ég metals

Special Issue Reprint

Editorial Board Members’
Collection Series

Metal Crystal/Polycrystal Plastic Strain Hardening

Edited by
John D. Clayton and Ronald W. Armstrong

mdpi.com/journal/metals

WVI\DPI

F




Editorial Board Members” Collection
Series: Metal Crystal/Polycrystal
Plastic Strain Hardening






Editorial Board Members” Collection
Series: Metal Crystal/Polycrystal
Plastic Strain Hardening

Guest Editors

John D. Clayton
Ronald W. Armstrong

F
rM\D\Py Basel o Beijing ¢ Wuhan e Barcelona e Belgrade e Novi Sad e Cluj e Manchester
/



Guest Editors
John D. Clayton
Terminal Effects Division

Ronald W. Armstrong
Department of Mechanical

DEVCOM Army Research Engineering
Laboratory University of Maryland
Adelphi, MD College Park, MD

USA USA

Editorial Office

MDPI AG

Grosspeteranlage 5
4052 Basel, Switzerland

This is a reprint of the Special Issue, published open access by the journal Metals (ISSN 2075-4701),
freely accessible at: https:/ /www.mdpi.com/journal /metals/special issues/30S87W55R4.

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-5615-2 (Hbk)
ISBN 978-3-7258-5616-9 (PDF)
https://doi.org/10.3390/books978-3-7258-5616-9

© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative
Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms
and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https:/ /creativecommons.org/licenses/by-nc-nd /4.0/).



Contents

John D. Clayton
Metal Crystal and Polycrystal Plastic Strain Hardening
Reprinted from: Metals 2025, 15, 976, https:/ /doi.org/10.3390/met15090976 . . . . . . ... ... 1

Ronald W. Armstrong
Metal Crystal/Polycrystal Plasticity and Strengths
Reprinted from: Metals 2022, 12, 2070, https:/ /doi.org/10.3390/met12122070 . . . . . ... ... 5

Mohammed H. Saffarini and George Z. Voyiadjis

Atomistic-Continuum Constitutive Modeling Connection for Gold Foams under Compression

at High Strain Rates: The Dislocation Density Effect

Reprinted from: Metals 2023, 13, 652, https:/ /doi.org/10.3390/met13040652 . . . . . . ... ... 12

Alexey Vinogradov and Yuri Estrin
Hall-Petch Description of the Necking Point Stress
Reprinted from: Metals 2023, 13, 690, https:/ /doi.org/10.3390/met13040690 . . . . . .. ... .. 29

Aleksander Zubelewicz and John D. Clayton

Yield Surfaces and Plastic Potentials for Metals, with Analysis of Plastic Dilatation and Strength
Asymmetry in BCC Crystals

Reprinted from: Metals 2023, 13, 523, https:/ /doi.org/10.3390/met13030523 . . . . . . ... ... 42

Sudip Kunda, Noah J. Schmelzer, Akhilesh Pedgaonkar, Jack E. Rees, Samuel D. Dunham,
Charles K. C. Lieou, et al.

Study of the Thermomechanical Behavior of Single-Crystal and Polycrystal Copper

Reprinted from: Metals 2024, 14, 1086, https:/ /doi.org/10.3390/met14091086 . . . . .. ... .. 58

Xinping You and Tadashi Hasebe

Modeling and Simulation of Fatigue Crack Initiation Process Based on Field Theory of
Multiscale Plasticity (FTMP): Part I: PSB Ladder Formation and Verification

Reprinted from: Metals 2024, 14, 1392, https:/ /doi.org/10.3390/met14121392 . . . . . ... ... 85

Xinping You and Tadashi Hasebe

Modeling and Simulation of Fatigue Crack Initiation Process Based on Field Theory of
Multiscale Plasticity (FTMP): Part II: Modeling Vacancy Formation and Coupling with
Diffusion Analysis

Reprinted from: Metals 2024, 14, 1406, https:/ /doi.org/10.3390/met14121406 . . .. ... .. .. 111

Jiayi Yan and Cheng Fu

Understanding Room-Temperature Ductility of Bec Refractory Alloys from Their

Atomistic-Level Features

Reprinted from: Metals 2025, 15, 851, https:/ /doi.org/10.3390/met15080851 . . . . . . ... ... 131

John D. Clayton, Daniel T. Casem, Jeffrey T. Lloyd and Emily H. Retzlaff

Toward Material Property Extraction from Dynamic Spherical Indentation Experiments on
Hardening Polycrystalline Metals

Reprinted from: Metals 2024, 13, 276, https:/ /doi.org/10.3390/met13020276 . . . . . .. .. ... 142






metals

Editorial

Metal Crystal and Polycrystal Plastic Strain Hardening

John D. Clayton

Terminal Effects Division, DEVCOM ARL, Aberdeen, MD 21005-5066, USA; john.d.claytonl.civ@army.mil

1. Introduction

Crystalline metallic solids are key components of engineering devices and structures
whose manufacture and performance often crucially involve, or seek to minimize, plastic
deformation phenomena. Inelastic behavior originates at the nanometer scale for individual
dislocations, whereas the response of a polycrystalline structure is more complex, spanning
scales many orders of magnitude larger, and reflects the complexity of physics, including
dislocation and defect interactions, grain and phase boundaries, texture effects, and so on.
Vastly different plastic and fracture behaviors emerge among metals and alloys when time
scales or loading rates, temperatures, and stress-deformation histories differ [1]. Owing to
this complexity, many questions remain unanswered, and physics-based models are neither
universal nor satisfactory for all contemporary applications, despite decades of research.

The study of the inelastic mechanical responses of single-crystal and polycrystalline
metals has a long history. Pioneering works by G.I. Taylor [2] and R. Hill [3] considered
the plastic yield and hardening response of crystals and polycrystals. Size effects (e.g.,
grain diameter) in plasticity and fracture were addressed in seminal studies by Hall [4],
Petch [5], and Armstrong et al. [6] in the mid-twentieth century. Classic texts on dislo-
cations by Nabarro [7] and Hirthe and Lothe [8] provide insight at lower length scales,
while many books [9-14] and review articles [15-17] describe constitutive models of the
inelastic responses of crystalline metals. In the late twentieth century [18-22], several
prominent studies were published regarding strain hardening or polycrystal response from
the perspectives of crystal interactions, dislocation mechanics, or micromechanics. Keen
interest in these subjects still persists, as evidenced by numerous scholarly publications
(for which a literature review is outside the scope of this brief article) in the fields of solid
mechanics, materials science, and materials physics.

The aforementioned topics related to the inelastic behavior of metallic crystals and
polycrystals are explored in this Editorial, showcasing their historical and ongoing interest.
Research contributions toward these topics, specifically those appearing in a recent Special
Issue of the journal, are collectively summarized and thereby placed in a broader context.

2. Discussion

A Special Issue of Metals, entitled “Metal Crystal/Polycrystal Plastic Strain Hard-
ening”, was initiated in 2022 by the late Professor Ronald W. Armstrong to advance the
current state of the art. Bibliographic details are listed for each contribution following
the Section 3 of this Editorial. In its final form (2025), this issue comprises ten published
works: an initial Editorial article (contribution 1), six regular research papers (contributions
2 through 7), one research communication (contribution 8), one review article (contribution
9), and the present closing Editorial (contribution 10, unlisted). The key outcomes from
each of the first nine contributions are discussed below.
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Armstrong (contribution 1) concisely described advances in our understanding of
strength and strain hardening from the historic and recent literature on dislocation me-
chanics that emerged from G.I. Taylor’s pioneering work. The specific topics explored
were partial dislocations and stacking faults, cross-slip, dislocation reactions, and grain size
effects. Armstrong also reported on the plastic instability experienced during the tensile
loading of FCC and BCC polycrystals.

Saffarini and Voyiadjis (contribution 2) modeled plastic flow in gold metallic foams at
very high compressive strain rates. Large-scale atomistic simulations of foam samples with
different domain sizes were used to provide numerical data for upscaling. A continuum
plasticity framework accounting for dislocation evolution, strain hardening, and strain rate
and thermal effects was parameterized to successfully capture the stress—strain behaviors
witnessed in the simulations. The outcomes were compared with those obtained with other
continuum models.

Vinogradov and Estrin (contribution 3) analyzed grain-size effects in the context of
tensile plastic deformation instability. The Kocks—Mecking-Estrin hardening model, based
on dislocation evolution, and in which the grain size enters indirectly, was used to evaluate
necking stress. The Hall-Petch effect, in which strength increases with decreasing grain
size, was shown to be better described by the necking stress from the Considere criterion
than the usual 0.2% offset yield strength. The results, encompassing data for nickel and
titanium, have ramifications for pragmatic parameter determination and materials design.

Zubelewicz and Clayton (contribution 4) modeled the low-temperature behavior of
BCC metals, focusing on yield surfaces, plastic potentials, and plastic volume changes.
Their new description included terms in the yield stress and plastic potential that were
associated with dislocation core spreading and atomic friction, leading to non-Schmid
effects. The model’s accuracy was demonstrated by comparison with experimental data on
molybdenum. In the absence of repulsive core pressure, the analysis further predicted a
null correlation between plastic dilatation due to anharmonic effects and dislocation core
spreading affecting lattice friction.

Kunda et al. (contribution 5) studied the thermo-mechanical responses of copper single
crystals and polycrystals by measuring their stress, strain, and temperature evolution for
both static and dynamic compression simultaneously at strain rates spanning 1073 /s to
4800/s. A novel finite-strain crystal plasticity constitutive model was implemented in finite
element (FE) simulations, with rigorous thermodynamics based on dislocation theory that
enabled a non-constant Taylor-Quinney factor. The FE simulations showed promising
agreement with experimental stress and temperature data and provided physical insight
into dislocation mechanisms and thermodynamic processes at the slip-system scale.

In a series of two papers, You and Hasebe (contributions 6 and 7) incorporated
Hasebe’s field theory of multiscale plasticity (FTMP) into FE crystal plasticity simulations
of the slip bands responsible for metal fatigue crack initiation. The FTMP accounts for
differential-geometric incompatibility, physically associated with strain gradients and
dislocation structures. The first paper (contribution 6) showed predictions of laddered
band morphologies typically obtained in experiments. The second paper (contribution 7)
demonstrated an extended field theoretic model augmented with vacancy sources, showing
that vacancy diffusion is affected by dislocation flux and the incompatibility rate. The
theory was implemented in multi-physics crystal plasticity simulations with diffusion
kinetics, using both indirectly and directly coupled schemes. The results were in agreement
with those obtained by transmission electron microscopy and provided new insight into
the microstructure-based origins of surface roughening followed by grooving. The latter
eventually transitioned to cracks under cyclic straining.
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Yan and Fu (contribution 8) studied the ductility of BCC refractory alloys, including
high-entropy alloys, using Density Functional Theory (DFT). Their calculations produced a
new measure of average bond stiffness for solid (alloy) solutions. Decreasing this stiffness,
or alternatively increasing the average static displacement of atoms, was shown to correlate
with increasing ductility (e.g., fracture strain measured in experiments). This information
provides guidance on composition to optimize the properties of refractory alloys.

Clayton et al. (contribution 9) reviewed classical and contemporary experiments and
models, both analytical and numerical, for the spherical indentation of polycrystalline
metals. A new dynamic dimensional analysis framework was implemented to extract
uniaxial-equivalent stress—strain curves and material properties (e.g., yield and strain
hardening) using experimental force-depth data from dynamic spherical indentation
tests. The uility and limitations of the coupled experimental-analytical methodology were
assessed in the context of dynamic indentation data for the aluminum alloy Al 6061-T6.

3. Conclusions

The research published in this recent Special Issue, primarily focused on the con-
stitutive modeling of crystalline metals” plastic response, has been summarized above.
These works collectively enhance our current understanding of the effects of dislocations,
microstructures, chemistry, and loading conditions on the mechanics and thermodynamics
of metals across a range of length and time scales, which we encourage future studies to
further expand upon.
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Editorial

Metal Crystal/Polycrystal Plasticity and Strengths

Ronald W. Armstrong

Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; rona@umd.edu

Abstract: A brief historical sketch is given of Taylor’s dislocation density-based model description,
leading to the prediction of a parabolic, tensile, stress—strain curve for the plastic deformation of
aluminum. The present focus is on additional results or analyses obtained on the subject for crys-
tal/polycrystal strain hardening. Our current understanding of such material behavior is attributed
to post-Taylor descriptions of sequential deformation stages in stress—strain measurements that are
closely tied to specific dislocation interaction and reaction mechanisms. A schematic comparison is
given for individual face-centered cubic (fcc), body-centered cubic (bec), and hexagonal close-packed
(hep) crystal curves and to related strength properties determined for individual crystals and poly-
crystalline material. For the fcc case, an example sessile dislocation reaction is described based on a
stereographic projection. Then, quantitative constitutive-relation-based assessments are presented for
the tensile strain hardening leading to the plastic instability behaviors of copper and tantalum materials.

Keywords: Taylor-based strain hardening; crystal plastic deformation stages; deformation-induced
dislocation interactions/reactions; polycrystal tensile plastic instability

1. Introduction

Soon after crystal dislocations were invented on an atomic lattice basis in 1934,
G.IL Taylor produced a dislocation model calculation that allowed him to obtain parabolic
strain hardening in a tensile stress (o, )—strain (¢) curve for the 20th century face-centered
cubic (fcc) metal: aluminum [1]. Not much changed on the subject until 1951, when another
dislocation inventor, Orowan, stated that “Since the publication of Taylor’s (1934) theory
there has been no significant progress in the understanding of strain hardening” [2,3]. The
sentiment was repeated years later by Cottrell [4], as recently quoted [5]. The present report
aims to refute this claim by providing an update on the enhanced knowledge gained over
these many years about the dislocation mechanics of plastic deformation, particularly of
plastic strain hardening.

The 1950s signaled the beginning of an explosion in dislocation observations, par-
ticularly by Hirsch and colleagues [6] with the transmission electron microscope (TEM)
and through dislocation associations made with a broad range of mechanical properties
being measured comprehensively for fcc, body-centered cubic (bcc) and hexagonal close-
packed (hcp) metals. An early sign of progress on strain hardening was reported in the
1960 TMS Institute of Metals Lecture given by Mott [7]. Additional mechanical property
measurements/analyses that have been achieved until the present time are included in the
present report. Not least are advances made in the development of computationally based
metal constitutive relations for determining the full o.—¢ behavior and of experimental and
simulated crystal/polycrystal deformations.

2. Stress—Strain Characterizations of Fcc, Bcc and Hep Metal Deformations

Post-Taylor description of the several topics, such as dislocation line intersections; partial
dislocations and associated stacking faults; slip plane changes through cross-slip; solute
pinning of individual dislocations; and grouped dislocation pile-up mechanisms, were soon
associated with the three-crystal-structure-type deformations. Figure 1 shows schematic
shear stress (T¢)-shear strain (y) curves for the crystal structure types in which particular

Metals 2022, 12, 2070. https:/ /doi.org/10.3390/met12122070 5 https://www.mdpi.com/journal /metals
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regions of the deformation curves are marked either with subscript athermal or thermal
dependencies, so also being dependent on the imposed metal strain rate in shear, (dy/dt).
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74 73
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(a) (b)

Figure 1. Schematic single-crystal resolved shear stress (T) versus resolved shear strain (y) for bec,
fcc (a) and hcep (b) crystal structure types.

The interstitial solute pinning of dislocations produces the indicated upper and lower
yield point behavior for the bcc curve in Figure 1a, whereas the subsequent plastic strain
hardening, (dy/dt). = 0,4, is essentially athermal. The bcc yield stress, with or without
a yield point, exhibits a strong thermal dependence. In contrast, multiple stages are also
shown in Figure 1a for the fcc curve corresponding to the initial yielding on a single-slip
system in stage I, then moving to the activation of double-slip systems in stage II, followed
by the advent of cross-slipping in stage III. Stage I for aluminum is normally mostly absent
and the combination of Oy and Oyjy stages approximate to the parabolic strain hardening
produced in the Taylor model. The latter two stages are more clearly identified for copper,
as explained on the basis of a higher stacking fault energy for aluminum providing smaller
partial dislocation separations and, hence, easier cross-slip [8].

The schematic curves for the hcp crystal case in Figure 1b show a significant variation
because of the restricted distribution of available slip (or deformation twinning) systems
and the significantly different shear stress levels required for their operation, whether
in tension or compression. In the case of magnesium, for example, the highest critical
resolved shear stress, Tcrss, is obtained for the compression of a single crystal along the
[0001] direction for pyramidal slip, and the lowest shear stress for the initial deformation
twinning of a polycrystal that transitions at larger strain to an analogous steeper strain
hardening for pyramidal (and prism) slip is also obtained [9]. An intermediate thermally
dependent shear stress at yield, tyt{T, [de/dt]}, and athermal strain hardening, 0,4, is
shown to be bec-like for an AZ31B magnesium alloy (0001)-plane textured sheet material
subjected to in-plane tension tests [10]. Xie, Zhu, Kang and Yu have presented model
constitutive relations for extruded AZ31B material under tensile (6,4,) and compressive
(6.) loading conditions [11].

3. Dislocation Interactions/Reactions

An early post-Taylor investigation of the thermal dependence of stage I, “easy glide”,
in (hcp) magnesium single crystals led to the interpretation of dislocation ‘forest” inter-
sections controlling the rate dependence of plastic flow [12]. Dislocation ‘jogs” and point
defects are generated for the further passage of the otherwise mobile dislocations. The same
mechanism carries over for the fcc single-crystal stage I case to stage II, in which exceptional
hardening is produced by dislocation interactions at slip plane intersections. An important
element of the hardening is attributed to dislocation reactions that occur along combined
line length segments of the intersecting dislocations. The basis for the reacted dislocations



Metals 2022, 12, 2070

is their relatively lower self-energies compared to the paired dislocation reactants [13].
Hirth provided a detailed geometric description of the possible dislocation reactions for the
fcc case [14]. Figure 2 is a stereographic projection that has been constructed to show the
particular case described by Hirth for [110](111) and [011](111) slip system intersections to
produce hardening via a sessile “stair rod” dislocation obstacle. For the bcc case, reacted
sessile [100] Burgers vector dislocations are produced and are made even more complicated
for multiple sessile dislocation reactions produced in hcp crystal deformations involving
the basal, pyramidal and prism slip systems.

(1/2)[110)1111y + (1/2) [011]:1y)
= (1/2)[[101][101J

(1/2)[101) 701 = (1/6)[101] +
(1/6) 121] + (1/6)[121]

Figure 2. Stereographic projection for tensile axis (TA) rotation associated with the start of stage I
type [110] slip on the (111) primary slip plane (P), then leading to stage II rotation with addition of
[011] slip on the secondary (111) slip plane (S), for which a sessile “stair rod” dislocation obstacle,
among other partial dislocations, is produced with Burgers vector, (1/6)a[101], and line direction
along [101].

4. Strain Hardening and (Tensile) Plastic Instability

A seemingly minor influence of the polycrystal grain size on the tensile plastic de-
formation of aluminum, an effect that had been missed by Taylor, was established in the
pioneering work by Hansen [15]. A later report by Hansen and Ralph established a stronger
grain size effect for copper [16]. In both cases, the grain size effect was explained in terms
of an analogous and much stronger grain size dependence reported in the early 1950s
for x-iron and steel materials by Hall [17] and by Petch [18], respectively. The grain size
effect was attributed to dislocation pile-ups in slip bands being needed to overcome the
grain boundary’s resistance to the transmission of plastic flow between the grains within
a polycrystal. A constitutive relation incorporating the grain size effect for polycrystalline
copper was originally reported by Zerilli and Armstrong [19] and was updated by Zerilli [20]
as follows:

0e = 0gGge + Boler(1 — exp{e/sr})]l/z(exp[—ch]) +ket71/2 @)

In Equation (1), ogg, is an athermal stress; By is the thermal stress at absolute tem-
perature, T = 0; and k. £~!/? is the Hall-Petch term for an inverse square root of the grain
diameter, £~1/2, multiplied by the stress intensity parameter, k¢; € is a recovery strain; and
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o= g — o1In(de/dt) for a coupled T and strain rate dependence. The first two terms on the
right side of Equation (1) are normally combined in the single Hall-Petch intercept stress,
00¢- Under small strain, a Taylor-type parabolic stress—strain dependence is obtained.
Figure 3 provides an assessment of the strain-hardening behavior able to be derived
from the Hansen and Ralph investigation of copper o, —¢ behavior in tension and leading
to a grain size dependence of the plastic instability condition based on the Considere
relationship: o, = (do, /de) at the tensile maximum load point. For the copper material (and
many other metals), the tensile strain hardening was found to be contained in (dog. /de),
while k, was constant at ~5 MPa.mm!/2. The product Bexp(—«T) = B’ = 500 Mpa was
determined for oy, from the experimental strain dependence of oy, thus providing for
the assumption of oy, = 0. The value of ¢, was estimated as 1.2, and its influence on the
deviation of the o, —¢ curve from the Taylor prediction is shown to begin at € = ~0.15 for
material with a 40 um grain size. Otherwise, a comparison of the computed curves for the
4.0 and 40 um grain size curves shows that plastic instability occurs sooner for material
with a smaller grain size. The computations are consistent with a limiting value of ¢ = 0.3
reported by Hansen and Ralph for their highest uniform tensile strain measurements.

800 T T T T T T
Copper
700 t 300 K 7
600 doge/de = (B’/Z)exb(-e/rrerr);’r T
[e(1-exp(-g/e))]"
500 1 b
m O = B‘EM2 + k{’..‘m
% 400 ' 7
& (8 =4 pm}
b 300 + ‘\ =
200 | \Ge =0Cpe t ke 12 1
£=40um
100 | _
0oe = Ble(1-exp{-e/er)]"?
0 | 1 1 | | L

0 0.1 02 03 0.4 05 06 0.7

€

Figure 3. Computations specifying the maximum uniform strain achieved in tension for copper
material measurements reported on a Hall-Petch basis by Hansen and Ralph [16]; in the figure,
B’ = Bexp[—«T].

5. Plastic Instability for the Bcc Case
The following constitutive relation has been validated for bcc ARMCO iron material [19]:

0c = 00ge + Boexp(—BT) + Ae™ + ke~1/2 (2)

In Equation (2), ogg, is an analogous athermal stress component to that described for
Equation (1); By is the thermal stress at T = 0; 3 = 3¢9 — B1In(de/dt) as for the & parameter
in Equation (1); and A and n are constants measuring the material strain hardening. Thus,
again, the first three terms in Equation (2) are an expanded interpretation of oy, as for
Equation (1). It is of particular note that the bee (de /dt) and T dependencies are in the yield
stress, while the strain hardening is essentially athermal.
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Beyond the evaluation of the constants in Equation (2) for ARMCO iron material, an
extensive investigation was conducted for a wide range of experimental measurements
reported for tantalum materials [21]. In particular, Hoge and Mukherjee had reported com-
plete 0 —e measurements over a wide range of T and strain rates [22]. Figure 4 provides
a summary description for the application of Equation (2) to describe the accumulated
measurements. In the figure, ¢y = 0pge and K = A. One might note that the n = 0.44 value
in the figure is close to the Taylor specification. Otherwise, the locus for the maximum load
point for the Hoge and Mukherjee measurements is seen to follow an essentially athermal
strain hardening behavior, in line with the designation in the Figure 1 schematic.
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Figure 4. Stress—strain measurements obtained over a wide range of temperatures and strain rates
for tantalum by Hoge and Mukherjee [22], as shown to be describable on a bee constitutive relation
basis [21], shown in combined form with permission from AIP Publishing, 2022.

6. Discussion

The preceding description of strength and strain hardening measurements and their
analyses on a dislocation mechanics basis provides evidence of progress made in under-
standing crystal /polycrystal plasticity carrying on from the outstanding work performed
by Taylor. Here, additional references are added to provide further evidence for the
increased understanding being brought to bear on the subject.

Peeters, Bacroix, Teodosiu, Van Houtte and Aernoudt have monitored via TEM the
dislocation densities within slip bands of individual grains in an interstitial-free (IF) poly-
crystalline iron material and correlated the measurements with an extension of the Taylor
model [23]. Messemaeker, Verlinden and Van Humbeeck presented measurements influ-
enced by the complementary grain boundary, for which the generated dislocation densities
were contained in oy, and thus implicitly contain the influence of strain hardening [24].
Madec and Kubin reported on both bec and fec dislocation reactions occurring during
straining [25], while Messner, Rhee, Arsenlis and Barton attributed strain hardening in the
hcp lattice to dislocation reaction (junctions) occurring in accordance with the Frank and
Nicholas dislocation self-energies [13,26]. Most recently, Mishra and Alankar have applied
discrete dislocation dynamics for plastic deformation of copper being controlled by the
formation of dislocation reacted junctions and cross-slip [27].

An interesting report made by Li, Cui, Yan, Zhang et al. put forth the suggestion for
additive manufacturing that the dislocation cell walls formed at larger deformation are
anchored by reacted sessile dislocations and thereby require small dislocation pile-ups for
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breaching [28]. Such model consideration relates to the subject of deformation structures
induced by severe plastic deformation, for example, as reported by Mufioz, Higuera and
Cabrera for ARMCO iron material deformed to additional stages IV and V by equal-channel
angular pressing (ECAP) [29]. The measurements were analyzed in relation to accumulated
dislocation measurements and to a Hall-Petch grain size description.

Lastly, there is mention of a relationship between o, —e behavior and other properties,
for example, fatigue and hardness behaviors. Brown has given emphasis to the importance
of the thermally activated annihilation of screw dislocation dipoles at the endurance limit
measured in fatigue tests of copper, thus establishing a relationship with strain hardening
in stages Il and IV of tensile tests [30]. In further work connecting the strain hardening and
fatigue behavior of fcc crystals, emphasis was given to understanding the role of dislocation
mechanisms at the slip band level [31]. Alhafez, Ruestes, Bringa and Urbassek reported
quantitative counts of (a/2) <111> slip and a<100>-reacted Burgers-vector dislocations
produced within the plastic deformation zones of simulated nano-indentations made in a
(001) oc-iron crystal surface [32]. Goel, Cross, Stukowski, Gamsjdger, Beake and Agrawal
demonstrated that a[100] reacted dislocation line lengths formed at the earliest stages of
deformation in simulations of nano-indentations made in tungsten crystals [33]. Armstrong
and Elban have reported comparative plastic strain hardening behaviors in post-pop-in plastic
deformation at nano-indents and in drawn wire and micro-pillar deformation tests [34].

7. Summary

A brief description has been given, first, of the important impetus given by Taylor of
understanding the nature of crystal plasticity, particularly connecting with an understand-
ing of crystal strain hardening. Subsequent developments of the dislocation mechanics of
the subject have been reviewed, with focus on further refinements in dislocation model
developments, for example: the role of crystal deformation for partial dislocations and
stacking faults; dislocation interactions/reactions and cross-slips; metal grain size; and
crystal/polycrystal stress—strain applications, including their tensile plastic instability
properties and grouped dislocation behaviors in slip band stress concentrations.
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Abstract: Constitutive description of the plastic flow in metallic foams has been rarely explored in
the literature. Even though the material is of great interest to researchers, its plasticity remains a
topic that has a much room for exploration. With the help of the rich literature that explored the
material deformation mechanism, it is possible to introduce a connection between the results of the
atomistic simulations and the well-established continuum constitutive models that were developed
for various loading scenarios. In this work, we perform large-scale atomistic simulations of metallic
gold foams of two different sizes at a wide range of strain rates (107 — 10? s~1) under uniaxial
compression. By utilizing the results of those simulations, as well as the results we reported in our
previous works, a physical atomistic-continuum dislocations-based constitutive modeling connection
is proposed to capture the compressive plastic flow in gold foams for a wide range of sizes, strain
rates, temperatures, and porosities. The results reported in this work present curated datasets that
can be of extreme usefulness for the data-driven Al design of metallic foams with tunable nanoscale
properties. Eventually, we aim to produce an optimal physical description to improve integrated
physics-based and Al-enabled design, manufacture, and validation of hierarchical architected metallic
foams that deliver tailored mechanical responses and precision failure patterns at different scales.

Keywords: size effect; strain rate; strain hardening; atomistic-continuum; multiscale; large-scale
simulations

1. Introduction

Cellular solids have always attracted attention because they have one of the most
desirable material characteristics that a researcher could ask for, and that is a high stiffness-
to-weight ratio [1]. This promotes the material capacity to be used in a wide range of
applications; it is excellent in terms of shock absorbency [1,2], energy absorbency as the
core of sandwich metal tubes [3,4], catalysts [5-7], sensors and super capacitors [8-12],
actuators [13], and radiation-tolerant materials [14-16]. Bicontinuous metallic nanofoam,
which is a class of cellular solid, is made of a network of interconnected ligaments and
pores. This material, which is the subject of this work, has been researched for some time
by using various approaches, including pure experimental work (continuum scale) [17-23]
and pure computer simulations (mainly atomistic scale) [24-31]. Despite the fact that there
were trials to directly compare the results of molecular dynamics (MD) simulations with
the results of experiments [32-35], no adequate connection has been made between the
two scales in terms of the constitutive description of the material plastic flow. In fact, a
constitutive description of the plastic flow of metallic nanofoams has rarely been explored
in the literature. That can be attributed first to the fact that constitutive description of the
plastic flow of any full density (nonporous) solid is a very challenging task, given that
there are a lot of variables that play important roles in the material response (size, strain
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rate, temperature, crystal structure, etc.). Additionally, for the case of bicontinuous metallic
nanofoam, there is the added complexity of having more variables to take into account,
such as porosity, network connectivity, structural disorder, and free surface effects. All of
this makes atomistic simulations of the plasticity of nanofoams computationally expensive
and structurally complex.

However, this should not hold researchers back from trying to provide the required
constitutive models that capture the material response. The need for either physical or
phenomenological constitutive models is a fundamental necessity. For example, it is
required to ensure the applicability of the second law of thermodynamics in the continuum
description of a system in equilibrium in addition to the basic laws of mass, energy, and
momentum conservation. Without the constitutive models, we will end up with a number
of equations less than the number of unknowns, and in turn, produce a nonsolvable scheme.
In other words, unlike atomistic simulations, which are dependent on the interatomic
potential description rather than the constitutive description, continuum-based simulations
are extremely dependent on constitutive description. For example, constitutive models
that account for material deformation mechanisms as well as the effects of temperature,
strain rate, size, and density are required to perform continuum-based simulations such as
finite element (FE) and/or meshless-based simulations. Therefore, the challenge becomes
more about what constitutive model to use or to develop rather than discussing the need
for those constitutive descriptions.

To avoid repeating the works of others, and because we would not provide any
better extensive comparisons between different existing constitutive models than those
provided by references [36—40], we would refer the readers to those references. In general,
to choose a suitable continuum-based constitutive model to describe the plastic flow of
foams, especially that those constitutive models were originally developed for full density
(nonporous) solids, a physical-based constitutive model should be the first type to consider.
Additionally, because the deformation mechanism of gold metallic foams is controlled
by dislocation mechanics, as explained extensively in the literature and in our previous
works [25,26,29-31,41-43], the physical-based constitutive model needs to be dislocation-
controlled. As we will show later, the only available constitutive description for gold foams
is based on dislocation dynamics. Moreover, the flexibility of determining the material
constants from a limited set of experimental data and capturing the static and/or dynamic
behavior should be considered in the selection process. For those reasons, among the
well-known available constitutive models in the literature [38,44-50], we choose to use the
Voyiadjis—Abed (VA) constitutive model [49] which is a modified /extension version of the
well-known Zerilli-Armstrong (ZA) constitutive model [47]. In later sections, we provide
more details on the theory that promotes the constitutive model efficiency, aside from it
being flexible in determining its parameters.

There were few attempts in the literature to explore the constitutive modeling of
the plastic flow in metallic foams [51-56]. However, to the best of authors” knowledge,
there were no trials in developing a physical-based and dislocation-based constitutive
model for that matter. Moreover, there is no known effort in establishing a connection
between any physical-based continuum constitutive model and the atomistic observations
of the material behavior. The proposed work utilizes a continuum, physical-based, and
dislocation-based constitutive model to provide a physical meaning and to modify the
authors’ previously published atomistic constitutive description in metallic foams. The
newly proposed constitutive model will establish a connection between the two scales
(atomistic and continuum). Accordingly, we report the first trials to propose a connection
between atomistic and continuum constitutive description of the plastic flow of face center
cubic (FCC) nanofoams after performing large-scale MD simulations of different sizes and
strain rates of gold foam. In Section 2, the authors recall the dislocation-based atomistic
constitutive description of gold foams proposed in their previous publications. In Section 3,
the authors review the dislocation-based continuum constitutive description of plasticity
in nonporous FCC metals as proposed by Voyiadjis and Abed [57]. In Section 4, the
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authors introduce the proposed connection between the atomistic and the continuum
constitutive models. In Section 5, the computational modeling part is presented, in which
large-scale MD simulations are performed over a wide range of strain rates for two different
average ligament sizes. The results of those simulations in addition to the results of the
simulations that were reported by the authors in their previous works are used to test the
proposed atomistic-continuum connection. In Section 6, the results are discussed in light of
the simulations.

2. Atomistic Dislocation-Based Constitutive Model for Gold Foams

In this section, the authors recall the atomistic constitutive model that was developed
by the same authors in their previous work [29-31,58]. Saffarini et al. [29] proposed an
expression to describe the plastic flow in gold foams under compression as a function of the
total dislocation density, as well as other phenomenological parameters. The parameters
were determined based on large-scale simulations that were conducted for a range of
ligament sizes, temperatures, and strain rates. However, no coupling effect was considered
during the development of the formulation. In other words, every series of simulations
was done by varying one aspect and fixing all others. The proposed expression is shown in
Equation (1),

U.Compression _ ng 4 De™ , (1)
Yield — Controlled Stress Dislocation — Controlled Hardening Stress
Component Component

where 0y, is the yield strength, C is a size dependent constant, D is a stress parameter that
is size- and temperature-dependent, n (mm?) is an exponent that is related to the ligament
area and is size- and strain rate-dependent, and p (mm~?) is the total dislocation density.
Table 1 shows the values of Equation (1) parameters as provided by Saffarini et al. [29].

Table 1. Equation (1) parameters values according to Saffarini et al. [29].

Avg. Ligament 6.4 131 | 256

Diameter (nm)
Strain Rate (s~ 1) 105 [ 107 108 [ 5x10° 10° 108
Temperature (K) 300 300 400 500 [ 600 700 | 300

C 1.10 1.05 0.95

g D

7 (MPa) 11 12 13 17.5 23 11 55 1.0
—

Q, n

g (x10712) 95 8.2 7.5 7.0 10.5 23.5
o (mm?)

The constitutive model suggests that the plastic flow in gold foam can be decomposed
into two stress components: (1) a yield-controlled stress component, and (2) dislocation-
controlled hardening (densification) stress component. The second component corresponds
to the amount of stress needed to continuously ensure the nucleation of dislocations in gold
foams to plastically deform the material. Due to the small ligament size and the presence
of porosity that typically comprise the microstructure of the foam, dislocations annihilate
almost instantly upon nucleation by escaping at the ligament’s free surfaces. This type
of dislocation interaction and accumulation mechanism prior to densification requires a
continuous supply of stress to plastically deform the material. For more details about the
dislocation dynamics controlling the deformation mechanism, the reader is referred to the
authors’ previous works [29-31].

The hardening term in Equation (1) takes the exponential form to capture the densi-
fication regime that is dominant in all cellular materials under compression. As shown
by Saffarini et al. [31], this regime is initiated once the material transforms from being
open-cell foam into closed-cell foam, losing its bicontinuous microstructure and allowing
dislocation to accumulate and interact without being annihilated [29].
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The total dislocation density p (mm~2) variable that appears in Equation (1) can be
determined by using the formulation that Saffarini et al. [29] previously proposed. The
developed exponential expression describes the evolution of total dislocation density as a
function of relative density under compression.

Aside from the effect of relative density, the effect of ligament size, strain rate, and
temperature are captured by the remaining phenomenological parameters. The model is
described by Equation (2),

p = Ae"? + B, ()

where p is the total dislocation density, A (m~2) and B (m~?) are parameters that capture
the coupling effect of size, temperature, and strain rate, and m (m?) is an exponential decay
factor that is size-dependent only (i.e., strain rate- and temperature-independent). Table 2
shows the values of the parameters as reported in their work.

Table 2. Equation (2) parameters values according to Saffarini et al. [29].

Avg. Ligament
Dismeter (nm) 6.4 13.1 25.6
Strain Rate (s 1) 10° \ 107 108 5% 108 10° 108
Temperature (K) 300 300 400 500 600 700 300
(xfb”) —275 -33 —42 —38.5 -35 —315 | —235 —45 —22.62 | —16.56
Comp B
(x1017) 4 47 5.9 5.4 5 45 35 6.4 8.6 8.2
m —1 -2 142

3. Continuum Dislocation-Based Constitutive Model for Nonporous FCC Metals

Plastic deformation in FCC metals is controlled by dislocations” motion and their
respective interactions, which are well established by the dislocation theory [59]. Accord-
ingly, constitutive models describing metal plasticity were developed to accommodate the
microscopic interaction of dislocations and how they control the deformation and the stress
evolution upon initiation of plasticity. In this section, a brief overview is presented of the
continuum dislocation-based constitutive model that is utilized to establish the connection
with the atomistic constitutive description described in the previous section. Specifically,
we refer to the dislocation dynamics theory in full density (nonporous) FCC metals as the
basis of this proposed connection.

Voyiadjis and Abed [49] developed a physical- and dislocation-based constitutive
model that describes the plastic flow in FCC metals over a wide range of strain rates
and temperatures based on the concepts of thermal activation processes that were proven
to control dislocation dynamics at low strain rates. They modified the ZA constitutive
model [47], to overcome two major shortcomings. The first is that the explicit definition of
one of its parameters which assumes that the thermal activation area is constant instead
of being temperature-dependent. The second shortcoming is that the model assumes
a simple mathematical expansion that can be only applicable for very low strain rates
and temperature ranges. Such an assumption limits the usage of the model with regard
to the reference strain rate. Accordingly, Voyiadjis and Abed [47] proposed significant
modifications to those assumptions. Here, we present the final form of the VA constitutive
model which will be used later to provide the physical basis for our proposed continuum-
atomistic connection.

In FCC metals in particular, the plastic deformation is dominated by the evolution
of a “heterogeneous microstructure of dislocations (mobile)” and the long-range intersec-
tions between dislocations (forest), especially at strain rates less than 10*. For that, the
thermal activation analysis depends on plastic strain [49]. Moreover, dislocations during
plastic deformation can be cumulatively trapped to form a forest of dislocations. Forest
dislocations act as a barrier that hinders the motion of mobile dislocations. Overcoming
such a barrier requires introducing thermal energy that in turn can provide thermal hard-
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ening. For that reason, the plastic flow stress must contain a thermal component that is
dependent on the plastic strain. Moreover, because “slip-crystal flow stress” is controlled
by dislocation density and intersections (activation area), this thermal component of the
stress is proportional to the inverse square root of the plastic strain. Accordingly, the VA
constitutive model decomposes the stress response of the material into athermal stress
(0an) and thermal stress (oy,) components as shown by Equation (3):

0 = Ogth + Oth- 3)

The athermal stress component is plastic strain-independent and is completely related
to the initial yield stress Y;. Since there is no strain rate and temperature dependency
on the initial yield stress, Y, becomes constant. The thermal stress component describes
the coupling effect of temperature, strain rate, and plastic strain. Based on that, Voyiad-
jis and Abed [47] presented the final form of the total flow stress expression as shown

by Equation (4),

1 1

~ 05 1\ p 1\ 7
o= Y, +Be,? (1= (BT)7 ) +Yy(1—(BT)7 4)

athermal stress
thermal stress
~ ~ 2

where B is a hardening parameter and is defined as B = m“X,‘,"b , parameter Yj is the

0
resultant drag-stress at the reference velocity or zero absolute temperature and is defined
ey phob?
as Yy = —37
0
to 1, and g ranges from 1 to 2. Moreover, the thermal activation parameter p is defined as

B=pB1— ﬁzlns% with parameters 1 and $, defined as 1 = G%ln (ﬁibvop> and 8, = G%f

, constants p and g define the shape of the obstacle where p ranges from 0

where k is the Boltzmann’s constant, b is Burger’s vector, p is the dislocation density, v, is
the dislocation velocity, and G, is the reference Gibbs free energy.

4. Proposed Atomistic-Continuum Constitutive Connection

Except for a few constitutive models [45,60], most of the existing continuum consti-
tutive models that describe the plastic flow in FCC metals, including the one presented
earlier, were well-established for strain rates less than 10* s~! because they were developed
by using the concept that thermal activation processes are the driving force for the motion
of dislocation. For the case of higher strain rates than 10* s~!, and specifically at certain
threshold values, there will be an “upturn” in the flow stress as proven experimentally
by Follansbee and Kocks [50]. In more detailed terminology, there appears to be a rise in
the strain rate sensitivity at such level of strain rates. For that reason, those constitutive
models need to be revisited to include a description that considers some of the physics that
are driving this strain rate sensitivity. That is, the constitutive model’s parameters need to
either be reevaluated, expanded, or combined with additional parameters.

Despite the upturn in flow stress being an experimental fact, the main driving force
behind it is still debatable [37]. Follansbee and Kocks [50] stated that it is still controlled
by thermal activation processes instead of the dislocation drag. Rusinek et al. [61] em-
phasized that it is controlled by both dislocation drag and thermal activation. Zerilli and
Armstrong [62] showed that dislocation drag is not the driving force because strain under
tension does not increase as it should if dislocation drag is active. This means that there
is an unclear thermal-activation-guided process that is playing a key role. However, as
shown by Saffarini et al. [30], the dislocation evolution becomes significantly high at very
high strain rates due to the rapid nucleation and annihilation of dislocations, as well as the
speed at which they move. Such phenomena are difficult to attribute to thermal activation
processes and are believed to be controlled by dislocation drag [62,63].

Following this debate, several trials ranging from attributing the strain rate sensitiv-
ity to structure evolution, redefining the dislocation spacing and density, to introducing
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a “characteristic length evolution” parameter, were made to explain the upturn in flow
stress [50,64,65]. Despite the fact that those trials do not exactly match the case we are pre-
senting in this work, they fall under the same umbrella. It is shown later that the main goal
of this proposed connection and modification is to combine terms that attribute dislocation
behavior under very high strain rates in metallic foams to both the thermal activation pro-
cesses (especially yielding) and dislocation drag (especially hardening and densification).

All of the abovementioned studies concluded that the rate of dislocations” evolution
at very high strain rates is significantly higher, and in turn, this increases the dislocation
density and decreases the dislocation spacing, activation area, and other characteristic
lengths. This is believed to induce the upturn in the stress [37]. For that reason, there needs
to be a dedicated term in our proposed constitutive model that describes the unique, abrupt
change in the dislocation interactions at such high strain rate, which in turn captures the
said significant increase in dislocation density and the corresponding material hardening.
Moreover, because the dislocation spacing and interaction in metallic foams is defined
mainly by the material porosity [30,31], the effect of porosity (relative density) needs to be
a fundamental aspect of the constitutive model (see Equations (2), (8) and (10)).

As explained earlier, at very high strain rates, it is debatable whether the upturn
in stress is controlled solely by thermal activation processes or by dislocation drag. We
show here that adopting a constitutive description that combines a derivation based
on the concept of thermal activation and a phenomenological description of the other
processes that were shown to control the deformation mechanisms in metallic foams can
accurately capture the stress—strain response of gold foams. By trying to describe the unique
dislocation density evolution mechanism in metallic foams, we will be able to capture the
stress—strain response of gold foams under compression for different sizes and at strain
rates in the range 107 — 10° s~ 1.

Several constitutive models were proposed to describe dislocation density evolu-
tion [44,66-69]. However, it is a slightly different case in this work due to the different
nature of the microstructure encountered in metallic foams that are uniquely characterized
by the presence of porosity. In other words, the fact that dislocations in the case of porous
medium evolve in a different manner than that in nonporous medium plays an important
role in the behavior of dislocation evolution. As shown by our previous works [29-31],
dislocations in porous media travel significantly shorter distances than those in nonporous
media because they get annihilated after escaping the solids at the ligament’s surfaces. This
leads to the need of a continuous stress increase to renucleate dislocations and plastically
deform the material. This process remains active until material compaction reaches a point
where the bicontinuous microstructure starts to disappear, and densification is initiated. At
that stage, we start to observe some of the dislocation dynamics that occur in full density
(nonporous) solids to take place, and thus, significant hardening starts to appear in the
material response. However, that does not preclude the fact that dislocation dynamics
during the instances when dislocations are traveling within ligaments prior to annihilation
(especially before densification initiation), are the same as that in nonporous media. The
fact is that the stress response that is controlling the plastic deformation of metallic foams
is dominated by dislocation annihilation. Other than that, dislocation dynamics within the
solid will still abide by the same dislocation dynamics observed in nonporous media at
very high strain rates. Therefore, the following continuum formulation is used to physically
justify Equation (2), which determines the dislocation density as a function of relative
density in gold foams. The first connection is that the continuum formulation to predict the
dislocation density in FCC metals takes the same form as the atomistic formulation as will
be shown next. This is because, as stated earlier, the dynamics of dislocations remain the
same for porous and nonporous media at very high strain rates.

Armstrong et al. [57,70] pointed out that the activation area decreases significantly
and approaches an atomistic dimension when the upturn in flow stress occurs at high
strain rates. This means that the dislocation distance will decrease, leading to a dislocation
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density increase. Accordingly, the hardening parameter controlled by dislocation density
can take the form shown by Equation (5),

7M _
pr=ppitfr(1-e kacp), ®)

where py; is the initial forest dislocation, py is the forest dislocations, f the forest dislocation
density fraction of the total dislocation density, M is the Schmidt factor, and k, is the
dislocation annihilation factor. The term shown by Equation (5) can be rewritten to take
the form shown by Equation (6),

M oM
pr=rpritfy, I e ©)

where the first two terms can be assumed to be constant in a statistical averaging sense
while the third term is a varying term as a function of plastic strain. This can help us in
rewriting Equation (6) to take a form similar to Equation (2), such that:

p=Ci+Ce', @)

where C; = pg; + ?%, C = —7%, and r = —k,. For the case of metallic foams, as
shown previously by Saffarini and coworkers [29-31], relative density in our case is directly
proportional to the engineering plastic strain, and the dislocation distance. The intersection
spacing in metallic foams is in the order of atomic diameter (a factor of the average ligament
size ~5 x Atomic Diameter) as Armstrong et al. [57,70] pointed out (see above).

Since the relative density is directly proportional to the engineering plastic strain, as
stated earlier, it is used as an alternative representation that describes the average activation
area as well as the dislocation distance in the material. This allows one to reasonably and
directly replace the plastic strain by the relative density, leading one to rewrite Equation (7)
to follow the same form presented in Equation (2) as by Equation (8):

p = Ci+ Cre'®. (8)

By comparison, one has the parameters of Equation (8) follow the same form presented
in Equation (2) such that C; = B, C; = A, and v = m. By using Equation (8), one can
evaluate the second term (hardening stress term) in Equation (1).

