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1. Introduction

Metaheuristic optimization algorithms (MOAs) are widely used to optimize the design
process of engineering problems [1,2]. MOAs are successfully applied to the optimal
design of electromagnetic devices [3], power dispatch problems [4], the search for the tune
parameters of controllers [5] for different control systems, and many other applications [6,7].
Among metaheuristic algorithms, the most commonly used [8] are the Particle Swarm
Optimization (PSO) algorithm, developed in 1995 [9], and the grey wolf optimization
(GWO) algorithm, developed in 2014 [10].

Metaheuristic optimization algorithms are still intensively developed in many research
centers all over the world [11]. Nowadays, researchers working in the area of the optimal
design of technical objects have a huge number of various optimization algorithms. The
algorithms have different properties and are characterized by different convergence. The
final solution depends on the random coefficient, and metaheuristic characteristic parame-
ters vary for different optimization algorithms. Due to the above reasons, the optimization
process should be repeated several times for different starting populations [12-14].

In order to improve efficiency, modifications of classical methods are often devel-
oped [15]. The aim of developing modifications is to reduce the number of objective
function calls and to increase the reliability of the optimization algorithm [16]. An increas-
ing number of manuscripts on heuristic optimization methods are concerned with hybrid
optimization algorithms [17,18]. Hybrid algorithms can consist of two, three, or even
more different algorithms. In the available global literature, there are various algorithm
architectures: parallel [19], serial [20], or even mixed [21].

Very often, after the proper selection of an optimization algorithm, it is necessary to
execute the adaptation of the algorithm to the optimized system or optimized technical
object [22-24]. Proper adaptation of the algorithm by correctly selecting the characteristic
parameters of the selected algorithm can also improve the efficiency of the algorithm.

In this Special Issue, entitled “Metaheuristic Algorithms in Optimal Design of Engi-
neering Problems”, the Editorial Office received 15 submissions from researchers world-
wide. After a rigorous peer-review process, nine manuscripts were accepted for publication.

The Special Issue is concerned with the application of metaheuristic algorithms to
solving various optimization problems. The authors publishing their works presented
interesting approaches for researchers working with optimization algorithms, especially
a hybrid whale optimization algorithm featuring improved genetic characteristics and a
multi-objective majority—minority cellular automata algorithm.

Algorithms 2024, 17, 522. https:/ /doi.org/10.3390/a17110522 1 https://www.mdpi.com/journal/algorithms
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2. Special Issue Contribution

Contribution 1: An extension of the Majority—minority Cellular Automata Algorithm,
referred to as the Multi-objective Majority—minority Cellular Automata Algorithm, or
MOMmMCAA, to solve multi-objective optimization problems. By including the repository
management and controlling the density of the multi-objective search space, MOMmMCAA
can optimize multiple objectives without a processing time. The performance of MOMm-
CAA was compared to established multi-objective algorithms on benchmark test sets and
real-world engineering problems; in the results, MOMmCAA was comparable, giving
promise for real applications in complex optimization problems.

Contribution 2 develops the work performed in robotics, focusing on humanoid
robots that sense and act on a specific task in any industry. The paper discusses a hybrid
Hoo/sliding mode controller optimized using Particle Swarm Optimization to control
a triple inverted pendulum, which has been considered a benchmark for driving joints,
stability, and balance. The optimized controller could demonstrate robust performance
across different types of perturbations with an average error of 0.053 degrees and a steady
torque range of 0.13-0.621 N-m.

The third contribution contrasted heuristic versus metaheuristic algorithms (in par-
ticular, Steiglitz—McBride, Jaya, the genetic algorithm, and the Grey Wolf Optimizer) to
maximize the fit of the optimal parameters found by a dynamic model to the current and
angular velocity responses of DC motors. The study is presented with the most accurate
parametric estimation average mean squared error of 0.43% but more computation ex-
pense; to the contrary, the Stieglitz-McBride algorithm, with an average MSE of 3.32%, is
more computationally efficient. Overall, it appears that if precision is the priority, then
GWO is likely a better option. For balance between performance and efficiency, however,
the Stieglitz-McBride heuristic may provide an alternative with a more efficient solution,
knowing that these algorithms’ performance will also depend on the particular error
functions.

Contribution 4 proposes a new PSO algorithm that exploits the Sobol and Halton
random number samplings with the performance comparison of traditional Monte Carlo-
based PSO. For nine benchmark problems plus TSP, in all cases, the variant PSO improves
over PSO, especially with better iteration efficiency via Sobol-based PSO and decreased
computational times. These results indicate that using Sobol and Halton methods for
generating random numbers makes optimization algorithms more efficient.

Contribution 5: Hybrid Improved Whale Optimization Algorithm with Enhanced
Genetic Properties for Optimal Application Mapping on a 2D Network on Chip (NoC)
Platform. This paper introduces a hybrid of an advanced whale optimization algorithm
and an improved genetic algorithm that can perform better in power reduction, energy
consumption, and latency than all other state-of-the-art algorithms for various benchmarks
and real-time applications. Conclusions derived from the obtained results indicate the
efficiency of the proposed hybrid approach. It shows superiority in converging better on
both synthetic and real-world task graphs.

The cost-reducing benefit paid by the ridesharing concept encourages more riders to
ride in this means of transportation. Contribution 6 is a discount-guaranteed ridesharing
concept that assures that the kept discount should always be a minimum to help drivers
and riders increase the latter’s acceptability. The researchers developed a new metaheuristic
algorithm based on a differential evolution incorporating a self-adaptation scheme. They
applied this to the DGRP with optimal performance and the fastest convergence compared
with existing algorithms.

Contribution 7 recommends a new modified fractional order proportional integral
derivative (FOPID) controller aimed at managing frequency stability issues due to the
integration of intermittent wind turbines in power systems. A cascaded FOPD presents
the proposed method-FOPID controller for coordinated LFC and SMES, optimized with
the DOSA for its parameters. The comparative scenario of four scenarios showed how
the proposed control technique would outsmart many of the state-of-the-art methods
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while providing satisfactory responses to such load changes, disturbances posed by wind
turbines, or uncertainty due to parameters from the system.

Contribution 8 relates to this issue that partial shading conditions on the photovoltaic
panel cause the presence of more than one peak power point at the P-V curve, degrading the
efficiency of even the most superior MPPT algorithm adopted for the optimum extraction
of power from this array. This study discusses the performance optimization through a
single-objective nonlinear optimization problem by using some of the latest metaheuristic
algorithms like Cat Swarm Optimization (CSO), grey wolf optimization (GWO), and a
newly proposed Chimp Optimization algorithm (ChOA). The MATLAB/SIMULINK results
indicate that all metaheuristic methods converge towards the global Maximum Power Point
(MPP), and the ChOA shows better performance than the existing algorithms.

Contribution 9 addresses the Transportation Problem (TP) as a unique linear program-
ming problem to minimize the costs of distribution between multiple sources and different
destinations through two new adaptations of the Particle Swarm Optimization (PSO) algo-
rithm: Trigonometric Acceleration Coefficients PSO (TrigAc-PSO) and Four Sectors Varying
Acceleration Coefficients PSO (FSVAC-PSO). Thirty-two problems of varied sizes have been
tested on extended experimental tests that ascertain new PSO variations that outperform
classical exact techniques, such as Vogel’s Approximation Method and Total Differences
Method, as well as already developed PSO variants: Decreasing Weight PSO. The solutions
are two efficient and practical approaches to the Transportation Problem: TrigAc-PSO
and FSVAC-PSO.

3. Final Remarks

These papers highlight the meaningful progress in the development of metaheuristic
optimization algorithms for the optimal design of engineering problems. This Special
Issue offers manuscripts presenting interesting algorithms for researchers, students, and
practitioners. The Special Issue Editors thank all authors, reviewers, and the editorial team
for making this Special Issue possible.
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Abstract: This paper introduces an innovative Particle Swarm Optimization (PSO) Algorithm incor-
porating Sobol and Halton random number samplings. It evaluates the enhanced PSO’s performance
against conventional PSO employing Monte Carlo random number samplings. The comparison
involves assessing the algorithms across nine benchmark problems and the renowned Travelling
Salesman Problem (TSP). The results reveal consistent enhancements achieved by the enhanced
PSO utilizing Sobol /Halton samplings across the benchmark problems. Particularly noteworthy are
the Sobol-based PSO improvements in iterations and the computational times for the benchmark
problems. These findings underscore the efficacy of employing Sobol and Halton random number
generation methods to enhance algorithm efficiency.

Keywords: enhanced PSO; SOBOL; Halton; quasi-random numbers

1. Introduction

Particle Swarm Optimization (PSO) is a metaheuristic algorithm for optimization prob-
lems. PSO was first introduced in 1995 by James Kennedy and Russell Eberhart [1]. The
algorithm is based on the concept of social behavior, where particles (potential solutions)
move towards the optimal solution through interactions with other particles in the search
space. PSO has been widely used in various fields, including engineering, science, and
finance, due to its simplicity, robustness, and efficiency. Despite its success, PSO suffers
from several limitations. One of the main limitations is its slow convergence rate, which can
be attributed to the premature convergence [2] of the particles towards local optima. This
issue can be addressed by introducing efficient improvement techniques in PSO. Several
enhancement ideas have been proposed in the past to improve the convergence rate of
the PSO algorithm, and they are listed below. Firstly, the inertia weight technique was
suggested by Russell Eberhart and Ying Shi [3]. The inertia weight technique is a well-
known approach for enhancing the convergence speed of PSO. The inertia weight is used
to control the movement of particles in the search space. The idea is to maintain a balance
between exploration and exploitation of the search space. The inertia weight is updated at
each iteration based on a predefined formula, which controls the speed and direction of
particle movement. Various formulas have been proposed for updating the inertia weight,
such as linear, nonlinear, and adaptive. The choice of the inertia weight formula depends
on the optimization problem and the PSO parameters. Second, the concept of a mutation
operator was proposed [4]. A mutation operator is a powerful tool for enhancing the
diversity of the PSO population. The mutation operator randomly modifies the position
of a particle to generate a new solution in the search space. This operation can prevent
premature convergence by introducing new solutions that may lead to better solutions. The
mutation operator can be applied at different stages of the PSO algorithm, such as before or
after the velocity update. Similar to the mutation operator, another operator known as the
crossover operator has also been applied to the PSO algorithm [5-7]. This concept involves

Algorithms 2024, 17, 195. https:/ /doi.org/10.3390/a17050195 6 https://www.mdpi.com/journal/algorithms
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the mixture of the attributes of different solutions to gain exploration and to achieve high
diversity in potential results to avoid premature convergence. Third, the opposition-based
learning technique was suggested [8]. Opposition-based learning (OBL) is a technique that
uses the opposite of the current best solution to generate new solutions. The idea behind
OBL is that the opposite of the best solution may represent a good direction for exploration
in the search space. OBL can improve the diversity and convergence speed of PSO by
generating new solutions that are different from those of the current population. Fourth,
hybridization with other metaheuristics has been proposed [9]. Hybridization with other
metaheuristics is a common approach for improving the efficiency of PSO. The idea is to
combine the strengths of different metaheuristics to overcome their weaknesses. For exam-
ple, PSO can be combined with genetic algorithms (GA), simulated annealing (SA), or ant
colony optimization (ACO). The hybridization approach can enhance the exploration and
exploitation capabilities of PSO, leading to better solutions in less time. Fifth, dynamic pa-
rameter tuning was presented [9]. The PSO parameters, such as the swarm size, maximum
velocity, and acceleration coefficients, significantly impact the algorithm’s performance.
Dynamic parameter tuning is a technique that adjusts the PSO parameters based on the
search history during the optimization process. The idea is to adapt the PSO parameters
to the problem characteristics and the search progress to improve the convergence speed
and solution quality. In conclusion, efficient improvement techniques in PSO can enhance
the algorithm’s convergence speed and solution quality. The approaches discussed in this
paper [9], including the inertia weight technique, mutation operator, opposition-based
learning, hybridization with other metaheuristics, and dynamic parameter tuning, can be
used individually or in combination to address the limitations of PSO. Tareq M. Shami and
a team [10] of researchers conducted a comprehensive survey on PSO. The survey discusses
techniques such as varying the inertia weight and hybridizations, which are discussed
above. The survey also states that the ability of PSO to be hybridized with other opti-
mization algorithms has contributed to its popularity. Another technique described in the
survey is velocity clamping [10], a technique introduced by Eberhart and Kennedy. Velocity
clamping involves setting bounds for the values of the velocities of the particles in all the
dimensions. Another approach to improving the efficiency of the PSO algorithm discussed
in this paper [10] is varying the controlling parameters, such as using the varying inertia
weight technique in which inertia weight changes throughout the optimization process, or
acceleration coefficient techniques in which the two constant controlling parameters for
PSO other than the inertia, are chosen in different ways to yield optimal solutions while
evading premature convergence. Many other approaches have been discussed both in the
survey and elsewhere. The choice of approach depends on the problem characteristics and
the available computational resources. However, most of these approaches can provide
problem-dependent solution methods. In this paper, we proposed a new approach to
replace the random numbers used for this method with quasi-random numbers [11-13],
like Halton and Sobol, by maintaining the k-dimensional uniformity of these quasi-random
numbers. This not only provides a generalized approach to any optimization problem,
but this method can be used in conjunction with the earlier enhancement techniques like
the inertia weight technique, mutation operator, opposition-based learning, hybridization
with other metaheuristics, and dynamic parameter tuning. In this research, two enhanced
versions of PSO (one using Sobol random numbers and the other using Halton random
numbers) were proposed with the intention of speeding up the convergence of the standard
PSO algorithm. To test the efficiency improvement of the two proposed enhancements of
the standard PSO algorithm, the number of iterations taken to achieve the optimum of
the well-known cigar, ellipsoid, and paraboloid functions [14], along with the number of
iterations taken to obtain an optimal path for the famous Travelling Salesman Problem
(TSP) [15-18], were noted. Following this, improvement in terms of the optimum of the
objective function and the number of iterations needed to reach the global optimum were
calculated for both the PSO enhanced with Sobol random number samplings and the PSO
enhanced with Halton random number samplings, with respect to the standard PSO, which
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uses Monte Carlo random number samplings. All the results for each benchmark function
and TSP unanimously show efficiency improvement due to the use of the Sobol and Hal-
ton sequences. Additionally, we noted that the more decision variables an optimization
problem has, the improvement due to Sobol and Halton sequences increases. In conclusion,
both the enhancements of the standard PSO presented in this research, one utilizing Sobol
random numbers and the other utilizing Halton random numbers, consistently show effi-
ciency improvement and a better optimum, meaning that they successfully have increased
the speed of convergence of the standard PSO algorithm.

In addition, we have also compared our enhanced PSO with the SALP meta-heuristic
variant [19]. This is a recent algorithmic approach developed to improve the convergence
rate. Our enhancement is compared with the SALP to see whether the approach of avoiding
clusters in random number generation can make the enhanced PSO algorithm perform better
than the SALP algorithm. The algorithms are compared for the four benchmark problems.

The time-varying inertia factor was introduced to improve the converge performance
of the PSO [20,21]. The authors in [22] introduced a time-varying acceleration coefficient
in addition to the time-varying inertia factor. They introduced a PSO concept called a
self-organizing hierarchical particle swarm optimizer with a time-varying acceleration
coefficient. For the velocity update in PSO, only the social part and cognitive part were
considered, and to avoid stagnation in the search space, a time-varying mutation step size
was used as well.

An adaptive particle swarm optimization (APSO) that features better search efficiency
than the classical particle swarm optimization (PSO) is presented in [23]. It was engineered
to perform a global search over the entire search space with faster convergence speed. The
APSQO algorithm was carried out in two main steps. In the first step, the algorithm evaluated
the population distribution and particle fitness based on which a real-time evolutionary
state was estimated. This enabled the automatic control of inertia weight, acceleration
coefficients, and other algorithmic parameters in real-time to improve the search efficiency
and convergence speed in the subsequent step.

The multimodal PSO approach proposed in [24] addressed the issues associated with
poor local search ability and the requirement of prior knowledge to initialize the PSO
algorithm parameters. The authors in [24] proposed an optimizer based on a distance-
based locally informed PSO variant. The algorithm eliminated the need to specify the niche
parameters in the PSO and enhanced its fine-searching capabilities. To guide the search
direction of the particles, each particle used local best information instead of the global best
as in the conventional PSO, and the neighborhood of the particle was measured using the
Euclidean distance to perform the local best search.

In [25], a hybrid algorithm that combined particle swarm optimization with simulated
annealing behavior (SA-PSO) was proposed. The SA-PSO algorithm takes advantage of
the good solution quality provided by the simulated annealing and fast searching ability
inherent to the particle swarm optimization. It was concluded that the hybrid algorithm
could have higher efficiency, better quality and faster convergence speed than conventional
PSO variants.

An economic environmental hydrothermal scheduling problem classified as a multi-
objective nonlinear constrained optimization was solved using PSO [26]. The algorithm
adopted an elite archive set to conserve Pareto optimal solutions and provide multiple
evolutionary directions for individuals, while neighborhood searching and chaotic mu-
tation strategies enhance the search capability and diversity of the population. The PSO
algorithm also incorporated a constraint handling scheme designed to adjust the constraint
violation of hydro and thermal plants.

To avoid parameter selection and overcome the premature convergence problem in
the PSO optimization, an adaptive fuzzy particle swarm optimization based on a fuzzy
inference system, which incorporated a variable neighborhood search strategy and hybrid
evolution, was proposed in [27] and applied to the parameter estimation of nonlinear
Hydro Turbine Regulation Systems. The results concluded that the new algorithm’s pa-
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rameter error and the objective function were significantly smaller than the other algo-
rithms. The estimated model could accurately reflect the dynamic characteristics of the
real system, proving that the fuzzy PSO variant was an effective and efficient parameter
estimation method.

Support vector machine (SVM)-based classifiers need accurate parameter estimation
for high-accuracy classification, and in [28], an improved variant of the PSO is used to
estimate the SVM parameters. Specifically, dynamic adjustment of inertia is proposed to
optimize the parameters of the SVM. The computation of the inertia weight in the PSO
proposed in [28] involves the nonlinear reduction in the inertia weight as the number of
iterations increases. In particular, the introduction of random function inertia weight in the
PSO avoids falling into the local extremum and, at the same time, increases diversity and
the global searching ability during the optimization process.

In addition to the above-mentioned PSO algorithm comparisons, we compare the
iteration efficiency of the enhanced PSO approach employing the Sobol sequence using the
random inertia PSO variant for the benchmark problems.

2. Materials and Methods

Particle Swarm Optimization

There are countless examples of swarms in the real world, ranging from flocking birds
to hunting wolves. When searching for nourishment, the individuals of these swarms,
called particles to understand PSO, begin random exploration and then start gravitating
towards the findings of other swarm individuals. While following signs of nourishment
and searching randomly in space, these particles move towards their objective through
knowledge of their discoveries and discoveries of the swarm. Similarly, in the PSO al-
gorithm, proposed decision variable sets gravitate towards the optimal findings of each
other, themselves, and the whole swarm together to achieve the globally optimal set of
decision variables, yielding the optimal function value. The sets of decision variables are
called position vectors. They are updated by vectors called velocity vectors (based on the
physics principle that change in position is proportional to the velocity), by randomness,
and by attraction towards their personal best sets of decision variables and the unanimous
global best set of decision variables found by the whole swarm. The global optimum of the
function is achieved through gradual movement towards optimal findings of the swarm.
The following are the steps of the PSO algorithm.

e Initialize Parameters:

o Define the population size (number of particles), Np; Define the number of
decision variables (dimension), D;

Define the maximum number of iterations, T;

Define the inertia weight, w;

Define acceleration constants: cognitive and social, ¢y, c2;

Initialize the position and velocity of each particle randomly within the search space.

