 nA, an ICC of 0.998, and a CV of 3.5%. Moreover, the
selectivity tests showed minor differences (less than 30 nA) between mixed ions (Na+, K+,
Ca2+) and target ions (Na+), with a standard deviation below 7. Real-time monitoring
during exercise indicated a decrease in sweat sodium levels, with average concentrations
ranging from 101 mM to 67 mM over a 50 min exercise session. Future studies could
explore the integration of additional sensors to measure other biomarkers in sweat, such as
glucose or lactate. Moreover, we also consider integrating flow rate sensing function in the
future to simultaneously measure the sweat rate, for example by incorporating the flow
rate sensors [48,49]. Additionally, investigating the performance of the proposed device in
larger-scale clinical trials could further validate its potential for real-world applications.
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Abbreviations

The following abbreviations are used in this manuscript:

WE Working electrode
CE Counter electrode
RE Reference Electrode
NaCI Sodium Chloride
KCI Potassium Chloride
CaCI2 Calcium chloride
mM Milimolar
ICC Intraclass correlation coefficient
CV Coefficient of variation
HSD Honestly significant difference
SD Standard deviation
RC Resistor-capacitor
nA Nano ampere
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Abstract: Oral cancer continues to cause profound suffering and is associated with high
mortality rates. Early detection techniques are crucial in enhancing patient outcomes. This
review paper thoroughly evaluates the significance of biomarkers and recent advancements
in oral cancer detection, emphasizing cutting-edge electrochemical methods. The paper
provides an epidemiological and etiological overview, outlining its clinical importance and
reviewing the current state of the art in detection methods. Despite considerable progress,
conventional methods exhibit limitations such as invasiveness, long wait times, and a lack
of accuracy, creating a critical need for more robust technologies. This review emphasizes
the significance of oral cancer biomarkers, which are considered promising cues for early
detection, facilitating the development of innovative biosensing technologies. This review
seeks to illuminate the recent advances in early detection and precision diagnostics, along
with the usage of artificial intelligence strategies, ultimately contributing to significant
progress in the battle against oral cancer.

Keywords: biomarkers; biofluids; electrochemical sensors; molecular analytical techniques;
diagnostic tools; commercial test kits

1. Introduction: Understanding the Etiology, Prevalence, and Current
Diagnostic Tools and Emphasizing the Importance of Early Detection

Oral cancer ranks sixth globally in terms of cancer incidence. Almost 90% of such
cancers are oral squamous cell carcinomas (OSCCs) [1]. This is the most prevalent malignant
tumor that develops in the oral cavity, starting at the lips and ending at the anterior surface,
and is usually lined by squamous cell epithelia with minor salivary gland involvement [2].
The main factors contributing to OSCC are tobacco, betel quid, alcohol consumption, and
a sexually transmitted virus called human papillomavirus (HPV) [3]. Typical symptoms
include red or white patches on the tongue, ulcers, unusual bleeding, neck swelling, or
a lump [4]. Oral cancer affects various areas within the oral cavity, including the lips,
tongue (particularly the sides and dorsal surface), floor of the mouth, buccal mucosa (inner
lining of cheeks), palate (hard and soft), gums and gingiva, oropharynx (base of the tongue,
tonsils, and soft palate), and retromolar trigone (the area behind the last molar teeth on the
lower jaw) [5], as shown in Figure 1.

The Global Cancer Observatory reported 476,000 new cases of oral cancer worldwide
in 2020 [6]. Furthermore, data from the National Institute of Dental and Craniofacial
Research suggests that the incidence of oral cancer tends to increase with advancing age,
particularly among adults aged 65 and older [4]. The five-year survival rate for the period
between 2013 and 2019 stood at 68.5%, with approximately 11,580 deaths recorded during
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this time [7]. Figure 2 showcases the reported new cases and deaths due to oral cancer
across different age groups. One of the significant reasons that a large proportion of patients
are affected by oral cancer is that it is diagnosed at the later stages.

Figure 1. The most common sites of oral cancer.

Figure 2. Reported new cases and deaths due to oral cancer across different age groups. (Available
online https://seer.cancer.gov/statistics-network/explorer/. Data source(s): SEER Incidence Data,
accessed on 20 December 2024) [7].

Studies have reported that oral visual screening can reduce mortality in individuals
with significant risk factors (especially tobacco and alcohol users). Visual screening involves
thoroughly examining the head, neck, and oral regions to identify premalignant cells [8].
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Following this, histopathology also plays an essential role in analyzing the tissue sections
by examining the structural and cellular characteristics to determine whether lesions are
cancerous or pre-cancerous [9]. Beyond these conventional methods, several adjunctive
techniques are also present to enhance oral cancer detection. For example, vital staining is
a valuable tool where specific dyes highlight abnormal cells. Similarly, the brush biopsy
offers a minimally invasive approach by collecting tissue samples from suspicious areas
for detailed analysis. Chemiluminescence or auto-fluorescence is another diagnostic tool
that employs a light-sensitive emitting tool to identify malignant tissues for early-stage
determination. However, the cornerstone of detection has evolved towards advanced
imaging technologies, which play pivotal roles in the precise assessment of malignancies.
The magnetic resonance imaging (MRI) technique uses strong magnetic fields that provide
extensive and detailed images of the mouth and surrounding tissues to determine the tumor
size, location, and extent of invasion [10,11]. Alongside MRI, ultrasound assesses tumor
growth in the throat and neck lymph nodes, and computed tomography (CT) provides
comprehensive images of oral cross-sectional areas. Other methods, including optical
coherence tomography and positron emission tomography, use light or radioactive material
to identify cancerous growths throughout the body. Recent advances have introduced
several sophisticated approaches, including photoacoustic imaging, which combines
ultrasound with optical imaging properties for the staging of cancerous lesions [12,13].
However, these expensive and power-intensive methods have not penetrated the market to
become readily available for people with low-income backgrounds. For example, X-rays
struggle in soft tissue visualization, while CT scans involve radiation exposure among
patients [14,15]. Meanwhile, MRI may not be able to distinguish between benign and
malignant lesions consistently, and ultrasound imaging is limited by its penetration depth
into the tissue, which compromises its utility in deeper and metastatic lymph nodes [16].
These issues collectively impact the feasibility of and equitable access to diagnostic methods,
potentially hindering the cost-effective delivery of dental healthcare services. Raman et al.
reviewed several studies on oral and salivary gland cancers, highlighting the effectiveness
of oral cancer screening programs. According to the review, the total societal costs depend
on several parameters, such as the screening strategies, treatment provided, location, etc. In
a community-based program in the United States (US), the cost per screening was estimated
at USD 50 to USD 100 per individual, depending on the resources obtained and utilized
and the population [17]. Some studies have also reported the quality-adjusted life years
(QALY), which vary from USD 20,000 to USD 50,000 in the US [17]. QALY is a measure
of the quantity and quality of life used to assess health outcomes, and one QALY is equal
to one year of a healthy life. This is usually considered cost-effective in many healthcare
systems. However, a limitation of QALY is the availability and quality of the data analyzed.
The findings of QALY studies cannot be generalized across different healthcare systems,
countries, and populations. Ribeiro-Rotta et al. conducted a comprehensive assessment
of the economic burden of oral cancer, with direct costs like medical and non-medical
costs and indirect costs like early deaths. Several parameters were identified in the study,
including the cost per patient, total cost in a period, and cost per treatment [18]. It also
included the inpatient and outpatient costs and the stages of the cancer. It was found that
the inpatient costs were 968% higher than the outpatient costs.

Thus, these limitations highlight the necessity of advanced diagnostic technologies
and additional methods for improved early screening to enhance the clinical outcomes for
patients. From the perspective of the patient, early detection offers profound psychological
and physiological benefits, such as identifying malignant lesions at the early stages,
reducing the psychological trauma of costly cancer treatment, and increasing the likelihood
of complete recovery. Consequently, there is an ongoing demand for more advanced and
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comprehensive screening strategies. Biomarker-based detection techniques have emerged
as a vital early oral cancer diagnosis approach. These molecular methods detect specific
indicators of cancer development, potentially offering more precise and comprehensive
screening strategies.

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
flow diagram was used to report the studies involved in this non-meta literature review
(Figure 3). A comprehensive search was conducted using keywords on PUBMED, Web
of Science, and individual websites using the Google search engine. The keywords used
were (“oral cancer” OR “oral squamous cell carcinoma”) AND (“biomarker”) AND (“early
detection” OR “early diagnosis”). The studies were searched from 2014 to 2024 and
we excluded citations, conference proceedings, abstracts, and any systematic reviews.
An additional search was conducted to analyze any commercially available kits for the
early detection of oral cancer. The search also focused on studies specifically targeting
the early detection or diagnosis of oral cancer biomarkers, with an additional searching
criterion of electrochemical biosensors for early biomarker detection. This included the
three main electrochemical methods reported in this review (amperometric, voltammetric,
and impedimetric). The original research articles included were in the English language,
and research papers published before 2014, book chapters, and those in other languages
were excluded from this review. To illustrate the usability of this framework, the biomarkers
specific to oral cancer were identified, their current molecular detection strategies were
studied, and the need for electrochemical biosensors was analyzed. An overview of such
biosensors was created, with their fabrication, the strategies involved, and the need for
early detection biomarkers associated with oral cancer, as well as their limits of detection
(LODs).

Figure 3. PRISMA flow chart of the study selection process.
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2. Biomarkers: Significance, Types, and Molecular Detection Strategies

Biomarkers are essential molecular indicators of the normal or malignant functioning
of cells and help to determine the diagnosis and prognosis of a particular disease.
Biomarkers are valuable in screening individuals without clinical or histological signs
of oral cancer, as well as healthy individuals. Their use in early detection significantly
reduces patient morbidity and mortality, underscoring the importance of developing
clinically validated biomarkers for effective oral cancer screening. Such biomarkers
include deoxyribonucleic acid (DNA), microRNAs (miRNAs), long non-coding ribonucleic
acids (lncRNAs), messenger RNAs (mRNAs), and proteins. DNA biomarkers involve
alterations in the DNA sequence, such as mutations or methylation patterns, associated
with oral cancer progression [19], whereas RNA biomarkers play crucial roles in cancer
by modulating gene expression [20]. In addition, proteins are associated with various
metabolic, structural, and regulatory functions in disease progression [21].

2.1. DNA Biomarkers

DNA biomarkers are complex molecules found in every cell of the body. They contain
all of the necessary genetic information for the development and functioning of an organism.
Gene mutations cause most malignancies, and molecular-based techniques are used to
develop and improve diagnostic procedures [22]. Several studies have delved into the
characterization of DNA biomarkers related to oral cancer. For instance, the overexpression
of NCBP2 and TFRC has been identified in tumor cells, demonstrating significantly higher
expression levels than most normal human tissues [23]. On the other hand, emerging
DNA methylation markers, such as HOXA1 3′UTR methylation, have been recognized
for their potential as predictive biomarkers for OSCC [24]. These findings underscore the
critical role of DNA biomarkers in understanding the molecular landscape of oral cancer
and their potential applications in diagnostic and predictive settings. The investigation of
molecular markers for early-stage OSCC has also been highlighted, emphasizing the need
for the comprehensive analysis of such biomarkers to enable optimal clinical treatments and
improve patients’ survival rates [25]. These studies collectively advance our understanding
of the DNA biomarkers associated with oral cancer, shedding light on their regular
and overexpressed levels and their potential significance in clinical practice. However,
the performance is not always satisfactory due to DNA denaturation [26]. Although
DNA biomarkers provide valuable insights into genetic predispositions and mutations,
recently, miRNAs have offered a more nuanced understanding of post-transcriptional
gene regulation [20]. Given the dynamic nature of biomarker research, the exploration
of miRNAs opens up new avenues for precision medicine and personalized diagnostics,
complementing the insights gained from DNA-based analyses. As research has advanced,
the focus on biomarker discovery has expanded beyond DNA to explore the potential of
miRNAs as novel indicators of biological processes and disease states.

2.2. RNA Biomarkers

RNA biomarkers are molecular indicators derived from RNA molecules that provide
valuable insights into physiological and pathological conditions within the body. They provide
essential information about specific biological conditions. RNA biomarkers are molecular
signatures derived from RNA molecules, including mRNA, miRNA, and other non-coding
RNAs [27]. RNA molecules play a crucial role in gene expression and regulatory mechanisms.
They are used to diagnose diseases and monitor the progression of tumors, as well as the
patient’s response to therapy. mRNA biomarkers identify key oncogenes or tumor suppressor
genes that are dysregulated in oral cancer [28]. For instance, epidermal growth factor receptor
(EGFR) and cyclin D1 can be detected through mRNA analysis and can be correlated with
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tumor progression or a poor prognosis [29,30]. Similarly, lncRNAs are a group of non-coding
RNAs longer than 200 nucleotides that modulate chromatin organization, transcription control,
and overall stability. Any aberrant expression in lncRNAs, including HOTAIR and MALAT1,
can be considered an early detection biomarker [31,32].

In recent years, miRNAs have emerged as pivotal elements in the pathogenesis of
oral cancer, offering potential diagnostic utility and therapeutic value. miRNAs are small
non-coding RNAs that govern several physiological processes and have been identified
as critical elements in the pathological mechanisms of diverse diseases, including oral
cancer [33,34]. These miRNAs are widely distributed in body fluids and demonstrate
disease-specific expression patterns, making them potential biomarkers for early detection.
Moreover, the inherent stability of miRNAs in bodily fluids, such as serum and saliva,
underscores their possible applicability in early cancer diagnosis, highlighting their value
as diagnostic biomarkers [33].

Circulating miRNAs, a subset of miRNAs, hold immense promise as diagnostic
biomarkers for various types of cancer [35]. Their utility stems from their potential as
molecular labels of tumor cells throughout tumorigenesis and cancer progression, with
their expression patterns changing as the disease advances. Specific circulating miRNAs,
such as miRNA-21, have demonstrated diagnostic potential for certain cancers, offering
moderate sensitivity [36]. Notably, a profiling study revealed that miRNAs are differentially
expressed in OSCC patients compared to healthy individuals. Therefore, specific miRNAs
may serve as promising diagnostic biomarkers, as evidenced by the identification of
various miRNAs that show potential for discrimination between oral cancer patients and
healthy individuals [33]. Furthermore, specific miRNAs have been associated with clinical
staging, metastasis, and overall survival in oral cancer patients [33]. He et al. identified
miRNA-24-3p as a potential novel diagnostic salivary biomarker directly associated with
the proliferation of cancer cells [37].

Continued research efforts and technological innovations in miRNA-based diagnostic
tools are essential in advancing the detection and management of oral cancer, thereby
improving patient outcomes and prognoses. miRNAs have exhibited strong potential
diagnostic and prognostic value in the context of oral cancer, especially with their distinct
expression profiles between healthy individuals and cancer patients and their association
with clinical parameters and patient outcomes, underlining their significance as promising
biomarkers for early diagnosis and prognostic assessment in oral cancer. As research
progresses, it is becoming increasingly evident that miRNAs hold substantial promise,
offering novel diagnostic and therapeutic avenues, thus signifying their potential as
innovative tools to address the challenges in diagnosing and managing oral cancer. While
miRNAs offer valuable information due to their stability and association with disease
states [38], protein biomarkers also present a complementary avenue, leveraging proteins’
diverse functions and interactions within biological systems.

2.3. Protein Biomarkers

Protein biomarkers play a crucial role in understanding the molecular landscape of
oral cancer and its clinical implications. The analysis of the protein expression levels in oral
cancer samples reveals the complex divergence between the normal and overexpressed states
of specific proteins, providing insights for diagnostic and prognostic evaluations. Protein
biomarkers can be detected in various biofluids and are used extensively for disease diagnosis,
prognosis, and monitoring. As a promising alternative, oral fluids, such as saliva, human
serum, and urine, have gained attention as potential bio-media for oral cancer diagnostics [39].

A large group of protein biomarkers, such as interleukin-6 (IL-6), -8, -1α, and -1β,
are commonly used indicators for OSCC diagnosis due to their association with lesion
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transformation in oral cancer [40]. The use of cytokeratin 19 fragment (CYFRA) 21-1 as a
diagnostic biomarker for various cancers, including OSCC, head and neck cancer, bladder
cancer, and intrahepatic cholangiocarcinoma, has been explored in several studies. Alali
et al. and Liu et al. found that CYFRA 21-1 had high specificity in detecting OSCC and head
and neck cancer, respectively, but its sensitivity was low [41,42]. These findings underscore
the critical role of protein biomarkers in elucidating oral cancer’s molecular intricacies and
their potential as diagnostic and prognostic indicators. By illuminating specific proteins’
normal and overexpressed levels, researchers are paving the way for the development of
targeted therapeutic interventions and advancements in personalized medicine in oral
cancer management. Huang et al. and Guowei et al. reported the high specificity of CYFRA
21-1 in diagnosing bladder cancer and intrahepatic cholangiocarcinoma, respectively [43,44].
However, the sensitivity of CYFRA 21-1 in these cancers was low. These findings indicate
that, while CYFRA 21-1 holds potential as a valuable biomarker in detecting these cancers,
its sensitivity and specificity show variability. Therefore, achieving clinical sensitivity and
specificity is crucial in detecting protein biomarkers, particularly due to the challenges
posed by low sample concentrations and non-specific interactions [45].

Specific proteins, including DEP Domain Containing 1B (DEPDC1B), demonstrate
enhanced expression levels in oral cancer samples compared to normal adjacent tissues.
This overexpression signifies the potential utility of DEPDC1B as a biomarker for oral
cancer [19]. Moreover, proteomic studies have highlighted the differential expression
patterns of several proteins in oral cancer. The overexpression of TYPH, an angiogenesis-
associated protein, has been identified in many solid tumors, indicating its induction
by multiple cytokines and significant contribution to angiogenesis [46]. Conversely,
specific proteins in oral cancer samples have shown lower protein expression levels. For
instance, the secreted protein acidic and rich in cysteine has shown decreased expression
in OSCC tissues, indicating potential alterations in its protective role in the tumor
microenvironment [47].

In disease monitoring and detection, biomarkers such as DNA, miRNA, and proteins
are essential. DNA biomarkers provide information about the onset and course of the
disease. In contrast, miRNA biomarkers control gene expression, and the stability of
miRNAs in biofluids is noteworthy, indicating their potential for non-invasive diagnostic
applications [35]. On the other hand, specific proteins linked to oral disease can be found
in biofluids like saliva, offering important data for prognosis and early detection.

2.4. Presence of Biomarkers in Saliva, Serum, and Urine

Oral fluids, including saliva, serum, and urine, are valuable biofluids for the detection
of oral cancer due to the presence of specific biomarkers. These biomarkers, including
DNA molecules, proteins, and RNA molecules, can indicate the presence of oral cancer
and aid in its early detection and monitoring. Salivary biomarkers, for instance, play a
crucial role in facilitating the detection and monitoring of oral cancer. Similarly, biomarkers
in urine and serum also contribute to effectively detecting oral cancer. Saliva, a biofluid
that is abundant in proteins and enzymes, provides a non-invasive means of detecting oral
cancer biomarkers. This valuable characteristic makes saliva an essential medium for the
early detection and monitoring of oral cancer. Similarly, serum, the precise component of
blood without clotting factors, contains specific proteins and molecules that indicate oral
cancer, enhancing its utility as a biofluid for diagnostic purposes. Furthermore, despite
not originating directly from the oral cavity, urine can offer insights into systemic changes
associated with oral cancer, as it harbors metabolites and proteins linked to the disease [48].
These distinct biofluids collectively offer non-invasive and potentially early detection
methods, significantly contributing to the management and treatment of oral cancer.
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Saliva is a watery extracellular liquid usually secreted by the salivary glands inside the
mouth. Whole saliva contains various cellular components, bacteria, viruses, and fungal
information, which is critical for any disease analysis. The direct contact of saliva with
oral lesions makes it a specific screening tool for the identification of hundreds of cancer
biomarkers [49]. The development of screening technologies has shown a promising future
for salivary biomarkers in the early detection of oral cancer. Saliva has been extensively
studied to discover oral cancer biomarkers [49]. It contains various biomolecules that
can indicate the presence of OSCC, offering non-invasive and convenient strategies for
diagnosis [40]. Researchers have identified salivary metabolomic biomarkers correlating
with oral cancer, aiding early detection [50].

Salivary protein biomarkers for the early diagnosis and prevention of oral cancer
include IL-8, IL-6, and tumor necrosis factor α (TNF-α) [51]. Among several groups of
proteomic biomarkers in OSCC, interleukins play a vital role in the immune response
and the transformation to malignancies [51]. In addition to interleukins, Ricardi et al.
identified several critical sources of such biomarkers, including cytokines, growth factors,
matrix metalloproteinases (MMPs), acute-phase proteins, and proline-rich proteins [52]. In
recent years, saliva-based samples have become more accessible, reliable, and non-invasive.
However, the utility of salivary biomarkers in the early diagnosis of OSCC is still under
debate, with some studies showing the potential for discrimination between healthy and
cancer patients [53].

Serum is another biofluid explored for its potential in oral cancer detection. Proteins,
enzymes, hormones, and antibodies are a few of the many biomolecules found in serum,
the liquid part of the blood left over after blood clotting [39]. These biomolecules can serve
as valuable indicators of various physiological and pathological processes, including the
presence and progression of oral cancer. These biomarkers can include tumor-associated
proteins, circulating tumor DNA (ctDNA), miRNAs, and other metabolites [39]. Although
serum biomarkers hold great promise, further research is needed to establish their clinical
utility and reliability for oral cancer detection. While not directly from the oral cavity,
serum contains proteins and molecules indicative of oral cancer. Serum contains useful
biomarkers that are usually detected by biochemical analysis, providing essential insights
into the presence of oral cancer [54].

Urine is another biofluid explored for its potential in oral cancer detection. Although
oral cancer primarily affects the oral cavity, specific biomarkers associated with the disease
can be detected in urine samples. Urine samples can be collected repeatedly, allowing
for longitudinal monitoring and the tracking of changes in biomarker levels [55]. While
less commonly studied for oral cancer detection, urine can provide systemic insights into
the disease. The metabolites and proteins present in urine can reflect systemic changes
associated with oral cancer, offering a potential avenue for diagnostic research [39]. Table 1
highlights the different biomarkers used in the detection of oral cancer.

Among the various biomarkers identified for OSCC, the most prominent ones are
determined based on their specificity and utility at different stages of the cancer. Early-stage
biomarkers are useful in detecting pre-cancerous lesions. For example, tumor protein 53
(TP53), miRNA-21, EGFR, cyclin D1, and MMPs are observed in oral tissues and are
indicative of abnormal cell cycle regulation and extra cellular matrix degradation. The
presence of TP53 is one of the earliest molecular events in OSCC progression and plays
a major role in regulating cell cycle checkpoints, apoptosis, and DNA repair. Therefore,
any TP53 mutation or loss of functionality often indicates pre-cancerous tissue. Similarly,
the overexpression of miRNA-21 and cyclin D1 is a hallmark of tumor initiation. Some
intermediate and late-stage biomarkers include vascular endothelial growth factor (VEGF),
miRNA-10b, IL-6, cancer antigen 125, etc. These late-stage biomarkers are often related to

217



Sensors 2025, 25, 1459

tumor progression, invasion, and metastasis. Their elevated levels in the saliva or serum are
linked to increased angiogenesis, disease progression, and localized spread to other body
areas. By identifying and understanding the molecular mechanisms of these biomarkers, a
critical foundation for early diagnosis and disease monitoring can be leveraged. Building
on these insights, the application of advanced molecular techniques enables the precise
identification of OSCC biomarkers to determine the required clinical actions.

Table 1. Biomarkers used for the detection of oral cancer.

Biomarker
Candidate
Biomarker

Sample Type Type of Analysis Sensitivity References

NOTCH1 Tissue qRT-PCR - [56]

CDKN2A Tissue NGS - [57]

CASP8 Tissue Whole-exome sequencing - [58]

MMP9 (mRNA) Blood/Serum ELISA NA [59]

VEGF (mRNA) Serum qRTPCR NA [60]

MALAT1 (lncRNA) Tissue qRT-PCR NA [61]

miRNA-21 Saliva qRT-PCR >65% [62]

miRNA-31 Saliva, Plasma,
Serum qRT-PCR >70% [63]

miRNA-145 Saliva qRT-PCR >60% [62]

miRNA-196a and
miRNA-196b Tissue qRT-PCR >95% [64]

Protein-Based
Biomarkers

p53 Saliva
Serum ELISA >87% [65]

Ki-67 Tissue IHC - [66,67]

EGFR Saliva, Buccal cells ELISA, RT-PCR - [68]

EGFR Tissue Fluorescence molecular imaging 100% [69]

VEGF Serum ELISA 64% [70]

IL-6 Saliva, Tissue ELISA, Western blotting, IHC - [71–73]

IL-8 Saliva ELISA, qRT-PCR - [74,75]

TNF-α Saliva ELISA [76,77]

MMP9 Saliva ELISA - [78]

MMP1 Saliva Immuno-MALDI - [79]

CYFRA 21-1 Saliva, Serum ELISA, qRT-PCR 93.8%, 88% [80]

Abbreviations: qRT-PCR—quantitative reverse transcription polymerase chain reaction; IHC—immunohistochemical
detection; ELISA—enzyme-linked immunosorbent assay; NGS—next-generation sequencing.

Molecular and genomic-based approaches have been widely used for oral cancer
diagnostics as they are precise, thereby offering the potential for targeted therapies.
Similarly, liquid biopsy detects oral squamous cell molecular biomarkers such as ctDNA,
miRNAs, lncRNAs, and proteins in bodily fluids like saliva, serum, and blood for the
systemic monitoring of the progression of oral lesions. Complementing these advanced
techniques, immunoassays provide useful diagnostic information, although they show
moderate sensitivity for early-stage detection [12]. Enzymatic and biochemical tests offer a
more cost-effective approach to biomarker detection, although they may lack the specificity
of newer molecular methods. When combined with imaging and cytological methods,
these molecular approaches create a comprehensive diagnostic framework that enhances
the accuracy and reliability of oral cancer detection and monitoring.

Among several molecular analytical techniques, nucleic acid-based approaches such
as quantitative PCR (qPCR) enable the real-time monitoring and quantification of specific
DNA sequences, providing valuable information related to gene mutations, deletions,
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and amplifications [81]. Such gene alterations are associated with oral cancer; therefore,
qPCR offers high sensitivity and specificity. Additionally, quantitative reverse transcriptase
polymerase chain reaction (qRT-PCR) is also used for the early detection of gene alterations.
It involves multiple steps, such as RNA isolation and reverse transcription [82]. DNA
microarrays and next-generation sequencing allow the analysis of genetic mutations by
binding DNA or RNA fragments to a solid surface, and the microarray is scanned to
measure the expression of each gene printed on the experimental slide [83–85]. If a
particular gene is different from the reference one, fluorescence is emitted, and the data
analyzed provide information that is critical in understanding the presence of oral lesions.
However, these techniques are extremely intrusive and cumbersome, require trained
personnel, and are time-consuming.

Several user-friendly and non-invasive oral cancer detection kits have been developed
recently, providing various screening approaches. Table 2 showcases the features of these
commercially available detection kits. Although commercially available kits have been
widely used, they are limited by certain characteristics. For example, the commercial kit
ViziLite Plus offers insights specifically into HPV-related oral cancer, but non-HPV-related
cancer information can be compromised [86]. Similarly, there is a risk of not identifying
abnormal cells in mouth areas that are not inspected, and this could lead to lower sensitivity.
The precision of such kits also depends on the quality, quantity, and type of the sample
collected, which might lead to an inaccurate diagnosis. Some commercially available kits
rely on visual inspection methods, either by light-based or dye-based examination. For
example, kits such as OralID, Oral Scan Pro, and the Bio/Screen Oral Cancer Screening
Kit use fluorescent imaging technologies. This introduces subjectivity, as the interpretation
could vary between different examiners with differences in experience and expertise. In
addition, a general drawback is false positives due to tissue inflammation or benign lesions
rather than actual malignant ones. This can lead to unnecessary follow-up procedures,
resulting in greater time consumption and higher expenses. Therefore, additional research
is needed to ensure the utmost accuracy and reliability in minimizing the global impact
of oral cancer. In this context, biosensors have emerged as novel diagnostic tools for the
detection of oral carcinoma, seeking to investigate the biomarkers responsible for oral
cancer malignancies and to diagnose it in the early stages.

Table 2. Commercially available kits for early detection of oral cancer detection.

Test Kit Name and
Location

Techniques Used Sample Type
Dose/

Volume
Sensitivity Specificity Characteristics References

OralCDx Brush Test
Suffern, NY, USA

Brush biopsy
combined with

traditional
cytopathology

Cells No specific
dose Less than 4% Less than 3%

Is non-painful, captures
samples from all three layers of

the epithelium, and shows
accuracy in detecting
pre-cancerous lesions

[87]

ViziLite Plus
Phoenix, AZ, USA

Chemiluminescence
using Toluidine

Blue O (TBO) dye

Exfoliative
cytology

No specific
dose 100% -

Helps dental professionals to
detect oral cancer at early

stages; it is effective for patients
at increased risk of oral cancer,

especially those with HPV
infection or those over

40 years old

[88]

OralID
Houston, TX, USA

Fluorescence
visualization

technique

Blood or
tissue

biopsies

No specific
dose 96% -

Helps to identify oral cancer
and pre-cancerous lesions using

fluorescence technology,
highlighting abnormalities in

the mouth

[89]

Oral Scan Pro
Thiruvananthapuram,

Kerala, India

Fluorescence
imaging

technology

Visual
inspection

No sample
required 83% 72%

Requires no direct biological
samples like saliva or blood,
enables early detection via a

handheld multi-modal imaging
system that captures real-time

images of the oral tissue

[90]
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Table 2. Cont.