Despite the fact that Saffarini et al.’s constitutive model (Equation (1)) has been shown
to significantly capture the MD simulation results as displayed in their previous studies [71]
and the fact that the second term of the model (dislocation-controlled stress component) is
physically justified by the dislocation dynamics reported in their work and well-established
by the literature, the first term (yield-controlled stress term) still lacks the required physical
reasoning. For that, here one introduces the second continuum-atomistic connection, in
which it is proposed that the first part of the atomistic constitutive model (yield-controlled
stress component) is directly related to the continuum microscopic description that the
VA constitutive model provides. In other words, one proposes the equality shown by

Equation (8):
C Y, Be0s(1- (803) + v, (1— (72, (@
= : — q — 7
& oo #BP(1-0)) v (1-607)" )
Yield — Controlled stress ~ athermalstress thermal stress component
component component
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Substituting Equation (9) into Equation (1) gives the proposed model as shown by

Equation (10):
~ 1 % L
_ 0.5 _ 7 _ )7 no
v= Y, +BeS? (1- (BT)7) " + Y (1 (BT)7) " + De , (10)
athermal stress thermal stress component “upturn” stress
component component
VA Model Hardening Term From Equation (1)

where p is the dislocation density as determined by Equation (8). That being said, the
proposed constitutive model now consists of three components: (1) the stress component
that controls the material yielding (athermal stress component), (2) the stress component
that controls the thermal activation processes (thermal stress component), and (3) the
stress component that controls both the densification (hardening) and the upturn in flow
stress due to the effect of very high strain rate (dislocation-controlled hardening stress
component). The third stress component is dislocation-controlled and should capture the
exponential increase in stress in metallic foams due to the material densification.

5. Computational Modeling

The microstructures of the nanoporous gold samples used in this work simulations
were produced by using the phase field method through spinodal decomposition [72-74].
More details about the process can be found in our previous work [31] which has the details
of generating the samples used in this work. Two Au single crystals were generated; one
has the dimensions of 100 x 100 x 100 lattice spacing (a, = 4.08 A), and the other is scaled
by a factor of two in each direction. The smaller sample microstructure and morphology is
shown in Figure 1 after being postprocessed by using the OVITO surface reconstruction
modifier [59,60]. This sample template was applied as is in the finite element solver, and
then scaled by a factor of 2 as mentioned earlier to generate the second larger sample. This
protocol guarantees self-similarity, the same porosity, and the same network connectivity
for both samples. Such conditions will reduce the variability between the two samples,
limiting the difference between them to the difference in size and difference in response to
strain rate effect. At the end of the process, the first sample ended up containing ~2 million
atoms, whereas the second one has ~16 million atoms.

Figure 1. The small sample microstructure and morphology. This template was scaled as is to
produce the larger sample which ended up having same porosity and network connectivity, but with
different ligament size (solid surface is white and interior of solid is gold).
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The samples morphologies were characterized using AQUAMI [75] software. This
analysis yields that the average ligament diameter (L) for first sample is 6.4 nm and 13.1 nm
for the second one. Both generated samples have 50% porosity.

The large-scale atomic molecular massively parallel simulator (LAMMPS) open-source
code [76] was used in this work to perform the MD simulations. The Foiles et al. embedded
atomic method (EAM) interatomic potential for gold [77] was used for the interatomic
interaction. Before performing any production simulations, the statistical minimization of
the atomic potential energy was performed by using the conjugate gradient method with a
final condition of zero stress in each direction. Upon finalization of energy minimization, a
thermal relaxation was performed for each sample to achieve a final target temperature of
300 K and final target pressure of zero over the span of 0.5 ns in NPT ensemble.

For the production simulations, a uniaxial strain through scaling of the simulation
box was applied along the [001] direction at four different strain rates of 107 s—!, 108 s~ 1,
5x10% 571, and 10° s~ and room temperature of 300 K while maintaining zero stress
condition in the other two perpendicular directions in an NPT ensemble. The 3D periodicity
was maintained during all simulation stages (minimization, equilibration, and production).
Finally, the visualization and postprocessing was performed by using the OVITO software
and crystal analysis tool [78-82].

6. Results and Discussion

In this section, the authors present and discuss the results of the proposed constitutive
model compared with the MD simulation results. In addition, they provide a comparison
between the proposed constitutive model, the VA constitutive model, and the hardening
term in Equation (1) to further show the usefulness of the newly proposed connection.

The stress-strain curves obtained from the simulations were determined based on the
global stress tensor of the full sample as per the virial theorem in LAMMPS [83]. The global

N =

stress is computed by the formula o = N @BT + % Y 7; fi, where N is the number of atoms
i=1

in the system, kp is the Boltzmann constant, T is the temperature, d is the dimensionality

of the system (2 for 2D, 3 for 3D), and V is the system volume. The second term is the
virial, equal to —dU/dV (U is the potential energy), computed for all pairwise as well as

2-body, 3-body, 4-body, many-body, and long-range interactions, where 71 and Z are the
position and force vector of atom 7, and the dot indicates the dot product (scalar product).
As for the engineering strain, it is the simple change of length along the load direction
since the loading was applied by scaling the simulation box at a predefined rate (refer to
Section 5). Accordingly, the global von Mises stress (J;) is computed by using Equation (11)
to produce the stress-strain plots:

2 2
(Uxx - U'yy) + (O'W - Uzz) + (Uzz - Uxx)z + 6(0}%y + U'J%Z + 0'52)

= 5

(11)

Tables 3 and 4 show the parameters’ values of Equations (8) and (10), respectively.
The parameters of Equation (8) were obtained from Saffarini et al. [29] for all strain rates in
the case of the small sample and for the strain rate of 10® s~! in the case of the medium
sample. As for the remaining strain rates of the medium sample, the parameters have been
evaluated by using the same approach of Saffarini et al. [29] by using the MD simulations
performed for this work and as per the definitions of Equation (6).
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Table 3. Equation (8) parameter values.

L (nm)

6.4 13.1

e(s D

107 108 5 x 108 10° 107 108 5 x 10°

107

C; (x1077)

4.7 59 6.4 6.4 8.85 8.6 8

7.75

-33 —42 —45 —45 —24.2 —22.62 -20

—18

—4 -2

Table 4. Equation (10) parameter values.

6.4 13.1

107 108 5 x 108 10° 107 108 5 x 108

10°

180 200 220 240 170 200 250

290

1000

0.003315 0.003323 0.003330 0.003333 \ 0.003315 0.003323 0.003330

0.003333

50

0.5

1.5

11 5.5

7.5 9.5

The parameters of the VA constitutive model part of Equation (10) were determined
by using the definition of each parameter as listed in Section 3 and by performing the
simple regression analysis explained by Voyiadjis and Abed [49,57] using the results of the
small sample. As the table shows, the parameters of the VA constitutive model, except
for the yield stress (Y;), are size-independent. The strain rate dependency is captured by
the B parameter which allows the remaining VA parameters, except for the yield stress, to
be strain rate-independent. The yield stress term is both size and strain rate-dependent.
Those variations in the parameters’ values, along with their dependencies, are in line with
the physical definition of the VA constitutive model described in Section 3, and with the
physical meaning intended from combining the VA constitutive model with the hardening
term from the Saffarini et al. constitutive model.

The upturn flow stress component, as represented by the hardening stress term in
Equation (10), is strain rate-independent because the strain rate contribution is taken care
of by C; and C, parameters of Equation (8), as well as the § parameter in the VA part.
Additionally, the size dependency is captured by both the parameters of the upturn stress
component and Equation (8) parameters.

Figure 2 shows the proposed constitutive model predictions of the plastic flow in
gold foam compared to the MD simulation results, the prediction of the VA constitu-
tive model, and the predictions of the hardening term from the Saffarini et al. model
(dislocation-controlled stress component) at different strain rates of ¢ = 107 s~1, & = 10% 571,
¢ =5x10%s"1,and ¢ = 10° s ! for the smaller sample (L = 6.4 nm). Figure 3 shows the
same but for the larger sample (L = 13.1 nm). Figure 4 shows a comparison of the stress
component corresponding to the VA model contribution to the newly proposed model
due to thermal activation processes at the different strain rates of ¢ = 107 s71 ¢ =108 571,
¢ =5x10%s71, and ¢ = 10° s~ for both sizes simulated in this work (L = 6.4 nm and
L =13.1 nm)
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Figure 2. Model predictions of the plastic flow in gold foam compared to the MD simulation results
performed in this work, the VA model predictions, and the hardening term from the Saffarini et al.
model (dislocation-controlled stress component) in Equation (1) at (a) ¢ = 107 s 1, (b) ¢ = 108571,
()¢ =5x10%s71,(d) ¢ = 10° s~ L. All for the smaller sized sample with L = 6.4 nm.

Several observations regarding the constitutive model behavior can be noted from
the three figures. The first observation is that the proposed equation results are in good
agreement with the MD simulation results. The proposed equation captures both the
initial plateau-like plasticity and the later stages of densification, which are controlled
mainly by the rapid increase in dislocation evolution upon porosity annihilation. As
shown by Equation (10), the proposed equation is simply the sum of the VA part and
the Saffarini et al. hardening part. For this, it is obvious that each component fails to
capture the full stress—strain response of the material. Here appears the superiority of
the atomistic-continuum constitutive model over the standalone continuum constitutive
model. It is also obvious that the hardening term is not supposed to capture the MD
simulation stress—strain response because it is only half the original model shown in
Equation (1). However, it is important to highlight that the hardening stress component of
the model comprises less than 15% of the total stress throughout the deformation process.
The remaining 85% contribution comes from the VA stress component. In the previous
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atomistic formulation, the VA constitutive model was replaced by a simple multiplication
between a constant and the yield stress. Although it phenomenologically captured the
VA constitutive model contribution, that term did not have a physical reasoning behind it.
Using the VA constitutive model, one can simply show that this term is physically justified.
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Figure 3. Model predictions of the plastic flow in gold foam compared to the MD simulation results
performed in this work, the VA model predictions, and the hardening term from the Saffarini et al.
model (dislocation-controlled stress component) in Equation (1) at (a) ¢ = 107 s71, (b) e = 108571,
()¢ =5x%x10%s71, (d) ¢ = 10° s~ 1. All for the medium-sized sample with L = 13.1 nm.

Moreover, the previous atomistic formulation assumes that the yield-controlled stress
term (refer to Equation (1)) is a constant value throughout the deformation process at each
strain rate. That is simply because the constant parameter (C) is independent of the plastic
strain or relative density. This means that for any strain rate, the yield-controlled stress
component is a fixed value from plasticity initiation until complete densification. Despite
it being true for a very high strain rate, it is not quite accurate for lower values of strain
rate. As shown by Figure 4, the VA stress component shows that there is slight hardening
due to thermal activation energy. This is more accurate constitutive description in light of
the discussion in Section 4 where it shows that thermal activation processes still contribute
to the material hardening even at high strain rates [47,50]. This shows that the updated
model proposed in Equation (10) is better than that in Equation (1).
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Figure 4. The stress component value corresponding to the VA model contribution of the newly
proposed model due to thermal activation processes at ¢ = 107 s~1, & = 108571, ¢ = 5x 10% s~ !, and
¢ = 10° s~ for both sizes simulated in this work.

Another observation is that at very high strain rate, the VA component of Equation (10)
reaches a value equal to the yield stress and maintains this value to be constant throughout
the full deformation process. That behavior, which reaches the value of the yield stress
or the athermal stress component of the VA constitutive model, can be noticed for both
sizes at strain rate of 10° s~! in Figure 4a,b. This means that at very high strain rates, the
contribution of the thermal activation part of the model towards the plastic deformation
of the foam is becoming completely ineffective, and that the plastic flow is completely
controlled by the hardening stress component (especially after densification initiation at
€ ~ 0.22). This follows the discussion presented earlier in Section 4, in which it was shown
that the contribution of the thermal activation processes decay and that the control will
be mainly due to dislocation drag at very high strain rate, during which the dislocation
evolution and speed become significantly high. In fact, those physical phenomena go hand
to hand with the dislocation dynamics presented in the authors” previous work about the
effect of strain rate in gold foams at a wide range of strain rates [30].

The last observation is that in the case of the small sample, the hardening term
contribution in the regions of material densification (¢ > 0.22) increases significantly until
it reaches or surpasses the value predicted by the VA stress component. This happens at
later stages of the deformation when the material completely compresses and the porosity
vanishes, transforming it from an open-cell bicontinuous foam microstructure into a full-
density nonporous-like microstructure. At this stage the contribution of the upturn stress
component matches the contribution of the VA stress component because the material is
now fully populated by forest dislocations, and there is no dislocation annihilation at free
surface anymore.

7. Conclusions

In this work, the authors performed large-scale simulations at wide range of strain
rates (107 s~! to 10° s~!) and different ligament sizes (L = 6.4 nm and 13.1 nm) to propose
a new constitutive description of the plastic flow in gold foams. The description is based
on an atomistic-continuum connection that physically captures both thermal activation
processes at low strain rates as well as the upturn in flow stress controlled by dislocation
drag and the rapid increase in their evolution at very high strain rates. The paper presents
an overview of the theory behind the two combined models (atomistic constitutive model
and the continuum constitutive model) to later introduce the connection between the two
scales, and in turn, present the proposed model results. The proposed constitutive model
shows good agreement with the simulation results and captures the physical description
discussed throughout the paper. The model shows promising results in capturing the
physics of the deformation mechanism in gold foams at a wide range of strain rates and
for different sizes. The proposed equation captures both the initial plateau-like plasticity
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and the later stages of densification, which is controlled mainly by the rapid increase
in dislocation evolution upon porosity annihilation. Moreover, it is observed that the
proposed constitutive description is more accurate than the standalone VA model or the
hardening term from the Saffarini et al. model. This comes from the fact that the model
combines the best of the two models to cover all the processes involved in controlling
the dislocation density effect (thermal activation energy and dislocation drag). Such a
promising constitutive description can help improving integrated physics-based and Al-
enabled design of architected metallic foams that deliver tailored mechanical responses at
different scales.
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Abstract: We posited that the grain size dependence of the tensile necking stress, as determined by the
Considere criterion for plastic instability, is a more meaningful characteristic of the Hall-Petch (H-P)
effect than that of the yield stress or the 0.2% proof stress. An inverse square-root dependence of the
necking stress on the grain size was derived from a dislocation dynamics-based constitutive model.
In this model, the grain size effect enters the stress indirectly via the evolution of the dislocation
density. Model predictions were confirmed by the experimental data for nickel and titanium.

Keywords: strain hardening; grain size; necking instability; dislocation kinetics modeling

1. Introduction

The Hall-Petch (H-P) relation between the yield strength and the average grain size
of polycrystalline materials is one of the pillars of physical metallurgy. It has been quite
some time since an H-P description was established for the entire stress—strain curve, i.e.,
for any strain e—initially for the polycrystalline mild steel tested in tension [1]. The H-P
relation is commonly presented in form of the equation

o = 0pe + K'Td 12 1)

relating the flow stress o at a given strain ¢ to the average grain size (or average intercept
length in micrographs) d. In Equation (1), the “friction stress’, op,, represents the flow stress
in a single crystal limit of ‘infinitely large’ d. The friction stress absorbs the contributions
to flow stress from mechanisms not related to the dislocation interaction effects, such as
solute drag, the Peierls stress, etc. For pure fcc metals, op, can be assumed to be negligible,
at least after a sufficiently large strain. The Hall-Petch coefficient K/' measures the stress
intensity required for the transmission of plastic flow across the grain boundaries [2]. It is
material-specific and is determined empirically, as reviewed in [3,4].

In recent years, the research focus has been on incorporating the H-P description into
constitutive models that include temperature and strain rate dependences, as encompassed,
for example, in the Zerilli-Armstrong (Z-A) relations that are different for face-centered
cubic (fcc) and body-centered cubic (bcc) metals [5]:

0c = 0 + Boler(1 exp(—e/e,))] /2 exp{—a"T} + K{Pd"1/2 (fec) b)

0e = 0ge + Bexp(—B*T) + Ke" 4 KHP4=1/2 (bce) 3)

These phenomenological equations can be seen as special cases of Equation (1). The
specific form of the friction stress oy, involves an athermal stress component o, which
is dependent on the solute content and the dislocation density. The remainder accounts
for temperature-dependent strain hardening, with the strain- and temperature-dependent
terms taken as a product for the fcc case and in an additive form for the bcc case. In
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Equation (2), the strain hardening that is measured in terms of By and a recovery strain, ¢, is
coupled with an exponential temperature-dependent factor, where a* = ag — aq In(d-y/dt)
introduces a dependence on the shear strain rate dy/dt. Here ag and a1 are material param-
eters. In Equation (3), B is the athermal stress reflecting the resistance to dislocation glide at
zero absolute temperature, T = 0. The rate dependence enters via f* = By — p1 In(dvy/dt),
in the same manner as in a*. The parameters K and # in the Ludwik term Ke" [6] govern
the strain hardening of the material. The hexagonal close-packed (hcp) metals «-titanium,
zirconium, and hafnium behave like bcc metals, while magnesium, zinc, and cadmium
follow an fcc-type behavior. Accordingly, Equations (2) and (3) can be applied for these
two respective groups of hcp metals.

An excellent descriptive capability of the Z-A model has been demonstrated in many
examples, cf. [7,8]. A deficiency of the Ludwik ansatz, however, is that a trend of the flow
stress to saturate at large strains is not reflected by Equation (3), and that the constants K
and 7 do not have any microstructurally-based meaning, even when the approximation
of the stress—strain data by the Ludwik-type models is seemingly acceptable. A viable
alternative is a physically based modeling approach going back to Kocks and Mecking [9],
in which the dislocation density plays the role of an internal state variable evolving in the
process of straining. The model was later extended by Estrin and Mecking [10] to account
for the grain size effect (see also [11]). In the next section, an analysis of the H-P effect in
terms of the Kocks—Mecking—Estrin (KME) model [10,11] will be presented. This will be
followed by gauging the KME model against the experimental data for nickel and titanium
as representative fcc and hcp materials.

2. Dislocation Density Based Constitutive Modeling of the Hall-Petch Behavior

Virtually all dislocation-based strain hardening models involving a single internal
variable comprise two constitutive equations: a semi-empirical equation relating the flow
stress ¢ to the total dislocation density p, and an equation describing the evolution of p
with plastic strain e. The first equation is the Taylor relation:

o =0+ MaGb\/p =07+ B\/p 4)

where b is the magnitude of the dislocation Burgers vector, G is the shear modulus, and «
is a microstructure-sensitive factor, typically ranging between 0.1 and 0.4. Its magnitude
is governed by the dislocation arrangement and includes the strain-rate and temperature
dependence of the flow stress; M is the texture-dependent orientation factor converting
the resolved shear stress to the axial stress. The factor p = MaGb is introduced on the
right-hand side of Equation (4) for brevity. The evolution equation for the total dislocation
density may take different forms, of which the simplest one reads as [10-13]

dp

L = M(ko —kop) 5)
The dislocation density evolution described by Equation (5) is a result of the competing

processes of dislocation storage and annihilation (dynamic recovery). If one assumes

that dislocations are stored quasi-homogenously at a rate inversely proportional to their

mean free path (A), ko can be expressed as kg = béclo\> , with ko being a non-dimensional
constant. The term kyp represents the average rate of dynamic dislocation recovery, which
is a thermally activated process governed by the cross-slip of screw dislocations or the
diffusion-controlled climb of edge dislocations. This is reflected in the temperature and
strain rate dependence of the dynamic recovery coefficient k, = k (¢, T). If the dislocation

travel is geometrically constrained by grain boundaries, i.e., for sufficiently small grain
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size, the mean free path can be identified with the average grain size d. In this case, the
evolution equation assumes the form

dp o %0
Je M(bd - kzP) (6)

where the storage term is explicitly related to d.

In a more general formulation, assuming that both grain boundaries and dislocations
within the grains (distributed randomly or organized in dislocation cells) contribute to
dislocation storage concurrently, Equation (5) can be extended to a generalized evolution
equation of the Kocks—Mecking-Estrin (KME) model [10,11]:

d
B — Mk +ki /P~ k2 p) @)

This equation reduces to the evolution equation of the Kocks—Mecking (KM) model in

the limit of large d when kg = bk—od is significantly smaller than ky,/p, and the dislocation
production is controlled by dislocation reactions in the grain interior.

The constitutive model expressed by Equations (4), (5), and (7) recovers an H-P type
relation between the flow stress and the grain size. Specifically, it delivers the classical H-P
formula for the conventional yield stress at the 0.2% proof strain:

KHP
002 = 0f + —02 (8)

Vd

Here, the H-P coefficient is given by

KEHP = M3/24Gb \/ (%0 /b+ kl\/pT)d)eo,z )

which, as opposed to the predictions made in [14], may be microstructure-sensitive due to
the influence of microstructure on the parameters %0 and k;.

In the limit of k; — 0 (or sufficiently small initial dislocation density pp and/or grain
size d) the yield stress dependence on the grain size reads as

kob
002 = 0 + MP/2aG || 202 (10)

K = M324G /2 -10-3 kob (11)

We recall that as early as in 1967, Conrad et al. [15] arrived at the following semi-
empirical relation between the flow stress and the grain size at the notional onset of plastic
flow (i.e., at the 0.2% proof strain):

and Equation (9) reduces to

bego
d

002 = 0f + c’ (12)

Here, C' is a material dependent parameter. The functional dependence on the grain
size given by this equation is obviously the same as that in Equation (10).

To derive this equation, Conrad et al. assumed that grain boundaries affect the total
dislocation density, which determines the flow stress through the Taylor Equation (4). The
experimental data they used showed a linear dependence of the dislocation density on
plastic strain, p ~ ¢, at the onset of yielding. Note that this experimental observation
resulting in the well-known ‘parabolic’ hardening, o ~ +/¢, is naturally predicted by
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Equation (5) when the first term on the right-hand side describing the dislocation pro-
duction prevails over the annihilation term, e.g., for well-annealed polycrystals. Shortly
after the publication by Conrad et al., Ashby [16] used the slip distance concept that he
developed for the description of plasticity in heterogeneous materials and came up with
essentially the same form of the (d) relation. This work prompted the emergence of a
family of strain hardening based models of the H-P effect as reviewed, for example, by
Cordero et al. [17]. In this context one should mention the work by Hazzledine [18,19] and
the companion theoretical analysis [20] on the basis of the KME kinetic Equation (7), which
has led to the H-P expression resembling Equation (12). Godon et al. [21] expressed the
Hall-Petch slope for a group of strain-hardening based models in a general form similar to
Equation (11): K(I)JZP = M3/20GV2-10-3 b 6, albeit without referring to the dislocation
multiplication coefficient ko directly. Here, 6 is a model-specific microstructure-sensitive
parameter depending on the dislocation multiplication process, in general, and the number
of activated slip systems [22], in particular; it may also depend on the grain boundary state
through the density of ledges [23]. Furthermore, using discrete dislocation dynamics simu-
lations of the deformation behavior of Cu polycrystals with grain sizes ranging from 0.5 to
2 um, Lefebvre et al. [22,24] demonstrated that regardless of the details of the dislocation
multiplication process, the H-P effect can be interpreted as Taylor hardening owing to a
heterogenous dislocation storage process controlled by the accumulation of dislocations at
the grain boundaries.

3. The Necking Stress Locus as a Basis for an H-P Analysis

Historically, the H-P relation was first established experimentally for the yield strength.
The latter quantity can be represented, e.g., by the lower yield point in bec a-iron [2,25].
However, for fcc materials, the true yield strength is difficult to determine experimentally,
which is why the generally accepted convention of using the stress ¢y, determined at the
0.2% irreversible strain is adopted as a measure of the yield strength, as mentioned above
(see Equation (8)).

In their early work, dated 1962, Armstrong et al. [2] pointed out that the KH” value can
vary, depending on the plastic strain € at which it was measured. In fact, virtually all strain
hardening models predict the square-root strain dependence of the H-P factor in the form
akin to Equations (10) and (12). This parabolic strain dependence of KX has long been
a matter of controversy in experimental measurements performed on various materials,
including fcc Cu [26-28], Al [29,30], Ni [31,32], and 30/70 brass [2]; bcc Fe [2,25,33]; and
hep Zn [2], Ti [34], Zr [35], and Hf [36]. Most studies converged on the conclusion that KHP
increases with plastic strain, yet with some exceptions, as reviewed in [17,37]. It was found
that KH” may exhibit an opposite trend, decreasing with strain due to deformation twinning
or a strong crystallographic texture. The most remarkable discrepancy seen from these
assessments of the strain hardening models lies in the fact that none of the experimental
measurements confirm the parabolic K/¥ behavior predicted by Equation (10). Cordero
et al. [17] suggested that one possible reason for the observed inconsistency is that the
K!P values have historically been measured at stresses that are so large that Ashby’s
assumption that the density of geometrically necessary dislocations is much larger than
that of statistically stored dislocations is no longer valid. We share this viewpoint and
take it a step further. In our opinion, the contribution from the dynamic recovery term in
the strain hardening models including the KM, Equation (5), and the KME, Equation (7),
models cannot be neglected even at the beginning of plastic flow.

Thus, the KME strain hardening models predict an H-P type dependence of the
flow stress on the grain size for any given strain, despite an ambiguity with the choice of
the reference strain discussed in the previous section. However, the strain is not a state
variable [38], and it is therefore desirable to compare the flow stresses for different grain
sizes in a condition free of any arbitrariness. We propose to use the locus of the maximum
loads, corresponding to the onset of tensile necking under various deformation conditions,
as representing a well-defined state that offers itself for an H-P analysis. The uniqueness of
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this locus defined by the necking instability condition eliminates the arbitrariness of other
approaches in which the strain is considered (explicitly or tacitly) as a state variable. The
necking condition is obtained in terms of extrinsic variables, the true stress and true strain,
for a given plastic strain rate ¢ according to the Considere criterion [39]:

o
€

0

=0 (13)

¢

Q

In this criterion, the strain rate sensitivity of the flow stress is neglected, which is
acceptable for many fcc and hep metals and alloys. In principle, it has been demonstrated
that both the Considere condition and the more general Hart instability condition [40],
which does account for the strain rate sensitivity, follow from the evolution laws for
the principal internal variable—the total dislocation density [41,42]. Undoubtedly, the
advantage of utilizing the necking point to characterize the H-P grain size effects is that
unlike the conventional yield point (or the flow stress at a given strain), which is not a
special point on the stress—strain curve, the point of onset of necking instability is actually
a special point. It is controlled entirely by a combination of the parameters governing the
strain hardening of a material [41], and the slope of the H-P plot is uniquely determined
by these parameters, and not by any convention with regard to strain.

Combining the solution of the constitutive equations of the KME model for constant
plastic strain rate with the Considere condition, Equation (9), yields the plastic strain and
the flow stress at the necking point:

1 k U]I\(]ME B k1+K k U[I\(]ME B kl—K
KME __ 1 B 2k, 1 B 2k,
ﬁ 2ky ,B 2k,
and
Bkt M kM\2 | M K2 — ki2
e 2 TP (T) + 9 - [K2 =K
oN = (15)

(2+ kM)

with K = 4/ k% + 4koko.
Turning now to the analysis of the grain size dependence of the stress at maximum
load, or the necking stress, we obtain

koM (1 + kM) 1k  KIP
oKME — SO TR o (M > 1) = MaGhy[ 52 = “N_ 16

which yields the Hall-Petch type behavior of the necking stress. Here, the H-P factor is
redefined at the Considere point as

KRP = MaGVb II%O (17)
2

We used the condition ko M >> 1, which is fulfilled particularly well for fine-grained
and ultrafine-grained materials [41-45].

The simplicity of both relations, Equations (16) and (17), makes them very attractive
for practical use.

33



Metals 2023, 13, 690

4. An H-P Dependence for oy of Nickel and Titanium—A Compilation of
Experimental Results

The tenet of the Z-A approach that strain hardening is contained chiefly in o, while
K!P is essentially unchanged, has been taken a step further in the comparison of compiled
H-P measurements of 0y > and oy covering a large range of grain sizes for pure nickel and
commercial purity (CP) titanium (Grade 2), as shown in Figures 1 and 2, respectively. In
these figures, the subplots (a) and (b) refer to the conventional yield stress 0y, and the
necking stress oy, respectively. For the sake of generality, both datasets for Ni and Ti
represent the results of independent investigations by different researchers. For nickel, the
compilation by Di Leo et al. [14] (see the references therein) is used, with an addition of
data from several other sources. The shown measurements of Yasnikov et al. [45] comprise
two groupings of conventional and ultrafine-grained materials, in the latter case, having
been produced by the annealing of the material that had been severely pre-strained by
equal-channel angular pressing (ECAP). The ultrafine grain size measurements of Bui
et al. [46,47] (see also [48] and Krasilnikov et al. [49]), adopted here, were obtained by
various techniques of severe plastic deformation (SPD). The solid line corresponds to the
least square regression line, with the intercept value of ¢y = 66 MPa and the slope of

KHP =204 MPa x pm!/2, which is in fair agreement with what is typically reported for
Ni [14]; the Pearson’s r value for the entire dataset approximation is 0.95.

2500 - 1 - 1 - b 1 - 1400 —T T —T T 1 T
m  Di Leo et al. (compilation) 2019 ]
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Figure 1. Hall-Petch plots showing the grain size dependence of (a) the yield stress 0y and (b) the
true stress at maximum load oy for nickel polycrystals. The linear regression line for oy > presented
in (a) is reintroduced in (b) for easier comparison. The references for the datapoints collected from
different studies by Di Leo et al. (2019) are given in [14]; other points are adapted from [45—49].

Figure 1b compares the slope K)//' represented by the regression line of Figure 1a
with K{IP obtained from the data collected at the true necking stress. The latter quantity,
231 MPa x um'/2, is only slightly higher than the value of KEP corresponding to the
0.2% proof strain. Considering the significant scatter of experimental data, it is fair to say
that both values are practically indistinguishable, and as a first order approximation, a near
equality K} ~ K{IP holds.

The same trends are observed for commercially pure titanium (Grade 2) with a wide
range of grain sizes produced by various severe plastic deformation routes and annealing
procedures [50-65], as shown in Figure 2.

34



Metals 2023, 13, 690

1200

1000 ~

(o]

o

o
1

600 +

Yield Stress, 6y, / MPa

400 ~

Stress, o / MPa

T s T i T g T » T T T T T T

1 2 3 4 5 0 1 2 3 I 4 I 5
1/d"2 [ ym™2 (b) 1/d"2 / 2

Figure 2. Hall-Petch plots showing the grain size dependence of (a) the yield stress oy, and (b) the
true stress at maximum load oy for CP titanium (Grade 2); the data were collected from [50-64].

5. Discussion

The present measurements and the analysis of the data add to a previously reported
compilation of results assembled for the tensile test characteristics of bec, fcc, and hep
metals [66]. Special emphasis is put on the H-P analysis of the stress at the maximum load
locus (necking stress) as an important convention-free measure of the material state. Both
the phenomenological Z-A model and the KME model, with its greater microstructural
underpinning, were revealed to provide an adequate description of the H-P behavior, the
latter being capable, in principle, of predicting different slopes of the H-P curves for the
yield stress and the necking stress. Even though no significant difference between these two
slopes was seen in the present work for either Ni or Tj, this is not what is often observed.
For example, Tsuji et al. [67] found that the K}/’ value for fine grained CP aluminum alloy
Al1100 was considerably larger than that of K{I” measured at the ultimate tensile strength.
The microstructural sensitivity of the H-P effect is reflected in Figures 1 and 2 in several
aspects. The significant scatter seen in large experimental datasets assembled from different
sources for materials of the same type (see also recent comprehensive compilations of H-P
data for Ti by Takebe and Ushioda [68], Ti and Al by Figueiredo and Langdon [69], and for
Ti, Al, Mg, Cu, and Fe by Dangwal et al. [70]) suggests that while the general 1/+/d scaling
law for the flow stress does hold, the microstructural factors other than grain size (e.g.,
crystallographic texture, dislocation storage in the substructure, the grain boundary state,
etc.) strongly influence the mechanical response. Thus, KH” is not a universal material
constant that can be used to quantitatively predict the flow stress dependence on the grain
size. The slopes of the H-P plots generated by different investigators for essentially the
same material can differ quite appreciably. As an example, in Figure 2, we highlighted the
data by Luo et al. [64] (grey squares), showing that the H-P slope of 404 MPa x um!/2
for a specific sub-set (plotted as a dashed linear regression line) is almost triple the slope
of the linear regression line for the whole dataset (137 MPa x um?/2). Furthermore, both
these values are remarkably different from the H-P coefficient of 173 MPa x um'/2 derived
from the data presented by Figueiredo and Langdon [69] for ultrafine grained Grade
2 Ti. The results reported by Khamsuk et al. [71] for fine grain Al1100, with a different
processing history, corroborate the above statement that the H-P coefficient is sensitive to
the microstructure. These authors showed that within approximately the same range of
grain sizes, the slope of the H-P diagrams varied by a factor of five—from 28 MPa x um!/2
for cold-rolled and annealed samples to 58 MPa x um!/? for those produced by torsion,
and 139 MPa x um!/? for the material fabricated by accumulated roll bonding.
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We should thus contend that the slope of the H-P line is sensitive to the microstruc-
ture of a material and may depend appreciably on its processing history. The data by
Tian et al. [72], Bai et al. [73], and Dangwal et al. [70] provide further support for this posit.
These authors observed a two-stage H-P regime with remarkably different slopes in coarse-
and fine-grain domains in differently processed pure Cu, Al, Mg, Ti, and ultrafine grained
Fe-31Mn-3Al-3Si alloy specimens, as schematically illustrated in Figure 3. Similar results
indicating the existence of a critical grain size d., where a sharp transition in the H-P
behavior is observed with grain refinement to the sub-micron scale, were reported by Fu
et al. [74] for IF steels with the grain size ranging from 0.5 to 500 um. A similar bi-linearity
in the H-P behavior for strains up to 5% has been reported earlier by Kashyap and Tan-
rgi [75] for 316 stainless steel (note that the single H-P relation was, however, observed
at larger strains up to necking) by Thompson [76] for Ni, by Begrstrom and Hallen [77]
for Fe, and by Lloyd [78] and Armstrong [79] for aluminum. This microstructure sensi-
tivity can, in principle, be readily accounted for in a phenomenological way by allowing
a dependence of the dislocation production coefficients ko and k; in Equation (9) on the
grain microstructure, texture, and grain boundary state resulting from a specific processing
route. For example, the puzzling two-stage H-P behavior reported in the publications
cited above can be seamlessly explained by the KME model we use. The authors of [70]
have heuristically related the observed change-over in the slope of the H-P plot, with grain
reduction to the sub-micron range, by the increased number of dislocations stored during
SPD processing. We concur with this view and expand on that. Recalling the general form
of the H-P coefficient proceeding from the KME model, Equation (9), one can notice that the
initial dislocation density pg enters it as an addition to the “classical’ H-P term Eo /bd under
the square root sign. An upward change in the slope of the H-P diagram occurs when the
ki\/Pod term in Equation (9) comes into play and becomes comparable with or greater than

EO /b. Then Equation (8) for the yield stress is transformed to the more general form

1 kb
d ko
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Figure 3. Schematic illustration of the two-stage Hall-Petch behavior that has been frequently
reported for pure metals and alloys [70,72-74].
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Assuming that the initial dislocation density scales with the inverse grain/cell size is
00 ~ % [80] (cf. Figure 4 confirming this relation for ultrafine grained materials, according
to the X-ray profile analysis by Zhilyaev et al. [81] for Ni, Gubicza et al. [82] for Ti, and

Dalla Torre et al. [43] for Cu), the last expression reads simply as 0pp ~ W. Here

A is a microstructure-sensitive parameter integrating the coefficients of the KME model.
To highlight the versatility of the proposed approach, we note that, generally speaking, A
can also be grain size-dependent through the k; factor tending to increase with decreasing
grain size. A discussion about these minutiae of the model is beyond the scope of the
present paper and will be extended elsewhere.
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Figure 4. Initial dislocation density scaling with the inverse grain size in ultrafine-grained Ni [81],
Ti [82] (cf. also similar data in [83]), and Cu [43].

We would like to emphasize that we do not associate the observed change in the slope
of the H-P diagram with a break of the H-P relation. In our opinion, this relation holds
universally true for both coarse-grained and fine-grained materials, but with different
H-P coefficients governed by the phenomenological parameters in the dislocation kinetics
laws. We should reiterate that for grain sizes above the nano scale, the KME model
provides a coherent view for both observed H-P regimes, without a need to invoke a new
deformation mechanism. Rather, the differences observed in the H-P behavior in coarse-
and fine-grained materials or differently manufactured materials are associated with an
interplay between the contributions of the omnipresent grain size-dependent and grain
size-independent dislocation storage processes.

We should also note that the results reported in [67,74], for the H-P effect measured at
0.2% proof strain and at the maximum tensile load compare favorably with our findings
and model predictions. It is fair to say that the predictions for the H-P behavior of the
ultimate tensile strength (i.e., the necking stress), which follow from Equation (18), are
largely fulfilled. This refers particularly to a decrease in the slope of the H-P diagram with
the grain size reduction to the nano-scale [70], which can be attributed to the experimentally
established strong inverse dependence of the dynamic recovery rate coefficient k, on the
grain size. This dependence is bound to level off as the grain size is reduced to the
nano scale [41-45]. Indeed, at this scale, the diffusional processes at the grain boundaries
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prevail and control the plastic flow [84] (see also [70] and references therein). This domain,
which is very interesting scientifically, is rarely reached with common materials processing
techniques, however.

In conclusion, the simplicity and generality of the present analytical model, coupled
with its sensitivity to the microstructure, provides it with a high predictive capability.
This refers in particular to the Hall-Petch relation derived on the basis of the model, thus
making it a valuable practical tool for materials design. Although we tested it only against
Ni and Ti as representatives of fcc and hcp materials, the model can easily be applied to
other metals and alloys from these classes. Moreover, without loss of generality, it can be
adapted to bcc systems where the Peierls stress can no longer be neglected. The validation
of the proposed approach to the Hall-Petch relation for bcc metals is thus a future target of
research in this field.

6. Summary

Using experimental data for two archetypal metals—fcc nickel and hcp titanium—the
grain size dependence of the stress at maximum load, which is determined by the Considére
criterion for necking, was shown to obey a Hall-Petch type relation. Calculations based on
the Kocks-Mecking—Estrin model confirmed a great predictive capability of the proposed
modeling method. A distinctive difference between the Z-A and the KME approaches is
that the grain size effect enters through an additive term in stress in the Z-A model and
appears indirectly, through its effect on the strain hardening rate controlled by dislocation
density evolution, in the KME model. We contend that the Hall-Petch behavior of the
necking stress is a more meaningful measure of the grain size dependence than the classical
H-P relation of the yield stress represented by the 0.2% proof stress. The greatest advantage
of using the former measure is that it does not rely on any arbitrary conventions. Still,
even this measure we favor is not free of problems, as the slope KK is sensitive to the
microstructure of the material and cannot be regarded as a universal material characteristic.
The concluding judgement is that while the general validity of the H-P relation is not put
in question by our results, its universality over the entire grain size range can no longer
be claimed.
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Abstract: Since the 1980s, constitutive modeling has steadily migrated from phenomenological
descriptions toward approaches that are based on micromechanics considerations. Despite significant
efforts, crystal plasticity remains an open field of research. Among the unresolved issues are the
anomalous behavior of metals at low temperatures and the stress upturn at extreme dynamics. This
work is focused on the low-temperature responses of body-centered-cubic (bcc) metals, among them,
molybdenum (Mo). At these conditions, the plastic flow strength is governed by the motion of screw
dislocations. The resultant non-planarity of core structures and slip causes the following: the shear
stress includes non-glide components, the Schmid law is violated, there is a tension-compression
asymmetry, and the yield surface and plastic potential are clearly decoupled. We find that the
behavioral complexities can be explained by atomistically resolved friction coefficients in macroscopic
yield and flow. The plastic flow mechanisms establish the departure point into the follow-up analysis
of yield surfaces. For example, we know that while the von Mises stress is explained based on energy
considerations, we will also show that the stress has a clear geometric interpretation. Moreover,
the von Mises stress is just one case within a much broader class of equivalent stresses. Possible
correlations among non-Schmid effects (as represented macroscopically by friction coefficients),
volume change (i.e., residual elastic dilatation) from dislocation lines, and elastic anisotropy are
investigated. Extensions to the shock regime are also established.

Keywords: tensor representations; friction coefficient; metal plasticity; dislocations; Schmid law

1. Introduction

The mechanisms of plastic deformation in bcc metals at low and medium temperatures
are different from the observed mechanisms in face-centered cubic (fcc) and hexagonal-
close-packed (hcp) metals. The plastic flow is controlled by the motion of 1/2<111> screw
dislocations. The dislocations may spread out into several planes of the <111> zone [1,2].
In single crystals, the plastic flow exhibits anisotropic characteristics, and there is a tension-
compression asymmetry. The non-planar structure of the dislocation cores is responsible
for high friction stress (i.e., Peierls stress), there is an asymmetry of the yield stress in
tension and compression, the Schmid law is violated, and the yield surface and plastic
potential are clearly decoupled [3-6]. Consequently, a work-conjugate pair of the equivalent
stress and the rate of plastic strain cannot be constructed. At increasing temperatures, the
tension-compression asymmetry is reduced, and this non-Schmid effect nearly vanishes at
room temperature [7].

In metal plasticity, most phenomenological constitutive models are formulated in the
framework of von Mises (J») theory. Also well known, but less popular in practice, is Tresca
plasticity. The obvious advantage of the Huber—von Mises yield surface is its numerical
convenience. The existence of a smooth and convex yield surface makes the analysis
numerically friendly. In contrast, the Tresca surface has built-in singularity points/lines,
which pose issues when constructing the associated plastic flow rules. We emphasize
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that the two approaches were introduced over 100 years ago; the Tresca plasticity was
proposed in 1864 [8], the energy-based criterion was suggested in 1904 by Huber [9,10],
and the concept of plastic flow was formulated by von Mises in 1913 [11]. Tresca plasticity
assumes that the plastic slip is initiated when the maximum shear stress reaches a critical
magnitude. Still, we are aware that the active slip planes may deviate from the plane of
maximum shear. Such misorientations are quantified by the Schmid factor. According to
the Schmid law [12], plastic flow begins when the resolved shear stress on a given slip
plane attains the threshold level known as the critical resolved shear stress. This law also
implies that the driving force is not influenced by other components of stress. Taylor [13]
and many other researchers found that the law is not applicable to bcc metals, as it has
limited justification [5].

In contrast to the Tresca concept, Huber—von Mises plasticity is formulated based on
energy considerations, where the plastic deformation begins when elastic energy (deviatoric
part only) exceeds a certain energy barrier. In the Huber—von Mises concept, slip planes are
not defined, and as explained in Section 2, the Schmid law should be used with some caution
as well. It is worth mentioning Hosford’s yield criterion for isotropic plasticity [14], which
allows reshaping the stress envelope. In this and many other phenomenological models,
emphasis is placed on the definition of the material’s strength (or yield stress), while little
attention is paid to the actual mechanisms of plastic flow. Also noteworthy in this context
is Hershey’s description of isotropic plasticity [15] and preceding seminal treatments
of yielding by Taylor, Bishop, and Hill [16-18]. Although the current work focuses on
macroscopically isotropic polycrystalline responses for untextured metals, prominent
asymmetric yield criteria for materials of lower symmetry (e.g., orthotropy) are also noted,
e.g., [19-21].

While recognizing the importance of yield stress, we focus our investigations on
the mechanisms of deformation, and then, we determine whether a coupling of the flow
mechanisms with the equivalent stresses exists or, just as important, whether the yield
surface should be treated independently from the plastic potential. Herein, the analysis
is based on the tensor representation method (TRM) developed in [22]. In Section 2, we
illustrate TRM capabilities by constructing a geometric interpretation for the Huber-von
Mises flow mechanism. Then, in Section 3, we focus the discussion on the flow mechanisms
in bcc Mo. In what follows, we can identify two friction coefficients that capture the effects
of the slip non-planarity. One of the coefficients characterizes the yield surface, and the
second is used in the flow potential. We show that the coefficients properly reproduce the
stress asymmetry in molybdenum at low temperatures, and the friction term can depict
the change of flow mechanism at shock conditions (Appendix A). In Section 4, possible
connections between the macroscopic coefficients, elastic anisotropy, and dislocation core
effects are explored theoretically, with a focus on origins of local plastic dilatation.

2. Geometric Interpretation of Huber-von Mises Flow Mechanism

We begin by formulating a geometric interpretation for the Huber-von Mises plastic
flow. The procedure is an important step because it explains further generalizations of
the flow mechanisms and yield surfaces for bcc metals. More specifically, we want to

determine the dominant slip planes, which might be associated with the |, stress envelope.

35S . . .
V35, is defined in terms of the stress

As we know, the von Mises flow tensor M;; = :
deviator S;; = 0j; — péj;, where 0j; is the Cauchy stress, while the pressure p = 0 /3
(here, defined as positive in tension) and the Kronecker delta §;; complete the relation. The
flow tensor M;; specifies the mechanism of plastic flow such that éz« = %Mijéfq. When
the mechanism is coupled with stress (Ti]-éfj = (% Mijal-j) éfq, the equivalent stress becomes
Oeq = M;joij/2 = /3]y; i.e, it is the Huber-von Mises stress. We find that the flow tensor
M; j can be expressed in terms of three eigentensors: Nl-lj, Nl-zj, and Ns. such that the tensors
are aligned with the principal stresses o7 = Niljai]-, 0o = N%Uij, and 03 = NE;O’Z']', where
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01 >0y >o03and N 11] + Nl-z]- + N 13] = Jj;. Before proceeding, it is important that we introduce
the tensor representation method and show that a generic eigentensor can be uniquely
expressed in terms of other second-order tensors, for example, the stress tensor.

2.1. Tensor Representations

The procedure for constructing tensor representations Nilj, Nizj, and Nl-3]- is described
by Zubelewicz [22], where detailed derivations can be found. As stated, any symmetric
second-order tensor can be represented by another second-order symmetric tensor if the
original tensor and its representation produce the same invariants. Here, the generic dyadic
product N;; = n;n; is constructed on a unit vector 7. It is clear that Nig. = 1, Njx N; =1,
and Nj, Ny Nj; = 1, as is true for the tensor taken to any power. We also know that any
second-order symmetric tensor can be expressed in the form of three fundamental terms.
Since the plastic flow is controlled by the current stress, the tensor representation of Nj;
will be defined in terms of stress or, here, with the use of the stress deviator. In fact, the
stress and stress-deviator-based representations are equivalent; hence,

N’ = amdij + buSij + cmSikSk; ey

The superscript m in Ni’]’f indicates the direction of the principal stress. As stated
earlier, there are three relevant invariants: Ny = 1, NyN; = 1, and Ny Ni;N;; = 1.
The requirement is that the representation (1) retains the same invariants as the generic
eigentensors. Consequently, there are three invariants and three conditions, and, upon
solving the equations, we have three sets of parameters {a,;, by, ¢y }. The first tensor Nilj
reproduces the dyadic product constructed on the unit vector pointing in the direction of
the maximum tensile stress. The parameters for m =1 are

_2 e
3 COS —3 sec @

@I=

a; —

cos(%qtzg)
V3L

+¢
cos 3

€= —p—secy

by = sec ¢ 2)

The tensor Nizj is a dyadic product associated with the second principal stress. In this
case, the parameters for m = 2 are

azz%—i-%cos%secq)
b _sin%"’
2—msecgo 3)
o COS%
€2 = ——~secq

Lastly, the third tensor N 13; determines the orientation of maximum compression, where
form =23,

sec ¢ (4)

CO:
3= —J—secy

In this construction, the second and third invariants of the stress deviator (i.e.,
Jo = SiSij/2 and J3 = S;Sk;Sji/3) define the angle ¢ = sin"!(A,), where A, =

3v3)s/ (2132).
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The angle ¢ varies between £71/2. Once again, the stress representations of the
eigentensors must satisfy the condition Nilj(Sk,) + N%»(Skl) + N%(Skl) = Jjj. In short, the
TRM is a very useful tool for researchers. It has already been shown that experimentally
observed flow mechanisms, at first constructed in a generic tensorial form, can be uniquely
coupled with the driving tensorial stimuli [23]. In this manner, we eliminate the uncertainty
about the functional form of the mechanisms.