O O O O

The initially proposed set of solutions is grouped together to form the population
matrix, which is written as follows:

xgo o xg(Dq)
x(()Np—])O x(()Np—l)(D—l)

Each row in this matrix represents a potential decision variable vector intended to
optimize the objective function. Each element in a row is the position with respect to a
particular dimension of the particle that corresponds with that row. The subscript for each
element is 0, as these values are the initial values in the matrix (Oth iteration).
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The velocity matrix can be represented as follows:

080 vg(Dfl)
v(()prl)O U(()prl)(Dfl)

This represents the velocity of each particle in all the dimensions. The velocity matrix
changes the position matrix, and that is inspired by the physics concept that displacement
is proportional to velocity. The superscript j is the index of the dimension.

e Set the best-known position for each particle n, P,/ to its initial position.
Pl =xY

e  Evaluate Fitness:

Evaluate the fitness (objective function value) for each particle based on its current position.

e  Update the personal best position for each particle G{; if its current fitness is better
than its previous best fitness.
e  Update Global Best:

o Determine the particle with the best fitness among all particles in the swarm, P;;.

o  Update the global best position with the particle’s position with the best
fitness, G;;.

o  Update Velocities and Positions:

For each particle, update its velocity and position based on the following formulae.
The velocity of each particle at iteration n is updated according to the equation

given below.
vZ+1:w><v§{+c1><r1><(P,]1—Xi{)+ )
Cy) X1y X (Gn] — Xi{)
where r1 and r; are random numbers. So, we have two random numbers per variable.
The corresponding position is updated according to the following equation:
Xp1? = x4+ UZH )

e  Check Stopping Criteria:

o  If the maximum number of iterations is reached or a satisfactory solution is found,

stop the algorithm.
o  Otherwise, go back to step 2 and repeat the process.
e  Output:

Return the global best position as the solution to the optimization problem.

Quasi-random sequence enhancements

In this work, we hypothesize that the success of PSO depends on the choice of appro-
priate random samples. At each iteration of PSO, two random numbers are generated for
each decision variable, as shown in Equation (1). These random numbers are computer-
generated random numbers and are called pseudorandom numbers or Monte Carlo random
numbers. A sequence of random numbers must have two essential properties: uniformity,
i.e., they are equally probable everywhere, and independence, i.e., the current value of a
random variable has no relation with the previous values. Figure 1 shows the two random
variables generated using a computer (Monte Carlo or pseudorandom numbers) with
samples equal to 100. As seen in the figure, for uniformity, the points should be equally
distributed; that is not the case here. We need more samples to cover the points equally in

10



Algorithms 2024, 17, 195

that 2-dimensional space. This means more iterations of the algorithm. To circumvent this
problem and to increase the efficiency of PSO, we are presenting a construct based on quasi-
random numbers. Some well-known quasi-random sequences are Halton, Hammersley,
Sobol, Faure, Korobov, and Neiderreiter [11-13]. The choice of an appropriate quasi-Monte
Carlo sequence is a function of discrepancy. Discrepancy is a quantitative measure of the
deviation of the sequence from the uniform distribution. Therefore, it is desirable to choose
a low discrepancy sequence. The Halton, SOBOL, and Hammersley are some examples
of low-discrepancy sequences. Here, we are working with the two sequences, Halton and
SOBOL, as described below.

1 © o
6] °
® ® ® ® : ®
o. o ©
o .00. 5 L4 o ®
® o ° o
0.8 . ® °
. © .oo
&)
6]
. = H
L )
® )
0.6 o L 5
°®
o ° ht °
>
¢ o * ¢ ° s}
[ ] )
04 ® o® )
®
° . ..
° °®
0.2 @ °® ~ °
° o6 ® °o o
o ® ® ®
® °
0 o ] .
0 0.2 0.4 0.6 0.8 1

Figure 1. Two-dimensional pseudorandom numbers (100 points).

Halton Sequence Points:
The design of Halton points is given below. Any integer n can be written in radix-R
notation (R is an integer) as follows:

n=Nyly_1...NoN1NY 3)

n=ng+mR~+nmR>+...4+n,R" 4)

where m = [logy 1] = [Inn/ In R] (the square brackets denote the integral part). A unique
fraction between 0 and 1 called the inverse radix number can be constructed by reversing
the order of the digits of n around the decimal point as follows:

pr(n) = noniny ... ny=ngR ' +mR2 4+ ... +n, R ! )

The Halton points on a k-dimensional cube are given by the following sequence:

—

zk(n) = (¢r,(n), pr,(n), ..., 9r,_, (1)), n=1,2,...,N+1 (6)

where Rj, Rp,...Rj_1 are the first k — 1 prime numbers. The Halton points are
— —
Xi(n) = 1—z(n).

11
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Figure 2 shows 2-dimensional Halton points (100 samples), which shows better uni-
formity than Figure 1.

Halton

0 0.2 0.4 0.6 0.8 i)

Figure 2. Two-dimensional Halton Points (100).

SOBOL Sequence Points:

Like many other quasi-random sequences, the SOBOL sequence starts from the Van
der Corput sequence in base 2. To generate the Vander Corput sequence, consider the
k-th point in the Sobol sequence; this integer k can be written as a linear combination of a
nonnegative power of base 2 as follows.

k = ag(k) +2a1 (k) +2%ay (k) + ... +2"a, (k) )

where r is a large number.
Then, the k' element in the Sobol sequence is given by the following equation:

=172y, (k) +1/2%y2(k) + ... +1/27y, (k) 8)

where the coefficients y;(k) can be obtained using the following expression:

y1(k) ag (k)
y2(k) ay (k)

. =V ... mod?2 9)
yr(k) a1 (k)

where V is the generation matrix whose elements are 0 or 1. V is an identity matrix for the
Vander Corput sequence.
The operation in Equation (9) can be represented as follows:

ag()Vy @ a1 (k)Vo @ ax(k)vs...a,_1(k) Vs,

where V; is an element of V and ®denotes binary addition.

12
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The calculation of generation matrix V involves primitive polynomial A, primitive
polynomial of degree d and all the coefficients Al to Ad—1, which are either 1 or 0 and are
given below.

P=X"+ A X 4 4 A; 1 X+1 (10)

Direction vectors M; are generated by the recursive equation given below fori >d,
and the initial direction vectors, i.e., for i < d, are generated by selecting an odd integer
between 0 and 2.

M; =2'AMi_ 1 @ 22AM; & ......... @27 VA Mg D2°Mi_ g ® My (11)
Then, the generation matrix elements can be generated as shown below.

vi = Mi

=37 (12)

Thus, SOBOL sequence can be generated by generating the V matrix and the Van der
Corput sequence in base 2. Figure 3 shows that SOBOL points show better uniformity than
pseudo-random numbers from the computer (Figure 1).

SOBOL

06 ® o ° °

0.2 - ® = °

0 0.2 0.4 0.6 0.8 1
X

Figure 3. Two-dimensional SOBOL points (100).

We show where the random numbers are used in PSO with traditional PSO in Figure 4
and enhanced PSO with Halton or SOBOL in Figure 5. However, to maintain k-dimensional
uniformity, the Halton and SOBOL points cannot be generated one at a time; they must be
generated together with the whole sample (for all iterations).

It should be noted that all other efficiency enhancements proposed in the literature can
be directly applicable to our new algorithms as we are only changing the random numbers.

13
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Figure 4. Traditional PSO flowchart.
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Figure 5. Enhanced PSO flowchart.
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3. Results

Test Cases

To perform simulation and to estimate the standard deviations and the computation
times, all the following algorithms were on a Windows 10 laptop equipped with an i7 core
processor and with inbuilt 16 GB RAM. The simulations were run for 50 iterations and
averaged to estimate the elapsed time. The computation elapsed times were estimated
using the times associated with the start time and end time of the algorithm execution.
These elapsed times were averaged across multiple runs and were used to measure the
average elapsed time. The mean values for the number of iterations were estimated and
rounded to provide the number of iterations in the following tables. All PSO variants
implemented the mutation scheme that used uniformly generated random numbers.

To test the efficiency improvements of the enhanced PSO suggested in this paper, both
mixed and continuous versions of three well-known benchmark functions, namely the
Cigar, Ellipsoid, and Paraboloid functions, along with the famous Travelling Salesman
Problem, were taken as test cases (Table 1). Three algorithms consisting of one PSO code
with no enhancement (using Monte Carlo random number samplings), a second PSO code
that uses Sobol random number samplings, and a third PSO code that uses Halton random
numbers each ran for 5, 10, 15, and 20 decision variables to optimize both the mixed and
continuous versions of the three benchmark functions and to solve the TSP problem. The
number of iterations taken to achieve an optimum is recorded for all three algorithms to
reach the global optimum.

Table 1. Test cases for algorithm testing [11].

Function Formula Range

Continuous Optimization Problems

i NC NC
1 Cigar F(x) =22 +10* Y x2 (-3, 3]
i=2
2 Parabolic flx) = I\g X2 [-3, 3NC
i—1
3 Ellipsoid Fl) = ¥ 5582 [-3, 3]NC

i—1

Mixed-Variable Combinatorial Optimization Problems

. ND ND NM
4 Cigar flx, y) = xiZ +10% Y xiZ +y12 +10% y in [-3, 3]
i=1 i=2
. NC ND NM
5 Parabolic fr, ) =L x2+ ¥ y2 [-3, 3]
i=1 i=1
. . NC ND NM
6 Ellipsoid flx,y)=Y Sﬁxiz Ly 5ﬁyi2 [—3, 3]
i=1 i=1

Traveling Salesman Problem Optimization Procedure

The Traveling Salesman Problem is a discrete combinatorial optimization problem [12-15].
The locations of many cities are given, and an optimal order in which the cities are traversed
is calculated. A position vector is the suggested order of cities. The velocity vector is a
sequence of two-element tuples in which each tuple consists of two indices of elements to
be swapped to make the path more optimal. For example, if there are five cities labeled
with indices {1, 2, 3, 4, 5}, the population matrix could consist of different suggested orders
in which they are to be traversed, such as {2, 4, 3, 5, 1} and {5, 4, 3, 1, 2}. The velocity vector
for the first suggested order of cities could be {(1, 2), (3, 2), (4, 5)}, while for the second, it
could be {(5, 1)}. In this case, the first element would be swapped with the second, the third
with the second after that, and the fifth with the fourth after that, in the first suggested
sequence of cities. For the second, the fifth and first elements are to be swapped.

15
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w, &, and B are pre-determined constants used in this algorithm. A random number
is generated for each swap in the previous velocity vector. For each random number that
is less than w, the corresponding swap is included in the new velocity vector. Similarly,
this process is carried out for the second term and the third term with « and Beta instead
of w. These three random numbers are generated together to maintain the k-dimensional
uniformity of the quasi-random number sequence when Halton or SOBOL is used. Through
the usage of this swapping method, the optimal order in which the cities must be visited
is attained.

For the i particle at the iteration index 7, to update the velocity, the following
equation can be used.

th :

hy = (=0} = (P — X0) {8+ (Gh— x0)) "

Hence, v, is aset of swaps.
Here, the @ is the merging operator, which merges sequences of swaps into a new
swap sequence.

a<l,p<landw <1 (14)

For the i particle at the iteration index 1, we can apply the new updated velocity
v}, 1 to the current position Xj,, ( which is a set of node sequences or a node list in TSP) and

obtain the updated position X/, IE

i = B

For w * vy, if v, is a vector of L elements to begin with, then L random numbers are
generated and for each random number that is less than w, the corresponding swap in v, is
used. (P,Z1 — X,lq) is a swap sequence to move from X/, to Pi. For example, if P!, is {3, 4, 5, 2, 1}
and X!, is {5, 3,4, 1,2}, the set of swaps needed to move fromX}, to P} is {(1, 3), (3, 2), (4, 5)}
(assuming that indices start from 1).

a* (Pi—X!) is a set of swaps that are selected from the swap sequence vector
(P,i — X;l) of length N based on the N random numbers generated that are less than «.

During initialization, for each particle i, X} is set to a random selection of cities whose
IDs are the city node index. If there are N cities to be visited, then X} is a vector of length
N.

The following are tables comparing the results produced by Monte Carlo random number
sampling with Sobol random number sampling and Halton random number sampling.

Sobol vs. Monte Carlo Random Numbers

We compare the performance of using SOBOL versus conventional random number
approaches based on PSO for the three functions (continuous and mixed variable form) in
Tables 2-7. In addition, we also compare the SALP algorithm for the continuous ellipse
and paraboloid and mixed variable ellipse and paraboloid function optimizations.

Table 2. Comparison of performances of both Monte Carlo and Sobol random number samplings in
PSO for the continuous variable Cigar function.

PSO PSO -
Number PSO Enhanced PSO. PSO Enhanced Conventional PSO Enhanced Conventional [terations
. . . Conventional Standard Compute Improvement
of Dimensions (Iterations) . e Standard . Compute
(Iterations) Deviation A Time (secs) . Percentage
Deviation Time (secs)

5 85 107 19 5.1 0.31 0.37 21%

10 167 193 24 6.3 0.46 0.68 14%

15 183 312 52 30.5 0.69 1.1 42%

20 231 447 26.5 30.1 0.87 1.6 49%
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Table 3. Comparison of performances of both Monte Carlo and Sobol random number samplings in
PSO for the mixed variable Cigar function.

PSO PSO PsO SO Salp Pso PSO Iterations’
Number of . Enhanced Conventional Swarm Enhanced Conventional
Di . Enhanced Conventional Improvement
imensions (Iterations) (Iterations) Standard Standard Standard Compute Compute Percentage
Deviation Deviation Deviation Time (secs) Time (secs) 8
5 93 97 3.1 6.8 N/A 0.47 0.41 4%
10 119 156 6.1 9.1 N/A 0.54 0.71 24%
15 147 209 11.2 11.8 N/A 0.73 0.87 30%
20 195 264 12.6 15.8 N/A 0.91 1.1 27%
Table 4. Comparison of performances of both Monte Carlo and Sobol random number samplings in
PSO optimization for the continuous variable Paraboloid function.
PsoO PSO Con- Salp PSO PSO Con- Iterations”
Number of PSO PSO'Con- Salp Enhanced ventional Swarm Enhanced ventional Improve-
. . Enhanced ventional Swarm
Dimensions (Iterations) (Iterations) (Iterations) Standard Standard Standard Compute Compute ment
Deviation Deviation Deviation Time (secs) Time (secs) Percentage
5 42 54 43 0.9 32 0.8 0.17 0.21 23%
10 67 91 71 1.2 45 0.9 0.26 0.37 26%
15 82 136 88 191 7.1 0.89 0.33 0.53 40%
20 102 178 120 1.95 79 1.1 0.42 0.59 43%
Table 5. Comparison of performances of both Monte Carlo and Sobol random number samplings in
PSO for the mixed variable Paraboloid function.
PSO PSO Con- Salp PSO PSO Con- Iterations’
Number of PSO PSO.COH- Salp Enhanced ventional Swarm Enhanced ventional Improve-
. . Enhanced ventional Swarm
Dimensions (Iterations) (Iterations) (Iterations) Standard Standard Standard Compute Compute ment
Deviation Deviation Deviation Time (secs) Time (secs) Percentage
5 42 47 85 22 35 1.5 0.19 0.23 11%
10 62 68 98 3.5 49 1.69 0.27 0.38 20%
15 78 106 352 2.5 3.5 35.1 0.38 0.53 27%
20 94 151 364 45 8.2 30.2 0.46 0.64 38%
Table 6. Comparison of performances of both Monte Carlo and Sobol random number samplings in
PSO for the continuous variable Ellipsoid function.
PSO PSO Con- Salp PSO PSO Con- Iterations’
Number of PSO PSO.COH- Salp Enhanced ventional Swarm Enhanced ventional Improve-
. . Enhanced ventional Swarm
Dimensions (Iterations) (Iterations) (Iterations) Standard Standard Standard Compute Compute ment
Deviation Deviation Deviation Time (secs) Time (secs) Percentage
5 48 60 44 22 37 0.875 0.20 0.24 20%
10 70 96 75 41 3.1 1.1 0.31 0.42 27%
15 92 154 96 3.9 5.1 2.8 0.41 0.68 40%
20 105 184 132 4.2 9.2 29 0.52 0.88 43%
Table 7. Comparison of performances of both Monte Carlo and Sobol random number samplings in
PSO for the mixed variable Ellipsoid function.
PSO PSO Con- Salp PSO PSO Con- Iterations’
Number of PSO PSO.Con- Salp Enhanced ventional Swarm Enhanced ventional Improve-
. . Enhanced ventional Swarm
Dimensions (Iteration) (Iterations) (Iterations) Standard Standard Standard Compute Compute ment
Deviation Deviation Deviation Time (secs) Time (secs) Percentage
5 45 53 90 35 4.6 11.9 0.26 0.26 15%
10 62 89 109 49 8.3 29.1 0.42 0.43 30%
15 84 128 342 4.4 6.7 54.3 0.52 0.65 35%
20 90 165 350 32 7.8 63.6 0.63 0.88 46%
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Halton vs. Monte Carlo:

The results of Halton-based enhanced PSO are presented in Tables 8-13.

Table 8. Comparison of performances of both Monte Carlo and (scrambled) Halton random number

samplings in PSO for the continuous variable Cigar function.

PSO

PSO

Number of PSO Enhanced PSO. PSO Enhanced Conventional PSO Enhan‘ced Conventional [terations
. . . Conventional Standard Compute Time . Improvement
Dimensions (Iterations) . N Standard Compute Time
(Iterations) Deviation e (secs) Percentage
Deviation (secs)
5 61 101 32 5.1 0.51 0.35 40%
10 111 189 5.1 6.3 0.77 0.64 42%
15 188 298 6.8 30.5 1.1 1.03 37%
20 220 451 10.1 30.1 1.3 1.51 52%
Table 9. Comparison of performances of both Monte Carlo and (scrambled) Halton random number
samplings in PSO for the mixed variable Cigar function.
PSO PSO -
Number of PSO Enhanced PSO. PSO Enhanced Conventional PSO Enhan.ced Conventional [terations
. . . Conventional Standard Compute Time . Improvement
Dimensions (Iterations) . N Standard Compute Time
(Iterations) Deviation N (secs) Percentage
Deviation (secs)
5 96 95 2.87 4.9 0.67 0.40 1%
10 107 156 4.12 5.8 0.81 0.65 32%
15 157 204 9.75 14.5 1.03 0.88 23%
20 190 265 13.3 8.31 1.30 1.16 29%
Table 10. Comparison of performances of both Monte Carlo and Halton random number samplings
in PSO for the continuous variable Paraboloid function.
PSO PSO N
Number of PSO Enhanced PSO. PSO Enhanced Conventional PSO Enhan.ced Conventional [terations
. . . Conventional Standard Compute Time . Improvement
Dimensions (Iterations) . N Standard Compute Time
(Iterations) Deviation N (secs) Percentage
Deviation (secs)
5 38 52 0.9 3.1 0.41 0.20 30%
10 64 88 11 44 0.6 0.33 28%
15 79 142 1.15 6.5 0.76 0.52 45%
20 103 174 1.6 55 0.92 0.55 41%
Table 11. Comparison of performances of both Monte Carlo and Halton random number samplings
in PSO for the mixed variable Paraboloid function.
PSO PSO -
Number of PSO Enhanced PSO. PSO Enhanced Conventional PSO Enhan.ced Conventional [terations
. . . Conventional Standard Compute Time . Improvement
Dimensions (Iterations) . A Standard Compute Time
(Iterations) Deviation N (secs) Percentage
Deviation (secs)
5 38 46 1.37 2.66 0.46 0.21 18%
10 60 77 3.1 4.31 0.62 0.33 23%
15 71 107 3.9 5.78 0.81 0.48 35%
20 92 146 6.99 7.52 0.94 0.67 38%

It can be seen from the above tables (Tables 2-13) that the quasi-random sequence-
based enhanced PSO demonstrates superior performance compared to a conventional
random number-based PSO for both continuous and mixed variable problems. The en-
hancement increases generally with a higher number of variables specifically for continuous
variable problems. SOBOL works better for mixed variable functions than Halton, but
Halton shows better convergence than SOBOL when considering most of the continuous
variable benchmark problems.
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Table 12. Comparison of performances of both Monte Carlo and Halton random number samplings

in PSO for the continuous variable Ellipsoid function.