Test Kit Name and
Location

Techniques Used Sample Type
Dose/

Volume
Sensitivity Specificity Characteristics References

Bio/Screen Oral
Cancer Screening Kit

Danbury, CT, USA

Fluorescence
visualization

technique

Visual
inspection

No specific
dose—oral

mucosa
- -

Functions as an adjunct tool for
detection of potential

abnormalities, highly portable
[91]

OraRisk HPV Test
Brentwood, TN, USA PCR Saliva

No specific
dose—oral

mucosa
- -

Specifically identifies HPV types
and is recommended for

patients with risk factors such as
a history of oral cancer, sexually

active individuals, and those
with suspicious oral lesions

[86]

OncAlert
Miami, FL, USA ELISA Oral mucosa No specific

dose
Under

development
Under

development Identifies high-risk individuals [92]

VIOME CancerDetect
Bellevue, WA, USA

Meta-transcriptomics
sequencing Saliva A few mL 90% 95%

It is non-invasive and employs
RNA sequencing technology

combined with AI for high accuracy
[93]

Galleri—Multicancer
early detection test

Menlo Park, CA, USA

Next-generation
sequencing

combined with
methylation

analysis

Blood 20 mL Less than 1% 51.5%
Recommended for individuals
at higher cancer risk, especially

aged 50 and older
[94]

Quick Blue Oral Care
Pvt Ltd.

KIIT, India

Microscopic
evaluation using
Toluidine Blue O

Oral mucosa No specific
dose 93% 100%

Detects oral cancer cells in
minutes and reduces the need

for multiple biopsies.
Particularly useful for cases of

non-healing oral ulcers

[95]

3. Advancing Biomarker Detection with Electrochemical Biosensors

Biosensors are diagnostic tools that offer compelling advantages over conventional
practices. By harnessing biological interactions, biosensors provide non-invasive, rapid, and
cost-effective diagnostic solutions to improve oral healthcare standards. They are suitable
due to their fast responses, reliability, and direct sample reading, without needing to rely on a
laboratory for analysis. Their advantages also include portability, simplicity, sensitivity, a small
size, low costs, rapidity, ease of use, and wide range of concentrations [96]. They comprise
a biorecognition probe for the specific target analyte of interest, a transducer, and a signal
processing system integrated into a device or assembly. Within biosensors, the biorecognition
probe encompasses various components, such as proteins (natural or engineered antibodies,
enzymes, plant proteins), whole cells (bacteria), and nucleic acids (DNA, RNA, aptamers),
which are immobilized on a transducer platform [97]. The biological signal obtained from the
interaction between the analyte and biorecognition molecule is transformed and measured
in electrical, fluorometric, luminometric, or colorimetric signals, confirming the presence
or absence of the bio-analytes of interest [98]. These bio-analytes are commonly found in
biological fluids, including the blood, serum, urine, saliva, and other bodily fluids, and they
serve as essential targets for biosensor detection [99]. Utilizing these bio-analytes as targets
(analytes) for biosensing applications provides a rapid and selective analysis, which is crucial
for medical diagnostics and pharmaceutical development.

Within the realm of biosensors, various biosensing platforms have been developed,
including lateral flow assays (LFAs) and colorimetric, optical, and electrochemical
biosensors. LFAs are portable devices that exhibit a color change response upon detecting
the target analyte, characterized by their simplicity, cost-effectiveness, and rapid testing
capabilities in identifying biomarkers in bodily fluids. They require minimal sample
preparation and usually provide results within minutes. This makes LFAs valuable for
early screening, without the need for complex instruments. However, they can pose
a challenge in low concentrations. Recent studies have highlighted the application of
LFAs using microfluidic-based colorimetric approaches with point-of-care devices for oral
cancer [100]. Similarly, colorimetric biosensors are based on the principle of a visible color
change when a reaction between the bioreceptor and the analyte occurs. An immediate
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color change indicates the presence of a biomarker; however, the color change could also
be affected by complicated samples or environmental changes [22,101]. Likewise, optical
biosensors detect changes in light properties during a biological interaction, thereby being
useful for the real-time monitoring of biological reactive systems [102]. These techniques
may include fluorescence and surface plasmon resonance, which can function in label-free
modes; however, they require sophisticated equipment, such as lasers and photodetectors,
which may not be appropriate in terms of portability.

On the other hand, electrochemical biosensors record and monitor changes in electrical
signals due to electrochemical reactions between the target molecules and the biorecognition
molecules (enzymes, antibodies, and synthetic molecules like aptamers, DNA fragments,
peptides, etc.) [103]. Electrochemical biosensors can efficiently detect biomarkers in body
fluids, such as sweat, blood, or feces, making them vital for health monitoring, disease diagnosis,
and environmental analysis [104–106]. Understanding the principles and capabilities of such
biosensors sets the stage for the exploration of their specific use in oral cancer detection.

In electrochemical biosensors, an electrode, known as a working electrode, serves
as a platform for the immobilization of biomolecules and electron mobility, in addition
to a counter and reference electrode. This working electrode is the primary electrode
where the target interacts with the biorecognition element and is typically modified with
nanomaterials and crosslinkers to increase the surface area and conductivity and ensure
efficient immobilization [107]. The counter electrode completes the necessary circuit to
sustain the current generated at the working electrode, whereas the reference electrode
maintains a known and constant potential at the working electrode. Usually, a glassy
carbon electrode, a gold electrode, a screen-printed electrode (SPE), or indium tin oxide
(ITO) glass is used as the working electrode in the electrochemical setup. Nanomaterials
such as graphene, gold nanoparticles, carbon nanotubes, etc., are deposited onto the
electrode to increase electron transfer and amplify signals [108]. The immobilization of
biomolecules on the electrode is achieved using molecular crosslinkers like carbodiimide
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS),
glutaraldehyde, 1-pyrenebutanoic acid, succinimidyl ester, (3-aminopropyl)triethoxysilane
(APTES), etc. [109]. These crosslinkers secure the molecules onto the platform and maintain
biological activity for target detection, which is related to the biosensor’s sensitivity and
LOD. In terms of electrochemical strategies, several techniques are typically chosen for
biosensor development, including cyclic voltammetry (CV), differential pulse voltammetry
(DPV), square wave voltammetry (SWV), amperometry, and electrochemical impedance
spectroscopy (EIS) [110].

3.1. Amperometric Biosensors

Amperometric biosensors function by primarily measuring the current generated by a
redox process at a fixed voltage. Such biosensors include an electrode surface that facilitates
electron transfer reactions. Upon binding with the target analyte, the recognition element
triggers an electrochemical reaction, resulting in a measurable current. The concentration
of the desired analyte within the sample is directly correlated with the amplitude of the
current. A typical electrochemical technique performed is chronoamperometry, where a
constant potential is applied, and the resulting current is measured as a function of time.
This change in current is proportional to the amount of redox species that are oxidized and
reduced. The capability of amperometric biosensors to enable the reliable and non-invasive
detection of biomarkers presents a transformative opportunity for early intervention and
enhanced patient outcomes [111].

Amperometric biosensors provide a fast and cost-effective solution for the detection
of proteins and DNA species associated with oral cancer [111]. Two gene-specific strategies
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(one DNA sensor and an immunosensor) were employed by Povedano et al. for the
development of electrochemical biosensors for the quick detection of DNA methylation.
They used functionalized MBs, attaching 5-methylcytosine (mC) as a bio-receptor
and achieving amperometric detection by using a hydrogen peroxide/hydroquinone
(H2O2/HQ) system (Figure 4(i)) [112]. The aberrant methylation of DNA is usually
observed in tumor cells, which helps in the promotor regions of tumor suppressor genes.
Therefore, the inactivation of tumor suppressor genes has been shown to be an important
mechanism in the development of human oral cancer.

Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that plays a role in
oral tumor growth and metastasis by regulating genes associated with the cellular response
to hypoxia. Martin et al. developed an immunosensing amperometric detection tool
to analyze HIF-1α on disposable screen-printed electrodes (Figure 4(ii)) [113]. Magnetic
immunoconjugates of carboxylic acid-modified magnetic particles (HOOC-MBs) were
utilized to selectively capture the target protein with an EDC/NHS crosslinking mechanism.
The biosensor showed great selectivity and a low LOD of 76 pg/mL. This was followed
by the determination of HIF-1α in raw saliva samples. Further research in more sensitive
electrochemical sensors has paved the way for spatially resolved biosensing and imaging
applications, indicating the potential of these biosensors for point-of-care testing in the
diagnosis of various diseases. In another study, Torrente-Rodriquez et al. reported the
simultaneous detection of IL-8 mRNA and IL-8 protein oral cancer biomarkers in undiluted
human saliva using functionalized MBs (Figure 4(iii)) [114]. The use of MBs proves useful
for improving the sensitivity and minimizing matrix effects, which makes them a relevant
tool in the design of biosensors for complex samples.

Recent advances in amperometric biosensors for medical diagnostics have significantly
expanded their applicability in disease detection. The fabrication of amperometric
biosensors for the detection of MMP-7 has seen significant advancements, particularly with
the use of palladium (Pd)-functionalized carbon nanocomposites as another biomarker.
Palomar et al. studied the detection of MMP-7 by integrating peptide-decorated gold
nanoparticles and carbon nanotubes, achieving an LOD of 6 pg/mL [115]. Wei et al.
further improved the detection limit using a Pd-functionalized carbon nanocomposite,
as shown in Figure 4(iv) [116]. A glassy carbon electrode was used to immobilize
peptides on gold-modified reduced graphene oxide (rGO), which improved the biosensor’s
conductivity and provided more reaction sites for immobilization. Catalytic precipitation
with Pd-functionalized carbon nanospheres amplified the signal obtained, resulting
in an LOD of 17.38 fg/mL [116]. Table 3 highlights the recent developments in
amperometric-based biosensors for the detection of oral cancer biomarkers.

Despite demonstrating significant advancements in the detection of oral cancer, amperometric
biosensors possess certain limitations that need to be considered. Signal reduction may occur
due to fouling agents and other interfering substances, which poses challenges in maintaining
consistent and reliable detection [117]. Furthermore, some amperometric biosensors may have
poor specificity, limiting their effectiveness in specific applications [118]. Another aspect of
their use that must be considered is the possibility of cross-sensitivity to other substances.
These issues emphasize the importance of calibrating the instruments precisely and considering
possible interferences while performing detection. A bottleneck in the translation of such
biosensors from the lab to industry lies in the stability and activity of the species involved in the
electrochemical reaction. Additional efforts are required to address the effects of the temperature,
buffer, and pH and the appropriate potential to maintain the stability of the system. Overall,
careful calibration that considers the real environmental conditions and potential interferences
is essential in accurately applying amperometric biosensors, especially in complex samples such
as those for oral cancer detection.
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Table 3. Amperometric biosensors and their experimental conditions for oral cancer.

Electrode/Platform Biomarker Analyte Method Detection Limit
Normal and Cancer

Patient Levels
Reference

SPCE/Strep–MBs 5–mC Human saliva,
serum, and urine Amperometry 0.3–1 fg/mL - [112]

SPCE/HOOC–MBs HIF–1α Human saliva Amperometry 76 pg/mL - [113]

SPE/HOOC–MBs IL–8 protein Human saliva Amperometry 72.4 pg/mL
IL–8 protein—

patient: 720 pg/mL,
normal: 250 pg/mL

[114]

GCE/Au–rGO MMP–7 Human serum Amperometry 1 ng/mL - [116]

Abbreviations: SPE—screen-printed electrode, HOOC—carboxylic acid, MBs—magnetic beads,
SPCE—screen-printed carbon electrode, Strep-MBs—streptococcal magnetic beads, GCE—glassy carbon electrode,
Au—gold, rGO—reduced graphene oxide, IL-8—interleukin-8, HIF-1α—hypoxia-inducible factor-1 alpha,
5-mC—5-methylated cytokine, MMP-7—matrix metalloproteinase-7.

Figure 4. Amperometric biosensors using different immobilization strategies for detection of various
oral cancer biomarkers. Schematic representation of the fabrication procedure for (i) 5–mC Reprinted
with permission from [112]; (ii) HIF–1α Reprinted with permission from [113]; (iii) IL–8 protein and
IL–8 mRNA Reprinted with permission from [114]; (iv) MMP–7 Reprinted with permission from [116].

3.2. Voltammetric Biosensors

Voltammetric biosensors are a class of electrochemical sensors that have gained significant
attention in medical diagnostics. Voltammetric biosensors measure the current when the
potential is applied at the working electrode, enabling the detection and quantification of
target analytes. This binding event between the biorecognition element and the target analyte
triggers an oxidation/reduction reaction that forms the basis of electrochemical detection.
Several electrochemical techniques are employed, such as CV, DPV, and SWV, to analyze this
redox behavior. In CV, the potential of the working electrode is swept linearly and reversed,
which generates a current vs. voltage graph, providing the relevant information about the
reaction that occurs at the electrode surface. In the case of DPV, small potential pulses are
applied to enhance the signal-to-noise ratio, which improves the detection limits, while small
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steps are applied in SWV. The current generated in such biosensors is directly related to the
concentration of the analyte. For example, Tiwari et al. developed a biosensor based on the
CV and DPV methods to detect CYFRA-21-1 by immobilizing anti-CYFRA-21-1 antibodies on
an ITO platform, as shown in Figure 5(i) [119]. Lanthanum hydroxide (La(OH)3) has several
electrochemical properties, including electron transfer mobility, which provides more free
binding and adsorption sites for the attachment of molecules like L-cysteine. This increases
the loading of the anti-CYFRA-21-1 antibodies, which enhances the stability of the electrode.
The immunosensor showed a low detection limit of 0.001 ng/mL, with a response time of
5 min. This immunosensor has high sensitivity compared to other commercially available
ELISA kits. In a similar context, Jafari et al. immobilized anti-CYFRA-21-1 antibodies on a
gold electrode using a cysteamine and glutaraldehyde self-assembly composite [120]. This
composite biosensor resulted in a low limit of quantitation of 2.5 ng/mL when using CV and
SWV. Because of its quick, reliable, and user-friendly nature, the fabricated layer, with a high
current intensity, can be used to monitor oral abnormalities. However, the detection limit is 100
times lower than that of the La(OH3)-based nanomaterial reported, and it demonstrates a larger
surface area, better redox reactivity, and excellent electrochemical behavior. However, given
the need for a low-cost biosensor, La(OH)3 could prove to be too expensive, since lanthanum
is a rare earth metal. In this case, the biosensor fabricated by Jafari et al. could be useful.

Kumar et al. developed a biocompatible serine-functionalized nanostructured zirconia
platform that showed a low detection limit for the oral cancer biomarker CYFRA-21-1 [121].
This biosensing platform was fabricated with nanostructured zirconia with rGO, which
exhibited improved electron transfer kinetics and increased sensitivity [121]. In 2015, the same
group utilized silanized nanostructured zirconia for the covalent immobilization of monoclonal
anti-CYFRA-21-1 antibodies, resulting in a valuable and stable biosensing platform with a
lower detection limit of 0.001 ng/mL [122]. More recently, Kumar et al. synthesized nanodot
zirconia and developed an efficient biosensing platform with a broad linear detection range
and excellent sensitivity for CYFRA-21-1 [123]. However, the LOD was lower as compared to
that of the silanized nanostructured zirconia. This indicates that the zirconia surface, when
functionalized with silane coupling agents, provides stronger adhesion to the biomolecules,
thereby achieving higher surface reactivity and, hence, a lower limit of detection.

The label-free electrochemical detection of oral cancer-related biomarkers has
been a recent research focus. Verma et al. demonstrated the fabrication of an
electrochemical immunosensor to detect the salivary oral cancer biomarker IL-8 using
a gold nanoparticle–rGO composite material (Figure 5(ii)) [124]. The synergy between
the gold nanoparticles and rGO led to a faster response and higher sensitivity due to
the enhanced electron transfer behavior of the nanocomposite, resulting in a detection
limit of 72 pg/mL, as well as excellent specificity in human saliva samples. Liu et al.
further advanced this work by creating an MMP-1 immunosensor based on a gold
nanoparticle/polyethyleneimine/rGO nanocomposite [125]. Braiek et al. expanded the
application of these nanocomposites to the detection of IL-8 using a boron-doped diamond
electrode modified with magnetic nanocomposites [126]. These studies collectively
demonstrate the potential of several nanocomposites for the sensitive and specific detection
of salivary oral cancer biomarkers.

Another mechanism involved in electrochemical biosensors for oral cancer-based DNA
detection is based on nicking endonuclease signal amplification (NESA). This is a technique used
to detect specific DNA sequences by utilizing an enzyme that only cuts one strand of the DNA to
generate a signal that can detected. An NESA-based approach on an ITO electrode was reported
by Tan et al. for the detection of DNA to target ORAOV1 in saliva [127]. The DPV responses
from the system were detected to evaluate the sensitivity and dynamic range of the biosensor,
resulting in an LOD of 0.35 pM. Regarding similar NESA approaches, a sensitive biosensor was
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successfully constructed by Hu et al. with a novel host–guest recognition system consisting of
tryptophan-linked DNA, methyl viologen (MV2+), and cucurbit uril for the sensitive detection
of oral cancer genes, as shown in Figure 5(iii) [128]. Platinum (Pt)- and Pd-based nanomaterials
were used to detect ORAOV1 using hairpin DNA labeled with tryptophan. The catalysis
of the Pt and Pd–molybdenum disulfide composite was not only used to promote electron
transfer but also for signal amplification, and the biosensor was reported as a promising tool for
ORAOV1 detection on a glassy carbon electrode. Table 4 highlights the recent developments in
voltammetric-based biosensors for the detection of oral cancer biomarkers.

One of the key advantages of voltammetric-based electrochemical biosensors is their high
sensitivity, which enables the detection of oral cancer biomarkers at low concentrations [129].
Furthermore, these biosensors are known for their rapid detection capabilities, cost-effectiveness,
and low production costs, making them accessible for widespread use [130]. However,
voltammetric biosensors face limitations in complex oral environments, as well as having
a restricted dynamic range and reproducibility [22]. These biosensors utilize electrochemical
amplification, surface modifications, nanomaterial integration, specific recognition elements, and
sophisticated signal processing to achieve exceptional sensitivity, even at trace biomarker levels.
However, the complex oral environment presents challenges to the stability and robustness
of voltammetric biosensors, necessitating the use of protective coatings, surface modifications,
advanced materials, fluid handling systems, calibration and referencing, optimized recognition
elements, environmental controls, signal processing techniques, robust design, and routine
maintenance. By implementing these strategies, the reliability and performance of voltammetric
biosensors can be enhanced in detecting oral cancer biomarkers, thereby supporting their
potential application in early diagnosis and effective treatment management.

Table 4. Voltammetric biosensors and their experimental conditions for oral cancer.

Electrode/Platform Biomarker Analyte Method Detection Limit
Normal and Cancer

Patient Levels
Reference

ITO/APTES/ndZrO2 CYFRA–21–1 Human saliva CV/DPV 0.5 ng/mL
Normal—3.3 ng/mL

CYFRA–21–1—
17.46 ± 1.46 ng/mL

[123]

ITO/L–Cys–La (OH)3 CYFRA21–1–1 Human saliva CV/DPV 0.001 ng/mL
Normal—3.3 ng/mL

CYFRA–21–1—
17.46 ± 1.46 ng/mL

[119]

ITO/Serine/nZrO2 CYFRA–21–1 Human saliva CV/DPV 0.01 ng/mL
Normal—3.3 ng/mL

CYFRA–21–1—
17.46 ± 1.46 ng/mL

[121]

ITO/APTES/ZrO2 rGO CYFRA–21–1 Human saliva DPV 0.122 ng/mL
Normal—3.3 ng/mL

CYFRA–21–1—
17.46 ± 1.46 ng/mL

[131]

GE/Cys A CYFRA–21–1 Human saliva CV/DPV/SWV 2.5 ng/mL
Normal—3.3 ng/mL

CYFRA–21–1—
17.46 ± 1.46 ng/mL

[120]

ITO/ZnO–rGO IL–8 protein Human saliva CV/DPV 51.53 ± 0.43 pg/mL
Normal—250 pg/mL

IL–8 protein,
patient—720 pg/mL

[132]

ITO/AuNPs–rGO IL–8 Human saliva CV/DPV 72.73 ± 0.18 pg/mL
Normal—250 pg/mL

IL–8 protein,
patient—720 pg/mL

[124]

GCE/Au/Pt and
Pd–MoS2

ORAOV1 Artificial saliva CV/DPV 3 fg/mL - [128]

ITO/eMB/Nt.BstNBI ORAOV1 Human saliva DPV 0.35 pg/mL - [127]

Abbreviations: ITO—indium tin oxide, ZnO—zinc oxide, rGO—reduced graphene oxide, GE—gold electrode,
Cys-A—cysteine-A, AuNPs—gold nanoparticles, APTES—(3-aminopropyl) triethoxysilane, ZrO2—zirconium
oxide, Cys—cysteine, La (OH)3—lanthanum hydroxide, GO—graphene oxide, GCE—glassy carbon electrode,
nZrO2—zirconium oxide, Au—gold, Pt and Pd-MoS2—platinum and palladium molybdenum disulfide,
eMB—methylene blue, Nt.BstNBI—nicking enzyme, L-Cys—L-cysteine, ndZrO2—nanodiamonds zirconium
oxide, IL-8—interleukin-8, CYFRA-21-1—cytokeratin 19 fragment, ORAOV1—oral cancer overexpressed 1,
CV—cyclic voltammetry, DPV—differential pulse voltammetry, SWV—square wave voltammetry.
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Figure 5. Voltammetric biosensors using different immobilization strategies for detection of various oral
cancer biomarkers. Schematic representation of the fabrication procedure for (i) CYFRA–21–1 Reprinted
with permission from [119]; (ii) IL–8 Reprinted with permission from [124]; (iii) ORAOV1: (A–C) represent
the preparation steps for composite nanomaterial/bioconjugates and target amplification, while (D) shows
the preparation process of the biosensor. Reprinted with permission from [128].

3.3. Impedimetric Biosensors

Impedimetric biosensors are advantageous for point-of-care diagnostics because they
can identify biorecognition events by measuring the changes in the electrical properties at
the electrode/electrolyte interface over a range of frequencies. In impedimetric biosensors,
the activity of the target analyte is proportional to the output of an electrical impedance,
and a common reporting method is EIS. It can easily help to determine the properties of
the processes in the bulk, as well as at the electrode interface, which are represented in the
form of a Nyquist plot or Bode plot as a function of the frequency. A Nyquist plot generally
consists of a semi-circular region and a straight line that represent the charge transfer
process and the diffusion process, respectively, whereas a Bode plot consists of a logarithm
of the absolute values of the impedance and phase plotted against the logarithm of the
frequency [133]. These plots are used to understand the electrochemical processes involved
in the biosensing mechanism, such as charge transfer, electroactive species adsorption, mass
transfer, and electrolyte resistance, each represented by an equivalent electrical circuit. In a
Nyquist plot, the change in impedance obtained indicates when the receptor binds to the
target analyte, and it is proportional to the diameter of the semi-circle. This measurement
does not depend on the redox species present in the electrolyte. In order to maintain
stability and repeatability, nanomaterials functionalized with different crosslinkers are
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critical in attaching the relevant receptors. For example, Choudhary et al. developed a
highly sensitive and selective label-free impedimetric biosensor on a gold electrode by
detecting CD59 as an oral cancer biomarker (Figure 6(i)) [134]. CD59 is a serine protease
and a complement restriction factor that can be used as a relevant early-stage biomarker for
oral cancer diagnosis. The electrode was functionalized with an L-cysteine self-assembled
monolayer to provide carboxyl functional groups for the attachment of CD59 antibodies
using EDC-NHS functionalization. EDC-NHS was used as a coupling agent to immobilize
the anti-CD59 antibodies by forming covalent bonds between the cysteine-functionalized
-COOH groups and the -NH2 groups on the antibodies. This resulted in an LOD of
0.38 fg/mL and 1.46 fg/mL in standard buffer and untreated human saliva samples,
respectively [134].

On the other hand, Kumar et al. explored and reported the detection of the
CYFRA-21-1 biomarker, as shown in Figure 6(ii) [135]. Herein, the researchers used yttrium
oxide (nY2O3) nanoparticles functionalized using APTES to immobilize anti-CYFRA-21-1
antibodies, followed by a blocking agent [135]. nY2O3 is known to have a high quantum
yield, which creates a highly conductive thin film, thereby making it a potential candidate
for the development of biosensors. It resulted in an LOD of 0.33 ng/mL. Similarly, the
studies by Pachauri et al. presented innovative biosensing platforms for CYFRA-21-1,
using a nanocomposite of ncCeO2-rGO (cerium oxide nanocubes–rGO) [136]. The use
of ncCeO2-rGO provided a larger surface area and faster electron transfer due to the
conducting nature of rGO. This also resulted in a better LOD of 0.625 pg/mL as compared to
Kumar et al.’s work. However, such studies require a more critical analysis of the potential
limitations and challenges in translating these platforms to clinical use. Additionally, the
specificity of the biosensors to CYFRA-21-1 in the presence of other biomolecules, such as
those found in saliva, needs to be thoroughly addressed.

In addition to CD59 and CYFRA-21-1, several other biomarkers have been used for the
electrochemical detection of OSCC. For example, Cancerous Inhibitor of Protein Phosphatase
2A (CIP2A) is highly expressed in OSCC cell lines, in addition to lung and breast cancers.
Figure 6(iii) highlights the fabrication steps for such a biosensor, where vertically aligned
carbon nanotube (VACNT) array electrodes were used for the electrochemical detection of
CIP2A [137]. They had a large surface area that favored electrical conductivity and reactivity,
leading to higher biosensor sensitivity compared to the ELISA test. The target CIP2A was
detected using CIP2A antibodies (anti-CIP2A) attached to interdigitated electrodes, which
acted as electrochemical transducers. Although this biosensor achieved detection in the
range of pg/mL, scaling up and maintaining the perfect alignment of VACNT arrays can be
expensive and challenging. This is especially important when less expensive nanomaterials,
such as graphene or cysteine, are available and offer a similar detection range.

The development of impedimetric biosensors also leverages advanced functional
polymers, which play a critical role in the sensitivity and biocompatibility of oral cancer
biomarkers. The studies by Aydin et al. present the development of an immunosensor
for the detection of IL-8 using a variety of conjugated polymers containing epoxy side
groups; see Figure 6(iv) [138]. This study demonstrates the successful immobilization of
anti-IL-8 receptors on modified disposable ITO electrodes bound to the epoxy groups of
star polymers via a covalent bond. The star polymers provide a convenient interface due
to the presence of linear polymer chains in a branched fashion, and the system exhibits
remarkable features like a low cost and good feasibility. It resulted in a detection limit of
3.3 fg/mL. Interestingly, Ma et al. developed a ratiometric electrochemical DNA biosensor
for ORAOV1, with a detection limit of 12 fM in artificial saliva samples, as shown in
Figure 6(v) [139]. The DNA is hybridized with a ferrocene-labeled hairpin probe and
separated by exonuclease III, which then releases the target and triggers an amplification
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cycle, whereas the remaining probe is used for biosensing purposes. The larger the amount
of the ORAOV1 DNA biomarker present in the saliva sample, the higher the response
detected and, hence, the larger the impedance on the Nyquist plot. These biosensors
exhibited a linear calibration curve over a wide concentration range; however, the authors
did not critically analyze the potential for non-specific binding or interference from other
biomarkers. Additionally, the comparison with commercial ELISA kits was limited to the
detection limits and analysis costs, without considering other important factors such as
the accuracy and precision. Further research is needed to address these limitations and
confirm the clinical utility of these biosensors.

The capacity of impedimetric biosensors to detect the presence of cancer biomarkers
makes them precise and sensitive instruments that are essential in the early identification
of oral cancer. These biosensors can evaluate biomarkers without labeling the target
molecules, simplifying sample preparation and preserving the integrity of biological samples
while enhancing their non-invasiveness. In clinical settings, real-time analysis capabilities
enable prompt diagnostic feedback, essential for rapid decision-making. Additionally, the
small sample size required for impedimetric biosensor testing minimizes the risk of side
effects during blood draws and improves patients’ comfort. Table 5 highlights the recent
developments in impedimetric-based biosensors for the detection of oral cancer biomarkers.

Table 5. Impedimetric biosensors and their experimental conditions for oral cancer.

Electrode/Platform Biomarker Analyte Method Detection Limit
Normal and Cancer

Patient Levels
Reference

GE/Cys CD59 Human saliva CV/EIS
Treated saliva:

0.84 ± 0.04 fg/mL; raw
saliva: 1.46 ± 0.05 fg/mL

Normal—7.8 ng/mL
CD59

patients—27.3 ng/mL
[134]

Silicon oxide
wafer/Al2O3

CIP2A Human saliva CV/EIS 0.24 pg/ml - [137]

ITO/ncCeO2–rGO CYFRA–21–1 Human saliva DPV/EIS 0.625 pg/mL
Normal—3.3 ng/mL

CYFRA–21–1—
17.46 ± 1.46 ng/mL

[136]

ITO/APTES/nY2O3 CYFRA–21–1 Human saliva EIS 0.01 ng/mL
Normal—3.3 ng/mL

CYFRA–21–1—
17.46 ± 1.46 ng/mL

[135]

ITO–PET IL–8 Human serum and saliva CV/EIS 3.3 fg/mL
IL–8 protein, patient:
720 pg/mL; normal:

250 pg/mL
[138]

GE/MB–PP1–MCH ORAOV1 Artificial saliva EIS 12.8 fg/mL - [139]

Abbreviations: ITO—indium tin oxide, PET—polyethylene terephthalate, ncCeO2—nanocubes cerium oxide,
rGO—reduced graphene oxide, Al2O3—aluminum oxide, GE—gold electrode, MB-PP1—methylene blue-labeled
hairpin probe, MCH—6-mercapto-1-hexanol, Cys—cysteine, APTES—(3-aminopropyl) triethoxysilane,
nY2O3—yttrium oxide, IL-8—interleukin-8, CYFRA-21-1—cytokeratin 19 fragment, CIP2A—Cancerous Inhibitor
of Protein Phosphatase 2A, ORAOV1—oral cancer overexpressed 1, CD59—cluster of differentiation 59, CV—cyclic
voltammetry, EIS—electrochemical impedance spectroscopy, DPV—differential pulse voltammetry.