2.2. Atomistically Resolved Friction Coefficient

Once again, here we attempt to construct a geometric interpretation for the flow

mechanism M;; = \/j];?j . In the first step, we construct a generalized slip mechanism along
three planes, where the planes are corotational with principal stresses such that
— 1 3 1 2 2 3
Mijj=a (Nij - Nij) +p (Nij - Nij) -p (Nij - Nij) ®)
Note that each plane is weighted by functions « and . Next, we recall the definition
of the flow tensor M;; = %, where the scalar products are equal to My, = 0, M;;M;; = 6

and M;M;M;; = 6 sin ¢, respectively. From there, we identify the two functions a and B.
The functions take the following form:

zx:\ﬁcos%

B =Posin§

In the next step, the expression (5) is reorganized and presented in an equivalent form

— 1 3 1 2 3 2 N :
Ml-]- =« (Nl-]- — Nij) +B (Nl-]- + Nl-]- + Nij — 3Nl.]-), and then, the expression is presented in
the final form

(6)

M=« [(N}] - Nf;) + 1y (51-]-/3 - ijﬂ @)

Note that Nl«l]« + Nizj + Ni3]- = Jjj. The parameter p, = 3B/ is interpreted as an
atomistically resolved friction coefficient. The function « varies between 3/2 and V/3; thus,
the function is nearly a constant. The friction coefficient y, takes values between Fp,. At
first glance, the relation resembles the Coulomb law used in frictional materials [24]. A
generic form of the flow tensor, but not a stress representation, was introduced in [25]. In
the current application to bcc metals, we realize that the coefficient

e = V3 By tan /3 (8)

quantifies the slip non-planarity [1,5,26,27]. Consequently, the Huber-von Mises stress
Oeq = +/3J2 is equal to

Oeqg = 5 [(01 = 03) + pop(p — )] )

N R

In the flow tensor (7) and in the equivalent stress (9), the slip non-planarity is quantified
in the second terms ji, ((Sij/ 3 - N12/> and iy (p — 02). In frictional materials, the second

term characterizes the roughness of the slip surface, where the roughness is responsible for
dilatational inelastic deformation.

In metals, too, the atomistically resolved friction coefficient y,—here, directly propor-
tional to Bp—mediates the effect of non-glide parts of the stress. However, the non-planarity
does not affect the material’s volume in a meaningful manner, at least at the continuum
(macroscopic) scale. Therefore, plasticity is essentially volume-preserving, in an average
sense, when the local volume element contains a dislocation density not exceeding 10'°/m?.
In Appendix A, we show that the isochoric flow assumption cannot be over-generalized to
shock-loading regimes, with higher dislocation densities, rising adiabatic temperature, and
local excitations; all the factors magnify core pressure.
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In summary, the Huber—von Mises stress is preserved when the parameter is equal to
unity, i.e., Bo = 1, as shown by the black line in Figure 1. However, several other surfaces
can be constructed. A Tresca-like criterion (blue line) is obtained for By = 1/2. The true
Tresca stress envelope (red line) is constructed by prescribing « = 2 and By = 0. In the
Tresca-like criterion, singularity points are rounded with A, = 3v3 (1 - Ag) J5/ (2]; / 2) ,
where Ag = 0.2. Herein, the equivalent shear stress and the rate of plastic strain represent
the work-conjugate pairs, that is, O'Z'jég- = (% Mijai]-)éfq and ey = M;j0;;/2. 1t is worth
noting that the friction parameter S in (8) makes our stress envelopes (9) comparable to
the Hershey-Hosford criteria for fcc polycrystals [14] with a large exponent.

4 e
3
2F .
Huber-von Mises
3
w0
o
Tresca
-2 l Tresca-like
4 hH 1 1 1 1
-4 -2 0 2 4

c1/60

Figure 1. Yield stress plotted on the stress plane (07, 07), where 03 = 0. The original Tresca criterion
(red line) is obtained for a = 2 and By = 0. The Huber—von Mises criterion (black line) is found from
setting By = 1. In the Tresca-like yield criterion By = 1/2, and the line is colored blue.

3. Generalized Huber-von Mises Criterion

In fcc polycrystalline metals, slip is activated along planes somewhat misoriented with
respect to the plane of maximum shear, where the Schmid factor properly quantifies the
degree of misorientation. However, in bcc metals, the breakdown of the Schmid law is a
known fact, as reported in many studies, e.g., [5,28,29]. Specifically, at low temperatures,
plastic flow depends on the resolved shear stress and is also affected by other stress
components. The non-planarity of the dislocation core structure is the main reason for the
observed strength asymmetry in tension and compression. As reported in [1,26,27], the
yield surface and the plastic potential are decoupled. Molecular dynamics (MD) calculations
for Mo crystals support the construction of yield surfaces and plastic potentials [26,27]. A
prior conclusion from [1,5,27] was that the work-conjugate pair of stress and plastic strain
rate cannot be established in bce polycrystals at low temperatures.

In bee metals, the non-planarity of the dislocation core arises at the atomistic scale and
affects the shear stress (i.e., screw dislocation core spreading onto multiple planes, with
possible edge components within the core structure [5]); still, still the plastic flow remains
nearly incompressible for dislocation densities far below the theoretical maximum limit
(see Section 4). The friction coefficient denoted by ¢ quantifies the core non-planarity
such that

Ho = V3 Bo tang/3 — o (10)

Again, in reference to frictional materials, the internal friction angle ¢ /3 characterizes
the angle of asperities. This angle changes and is a function of the current stress or, more
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precisely, the direction of the maximum shear stress. Thus, the friction mechanism in
metals is endowed with much higher configurational flexibility. We reemphasize that the
internal friction parameter (8) replicates the relation used in the Coulomb law. In the case
of molybdenum, studies in [27] indicate that By = 2/3 properly captures the shape of
the stress envelope, as seen in Figure 2. One should note that the parameter By scales
the non-planarity of the plastic flow. For example, in fcc metals, the parameter should
be equal to Bp = 1/2, while By = 1 depicts the strongest out-of-plane contribution. In
this construction, the difference between the yield stress and the plastic potential is solely
controlled by the parameter yg. The yield stress becomes

o =5 [ =) +uy(p - )] (1)
where the non-planarity coefficient entering Equation (11) is found to be u} = 0.3 for
Mo. The strength differential SDy = 2(0y — o)/ (0t + 0¢) introduced by Vitek et al. [1]
characterizes the tension-compression asymmetry, where o, and 0; are uniaxial stresses in
compression and tension. Here, the differential takes the very simple form SDy = Sy yg .
A similar differential is calculated for the plastic potential: SDp = By ul, where the
superscript “P” is added to (10). Now, we have

pp=2/V3 tang/3 — uj (12)
where u{ = —0.09 for Mo. The flow mechanism becomes
P __ 1 3 P 2
1 1 1 1 1 1 1 [— 1 1 1 1 1
Molybdenum 6
B . G2=03
Bo=2/3 4l
2 - -
1} 107
5
% ol Yield Surface _ ﬁ ok Yield Surface
S 6
1k 1 S,L
2k 4
4t
_3 » ’ Plastic Potential N Plastic Potential
1 1 ] ] ] 1 1 Sh 1 1 1 ] 1
3 -2 1 o 1 2 3 -6 -4 -2 0 2 4
G1/G0 G1/G60

Figure 2. Yield surface (black line) and plastic potential (blue line) plotted on the plane of principal
stresses o and 0. Red data points are based on polycrystal model predictions with slip strengths
informed by MD studies of glide of screw dislocations in bec Mo, simulated by Groger et al. [26,27].
The original source of the red data points is ref. [27]; the blue and black lines are the new output of
the model set forth in Section 3 of the current work. The right-hand-side plot depicts the surface’s
asymmetry on the plane of o1 and (p — 07), where p is hydrostatic pressure.

In the absence of damage or point defects (e.g., no vacancies, interstitials, or inclu-
sions), and at dislocation densities sufficiently low, Mo can be modeled as a plastically
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incompressible material: M/, = 0. The plastic potential op = %M};Ulj takes the follow-
ing form:

op = % {(01 —03) + py(p — (72)] (14)

The isotropic yield surface and the plastic potential for polycrystalline Mo at low
temperatures are shown in Figure 2. Red data points represent the yield and flow surfaces
for Mo polycrystals, as in Figure 6 of Groger et al. [27]. The latter are obtained from
Taylor-type [16] crystal plasticity calculations on randomly orientated aggregates of Mo
polycrystals [26,27]. For clarity, we used the data reported in [27] in our previous study [25]
as well, but now the material model has been recalibrated and the yield surface and
plastic potential are redrawn accordingly. Note that the rate of plastic work is equal to

(Tijéf} =1 K M}; - M}]/) + Mlﬂ Uijéfq. Consequently, the plastic power becomes

ol = [02; + (yg - yg) (p— az)}éfq (15)

The associated plastic flow is reestablished when p} = .

The right-hand-side plot in Figure 2 displays strong influence of the “friction” term on
the plastic potential (14) and yield stress (11). The stress envelopes are clearly asymmetric.
The tension—-compression asymmetry is a well-established fact [1,5,26,27]. The dominant
tensile loading intensifies the plastic flow, and the opposite is true for compression. The
single-crystal slip system strengths of Groger et al. [26,27] properly capture experimental
trends on tension—compression asymmetries observed in experiments on Mo [30-32] at
a temperature of 123 K. The current model nearly perfectly matches the yield and flow
surfaces of Figure 6 in ref. [27] using just two parameters, By and yo, where each of them
has a well-defined physics interpretation; the agreement rationalizes the mechanisms-based
constitutive description. Note that Figure 2 of the current work contains solid black and
blue curves that are generated as the output of our new model. Figure 2 is an original
figure created by the present authors; it is not a scanned reproduction of Figure 6 of ref. [27],
which contains differently shaped curves from a different model.

4. Screw Dislocations in bcc Metals: Core Spreading and Volume Changes

The forthcoming analysis serves two major purposes. Firstly, the hypothesis that
a correlation exists between local dilatation from dislocation lines with dislocation core
spreading is examined through theoretical calculations. By the inverse argument, if all
atomic motion were restricted to a single plane (i.e., no core spreading onto multiple planes),
then the lattice distortion should consist only of simple shearing modes, and no volume
change should occur. If a positive/dilatative volume change does occur, then external
compressive pressure would work negatively against such a change at very small scales,
which could induce extra glide resistance manifesting as non-Schmid effects. Possible
correlations with elastic anisotropy are also newly investigated.

Secondly, the analysis theoretically predicts the maximum volume changes expected
from dislocation lines for bcc metals (Mo, W, and Ta) to evaluate the proper domain of
plastic incompressibility assumed in Sections 2 and 3. Calculations have been reported
previously for select fcc metals and Fe [33-35] but not for Group VIB metals which show
strong dislocation core spreading and non-Schmid effects and thus potentially more plastic
dilatation. Backgrounds on bcc screw dislocation physics and analytical models are given
in Sections 4.1 and 4.2 to set the context; new contributions follow in Section 4.3.

4.1. Background: Dislocation Core Phenomena

In bee metals, screw dislocation mobility is generally much lower than edge dislocation
mobility. Thus, the yield and flow of bcc metals are dominated by the glide resistance
of screw dislocation components, which becomes the limiting factor regarding plastic
strength [36,37]. Primary slip systems are <111>{110} and <111>{112}; these are the glide
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systems typically studied in MD investigations [5,38] and resolved in continuum crystal
plasticity models of bcc metals, for example [39].

As reviewed by Duesbery and Vitek [5,38], non-Schmid effects in bec crystals arise
from two primary factors. The first is solely due to the lack of certain symmetry in the bcc
crystal structure: strengths may differ when slip occurs in the twinned or anti-twinned
oriented <111>{112} systems. The second is due to the unusual core structures of screw
dislocations in bcc metals. The dislocation core tends to spread onto multiple planes,
rather than being confined to a single {110} plane, for example. Within the core, the <111>
screw dislocation (when viewed macroscopically) contains atomic-scale perturbations of
both edge and screw character [5,38]. The fractional Burgers vector components of edge
character in the core must sum to zero, such that the <111> dislocation remains of pure
screw character macroscopically. The partial edge components contribute strongly to
observed non-Schmid effects on yield and flow stresses. For shuffling and glide of the
<111> screw dislocation to occur, the non-planar components must first be forced to return
to a single dominant glide plane; i.e., the core spreading must be compacted. This can
contribute to a rather large Peierls stress in bcc metals. In the macroscopic continuum theory
of Section 3, friction coefficients depict an excessive spreading of <111> screw dislocations.

The effects of core spreading (i.e., non-planarity) are more prevalent at very low tem-
peratures (e.g., far below room temperature, typically at or near 0 K in atomic simulations
and 77-123 K in experiments [5,27,30-32]); the present discussion is focused on isothermal
behavior at low temperature limits. Thermal activation, thermal expansion, and phonon
drag are of no great relevance here but are applicable to shock conditions in Appendix A.

Observed non-Schmid effects vary in magnitude among bcc metals, being stronger in
Group VIB crystals (e.g., Mo and W) than in Group VB crystals (e.g., Ta). Perfect crystals
of the Group VIB metals have larger elastic constants than those in Group VB, which, as
noted by Duesbery and Vitek [5], could exacerbate their core spreading. The above trends
were deduced primarily from investigations [5,36,38] that employed empirical interatomic
potentials for the behavior of bcc metals, for example, the Finnis-Sinclair potential [40].
More contemporary MD potentials [1,26,27,38] and first-principles methods (i.e., density
functional theory (DFT)) such as tight binding [41] have confirmed the existence of the
coupled phenomena of core spreading, non-planarity, and non-Schmid effects; details of
core structures and stress differentials for asymmetric slip can differ among models [38].

4.2. Background: Volume Changes from Dislocations

The isotropic linear elastic solution for a screw dislocation [42,43] predicts that no local
or global volume change manifests from its elastic fields. For edge dislocations, according
to the isotropic linear elastic solution, local volume change occurs in the vicinity of the
dislocation line, but no global volume change (or global shape change, for that matter) can
occur for an externally unloaded (i.e., traction-free or self-equilibrated) body containing
edge (or screw) dislocations in the context of pure linear elasticity theory, isotropic or
anisotropic [44,45]. This statement is strictly true for isothermal conditions, wherein no
thermal expansion or contraction from atomic vibrations in the vicinity of defects occurs.

Volume changes from glide dislocations (e.g., no vacancies from dislocation climb,
and no other point defects) can arise from two notable sources in an isothermal continuum
elasticity theory: nonlinear elastic effects (i.e., isothermal anharmonic effects) and dislo-
cation core pressure. The latter can be modeled, in the context of a cylindrical annulus
of elastic material enclosing a straight dislocation line, by a pressure boundary condition
acting on the inner surface of the annulus, within which the core resides [46]. Atomic
calculations can estimate its magnitude, for example, up to the order of 10% of the shear
or bulk modulus [46,47]. However, core pressure varies inversely with the squared radial
distance from the defect line [48], so its magnitude depends on the choice of core radius.

Anharmonic effects, which could induce residual lattice shape change as proven by
Clayton and Bammann [43,45] in addition to volume change, can be associated with the
nonlinear elastic constitutive response of the crystal, through a combination of second-
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and third-order elastic constants in crystals of arbitrary symmetry. For crystals of cubic
symmetry, the volume change component of average residual deformation depends on
the combination of second- and third-order elastic constants and particular parts of the
elastic energy density [34,43-45]. Although partitioning of the elastic energy density
into the requisite components does not seem readily available for known anisotropic
solutions [49,50], this partitioning may be analytically possible.

On the other hand, closed-form solutions for volume change due to dislocation lines
are readily derived for the isotropic case [51] considering anharmonic terms of third order in
the strain energy density, when the dislocation line energy is estimated from linear isotropic
elasticity with a suitable cutoff and core radius. In the isotropic case, the requisite second-
and third-order elasticity coefficients are reduced to the usual two linear (i.e., second-order)
elastic constants and the ambient pressure derivatives of the shear and bulk moduli. As
shown later, the normalized effect of second-order constants can be resolved solely by
Poisson’s ratio. Different derivations based on nonlinear continuum mechanics [43-45] or
thermodynamic arguments [33,52] can arrive at similar end results.

Dilatation from edge and screw dislocations in bec x-iron has been confirmed using
MD potentials and DFT [53-55]. As noted by Clouet et al. [54,55], dilatation from <111>
screw dislocation lines can also be deduced from DFT results for pure Mo [23].

Trends, e.g., expansion rather than contraction predicted for engineering metals, and
of fairly small magnitude, agree with limited experimental data [33-35,43,45], as will be
shown in Section 4.3. Unless the local dislocation density is extremely large, the net residual
volume change from dislocations is generally considered small enough to be ignored in
continuum plasticity theory for standard, as opposed to extreme, loading conditions. Yield
and flow stresses can still depend on pressure even when plastic volume change is omitted
in kinematics, as in Section 3 herein (but not Appendix A) or in other models [35].

4.3. Analysis: Volume Changes in bcc, fcc, and hep Metals

A question to be investigated next is whether non-Schmid effects leading to nonzero
lattice friction coefficients in the continuum plasticity theory of Section 3 correlate with
dilatation from dislocation lines due to anharmonicity or whether any such correlation
manifests only from an independent core pressure. Contributions of anharmonicity and
core pressure to plastic volume change are expressed as follows in the isotropic elastic limit,
consolidating prior nonlinear elastic and atomic-scale derivations [43] (Ch. 7), [45].

Denote the total density of dislocation lines, in dimensions of length per unit reference
volume, as p, with b the magnitude of the full Burgers vector. Denote f* = x as the fraction
of this density of edge character, and f* =1 — x the fraction of screw character, whereby
definition f* + f* = 1. Let B and G label the ambient bulk modulus and ambient shear
modulus, and B’ = dB/dp and G" = dG/dp the derivatives of bulk and shear moduli with
respect to the external pressure p (here, the usual convention is positive in compression)
measured in the reference state. Let p. denote the dislocation core pressure and F¢ the
local volume change per unit volume induced by the core pressure. When p. >0 = F° >0,
the core exerts an outward pressure on the surrounding crystal, so dilatation takes place.
Negative p. would be tensile, causing lattice contraction.

Denoting the volume change per unit reference volume of an element of crystal due to
dislocations contained within as AV/V, extending prior work [43,45], we find

AV

(0,20 pe) = & xb%p + o (1= X)b%p + F(p, x, pc) (16)
., A1 . 2 , 31-20)\] . [. 3(1-2v)
=R 5 (-2 (B —1)+3 (1—v+v2)<G —Mﬂ,a _A{G _2(1+u)} (17)

The first term on the right side of Equation (16) is due to nonlinear elastic or an-
harmonic effects of edge dislocation components, the second to screw components, and
the third to core pressure. Dimensionless factors a® and «® contain the combined effects
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of elastic constants and their pressure derivatives on anharmonicity and dislocation line
energy. Parameter A scales the dislocation energy per unit length [56-58], as discussed
following Equation (17) below.

Equations (16) and (17) are derived by making the following substitutions in Equation (74)
of ref. [45] for the energies per unit length of screw and edge dislocations, respectively, E°®
and E¢, and the ratio of ambient shear to bulk modulus, G/B:

3(1—2v)

2(1+0) (18)

ES=(1-v)E® = AGV?, A~1,G/B =

The explicit effect of core pressure is also newly added in Equation (16), following
its possible significance discovered in ref. [46]. As newly derived in Equation (17), the
dimensionless volume change factors a® and «° depend only on dimensionless constants v,
B’, and G’. Derivation of Equation (74) of [45] relies on the assumptions that the body is
self-equilibrated with a constitutive response described by a hyperelastic energy potential,
expanded to order three in the Lagrangian strain (i.e., strain energy with elastic constants of
second and third orders). This body contains internal discontinuities associated with jumps
in lattice displacements across slip planes, from Burgers vectors of dislocations. Traction is
continuous across discontinuity surfaces. The balance of linear momentum and nonlinear
elastic constitutive equations are substituted into the equation for vanishing volume-
averaged stress. Further assuming isotropic elastic symmetry and algebraic manipulations
produces Equation (74) in [45]. This is recast via (18) into (16) and (17) of the current work,
to which F¢ has been appended.

In Equation (18), the dislocation line energy is approximated as Gb? for screw disloca-
tions and Gb?/(1 — v) for edge dislocations. These are likely upper bounds among known
linear elastic approximations [43,45,56,57], and they omit shielding effects from dislocation
structural rearrangements [56-58]. Lower bounds would multiply the predicted dilatation
of Equations (14)—(16) by a factor of A ranging from 1/2 to 1/(4m) [43,58].

Listed in Table 1 are elastic coefficients for ten metals used to test the hypothesis
framed for the question asked at the beginning of Section 4.3. Isotropic values are for
polycrystals from Guinan and Steinberg [59]. Also shown for comparison is the Zener
anisotropy factor A = 2C44/(C11 — C12), with A = 1 being isotropic. The larger the departure
of A from unity, the less valid the isotropy assumption inherent in Equations (15)—-(17). For
hcp Mg, elastic anisotropy also depends on other combinations of elastic constants, but
anisotropy is generally very low in Mg for all such combinations. Anisotropy itself is also
worth considering alone for possible connections to screw core non-planarity and lattice
friction.

Table 1. Anharmonic volume change factors of dislocations from Equation (15), with elastic properties.
Experimental data for Rexp from ref. [35] on Al 1100 and from ref. [34] on Ag, Au, Cu, and Ni.

Metal  Structure B[GPa] G [GPa] v B’ G’ A o o’ Kexp S <111.>
preading
Fe bec 166 82 0.29 5.3 1.8 2.37 2.13 1.31 - Yes
Mo bec 263 125 0.29 4.4 1.5 0.72 1.66 1.02 - Yes
Ta bec 193 69 0.34 3.2 11 1.56 1.14 0.74 - Yes
W bec 310 160 0.28 4.0 2.3 1.01 2.39 1.78 - Yes
Al fec 76 26 0.35 4.4 1.8 1.22 2.14 1.46 2.04 No
Ag fce 103 30 0.37 6.1 14 3.03 1.87 1.11 1.08 No
Au fec 173 28 0.42 6.3 1.1 2.88 1.61 0.94 1.08 No
Cu fec 137 48 0.34 5.5 14 3.21 1.77 1.05 1.23-1.68 No
Ni fec 183 86 0.30 6.2 14 2.46 1.86 0.93 1.74-1.78 No
Mg hcp 35 17 0.29 3.9 1.7 0.98 1.78 121 - No

Most notably calculated in Table 1 are values of a° and a® that indicate the theoretically
predicted importance of anharmonic effects on dilatation from edge and screw dislocations,
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respectively. For a density of perfect screw dislocations (e.g., <111> screws in a bcc metal of
current interest), £ = x = 0, and thus a° and B” would be inconsequential. However, the
core structure of a nonplanar, nominally pure screw <111> dislocation contains partial edge
components that sum to zero [5]. Thus, a® and B” could still be of relevance for correlating
non-Schmid effects. As might be expected, results in Table 1 confirm a¢ > a° for all ten
metals, meaning dilatation from edge dislocations should exceed that from pure screw
dislocations unless core pressure effects are larger from screw dislocations.

Experimentally obtained values of the dimensionless volume change factor, aexp, are
shown for comparison with model predictions of a® and «° in Table 1, where

AV/V _AV/V
We Ab%p

Aexp = G (19)

Values of aexp are calculated from Equation (19) using experimental data on volume
change AV/V and measured stored energy per unit volume of cold work W¢ [34] or mea-
sured total dislocation line density p [35]. Available data do not allow delineation of screw
versus edge factors. Equation (18) follows from (15)—(17) with omission of the core term
F¢, which also cannot be deduced from experimental data. The relatively high value of
unity for A in (17) compensates for the neglect of a distinct core pressure. Agreement
between the theory and experiment is respectable since a® <aexp <a® for all fcc metals
except Ag. Even for Ag, the lower bound of the theory, a°, exceeds aexp by only 3%. The
discrepancy could be attributed to the large anisotropy of Ag (i.e., A exceeding 3), recalling
that Equation (17) relies on the isotropic assumption. The theory correctly predicts that
Al should have the largest dilatation among fcc metals in Table 1. Excluding anomalous
results for Ag, the theory correctly predicts that Au should have the lowest dilatation, with
Cu and Ni falling in between, depending on the fractions of edges and screws. Quantitative
data were found in the literature only for the five fcc metals in Table 1 and not bec or hep.
However, Spitzig and Richmond [35] stated that predictions of the analytical theory [51]
agreed with experimental measurements of dilatation and dislocation densities in Fe-based
metals.

Results in Table 1 show no positive correlations among observed non-Schmid ef-
fects [1,5] and any of a5, €, or A. For example, for the two listed Group VIB metals, a° is
larger in W than Mo, but Mo shows stronger non-Schmid effects associated with experi-
mentally measured strength asymmetries [5]. Some of the fcc metals and Mg (hcp) have
larger values of ° than Mo, but these do not demonstrate non-Schmid effects from <111>
core spreading. The rank ordering from highest to lowest a® is W, Al, Fe, Mg, Ag, Cu, Mo,
Au, Ni, Ta. Ordering for ¢ is similar but not identical: W, Al, Fe, Ag, Ni, Mg, Cu, Mo, Au,
Ta.

The present analysis thus leads to the following conclusion: if dilatation from pre-
dominantly screw dislocation lines, dislocation core spreading, and non-Schmid effects
are positively connected, then the dilatation must be induced from an independent core
pressure, rather than anharmonic (i.e., nonlinear elastic) effects alone. A correlation with
core pressure appears logical since a larger core pressure might be expected to be exerted by
a more disordered non-planar core, leading, in turn, to greater dilatation. Results in Table 1
also show no correlation between elastic anisotropy factor A and non-Schmid effects. For
example, the Group VB metal Ta has weaker core spreading than the Group VIB metals W
and Mo [5], yet Ta is more anisotropic than W and Mo according to values of A.

The maximum magnitude of AV/V from either of the two anharmonic terms in
Equation (14) can be estimated as follows. The closest packing of dislocation lines is lim-
ited theoretically by the lattice spacing and repulsive forces between atoms to a maximum
p ~ 0.01/b?2, or approximately one dislocation line per square patch of 10 x 10 unit cells [60].
Thus, the absolute theoretical maximum dilatation, in percent, from anharmonicity is on the
order of a® or a¢. From Table 1 for three bcc metals, this would be a maximum expansion
of 0.7% to 2.4%, depending on the particular metal and dislocation character (screw or
edge). For the most extreme case of edge dislocations in W, the predicted maximum is 2.4%;
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the least extreme is for screw dislocations in Ta, predicted at 0.7%. Predictions for Mo fall
in between those for W and Ta. If the dislocation line energy is reduced by shielding, a
theoretical maximum of around 1% expansion is expected to be more realistic for W. These
theoretical predictions are of comparable magnitudes to those for five fcc metals (validated
versus experimental data in Table 1) as well as hcp Mg.

Even in heavily cold-worked metals, the dislocation density is usually several orders
of magnitude smaller than the above theoretical maximum, which should limit AV/V
accordingly, except in very highly defective local regions at grain boundaries or cell walls.
Experiments [35] measured the volume change in Al 1100 as 5 x 10~° at a strain of 0.1 and
dislocation density of 3 x 10'*/m? The theoretical maximum of p with a typical Burgers
magnitude is around 10" /m?. A dislocation density of 10> /m? is considered quite large
for a typical metal, and this in turn would give a maximum dilatation from anharmonic
effects on order of 0.01%, or 10~*. The pressure differential due to a dilatation from a
nucleation of this density of dislocations [61] is around 10*B, on the order of 10 MPa for
the metals in Table 1. These values of residual volume change and pressure are sufficiently
small to omit in the continuum plasticity theory for bcc metals under ordinary conditions
(i.e., relatively low strain rates and temperatures), with Peierls yield and flow stresses on
the order of 1 GPa, as modeled in Sections 2 and 3 of this work. However, for very soft
metals such as Cu, 10 MPa might not be small compared to the yield stress, which can be
significantly lower than 100 MPa depending on its purity [62]. The potential significance of
plastic volume change under extreme loading conditions involving very high pressures,
strain rates, and/or temperatures [62-64] is given further consideration in Appendix A.

5. Conclusions

At low temperatures, the yield criterion and plastic potential in bcc metals are decou-
pled and display a tension—compression asymmetry. The asymmetry is a consequence of
screw dislocation non-planarity. Newly proposed in the current work is that the yield stress
and plastic potential each include an additional term which quantifies the spreading of
the dislocation core structure that leads to non-Schmid effects in plastic flow. The material
parameter controlling each new term is interpreted as an atomistically resolved friction
coefficient. This coefficient resembles the friction coefficient in Coulomb-type (e.g., brittle
or granular) materials, but in bcc metals, the coefficient arises at the atomistic scale of
the dislocation core. The theoretical analysis in Section 4 justifies the mechanisms-based
considerations at the continuum scale.

The theory predicts no obvious correlation between core spreading (which affects the
macroscopic friction coefficient) and dilatation from anharmonic effects under isothermal,
low-temperature conditions. If a correlation between screw dislocation core spreading
and residual lattice expansion exists, as logically hypothesized, such a correlation can be
represented through introduction of a finite, repulsive dislocation core pressure. Theoret-
ical predictions also justify the omission of volumetric plastic deformation arising from
anharmonic defect fields in bcc metals that show strong non-Schmid effects (i.e., Mo and
W) for conventional loading conditions, wherein dislocation densities are not excessive.
This conclusion is consistent with theoretical predictions and experimental data on plastic
dilatation and stored energy of cold work in fcc metals.
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Appendix A. Extension to Dynamic High-Pressure Regimes

The effects of residual lattice dilatation from dislocations on pressure are undeniable
in shock compression experiments, as stated in other studies [62-65]. Residual dilatation
has been extracted from velocity profile histories in shock compression experiments on
materials of very low flow stress such as pure copper (Cu) [62,65]. Dislocation densities
measured in shock-recovered samples after 35-GPa impact exceed 2 x 10'°/m? [66], and
transient densities could be much larger [67]. For example, dislocation densities predicted
by discrete dislocation dynamics and atomistic simulations of shockwaves in Cu range
from 10'®/m? to 2 x 107 /m? for shock pressures from 30 GPa to 75 GPa [67,68]. The
volume change from the latter could attain, from Table 1, 0.0132¢ ~ 2.3%. The pressure
change associated with such significant dilatation would be around 3.2 GPa, over 5% of
the impact stress [69] and much larger than the yield and flow stresses of Cu [65,68]. In
cases such as this, explicit inclusion of plastic volume changes from dislocations in the
finite-strain kinematics of continuum crystal plasticity theory [43,60,61,69], or later via
Equation (18), is prudent.

In addition, a volume change can be a byproduct of nano-scale dynamic excitations
triggered by a collective motion of dislocations [64]. Excitations distort the lattice and,
we hypothesize, affect lattice stretch. Under quasi-static conditions, pressure points can
be ignored; however, shocks magnify the core pressure and anharmonicity to explicitly
contribute to overall dilatant behavior. Dynamic excitations triggered by a synchronized
motion of dislocations generate micro-kinetic energy, which in turn may act as phono-to-
phonon vibrations; that is, micro-kinetic energy expands the lattice. Dynamic behaviors
magnify effects in both time and space. The magnitude of micro-kinetic energy must be
large enough for these effects to be noticeable, which happens only under extreme loading
conditions. A method has been set forth to calculate micro-kinetic energy [64]; thus, one
can introduce additional lattice stretch, a kind of local anharmonic thermal stretch.

The tensor representation concept of Sections 2 and 3 has all the features suitable
for a proper physics-based interpretation of these phenomena. The TRM analysis can be
easily extended to shock conditions. The second term in Equation (8) provides a means for
restraining out-of-plane spreading of dislocations at high pressures. It has been reported
that single crystalline Ta, among other metals, subjected to impact loading, experiences
highly localized plastic slip [70]. Dynamic loading alters the mechanisms of plastic flow.
That brings us back to Equations (7) and (9), where we search for explanations of the
intriguing problem. The equivalent stress 0,4 in (9) consists of shear stress along the glide
plane and includes the non-glide contribution. One may argue that, because it tightens
interatomic spaces, high shock pressure also over-constrains spreading of dislocation cores.
For this reason, we modify Equation (7) by rendering the out-of-plane contribution the
needed sensitivity to the changes in mass density:

Po
M =u [(N}j — N?j) + 1y < 5ii/3— pN%)} (A1)

Here, pp and p are initial and current mass densities, not dislocation densities. In a
linear elastic regime, the ratio py/p is nearly unity, so its effects can be omitted. At high pres-
sure, equations of state quantify pressure-volume-temperature-entropy responses [62—-64].

Suppose that the pressure is 50 GPa, which translates to pp/p = 0.8. Now, temperature
is high due to adiabatic shock heating and thermoelastic coupling, and, therefore, we
conclude that yp = 0. This also means that the associated flow rules are reestablished. In
Figure A1, the yield surface marked in black is unaffected by the change of mass density
(po/p = 1). The second envelope, marked in red, is plotted for po/p = 0.8. Shapes of the
envelopes are distinctly different.

In the next step, we assume a plate impact problem where the uniaxial stress points in
direction 1. We calculate the plastic strain rates along three directions, mainly r1, = Mj1/ Moy,
r13 = Mi1/Msz, and 13 = Moy /Mszs. The ratios are v, = —2.172, ri3 = —2.172, and
r3 = 1, respectively. We find that there is a small increase of volume élfk = 0.0367 éfq
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since the tensor in (7) is no longer traceless. Thus, a high-pressure loading generates
small plastic dilatation. Experimentally observed perturbations in surface velocity profiles
for shock compression of W- and Al-based metals [71,72] suggest a pressure variation,
which we argue can be a result of residual dilatation from magnified core pressure and/or
anharmonic effects, especially since W and Al have the largest values of dilatation factors
«¢ and «® in Table 1. However, this source of perturbations cannot, in general, be uniquely
separated from other phenomena related to microstructure heterogeneities.

Shock relief (pg/p = 1.2) generates external tensile pressure, and the trends are re-
versed. Now, the ratios are smaller, 11, = —1.854, ri3 = —1.854, and o3 = 1, and the rate of
plastic dilatation é,fk = —0.0367 éfq opposes the elastic stretch. Thus, in tension, the plastic
contraction of dislocation cores tends to absorb the already large interatomic distances.
A local volume reduction can also be associated with a transient decrease in dislocation
density after the shockwave has passed and the material relaxes to equilibrium.

Incompressibility is the commonly used assumption in classical constitutive mod-
els [73]. The phenomenology omits non-planarity of plastic flow and thus cannot predict
phenomena associated with plastic volume changes. In the proposed continuum descrip-
tion, the second term in Equation (7) includes the local mass density ratio, which enables a
richer description of the metal behavior at shock conditions. In conclusion, the proposed
concepts can be used to study the plastic responses of bcc metals at low temperatures, as
we have demonstrated for Mo in Section 3, and can be extended to extreme high-pressure
conditions, as newly proposed in this appendix.

2 [T T T 1= 2 [T T T T =
Bo=2/3 Bo=2/3
1t — pg/p=0.8] 1 1 — po/p=12} 1
o — po/p=1 o po/p=1

Lot y <0} 1
b Shock pressure © Shock relief

-1t | -k ]
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Figure A1. Yield surfaces are plotted for a non-shocked metal (black lines) and for the same metal at
high shock pressure and the subsequent pressure relief (red line).
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Abstract: This research paper presents an experimental, theoretical, and numerical study of the ther-
momechanical behavior of single-crystal and polycrystal copper under uniaxial stress compression
loading at varying rates of deformation. The thermomechanical theory is based on a thermodynami-
cally consistent framework for single-crystal face-centered cubic metals, and assumes that all plastic
power is partitioned between stored energy due to dislocation structure evolution (configurational)
and thermal (kinetic vibrational) energy. An expression for the Taylor-Quinney factor is proposed,
which is a simple function of effective temperature and is allowed by second-law restrictions. This
single-crystal model is used for the study of single- and polycrystal copper. New polycrystal thermo-
mechanical experimental results are presented at varying strain rates. The temperature evolution on
the surface of the polycrystal samples is measured using mounted thermocouples. Thermomechanical
numerical single- and polycrystal simulations were performed for all experimental conditions rang-
ing between 1072 and 5 x 10% s~ 1. A Taylor homogenization model is used to represent polycrystal
behavior. The numerical simulations of all conditions compare reasonable well with experimental
results for both stress and temperature evolution. Given our lack of understanding of the mechanisms
responsible for the coupling of dislocation glide and atomic vibration, this implies that the proposed
theory is a reasonably accurate approximation of the single-crystal thermomechanics.

Keywords: dislocations; crystals; polycrystals; stress—strain; copper; Taylor—-Quinney factor

1. Introduction

Some of the earliest studies on the conversion of mechanical work to heat in the plastic
deformation of metals were by [1,2]. Such energetic considerations are important in the
study of the dynamic response of metals in applications such as armor systems and crash
testing of vehicles. Study of the thermomechanics of metals has important implications
for studying phenomena such as phase transformations [3] and twinning [4], as well as for
metal forming and machining. The fraction of the plastic work on a metal that is converted
to heat is known as the Taylor-Quinney factor. The complement of this is called the stored
energy of cold work.

A common assumption for the fraction of plastic work converted to thermal energy
is that it is a constant equal to approximately 0.9, in accordance with the results in [1].
A constant value of 1.0 has also been chosen in the literature [5]. However, experimental
results for various pure metals and alloys indicate dependence of the Taylor—Quinney factor
on the strain and strain rate. For example, dynamic experiments using the Kolsky bar [6,7]
and the dislocation dynamics simulation in [8] indicate that the dislocation accumulation
pattern, along with the dislocation density, is important in determining the Taylor-Quinney
factor. Study of the thermomechanics of commercially pure titanium reveals that the
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dissipation of mechanical work as heat may strongly depend on the loading conditions [9].
At high strain rates (~3000 s~ 1), the authors found that commercially pure titanium shows
a profusion of twinning in compression and dominant shear, but not in tension. This
corresponds to markedly higher values of the Taylor-Quinney factor for the compression
and shear load paths as compared to tension. Quasi-static and dynamic experiments on
pure iron [10], polycrystal tantalum [11], single-crystal tantalum [12], and both single-
crystal and polycrystal copper [13] provide further experimental evidence of the strain and
strain rate dependence of the Taylor-Quinney factor.

The study of crystal mechanics started with work that explicitly embedded the ge-
ometry of the slip systems of the material into the kinematical part of the model [14] and
by the multiplicative decomposition of the deformation gradient into elastic and plastic
parts [15-17]. The elastic part of the deformation gradient captures the distortion of the
lattice, while the plastic part of deformation gradient captures the transfer of mass along the
slip planes of the material. The rotational part of the elastic part of the deformation gradient
also contributes to the transfer of mass. The use of such kinematic assumptions has allowed
for study of phenomena such as strain localization [18], latent hardening and secondary
slip [19,20], and texture evolution [21-23], with the combination of these aspects of plastic
deformation studied in [24]. Certainly, dislocations behave very differently with crystal
atomic structure, which is reflected in the development of continuum crystal mechanics
theories [25—44]. Face-centered cubic materials are generally the best understood, with
dislocation interaction representing the dominant resistance to motion for most materials.
Body-centered cubic materials are very interesting in that the behavior of screw dislocations
dominates motion and due to questions about the role of kink—pair nucleation mechanisms
in the physics of dislocation motion [45]. Hexagonal close-packed materials differ substan-
tially with material type, as the c/a ratio and corresponding Burgers vector for different
slip systems change dramatically [46]. There are many physical factors which impact the
thermomechanical response of crystalline materials.

There have also been many important contributions to the development of thermody-
namically consistent theories for the description of thermomechanics in crystalline solids,
among which are [47-72]. As we develop theories for the description of inelastic processes
such as dislocation slip, deformation twinning, structural phase transformation, and dam-
age, accurate partitioning of the energy will provide a stronger physical basis. This forms
natural restrictions to our crystal mechanics formulations and provides greater quantitative
authority for physical interpretation of experimental results. This naturally affords the need
to draw in thermodynamics information from experiments and focused physics calculations.
More sophisticated boundary conditions are also necessary in order to document experi-
ments and for application to numerical simulations. Experimental design must then account
for the need to characterize thermal boundary conditions and transport properties of mate-
rials. Certainly, experiments with higher deformation rate can be assumed to be adiabatic;
however, experimental diagnostics are also more limited at higher deformation rates.

This article provides a thermodynamically consistent crystal mechanics framework
for solving combined thermomechanical problems in the single and polycrystal mechanics
of metallic materials. The fundamental concepts that form the basis of this framework are
laid out in [73,74]. On the basis of this theory, a computational framework was developed
for polycrystalline isotropic materials and used in [75-77]. Further development led to a
material model for metal single crystals [78], which is the basis of the computation in this
work. The above provides a single-crystal model which captures the strain rate dependence
of the thermomechanical behavior. In this model, both the amount of plastic work and the
fraction of it converted to heat is dependent on the strain rate. The differential form of the
Taylor-Quinney factor is used in this work. The computational model for the polycrystal is
a Taylor model, in which the contribution of each individual grain is calculated using the
aforementioned single-crystal model. Welded thermocouple beads are used to study the
temperature evolution of the sample.
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Details of the nomenclature used in this work are provided in Table 1. A list of symbols
used in the presented theory is provided in Table 2.

Table 1. Nomenclature table.

Type of Quantity Description of Symbol

Direct Notation

Indicial Notation

Scalars Italicized small/cap letters without subscripts or superscripts a,b,c, A B,C a,b,c, A B,C
Bold upright letters, using capital letters for vectors in the
Matrices or Vectors reference configuration and small letters for vectors in the current u U u;, U;

configuration.
Bold upright letters with underlines, with capital letters for objects

Second order tensors  in the reference configuration and and small letters for objects in s, S Sijs Sij
the current configuration.

Fourth order tensors ~ Blackboard bold capital letters. C Cijki

Table 2. List of theory variable symbols.

Variable Symbol

Definition or Meaning

F F F
LLL”

3 X

)

=

o

(73]

,m

Ci2, Cyg

== oawH

Uk, Sk
Uc, Sc
Up, Sp
Uy, S

€D

qc, 9K
X, Xo
0, T

Total, elastic, and plastic deformation gradients
Total, elastic, and plastic velocity gradients

Resolved plastic strain rate on slip system «

Unit slip direction vector and normal to slip system a
Cauchy stress tensor

Second Piola—Kirchhoff stress tensor

Anisotropic fourth-order tensor of elastic constants
Independent crystallographic moduli for fcc lattice
Shear modulus

Jacobian matrix of stress versus strain
Kinetic—vibrational (thermal) energy and entropy density
Configurational energy and entropy density
Dislocation energy and entropy

Residual configurational energy and entropy density
Configurational free energy density

Dislocation line energy

Configurational and thermal fluxes

Effective temperature and initial effective temperature
Thermal temperature (in units of energy and Kelvin)
Dislocation density on slip system «

Steady-state dislocation density on slip system «
Mean dislocation velocity on slip system a
Steady-state effective temperature (in units of ep)
Taylor-Quinney factor

Specific heat capacity

Dislocation storage rate

Effective temperature increase rate

Minimum separation between dislocations

Burgers vector

Atomic time scale

Stress scale parameter

Resolved shear stress on slip system «

Slip resistance due to dislocation interaction on slip system «
Intrinsic lattice resistance to dislocation motion
Dislocation density corresponding to slip system «
Dislocation mean free path on slip system a
Dislocation depinning time on slip system «
Dislocation depinning barrier (in units of Kelvin)

60



Metals 2024, 14, 1086

Table 2. Cont.

Variable Symbol Definition or Meaning

a*B Dislocation interaction tensor
dep Slip interaction tensor
ke, kye Mean free path parameters

2. Materials and Methods
2.1. Theory

This section presents a coupled thermomechanical theory describing the physical
behavior of single crystals, which is applied here to face-centered cubic metals and copper
in particular.

2.1.1. Plasticity

Based on the theory developed in [15-17], it is assumed that the total deformation
gradient may be decomposed into elastic and plastic components.

F=FF. @

It is assumed that the body starts motion in the reference configuration. It is mapped
to the current configuration by the total deformation gradient. The plastic part of the
deformation gradient maps the reference configuration to the lattice configuration. The lat-
tice configuration is then mapped to the current configuration by the elastic deformation
gradient. The rate of change of plastic deformation in the metal is captured using the plastic
velocity gradient, which is a function of the orientations of the all the slip systems and the
slip rates on the corresponding slip systems:

LY =F(F')' =) 4*s"*@m", @)
o

where s® is a unit vector parallel to the direction of slip on slip system « and m*® is a
unit vector normal to the slip plane for slip system a. The symbol 7* is the rate of slip.
The quantities s*, m* and L? all inhabit the lattice configuration.

The second Piola-Kirchhoff stress is used as a stress measure in this model, denoted
by the symbol S and defined by

S=J(F) 'T(F) T, ®3)

where T is the Cauchy stress and | = detF is the Jacobian of the total deformation gradient,
which is also equal to det F® by the assumption of isochoric plastic deformation. The Cauchy
stress inhabits the current configuration, whereas the second Piola—Kirchhoff stress is
defined in the lattice configuration.

The stress response is provided by

§=2C:((F)'F~1)=C:E, (4)

where C and E° are quantities in the lattice configuration, C is the fourth-order elastic
stiffness tensor, and 1 is the second-order unit tensor. Because copper is a FCC metal, C has
only three independent components. These three elastic moduli describe the behavior of
a single crystal that has its <100> directions aligned with the x, y, and z directions of the
coordinate axis. The elastic stiffness tensor of a single crystal of any given orientation is cal-
culated by first computing the elasticity tensor of the reference orientation from knowledge
of the elastic moduli and then using appropriate tensor transformations to calculate the
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elasticity tensor for the given orientation. In this work, the temperature dependence of the
elastic moduli is accounted for by assuming a linear dependence on temperature as

Ceijui(T) = Ceoijur + miju T, ®)

where Cp ji; are the components of the stiffness tensor at OK and T is the absolute tempera-
ture. Of importance to the theory is the resolved shear stress on slip system &, denoted by
7% (in the lattice configuration) and provided by

T{X — (EE)TEE§ (sﬂé ®m0{) ~ §: (SU( ®m0(), (6)

where it is assumed that the elastic deformation in the material is small relative to the
plastic deformation. With this assumption, the volume density of plastic power, defined as
T : F°LP(F°) !, resolves to

T:FLV(F) ' =) " @)

2.1.2. Thermomechanics

Here, we provide an outline of the crystal mechanics theory. The thermodynamic
basis of this work is found in [59,73,74]. After the development of these ideas into isotropic
plasticity theories in [75-77], a single-crystal version of this theory was presented in [78].
The basic assumption of the theory is that the energy of thermal vibrations is too small to
create new dislocations without an applied stress. As a result, it is justifiable to separate
the metal into two subsystems: a kinetic—vibrational subsystem, and a configurational
subsystem. The latter is characterized by the mean positions of the atoms (and defects) in
the metal crystal, while the former is characterized by the motion (vibration) of the atoms
about those mean positions. The total volume densities of the system’s energy and entropy
are denoted by the symbols Uy, and Sy, respectively. The assumption described above
allows these symbols to be respectively decomposed as Uyt = Uk + Uc and Syt = Sk +
Sc, where the letter K denotes quantities belonging to the kinetic—vibrational subsystem
and the letter C denotes quantities belonging to the configurational subsystem. As the
configurational subsystem is concerned with the positions of atoms and defects in the
lattice, Uc and S¢ must depend on the current dislocation density. Denoting the dislocation
density on slip system a by p*, we write

Uc(Sc, p*) = Up(p*) + Ui (S1),

8
Sc(Uc,p%) = Sp(p®) + S (Uy), ®)

where the right-hand sides represent a division of the configurational subsystem into a
part dependent on the dislocation population and a part dependent on other sources of
imperfection, such as point defects. The following quantity is important in the theory

AU

X = E, )

where x is known as the effective temperature. It characterizes the configurational subsys-
tem by quantifying the atomic disorder in the material relative to a perfect crystal.