PSO

PSO

Number of PSO Enhanced PSO. PSO Enhanced Conventional Pso Enhan.ced Conventional [terations’
. . . Conventional Standard Compute Time . Improvement
Dimensions (Iterations) R e Standard Compute Time
(Iterations) Deviation N (secs) Percentage
Deviation (secs)
5 38 60 2.7 3.7 0.6 0.24 40%
10 75 9% 3.08 3.1 1.0 0.42 24%
15 86 154 3.01 5.1 1.27 0.68 45%
20 152 184 3.44 9.2 1.44 0.88 35%
Table 13. Comparison of performances of both Monte Carlo and Halton random number samplings
in PSO for the mixed variable Ellipsoid function.
PSO PSO .,
Number of PSO Enhanced PSO. PSO Enhanced Conventional PSo Enhan'ced Conventional [terations
. . . Conventional Standard Compute Time . Improvement
Dimensions (Iterations) . N Standard Compute Time
(Iterations) Deviation N (secs) Percentage
Deviation (secs)
5 4 53 2.54 4.6 0.50 0.26 21%
10 61 89 2.75 8.3 0.70 043 32%
15 110 128 6.19 6.7 0.91 0.65 14%
20 120 165 7.1 7.8 12 0.88 27%
Constant Inertia vs. Random Inertia:
As suggested earlier, in new variants proposed in the literature, adaptive parameter
enhancements provide improvements. We can also replace the random numbers used in
these variants with the quasi-random numbers suggested in our new algorithm as these
two improvements are mutually exclusive. We illustrate this by comparing the constant
inertia algorithm, which is the traditional approach to PSO, to the random inertia proposed
as an enhancement [Tables 14-17].
Table 14. Comparison of random inertial weight-aided Sobol and conventional PSO performances
for benchmark functions with 5 dimensions.
PSO Standard Standard Standard Improvement in
PSO Sobol Conventional PSO Sobol Deviation Deviation PSO Deviation Rag dom Inertia
Function Type Contant Weight . Random Weight PSO Sobol Conventional PSO Sobol .
. Random Weight . . . . (Conventional
Inertia . Inertia Contant Weight Random Weight Random Weight
Inertia . . . vs. Sobol)
Inertia Inertia Inertia
Cigar— 85 54 48 1.9 1.88 39 11.1%
Continuous
Ellipse — 48 35 30 22 12 1.8 14.3%
Continuous
Parabola— 4 31 29 0.9 17 13 6.45%
Continuous
Cigar—Mixed 93 108 95 3.1 14.3 3.6 12.03%
Ellipse—Mixed 45 57 47 35 8.5 4.6 17.54%
Parabola— 42 52 43 22 15.8 55 17.3%
Mixed

In this section, we compare the performance of the PSO with the constant inertia
weight and that of the PSO with the random inertia weight. Random inertia weight has
been used in reference [20,21] to improve the iteration efficiency. The traditional constant
inertia PSO, our proposed enhanced PSO with quasi-random numbers with constant inertia
PSO, is compared with random inertia variants for both algorithms. We use Sobol random
numbers for the enhanced PSO and its random inertia variant.
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Table 15. Comparison of performances of random inertial weight-aided Sobol and conventional PSO
for the benchmark functions with 10 dimensions.

PSO Standard Standard Standard Improvement in
PSO Sobol Conventional PSO Sobol Deviation Deviation PSO Deviation Ralr)1 dom Ir?e rtia
Function Type Contant Weight . Random Weight PSO Sobol Conventional PSO Sobol .
. Random Weight . . . . (Conventional
Inertia . Inertia Contant Weight Random Weight Random Weight
Inertia . . . vs. Sobol)
Inertia Inertia Inertia
Cigar— 167 76 67 24 26 1.8 11.8%
Continuous
Ellipse— 70 35 30 41 18 17 14.3%
Continuous
Parabola— 67 31 29 12 23 1.6 6.5%
Continuous
Cigar—Mixed 119 177 136 6.1 9.2 16.1 23.2%
Ellipse—Mixed 62 99 84 49 8.0 17.2 15.2%
Parabola— o
Mixed 62 89 71 35 8.2 45 20.2%
Table 16. Comparison of performances of random inertial weight-aided Sobol and conventional PSO
for the benchmark functions with 15 dimensions.
PSO Standard Standard Standard Improvement in
PSO Sobol Conventional PSO Sobol Deviation Deviation PSO Deviation R lt)ld m Inerti
Function Type Contant Weight onvenvona Random Weight PSO Sobol Conventional PSO Sobol ancom ‘mertia
. Random Weight . . . . (Conventional
Inertia . Inertia Contant Weight Random Weight Random Weight
Inertia . . . vs. Sobol)
Inertia Inertia Inertia
Cigar— 183 9% 85 52 2.1 22 11.5%
Continuous
Ellipse— 92 63 56 39 12 1.6 11.1%
Continuous
Parabola— 82 61 52 1.91 13 19 14.8%
Continuous
Cigar—Mixed 147 260 166 11.2 448 16.4 36.2%
Ellipse—Mixed 84 140 100 44 11.9 6.9 28.6%
Parabola— 78 133 86 25 30.1 57 35.3%
Mixed
Table 17. Comparison of performances of random inertial weight-aided Sobol and conventional PSO
for the benchmark functions with 20 dimensions.
PSO Standard Standard Standard Improvement in
PSO Sobol Conventional PSO Sobol Deviation Deviation PSO Deviation R ll)ld m Inerti
Function Type Contant Weight onvenona Random Weight PSO Sobol Conventional PSO Sobol ancom ‘mertia
. Random Weight . . . . (Conventional
Inertia . Inertia Contant Weight Random Weight Random Weight
Inertia . . . vs. Sobol)
Inertia Inertia Inertia
coigar— 231 118 98 265 54 35 16.9%
ontinuous
Ellipse— 105 77 66 42 2.8 27 14.3%
Continuous
Parabola— 102 74 62 1.95 2.1 19 16.2%
Continuous
Cigar—Mixed 195 330 234 12.6 37.1 21.2 29.1%
Ellipse—Mixed 90 213 120 3.2 28.4 19.2 43.7%
Parabola— 94 193 105 45 236 5.1 45.6%
Mixed

The velocity of each particle in the PSO algorithm at iteration # is updated according
to the following equation:
UZ+1:w*vg+cl*r1*(P,]qle;j>+c2*r2*(anfX,i{) (16)

In the above equation, w is the inertia weight. For constant inertia, w was set to 0.75.
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For random inertia weight, w was set to 0.5 + % as per [21]. The comparison results

are provided in the table below. The improvement percentage in the table below is the
comparison between random inertial weight-aided Sobol and conventional PSO variants.
From the above results, we conclude that the Sobol-based PSO variant performs better
in terms of iteration efficiency with respect to the conventional PSO as well as random
inertia PSO.
TSP Optimization Results

Tables 18 and 19 provide the TSP optimization comparisons using the PSO variants.

TSP is a completely discrete problem, and SOBOL performs better, as can be seen from
Figures 6-8, as well as Tables 14 and 15. For TSP, the particles were initialized using the
standard uniformly distributed random numbers for both the standard and the enhanced
PSOs. The velocity and position updates, which are basically a set of swaps, are controlled
using the Sobol and Halton-generated random numbers in the case of enhanced PSO.

Table 18. Comparison of performances for Monte Carlo and Sobol random number samplings in
PSO for TSP.

PSO PSO A
Number of PSO Enhanced PSO. PSO Enhanced Conventional PSO Enhan.ced Conventional [terations
o . Conventional Standard Compute Time . Improvement
Cities (Iterations) . A Standard Compute Time
(Iterations) Deviation N (secs) Percentage
Deviation (secs)
10 74 103 16.1 289 0.98 1.18 28%
15 414 478 88.7 130.2 7.85 8.7 13%
20 1705 1927 210.2 371.4 16.55 17.8 11.5%
Table 19. Comparison of performances for Monte Carlo and Halton random number samplings in
PSO for TSP.
PSO PSO -
Number of PSO Enhanced PSO. PSO Enhanced Conventional PSO Enhan.ced Conventional [terations
o . Conventional Standard Compute Time . Improvement
Cities (Iterations) . ‘e Standard Compute Time
(Iterations) Deviation N (secs) Percentage
Deviation (secs)
10 78 103 18.2 28.9 1.26 1.18 24%
15 431 478 76.7 130.2 8.98 8.7 9.8%
20 1760 1927 212.1 371.4 17.39 17.8 8.6%
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Figure 6. TSP with 10 cities—convergence plot.
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15 Cities TSP Convergence Plot

95

— Sobol
90 F — 2| tON

MonteCarlo
85 -]

80 1

Cost

75 1

70 1

60

55 1 1
0 500 1000 1500

Iternation Number

Figure 7. TSP with 15 cities—convergence plot.
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Figure 8. TSP with 20 cities—convergence plot.

4. Discussion

We have augmented the PSO algorithm by integrating Sobol and Halton random
number samplings to achieve superior results. Our rationale behind this enhancement
is rooted in Sobol and Halton random numbers, which are quasi-random number types.
These numbers are generated in such a manner that they are uniformly distributed across
multidimensional space, thus mitigating clustering or bias in particle movement. Conse-
quently, this facilitates more extensive exploration, thereby increasing the likelihood of
avoiding local optima and accelerating the discovery of the global optimum, as a more
significant portion of the space can be explored when biases or clusters are circumvented.

The outcomes indicate that the enhancement applied to the standard PSO through the
utilization of quasi-random numbers has consistently improved the number of iterations
required for the algorithm to produce the optimal function value across all three benchmark
functions. The efficiency gains for continuous functions are more pronounced than those
for mixed variable functions.
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Additionally, including more decision variables in the problem correlates with more
significant improvements in general. As evident from the data, the application of Sobol or
Halton sequences to the standard PSO algorithm demonstrates efficiency improvements,
suggesting the potential benefits of these sequences to researchers in various optimization
fields. Notably, this technique is algorithm-agnostic, as indicated in the introduction, and
can thus be employed with other optimization algorithms such as the Genetic Algorithm,
Ant Colony Optimization (ACO) algorithm, and other established optimization algorithms.

5. Conclusions

Particle Swarm Optimization harnesses swarm behavior effectively for function opti-
mization but is often hampered by slow convergence. We consistently improved efficiency
through two distinct enhancements to the Particle Swarm Optimization algorithm. We pro-
posed the use of quasi-random number sequences to update decision variable values and
their rates of change in each iteration to enhance the PSO algorithm. Since quasi-random
number sequences do not alter the fundamental algorithm, this concept can be integrated
into modified versions of the PSO algorithm suggested previously, as discussed in the
introduction. To evaluate whether quasi-random number sequences in PSO yield efficiency
improvements, we tested them using continuous and mixed variable Cigar, Ellipsoid, and
Paraboloid functions, along with an example of the Traveling Salesman Problem. The
results demonstrate that both sequences of quasi-random numbers used to enhance the
standard PSO improved efficiency.
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Abstract: The Transportation Problem (TP) is a special type of linear programming problem, where
the objective is to minimize the cost of distributing a product from a number of sources to a number of
destinations. Many methods for solving the TP have been studied over time. However, exact methods
do not always succeed in finding the optimal solution or a solution that effectively approximates
the optimal one. This paper introduces two new variations of the well-established Particle Swarm
Optimization (PSO) algorithm named the Trigonometric Acceleration Coefficients-PSO (TrigAc-PSO)
and the Four Sectors Varying Acceleration Coefficients PSO (FSVAC-PSO) and applies them to solve
the TP. The performances of the proposed variations are examined and validated by carrying out
extensive experimental tests. In order to demonstrate the efficiency of the proposed PSO variations,
thirty two problems with different sizes have been solved to evaluate and demonstrate their perfor-
mance. Moreover, the proposed PSO variations were compared with exact methods such as Vogel’s
Approximation Method (VAM), the Total Differences Method 1 (TDM1), the Total Opportunity Cost
Matrix-Minimal Total (TOCM-MT), the Juman and Hoque Method (JHM) and the Bilqis Chastine
Erma method (BCE). Last but not least, the proposed variations were also compared with other PSO
variations that are well known for their completeness and efficiency, such as Decreasing Weight Parti-
cle Swarm Optimization (DWPSO) and Time Varying Acceleration Coefficients (TVAC). Experimental
results show that the proposed variations achieve very satisfactory results in terms of their efficiency
and effectiveness compared to existing either exact or heuristic methods.

Keywords: transportation problem; Particle Swarm Optimization; heuristics methods; linear pro-
gramming

1. Introduction

The Transportation Problem (TP) is one of the most significant types of linear pro-
gramming problems. The aim of the TP is to minimize the cost of transportation of a given
commodity from a number of sources or origins (e.g., factory manufacturing facility) to
a number of destinations (e.g., warehouse, store) [1]. Over the years, many classical and
stochastic search approaches have been applied for the purpose of solving the TP.

The Northwest Corner method (NWC) is one of the methods that obtains a basic
feasible solution to various transportation problems [2]. This process very easily allocates
the amounts when few demand and destination stations exist. Moreover, frequently, the
exported solution does not approach the optimal. The Minimum Cost Method (MCM) [3]
is an alternative method which can yield an initial basic feasible solution. The MCM
succeeds in lowering total costs by taking into consideration the lowest available cost
values while finding the initial solution. An innovative approach comes from the Vogel
Approximation Method (VAM); the VAM is an upgraded version of the MCM which results
in a basic feasible solution close to the optimal solution [3]. Both of them take the unit
transportation costs into account and obtain satisfactory results; however, VAM is rather
slow and computationally intensive for a large range of values. Nevertheless, it has been
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proven that in problems with a small range of values and a relatively small number of
variables, the above exact methods are quite efficient.

In some cases, TP has a complex structure, multifaceted parameters and a huge
amount of data to be studied. Therefore, exact methods do not succeed in finding a suitable
solution in an acceptable time period; a result, it is unpractical to use them. Taking into
consideration the above, apart from conventional solution techniques, various heuristic
and metaheuristic methods have been designed to capitalize on their potential capabilities.
Specifically, metaheuristic algorithms attempt to find the best feasible solution, surpassing
the other technique as much in terms of quality as in computational time [4]. Mitsuo
Gen, Fulya Atliparmak and Lin Lin applied a Genetic Algorithm (GA) for a two-stage TP
using priority-based encoding, showing that the GA has been receiving great attention
and can be successfully applied for combinational optimization problems [5]. Ant Colony
Optimization (ACO) algorithms have already proven their efficiency in many complex
problems; they constitute a very useful optimization tool for many transportation problems
in cases where it is impossible to find an algorithm that finds the optimal solution or in
cases where the time interval does not make it possible to approve this solution [6]. The ap-
plications of hybrid methods with the combination of two or more heuristic, metaheuristic
or even exact methods are also widespread. Interesting research was undertaken in 2019 by
Mohammad Bagher Fakhrzad, Fariba Goodarzian and Golmohammadi [7]. In their study,
four metaheuristic algorithms, including Red deer Algorithm (RDA), Stochastic Fractal
Search (SFS), Genetic Algorithm (GA) and Simulated Annealing (SA), as well as two hybrid
algorithms, the RDA and GA (HRDGA) algorithm and the Hybrid SFS and SA (HRDGA)
algorithm, were utilized to solve the TP, demonstrating significant effectiveness [7].

Motivated by the above-mentioned applications of metaheuristic algorithms to cope
with the TP, this work deals with the application of Particle Swarm Optimization (PSO)
to solve the TP effectively. The PSO algorithm was first introduced by Dr. Kennedy and
Dr. Eberhart in 1995 and was known as a novel population-based stochastic algorithm,
working out complex non-linear optimization problems [8]. The basic idea was originally in-
spired by simulations of the social behavior of animals such as bird flocking, fish schooling,
etc. Possessing their own intelligence, birds of the group connect with each other, sharing
their experiences, and follow and trust the mass in order to reach their food or migrate
safely without knowing in advance the optimal way to achieve it. The proposed research is
expected to enhance the abilities of both the social behavior and personal behavior of the
birds. It is observed that the original PSO has deficits in premature convergence, especially
for problems with multiple local optimums [9]. The swarm'’s ability to function with social
experience as well as personal experience is determined in the algorithm through two
stochastic acceleration components, known as the cognitive and social components [10].
These components have the aptitude to guide the particles in the original PSO method to
the optimum point as the correct selection of their values is the key influence on the success
and efficiency of the algorithm. Much research has been carried out with a focus on finding
out the best combination of these components [10].

First, this paper examines approaches that have already been applied with great
success to solve the TP. Adding to the above, two new PSO variations are presented and
applied to solve the TP, operating proper transformations of the main PSO parameters.
Experimental results show that these new PSO variations have very good performance and
efficiency in solving the TP compared to the former methods.

In order to confirm the technical merit and the applied value of our study, 32 instances
of the TP with different sizes have been solved to evaluate and demonstrate the performance
of the proposed PSO variations. Their experimental results are compared with those of well-
known exact methods, proving their superiority over them. One major innovation of the
proposed variations is the appropriate combination of acceleration coefficients (parameters
c1, ¢2) and inertia weight (parameter w) [11] (see Section 3) in order to come up with better
computational results compared to existing approaches. Exhaustive experimental results
demonstrate that the performance of the new PSO variations noted significantly higher
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performance not only compared to the exact methods already applied to solve the TP but
also compared to the other PSO variations already introduced in the respective literature.
Furthermore, in order to check the stability of the proposed PSO variations, many different
combinations of the main PSO parameters were tested and validated.

The contribution of the paper is as follows:

e  According to our knowledge, PSO has already been applied for solving the fixed-
charged TP, and a heuristic approach was used in order to find the shortest path in a
network of routes with a standard number of points connected to each other. For the
first time, the PSO-based algorithms are applied to solve the basic TP in a large amount
of test instances effectively, not only finding the optimal means of items distribution
but also discovering the optimal value.

e Moreover, two new PSO variations are introduced, which sustain balance between
exploration and exploitation of the search space. These variations proved to be very
efficient in solving the TP, achieving better results compared not only to deterministic
but also to other already-known PSO-based methods.

e A thorough experimental analysis has been performed on the PSO variations applied
to solve the TP to prove their efficiency and stability.

The remainder of the paper is organized as follows: Section 2 presents the mathemati-
cal formulation of the TP. The PSO algorithm is briefly described in Section 3. Section 4
presents the initialization procedure of the basic feasible solutions and the steps of the PSO
algorithm for the TP. Both the existing PSO variations as well as the new ones are presented
in detail in Section 5. A well-documented case study is conducted in Section 6, in order
to compare the performance of five exact methods with the classic PSO and its variations.
Lastly, conclusive remarks and future recommendations are presented in Section 7.

2. Transportation Problem (TP)

Many researchers have developed various types of transportation models. The most
prevalent was presented by Hitchcock in 1941 [12]. Similar studies were conducted later
by Koopmans in 1949 [13] and in 1951 by Dantzig [14]. It is well known that the problem
has become quite widespread, so several extensions of transportation model and methods
have been subsequently developed. However, how is the Transportation Problem defined?

The TP can be described as a distribution problem, with m suppliers S; (warehouses
or factories) and n destinations D; (customers or demand points). Each of the m suppliers
can be allocated to any of the 1 destinations at a unit shopping cost c;;, which corresponds
to the route from point 7 to point j. The available quantities of each supplier S;,i=1,2,...,
m are denoted as s;, and those of each destination Dj, j=1,2,..., nare denoted as dj. The
objective is to determine how to allocate the available amounts from the supply stations to
the destination stations while simultaneously achieving the minimum transport cost and
also satisfying demand and supply constraints [12].

The mathematical model of the TP can be formulated as follows:

minZ = T, e 2
m
Yoxij>diforj=1,2,..., 1 @
i=1
n
Y xij<sifori=1,2 ..., m ®
j=1

xij>0fori=1,2...,mj=12 ..., n @)

Equation (1) represents the objective function to be minimized. Equation (2) contains
the supply constraints according to which the available number of origin points must be
more than or equal to the quantity demanded from the destination points. Respectively, the
sum of the amount to be transferred from source S; to destination D; must be less than or
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equal to the available quantity than we possess, as presented in Equation (3). A necessary
condition is depicted in Equation (4), as units x;; must take positive and integer values.
Without loss of generality, we assume that in this paper, both the supplies and demands
are equal following the balanced condition model.

As already mentioned, there are several methods which can lead to finding a basic
feasible solution. However, most of the currently used methods for solving transportation
problems are considered complex and very expansive in terms of execution time. As a
result, it is appealing to seek and discover a metaheuristic approach based on the PSO
algorithm to solve the TP efficiently and effectively.

3. Particle Swarm Optimization (PSO)

The Particle Swarm Optimization (PSO) algorithm is considered to be one of the
modern innovative heuristic algorithms since its methodology over the years has become
extremely prevalent due to its simplicity of implementation; it leads very easily to satis-
factory solutions [15]. According to the PSO algorithm, the collective behavior of animals
has been analyzed in detail with an eye forward to function as a robust method in order to
solve optimization problems in a wide variety of applications [16].