Nonetheless, electrochemical biosensors’ practical applications could be improved
by addressing the issue of the non-specific binding of non-target compounds, resulting
in reduced sensitivity and selectivity. The limitations also include linearity, stability, and
the precision of the instruments utilized. Biological samples, like saliva, often contain a
diverse range of substances that could interfere with measurements, potentially leading
to inaccuracies. Additionally, the precision of these biosensors is highly dependent on
stable environmental conditions, such as consistent temperature and pH levels, meaning
that they might require a controlled testing environment. Another noteworthy concern
is electrode fouling, where substances from the samples may adhere to the sensor’s
electrodes, impairing its performance and necessitating more maintenance, like frequent
calibration. There are also practical hindrances, such as the sophistication and precision of
the instrumentation necessary for accurate readings. This requirement can increase the costs
and restrict the distribution and use of such biosensors, especially in low-resource settings.
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Ongoing advancements in sensor technology, materials science, and signal processing
are crucial to overcome these challenges, ultimately facilitating wider adoption and more
effective point-of-care testing in various medical environments. Table 6 briefly describes
the advantages and disadvantages of electrochemical biosensors.

Figure 6. Impedimetric biosensors using different immobilization strategies for detection of various oral
cancer biomarkers. Schematic representation of the fabrication procedure for (i) CD59 Reprinted with
permission from [134]. (ii) CYFRA–21–1 Reprinted with permission from [135]; (iii) CIP2A Reprinted
with permission from [137]. (iv) IL–8 Reprinted with permission from [138]; (v) ORAOV1 (DNA)
Reprinted with permission from [139].

Table 6. The advantages and disadvantages of electrochemical biosensors for the detection of oral
cancer biomarkers.

Advantages Disadvantages

High sensitivity with low levels of
concentrations of cancer biomarkers Interference from electroactive species in complex samples

Rapid response time Batch-to-batch variability in fabricated sensors
Potential for miniaturization for

point-of-care devices Difficulty in integration into clinical practice

Real-time monitoring capabilities Interfacial area degradation over time
No need for complex instrumentation Accuracy can be affected by temperature and pH

Minimal sample preparation and consumption Potential cross-reactivity and complex data interpretation
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4. Challenges and Future Perspectives

The potential of non-invasive electrochemical biosensors for the detection of oral
cancer is vast. This review paper explores the cutting-edge developments in electrochemical
biosensors for early and accurate oral cancer diagnosis. While significant progress has been
made, several challenges persist in this field. One of the main challenges is identifying
specific and sensitive biomarkers that can reliably indicate the presence of oral cancer.
Translating laboratory research into practical, user-friendly biosensing devices presents
technical and engineering obstacles. The standardization of protocols and the validation
of biosensors’ performance across different patient populations and clinical settings are
crucial in establishing their clinical utility. Moreover, integrating electrochemical biosensors
into the existing healthcare infrastructure requires collaborative efforts from researchers,
clinicians, and regulatory authorities. However, the outlook remains promising, as
advances in nanotechnology, biomarker discovery, and machine learning algorithms hold
the potential to overcome these challenges. With continued research and innovation,
electrochemical biosensors are poised to revolutionize oral cancer detection, enabling early
intervention and personalized treatments and ultimately contributing to the improved
management and prognosis of oral cancer patients. Amperometric, voltammetric, and
impedimetric biosensors offer specific advantages and limitations in the context of oral
cancer detection.

Amperometric biosensors offer the advantage of simplicity, easy on-chip integration,
and potentially low costs and fast response times [140,141]. Their sensitivity and versatility
enable the accurate and early detection of cancer biomarkers, contributing to improved
diagnostic processes and treatment management, making them a promising tool for oral
cancer and other malignancies [26]. However, challenges such as regular calibration and
potential interference in the detection process should be carefully addressed for their
effective use in complex samples, as in oral cancer detection [142]. Voltammetric biosensors
have the advantages of simple on-chip integration and potentially low costs, serving
as beneficial point-of-care diagnostic tools [140]. They can also provide comprehensive
insights for the targeting and detection of cancer biomarkers. However, they require careful
electrode design and corresponding materials to ensure the highly selective and sensitive
detection of cancer biomarkers [143]. Impedimetric biosensors, on the other hand, possess
the potential for the early detection and diagnosis of oral cancer, attributed to their high
sensitivity, non-invasive nature, label-free detection methods, and capabilities for real-time
monitoring [144]. On the other hand, they could be more valuable in other biomarker
categories, where difficulties restricting their use are not present. Complex sample matrices
and ambient conditions can also impact them, and they need precise devices to measure
exact values. To summarize, impedimetric biosensors provide non-invasive and real-time
monitoring capabilities, amperometric biosensors offer sensitivity and simplicity for oral
cancer diagnosis, and voltammetric biosensors enable point-of-care diagnostics. Selecting
a biomarker type for a given biomarker class is contingent upon the requirements for
precision, user-friendliness, and environmental factors.

Furthermore, a range of studies have explored the potential of using machine
learning and electronic tongues to discriminate between saliva samples from oral cancer
patients and healthy individuals. Braz et al. demonstrated that supervised machine
learning algorithms, especially support vector machines and random forest, achieved
high accuracy in this discrimination [145]. Zlotogorski et al. similarly discovered
that the Fourier transform-based spectrum of salivary exosomes and computer-aided
discrimination analysis could be used to accurately distinguish between these two
groups [146]. Kouznetsova et al. further expanded on this work by using saliva metabolites
and machine learning to distinguish between oral cancer and periodontitis, achieving
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accuracy of 79.54% [147]. Lastly, Ishikawa et al. identified specific salivary metabolite
biomarkers for oral cancer screening, which could be integrated into a non-invasive
diagnostic method [50]. These studies collectively highlight the potential of machine
learning and electronic tongues in improving the accuracy and efficiency of oral cancer
diagnosis. In addition, future studies should also focus on recurring predictor biomarker
candidates to reduce the mortality rates.

Modern AI systems implemented in image analysis and pattern recognition are
attracting attention. They use deep learning algorithms to analyze clinical and microscopic
images so as to identify subtle changes within malignant tissue. These algorithms are
trained on vast datasets, potentially distinguishing between benign and malignant tissues.
This will also be a valuable resource during clinical examinations so that healthcare
providers can give a second opinion and monitor the patient’s health for better prospects.
Smart devices and mobile health applications also show promising results for preliminary
oral cancer screening [148,149]. These systems include either mouth safeguards or intraoral
devices that are integrated with biomarkers, highly specialized cameras, and AI-powered
technologies and can help to regularly monitor any potential risk [150]. Popovic et al.
presented a platform that primarily addresses xerostomia via a personalized approach
that involves a microfluidic chip embedded with a tooth model for targeted therapeutic
delivery based on real-time oral cavity measurements [151]. Similarly, Yaduvanshi et al.
proposed a machine learning-based approach that utilizes a modified local binary pattern
(MLBP) to analyze oral lesions using histopathological images. The MLBP technique is
employed for texture feature extraction, using deep convolutional neural networks to
detect changes in the oral cavity due to cancer [152]. There is potential to extend this
work by using other frameworks to identify diseased regions in oral cancer images. Deep
learning (DL) is a subset of machine learning that simplifies complex data algorithms
and helps to identify similar patterns; it could be used by healthcare professionals to
monitor the conditions of patients. A notable increase has been observed in DL-based
techniques for oral cancer diagnosis and prognostic prediction. Warin et al. discussed and
reviewed the application of DL techniques by analyzing various DL models, focusing on the
accuracy, sensitivity, and specificity across different imaging modalities [153]. The authors
recommended the development of specific reporting protocols in a standardized fashion to
improve the transparency and address issues like heterogeneity for improved diagnostic
accuracy in DL applications. Hence, there is a need for future studies to implement standard
methodologies to verify clinical images consisting of both cancerous and non-cancerous
stages, so as to ensure the accuracy of the data while establishing the need for its usage
in medical AI studies. This will provide a promising approach to improved DL design
so as to potentially increase oral cancer patients’ survival rates. Interestingly, neural
networks and particularly convolutional neural networks (CNNs) can help to enhance the
accuracy of early detection by identifying subtle patterns indicative of early-stage lesions.
By integrating genetic biomarkers, histopathological images, and clinical parameters with
DL architectures, the development of predictive models for treatment response monitoring
and prognosis is facilitated. Huang et al. utilized an oral cancer (lips and tongue) dataset
consisting of 87 sets of cancerous and 44 sets of non-cancerous oral images [154]. They
used a CNN-optimized combined algorithm to extract features from the images, removing
noise while enhancing the visibility and diversity of the data. However, several challenges,
such as limited and unequal sample sizes, can hinder such a model’s ability to create a
generalized algorithm for future use. Building upon similar models, Lin et al. presented
an effective smartphone-based oral cancer imaging diagnosis technique, using 688 lesion
images and 760 normal mucosa images. A high-resolution network (HRNet-W18), an
advanced DL model, was used to classify positive and negative cases of oral cancer,
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potentially creating a viable option for healthcare workers and patients in remote areas [155].
Thakuria et al. followed a similar approach to the application of DL techniques in the
diagnosis of oral cancer with the use of smartphone and DSLR image analysis. The authors
conducted a systematic review of 25 papers, highlighting several models for multiclass
classification and object detection and focusing on parameters like precision, specificity,
and accuracy [156]. However, a similar limitation could be observed regarding the need for
larger and more diverse datasets from multiple healthcare facilities that can be integrated
with lesion characteristics for improved diagnostic capabilities. As the research continues to
evolve, there is immense potential for breakthroughs in oral cancer treatment via artificial
intelligence-driven diagnostics and more advanced imaging techniques, leading to quicker
and less invasive procedures. Moreover, the discovery of appropriate biomarkers could be
helpful for the early diagnosis of oral cancer. This could eventually result in higher survival
rates for patients.

5. Conclusions

This review delves into the various applications of biosensors with non-invasive
diagnostics for oral cancer. Integrating biomarkers and biofluids into the development and
application of biosensors enhances the potential for accurate, reliable, and non-invasive oral
cancer detection methods. While each type of biosensor offers distinct advantages, further
research and development are essential to address challenges such as optimization for
clinical settings, the validation of real-world applications, and integration into established
diagnostic pathways. Understanding these biosensors’ unique capabilities and limitations
is crucial in harnessing their full potential in oral cancer detection, ultimately contributing
to improved patient care and outcomes. As the field of electrochemical biosensing continues
to advance, the strategic integration of these biosensors into clinical practice holds promise
to transform the landscape of oral cancer detection and management.

Author Contributions: This manuscript was written with the contributions of all authors. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Badwelan, M.; Muaddi, H.; Ahmed, A.; Lee, K.T.; Tran, S.D. Oral Squamous Cell Carcinoma and Concomitant Primary Tumors,
What Do We Know? A Review of the Literature. Curr. Oncol. 2023, 30, 3721–3734. [CrossRef] [PubMed]

2. Omura, K. Current status of oral cancer treatment strategies: Surgical treatments for oral squamous cell carcinoma. Int. J. Clin.
Oncol. 2014, 19, 423–430. [CrossRef] [PubMed]

3. Hashibe, M. Risk Factors for Cancer of the Mouth: Tobacco, Betel Quid, and Alcohol; Springer International Publishing: London, UK,
2020; pp. 23–30.

4. National Institute of Dental and Craniofacial Research. Oral Cancer. Available online: https://www.nidcr.nih.gov/health-info/
oral-cancer (accessed on 28 February 2024).

5. Khani Jeihooni, A.; Jafari, F. Oral Cancer: Epidemiology, Prevention, Early Detection, and Treatment; IntechOpen: Oxford, UK, 2022.
6. Healthline. Oral Cancers. Available online: https://www.healthline.com/health/oral-cancer#by-geographic-region (accessed on

28 February 2024).
7. National Cancer Institute. Cancer Stat Facts: Oral Cavity and Pharynx Cancer. Available online: https://seer.cancer.gov/

statfacts/html/oralcav.html (accessed on 28 February 2024).
8. The Oral Cancer Foundation. Early Detection, Diagnosis and Staging. Available online: https://oralcancerfoundation.org/cdc/

early-detection-diagnosis-staging/ (accessed on 28 February 2024).
9. Rivera, C.; Venegas, B. Histological and molecular aspects of oral squamous cell carcinoma (Review). Oncol. Lett. 2014, 8, 7–11.

[CrossRef] [PubMed]
10. Singh, A.; Thukral, C.L.; Gupta, K.; Sood, A.S.; Singla, H.; Singh, K. Role of MRI in Evaluation of Malignant Lesions of Tongue

and Oral Cavity. Pol. J. Radiol. 2017, 82, 92–99. [CrossRef]

232



Sensors 2025, 25, 1459

11. Kaltoft, M.; Hahn, C.H.; Wessman, M.; Hansen, M.L.; Agander, T.K.; Makouei, F.; Wessel, I.; Todsen, T. Intraoral Ultrasound
versus MRI for Depth of Invasion Measurement in Oral Tongue Squamous Cell Carcinoma: A Prospective Diagnostic Accuracy
Study. Cancers 2024, 16, 637. [CrossRef]

12. Wang, S.; Yang, M.; Li, R.; Bai, J. Current advances in noninvasive methods for the diagnosis of oral squamous cell carcinoma:
A review. Eur. J. Med. Res. 2023, 28, 53. [CrossRef]

13. Warnakulasuriya, S.; Kerr, A.R. Oral Cancer Screening: Past, Present, and Future. J. Dent. Res. 2021, 100, 1313–1320. [CrossRef]
14. De Felice, F.; Di Carlo, G.; Saccucci, M.; Tombolini, V.; Polimeni, A. Dental Cone Beam Computed Tomography in Children:

Clinical Effectiveness and Cancer Risk due to Radiation Exposure. Oncology 2019, 96, 173–178. [CrossRef]
15. Tripathy, S.; Mathur, A.; Mehta, V. Revolutionizing Oral Cancer Screening: New Approaches and Emerging Technologies. Asian

Pac. J. Cancer Prev. 2023, 24, 4007–4008. [CrossRef]
16. Ahlawat, S.; Fritz, J.; Morris, C.D.; Fayad, L.M. Magnetic resonance imaging biomarkers in musculoskeletal soft tissue tumors:

Review of conventional features and focus on nonmorphologic imaging. J. Magn. Reson. Imaging 2019, 50, 11–27. [CrossRef]
17. Raman, S.; Shafie, A.A.; Tan, B.Y.; Abraham, M.T.; Chen Kiong, S.; Cheong, S.C. Economic Evaluation of Oral Cancer Screening

Programs: Review of Outcomes and Study Designs. Healthcare 2023, 11, 1198. [CrossRef] [PubMed]
18. Ribeiro-Rotta, R.F.; Rosa, E.A.; Milani, V.; Dias, N.R.; Masterson, D.; da Silva, E.N.; Zara, A. The cost of oral cancer: A systematic

review. PLoS ONE 2022, 17, e0266346. [CrossRef] [PubMed]
19. Cervino, G.; Fiorillo, L.; Herford, A.S.; Romeo, U.; Bianchi, A.; Crimi, S.; D’Amico, C.; De Stefano, R.; Troiano, G.; Santoro, R.; et al.

Molecular Biomarkers Related to Oral Carcinoma: Clinical Trial Outcome Evaluation in a Literature Review. Dis. Markers 2019,
2019, 8040361. [CrossRef]

20. Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs
as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [CrossRef]

21. Vanova, V.; Mitrevska, K.; Milosavljevic, V.; Hynek, D.; Richtera, L.; Adam, V. Peptide-based electrochemical biosensors utilized
for protein detection. Biosens. Bioelectron. 2021, 180, 113087. [CrossRef]

22. Umapathy, V.R.; Natarajan, P.M.; Swamikannu, B.; Moses, J.; Jones, S.; Chandran, M.P.; Anbumozhi, M.K. Emerging Biosensors
for Oral Cancer Detection and Diagnosis-A Review Unravelling Their Role in Past and Present Advancements in the Field of
Early Diagnosis. Biosensors 2022, 12, 498. [CrossRef]

23. Arora, R.; Haynes, L.; Kumar, M.; McNeil, R.; Ashkani, J.; Nakoneshny, S.C.; Matthews, T.W.; Chandarana, S.; Hart, R.D.; Jones,
S.J.M.; et al. NCBP2 and TFRC are novel prognostic biomarkers in oral squamous cell carcinoma. Cancer Gene Ther. 2023,
30, 752–765. [CrossRef]

24. Sorroche, B.P.; Miranda, K.C.; Beltrami, C.M.; Arantes, L.; Kowalski, L.P.; Marchi, F.A.; Rogatto, S.R.; Almeida, J.D. HOXA1 3′UTR
Methylation Is a Potential Prognostic Biomarker in Oral Squamous cell Carcinoma. Cancers 2024, 16, 874. [CrossRef]

25. Alafaria, H.A.A.; Jalal, A.S. Novel DNA methylation biomarkers for early diagnosis of oral tongue squamous cell carcinoma
(OTSCC). J. Appl. Genet. 2024, 65, 541–548. [CrossRef]

26. Lin, Y.T.; Darvishi, S.; Preet, A.; Huang, T.Y.; Lin, S.H.; Girault, H.H.; Wang, L.G.; Lin, T.E. A Review: Electrochemical Biosensors
for Oral Cancer. Chemosensors 2020, 8, 54. [CrossRef]

27. Vageli, D.; Doukas, P.; Judson, B. Discovering Novel and Unique Saliva and Serum miRNA and mRNA Signatures for Oral
Cancer Detection Using Whole Transcriptome and Small Non-Coding RNA Sequencing: Prediction of Their Association With the
PI3K/AKT Pathway. JCO Glob. Oncol. 2024, 10 (Suppl. 1), 52. [CrossRef]

28. Wu, J.; Zhang, C.; Li, H.; Zhang, S.; Chen, J.; Qin, L. Competing endogenous RNAs network dysregulation in oral cancer:
A multifaceted perspective on crosstalk and competition. Cancer Cell Int. 2024, 24, 431. [CrossRef] [PubMed]

29. Oh, S.Y.; Kang, S.M.; Kang, S.H.; Lee, H.J.; Kwon, T.G.; Kim, J.W.; Lee, S.T.; Choi, S.Y.; Hong, S.H. Potential Salivary mRNA
Biomarkers for Early Detection of Oral Cancer. J. Clin. Med. 2020, 9, 243. [CrossRef] [PubMed]

30. Khan, H.; Gupta, S.; Husain, N.; Misra, S.; Mps, N.; Jamal, N.; Ghatak, A. Correlation between expressions of Cyclin-D1, EGFR
and p53 with chemoradiation response in patients of locally advanced oral squamous cell carcinoma. BBA Clin. 2015, 3, 11–17.
[CrossRef]

31. Zhou, X.; Liu, S.; Cai, G.; Kong, L.; Zhang, T.; Ren, Y.; Wu, Y.; Mei, M.; Zhang, L.; Wang, X. Long Non Coding RNA MALAT1
Promotes Tumor Growth and Metastasis by inducing Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma. Sci.
Rep. 2015, 5, 15972. [CrossRef]

32. Zhu, C.; Wang, X.; Wang, Y.; Wang, K. Functions and underlying mechanisms of lncRNA HOTAIR in cancer chemotherapy
resistance. Cell Death Discov. 2022, 8, 383. [CrossRef]

33. Wang, J.; Lv, N.; Lu, X.; Yuan, R.; Chen, Z.; Yu, J. Diagnostic and therapeutic role of microRNAs in oral cancer (Review). Oncol.
Rep. 2021, 45, 58–64. [CrossRef]

34. Eslami, M.; Khazeni, S.; Khanaghah, X.M.; Asadi, M.H.; Ansari, M.A.; Garjan, J.H.; Lotfalizadeh, M.H.; Bayat, M.; Taghizadieh,
M.; Taghavi, S.P.; et al. MiRNA-related metastasis in oral cancer: Moving and shaking. Cancer Cell Int. 2023, 23, 182. [CrossRef]

233



Sensors 2025, 25, 1459

35. Smolarz, B.; Durczynski, A.; Romanowicz, H.; Szyllo, K.; Hogendorf, P. miRNAs in Cancer (Review of Literature). Int. J. Mol. Sci.
2022, 23, 2805. [CrossRef]

36. Bautista-Sanchez, D.; Arriaga-Canon, C.; Pedroza-Torres, A.; De La Rosa-Velazquez, I.A.; Gonzalez-Barrios, R.;
Contreras-Espinosa, L.; Montiel-Manriquez, R.; Castro-Hernandez, C.; Fragoso-Ontiveros, V.; Alvarez-Gomez, R.M.; et al. The
Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. Mol. Ther. Nucleic Acids 2020,
20, 409–420. [CrossRef]

37. He, L.; Ping, F.; Fan, Z.N.; Zhang, C.; Deng, M.; Cheng, B.; Xia, J. Salivary exosomal miR-24-3p serves as a potential detective
biomarker for oral squamous cell carcinoma screening. Biomed. Pharmacother. 2020, 121, 109553. [CrossRef] [PubMed]

38. Saliminejad, K.; Khorshid, H.R.K.; Ghaffari, S.H. Why have microRNA biomarkers not been translated from bench to clinic?
Future Oncol. 2019, 15, 801–804. [CrossRef]

39. Wang, A.; Wang, C.P.; Tu, M.; Wong, D.T. Oral Biofluid Biomarker Research: Current Status and Emerging Frontiers. Diagnostics
2016, 6, 45. [CrossRef]

40. Goldoni, R.; Scolaro, A.; Boccalari, E.; Dolci, C.; Scarano, A.; Inchingolo, F.; Ravazzani, P.; Muti, P.; Tartaglia, G. Malignancies and
Biosensors: A Focus on Oral Cancer Detection through Salivary Biomarkers. Biosensors 2021, 11, 396. [CrossRef]

41. AlAli, A.M.; Walsh, T.; Maranzano, M. CYFRA 21-1 and MMP-9 as salivary biomarkers for the detection of oral squamous cell
carcinoma: A systematic review of diagnostic test accuracy. Int. J. Oral. Max Surg. 2020, 49, 973–983. [CrossRef] [PubMed]

42. Liu, L.; Xie, W.; Xue, P.; Wei, Z.; Liang, X.; Chen, N. Diagnostic accuracy and prognostic applications of CYFRA 21-1 in head and
neck cancer: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0216561. [CrossRef]

43. Huang, Y.L.; Chen, J.; Yan, W.; Zang, D.; Qin, Q.; Deng, A.M. Diagnostic accuracy of cytokeratin-19 fragment (CYFRA 21-1) for
bladder cancer: A systematic review and meta-analysis. Tumour Biol. 2015, 36, 3137–3145. [CrossRef]

44. Guowei, H.; Yuan, L.; Ma, L.; Zhongyang, L.; Zhixing, S.; Lin, L.; Minqi, L. The diagnostic efficacy of CYFRA21-1 on intrahepatic
cholangiocarcinoma: A meta-analysis. Clin. Res. Hepatol. Gastroenterol. 2019, 43, 266–272. [CrossRef]

45. Lichtenberg, J.Y.; Ling, Y.; Kim, S. Non-Specific Adsorption Reduction Methods in Biosensing. Sensors 2019, 19, 2488. [CrossRef]
46. Pillai, J.; Chincholkar, T.; Dixit, R.; Pandey, M. A systematic review of proteomic biomarkers in oral squamous cell cancer. World

J. Surg. Oncol. 2021, 19, 315. [CrossRef]
47. Mumtaz, M.; Bijnsdorp, I.V.; Bottger, F.; Piersma, S.R.; Pham, T.V.; Mumtaz, S.; Brakenhoff, R.H.; Akhtar, M.W.; Jimenez, C.R.

Secreted protein markers in oral squamous cell carcinoma (OSCC). Clin. Proteom. 2022, 19, 4. [CrossRef] [PubMed]
48. Ferrari, E.; Wittig, A.; Basilico, F.; Rossi, R.; De Palma, A.; Di Silvestre, D.; Sauerwein, W.A.G.; Mauri, P.L. Urinary Proteomics

Profiles Are Useful for Detection of Cancer Biomarkers and Changes Induced by Therapeutic Procedures. Molecules 2019, 24, 794.
[CrossRef] [PubMed]

49. Khurshid, Z.; Zafar, M.S.; Khan, R.S.; Najeeb, S.; Slowey, P.D.; Rehman, I.U. Role of Salivary Biomarkers in Oral Cancer Detection.
Adv. Clin. Chem. 2018, 86, 23–70. [CrossRef] [PubMed]

50. Ishikawa, S.; Sugimoto, M.; Kitabatake, K.; Sugano, A.; Nakamura, M.; Kaneko, M.; Ota, S.; Hiwatari, K.; Enomoto, A.; Soga, T.;
et al. Identification of salivary metabolomic biomarkers for oral cancer screening. Sci. Rep. 2016, 6, 31520. [CrossRef]

51. Sahibzada, H.A.; Khurshid, Z.; Khan, R.S.; Naseem, M.; Siddique, K.M.; Mali, M.; Zafar, M.S. Salivary IL-8, IL-6 and TNF-alpha
as Potential Diagnostic Biomarkers for Oral Cancer. Diagnostics 2017, 7, 21. [CrossRef]

52. Riccardi, G.; Bellizzi, M.G.; Fatuzzo, I.; Zoccali, F.; Cavalcanti, L.; Greco, A.; Vincentiis, M.; Ralli, M.; Fiore, M.; Petrella, C.; et al.
Salivary Biomarkers in Oral Squamous Cell Carcinoma: A Proteomic Overview. Proteomes 2022, 10, 37. [CrossRef]

53. Gualtero, D.F.; Castillo, A.S. Biomarkers in saliva for the detection of oral squamous cell carcinoma and their potential use for
early diagnosis: A systematic review. Acta Odontol. Scand. 2016, 74, 170–177. [CrossRef]

54. Khurshid, Z.; Warsi, I.; Moin, S.F.; Slowey, P.D.; Latif, M.; Zohaib, S.; Zafar, M.S. Biochemical analysis of oral fluids for disease
detection. Adv. Clin. Chem. 2021, 100, 205–253. [CrossRef]

55. Prasad, S.; Tyagi, A.K.; Aggarwal, B.B. Detection of inflammatory biomarkers in saliva and urine: Potential in diagnosis,
prevention, and treatment for chronic diseases. Exp. Biol. Med. 2016, 241, 783–799. [CrossRef]

56. Sadeghi, E.S.; Nematpour, F.S.; Mohtasham, N.; Mohajertehran, F. The oncogenic role of NOTCH1 as biomarker in oral squamous
cell carcinoma and oral lichen planus. Dent. Res. J. 2023, 20, 102. [CrossRef]

57. Xue, L.; Tang, W.; Zhou, J.; Xue, J.; Li, Q.; Ge, X.; Lin, F.; Zhao, W.; Guo, Y. Next-generation sequencing identifies CDKN2A
alterations as prognostic biomarkers in recurrent or metastatic head and neck squamous cell carcinoma predominantly receiving
immune checkpoint inhibitors. Front. Oncol. 2023, 13, 1276009. [CrossRef] [PubMed]

58. Lu, H.-J.; Wu, M.-F.; Yang, S.-F. Prognostic impact of caspase-8 mutation in oral cavity squamous cell carcinoma: A real-world
cohort study. J. Clin. Oncol. 2024, 42 (Suppl. 16), e18029. [CrossRef]

59. Saini, J.; Bakshi, J.; Panda, N.K.; Sharma, M.; Yadav, A.K.; Kamboj, K.; Goyal, A.K. Serum Concentration of MMP-9 as a Predictive
Biomarker for the Progression of Oral Cancer. J. Maxillofac. Oral Surg. 2024, 23, 1079–1088. [CrossRef]

60. He, K.; Zhu, Z.B.; Shu, R.; Hong, A. LncRNA NEAT1 mediates progression of oral squamous cell carcinoma via VEGF-A and
Notch signaling pathway. World J. Surg. Oncol. 2020, 18, 261. [CrossRef]

234



Sensors 2025, 25, 1459

61. Hu, Y.; Zheng, L.; Zhang, J.; Shen, Y.; Zhang, X.; Lin, L. LncRNA-MALAT1 is a promising biomarker for prognostic evaluation of
tongue squamous cell carcinoma. Eur. Arch. Oto-Rhino-Laryngol. 2020, 277, 3155–3160. [CrossRef] [PubMed]

62. Zahran, F.; Ghalwash, D.; Shaker, O.; Al-Johani, K.; Scully, C. Salivary microRNAs in oral cancer. Oral Dis. 2015, 21, 739–747.
[CrossRef]

63. Mazumder, S.; Basu, B.; Ray, J.G.; Chatterjee, R. MiRNAs as non-invasive biomarkers in the serum of Oral Squamous Cell
Carcinoma (OSCC) and Oral Potentially Malignant Disorder (OPMD) patients. Arch. Oral Biol. 2023, 147, 105627. [CrossRef]

64. Singh, K.; Urs, A.B.; Koner, B.C.; Augustine, J.; Shrivastava, R.; Narayan, B. Upregulation of miRNA-196a and miRNA-196b
correlates with Bryne’s prognostic score in oral squamous cell carcinoma. Pathol. Res. Pract. 2024, 253, 154954. [CrossRef]

65. Rebaudi, F.; De Rosa, A.; Greppi, M.; Pistilli, R.; Pucci, R.; Govoni, F.A.; Iacoviello, P.; Broccolo, F.; Tomasello, G.; Pesce, S.; et al.
A new method for oral cancer biomarkers detection with a non-invasive cyto-salivary sampling and rapid-highly sensitive ELISA
immunoassay: A pilot study in humans. Front. Immunol. 2023, 14, 1216107. [CrossRef]

66. Takkem, A.; Barakat, C.; Zakaraia, S.; Zaid, K.; Najmeh, J.; Ayoub, M.; Seirawan, M.Y. Ki-67 Prognostic Value in Different Histological
Grades of Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma. Asian Pac. J. Cancer Prev. 2018, 19, 3279–3286. [CrossRef]

67. Mohamed, A.A.; Abbas, M.Y.; Alharbi, H.; Babiker, A.Y. Assessment of Expression of Ki-67 in Benign and Malignant Prostatic
Lesions among Sudanese Patients. Open Access Maced. J. Med. Sci. 2018, 6, 1809–1812. [CrossRef] [PubMed]

68. Moorthy, A.; Venugopal, D.C.; Shyamsundar, V.; Madhavan, Y.; Ravindran, S.; Kuppuloganathan, M.; Krishnamurthy, A.;
Sankarapandian, S.; Ganapathy, V.; Ramshankar, V. Identification of EGFR as a Biomarker in Saliva and Buccal Cells from Oral
Submucous Fibrosis Patients-A Baseline Study. Diagnostics 2022, 12, 1935. [CrossRef] [PubMed]