In this setup, the local form of the first law of thermodynamics reads T : L = Uc + Uk,
where heating contributes to the evolution of Ug. Explicitly accounting for heat production
and heat fluxes results in

T:L=1Uc+ Uk

alc alc

. . 10
:)(SC+V~qC+<> +Z( a) p”‘—i—GSK—I—VqK. (10)
o Jsepor TN /s

62



Metals 2024, 14, 1086

Here,
qC - _KCVX/

11
qk = *KV@, ( )

are the effective and ordinary heat fluxes, respectively, with xc and x as the corresponding
conductivities. The symbol 6 = kpT denotes the ordinary temperature in energy units.

The symbol L denotes the velocity gradient, which may be separated into its elastic
and plastic components:

L=L°+FL/F L (12)

With this notation, we write

(auc> =T:L (13)
ot ) g

The left-hand side of Equation (13) represents the time rate of change of the internal
energy of the system when the configurational state is held constant. By definition, this is
the rate of change of the elastic part of the energy. Therefore, the remaining terms on the
right-hand side of Equation (10) must add to the plastic power. This is written as

alc
op*

-

T:FLPF ! = xSc — ke V2 + Z( ) 0% +0Sx — V0. (14)
14 SC

The second law of thermodynamics in the current context takes the following form
St0t=SC+SK+V-%+V-%ZO. (15)

To investigate the consequences of the second law, it is multiplied by x; quantity xSc
in Equation (15) is eliminated using Equation (14) to obtain the following inequality

- oUc ,
T:FLF —Z( 2" ) o
Sc

o

(16)
: K K K
-0 —2V20) + - (VO)? + = 2>0.
+Hx=0)(Sx— V) + 5 (Vo) + (V) 2 0
The consequences of this inequality can be studied by applying the Coleman—Noll
procedure [79]. This procedure allows us to conclude that if a sum of independent terms sat-
isfies an inequality (such as Inequality (16)), each of the terms in the sum must individually

satisfy the inequality. Therefore, we write

(x—0) (S'K - gVZG >0, (17)

The first of these inequalities is guaranteed by Equations (7) and (26). The last two
inequalities hold because of the nature of the quantities. The consequences of the third
inequality, discussed in detail in [76], are that the Taylor-Quinney factor must be a function
of the effective temperature; in addition, as the material approaches a state of maximal
disorder, all of the input work turns to thermal energy and the Taylor—Quinney factor
must tend to 1.0. Further development of the second inequality shows a derivative of
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the configurational free energy of the system. Application of the chain rule of calculus to
Equations (8) results in

<8UC> _dUp dU;9dSp (18)
Sc

op* dp*  3S; dp*

The derivative %%]1 can be identified as the effective temperature of a part of the config-

urational subsystem. Because the configurational subsystem has an effective temperature
of x, we have aa% = X. Therefore, we may write

<8Uac) _ auo,—:) —XBSS _ E)(UD NXSD). (19)
9" )5 9p dp dp

Here, Fc = Up — xSp is the configurational free energy. This means that as the
dislocation density increases, the free energy tends to minimize and reaches a minimum
when p* = 0. Thus, the steady-state dislocation density minimizes the configurational
free energy.

2.1.3. Constitutive Model

Here, we provide details of the computational framework, which was developed
in [78] from the theory in [73] described in the previous section. We start from the Orowan
relation as

¥ = p*bo", (20)

where p* is the mean mobile dislocation density on slip system &, b is the magnitude of the
Burger’s vector, and v is the mean dislocation velocity on slip system «.

In the physical picture of dislocation motion assumed in this work, the obstacles faced
by the dislocation on slip system « have a mean spacing of [*. The mean time required by
the dislocation to cross this distance is t*, meaning that the mean dislocation velocity is
v* = [*/t*. This expression for the velocity changes the Orowan relation as

§% = pbI% /1. 1)

This “depinning” of dislocations from obstacles is assumed to be stress-driven and
thermally activated. This is accounted for in the expression for the time scale t* as

T, ™ — S] P4
=t £i1- : 22
oexp[T{ (=)'} @)
Here, t is approximately the inverse of the Debye frequency, T is the absolute temper-
ature, and T) is a measure of the energy barrier to dislocation depinning. The actual energy
barrier is provided by kpT,, where kg is the Boltzmann constant. The symbol 7* denotes

the resolved shear stress on slip system a, whereas s; is the intrinsic lattice resistance.
The symbol s* denotes the slip resistance due to dislocation interaction on slip system «,

and is expressed as
s“=arub [Y a*Ppb, (23)
B
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where a7 is the Taylor factor, accounting for the uncertainty of microstructure and chemical
composition of the material. The symbol y denotes the shear modulus, which may be
calculated from the elastic moduli Cy1, Cip, and Cyy using the following expression:

- \/644<C“;C”). (24)

The symbol a*? is a tensor accounting for dislocation interaction. A similar dislocation
interaction tensor d*# is used to determine the mean free path of the dislocation [*:

Pt (25)

\/Zﬁd“ﬁpﬁ.

The parameters d*B are interaction parameters. According to [80], they may be cal-

culated using a*B, kinter, and kcopl, using the expressions P = Ziﬁ for intersecting slip
systems and dwb = k‘;”‘ﬁ for self-interaction and coplanar slip systems. The constants kinter

copl
and keop) are described in [80], and are related to the inverse proportionality between

the mean free path length [* and the resolved shear stress on slip system a. Using these
expressions, we obtain the following expressions for the slip rate on slip system « as

(26)

) p%b Tp{ (szsl)P}q ) .
Faog= ———exp|——=<1— m sien(t%).
|T ‘>0 tO Zﬁdlxﬂpﬁ p[ T S g ( )

Equation (26) is an Arrhenius-type expression. Physically, it corresponds to the
idea that dislocations in which atoms have higher kinetic energy (measured by tempera-
ture T) have a higher probability of crossing the barrier to dislocation motion (measured
by T,). Such flow rules have been used to study localization in polycrystals [81], tex-
ture evolution [82], and interface stability in metallic multilayered composites [83] and
bicrystals [34]. The effective temperature x (with the initial value denoted by y() evolves
according to

X_Kx(l_?(> Pp 27
oo = - % . (27)

where x, is a dimensionless parameter. The fraction § = % is the Taylor-Quinney factor,
and quantifies the fraction of the plastic work that is converted to kinetic vibrational energy.
The quantity xs is the steady-state effective temperature, which accounts for temperature

and strain rate dependence through the following equation:

. ;Z(Myﬂm] 28)

Xss = Xss0 - Yo

where x50 is @ material parameter, 7 is a reference strain rate, A is an activation energy;,
and N is the number of slip systems (N = 12 for FCC). The effect of the strain rate is
introduced in Equation (28) by raising a strain rate ratio to an exponent of the form kgT/ A,
following similar choices made in [34,81-84]. The dislocation density (with the initial value
denoted by pg) evolves according to the equation

) T“"r"‘( p“)
=y %
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where 7 is a length scale characterizing the critical distance of dislocation interaction and
K, denotes a parameter for hardening the slip system, calculated according to

o = o VP = VO 0)

P V/Pss — \/FTO,

where KS is a material hardening parameter and pss is the steady-state dislocation density,
which is calculated from the effective temperature through the equation

1 1
Oss = azexp<—x). (31)

Equation (30) introduces a dependence of the hardening behavior of a slip system
on the dislocation density of that slip system. The steady-state dislocation density in
Equation (31) is also dependent on the deformation rate and temperature through the vari-
able x. The nominal material hardening is captured by Kg. At the beginning of deformation,

% (varying between 0 and 1) equals 1 for all slip systems,

as p starts with the value pg for all slip systems. It decreases as the deformation progresses
and dislocation density increases. Therefore, Equation (30) captures the idea that the nature
of the material associated with a slip system changes as the dislocation density on that slip

the post-multiplying factor

system increases. In accordance with [59,60], the parameter v, is used to calculate K;’)‘ as
T bp"
U = 1n<p> —In|ln , , (32)
g fol7§ |/ S 4 pP
where 7§ is the total shear rate on slip system a.
The temperature then evolves according to the equation
i 1 o0 2
T=—/|BY V" +xV?0 |, (33)
p C}” o

where p is the mass density and C,, is the specific heat.

2.2. Computation

All of the simulations were performed using the FEM software ABAQUS/Standard
2023. The material model was specified by writing a UMAT subroutine. The problem
domain for all the simulations (single-crystal and polycrystal) was a right circular cylinder.
The axis of the cylinder was aligned with the z-axis for the single crystal simulations and
aligned with the y-axis for the polycrystal simulations. In both cases, the cylinder was
compressed at a constant true strain rate using the ABAQUS user subroutine DISP.

For the single-crystal simulations, the cylinder had a diameter of 6 mm and a height of 6
mm. The crystal was oriented so that the <123> direction of the crystal was initially parallel
to the z-axis (the axis along which compression was applied). This was to concentrate most
of the slip activity on a single slip plane. Because this asymmetry of sample orientation
with respect to the slip systems for copper will not produce an axisymmetric deformation
field, full three-dimensional simulations were performed. For single-crystal simulations,
the cylinders were compressed at true strain rates of 0.1 s71,2.0s71,3000s71, and 4800 s~ 1.
The element C3D20T from the ABAQUS/Standard element library was chosen to mesh
the cylinder domain for the single crystal simulations. These are 20-noded hexahedral
thermomechanical elements that use quadratic shape functions. The mesh was comprised
of 5120 such elements, and is shown in Figure 1a. This mesh was the smallest element
size which would complete a simulation within a reasonable time. The temperature
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response from the single-crystal simulations was taken as the average of all free surface
node temperatures.

For polycrystal simulations, the cylinder had a height of 19.05 mm and diameter
of 12.7 mm. The cylinders were compressed at true strain rates of 1073 s 1, 1072571,
10-'s7!, and 10° s~ 1. A Taylor model was adopted for the polycrystal simulations. Each
element integration point of the Taylor model was assumed to be a composite of 500 ran-
domly oriented grains. All of the grains had distinct randomly distributed orientations,
simulating the aggregate response of a random collection of grains at each element inte-
gration point. The deformed polycrystal cylindrical samples remained cylindrical during
deformation, and there is nothing about the Taylor model representation of the polycrys-
talline material that would break the axisymmetry. Therefore, an axisymmetric model was
used to represent the experiments using two-fold symmetry on both the cylinder axis and
length. The behavior of each grain was governed by the same UMAT as that used in the
single-crystal simulations.

Loading

Symmetry : Direction Syl;l@etry
<123) Axis 1 )Ius
Loading Symmetry 1 No Load
Direction Plane 1
Copper Symmetry
Copper Plane
Free Free
PTFE PTFE
Surface Surface
Steel Steel
M Y
1—> X L X
Single Crystal
(a)  Thermomechanical Polycrystal Polycrystal
Model (b) Thermomechanical (¢) Thermal Transient
Model Model

Figure 1. Meshes representing initial configurations: (a) single-crystal, sample size of 6mm diameter
and 6 mm length; (b) axisymmetric and half-length thermomechanical polycrystal mesh (sample size
of 12.7 mm diameter and 19.05 mm length), where the left edge is the axis of symmetry, the top edge
is the sample’s center, the bottom (tan) region corresponds to steel platens (9.34 mm height, 6.35 mm
width), the top (green) region corresponds to copper (9.525 mm height), and a thin (0.0127 mm) PTFE
layer is between the steel and copper; (c) axisymmetric and half-length thermal transient model.

A half-height axisymmetric model was used for the polycrystal simulations. The left
edge of the rectangular mesh shown in Figure 1b is the axis of symmetry. The top edge
of the mesh is the axial center of the sample. The mesh was divided into three regions
for each of the represented materials (the copper sample, PTFE film lubricant, and tool
steel compression platen). The green mesh region of the elements in Figure 1b represents
copper. The height of this region was 9.525 mm, with its bottom on the x axis. The width
of this region (as well as the other two) was 6.35 mm. The length and diameter of the
physical copper samples was 19.05 mm and 12.7 mm, respectively. Just below the copper is
a region of elements that is one element in height, representing the lubricating PTFE disk,
which is too thin to appear in the figure. The elements in this layer were all 0.0127 mm tall.
The remainder of the mesh below the PTFE layer represents the steel compression platens
with a height of 9.34 mm (the thickness of the physical steel compression platens). The layer
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of nodes at the bottom of the copper (top of the PTFE) region was restrained from motion
in the y direction, and the user-defined boundary condition was applied to the top of the
copper region. Note that the PTFE layer and steel compression platens were included in the
polycrystal simulation model for only the thermal transport part of the problem. Neither
material played a role in the mechanical part of the problem. Only the copper region of the
numerical model contributed to the calculation of the copper stress—strain curves.

A Taylor polycrystal model was used to represent the polycrystal copper material.
The element CAX8T was used to mesh the rectangular area shown in Figure 1b, with
100 elements representing both the copper and steel and 10 elements representing the
PTEE film. Doubling the number of elements did not lead to any noticeable difference in
results. These are axisymmetric and thermomechanical eight-node elements with quadratic
shape functions. The mesh consisted of 200 such elements. Every integration point in
the model was assumed to be a composite of 500 randomly-oriented grains. At every
integration point, the function encoding the material model for the single crystal was called
500 times with the same deformation gradient but different grain orientations. The output
of these 500 function calls was averaged and returned to ABAQUS as the output of the
computation at the integration point. Because the presence of both PTFE and steel in the
polycrystal simulations was for heat transport only, both were modeled as isotropic elastic
materials with extremely low stiffness, ensuring that they could expand freely with the
copper cylinder. Realistic thermal properties were used to represent both materials. Both
the copper/PTFE and PTFE/steel interface surfaces defined by connecting nodes were
forced to remain fixed in the y-direction.

Following mechanical deformation with the thermomechanical mesh shown in Figure 1b,
the cooling transient was simulated using a heat transfer model of the deformed sample
shown in Figure 1c. The DCAXS element was used for this problem, which was initialized
for temperature at each node from the results of the thermomechanical problem for the
appropriate strain rate condition. This enabled evaluation of the thermal transport film
coefficient for the outer surface of the model to represent the thermal transport transient
measured experimentally for each condition. Note that the simulated temperature for both the
thermomechanical and heat transfer analyses was taken as the position of the thermocouple,
which is the node in the top right-hand corner of each of the two axisymmetric meshes.

2.2.1. Mechanical Tangent Operators

To calculate nodal forces and displacements with a user-defined constitutive model at
the end of time step n + 1, ABAQUS/Standard requires the the user to estimate the Cauchy
stress (T) and Jacobian matrix of the constitutive model Wgp = %. These quantities are
calculated using information from time step #, which is supplied to the user by ABAQUS.
In the following, a quantity with a subscript # refers to a quantity calculated in the previous
resolved time step, while subscript 7 + 1 refers to a quantity involved in the current
unresolved time step calculation. The relative deformation gradient F,; is defined as
F,.1 = F.oF,. The symbol e = InU, where U is the relative stretch portion of the polar
decomposition of the relative deformation gradient. By ABAQUS convention, T and e are
both defined as 6 x 1 column vectors with the following forms:

T11,n41 €11,n41

T2, 141 €22 n+1

_ | Teau+1 _|€33,n+1
I - /g - .

T12,141 €12,14+1

T13,n41 13,141

123,141 €23 n+1

Here, we show the method of deriving the fourth-rank tensor Wrp = g—%. The 6 x 6
matrix required by ABAQUS can then be calculated using the following formula:
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Wgp =

(W12 + Wii21)/2
(Wao12 + Wapo1) /2
(Waz12 + Wazo1) /2
(W12 + Wip1)/2
(Wiz12 + Wizo1) /2
(Was12 + Wazo1) /2

We follow the Jacobian derivation method provided in [85]. We make the assump-

(W13 + Wiiz1) /2
(Wao13 + Wap31) /2
(Waz13 + Waz31) /2
(Wi213 4+ Wips1) /2
(Wiz13 + Wizs1) /2
(Waz13 + Waz31) /2

(Wii2z + Wiiz2) /2
(Waoo3 + Wap3p) /2
(Wazp3 + Was3p) /2
( )
( )

Wiz + Wipz2) /2|

Wizoz + Wizsp) /2
(Waz23 + Waszp) /2

tion that the incremental stretch is small, which is justified because the time steps taken
by ABAQUS are reasonably small. This allows us to make the following mathematical
simplification: e = InU ~ U —1 = Je = 0U. To derive the material Jacobian, we note
that the Cauchy stress can be written in terms of the second Piola—Kirchhoff stress S:

1

eT

7In+ - + S, + +
1 EPE 1n 1 =n+1
detFn

Taking a derivative of this expression with respect to e and introducing the tensors

X= a e and Q = a o We obtain the following equation:
1 -
Wikl = 3orpe Xink1SmnFy) + iy Quunki Fy + Fiyy SmnXjnkt — FySmnFs] (Xpgra Fyp )} - (35)

Using the small stretch assumption made above, we write X ~ g—% and Q ~ 5.

Js

The following steps, taken from [85], are used to compute the tangent modulus Wep. This
symbol is written in blackboard bold font to emphasize that it is a fourth-order tensor and
that its components are to be used to construct the actual 6 x 6 matrix (using Equation (34))
that is passed back to ABAQUS.

1.

Compute the fourth-rank tensor LL:
Lijkl - Fknulmn+1Fn]n+Fzm numkn+1F1]n (36)

Compute the elastic stiffness tensor (C. denotes the elastic stiffness tensor in the

crystal frame). To calculate the elastic stiffness tensor for the current grain orienta-

tion, the rotation tensor from the reference orientation to the current orientation is

denoted by Q, and is used to calculate the elastic stiffness tensor using the expression
z;kl sz Q]q rileCc,pqrs

Use the quantities from steps 1 and 2 to calculate the fourth-rank tensor D:

1
Dijia = 5 Cijmn Lnnia- (37)

For each slip system «, use the Schmid tensor §* = s* @ m" to compute the fourth-rank
tensors G* and J* and the second-rank tensor B*:

Gf‘;nkl = mekl Sgn + Lpt’lklsgm/ (38)
1
Tit = 5 Cijmn Gk (39)
1 97
B = 305w (55 5%): @0
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5. Compute the fourth-rank tensors K and Q, which requires summing over all slip systems:

Kij = Liju + ) CiiByy, (41)
4
Qijur = Kl;,}m (Dmnkl - E’Yﬁﬂfénkz) . (42)
14

6. Compute the following quantities:

[/ — 24
Ri; = By Qi

_ (43)
Xk = Rix (Pfj(tn) - Ffp(tn) Zy“Atsg].) — RimUmnFyy (tn) ZR%lsgj.
14 14

The R;; appearing in the computation of X represents the rotation components of the
relative deformation gradient.
7. As the final step, compute the Jacobian for the mechanical behavior of the material:

1 ,
Wi = 3orpe [Ximklsmnpj'en + Fiy Qunki Fiyy + iy Smn Xkt — Figy SmnFjyy (X pgra Fp 1)} : (44)
2.2.2. Thermal Tangent Operators

ABAQUS/Standard forms the tangent matrix for the thermal transport problem using
certain quantities provided by the user. The calculation methodology for these quantities is
shown in this section. Several derivatives are important in these calculations. The first of
these is the variation of ¢* with respect to T:

07*  pqo*ltbTy, T, ™ -5 \"\*
otd s T N S ! st .
™3 PN 1-1 ™3 p—1
1-— p o .

The above must be multiplied by the sign of t*. The derivative of ¥* with respect to
the temperature is provided by

o7t p*I*b Ty T, ™ — 5\ "\*
or — 1 2P\ T g

(45)

(46)

Using these derivatives we can calculate the following four quantities, which are
required by ABAQUS for calculating the tangent operators connected to the thermal part
of the thermomechanical problem:

* 1y The portion of the mechanical work done on the material that is transformed to
heat. It is calculated here as a portion of the plastic work done on the material. It is
calculated as 8}, 7", where B is the Taylor—Quinney factor, « denotes the index for
one of 12 slip systems in the metal, T* is the resolved shear stress on slip system «,
and §* is the slip rate on the same slip system.

e  The variation of the Cauchy stress with respect to temperature: In this work, we
assume that the thermal variation of the Cauchy stress arises from the thermal vari-
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ation of the elastic moduli of the single crystal. This expression is derived from the
definition of the second Piola-Kirchhoff stress:
oT 1 2S
= FELFET
oT  detF*~ oT~ ’

(47)

2S

T;ﬂ] = QipQjg Qs QurMpgrs Ey- (48)

The temperature dependence of the elastic moduli, and consequently of the Cauchy
stress, is obtained from Equation (5).
e The variation of r, with respect to temperature:

rpI:,BZTa'j’a
9
iy e o )
) ot w97
aT 5;[8"[7 T a:r}’

ot 9S8
831 =37 (s* @m"). (50)

e The variation of r,; with respect to the strain:

aT‘pl ~ a?‘pl
aE,»]» E)Uij

:;52;

ot dS "

Wij = au; (s" @m"). (52)
The derivatives of S and * with respect to U are denoted by the symbols Q and J,
respectively, and appear in the derivation of the mechanical Jacobian.

(51)
ot g
au; !

7~
U,

7

2.2.3. Mechanical and Thermal Quantities for the Taylor Polycrystal Model

The quantities described in Sections 2.2.1 and 2.2.2 are those calculated for describing
the behavior of single crystals. For the Taylor polycrystal, these quantities are calculated
for each of 500 grain orientations assigned to each integration point of the Taylor model
aggregate. Each of the 500 calculations assumes the deformation gradient assigned to the
integration point by ABAQUS. From the UMAT of the Taylor model, the mean of these
500 quantities is returned to the ABAQUS global equation solver:

e Cauchy stress.

e Tangent stiffness moduli in Equation (34).

e  Rate of thermal energy generated.

®  Derivative of the Cauchy stress with respect to the temperature.

®  Derivative of the rate of thermal energy generation with respect to the temperature.
e Derivative of the rate of thermal energy generation with respect to the strain.

2.3. Experiment
2.3.1. Single-Crystal Experiments

Stress—strain and temperature evolution data were respectively taken from Figures 2b and 5a
of [13] for comparison to the single-crystal simulations.

The samples in these experiments were copper right-circular cylinders with diameter
6 mm and height 4-6 mm. They were machined from stock cylinders which had the <123>
direction of the single crystal oriented parallel to the axis of the cylinder. The reason for
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this alignment was to concentrate the plastic slip, at least at the onset of plastic flow, onto a
single slip system.

The single-crystal samples were then compressed in the quasi-static regime using an
MTS system (Eden Prairie, MN, USA) under displacement control and in the dynamic
regime using Kolsky bars of diameter 12.7 mm made of C300 maraging steel. For the
quasi-static regime, the temperature of the sample was measured by recording thermal
images of the sample as it was being compressed using a thermal imaging camera. For the
dynamic regime, thermal detection was carried out using a liquid nitrogen-cooled MCT
(mercury—cadmium-telluride) detector. This detector measures temperatures over an area
of 100 um x 100 pum.

To minimize issues related to surface roughness and surface oxidation, the samples
were thermally conditioned by preheating to 200 °C for 1 min to ensure that all samples
had similar surface conditions.

2.3.2. Polycrystal Experiments

The polycrystal experiments consisted of uniaxial stress compression tests in which
the stress, strain, and temperature evolution of the sample were measured simultaneously.
Temperature measurements were taken using thermocouples (J type) welded to the outside
center of the sample. The samples were right-circular cylinders machined from half-inch
round bar stock of OFHC polycrystalline copper. The slenderness ratio of all the samples
was equal to or less than 1.5. As such, the lengths of the samples were less than or equal
to 0.75 inches (19.05 mm) and their diameters were 0.5 inches (12.7 mm). After machining,
the samples were annealed in an Argon-flushed furnace by holding the samples at 800 °C for
1 hour and allowing the samples to cool naturally in the same furnace. Thermocouple beads
were welded onto the annealed samples using a thermocouple spot welder. Displacement of
the sample height reduction was measured using an MTS extensometer mounted directly to
the radial surface of cylindrical high-strength steel compression platens 6 inches in diameter
and 2 inches thick. These experiments were conducted using a high-capacity Instron servo-
hydraulic test system with displacement control on the extensometer to impose a constant
true strain rate on the sample for the duration of the experiment. The flat ends of the sample
were lubricated for the duration of the compression test by inserting circular pieces of PTFE
film of thickness 0.0127 mm and diameter 0.5 inches (the same as the samples).

2.4. Material Parameter Evaluation

The starting point for material parameter evaluation was the list provided in Table 2
of [78]. However, the provided material parameters cannot be used as-is, since the current
model differs from [78] in Equations (22) and (28). The list of material parameters used here
is provided in Table 3. All parameters are used for both single- and polycrystal calculation
except where different polycrystal values are provided in parentheses. The elastic con-
stants Cq1,0, C12,0, and Cyy 9 characterize FCC Copper at 0 K. As mentioned in describing
Equation (5), it is assumed that the elastic moduli decrease linearly with the temperature.
These variation parameters are 1111, 113, and my4. These elastic moduli and their tempera-
ture variation parameters were estimated from [86]. For a given temperature T, the three
elastic moduli are provided by

Ci1(T) = Crio + mii T,
C12(T) = Cip0 + mi2T, (53)
Cya(T) = Cug + myT.

Using these elastic constants, the elastic stiffness tensor at a temperature T of the
single-crystal orientation used as reference is

Ceijt = Cun(T)ifi=j=k=1,

. (54)
otherwise, Cjjx1 = C12(T)dij0x1 + Caa(T) (6ixSj1 + 0i10xj)-
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The values of the matrix entries a*¥ used in Equation (23) depend on relative ori-
entations of the slip normals and slip directions of the slip system corresponding to «
and B:

o 1" = gagp Captures the interaction of a dislocation with other dislocations in the
same slip system.

o %= Acopl, if m* = mP and s* # sP: This corresponds to the dislocation interactions
that lead to the formation of dipoles.

o " = gapy, if m* # mP and s* 1 sP: This corresponds to the formation of a Hirth lock.

o g% = gy, if m* # mP and s* = sP: This corresponds to collinear interactions
between dislocations.

o o= Agliss, if m" 7 mP and s* # sP: This corresponds to the formation of a glissile junction.

e % = a4y for other configurations of slip normals and slip directions: Corresponds
to the formation of a Lomer lock.

Table 3. List of material parameters for single-crystal simulations. For the polycrystal simulations,
all values are the same except for those quantities in parentheses. The symbol py denotes the initial
dislocation density on each slip system.

Material Parameter Symbol Value
Y 8960 Kg/ m3
Cp 380]/Kg-K
Kr 394 W/m-K
Cll,O 179,500 MPa
Ci20 126,400 MPa
Caa0 82,500 MPa
M1 —36.3 MPa/K
mio —16.4 MPa/K
m —25.7 MPa/K
ar 2.75 (2.0)
b 2.57 x 1077 mm
00 1x10° mm~2 (2 x 10° mm~2)
X0 0.20 (0.19)
Xss,0 0.25 (0.115)
Agelf 0.122
acopl 0.122
Ahirth 0.070
Acolli 0.625
agliss 0.137
Alomer 0.122
ep 1.0
to 1x10" 125
Ty 40,800 K
kg 1.38 x 1078 J/K
a 10b
K9 60 (68)
Ky 3.3 (4.3)
Jo 105571
kcopl 15
kinter 200
A 17.1 x 107197
S 0 MPa
p 0.33
q 1.66

The values dself, dcopl, Anirths Acollis Aglisss aNd Alpmer Were calculated from the DD
(Dislocation Dynamics) simulations in [37,87,88]. According to [80], the parameters avp
needed in Equation (25) can be calculated using a*P, kinter and keopl, using the expressions
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a*h
Keopl
slip systems. The same approach is followed in the present work.

The material parameter A introduced in this work is an energy barrier term, and
controls the temperature and rate sensitivity of xss. Because the slip rate on any slip system
is usually less than the reference slip rate j, a lower value of A corresponds to a higher
value of xss. Because y is a measure of the disorder of the system, a higher value of s
corresponds to a higher value of the saturation stress of the material. Therefore, a lower
value of A corresponds to a strong material. The symbol ) denotes the initial value of x.

Saturation flow stress increases with strain rate [81,84]. The state variable y is a measure
of the configurational disorder in the system. Therefore, its saturation value )xss should
decrease with temperature. From [84], it is apparent that saturation flow stress decreases as
temperature increases. For a FCC material, the saturation flow stress is strongly controlled by
the saturation dislocation density. The dislocation content is a measure of the configurational
disorder of a system. Therefore, based on experimental data on the saturation value of flow
stress, we can make inferences about the saturation value of the configurational disorder of
the system. This notion is captured by Equation (28) for variation of xss.

Several of the material parameters in this work are different from the material parameters
in [78] such as x, Kg, keopls Kinter, and ar. Differences in the first two quantities are related to
differences in the effective temperature and dislocation evolution equations. The remaining
three may be related to manufacturing differences in the materials being simulated.

Both PTFE and tool steel were used in the polycrystal simulations and represented for
thermal transport characteristics only. For PTFE, p = 2200 Kg/ m?3, Kr = 0.25 W/m-K, and
Cp = 1500 J/Kg-K; For steel, p = 7850 Kg/m?, K = 45 W/m-K, and C, = 420]/Kg-K.

dh = 4% for intersecting slip systems and d*f =

inter

for self-interaction and coplanar

2.5. Free Surface Heat Transfer Coefficient Parameter Evaluation

The film coefficient for air governing the transport of heat across the curved surface of
the cylinder is assumed to be equal to 10.0 W/m?-K for the single crystal simulations. This is
consistent with prior computational results for room-temperature experiments conducted in
air. There is uncertainty in the value of the film coefficient, as seen in [77], which uses a value
of 3.0 W/m?2-K, and [89], which shows a wide range of values for the film coefficient (up to
13.0 W/m?2-K). For the polycrystal experiments presented here, each sample was deformed to
the target strain at a constant true strain rate and held under load while measuring the thermal
transient cooling. This allowed for determination of the film coefficient for the conditions of
these experiments. A value of 0.18 W/m?-K was determined to be suitable using results from
the 0.1 s~! experiments, as demonstrated in Figure 2.

45 T T T T

Experiment - Solid
Simulation - Dashed

Temperature, C

25 i i i 1 i " i 1 1 L A 1 L i i 1 i
0 20 40 60 80

Time, s

Figure 2. Temperature transient results used to determine a numerical film coefficient for the air—
solid interface of 0.18 W/m?-K. The temperature measured by the thermocouples and simulated
temperature are taken from the center surface node.
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3. Results

A comparison of the experimental and simulation stress—strain curves for single-crystal
compression is shown in Figure 3a, demonstrating reasonable agreement between simulation
and experiment. There is divergence between the simulation and experimental results for
the two lower deformation rates at large strain values. Because the deformed sample shapes
were not reported in [13], it is difficult to diagnose the observed softening response. As
the simulations suggest strong sample distortion with deformation, it is possible that strong
shear localization occurred in the experiments but was not captured by the mesh used in the
simulations. Similarly, for the polycrystal case, Figure 4a shows a reasonable representation
of the experimental stress—strain curves by the simulations. However, the deformation rate

sensitivity of the material in the simulations is too strong in comparison with the experiments.
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Figure 3. Comparison of experiment and simulation for single-crystal copper. Solid lines represent

experiments and dashed lines represent simulations. Plastic work densities are calculated as the

area under the stress—strain curve. The simulation temperature change was taken from the center
surface node. (a) Single crystal stress-strain; (b) 0.1 s~! and 2.0 s~! temperature change; (c) 3000 s !
temperature change; (d) 4000 s~ and 5800 s~! temperature changes.
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Figure 4. Comparison of polycrystal experiment and simulation results: (a) stress-strain curve
for polycrystal copper and (b) temperature evolution for polycrystal copper. The experimental
temperature was measured by thermocouples, while the simulated temperature was taken from the
center surface node.

As expected, the single-crystal temperature curves in Figure 3b—d show high depen-
dence of the temperature evolution behavior on the strain rate. The images corresponding
to the two higher strain rate simulations (3000 s~! and 4800 s~!) are shown in Figure 3c,d
respectively. The polycrystal temperature curves in Figure 4b for the simulations show
a reasonably accurate prediction of the thermocouple-measured temperature evolution
in the experiments. However, a variation in the curvature of each result can be seen as a
function of evolved strain. There is qualitative agreement in the strain rate sensitivity of
the thermal behavior of the model, and it is again in reasonably good agreement with the
experimental results. The difference in the character of the simulation and experimental
temperature evolution curves suggests that some uncertainty remains in the temperature
measurement as well as in our physical understanding of this thermodynamic process.
Nonetheless, order-of-magnitude agreement can be seen with the simple theory used here.

The deformed shapes of the domains of the single crystal simulations for the four
different strain rates are shown in Figure 5 (showing von Mises stress) and Figure 6
(showing absolute temperature). The deformed shape of the domain and contour plots
for the von Mises stress and temperature show the anisotropy and heterogeneity of the
deformation. Anisotropy is shown by the cross-section of the cylindrical domain, which has
transformed from a circular to an elliptical shape. Heterogeneity is shown by the shearing
visible in the deformed shape domains, made clearer by the patterns of the contour plots.

The predicted evolution of the Taylor-Quinney factor for both single-crystal models
(Figure 7a) and polycrystal models (Figure 7b) demonstrates mild influence of the strain rate.
There is clearly a strain effect on the Taylor—Quinney factor, with the Taylor-Quinney factor
increasing with strain as expected. A trend appears with respect to the strain rate, however,
where the Taylor-Quinney factor is lower for higher strain rates at the beginning of the
simulation. With deformation, the evolution of the Taylor-Quinney factor for the higher
strain rates catches up to and then exceeds the values for lower strain rates. The evolution
of x and xss can be seen in Figure 7c,d, respectively.
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Figure 5. Deformed shapes of single-crystal simulations, showing the von Mises stress for different
strain rates: (a), ¢ = 0.1s71; (b) ¢ = 2s71; (c) ¢ = 3000 s~ }; (d) ¢ = 4800 s~ 1. All images were
taken at an axial compressive strain of 0.35. The von Mises stress, also known as equivalent stress, is
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Figure 6. Deformed shapes of single-crystal simulations showing the temperature for different strain
rates: (a) ¢ = 0.1s 1 (b) e =251 (c) ¢ = 3000 s~ L; (d) ¢ = 4800 s~ 1. The initial temperature for all
simulations was 295 K. All images were taken at an axial compressive strain of 0.35.
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Figure 7. Evolution of Taylor-Quinney state variables for single and polycrystal simulations: (a) single-

crystal Taylor-Quinney factor; (b) polycrystal Taylor-Quinney factor; (c) polycrystal effective temper-

ature; (d) polycrystal steady-state effective temperature.

4.

Discussion

The finite deformation theory presented here has demonstrated some success in repre-
senting the experimental results. It represents dislocation interactions which are specific to the
interacting slip system dislocations for face-centered cubic materials, an approach motivated
by the study of these interactions with discrete dislocation dynamics and molecular dynamics
calculations [36-38,43,80,87,88]. This is represented by a tensorial interaction within the classi-
cal Taylor expression for interaction resistance to glide. The evolution of material state in this
thermodynmaic theory is also driven by plastic power, as opposed to simply the kinematic
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quantity of plastic slip or plastic strain rate [59-62,73,75,76]. The partitioning of plastic power
into configurational and kinetic-vibrational categories affords the opportunity to suggest the
coupling between plastic power and the proportion going to increasing the temperature of
the material. Especially for high deformation rate loading conditions, the change in material
temperature during deformation cannot be ignored; our physical mechanistic understanding
of this process is quite weak. It follows that the Taylor-Quinney factor expression used
here is only suggested by thermodynamics restrictions as one of the most simple admissible
approaches. While such an expression is not void of physical insight, it represents a simple
expression given the complexity of dislocation mechanics and the partitioning of energy in
such material systems. Certainly, atomistic tools are an important avenue for gaining more
physical insight into thermodynamics and physics of dislocation motion. There is also a
possibility of comparing the results from the current theory with molecular dynamics sim-
ulation results, considering the advanced potential of recent developments [90]. However,
such a direct comparison is difficult, as there is a large difference between the high strain rates
typically necessary for MD calculations and the significantly lower strain rates of achievable
polycrystal experiments and simulations. The metadynamics method developed by [91,92]
may also be able to sample the potential energy landscape much more efficiently and extend
the feasible strain rate regime down by many orders of magnitude. The continuum model in
this work uses an Arrhenius-type flow rule based on thermal activation, and is not currently
formulated for phonon drag regimes of dislocation velocity, though this could certainly be
added as required [40]. As a result, the mechanical response of the continuum model is
expected to match that of molecular dynamics simulation for face-centered cubic materials.
The possibility of agreement of the thermal response is less certain; this flow rule physically
describes the mechanical behavior of mobile dislocations but not their thermal coupling, as
the exact physical basis of this coupling is not understood. However, there is much physical
insight to be gained by controlled atomistic studies of this process, given the wealth of results
which have already been produced.

From the polycrystal temperature evolution curves in Figure 4b, we see qualitative
agreement in the strain rate behavior between experiment and simulation. The differences
in curvature between the curves raise questions about the estimation of the thermal power
generated in the model and the thermal energy lost to the surroundings through the
boundary. It is also reasonable to expect that deformation may bring about changes in the
thermocouple contact with the sample, as the bead weld area on the sample is deforming as
well. Again, this highlights the challenges associated with measuring temperature for large
deformation conditions, especially for high deformation rates. For the Taylor polycrystal
model, the thermal power at an element integration point was calculated by averaging over
the thermal power generation of all 500 single-crystal orientations active at the element
integration point. What is missed in this simple homogenization approach is intergranular
interactions with deformation and corresponding inhomogeneous deformation field at
the single-crystal and lower length scales. This is thought to produce a greater degree of
local plastic deformation, which may be missed by homogenization. On the other hand,
the Taylor homogenization technique is known to be an upper bound for stress response.
However, as the single-crystal and polycrystal stress—strain response is well represented,
the homogenized energy should be consistent with that imposed experimentally. Then,
the question is to what extent the local inhomogeneous deformation alters the energy
partitioning process. Although the present results reasonably represent the experimental
data, they do not address questions of the role this may play in the thermodynamic process
and observations of temperature change. This has practical implication for how to approach
these questions, as combined thermomechanics calculations are costly and performing
sample-sized simulations (even very small samples) with realistic microstructures would
be quite resource challenging even for advanced computational architectures.

The calculation of the single-crystal Taylor-Quinney factor for Figure 7a was per-
formed by taking the average of the Taylor-Quinney factor of all the integration points in
the 3D cylindrical model. This was necessary due to the highly anisotropic nature of the
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deformation field, as shown in Figures 5 and 6. This is also consistent with the experiments
due to using the entire field of thermal imaging [13]. For the polycrystal model, the deforma-
tion field is uniform, and as such the Taylor-Quinney factor was determined by averaging
over all 500 crystals at the integration point nearest to the top right-hand corner node, which
corresponded to the thermocouple location on the experimental samples. The polycrystal
Taylor—Quinney factor evolution is provided in Figure 7b. In general, the Taylor—Quinney
factor increases with deformation; however, the actual values in Figure 7a,b show that
there is not much change in the predicted value over the considered range of deformations.
It is, however, interesting to note that the difference in magnitude of the Taylor-Quinney
factor between the single-crystal and polycrystal predictions is larger for the polycrystal
by a factor of two. As mentioned earlier, the orientation of the single crystal was chosen
to ensure that something close to single slip could be achieved. This produced a flow
stress of 200 MPa at a strain of —0.4, in comparison with 300 MPa for the polycrystal
samples for a strain rate of 0.1 s~! for both datasets. The polycrystal temperature predic-
tion for that strain rate represents the experimental curves rather well. The single-crystal
prediction of temperature for that strain rate is approximately half of the experimental
magnitude, indicating that perhaps the predicted single-crystal Taylor—Quinney factor is
too low. The single-crystal temperature significantly overpredicts that of the experiment
for a strain rate of 2.0 s~!. It should be noted that the boundary conditions for the single-
crystal experiments were not reported by [13], and consequently those employed here for
modeling these results may not be quite correct.

Although mechanical size effects are becoming more prominent features in advanced
crystal mechanics theories, this was not considered in the present work. As already
discussed, coupled thermomechanics problems have an implicit size effect which appears in
the thermal transport component of the problem. Mechanical size effects may be introduced
in various ways. Size effects related to plasticity may be introduced by calculating the
dislocation density at an element integration point from the plastic part of the deformation
gradient. This would necessarily require calculation of the gradient of the plastic part of
the deformation gradient, and would introduce a size effect into the continuum model.
Size effects related to the elastic part of the response can be introduced by assuming the
material to be a micromorphic continuum. These are additional valid elements of physics
which may contribute to this thermomechanical problem, and should be pursued; however,
as alluded to already, adding more length scales to this study would also add substantial
computational expense, and must be done with specific physics questions in mind. Given
our significant remaining questions about the thermomechanical response of materials and
partitioning of mechanical power, we consider it premature to include mechanical size
effects at the present time, as there are higher-priority outstanding questions.

The results presented here suggest that there remains some uncertainty in the accurate
measurement of temperature for the loading conditions considered here. As demonstrated
in Figure 4b, the temperature evolution curves demonstrate differences in character between
the different strain rate conditions. While there is good repeatability between the duplicate
experiments at the same loading conditions, the curvature of the curves (with the exception
of the 0.1 s~ ! conditions, which compare well with the simulations) are not understood at
present. It is also clearly important to quantify the thermal boundary conditions, which
remains an opportunity for further development. This will again require close examination
in the future. This is clearly an area for opportunity, as measured temperature is a critical
state variable in this area of study.

5. Conclusions

We have presented an integrated study of the thermomechanical behavior of copper
which includes new theoretical, computational, and experimental results. The primary vari-
able of interest in this work is the strain rate (or time, in the context of thermal transport),
which spanned the range from 1072 to 5 x 10% s~1. All conditions were initially at room
temperature. The theory and corresponding thermomechanical simulations demonstrated
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reasonably good agreement with the experimental results for both stress and temperature
evolution, given the simplicity of the model and that there is much that we do not yet
understand about the coupled thermomechanics of plastic deformation, mechanistic en-
ergy partitioning, and thermal energy conversion. The theory is formulated with large
deformation kinematics, is thermodynamically consistent, and accounts for plastic power
partitioning to stored energy of cold work within the dislocation structure and thermal
energy of the material system. The theory accounts for advanced dislocation interaction
via the continuum theory and plastic power driving structural evolution, rather than kine-
matical quantities such as slip rate. The dislocation interaction energy is not yet directly
represented, instead being implicitly represented through material hardening as a result
of dislocation interactions. Configurations of dislocation structure development such as
dislocation subcells are not yet directly represented in this theory.

The single-crystal results presented here using experiments found in the literature [13]
are a very important component in developing an understanding of polycrystalline ther-
momechanical behavior. The deformation fields at the single-crystal length scale within
polycrystalline aggregates are more complex, and there does not yet exist a good way to
experimentally quantify the influence of multiple grain boundary types on the deforma-
tion behavior of individual single crystals. More coupled diagnostic thermomechanical
experiments performed on single crystals are needed.

The theory presented here has been used against the presented polycrystalline dataset
by employing the Taylor model to homogenize the response of a representative set of 500
crystals of annealed copper with random initial crystallographic orientations. In such a
treatment, each grain experiences the same imposed deformation gradient for each time
step. However, depending upon its crystallographic orientation with respect the problem
boundary conditions, each grain responds in a different way kinetically. The homogenized
result for the simulations is then the numerical average kinetic response of each crystal,
as done here, although weighted averages can also be taken. This is a reasonable first
step with this new theory, and the numerical results provide a reasonable representation.
Of course, intergranular interactions are an important part of the deformation response of
polycrystalline metallic materials, and this remains an important question to explore.
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Abstract: In this study, we successfully reproduced the persistent slip band (PSB) with laddered
patterning, showcasing the predictive capability of the framework of Field Theory of Multiscale
Plasticity (FTMP) without relying on ad hoc models, intricate mathematical models, or elaborate
finite element discretization. The FTMP-incorporated CP-FEM simulation not only reasonably
replicates the experimentally observed laddered morphology and PSB but also effectively simulates
surface roughening and grooving, independent of vacancy formation and diffusion. These results
highlight the significance of laddered morphology and set the stage for further investigations into
the effects of vacancy formation, as extended in the subsequent paper. Leveraging incompatibility
tensor-based degrees of freedom, the FTMP framework offers exceptional capabilities for natural
modeling dislocation substructures typically overlooked in conventional approaches, positioning
it as a transformative tool for advancing our understanding of the mechanisms that dictate slip
band-fatigue crack transitions.

Keywords: fatigue; persistent slip band; crack initiation; crystal plasticity; field theory; non-Riemannian
plasticity; finite element method; vacancy diffusion

1. Introduction

Research into metal fatigue has a long-standing history, with significant contributions
dating back over half a century. Early investigations by Thompson et al. [1] revealed that
fatigue cracks initiate within slip bands of a single grain, highlighting the critical role of
microscopic dislocation structures in fatigue crack formation. Building on this foundation,
Woods et al. [2] emphasized the presence of persistent slip bands (PSBs), characterized by
uniformly arranged dislocation walls, often referred to as ladder walls. Polak et al. [3-6]
further explored the relationship between these dislocation substructures and the resultant
surface morphology. Essmann et al. [7,8] conducted extensive studies on irreversible
deformation associated with the ladder structure of PSBs and its influence on crack initiation
at the PSB-matrix interface. They examined the crucial role of vacancies commonly found
in fatigued metals [9,10], including their agglomeration into crack nucleation sites.

Subsequent studies have continued to enhance our understanding of the relationship
between persistent slip band (PSB) ladder structures and fatigue crack initiation, an inquiry
that remains ongoing. Historically, crack initiation modeling continues to be an unsat-
isfactory endeavor due to its inherent complexities as a whole. A significant portion of
the research has focused on interactions with singular interfaces, such as grain and twin
boundaries in various practical alloy materials [11-13]. Meanwhile, simulations of crack
initiation and subsequent propagation processes have often been limited to scenarios in-
volving artificial notches and stress concentration sites [14], as observed in compact tension
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(CT) specimens [15-17], or even from a pre-existing cracks [15,18-20], relying heavily on
phenomenological elasto-plasticity and established fracture mechanics.

In recent years, there has been a notable increase in the application of crystal plas-
ticity finite element analysis (CP-FEM) [21-24], which integrates detailed geometric in-
formation about microstructures and crystallography. This has been complemented by
rapidly advancing experimental observation techniques, including micro-beam X-ray Laue
diffraction [25], in situ and ex situ SEM-EBSD (electron backscattering diffraction) [23,26],
ECCI (electron channeling contrast imaging) [22], and HR-DIC (high-resolution digital
image correlation) [14] analyses. Furthermore, significant progress has been made in cou-
pling simulations with metallurgical microstructure modeling, particularly through the
application of discrete dislocation dynamics (DDDs) [24,27-29] and phase-field (PF) [30,31]
techniques as powerful numerical tools. An extensive review by Sangid [32] highlights the
potential of high-precision experimental measurements and computational simulations;
however, it does not focus on crack nucleation or the role of dislocation substructures in
crack growth and propagation. The interrelationships between dislocation substructures,
particularly cell formation, have been suggested in various studies [33-35].