In PSO, each candidate solution can be defined as a particle and the whole swarm
can be considered as the population of the algorithm. The particles improve themselves
by cooperating and sharing information among the swarm, and they succeed in learning
and improving to provide the highest possible efficiency. More precisely, each particle
through the search space is intended to find the best value for its individual fitness and,
simultaneously, to minimize the objective function by satisfying all the constraints of
the problem. Each particle is studied from a perspective that contains three different
parameters: position; velocity; and its previous best positions.

Consequently, in n-dimensional search space, each particle of the swarm is represented
by x;; = (xi1, X2, ..., Xjj), and the equation of its position is as follows:

xl-]-(t—i—l) :xi]-(t)—i-vl-]-(t—i—l), i=1,2...,nkaj=1,2,...,n, (5)

where x;;(t + 1) is the current position, x;;(#) is the previous position and v;;(f + 1) is the
velocity which determines the movement of each particle in the current iteration (f + 1).

Respectively, the velocity of the particle is denoted by v;; and is given by the following
equation:

vl-]-(t +)=w vl-]-(t) +cq1rq (pbestij(t) — xij(t)> + cotp (gbesti]-(t) — xij(t)), ©)
i=12,...,nxj=1,2,..., 1

where

e v;j(t+1) denotes the velocity in the current iteration and v;;(t) is the velocity in the
previous iteration.

e  wis the inertia weight, used to balance the global exploitation and local exploitation,
providing a memory of the previous particle’s direction which prevents major changes
in the suggested direction of the particles.

e 11 and rp are two variables which are randomly derived from uniform distribution in
range [0, 1].

e ¢; and ¢y are defined as “acceleration coefficients” which have a huge effect on the
efficiency of the PSO method. The constant c; conveys how much confidence a particle
has in itself, while ¢, expresses how much confidence a particle has in the swarm.

e  The variable pbestij (t) is the best position of the particle until the iteration ¢, whereas
gbesti]« (t) is the finest position of the whole swarm until the same iteration.

o The term ¢11q (pbestij(t) - xij(t)) is known as the cognitive component; it acts as a
kind of memory that stores the best previous positions that the particle has achieved.
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The cognitive component reflects the tendency of the particles to return to their best
positions.

e  The term cyry (gbestij(t) - xij(t)> is called the social component. In this particular

case, the particles behave according to the knowledge that they have obtained from
the swarm, having as a guide the swarm'’s best position.

The acceleration coefficients c; and ¢y, together with the random variables r; and
1y, affect to a great extent the evolution of cognitive and social component and hence the
velocity value, which, as is known, is mainly responsible for the ultimate direction of the
particles.

4. The Basic PSO for Solving the TP

The proposed PSO algorithm used to solve the TP is presented in this section. The
primary goal is the initialization of the particles according to the problem’s instances. This is
achieved through a sub-algorithm (an initialization algorithm), as presented below. Initially,
the amounts of the supply and demand were defined in tables. Subsequently, through
control conditions, the amounts were randomly distributed, satisfying the constraints of
the sums of supply and demand.

First, Algorithm 1 creates two vectors, namely, Supply and Demand, which are its input,
as shown in lines 1 and 2. Next, variables m and n are computed. These variables are equal
to the values of parameters Supply and Demand, respectively. Then, a matrix is created
consisting of random real numbers (line 7). In line 10, the elements of the candidate solution
matrix are rounded to the nearest integer as the amounts of commodities should be non-
negative integer values. In the following lines of the algorithm, a process of readjustment
and redistribution of matrix L begins so that its values correspond to the given Supply and
Demand amounts. In lines 11 and 12, the sum of all elements of each row of matrix L is
stored in vector Sumrow, while the sum of all elements of each column of matrix L is stored
in vector Sumcol. Then, two new vectors, namely, s and d, are created by subtracting Sumrow
from Supply and Sumcol from Demand, respectively. In the following lines, for each cell of
the final matrix, the shortcomings of the matrix are located and assembled appropriately to
each cell by zeroing out the excess amount of vectors s and d. The output of Algorithm 1 is
a matrix consisting of the initial solutions (Initial Basic Feasible Solutions—IBFS), which
comprises the input of Algorithm 2 (see below). All possible Initial Basic Feasible Solutions
(IBFS) are non-negative integer values satisfying the supply and demand constraints.

Next, we present the structure of the basic PSO algorithm, which will be applied to
solve the TP (Algorithm 2). The process starts with the initialization of the population
size npop, the maximum number of iterations .y, the personal and social acceleration
coefficients ¢; and ¢y, the random variables rq and r, and, finally, the inertia weight w
(line 1). Moreover, subsequently, the Supply, Demand and Cost matrixes are defined (line 2).

Line 6 calculates the total transport cost of each particle. Then, in lines 7 and 8, whether
the total cost of the current particle is less than the minimum transport cost calculated up
to then is checked. If the statement is true, the value of global best cost is upgraded, and
this particle is now defined as the best. This process is continued for all candidate particles.
In lines 9 to 14, through an iterative loop, the position and velocity of the particles are
calculated using Equations (5) and (6). The algorithm exports the particle with the optimal
position and its respective optimal transport cost.
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Algorithm 1: Initialization algorithm

1. Define Supply = [s4,S3, o, Sm]

Define Demand = [d,, d, ..., dy]

Define m = length (Supply)

Define n = length (Demand)

Initialize a solution matrix I = zeros (m, n)

Initialize a supporting table B = zeros (m X n)

Generate a new random number x, x = -log (rand(m x 1, 1)

Set x = x/Sum(x)

X N Tl DN

Take a matrix L = reshape (B X x, [m, n])

Set solution as a matrix to round each element of L to the nearest

—
e

integer less than or equal to that element of L as Solution = floor [L]
11. Set Sumrow as the sum of the elements of all rows.
12. Set Sumcol as the sum of the elements of all columns.
13. Set s = Supply — Sumrow and d = Demand — Sumcol
— 14. fori=1tomdo

— 15.  forj=1tondo
— 16. if (i) smaller or equal to d(j)
17. ww = min (d(i), d(j))
18. main (i,1) = main (i, j) + ww
19. d@) =d(j) - s(i)
20. else if d(j) smaller than s(i)
21. ww =min (s(7), d(j))
22. main(i, j) = main (i, j) + ww
23. s(7) = s(i) — d(j)
L 24, end
— 25. end
— 26. end

27. Return L = Solution

The exported values of the particle’s position, although satisfying demand and supply
constraints, were observed to be taking occasionally negative and/or fractional values.
These values cannot support the aspect of the solution since the values are quoted in
quantities (only positive values are allowed); therefore, appropriate modifications have
been made for the final form of the particle position.

Two sub-algorithms were designed to repair the algorithm, replacing negative and frac-
tional volumes with natural numbers without breaking the supply and demand conditions.
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Algorithm 2: Particle Swarm Optimization algorithm

1. Set the values of t,,;4y, Hpop, w, €1,C5, 11,7
Define Supply, Demand and Cost matrices

Define the initial particles

L

Initialize particle position as

particle(i).Position = initial_particle(i).Position
Initialize velocity as particle(i).Velocity = zeros (m, n)
Calculate the particle(i).Cost = fitnessfun(particle(i).Position)

5
6
7. Update the personal best position and the particle best cost
8. Update the global best position

9

— for it = 1: tm (number of iterations)
~ 10. for i =1: npop (number of particles)
11. Calculate particle’s velocity: particle(i).Velocity
12. Update particle’s position: particle(i).Position
13. Update personal best position
14. Update global best position, Global best
- 15. end
— 16. end

17. Return GlobalBest.Cost
18. Return GlobalBest

Algorithm 3 takes as input a matrix—particle(i). Position—that has negative values
in its cells. The aim is for the negative elements to be eliminated as in [17]. Through an
iterative process, which is illustrated in line 3, the algorithm checks each line of the cell
of the table and sets as neg the value of the cell with the negative value. Subsequently; it
searches the maximum element of the column where its negative element was found, as
shown in lines 5 and 6. The cardinal value of the negative value is subtracted from the cell
with the largest negative value, while the cell with the negative value is set to zero. In line
9, a cell is randomly selected from the row that corresponds to the negative element. If the
value is positive, the cardinal of the negative element is subtracted from it. Simultaneously,
a cell of this row is counterbalanced by adding to it the cardinal of the negative cell as
shown in line 13. Algorithm 3 exports the particle(i). Position with non-negative values,

while sustaining the supply and demand conditions.

Applying the above transformation, the result is a matrix with positive but also
fractional elements. Algorithm 4 takes as its input the matrix of particles’ positions after
removing the negative elements. In line 3, a new matrix named pos is defined as containing
the integer elements of matrix particle(i).Position. In line 4, a vector named sumrow is created
which contains the sum of each row of the pos matrix; while in line 5, a vector named
sumecol is created, containing the sum of each column. In lines 6 and 7, the differences
between the quantities of the Supply and sumrow and Demand and sumcol matrices are noted,
respectively, in order to record the quantities missing from the pos matrix. Then, through an
iterative loop, the u cell of s(u) is compared with the v cell of d(v). The minimum quantity
of these two is selected and entered into the pos matrix, reallocating the integer amounts in
an appropriate manner to satisfy the available supply and demand items. The algorithm
terminates when vectors s and v are zeroed and the integer quantities are inserted into pos
matrix, which is the output of Algorithm 4. The final solution is a non-negative integer

solution matrix satisfying the requested constraints.

31



Algorithms 2023, 16, 372

Algorithm 3: Negative values repair algorithm

— 1. fork=1:m
— 2. forl=1mn
— 3. if particle(i).Position(k, I) < 0
4. Set neg = particle(i).Position(k, I)
5 Find the maximum element of the i-th column,

as max= (particle(i).Position(:, 1))

6. Find the exact position of the maximum element
7 Change the value of maximum
as particle(i).Position(a, b) = max_element — | neg|
Set the negative element particle(i).Position(k, [) = 0
. Select a random number of the k-th row
10. I_count=1
— 11. while ((j_count <= n)
12. if particle(i).Position(k, I_count) >0
13. Set particle(i).Position(k, I_count) = particle(i).Position(k, I_count) — Ineg|
14. Balance one element in row k as:
particle(i).Position(a, I_count) = particle(i).Position(a, |_count) + |neg|
15. end
16. I_count =1_count +1
—17. end
18. end
19. end
20. end

Algorithm 4: Amend fractions

1.

NSO » DN

— 8.
— 9.
r10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
L 20.
— 2L
— 22.

23.

Set as input particle(i).Position

Enter Supply, Demand

pos = floor(particle(i).Position)

Set as sumrow the sum of the elements of the row.
Set as sumcol the sum of the column’s elements
Take s = Supply - sumrow

Take d = Demand — sumcol

foru=1m
forv=1mn
If s(u) < d(v)
ww =min(s(u), d(v))
pos(u, v) = pos(u, v) + ww
d(v) =d(v) - s(u)
s(u)=0
else if d(v) < s(u)
ww =min(s(u), d(v))
pos(u, v) = pos(u, v) + ww
s(u) = s(u) — d(v)
d(v)=0
end
end
end

Return particle(i).position = pos
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5. Variations of PSO

This section presents two already-known and two new variations of the classical
implementation of the PSO, which are presented and used in this contribution to solve the
TP. These variations are investigated in order to improve the performance of the classical
PSO algorithm.

5.1. Decreasing Weight Particle Swarm Optimization (DWPSO)

The inertia weight w is the most influential parameter with respect to both the success
rate and the function evaluation [18]. In DWPSO, the inertia factor is linearly decreasing.
The decision to use this variation was not arbitrary; DWPSO is one of the classic and very
effective PSO variations since its superiority remains imperishable over years. Through
DWPSO, the algorithm focuses on diversity at former iterations and on convergence at
latter ones [18]. The right and proper selection of the inertia weight provides a balance
among global and local exploitation and results in fewer iterations, on average, to find a
sufficiently optimal solution [19]. Exploitation is the capacity of particles to converge to
the same peak of the objective function and remain there without wanting to obtain better
solutions in their wider field. On the contrary, in the exploration condition, the particles are
in constant search, discovering beneficial solutions. After constant research regarding the
figurative of inertia weight, Shi and Eberhart concluded that values in the interval [0.9, 1.2]
have a positive effect on the improvement of the solution [20]. A linearly decreasing inertia
weight with ¢ = 2,c; = 2 and w between 0.4 and 0.9 was used by Shi and Eberhart, too.
According to their claim, wy,ey is the new inertia weight, which linearly decreases from 0.9
to 0.4.

Equation (7) for DWPSO is given as

(wmax - wmin)'t @)

7

wnew(t) = Wmax —
tmax
where Wy, is set as 0.9, performing extensive exploration, and w,,;;, is equal to 0.4,
performing more exploitation. Moreover, t is the current iteration of the algorithm and
tmax is the maximum number of iterations. A large portion of researchers’ results illustrate
that linearly decreasing in the inertia weight can greatly improve the performance of PSO,
having better results than the classic implementation of the algorithm.

5.2. Time-Varying Acceleration Coefficients (TVAC)

In population-based optimization methods, proper control of global and local explo-
ration is essential for the efficient identification of the optimum solution.

Rathweera et al. introduced the TVAC in PSO [11]. According to their research, the
cognitive parameter c; starts with a high value and linearly decreases to a low value,
whereas the social parameter c; starts with a low value and linearly increases to a high
value [21]. On the one hand, with a large value for the cognitive parameter and small value
for the social parameter at the beginning, particles are moving by their own experience
according to their own best positions, being able to move freely without following the mass.
On the other hand, a small value for the cognitive parameter and a large value for the social
parameter help the particles to escape from the area around their personal best positions and
allow them to enhance the global search in the latter stages of the optimization procedure,
converging toward the global optima. This concept can be mathematically represented as

t

€1 =01 — (Cli _le>'t ; ®)
max
t

€2 = Coi — <C2i - sz) S 9)
max
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where cy; defines the value of c; in the first iteration equal to 2.5 and ¢; ¥ defines the value
of ¢1 in the last iteration equal to 0.5. Respectively, the value of c; in the first iteration is cy;
and is set to 0.5, while the value of ¢, in the first iteration is ¢, £ and is set to 2.5 [21].

5.3. Trigonometric Acceleration Coefficients-PSO (TrigAC-PSO)

In this subsection, a new variation is introduced. According to this variation, the
impact of parameters c; and c; is extensively studied. First, each particle is guided by the
knowledge and experience gained by the swarm (the value of c; is considerably bigger
than the value of c;). Next, relying on the learning mechanism, each particle builds its
own strategy and acquires its own experience (the value of c; is becoming smaller while
the value of ¢ is becoming bigger (see Equations (10) and (11)). This decrement of ¢, and
increment of ¢; take place until both parameters are equalized to 2 in the last generation of

the algorithm.
The following equations are used to calculate the cognitive and social acceleration
parameters:
Cif . 2«cqt T
== = 10
c1 > + sin D (10)
sz-T['t 1
— o - 11
Cp = Cp; + COs 2h 2 (11)

Here, in the first iteration, c1;, which is the personal acceleration value, is equal to 0.5,
while cy;, which is the social acceleration value, is equal to 3.5. In the last iteration of the
algorithm, both personal ¢1f and social ¢ are equal to 2.

The value of inertia weight w varies according to the number of the current iteration ¢
and the number of maximum iterations t;;,y.

It is described as follows in Equation (12):

w = M (12)

tmax

5.4. Four Sectors Varying Acceleration Coefficients PSO (FSVAC-PSO)

In the following section, a new variation is developed. This variation is novel and
comprises the major technical merit of this contribution. The major role in this variation
is the multiple changes of the coefficient parameters c; and c;. In this case, the solution
is approached both from the knowledge of the particle and from the experience of the
whole swarm. The number of iterations is divided into four sectors. Starting from the
first iteration, the social and cognitive acceleration coefficient is initialized to 2. In the
first sector of iterations, the value of c¢; is increasing while the value of c; is decreasing.
As a result, the particle is mostly influenced by its own knowledge, while the influence
of the swarm on it is limited; in the second sector, the value of ¢; is decreasing while the
value of ¢; is increasing to an equilibrium between the knowledge of the particle gained
at the previous sector and the experience of the swarm; in the third sector, the value of
c1 is decreasing while the value of ¢, is increasing—explicitly, the particles are allowed
to move towards the global best position, following the swarm’s movements; as a result,
information about the global best is reallocated to all the particles for more exploration
before the swarm finally converges [11]; in the fourth sector, the particles head toward both
their own personal best and global best observed by the whole swarm—the concept of
this variation is based on the combination of all types of different searching behaviors, as
they arise for different values of the coefficient acceleration parameters, culminating in
equilibrium between exploitation and exploration of the search space; finally, in the last
iteration, the two coefficient parameters are equated.

The formulation is represented in detail below:

e In the first Iteration, as already mentioned:

=2
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=2
e In the first sector:

Cl _ (Z-lefcli)-t o 1

_mr (13)
2= 2'C2f ’ tmax
where ¢1; =2,c1f = 3,00 =2and cpp = 1;
e In the second sector:
o le'C]l"t
1 = z'tmax+ -1 (14)
C Coj
cp =05+ Zfz 2 'tmtax
where ¢1; =3, c1f =2,00; = land e = 2;
e In the third sector:
_ 3 _ (ai—ey)t
AT e, (15)
=05+ sz’;r 'tmtm
where ¢1; = 2,¢c15 = 0.5,c0; = 2and cp = 2.5;
e In the fourth sector:
. (4C1i+C1f)~t
SN , (16)
¢ =35+ (cof — C21) -

where ¢1; = 0.5,c1f = 2,¢3; = 2.5and ¢y = 2;
e In the last iteration:

In the above formulations, ¢1;, ¢1f, c; and cyf are initial and final values of cognitive
and social components acceleration factors, respectively. To improve the solution quality,
these coefficients are updated in such a way that the values increase and decrease at a
steady pace. According to this approach, the solution avoids being trapped into a local
optimum, as shown by the experimental results presented in Section 6.

As for the inertia weight w, Equation (12) is used to provide the necessary momentum
for particles to roam across the search space.

6. Case Studies and Experimental Results

In this section, the proposed variations of the PSO algorithm are applied in thirty two
well-known numerical examples of the TP, as shown in Table 1. The numerical examples of
this study come from the research of B. Amaliah, who compared five different methods,
which will be presented briefly below, regarding their performance in solving the TP [22].

Vogel’s Approximation Method (VAM) is an iterative procedure such that in each step,
proper penalties for each available row and column are taken into account through the
least cost and the second-least cost of the transportation matrix [22]. The Total Differences
Method 1 (TDM1) was introduced by Hosseini in 2017. The method is based on VAM’s
innovation to use penalties for all rows and columns of the transportation matrix. The
TDM1 was developed by calculating penalty values only for rows of the transportation
matrix [23]. Amaliah et al., in 2019, represented their new method, known as the Total
Opportunity Cost Matrix Minimal Cost (TOCM-MT). This method has a mechanism with
which to check the value of the least-cost cell before allocating the maximum units Xij; this
is in contradiction to the TDM1, which directly allocates the maximum units x;; to the least
cost [24]. Juman and Hoque, in 2015, developed a formulation method called the Juman
and Hoque method (JHM). Their study is based on the distribution of supply and demand
quantities, taking into account the two minimum-cost cells and their redistribution through
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penalties [25]. Finally, the last method presented is known as the Bilgis Chastine Erma
Method (BCE), which constitutes an enhanced version of the JHM [26].

Table 1. Detail of 32 numerical examples of the TP.