69. de Wit, J.G.; Vonk, J.; Voskuil, F.J.; de Visscher, S.A.H.J.; Schepman, K.-P.; Hooghiemstra, W.T.R.; Linssen, M.D.; Elias, S.G.;
Halmos, G.B.; Plaat, B.E.C.; et al. EGFR-targeted fluorescence molecular imaging for intraoperative margin assessment in oral
cancer patients: A phase II trial. Nat. Commun. 2023, 14, 4952. [CrossRef] [PubMed]

70. Payehghadr, S.; Bahrami, N.; Naji, T.; Mohamadnia, A.; Mohammadi, F. Detection of miR-21, MUC1mRNA and VEGF Protein
Biomarkers Expression Changes in Oral Squamous Cell Carcinomas (OSCC) in Peripheral Blood. Asian Pac. J. Cancer Biol. 2018,
3, 59–64. [CrossRef]

71. Rani, N.A.J.; Vardhan, B.G.H.; Srinivasan, S.; Gopal, S.K. Evaluation of Salivary Interleukin-6 in Patients with Oral Squamous Cell
Carcinoma, Oral Potentially Malignant Disorders, Chronic Periodontitis and in Healthy Controls—A Cross-Sectional Comparative
Study. Ann. Maxillofac. Surg. 2023, 13, 70–75. [CrossRef]

72. Xiao, L.; Li, X.; Cao, P.; Fei, W.; Zhou, H.; Tang, N.; Liu, Y. Interleukin-6 mediated inflammasome activation promotes oral
squamous cell carcinoma progression via JAK2/STAT3/Sox4/NLRP3 signaling pathway. J. Exp. Clin. Cancer Res. 2022, 41, 166.
[CrossRef]

73. Chundru, V.N.S.; Madhavan, R.N.; Chintala, L.; Boyapati, R.; Srikar, M. Evaluation of salivary biomarker interleukin-6 in oral
squamous cell carcinoma and oral potentially malignant disorders—A comparative cross-sectional South Indian study. J. Oral.
Maxillofac. Pathol. 2024, 28, 387–392. [CrossRef]

74. Piyarathne, N.S.; Weerasekera, M.M.; Fonseka, P.F.D.; Karunatilleke, A.; Liyanage, R.; Jayasinghe, R.D.; De Silva, K.; Yasawardene,
S.; Gupta, E.; Jayasinghe, J.A.P.; et al. Salivary Interleukin Levels in Oral Squamous Cell Carcinoma and Oral Epithelial Dysplasia:
Findings from a Sri Lankan Study. Cancers 2023, 15, 1510. [CrossRef]

75. Principe, S.; Zapater-Latorre, E.; Arribas, L.; Garcia-Miragall, E.; Bagan, J. Salivary IL-8 as a putative predictive biomarker of
radiotherapy response in head and neck cancer patients. Clin. Oral Investig. 2022, 26, 437–448. [CrossRef]

76. Tarek, H.E.; Shalash, H.N.; Morsy, R.A.A.; Mostafa, B.; Hassan, M.; Abbas, R.M.; Ellithy, M.M. Salivary and serum expression of
TNF-α and Ki-67 in oral potentially malignant lesions. Bull. Natl. Res. Cent. 2022, 46, 241. [CrossRef]

77. Abdul Aziz Shaikh, S.; Denny, E.C.; Kumarchandra, R.; Natarajan, S.; Sunny, J.; Shenoy, N.; Nandita, K.P. Evaluation of salivary
tumor necrosis factor alpha as a diagnostic biomarker in oral submucosal fibrosis and squamous cell carcinoma of the oral cavity
and oropharynx: A cross sectional observational study. Front. Oral Health 2024, 5, 1375162. [CrossRef] [PubMed]

78. Honarmand, M.H.; Farhad-Mollashahi, L.; Nakhaee, A.; Nehi, M. Salivary Levels of ErbB2 and CEA in Oral Squamous Cell
Carcinoma Patients. Asian Pac. J. Cancer Prev. 2016, 17, 77–80. [CrossRef] [PubMed]

79. Hsiao, Y.C.; Lin, S.Y.; Chien, K.Y.; Chen, S.F.; Wu, C.C.; Chang, Y.T.; Chi, L.M.; Chu, L.J.; Chiang, W.F.; Chien, C.Y.; et al. An
immuno-MALDI mass spectrometry assay for the oral cancer biomarker, matrix metalloproteinase-1, in dried saliva spot samples.
Anal. Chim. Acta 2020, 1100, 118–130. [CrossRef] [PubMed]

80. Malhotra, R.; Urs, A.B.; Chakravarti, A.; Kumar, S.; Gupta, V.K.; Mahajan, B. Correlation of Cyfra 21-1 levels in saliva and serum
with CK19 mRNA expression in oral squamous cell carcinoma. Tumour Biol. 2016, 37, 9263–9271. [CrossRef]

81. Abdul, N.S. Role of Advanced Diagnostic Aids in the Detection of Potentially Malignant Disorders and Oral Cancer at an Early
Stage. Cureus 2023, 15, e34113. [CrossRef]
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Abstract: Resistive gas sensors are among the most widely used sensors for the detection
of various gases. In this type of gas sensor, the gas sensing capability is linked to the
surface properties of the sensing layer, and accordingly, modification of the sensing surface
is of importance to improve the sensing output. Plasma treatment is a promising way to
modify the surface properties of gas sensors, mainly by changing the amounts of oxygen
ions, which have a central role in gas sensing reactions. In this review paper, we focus
on the role of plasma treatment in the gas sensing features of resistive gas sensors. After
an introduction to air pollution, toxic gases, and resistive gas sensors, the main concepts
regarding plasma are presented. Then, the impact of plasma treatment on the sensing
characteristics of various sensing materials is discussed. As the gas sensing field is an
interdisciplinary field, we believe that the present review paper will be of significant interest
to researchers with various backgrounds who are working on gas sensors.

Keywords: plasma treatment; toxic gas; gas sensor; sensing mechanism

1. Introduction to Toxic Gases

Air pollution is due to the existence of unwanted substances in the air, affecting
its cleanness and quality. It is a serious issue in most countries and led to 4.14 million
premature deaths worldwide in 2019 [1]. In addition to particulate matter, toxic gases are
among the main components of polluted air. NO2, SOx, O3, and CO gases are among the
most dangerous gases often found in polluted air. Natural air pollution sources include
volcano eruptions and wind-blown dust, and anthropogenic sources include the burning
of fossil fuels, agricultural activities, waste management, and so on (Figure 1) [2].

Air pollution has many negative effects on animals [3] as well as on the environ-
ment [4]. For example, NOx and SO2 gases in polluted air can directly affect photosynthesis
and bring about premature leaf senescence, eventually decreasing crop yields [5,6]. In
addition, it has detrimental effects on human health. Air pollutants may influence influenza
transmission [7], intensify COVID-19 mortality [8], induce respiratory diseases [9], such as
bronchoconstriction [10], asthma [11], and lung cancer [12], affect pregnancies and related
things such as low birth weight, preterm birth, and fetal hyperinsulinism [13], cause cardio-
vascular diseases [14,15], and impact the immune system [16]. Since about 90% of people
live in places with polluted air [17], it is necessary to monitor the air quality precisely. In
this regard, the development of reliable gas sensors is vital.

Sensors 2025, 25, 2307 https://doi.org/10.3390/s25072307
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Figure 1. Sources of air pollution [2]. With permission from MDPI.

2. Resistive Gas Sensors: An Introduction

There are various types of gas sensors that can be used to detect toxic gases. The most
common gas sensors are optical [18], electrochemical [19], surface acoustic wave [20], and
resistive [21]. Resistive sensors have high response, high stability, swift dynamics, ease of
design and fabrication, compact size, and low price. They are realized from semiconducting
materials, and currently, semiconducting metal oxides are widely used for this purpose.
However, metal oxide gas sensors have some drawbacks, such as poor selectivity, high
sensing temperature, and humidity interference [22]. Thus, recently, other semiconductors,
such as carbon-based materials, including carbon nanotubes [23], graphene [24], reduced
oxide graphene [25], conducting polymers (CPs) [26], transition metal dichalcogenides
(TMDs) [27], and MXenes, have been employed for the fabrication of resistive gas sensors
in order to reduce sensing temperature and increase the selectivity to a specific gas.

In resistive gas sensors, the sensing layer is applied on the surface of an insulating
substrate, such as alumina, which is equipped with electrodes. Also, sometimes a micro-
heater is attached to a substrate to provide sufficient heat to increase the sensing device
to the desired temperature [28]. The principle of the gas sensing mechanisms of resistive
sensors is based on a variation in resistance in the presence of target gas. In general, there
are two types of semiconducting materials based on the majority of charge carriers. In
n- and p-type gas sensors, electrons and holes are the main charge carriers, respectively.
When a resistive gas sensor is exposed to air, oxygen gas will be adsorbed on it, and thanks
to its high electrophilic nature, it takes electrons from the sensor surface. Accordingly,
on n-type gas sensors, a so-called electron depletion layer (EDL) will appear in which
the concentration of electrons is lower relative to the inner part. Hence, the resistance of
n-type gas sensors increases in air relative to vacuum conditions. Furthermore, a hole
accumulation layer (HAL) will appear on the surface of p-type gas sensors in which the
concentrations of holes are higher than those in the core part of the sensor. When an n-type
sensor is put in a reducing gas atmosphere, the gas reacts with adsorbed oxygen on the
sensor surface, releasing electrons back to the sensor. Hence, the thickness of the EDL
decreases, bringing about a decrease in sensor resistance. Upon exposure to oxidizing gas,
the gas takes further electrons from the sensor surface, leading to the expansion of the EDL
and an increase in sensor resistance (Figure 2a). For a p-type sensor, the release of electrons
in the presence of an n-type gas leads to the narrowing of the HAL and an increase in sensor
resistance, whereas in an oxidizing gas atmosphere, the further abstraction of electrons
leads to an expansion of the HAL and a decrease in resistance [29–31] (Figure 2b).
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Figure 2. Basic gas sensing mechanism of resistive gas sensors: (a) n- and (b) p-type sensors.

Currently, the main challenges of nanostructured resistive gas sensors are as follows:
(i) the development of highly sensitive gas sensors with the capability of gas sensing down
to ppt level; (ii) the development of highly selective gas sensors; (iii) the development of
humidity-resistant gas sensors; and (iv) the development of gas sensors with low power
consumption. To address the above-mentioned challenges, the synthesis of sensing materi-
als with high surface areas, the combination of various sensing materials, functionalization
with appropriate noble metals, functionalization using plasma treatment, UV illumination,
and operation of the sensors in self-heating mode have been proposed.

In more detail, there are various techniques to boost the sensing performance of
resistive sensors. Heterojunction formation [32], doping [33], noble metal decoration [34],
morphology engineering [35], UV illumination [36], high-energy irradiation [37], and
plasma exposure are among the most widely used techniques. In particular, some problems
of resistive gas sensors, namely selectivity and high operating temperature, can be at least
partially addressed by plasma treatment. Plasma exposure causes a change in the amount
of oxygen vacancies, thereby facilitating the adsorption of oxygen gas on the surface of
the plasma-treated sensor. Since oxygen species engage in sensing reactions, better gas
sensing properties can be obtained. Furthermore, by the right selection of plasma type,
other species such as –F, -C can be added on the surface of the sensor, acting as favorable
adsorption sites for target gas molecules. Hence, both selectivity and working temperature
can be improved.

So far, there have been no published review papers dealing with the effect of plasma
treatment on the gas sensing properties of resistive sensors. Hence, in this review paper,
we will review the effect of plasma treatment on the sensing features of resistance sensors.

3. The Plasma Concept

When energy is supplied to a gas, its temperature gradually increases, and by the
further provision of energy, the kinetic energy of gas molecules significantly increases,
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leading to the collision of more gas molecules. Hence, electrons and ions are formed in the
gas, leading to the existence of an electrical charge in the gas. This state of matter is known
as plasma, originating from Greek, which means ‘something molded’, indicating a glowing
gas which alters its shape based on the container. Gases are often electrical insulators, while
plasmas have an equal amount of positive and negative charge carriers along with neutral
particles, giving them electrical conductivity [38].

In equilibrium plasma, local thermodynamic equilibrium exists among the plasma
species and collision processes, where heavy particles and electrons will be at almost
identical temperatures. In contrast, non-equilibrium plasma or cold plasma involves a
thermodynamic imbalance among the electrons and heavy particles, and the temperature
of the heavy particles is much lower than that of electrons. During cold plasma production,
heating the entire gas stream (air or individual gases like Ar and He) is undesirable; thus,
energy is directed to the electrons via the electrical discharge in the gas [39]. Corona dis-
charge, dielectric barrier discharge (DBD), and cold plasma jet are among the most common
ways to generate cold plasma. To generate cold plasma at atmospheric pressure, a high
voltage is applied for the generation of a gas discharge, and the discharge easily proceeds
to arc discharge. Furthermore, energy should be selectively transferred to electrons using
effective methods without raising the temperature of the gas [38].

Cold plasma treatment is an environmentally friendly technique without the pro-
duction of toxic waste, and thanks to its operation under atmospheric pressure, it is an
appropriate technique for the treatment of low-melting-point or heat-sensitive materials
and substrates [40]. In particular, flexible polymeric substrates have low surface energy
and poor wettability. Therefore, the adhesion between electrodes and a polymeric substrate
is weak. Accordingly, plasma surface modification of polymeric substances can overcome
this shortage [41].

In both corona discharge and DBD, the sample to be plasma treated is put between
electrodes in a fixed space under atmospheric pressure. In corona discharge, by applying a
DC electrical source in a pulsed mode, a lighting crown is built out of many streamers, while
in DBD, a high-frequency source is employed for this purpose. During corona discharge,
the cathode is a conductive wire, and the anode is the sample. A DBD reactor usually has
two parallel metal electrodes at a fixed distance covered with a dielectric material, and the
sample is placed between them. The formed plasma has many homogeneously distributed
micro-streamers across the electrodes [42].

Plasma treatment is a flexible, fast, green, and non-contaminating method of changing
surface morphology and composition. Compared to conventional routes, this method is
faster and needs fewer reagents. Also, only the surface area is affected by the plasma treat-
ment, without affecting the bulk region. By optimizing the plasma parameters, including
plasma power, exposure time, and the type of gas, various functional groups with differ-
ent amounts can be added on the surface of the host material [43]. Furthermore, plasma
treatment can be performed at atmospheric pressure, facilitating large-scale treatment for
mass production [44]. Moreover, plasma can be employed to deposit thin layers over the
substrate in a process called plasma spray [45,46]. In the following sections, we will discuss
the impact of plasma treatment on the gas sensing properties of resistive gas sensors.

4. Plasma-Treated Gas Sensors

4.1. Plasma-Treated Carbon Nanotube Gas Sensors

Carbon nanotubes (CNTs) are one-dimensional materials with high conductivity, a
large surface area, and the possibility of functionality [47,48]. Nevertheless, homogeneous
dispersion of CNTs is a challenge owing to the presence of attractive Van der Waals forces
among CNTs, leading to agglomeration and weak solubility in most solvents. Hence, it
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is required to change the surface properties of CNTs via surface treatment or chemical
functionalization [49]. Compared to the surface treatment of CNTs using strong acids such
as HNO3 and H2SO4, which is time-consuming and dangerous, plasma treatment using
oxygen is a simple, clean, and effective way to functionalize CNTs. Acid treatment leads to
the presence of carboxylic acids, ethers, and so on on the surface of CNTs, while oxygen
plasma treatment increases the number of oxygen-bearing defects on the entire surface
of the CNTs. Also, the hydrophilic nature of CNTs can be boosted thanks to the presence
of oxygen-containing species on the surface of CNTs. Furthermore, the bulk features of
CNTs remains untouched during plasm treatment, without any structural destruction [50].
As a result of oxygen plasma treatment, oxygenated vacancies and functional groups will
be present on the surface of CNTs, which are very reactive species and act as favorable
adsorption sites for gas molecules [51]. Therefore, plasma treatment has been extensively
applied on CNTs to increase their gas sensing performance [52–56].

In this regard, Bannov et al. [57] functionalized the surface of multi-walled CNTs
(MWCNTs) using oxygen plasma exposure followed by C2H2(CO)2O plasma treatment.
The MWCNTs were comprised of intertwined MWCNTs with a mean diameter of 20–50 nm.
After plasma treatment, most of the MWCNTs were strongly etched by oxygen plasma,
and only a few MWCNT bundles remained. Based on an XPS study, the plasma treatment
led to the presence of a high amount of oxygen-containing surface groups on the MWCNTs.
The sensor resistance was increased after the plasma treatment due to the oxidation of the
MWCNTs and the loss of the connections among MWCNT networks. At room tempera-
ture (RT), the response of the fabricated sensor to 500 ppm NH3 was only 11.7%, while
after plasma treatment it increased to 31.4%, demonstrating the promising role of plasma
treatment. The increase in sensor response was related to the enhanced NH3 adsorption by
the oxygen-rich surfaces as a result of the plasma treatment. Due to the reducing nature
of NH3 gas, it should react with adsorbed oxygen to release the electrons on the sensor
surface. Hence, the higher amounts of oxygen species on the sensor surface as a result of
plasma exposure led to a higher probability of the reaction with NH3, resulting in a higher
response. The same group [58] investigated the effect of oxygen plasma exposure time
(3, 5, and 7 min) on the NH3 gas sensing properties of MWCNTs. The sensor exposed to
oxygen plasma for 5 min exhibited the highest response to NH3 gas, which was related
to the presence of the highest amount of adsorbed oxygen species on the surface of CNTs.
In another study, Dong et al. [59] studied the effect of various plasma types using Ar,
O2, CF4, and SF6 gases on the gas sensing properties of single-walled CNTs (SWCNTs).
Thanks to reactive ion etching, defects were generated on the SWCNTs. Based on a Raman
analysis, the intensity of the D-band to G-band (ID/IG) ratio of the pristine sample was
only 0.14, while after plasma treatment by the above-mentioned gases, it was changed
to 0.23, 0.36, 0.33, and 0.5, respectively. Therefore, more defects were generated on the
surface of the plasma-treated samples. The pristine sensor not only showed a very low
response to both NO2 and NH3 gases, but also the recovery time was very long (more than
20 min). Also, the resistance did not completely return to its initial value. In contrast, the
plasma-treated sensors showed better sensing performance. The sensor treated with O2

plasma revealed a higher response to NO2 gas thanks to the presence of defect sites and
adsorbed oxygen species groups, which led to the better adsorption and reaction of NO2

gas on the sensor surface. Also, the responses of the sensors treated with CF4 and SF6

were higher than NH3 gas relative to other gases, which was attributed to the sufficient
adsorption energies and easy charge transfer between the NH3 and C–F bonds (CF4 and
SF6) of the plasma-treated MWCNTs.

Santosh et al. [60] used Ar and oxygen plasma treatment using a fixed 100 sccm of gas
for 3 min on MWCNTs for improvement of the gas sensing capacity. The sensor treated with
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Ar plasma revealed a higher response to other gas sensors, which was related to the greater
extent of the surface modifications by the Ar plasma. At 65 ◦C, the maximum response
to ethanol gas was observed with a response [(Ra – Rg)/Ra] of 1.7 to 100 ppm ethanol.
Argon is much heavier than He, and hence, more defects were generated on the MWCNTs
after Ar treatment. The diameter of the MWCNTs decreased after plasma exposure due
to the etching effect of plasma (Figure 3a–c). In addition, based on Raman analysis, the
amorphous wrinkled layer on the pristine sensor was removed after plasma treatment,
which eventually improved the crystalline behavior of the MWCNTs. Furthermore, thanks
to the higher crystallinity and high amount of carbon defects, the conductivity increased
after plasma exposure and enhanced the interaction of the MWCNTs with ethanol. Finally,
the plasma treatment led to the formation of dangling bonds, which acted as favorable sites
for ethanol gas adsorption.

Figure 3. TEM views of MWCNTs: (a) pristine, (b) He-, and (c) Ar-treated MWCNTs [60]. With
permission from Elsevier. Copyright (2020).

Ham et al. [61] modified MWCNTs by oxygen plasma for 10–50 s. The morphology of
the MWCNTs did not change in up to 20 s of plasma exposure. However, by increasing
the treatment time to more than 30 s, the surface became highly rough, and the MWCNTs
were partially etched. The sensor treated with plasma for 20 s showed a higher response
to NH3 gas relative to other gas sensors, indicating that the sensitivity of the MWCNT
gas sensors can be enhanced through defect generation and the adding of oxygenated
functional groups. The enhanced sensitivity was ascribed to the generation of hydrogen
bonds between NH3 gas and surface oxygen groups on the MWCNTs.

The sensing performance of nitrogen-plasma-treated SWCNT gas sensors has rarely
been investigated. In this regard, Zamansky et al. [62] synthesized SWCNTs via a CVD
method and then used nitrogen plasma to modify their surfaces. Based on characterization
results, the defects were introduced on SWCNTs after plasma treatment. In particular, with
longer plasma exposure, the amount of substitutional N defects relative to -NH2 surface
groups increased, indicating the incorporation of N into the SWCNT lattice. Also, due
to the exposure of the MWCNTs to air after plasma treatment, many oxygen-containing
defects were detected. The pristine sensor was almost insensitive to the gases. In contrast,
the sensor treated for 19 min exhibited a response of 121% to 50 ppm NO2, and its response
to 50 ppm NH3 was 36% at RT. The enhanced performance was related to the existence
of oxygen- and nitrogen-related defects, which served as desirable adsorption sites for
gas molecules. Also, the amount of metallic SWCNTs with poor gas sensing properties
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decreased after etching. Based on DFT calculations, the gas adsorption on defect sites was
more favorable compared to basal plane sites. In addition, while NH3 sensing was acceler-
ated by hydrogen bond formation with surface groups such as COOH, the adsorption of
NO2 was mainly caused by the oxidation of carbon defect regions and physisorption.

Ham et al. [63] investigated the impact of plasma treatment on the NH3 sensing
properties of SWCNTs with different amounts of semiconducting SWCNTs (66 and 90 wt.%).
After oxygen plasma treatment, the sensor with 66 wt.% semiconducting SWCNTs exhibited
a 5.5-times increase in sensitivity relative to the pristine sensor, while the sensor with
90 wt.% semiconducting SWCNTs revealed a 13-times increase in sensitivity compared to
the pristine sensor. The pristine SWCNT sensor revealed a very long response time and
incomplete recovery, while the plasma-treated sensors showed much quicker dynamics,
with complete recovery of baseline resistance after treatment. Based on an XPS study, the
amount of oxygen functional groups was significantly improved after plasma treatment.
The NH3 molecules formed strong hydrogen bonds with oxygen ions on the oxidized
SWCNTs. Therefore, a significant response improvement was observed. Also, in the
sample with 90 wt.% semiconducting SWCNTs, the sp3/sp2 ratio increased from 0.256
to 0.611 after the plasma treatment, indicating that the higher semiconducting nature of
plasma-treated SWCNTs and the existence of sp3 defects provided favorable adsorption
sites for NH3 gas.

CPs with high conductance, flexibility, simple synthesis procedures, and low cost
are among the most promising materials for RT gas sensing applications [64,65]. Hence,
composite formation between CNTs and CPs is a favorable strategy for RT gas sensing,
while plasma exposure can further increase their performance [66]. In this regard, Yoo
et al. [67] studied the effect of oxygen plasma treatment (10, 30, 60, and 90 s) on the
NH3 sensing capability of an MWCNT–polyaniline (PANI) composite. Based on a Raman
analysis, the number of defects on the MWCNTs increased with the increase in plasma time
(Figure 4a). During plasma exposure, oxygen ions destroyed the structure of the MWCNTs
by turning them into carbon particles and amorphous carbon, along with the creation of
more defects relative to the pristine MWCNTs. Based on an XPS study, the concentration of
surface oxygen increased with the increase in the plasma exposure time up to 60 s and then
decreased by a longer treatment of 90 s, which was attributed to chemical etching of the
MWCNTs (Figure 4b). This resulted in the thinning or bending of the MWCNTs. At RT, the
response of the plasma-treated MWCNTs was three times that of the pristine sensor thanks
to the formation of hydrogen bonds between polar NH3 and oxygen-containing defects
on the MWCNTs. Also, the plasma-treated MWCNT-PANI composite sensor revealed a
higher response to the plasma-treated MWCNTs thanks to the presence of PANI with a
high intrinsic response to NH3 gas. The NH3 molecules abstracted protons from the PANI,
forming energetically more favorable NH4

+ ions, while the PANI changed into its base
form with a different conductivity, resulting in the generation of a high sensing signal.

During the synthesis of CNTs, some impurities and contaminants are introduced
into the CNTs. Even though purification procedures can be used, sometimes they are
detrimental to the gas sensing properties of CNTs. In this regard, Kim et al. [68] investigated
the impact of thermal annealing (T > 300 ◦C) and plasma treatment with oxygen on the
characteristics and NH3 gas sensing properties of CNTs. The pristine SWCNTs had a
hydrophobic nature with a water contact angle (WCA) of 84.91◦. The thermally treated
SWCNTs again showed a hydrophobic nature with a WCA of 79.07◦, while the plasma-
treated SWCNTs showed a WCA of only 5.15◦, indicating an increase in the hydrophobic
nature after plasma treatment due to the adding of oxygen surface groups on the SWCNTs.
The plasma-treated SWCNTs showed a decrease in sp2 bonding with an increase in sp3

bonding, indicating a change in electrical conductivity. Among the three sensors, the
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plasma-treated SWNT sensor exhibited the highest response and the fastest response time
to NH3 gas. In addition, both the pristine and thermally treated SWNT sensors exhibited
incomplete recovery of their resistance. While thermal cleaning of the SWCNTs removed
impurities from the surface of the SWCNTs, the plasma treatment included cleaning and
functionalization of the SWNTs at the same time to a greater extent, resulting in better
sensing capability after plasma treatment.

 

Figure 4. (a) Changes in the ID/IG and (b) oxygen vacancy of SWCNTs as a function of plasma
treatment time [67]. With permission from Elsevier. Copyright (2009).

Zhao et al. [69] applied plasma on CNTs for CO gas sensing. While the pristine CNTs
showed no response to this gas, the plasma-treated CNTs were able to detect down to
5 ppm CO at RT. The improved sensing response was related to the conversion of metallic
CNTs to semiconducting CNTs after plasma treatment, along with the promising effect of
surface oxygen addition for sensing reactions with CO gas.

4.2. Plasma-Treated Graphene and Graphene Oxide Gas Sensors

Pristine graphene (G) has a high surface area and high conductivity, demonstrating
its potential for sensing applications [70]. However, it generally has poor selectivity since
the gas adsorption on G is based on Van der Waals interactions with gases, which limit its
selectivity [24]. To address this issue, plasma treatment can be used [71]. In this regard,
Masterapa et al. [72] applied plasma treatment on CVD-grown G for 5, 10, 20, and 30 s. The
sample treated with plasma for 30 s revealed higher amounts of defects, as demonstrated
by a Raman analysis, and hence it showed a higher response to NO2 and NH3 gases relative
to other sensors. However, the response time of all the sensors was very long (10 min), and
the recovery curves were not shown possibly due to very long recovery times.

Fluorination surface treatment could change the intrinsic properties of G. In this
regard, Zhang et al. [73] synthesized monolayer fluorinated graphene (FG) by a SF6 plasma
treatment (5–90 s). The concentration of F in the samples increased with the increase in
plasma treatment time up to 20 s, and then it decreased. During the plasma treatment, the
fluorine atoms attached to carbon atoms to form C−F bonds on the surface of G. After a
critical time, the F atoms broke down some previously formed C−F bonds, and hence, F
atoms were released from the surface of G. The pristine G sensor exhibited slow dynamics,
and even after 500 s of recovery, only ∼66.7% of the initial resistance was recovered. The
sensor treated with plasma for 20 s exhibited a response of 3.8% to 100 ppm NH3 gas at RT,
with complete recovery of baseline resistance in less than 200 s. Based on DFT results, the
improved performance was ascribed to the opening up of the band gap after fluorination
and the enhanced adsorption of NH3 in the presence of surface functional groups.

Chung et al. [74] synthesized G films using the CVD route, and they were then treated
with plasma ozone for 60, 70, 80, and 90 s. Among the fabricated sensors, the sensor with
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the ozone treatment time of 70 s showed a response of 19.7% to 10 ppm NO2 gas at RT,
which was two times higher than that of the pristine G sensor. Also, the sensor was able to
detect as low as 200 ppb NO2 gas. Further increasing the plasma treatment time resulted
in a decrease in the sensing response due to extensive oxidation of G with high baseline
resistance. The presence of sufficient amounts of oxygen groups on the surface of G resulted
in an increase in adsorption sites and sensing reactions with the NO2 gas. However, the
sensors showed long dynamics, and all sensors showed a long recovery time of ~20 min
or longer.

CO2 is the main gas responsible for the greenhouse effect [75]. Hence, the development
of sensitive CO2 sensors is crucial for environmental and industrial applications. Casanova-
Chafer et al. [76] synthesized a G-CsPbBr3 nanocomposite and subsequently applied oxygen
plasma treatment on it. The sensor exposed for 5 min to oxygen plasma exhibited a 3-fold
improvement in gas sensing compared to the pristine sensor, with a limit of detection
of 6.9 ppm. The improved sensing performance was attributed to the promising role of
oxygen species, facilitating sensing reactions with CO2 gas on the sensor surface.

Graphene oxide is the oxidized form of G with two key advantages. First, the synthesis
route of GO is easy using graphite as raw material, and hence its large-scale production
is feasible. Second, in contrast to G, GO exhibits good hydrophilicity, making it possible
to prepare stable aqueous colloids [77,78]. Nonetheless, the main shortcoming of GO
is its high resistance, making it unsuitable for sensing applications [79]. In this regard,
plasma treatment is a promising technique, allowing the reduction of GO by removing
oxygen atoms during plasma exposure, without disrupting the GO lattice. Hydrogen or
hydrogen-containing plasma with mild treatment conditions is an efficient and alternative
route to the complex procedures for GO reduction. The hydrogen plasma contains radicals
and atoms, which provide energy for the dissociation of oxygen functional groups. It
effectively removes the oxygen functional groups at the edge sites and both basal planes
while restoring C=C bonds [80]. After the reduction of GO, it becomes converted to reduced
graphene oxide (rGO) with high conductivity, high amounts of surface defects, and also
some oxygen surface groups along with a high surface area, all making it a good choice for
gas sensing applications.