Despite the advances with DDD and PF methods, progress in accurately reproduc-
ing the fatigue crack initiation process purely from deformation fields remains limited,
without relying on hard spots or similar features. CP-FEM analyses, in particular, are
often employed as supporting tools rather than predictive ones, due to inherent limitations
in their predictive capabilities, which indicates a lack of standalone competency. This
inadequacy in predicting deformation-induced dislocation substructures highlights a sig-
nificant drawback of conventional CP-FEM, as the slip bands responsible for fatigue crack
initiation are closely linked to dislocation substructures that are spontaneously induced
during deformation. This limitation is further underscored by the inability to reproduce
even simple intragranular banded substructuring with misorientation [21] or to capture
fundamental clues to dislocation substructure formation under cyclic straining without
resorting to overly complex models [22].

The significance of deformation-induced patterning in plasticity is paramount for
understanding the multiscale nature of material mechanics. This importance arises from
the dynamic changes in dislocation substructures influenced by long-range stress fields
and misorientation, particularly in materials that yield dislocation structures with cellular
morphology [36,37]. These dislocation patterns play a crucial role in the storage and release
of elastic strain energy, influencing not only the deformation capacity but also the strength
and toughness of materials. A notable exception is the ladder structure observed in PSBs,
which predominantly facilitates deformation during cyclic loading and typically does not
produce a long-range stress field due to its composition of edge dislocation dipoles [38].
This PSB ladder structure significantly impacts the mechanisms of fatigue crack initiation,
as previously described [39-43]. However, the underlying reasons for this patterning and
its critical roles remain undefined, partly due to limitations in conventional approaches
to plasticity.

While analogy-based methods, such as reaction—diffusion equations grounded in the
concept of dissipative structures, can address patterning-related issues, they often provide
limited insights beyond mere analogy [44,45]. These methods do not elucidate the mecha-
nisms involved in crack initiation. Recent research, fueled by advances in computational
capabilities, has increasingly relied on DDDs [27,46,47] and molecular dynamics (MD)
simulations [48], employing multiscale methods to model these phenomena. However,
these studies often focus narrowly on specific aspects, such as passing stress [38,49], rather
than capturing the complete picture that includes the roles of PSB ladders and the processes
of crack nucleation, e.g., [48,50].

Modeling fatigue presents significant challenges, particularly concerning crack ini-
tiation, as it must consider the effects of dislocation substructures, that is, the laddered
morphology in PSBs. The foundational work by Repetto and Ortiz [51] on finite element
simulations of fatigue crack initiation emphasized the role of vacancy-induced elongation
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in the PSB region, which leads to surface protrusion as a key factor; however, their study
did not account for the laddered morphology explicitly. In contrast, Nakai et al. [52-54]
reported that cracks primarily evolve from intrusions rather than extrusions. Their research
identified a potential critical condition for the transition from intrusions to cracks, based
on detailed observations made using atomic force microscopy (AFM) combined with in-
terrupted fatigue tests. According to their findings, extrusions and/or surface reliefs do
not develop into cracks. Through their systematic series of studies on several materials,
they successfully identified a potential critical condition for the transition from intrusions
to cracks, with further details presented in Section 2.

Focusing on the transition from slip bands to cracks, particularly once this critical
condition is reached, may provide a more effective framework and minimize ambiguities in
the modeling process. Integrating this critical condition with our Field Theory of Multiscale
Plasticity (FTMP)-based approach [55-62] can significantly reduce computational costs,
as FTMP does not always require intricate fine mesh divisions to reproduce deformation-
induced substructural patterns accurately. This versatile theoretical framework facilitates
the study of deformation-induced patterning, which is crucial for controlling mechanical
properties across multiscale contexts [55,56]. By incorporating a new underlying degree
of freedom related to the incompatibility tensor into the hardening law, we enable the
autonomous emergence and spontaneous evolution of dislocation patterns that closely
resemble experimental observations, as demonstrated in Ref. [57], through straightforward
deformation analyses using CP-FEM. This mechanism effectively redistributes excessive
elastic strain energy generated during deformation, promoting system-wide equilibrium.
In this context, the incompatibility tensor serves as a critical facilitator of energy release,
driving the formation of complex dislocation substructures.

This study aims to elucidate the roles of the laddered structure in PSBs on the fatigue
crack initiation process through FTMP-incorporated crystal plasticity (CP)-based finite
element method (FEM) simulations. Part I of the paper presents a preliminary series of
simulations utilizing a simplified vacancy model to examine surface roughening behavior
and the subsequent grooving processes.

2. Background

Two pivotal research findings have catalyzed the current series of studies. First,
Yokoi et al. [63,64] demonstrated that the addition of copper (Cu) to steels can dramatically
alter dislocation substructures, transforming them from cellular to planar configurations.
This transformation results in finer surface intrusions and extrusions, significantly delaying
the initiation of fatigue cracks, as illustrated in Figure 1A. This finding underscores the
crucial role of dislocation substructures in influencing the fatigue crack initiation process.

Second, Nakai et al. [52-54] investigated the transition process from slip bands to
cracks through a systematically designed series of interrupted AFM observations. They
revealed that surface grooving—an evident manifestation of slip bands—evolves into
fatigue cracks when the slip distance (or groove depth) exceeds a critical threshold, which
varies among different materials, as shown in Figure 1B. This finding highlights a key
mechanism that dictates the transition from slip banding to fatigue cracking. Notably,
surface reliefs (bottom left) do not contribute to crack formation; only grooves serve as
precursors to crack nucleation, at least according to their studies. In this context, the
effect of Cu addition on the core structure of screw dislocations in x-Fe has been studied
separately through ab initio calculations [65]. Cross slip by screw dislocations is considered
critical for dynamic recovery, which drives cell formation. We reported a transition of the
core structure from isotropic to fully extended, a change that tends to inhibit cross slip,
thereby hindering dynamic recovery and the resulting cell formation. This provides one
possible explanation for why the addition of Cu leads to vein-like or planar dislocation
substructures, rather than cellular morphology.
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Figure 1. Informative excremental results for modeling fatigue crack initiation process. (A) Effect
of dislocation substructures on slip banding and fatigue cracking, adapted from Yokoi et al. [63,64]
(2001, 2005). (B) Transition of slip bands into cracks, measured by critical slip distance (a) compares
surface profile variations with stress cycling and AFM micrographs; (b) shows slip distance variation
with cycle number for SUS304 (red) and x-Brass (blue), with open and solid plots representing data
before and after slip distance acceleration, adapted from Nakai et al. [52-54] (Courtesy of Y. Nakai).

By explicitly simulating these critical aspects through deformation analyses, we aim
to provide groundbreaking insights that enhance our understanding of the fatigue crack
initiation process in practical applications. For the former, the case of copper solid solution
yielding a 2D vein structure represents the most fundamental scenario. Here, we confine

our focus to the widely observed PSB ladder structure, with other matrix morphologies left
for future investigation.

3. Theory and Kinematics
3.1. Brief Description About FTMP

The Field Theory of Multiscale Plasticity (FTMP) [55-62] is a comprehensive frame-
work encompassing three critical aspects: (i) evolution, (j) description, and (k) cooperation,
as illustrated in Figure 2a. It primarily addresses “inhomogeneously evolving” deforma-
tion fields, which typically manifest as dislocation substructures (Figure 2b: simulated
examples). Notably, the theory’s ability to describe these aspects of evolution distinguishes
it from many others. Furthermore, the interaction formalism facilitates explicit treatments
of (k) cooperation across multiple scales (Figure 2f).
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Figure 2. Overview of FTMP as a new theory of multiscale plasticity. (a) Key concepts of the
FTMP-based framework. (b) Representative simulation results obtained via CP-FEM. (c) The flow-
evolutionary law (FEL) as the central concept. (d) Schematic representation of the curvature tensor in
differential geometry for describing defect fields in general. (e) Continuum mechanics-based interpre-
tation of the curvature tensor. (f) The interaction formalism represented by the incompatibility tensor
field. (g) A specific form of the FEL. (h) The corresponding incompatibility term to be incorporated
additively into the hardening law of the CP constitutive equation for CP-FEM simulations.

For the mathematical description of these inhomogeneous fields, differential geometric
concepts are predominantly employed, particularly the curvature tensor R;;! (Figure 2d)

and the torsion tensor Sk{ , defined respectively as

Su =Ty )
R/ P
Ry = 2|90y + T o D

where l"l’]‘ represents the coefficient of connection. The significance of utilizing these dif-
ferential geometric quantities lies in the fact that all imperfections in crystalline space can
be completely expressed through them. These tensors correspond to the incompatibility
tensor 7;; (Figure 2e) and the dislocation density tensor, respectively, drawing on the non-
Riemannian plasticity framework advocated by K. Kondo [66,67]. Both can be contracted
into second-rank tensors without loss of information by applying the alternating tensor
€ij as follows:

wij = 3 €k i @

Tij = 2 €kt €jmn Rij (8 = det(gi;))
with g;; being the metric tensor. The incompatibility tensor 7;;= # is further defined as the
double curl of the plastic strain tensor SZ.: &P (Figure 2e), while the dislocation density

tensor a;;= « is derived from the curl of the plastic distortion tensor [35 = p*.

{ ajj = — €y 3k,37]- or { w=—V x BF 3)

’7ij :Eiklejmn akamgfn 1= V xV xel
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Consequently, strain gradients are intrinsically integrated into the theory. It is impor-
tant to note that the dislocation density tensor, which represents the first gradient of strain,
encompasses the concept of geometrically necessary dislocations (GNDs) [58,60,68]. The
component-wise expression of Equation (3) is presented in Appendix A.

At the core of FTMP is the concept known as the “flow-evolutionary law (FEL)”, which
serves as a working hypothesis (Figure 2c) [57,59].

1ij = ®0T}; 4)

where « refers to the duality coefficient. This relationship connects the incompatibility
tensor 7;; with the fluctuation of the energy-momentum tensor §T;;= 6T, where the fluc-
tuation is defined as the deviation from the spatial average, i.e., 0Ty = Ty — <Tij>, with
() = (1/V) [(-)dV. The incompatibility tensor 7;; in this context has been extended to
four-dimentional (4D) spacetime (see also Appendix A). The FEL was initially derived
in [57] by equating the incompatible displacement with the inhomogeneous force, which
are the corresponding conserved quantities of 7;; and 0Tj;, respectively. Details on the
energy-momentum tensor and a brief historical background leading to the formulation of
the FEL are provided in Appendix B.

The FTMP framework extensively utilizes the incompatibility tensor, 77;;, among other
elements. Its enhanced applications, presented in Figure 3, are categorized into three
aspects: an extended definition to four-dimensional (4D) spacetime, the flow-evolutionary
hypothesis (Equation (4)), and the interaction formalism applicable across multiple scales.
The 4D-extended definition of 7;; is expressed as

Nij =€iklp € jmnp akamgfn ()

[ Augmented “Incompatibility Tensor” in FTMP |

¢ (a) Extended Definition to 4D Spacetime

MN44=41pp E4mnpakam<9f’,- =Tlkk

— ~P
1My=€p € jmnpé 1Omél

I Space-Time Mixed Components |

7714=—(05//\ -0y )

(b) Flow-Evolutionary Hypothesis Ne=—divi] ,=div(a, —a,,)

K

7, =KT, i = KU

\ (c) Interaction Field Formalism

~ -1 -2 —1 =2
N =1p%€psMps+ €pyT 4+ EpcTlpct Epcllc

—| = 14
ﬂﬁA_vBXVAng NVBxa"A
Ex:
—, = a3
nAB_vAxvﬁxgﬁ VAxaB

Figure 3. Augmented “incompatibility tensor” in FTMP: (a) extended definition of the incompatibility
tensor into 4D spacetime, with two specific components of pure temporal and space-time mixed,
(b) flow-evolutionary law as working hypothesis, with the specific form for duality diagram pre-
sentation scheme (pointed by right arrow), and (c) interaction formalism, presented for three scale
problem with Scales A, B and C, with explicit examples for Scale A to B or Scale B to A interactions.

In this context, the indices indicated by lowercase letters denote four-dimensional
spacetime (1, 2, 3 for spatial dimensions and 4 for time), while capital letters are used
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for spatial components when necessary for clarity. The pure temporal component of the
4D-extended incompatibility tensor 744 results in the spatial trace, represented as

Nas =CEakipEamnp OOmer, = Nxx= tr'ly (6)

A detailed process for achieving the above relationship is provided in Appendix A.
Thus, the pure temporal component of Equation (4) becomes

nkk = xk6(U° +K) @)

where U denotes the elastic strain energy, and K represents the kinetic energy. In static
conditions, as is often the case, this simplifies to

Nk = KkoU° 8)

as presented in Figure 2g. Equation (8) visualizes the dynamic interrelationships between
excessive strain energy being converted or redistributed into the incompatibility-related degrees
of freedom, which drive the field evolutions during the course of elasto-plastic deformation.

In practice, there is no need to directly solve Equation (8). Instead, we can incorporate
the incompatibility-based underlying degrees of freedom into the hardening law of the
constitutive equation used in CP-FEM simulations, as detailed separately below (also
see Figure 2h). This integration allows the system to autonomously manage excessive
storage of elastic strain energy, leading to significant field evolutions, such as substructure
formation. In this context, the evolution of dislocation substructures arises naturally from
system-wide accommodations facilitated by incompatibility. If this approach is correct, the
necessary dislocation patterning can spontaneously emerge, provided that we properly
integrate the incompatibility-related degrees of freedom into the simulation; otherwise, it
may not occur. Thus, we anticipate that the laddered patterning in PSBs can be effectively
reproduced without the need for any ad hoc models, underscoring the robustness of the
FTMP framework.

The divergence-free condition for the incompatibility tensor in the 4D spacetime reads

div*Py = 0 < 1,y +divgag =0 ©9)

Here, 17,4, = 17gx according to Equation (3), while the space-temporal mixed compo-
nent 7744 is given as
nas = —(apc —acp)* (10)

Ultimately, we establish the following relationship between the incompatibility rate
and the edge dislocation density flux by substituting Equation (10) into Equation (9).

gk = div(agc — acp)® (11)

This relationship allows multiple interpretations regarding pair-wise dislocation cre-
ation and annihilation processes, making it useful for modeling various detailed processes
related to dislocation fields. For a detailed derivation of Equation (11) from Equation (9),
refer to Appendix C. The present study utilizes this model to investigate vacancy sources
arising from the pair annihilation of edge dislocations in Part II [69].

3.2. Kinematics of Crystal Plasticity

The FTMP concepts can be integrated with the conventional kinematics framework
of crystal plasticity [70,71], serving as a foundational vehicle for their application. We
essentially adhere to this framework, beginning with Lee’s elastic-plastic decomposition of
the deformation gradient tensor to accurately capture the finite deformation conditions.

F=FF (12)
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where F' accounts for elastic deformation, including lattice rotation, and F’ serves as its
plastic counterpart.

The constitutive equation for elasticity in a rate form, suitable for finite crystal plasticity,
is expressed as

*

('r(*]))o = C°: d'with (T ]))O =% +otrd (13)

where (TE N )O is the Jaumann rate of the Kirchhoff Stress tensor, viewed from an observer
on the rotating lattice. o expresses the Cauchy stress tensor, C° is the elasticity tensor, and
d* represents the elastic part of the strain rate tensor d. The relation J = trd = trd" has

been used in the second equation, with ] denoting the Jacobian rate.
Ultimately, we reach

N @ _ e ple) 4 gla)
O _re. g3 _ (uc)'(”‘) : RYW =C":P +ﬁ
T =C:d D;R U Wlth{ B — W) . o — g W) (14)

Here, P — (s("‘> ® m(“)) and W®) = (s("‘) Q m("‘)) are evaluated using the

sym SsKew
unit vectors for the slip direction s(®) and slip plane normal m(*), with («) referring to the
slip systems. The plastic distortion tensor ¥ and plastic strain tensor & are evaluated,

respectively, as

B = L (s @m®) @

a=1

= with 7(®) = / ) gy (15)
el = ;11)(“)’)/(“) (: (ﬁp)sym)

which are used to explicitly compute the dislocation density and the incompatibility tensors,
as defined in Equation (3).

3.3. Constitutive Equation for CP-FEM

We employ the general constitutive equation proposed in [57,62] based on dislocation
dynamics, applicable both to FCC and BCC metals in a wide range of strain rate and
temperature including impact loading conditions. The explicit form is given by

() . (®) (@) <T(a)_71§£?e)rls>_o(a) A\’
P = AgrT* T* ‘BSRexp 1— + Csr

K (16)

) <T(zx) _ T;W > — 0w

eierls

with ASR = pmbLv*, Bsg = AGgiSIOC/kT, Csg = BLv*/b, where K®) and Q) are drag
stress and back stress, respectively, responsible for isotropic and kinematic types of hard-
ening. Here, p;;, L, v*,b and B are mobile dislocation density, mean flying distance of
dislocations, the modified Debye frequency, the magnitude of Burgers vector, and the
damping coefficient due to, e.g., phonon drag, respectively, and AGEs/°¢ = 1(T)p3gdisloc
stands for the activation energy for dislocation processes at T = 0 K, with g4/ being the
normalized one and y(T) the temperature-dependent shear modulus. For BCC metals, we
can set Cgg = 0, whereas for FCC we may normally assume T;e(f;)ﬂ s = 0. The exponents p
and g are the parameters specifying the thermal obstacle of interest, provided 0 < p <1
and 1 < g < 2. In the above case, a pair of values, p = 1/2,q = 3/2, is used for repre-
senting dislocation processes. Furthermore, (O) = (O + |O|) /2 represents the Mackauley
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parenthesis, with Tlﬁge)rl . expressing the effective stress for the Peierls overcoming process

given by
. 1/qp 1/pp
* A% -1, Yop
TPe(?e)rls = Tpeierls 1- <B§R In .8@) 17)
Y

where Bglzl = kT/gbeiers ub® with gbeer’s, 4p, pp, and gp are parameters for the thermal
activation procesess via the Peierls overcomming mechanism. The present study neglects
the back stress, i.e., Q@ = 0, for simplicity. The evolution of the drag stress K(*) is
governed by

- (a) .
(€ -auna” N
Qup = dup + faxSxp + Fk(ﬂé;(f);mgﬂ))

where Q,p is the hardening ratio that accounts for additional hardening or softening
from the straining/loading history, H(-y) represents the referential hardening moduli,

H(7y) = ho{(ho/nTo)y + 1} with y = % @), fap is the interaction matrix for pairwise

dislocation reactions, and Sy expresses a history matrix, further given as an increasing
function of plastic work performed by the effective stress that is responsible for dislocation

processes, e.g., Saﬁ = tanh(W,f;/WS’;t) with Wr(,ff) = f <T("‘) — T;('.x) > -"y(“)dt and W’

eierls sat
the saturation value. The FTMP-based strain gradient term Fk(le(c“) ; 17,5“)) collectively repre-
sents the strain gradient terms for the dislocation density and incompatibility fields; the

explicit forms are given as [57-59,62].

@\ 2
F(a(”‘)):kpa( y >

lL’ ec|
F(p®)) = sgn(®) - ky, (“5< |

(w )1/ ? v

The parameters include [z f,; that represents the targeted inhomogeneous fields,
which coincides with the Burgers vector b in the case of individual dislocations, along with
the coefficients kj, and kp, . For evaluating the slip system-wise dislocation density and
incompatibility fields, the following projections are employed [57,62]:

[X(D‘) — t("‘) ® s(“) + S((X) ® s("‘)) N
7 = (10 @50 1 5@ @ g@) 4 5@ g m(a)) )

(20)

where t(*) = s(®) x m(®) represents the line direction in the case of dislocations. Note that
the choice of projection directions can affect the evolved patterning, requiring careful atten-
tion, especially regarding the incompatibility term, whereas the dislocation density tensor
has a clear physical meaning, specifically representing the edge and screw components via
t®) @ s(®) and (¥ ® s(® projections, respectively.

4. Model and Analytical Condition

The finite element (FE) model used for the preliminary analyses is illustrated in
Figure 4, which also outlines the analytical conditions. This model, oriented along a
single slip direction [152], is discretized into 24 x 80 x 4 crossed-triangular elements.
The evaluation radius for the strain gradient calculation is set to rgrg = 1.0 um, within
which the average slope of the strain values is determined using the least squares method.
Cyclic straining is applied under conditions controlled by the plastic strain amplitude of
AeP /2 = 0.6%.
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Figure 4. FE model for preliminary analyses: single slip-oriented single crystal. Triangles on the
model boundary represent constraint conditions, where displacements are fixed in all directions,
except in the rolling direction, which is specified by the pair of rollers at the bottom.

The present study focuses on commercially pure iron (Fe), with the aim of expanding
the discussions about Cu-added steels described in conjunction with Figure 1A. In future
research, we plan to explore the influence of dislocation substructures on slip band forma-
tion and the subsequent transition to crack propagation. All material parameters utilized

in the current series of simulations, including those for Fk((xlglx) ; 11,5“)) in Equation (18), are
listed in Table 1, while those for f,5 in Equation (17) are summarized in Table 2 [57].

Table 1. Material parameters used in CP-FEM simulations, adapted from [57].

Category Parameter Value
Asrl/s] 2.75 x 1010
Shear Strain Rate Bsgr 145.5
(@) p 0.67
q 2.0
Yopl/s] 8.75 x 10
Tpeieris IMPa] 356
Peierl(s )Stress Bé’ R 3.493
*(a
Tpeierls ppr 0.83
qp 2.0
iz (= Caa)
hy 1.0 x 10*
Drag Stress T0[MPa] 116
K@ WP, 6.0
n 0.13
kp, 0.2
Shear Gradient Teams kp, 0.1
F <zx(u¢); n(“)) litefect [Hm] 10.0
b[m] 248 x 10710
Elastic Stiffness Ci 257
C;;[GPa] Ci2 141
ij Cua 116
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Table 2. Interaction matrix for dislocation pairs for BCC metals. adapted from [57].

1 2 3 4 5 6 7 8 9 10 11 12

1 1.065

2 0 1.065

3 0 0 1.065

4 0 0 0 1.065

5 1.48 1.343 1.343 0 1.065

6 1.343 1.48 0 1.343 0 1.065

7 1.343 0 148 1.343 0 0 1.065

8 0 1.343 1.343 1.48 0 0 0 1.065

9 1.48 1.343 0 1.343 148 0 1.343 1.343 1.065

10 1.343 1.48 1.343 0 0 148 1.343 1343 0 1.065

11 0 1.343 148 1.343 1.343 1.343 1.48 0 0 0 1.065

12 1.343 0 1.343 1.48 1.343 1.343 0 148 0 0 0 1.065

System Number 1 2 3 4 5 6 7 8 9 10 1 12

Schmid and Boas B5 C5 D6 A6 B4 C3 D4 A3 B2 C1 D1 A2

Burgers vectors 111 111 111 111 111 111 111 111 111 111 111 111
Slip planes 110 110 110 110 101 101 101 101 011 011 011 011

5. Results and Discussion
5.1. General Features

Figure 5 presents a simulated incompatibility contour on a representative slip system
(«) along with its projected counterpart on the primary slip system (), based on the process

(), £ () (0) @

where m(®) represents the slip plane normal, and the subscript “primary” specifies that for

;rgm ary’ As confirmed in Figure 5b, the projection onto the primary

slip plane effectively cancels the incompatibility pattern in the matrix region, leaving only
the ladder-like pattern along the slip band. This suggests that the incompatibility-based
patterning can essentially be categorized as a fluctuation, resulting in a net value of zero
overall, in general. In contrast, the dislocation density contour, represented by the edge
component 31 shown in Figure 5c, naturally exhibits a ladder-like structure, even without
this projection. This indicates that the resultant dislocation substructure corresponds to the
projected incompatibility distribution.

the primary system as m

(@) F(n") ) (F)) ., (€) &3
50 cycles

(x1o‘°)

0 1500

Figure 5. Incompatibility contours before and after projection onto the primary slip plane (via
Equation (20)), together with dislocation density contour.
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The reproduced PSB accompanied by laddered patterning, as anticipated above (see
Section 3.1), underscores the predictive power of the FTMP framework, without any
additional ingredients nor specifically-designated intricate mathematical models; moreover,
essentially there is no need for elaborate finite element discretization. This reinforces our
confidence in modeling seamlessly the fatigue crack initiation processes that such specific
dislocation structures can be accurately reproduced without reliance on ad hoc models.

To demonstrate how the ladder-patterned region is softened, the sample is monotoni-
cally pulled after interrupting the cyclic straining. Figure 6a compares the samples pulled
before the onset of cyclic straining (0 cycles) and after 80 cycles. As expected, the laddered
sample exhibits landslide-like localized deformation, while the 0-cycle sample shows rela-
tively uniform elongation. The results of monotonic tension after various straining cycles
are presented in Figure 6b, indicating that 15 cycles of straining lead to complete softening
of the PSB.

(a) O cycle (b) 80 cycles
Monotonic Tension Cyclic — Monotonic Tension

[ ()
1.0 0 o <F (’7 >

projected

Figure 6. Comparison of sample deformation under monotonic tension (a) before (i.e., 0 cycle) and
(b) after 80 cycles of cyclic straining (see Figure 7i), illustrating that the laddered region has been
significantly softened.

Figure 8 compares the hysteresis loops for the matrix and PSB regions. The PSB region
exhibits a plastic strain amplitude three times larger, highlighting strain localization along
the laddered band, with this region accounting for approximately 14% of the total volume.
Notably, the loop for the PSB region tends to shift toward the tension side to balance
system-wide deformation, ensuring symmetric push—pull straining. It is worth mentioning
that this concentration of deformation is less than what is typically observed in reality,
primarily because the present simulation does not distinctly capture vein structures in the
matrix region, which can impede deformation. However, reproducing the vein morphology
in the matrix is not within the scope of this study at this stage.
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(a) 0 cycle (b) 1 cycle (c) 2 cycles
TR,
(d) 3 cycles (e) 5 cycles (f) 15 cycles
(g) 20 cycles (h) 27 cycles (i) 80 cycles
HE T .

-1.0 00 1.0

Figure 7. Comparison of sample deformation under monotonic tension for samples interrupted after
various cyclic strain cycles. The labels (a) through (i) indicate the specific interrupting cycles: (a) 0,
(b) 1, (c) 2,(d) 3, (e) 5, (f) 15, (g) 20, (h) 27, and (i) 80 cycles, respectively.

(«) [
F(r™) % 0 1.0 [ Axial Strain Distribution

(@) 1000F ] Matrix 1 - (b) ' '
— | PsB [l =
Lo 2 500 ]
S 500 g
e g
o | K1 L1111 1 9 ok
2 oElel----------- S E— 0
k 2
(7] ! ®
O _s00]- | " 1'Gisle ) E -500 |
s :
' ! H
= 1 50Cycles /‘ J [} " . H R 4
\ 100 Cycles 2 001 0005 0 0005 00
~1000}= ] | | ! : :
005 0 005 01 015 02 Nominal Strain ¢

True Strain ¢

Figure 8. Comparison of simulated hysteresis loops between the matrix and PSB regions, (a) the
matrix and (b) PSB regions.

5.2. Specific Features

Let us examine how the reproduced patterns reflect reality. Figure 9 analyzes the lad-
dered region in terms of component-wise dislocation density distribution, while Figure 10
illustrates the growth of their cross-sectional distributions with increasing straining cy-
cles. Here, we display a3, and a3 as representatives for the screw and edge components,
respectively, while aq; and a3; show similar trends, although it is not presented. The
following points are clearly demonstrated: first, the ladder morphology comprises both
screw and edge dislocation components; second, these components are alternately aligned,
closely resembling experimental observations, as also confirmed in Figure 10. Furthermore,
there is essentially no misorientation developed throughout the sample, with a devia-
tion of less than 1 degree, consistent with experimental observations. To be noted is that
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incompatibility-induced substructures are accompanied by misorientation developments
in general.

(,, screw Component {3 Edge Component

| L

Binalization

I—I, [eZ 71777127

S TG /
o, $WI I 1L43i%

Figure 9. Comparison of dislocation density contours between edge and screw components, where

binarized versions are rearranged vertically in the bottom for making comparison easier.

(x103)
4

ay, screw a;, Edge

%%
0 MDA

L 10Cycles

N

Qyy, O3

N

Screw / Edge Components of Dislocation Density Tensor

0.0 1.0 2.0
Distance, um

Figure 10. Cross-sectional distributions of dislocation density along PSBs (x-axis) comparing
two components of dislocation density tensor, i.e., screw and edge, at 10, 50, and 100 cycles. Back-
ground coloring highlights areas with positive values for both components, making them easier to
visualize. The red boxes in the inset show the PSB section where the distribution is measured, and
the yellow arrows indicate the measurement direction, starting from the surface, corresponding to
the horizontal axis.
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On the less desirable side, we observe a slightly larger amplitude for a3; than for ay; in
Figure 10, indicating that the structure is less capable of carrying deformation, as the screw
segments play a key role in this capacity. This also contributes to the previously mentioned
smaller strain concentration, alongside the less-developed vein-like morphology in the
matrix region. Additionally, another difference remains in the width ratio of the ladder
wall to channel regions, which ought to be much smaller, indicating potential room for
further improvement.

5.3. Surface Roughening and Groove Formation

The strain concentration described earlier promotes surface roughening around the
banded region, ultimately leading to grooving in that area. Figure 11 illustrates the evolving
surface profile with increasing straining cycles, highlighting surface undulation up to
N =90 cycles. This local deformation creates a sample-wide biased surface slope, including
a protruded left edge, as the system seeks overall equilibrium. Notably, the banded
region displays a significantly larger slope, indicative of localized strain that contributes to
grooving at its right edge. The magnified view on the left captures the early stage of groove
formation at the intersection of the PSB and the surface, where a shallow but distinct groove
tip is evident at the right edge of the laddered band. These observations clearly demonstrate
that spontaneous substructuring alone can effectively reproduce surface roughening and
initiate the formation of groove embryos.

L—>x

1
[ Magnified
Banded Band_ed View
Region Region

0.0 N=0
’ N=10

04r

0.3

021

0.1 N=20

| N=30

=
?

Surface Profile (Deviation), pm

0.0 ——— (VP
-0.1L \ | N=E5
0.1} M N=60
7"
oN=80
—02r < N=90
Groove | 0.2pm
1 1 1 | -0.2 . L 1 1 1 1
0 2.0 4.0 6.0 8.0 5.0 55 6.0
Surface Position x, um Surface Position x, pm

Figure 11. Variation in surface profile with straining cycles, accompanied by a magnified view
illustrating the evolving groove at the PSB-matrix interface region. The surface region for measuring
the profile is outlined by a green dashed box in the inset, while the yellow highlights denote the
banded region.

5.4. Preliminary Analysis with Vacancy Effect Using a Simplified Model

To anticipate the effect of the formed pattern on the subsequent behavior of the PSB
and the resulting development of surface undulations, we introduce a simplified model for
vacancy formation. This serves as a prelude to the explicit treatments of the vacancy source
model coupled with diffusion analysis that will be explored in Part II [69]. Assuming that
the gradient of the elastic strain energy attended with the formed laddered pattern can
promote vacancy diffusion, combined with the flow-evolutionary law Equation (8), we
introduce the following simplified model via the incompatibility term:

Mev = Kp0U° (22)

The idea here is inspired by a systematic series of diffusion analyses described in
Appendix D, where the diffusion equation for vacancy concentration is solved against an
assumed ladder pattern specified by an a priori elastic strain energy distribution. In these
diffusion analyses, diffusion is solely enhanced by the gradient of the elastic strain energy,
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which is now reflected through the incompatibility term F(#,) in the present analysis.
We incorporate this term into the original F(#) in the hardening ratio Q,4, anticipating a
positive contribution to groove formation and further growth.

Figure 12 presents a comparison of incompatibility contours (top) and the correspond-
ing elastic strain energy fluctuations (bottom) (F(#) and dU°) to assess the effect of the
simplified vacancy model on the evolution of laddered patterns in the PSB region. In the
absence of the vacancy model (right row), the laddered pattern tends to collapse partially
along the righthand side edge of PSBs as straining cycles progress, as indicated by the
incompatibility contours. This ultimately results in a relatively scattered distribution of
oU® around the PSB edge on the sample surface. In contrast, incorporating the vacancy
model (left row) appears to stabilize the pattern, leading to a concentration of U°. We
anticipate that this contribution to elastic strain energy fluctuations will foster the healthy
development of surface grooves.

With n_, Without n

10 cycles

F(n)

Laddered Pattern
Self-Repairing
vs
Collapsing

100 cycles

300 cycles

oU*

Large oU¢ along
PSB Laddered
Region

10 cycles

A

100 cycles

Concentrated
Vs
Scattered

300 cycles

Figure 12. Effect of the simplified vacancy model on the evolution of incompatibility and the
associated elastic strain energy fluctuations.

Figure 12 compares the evolution of surface profiles with and without the contribution
of 17¢p. The inclusion of ., leads to the formation of a single groove, whereas its absence
results in a splitting of the groove peaks, becoming evident after 200 straining cycles. This
behavior corresponds to the concentrated and diffused strain energy distributions seen in
Figure 11.

To further investigate the role of 7, in the final surface grooving, we examine the
individual variations of the incompatibility terms F(#) and F(#,) with respect to straining
cycles in Figure 13. The term F(#,) itself increases parabolically with the number of cycles
while exhibiting periodic oscillations, simply reflecting the applied cyclic straining. Adding
F(#cv) significantly increases the overall variation of F(#) in the negative direction (bottom
right), while subtracting it leads to a mild decrease in the overall change (bottom left). This
upward trend in F(7) enhances local deformation, resulting in a converging and sharpened
groove, as confirmed by the final surface profile displayed at the top right of Figure 14.
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Figure 13. Evolution of surface grooving as a function of straining cycles, comparing scenarios with
and without the simplified vacancy model. The influence of the vacancy model on the development
of surface features over time is highlighted. Groove regions in the final surface profiles are marked
by red dashed circles for clarity.
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Figure 14. Variation of incompatibility terms with the number of cycles, illustrating the effect of the
simplified vacancy model on surface grooving.
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These results clearly demonstrate that the addition of F(#¢,) positively promotes
grooving by significantly sharpening and deepening the groove profile, as anticipated. This
ultimately leads to an accumulation of strain energy at the right edge of the PSB-sample
surface intersection, whereas, in the absence of this term, the elastic strain energy tends to
diffuse. We will utilize the final surface profile (b) for restart analyses to be conducted in
Part II of the present study [69].

5.5. Discussion and Future Scope

In this study, we have successfully demonstrated that the FTMP-incorporated CP-FEM
simulation can effectively reproduce the empirically observed laddered morphology and
the PSB. Moreover, this simulation adeptly captures the dynamics of surface roughening
and the eventual formation of grooves, even in the absence of vacancy formation and
diffusion. These findings underscore the significance of the incompatibility tensor-based
underlying degrees of freedom, which possess a remarkable capability to reproduce dislo-
cation substructures, features that are often lacking in conventional CP-FEM approaches.
This advancement not only helps enhance our understanding of PSB laddered patterning
but also opens new avenues for further exploring the complex interplay of microstructural
features that dictate the eventual crack initiation process, as will be extended in Part II [69].

The current simulation can be seamlessly extended to multi-grain scenarios, as demon-
strated in Figure 15. This figure showcases three preliminary examples featuring single
slip-oriented grains located in (a) the upper half, (b) the surface-facing grain, and (c) the
central grain. In each case, we observe similar PSB ladder formations exclusively in the
single-slip oriented grain, as observed previously, which intriguingly terminate at the grain
boundaries. These results underscore the potential for expanding the present study to
polycrystalline simulations, highlighting the versatility and applicability of our approach.

Single Slip-oriented Grain

o (a) Free Surface > (b) Free Surface
(201) - ﬁ (201)
—> [152] —> [152]
(001, (001
© _ 1100; N - QY 1100) 00 11001
= 7A)

Grain Boundaries

Figure 15. Examples of extended simulation results showing incompatibility contours in multi-grain

scenarios featuring grain boundaries, featuring a single slip-oriented grain in (a) the upper half,
(b) the surface-facing grain, and (c) the central grain of the samples, respectively.

6. Conclusions

In this study, we first demonstrate that PSB ladder substructuring during cyclic
straining can be effectively reproduced through simple deformation analyses, showcasing
the predictive capability of the FTMP framework. Notably, this achievement does not
require any ad hoc models, intricate mathematical formulations, or elaborate finite element
discretization. This reinforces our confidence in the practical feasibility of computational
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modeling for fatigue crack initiation processes and supports our advancement to the next
stage of research without relying on complex modeling approaches.

Furthermore, the FTMP-incorporated CP-FEM simulation not only replicates the
empirically observed laddered morphology and PSBs with satisfactory accuracy, but also
adeptly simulates surface roughening and eventual grooving, independent of vacancy
formation and diffusion. This highlights the crucial role of laddered morphology in these
processes and lays the groundwork for further investigations into the effects of vacancy
formation through explicit diffusion analyses in Part II [69]. These advancements stem from
the incompatibility of tensor-based underlying degrees of freedom, which offer exceptional
capabilities in modeling dislocation substructures often overlooked by conventional CP-
FEM approaches. Thus, the robustness of the FTMP framework is validated, positioning it
as a transformative tool in materials science and paving the way for deeper insights into
slip band-fatigue crack transition.
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Appendix A. Cartesian Coordinate Expressions of Dislocation Density Tensor and
Incompatibility Tensor and Extended 4D Spacetime Components

The explicit expressions of the dislocation density tensor and the incompatibility
tensor for 3D in terms of plastic distortion tensor 5Z and the plastic strain tensor sfj are
given as follows:

X711 QA12 Q13 azﬁgl - 83‘3}’2:1 82,352 - 83,822 82/3:3;3 - 33[5;2;;3
Ny @y dp3| = — 33131171 - 31l3]391 aaﬁ%’z - 315%2 a3151193 - alﬁ%:a (A)
&31  &32  K&33 018y — 2Py 91Py — 2P, 1Py — 2P

m o M2 7713]

22 123
Sym 133
(9Beby +03eh,) — 2005¢hy D3 (dneby +dachy — el ) —drdaehy 9 (dael, +D1ehy — dnehy ) — Dsdnehy
(8%571’1 + a%&ga) — 28381851 01 azsgl + 338€2 — 81853 — 823381171
SYM (92eh, + 3¢l ) — 20192¢,

For extended 4D spacetime definition for the incompatibility tensor, we have
Nij =E€ikip € jmnp kOmey, (A3)
The pure temporal component 744 is obtained by putting (i,j) = (4,4) in Equation (A3).

144 =Eakip Edmnp OkOmEly (Ad)
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While the dummy index p runs from 1 to 3, the alternating symbol is restricted to three
cases, as given by

144 =E411 €4mn1 OkOmen, + Ear1Eamn2 kOmel, + €413 Edmna OOmey, (A5)

The first term on the right-hand side, for example, is
(Eq.(A4')) 15 = a1 Eamm OkImeh,
_ 2P 32 p 9,9 p (A6)
= d3€35 + d38y; — 20203¢5,

which coincides with the 7717 component in Equation (A2). Similarly, the second and third
terms correspond to 7, and 7733, respectively. Therefore, we conclude that the equality is

Maa = KK (A7)

A spatio-temporal mixed component, 714 for example, by setting (i j) = (1,4) in
Equation (A3), becomes
114 =€1kipEamnp OkOmeh, (A8)

Similar to the above, while the dummy index p can take values 2 or 3, the alternating
symbol is restricted to two cases, as given by

114 =142 € amn2 OkOme), + E1k13Eamn3 OOmeh, (A9)
In this case, the first term on the right-hand side is further decomposed into four terms as

(Eq-(A9)) 15 =€1ki2€amn2 OOmel,,
=€1300€n32 WImeh + E132€4312 OOme),
+ €1432€112 Omeh,+ €142€m32 Outl,  (A10)
= 8381853 — 8383851 + 84838§1 - 8481823

= 9 (9nely — dsel)y ) + D30ael; — dudnehy
Noticing that d1el; — 03¢y, = 0qit) — 031ty = whs, 0493¢), = 03¢l,, and 94015, =

01 é§3 =0 ﬁgS, along with the definition of a3 in Equation (A1), we can rewrite the above as

. . P
(Eq-(A9))15s = 93 (“’1173 + 5573) —01B33
P P
= 93B3 - 01P33 (ALl)
= —y3

Similarly, for the second term on the right-hand side, we have

(Eq'Ag))an = aZ (wfz + 8;172) - alﬂgz
— (b 2af) (a1
= Az
Combining the above results (Equations (A11) and (A12)), we ultimately obtain
Ma = — (d23 — a32) (A13)

This represents a skew-symmetric part of the edge component in the dislocation
density tensor from Equation (Al). The other spatio-temporal mixed components are
given by

fog = — (@31 — dg3)and 7734 = — (12 — d21) (A14)
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In general, we express them collectively as
as = —(apc — acp) = —2(4BC) skewr (A15)

Appendix B. Historical Context and Derivation of the Flow-Evolutionary Law (FEL)

The current approach in FTMP insists that the flow-evolutionary law (Equation (4)) is
based on the idea that “the incompatible displacement (i.e., displacement indeterminacy
due to curvature) is driven by a configurational force (e.g., inhomogeneity or singularity),
represented as a conserved quantity corresponding to the energy-momentum tensor, based
on Noether’s theorem” in 4D spacetime [72]. To this end, the incompatibility tensor is
extended to 4D spacetime in [57]. Since curvature in crystalline space is geometrical and
lacks an inherent driving force, it must be linked to a physical quantity that provides
the driving force for its evolution. The flow-evolutionary law, proposed as a working
hypothesis within the current FTMP, serves as a candidate for governing this process.

Historically, the incompatibility tensor has been used to derive stress fields related to
dislocation density, as discussed by Kroner [73,74]. However, in the current context, we
interpret this tensor as a continuum mechanics representation of the curvature tensor of the
crystalline space, reflecting the classification of imperfections in terms of torsion and curva-
ture based on differential geometry. This idea, first proposed by Kazuo Kondo in the 1950s
as “non-Riemannian plasticity” [75], predates and is independent of the work by Bilby [76],
Kroner, and Eshelby [77]. While Bilby acknowledged the relationship between torsion
and dislocations, he dismissed the role of curvature, claiming that curvature changes the
material vector along parallel displacement, thus no longer representing the crystal. Kondo
countered this by stating that if torsion causes closure failure (e.g., in the Burgers circuit),
it no longer represents a continuum. This suggests that Bilby’s argument is incomplete
within the continuum mechanics framework. Additionally, Bilby’s work was influenced by
E. Cartan’s 1923 concept of torsion in spaces with asymmetric connections [78].

The incompatibility tensor coincides with Einstein’s tensor in general relativity. Both
satisfy the divergence-free condition, a key characteristic shared with the energy-momentum
tensor, which appears on the right-hand side of Einstein’s field equations for gravity. This
connection underscores the mathematical parallels between continuum mechanics and
general relativity, reinforcing the idea that the incompatibility tensor is essential for under-
standing material imperfections in a broader geometric context.

The energy-momentum tensor itself traces back to Emmy Noether’s work in classical
field theory [72], with its generalized formulation later published by Landau and Lifshitz
in The Classical Theory of Fields (1923), Section 33 [79]. For an arbitrary filed variable (pé,
the energy momentum tensor T is given as

oL

a(au q’ie)

where L represents the Lagrangian density of the system under consideration, and the
indices a4, b run from 1 to 4, with time as the fourth dimension. For a deformation
field, we regard ¢;; = d;juj= pB;; as the distortion tensor. When focussing solely on
the spatial components (i.e., a, b, ... = A, B, ...), this expression reduces to that pre-
sented by Eshelby [80,81]. Assuming elasticity with C% -, as the elastic stiffness tensor,

Ty = A Pic — Oap L (Al6)

L= %p()‘Bizl(sl’]"B]';L — %Ci\BCDsABSCD’ and one obtains
Tap = —0aiPpi + 048V (A17)
This is precisely the expression derived by Eshelby in his 1975 paper [81] as P4p. The

pure temporal component, i.e., (a,b) = (4,4), on the other hand, corresponds to the total
energy of the system

1 1
Ta = 5poPudijPja + 5Capcpeasecn=H (A18)
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where H = K + WV represents the Hamiltonian density. In the present study, the potential
energy )V is interpreted as the elastic strain energy U°. Eshelby’s work [81,82], particularly
his 1975 paper [81], acknowledged Noether’s discovery but derived the tensor P4p from a
mechanics perspective. While Eshelby’s contribution to continuum solid mechanics was
significant, his formulation is essentially the spatial part of the energy-momentum tensor
defined in 4D spacetime, coinciding with Equation (A17), as shown above.

Parenthetically, a similar attempt is found in Epstein et al. [82], where the energy-
momentum tensor (expressed as the Eshelby stress in their context) is interlinked with
geometrical quantities. However, they ultimately arrived at a final form (referred to as the
“full balance law” in their terminology) [83] involving the torsion tensor, rather than the
curvature tensor.

Appendix C. Extended Divergence-Free Condition of the Incompatibility Tensor in
4D Spacetime

In this section, we derive Equation (11) from the divergence-free condition given by
Equation (9). When extending the definition of the incompatibility tensor into 4D spacetime,
the conservation law represented by the divergence-free condition must also be extended
accordingly. The condition is given by

Mgy __ — e oMas _
axt = Oallap = 0= 5.3 + 55 =0 (A19)

& Ngx = —divnag

where Equation (A7) is used. The physical interpretation of this relationship becomes clear
when considered in its integral form as

J 91 A4
op o lixkdv = = [, =5 dv (A20)
= — [, nanasda

This indicates that the rate of change of incompatibility within the volume element
dv is equivalent to the flux of incompatibility # 44 across the boundary surface day (the
xA-surface). Combining the results from Equation (A15) in Appendix A, we ultimately
arrive at the important relationship between the rate of incompatibility and the edge
dislocation flux.

gk = div(apc — acp)® (A21)

Thus, we derive Equation (11).

Appendix D. Preparatory Diffusion Analysis on PSB-Laddered Sample

At the preparatory stage, we conducted pure diffusion analyses, assuming a PSB-
laddered strain energy distribution a priori, to examine the effects of laddered morphology
on vacancy diffusion and the resulting surface recession, including the wall position relative
to the sample surface. This was achieved by solving the diffusion equation employed by
Repetto and Ortiz [51] using the finite difference method (FDM). The analytical model and
the key results are summarized in Figures Al and A2. The initial vacancy concentration
is assumed to be uniformly distributed across the sample, with an equilibrium value
of cyey = exp(—AG,/kT). Here, AG, represents the free energy change per vacancy,
approximately 0.9eV for a-Fe at room temperature, while k and T are Boltzmann constant
and absolute temperature, respectively. The model considers only the contribution of lattice
diffusion, represented by Djice = 1.5 x 1071 m? /s, while neglecting pipe diffusion. The
findings are as follows:

(i) Insensitivity to the wall position.