No From Journal Name Problem Size Optimal Solution
1 Srinivasan and Thompson (1977) Pr1 34 880
2 Deshmukh (2012) Pr.2 34 743
3 Ramadan and Ramadan (2012) Pr.3 33 5600
4 Schrenk et al. (2011) Pr4 34 59
5 Samuel (2012) Pr.5 34 28
6 Imam et al. (2009) Pr.6 34 435
7 Adlakha and Kowalski (2009) Pr.7 4.5 390
8 Kaur et al. (2018) Pr.8 35 1580
9 G. Patel et al. (2017) Pr.9 4.4 49

10 Ahmed et al. (2016b) Pr.10 4.4 410

11 Ahmed et al. (2016b) Pr.11 3-4 2850

12 Ahmed et al. (2016a) Pr.12 35 183

13 Uddin and Khan (2016) Pr.13 34 799

14 Uddin and Khan (2016) Pr.14 3-5 273

15 Das et al. (2014a) Pr.15 34 1160

16 Khan et al. (2015a) Pr.16 3-4 200

17 Azad and Hossain (2017) Pri17 34 240

18 Morade (2017) Pr.18 33 820

19 Jude (2016) Pr.19 34 190

20 Jude (2016) Pr.20 4-4 83

21 Hosseini (2017) Pr.21 34 3460

22 Amaliah et al. (2019) Pr.22 34 910

23 Amaliah et al. (2019) Pr.23 4.4 1670

24 Amaliah et al. (2019) Pr.24 4.4 2280

25 Amaliah et al. (2019) Pr.25 3-4 2460

26 Amaliah et al. (2019) Pr.26 33 291

27 Juman and Hoque (2015) Pr.27 33 4525

28 Juman and Hoque (2015) Pr.28 3-4 920

29 Juman and Hoque (2015) Pr.29 34 809

30 Juman and Hoque (2015) Pr.30 34 417

31 Juman and Hoque (2015) Pr.31 4.5 3458

32 Juman and Hoque (2015) Pr.32 4-6 109

The whole algorithmic approach was implemented using MATLAB R2021b. The algo-
rithm was tested on a set of different dimensional problems. All parameters of the proposed
algorithm were selected after exhaustive experimental testing. Each of the four variations
was tested using different parameter values, and those values whose computational results
were superior to other values were selected. The number of iterations is set to 100. The
parameter rq is set as a random number derived from the uniform distribution in range
[0, 1], and r; is set as the complement of rq; that is, ¥, = 1 — rq. This modification plays a
significant part as it is different from the customary application where both r; and r; are
randomly derived uniformly from range [0, 1]. Using the former relationship between 4
and r,, we manage to achieve stronger control over these parameters’ values.

In the following table (Table 2) and Figure 1, the performance of both the exact methods
and the PSO-based ones are presented for 30 Monte Carlo runs; more precisely, the best
value achieved by each method is depicted. The last column presents the optimal solution
of each numerical problem. As shown, the Vogel method manages to find 9 out of the
32 test instances (28.13%); the Total Differences Method 1 (TDM1) succeeds in finding more
optimal solutions than the Vogel method by finding 13 out of 32 optimal solutions (40.63%);
using the TOCM-MT method, the results show that the method’s performance is better
still, finding the optimum in 23 out of 32 test instances (71.9%); the JHM method, which
accumulated 21 optimal solutions, was less effective than TOCM-MT (65.62%); the BCE
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method, which achieved 27 out of 32 test instances (84.4%), proved to be the most efficient
compared to all previously mentioned methods; the classic PSO, the TVAC, the Trig AC-PSO
and the FSVAG-PSO achieve the optimum in 31 out of 32 test instances (96.88%), while the
PWPSO achieves the optimum in 30 out of the 32 (93.76%).

Table 2. The optimal solution of each method for the 32 test instances.

No. Name VAM TDM1 TOCM-MT  JHM BCE PSO DWPSO TVAC  TrigAC-PSO  FSVAC Og‘;‘)‘al
1 Prl 95 880 880 880 880 880 880 880 880 880 880
2 P2 779 779 743 743 743 743 743 743 743 743 743
3 Pr3 5600 5600 5600 5600 5600 5600 5600 5600 5600 5600 5600
4  Pr4 59 59 61 59 59 59 59 59 59 59 59
5  Pr5 28 28 28 28 28 28 28 28 28 28 28
6 Pr6 475 475 435 460 435 435 435 435 435 435 435
7 Pr7 390 400 390 390 390 390 390 390 390 390 390
8  Pr8 1600 1595 1580 1580 1580 1580 1580 1580 1580 1580 1580
9  Pr9 49 53 53 49 49 49 49 49 49 49 49
10 Prl0 470 435 435 420 410 410 411 410 410 410 410
11 Prll 2850 2850 2850 2850 2850 2850 2850 2850 2850 2850 2850
12 Pri2 187 186 187 183 187 183 183 183 183 183 183
13 Pri13 859 859 799 799 799 799 799 799 799 799 799
14 Prl4 273 273 273 273 273 290 273 273 273 273 273
15 Prl5 1220 1160 1160 1170 1170 1160 1160 1160 1160 1160 1160
16 Prl6 204 200 200 218 204 200 200 200 200 200 200
17  Prl7 248 248 240 240 240 240 240 240 240 240 240
18 Pri8 820 820 820 820 820 820 820 820 820 820 820
19  Pr19 190 190 190 190 192 190 190 190 190 190 190
20 Pr20 92 83 83 83 83 83 83 83 83 83 83
21 Pr21 350 3570 3460 3460 3460 3460 3460 3460 3460 3460 3460
22 Pr22 990 990 910 960 910 910 910 910 910 910 910
23 Pr23 1680 1670 1670 1690 1670 1670 1670 1670 1670 1670 1670
24 Pr24 2400 2400 2400 2340 2280 2280 2286 2281 2284 2288 2280
25  Pr25 2980 2980 2500 2500 2460 2460 2460 2460 2460 2460 2460
26 Pr26 327 291 291 327 291 291 291 291 291 291 291
27 Pr27 5125 4550 5225 4525 4525 4525 4525 4525 4525 4525 4525
28 Pr28 960 960 930 920 920 920 920 920 920 920 920
29 Pr29 859 849 809 809 809 809 809 809 809 809 809
30 Pr30 476 465 417 417 417 417 417 417 417 417 417
31  Pr31 3778 3572 3513 3487 3487 3458 3458 3458 3458 3458 3458
32 Pr32 112 17 109 112 109 109 109 109 109 109 109

Number of optimal solutions found
35 31 3 31 31 31
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Figure 1. The number of optimal solutions that every method achieved.

One significant finding of our research is that the new PSO variation, TrigAC-PSO,
which is first presented in this study, achieved very good results. The following table
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(Table 3) examines the deviation of VAM, TDM1, TOCM-MT, JHM, BCE, PSO, DuPSO,
TVAC, TrigAC-PSO and FSVAC-PSO. The measurement of deviation shows the difference
between the observed value and the expected value of a variable, and it is given by the

following formula:
xjj — optimal

Dev = - 17)
optimal
where x;; is the current solution.
Table 3. The deviation (dev) of the methods for 32 numerical examples.
VAM TDM1  TOCMMT TrigAC-
JHM BCE PSO DWPSO TVAC PSO FSVAC
Pr.01 0.085227 0 0 0 0 0 0 0 0 0
Pr.02 0.048452 0.048452 0 0 0 0 0 0 0 0
Pr.03 0 0 0 0 0 0 0 0 0 0
Pr.04 0 0 0.033898 0 0 0 0 0 0 0
Pr.05 0 0 0 0 0 0 0 0 0 0
Pr.06 0.091954 0.091954 0 0.057471 0 0 0 0 0 0
Pr.07 0 0.025641 0 0 0 0 0 0 0 0
Pr.08 0.012658 0.009494 0 0 0 0 0 0 0 0
Pr.09 0 0.081633 0.081633 0 0 0 0 0 0 0
Pr.10 0.146341 0.060976 0.060976 0.02439 0 0 0.002439 0 0 0
Pr.11 0 0 0 0 0 0 0 0 0 0
Pri12 0.021858 0.016393 0.021858 0 0.021858 0 0 0 0 0
Pr.13 0.075094 0.075094 0 0 0 0 0 0 0 0
Pr14 0 0 0 0 0 0.062271 0 0 0 0
Pr.15 0.051724 0 0 0.008621 0.008621 0 0 0 0 0
Pr.16 0.02 0 0 0.09 0.02 0 0 0 0 0
Pr.17 0.0333 0.0333 0 0 0 0 0 0 0 0
Pr.18 0 0 0 0 0 0 0 0 0 0
Pr.19 0 0 0 0 0.010526 0 0 0 0 0
Pr.20 0.108434 0 0 0 0 0 0 0 0 0
Pr.21 0.017341 0.031792 0 0 0 0 0 0 0 0
Pr.22 0.087912 0.087912 0 0.054945 0 0 0 0 0 0
Pr.23 0.005988 0 0 0.011976 0 0 0 0 0 0
Pr.24 0.052632 0.052632 0.052632 0.026316 0 0 0.002632 0.000439 0.001754 0.003509
Pr.25 0.211382 0.211382 0.01626 0.01626 0 0 0 0 0 0
Pr.26 0.123711 0 0 0.123711 0 0 0 0 0 0
Pr.27 0.132596 0.005525 0.154696 0 0 0 0 0 0 0
Pr.28 0.043478 0.043478 0.01087 0 0 0 0 0 0 0
Pr.29 0.061805 0.049444 0 0 0 0 0 0 0 0
Pr.30 0.141487 0.115108 0 0 0 0 0 0 0 0
Pr.31 0.092539 0.032967 0.015905 0.008386 0.008386 0 0 0 0 0
Pr.32 0.027523 0.073394 0 0.027523 0 0 0 0 0 0
Average 0.05292 0.03583 0.014023 0.01405 0.002168 0.001946 0.000158 0.000013 0.000054 0.00011

Considering Table 3 and Figure 2, it is evident that method VAM, TDM1, TOCM-MT

and 1HM appear to be more inefficient, deviating from the optimal solution at a significant
scale. More precisely, the results of Table 3 show that the solutions achieved by VAM
differ from the optimal solution by 5.29%, the results of TDM1 by 3.58%, the results of
TOCM-MT by 1.4% and the results of JHM by 1.4%. BCE method presented higher levels
of efficiency since the values of deviation were negligible. Analysis of the data of Table 3
reveals that the percentage of the deviation in classic PSO, as well as in its variations, was
almost zero. Furthermore, the TVAC method was nearest to the optimal solution, followed
by TrigAC-PSO, FSVAC-PSO and finally by DWPSO.
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Figure 2. Average percentage deviation for each method.

The findings from the current study provide us with the basic information for an
extensive meta-analysis, allowing us to investigate which of the presented PSO variations
has better performance in solving the TP. To serve this cause, many experiments were
carried out which investigated different values of PSO population size (number of particles).
The classic PSO, as well as each one of its variations (DWPSO, TVAC, TrigAC-PSO, FSVAC-
PSO), were tested for 10, 15 and 20 particles for all 32 numerical examples. The results
presented in Tables 4-6 show the performance of the classic PSO as well of its variations for
30 independent runs. The number of generations was stable and equal to 100 for all runs.

Evidence from this study, presented in Table 4, expounds the accuracy rate of each
algorithm for 10 particles. The accuracy rate is given by the following formulation:

TOR

Accuracy = TR

(18)

where TOR is the total number of runs where optimal solution was found and TR is the
number of runs.

Table 4 shows that the classic PSO obtained 38.33% accuracy rate. A significant increase
in accuracy rate, using 10 particles, was evident in DWPSO, which achieved 59.58% accuracy,
almost twice as much as the percentage of the classic PSO. Moreover, TVAC obtain a 61.45%
accuracy rate. The best results came from Trig AC-PSO, since this PSO variation achieved a
62.81% accuracy rate. Last but not least, FSVAC achieved a 59.5% accuracy rate.

Table 4. Accuracy of PSO, DWPSO, TVAC, TrigAC-PSO and FSVAC for 10 particles.

PSO DWPSO TVAC TrigAC-PSO FSVAC
Pr.01 0.0333 0.2 0.4666 0.5667 0.2333
Pr.02 0.7667 1 1 1 1
Pr.03 1 1 1 1 1
Pr.04 1 1 1 1 1
Pr.05 0.2333 0.6667 0.8333 0.8667 0.8333
Pr.06 0.3667 1 0.9667 1 1
Pr.07 0.7667 0.9 1 1 0.9
Pr.08 0 0 0.2667 0.1667 0.1334
Pr.09 0.0333 0.3 0.2 0.2667 0.1
Pr.10 0 0 0.0333 0 0.0333
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Table 4. Cont.

PSO DWPSO TVAC TrigAC-PSO FSVAC
Pr.11 0.1 0.1 0.1333 0.1 0.0667
Pr.12 0 0.3 0.4 0.4667 0.3667
Pr.13 0.5334 1 1 0.8667 1
Pr.14 0 0 0 0.3333 0
Pr.15 0.7 1 1 1 1
Pr.16 0 0.4667 0.4667 0.6667 0.5667
Pr.17 0.4333 0.9 0.9333 0.9 0.8333
Pr.18 1 1 1 1 1
Pr.19 0.4667 0.7 0.7667 0.5 0.7333
Pr.20 0.4667 0.8333 0.6667 0.8667 0.7667
Pr.21 0.5667 0.5333 0.3333 0.5333 0.3939
Pr.22 0.3667 1 0.9667 0.8333 1
Pr.23 0.0333 0.0333 0.1667 0.1667 0.1667
Pr.24 0 0 0 0 0
Pr.25 0.5333 0.9667 0.9333 0.9667 1
Pr.26 0.4667 0.6 0.7 0.7 0.7333
Pr.27 0.0333 0.4667 0.5667 0.4 0.4667
Pr.28 0.2 0.2667 0.0667 0.2 0
Pr.29 0.8333 1 1 1 1
Pr.30 0.8667 1 1 1 1
Pr.31 0.4 0.8333 0.7 0.7 0.7
Pr.32 0.0667 0 0 0.0333 0
Average 0.383338 0.595834 0.611459 0.6281313 0.594603

The accuracy rate results for 15 particles are presented in Table 5. DWPSO achieved
65.31% accuracy, whereas TVAC reached 66.99%. It is of particular interest that Trig AC-PSO
achieved the highest accuracy rate once again by reaching 69.8%. Finally, FSVAC obtained
an accuracy rate equal to 66.56%.

Table 5. Accuracy of PSO, DWPSO, TVAC, TrigAC-PSO and FSVAC for 15 particles.

PSO DWPSO TVAC TrigAC-PSO FSVAC
Pr.01 0.0667 0.6 0.6333 0.6333 0.4333
Pr.02 0.9667 1 1 1
Pr.03 1 1 1 1 1
Pr.04 1 1 1 1 1
Pr.05 0.7 0.9 1 1 1
Pr.06 0.7 1 0.9667 1 1
Pr.07 0.7667 1 1 0.9667 0.9667
Pr.08 0 0.0667 0.3333 0.1667 0.0333
Pr.09 0.0667 0.2333 0.2333 0.2 0.1333
Pr.10 0.2667 0 0 0.0667 0
Pr.11 0.2333 0.0667 0.3 0.2 0.0333
Pr.12 0.1 0.4 0.4333 0.3333 0.2
Pr.13 0.5667 1 1 0.9667 1
Pr.14 0 0.0333 0 0.0667 0.1
Pr.15 0.3 0.9333 0.9667 1 1
Pr.16 0 0.6 0.5 0.9333 0.5333
Pr.17 0.5667 0.9 1 0.9667 1
Pr.18 1 1 1 1 1
Pr.19 0.5333 0.9 0.9 0.6667 1
Pr.20 0.6334 0.9667 0.8667 0.9333 1
Pr.21 0.6667 0.4333 0.6667 1 0.4667
Pr.22 0.6 1 1 1 1
Pr.23 0.0667 0.2 0.3667 0.2333 0.2
Pr.24 0.6666 0 0 0 0
Pr.25 0.6333 1 0.8333 1 1
Pr.26 0.3333 1 0.8 0.6667 1
Pr.27 0.3667 0.4 0.4667 0.8333 1
Pr.28 0.3333 0.1333 0.1 0.3333 0.1667
Pr.29 1 1 1 1 1
Pr.30 0.9333 1 1 1 1
Pr.31 0.3667 1 0.9333 1 1
Pr.32 0.1333 0.1333 0.1 0.1667 0.0333
Average 0.486463 0.653122 0.669894 0.69791875 0.665622
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The accuracy rate results for 20 particles are presented in Table 6 and Figure 3. A
high percentage of 53.33% was obtained by the classic PSO. Between DWPSO and TVAC,
it is evident that both rates were sufficiently close, with accuracy rates ascending up to
66.78% and 66.56%, respectively. FSVAC, the variation which has been proposed and
presented in this research, achieved accuracy rate equal to 66%. This new method evinced
positive effects in terms of its validity and effectiveness. Last but not least, TrigAC-PSO
demonstrated the best performance compared to all other variations, achieving 74.3%.
Running the algorithm using 20 particles, TrigAC-PSO found the optimal in 31 out of
32 test instances, reaching 96.88%. Moreover, in 20 out of 32 numerical examples, this
variation managed to reach the optimum in all 30 runs, with a success rate of 62.5%. The
punctuality of this method rises to 75%; hence, this variation is established, compared to
other variations, as the ideal option for the solution of the TP.

Table 6. Accuracy of PSO, DWPSO, TVAC, TrigAC-PSO and FSVAC for 20 particles.

PSO DWPSO TVAC TrigAC-PSO FSVAC
Pr.01 0.1 0.6667 0.7333 0.7 0.6
Pr.02 1 1 1 1 1
Pr.03 1 1 1 1 1
Pr.04 1 1 1 1 1
Pr.05 0.7333 1 1 1 1
Pr.06 0.5667 1 1 0.9667 1
Pr.07 0.9 0.9667 0.9667 1 1
Pr.08 0.0667 0.2333 0.3 0.0667 0.1
Pr.09 0.0333 0.4 0.2 0.3333 0.4
Pr.10 0.2 0 0 0.1333 0.0667
Pr.11 0.3333 0.3 0.2 0.4 0.1
Pr.12 0.2333 0.5 0.4667 0.5333 0.7
Pr.13 0.8333 1 1 1 1
Pr.14 0 0.0333 0.0333 0.3 0.1
Pr.15 0.6667 1 0.9667 1 1
Pr.16 0.0333 0.6667 0.7 1 0.6
Pr.17 0.5333 0.9 1 1 1
Pr.18 1 1 1 1 1
Pr.19 0.5333 0.6333 0.5 0.6333 1
Pr.20 1 1 0.9333 0.9333 0.9667
Pr.21 0.7333 0.4 0.9 1 0.3
Pr.22 0.5333 1 0.9 1 0.3
Pr.23 0.1 0.3333 0.3333 0.7333 0.4667
Pr.24 0.0667 0 0 0 0
Pr.25 0.8333 1 1 1 0.9667
Pr.26 0.6667 1 1 1 1
Pr.27 0.4667 0.1333 0 0.6 0.2667
Pr.28 0.4667 0.1 0.1 0.2 0.1
Pr.29 1 1 1 1 1
Pr.30 0.8667 1 1 1 1
Pr.31 0.3667 1 1 1 1
Pr.32 0.2 0.1 0.0667 0.2333 0.0667
Average 0.533331 0.667706 0.665625 0.7427031 0.659381
Accuracy of 20 Particles
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Figure 3. Accuracy for 20 particles.
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In summary, the proposed method FSVAC-PSO, although it did not demonstrate the
highest average success rate, was very accurate in calculating the optimal solution in cases
where the aforementioned variations were unable to approach the optimal solution. In
more detail, this research experimented on population sizes of 10, 15, 20 particles over
32 well-known test instances used in the respective literature. For each problem, as already
mentioned, 30 independent experimental runs were conducted. In the case of 10 particles,
the classical PSO found the optimal solution in only in 3 out of 32 test instances in all
30 runs (9.4%); DWPSO found the optimal solution in 10 out of 32 test instances in all
30 runs (31.25%); while TVAC and Trig-PSO managed to find the optimal solution in 9 out
of 32 test instances in all 30 runs (28.13%); finally, FSVAC was shown to be the best PSO
variation, finding the optimal solution in 11 out of 32 test instances in all 30 runs (34.4%).

In the case of 15 particles, FSVAC also showed the best performance by finding in the
optimal solution in 18 out of 32 test instances in all 30 runs (56.25%); the classic PSO found
the optimal solution in 4 out of 32 (12.5%) test instances, and TVAC in 11 out of 32, in all
30 runs; last but not least, both DWPSO and Trig AC-PSO found the optimal value in 13 out
of 32 test instances in all 30 runs (40.63%).

In the case of 20 particles, the variations TrigAC-PSO and FSVAC are still more accurate
than the other PSO variations since they succeeded in finding the optimal solution in 18 out
of 32 and in 17 out of 32 test instances in all 30 runs, respectively. The other PSO variations
attained relatively lower success rates in finding the optimal solution in all of their runs.