Hamzaj et al. [81] used hydrogen plasma treatment for 10, 20, 40, 120, and 240 s
on GO to reduce it for gas sensing applications. The surface morphology of pristine GO
showed some mild wrinkles, and it was not changed after plasma treatment for 10 and 240 s
(Figure 5a–c). It should be noted that generally, plasma treatment does not significantly
change the surface morphology.

 

Figure 5. Surface morphology of (a) pristine GO and GO after plasma treatment for (b) 10 and
(c) 240 s. With permission from Elsevier. Copyright (2024).

Based on resistance measurement studies, the resistance gradually decreased with the
increase in hydrogen plasma treatment (Figure 6), which effectively removed the oxygen
groups from GO and partially restored the sp2-bounded carbon network, resulting in
enhanced conductivity. In addition, during plasma exposure, the amorphous phases were
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etched, which contributed to the improved conductance. Based on various characteriza-
tions, the pristine GO had an oxygen content of 30 at.%, and after plasma treatment for
240 s, it decreased to 20 at%, confirming the reducing effect of plasma exposure on GO.

Figure 6. A possible physisorption/chemisorption-assisted sensing mechanism towards ammonia in
plasma rGO sensors [81]. With permission from Elsevier. Copyright (2024).

Among the different gas sensors, the sensor exposed to plasma for 20 s revealed the
highest response to NH3 gas at RT. After 20 s of plasma exposure, the oxygen groups were
not extensively removed, and hence, they provided sufficient channels for the physisorption
of NH3. Meanwhile, chemisorption of NH3 was facilitated due to the presence of oxygen
groups. This led to achieving the optimal sensing performance by providing a balance
between both the chemisorption and physisorption phenomena.

4.3. Plasma-Treated ZnO Gas Sensors

The response of ZnO sensors also can be remarkably increased by plasma
treatment [82–84]. In this context, Hou et al. [85] prepared ZnO thin films by sol–gel
spin-coating deposition. Then, they were treated with O2 plasma for 3, 5, 8, 11, and 15 min.
During plasma treatment for 3 and 5 min, the crystallinity increased thanks to the decrease
in oxygen vacancies, while a further increase in plasma exposure time led to a decrease in
the crystallinity due to the formation of zinc vacancies. Also, the roughness of the pristine
ZnO thin film was 5.5 nm, which decreased to 3.6 nm after plasma treatment and then
increased to 4.3 and 5 nm with further increase in the treatment time to 8 and 11 min,
respectively. The sensor that underwent 8 min plasma exposure revealed a higher response
of 65% to 50 ppm NH3 at RT compared to the other sensors. It manifested a higher baseline
resistance relative to the pristine sensor, and hence, more reactions occurred between the
adsorbed oxygen and NH3 gas, contributing to a higher sensing response.

Gui et al. [86] produced ZnO nanorods (NRs) with average diameters of 300 nm
on ceramic tubes by an in situ hydrothermal growth method at 140 ◦C. Then, they were
exposed to oxygen plasma for 30, 60, and 90 s. Upon plasma exposure, not only did the
surface become rough, but also the content of oxygen vacancies increased up to a plasma
exposure time of 60 s. The sensor exposed to plasma for 60 s manifested a high response
of 198 to 100 ppm N-methyl pyrrolidone (NMP) at 210 ◦C, which was three times higher
than that of the pristine sensor. The improved performance originated from the presence
of the highest amount of oxygen vacancies, which acted as highly active sites for oxygen
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adsorption, and the subsequent increase in reactions with target gas molecules. Based on
DFT calculations, the adsorption energy of NMP on the oxygen-plasma-treated ZnO was
higher than that of the pristine ZnO. Furthermore, the adsorption energy of NMP on ZnO
was the largest (−1.06 eV) compared to other gases, leading to better selectivity to NMP
gas (Figure 7).

 
Figure 7. Adsorption energies of different gases on pristine and plasma-exposed (60 s) ZnO NRs [86].
With permission from Elsevier. Copyright (2024).

Although the chemical solution method is widely used for sensing film deposition,
it still suffers from poor adhesion between the film and substrate along with poor repro-
ducibility. In this regard, atomic layer deposition (ALD) is a highly reliable method of film
deposition, allowing precise control of the thickness of the film by adjusting the number of
ALD cycles. Furthermore, it can be used for the deposition of uniform sensing layers on a
substrate with high reproducibility [87,88]. In this regard, Li et al. [89] deposited ultrathin
ZnO films (20 nm) by the ALD technique followed by Ar plasma treatment for 1, 5, and
10 min. Among the different samples, the one exposed to plasma for 5 min exhibited the
highest amount of oxygen vacancies, as confirmed by XPS and EPR analyses. It revealed
a maximum response of 21.6 to 100 ppm TEA at 250 ◦C with a low limit of detection of
22 ppb. The high selectivity to TEA was ascribed to the presence of active C–N bonds in
TEA and the high electron-denoting properties of TEA. Furthermore, oxygen vacancies
acted as electron donors and decreased the band gap of ZnO, eventually facilitating the
adsorption and activation of TEA.

4.4. Plasma-Treated SnO2 Gas Sensors

SnO2 is among the most widely used sensing materials, thanks to its high stability, high
mobility of electrons, ease of the synthesis, low price, nontoxicity, and abundance [90,91].
Plasma treatment has been used on SnO2 to modify its sensing properties [92,93]. Srivastava
et al. [94] are among the leading researchers reporting the enhanced gas sensing properties
of SnO2 sensors under oxygen and hydrogen plasma exposure. The sensitivity of a sensor
treated with oxygen plasma was found to be about 10 times more than that of the pristine
sensor, while in the case of hydrogen plasma, the response of the plasma-treated (15 min)
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sensor was seven times higher than that of the pristine sensor. Also, the same group [95]
reported the enhanced gas sensing response of elemental-doped SnO2 gas sensors.

Acharyya et al. [96] synthesized SnO2 nanosheets (NSs) through a hydrothermal route
at 200 ◦C for 12 h. Then, the synthesized materials were exposed to Ar plasma for 2, 4, 7,
and 10 min. At 270 ◦C, the sensor treated with Ar for 7 min revealed the highest response
of 25 to 10 ppm HCHO gas. Also, the smaller molecule size and lowest activation energy
of the HCHO compared to other gases accounted for the selective response to gas. The
content of oxygen vacancies was highest in the sensor exposed to plasma for 7 min. This
caused more oxygen and HCHO gas adsorption on the surface of the SnO2 NSs, leading to
a higher response relative to the pristine sensor (Figure 8a–d). Furthermore, as indicated in
Figure 8e, the SnO2-SnO2 homojunctions were formed in air, and the height of barriers was
lower relative to that of the plasma-exposed sensor. Hence, in the presence of HCHO gas,
the significant reduction in homojunction height in the case of the plasma-treated sensor
led to the generation of a higher sensing response relative to the pristine sensor.

 

Figure 8. Schematic illustration of sensing mechanism of SnO2 NSs to VOCs: (a,b) pristine SnO2 NSs;
(c,d) plasma-treated SnO2 NSs; (e) modulation of double Schottky barrier in the presence of plasma
and VOC [96]. With permission from Elsevier. Copyright (2024).

Pd is a good catalyst for H2 gas dissociation, and therefore it is widely used as
a decoration on the surface of resistive gas sensors [97,98]. Hu et al. [99] synthesized
Pd-decorated SnO2 nanofibers (NFs) via electrospinning of SnO2 NFs followed by the
decoration of Pd NPs using sputtering. Then, the samples were exposed to Ar plasma
treatment for 5, 60, and 300 s. Based on an XPS analysis, the content of oxygen vacancies
and adsorbed oxygen species increased after plasma treatment. The Sn-O bonds in the
SnO2 dissociated during the collision with Ar ions, resulting in the generation of oxygen
vacancies. Furthermore, the dissociated oxygen was chemisorbed on the oxygen vacancy
sites. The sensor exposed to plasma for 60 s revealed the highest response of 53 to 500 ppm
H2 gas at 130 ◦C. Figure 9a,b show the amounts of different enlacements as a function of
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plasma exposure time. The sensor exposed to plasma for 60 s exhibited the highest amount
of oxygen vacancy and adsorbed oxygen species, both of which were highly beneficial for
H2 gas sensing. However, the extension of plasma exposure to 300 s led to the degradation
of sensing performance due to the decrease in both oxygen vacancy and adsorbed oxygen
species. Also, the catalytic effect of Pd towards H2 dissociation was effective on the high
sensing response towards H2 gas.

 
Figure 9. (a,b) The amounts of different species on Pd-SnO2 NFs versus plasma exposure time [99].
With permission from Elsevier. Copyright (2020).

Chaturvedi et al. [100] used plasma treatment on Pd-doped SnO2 gas sensors. The
synthesized materials were exposed to O2, H2, N2, and Ar plasma for 15 min. In all cases,
the plasma-treated sensors revealed a higher response to CCl4, CO, LPG, C3H7OH, N2O,
and CH4 gases relative to the pristine sensor due to the release of a greater number of
electrons upon interaction with the adsorbed gas molecules. The oxygen-treated sensor
showed a higher response relative to other gas sensors; however, it showed weak selectivity.
The non-stoichiometry was the highest in the case of the oxygen-plasma-treated sensor,
where the sensitivity was maximum. At RT, the hydrogen-plasma-treated sensor was highly
selective to CO gas, while the nitrogen-treated sensor manifested a moderate response
to all the gases, without selectivity. Also the argon-plasma-treated sensor did not show
noticeable sensitivity to any gas.

Nanowires (NWs) are among the most popular morphologies for gas sensing applica-
tions thanks to their high surface area and numerous adsorption sites for gas adsorption.
In this context, Pan et al. [101] synthesized SnO2 NWs through a CVD method and then
used O2/Ar plasma to change the compositions to be more non-stoichiometric. The plasma
power was varied between 10 and 80 W, while the plasma duration was fixed to 240 s. The
samples exposed to plasma under 10, 20, and 40 W had some amounts of SnO, Sn2O3, and
Sn3O4 phases due to the gradual reduction of tetragonal SnO2 and removing of oxygen
atoms from SnO2. Also, the further increase in plasma power (80 W) resulted in extensive
reduction of SnO2 to metallic Sn, resulting in poor sensing performance. Among the differ-
ent gas sensors, the sensor treated with a power of 40 W revealed an enhanced response to
ethanol gas, thanks to the co-existence of SnO2-Sn3O4 phases, in which potential barriers
at interfaces acted as powerful sources of resistance modulation, in addition to the high
surface area thanks to NW morphology and the presence of oxygen vacancies.

In another study, Huang et al. [102] synthesized SnO2 thin films using plasma-
enhanced CVD (PECVD) and then exposed it to oxygen plasma for 20 min. The pristine
sensor manifested a low response of 3.9 to 1000 ppm CO at 330 ◦C. Also, the plasma-treated
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sensor showed the highest response of 31.7 to the same gas concentrations at 250 ◦C. Inter-
estingly, SnO2 nanorods (NRs) were grown on SnO2 thin films after the plasma treatment
by sputtering followed by a redeposition mechanism. In fact, the films were sputtered by
the bombardment of heavy ions in the plasma, and then SnO2 NRs were grown by the
sputtering, redeposition, and rearrangement on the films. Hence, the surface area was
significantly increased relative to the pristine SnO2 thin film due to the presence of both
the 1D NRs and 2D thin film. Accordingly, numerous adsorption sites were available for
gas molecules, resulting in a boosted sensing response.

Huang et al. [103] synthesized SnO2 nanocolumn arrays with aspect ratios of 20 using
liquid immersion PECVD, and the impacts of thermal annealing (600 ◦C/2 h) and O2

plasma treatment on the sensing response toward CO and H2 gases were investigated.
The response of the pristine sensor to 1000 ppm H2 at 400 ◦C was 17, which was higher
than the response to CO gas. Based on a compositional analysis, some residual carbon
species remained on the pristine sensor, decreasing its sensing performance. After thermal
annealing, the response was increased due to the removal of carbon impurities. Also, after
plasma treatment for 40 min, the sensing response to both 1000 ppm CO and H2 increased
around seven times. The compositional analysis demonstrated that the amount of surface
oxygen species significantly increased due to chemisorbed oxygen species on the surface
during the plasma treatment, which reacted with target gases to release electrons on the
sensor surface.

Hu et al. [104] synthesized ZnO-SnO2 heterojunction NFs (200–500 nm) using electro-
spinning followed by Ar plasma exposure for 5, 20, and 60 min. Overall, all sensors treated
with plasma exhibited higher responses than the pristine sensor. Also, at 300 ◦C, the sensor
exposed to plasma for 20 min revealed a response of 18 to 100 ppm H2 gas (Figure 10a,b).

Figure 10. (a) Response to H2 gas versus temperature and (b) calibration curves of plasma-treated
gas sensors. (c) Mechanism of plasma treatment on a ZnO nanograin [104]. With permission from
Elsevier. Copyright (2020).

Based on an XPS analysis, the amount of adsorbed oxygen species was highest in the
optimal sensor. When the plasma was exposed to ZnO, some Zn-O bonds were broken,
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resulting in the formation of oxygen vacancies. Then, oxygen molecules from the air were
adsorbed on the oxygen vacancy sites, and thanks to the highly electrophilic nature of
oxygen, they abstracted the electrons from the conduction band of ZnO, leading to the
expansion of EDL relative to the pristine ZnO and an increase in resistance. Excess plasma
exposure led to the reduction of ZnO to Zn, reducing the overall resistance (Figure 10c). In
the case of the optimal gas sensor, plasma exposure caused the formation of EDL with high
thickness, and when the sensor was exposed to gas, the release of electrons significantly
modulated the sensor resistance. Furthermore, heterojunctions were formed between ZnO
and SnO2, acting as resistance sources for the gas sensor.

In another study [105], SnO2/In2O3 composite NFs were produced using electrospin-
ning, and then they were exposed to oxygen plasma for 30 min. After plasma exposure,
the morphology of SnO2 changed to nanoneedles, while that of In2O3 changed to nano-
tapers. The surface area before the plasma treatment was 16.5 m2/g, and after plasma
exposure it increased to 31 m2/g. This was due to the fact that the surface was rough
and porous after plasma exposure. While the pristine sensor showed a response of 8 to
10 ppm formaldehyde at 375 ◦C, the response of the plasma-treated sensor was 14 to the
same gas concentration at 290 ◦C. Furthermore, this selective response was related to the
small bond dissociation energy of H-CHO, where it was easily broken and reacted with
adsorbed oxygen species, releasing electrons on the sensor surface. Due to the plasma
treatment, more oxygen species were adsorbed on the surface of sensor, leading to more
sensing reactions with formaldehyde gas. In another similar study performed by the same
group [106], SnO2 NFs revealed an enhanced response to HCHO gas after oxygen plasma
treatment. The response of pristine SnO2 NFs was only 4.5 to 100 ppm HCHO at 300 ◦C,
while after plasma treatment it was increased to 6.9 at 200 ◦C.

4.5. Plasma-Treated In2O3 Gas Sensors

One of main shortages of metal oxide gas sensors is humidity interference, which
limits their applications in humid environments [107]. Hence, the development of anti-
humidity gas sensors is vital. Du et al. [108] synthesized In2O3 by roasting In2SO4 at
550 ◦C, and then fluorocarbon (CF) was grafted onto it by the RF magnetron sputtering
technique. The surface of the CF-In2O3 was evenly wrapped by CF layers with thicknesses
of ~2 nm. The In2O3 film exhibited a low WCA of ∼16◦ and the CF-In2O3 film showed a
hydrophobic nature with a large WCA of ∼137◦ thanks to the presence of low-energy CF on
the surface of the In2O3. The In2O3 recorded a response of ∼18 to 1 ppm NO2 gas at 200 ◦C.
However, the CF-In2O3 sensor revealed a lower response of 13 at an optimal temperature of
100 ◦C due to the covering of CF on the surface of the In2O3 with lower sensing properties
relative to In2O3. In the presence of 92% relative humidity, the response of the CF-In2O3

was not significantly decreased, demonstrating the anti-humidity properties of CF-In2O3.
However, the response of the In2O3 dramatically decreased. Two reasons can account for
the humidity-resistant nature of the optimal sensor: (i) the hydrophobic CF layer absorbed
a sufficient amount of H2O molecules to increase the electron concentration, and hence
more NO2 molecules were adsorbed; (ii) the hydrophobic CF layer suppressed the reaction
between NO2 with H2O molecules, and therefore the concentration of the adsorbed and
reacted NO2 gas molecules on the surface of the sensor did not change.

In another study, Du et al. [109] synthesized In2O3 NFs and then exposed them to
hydrogen and oxygen plasma for 30 min. The surface of the oxygen-plasma-treated In2O3

was rougher, and the diameters of the NFs were thicker than those of hydrogen plasma
In2O3. However, the diameters of the nanograins on the surface of the NFs were smaller
in the case of the oxygen-plasma-treated sample. Also, the surface areas of the pristine,
oxygen-, and hydrogen-plasma-treated samples were 18, 32, and 29 m2/g, respectively.
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Thus, the surface area was increased thanks to the formation of many new small pores
on the surface of the In2O3 NFs. Based on an XPS study, the oxygen content was greatly
increased by the oxygen plasma, which is vital for sensing reactions with acetone gas.
As expected, the sensor exposed to oxygen plasma revealed the largest response of 37 to
500 ppm acetone at 275 ◦C. The high surface area and the presence of a large amount of
adsorbed oxygen species contributed to the enhanced sensing response to acetone.

4.6. Other Plasma-Treated Gas Sensors

ZnGa2O4 is a semiconducting material (5.1 eV) with features like the ease of fabrication,
low cost, and high stability [110]. Chang et al. [111] synthesized a ZnGa2O4 epilayer (125 nm
thick) on a sapphire substrate using a metal–organic CVD technique. Then, Ar plasma
was applied for 5, 10, and 15 min on it. Spindle nanostructures changed to smaller sizes
and near-spherical particles after Ar plasma treatment for 15 min due to heavy Ar plasma
bombardment and the coalescence of nanostructures (Figure 11a–d). Furthermore, the Ar
plasma treatment introduced Ar atoms, radicals, and ions on the epilayer surface, resulting
in chemical changes after the plasma treatment.

 
Figure 11. SEM micrographs of ZnGa2O4 epilayer: (a) before and after Ar plasma treatment and
(b) 5, (c) 10, and (d) 15 min [111]. With permission from Elsevier. Copyright (2023).

Among e different sensors, the sensor treated with plasma for 10 min revealed an
enhanced response at 300 ◦C with a response of 1300% to 5 ppm NO gas. The main reasons
for sensing enhancement were related to the higher surface area and the presence of more
oxygen dangling bonds, leading to an increase in the reactions with NO gas. Also, based on
DFT calculations, ZnGa2O4 with surface oxygen groups had a greater tendency to adsorb
NO molecules.

Polypyrrole (PPy) as a CP is a promising sensing material thanks to its high conduc-
tance, simple preparation methods, high sensitivity, and possibility of RT operation [112].
Similar to metal oxides, plasma treatment on CPs can increase their gas sensing perfor-
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mance [113]. Zhang et al. [114] applied hydrogen and oxygen plasma on PPy for 20 min and
investigated the response to various gases. At 25 ◦C, the response of the hydrogen-treated
sensor to 50 ppm NO2 gas was 6, which was 1.6 and 1.2 times higher than that of the pris-
tine and oxygen-treated sensors, respectively. Based on DFT calculations, the adsorption
energy of NO2 on the hydrogen-treated sensor was significantly higher (−1.72 eV) than
that on the pristine (−0.58 eV) and oxygen-treated (−0.69 eV) sensors, respectively. This
implied that the hydrogen plasma treatment was more efficient for NO2 gas adsorption
enhancement. In addition, the increase in surface area by the formation of pores after
plasma exposure contributed to the sensing improvement. In another study related to
oxygen-plasma-treated PANI, the response to hydrogen at RT was significantly improved
relative to the pristine sensor [115].

MXenes are a new category of 2D materials with high conductivity, a large surface
area, and tunable band gaps [116]. They have a general formula of Mn+1XnTx, in which A
is a transition metal, X is C/or N, and Tx shows the surface functional groups. They are
synthesized from their parent MAX phases, which can be represented as Mn+1AnX, where
A is an element in group IIIA or group IVA [117,118]. In this context, Wang et al. [119]
synthesized Ti3C2Tx MXene via liquid exfoliation and subsequently exposed it to oxygen
plasma treatment. The sensor exhibited a response of 13.8% to 10 ppm NO2 gas at RT. The
enhanced sensing performance was related to the presence of numerous oxygen surface
functional groups as a result of the plasma treatment.

Transition dichalcogenides are 2D semiconductors with high conductivity and large
surface areas. They have a general formula of MX2, in which M is a transition metal and X
is a chalcogenide such as S, Se, or Te [120,121]. Seo et al. [122] applied Ar plasma treatment
on MoS2 NSs for 2 s. As a result of plasma exposure, sulfur vacancies were created on
the MoS2. Then, it was exposed to a 3-mercaptopropionic acid (MPA) solution to form
coordinate bonds between the HS groups in MPA and sulfur vacancies. Based on an XPS
study, the pristine MoS2 exhibited an ideal S/Mo ratio of 1.91, while after plasma exposure
it was decreased to 1.51, indicating sulfur vacancy formation. Based on NH3 gas sensing
studies, the pristine sensor revealed a response of 1.25 to 130 ppm NH3 gas at RT, and
after treatment by plasma and MPA, the response increased to 4.45. The boosted sensing
capability was related to the presence of oxygen and carboxyl groups (−COO) on the
surface of the sensor.

Table 1 summarizes the gas sensing properties of plasma-treated gas sensors. Over-
all, plasma-treated gas sensors have been successfully used for the detection of various
toxic gases.

Table 1. Gas sensing properties of plasma-treated gas sensors.

Sensing Material
Synthesis
Method

Plasma
Condition

Gas
Conc.
(ppm)

T (◦C)
Response (Ra/Rg)
or (Rg/Ra) or [(Ra

− Rg)/Ra] × 100
Ref.

MWCNTs CVD O2/C2H2(CO)2O NH3 500 RT 31.4% [57]

MWCNTs CVD Ar Ethanol 100 65 170% [60]

SWCNTs CVD N2 NO2 50 RT 121% [62]

SWCNTs CVD N2 NH3 50 RT 36% [62]

Graphene CVD CF6 for 20 s NH3 100 RT 3.8% [73]

Graphene CVD O3 for 70 s NO2 10 RT 19.7% [74]

ZnO thin films Sol–gel spin
coating O2 for 8 min NH3 50 RT 65% [85]

ZnO NRs Hydrothermal O2 for 60 s NMP 100 210 198 [86]
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Table 1. Cont.

Sensing Material
Synthesis
Method

Plasma
Condition

Gas
Conc.
(ppm)

T (◦C)
Response (Ra/Rg)
or (Rg/Ra) or [(Ra

− Rg)/Ra] × 100
Ref.

ZnO film ALD Ar TEA 100 250 21.6 [89]

SnO2 NSs Hydrothermal Ar for 7 min HCHO 10 270 25 [96]

Pd-SnO2 NFs Electrospinning Ar for 60 s H2 500 130 53 [99]

SnO2 thin film Plasma enhance
CVD O2 for 20 min CO 1000 250 31.7 [102]

SnO2 nanocolumn
arrays

Liquid
immersion

PECVD
O2 H2 1000 400 17 [103]

ZnO-SnO2
heterojunction NFs Electrospinning Ar for 20 min H2 100 300 18 [104]

SnO2/In2O3
composite NFs Electrospinning O2 for 30 min HCHO 100 290 14 [105]

SnO2 NFs Electrospinning O2 HCHO 100 200 6.9 [106]

In2O3
Roasting of

In2SO4
Fluorocarbon CF NO2 1 100 13 [108]

In2O3 NFs Electrospinning O2 C3H6O 500 275 37 [109]

ZnGa2O4
MOCVD
technique Ar for 10 min NO2 5 300 1300% [111]

PPy Polymerization O2 for 20 min NO2 50 25 6 [114]

Ti3C2Tx MXene Liquid
exfoliation O2 NO2 10 25 13.8% [119]

MoS2 CVD Ar for 2 s NH3 130 25 1.25 [122]

5. Conclusions and Outlooks

We reviewed the effect of plasma treatment on the gas sensing characteristics of gas
sensors. In general, plasma exposure affects the amount of oxygen species on the sensor
surface, and since the oxygen ions are highly required for gas sensing reactions, plasma
treatment significantly affects the gas sensing characteristics of resistive sensors through
modulation of the amount of oxygen ions. Generally, oxygen plasma causes the addition of
surface oxygen functional groups on the sensor surface, and hence, the reactions between
adsorbed gases with oxygen increase, leading to a higher sensing performance relative
to pristine sensors. Also, exposure to other plasma atmospheres such as Ar or He causes
the generation of oxygen defects, which act as favorable sites for oxygen adsorption and
accordingly contribute to the enhanced sensing performance. Overall, plasma treatment
can cause morphology changes when its power and treatment time are sufficiently high.
Also, it causes changes in the amount of oxygen vacancies and adsorbed oxygen species. In
some cases, it can add new functional groups on the sensor surface, which act as adsorption
sites for gas molecules. Thus, when plasma treatment conditions such as plasma type,
time, and power are optimized, it is expected that the sensing properties such as sensitivity,
selectivity, and working temperature improve relative to pristine sensors.

Regardless of the type of plasma used, both plasma power and plasma exposure times
should be optimized to achieve the highest gas sensing performance. However, in most
cases, the focus is on the optimization of plasma time rather than plasma power. Thus, this
aspect needs to be more explored in future studies. Different sensing materials such as
metal oxides, TMDs, MXenes, CNTs, graphene, and CPs have been subjected to plasma
treatment. In this regard, the combination of plasma exposure with other high irradiation
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techniques such as ion beams, electron beams, and gamma rays can lead to interesting
results. Thus, future research directions on plasma-treated gas sensors can be summarized
as follows: (i) the development of cheap plasma treatment devices with high availability
across the world; (ii) the study of the optimal plasma power and time for various gas
sensing materials; (iii) the study of various sensor parameters such as stability, response in
humid environments, and reproducibility; and (iv) the reduction in sensing temperature
on plasma-treated gas sensors by operation of the sensor in self-heating mode or under UV
light illumination.
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Abstract: Conducting polymers (CPs) have emerged as promising materials for gas sensors
due to their organic nature coupled with unique and versatile optical, electrical, chemical,
and electrochemical properties. This review provides a comprehensive overview of the
latest developments in conducting polymer-based gas sensors. First, the fundamental gas
sensing mechanisms in CPs-based sensors are elucidated, covering diverse transduction
modes including electrochemical, chemiresistive, optical, piezoelectric, and field-effect
transistor-based sensing. Next, the various types of conducting polymers employed in
gas sensors, such as polypyrrole, polyaniline, polythiophene, and their composites are
introduced, with emphasis on their synthesis methods, structural characteristics, and gas
sensing response properties. Finally, the wide range of applications of these sensors is
discussed, spanning industrial process control, environmental monitoring, food safety,
biomedical diagnosis, and other fields, as well as existing issues such as long-term sta-
bility and humidity interference, and a summary of the biocompatibility and regulatory
standards of these conductive polymers is provided. By integrating insights from sens-
ing mechanisms, materials, and applications, this review offers a holistic understanding
of CPs-based gas sensors. It also highlights future research directions, including device
miniaturization, AI-assisted gas identification, multifunctional integrated sensing systems,
wearable and flexible sensor platforms, and enhanced sensitivity, selectivity, and on-site
detection capabilities.

Keywords: conducting polymer; gas sensor; sensing mechanism; environmental monitoring

1. Introduction

Environmental pollution, public health concerns, and industrial safety needs have
created an urgent demand for advanced gas-sensing technologies. Rapid industrialization
and urbanization have led to significant harmful gas emissions, with pollutants such
as sulfur dioxide (SO2) [1], nitrogen oxides (NOX) [2], and volatile organic compounds
(VOCs) [3] threatening air quality. Accurate detection of these hazardous gases is essential
for evaluating air quality and formulating effective environmental policies to safeguard
the atmosphere critical to human health. In industrial settings, real-time monitoring of gas
concentrations is equally crucial for safety and process control. It can prevent accidents (e.g.,

Sensors 2025, 25, 2724 https://doi.org/10.3390/s25092724
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explosions or toxic exposure) and help maintain product quality and production efficiency.
For instance, industries such as chemical manufacturing [4] and food processing [5] rely
on precise gas detection to ensure safe operations and consistent product quality. In the
medical field, analysis of specific components in exhaled breath provides a non-invasive
approach to early disease diagnosis and personalized health monitoring [6]. For example,
elevated acetone levels in the breath of diabetic patients serve as an important biomarker
of their condition and treatment efficacy [7]. These diverse applications underscore that
gas detection technology has become indispensable in modern society.

However, while effective for certain purposes, conventional gas detection methods
have significant limitations [8]. For instance, gas chromatography-mass spectrometry
(GC-MS) offers high sensitivity and resolution for identifying and quantifying gases in
complex mixtures, but it requires bulky, expensive equipment and skilled operators. Its
complex, time-consuming procedures make GC-MS impractical for rapid on-site or real-
time monitoring [9–11]. Similarly, optical spectroscopic methods (such as infrared sensing)
enable non-contact and fast detection, yet often suffer from low sensitivity for certain gases
and depend on high-cost instrumentation [12]. These drawbacks have driven researchers to
explore new sensing materials and techniques to meet the growing demand for gas sensors
with higher precision, sensitivity, and selectivity under practical conditions.

To overcome these challenges, conducting polymers (CPs) have emerged as promis-
ing gas sensor materials offering unique advantages. CPs are organic polymers with
π-conjugated backbones that endow them with intrinsic electrical conductivity. Moreover,
their electrical, optical, and chemical properties can be readily tuned through chemical
modification or doping [13], allowing for sensor designs tailored to specific target gases.
Metal oxides and metal-organic frameworks (MOFs) have shown excellent adsorption
and selective detection performances toward gas sensing, but they often need to work
under high-temperature conditions [14,15]. In contrast, the great advantages of CPs in
this field are that they can work at room temperature, quickly respond to gases through
intermolecular interactions, enable solution processing, have low power consumption, as
well as be suitable for flexible integration and portable monitoring [16].