(i) Wherever vacancies are generated—whether in the channel or wall regions—they
first flow into the wall, then out of the wall edges into the PSB-matrix interface,
subsequently diffusing toward the surface along that interface.
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(iii) Ladder walls play a critical role in developing and enhancing surface grooving;
without them, surface recession does not occur.
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Figure A1. Overview of preparatory diffusion analyses using the finite difference method (FDM):
(a) analytical model assuming a priori the ladder walls defined by elastic strain energy distribution (b),
(c) diffusion equation employed, and (d) resultant surface receding velocity distribution via vacancy
flux indicated in (c).
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Abstract: Cyclic straining simulations using incompatibility-incorporated crystal plasticity-FEM,
which exhibit PSB ladder structure evolutions as detailed in Part I, are coupled with diffusion analyses
of produced vacancies. A new vacancy source model is introduced based on the Field Theory of
Multiscale Plasticity (FTMP), interpreting the relationship between the incompatibility rate and the
flux of dislocation density as edge dipole annihilation processes. Both direct and indirect coupling
diffusion analyses, with and without cyclic straining, demonstrate that varying incompatibility rates
tend to further promote vacancy diffusion, leading to surface grooving, enhanced extension rates,
and eventual transition to cracks. The findings reveal that (i) the evolved PSB ladder structure
serves as a site for vacancy formation, (ii) it provides a diffusion path toward the specimen surface,
and (iii) it significantly enhances groove extension rates. These factors effectively facilitate the
transition from a “groove” to a “crack”, evidenced by the abrupt acceleration of the extension rate,
mirroring systematic experimental observations. These achievements validate the FTMP’s capability
to simulate complex phenomena and significantly deepen our understanding of slip band—fatigue
crack transition mechanisms.

Keywords: fatigue; persistent slip band; crack initiation; crystal plasticity; field theory; non-Riemannian
plasticity; finite element method; vacancy diffusion; dislocation dynamic

1. Introduction

Modeling the fatigue crack initiation process remains a critical yet challenging problem
in both engineering and materials science, particularly within the multiscale modeling
community [1-5]. Despite early breakthroughs, such as the pioneering numerical simula-
tions by Repetto et al. in 1997 [6], progress has been slower than anticipated. Continuum
simulations, including crystal plasticity-based finite element method (CP-FEM) [7-11],
have largely played a supplementary role, often overshadowed by rapid advancements in
experimental techniques like micro-beam X-ray Laue diffraction [12], in situ and ex situ
SEM-EBSD (electron backscattering diffraction) [9,13], ECCI (electron channeling contrast
imaging) [8], HR-DIC (high-resolution digital image correlation) [9,10,12,13], and AFM
(atomic force microscopy) [14-17]. In addition, phase field simulations [18,19], along with
physics-based microscopic techniques such as DDD (discrete dislocation dynamics) [20-24]
and MD (molecular dynamics) [8,25,26], have further advanced the numerical treatment of
plasticity, which may be applied to fatigue crack initiation. However, the limited ability
of CP-FEM to capture the full complexity of microscale phenomena has constrained its
potential to significantly enhance our understanding of this process [9,27].

In contrast, the Field Theory of Multiscale Plasticity (FTMP) [28-31] offers a more
powerful and versatile framework. By naturally modeling deformation-induced field
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evolutions and resulting patterning, FTMP provides a more accurate and insightful repre-
sentation of the fatigue process, as demonstrated in Part I of this work [32]. Unfortunately,
CP-FEM-based research has largely been relegated to a supportive role, primarily rein-
forcing experimental results rather than driving novel simulation-based insights. This
underutilization of CP-FEM in simulation-driven research represents a significant missed
opportunity, as its full potential remains largely untapped in advancing our understanding
of fatigue crack initiation and material behavior.

In Part I [32], a simulation model was developed that realistically mimics the ladder
structure of persistent slip bands (PSBs), which naturally forms and evolves under cyclic
plastic straining in a single-slip-oriented single-crystal sample, accompanied by eventual
surface undulation and groove embryos. The effect of vacancy formation on surface
grooving through incompatibility contributions was tentatively introduced; however, a
more explicit model that incorporates both vacancy formation and subsequent diffusion
is needed. The critical roles of vacancy formation in relation to the PSB ladder structure
concerning fatigue crack initiation have been recognized for some time [33-35]. While
some interpretations and visual models have been proposed in conjunction with PSB
ladder structures, no explicit investigations combining deformation analyses have been
conducted to date. To fully understand the fatigue crack nucleation process, an approach
that reproduces the entire process, including vacancy effects, will be indispensable. This
study extends our efforts by coupling analyses with vacancy diffusion after introducing a
newly proposed vacancy source model. To this end, new samples are first prepared using
a cut-and-paste operation based on the Di-CAP concept (deformation-induced context-
dependent autonomic pluripotency; see Appendix C for details), and information about
the grooved surface obtained from the results in Part I [32] is transferred.

For the detailed process of fatigue cracks evolving from surface grooves, which mani-
fest the underlying PSBs, Nakai et al. [36-39] reported informative empirical observations
using atomic force microscopy (AFM) combined with interrupted fatigue tests on various
materials, as detailed in Part I [32] (see Appendix A). They focused on the transition from
slip bands to cracks, noting that this transition occurs when the groove depth (referred
to as slip distance) reaches a critical value. Focusing on the transition from slip bands
to cracks once this critical condition is reached may provide a more effective framework,
minimizing ambiguities in the modeling process. Moreover, utilizing this critical condition
for assessing the transition to cracks can significantly reduce computational costs when
integrated with our FTMP-based approach, as the FTMP does not always require intricate
fine mesh divisions to accurately reproduce deformation-induced substructural patterns.

This study further utilizes FTMP [28-31] for modeling vacancy formation via the
conservation law for the 4D extended incompatibility tensor, exhibiting a relationship
between the incompatibility rate and the edge dislocation flux [28]. Combining with the
diffusion equation proposed by Reppeto and Ortiz [6], the study performs indirect and
direct coupling analyses on the simulated samples. Based on the simulations, an attempt
is made to identify the essential roles of the PSB ladder structure for the fatigue crack
initiation process.

2. Theory and Model
2.1. Model Preparation

Figure 1 schematically illustrates the processes involved in preparing the analytical
model for the current series of simulations based on the Di-CAP concept. Samples are
numerically machined from a parent sample that has developed a PSB ladder structure
under cyclic straining, incorporating surface information separately derived from the
simulation results obtained in Part I [32]. The material considered here is commercially
pure Fe, as in Part I, with plans for future investigations involving Cu-added steel (see
Appendix B). These prepared samples are subsequently used for restart analyses. The
critical information to be transferred is the plastic distortion tensor ,BZ = PP, which enables
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us to reproduce the evolved deformation-induced patterns in the new model through the
activation of the dislocation density tensor and the incompatibility tensor.

Dislocation Density Tensor (a;,)

|
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& PP Transfer

Di-CAP* based
(c) | Restart Simulation

(b) 30

0 cycle ===
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Figure 1. Overview of the present simulation: (a) Sampling from the parent model, (b) Simulated
surface profile to be transferred, and (c) Restart simulation, where P information from (a) and the
surface profile from (b) are incorporated, based on the Di-CAP concept (see Appendix C).

2.2. Vacancy Source Model

In the FTMP framework, the central hypothesis is encapsulated in the “Flow-Evolutionary
Law (FEL)”, which correlates the incompatibility tensor with fluctuations in elastic strain
energy. Unlike the conventional three-dimensional incompatibility tensor, this approach
extends the definition into four-dimensional spacetime. As a result, the purely temporal
component of the FEL simplifies to the following relationship:

171(1( = K (UH—K) (1)

Here, the left-hand side originates from #44, while the right-hand side simplifies to
oU° under the static assumptions applied in this study. For the four-dimensional extended
incompatibility tensor, the conservation law is expressed as:

div*Py = 0 1y, +divggy =0 )
The spacetime mixed component 7744 is given by:
naa = —(apc —acp) ®)
Substituting this expression into Equation (2), one obtains:
Nk = —div(apc —acp) @)

Thus, the incompatibility rate 77, is interpreted equivalently as the edge dislocation
flux, providing valuable insights for modeling processes involving edge dislocation pair
production and annihilation. In the current study, this framework is specifically applied to
model vacancy generation processes.
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2.3. Diffusion Equation

The diffusion equation used in the following analysis is consistent with that employed
by Repetto et al. [6] and is expressed as:

0 cz(,“)
ot

(@ W o L@
=V:-D . VC-U +ﬁvu + Sy (5)

In this equation, the diffusion coefficient is decomposed into lattice and pipe components:
D@ — {Dlﬂmce + 52D iy (s("‘) ® s<"‘>) : a}l ®)

where Dy, represents the diffusion coefficient for the pipe diffusion process, assuming a
ratio against that for lattice diffusion as Dy, / Djastice= 800. The vacancy production rate

(a)

sp ~ in Equation (5) is assumed to be driven by the incompatibility rate. Consequently, the
vacancy source model is expressed as:

s = g <;-7§§;g> @)

where a represents a conversion constant, and (O) = (O + |O])/2 denotes the Macauley
bracket, accounting for vacancy production only.

Figure 2 provides an overview of the proposed vacancy source model along with
the accompanying diffusion equation (5) and current simulation snapshots. It powerfully
illustrates the advantages of the current FTMP-based simulation, emphasizing that all
contributions in Equation (5) (and Equation (6)) are directly derived from the simulated
patterned structure, specifically through the strain energy fluctuation JU°, the incompati-
bility rate 77 and the screw component of the dislocation density a1, as schematized in
Figures 2a, 2b and 2c, respectively. Furthermore, based on the vacancy concentration flux

]z(,“) outward from the sample surface, as schematized in Figure 2d, the receding surface
velocity vz(,“) is evaluated as follows:

o) = J ®)

where n is the outward normal vector of the sample surface.

A previous application of the incompatibility rate 17, was demonstrated in a series of
dislocation dynamics (DD) simulations by lhara et al. [40]. In the study, the incompatibility
rate was found to correlate well with the number of edge debris loops formed by edge
dislocations, which are believed to play a key role in vacancy formation within the PSB
ladder structures upon collapse. Figure 3 summarizes these simulation results, with
Figure 3a,b showing top and oblique views of snapshots for the edge dipole wall. These
images reveal bowing-out dislocation segments, which eventually lead to the formation
of debris loops in the channel region. The formation of these debris loops is strongly
influenced by the frequency of cross-slip, as seen in Figure 3a. The detailed process for
debris loop formation is shown in Figure 3¢ via a series of snapshots, highlighting several
annihilation processes that contribute to it. Crucially, the number of debris loops is found
to be well-correlated with the incompatibility rate 77y, as demonstrated in Figure 3d.
This correlation provides key insight into the role of the incompatibility rate in vacancy
formation within the PSB ladder structures.

The back-and-forth movements of screw dislocations can also lead to the pair annihila-
tion of wall-constructing edge dislocations, as partially depicted in a snapshot in Figure 3b.
This effect, however, is not included in the aforementioned correlation in Figure 3d. Since
this process also contributes to vacancy formation in the ladder wall regions, it is expected
that including it will reduce the data scatter in the correlation. Both of these contributions—
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the formation of debris loops and dislocation pair annihilation—are collectively accounted
for in Equation (7) in the present simulations.
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Figure 2. Schematics for diffusion analysis coupled with CP-FEM simulation Diffusion is enhanced
by (a) the strain energy gradient via 6 U°, (b) vacancy generation via 17%2, and (c) pipe diffusion via
11, all of which are driven by the evolved laddered dislocation structure that underlies PSB. These

mechanisms work together to promote surface recession via vacancy flux (d).
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Figure 3. Dislocation dynamics simulations of ladder-wall structure [40]. (a) Top and (b) oblique
views of bowing-out dislocation segments from the edge dipole wall, showing the effect of cross-slip
frequency on debris loop formation in the PSB ladder region. (c) Process of debris loop formation,
including annihilation events, and (d) correlation between the incompatibility rate 77, and the
number of debris loops.

Further evaluation of these DD results is provided through the phase-space trajectory
(PhS-T) of the incompatibility rate, i.e., g versus 77y, in Figure 4a, while Figure 4b
illustrates the variation of 77 over several stressing cycles. The effectiveness of the
current vacancy source model, as described by Equation (7), is confirmed in Figure 4c,d,
which compare the FTMP-based results for the PSB-laddered region with the DD-based
counterparts, Figure 4a,b, both in terms of the PhS-T and the variation of the incompatibility
rate. The comparison demonstrates excellent agreement between the two approaches, with
the trends showing close quantitative correlation.
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Figure 4. Comparison of phase-space trajectories (PhS-Ts) from discrete dislocation dynamics (DDD)
simulations [40] and the current finite element (FE) analysis. (a,b) DDD results; (c,d) FE results.
The DDD simulation demonstrates that the incompatibility rate 77 effectively correlates with the
number of debris loops (vacancy type with edge character) formed in the channels during screw
dislocation motion (see Figure 3d).

2.4. Coupling Analyses

Coupling simulations are conducted by incorporating the proposed vacancy source
model into the diffusion analysis in two steps: (i) indirect coupling analyses and (ii) direct
coupling analyses. First, an indirect coupling simulation (i) is performed using a stationary
snapshot that includes an already-developed PSB ladder structure. In the second step, a direct
coupling simulation (ii) is carried out, solving the diffusion and cyclic straining analyses
simultaneously. The flowchart of the direct and indirect coupling analyses is displayed in
Figure 5, which clarifies the distinction between them by indicating whether cyclically varying
data for SU°, 17, and ayq; are utilized, as exemplified in Figures 2a, 2b and 2c, respectively.

Di-CAP
Method

Fatigue ‘
Simulation | —
(Parent Model) l —
Fatigue
‘— Simulation
(Restart Model)

Cf. (a),(b),(c) in Figure 2

Sample Surface

—

() {[}
&

Indirect

Stationary Data for
SU* g @y

Diffusion
Analysis

Convert the Data from
FE elements
to FD Nodes

Cyclic Data for
U ligx: @y

Direct

Figure 5. Flowchart of CP-FEM—diffusion coupling analyses for (i) indirect and (ii) direct versions
through stationary or cyclically varying data for 6U¢, #xx and aq; ((a), (b) and (c) in Figure 2,
respectively). The conversion of information between the two analyses is ultimately facilitated
through vy,.
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For the diffusion analyses, the finite difference method (FDM) is employed to solve
Equation (5). The outcome of these analyses includes the vacancy concentration cz(,“) and
the attendant flux J,,, from which the surface receding velocity v, is evaluated based on
Equation (8) to update the surface profile. Figure 6 illustrates the analytical models for the
CP-FEM and the associated diffusion analyses, highlighting how information about cz(,“)

and v, is converted, specifically from elements to nodes between the FEM and FDM.

N =12 Slip Systems
= * Plane Strain m
* Ae?12=0.6% (a) .(a)
« £=1.0x103s" e =a><<77KK>
* No. Elements
(Crossed-Triangle): Vacancy Source

201)[152] 20X 36X 4 V(vav) Model
e ( )[ ] . *rer=1.0um

2.0 um

i =
| L > Infc:rmalion | -Mesh Size:
Transfer . Tirilg %Te:: Soum
Dirichret Boundary Condition (c‘,—Lceq) m ey A
B . o s e ot el o e S S e .t g i —l
H Diffusion P L 8 < 4 @, 8 2 3
i F I 1 X 3|5 X7 1 X35 X7 1 X35 X7
1 P 1
AnaIyS|s ! 5 S A A ANVE
i T ; 12 16 12 16 12 /| \16
P : o Y1135 | |9 X 1113 X15| |9 Xa1h3 X415
- ! 10 14 10 14 10 14
Dirichret Boundary Condition (¢, = ¢ = = @=(2+3+5+6
ry (¢=c,) @-(1+4)2  @=(3+4+5+8)/4 LA

Figure 6. Analytical models for CP-FEM and diffusion analyses, accompanied by schematics that
illustrate the information transfer process between the two methods.

3. Analytical Results
3.1. Indirect Coupling Analyses

Figure 7 summarizes the results of the indirect coupling simulations (i), comparing
three representative conditions: with and without a threshold for applying the vacancy
source model (|77 |-threshold), and with and without B? information transfer for the
restart analyses, classified as Figures 7a, 7b and 7c, respectively. The effect of the conversion
rate a in Equation (7) is also examined in each case.
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Figure 7. Results of indirect CP-FEM-diffusion coupling analyses for the groove—crack transition
process using the proposed vacancy production model. The figure compares three conditions with
and without ‘r] KK |—threshold and BP-information transfer, along with the effect of the conversion rate
a: (a) without a threshold in |17 KK| and with B? information transfer, (b) with a threshold in ‘77 KK’
and B information transfer, and (c) without a threshold in |7y | and B information transfer.

When no threshold is set, as shown in Figure 7a, a sample-wide surface descent occurs
regardless of the conversion rate, due to broader vacancy diffusion. This highlights the
necessity of introducing a threshold for vacancy formation. When a threshold is applied, as
depicted in Figure 7b, surface grooving becomes localized at the edge of the formed PSB,
resulting from confined vacancy diffusion in the PSB region, as expected. Overall, a larger
conversion rate a leads to a higher extension rate of the grooving.

Regarding the effect of B” information transfer for the restart analyses, as examined
in Figure 7c, it can significantly influence subsequent vacancy production behavior and
the following surface grooving, as new PSBs are likely to emerge in response to the new
boundary conditions without this transfer. In the present example cases, a new PSB emerges
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from the bottom-right of the sample, giving ultimately rise to another grooving on the
other side of the PSB.

Since this study does not prioritize the further growth of the PSB structure and
instead focuses on the extension of a single groove, the indirect coupling analyses employ
the condition in Figure 7b. The physical rationale for setting the threshold for vacancy
formation is related to the frequency of cross slip, based on DD simulation results by
Thara and Hasebe [40], which indicated no debris loop formation under this condition (see
Figure 3). Alternatively, other factors related to vacancy formation may also be relevant
and warrant further examination.

The resultant variation of the surface receding velocity distribution, calculated using
Equation (8), is shown in Figure 8a as a function of straining cycles. It exhibits multiple
peaks that ultimately converge into a single peak as the cycles progress. This leads to surface
recession, resulting in groove growth, as demonstrated on the right. For comparison, the
result without considering v, is overlaid with a broken line. The change in the slip distance
is measured as schematized in the inset, with a measurement indicated by double-sided
arrows in Figure 8b. Figure 9 displays the variation of slip distance with the number of
straining cycles, where the slope corresponds to the extension rate of the groove. It is
observed that the groove extension rate accelerates sharply when a critical value of slip
distance is reached, resembling the experimental observation by Nakai et al. [36-39], briefly
described in Appendix A. In this context, it is concluded that the groove, representing a slip
band, transitions into a crack, indicating that this transformation is successfully reproduced.
In contrast, the scenario without considering vacancy diffusion, depicted by black circular
plots, does not exhibit such acceleration; the slip band does not evolve into a crack.
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Figure 8. Simulated variations in surface receding velocity (a) and the corresponding surface profile
with increasing straining cycles (b). In (b), the surface profiles are compared for the first cycle (green)
and after 100 cycles (red), with the double-sided arrows indicating the measured slip distance.

3.2. Direct Coupling Analyses

The series of simulations described above can be readily extended to direct coupling
analyses of CP-FEM and vacancy diffusion. In this section, the effect of the sampling site on
changes in the surface profile during subsequent restart analyses is extensively examined.

Figure 10 illustrates three sampling sites on a parent specimen subjected to cyclic
straining under two conditions: plane stress and plane strain. Markedly different evolu-
tions of the PSB are observed, influenced by both the sampling site and the stress/strain
condition. Notably, the plane stress condition promotes the growth of secondary and
even tertiary PSBs alongside the original PSB, attributed to the increased freedom in the
deformation mode during the restart analyses. This underscores a key feature of the
FTMP-based approach, which effectively captures context-dependent evolutionary aspects
of inhomogeneous fields, even in simple deformation analyses. Additionally, the figure
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includes experimental observations via TEM (top), demonstrating similar phenomena for

comparison.
0.25
@ With Vacancy Diffusion

= @ W/O Vacancy Diffusion <j »

=] 0.2431 vt B e e e

"; -4 -4

s [1.33x10* - 2.29x10 *umvcycte |

g \ 0.016um/701/cycles

8 =2.29x10" *umicycle

2

= Simulated

17 714 et e e -3

hl
0231 ] - -
'-1Slip Distance

0.22 -
1 10 20 50 100

0.004.m/30/cycles
Number of Cycles, N Z07% ™

Figure 9. Simulated groove extension rates as they progress into a crack, comparing conditions with
and without vacancy diffusion in indirect coupling analyses. The red and black circular plots indicate
the simulated variation of slip distance with straining cycles, with and without vacancy diffusion,
respectively. Open and solid arrows indicate the points before and after slip distance acceleration
due to vacancy diffusion, marked by the orange vertical dashed line.

For PSB Ladder Structures
[Tabata et al. (1983)]

Simulated PSB Ladder Structure
via FTMP-based CP-FEM

152]-Oriented Single Crystal
([152]-Oriented Single Crystal) Restart Analyses for Specimen
Sampled From Three Locations

Figure 10. Sampling of restart specimens from a parent model exhibiting a PSB laddered pattern,
comparing the results of restarted analyses based on different sampling sites and analytical conditions.
Labels #1 and #2 indicate the sites selected for further coupling analyses. For comparison, similar
experimental observations from Tabata et al. (1983) [41] are provided above, with labels A, B, and C
indicating the sampling portions corresponding to the enlarged micrographs on the right (adapted

with permission of the publisher (Taylor & Francis)).
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Direct coupling analyses (ii) are performed using the above samples under plane strain
conditions, effectively mimicking practical conditions. Two sites—the middle and bottom
boxes in Figure 10, labeled #1 and #2—are selected for the coupling analyses, omitting
surface information for simplicity. The conversion rate is set to a = 1.0 x 107'2 at%/s, with
the threshold applied to the edge components of the dislocation density tensor rather than
to k-

Figure 11 presents a series of simulated snapshots illustrating the variation in vacancy
concentration contours across straining cycles, comparing sites #1 and #2. Notably, site #2
exhibits earlier vacancy production concentrated in the bottom right, followed by rapid
growth toward the surface, while site #1 shows a delayed onset and more uniform growth.
Contrasting features are observed between the two results: site #2 shows much earlier
vacancy production concentrated in the bottom right, followed by rapid growth toward the
surface, while site #1 exhibits a delayed onset and subsequent growth that is more uniform.

Site #1 Site #2

Figure 11. Series of snapshots showing the variation in vacancy concentration contour with straining
cycles, comparing two sampling sites #1 and #2.

Figure 12 summarizes the results: variations in the cross-sectional distribution of
vacancy concentration (left), surface receding velocity (middle), and surface profile (right)
with progressing straining cycles. In response to the contrasting features observed in
Figure 11, distinct trends emerge. Site #1 exhibits a relatively uniform evolution, leading
to a fluctuating vacancy flux history (accompanied by peak shifts) at the surface, which
ultimately results in a relatively blunted surface groove. In contrast, site #2 demonstrates
significantly biased growth in the cross-sectional vacancy concentration distribution, result-
ing in a focused vacancy flux peak history (without peak shifts) that leads to sharp and
deep groove formation. Additionally, a small extrusion can be seen forming on the right
side of the PSB edge.

3.3. General Discussion

The current indirect/direct coupling analyses incorporate the effects of (i) dislocation
density, (ii) elastic strain energy, and (iii) incompatibility rate on the associated vacancy
concentration, as schematically illustrated in Figure 2. The key distinction between the
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indirect and direct simulations is whether these three quantities remain stationary or are
subject to cyclic alteration. Therefore, the emphasis here is on how these cyclic updates
affect diffusion behavior, surface grooving, and the eventual transition to cracking.
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Figure 12. Representative results from direct CP-FEM-diffusion coupling analyses, illustrating
variations of vacancy concentration distribution along the PSB (a), vacancy flux at the surface (b), and
evolving surface profiles with straining cycles (c). Small arrows in (b) indicate the peak positions of
vacancy flux, highlighting large and slight shifts for site #1 and site #2, respectively, which ultimately
result in broad and narrow groove widths in (c).

Comparison is made between the two results regarding groove—crack transition using
the slip distance versus number of cycles diagram in Figure 13, where the results for indirect
analyses (shown in Figure 9) are overlaid with dashed lines. Additionally, a quantitative
comparison—including experimental data—is presented in Table 1, detailing extension
rates for grooves and cracks, acceleration, and the critical slip distance for crack nucleation.
The numbers 1 through 6 associated with the experimental values correspond to those
depicted in Appendix A, illustrating the conditions before and after the acceleration of the
extension rate. The following points emerge from this comparison:

(a) The simulation results—both indirect and direct coupling analyses—successfully
reproduce the experimental trends, even quantitatively. While no direct comparison
is made, the critical slip distance values for the simulations are closely aligned with
those for high-strength steel (HSS), lying between the values for «-brass and SUS304
stainless steel.

(b) Cyclic updates of the quantities significantly promote the grooving and subsequent
crack nucleation process. The direct coupling analyses demonstrate a smaller critical
slip distance and slightly larger acceleration in the extension rate compared to the
indirect counterpart.

(c) The slip distance in the direct coupling analyses appears to be insensitive to the
differing vacancy diffusion and surface recession trends shown in Figure 12. This
observation offers valuable insight into determining the critical slip distance in exper-
iments [36-39], which remains unaffected by the loading conditions.
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Figure 13. Overall comparison of the simulated groove extension rates (slip distance versus cycle
number) for direct (red and yellow plots for sites #1 and #2, respectively) and indirect coupling
analyses (black and grey dashed lines for with and without vacancy diffusion, respectively). The
original diagram for the indirect coupling analysis is shown in Figure 9.

Table 1. Quantitative comparison of the simulated groove and crack extension rates, their accel-
eration, and critical slip distances with the experimental counterparts from Nakai et al. [36-39]
(Cf. Appendix A). The numbers in circles associated with the experimental extension rates corre-
spond to those specified in Figure Alc. The critical slip distance for high-strength steel was obtained
from unpublished work, so detailed data, aside from the value itself, is unavailable.

Extension Rate . Critical Slip
Acceleration .
[um/cycle] [um/cycle?] Distance
Groove = Crack [nm]
Analyses
Indirect With 77¢, 1.33 x 10~* 229 x 10~* 0.96 x 10~* 227
Coupling W /0 1co 252 x107° N/A N/A N/A
Direct Site #1 147 x 107° 2.89 x 104 2.74 x 104 223
Coupling Site #2 1.78 x 10~° 2.37 x 104 219 x 104 223
Experiments
M370x10° (28.80x10~* 8.76 x 10~
SUS304 ®667x10°  @0.89 x 10 * 0.82 x 10 100
«-Brass (5545x107° @ 1.11x107° 0.56 x 107° 380
High Strength Steel Unpublished Unpublished Unpublished 168

The indirect case (i), however, requires an unrealistically large vacancy concentration
on the order of 1072, while the direct case (ii) achieves this with a more reasonable con-
centration on the order of 10~%. This difference is primarily due to the role of 7. In the
indirect case, 77 remain fixed after the initial vacancy formation, based on its initial value.
As a result, a high pre-existing vacancy concentration is necessary to drive the diffusion
required for crack transition. In contrast, in the direct case, 77y is updated cyclically
throughout the simulation, ensuring a continuous supply of vacancies (as reflected in the
enhanced vacancy formation rate sg,“) in Equation (5)). This dynamic updating of 77«
allows for a more realistic representation of the crack transition by maintaining vacancy
concentrations at realistic levels. This behavior is clearly demonstrated in the snapshots
shown in Figure 11, where distinct ladder-like patterns emerge in the vacancy concentration
contours from the early stages of the straining cycles and persist throughout the later cycles.

The above results emphasize the critical roles played by the incompatibility tensor in
the current FTMP for modeling and simulating the fatigue crack initiation process. It not
only generates the PSB laddered pattern but also serves as a source of vacancies through
its rate. Furthermore, the reproduced PSB laddered pattern provides a crucial diffusion
pathway toward the sample surface, effectively facilitating the groove—crack transition, as

123



Metals 2024, 14, 1406

previously demonstrated. These aspects also apply to the essential roles of the PSB ladder
structure itself in the fatigue crack initiation process.

The current simulation results are insufficient to explain why experimental findings
consistently indicate a material-dependent critical slip distance for groove—crack transitions,
regardless of straining or loading conditions, aside from the tentative insights provided
above in (c). Additionally, they do not yet clarify the factors that dictate this critical distance.
However, this series of studies highlights the promising potential of simulation-driven
investigations to explore these aspects of fatigue crack nucleation processes effectively far
beyond the conventional crystal plasticity framework. Furthermore, the strength of the

present vacancy source model based on <17%2> lies its insensitivity to the specific mecha-

nism of vacancy formation, as long as it accurately represents the pairwise annihilation of
edge dislocations, as defined in Equation (4).

The present series of simulation results compellingly highlights the critical role of the
incompatibility tensor within the Field Theory of Multiscale Plasticity (FTMP) in accurately
capturing the fatigue crack initiation process. This tensor not only enables the reproduction
of the PSB laddered pattern but also generates vacancies through its rate. Furthermore, the
PSB ladder structure provides a crucial diffusion pathway to the sample surface. Together,
these elements are enhanced by the cyclically varying incompatibility rate in the presence
of the laddered dislocation structure, underscoring the essential influence of the PSB ladder
structure on fatigue crack initiation.

A primary objective of this series of studies, encompassing Part I [32] and Part 1I
(current study), is to elucidate the significant role of the PSB ladder structure in crack
initiation, as evidenced by these simulations. Our comprehensive analyses of the transition
from PSB to crack reveal three fundamental aspects inherent to the PSB ladder structure:
one mechanical and two chemical roles, as summarized in Figure 14. These roles include
(1) acting as a flow carrier and a site for stress concentration, (2) serving as a generator of
vacancies, and (3) functioning as a diffusion pathway for these vacancies. The incorporation
of the incompatibility tensor into the hardening law of the FTMP makes all of these
processes possible.

Ladder-like

Morphology of PSB
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Screw Dislocation in the in Channels/Walls Pipe Diffusion
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Figure 14. Three fundamental aspects inherent to the PSB ladder structure: one mechanical and
two chemical roles. Corresponding representative simulation results are displayed in (a—c): (a) DD
results for ladder walls responsible for concentrated strain due to the back-and-forth motions of
bowed screw dislocations in the channel region [40], (b) formation of vacancy-type debris loops in
the ladder channel regions associated with cross-slips, supposedly leading to vacancy formation [40],
and (c) vacancy diffusion along the PSB toward the surface [32].
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From this perspective, the formation of a laddered dislocation structure within PSBs
plays a multifaceted role in stabilizing the crack initiation process. In contrast, other
morphologies, such as cellular structures, may lead to less stable crack nucleation. This
observation serves as an indirect yet significant conclusion to the first pivotal research
finding presented in Part I [32] (see Appendix B for some details), underscoring the necessity
for further investigation as these complexities are explored.

4. Concluding Remarks

This study extends cyclic straining simulations using incompatibility-incorporated CP-
FEM, coupled with vacancy diffusion analyses, building on the work presented in Part I [32].
A new vacancy source model based on the Field Theory of Multiscale Plasticity (FTMP)
is introduced, linking the incompatibility rate and dislocation density flux to edge dipole
annihilation processes. Both direct and indirect coupling diffusion analyses successfully
reproduce the transition from groove to crack. Notably, the direct coupling, which accounts
for cyclic variations in incompatibility, significantly promotes vacancy diffusion, yielding
results quantitatively consistent with experimental observations by Nakai et al. [36-39]. Key
findings include (i) the evolved PSB ladder structure serving as a site for vacancy formation,
(ii) providing a diffusion path to the surface, and (iii) accelerating groove extension rates,
thereby facilitating the transition from groove to crack.

These results validate FTMP’s ability to model complex phenomena, providing in-
sights into slip band—fatigue crack transition mechanisms. The framework enhances our
understanding of the interplay between the laddered morphology of the PSB and vacancy
dynamics in the context of fatigue crack initiation, establishing a new benchmark for mod-
eling dislocation substructures. This lays the groundwork for future advances in multiscale
materials science, improving our ability to predict and mitigate fatigue failure.
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Nomenclature

,BZ ; BP Plastic distortion tensor.

ajj; o Dislocation density tensor.

Nij 1 Incompatibility tensor.

KK Incompatibility rate.

K Duality coefficient.

sue Fluctuation of elastic strain energy. (J)

K Kinetic energy. (J)

a Conversion constant. (at%-s~1)

b Burgers vector. (m)

D Diffusion coefficient tensor. (m2-s~1)

Diattice Diffusion coefficient for the lattice diffusion. (m?-s~1)
Dyipe Diffusion coefficient for the pipe diffusion. (m?-s~1)
o) Diffusion concentration (for slip system «). (m~3)
S Vacancy production rate. (m~3.s71)

Jo Vacancy concentration flux. (m~2.s7 1)
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Un Receding surface velocity. (m-s~!)

n Outward normal vector to the sample surface.
R Gas constant. (]-kgfl-Kfl)

T Absolute temperatures. (K)

Appendix A. Overview of Experimental Results by Nakai et al. [36-39]

The present study references a significant series of experimental findings by Nakai et al. [36-39],
which serve as the basis for the current series of simulations. Their work demonstrated
a potential crucial condition for the transition from slip bands to fatigue cracks. The
studies utilized semi-continuous atomic force microscopy (AFM) observations of specimen
surfaces, combined with interrupted high-cycle fatigue tests on several materials. They
concluded that the initiation of fatigue cracks occurs when the critical slip distance is
reached, regardless of loading conditions, but depending on the materials tested.

Figure Al summarizes the experimental results, displaying representative AFM obser-
vations that compare two typical cases of evolving surface profiles for intrusion/extrusion—
those that have evolved into cracks Figure Ala and those that have not Figure Alb. Ad-
ditionally, Figure Alc presents the variation of slip distance as a function of the number
of stressing cycles. This latter figure primarily includes results for SUS304 austenitic steel,
while also annexing results for x-brass and the critical slip distance for high-strength steel
(HSS). The numbers attached in Figure Alc correspond to those used in Table 1.
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Figure A1. Summary of results by Nakai et al. [36-39] illustrating experimental demonstrations of the
critical slip distance for the transition from slip bands to cracks in fatigue. (a) Comparison of typical
AFM observations showing variations of surface profiles with stressing cycles, differentiating between
slip banding that has evolved into cracks and that which has not. (b) Corresponding diagrams for
SUS304 stainless steel, including the critical slip distances for a-brass and high-strength steel (HSS),
where numbers in circles indicate the stage before (odd numbers) and after (even numbers) the
transition from grooves (slip bands) to cracks, as referenced in Table 1 (c). Courtesy of Prof. Y. Nakai.

Appendix B. Fatigue Contol in Cu-Added Steels

Experimental observations by Yokoi et al. [42,43] show that adding copper (Cu) sig-
nificantly alters dislocation substructures in steels. Steels without Cu typically exhibit
a well-developed 3D dislocation cell structure, leading to coarse intrusions/extrusions
and earlier crack initiation. Cu addition transforms the substructure from 3D cells to
uniform 2D distributions, resulting in finer intrusions/extrusions, delayed crack initia-
tion, and improved high-cycle fatigue life. Spesifically, solid-solution Cu forms a 2D vein
structure, while Cu precipitates create uniformly distributed planar dislocations, shifting
cyclic behavior from hardening to softening. These changes are crucial for controlling the
fatigue properties of steels, optimizing performance in applications like automotive and
power plants.
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To understand the effects of Cu, it is essential to explore its quantum-level influence
on aspects such as the magnetism of the bcc Fe atomic structure or the core structure of
screw dislocations. An approach along these lines was presented by [44], which included
one of the current authors, where ab initio simulations demonstrated how Cu addition
causes a transition in the Fe screw dislocation core structure, from non-polarized to fully
polarized. This transition potentially inhibits cross slip, which is responsible for dynamic
recovery. The inhibition of dynamic recovery, in turn, suppresses the formation of 3D
dislocation cells.

Appendix C. About Di-CAP Concept for Restart Analyses

A key strength of the FTMP framework is its ability to leverage evolved patterns
for further modeling through “cut-and-paste” operations [30,31], maximizing its robust
descriptive capabilities. This innovative process involves transferring information about
the plastic distortion tensor, denoted as 7, which enables the accurate reproduction of
both the dislocation density tensor and the incompatibility tensor fields. By capturing these
critical tensor fields, the methodology allows for a refined and nuanced representation
of material behavior under a wide range of loading conditions, enabling simulations to
evolve progressively toward more complex and varied scenarios.

The concept underlying this methodology is referred to as Di-CAP, which stands
for Deformation-induced Context-dependent Autonomic Pluripotency, as illustrated in
Figure A2. The term “pluripotency” signifies the method’s ability to adapt and generate
multiple potential outcomes based on the context of deformation, thus enhancing the
descriptive and predictive capabilities of the model. A typical application of this approach
is found in modeling hierarchical martensite lath structures for creep analyses.

Di-CAP

Deformation-induced Context-dependent

Martensite
Lath Walls

: l/,;,

1
=

\ Slip Lines

“Cut-and-Paste” Substructures to be Analyzed Restart
Operations T o Analyses
Tension
Compression
Cyclic Straining
Walls/ Creep, etc...
Boundaries

Figure A2. Schematics illustrating the Di-CAP concept and subsequent modeling/analyses based on
arbitrary “cut-and-paste” editing operations. White squares on the snapshots above denote “cut”
portions, while the red-bordered models at the bottom represent the “paste” constructions for use in
restart analyses. White dashed lines indicate the boundaries of the cuts and pastes.

Figure A3 visually illustrates an example application of how unit structures are inte-
grated to create intricate hierarchical lath martensite models, which have been utilized in
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creep rupture simulations based on CP-FEM. In this framework, complex lath martensite
structures are computationally assembled by combining unit lath block structures like
building blocks, allowing for a hierarchical representation of the material. Individual lath
block models Figure A3a are combined to form single packet models Figure A3b, while
these packet models are subsequently embedded into the prior austenite grain aggregate
model to create the final model Figure A3c or Figure A3d. It is important to note that
the lath block model itself has been developed in advance using FTMP-based CP-FEM,
taking into account the initial transformation strain distribution based on the Bain lattice
correspondence. This type of hierarchical modeling is undoubtedly crucial for multiscale
simulations to accurately capture the mechanical behavior of materials, as different lath
arrangements can significantly influence overall creep deformation and rupture processes
in the present context.

The present study employs the Di-CAP concept for restart analyses, enabling a seam-
less transition between different simulation stages. This approach not only enhances
computational efficiency but also improves the fidelity of results by ensuring that all rele-
vant substructural information is preserved and accurately modeled. By leveraging the
capabilities of Di-CAP, more comprehensive modeling and simulations of material behavior
can be conducted, particularly in complex situations and across various loading scenarios.

High Cr Ferretic Steels Prior y Boundaries | . oo Prior ¢ Polycrystal

High Dense
Dislocations

(a)

Martensite Laths

Figure A3. Representative example of the application of the Di-CAP concept from Figure Al,
demonstrating the fabrication of hierarchical structures in a building block-like manner to model
complex lath martensite-based steels for subsequent creep analyses: (a) single block model with
laths and variant pairs, (b) single packet models with combined block models, (c) 7-grained and
(d) 23-grained embedded packet models, with single packet models embedded in the central regions
of both (c,d).
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Abstract: Many bcc refractory alloys show excellent high-temperature mechanical prop-
erties, while their fabricability can be limited by brittleness near room temperature. For
the purpose of predicting ductile alloys, a number of ductility metrics based on atomic
structures and crystal properties, ranging from mechanistic to empirical, have been pro-
posed. In this work, we propose an “average bond stiffness” as a new ductility metric
that is also convenient to obtain from first-principles calculations, in addition to using
the average magnitude of static displacements of atoms. The usefulness of average bond
stiffness is validated by comparing first-principles calculation results to experimental data
on the “rhenium effect” in Mo/W-base and V/Nb/Ta-base binary alloys. The average bond
stiffness also correlates well with the room-temperature ductility of refractory high-entropy
alloys, with a better performance than some ductility metrics previously reported. While in
reality the ductility of an alloy can be influenced by many factors, from processing and mi-
crostructure, the average magnitude of static displacements and the average bond stiffness
are atomistic-level features useful for design of alloy composition towards a desired level
of ductility.

Keywords: refractory alloy; ductility; first-principles calculation

1. Introduction

Body-centered cubic (bcc) refractory alloys, especially high-entropy alloys (HEAs), re-
ceive significant research attention for their high-temperature load-bearing capabilities [1,2].
However, an outstanding problem for almost all bce alloys is their low-temperature brittle-
ness. As temperature decreases, the ductility of bee alloys can drop abruptly, exhibiting the
so-called ductile-brittle transition (DBT) phenomenon [3]. Low-temperature brittleness
limits fabricability near room temperature and reduces defect tolerance when the material
is in use near or below room temperature. For practical reasons, it is desirable to let the alloy
maintain some room-temperature ductility, or let the ductile-brittle transition temperature
(DBTT) be sufficiently low [4,5].

However, ductility itself is a quantity involving complex microstructural processes,
making it difficult to mechanistically model or predict ductility. There are various methods
of measuring ductility, including elongation or reduction in area under uniaxial tension,
strain at fracture under uniaxial compression, angle or radius of curvature under bending
conditions, etc. [6]. It is difficult to compare or convert results obtained using different
methods. For a ductile metallic material, plastic deformation occurs first, and then damage
accumulates typically in the form of nucleation, growth, and coalescence of microvoids [7].
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Currently, there are already micromechanical models that enable simulations of the pro-
cesses to reflect deformation and damage until fracture [8], which makes it possible to
determine the ductility of the material measured in different types of tests. However, this
kind of model usually requires a large number of material parameters, which, in most
cases, are determined by fitting to known mechanical behaviors of the material. It means
this approach, though mechanistic, is less predictive but more explanatory in linking alloy
composition to ductility.

Due to the formidable complexity of the microprocesses behind ductility, researchers
have been trying to devise “ductility metrics” for bcc metals and alloys, based on properties
that are convenient to calculate or measure. Some commonly used metrics include the
valence-electron concentration (VEC), Pugh’s ratio (ratio of shear modulus to bulk mod-
ulus), local lattice distortion (“LLD”), and the D parameter [9-11]. In some publications,
electronic structure [12,13] and enthalpy of mixing [14] are also considered to correlate with
ductility. Machine learning models are also implemented to predict ductility [5,15]. Among
the aforementioned metrics, except for the D parameter, all the other ductility metrics
are based on perfect-crystal properties of pure elements or alloys. Usually, perfect-crystal
properties are less costly to compute but also mechanistically less relevant to ductility, due
to a lack of consideration of crystal defects (dislocations or microvoids) essential to fracture
and ductility. It is of practical interest to exploit the usefulness of perfect-crystal properties
with some more physical significance, for the purpose of understanding or even predicting
ductility, while maintaining a relatively low computational cost.

In this work, we present our findings on how to relate atomistic features of perfect-
crystal solid-solution alloys to ductility. The basic idea is to examine not only the lattice
distortion but also a kind of “average bond stiffness” relevant to the energetics associated
with the lattice distortion. We then validate our approach using some experimental ductility
data of refractory bcc alloys, including some binary alloys and equiatomic high-entropy
alloys (HEA). A significant role of bond stiffness in determining ductility is revealed
and discussed.

2. Methods

For a good representation of disordered, random bcc solid solutions using supercells,
we use a Monte Carlo code “spcm” to generate bce supercells where atomic configurations
are randomized. The generated supercells used in this work include 4 x 4 x 4 bcc unit
cells (128 atoms) for binary alloys and quaternary equiatomic HEAs, and 5 x 5 x 5 bcc
primitive cells (125 atoms) for quinary equiatomic HEAs. For binary alloys A;_.B., 128-
atom supercells with compositions c = 0.0625, 0.125, 0.25, 0.375, 0.5 (atomic fraction) are
generated. The generated atomic configurations exhibit Warren—-Cowley short-range order
parameters being zero or close to zero within the first eight coordinate shells.

To investigate atomic structures and energetics of the alloys, we use the software VASP
(Vienna Ab initio Simulation Package, version 6.4.2) [16,17] for density-functional theory
(DFT) [18] calculations. Projector-augmented wave (PAW) potentials [19,20] and PBEsol
exchange-correlation [21] are adopted. The plane-wave cutoff energy is set to 500 eV. The
k-mesh used for all supercells is a 4 x 4 x 4 Monkhorst-Pack [22]-type mesh. Smearing
of partial occupancies is the Methfessel-Paxton type [23] with a width of 0.2 eV. To obtain
equilibrium atomic structures and energy, atomic coordinates are relaxed until all force
components are below 0.01 eV /A in magnitude. The relaxations are performed without
altering the overall shapes of the supercells.
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We compare the atomic positions and total energies before and after relaxation. From
the atomic positions in the relaxed, equilibrium configuration and the ideal bcc configura-
tion, we extract the average magnitude of static displacements Ar:

1 XN
Ar = ﬁz \/(xi,eq - xi,O)z + (yi,eq - 3/1',0)2 + (Zi,eq - Zi,O)2 )
i=1

where N is the number of atoms in the supercell, (xi,eqryi,eqrzi,eq) and (x;0,Yi0,zip) are,
respectively, Cartesian coordinates of the relaxed (equilibrium) position and the unrelaxed
bcc lattice position of atom i. The average magnitude of static displacements is also called
“local lattice distortion” (LLD) by some researchers [24]. We also extract an “average bond

stiffness” k defined as
E — Z(Ebcdrel)
N NAr2 ?)
Ar? = %Zl [(xi,eq - xi,0)2 + (yi,eq - yi,O)z + (Zi,eq - Zi,O)Z}
i=

where Ej.. and E, are, respectively, the supercell total energies before and after relaxation.
The average bond stiffness can be regarded as an effective stiffness for a hypothetical
process of restoring the ideal bec structure from the equilibrium configuration. Ar and
k are computationally convenient to obtain, because a common procedure to obtain the
equilibrium configuration is to relax the atoms from ideal lattice positions.

The roles of Ar and k in affecting alloy ductility can be rationalized as follows: Pre-
sumably, the perfect bce structure has the highest symmetry and the lowest resistance to
dislocation motion. If other conditions are kept constant, then larger static displacements
(large Ar) are expected to create higher resistance against dislocation motion. However,
LLD only contains information about atomic positions, without having any information
on force or energy. This is supplemented by the average bond stiffness k. If interatomic
bonds are stiff (high k), then the energy cost to restore the perfect bee structure from
the relaxed, equilibrium configuration is expected to be high, which is unfavorable for
dislocation mobility.

The reasoning can be summarized as two rules:

e  Rule 1: Under constant k, the alloy with lower Ar should exhibit higher ductility;
e  Rule 2: Under constant Ar, the alloy with lower k should exhibit higher ductility.

In Section 3, we use some refractory binary alloys and HEAs to showcase the useful-
ness of Ar and k in analyzing room-temperature ductility.

3. Results

Using the first-principles methods, we have calculated the atomic displacements and
the associated total-energy change before and after relaxation, for binary alloys and HEAs.
Ar and k are extracted and used to analyze the effects of alloying elements on ductility in
some alloy systems.

3.1. The “Rhenium Effect”

It is well known that alloying Re in Mo or W enhances room-temperature ductility
and lowers DBTT [6]. The unique ductility-enhancing effect of Re is named “the rhenium
effect”. However, the rhenium effect is not universal: it is effective in Group VIB elements
(Cr, Mo, W), but not in Group VB elements (V, Nb, Ta) [6,25]. By calculating Ar and k of
Re-containing alloys using DFT, and then comparing the results from the V/Nb/Ta-Re
systems and the Mo/W-Re systems (Figure 1), the selectiveness of the “rhenium effect”
can be rationalized by the distinct behaviors of how Re affects the alloy bond stiffness k:
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while Re can significantly reduce bond stiffness in Mo—Re and W-Re alloys, it does the
opposite in V-Re, Nb-Re, and Ta-Re alloys, raising the average bond stiffness k. The effect
of Re on Ar is relatively weak, but a low-level Ar is maintained, which is a favorable feature

for ductility.
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Figure 1. (a,b) DFT-calculated Ar and k of the Mo—Re, W-Re systems as compared to (c,d) those of
the V-Re, Nb-Re, and Ta-Re systems, as functions of atomic fraction of Re in these alloys.