In the following table (Table 7), the most important statistical measures in the cases
of 20 particles for 30 independent runs are represented for all PSO variations. These
experimental results demonstrate the very good performance and stability of the proposed
PSO variations in solving the TP. As presented, in all cases, the mean value is very close to
the best one, showing that all these variations are not only efficient but also quite stable.
The value of the Coefficient of Variation (CV), which is the basic measure for proving
stability of stochastic algorithms, is, for all PSO variations, quite small; more precisely, the
mean CV value is for each PSO variation is as follows: Classic PSO, 2.12%; DWPSO, 1.32%;
TVAC, 0.87%; TrigAC-PSO, 0.66%; and FSVAC, 1.26%. These values show that TrigAC-PSO,
which is one of the new PSO variations presented in this work, is the most stable one.

Table 7. Statistical measures for 20 particles.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Mean 894.7666 884.3 883.6 882.86667 884.4
St.Dev 22.51847 10.61278 11.2544 7.41263 8.76356

Pr.01 Min 880 880 880 880 880
Max 965 928 940 910 917
cv% 2.51668658 1.200133 1.273701 0.8396096 0.990905
Mean 743 743 743 743 743
St.Dev 0 0 0 0 0

Pr.02 Min 743 743 743 743 743
Max 743 743 743 743 743
cv% 0 0 0 0 0
Mean 5600 5600 5600 5600 5600
St.Dev 0 0 0 0 0

Pr.03 Min 5600 5600 5600 5600 5600
Max 5600 5600 5600 5600 5600
cv% 0 0 0 0 0
Mean 59 59 59 59 59
St.Dev 0 0 0 0 0

Pr.04 Min 59 59 59 59 59
Max 59 59 59 59 59
cv% 0 0 0 0 0
Mean 28.266666 28 28 28 28
St.Dev 0.4497764 0 0 0 0

Pr.05 Min 28 28 28 28 28
Max 29 28 28 28 28
cv% 1.591190254 0 0 0 0
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Table 7. Cont.

PSO DWPSO TVAC TrigAC-PSO FSVAC
Mean 441.1333333 435 435 435 435
St.Dev 7.619092775 0 0 0 0
Pr.06 Min 435 435 435 435 435
Max 463 435 435 435 435
cv% 1.72716324 0 0 0 0
Mean 391.5 390.0333 390.4667 390 390
St.Dev 5.015493237  0.182574 2.55603 0 0
Pr.07 Min 390 390 390 390 390
Max 410 391 404 390 390
cv% 1.281096612  3.290831 0.654611 0 0
Mean 1650.933333  1593.033 1598.7 1592.1333 1629.533
St.Dev 44.7667775 17.95873 23.31367 12.23824 40.14347
Pr.08 Min 1580 1580 1580 1580 1580
Max 1790 1642 1661 1623 1712
cv% 2711604194  1.127329 1.45829 0.7686698 2.463495
Mean 52.6 51.3 52.06667 51.6 51.16667
St.Dev 2.40114915 2.768667 1.79910 1.90462 1.89524
Pr.09 Min 49 109 49 49 49
Max 63 122 55 53 53
cv% 4564922339  5.397012 3.455389 3.6911285 3.704062
Mean 427.4333333  427.7667 428.1 428.3 425.8
St.Dev 8.935336025  4.38401 5.16853 6.25410 5.71386
Pr.10 Min 410 411 411 410 410
Max 434 431 431 432 430
cv% 2.09046308 1.02486 1.20732 1.4602153 1.341913
Mean 2913.833333  2934.8 2864.633 2857.1 3036.767
St.Dev 186.8538214  220.8248 226.892 11.66885 380.4261
Pr.11 Min 2850 2850 2850 2850 2850
Max 3850 3945 2977 2891 4554
cv% 6.412646162  7.524358 1.117014 0.4084159 12.52734
Mean 190.5666667  184.4333 186.0333 184.33333 183.9
St.Dev 7.623391106  1.50134 4.60496 1.49327 1.39827
Pr.12 Min 183 183 183 183 183
Max 206 186 200 186 186
cv% 4.00038015 0.814029 2.475347 0.8100976 0.760345
Mean 805.3666667 799 799 799 799
St.Dev 16.77535823 0 0 0 0
Pr.13 Min 799 799 799 799 799
Max 878 799 799 799 799
cv% 2.082946678 0 0 0 0
Mean 319.9333333  302.2 290.4 290.1 292.2667
St.Dev 21.78251962  17.70525 6.69328 16.159442 8.10250
Pr.14 Min 292 273 273 273 273
Max 378 335 317 327 306
cv% 6.808455809  5.858785 2.304849 5.5703008 2.772298
Mean 1186.1 1160 1160.067 1160 1160
St.Dev 73.12122669 0 0.36514 0 0
Pr.15 Min 1160 1160 1160 1160 1160
Max 1401 1160 1162 1160 1160
cv% 6.164845012 0 0.031476 0 0
Mean 217.1333333  202.9667 202.7333 200 203.2333
St.Dev 7.946950546  5.979755 6.53338 0 6.76034
Pr.16 Min 200 200 200 200 109
Max 237 218 220 200 119
cv% 3.659940381  2.946176 3.222647 0 3.326397
Mean 2446333333  241.6667 240 240 240
St.Dev 6.025711195  5.195046 0 0 0
Pr.17 Min 240 240 240 240 240
Max 256 259 240 240 240
cv% 2463160319  2.149674 0 0 0
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Table 7. Cont.

PSO DWPSO TVAC TrigAC-PSO FSVAC
Mean 820 820 820 820 820
St.Dev 0 0 0 0 0
Pr.18 Min 820 820 820 820 820
Max 820 820 820 820 820
cv% 0 0 0 0 0
Mean 190.8 190.7 190.9333 190.56667 190
St.Dev 0.924755326  0.952311 0.98026 0.81720 0
Pr.19 Min 190 190 190 190 190
Max 192 192 192 192 190
cv% 0.484672603 0.499377 0.513407 0.4288264 0
Mean 83 83 83.3 83.2 83.1
St.Dev 0 0 0.91538 0.761124 0.54772
Pr.20 Min 83 83 83 83 83
Max 83 83 86 86 86
cv% 0 0 1.098902 0.914813 0.659113
Mean 3484.5 3536.467 3468.2 3460 3536.1
St.Dev 58.99371679 71.42864 34.7804 0 63.5839
Pr.21 Min 3460 3460 3460 3460 3460
Max 3745 3646 3645 3460 3644
cv% 1.693032481 2.019774 1.00284 0 1.798138
Mean 928.3 910 913.6 910 910
St.Dev 28.61534433 0 14.8686 0 0
Pr.22 Min 910 910 910 910 910
Max 990 910 990 910 910
cv% 3.08255352 0 1.627476 0 0
Mean 1679.1 1671.133 1670.733 1671 1671.367
St.Dev 14.23291474 1.136642 0.58329 2.34888 2.02541
Pr.23 Min 1670 1670 1670 1670 1670
Max 1724 1675 1672 1679 1678
cv% 0.847651405 0.068016 0.034912 0.1405674 0.121183
Mean 2403.966667  2366.4 2372.8 2361.5667 2333.833
St.Dev 4498005944  29.09627 31.0332 18.34287 117.1320
Pr.24 Min 2280 2317 2320 2322 2292
Max 2495 2430 2424 2390 2420
cv% 1.871076669 1.229559 1.307874 0.7767247 1.47626
Mean 2468.766667 2460 2460 2460 2460
St.Dev 24.21695521 0 0 0 0
Pr.25 Min 2460 2460 2460 2460 2460
Max 2563 2460 2460 2460 2460
av% 0.980933335 0 0 0 0
Mean 292.6 291 291 291 291
St.Dev 2.485821865 0 0 0 0
Pr.26 Min 291 291 291 291 291
Max 299 291 291 291 291
cv% 0.84956318 0 0 0 0
Mean 4574.233333  4639.967 4666.433 4535 4634.9
St.Dev 73.42821187  60.22915 29.96973 18.34910 67.4073
Pr.27 Min 4525 4525 4529 4525 4525
Max 4753 4675 4677 4585 4675
cv% 1.605257243 1.298051 0.642241 0.4046109 1.454343
Mean 941.7 953.3667 953.0667 947.26667 947.9667
St.Dev 22.49314072 19.67404 13.35957 17.26454 13.60396
Pr.28 Min 920 920 920 920 920
Max 974 992 960 960 968
cv% 2.38856756 2.063638 1.401746 1.8225639 1.435068
Mean 809 809 809 809 809
St.Dev 0 0 0 0 0
Pr.29 Min 809 809 809 809 809
Max 809 809 809 809 809
cv% 0 0 0 0 0
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Table 7. Cont.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Mean 419.5333333 417 417 417 417
St.Dev 7103827688 0 0 0 0

Pr.30 Min 417 417 417 417 417
Max 445 417 417 417 417
cv% 1.693268955 0 0 0 0
Mean 3480.066667 3458 3458 3458 3458
St.Dev 33.27620392 0 0 0 0

Pr.31 Min 3458 3458 3458 3458 3458
Max 3587 3458 3458 3458 3458
cv% 0.956194438 0 0 0 0
Mean 114.3 116.9333 114.4333 114.7 118.4333
St.Dev 3.761419395  4.532894 3.549485 3.77057 4.44648

Pr.32 Min 109 109 109 109 109
Max 122 125 127 119 125
cv% 3.290830616  3.876477 3.101794 3.2873372 3.754424

The above results urged us to continue the research for an even greater number of
particles, in order to study the behavior of new variations in a multi-solution environment.

More specifically, the aforementioned variations were also tested on the set of 40
and 50 particles. In this case, 10 independent runs were carried out for each test instance,
reducing the chances of finding the optimal solution from the 30 independent runs that we
have already performed. Selecting more particles revealed significant results.

The results showed, once again, the consistent superiority of the proposed variations.
Table 8 and Figure 4 shows the accuracy achieved by each variation for 40 particles. These
results provide further support for the hypothesis that TrigAC-PSO and FSVAC are still
more accurate than the other PSO variations, since they attained accuracy rates 88.31% and
77.5%, respectively; the DWPSO method follows with 75.94%, and TVAC with 74.38%; last
but not least is the classic PSO with 51.56%, attaining a spectacular 13% increase over the
10-particle accuracy rates, but maintaining a steady performance for 15 and 20 particles.

Table 8. Accuracy of PSO, DWPSO, TVAC, TrigAC-PSO and FSVAC for 40 particles.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Pr.01 0.2 0.8 0.8 1 0.8
Pr.02 1 1 1 1 1
Pr.03 1 1 1
Pr.04 1 1 1 1 1
Pr.05 1 1 1 1 1
Pr.06 0.4 1 1 1 1
Pr.07 0.8 1 1 1 1
Pr.08 0.2 0.2 0.3 0.7 0.1
Pr.09 0 0.5 0.3 0.6 0.3
Pr.10 0.2 0.5 0.2 0.5 0.6
Pr.11 0 0.5 0.4 0.8 0.4
Pr.12 0.2 0.7 0.7 0.7 1
Pr.13 0.7 1 1 1 1
Pr.14 0 0.3 0.5 0.7 0.5
Pr.15 0.8 1 1 1 1
Pr.16 0.2 1 0.8 1 1
Pr.17 0.3 1 1 1 1
Pr.18 1 1 1 1 1
Pr19 0.2 0.9 0.6 0.9 1
Pr.20 1 0.9 1 1 1
Pr.21 0.6 0.5 0.6 0.7 0.4
Pr.22 0.7 1 1 1 1
Pr.23 0.1 0.7 0.9 1 0.8
Pr.24 0 0 0 0 0
Pr.25 0.7 1 1 1 1
Pr.26 0.8 1 1 1 1
Pr.27 0.8 0.5 0.2 0.9 0.6
Pr.28 0 0.1 0.4 0.6 0.3
Pr29 1 1 1 1 1
Pr.30 1 1 1 1 1
Pr.31 0.5 1 1 1 1
Pr.32 0.1 0.2 0.1 0.2 0
Average 0.515625 0.759375 0.74375 0.853125 0.775
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Accuracy of 40 particles
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Figure 4. Accuracy for 40 particles.

In the following table (Table 9), the most important statistical measures in the case
of 40 particles for 10 independent runs are represented for all PSO variations. According
to the particularly low values of the Coefficient of Variation (CV), we can infer that the
PSO variations are extremely stable; more precisely, the mean CV value for each PSO
variation is as follows: Classic PSO, 2.14%; DWPSO, 0.93%; TVAC, 0.86%; TrigAC-PSO,
0.47%; and FSVAC, 0.81%. These values show that TrigAC-PSO, which is one of the new
PSO variations presented in this work, is once again the most stable method.

Table 9. Statistical measures for 40 particles.

PSO DWPSO TVAC TrigAC-PSO FSVAC
Mean 900.6 882.6 879.6 880 886.5
Var 32.69455 7.229569 2.065591 0 13.94633
Pr.01 Min 880 880 874 880 880
Max 975 903 882 880 918
cv% 3.630307 0.819122 0.234833 0 1.57319
Mean 743 743 743 743 743
Var 0 0 0 0 0
Pr.02 Min 743 743 743 743 743
Max 743 743 743 743 743
cv% 0 0 0 0 0
Mean 5600 5600 5600 5600 5600
Var 0 0 0 0 0
Pr.03 Min 5600 5600 5600 5600 5600
Max 5600 5600 5600 5600 5600
cv% 0 0 0 0 0
Mean 59 59 59 59 59
Var 0 0 0 0 0
Pr.04 Min 59 59 59 59 59
Max 59 59 59 59 59
cv% 0 0 0 0 0
Mean 28 28 28 28 28
Var 0 0 0 0 0
Pr.05 Min 28 28 28 28 28
Max 28 28 28 28 28
cv% 0 0 0 0 0
Mean 443.2 435 435 435 435
Var 11.51617 0 0 0 0
Pr.06 Min 435 435 435 435 435
Max 472 435 435 435 435
cv% 2.598414 0 0 0 0
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Table 9. Cont.

PSO DWPSO TVAC TrigAC-PSO FSVAC
Mean 393.9 390 390 390 390
Var 8.2253 0 0 0 0
Pr.07 Min 390 390 390 390 390
Max 410 390 390 390 390
cv% 2.08817 0 0 0 0
Mean 1659.4 1595.4 1611.5 1586.3 1623.8
Var 74.99363 23.41035 53.60193 18.53555 32.25179
Pr.08 Min 1580 1580 1571 1580 1580
Max 1802 1650 1717 1639 1671
cv% 4.519322 1.467365 3.326213 1.168477 1.986192
Mean 52.4 50.2 50.5 49.7 50.4
Var 1.577621 1.619328 1.509231 1.251666 1.074968
Pr.09 Min 50 49 49 49 49
Max 55 53 53 53 52
cv% 3.010728 3.225752 2.988576 2.518442 2.132872
Mean 421.7 417 417.2 414.3 414.7
Var 11.72888 9.092121 6.924995 5.945119 6.848357
Pr.10 Min 410 410 410 410 410
Max 434 430 430 425 430
cv% 2.781333 2.180365 1.659874 1.434979 1.6514
Mean 32739 2894 2852.8 2850.2 3016.8
Var 557.6408 121.5237 4.391912 0.421637 255.7915
Pr.11 Min 2851 2850 2850 2850 2850
Max 4360 3237 2864 2851 3513
cv% 17.03292 4.199159 0.153951 0.014793 8.478901
Mean 190.9 185.2 183.7 183.9 183
Var 7.218033 4.289522 1.251666 1.449138 0
Pr.12 Min 183 183 183 183 183
Max 203 196 186 186 183
cv% 3.781054 2.316157 0.681364 0.788003 0
Mean 807.4 799 799 799 799
Var 13.52528 0 0 0 0
Pr.13 Min 799 799 799 799 799
Max 827 799 799 799 799
cv% 1.675165 0 0 0 0
Mean 300.9 284.6 280 276.9 281.8
Var 15.16905 10.25454 8.628119 6.707376 9.29516
Pr.14 Min 290 273 273 273 273
Max 330 302 290 291 292
cv% 5.041225 3.603141 3.081471 242231 3.298495
Mean 1160.4 1160 1160 1160 1160
Var 0.843274 0 0 0 0
Pr.15 Min 1160 1160 1160 1160 1160
Max 1162 1160 1160 1160 1160
cv% 0.072671 0 0 0 0
Mean 215.2 200 201.6 200 200
Var 8.243516 0 4.718757 0 0
Pr.16 Min 200 200 200 200 200
Max 221 200 215 200 200
cv% 3.83063 0 2.340653 0 0
Mean 244.7 240 240 240 240
Var 6.236986 0 0 0 0
Pr.17 Min 240 240 240 240 240
Max 256 240 240 240 240
cv% 2.54883 0 0 0 0
Mean 820 820 820 820 820
Var 0 0 0 0 0
Pr.18 Min 820 820 820 820 820
Max 820 820 820 820 820
cv% 0 0 0 0 0
Mean 1914 190.2 190.7 190.1 190
Var 0.843274 0.632456 0.948683 0.316228 0
Pr.19 Min 190 190 190 190 190
Max 192 192 192 191 190
cv% 0.440582 0.332521 0.497474 0.166348 0
Mean 83.3 83.3 83 83 83
Var 0.948683 0.948683 0 0 0
Pr.20 Min 83 83 83 83 83
Max 86 86 83 83 83
cv% 1.138876 1.138876 0 0 0
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Table 9. Cont.

PSO DWPSO TVAC TrigAC-PSO FSVAC
Mean 3529.4 3482.4 3479.3 3469.3 3482
Var 136.2777 28.33608 40.89567 16.54657 28.15828
Pr21 Min 3460 3460 3460 3460 3460
Max 3805 3545 3590 3502 3544
% 3.861213 0.813694 1.175399 0.476943 0.808681
Mean 919.6 910 910 910 910
Var 16.46005 0 0 0 0
Pr22  Min 910 910 910 910 910
Max 954 910 910 910 910
% 1.789914 0 0 0 0
Mean 16744 1670.3 1670.1 1670 1671
Var 4718757 0.483046 0.316228 0 2.538591
Pr23  Min 1670 1670 1670 1670 1670
Max 1686 1671 1671 1670 1678
v% 0281818 0.02892 0.018935 0 0.15192
Mean 2412.6 2370 2352.5 2349 2351.1
Var 20.74823 19.47648 34.42302 21.34895 2951252
Pr24  Min 2371 2341 2287 2315 2296
Max 2441 2397 2419 2393 2394
v% 0.859994 0.821792 1.463253 0.908853 1.255264
Mean 2479 2460 2460 2460 2460
Var 31.34042 0 0 0 0
Pr25  Min 2460 2460 2460 2460 2460
Max 2540 2460 2460 2460 2460
v% 1.264237 0 0 0 0
Mean 292.2 291 291 291 291
Var 2699794 0 0 0 0
Pr26  Min 291 291 291 291 291
Max 299 291 291 291 291
v% 0.923954 0 0 0 0
Mean 4550.9 4538.4 45785 4525.6 4556.4
Var 54.61471 20.28245 59.81871 1.897367 62.54634
Pr27  Min 4525 4525 4525 4525 4525
Max 4657 4585 4675 4531 4675
v% 1.200086 0.446908 1.306513 0.041925 1.372714
Mean 971.9 931 934.1 9247 930.3
Var 11.97637 14.96663 15.05139 8525126 12,5614
Pr.28 Min 960 920 920 920 920
Max 993 969 955 947 960
v% 1.232263 1.607586 1.611326 0921934 1.350253
Mean 809 809 809 809 809
Var 0 0 0 0 0
Pr29  Min 809 809 809 809 809
Max 809 809 809 809 809
v% 0 0 0 0 0
Mean 417 417 417 417 417
Var 0 0 0 0 0
Pr30  Min 417 417 417 417 417
Max 417 417 417 417 417
v% 0 0 0 0 0
Mean 3469.5 3458 3458 3458 3458
Var 12.40296 0 0 0 0
Pr31 Min 3458 3458 3458 3458 3458
Max 3483 3458 3458 3458 3458
v% 0.357485 0 0 0 0
Mean 115 118.6 1214 115 117.1
Var 2.94392 8.126773 8.448537 4944132 2330951
Pr32  Min 109 109 109 109 112
Max 119 129 129 123 120
v% 2559931 6.852254 6.959256 4299245 1.990565

The following table (Table 10) and Figure 5 present the accuracy for the 50 particles.
The accuracy for each PSO variation is as follows: Classic PSO, 52.5%; DWPSO, 74.3%;
TVAC, 76.56%; Trig AC-PSO, 86.88%; and FSVAC, 82.19%. The two new variations range at
the highest levels. These are particularly promising results, demonstrating that the increase
in the particle’s number leads to an increase in the PSO variation’s accuracy, especially in
the case of TrigAC-PSO and FSVAC. The results of 50 particles are equal to or better than
the results that are currently presented. Overall, TrigAC-PSO was the one that obtained the
most robust results.
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Table 10. Accuracy of PSO, DWPSO, TVAC, TrigAC-PSO and FSVAC for 50 particles.