Several CPs materials have been extensively studied in gas sensors, notably polyaniline
(PANi) [16], polypyrrole (PPy) [17], polythiophene (PTh) [18], poly(3,4-ethylenedioxythiophene)
(PEDOT) [19], and its derivatives PEDOT:PSS [20]. Each of these CPs provides distinct char-
acteristics beneficial for gas detection. For example, PANI features excellent environmental
stability and a widely tunable conductivity, which has been leveraged to detect gases
such as ammonia and nitrogen dioxide [16]. PPy is easily synthesized and forms uniform
conductive films with high electrochemical activity, making it effective for sensing various
VOCs [17]. PTh and its derivatives offer unique electronic and optical properties that can
be exploited to enhance selectivity toward specific gas molecules [18]. PEDOT is known
for its high conductivity and stability [19], while PEDOT:PSS combines the conductivity of
PEDOT with the water dispersibility of PSS, enabling solution-processed, flexible sensor
devices [20].

Thanks to these advantages, CPs-based gas sensors have demonstrated promising
performance across a wide range of applications, including environmental monitoring [21],
industrial process control [22], medical diagnostics [23], and food safety assurance [24].
Numerous studies have validated the utility of CPs sensors in such areas; however, despite
the considerable progress, several challenges remain. In particular, further improvements
are needed in detection sensitivity and selectivity, expansion of the range of detectable gases,
and enhancement of long-term stability and reliability. In light of both the achievements
and the remaining challenges in this field, this review aims to provide a comprehensive
overview of CPs-based gas sensor technology. We discuss the fundamental gas sensing
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mechanisms and the diverse CPs materials employed, summarize recent advances in
various application domains, and finally outline current challenges and future research
prospects for CPs-based gas sensors in this rapidly evolving field.

2. Conductive Polymer-Based Gas Phase Sensors

2.1. Detection Principle
2.1.1. Electrochemical Sensing

Electrochemical sensing utilizes redox reactions occurring at the electrode–electrolyte
interface to detect electrochemically active gases, converting chemical information into
measurable electrical signals [25]. Electrochemical gas sensors are predominantly classified
into potentiometric, conductometric, and amperometric methods. The potentiometric
method operates based on the reaction of the target gas at the working electrode surface,
generating a potential difference between the working and reference electrodes, which
varies with changes in gas concentration [26]. The conductometric method relies primarily
on changes in the conductivity of sensitive materials upon gas interaction to detect the
analyte. Among these approaches, the amperometric method has become the most widely
utilized due to its high sensitivity and strong quantitative detection capabilities. A typical
amperometric gas sensor comprises a working electrode (WE), a counter electrode (CE),
and a reference electrode (RE). The WE is the principal site where oxidation or reduction
of the target gas occurs, initiating electron transfer and generating a current or potential
shift directly correlated to analyte concentration [27]. When detecting oxidizing gases
(e.g., NOX, O3), the target molecule accepts electrons at the cathodic interface, generating a
measurable cathodic current [28]. Conversely, reducing gases (e.g., H2S, NH3, CO) donate
electrons upon oxidation at the anodic interface, producing a characteristic signal. The
magnitude of the response follows Nernst’s equation (E = E0 + RT

nF ln [Ox ]
[Red] ) and Faraday’s

law (m = M
nF Q = M

nF It) providing quantitative information on the gas concentration [25,26].
CPs are ideal candidates for electrochemical gas sensors due to their intrinsic redox

activity, high electrical conductivity, and tunable surface chemistry [29]. Their π-conjugated
backbones facilitate efficient charge transport, and their functional groups or dopants
can be tailored to enhance selectivity toward specific analytes. For example, Serafini
et al. [30] developed a wearable electrochemical ammonia gas sensor with core components
including PEDOT, electrochemically deposited iridium oxide particles, and a hydrogel
membrane. Upon contact with ammonia gas, a dissociation equilibrium within the hydrogel
releases OH− ions, increasing the hydrogel’s pH (Figure 1a,b). This pH shift disrupts the
redox equilibrium of iridium oxide (IrOx), facilitating electron injection into PEDOT:PSS,
consequently reducing its conductivity. Under an applied voltage between two electrodes,
a measurable current decrease occurs. Monitoring this current reduction allows for accurate
ammonia gas detection. Following ammonia introduction, a rapid current drop illustrates
the efficiency of the detection mechanism.

Despite their benefits, electrochemical gas sensors are primarily effective for gases pos-
sessing intrinsic redox activity, such as carbon monoxide, hydrogen sulfide, and ammonia.
In contrast, inert gases like chlorine or nitrogen require alternative detection approaches
or indirect redox mechanisms [31]. Thus, continued optimization of electrode materials,
electrolyte compositions, and CPs electrode interfaces remains essential for broadening
detection capabilities and enhancing sensor performance.

265



Sensors 2025, 25, 2724

 

Figure 1. (a) Schematic of the gas sensor working principle; (b) current vs. time response of the NH3

sensor [30].

2.1.2. Chemiresistive Sensing

Chemiresistive sensing is based on detecting changes in the electrical resistance of
sensing materials upon interaction with target gases [32]. Specifically, gas molecules ad-
sorb onto the sensor’s active layer, triggering physical or chemical interactions that alter
its electronic properties, such as charge carrier concentration, mobility, or barrier height,
thereby producing measurable changes in resistance [33]. CPs are particularly suitable for
chemiresistive sensors due to their tunable electrical properties, ease of chemical modifi-
cation, high sensitivity, and rapid response capability. When a target gas interacts with
CPs-based sensing materials, it can function as either an electron donor or acceptor. For
example, electron-donating gases (e.g., NH3, acetone) increase electron density in p-type
CPs, thereby reducing hole concentration and consequently increasing the polymer’s resis-
tance [34]. Conversely, electron-accepting gases (e.g., NO2) withdraw electrons, increasing
hole concentration and decreasing resistance.

A representative example is the SnO2/PTh nanocomposite sensor developed by Beni-
wal et al. [35] for acetone detection. Upon exposure to acetone gas, acetone molecules act as
electron donors, transferring electrons to polythiophene (PTh, a typical p-type semiconduc-
tor) (Figure 2a). This electron transfer decreases the concentration of holes (majority charge
carriers) in PTh, significantly increasing its electrical resistance. Since PTh coats the SnO2

nanoparticles, this resistance change directly influences the composite’s overall conductiv-
ity, enabling precise acetone detection through resistance measurements. In another study,
Chaudhary et al. [36] developed a chemiresistive sensor by combining polythiophene (PTh)
with citric acid-functionalized cadmium sulfide quantum dots (CdS QDs) for ammonia
sensing. Ammonia molecules donate lone-pair electrons upon adsorption, interacting with
the polymer’s polarons. This interaction disrupts the charge balance and restricts carrier
mobility within the PTh/CdS composite, resulting in a pronounced decrease in electrical
resistance [37]. Notably, this sensor demonstrated a rapid response (under 1 s) and recov-
ery (4–8 s), with a clear linear dependence on ammonia concentration, highlighting the
exceptional suitability of PTh-based composites for chemiresistive ammonia detection.

Despite significant advancements, challenges remain for chemiresistive sensors, in-
cluding cross-sensitivity to humidity, baseline drift, and long-term stability [38]. Current
research efforts therefore emphasize enhancing selectivity through molecular design and
composite engineering and developing strategies to mitigate environmental interference,
further advancing CPs-based chemiresistive sensors.

2.1.3. Piezoelectric Sensing

Piezoelectric sensing involves converting mechanical deformation induced by gas
adsorption into measurable electrical signals, utilizing materials exhibiting the piezoelectric
effect [39]. This sensing mechanism relies on changes in mass, viscoelastic properties, or
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mechanical stress within piezoelectric materials upon interaction with target gases [40].
CPs and their composites are increasingly employed in piezoelectric gas sensors due
to their flexibility, ease of modification, and tunable piezoelectric properties. Typically,
piezoelectric gas sensors utilize quartz crystal micro-balance (QCM) or polymer-based
piezoelectric substrates coated with CPs-sensitive layers. Upon gas adsorption, mass
loading or interfacial interactions between gas molecules and CPs coating cause frequency
shifts or mechanical stress changes, generating electrical signals proportionate to the gas
concentration [41]. The advantage of using CPs coatings includes their customizable affinity
toward specific gas molecules and improved mechanical flexibility, crucial for wearable
and flexible electronics applications.

Adjaoud et al. [42] developed a flexible piezoelectric sensor utilizing ionic polymer-
polymer composites (IP2Cs), incorporating PEDOT:PSS-modified electrodes. Mechanical
stimulation induced ion migration within the composite, generating measurable voltage
signals due to asymmetric charge distribution (Figure 2b,c). The integration of PEDOT:PSS
facilitated improved electrical conductivity and sensitivity, demonstrating significant po-
tential for wearable gas sensing applications. Furthermore, combining CPs with inorganic
piezoelectric materials, such as carbon nanotubes (CNTs) or graphene oxide (GO), can
further enhance sensing performance. For instance, Pasupuleti et al. [43] prepared a NO2

sensor based on GO-PEDOT:PSS nanocomposites, which showed good stability, enhanced
sensitivity, and improved response toward NO2.

Despite promising outcomes, piezoelectric CPs-based gas sensors continue to face
challenges, such as sensitivity to humidity and issues related to long-term stability [44].
Current research aims to optimize composite formulations, refine device architectures, and
mitigate environmental interferences to facilitate broader practical applications.

Figure 2. (a) Schematic of sensing mechanism of the SnO2/PTh nanocomposite toward acetone
detection [35]; representation of the piezoionic effect. (b) Schematic illustration of the tri-layer before
and after mechanical stimulation and (c) electrical response (voltage output) of IP2Cs sensor before
and after mechanical stimulation [42].
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2.1.4. Mechanical Sensing

Mechanical sensing transforms mechanical stimuli, such as strain, stress, pressure,
or deformation, into quantifiable electrical signals by altering conductive networks or
electron tunneling paths within conductive materials [45]. CPs have emerged as promising
materials for mechanical sensing owing to their inherent flexibility, tunable mechanical and
electrical properties, ease of processing, and capability to integrate with various substrates,
making them highly suitable for wearable and flexible sensing applications.

CPs-based mechanical sensors typically operate through mechanisms such as changes
in tunneling resistance, contact separation, and crack propagation [46]. Under mechani-
cal deformation, the conductive pathways within CPs composites experience structural
modifications, altering inter-particle distances and particle alignment, or causing micro-
crack formation, significantly impacting electrical conductivity [47]. For instance, Mallya
et al. [48] described poly(DTCPA-co-BHTBT)-CB composites used for sensing toluene
vapor. The absorption of toluene vapor causes polymer swelling, akin to mechanical de-
formation effects on CPs composites. This swelling increases the spacing between carbon
black particles, disrupting the carbon black network structure and resulting in conductivity
changes that enable toluene vapor detection. This exemplifies how CPs-based materials
exploit structural changes to induce conductivity variations, achieving sensing capabilities
in different scenarios.

Despite their promising characteristics, CPs-based mechanical sensors still encounter
challenges regarding sensitivity, stability, mechanical robustness, and resilience to envi-
ronmental factors [49]. Future research efforts should focus on optimizing composite
formulations, engineering hierarchical structures to improve sensor durability, and address-
ing baseline drift and sensitivity recovery issues for sustained practical applications.

2.1.5. Optical Sensing

Optical sensing detects target gases by monitoring changes in optical properties, such
as absorbance, fluorescence intensity, refractive index, and reflectivity, caused by interac-
tions between gas molecules and sensitive materials [50]. In recent years, in addition to
traditional fluorescence and absorption sensors, emerging technical directions in this area
such as plasmon-enhanced CPs fluorophores [51,52], waveguide-integrated CPs interfer-
ometers [53], and cavity-coupled absorption sensors [54] have also been developed. CPs
hold particular promise for optical gas sensing due to their intrinsic optical activity, tunable
molecular structures, and ease of functionalization, allowing precise modulation of optical
responses upon gas exposure.

Typical CP-based optical gas sensors include fluorescence-based [55], absorption-
based [56], and refractive index-based [57] sensors. In fluorescence sensing, gas molecules
interact with CPs films, resulting in fluorescence quenching or enhancement. Lee et al. [58]
developed an optical gas sensor by integrating CMOS-MEMS technology with CP-based
fluorescent sensing materials (Figure 3a). This sensor employed fluorescence quenching,
where blue LEDs excite the sensing material, producing fluorescence, and exposure to the
target gas reduces fluorescence intensity through molecular interactions, resulting in a
measurable decrease in photocurrent [59,60]. This technique demonstrates rapid response
and high sensitivity, making it suitable for on-site gas detection. Additionally, CP-based
absorption optical sensors detect changes in absorption spectra caused by gas adsorption.
Liu et al. [61] developed an ethanol gas sensor using polypyrrole (PPy)-modified plastic
optical fibers (POFs). Upon ethanol exposure, PPy interacts with ethanol molecules, altering
its refractive index and absorption characteristics, subsequently affecting the transmitted
optical signal intensity. Such sensors exhibit fast response times and can be easily integrated
into compact, portable devices, ideal for practical applications.
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Despite significant progress, CP-based optical sensors still face challenges concerning
sensitivity limits, humidity interference, and long-term optical stability. Ongoing research
focuses on improving the design of sensing materials, optimizing optical signal processing
techniques, and developing robust integration strategies to enhance sensor performance
for real-world applications [62].

2.1.6. Field-Effect Transistor (FET) Sensing

Field-effect transistor (FET) gas sensors operate by detecting changes in the electrical
conductivity of the transistor channel caused by interactions between gas molecules and
the active sensing layer [63]. CPs are particularly attractive as channel materials in FET-
based gas sensors due to their high electrical conductivity, ease of processing, chemical
tunability, and potential for low-cost, flexible, and wearable sensing applications. A typical
CPs-based FET gas sensor comprises three electrodes: a source, a drain, and a gate [64].
In operation, gas molecules adsorb onto the CPs channel layer. This adsorption induces
charge transfer or polarization effects that alter the charge carrier density and mobility
within the polymeric semiconductor channel [65]. These changes modulate the channel
current, thereby enabling sensitive and selective detection of target gases. For example,
FETs employing polythiophene derivatives or polyaniline as the channel material have
demonstrated excellent performance for gas detection. Amer et al. [66] fabricated an
ammonia gas sensor based on an organic field-effect transistor (OFET) architecture using
polyaniline (PANi) and its derivatives as the active channel materials. When this sensor
is exposed to ammonia (NH3) gas, ammonia molecules react with protonated sites in the
polymer to form ammonium ions (NH4+), releasing electrons from their lone pairs in the
process (Figure 3b). For instance, in a PANi:DBSA-doped device, this reaction leads to a
decrease in hole density in the polymer, which in turn significantly reduces the transistor’s
channel current. By monitoring the change in channel current, the ammonia concentration
can thus be accurately determined at room temperature. Similarly, PEDOT:PSS, well-known
for its excellent conductivity and environmental stability, has also been widely used as an
active channel material in FET gas sensors. Owing to its strong interactions with polar
analytes such as NO2, SO2, and volatile organic compounds (VOCs), PEDOT:PSS-based
FET sensors exhibit high sensitivity, rapid response, and excellent selectivity [67]. Moreover,
the solution processability of PEDOT:PSS facilitates the integration of these sensors into
flexible and wearable sensing devices.

Despite these promising advances, several challenges remain, particularly related to
sensor stability, environmental interference, and baseline drift [68]. Ongoing research efforts
are focusing on developing composite CPs materials, implementing surface modifications,
and designing advanced device architectures to enhance sensing performance, improve
selectivity, and extend the operational stability of CPs-based FET gas sensors.
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Figure 3. (a) Schematic of the presented gas sensor design principle and cross-section [58];
(b) schematic diagram of the sensing mechanism of PANi:DBSA [66].

2.2. Sensitive Material
2.2.1. PANi

Polyaniline (PANi) has been extensively studied as a CP for gas sensing owing to
its distinctive properties, such as facile synthesis, environmental stability, reversible dop-
ing/dedoping behavior, and tunable conductivity [69–71]. PANi can be synthesized by
either chemical or electrochemical polymerization [72]. In chemical synthesis, PANi is
typically produced via oxidative polymerization of aniline monomers using oxidants like
ammonium persulfate. In contrast, electrochemical polymerization enables the direct
formation of PANi layers on conductive substrates under controlled potentials, which
facilitates sensor fabrication. PANi exhibits notable advantages for gas sensing applications,
most prominently a reversible redox behavior that allows efficient electron transfer when
interacting with various analyte gases. Yuan et al. [73] demonstrated highly sensitive am-
monia sensors by combining protic acid-doped PANi (PA-PANi) with graphene oxide (GO)
and reduced graphene oxide (rGO). Their PA-PANi/GO/rGO composite sensor showed
a 262.5% greater response at 25 ppm NH3, along with significantly faster response and
recovery times, compared to a sensor based on pure PANi, (Figure 4a).

However, PANi also has inherent limitations, including relatively low intrinsic con-
ductivity, poor processability, and limited solubility that constrain its utility in large-scale
sensor applications [74]. To address these issues, researchers have extensively explored
composite approaches. Bibi et al. [16] enhanced PANi’s H2S sensing performance by
incorporating carbon aerogel (CA) in an interdigital electrode structure, which signifi-
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cantly improved sensitivity toward hydrogen sulfide. In this configuration, the porous
CA framework provides abundant active sites for gas adsorption, thereby enabling rapid
and sensitive detection of ultralow H2S concentrations. Flexible sensor applications have
also benefited from PANi composites. For instance, Wan et al. [75] developed a flexible
NH3 sensor by depositing a PANi–carbon nanotube (CNT) composite onto a polyethylene
terephthalate (PET) substrate. The resulting sensor exhibited remarkable sensitivity with a
detection limit as low as 1 ppm, making it suitable for applications such as breath analysis
and food safety monitoring. Similarly, Zhuang et al. [76] combined PANi with multi-walled
carbon nanotubes (MWCNTs), achieving a detection limit of 0.3 ppm for NH3 as well
as high selectivity and excellent stability under varying humidity and mechanical stress
conditions. Furthermore, PANi-based sensors have shown promise in hydrogen detection,
which is critical for safety in hydrogen energy applications. Askar et al. [77] investigated
various nanostructured PANi materials and found that PANi hollow nanotubes exhibited
outstanding hydrogen-sensing capabilities, including a detection limit as low as 1 ppm,
a high sensitivity of about 29%, and rapid response and recovery times (15 s and 17 s,
respectively) (Figure 4b,c).

Figure 4. (a) Schematic of the device fabrication process [73]; (b) comparison of responses in different
PANi at 1 ppm H2 detection; (c) response time of hollow PANi nanotubes sensor at 1 ppm H2 gas [77].

Overall, although PANi-based sensors hold considerable promise for gas sensing,
challenges remain in improving their intrinsic conductivity, long-term stability, and envi-
ronmental resilience. Future research should focus on optimizing composite formulations,
refining molecular designs, and developing advanced sensor architectures to overcome
these limitations and broaden the scope of practical applications.

2.2.2. PPy

Polypyrrole (PPy) is a highly promising CP widely utilized in gas sensing applications
due to its intrinsic conductivity, good environmental stability, ease of synthesis, and tunable
electrochemical properties [78–80]. PPy can be synthesized via chemical or electrochemical
polymerization of pyrrole monomers [81]. Chemical polymerization typically involves
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pyrrole monomers and oxidants such as ammonium persulfate, while electrochemical
polymerization allows precise control of PPy morphology and thickness by adjusting
deposition parameters [82].

PPy-based sensors demonstrate notable advantages, including low fabrication costs,
straightforward preparation methods, biocompatibility, and suitability for flexible and wearable
devices [83]. For instance, Gai et al. [84] synthesized PPy-tetra-β-carboxyl cobalt phthalocyanine
tetrasodium salt (PPy-TcCoPc) nanorod composites via one-step in situ polymerization. The
synergistic interaction between PPy and TcCoPc significantly enhanced ammonia detection
performance, achieving high sensitivity (response of 49.3% at 50 ppm NH3), rapid response
(8.1 s), and excellent selectivity, stability, and humidity resistance (Figure 5a). However, pure
PPy often exhibits limitations, including relatively low sensitivity, inadequate selectivity,
and poor recovery due to its disordered aggregation structure [85]. To address these
issues, researchers have combined PPy with various nanomaterials to enhance sensing
performance. Santos-Ceballos et al. [86] developed PPy@laser-induced graphene (LIG)
nanocomposite sensors through electrochemical polymerization, achieving remarkable
ammonia sensitivity with a detection limit of 1 ppm and superior repeatability due to
the synergistic interactions between PPy and LIG. Furthermore, PPy-based composites
have shown promising results in detecting other hazardous gases such as hydrogen sulfide
(H2S) [87]. Al-Sabagh et al. [88] fabricated PPy composites incorporating CuO and SnO2

nanoparticles, demonstrating significant improvements in H2S detection performance
attributed to the nanoparticles’ large surface areas and enhanced electrical properties.

Future research directions for PPy-based gas sensors include optimizing composite
formulations, improving sensor architectures, and enhancing environmental resilience
and stability. Ongoing studies focus on incorporating novel materials with PPy to further
refine sensor sensitivity, selectivity, and long-term reliability, promoting broader practical
applications across industrial, environmental, and medical fields [89,90].

2.2.3. PTh

Polythiophene (PTh) is a CP known for its excellent electrical conductivity, chemical
stability, and easily tunable molecular structure, making it highly suitable for gas sens-
ing applications [91,92]. The backbone of PTh, comprising conjugated thiophene units,
facilitates efficient electron transport and strong interactions with gas analytes [93]. These
characteristics allow PTh-based sensors to exhibit high sensitivity and selectivity toward
specific gases. However, pure PTh sensors commonly face challenges such as limited
sensitivity, slow response times, and relatively poor stability under varying environmental
conditions [94].

To overcome these issues, researchers have developed composite materials by incor-
porating various nanomaterials with PTh, significantly enhancing its sensing performance.
Bai et al. [95] synthesized flexible gas sensors based on ethylenediamine-modified reduced
graphene oxide (RGO) combined with PTh through in situ polymerization (Figure 5b).
This composite material exhibited approximately four times higher sensitivity to nitrogen
dioxide (NO2) gas compared to pristine PTh sensors, achieving a detection limit as low
as 0.52 ppm. Additionally, the flexible nature of the sensor facilitated its integration into
wearable devices, demonstrating its potential for practical environmental monitoring ap-
plications. Belhousse et al. [18] further illustrated the importance of optimizing PTh layer
thickness in sensor design by fabricating sensors using electrochemically polymerized PTh
layers on porous silicon (PSi) substrates. They reported that sensors with PTh polymerized
over six cycles provided optimal sensitivity, rapid response, and superior stability when
detecting carbon dioxide (CO2) and cigarette smoke at room temperature. This highlights
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the critical role of precise structural control in improving the sensing performance of
PTh-based sensors.

 

Figure 5. (a) Response mechanism of the PPy-TcCoPc sensor to NH3 [84]; (b) schematic diagram of
the preparation process for RGO-PTh hybrid [95].

Future research on PTh-based gas sensors should continue exploring advanced com-
posite formulations and sophisticated fabrication techniques to further enhance sensitivity,
selectivity, and stability. Developing flexible, wearable, and cost-effective PTh sensors capa-
ble of reliable operation under diverse environmental conditions will significantly broaden
their applications in industrial safety, environmental monitoring, and biomedical fields.

2.2.4. PEDOT

Poly(3,4-ethylenedioxythiophene) (PEDOT) is a widely recognized CP known for
its excellent electrical conductivity, environmental stability, biocompatibility, and ease
of processability, making it highly attractive for gas sensing applications [96]. PEDOT’s
conjugated molecular structure provides efficient electron transport pathways, enabling
rapid electrical signal generation upon interaction with analyte gases [97]. Furthermore, its
good chemical stability and resistance to oxidation make PEDOT suitable for sensors oper-
ating under various environmental conditions [98]. However, pristine PEDOT-based gas
sensors face certain limitations, including susceptibility to humidity-induced interference,
moderate sensitivity, and potential baseline drift.

To overcome these issues, researchers have employed composite approaches and struc-
tural optimizations. Xiao et al. [99] successfully developed ammonia sensors by creating
core-shell structured nanofibers (Figure 6a), incorporating PEDOT as the core sensing
material and polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) as the protective hy-
drophobic shell. This design effectively reduced humidity interference while maintaining
excellent sensitivity to ammonia. Additionally, PEDOT has been effectively combined
with nanostructured materials, such as graphene oxide (GO) and metal nanoparticles, to
further enhance sensor sensitivity and selectivity. These composite structures significantly
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improve sensor performance by increasing active surface area, facilitating gas adsorption,
and enhancing electron transport properties [100].

Future research directions for PEDOT-based gas sensors include further composite
engineering to boost sensitivity and selectivity, developing robust structures to minimize
environmental interference, and exploring novel doping strategies to optimize electronic
properties [101]. Additionally, fabricating flexible and wearable PEDOT sensors is expected
to expand their applicability significantly across environmental monitoring, industrial
safety, and medical diagnostics.

2.2.5. PEDOT:PSS

Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is a promi-
nent CP widely applied in gas sensors due to its exceptional electrical conductivity, optical
transparency, excellent environmental stability, and solution processability [20]. Incorpo-
rating the hydrophilic polyelectrolyte poly(styrene sulfonate) (PSS) significantly enhances
the water solubility and processability of PEDOT, facilitating fabrication into various sen-
sor architectures through simple methods like spin-coating, spray-coating, or printing
techniques [102].

Despite these advantages, pristine PEDOT:PSS sensors still encounter certain limitations,
such as moderate sensitivity and susceptibility to environmental humidity interference, which
can affect sensor accuracy and stability. Therefore, various strategies have been explored to
improve the sensing capabilities of PEDOT:PSS, including compositing with other nanoma-
terials and employing structural optimizations. For instance, Alves et al. [103] successfully
enhanced PEDOT:PSS gas sensor performance by integrating graphene oxide (GO) into the
polymer matrix. This PEDOT:PSS/GO composite sensor exhibited significantly improved
sensitivity toward methanol, displaying approximately 2.5 times higher response compared to
the pure PEDOT:PSS sensor. Additionally, it maintained stable detection performance across
a broad humidity range (0–80% RH) and temperatures (21–60 ◦C), demonstrating practical ap-
plicability in complex indoor environments. In another innovative approach, Farea et al. [104]
developed PEDOT:PSS/poly(p-methoxyaniline) (PEDOT:PSS/PPA) nanocomposite sensors
for carbon monoxide (CO) detection. The composite structure enhanced the selective inter-
action with CO molecules, significantly improving the sensor’s selectivity and sensitivity.
The sensor displayed remarkable repeatability, stability, and selectivity, effectively discrimi-
nating CO from interfering gases such as acetone and toluene (Figure 6b). However, sensor
performance was influenced by humidity, indicating the necessity for additional structural
modifications or protective layers to mitigate environmental interferences (Figure 6c).

Future research on PEDOT:PSS-based gas sensors should focus on further enhancing
sensor selectivity and stability, particularly by engineering composite structures or devel-
oping advanced encapsulation strategies to minimize environmental interference [103].
Expanding application scenarios, such as wearable or flexible sensing devices, is another
promising direction that leverages the polymer’s intrinsic flexibility and robust mechanical
properties, broadening its practical applications in environmental monitoring, healthcare,
and industrial safety.

Overall, conductive polymers such as PANi, PPy, PTh, PEDOT and PEDOT:PSS exhibit
multiple performances in gas sensing. The sensing mechanisms, target gases, and response
times of different materials are significantly different, as shown in Table 1.
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Figure 6. (a) Schematic diagram of the CSNF sensor structure and its response principle [99]; sensing
performance of the PEDOT:PSS/PPA sensor at 100 ppm of CO. (b) Selectivity, (c) humidity effect on
the PEDOT:PSS/PPA sensor [104].

Table 1. Comparison of the critical application parameters of different CPs-based sensors for special
gas analytes.

Mechanism Sensor Materials Target LOD Responce Ref.

Chemiresistive PEDOT:PSS/PPA CO 50 ppm 58 s [104]
Chemiresistive PANI/SnO2 C6H6 0.4 ppm 33 s [105]

Mechanical poly(DTCPA-co-BHTBT)-CB C7H8 4 ppm 36.47 s [48]
Chemiresistive TSP-nAu-PANi CHCl3 – 360 s [106]
Chemiresistive GO:PEDOT:PSS CH3OH – 24.47 s [103]

Optical POF/PPy C2H5OH 140 ppm 5 s [61]
Chemiresistive SWCNT/C4F-PPy C3H6O 1 ppm 750 s [107]
Chemiresistive SnO2/PTh C3H6O 0.5 ppm 10 s [35]
Chemiresistive PANi/AgNWs/Silk TMA 1.38 ppm 90 s [24]
Chemiresistive PANi H2 1 ppm 15 s/17 s [78]
Chemiresistive CA-PANi H2S 1 ppm 1 s [16]
Chemiresistive PANi/MOX H2S <100 ppm 10 s [88]

FET Si/PANI:DBSA NH3 – 2 s [66]
Chemiresistive PEDOT-PVDF NH3 10 ppm 80 s [99]
Chemiresistive PA-PANI/GO NH3 25 ppm – [73]
Chemiresistive f-MWCNT-PEDOT:PSS NH3 <10 ppm 228 s [108]
Chemiresistive PPy-TcCoPc NH3 50 ppm 8 s [84]
Chemiresistive CdS QDs-PTh NH3 10 ppm 0.6 s [36]
Electrochemical PEDOT:PSS/IrOx Ps NH3 8 ppm 87 ± 9 s [30]
Chemiresistive PANi NH3 2.5 ppm 110 s [22]
Chemiresistive PPy@LIG NH3 1 ppm 450 s [86]
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Table 1. Cont.

Mechanism Sensor Materials Target LOD Responce Ref.