For example, Buckman [25] has reported (citing Begley [26]) how alloying elements in
Nb-alloys raise DBTT. Their efficiency in raising DBTT is ranked as Re > W > Mo > Zr > Ti.
The rank in k from DFT calculations almost coincides with the rank in the experimentally
measured efficiency in raising DBTT (Re > W > Mo > (Zr, Ti)). Re, W, and Mo raise the
average bond stiffness k, while Zr and Ti lower it. The ks for Zr and Ti are very close, so
then the Ar criterion (Rule 1) can be invoked to explain the experimental result that Ti is
less embrittling, for Ti causes smaller Ar than Zr. The results for Nb-alloys are shown in
Figure 2.

The analysis of experimental and DFT results shows that the rhenium effect can be
regarded as a bond-stiffness effect to a large extent: In Mo and W, Re addition softens the
bonds and promotes ductility, whereas in Nb, Re addition stiffens the bonds and reduces
ductility. The role of k appears to be dominant over that of Ar in affecting alloy ductility.
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Figure 2. (a) Ar and (b) k of the Nb-X (X = Re, W, Mo, Zr, Ti) alloys from DFT, compared to (c) how
experimentally measured DBTT changes with alloying elements (DBTT data from Refs. [25,26]).

3.2. Bec Refractory HEAs

Bec refractory HEAs attract significant research interest, one of the reasons being
that they can exhibit high-temperature strength superior to the mainstream superalloys.
However, usually, an outstanding problem is the insufficient room-temperature ductility
or high DBTT. As discussed in the Introduction, researchers have developed and tested
various kinds of “ductility metrics” (for example, [10,27,28]), and attempted to use them
to guide alloy design in the vast space of chemical composition of HEAs. Singh et al. [9]
compiled ductility data of 56 HEAs, and examined four ductility metrics in terms of
the goodness of linear fitting to compression fracture strain (¢5). Here, we also use the
calculated k from the DFT and available experimental fracture strain data to analyze the
usefulness of k being a ductility metric for RHEA.

Using the DFT, we have calculated Ar and k for 21 equiatomic HEAs whose data on
compression fracture strain ¢; have been reported in the literature, as tabulated in Table 1
and plotted in Figure 3. Figure 3 shows a generally clear linear relationship between
log,y ¢ and k, apart from a few outliers. Linear fitting to log;, ¢ r instead of &7 can also
avoid the possibility of predicting negative ¢;.

Table 1. Ductility of HEAs (in compressive fracture strain) from the literature, and their k and Ar
from DFT. All alloys appear in Figure 3 while only those with an asterisk (*) appear in Figure 4.

S = ) E——

Alloy Exp:]rci(n{o(:ntal f’;(f:: ]/)A;:"l)" fr(/)lr; (II;;JT
TiZrVNDb >50 [29], 50 [30] 3.53 0.189
TiZrNbMo * 33 [31] 5.50 0.136
TiVNbTa >50 [32], 28.3 [33] 5.06 0.101
TiVNbMo * 25.6 [34] 6.30 0.085
ZrHfNbTa * 34 [35] 391 0.147
VNbTaW * 12 [32] 9.97 0.061
NbTaMoW * 2.1[36],2.6 [37], 1.9 [38], 6.2 [39] 14.58 0.036
TaMoWRe 5.1 [40] 16.00 0.029
TiZrHfNbTa >50 [41,42] 3.01 0.162
TiZrHfNbMo * 10.12 [43], 10.2 [44], 20 [45] 5.07 0.155
TiZrHfTaMo 4 [45] 491 0.159
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Table 1. Cont.

Figure 3. Compression fracture strain & ¥ (experimental) versus average bond stiffness k (from DFT)
of the 21 equiatomic HEAs listed in Table 1. Also given in the figure are the best-fit linear function
(the blue line), the R? of the linear fit, and the root-mean-square error in log;, € 1 [%] (half-width of
the light blue band).

(marked with an asterisk in Table 1), of which log,, ¢ r k, valence-electron concentration
(VEC), Cauchy pressure, Pugh’s ratio, and the D parameter are all available. Linear
regression results (Figure 4) show that k fits to log, &5 better (in terms of R?) than the other

Average bond stiffness k (eV/A?) from DFT

To compare k with other ductility metrics, we use the data of 11 equiatomic HEAs

four metrics.

136

&f (%) k (eV/A?) Ar (A)
Alloy .
Experimental from DFT from DFT
TiZrVNbMo * 26 [31], 32 [30] 5.54 0.139
TiHfNbTaMo 27 [45] 6.25 0.114
TiVNbTaMo * 30 [46] 6.80 0.082
TiVNbTaW * 20 [32], 14.1 [37] 7.14 0.075
TiNbTaMoW * 8.4 [38] 9.33 0.052
ZrHfNbTaMo 15 [45] 6.54 0.131
ZrNbTaMoW 15.9 [45] 8.93 0.087
HfNbTaMoW 5.7 [47] 9.37 0.084
VNbTaMoW * 1.7 [36], 8.8 [37], 1.7 [47] 11.80 0.052
NbTaMoWRe 4.2 39],1.7 [48] 15.53 0.035
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Figure 4. log, ¢ vs. five ductility metrics and their linear regression of 11 equiatomic HEAs. The
metrics are: (a) k from this work; (b) the D parameter; (c) valence-electron concentration (VEC);
(d) Pugh ratio; and (e) Cauchy pressure. Data in subplots (b—e) are taken from Ref. [9]. Note that
there can be several experimental ¢ for the same alloy.

For the 21 HEAs, the Ar — k correlation is shown in Figure 5. Generally, k and Ar data
tend to cluster in a band showing a genuine trade-off between the two variables. However,
as we have shown, for ductility, the average bond stiffness k plays a more dominant role
than Ar, which is clear from Figure 5 also.
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Figure 5. Crossplot of k and Ar from DFT for the alloys in Table 1. Colors represent experimental
fracture strain values (averaged if several values are known).
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4. Discussion

This work is unique in proposing an “average bond stiffness” that is convenient to
obtain and relevant to the structures of solid solutions. The average bond stiffness in this
work is representative of the whole supercell of solid solution, and is simple because it
requires only atomic relaxation calculations with no extra calculations needed. Pant and
Aidhy [24] have also proposed a “bond stiffness” and correlated it to a number of other
alloy properties. The “average bond stiffness” we propose is different from theirs, in that
ours requires only the total-energy difference in the supercell and static displacements of
individual atoms, without the need to make assumptions and approximations for modes
of atomic displacements or number of nearest neighbors, etc.

It is obvious that in this work we do not consider numerous other factors that affect
alloy ductility: impurity level, degrees of deformation and recrystallization, grain size,
inhomogeneity (due to nonequilibrium solidification or phase separation), etc. In fact, the
data we have adopted to support the analysis are not always strictly comparable, because
the alloys are often different in terms of the factors listed above. Presumably, this is part of
the reason for the scatter in Figures 3 and 4. It may be possible in the future to make the
ductility model more comprehensive, and not only based on the average bond stiffness.

Also, in this work, due to limitations on supercell size and randomness, we restricted
the calculations and analysis to a few special compositions for binary alloys and equiatomic
compositions of HEAs. Extension to general compositions will presumably require the-
oretical advances in better understanding the structure and energetics of solid solutions,
including interstitial solutions [49]. The DFT results are invariably affected by the qualities
of pseudopotentials and the exchange-correlation potential. Their influences on the atomic
displacements and bond stiffness used in this work will require further investigation in
order to remove any significant computational artifacts.

5. Conclusions

In this work, we analyze the ductility of bec refractory alloys from atomistic-level
features, namely, the average magnitude of static displacement Ar and a newly proposed
“average bond stiffness” k. The motivation is to extract parameters useful for ductility,
while keeping the low computing cost of first-principles calculations of defect-free crystal
structures. From the perspective of solid solution structure and energetics, we hypothesize
that decreasing Ar and decreasing k can be favorable for improving ductility.

For bcc Re-containing binary alloys, we show that the “rhenium effect” (Re enhancing
the ductility of Mo or W) can be understood as essentially a bond stiffness effect. In
Mo/W-Re alloys, adding Re within its solubility limit reduces k significantly. On the
contrary, in V/Nb/Ta-Re alloys, adding Re significantly raises k. The results of the two
cases are consistent with the experimental findings that Re enhances the ductility of Mo
or W, but embrittles V, Nb, and Ta. In both cases, Ar is kept to a relatively low level. The
rank of embrittling efficiency of Re, W, Mo, Zr, and Ti in Nb-base binary alloys can also be
explained by the k (primarily) and Ar from DFT calculations.

For bec refractory HEAs, we also show that k is a useful ductility metric. Using the
experimental data of compressive fracture strain from 21 equiatomic HEAs, we show that
the logarithm of fracture strain follows a linear relationship to k reasonably well. Data
support the conclusion that k works better than other ductility metrics (the D parameter,
Pugh ratio, Cauchy pressure, valence electron concentration) in terms of the goodness of a
linear fitting to the logarithm of fracture strain.

In summary, our findings reveal the significance of the “average bond stiffness”, to-
gether with the average magnitude of static displacements, in understanding the ductility
of bec refractory alloys. In spite of many other factors, from the processing and microstruc-
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ture that influence ductility, our work provides a new “ductility metric” that is convenient
and useful. More work in the future is required to generalize Ar and k for more complex
compositions, beyond the special compositions considered in this work.
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Abstract: Static indentation and dynamic indentation are reviewed, with a focus on extraction
of material properties of isotropic strain-hardening polycrystalline metals that may be rate- and
temperature-sensitive. Static indentation is reviewed first, followed by dynamic indentation, since
the former is regarded as a specialization of the latter with inertia, rate dependence, and adiabatic
heating excluded. Extending concepts from the literature review, a treatment of dynamic indentation
using dimensional analysis is forwarded, and a general framework for extraction of material property
information (i.e., constitutive model parameters) from instrumented dynamic spherical indentation
experiments is set forth. In an example application of the methodology, experimental data obtained
from instrumented spherical indentation in a miniature Kolsky bar apparatus are evaluated via
dimensional analysis. The substrate material is aluminum alloy Al 6061-T6. Several definitions
of indentation strain proposed for static indentation are assessed for dynamic indentation, as are
indentation strain rates. While the fidelity of the experimental method and inertial effects could inhibit
extraction of elastic properties, extraction of certain plastic constitutive properties may be feasible.
Current data are insufficient to enable determination of a complete and unique set of all physical
properties. Motivated by the present review and analysis, new experiments and simulations are
proposed that would identify influences of material properties, facilitating their extraction from data.

Keywords: indentation; metals; polycrystals; dynamic plasticity; strain hardening; Kolsky bar

1. Introduction

Indentation experiments, being relatively simple and inexpensive to perform, offer the
possibility of high-throughput mechanical testing, i.e., numerous experiments conducted
in rapid time. Other advantages include the following: only small samples of material are
needed, and response variations in different regions of heterogeneous bodies can be easily
probed [1]. Furthermore, numerical simulations of spherical indentation of elastic—plastic
solids are now routinely accomplished using conventional finite element (FE) methods
with widely available commercial software [2-4]. The disadvantage of the indentation
experiment, relative to traditional mechanical testing (e.g., uniaxial tension/compression),
is proper analysis of the resulting data [5]. Stress and strain fields are highly nonuniform
during indentation. Friction at the interface, pile-up, and sink-in effects complicate anal-
ysis [2,3,6]. In dynamic indentation, strain rate is also highly nonuniform, even if the
indenter’s velocity is constant. Inevitably, the indenter will decelerate prior to unloading,
drastically reducing the average strain rate over time.

The present research is focused on issues associated with the extraction of material
constitutive properties from dynamic spherical indentation tests. The discussion is geared
toward classical ductile elastic—plastic solids (e.g., engineering metals), though some issues
are shared among other material classes. Materials with viscoelastic response [7,8], or
those undergoing brittle fracture [9], are not addressed explicitly. Also excluded from
the present review and analysis of classical elastic—plastic solids are considerations of
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length scale and size effects [10-13] (e.g., specimen size, grain size, and strain gradient
effects, with increased complexity often arising at the nanometer scale) and corresponding
advanced constitutive theories [14-16] capable of addressing one or more such phenomena.
Constitutive models considered later in this work do not contain any intrinsic length
scale(s). Phase-field representations of spherical indentation [17] are thus excluded from
the formal review. Furthermore, atomic or hybrid atomic—continuum simulations [18],
which necessarily probe phenomena at the nanoscale (e.g., in single-crystal domains) due
to sizes resolved, are likewise excluded.

Governing relationships among global variables are cast in dimensionless form in an
application of dimensional analysis to dynamic spherical indentation. Relationships among
useful dependent and independent variables are analyzed in the context of Buckingham’s
Pi theorem [7,19,20]. This approach, which enables a systematic reduction in the number of
independent quantities entering a physical problem, has been used previously to analyze
static spherical indentation [21] and ballistic impact [22]. Here, the treatment of Lee and
Komvopoulos [23] is extended to account for thermal effects, and different mathematically
admissible (and thought more physically useful) choices are made for independent and
dependent variables of interest. Results provide guidance on which parameter(s) should
be varied systematically in a design of experiments, real or numerical, to enable a complete
understanding of the problem. Outcomes are then applied to experimental data on an
aluminum alloy, producing dimensionless indentation force, contact radius, and global
temperature rise. Different indentation strains and strain rates are calculated and examined
for potential suitability in the context of constitutive model/parameter determination.

This paper is organized as follows. The literature review elaborating fundamental
concepts is contained in Sections 2 and 3. Pertinent aspects of static indentation, notably
governing equations and constitutive model forms, are reviewed first in Section 2, since
many carry over to the dynamic regime. Dynamic indentation is addressed in Section 3,
including augmentation of basic elastic—plastic constitutive models to incorporate rate
and temperature, as well as several proposed definitions of effective indentation strain
rate. Sections 2 and 3 are suitably labeled as “Review” sections. Subsequent parts of this
paper apply or extend concepts from the literature review to demonstrate their utility in
an application to instrumented dynamic spherical indentation. Dimensional analysis of
dynamic spherical indentation is undertaken in Section 4, suitably labeled “Extension”,
since prior dimensional analysis from the literature is updated to include thermal effects
and different choices of dimensionless variables. Techniques are applied to instrumented
indentation data for aluminum alloy Al 6061-T6 in Section 5, suitably labeled “Application”.
Based on the literature review and current analysis, recommendations are given for future
experiments and possible numerical simulations that should facilitate constitutive model
parameterization using dynamic spherical indentation data. Lastly, conclusions follow
in Section 6. A list of symbols with definitions and dimensions is included in a Notation
section immediately preceding the References list.

2. Review: Static Indentation

The scientific literature on static indentation, even when focused purely on modeling
techniques for material property extraction, is immense. A complete review of the entire
subject space of indentation experiments, theoretical analyses, and numerical simulations
is thus outside the present scope, which instead reports details needed in the subsequent
dimensional analysis of the dynamic case. See the book by Johnson [24] for seminal
analytical methods applied to contact problems, as well as two review papers [5,25] for
contemporary overviews that include computer simulations.

2.1. Elastic Indentation

The linear isotropic elastic solutions of Hertz are conventionally used to analyze static
indentation data up to initial yield, as well as elastic unloading from a plastically deformed
state. The Hertz analysis [24] assumes frictionless contact of homogeneous elastic bodies
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whose surfaces are parabolic in shape. In the limit of small indentation depths and contact
areas pertinent to the elastic regime, the quadratic surface approximation adequately
represents the true spherical geometry of the indenter [26]. Provided that the yield strength
of the material is a small fraction of the elastic stiffness, effects of elastic nonlinearity
are typically deemed negligible, and thus omitted in nearly all reported analytical and
numerical studies of indentation of ductile metals. However, for large elastic indentation
depths, nonlinear compressibility has been shown to mildly increase indentation force [27].

Hertz’s equations for spherical indentation into an initially flat substrate are summa-
rized as follows [1,24]. Denote by P the indentation force, /i, the elastic (i.e., reversible)
indentation depth, E the effective system modulus, R the effective system radius, a the
contact radius, and k a system stiffness. Denote by E;, Es, v;, vs, R, Rs the elastic moduli,
Poisson’s ratios, and radii of the indenter and sample, labeled with respective subscripts
(+); and ()s. Then, Hertz’s solution encompasses

P=kn?,  k=%ERY?, 4= (Rh)V% ©)
E=[1-v})/E+(1—-v3)/E)]", R=(1/Ri+1/Rs)". ?)
For a rigid indenter, E = Es/(1 —v?) and R; = constant. Prior to deformation

Rs — o0 = R = R;. Often, Ry — o (i.e., small deformation theory) is used to approximate
the entire elastic loading process into a flat substrate, an assumption which produces a
very simple closed-form solution when R; is effectively constant. This approximation is
also often used to analyze elastic unloading [28]; however, the unloading process from
a plastic impression has been analyzed elsewhere with a finite R [6]. If the indenter is
deformable, a typical approximation for its elastic displacement /; is given by Hertz’s
solution for indentation into a rigid flat surface [1]:

h; ~ 3(1 —v?)P/(4E;a). ©)

The effective system modulus E encompasses all effects of material constitutive be-
havior on the load-displacement curves in the linear elastic regime. This modulus has
also been widely used to fully encompass elastic constitutive effects on load—displacement
response in the elastic—plastic regime, e.g., in dimensional analysis [29-31]. Justification
for this assumption in early stages of elastic—plastic indentation has been obtained from
analytical methods [24,32] and verified for vs € [0.01,0.49] in FE simulations [3]. For a very
stiff or rigid indenter, the effects of Poisson’s ratio of the sample on indentation force are
reportedly small relative to the effects of the elastic modulus of the sample over typical
ranges of constitutive behaviors of ductile metals [7,33,34]. In other words, sensitivity of the
static load—displacement response to Poisson’s ratio is reportedly low, though exceptions
exist for unusual material property combinations [35] and for large indentation depths [3].

2.2. Elastic—Plastic Indentation

In the elastic—plastic regime, the total indentation depth for the system, /, is decom-
posed into [1]
h=he+h =hs+hj;  h,=(P/k)*/3. (4)

The elastic indentation depth of the system is /., and when the indenter deforms
only elastically, its indentation displacement /;; can be approximated via (3). The residual
indentation depth is h,; after elastic unloading, & = h, and h, = h; = 0.

During elastic unloading, the slope S of the load-indentation curve implied from
Hertz’s theory at small elastic deformation (i.e., k(1) independent of h, but possibly depen-
dent on h, = h — h, through finite Rs(h)) is the derivative

S(h) = 3P (h(he, hy))/dhe = 2k(h) - h}/* = 2E - a(h). (5)
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If S is measured at a given elastic—plastic contact depth & [6], then the contact radius a
at that depth can be inferred from (5) if E is known [36]. The radius of the residual indent
(i.e., crater) after unloading, denoted by a,, of a plastically deformed material has been used
in this capacity as a coarse approximation of a at peak load [28], though more sophisticated
treatments of unloading of elastic—plastic solids exist [6].

Constitutive behavior of an untextured ductile metallic specimen is typically de-
scribed in engineering practice via isotropic elasto-plasticity with possible power-law
hardening [31,37-40]. Although subtle differences exist among numerous functional forms
of hardening laws given in the literature, a reasonably standard model for von Mises
equivalent flow stress ¢ is

U(ep):m)[l—i-x-(ep)”], n=dIn(c—0p)/dIne’. (6)

The cumulative scalar plastic strain is €”, the initial yield stress is 0, the strain-
hardening exponent is 1, and « is a fitting parameter. For perfect plasticity, x = 0, and for
linear hardening, n = 1 with x > 0.

Standard, physically justified, and established methods (i.e., associative flow, normal-
ity, and consistency) can be used to implement (6) in the context of finite deformations with
incremental plasticity in a numerical setting [41]:

de = def +def,  dw” =0 :de’ = ode’. 7)

The tensor-valued strain increment de is additively decomposed into elastic (-)F
and plastic (-)” parts, the stress tensor is 0, and the scalar plastic strain increment de”
is obtained from the increment of the plastic strain tensor such that its work conjugate
entering plastic work per unit volume w” is the von Mises stress o. For uniaxial stress
conditions, with € denoting the total axial strain, such treatment reduces to

yo { Ee (e <ap/E), (®)
op[1+x - (eP)"] (€ > 0y/E).

Define the projected contact area by A and the mean contact pressure by p. An
effective value of the flow stress o averaged over the indented region in the sample is 7,
and c is the constraint factor that depends on geometry, and to a lesser extent, constitutive
behavior [2,6,42,43]. Then, the mean pressure and mean flow stress are related by

LS .

Yielding in the sample is initiated at ¢ ~ 1.1 [6,42], whereby h,, first becomes nonzero.
For sufficiently deep indentation, i >> h,, such that the plastic response dominates. In
this regime, the historical analysis and data of Tabor [44] suggest ¢ ~ 2.8 for spherical
indentation in ductile metals, later corroborated by numerical methods by Hill et al. [45].
Another typical approximation is ¢ ~ 3 for this deep plastic regime [6]. In the intermediate
regime between elastic and deep plastic indentation, 1.1 < ¢ < 3. At maximum load,
the mean pressure can be identified with Meyer’s hardness H in an indentation hardness
experiment (i.e., spherical or hard ball indentation into a flat substrate) when the maximum
force is substituted for P and the residual imprint radius a, is substituted for a.

For strain-hardening materials (n > 0), ¢ likely depends on both n and the definition
used for “indentation strain” € substituted into (8) for €” to acquire a representative value
of 7 [2,6]. Tabor [44] proposed el ~ & =0.2a/R;, which corresponds to plastic strain at the
indentation edge [2]. In that work [44], a = a, was approximated as the radius a, of the
residual indent after load removal, and thus is not consistent with the Hertz definition of
the true contact area at the instant load removal begins. Additionally, the approximation
R ~ R; is often used in practice rather than the second of (2) (with more realistic finite Rs)
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to characterize unloading from a plastically deformed state, an approximation which tends
to poorly capture the effective stress—strain behavior and unloading modulus [5].

A potential difficulty with many definitions for indentation strain [6,44] is determina-
tion of the contact radius 2, which may be challenging to obtain directly from experiments.
An estimate proposed by Field and Swain [6] for this purpose is

a=1[2(h—he/2)R; — (h—he/2)*|/2. (10)

However, noted by Kalidindi and Pathak [26], the definition of a in (10)—based on
spherical geometry and assuming that the elastic displacement of a preformed spherical im-
pression is evenly divided above and below the circle of contact [6]—is not fully consistent
with Hertz’s definition in (1).

An alternative measure of indentation strain €, with corresponding renamed stress
(i.e., mean pressure) 7, is thus proposed by Kalidindi and Pathak [5,26]:

4 hs p

—_— =T A:_: f— _. 11
3ma 240 7P @ (1)

é f— —
mta?

The contact radius incorporated in these works [5,26] obeys the Hertz definition in
(1) and can be found from (5) during unloading, provided E is known from fitting to data
collected in the elastic regime. Note that (11) produces & = Eé for h = h,, i.e., for elastic
loading/unloading commensurate with Hertz’s solution in (1) and (2). Application of (11)
to experimental [1] and numerical [37,38] results produces a constraint factor of ¢ ~ 2 for
metals with no strain hardening, or for strain-hardening metals at a uniaxial-equivalent
offset strain of € ~ 0.1-0.2%. Possible reasons for ¢ < 2.8 in some investigations [1,37,38] are
shallower indentation depths than those used by Tabor and others [2,44,45] and different
definitions or measures of 2 among the different investigations.

Three indentation strain measures are collected below for reference and comparison:

e Tabor[44]: =02 (a/R;);
e Kalidindi and Pathak [26]: é = (4/{37}) - (hs/a);
e Lee and Komvopoulos [46]: & = (Es/0y) - (h/{2R;h — h2}1/2).

Notably, constitutive scaling factor Es/ oy is present in €, while the other two measures
are purely geometric. Only é requires knowledge of two transient variables (i.e., 2 and hs).

The notation for stress measures is clarified in the Notation section at the end of
this paper, immediately preceding the References. Specifically, ¢ is the local von Mises
stress, as specified by constitutive stress—strain models, with an initial value of ¢y prior to
strain hardening and in the absence of rate and temperature effects. The measured mean
indentation pressure is p. The mean indentation flow stress of Tabor [44] is 0; this differs
from p by the constraint factor c. The indentation stress defined by Pathak and Kalidindi [5]
is equal to the mean pressure and differs from the mean indentation flow stress by a factor
of c. The same notation is used for ¢ and p, since the latter is measured but the former is
assumed for generating indentation stress—strain curves (e.g., Equation (12)).

2.3. Constitutive Property Extraction

Numerous works have sought to extract uniaxial stress—strain constitutive behavior
from spherical indentation data in the quasi-static regime, claiming various degrees of
success. A relatively simple model for loading—unloading cycles [6] incorporating (10) is
widely mentioned, though it is not valid for the transition regime 1.1 < ¢ < 3. Early FE
simulations [45,47,48] of quasi-static spherical indentation date to the 1980s. The existence,
uniqueness, and stability of the inverse solution have been investigated in the context
of dimensional analysis [31,35]. In related work [31], a representative strain has been
determined that renders the dimensionless indentation force independent of the strain-
hardening exponent. An optimal data acquisition location from which to extract field
variables from FE solutions for material property evaluation has been proposed [49]. An
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average representative strain and confidence domain for which property correlations are
accurate have been defined [50,51].

Inverse methods incorporating numerically generated databases of spherical indenta-
tion response data have been used for property extraction [40,52,53]. More sophisticated
data-driven approaches utilize neural networks [39,54,55] or Bayesian inference [38,56].
Simplified analytical fitting functions or surrogate numerical models (i.e., calibrated replace-
ments of full FE models) can be invoked in this context to greatly improve computational
efficiency [38,39].

Most often, correlation of the loading portion of a predicted force—displacement curve
with test data [2] is used to determine plasticity parameters (e.g., 0y, k, 1), while unloading is
used to determine elastic stiffness E with some estimate of the contact radius [6]. However,
periodic load-unload cycles can be used to determine the projected contact area A = 7ra? if
E is measured from the initial elastic loading phase [26]. The strategy advocated by Pathak,
Kalidindi, and their coworkers [5,37,38] involves fitting or comparison of indentation stress—
strain curves rather than indentation force—displacement curves to ascertain elastic—plastic
properties. Elastic—plastic properties have also been identified by numerically matching
residual imprints [52,56], as opposed to force-displacement curves.

Protocols for generating uniaxial stress—strain curves from indentation stress—strain
curves, where the latter follow (11), are described by Patel and Kalidindi [37]. The equiva-
lent uniaxial stress—strain behavior of the specimen is of the standard form ¢ = E; - €f =
Es - (e — €). Then, the following correspondence relations apply among indentation
stress—strain curves (0 vs. €) and uniaxial curves (¢ vs. €):

E.-e o< , 4 h
o= - , (OA‘JUo) e=_— " =¢f P, (12)
E-(e—e") (6>cm); 3 a
1E 1Es & 1Es P é— ¢k
E s AE s s P
— S22 T - 13
€ c E ¢ cE E CcE2ma? € B (13)

The constraint factor ¢ is measured at the yield point (& = ) for continuity, and § is a
fitting factor that depends on the material. Demonstrative FE simulations for representative
elastic—plastic solids [37] with perfect plasticity (x = 0) or linear hardening (1 = 0) with
different strain-hardening coefficients x > 0 produced ¢ ~ 2.0 — 2.2 and  ~ 1.3. The in-
dentation stress—strain fitting method can be advantageous to fitting of force-displacement
responses, since pertinent elastic—plastic properties may be strongly correlated to only
relatively small regions of the entire force-displacement curve. Thus, a certain precision
of fitting for entire force—displacement curves does not necessarily carry over to similar
precision in extracted stress—strain curves, elastic modulus, yield strength, and/or strain-
hardening parameters [39]. Another method of reducing fitting errors associated with
estimation of contact areas involves correlation of total and recoverable strain energies
(i.e., integrals of load—displacement relations) rather than indentation forces [7,21], since
integral values are less sensitive to experimental noise.

According to Cao and Lu [31], an inverse problem is ill-posed if one of the following
properties is not respected:

e  Existence: there exists a solution to the problem.
*  Uniqueness: there is, at most, one solution to the problem.
e  Stability: the solution continuously depends on the data.

The condition number of an inverse problem measures sensitivity of the identified
parameter to small changes in the input data. A problem is ill-conditioned if the condition
number is large, and it is ill-posed if the condition number is infinity. A thorough numer-
ical analysis of spherical elasto-plastic indentation [31] found stability to degrade with
increasing 1 and with increasing oy / Es. To the above three criteria, an obvious measure of
success of an inverse analysis procedure can be added:

e Accuracy: how closely the inverse solution matches the exact solution.
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The exact solution would be procured from independent property specifications or
different measurements (e.g., uniaxial stress—strain experiments) in the present application
to indentation analysis.

Some challenges mentioned in the literature for static property extraction are now
reiterated. In Zhao et al. [33], the error of reverse analysis was less than 10% in most cases,
where discrepancies were caused in part by the accuracy of fitting functions and in part
by the error of applying a power-law hardening model to real materials. In works by
Moussa et al. [50,51], it was found that extraction of stress—strain curves from indentation
gives precise results only over a range of strain, which was termed a “confidence domain”.
Patel and Kalidindi [37] noted the difficulty with pinpointing an initial yield stress ¢y when
yielding occurs at low indentation depths, given the typical resolution of experimental data
in this regime. Shallow indentation may not provide sufficient information for discriminat-
ing hardening parameters [38]. An opinion stated by Dean and Clyne [53] is that a single
indentation run with a spherical indenter should be sufficient for property determination,
at least for typical quasi-static isothermal behaviors of ductile metals described by (6).

For indenters with self-similar shapes (e.g., conical, Berkovich or Vickers pyramidal),
no inherent length scale is introduced by the geometry. It follows that hardness, representa-
tive strain, and curvature of the load-displacement relation are independent of indentation
depth, which can be proven using dimensional analysis [7,57,58]. This contributes to the
nonuniqueness of property extraction from a single indentation using such an indenter
shape. So-called “mystical materials” exist that have different elastic—plastic property
combinations but identical indentation curves obtained from self-similar indenters [59,60].
Nonuniqueness can be rectified by using combined data from indenters of different shapes,
e.g., different tip apex angles [30,53,61] to determine material properties from an inverse
analysis. In contrast, nonuniqueness is less problematic for spherical indentation since
the indenter radius introduces a geometric length scale independent of the indentation
depth [7,21,53].

According to Liu et al. [60], fundamental plastic constitutive properties such as the
yield stress and work-hardening coefficient cannot always be uniquely determined from the
force-displacement curves of indentation analyses, including both plural sharp indentation
and deep spherical indentation. Mystical material pairs can still exist in such cases, with a
difference of their force-displacement curves below the resolution of existing indentation
techniques for large ranges of sharp indenter angles or spherical indentation depths. From
the indentation force—-displacement curve alone, it is generally not possible to precisely
specify what plastic-hardening model should be used (e.g., (6) vs. some other constitutive
equation) for an arbitrary material, and the whole stress—strain curve of the material cannot
be measured due to geometric limitations on maximum depth that bound the indentation
strain [60]. A Monte Carlo sensitivity analysis [34] demonstrated, in the case of spherical
indentation, that the experimental errors must be very small to enable reliable extraction of
material properties.

In summary, the existence, uniqueness, stability, and accuracy of an inverse technique
for property extraction from static spherical indentation depend on multiple factors. These
factors may include the indentation depth and indenter radius, the assumed constitutive
model, and presumptive initial conditions (i.e., initial guesses) and bounds on material
parameters in a search algorithm. The aforementioned four aspects of performance appear
to generally improve as indentation depth increases to the plasticity-dominated regime,
wherein the plastic zone under the indenter has enlarged sufficiently to control the stiffness
of the substrate that is registered at the contact surface. Incorporation of more data in any
calibration procedure, including residual indentation geometry and a range of indentation
load-unload depths and geometries, is expected to improve results. Fitting of indentation
stress—strain data and consideration of energy-displacement data rather than explicit force—
displacement data have been observed to improve accuracy and stability, respectively.

Of course, when the assumed constitutive form is close to true material behavior, with
property ranges typical of those for which the constitutive model is intended, success is
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more likely. On the other hand, for exotic materials (i.e., those very different from typical
ductile metals), or for those with highly uncertain behaviors, success of constitutive model
parameterization is not ensured a priori and thus should be verified on a case-by-case
basis. For example, if the material exhibits simultaneous viscoelastic and irreversible
plastic deformation mechanisms, a unique constitutive model prescription from standard
indentation data may be impossible [62].

Anisotropy is inherent in the mechanics of single crystals. The present review focuses
on isotropic material behavior pertinent to polycrystals with randomly oriented grains.
Isotropic elasticity is assumed in the Hertz solutions of Section 2.1 and the constitutive the-
ory of Section 2.2. For polycrystalline material samples, individual grains are anisotropic,
but the overall spherical indentation response (e.g., force versus depth) becomes inde-
pendent of orientations of individual grains when the size of the indenter relative to the
grain size is large enough [1]. In this case, the deformed region of material underneath
the indenter encompasses enough single crystals, such that their homogenized behavior
controls the global response. If the sampled grains are randomly oriented, the overall
response will be isotropic and repeatable for multiple indentations on the same material.
If, however, the grains are not randomly oriented (i.e., a textured polycrystal), or if the
substrate is a single crystal, the homogenized elastic—plastic response will be anisotropic,
and a suitable anisotropic constitutive model [63,64] should be implemented instead. Simi-
larly, anisotropic properties become important if the indenter radius—depth combination
probes only the local response of a single crystal at the surface of a polycrystalline sample.
Finite element simulations of static spherical indentation have been used to understand
anisotropic elastic and plastic properties of crystalline materials [17,64-66]. Continuum FE
simulations of dynamic spherical indentation of anisotropic crystalline solids do not seem
present in the available literature.

Spherical indentation has also been used to study the creep properties of solid ma-
terials, usually at elevated initial temperatures. Experiments [67,68] and numerical anal-
yses [69-71] of creep in metals (or representative generic ductile solids) under spherical
indentation loading have been reported. Time enters the analysis due to the finite relaxation
period for manifestation of creep deformation, which is strain-rate-dependent. In creep
investigations, indentation rates are finite yet relatively slow, and long loading times are
required to ascertain constitutive properties for creep models [7]. Although time affects
results in both cases, experiments and modeling for creep behavior are distinguished in
the present review from those for dynamic elastic—plastic response reviewed in Section 3.
In the dynamic indentation of crystalline metals, strain rates are much higher (e.g., on the
order of hundreds or thousands per second for dynamics versus less than unity for creep),
and initial temperatures are generally much lower. Physical behaviors are addressed for
dynamic indentation with high-rate plasticity for underlying dislocation glide rather than
creep viscoelasticity or creep viscoplasticity for underlying diffusion and dislocation climb.
Dimensional analysis of indentation of creeping materials obeying a power-law constitutive
relation was undertaken by Cheng et al. [7]. Loading rate and temperature entered the
analysis but mass density and thermal properties important for dynamics did not.

The basic constitutive theory in Section 2.2, and its augmentation for dynamic regimes
in Section 3.1, does not explicitly address inelastic phenomena that are not readily incor-
porated into the plastic yield and flow functions, such as aforementioned creep plasticity,
anisotropic deformation twinning (e.g., modeled in [17,72-74]) or phase transitions [75,76].
Fractures, as more often arising in brittle materials [9,77-79], are also excluded from the
current review.

3. Review: Dynamic Indentation

Substantial research has been directed toward material constitutive characterization
using dynamic indentation methods, albeit far less than that for the static regime reviewed
in Section 2. Early work [80] analyzed the projectile impact of hard spheres into softer
metallic targets of much larger dimensions than the spheres. Dynamic stress—strain curves
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were extracted from analysis of the results. The flow stress was defined as p/c with a static
value of ¢ ~ 3 depending on material, and Tabor’s strain measure € = 0.2a,/R; was used,
with a, the residual contact radius.

More recent experiments [81-83] likewise analyzed hardness data extracted from
spherical projectile impact. Wen et al. [84] used nanoindentation to characterize hardness in
the plastic imprint of a titanium alloy following spherical impact. The above studies are not
considered instrumented methods. Rather, such investigations tended to rely on knowledge
only of the impactor’s size and its initial velocity, in conjunction with postmortem analysis
of the impact crater, to infer material response information, since transient forces and
velocities were not recorded in situ during the impact event.

Dynamic indentation using the split Hopkinson pressure bar (SHPB) (i.e., Kolsky
bar) has been implemented for a variety of indenter geometries and target materials, as
pioneered by Subhash and co-workers [85,86]. This technique allows for the interroga-
tion of velocities and mechanical forces during the transient indentation process. More
recent approaches of dynamic indentation with the SHPB have used a full sphere sand-
wiched between two specimens [87] or a striker with variable impedance to achieve load
cycling [88]. The strain-rate sensitivity of metals was deduced from dynamic conical in-
dentation experiments by Lu et al. [89], where the indenter was propelled by a light gas
gun, and a combination of interferometry and load transducer was used to ascertain a time-
resolved material response including strain-rate sensitivity. Force and velocity histories
were recorded from spherical indentation at moderate impact velocities in an instrumented
drop-weight system [90], again to assess rate sensitivity of flow stress.

Dynamic impact experiments with laser-driven flyers [91] may offer an alternative or
supplementary means of high-throughput characterization of mechanical properties, at
potentially much higher local strain rates and different stress states (e.g., incurring spall)
than dynamic indentation with the SHPB. Description and analysis of such contemporary
techniques are outside the scope of this review.

3.1. Dynamic Elastic—Plastic Indentation

Analytical and numerical models, the latter primarily dynamic FE methods, have been
used to study dynamic indentation, and often more specifically, extract material property
information. In addition to mechanisms pertinent to quasi-static loading (i.e., elasticity,
yield, and strain hardening), wave propagation enters the dynamic problem, necessitating
involvement of mass density pg. For high loading rates, conditions are nearly adiabatic and
temperature rise could be substantial, so specific heat capacity (e.g., cy) may also affect the
response in such situations. Finally, dislocation kinetic processes depend on loading rate
to varying degrees depending on the specific metallic material. It is assumed that impact
conditions are not severe enough to warrant inclusion of nonlinear elasticity (e.g., pressure-
dependent compressibility) or thermoelastic coupling (i.e., thermal expansion), which
would be needed for accurate analysis of intense shock waves, for example [92].

Focusing attention again on isotropic ductile polycrystalline metals, the inelastic
constitutive model for dynamic loading is usually augmented to account for strain-rate and
temperature effects, in addition to initial yield and strain hardening. The flow stress of (6) is
often simply extended as a product of terms accounting for each mechanism, for example,

o(e’,e?, T) = oy [l +x- (ep)”} - f(ehy - g(T), (14)
where T is absolute temperature and é” is a scalar effective plastic strain rate [41]. Functions
f and g account, respectively, for strain-rate and thermal sensitivity. A widely used form is

the Johnson—Cook model [93,94]:

f=1+C-In[¢"/&], g=1-[(T—Tr)/(Ty — Tr)]". (15)
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In the first of (15), C = 90 /d1Iné’ is a fitting parameter and €; is a normalization
constant. In the second of (15), Tr and T are a reference temperature and melt temperature,
with g a thermal softening exponent. More often in the literature, notations oy — A,
0p -« — B, and g — m are conventionally used for Johnson-Cook constants. Other models
include power-law forms [4,23,75,89]:

f=1+(7¢)",  g=(T/Tr)" (16)

In (16), definitions for material constants are m = dIn(f — 1)/dIné” for strain-rate
sensitivity and r = dIno/dInT for thermal sensitivity of flow stress [63,75]. Usually,
C>0m>0,9q>0,and r < 0, such that strength increases with increasing strain
rate and decreasing temperature. In the context of these two models, the number of
inelastic constitutive parameters is increased by at least two from the static case, and from
three (0p, , n) to five (0p, x, n; C or m; q or r) if T and € are interpreted as fixed universal
constants. More parameters are required to incorporate strain-rate-history effects, and
measurements or extraction procedures are presumably needed for mass density and
specific heat, where the latter two properties do not directly influence solutions to the static
indentation problem.

The local temperature rate can be obtained from the continuum balance of energy [63],
where p is deformed mass density and cy specific heat at constant volume per unit mass:

peyT = 7w ~ - cel. (17)

Thermoelastic coupling is omitted, and adiabatic conditions pertinent to rapid loading
relative to time required for heat conduction are assumed. The Taylor—Quinney factor
is ¢ € [0,1], typically much closer to unity than zero and assumed constant in practice,
though the ratio of stored to dissipated energy is more realistically expected to evolve
with deformation [95,96]. Later, the approximation { = 1 is used, presuming the missing
thermoelastic heating in (17) under compression is offset by a maximally high value of {.
A critical examination of the Taylor-Quinney effect, and a novel treatment of plasticity
induced heating based on dynamic microstructure adaptation, has been set forth [97].

The basic models in (14) and (15) are considered here as suitable examples that are
very widely used by the applied engineering community. More sophisticated constitutive
models with stronger fundamental bases in physics and materials science are abundant in
the literature, for example [16,92,98-101], though the relative extent of predictive physics
versus phenomenology varies among such theories. Notably, novel ideas set forth by
Zubelewicz [16,97,100], motivated by dislocation energetics and thermodynamics, include
a marked departure from traditional plasticity theory based on a von Mises yield and
flow function, most often implemented with a radial return algorithm [41]. Methods of
dimensional analysis developed later in Section 4 can presumably be applied to such other
models upon suitable consideration of all resulting independent variables (i.e., all requisite
material parameters entering the corresponding constitutive theory).

Frictional interactions at the indenter—specimen interface can affect certain aspects of
the response. The most common assumption in FE simulations of dynamic indentation
appear to be frictionless contact [23,46,90,102]. As shown in FE simulations of static
indentation [3], very strong friction (e.g., sticking) significantly affects the local strain field
in the vicinity of the indenter and has a non-negligible effect on the contact radius versus
indentation depth relation. Most calculations show that the load—displacement curve is not
significantly affected by friction for static spherical indentation [3,33,53], though exceptions
exist [31]. The assumption of frictionless contact is often made for convenience, but appears
in many cases to produce sound agreement between force—depth data extracted from
models and experiments [6,38]. In some numerical studies, nonzero (constant) friction
coefficients ranging from 0.1 to 0.25 are used [34,40,52], choices which also seem to enable
close agreement with experimental data. For dynamic indentation, contact interactions
should consider the roles static and dynamic friction separately, with potentially distinct
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coefficients. Static friction would dictate stick versus potential slip criteria, and dynamic
friction (i.e., kinetic friction) would apply when relative velocities of indenter and indented
surface are finite. More elaborate constitutive models for static and dynamic friction
exist, where coefficients are not constant but depend on local state, time, and/or slip
rate [103,104]. Effects of static versus dynamic friction for high-rate spherical indentation
remain to be more clearly elucidated in future numerical or experimental studies. The
validity of the frictionless assumption likely improves as the surface roughness of the
sample and indenter decrease.

3.2. Survey of Prior Analytical and Numerical Modeling

Important findings from previous modeling of dynamic indentation are summarized
next. The analytical model of Mok and Duffy [80] was used to extract dynamic stress—strain
curves from sphere impact experimental data, and a representative strain rate of € ~ 1500/s
was deduced to match dynamic uniaxial compression stress—strain data. More recently,
analytical models have been used to assess dynamic hardness and dynamic rate sensitivity
(n) for conical [89] and spherical [105] impacts. An analytical model [81] was used to infer
that adiabatic plastic strain localization causes a reduction in hardness for sufficiently high
sphere impact velocities, at correspondingly high indentation strains and strain rates [82,83].
The model of Tirupataiah and Sundararjan [81] was used by Kumaraswamy and Rao [106]
to analyze dynamic sphere impact, wherein the plastic zones from dynamic and static
indentation were of similar depth when normalized by indenter diameter. Therein, it was
also determined that inertial effects on indentation response were unimportant due to the
short time, relative to the total duration of the impact event, required for stress waves to
traverse the contact area.

An analytical expanding cavity model was derived by Ito and Arai [94] for dynamic
spherical impact, showing reasonable correlation of local field variables with those from
FE solutions. This analytical model was later invoked [107] to determine the strain-rate
sensitivity parameter C of the Johnson-Cook model in (15) from knowledge of indenta-
tion craters from spherical impacts obtained from experiments at two or more distinct
impact velocities.

FE simulations provide more information than approximate analytical solutions, and
thus enable more reliable material response parameter extraction. In Lu et al. [89], FE
simulations with power-law strain-rate dependence as in (16) (but no thermal effects:
g = 1) were used to validate the strain-rate sensitivity extracted from dynamic conical
indentation experiments on copper. In Calle et al. [90], FE simulations were used in
conjunction with drop test data to determine strain-rate sensitivity in terms of increase
over static yield strength, without direct prescription of a strain-rate-hardening function
f as entering (14). Results were discovered to be comparable to conventional SHPB rate
sensitivity data, thereby validating their method for four particular metals of study: steel,
coppet, brass, and a titanium alloy.

The residual indentation imprint from dynamic FE simulations of spherical indentation
has been used to identify elastic—plastic constitutive parameters [52] for materials without
rate or temperature dependence, i.e., a constitutive model of the form in (6). Similarly, static
yield and strain-hardening parameters have been identified from simulated SHPB-driven
dynamic indentation using two conical indenters of different apex angles [102]. Spherical
impact data for rate-insensitive, linear-hardening materials were generated in dynamic FE
simulations [108] for a range of depths and indenter sizes. Then, support vector machine
algorithms, Gaussian process regression, and nonlinear regressions as machine learning
techniques were employed to estimate the material’s plastic properties given only certain
indentation response data.

Thorough parametric studies of dynamic spherical indentation using FEM have been
reported [46] for rate-insensitive elastic—plastic solids [ = 0in (16)] and were extended [23]
for potentially rate-sensitive elastic—plastic solids (e.g., m > 0). In these studies, the indenter
was a rigid sphere moving at constant velocity v;, conditions that differ from experimental
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protocols wherein velocity usually decreases with depth, and wherein wave speeds of an
elastic indenter are finite. Temperature effects were also omitted (¢ = 0), and nonreflecting
boundary conditions were invoked such that wave interactions with sample boundaries
vanished in the simulations. For impact speeds that were large, mean contact pressure
o = P/(mta?) was found to significantly exceed 30y at early simulation times when inertial
effects dominated.

In Lee and Komvopoulos [23], four possible stages of the dynamic deformation process
were identified for spherical indentation at constant rates:

¢  Elastic—plastic deformation characterized by an elastic core separating the plastic zone
from the contact interface;

e Initial surface plastic deformation encountered upon disappearance of the elastic core
and occurrence of maximum local plastic strain in the subsurface;

e  Transient fully plastic deformation, where maximum local plastic strain shifts close to
the contact interface and ¢ = ¢ /0y increases with indentation depth;

e  Steady full plastic deformation, wherein ¢ ~ 3 represents static material hardness.
This state is achieved for rate-insensitive materials at sufficient depths, when inertial
effects become negligible.