PSO DWPSO TVAC TrigAC-PSO FSVAC

Pr.01 0.2 1 1 1 1
Pr.02 1 1 1 1 1
Pr.03 1 1 1 1 1
Pr.04 1 1 1 1 1
Pr.05 1 1 1 1 1
Pr.06 0.7 1 1 1 1
Pr.07 0.9 1 1 1 1
Pr.08 0.2 0.3 0.3 0.4 0.1
Pr.09 0 0.6 0.5 0.8 0.5
Pr.10 0.1 0.1 0.4 0.7 0.5
Pr.11 0.3 0.4 0.6 1 0.5
Pri12 0.2 0.7 0.5 0.8 1
Pr.13 0.8 1 1 1 1
Pr.14 0 0.3 0.2 0.7 1
Pr.15 0.8 1 1 1 1
Pr.16 0.1 1 1 1 1
Pr.17 0.3 0.7 1 1 1
Pr.18 1 1 1 1 1
Pr19 0.2 0.9 0.8 0.9 1
Pr.20 0.7 1 1 1 1
Pr.21 0.5 0.3 0.6 1 0.4
Pr.22 0.8 1 1 1 1
Pr.23 0.2 0.8 0.6 1 0.8
Pr.24 0 0 0.1 0 0
Pr.25 1 1 1 1 1
Pr.26 0.7 1 1 1 1
Pr.27 0.5 0.3 0.1 0.6 0.5
Pr.28 0.1 0.4 0.7 0.7 0.7
Pr.29 1 1 1 1 1
Pr.30 1 1 1 1 1
Pr.31 0.5 1 1 1 1
Pr.32 0 0 0.1 0.2 0.3
Average 0.525 0.74375 0.765625 0.86875 0.821875
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Figure 5. Accuracy for 50 particles.

The results of Table 11 lead to similar conclusions. In order to examine the stability for
the 50 particles, it is worth comparing the CV values of the proposed variations with those
of the traditional variations. Superior results are seen from TrigAC-PSO, as the CV value is
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equal to 0.4%, followed by the FSVAC with 0.59%. The other values of variations ranged as
follows: Classic PSO, 2.19%; DWPSO, 0.77%; and TVAC, 0.83%.

Table 11. Statistical measures for 50 particles.

PSO DWPSO TVAC TrigAC-PSO FSVAC
Mean 896.7 880 880 880 880
Var 17.79544 0 0 0 0
Pr.01 Min 880 880 880 880 880
Max 929 880 880 880 880
cv% 1.984548 0 0 0 0
Mean 743 743 743 743 743
Var 0 0 0 0 0
Pr.02 Min 743 743 743 743 743
Max 743 743 743 743 743
cv% 0 0 0 0 0
Mean 5600 5600 5600 5600 5600
Var 0 0 0 0 0
Pr.03 Min 5600 5600 5600 5600 5600
Max 5600 5600 5600 5600 5600
cv% 0 0 0 0 0
Mean 59 59 59 59 59
Var 0 0 0 0 0
Pr.04 Min 59 59 59 59 59
Max 59 59 59 59 59
cv% 0 0 0 0 0
Mean 28 28 28 28 28
Var 0 0 0 0 0
Pr.05 Min 28 28 28 28 28
Max 28 28 28 28 28
av% 0 0 0 0 0
Mean 438.9 435 435 435 435
Var 6.279597 0 0 0 0
Pr.06 Min 435 435 435 435 435
Max 448 435 435 435 435
cv% 1.430758 0 0 0 0
Mean 392 390 390 390 390
Var 6.324555 0 0 0 0
Pr.07 Min 390 390 390 390 390
Max 410 390 390 390 390
cv% 1.613407 0 0 0 0
Mean 1677.3 1611.7 1601.7 1585.9 1634.5
Var 73.73986 47.30058 31.18778 7.125073 41.31518
Pr.08 Min 1580 1580 1580 1580 1580
Max 1794 1713 1672 1595 1705
cv% 4.396343 2.934825 1.947168 0.449276 2.527696
Mean 52.4 50.3 50.2 494 50.8
Var 0.966092 1.888562 1.549193 0.843274 2.043961
Pr.09 Min 51 49 49 49 49
Max 53 53 53 51 54
cv% 1.843687 3.754597 3.086043 1.707032 4.023546
Mean 4241 421 418.6 412.6 416.1
Var 9.362455 8.589399 9.057839 4.299871 8.292567
Pr.10 Min 410 410 410 410 410
Max 432 430 430 421 430
v% 2.207605 2.040237 2.163841 1.04214 1.992926
Mean 3149.1 2870.4 2856.9 2850 2898.3
Var 611.9779 44.53014 14.0115 0 95.44405
Pr.11 Min 2850 2850 2850 2850 2850
Max 4429 2990 2894 2850 3091
cv% 19.43342 1.551357 0.490444 0 3.293105
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Table 11. Cont.

PSO DWPSO TVAC TrigAC-PSO FSVAC
Mean 187.4 183.9 184.5 183.6 183
Var 3.687818 1.449138 1.581139 1.264911 0
Pr.12 Min 183 183 183 183 183
Max 193 186 186 186 183
cv% 1.967886 0.788003 0.856986 0.688949 0
Mean 804.6 799 799 799 799
Var 11.80584 0 0 0 0
Pr.13 Min 799 799 799 799 799
Max 827 799 799 799 799
cv% 1.467293 0 0 0 0
Mean 302.8 284.2 289.2 278.1 273
Var 15.38975 7.871185 15.59772 8.491172 0
Pr.14 Min 290 273 273 273 273
Max 328 291 328 295 273
cv% 5.082481 2.769594 5.393403 3.05328 0
Mean 1184.3 1160 1160 1160 1160
Var 76.14321 0 0 0 0
Pr.15 Min 1160 1160 1160 1160 1160
Max 1401 1160 1160 1160 1160
cv% 6.429386 0 0 0 0
Mean 212.9 200 200 200 200
Var 8.69802 0 0 0 0
Pr.16 Min 200 200 200 200 200
Max 221 200 200 200 200
cv% 4.085496 0 0 0 0
Mean 246.9 241.6 240 240 240
Var 6.773314 2.796824 0 0 0
Pr.17 Min 240 240 240 240 240
Max 256 248 240 240 240
cv% 2.743343 1.157626 0 0 0
Mean 820 820 820 820 820
Var 0 0 0 0 0
Pr.18 Min 820 820 820 820 820
Max 820 820 820 820 820
cv% 0 0 0 0 0
Mean 191.6 190.1 190.3 190.1 190
Var 0.843274 0.316228 0.674949 0.316228 0
Pr.19 Min 190 190 190 190 190
Max 192 191 192 191 190
av% 0.440122 0.166348 0.354676 0.166348 0
Mean 83.9 83 83 83 83
Var 1.449138 0 0 0 0
Pr.20 Min 83 83 83 83 83
Max 86 83 83 83 83
cv% 1.72722 0 0 0 0
Mean 3493.6 3468.4 3477.6 3460 3470.8
Var 57.87765 13.1673 24.84262 0 12.76105
Pr.21 Min 3460 3456 3460 3460 3460
Max 3625 3492 3519 3460 3495
cv% 1.656676 0.379636 0.714361 0 0.367669
Mean 914.7 910 910 910 910
Var 10.133 0 0 0 0
Pr.22 Min 910 910 910 910 910
Max 938 910 910 910 910
cv% 1.107795 0 0 0 0
Mean 1675.2 1670.2 1672 1670 1670.6
Var 7.743097 0.421637 3.018462 0 1.577621
Pr.23 Min 1670 1670 1670 1670 1670
Max 1694 1671 1679 1670 1675
cv% 0.462219 0.025245 0.18053 0 0.094434
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Table 11. Cont.

PSO DWPSO TVAC TrigAC-PSO FSVAC
Mean 2423.4 2354.5 2336.8 2347 2355
Var 13.35165 31.64824 37.90573 26.48689 28.5151
Pr.24 Min 2401 2288 2280 2307 2309
Max 2446 2390 2404 2388 2395
cv% 0.550947 1.34416 1.622121 1.128543 1.210832
Mean 2460 2460 2460 2460 2460
Var 0 0 0 0 0
Pr.25 Min 2460 2460 2460 2460 2460
Max 2460 2460 2460 2460 2460
cv% 0 0 0 0 0
Mean 292.2 291 291 291 291
Var 1.932184 0 0 0 0
Pr.26 Min 291 291 291 291 291
Max 295 291 291 291 291
cv% 0.661254 0 0 0 0
Mean 4585.8 4549.3 4552.3 4532 4595.2
Var 69.97904 45.93486 42.05829 16.57307 75.36843
Pr.27 Min 4525 4525 4525 4525 4525
Max 4675 4675 4668 4577 4675
cv% 1.525994 1.009713 0.923891 0.36569 1.640156
Mean 957.3 928 929.9 923.3 923.6
Var 21.12424 12.26558 17.85404 8.420214 9.070097
Pr.28 Min 920 920 920 920 920
Max 990 960 967 947 949
cv% 2.206647 1.321722 1.919995 0.911969 0.982037
Mean 809 809 809 809 809
Var 0 0 0 0 0
Pr.29 Min 809 809 809 809 809
Max 809 809 809 809 809
cv% 0 0 0 0 0
Mean 417 417 417 417 417
Var 0 0 0 0 0
Pr.30 Min 417 417 417 417 417
Max 417 417 417 417 417
cv% 0 0 0 0 0
Mean 3470.4 3458 3458 3458 3458
Var 18.42221 0 0 0 0
Pr.31 Min 3458 3458 3458 3458 3458
Max 3508 3458 3458 3458 3458
av% 0.530838 0 0 0 0
Mean 118.1 122.3 123.7 114.1 112.6
Var 5.384133 6.498718 8.590046 3.784471 3.306559
Pr.32 Min 112 11a2 109 109 109
Max 127 129 129 120 119
cv% 4.558961 5.313751 6.944257 3.316802 2.936553

The overall results demonstrate two inferences of decisive importance: first, the PSO
algorithm and its variations have successfully solved the TP with maximum accuracy and
efficiency; second, TrigAC-PSO, beyond any doubt, is the leading option for solving the TP
in terms of both stability and the solution’s quality.

7. Conclusions

As technology is developing, the need for product improvement and trading is of high
priority in obtaining a more economical solution. The PSO algorithm was applied with
success in order for the TP to be solved. Furthermore, two new variations were introduced
and compared to already-known variations. These variations induced exceptional results
and indicated their superiority against the existing variations and the well-known exact
methods in the literature. The proposed PSO variations have been tested in a variety of test
instances with different combined values of inertia weight as well as social and personal
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acceleration parameters. It was evidently proven that the solution quality is inseparably
linked with the selection of proper values for controlling the algorithm parameters. In order
to see the effectiveness and stability of the proposed variations, we compared their results
with those of other PSO variations for the same instances. Remarkably, the punctuality
of one of our variations rose to 88%, and it was finally established as the ideal option
compared to all other variations for the solution of TP.

It can be easily observed that this PSO variationis simple compared to other variations
with complex structures. It was a challenge to achieve better results by creating and running
simple computational algorithms, proving that keeping a balance between human and
artificial intelligence is the key to the success of computational intelligence.

A more comprehensive analysis may be needed in order to examine the TP to a
greater extent. Moreover, the proposed PSO variations could be applied to more complex
networks such as the Sioux Fall network [27] in order to demonstrate the algorithm’s good
performance and independence of the network’s size. Except for this, some other real
constraints can be proposed in order to find the optimal solution for the TP with PSO
algorithm variations not only in balanced instances but also in more realistic unbalanced
instances in the future. Moreover, combining the proposed PSO variations with other
meta-heuristic methods to solve the TP will be an interesting challenge.
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Abstract: The robotics field of engineering has been witnessing rapid advancements and becoming
widely engaged in our lives recently. Its application has pervaded various areas that range from
household services to agriculture, industry, military, and health care. The humanoid robots are
electro-mechanical devices that are constructed in the semblance of humans and have the ability to
sense their environment and take actions accordingly. The control of humanoids is broken down to
the following: sensing and perception, path planning, decision making, joint driving, stability and
balance. In order to establish and develop control strategies for joint driving, stability and balance,
the triple inverted pendulum is used as a benchmark. As the presence of uncertainty is inevitable in
this system, the need to develop a robust controller arises. The robustness is often achieved at the
expense of performance. Hence, the controller design has to be optimized based on the resultant
control system’s performance and the required torque. Particle Swarm Optimization (PSO) is an
excellent algorithm in finding global optima, and it can be of great help in automatic tuning of the
controller design. This paper presents a hybrid He /sliding mode controller optimized by the PSO
algorithm to control the triple inverted pendulum system. The developed control system is tested by
applying it to the nominal, perturbed by parameter variation, perturbed by external disturbance, and
perturbed by measurement noise system. The average error in all cases is 0.053 deg and the steady
controller effort range is from 0.13 to 0.621 N.m with respect to amplitude. The system’s robustness is
provided by the hybrid He/sliding mode controller and the system’s performance and efficiency
enhancement are provided by optimization.

Keywords: metaheuristic optimization algorithm; particle swarm optimization; engineering design;
Heo; sliding mode control; triple inverted pendulum; robust control; uncertainty; torque

1. Introduction

Humanoids are robots designed in the shape of humans to carry out a variety of
tasks. They are built to receive data from their environment through suitable sensors
and to take actions by moving their joints in a certain way to accomplish the required
task (Figure 1a). Their sophisticated control system is partitioned into smaller dedicated-
purpose controllers. The most crucial part of the overall control system is the one that is
responsible for generating the motors’ commands to maintain balance and stability. For this
control goal, a triple inverted pendulum system is used to develop, test, and enhance the
control design. Mechanically, the torso, thighs, and shanks of the humanoid are represented
by three links connected by joints that are driven by electric direct current (DC) motors,
as shown in Figure 1b. Hence, the triple inverted pendulum system describes the basic
dynamics of a humanoid. The angles that are made by the three links with the vertical axis
are to be controlled by the torques produced by two DC motors. The torques are provided
by the drivers to the upper two joints through two belt pulleys. The angles are measured
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by three potentiometers. The horizontal bars are added to ease the balance by increasing
the moment of inertia [1].

Figure 1. Resemblance of humanoid structure to triple inverted pendulum: (a) humanoid structure [2];

(b) triple inverted pendulum structure [1].

The triple inverted pendulum is an unstable system which is difficult to control.
Besides being an unstable system, it is subject to perturbations, due to uncertainties in the
system’s friction parameters and moments of inertia. In addition, external disturbances like
wind gusts affect the system response. Noise in measurement readings is another source of
uncertainty that affects the system response. In such systems, where perturbations occur,
the controller used must take the uncertainties into account during its design to provide
robustness against them. The other challenge of controlling multiple degrees of freedom
(DOFs) by fewer control signals is encountered practically. This may occur by the failure of
one actuator during operation or may even be a goal in itself for the sake of minimizing
the consumed energy, cost, or size of the system. The underactuation makes disturbance
rejection more difficult, because the applied disturbance to the unactuated joint would not
fulfill the matching condition.

In the last few years, both optimal and non-optimal control methods have been
suggested and developed to control the inverted pendulums and robotic systems. Among
the researchers who utilized non-optimal control methods are Sharma et al. [3]; they
presented a decoupling sliding mode algorithm to control a single inverted pendulum on
a cart. The poles of the reduced order system have been placed once near the imaginary
axis and in another case away from the imaginary axis, and in the dominant region.
It has been shown that locating the poles in the dominant region reduces steady state
error and produces better disturbance rejection. Bonifacio et al. [4] used the Attractive
Ellipsoid Method (AEM) to stabilize the triple inverted pendulum and compared it to the
sliding mode control (SMC) system. It was found that AEM-based control rejects external
perturbations more smoothly, while the SMC consumes less energy. Nguyen [5] developed
an SMC system for the two-link fully actuated robot arm. In system response, the angles of
the arms reach the desired value within 1.5 s. Kharabian et al. [6] proposed a hybrid sliding
mode/H-infinity control approach using a fuzzy neural network weighting method to
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reduce nonlinearity, provide precise trajectory tracking, and to the enhance noise rejection
capability of a single-link flexible manipulator system. The proposed hybrid controller
reduces the total system nonlinearity, leading to higher performance with respect to noise
cancellation, compared to sliding mode controller alone. Yet, the proposed control approach
was not applied on manipulators with two or three links, whereas the system’s complexity
rises and its control becomes harder.

Saif et al. [7] utilized synergetic control theory and fractional calculus to develop a
fractional synergetic control (FSC) strategy for a four-DOF robot manipulator; the synergetic
control approach was implemented to obtain fast convergence to the equilibrium point.
The results of combining synergetic control and fractional calculus in control system design
showcased good tracking performance in both joint space and workspace trajectories.
However, the method’s robustness had not been investigated. Ahmed et al. [8] utilized
Time Delay Estimation (TDE)-based model-free control to estimate the external disturbance
and the unknown friction parameters of a Puma 560 rigid manipulator, and terminal SMC
to obtain system robustness. The system responses show that the control method can
suppress the effect of uncertainty and produce effective tracking. However, the effect of
measurement noise that can affect the overall control performance has not been considered.
Likewise, the effect of measurement noise was not determined by Anjum et al. [9] when they
incorporated a fixed-time adaptive sliding mode observer into the fixed-time non-singular
terminal SMC design for the Puma 560 manipulator.

For the single-link manipulator, Liu et al. [10] proposed an adaptive tracking controller
based on the mismatched disturbance observer. The adaptive approach and disturbance-
observer design contribute to effective disturbance rejection and smoother control of the
robotic manipulator link. The closed-loop signals are found to be globally uniformly
bounded with asymptotically stable tracking error, though the proposed control method is
not generalized to more complex multi-link systems. In the same context, Qiu et al. [11]
developed a disturbance observer-based adaptive fuzzy control method for the single-link
manipulator; the proposed control system acquires finite-time prescribed performance, by
which the tracking error enters a prescribed bounded set within finite time, even though
the prescribed performance control strategy which is debated may not fully account for all
practical prospects.

Flatness-based control has been employed by Rigatos et al. [12] in successive loops for
both the three-DOF rigid-link robotic manipulator and three-DOF autonomous underwater
vessel. The proposed method separates the controlled system into two differentially flat
subsystems, connected in cascade. The response of the two case studies exhibits fast
and precise tracking of the desired set points; still, the robustness to uncertainty has not
been inspected.

Jabbar et al. [13] proposed a modified backstepping control method to stabilize the ro-
tary double-inverted pendulum, where the control law is a combination of the backstepping
control action and uncertainty compensation control action. The simulation results show
the control system’s ability for exponential stabilization in the presence of uncertainties
and disturbances. Yet, the proposed method involves complex design steps and lacks tun-
ability to become consistent within practical applications. Siradjuddin et al. [14] used pole
placement to obtain the feedback gain that stabilizes the single-link inverted pendulum at
the desired position of the cart. The results show that placing the poles at more negative lo-
cations yields faster response at the expense of higher overshoot and greater control action,
yet does not afford robustness. Pristovani et al. [15] employed a Multi Input/Multi Output
(MIMO) decoupled control system method to implement the push-recovery strategy for
the triple inverted pendulum by simplifying the control design into three serial Single
Input Single Output (SISO) systems with known and uncertain disturbance models in each
inverted pendulum, where the PID controller was used in each link to damp the external
force applied on it. The proposed control system achieved 85.71% success in withstanding
external forces, but did not consider its suitability for under-actuated systems. Although
Masrom et al. [16] implemented Interval Type-2 Fuzzy Logic Control (IT2FLC) to a triple
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inverted pendulum on two wheels and the developed controller managed to withstand
16% greater disturbance than the type-1 fuzzy logic controller, the researchers considered
disturbance applied on the third link only. The control system'’s robustness against possible
disturbances on other links is missing in the study.