Chemiresistive PANi/FMWCNT NH3 1 ppm 15 s [77]
Chemiresistive PANi-MWCNTs/PDMS NH3 10 ppb – [109]
Chemiresistive RGO-PTh NO2 0.52 ppm 498 s [95]
Chemiresistive MWCNTs/PANi NH3 0.3 ppm 21 s [76]

Piezoelectric GO:PEDOT:PSS NO2 175 ppb 35 s [43]
Chemiresistive PTh NO2 0.25 ppm 4980 s [110]
Chemiresistive PANi/BP NO2 <2 ppm 98 s [111]
Chemiresistive Au-ZnO-PANi NO2 <10 ppm 600 s [112]

2.3. Main Constituent Materials of the Sensor Device
2.3.1. Substrate

Substrates play a crucial role in CPs-based gas sensors, providing essential physical
support and significantly influencing sensor performance, sensitivity, stability, and appli-
cability. Ideal substrates should exhibit compatibility with sensing materials, mechanical
flexibility, chemical inertness, appropriate thermal stability, and cost-effectiveness [113].
Common substrates include ceramics, polymers, and flexible materials.

Ceramic substrates are widely utilized due to their excellent chemical stability, high-
temperature resistance, and mechanical robustness, making them suitable for harsh en-
vironmental conditions or sensors requiring high-temperature processing [114]. Feng
et al. [105] employed ceramic substrates in PANi/SnO2 hybrid gas sensors, taking ad-
vantage of ceramics’ high thermal stability and chemical inertness, effectively ensuring
stable performance in detecting ammonia and benzene vapor. However, ceramic substrates
possess inherent brittleness, limiting their application in flexible electronics and wearable
sensors.

Thus, polymer-based substrates, particularly polyethylene terephthalate (PET), have
emerged as promising alternatives. PET substrates offer distinct advantages, including
excellent flexibility, durability, and compatibility with diverse processing techniques such
as printing and coating methods [115]. Boonthum et al. [108] demonstrated an ammonia
gas sensor fabricated from functionalized multi-walled carbon nanotubes (f-MWCNTs)
combined with PEDOT:PSS on a flexible PET substrate. This sensor exhibited stable
performance even when subjected to bending with various curvature radii (Figure 7a),
demonstrating significant potential for flexible and wearable sensor applications. An-
other emerging substrate material is polyimide (PI), characterized by high thermal stabil-
ity, superior mechanical properties, and excellent chemical resistance, particularly suit-
able for sensors involving high-temperature processes or requiring enhanced mechanical
strength [116]. Kang et al. [107] fabricated flexible sensors using PI substrates interdigitated
with Cu/Ni/Au electrodes. This design ensured strong adhesion between electrodes and
substrates, enhancing sensor reliability and overall durability.

Future research in substrate materials should focus on developing multifunctional
and composite substrates that further enhance sensor performance, flexibility, and environ-
mental resilience. Advancing substrate technologies will significantly expand the practical
applications of CPs-based sensors in environmental monitoring, healthcare, wearable
electronics, and industrial safety.
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Figure 7. (a) Schematic diagram of f-MWCNT-PEDOT:PSS gas sensor under bending test and re-
sistance changes in gas sensor measured during flat and bending (r = 0.9 cm, r = 3.0) states [108];
(b) schematic showing the preparation of the PI substrates interdigitated with the Cu/Ni/Au elec-
trodes (IDE substrate) [107].

2.3.2. Electrode Material

Electrode materials play a critical role in CPs-based gas sensors, directly impacting
their sensitivity, selectivity, stability, and overall performance [117]. Ideal electrode materi-
als should possess high electrical conductivity, excellent chemical stability, strong adhesion
to the substrate, compatibility with CPs, and resistance to environmental interferences.

Noble metals, such as gold (Au), platinum (Pt), and silver (Ag), are extensively used
electrode materials due to their exceptional electrical conductivity, chemical inertness, and
stability under various environmental conditions [118]. Park et al. [110] developed gas
sensors utilizing platinum (Pt) interdigitated electrodes combined with polythiophene
(PTh) for nitrogen dioxide (NO2) detection. The Pt electrodes provided stable and efficient
electron transport pathways, ensuring accurate signal acquisition with minimal interference.
However, noble metals’ high cost limits their large-scale practical application, prompting
researchers to seek cost-effective alternatives.

Carbon-based materials, including graphene, carbon nanotubes (CNTs), and laser-
induced graphene (LIG), have emerged as promising electrode materials due to their
outstanding electrical conductivity, large specific surface area, and excellent mechanical
flexibility [119]. Kang et al. [107] designed flexible acetone sensors using single-walled car-
bon nanotube (SWCNT)-based composite materials with Cu/Ni/Au tri-layer electrodes on
polyimide (PI) substrates (Figure 7b). The copper (Cu) provided low-cost conductive paths,
nickel (Ni) effectively prevented oxidation and migration, while gold (Au) ensured supe-
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rior electrical conductivity and chemical stability. This multi-layer electrode configuration
significantly enhanced sensor performance and stability.

Transparent conductive oxide electrodes, such as indium tin oxide (ITO), have also
gained attention, particularly in optical and transparent sensor applications, owing to
their combination of transparency and electrical conductivity. ITO electrodes enable real-
time optical and electrical signal monitoring simultaneously, broadening their practical
applications in multifunctional sensors [120].

Future research should focus on developing composite electrodes and advanced
electrode architectures that enhance sensor sensitivity, stability, and durability [121]. Addi-
tionally, efforts should be directed toward identifying alternative cost-effective materials
and fabrication methods to facilitate large-scale production and commercialization of
CPs-based gas sensors.

2.3.3. Packaging Material

Packaging materials are crucial components of CPs-based gas sensors, providing
essential protection and isolation from environmental factors, thereby enhancing sensor sta-
bility, reliability, and operational lifespan [122]. Suitable packaging materials should exhibit
excellent chemical and thermal stability, mechanical strength, effective moisture resistance,
and compatibility with CPs to maintain sensor sensitivity and response consistency [123].
Commonly used packaging materials include epoxy resins, silicone rubbers, polyimide (PI),
and biodegradable polymers like polycaprolactone (PCL) [124]. Epoxy resins are widely
favored for their strong adhesion, high mechanical robustness, and chemical inertness,
effectively protecting sensors from harsh environmental conditions. Silicone rubbers offer
superior elasticity, excellent resistance to temperature variations, and chemical stability,
making them suitable for flexible sensor applications.

For instance, Safaee et al. [125] utilized polycaprolactone (PCL) as a packaging mate-
rial combined with single-walled carbon nanotubes (SWCNTs) to fabricate wearable optical
microfiber textile sensors for real-time monitoring of hydrogen peroxide in biomedical ap-
plications (Figure 8a). PCL was selected for its excellent biocompatibility, chemical stability,
and ease of fabrication, enabling secure encapsulation and reliable long-term performance
in biological environments [126]. Nevertheless, PCL’s relatively slow degradation rate
and limited mechanical robustness under high stress conditions present challenges that
must be considered in specific applications [127]. Polydimethylsiloxane (PDMS) is another
prominent packaging material, particularly beneficial in flexible and wearable sensors
due to its outstanding flexibility, biocompatibility, and environmental stability [128]. Lu
et al. [129] developed flexible strain sensors using silver nanowires (AgNW), thermoplastic
polyurethane (TPU), and PDMS (Figure 8b). PDMS provided critical mechanical flexibility,
effectively protecting the sensor under repeated mechanical deformation while maintaining
stable sensing performance.

Future research on packaging materials should focus on developing multifunctional
composites and advanced packaging techniques, such as encapsulation strategies to min-
imize environmental interference and enhance durability [130]. Efforts to improve bio-
compatibility, biodegradability, and mechanical resilience will significantly broaden the
practical applications of CPs-based sensors, particularly in wearable devices, healthcare,
and environmental monitoring sectors.
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Figure 8. (a) Core-shell electrospinning setup for the fabrication of the optical microfibrous tex-
tiles [125]; (b) schematic diagram of ATP strain sensor production [129].

3. Application of CPs-Based Gas Sensors

3.1. Promising and Broad Applications
3.1.1. Environmental Monitoring Field

With increasing environmental pollution challenges, accurate and efficient environ-
mental monitoring has become crucial for safeguarding human health and ecological
sustainability. CPs-based gas sensors have emerged as powerful tools in environmental
monitoring due to their unique properties, including high sensitivity, rapid response, ease
of fabrication, and compatibility with flexible and wearable technologies. These charac-
teristics position CPs as ideal candidates for monitoring harmful gases such as nitrogen
dioxide (NO2), sulfur dioxide (SO2), ammonia (NH3), volatile organic compounds (VOCs),
and greenhouse gases [1–3].

PEDOT:PSS, a widely studied CP, has shown remarkable effectiveness in detecting
environmentally harmful gases due to its superior electrical conductivity and chemical
stability [131]. For example, Deller et al. [21] developed a voltammetric sensor by in-
tegrating PEDOT:PSS with gold nanoparticles (AuNPs) to detect pirimicarb (PMC), an
environmental contaminant. This sensor demonstrated high sensitivity and selectivity,
with a low detection limit and stable performance, highlighting the applicability of CPs in
precise environmental pollutant monitoring.

Polyaniline (PANi) and its composites also exhibit great potential in environmental
gas monitoring. Tang et al. [111] designed a room-temperature NO2 sensor by combining
PANi with black phosphorus (BP), achieving excellent sensitivity within a concentration
range of 2–60 ppm NO2. Similarly, Bonyani et al. [112] fabricated a highly selective NO2

sensor based on Au-modified ZnO-PANi composite nanofibers (Figure 9a), significantly
improving sensor performance and reliability.

Despite these advancements, CPs-based environmental sensors still face challenges
regarding stability under variable humidity and temperature conditions, long-term op-
erational durability, and cross-sensitivity to interfering gases. Future research directions
include developing advanced composite materials, optimizing sensor architectures, and
incorporating intelligent data-processing methods to further enhance sensor sensitivity,
selectivity, and environmental robustness [132]. Additionally, efforts toward flexible, minia-
turized, and wearable sensor systems will enable widespread deployment for continuous,
real-time environmental monitoring, substantially improving air-quality management and
pollution control strategies.

3.1.2. Industrial Production Field

In industrial production, accurate and real-time monitoring of gas concentrations
is essential to ensure product quality, enhance operational safety, and prevent potential
accidents caused by hazardous gases. CPs-based gas sensors have gained increasing
attention in industrial applications due to their advantages, such as rapid response, high
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sensitivity, low fabrication cost, and the ability to function effectively at room temperature.
Volatile organic compounds (VOCs), including benzene, toluene, and formaldehyde, are
common pollutants generated in various industrial processes, posing severe health risks
and environmental hazards [133].

CPs gas sensors, owing to their excellent selectivity and sensitivity, have shown
significant promise for VOC monitoring in manufacturing environments. For instance,
Selvanayakam et al. [106] developed a sensor based on tamarind seed polysaccharide (TSP)-
coated gold nanoparticles integrated with polyaniline (PANi) for detecting chloroform
vapor in industrial emissions. This composite sensor displayed exceptional sensitivity,
rapid response, and robust selectivity, effectively distinguishing chloroform from other
interfering gases. Moreover, CPs-based gas sensors are widely employed in detecting
flammable gases such as hydrogen, essential for safety monitoring in chemical industries
and energy sectors [109]. Dipak et al. [22] demonstrated a hydrogen sensor using PANi
nano-ink with a response of about 75% to ammonia (Figure 9b), which can effectively detect
very small amounts of ammonia in the environment, providing crucial safety assurance in
hydrogen-based energy applications.

Despite these advantages, challenges remain, including the susceptibility of CPs sen-
sors to humidity interference, limited long-term stability under harsh industrial conditions,
and potential baseline drift over extended use. Addressing these issues through mate-
rial engineering, improved encapsulation techniques, and sensor design optimization is
essential for advancing practical applications.

Future research should focus on developing advanced composite materials, optimizing
sensor design, and integrating intelligent data-processing methods to enhance sensor
reliability, stability, and resilience to environmental interference. Additionally, exploring
flexible, miniaturized, and low-cost CPs sensors suitable for integration into industrial
automation systems will significantly expand their applicability and impact on industrial
safety and quality control.

3.1.3. Food Safety Field

Gas sensing plays a crucial role in ensuring food safety, acting as an “invisible
guardian” throughout the entire food supply chain—from production to sale—to con-
tinuously safeguard food quality. When food begins to spoil, various volatile gases are
released. With its high sensitivity, gas-phase sensing technology can rapidly detect these
gases, effectively assessing the freshness and safety of food products.

As the most widely consumed meat globally, pork serves as an essential source of
animal protein for humans. However, fresh pork is highly susceptible to spoilage during
storage. Microorganisms and enzymes can accelerate the decomposition of proteins, fats,
and other components, producing biogenic amines such as ammonia, trimethylamine
(TMA), and dimethylamine [134–136]. The deterioration of meat quality typically results
in noticeable changes in surface texture, color, and odor. Among the numerous indicators
used to evaluate pork freshness, TMA is particularly important. Its concentration gradually
increases as pork freshness declines, and it emits a pungent rancid odor closely associated
with the degree of spoilage. Consequently, accurate TMA detection can effectively and
intuitively reflect pork freshness, making it a critical parameter in pork quality assessment.

To address this need, Li et al. [24] synthesized polyaniline (PANi) and silver nanowires
(AgNWs) onto silk fibroin fibers (SFF) through an in-situ polymerization method, fabri-
cating a novel, reliable, flexible, and easy-to-use gas sensor. This sensor was employed to
detect various gases at 100 μg/L, including TMA, NH3, H2S, H2O, and C2H6O (Figure 9c).
Compared to other gases, the sensor exhibited a significantly higher response toward TMA,
allowing rapid, non-destructive, sensitive, and cost-effective detection of TMA in pork.
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Thus, it effectively evaluates pork freshness, preventing consumers from ingesting spoiled
meat and ensuring food safety.

Compared with traditional detection methods, gas sensors offer advantages such
as simpler operation and shorter detection times. They can provide real-time monitor-
ing of meat freshness throughout food production, processing, transportation, and sales,
enabling the timely identification of spoiled products and minimizing economic losses.
Consequently, these sensors represent efficient tools for freshness detection in the food
industry and contribute significantly to the advancement of food safety technologies.

3.1.4. Medical Diagnostic Field

Accurate, non-invasive, and rapid medical diagnostics significantly enhance the qual-
ity of patient care and facilitate early disease detection and monitoring [137]. CPs-based gas
sensors offer substantial potential for medical diagnostics due to their high sensitivity, rapid
response times, portability, flexibility, and ability to operate at room temperature, making
them ideal for analyzing biomarkers in exhaled breath or volatile organic compounds
(VOCs) emitted from the human body.

Exhaled breath analysis has become an essential diagnostic approach, providing vital
insights into metabolic disorders, infectious diseases, and various physiological conditions.
For instance, ammonia in human breath is an important biomarker for the diagnosis
of kidney disease. CPs sensors have demonstrated remarkable efficacy in accurately
and rapidly detecting trace ammonia levels due to their adjustable conductivity and
selectivity [138,139]. Zhu et al. [133] developed a flexible ammonia sensor that uses a
combination of polyaniline (PANi) and multi-walled carbon nanotubes (MWCNTs) to
achieve excellent sensitivity and accurately detect ammonia in exhaled breath, providing a
reliable technical means for non-invasive diagnosis of kidney disease. Moreover, sensors
based on CPs have been successfully applied to detect acetone levels in the breath, an
important marker of diabetes. Ananda et al. [140] prepared a gas-phase sensor based on
PPy composites with ternary oxide ZnCo2O4 (ZCO) and MnCo2O4 (MCO) nanoparticles.
Both nanocomposites exhibit high sensitivity and selectivity to acetone at room temperature
(Figure 9d). The sensor effectively distinguished diabetic breath samples from healthy
controls, indicating its considerable potential in non-invasive diabetes monitoring.

Despite these advancements, CPs-based gas sensors still face challenges such as
cross-sensitivity to environmental factors, limited long-term stability, and potential signal
drift. Future research should focus on enhancing sensor specificity through molecular
engineering, integrating advanced composite materials, developing robust sensor designs,
and incorporating artificial intelligence for accurate, real-time diagnostics. Further efforts
toward creating wearable, low-cost, and flexible diagnostic devices will significantly expand
the scope and impact of CPs-based sensors in medical applications, driving their adoption
in personalized medicine and continuous health monitoring.

Conductive polymer-based gas sensors are widely used in multiple fields. Materials
such as PANi, PPy, PTh, PEDOT, and PEDOT:PSS have different properties. Table 1
summarizes the sensing mechanisms, target gases, and performance data of different
materials. Due to diverse application requirements involving multiple dimensions such as
sensitivity and stability, and the performance of materials being affected by processes, it is
impossible to simply compare which material is the best.
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Figure 9. (a) Selectivity graph of Au-decorated ZnO-PANi (25 wt.%) composite nanofiber gas sensor to
interfering gases at 300 ◦C [112]; (b) selectivity of the PANi nano gas sensors [22]; (c) sensor response
of the PANi/AgNWs/silk composite nanofibers to 100 μg/L of different gases [24]; (d) response of
PPy, ZCO-30/PPy, and MCO-10/PPy for various gasses along with a comparative response [140].

3.2. Critical Issues in Real Applications
3.2.1. Long-Term Stability and Humidity Drift: Mechanisms and Quantitative Evaluations

Although CPs-based gas sensors can be used to detect multiple gases and exhibit
excellent performances, in practical application scenarios, they still face two key challenges:
humidity-induced drift and poor long-term stability. Especially when operating in a vari-
able environment for a long time, these problems seriously restrict their reliable working.
The root cause of the performance degradation lies in the chemical, electrochemical, and
mechanical changes that occur at the interface between the CPs-based sensing layer and
the matrix electrode.

In a humid environment, due to the possible cross-reaction between different gases,
such sensors may produce similar responsiveness to non-target gases. Therefore, the gas
sensing performance may be a mixed response to the target gas and water vapor [141]. On
the one hand, water adsorption consumes the adsorption sites of sensing materials, leading to
the misjudgment of the concentration of target gases and reducing measurement accuracy.
On the other hand, water molecules could interact with polymer chains and disrupt the
charge transport path. In addition, the oxidizing or reducing gases may react with the main
molecular chain of CPs or their composites, to destroy the conjugated system, reduce the
carrier density, and weaken the conductivity and sensing ability of the sensor [142]. For
example, in PEDOT:PSS, the PSS shell layer will adsorb water molecules, causing volume
expansion, leading to an increase in the distance between PEDOT cores, and thus reducing the
carrier transmission efficiency, and further hindering the target gas from reaching the sensing
site, prolonging the response time and reducing the sensitivity [143]. By designing a multi-
dimensional structure or compounding with inorganic materials, the adsorption sites and

282



Sensors 2025, 25, 2724

charge transfer efficiency of CPs-based sensing materials can be effectively enhanced, thereby
improving the responsiveness and selectivity of related sensors. For example, inorganic two-
dimensional (2D) nanomaterials such as rGO and MXenes have been introduced to improve
their electrical conductivity and enhance their mechanical properties [73,95], using other
polymers with good hydrophobicity and thermal stability, such as PDMS and fluorinated
polyurethane (PU) to encapsulate these sensors [121,124,125].

Another important challenge for gas sensors is their long-term stability. This not
only exists in CPs-based but also in other sensors. This is because during long-term
use, sensing active materials may experience performance degradation or even failure
due to mechanical external forces, environmental erosion, aging, and other factors. For
example, when CPs-based sensors are exposed to air for a long time, due to the obvious
dedoping effect, the adsorption sites of CPs may be affected, resulting in a significant
decline in sensing performance. At the same time, the presence of oxygen could cause
the degradation of CPs, thereby reducing their conductivity [144]. In flexible or wearable
devices, mechanical stress cycling may cause delamination at the interface between the CPs
films and the substrates, leading to interface failure and functional loss, finally affecting
the related sensing performances and shortening the service life of such sensors.

3.2.2. Biocompatibility, Toxicology, and Regulatory Considerations for CP-Based Wearable
and Biomedical Sensors

CPs, especially PANi, PPy, PThs, PEDOT, and PEDOT:PSS, have been widely explored
for wearable and biomedical sensing platforms. However, translating these materials
from laboratory prototypes to clinically viable devices necessitates careful consideration of
biocompatibility, cytotoxicity, and regulatory compliance under prolonged skin contact or
implantation scenarios, as shown in Table 2.

Biocompatibility and Toxicological Assessment

PANi, while conductive and easy to process, may release toxic degradation products
(e.g., aniline) if not adequately stabilized. Doping agents and processing residues signifi-
cantly influence its biocompatibility, Composites or coatings (e.g., with biopolymers like
chitosan or silk fibroin) are often employed to improve its safety [145,146].

PPy has demonstrated favorable in vitro and in vivo biocompatibility, so it is generally
considered non-cytotoxic, especially when synthesized electrochemically without residual
monomers or toxic dopants. Several studies show that PPy-coated scaffolds support cell
adhesion and proliferation [147,148].

PThs also have excellent biocompatibility, with few adverse reactions in cell culture
and in vivo models. Therefore, they can also promote the adhesion and differentiation of
neural stem cells and have significant potential in neural regeneration and bioelectronic
devices that require long-term tissue integration [149,150].

PEDOT and PEDOT:PSS, especially when purified or treated to remove excess PSS
(e.g., with DMSO or ethylene glycol), exhibit low cytotoxicity and good compatibility with
fibroblasts and neuronal cells [151]. As a result, PEDOT:PSS has been used in bioelectronic
implants, such as cochlear [152] and neural interfaces [153], supporting its suitability for
extended contact with biological tissues.

Relevant Standards and Regulatory Framework

ISO 10993 Series [154]: For any device involving skin contact (>30 days) or implanta-
tion, ISO 10993 mandates a series of biological evaluations including:

(1) ISO 10993-5 (in vitro cytotoxicity);
(2) ISO 10993-10 (skin irritation and sensitization);
(3) ISO 10993-11 (systemic toxicity);
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(4) ISO 10993-6 (implantation effects) if the device is implanted.

FDA Device Classification [155]:
Wearable CPs-based sensors typically fall under Class I or Class II medical devices,

depending on the intended use (diagnostic vs. therapeutic) and level of invasiveness.
Implantable CPs-based sensors, if developed, would likely be Class III (requiring premarket
approval), especially for glucose, neurotransmitter, or gas biomarker detection.

Material Risk Assessment:
For example, PEDOT:PSS was evaluated by the U.S. FDA as part of neural record-

ing systems and passed biocompatibility testing in several device submissions (e.g., for
cortical electrodes).

Design Considerations for Clinical Translation

For clinical translation, there are many serious considerations for the material systems
design on CPs-based gas sensors, as shown below.

(1) Encapsulation strategies using biocompatible elastomers (e.g., PDMS, TPU) are essen-
tial to isolate CPs from direct tissue exposure while maintaining sensing functional-
ity [125];

(2) Incorporation of bioinert and hydrophobic coatings also helps prevent ion leaching
and immune response [156];

(3) Long-term implantation trials (animal models >30 days) are necessary to assess
chronic inflammation and fibrotic encapsulation [157].

Table 2. Some biosafety and regulatory standards on CPs.

Conducting Polymer Biocompatibility Toxicity Concerns Regulatory Standard Ref.

PANi

Variable; can release
toxic aniline, modified
forms, or composites
safer

Aniline toxicity,
residual dopants,
and degradation
products are
concerns

ISO 10993-5, -10; FDA Class
I/11 depending on
application

[145,146]

PPy
Generally good;
supports cell adhesion
and proliferation

Low toxicity if
properly synthesized

ISO 10993-5, -10, -11;
preclinical animal studies
needed for implants

[147,148]

PTh
General, modification or
compounding for
improvement

The toxicity of
degradation
products is unknown;
residual monomers
may be toxic

ISO 10993-5, -10; in some
cases, additional in vitro
and in vivo testing may be
required based on
application

[149,150]

PEDOT Excellent; used in neural
and cardiac interfaces

Minimal; depends on
dopants and
processing additives

ISO 10993-1, -5, -6, -10, -11;
used in FDA-cleared
implants

[151]

PEDOT:PSS

Good after PSS removal
or treatment
(DMSO/EG); low
cytotoxicity

Excess PSS may
irritate; removal
improves safety

ISO 10993-5, -10; reviewed
under FDA Class 11
submissions (e.g., neural
devices)

[152,153]

4. Conclusions and Prospects

CPs-based gas sensors hold significant promise across numerous fields due to their
unique combination of tunable electrical/chemical properties and organic nature, providing
versatile solutions for gas detection. This review has presented a comprehensive under-
standing of this class of sensors by examining their sensing mechanisms, sensitive materials,
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and device components. CPs gas sensors leverage diverse transduction mechanisms—
including electrochemical, chemiresistive, optical, piezoelectric, and field-effect transistor
(FET) methods—each offering distinct advantages suited to specific applications. Likewise,
a variety of CP materials (such as PANi, PPy, PTh, PEDOT:PSS, and related composites)
have been explored, each exhibiting unique gas-responsive characteristics and selectiv-
ity toward certain analytes. Key device components (e.g., flexible substrates, electrode
configurations, and encapsulation materials) also critically influence sensor performance
and durability. By integrating insights from detection principles, material properties, and
device design, researchers have greatly advanced CPs-based gas-sensing technology and
expanded its practical applicability.

Despite these advances, several challenges and opportunities remain, which define
important directions for future research and development. First, improving sensor sen-
sitivity and selectivity continues to be paramount. In complex gas environments, CPs
sensors can be vulnerable to interference from other gases, which complicates the accurate
identification of target species. Future studies should delve deeper into the interaction
mechanisms between CPs materials and gas molecules and optimize polymer structures
(e.g., nanoscale morphology and doping) to enhance selective adsorption and reaction
with specific gases. Strategies such as incorporating nanostructured additives or forming
CPs nanocomposites can create additional reactive sites and more efficient charge-transfer
pathways, thereby dramatically boosting sensor response. For instance, integrating CPs
with high-surface-area nanomaterials has been shown to improve the detection of gases
like H2S by increasing adsorption sites and electron transport efficiency.

Second, long-term stability and reproducibility are critical issues that need to be
addressed. Variations in environmental conditions (temperature, humidity, etc.) often
affect CPs sensor baselines and response, leading to drift and inconsistent results over
time. To overcome this, it is essential to develop robust sensor designs that minimize
environmental susceptibility. For example, through innovative packaging materials and
coatings that shield the sensitive layer from ambient fluctuations. Refining fabrication
processes to produce uniform and stable polymer films, as well as implementing calibration
or compensation techniques, will help ensure consistent performance. Improving the envi-
ronmental adaptability of CPs sensors (for instance, by integrating humidity/temperature
compensation elements) can greatly enhance their reliability in real-world applications,
thus improving repeatability and facilitating widespread deployment.

Third, the emergence of intelligent gas-sensing systems is a frontier area poised to
elevate CPs-based sensor capabilities. By coupling sensor arrays with advanced algorithms
(such as machine learning and artificial intelligence), researchers can create electronic nose
systems capable of recognizing complex odor/gas patterns and distinguishing specific tar-
get gases within mixtures. Machine learning techniques can analyze the multidimensional
data from CPs sensor arrays, filter out interference, and even perform real-time pattern
recognition that surpasses the selectivity achievable by materials alone. Recent work has
demonstrated that hybrid sensor arrays combined with machine learning can rapidly
identify hazardous gases in complex backgrounds, highlighting the power of data-driven
approaches for enhancing selectivity and sensitivity. Integrating CPs gas sensors into the
Internet of Things (IoT) framework with wireless connectivity and cloud analytics can fur-
ther enable smart gas monitoring networks that learn and adapt over time. Such intelligent
systems represent a promising direction to improve accuracy in complex scenarios (by, for
example, self-calibrating for drift or compensating for cross-sensitivity), thereby expanding
the practicality of CPs-based sensors in industrial safety, environmental monitoring, and
other areas where automated, real-time decision-making is crucial.
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Fourth, multi-functional integrated sensing platforms offer another promising avenue
for future development. Instead of operating in isolation, CPs-based gas sensors can be
combined with other types of sensors (such as temperature, humidity, pressure, or even
multiple gas sensors in an array) on a single platform to provide comprehensive environ-
mental data. By monitoring multiple parameters simultaneously, such integrated systems
can account for environmental factors and improve overall measurement accuracy and
context awareness. For example, real-time readings of ambient temperature and humidity
alongside gas concentration allow for automatic compensation of environmental effects on
the gas sensor’s output, yielding more reliable results. Moreover, multi-gas sensor arrays
can be designed to detect a suite of gases at once, enabling a broad-spectrum “electronic
nose” capable of profiling complex gas mixtures (e.g., for air quality or breath analysis).
The fusion of data from different sensor modalities can thus enhance the selectivity and ro-
bustness of the sensing system. In the future, lab-on-a-chip implementations may integrate
CPs gas sensors with microfluidic channels, chemical detectors, and electronic circuitry,
culminating in portable devices that offer multi-modal sensing and on-site analysis for
applications ranging from environmental surveillance to medical diagnostics.

Fifth, exploring new sensor form factors, particularly flexible, wearable, and im-
plantable gas sensors, is an exciting direction to broaden the applicability of CPs-based
sensors. Owing to the intrinsic mechanical flexibility of CPs, there is considerable potential
to fabricate gas sensors on bendable substrates (plastics, textiles, or even paper), enabling
devices that conform to various surfaces or can be worn on the body. In recent studies,
researchers have developed wearable CPs gas sensors (for example, a PEDOT-based am-
monia sensor on a textile substrate) that can continuously monitor gaseous biomarkers in
human sweat or breath. These flexible and wearable sensors open up opportunities for
personalized health monitoring (such as real-time breath analysis for medical screening)
and on-body environmental exposure tracking for occupational safety. Looking ahead,
implantable CPs gas sensors could be envisioned for specialized biomedical applications.
For instance, detecting internal gas biomarkers or changes in blood chemistry in vivo, pro-
vided that biocompatible materials and safe operation can be ensured. While implantable
gas sensors are still largely conceptual, the combination of CPs’ biocompatibility (in certain
formulations) and their compatibility with soft electronics suggests that future research
could yield minimally invasive gas-sensing devices for healthcare. Overall, developing
flexible, stretchable, and wearable CPs gas sensors will significantly expand their use cases,
allowing integration into everyday objects, clothing, or even the human body, thereby
extending gas monitoring capabilities to scenarios that were previously impractical for
rigid, conventional sensors.