Lee and Komvopoulos [23] also discovered a dimensionless parameter x = (Es/0p)
(vi/Cp) = [(3pov?)/ (3 Es€d)]V/? = /Ui /Uy that was reported to delineate elastic-plastic,
initial surface plastic, and transient fully plastic regimes achieved in the initial state, respec-
tively, with increasing x. Here, C; = /E;/po is the longitudinal wave speed for uniaxial
stress, Uy is a kinetic energy density, and U is elastic energy density at initial yield strain
€9 = 0p/ E;. For the case of rate-sensitive solids (m > 0), mean contact pressure decreases,
contact area increases, and plastic work increases with increasing m and increasing static
hardening coefficient n. The effects of plastic parameters were more easily delineated when
inertial effects decayed, as indentation depth and simulation time increased.

A number of other studies of dynamic spherical indentation of ductile metals are
pertinent to this review. An early experimental and analytical plasticity study of static
and dynamic loading of a lead block by a hard steel sphere was performed by Yew and
Goldsmith [109], around the same time as the aforementioned ball impact study of Mok
and Duffy [80]. Experiments and analysis of dynamic spherical indentation in the shock
loading regime were undertaken by Rudnitsky and Djakovitch [110]. Spherical impact
of an indenter into ductile steel via a pendulum apparatus equipped with piezoelectric
diagnostics was performed by Nobre et al. [111]; complementary analytical models with
several theoretical approaches were used to evaluate findings. Clough et al. [112] performed
dynamic hardness tests on steel using a dropped ball and explained data, including size
and rate effects, using a dislocation-based theory. Experiments and FE simulations of
steel plates loaded statically and dynamically with hemispherical indenters were more
recently described by Liu and Soares [113]. Residual stresses from shot peening (a kind
of dynamic spherical impact) were studied by Meguid et al. [114] using FE simulations.
The effects of strain-rate dependence on indentation hardness were modeled by Almasri
and Voyiadjis [115] using power-law and dislocation density-based constitutive theories.
A spherical cavity expansion model for dynamic indentation of porous elastic—plastic
materials was derived by dos Santos et al. [116] and validated for a large domain of strain
rates, albeit for a conical rather than spherical tip.

The investigation of Nguyen et al. [117] used a different plastic constitutive law and a
different set of dimensionless parameters than Lee and Komvopoulos [23] for extraction
of material properties from FE simulations of dual sharp and spherical indentation at
relatively low but finite rates, also under isothermal conditions. In contrast to the example
in Section 5 of the current work, instrumented dynamic indentation data from minia-
turized SHPB testing were not considered in prior dimensional analysis or in numerical
simulations [23,117].
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3.3. Indentation Strain Rate

When correlating dynamic indentation data with dynamic experimental data that
have been recorded at a lower fluctuating rate (e.g., recorded from traditional SHPB
experiments), a measure of global or effective strain rate for the indentation experiment is
often sought. Just as there is no unique definition of global strain for static indentation, no
unique definition of indentation strain rate exists. Plastic strain is locally heterogeneous
during indentation, and local plastic strain rates are even more so, due to inherent changes
in velocity of the indenter (e.g., deceleration after impact), as well as stress wave transients.

Several pragmatic definitions have been proposed elsewhere in order to assign an
effective strain rate to a dynamic hardness H or strength & measurement. In Lu et al. [89],
with f, the loading duration, the following function was proposed for dynamic conical
indentation by an indenter of mass m;, cone angle 6, and initial velocity v;:

9m; tan? 0 1
4v; 1oy 1+ In{[Es/(30p)]tan6} |’

. _ €R,

& = —; er =007, t, =14
tr

(18)

where €y, is the representative strain from Atkins and Tabor [118], and ¢, is obtained from
derivations by Johnson [32]. The strain rate in (18) is an average measure, i.e., a constant
for a given experiment.

Perhaps most often used for interpretation of spherical indentation is the time deriva-
tive of Tabor’s indentation strain, allowing for a transient contact radius a(t):

d

&t = [0.2”1(2?} (19)

A definition for the average strain rate ()4 over the duration of the experiment,
similar to that of Lu et al. [89] but now applicable to spherical indentation, was proposed
by Kren et al. [105]; its value was obtained by dividing Tabor’s indentation strain by the
measured loading time ¢, for which strain increases:

1 e d a(t) . Am
(&) = E/o dt[o.z 3 ]dt =027 (20)

The contact radius at maximum depth is a,,; this could be substituted with the residual
contact radius after unloading, a,, for consistency with Tabor’s techniques.

The following expressions are derived for a rigid indenter (s = h) of potentially
transient velocity v;(t) = /i(t), using Tabor’s strain measure and geometry of the indented
surface [90]:

&(t) = 027 ~ 0.4[h(t> (1 - hm)]m =

'Ri 2R; 2R; L o)
- S -)]

In the context of (10), as derived by Field and Swain [6], it is assumed in the calculation
of the contact radius a in (21) that h ~ h, > h./2. For another alternative strain-rate
definition, the time differentiation of (11) produces an effective indentation strain rate of

£ a)
5 [t = S0 @)

- 37ta

é(t)

Uniaxial-equivalent elastic and plastic strain rates could likewise be obtained from
differentiation of (13).
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Finally, a general order-of-magnitude relation applicable to any indenter type was
defined by Subhash [86]:

€, = v;/h, [é), = I/ h for rigid indenter]. (23)

Here, v; is a representative velocity of the indenter, and depth  could be substituted
with another measure of the size of the impression (e.g., the residual imprint’s diagonal
or the imprint’s radius, depending on indenter shape). The rigid-indenter version of (23)
was used in the context of creep and viscoelasticity in Cheng and Cheng [7]. In another
example application, Kren et al. [105] used (23), with v; the initial impact velocity and &
replaced by the residual (plastic) contact diameter 24;.

3.4. Summary: Dynamic versus Static Indentation

Fundamental differences between high-rate indentation (dynamic regime) and quasi-
static indentation (static regime) for elastic—plastic solids are emphasized as follows:

* A time scale enters the problem for dynamics but not statics;

e The indentation strain rate is finite for dynamics, so the rate sensitivity of the plastic
response affects dynamics but not statics;

¢ Inertial effects (i.e., stress waves) appear for dynamics but not statics;

®  Due to inertia, mass density is pertinent for dynamics but not statics;

* Adiabatic heating may arise for dynamics but not for statics under conventional
thermal boundary conditions;

¢  Due to adiabatic heating, specific heat and thermal softening properties may be
important for dynamics but not statics;

*  Both static and dynamic friction could be important for dynamics but only the former
for statics in the limit of zero relative interface velocities;

¢ Under severe impact, nonlinear elasticity and thermal expansion affecting shock
waves would arise for dynamics, but shock waves are irrelevant for static loading.

4. Extension: Dynamic Dimensional Analysis

In the analysis that follows, two major assumptions are invoked regarding the indenter
and contact interface. These assumptions reduce the number of independent parameters,
simplifying analysis.

Firstly, the indenter is assumed rigid. This is a typical assumption in static and
dynamic FE simulations (e.g., [23,38,46]), most valid when E; > E;. In addition to reducing
E — Es/(1—-v2),R — R; = constant,h — hs in the Hertz theory of Section 2.1, this
assumption eliminates effects of wave transmission in the indenter that could affect contact
under dynamic indentation. In the present dimensional analysis, it is not necessary to
assume Ry — oo; this assumption is used later in Section 5, but only when comparing
certain experimental results to the then closed-form elastic solution of Hertz.

Secondly, frictionless contact is assumed, as in prior numerical studies of dynamic
indentation [23,46,90,102]. Implicit in this assumption is that surfaces are sufficiently
smooth to avoid sticking behavior (statics) and dissipative sliding resistance (dynamics).
If, on the other hand, friction is substantial (e.g., relatively rough surfaces), then the list of
independent variables in the dimensional analysis can be extended to minimally include a
static (i.e., sticking) coefficient and, if different, a dynamic (i.e., kinetic) coefficient, both
dimensionless. The absence of friction coefficients in the dimensional analysis does not
affect any results calculated by example in Section 5. However, frictional effects would
complicate a more general treatment of multiple materials of variable surface finish.

Several assumptions are also made regarding the testing apparatus. It is assumed
that the radius of the indenter R = R; is variable from experiment to experiment but that
other aspects of the system geometry remain fixed among experiments. Boundaries may
be of infinite extent in simulations, or of finite extent in experiments, where the latter
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(i.e., specimen size) is fixed such that the absolute domain size need not be treated as an
independent variable.

It is also assumed that a system velocity, denoted by v, is a defined, controllable
constant for each simulation or experiment analyzed and is not a dependent variable. For
example, the system velocity v can be simply assigned as the indenter velocity / if pre-
scribed as a constant in a simulation [23,46,102] or can be assigned as the initial (measured)
projectile impact velocity for a spherical impact experiment [80-83]. In a dynamic hardness
or dynamic indentation experiment using the SHPB, the indenter’s tip velocity is generally
not constant, even during the loading phase [86,88,119]: a transient period may exist over
which the indenter accelerates, and then the indenter always decelerates. In that case,
the velocity of the striker bar could be used for v as a measure of the input loading rate;
otherwise, the average indenter velocity, if controlled, over some finite time interval of the
loading phase could be used [86].

4.1. Variable Identification

The current analysis considers only global, scalar quantities that are either (1) imposed
or extracted from indentation experiments or (2) homogeneous and stationary material
properties. Local field variables (e.g., transient stress and strain distributions with local
values depending on position in the sample) are not addressed.

Application of concepts of dimensional analysis and Buckingham’s Pi theorem begins
with the identification of all dependent and independent variables in dimensional form.
Dependent variables are defined as follows:

e Indentation force P;
e Indentation contact radius a;

e Plastic work of indentation W’:

WP — /0 " p(h) d. (24)

Note that the quantification of W” requires loading to a maximum depth ,,, followed
by unloading to a residual depth /,, the latter at which P = 0. From these three dependent
variables, other quantities of interest can be defined, for example:

e Mean pressure j = P/(ma®) and the constraint factor measured relative to the initial
static isothermal yield strength, hereafter redefined as ¢ = p/op;

e Average temperature rise in a volume V of material assuming adiabatic conditions:
AT = WP /(pocy V), where the plastic zone volume can be estimated as the cylindrical
region V ~ %712113, as in other works [5,26].

The inelastic constitutive model of (14) is assumed a priori, with { = 1 in (17) for the
adiabatic regime. As discussed in Section 3, linear isotropic elasticity is assumed without
thermoelastic coupling, and as discussed in Section 4, frictionless contact is assumed. The
material is also presumably homogeneous, meaning local grain-to-grain fluctuations in
properties are assumed to negligibly affect the global indentation response. In dimensional
form, independent variables are then the following:

e Indentation depth & and maximum depth h,;,;

e  Effective indentation (system) velocity v;

e Indenter radius R;

e Initial temperature Tj;

*  Substrate elastic properties (dropping (-)s subscripts) E, v;

e  Substrate plastic properties oy, x, m, n, r, €, Tr;

®  Substrate initial mass density pg and specific heat per unit mass cy .

Of these independent variables, only h varies with time during an indentation simula-
tion or experiment, given the definition of v as a constant explained already. The maximum
depth is needed for determination of W”, since & is multivalued during a load-unload
cycle [7,21]. However, &y, can be excluded from the list if only P and a are sought from a
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monotonic loading process. Sixteen independent variables are listed, of which eleven are
material property constants. Time is not an explicit independent variable, since given the
system velocity, indenter radius, initial temperature, and material properties, the time at
which a particular depth value / is achieved is determined implicitly [7].

Next, the Buckingham Pi theorem is invoked to reduce the number of independent
variables when expressed in dimensionless form [7,19,20,22]. The number of independent
dimensions entering the problem is four: mass, length, time, and temperature. Since
the stress dimension is recovered from mass, length, and time, the four independent
dimensions are more conveniently reassigned into stress, length, time, and temperature.

The following independent variable combinations are then used for normalization:

e  Stress: modulus E;

¢  Length: indenter radius R;

e  Time: viscoplastic time scale t) = 1/¢ép ;

e Temperature: plastic thermal susceptibility T = o/ (pocv ).

The elastic modulus is a standard prescription for stress normalization [7]. Unlike
analysis in prior works [7,21,23,46], h and v are herein excluded as normalization factors,
since it is more convenient to work with constant quantities R and ¢y, which later serve
to define dimensionless strain and strain rate. Note that, as ty decreases, plastic stress
relaxation is faster and a rate-independent response is approached: f — 1 as tg — 0, so
long as m > 0in (16). Note also that, as T decreases, the tendency for adiabatic temperature
rise decreases.

Applying the Pi theorem, the number of independent variables is reduced from sixteen
to twelve, now defined in dimensionless form as follows:

e Indentation depth &/R and maximum depth h;,/R;

e Indentation rate (v/R) - to;

*  Yield strength o/ E;

e  Elastic wave speed via R/ (Cjtg), where C; = \/E/po;

e  Reference temperature T/Tg and initial temperature T/To;
e Dimensionless elastic and plastic properties v, x, m, n, r.

The following physically appealing results are apparent. Normalized depth /R is
an approximate global strain measure. Normalized rate vty/R is an approximate global
measure of strain rate times plastic relaxation time, where the larger the value of this
dimensionless quantity, the greater the anticipated viscoplastic rate effect. As vty/R — 0,
the rate-independent case is recovered. Use of the ratio 0y / E characterizes plastic to elastic
stiffness, a standard choice [7,23,46]. The ratio R/ (C;ty) is interpreted as the elastic wave
relaxation time R/C; divided by the viscoplastic relaxation time to. As R/(Cjty) — 0,
inertial effects should become less important, since stress wave equilibrium should be
achieved more rapidly relative to viscoplastic rate effects. Typically, in practice, Ty is simply
fixed at room temperature (~293-300 K), but T/Tr — 0 as the material becomes resistive
to temperature change. Ambient temperature Ty will differ from Ty for indentation at other
imposed thermal boundary and initial conditions (e.g., testing of preheated samples).

4.2. Functional Forms

Given the independent dimensionless variables, the sought dependent variables can
be expressed as dimensionless functions I1p, I1,, ITyy:

p h Ut T 0o R/to T

:H 7 = 7 s Vy g e, TE, 7 25
ER? P(RR T’ E' JE/po Ta T (25)
a h vty T 090 R/t T
—:H —_—— — — — — 2
R u(R/ R /TOI E/ E/por TR/U/K/mrn/r 7 (6)
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wP h hy, vty T op R/t T
7:1_1 S v o ———r eV, K, MmN, 27
ER? W(RR R'Ty E' \JE/po T """ 27)

Arguments preceding the the semicolons on the right sides of (25)-(27) are loading
conditions, and arguments following the semicolons are material properties. As noted
in Section 4.1, h;; / R is not required for determination of force and contact radius during
monotonic loading, so it is excluded from I1p and 11,. Parametric experiments and/or
FE simulations are needed to fully determine the functions on the right sides of (25)-(27).
Results from such studies will enable assessment of the relative importance of loading rate,
temperature, and material properties on the global mechanical and thermal response.

The isothermal, quasi-static Hertz solution should be recovered as 0y/E — o0, v — 0,
and C; — oo, where for small indentation depths Rs — oo:

h 4 A
HP<R/O/'/OO/O/'/V/ '/'/'/') - 3(]_—‘[/2)<R) [R - R]/ (28)
h h 1/2 _
HH(R/O/';OO/O/'/V/ '/'/'/'> - <R> [R - R]/ (29)
HW(R’ ?/O/ ~,O0,0, SV '/') =0. (30)

Analytical functional forms, if they can be determined, should be consistent with the
limiting cases in (28)—(30). Given (25)-(27), the mean contact pressure, constraint factor
relative to 0y, and mean transient temperature rise can be reconstructed:

E /R\? _ 4E (R\® 4E Ty
p=—(2) I~ AT =2 (2) Iy = — . : 31
P=% ( a ) P e, 372 ( a > W 3n2 T (11,3 G1)
Similarly, indentation strains [26,44] can be found as
a 4 h 4 h/R
=022 —02-11 e -1 _ 2R >
€=0 R 0 v T 3xa 3111, (2)

If the constitutive model of (15) is used instead of (16), then the subset of two indepen-
dent dimensionless variables (1, r) is replaced with the set of three dimensionless variables
(C,q,Ty/T) in (25)-(27). Analogous constructions would apply for other constitutive
models, for example, as cited in Section 3.1.

5. Application: Analysis of Instrumented Dynamic Indentation Data
5.1. Experimental Protocols

Data from three dynamic spherical indentation experiments are analyzed using the
equations and techniques of Sections 2—4. Experimental methods have been discussed by
Casem [88,119] and are summarized in what follows.

A miniature Kolsky bar (i.e., SHPB) [120] is adapted for instrumented indentation,
whereby transient force, displacement, and velocity data are acquired in each experiment.
The loading history (e.g., indenter’s velocity) depends on the velocity of the striker bar
and geometric properties of the system (including pulse shaping), as well as indentation
resistance afforded by the substrate. Initial clearance between indenter and substrate also
affects the velocity history. The loading history is thus not strictly controlled; however,
different final indentation depths are generally achieved by increasing the striker velocity,
commensurate with an increase in the average loading rate. Experimental data include
both the loading and unloading histories for each test.

Relevant properties and parameters are listed in Table 1 with supporting references. Of
these values, those comprising the set of six strain-hardening, strain-rate, and temperature-
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sensitivity parameters {x,n;Corm; qorr; TR, Ty} are not used explicitly in the forthcoming
analysis but are included for context to aid in interpretation of results. All current exper-
iments are performed at standard room temperature: Ty = Tr. Prominent results are
summarized in Table 2 for reference and are defined and discussed in detail later. Pertain-
ing to loading conditions, h;, in the leftmost column is the maximum indentation depth
prior to unloading, and /1,4 in the rightmost column is the average indenter tip velocity
over the loading phase of each experiment.

The substrate material is presumed to be isotropic, both elastically and plastically.
Characterization and static indentation experiments on the same as-received Al 6061-T6 [1]
suggest that, given the presently sized indenter, the volume of material sampled under-
neath the indenter at initial yield should contain 40 to 50 crystals of random orientation.
Results by Weaver et al. [1] confirm that this is a sufficient number to ensure a repeatable,
globally isotropic response. It is assumed here that isotropy carries over to the dynamic
regime; similar indentation stress-strain curves presented later among multiple dynamic
indentation experiments support this assumption, at least post yielding.

Table 1. Material and geometric parameters.

Parameter (Units) Value Definition Source

E (GPa) 71.0 modulus of Al 6061-T6 Wu et al. [121]

v(-) 0.33  Poisson’s ratio of Al 6061-T6 Wu et al. [121]

po (g/cm®) 2.77  mass density of Al 6061-T6 Wu et al. [121]

cy (J/kg-K) 896  specific heat of Al 6061-T6 Zhu et al. [122]

0y (GPa) 0.25 initial yield strength of Al 6061-T6 Lesuer et al. [123], Zhu et al. [122]

K ()
n(-)

0.35-1.8  hardening coefficient range of A1 6061-T6  Lesuer et al. [123], Zhu et al. [122]
0.38-0.43  hardening exponent range of A16061-T6  Lesuer et al. [123], Zhu et al. [122]

C(-) [~ m] 0.002-0.083  rate sensitivity range of Al 6061-T6 Lesuer et al. [123], Zhu et al. [122], Casem et al. [120]
q () [=—7] 1.34 thermal softening of Al 6061-T6 Lesuer et al. [123]
€ (1/s) 1.0 reference strain rate (universal) Zhu et al. [122]
Ty (K) 925 melt temperature of Al 6061-T6 Zhu et al. [122]
Tr (K) 294  reference temperature (ambient) Zhu et al. [122]
E (GPa) 71.2  system modulus with WC indenter Weaver et al. [1]
R (mm) 3.175 indenter radius this work
Table 2. Loading conditions and results at max depth (-),; or averaged over the loading phase (-) 4.
Experiment ¢ (m/s)  h,; (um)  a, (um) WL m]) AT, (K) Em ém éa(ls) &4 (/s) Ty (m/s)
1 0.61 17.2 421 1.57 1.15 0.0265 0.0174 1386 908 0.90
2 1.06 25.0 508 3.82 1.59 0.0320 0.0209 2217 1452 1.74
3 1.36 35.7 606 8.43 2.06 0.0382 0.0250 2750 1801 2.57

The miniature SHPB system equipped for indentation testing is sketched in Figure 1.
This image only shows the upper half of the system, which is axially symmetric. The
indenter is tungsten carbide (WC) with a radius R = R; of 3.175 mm. The spherical tip
of the indenter is machined directly into the input bar, on its right side in Figure 1. The
substrate is the aluminum alloy Al 6061-T6 of cylindrical geometry, with Ls/Ds = 3 and
Ds = 3R; = 3R.

The velocity history v(t) at the right side of the input bar in Figure 1 is acquired
from analysis of transient data from a strain gauge. The average of this input velocity
over the duration of each test is denoted by 0. As shown in Table 2, ¢ increases with
test number, as do all other observed or extracted quantities such as maximum depth,
maximum indentation strains, and average indentation strain rates. In many subsequent
figures, 0 is thus used to further distinguish experiments 1, 2, and 3. A normal displacement
interferometer (NDI) focused at each of the indented faces of the sample at its radial edge
(left end) and the left end of the output bar records displacement history for each location.
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Force and displacement histories for the tip of the indenter are computed from a linear
elastic wave analysis with the strain gauge data and the NDI data.

INPUT BAR
cylinder length 60 mm
cylinder radius 1.5875 mm

OUTPUT BAR
cylinder length 39.1 mm

MINIATURE SHPB cylinder radius 0.79375 mm

INDENTER TIP SPECIMEN
radius of curvature 3.175 mm cylinder length 3.58 mm, cylinder radius 2.39 mm

Figure 1. Experimental setup of miniature SHPB with spherical indenter. Spherical tip is machined
directly into right end of WC output bar, and input velocity history is recorded at right end of
truncated steel input bar. Specimen material is Al 6061-T6.

Static spherical indentation experiments on this material have been reported else-
where [38], albeit with an indenter of larger radius 2R. Numerical simulations of the
static problem [38] loaded to comparable indentation strain levels suggest that the current
dimensions of the substrate are sufficiently large to mitigate boundary edge effects. How-
ever, the effects of stress wave interactions with finite boundaries cannot be ruled out in
dynamic experiments.

The elastic stiffness of WC (E; = 640 GPa) is an order of magnitude larger than that
of aluminum, and E in Table 1 accounts for the true elastic modulus of both the indenter
and substrate, assumed to be known a priori. If a rigid indenter is assumed instead, then E
increases by ~10%. However, since the indenter material is held fixed among experiments,
elastic properties of the indenter can be excluded from the list of independent variables in
the forthcoming dimensional analysis, as assumed in the general framework of Section 4.

Indentation depth and tip velocity (i.e., depth rate) are inferred with respect to the
far-field displacement of the surface of the sample and correctly account for rigid body
motion. The reported indentation depth and depth rate are the respective true indentation
depth hs and depth rate /i in the substrate, relative to those measured for the far-field
surface away from any pile-up or sink-in effects. In the remainder of Section 5, notation is
simplified such that s — h and /s — /1. Cursory calculations with the approximation in
(3) confirm that the contribution of deformation of the spherical end of the indenter, /;, to i
should be negligible for loads and contact radii reported in what follows. Summarizing,
the indenter can be considered rigid for purposes of setting h = hs and R; =constant, but it
should have a finite modulus E; for accurately quantifying E.

5.2. Data Analysis: Global Response

Experimental force-depth, depth—time, and depth rate-time histories are shown in
Figure 2, labeled “exp” (for experiment) 1, 2, and 3. The time ¢ at a given depth & is
confirmed by the integral t = [ (h//1)dh, where /1 is known as a function of & and initially
t = 0. Shown for reference in Figure 2a is the Hertz elastic solution of (1) obtained assuming
R =Rin(2).

For h 2 10 um, the data are more compliant than the elastic solution, as expected
for an elastic—plastic material post yielding. For i < 10 um, experiments are similar to
the elastic solution. Notably, some data appear slightly stiffer than the elastic solution
over small intervals of /. These unusual features could be due to inertial effects and/or
imprecision of experimental measurements at very low indentation depths. Depth-time
histories shown in Figure 2b indicate total load—unload durations ranging from around
20 to 30 ps. Maximum depth and depth rate increase with experiment number. Velocity
histories are drastically different among experiments. For example, velocity ramps up
quickly with time for experiment 2, while it is initially near maximal for experiment 3. In the
latter case, the indenter clearly accelerates prior to contact with the substrate. Note /1 < 0
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during the unloading phase of each experiment. Peak loading and unloading velocities are

notably smaller for experiment 1 than experiments 2 and 3.

40

40 6
0gd — eplo=061 m/s ,/ PR "t\ —_— exp 1, 0 =0.61 m/s
’ —_— ep2,0=106m/s / '¢' ~~~ £ ‘\ m— exp 2, U = 1.06 m/s
== op3 0=136 m/s/' sl 301 R4 * ] , m== exp3,0=136m/s
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= / 'é’ N E ! ~ 3 21 I
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n, 044 * ’ R/ . ]
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/ ,' 104 —exp 1, 0 = 0.61 m/s
021 / l' = exp2, U=106m/s -2
/ 'l' 04 === exp 3, 0=136m/s
0.0 1 i T = T T T T —4 T
0 10 20 30 40 0 10 20 30 0 10 20 30
R (um) t (ps) & (ps)
(a) (b) (0)
Figure 2. Experimental data: (a) force vs. depth (with Hertz analytical solution) (b) depth vs. time
(c) depth rate vs. time.
Force—depth data are delineated for each experiment in Figure 3, wherein the slope
S upon initial unloading is extracted from the tangent for each case. The maximum
indentation depth is denoted by h,,,. The unloading slope S at i = hy, is then used to obtain
the Hertz contact radius at maximum depth a,, = a(h = h;, ), assuming quasi-static elastic
unloading, via (5) [37,38]. Elastic modulus E is assumed, a priori, to have the value listed
in Table 1. No attempt is made to extract elastic properties from the present indentation
data, as has been performed in some investigations elsewhere [6].
0.40 0.6 0.8
P exp 1, o =061 m/s —_—exp 2, U =1.06 m/s o] — exp 3, 0 =136 m/s
ly tangent § =63 N/um 0.5q === tangent S =77 N/um T = tangent =55 N/pm
0.30 4 0.6
025 M 051
= =
X 0.20 1 0.3 = 0.4 4
& 0.15 4 & & 0.3
0.2
0.10 1 / i 02 i
0.05 1 '/ o1 / 0.1 !
0.00 T f T 0.0 T T T T T 0.0 T T T
0 5 10 15 20 0 5 10 15 20 25 30 0 10 20 30
h (um) h (um) h (um)
(a) (b) (0)

Figure 3. Data and unloading tangent: (a) experiment 1, (b) experiment 2, and (c) experiment 3.

Dimensionless dependent variables (I1-terms) introduced in the analysis of Section 4
are reported in Figure 4. General functional forms are (25)—(27). In each figure, the inde-
pendent variable resolved on the abscissa is dimensionless depth i /R (or hy, /R), which
is well-defined and fully known from the test data. Among different experiments, the
normalized indentation velocity vty/R also varies, as does the maximum normalized depth
hy, /R. Since the substrate material and initial temperature (room temperature) are identical
among experiments, the other independent variables on the right sides of (25)-(27) are
fixed among the present results. Hence, potential influences of the latter (fixed) properties
cannot be fully discerned or quantified among the presently available data. However,
qualitative deductions on yielding, strain hardening, and rate sensitivity are still possible,
as will be discussed later in the context of indentation stress—strain curves. A candidate
definition for effective velocity is the average loading rate v = I A = hy /ty, where ty, is the
time instant at which /1 = h;,. As shown in the rightmost column of Table 2, v4 increases
from approximately 0.9 to 1.7 to 2.6 m/s over respective experiment numbers 1 to 2 to 3.
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Figure 4. Dimensionless variables: (a) normalized force, (b) contact radius (loading phase only), and
() plastic work (final).

Normalized force I1p versus normalized depth /1/R in Figure 4a provides the same
information as in Figure 2a, since E and R are identical among experiments. Assuming
v = J1,, the results in Figure 4a show that the dependence of dimensionless indentation
force Ilp on dimensionless loading rate vty /R is low for Al 6061-T6 over the current domain
of loading rates.

Since the present data do not contain intermittent unload-reload cycles or continuous
stiffness measurements (CSM) to obtain unloading slope S(h) for h # h,,, approximations
are used to compute contact radius a(h) for h # hy,. First, for the loading phase, t < t,,,
it is assumed that a(t) for each experiment depends only on /1/R and not v. As shown in
Figure 4b, the normalized radius I1, is then estimated by the following function, where
« > 0and B > 1 are dimensionless fitting constants:

I, =a/R=(1+a{l—exp(—ph/R)})Vh/R [t < tp). (33)

The Hertz solution is recovered in the limit of infinitesimal depth, whereby a — v/hiR.

Available data do not enable fitting of a(t) for t > t,, i.e., throughout the entire
unloading process. Thus, during unloading, it is assumed that the indentation stress—strain
data (specifically, & = p versus ) demonstrate a fixed slope of E, consistent with quasi-
static unloading [5,26]. To this end, the following quadratic equation is solved at each time
increment for a(h(t)) during the unloading phase:

4E (h - hr) ~ L s (34)

3t\a af ta?

Here, h, is the final (residual) indentation depth upon complete unloading, and a; is
the projected (not measured) final contact radius. The latter, which generally can differ
from the observed residual imprint radius a,, can be computed by solving (34) at i = hy,,
with corresponding peak load P = P, measured and radius a = a,, obtained from (33).

Finally, normalized plastic work Il is shown in Figure 4c. Its computation requires
the entire load—unload force-displacement cycle for a given /;,; hence, only three data
points are available (one for each experiment). Though not shown in Figure 4c, Iy
logically could depend on £, /R as well, since h, varies among experiments, increasing
from 9.8 to 14.4 to 23.6 um over experiments 1, 2, and 3. Such dependency is permissible
via inclusion of /1/R in addition to &, /R in the listed arguments of (27). However, the
identity ITp(h = h,) = 0 provides an additional constraint equation that can be used to
eliminate explicit dependence of Iy on i,/ R. Normalized plastic work clearly increases
with increasing maximum penetration depth.

162




Metals 2023, 13,276

5.3. Data Analysis: Indentation Stress—Strain and Other Extracted Information

Typically, the global force-depth response is of primary interest from indentation
testing, along with possible information on the contact radius. In the dynamic case, com-
plete data should include time histories of these quantities. From such data, supplemental
quantities such as indentation stress, indentation strain, indentation strain rate, and mean
temperature rise can be computed, as demonstrated next. The reader interested only in
the primary response (e.g., indentation force versus depth) emphasized in Section 5.2 can
bypass the remainder of Section 5.3.

Given a (or equivalently, T1,), along with force data P(h), mean pressure p = P/ (ma®)
(e.g., Meyer’s hardness H when P is maximum and 7 is the residual imprint radius) is
computed. Results are shown in Figure 5a. Constraint factor c is shown in Figure 5b,
recalling that the initial yield stress oy from Table 1 is used for normalization in Section 5.
Note that this value of ¢y is considered to be known a priori, rather than extracted from
the present indentation data. Mean pressure closely tracks the Hertz solution at a very
small /1/R for experiments 1 and 2, whereas j for experiment 3 suggests anomalously
low compliance in the limit #/R — 0. As displayed here in Figures 5 and 6, the Hertz
solution invokes the usual assumption Rs — oo in (2). Mean pressures are similar among
the loading phases of all three experiments for 1/R 2 0.0025, in the regime where plastic
compliance is expected to overtake elastic compliance. Such similarities suggest strain rate
and strain rate-history effects on p are small for these experiments on Al 6061-T6, given
the very different velocity histories among tests in Figure 2c.
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Figure 5. Stress vs. depth: (a) mean indentation pressure and (b) constraint factor.
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Figure 6. Indentation stress vs. (a) Tabor’s strain [44] and (b) Kalidindi and Pathak’s strain [26].

Taking v = f4, the results in Figure 5a imply that dependence of mean stress on
dimensionless loading rate vty/R is low. In fact, the mean stress and constraint factor
appear to decrease slightly with increasing loading rate, though such decrease may be due
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to imprecision of the experimental measurements and uncertainty inherent in (33) that
neglects possible rate dependence of the transient contact radius.

Recall from the review in Section 2.2 that initial yielding corresponds to ¢ ~ 1.1 in
the quasi-static Hertz theory [6]. After yielding, the calculated constraint factor increases
from ¢ ~ 1.5 to ¢ = 2.5 over the full domain of indentation depths in the experiments.
Strain hardening likely influences ¢ to increase with increasing i1/ R in the fully plastic
regime. The computed range of ¢ is within bounds observed elsewhere in quasi-static
spherical indentation experiments and simulations [1,2,6,37,42—-45]. Similar ranges have
been observed in dynamic spherical indentation simulations of elastic-perfectly plas-
tic, rate-independent solids for constant rigid indenter velocities that are not too large
(e.g., t <75m/s), albeit for representative metallic substrates with different properties
than those of aluminum [46]. Transient increases in ¢ due to inertial effects manifest at veloc-
ities on the order of 100 m/s [46]; at such high velocities, the effects of strain rate sensitivity
on ¢ also become stronger [23]. During elastic unloading, c is easily computed given P and
the current method of estimation of 4, but its value does not have any physical significance.

Indentation stress (i.e., mean pressure ) is reported versus the two different indenta-
tion strain measures of (32) in Figure 6. Elastic deformation followed by plastic yielding
and mild-to-moderate strain hardening is apparent in each representation. The hardening
behavior is qualitatively consistent with the traditional dynamic uniaxial stress—strain be-
havior of this material [120,122]. The anomalously high initial compliance of experiment 3
is also apparent in Figure 6. Elastic unloading is perfectly represented in Figure 6b, as a
result of the implementation of (34). On the other hand, the unloading portions of p versus
€ curves in Figure 6a show slopes inconsistent with E. Similar inconsistencies have been
noted when ¢ is used as the indentation strain measure for static indentation [5,26]. In
Figure 6b, yielding is apparent at € ~ 0.6% for experiments 1 and 2. From (13), with c ~ 2.5,
the uniaxial-equivalent yield strain is then estimated as 0/ E ~ 0.25%.

Strain rates in (19) and (22) are consistently obtained from numerical differentiation
of (32). Results are shown in Figure 7. According to each strain definition, strain rates are
initially large over domains wherein both the indentation depth and contact radius increase
rapidly with time. Initial values of & and é range from 7000/s to 28,000/s, with the highest
strain rates observed in experiment 3. Strain rates decrease subsequently with increasing
time, as the indenter necessarily decelerates. Negative rates persist during unloading.
However, oscillations also arise during unloading to accommodate the assumed form of
contact radius in the elastic response function of (34).

25
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204 1 = exp 2, 0 =1.06m/s ' = exp 2, 0 =1.06 m/s
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Figure 7. Indentation strain rates from (a) Tabor’s strain [44] and (b) Kalidindi and Pathak’s
strain [26].

Due to uncertainty in assumed relations (33) and (34), the strain-rate histories shown
in Figure 7 should be considered highly approximate. However, average strain rates during
the loading phase of each test should be much more accurate, since these do not rely on (33)
or (34). Rather, such averages depend only on the unloading slope S in (5) used to obtain
am = %S / E at known time t,, at the measured depth i = hy,:
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4
37T amty

€g=02—-, €4 = (35)

Values of these average strain rates are listed in Table 2. Notably, average rates
follow the same trends over all three experiments, with é4 ~ 1.5¢ 4 in each case. These
average strain rates are within ranges that can be obtained in conventional uniaxial SHPB
experiments on this material [122,123].

The same trends apply for maximum strains: €, ~ 1.5, in all three experiments. Val-
ues of é,, range from 1.8% to 2.5%. Taking B ~ 1.3 in (13), as in earlier simulations of other
elastic—plastic materials [37], maximum uniaxial-equivalent strains are then approximated
as ranging from 1.4% to 1.9%.

Applying a representative rate sensitivity parameter of C = 0.01 from Table 1, the ratio
of dynamic flow stress at a strain rate of 2000/s is predicted by the Johnson—Cook model to
be only 7.6% higher than that at a rate of 1000/s. Accordingly, any effects of different strain
rates witnessed in experiments 1, 2, and 3 may be too small to be discerned in the load-
displacement or indentation stress—strain curves. Viewed differently, the relatively low
strain-rate sensitivity of the Al 6061-T6 material is corroborated by the similar indentation
stress—strain curves among experiments at different transient and average loading rates.
However, mild rate sensitivity effects, if they exist, might also be obscured by limited
fidelity and the limited strain-rate range of the data.

Other discrete data of interest are included in Table 2. Maximum depth h;, and
corresponding contact radius a,, were discussed already in the context of Figure 4a,b.
Average velocities /14 are used to represent v entering dimensionless rates in the legends of
Figures 4a and 5a. Likewise, plastic work W}, is used in the construction of Figure 4c. Note
that W}, is the residual plastic work after complete unloading from depth .

The average adiabatic temperature rise at maximum depth, AT, is computed from
the second of (31), with WP = W) and a = a,,. This is the temperature change that would
be experienced by a cylindrical column of plastically deformed material of radius a,;, and
height 27ta,, [5,26]. Given the temperature sensitivity g ~ 1 of Al 6061-T6 in Table 1, the
predicted heating-induced change in flow stress (i.e., thermal softening) for this volume
of material should be negligible. However, localized temperature increases in regions of
concentrated plastic strain (e.g., near the edges of the contact surface) could be substantially
larger, whereas heat conduction could counteract such increases given sufficient time.
Thus, thermal effects cannot be completely ruled out without verification from simulations,
for example.

5.4. Summary and Recommendations

The following key points are ascertained from analysis of the dynamic indenta-
tion data:

¢  Maximum uniaxial-equivalent strains are estimated from maximum indentation
strains to be on the order of 1% to 2%;

e  Average uniaxial-equivalent strain rates are estimated from indentation strain rates to
be on the order of 700 to 1500/s;

*  Subtle variations in indentation force—depth curves can lead to drastic changes in
indentation stress—strain curves, particularly at small indentation depths;

*  Dynamic indentation stress—strain curves are qualitatively similar to those given
elsewhere [37,38] for static spherical indentation, with constraint factors within ranges
observed for static experiments on ductile metals;

® Mean pressure (i.e.,, indentation stress) shows evidence of yielding and mild-to-
moderate strain-hardening characteristic in uniaxial stress—strain data for the alu-
minum alloy 6061-T6;

e  Strain rate and inertial effects are not detected among the experimental datasets,
whereby an increase in average indentation strain rate by a factor of 2 produces no
apparent increase in indentation stress;
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* Anegligible effect of average strain rate correlates with the low strain-rate sensitivity
of flow stress for the aluminum alloy, as measured in traditional SHPB experiments;

*  Plastic work results in a trivially small adiabatic temperature rise (< 2K) averaged over
the entire plastically deformed zone, though magnitudes of localized temperature
increases at plastic strain concentrations are unknown.

Consider the inverse problem of determination of material parameters (elastic, thermo-
mechanical, and plastic entering (14) and (16)) from recorded indentation force versus
depth, ie., P = ER? - TIp versus h, data for different loading velocities (e.g., average
indentation depth rates) v and ambient temperatures Ty. In this context, R is known a
priori, Ty and v are imposed, P and & are measured, and E is presumably unknown and
thus to be determined.

It may not be possible to determine E given only dimensionless I1p versus /R
data. For example, for purely elastic Hertz-type indentation, the dimensionless force—
displacement response of (28) is independent of E. Therefore, at least some experimental
data should be recorded in dimensional, rather than dimensionless, form to allow for
determination of all of the normalization constants of the dimensional analysis: R, E, t, T.
In other words, measurement of P rather than I'lp reintroduces a stress scale into the
inverse problem, in principle enabling implicit extraction of E. Similarly, measurement or
knowledge of R reintroduces an independent length scale into the problem. Measurement

or imposition of v rather than ‘%0 reintroduces an independent time scale (i.e., & given

R), and measurement or imposition of Ty rather than Tlo reintroduces an independent
temperature scale.
The inverse problem can be stated as follows:

P _ h vty T.op R/t T h .
= E-TIp( %, TO,TO,TO,\/% ,v,K,m,n,r) versus g for different ef-

fective loading strain rates v/R and initial temperatures Ty, determine the eleven
material properties E, v, po, cv, 00, K, €9 = t, Lm,n,r, Tg. (The list of sought properties
is reduced to nine if ¢y and Ty are regarded as fixed universal constants.)

° Given

In the present dynamic indentation experiments, the dimensionless response function
I'1, for contact radius cannot be precisely measured at present over the entire deformation
history, and response function ER - ITyy ultimately offers no additional information over
ER? - TIp, since the former can be constructed from the history of the latter. Based on
dimensional analysis of available results, the following deductions and recommendations
are then proposed to facilitate the solution of the inverse problem:

e The relatively small magnitudes of impact velocities and the similarities of static and
dynamic indentation curves suggest that inertial effects associated with py cannot be
discerned in the data. Thus, a standard (e.g., Archimedes) method should be used to
measure 0.

e The relatively low changes in average temperature suggest that effects of specific heat
capacity cy cannot be easily discerned in the force response data. Thus, a standard
(e.g., calorimetry) method should be used to measure cy.

¢ Precision of current experimental methods in the very small-depth regime is likely in-
sufficient to directly ascertain elastic compliance via comparison with Hertz’s solution.
Elastic (shallow) force-depth data also seem unable to delineate E and v distinctly,
since P depends only on E/(1 — v?) and not E and v independently in the Hertz
solution. Thus, a standard (e.g., longitudinal and shear wave speed) method should
be used to measure E and v. Any experimental facility equipped for dynamic instru-
mented indentation should include the capability for such sound speed measurements,
presuming material samples are available.

e The precision of current experimental methods is likely inadequate for determination
of an “exact” initial yield stress 0p. However, an offset yield stress should be measur-
able, which can provide an approximate value of oy as in static experiments [37].
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¢  For low loading rates or rate-insensitive materials, extraction of static hardening
parameters x and n should be possible from measured increases of I1p with increasing
h/R, though unique determination of both parameters may or may not be difficult.

e Effects of loading rate vty/R on Ilp for highly rate-sensitive materials remains un-
known. Experiments on other solids with much greater strain-rate sensitivity of flow
stress are needed to determine if such rate sensitivity manifests in dynamic indenta-
tion force—displacement (and corresponding indentation stress—strain) curves over
comparable domains of average indentation strain rates. If differences in I'Ip at vastly
different vty /R do not manifest for such materials, the present experimental method
might be unsuitable to extract rate sensitivity parameters (e.g., m, or C if (15) is used).

¢ Following typical protocols [93,122], the two parameters €y and T can be set univer-
sally at 1/s and 294 or 300 K, which reduces the complexity of the inverse problem, as
noted already.

e Presumably, systematic matching of experimental ER? - TTp data with results of para-
metric FE simulations on the same geometry (sample size and R), loading rate history,
and initial temperature, and covering a sufficient domain of possible material property
sets, will produce the sought material property relationships. Similar efforts have
been undertaken for static indentation, as reviewed in Section 2.3, though most not
invoking dimensional analysis techniques.

*  The existence, uniqueness, stability, and accuracy of the inverse method should be ver-
ified for multiple materials, with constitutive properties validated by comparison with
values obtained from independent, alternative experimental techniques (e.g., standard
SHPB compression tests rather than dynamic indentation).

Several other recommendations are in order. Firstly, experimental methods to directly
measure the contact radius during dynamic indentation could supply data that would
render the assumed rate-independent forms in (33) and (34) unnecessary. Efforts are
presently underway to measure residual impressions with confocal microscopy. Techniques
involving periodic dynamic unloading in the SHPB apparatus to measure contact stiffness
are also under development [88], though their accuracy remains unclear.

While knowledge of 2 = 114 - R is not needed to solve the stated inverse problem,
the contact radius is needed to calculate indentation stress (mean pressure) p, as well as
indentation strains € and é. Constitutive property extraction might be more efficient and
accurate by matching experimental and simulated indentation stress—strain curves rather
than matching P = ERZ-TIpvs.horh/R.

Comparison of static and dynamic isothermal FE simulations on the same geometry
(i.e., same sample size and R), for a hypothetical rate-independent material, would enable
verification of the tentative conclusion that inertial effects are negligible for the present
range of loading rates. Lastly, adiabatic FE simulations could be used to provide an upper
bound on localized temperature rise in highly strained regions under the indenter, and thus
verify the tentative conclusion that effects of temperature rise (but not necessarily initial
temperature) on indentation force are negligible over the present range of loading rates.

6. Conclusions

Static and dynamic indentation methods for ductile metals were reviewed. This
review focused on spherical indentation, including experiments, analytical fundamentals,
and numerical models; the motivation being extraction of information on the constitutive
response of the indented material. Analytical foundations for the interpretation of data
from instrumented dynamic spherical indentation experiments were established.

To demonstrate and extend concepts covered in the literature review, a framework
to guide future experiments and numerical simulations was set forth based on principles
of dimensional analysis. The ultimate intent is acquiring constitutive properties, here
focused on plastic properties of ductile metals, from dynamic indentation force-depth data
at different loading rates and different initial temperatures. In a representative application,
the potential utility and limitations of this framework were assessed using data collected
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on Al 6061-T6, obtained from SHPB experiments equipped for instrumented spherical
indentation. The analysis revealed that average strain rates achieved in experiments are
on the order of 103 /s, with maximum equivalent strains on the order of 2%. Indentation
stress—strain results verify that the strain-rate sensitivity of the alloy is low.
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Notation

The following symbols (dimensions; force = mass-length/time?) are used:

a projected contact radius [length]

ar radius of residual imprint [length]

A projected contact area [length?]

c spherical constraint factor [-]

cy specific heat capacity [force-length/mass-temperature]
C strain-rate sensitivity of ref. [93] [-]

G elastic wave speed [length/time]
E elastic modulus [force/ lengthz]
h total indentation depth [length]

he elastic indentation depth [length]

h; indenter indentation depth [length]

N maximum indentation depth [length]

hy residual indentation depth [length]

h substrate indentation depth [length]

H spherical indentation (Meyer’s) hardness [force/length?]
k indentation stiffness [force/ length3 /2]
m strain-rate sensitivity exponent [-]

n strain-hardening exponent [-]

p mean indentation pressure [force/length?]
P total indentation force [force]

q thermal softening exponent of ref. [93] [-]

r thermal softening exponent of ref. [4] [-]

R radius of rigid indenter [length]

R; radius of indenter [length]

Rs radius of substrate [length]
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R indentation system radius [length]
S unloading slope [force/length]
t time [time]
to reference time (inverse strain rate) [time]
T absolute temperature [temperature]
Ty initial temperature [temperature]
Tm melt temperature [temperature]
Tr reference temperature [temperature]
T normalization temperature [temperature]
AT mean temperature rise [temperature]
w” local plastic work density [force /length?]
wP plastic work of indentation [force-length]
€ total strain [-]
ek elastic strain [-]
ef plastic strain [-]
é indentation strain of ref. [44] [-]
é indentation strain of ref. [5] [-]
& indentation strain of ref. [46] [-]
€ total strain rate [1/time]
¢k elastic strain rate [1/time]
ef plastic strain rate [1/time]
&0 reference strain rate [1/time]

strain hardening coefficient [-]
v Poisson’s ratio [-]
11, dimensionless contact radius [-]
IIp dimensionless indentation force [-]
Ty dimensionless plastic work [-]
0 current mass density [mass/length?]
00 initial mass density [mass/ 1ength3]
o local von Mises stress [force/ lengthz]
I mean indentation flow stress of ref. [44] [force/ lengthz]
o mean indentation flow stress of ref. [5] [force/ length2]
o) initial athermal static yield strength [force/length?]
v indentation system velocity [length/time]
0 average velocity of input bar [length/time]
I Taylor-Quinney ratio [-]
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