Sixth, there is a growing interest in sustainable and eco-friendly materials for sensor
development, and CPs-based gas sensors stand to benefit from this trend. Unlike sensors
based on scarce or non-renewable inorganic materials, CPs sensors can potentially be made
with renewable or biodegradable components. Future research may focus on designing
biodegradable CPs or composites that maintain excellent sensing performance while being
environmentally benign after their service life. For example, incorporating natural poly-
mers or biodegradable matrices with CPs blends could produce sensors that eventually
decompose under specific conditions, reducing electronic waste. Such sustainable sensors
would be especially valuable in disposable or short-term use applications (like wearable
health patches or environmental sensors deployed in large numbers) where device recovery
is difficult.

Additionally, green synthesis approaches for CPs (using less toxic reagents or energy-
efficient processes) and the recycling or reprocessing of CPs materials are important consider-
ations for making the next generation of gas sensors more sustainable. Embracing eco-design
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principles in developing CPs gas sensors will help align the field with global sustainability
and environmental safety goals, without sacrificing the performance improvements gained in
recent years. Beyond these technical innovations, interdisciplinary integration of CPs-based
gas sensors with other fields will further expand their impact and unlock novel applications.
One such field is catalysis, where integrating gas sensors with catalytic processes could greatly
benefit real-time reaction monitoring and catalyst development.

In catalytic reactors or chemical synthesis systems, CPs gas sensors can be used to
monitor reaction gases in real-time, providing immediate feedback on reaction progress.
For example, a CP sensor placed in a reactor could detect the emergence of a particular
gaseous product or the depletion of a reactant, enabling dynamic adjustments to reaction
conditions (temperature, feed rate, etc.) to optimize yield and selectivity on the fly. Con-
versely, incorporating catalytic nanoparticles or enzymes into a CP sensor’s sensitive layer
can create a hybrid sensor-catalyst material that not only facilitates a specific chemical
reaction but simultaneously detects its gaseous products. Such multi-functional composites,
possessing both catalytic and sensing capabilities, allow for simultaneous catalysis and
monitoring. This dual function is valuable for studying reaction mechanisms; the sensor’s
readings give insight into intermediate formation and reaction rates, and it can aid in
developing smarter catalysts (since the effectiveness of a catalyst under various conditions
can be directly observed through the integrated sensor response).

In summary, the convergence of CPs-based gas sensing with catalysis research offers
a powerful approach for advancing process control in chemical manufacturing and for
innovating new catalytic materials with built-in sensing functionality. Another domain
where CPs gas sensors show great promise is biomedical diagnostics. Gas biomarkers are
an emerging frontier in medical screening and monitoring. For instance, volatile organic
compounds (VOCs) in exhaled breath can serve as indicators for diseases such as diabetes,
lung cancer, or infectious diseases. CPs-based gas sensors, with appropriate selectivity
tuning, can be tailored to detect specific biomarker gases, potentially enabling non-invasive
diagnostic tools. For example, a CP sensor designed to respond to acetone in breath could
assist in monitoring diabetes (as breath acetone levels correlate with blood glucose status),
and sensors for nitric oxide or other breath VOCs could help in the early detection of
respiratory conditions. By integrating these sensors into portable or wearable formats (such
as a handheld breath analyzer or a patch that samples skin-emitted gases), patients could
perform real-time health monitoring outside of clinical settings.

Furthermore, coupling CPs gas sensors with microfluidic and MEMS technologies can
yield miniaturized lab-on-chip diagnostic platforms capable of analyzing exhaled breath or
headspace from biological samples with high sensitivity. Such systems could concentrate
trace gases and deliver them to the CP sensor array for detection, providing a fast and
accurate analysis for personalized medicine. The interdisciplinary collaboration between
material scientists, medical researchers, and engineers will be key to optimizing CPs sensor
designs for biocompatibility, selectivity to relevant biomarkers, and user-friendly operation,
ultimately bringing gas sensing diagnostics into routine healthcare practice. In the energy
sector, the integration of CPs-based gas sensors can significantly enhance the safety and
efficiency of energy storage and conversion systems. One promising application is in
battery technology: lithium-ion batteries and other high-energy devices can release trace
gases (such as CO2, CO, or electrolyte vapors) as early indicators of thermal runaway
or degradation.

Embedding CPs gas sensors within battery packs or enclosures could allow continuous
internal monitoring of such gas evolution, providing early warnings of battery failure or
overheating. This real-time sensing could enable proactive measures (like cooling or
disconnecting a failing cell) to prevent fires or explosions, thereby greatly improving
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battery safety and reliability. Similarly, for fuel cells and other fuel-based energy devices,
monitoring the concentrations of reactant and product gases (H2, O2, water vapor, etc.)
using CPs sensors can help in optimizing performance. Sensors can feed information to
control systems to adjust fuel flow or operating conditions for maximum efficiency and
detect deviations that might indicate catalyst poisoning or membrane leaks.

Moreover, incorporating CPs gas sensors in environmental control systems of energy
facilities (such as hydrogen storage, biogas plants, or carbon capture units) can aid in leak
detection and emissions monitoring, contributing to safer and more sustainable energy
operations. These examples in energy applications underscore the broad prospects for CPs
gas sensors when combined with energy technology development a synergy that can drive
innovations in both fields simultaneously. In summary, CPs-based gas sensors are poised
to play an increasingly significant role in future sensing technologies and interdisciplinary
applications. By addressing the remaining challenges, improving sensitivity/selectivity,
enhancing stability, and embracing intelligent algorithms—and by exploiting new oppor-
tunities such as multi-modal integration, flexible form factors, sustainable materials, and
cross-domain collaborations, the next generation of CPs-based gas sensors will become
even more sensitive, selective, robust, and versatile.

Future researchers should continue to focus on these emerging directions and foster
innovation at the intersection of materials science, engineering, and application domains.
Through sustained research efforts and interdisciplinary collaboration, CPs-based gas-
sensing technology will continue to advance, driving breakthroughs in how we detect and
utilize gas information in environmental monitoring, industrial process control, healthcare,
energy, and beyond. Ultimately, the ongoing innovations will ensure that CPs gas sensors
realize their full potential as key components of smart, responsive, and sustainable sensing
systems for the modern world.

In addition, artificial intelligence (AI) technology has great potential in the future
development of gas sensors on the basis of CPs. In terms of data processing, AI can
efficiently analyze the massive and complex data generated by sensors toward real and
unpredictable gas analytes, like E-noses for pneumoconiosis screening and diagnosis [158].
For example, deep learning algorithms could deeply mine the response data of sensors
under different gas concentrations and environmental conditions and establish accurate
gas recognition models, thereby greatly improving the recognition accuracy of sensors for
target gases and effectively reducing misjudgments and omissions. In terms of adaptive
adjustment, AI may dynamically adjust the working mode and parameter settings of
sensors according to real-time environmental parameters and historical data of sensors.
For example, when there are large changes in environmental humidity or temperature,
the compensation mechanism of the sensor may be automatically optimized through AI
algorithms to keep the sensor in the best detection performance at all times and further
improve its stability and reliability in complex and changeable environments. Moreover,
with the predictive analysis ability of AI, it is possible to predict in advance possible failures
or performance declines of sensors so that timely maintenance and replacement can be
carried out to reduce the risk of equipment operation and improve the operating efficiency
of the entire gas detection system. By deeply integrating AI technology with CPs-based
gas sensors, it is expected to promote leapfrog development in this field and create a more
intelligent and efficient new era of gas detection.
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71. Alaş, M.Ö.; Güngör, A.; Genç, R.; Erdem, E. Feeling the power: Robust supercapacitors from nanostructured conductive polymers
fostered with Mn2+ and carbon dots. Nanoscale 2019, 11, 12804–12816. [CrossRef] [PubMed]

72. Yang, L.Y.; Xu, X.R.; Liu, M.D.; Chen, C.; Cui, J.; Chen, X.; Wu, K.; Sun, D.P. Wearable and flexible bacterial cellulose/polyaniline
ammonia sensor based on a synergistic doping strategy. Sens. Actuators B Chem. 2021, 334, 129647. [CrossRef]

73. Yuan, Y.; Wu, H.Y.; Bu, X.R.; Wu, Q.; Wang, X.M.; Han, C.Y.; Li, X.; Wang, X.L.; Liu, W.H. Improving ammonia detecting
performance of polyaniline decorated rGO composite membrane with GO doping. Materials 2021, 14, 2829. [CrossRef] [PubMed]

291



Sensors 2025, 25, 2724

74. Beygisangchin, M.; Abdul, R.S.A.; Shafie, S.; Sadrolhosseini, A.R.; Lim, H.N. Preparations, properties, and applications of
polyaniline and polyaniline thin films—A review. Polymers 2021, 13, 2003. [CrossRef]

75. Wan, P.B.; Wen, X.M.; Sun, C.Z.; Chandran, B.K.; Zhang, H.; Sun, X.M.; Chen, X.D. Flexible transparent films based on
nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing. Small 2015, 11, 5409–5415.
[CrossRef]

76. Zhuang, Y.; Wang, X.; Lai, P.f.; Li, J.; Chen, L.; Lin, Y.J.; Wang, F. Wireless flexible system for highly sensitive ammonia detection
based on polyaniline/carbon nanotubes. Biosensors 2024, 14, 191. [CrossRef]

77. Askar, P.; Kanzhigitova, D.; Ospanova, A.; Tapkharov, A.; Duisenbekov, S.; Abutalip, M.; Soltabayev, B.; Turlybekuly, A.; Adilov,
S.; Nuraje, N. 1 ppm-detectable hydrogen gas sensor based on nanostructured polyaniline. Sci. Rep. 2024, 14, 26984. [CrossRef]
[PubMed]

78. Rahman Khan, M.M.; Rumon, M.M.H. Recent progress on the synthesis, morphological topography, and battery applications of
polypyrrole-based nanocomposites. Polymers 2024, 16, 3277. [CrossRef]

79. Zhuo, H.; Hu, Y.J.; Chen, Z.H.; Zhong, L.X. Cellulose carbon aerogel/PPy composites for high-performance supercapacitor.
Carbohydr. Polym. 2019, 215, 322–329. [CrossRef]

80. Wang, Y.M.; Liu, A.P.; Han, Y.Q.; Li, T.X. Sensors based on conductive polymers and their composites: A review. Polym. Int. 2020,
69, 7–17. [CrossRef]

81. Cichosz, S.; Masek, A.; Zaborski, M. Polymer-based sensors: A review. Polym. Test. 2018, 67, 342–348. [CrossRef]
82. Antony, N.; Mohanty, S.; Nayak, S.K. Electrochemical inspection of polypyrrole/chitosan/zinc oxide hybrid composites. J. Appl.

Polym. Sci. 2020, 137, 49561. [CrossRef]
83. Kurian, A.S.; Souri, H.; Mohan, V.B.; Bhattacharyya, D. Highly stretchable strain sensors based on polypyrrole-silicone rubber

composites for human motion detection. Sens. Actuators A Phys. 2020, 312, 112131. [CrossRef]
84. Gai, S.J.; Wang, X.L.; Zhang, R.Z.; Zeng, K.; Miao, S.L.; Wu, Y.Q.; Wang, B. A controllably fabricated polypyrrole nanorods network

by doping a tetra-β-carboxylate cobalt phthalocyanine tetrasodium salt for enhanced ammonia sensing at room temperature.
RSC Adv. 2023, 13, 13725–13734. [CrossRef] [PubMed]

85. Dimple; Madan, R.; Kumar, V.; Mohan, D.; Garg, R. Acetone gas sensing behavior of polypyrrole/ZnO nanocomposites
synthesized via chemical oxidation method. J. Mater. Sci. Mater. Electron. 2024, 35, 130. [CrossRef]

86. Santos-Ceballos, J.C.; Salehnia, F.; Romero, A.; Vilanova, X.; Llobet, E. Low cost, flexible, room temperature gas sensor:
Polypyrrole-modified laser-induced graphene for ammonia detection. IEEE Sens. J. 2024, 24, 9366–9374. [CrossRef]

87. Luo, K.H.; Yan, M.; Hung, Y.H.; Kuang, J.Y.; Chang, H.C.; Lai, Y.J.; Yeh, J.M. Polyaniline composites containing eco-friendly
biomass carbon from agricultural-waste coconut husk for enhancing gas sensor performance in hydrogen sulfide detection.
Polymers 2023, 15, 4554. [CrossRef]

88. Kabel, K.; Al-Sabagh, A.; Sharara, T.; Badawi, A.M.; Abdel-Rahman, A.; Gado, W. Fabrication of H2S gas sensor based on
PPy/CuO and PPy/SnO2 nanocomposites at room temperature. Egypt. J. Chem. 2020, 63, 2763–2774. [CrossRef]

89. Xiong, S.; Zhou, J.; Wu, J.H.; Li, H.L.; Zhao, W.; He, C.G.; Liu, Y.; Chen, Y.Q.; Fu, Y.Q.; Duan, H.G. High performance acoustic
wave nitrogen dioxide sensor with ultraviolet activated 3D porous architecture of Ag-decorated reduced graphene oxide and
polypyrrole aerogel. ACS Appl. Mater. Interfaces 2021, 13, 42094–42103. [CrossRef]

90. Farea, M.A.; Bhanuse, G.B.; Mohammed, H.Y.; Farea, M.O.; Sallam, M.; Shirsat, S.M.; Tsai, M.L.; Shirsat, M.D. Ultrahigh sensitive
and selective room-temperature carbon monoxide gas sensor based on polypyrrole/titanium dioxide nanocomposite. J. Alloys
Compd. 2022, 917, 165397. [CrossRef]

91. Chen, R.; Chen, S.S.; Zhou, Y.L.; Wei, Z.Y.; Wang, H.Y.; Zheng, Y.J.; Li, M.; Sun, K.; Li, Y.F. Unsubstituted polythiophene film
deposited via in-situ sequential solution polymerization for chemo-/electrochromism. Macromolecules 2020, 53, 4247–4254.
[CrossRef]

92. Husain, A.; Ahmad, S.; Mohammad, F. Thermally stable and highly sensitive ethene gas sensor based on polythiophene/zirconium
oxide nanocomposites. Mater. Today Commun. 2019, 20, 100574. [CrossRef]

93. Haldar, U.; Mondal, S.; Hazra, S.; Guin, S.; Yeasmin, L.; Chatterjee, D.P.; Nandi, A.K. Tailor made synthesis of water-soluble
polythiophene-graft-poly(caprolactone-block-dimethylaminoethyl methacrylate) copolymer and their pH tunable self-assembly
and optoelectronic properties. Eur. Polym. J. 2022, 168, 111124. [CrossRef]

94. Du, Y.N.; Wang, M.Y.; Ye, X.L.; Liu, B.Q.; Han, L.; Jafri, S.H.M.; Liu, W.C.; Zheng, X.X.; Ning, Y.F.; Li, H. Advances in the field of
graphene-based composites for energy-storage applications. Crystals 2023, 13, 912. [CrossRef]

95. Bai, S.L.; Guo, J.; Sun, J.H.; Tang, P.G.; Chen, A.; Luo, R.X.; Li, D.Q. Enhancement of NO2-sensing performance at room
temperature by graphene-modified polythiophene. Ind. Eng. Chem. Res. 2016, 55, 5788–5794. [CrossRef]

96. Brodský, J.; Migliaccio, L.; Sahalianov, I.; Zítka, O.; Neužil, P.; Gablech, I. Advancements in PEDOT-based electrochemical sensors
for water quality monitoring: From synthesis to applications. Trends Anal. Chem. 2024, 183, 118115. [CrossRef]

97. Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J.R. Poly(3,4-ethylenedioxythiophene) and its derivatives: Past,
present, and future. Adv. Mater. 2000, 12, 481–494. [CrossRef]

292



Sensors 2025, 25, 2724

98. Jang, C.; Park, J.K.; Yun, G.H.; Choi, H.H.; Lee, H.J.; Yook, J.G. Radio-frequency/microwave gas sensors using conducting
polymer. Materials 2020, 13, 2859. [CrossRef]

99. Xiao, S.H.; Hu, M.J.; Hong, Y.H.; Hu, M.J.; Sun, T.T.; Chen, D.J. Core-shell PEDOT-PVDF nanofiber-based ammonia gas sensor
with robust humidity resistance. Biosensors 2024, 14, 411. [CrossRef]

100. Yang, L.F.; Zhou, Y.; Xu, X.; Shen, Y.Y.; Yan, H.F.; Qin, Z.Y. Interior design of hierarchical micro/nanostructures for enhancing
energy storage ability of polyanilines through frozen interfacial polymerization. Electrochim. Acta 2021, 386, 138448. [CrossRef]

101. Wang, J.; Zhou, Q.X.; Shu, Z.; Wang, M.; Wang, Y.; Yao, Y. Photoelectrochemical sensor for hypochlorous acid detection based on
the MWNTs doped PEDOT loaded with BP5 functionalized gold nanoparticles. Mater. Today Chem. 2024, 40, 102230. [CrossRef]

102. Zhang, X.S.; Yang, W.T.; Zhang, H.N.; Xie, M.Y.; Duan, X.X. PEDOT:PSS: From conductive polymers to sensors. Nanotechnol.
Precis. Eng. 2021, 4, 045004. [CrossRef]

103. Alves, L.S.M.; das Neves, M.F.F.; Benatto, L.; Ramos, M.K.; Eising, M.; de Oliveira, C.K.B.Q.M.; Zarbin, A.J.; Roman, L.S. Influence
of nanostructuring sensors based on graphene oxide and PEDOT:PSS for methanol detection. IEEE Sens. J. 2022, 23, 1845–1853.
[CrossRef]

104. Farea, M.O.; Alhadlaq, H.A.; Alaizeri, Z.M.; Ahmed, A.A.; Sallam, M.O.; Ahamed, M. High performance of carbon monoxide gas
sensor based on a novel PEDOT:PSS/PPA nanocomposite. ACS Omega 2022, 7, 22492–22499. [CrossRef] [PubMed]

105. Feng, Q.H.; Zhang, H.H.; Shi, Y.B.; Yu, X.Y.; Lan, G.D. Preparation and gas sensing properties of PANi/SnO2 hybrid material.
Polymers 2021, 13, 1360. [CrossRef]

106. Selvanayakam, S.; Esakkidurai, S.P.; Kalaiyar, S. Conductivity-based gas sensors using tamarindus indica polysaccharide-capped
gold nanoparticles for the detection of volatile gases. ACS Omega 2024, 9, 10640–10649. [CrossRef]

107. Kang, H.K.; Byeon, J.H.; Hwang, H.J.; Jang, Y.H.; Kim, J.Y. Flexible sensor film based on rod-shaped SWCNT-polypyrrole
nanocomposite for acetone gas detection. Polymers 2023, 15, 3416. [CrossRef]

108. Boonthum, D.; Oopathump, C.; Fuengfung, S.; Phunudom, P.; Thaibunnak, A.; Juntong, N.; Rungruang, S.; Pakdee, U. Screen-
printing of functionalized MWCNT-PEDOT:PSS based solutions on bendable substrate for ammonia gas sensing. Micromachines
2022, 13, 462. [CrossRef]

109. Zhu, C.H.; Zhou, T.T.; Xia, H.; Zhang, T. Flexible room-temperature ammonia gas sensors based on PANi-MWCNTs/PDMS film
for breathing analysis and food safety. Nanomaterials 2023, 13, 1158. [CrossRef]

110. Park, C.S.; Kim, D.Y.; Jung, E.Y.; Jang, H.J.; Bae, G.T.; Kim, J.Y.; Shin, B.J.; Lee, H.K.; Tae, H.S. Ultrafast room temperature synthesis
of porous polythiophene via atmospheric pressure plasma polymerization technique and its application to NO2 gas sensors.
Polymers 2021, 13, 1783. [CrossRef]

111. Tang, B.L.; Shi, Y.B.; Liu, J.J.; Zheng, C.D.; Zhao, K.; Zhang, J.H.; Feng, Q.H. Low-drift NO2 sensor based on polyaniline/black
phosphorus composites at room temperature. Chemosensors 2024, 12, 181. [CrossRef]

112. Bonyani, M.; Zebarjad, S.M.; Janghorban, K.; Kim, J.Y.; Kim, H.W. Au-decorated polyaniline-ZnO electrospun composite nanofiber
gas sensors with enhanced response to NO2 gas. Chemosensors 2022, 10, 388. [CrossRef]

113. Sun, B.C.; Xu, G.B.; Guan, C.H.; Ji, X.; Yang, Z.H.; Chen, S.R.; Chen, X.; Ma, Y.M.; Yu, Y.Q.; Feng, J.G. Nacre-inspired hierarchical
bionic substrate for enhanced thermal and mechanical stability in flexible applications. Sens. Actuators A Phys. 2024, 378, 115832.
[CrossRef]

114. Peng, X.Y.; Zhang, X.Q.; Wang, R.; Chen, Y.K.; Chu, X.M.; Kong, L.; Yan, X.; Kuang, M.X. Printing of carbon nanotube-based
temperature and bending sensors for high-temperature-resistant intelligent textiles. ACS Appl. Electron. Mater. 2022, 4, 1949–1957.
[CrossRef]

115. Chen, Y.; Pu, X.; Xu, X.; Shi, M.; Li, H.J.; Wang, D. PET/ZnO@MXene-based flexible fabrics with dual piezoelectric functions of
compression and tension. Sensors 2022, 23, 91. [CrossRef] [PubMed]

116. He, Y.; Guo, J.P.; Bi, C.C.; Hao, Z.F.; Li, C.P.; Wang, Q.; Han, X.G. Sandwich-like polyimide nanofiber membrane of PEO-based
solid-state electrolytes to promote mechanical properties and security for lithium metal batteries. Int. J. Hydrogen Energy 2025,
109, 1266–1273. [CrossRef]

117. Chen, X.J.; Gao, X.X.; Nomoto, A.; Shi, K.; Lin, M.Y.; Hu, H.J.; Gu, Y.; Zhu, Y.Z.; Wu, Z.H.; Chen, X.; et al. Fabric-substrated
capacitive biopotential sensors enhanced by dielectric nanoparticles. Nano Res. 2021, 14, 3248–3252. [CrossRef]

118. Sawada, H.; Borisenko, K.B.; Ohnishi, I.; Jimbo, Y.; Okunishi, E.; Kirkland, A.I. STEM and elemental analysis by EDS and EELS
for two-dimensional atomic structure containing Au and Cu. Microsc. Microanal. 2019, 25, 1776–1777. [CrossRef]

119. Yu, X.T.; Hu, X.Q.; Ma, X.; Chen, G.Y.; Ling, Y.Q.; Jin, T.; Chen, Y.F. Carbon nanotubes for optimizing response stability and speed
of acrylate hybrid copolymers humidity sensor. Polym. Compos. 2024, 45, 10516–10526. [CrossRef]

120. Choi, C.; Schlenker, E.; Ha, H.; Cheong, J.Y.; Hwang, B. Versatile applications of silver nanowire-based electrodes and their
impacts. Micromachines 2023, 14, 562. [CrossRef]

121. Li, L.B.; Tang, X.N.; Wu, B.; Huang, B.Y.; Yuan, K.; Chen, Y.W. Advanced architectures of air electrodes in zinc–air batteries and
hydrogen fuel cells. Adv. Mater. 2024, 36, 2308326. [CrossRef]

293



Sensors 2025, 25, 2724

122. Tay, Y.S.; Yang, L.; Zhang, H.; Kor, H.B.; Zhang, L.; Liu, H.; Gill, V.; Lambourne, A.; Li, K.H.; Chen, Z.; et al. Ruggedized sensor
packaging with advanced die attach and encapsulation material for harsh environment. Microelectron. Reliab. 2023, 150, 115115.
[CrossRef]

123. Maharshi, V.; Ahmad, I.; Agarwal, A.; Mitra, B. Wafer level hermetic bonding and packaging using recrystallized parylene. J.
Micromech. Microeng. 2022, 33, 014004. [CrossRef]

124. Duarah, R.; Aleksic, I.; Milivojevic, D.; Rameshkumar, S.; Nikodinovic-Runic, J.; Padamati, R.B. Development of nystatin-based
antifungal, biodegradable polymer composite materials for food packaging via melt processing approach. J. Appl. Polym. Sci.
2023, 140, e54663. [CrossRef]

125. Safaee, M.M.; Gravely, M.; Roxbury, D. A wearable optical microfibrous biomaterial with encapsulated nanosensors enables
wireless monitoring of oxidative stress. Adv. Funct. Mater. 2021, 31, 2006254. [CrossRef]

126. Da Silva, A.C.; Córdoba de Torresi, S.I. Advances in conducting, biodegradable and biocompatible copolymers for biomedical
applications. Front. Mater. 2019, 6, 98. [CrossRef]

127. Balaburov, E.; Kamaraj, M.; Doyle, S.E.; Ahmadi, Z.; Di Bella, C.; Nisbet, D.R.; Moulton, S.E.; Caballero Aguilar, L.M. Noninvasive
biosensing 3D scaffold to monitor degradation: The potential of fluorescent PCL and PLGA for tissue engineering. J. Appl. Polym.
Sci. 2024, 141, e54759. [CrossRef]

128. Cai, X.X.; Wang, X.Q.; Bian, F.P.; Li, J.Y.; Zhou, R.X.; Hu, J.W.; Lin, S.D. Flexible sensor based on conformable, sticky, transparent
elastomers for electronic skin. Chem. Eng. J. 2024, 498, 154934. [CrossRef]

129. Lu, L.J.; Wei, X.D.; Zhang, Y.; Zheng, G.Q.; Dai, K.; Liu, C.T.; Shen, C.Y. A flexible and self-formed sandwich structure strain
sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition
properties. J. Mater. Chem. C 2017, 5, 7035–7042. [CrossRef]

130. Seok, S. Polymer-based biocompatible packaging for implantable devices: Packaging method, materials, and reliability simulation.
Micromachines 2021, 12, 1020. [CrossRef]

131. Kim, T.G.; Ha, S.R.; Choi, H.; Uh, K.; Kundapur, U.; Park, S.; Lee, C.W.; Lee, S.H.; Kim, J.; Kim, J.M. Polymerizable supramolecular
approach to highly conductive PEDOT:PSS patterns. ACS Appl. Mater. Interfaces 2017, 9, 19231–19237. [CrossRef] [PubMed]

132. Fu, L.; You, S.X.; Li, G.J.; Li, X.X.; Fan, Z.C. Application of semiconductor metal oxide in chemiresistive methane gas sensor:
Recent developments and future perspectives. Molecules 2023, 28, 6710. [CrossRef] [PubMed]

133. Lin, T.T.; Lv, X.; Hu, Z.N.; Xu, A.S.; Feng, C.H. Semiconductor metal oxides as chemoresistive sensors for detecting volatile
organic compounds. Sensors 2019, 19, 233. [CrossRef] [PubMed]

134. Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A
review. J. Food Sci. Technol. 2017, 54, 2997–3009. [CrossRef]

135. Ruedt, C.; Gibis, M.; Weiss, J. Quantification of surface iridescence in meat products by digital image analysis. Meat Sci. 2020, 163,
108064. [CrossRef]

136. Andre, R.S.; Facure, M.H.; Mercante, L.A.; Correa, D.S. Electronic nose based on hybrid free-standing nanofibrous mats for meat
spoilage monitoring. Sens. Actuators B Chem. 2022, 353, 131114. [CrossRef]

137. Tripathi, K.M.; Kim, T.; Losic, D.; Tung, T.T. Recent advances in engineered graphene and composites for detection of volatile
organic compounds (VOCs) and non-invasive diseases diagnosis. Carbon 2016, 110, 97–129. [CrossRef]

138. Zhou, T.T.; Zhang, P.; Yu, Z.Z.; Tao, M.; Zhou, D.L.; Yang, B.; Zhang, T. Light-driven, ultra-sensitive and multifunctional ammonia
wireless sensing system by plasmonic-functionalized Nb2CTX MXenes toward smart agriculture. Nano Energy 2023, 108, 108216.
[CrossRef]

139. Cox, L.A., Jr. Re-assessing human mortality risks attributed to PM2.5-mediated effects of agricultural ammonia. Environ. Res.
2023, 223, 115311. [CrossRef]

140. Ananda, S.R.; Kumari, L.; MV, M. Studies on room-temperature acetone sensing properties of ZnCo2O4/PPy and MnCo2O4/PPy
nanocomposites for diabetes diagnosis. Appl. Phys. A 2022, 128, 669. [CrossRef]

141. Wang, B.; Jian, Y.Y.; Jiang, X.; Liu, T.Q.; Yang, D.Y.; Zhao, Z.H.; Liang, Y.P.; Feng, H.R.; Yao, M.S.; Xie, P.Y.; et al. Controlling
response of polyaniline toward humidity by self-assembly fatty acids. ECS J. Solid State Sci. Technol. 2022, 11, 037001. [CrossRef]

142. Ibanez, J.G.; Rincon, M.E.; Gutierrez-Granados, S.; Chahma, M.; Jaramillo-Quintero, O.A.; Frontana-Uribe, B.A. Conducting
polymers in the fields of energy, environmental remediation, and chemical-chiral sensors. Chem. Rev. 2018, 118, 4731–4816.
[CrossRef] [PubMed]

143. Sezen-Edmonds, M.; Yeh, Y.W.; Yao, N.; Loo, Y.L. Humidity and strain rate determine the extent of phase shift in the piezoresistive
response of PEDOT: PSS. ACS Appl. Mater. Interfaces 2019, 11, 16888–16895. [CrossRef]

144. Liu, X.H.; Zheng, W.; Kumar, R.; Kumar, M.; Zhang, J. Conducting polymer-based nanostructures for gas sensors. Coord. Chem.
Rev. 2022, 462, 214517. [CrossRef]

145. Youssef, A.M.; Hasanin, M.S.; Abd El-Aziz, M.E.; Turky, G.M. Conducting chitosan/hydroxylethyl cellulose/polyaniline
bionanocomposites hydrogel based on graphene oxide doped with Ag-NPs. Int. J. Biol. Macromol. 2020, 167, 1435–1444.
[CrossRef] [PubMed]

294



Sensors 2025, 25, 2724

146. Tran, N.P.; Okahisa, Y.; Okubayashi, S. Chitosan aerogel containing mechanically fibrillated fibroin and its model test for wound
dressing. Polym. Eng. Sci. 2025, 65, 1340–1349. [CrossRef]
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