Since optimization provides enhancements in control system design, it has been em-
ployed in different ways to provide optimal solutions for engineering problems.
Soltanpour et al. [17], for instance, presented optimal fuzzy SMC for a two-DOF robotic ma-
nipulator. In order to compensate for the information shortages with respect to the system’s
uncertainties, PSO was used to adjust the parameters of fuzzy membership functions. The
proposed control method outperformed the classic SMC in terms of control input smooth-
ness, though it had slightly higher tracking errors. The two-DOF robotic manipulator has
also been controlled by an optimal integral SMC based on the pseudo spectral method.
Liu et al. [18] applied integral SMC to restrain disturbance and adopted the pseudo spectral
method to deal with the constraints. The proposed controller demonstrated the ability to
track the desired reference signals accurately within 2 s. The results illustrated that the
robotic manipulator system exhibited good robustness and anti-disturbance capabilities
when subjected to external disturbances. However, the measurement noise for the system
has not been considered.

Oliveira et al. [19] used Grey Wolf Optimization (GWO) with chaotic basis to tune
the parameters of a higher-order SMC for the position control of a two-DOF rigid robot
manipulator. Tent and Singer maps were applied to the optimization method to balance
the exploration/exploitation phases of the algorithm, based on the algorithm itself and
the chosen cost function. It was shown that the general repeatability of the algorithm
was improved using chaotic maps in the higher-order SMC optimization. However, the
suitability of the proposed method has not been tested for three-DOF manipulators. For the
electro-hydraulic actuator system, Soon et al. [20] applied PSO to tune the Proportional—-
Integral-Derivative (PID) sliding surface of the SMC. The use of optimization in controller
design has improved the system’s performance by 0.6407%. However, uncertainty was not
taken into consideration in the study. On the other hand, Jibril et al. [21] used a Linear—
Quadratic Regulator (LQR), where the cost is defined through a quadratic function, and
pole placement, where the closed-loop poles of the plant are positioned in desired locations
in the s-plane. Both control methods were applied for the stabilization of a triple inverted
pendulum system and compared; the comparison shows that the pole-placement controller
improves the stability of the system more, but with no indications of its robustness against
perturbations. As for the triple-link rotary inverted pendulum, Hazem et al. [22] made a
comparative study of the Neuro-Fuzzy Friction Estimation Model (NFFEM) and Adaptive
Friction Estimation Model (AFEM) methods used to estimate the friction coefficients of the
plant. The NFFEMs are trained by a radial-basis function artificial neural network. It has
been deduced, based on the root mean square error of the joints” position, that NFFEMs
produce much better estimation results than AFEMs, although the researchers had not
address the robustness issue.

Singh et al. [23] applied He, and p-synthesis control for the double inverted pendulum
on a cart to achieve disturbance rejection and robust stability. The He controller seeks to
minimize the mixed-sensitivity cost function, while the p-synthesis controller implements
the D-K iteration method to find the stabilizing gain that minimizes the upper structured
singular value of the system. The simulation results show that the p-synthesis control
system has a more robust performance. In [24,25], Shafeek et al. proposed a method for
enhancing the He and p-synthesis control systems’ robustness and performance for the
triple inverted pendulum, by incorporating PSO and the Gazelle Optimization Algorithm
(GOA), respectively, into the controllers” design. It has been shown that utilizing the
optimization in control system design allows the possibility of balancing robustness and
performance aspects within the system.

Meta-heuristic optimization algorithms are known to be well-suited for a wide range
of complex optimization problems. Their key power lies in their ability to handle large
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search spaces, constraints, and multi-objective cost functions. The following studies are
recommended to researchers interested in the field of meta-heuristic optimization appli-
cations. In fact, various meta-heuristic optimization algorithms (such as PSO [26-28],
Ant Colony Optimization [29], the Bees Algorithm [30], Grey Wolf Optimization [31], the
Whale Optimization Algorithm [32], Sunflower Optimization [33], the Gorilla Troops Algo-
rithm [34], and the Chimp Optimization algorithm [35]) have been applied successfully
in many engineering problems. In addition, it is also noteworthy that Rubio et al. [36]
tuned the high-gain observer and controller gains to enhance the position and velocity
perturbation attenuation for inverted pendulums using a genetic optimizer. The suggested
method resulted in better perturbation attenuation compared to simplex and Bat optimizers.
As for robots, Rubio [37] applied the Bat Algorithm and the Modified Bat Algorithm to
minimize both tracking error and control energy consumption by optimizing the control
gain. Sorcia-Vazquez et al. [38] also managed the minimization of the tracking error and the
control effort for the experimental two-tank system through applying the genetic algorithm
for the tuning of the PID and Fractional Order PID (FOPID) controller gains. The tuned
FOPID control system performed better than the tuned PID control system in terms of
overshoot, settling time, and control signal smoothness.

The literature review shows a gap in a fully robust analysis of the triple inverted
pendulum which considers all the possible sources of uncertainties in the system. To fill
the gap, this paper contributes from three important perspectives:

e  Formulating a hybrid He /SMC design for a triple inverted pendulum system that is
robust to parameter variations, external disturbances, and measurement noise;

e  Utilizing PSO to tune parameters in the control action based on the Integral Time
Absolute Error (ITAE) performance index of the three controlled variable errors and the
Integral Square Control Signal (ISCS) performance index of the two actuators’ torques;

e Evaluating the robustness, performance, and efficiency of the proposed optimized
control system in different cases.

The rest of the paper introduces the mathematical model of the triple inverted pen-
dulum system in Section 2, presents the PSO algorithm in Section 3, develops the hybrid
He /SMC design and optimization in Section 4, and tests the control system response to dif-
ferent cases in Section 5. Finally, it discusses the outcomes of the developed control system
and the most noticeable findings, and suggests directions for future work in Section 6.

2. Mathematical Model of the Plant

The Mathematical model of the triple link inverted pendulum shown in Figure 1b is
derived based on Lagrangian mechanics established by the scientist Joseph-Louis Lagrange.
The Lagrangian (L) of many mechanical systems represents the difference between their
kinetic (T) and potential (V) energies

L=T-V, M

For the triple inverted pendulum model of Figure 1b, the kinetic and potential energies
are defined as:

. 2 2 2 ] ) 2 2
% my {(%(kl sm91)) + (%(hl c0591)> } + % L6 + % my [(%( Iy sinby + hy szn92)> + (%(11 costi + hy c0592)> }+

12 p ) ) ) 2 J 2 1.2
5 Loy + 5 m3 (E( 11 sin6y + 1, sin6y + h; sm93)) + (a(ll c0sb1 + I» cosfy + hy c0593)) + 5 1363,

V = M3 g cosby + My g cosby + M3 g cosbs, 3)

respectively, where g represents the acceleration of gravity, and

My =my hy +mo Iy + m3 1y, 4)
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My = mp hy 4+ m3 Iy, @)

Mz = m3 hs, (6)
Then, by applying the stationary action principle,

d ( dL oL
—_— — pu— 7, 7
dt (apk> apk ( )

where p; represents the k" position vector in the generalized coordinates, the equations of
motion of the system are obtained [1]:

]1 + Ipl ll MzCOS(Ql — 92) — Ipl ll M3COS(91 — 93) 61
I M2C05(91 — 92) — Ip1 I+ Ipl + Ipz I M3COS(92 — 93) — Ipz 0,
11 M3COS(91 — 93) lz M3COS(92 - 93) - Ipz ]3 + Ipz é3
[ C1+C+Cp ~C2— Cpy 0 2
+ —Cy — Cpl Cpl + sz +C+C —C3— sz 0,
0 —C3 — sz Cs + sz 93
- .2 .2
Z1Mzsil’1(91 — 92)92 + 11M3sin(91 — 93)93 - Mlg sin(@l)
.2 .2
+ llesin(91 - 92)91 + legSin(Qz — 93)93 — Mg sin(Gz)
.2 .o .2 Lo
thmm—@m%—zm@)ﬂﬂ@me—%x%—Z@@ — Msg sin(63)
(K0 t 1 -1 0 d
+ _Kl K2 |: tml :| = 0 1 —1 d2
0 Ky m2 0 0 1 d3

where 6 = [61 0, 63] T represents the vector of angles of each link from the vertical line,
as depicted in Figure 1b.

]1:11+m1 h%—f—mzl%—f—m:; l%, (9)

Jo =L +my 3 +m3 13, (10)

5= I+ msh3, 11

I;, mj, h;, and [; represent the it" link’s moment of inertia around its center of gravity,
mass, distance from its bottom to the its center of gravity, and length, respectively.

Lyi = Ly + KF Ly, (12)

Iy, and K; represent the i hinge’s belt-pulley system’s moment of inertia, and ratio of

teeth, respectively, I,,; represents the i motor’s moment of inertia, and C; represents the
viscous friction coefficients of the i hinge,

Cpi = Cp + K7 Ciniy (13)

Cui, Cp/ represent the viscous friction coefficients of the i motor and the i*" hinge’s

belt-pulley system, respectively, t,,; represents the control torque of the i motor, and d;
represents the disturbance torque to the i*"* link.
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Linearizing the model described in Equation (3) [1] around the operating point

01 =0, =03 =0,resultsin the following:
h+ Ipl ll My — Ipl ll M3 el
hMy—Ipy ot+1lpp+1Ip b Ms—1Ip 6,
lh M3 Il Mz — I J3+ I 05
[ Cy+ C2+Cp1 —C — Cpl 0 04
+ -G —Cn Cnn+Cn+C+C —CG—Cp 92
i 0 -G —Cp C3+Cp 93 (14)
—Mlg 0 0 91 K1 0 "
+ 0 ~Myg O 6 | +| K K [ tml ]
.0 0 —Msg || 6 0 —K m2
1 -1 0 d
=0 1 -1 dy
0 0 1 ds

Arranging the model in state-space representation, given that the system has two
inputs (11, up) and three outputs (61, 62, 83), and substituting the nominal values of the
parameters given in Table 1 [1], yields

0 0 0 1 0 0
0 0 0 0 1 0 8 8
. 0 0 0 0 0 1
X()= 1054 _826 -039 —0043 275 o036l 1;4521 63;293 u(t)
438 3695 -3 0086 -957 229 ey e (15)
682 —2004 1193 —0034 682 —2.86 : :
1000000 0 0
vy =10 100 00 o|lxt)+ |0 0 |u®
0010000 0 0

.. . 1T
where the state vector x is {91 0, 03 01 6 63} , the control input vector u is [ul uz} T,

and the output vector y is [61 62 63]T. Then, for this MIMO system, n = 6 states and
m = 2 inputs.

Table 1. Nominal values of model’s parameters [1].

Parameter Value Unit
I 0.654 kg.m?
I 0.117 kg.m?
I 0.535 kg.m?
my 3.25 kg
my 19 kg
s 2.23 kg
h1 0.35 m
hy 0.181 m
h3 0.245 m
L 0.5 m
I 0.4 m
Ly 7.95 x 1073 kg.m?
Ly 3.97 x 1073 kg.m?
Ky 30.72 dimensionless
Ky 27 dimensionless
Ly 24 x 1075 kg.m?
L2 4.90 x 107° kg.m?
G 6.54 x 1072 N.m.s
G 232 x 1072 N.m.s
Cs 8.80 x 1073 N.m.s
Cm 219 x 1073 N.m.s
Cim2 717 x 107* N.m.s
Cpr 0 N.m.s
Cp 0 N.m.s
g 9.81 m.s—2
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3. PSO Algorithm

The PSO algorithm is a population-based metaheuristic search method that is valuable
in engineering design optimization (and many other applications, as stated in [35]). The
algorithm was developed by James Kennedy and Russell C. Eberhart, inspired by the
organized trajectory adjustment used in bird swarms and fish schools, based on their own
experiences and the experiences of others in the group (Figure 2).

rx

(a)
Figure 2. Social behavior of (a) bird swarm [39] and (b) fish school [40].

The algorithm (Algorithm 1) starts by spreading its agents randomly in the predefined
search space, to look for the best solution. Then, in each iteration, the agents update their
velocities and positions based on mathematical formulas that incorporate their current
positions, velocities, and historical information. These update formulas for the agents’
velocity (Vpsp) and position (Xpgp) are the following:

Algorithm 1: PSO algorithm

St X Initialize the algorithm’s parameters (wpso, cpsoi, "pso1, Cpso2, Tpsoz, dimension, bounds,
ep L ber of search agents, iterati ter, and maxi ber of iterati
number of search agents, iteration counter, and maximum number of iterations)
Step 2: Set the cost function according to the required application of optimization
Step 3: Initialize the population
Step 4: Evaluate the cost function for all candidate solutions
Step 5: Specify each candidate solution as its best personal solution primarily (ppest)
. Specify the candidate solution that produces the minimum cost function among all agents as the

Step 6: -

best global solution (gpest)
Step 7-a: While (iteration number < maximum number of iterations), do:
Step 7-b-1: For (all agents of all dimensions), do the following;:
Step 7-b-2: Update agents’ velocity (Equation (16))
Step 7-b-3: Update agents’” position (Equation (17))
Step 7-b-4: Evaluate the cost function for all candidate solutions

Specify the candidate solution that produces the minimum cost

Step 7-b-5: function in its history as the best personal solution obtained so far

(pbest)
Step 7-b-6: End for
Step 7-c: Specify the candidate solution that produces the minimum cost function in all agents” history

as the best global solution obtained so far (gp,st)
Step 7-d: Increase the iteration counter by one
Step 7-e: End while
Step 8: Return the best solution (gpest)

Vpsoi(t +1) = wpso X Vpsoi(t) + cpso1 X 7pso1 X (Ppesti (t) — Xpsoi(t)) + cpsoa X rpsoz X (Spest (t) — Xpsoi(t)), (16)
and
Xpsoi (t+1) = Xpsoi (t) + Vpsoi (t+1), 17)

respectively, where wpgo represents the inertia weight, which is, instead of being a constant
value as in [41], chosen to change its value through iterations from wpgp to wpgo according
to the formula

t
maximum number of iterations’

wpso = Wpso — (Wpso — Wpsp) X (18)
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to provide a thorough exploration of the search space in the early stages of optimization.
Then its value keeps decreasing, to reduce the particles’ tendency to move far away from
their current positions, such that the optimization method converges to a solution more
efficiently; rpso1 and rpgspp are random numbers between 0 and 1, cpsp; and cpspy are
cognitive and social coefficients, respectively, and gp.s; and ppest; represent the best global
and personal solutions, respectively. Subsequently, the continued updating guides the
agents towards better solutions till a specified stopping criterion is met (usually, the
maximum number of iterations). The PSO agents’ updating is visualized in Figure 3.

Xesoi(t+1) .

A%
O N

gbest {t) \ pbesrf

Figure 3. PSO agent update.
4. Hybrid H..,/SMC Controller Design

The control of uncertain systems is required to provide robustness against parameter
variations, external disturbances, and measurement noise. Nevertheless, seeking extreme
robustness is not advised, because it leads to unnecessary conservativeness that affects the
system’s performance characteristics. Optimization can be a great aid in enhancing the
controller design to calibrate the system’s robustness/performance outcome. He, and SMC
are well known robust controllers that have shown their effectiveness in many uncertain
control systems, so the controller design process is composed of the steps shown in Figure 4
and detailed below:

First, the Hoo control is used to design the sliding manifold of the SMC to provide
a more powerful hybrid controller. To account for parameter variations, the system in
Equation (15) is represented as

x(t) = (A+ AA) x(t) + Bu(t) (19)
where AA represents the uncertainty matrix bounded by the Q matrix:

o o o0 o0 o0 o0

o o o0 o0 o0 0

o o0 o0 0 0 O
02 02 02 02 02 02
02 02 02 02 02 02
02 02 02 02 02 02

Q= (20)
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In order to apply decoupling for MIMO systems, a similarity transformation is required
to transform the state variable x(t) to a new state variable q(t), defined as:

q(t) = Hx(t) 1)
where H is the n x n similarity transformation matrix, obtained as
T
H= [N B] (22)

where the n x (n —m) matrix N is the null space of the transpose of B matrix. Thus:

0 0 1 0 0 0
0.227 0.399 0 0.788 0.361 0.19
—0.793 —0.452 0 0.361 0.165 0.087
0.564 —0.796 0 0.19 0.087 0.045
0 0 -50 174.4 —124.2
0 0 6.12 —38.93 48.62

The transformed state space representation is

q(t) = Aq(t) + AA q(t) + Bu(t) (24)
where
A=HAH, (25)
AA=HAAH, (26)
B=HB, (27)

The new state variable representation becomes

e e | ol e [t R RO

In this representation, the m control signals u(t) act as an input to the lower subsystem
only (controlling the m new state variables q,(t) directly), then, during the sliding phase,
q, () acts as an input to the upper subsystem (controlling the remaining (n — m) new state
variables q,(t) by feedback gain):

q(t) = —Keoqy (t) (29)

The m x (n —m) feedback gain matrix K, which is related to the sliding mani-
fold, is to be designed using He, control to provide robustness to parametric uncertainty.
Equation (29) and the upper subsystem:

q1(t) = (A1 + A An)qq(t) + (A + A Ap)qy(t) (30)

have to be represented in the Linear Fractional Transformation (LFT) [42] shown in Figure 5,
in which the uncertainty is pulled out in the A block, I denotes the identity matrix,
Beo, Coo, Do are matrices obtained by singular value decomposition, and z. and de
represent the disturbed output and input, respectively.
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Initialize the optimization parameters

Initialize population

Represent the uncertain system as in Equation (19)

Apply similarity transformation as in Equation (21)

Apply the H_ control as in Equation (34)

Obtain the sliding manifold as in Equation (38)

Design the nominal control law as in Equation (43)

Design the discontinuous control law as in Equation (47)

Apply the controller to the uncertain system

Update the design parameter

Increase optimization counter

Is the maximum
number of iterations
reached?

Return the best design parameter

Figure 4. Controller design and optimization.
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Figure 5. LFT configuration of the system Equations (34) and (36).

Upper LFT is applied to the system, so that the Hy, problem becomes one of finding
the stabilizing feedback gain Ko, that minimizes > 0 in the quadratic objective function:

o= 5 [ [0 20(t) 72 dL(1) dn(t)] . (31
From Figure 5,

Joo= 5 [ [aF()CE Coo 4 () + 24T (1)CT Do a3 (1) + GF ()DL Daw ay(6) — 7L (1)l (1), (32)

The Ricatti-like matrix equation for this linear quadratic problem is

P (ZH _ leo;;ofz) n (Zfl - olzo;;z{z)pm — Py (leogzlzfz 2By BOTO)POO n (o11 - olzogzlofz) — 0.
(33)

where 011 = CLCq, O12 = CL Doo, Op2 = DL Dy. The solution of the above equation ( P ) is
used to find the feedback gain Keo:

Koo = O3 (Zfzpoo 4 osz), (34)
Thus,
o= T o1 Lpe1 1) 39)
which can be used to define the sliding manifold s(f):
s(t) = Koo(h(t) + qz(t) (36)

When the state variables reach and stay on the sliding manifold (s(f) = 0), then the
system dynamics is governed by Equation (29). Equation (36) can be written as

s(t) = [Keo I]q(t) (37)

s(t) = G x(t) (38)

and
G=[Ks IH (39)
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Next, the control law of the SMC is suggested to comprise a nominal term (u-(t)) and
a discontinuous term (ugq (f)):
u(t) = ue(t) +uq(t) (40)

The nominal term is responsible for driving the states towards the sliding manifold
defined by Equation (38). It is obtained by equating the derivative of the sliding variable to
zero, that is

s(t) =0=Gx(t) (41)

Substituting the nominal terms of Equation (19),
s(t) =0=GAx(t) + GBu-(t) (42)

from which
u(t) = —(GB) 'GA x(t). (43)

provided that the GB matrix is non-singular; thus, it is invertible. To obtain the reaching
condition of the SMC, a candidate quadratic Lyapunov function is suggested to be

V() = 58201 (a4)

To ensure the stability of the sliding manifold and the overall system rigorously, the

time derivative of V7 (t) has to be negative definite for all s # 0, so that V(t) keeps dec-

reasing along any trajectory in the state space which, in turn, guarantees the stability of the
sliding mode. It implies that

s(t)s(t) <0 (45)

The discontinuous term of the control law (uq4(#)), which ensures the systems converge

to the desired equilibrium point by imposing the negative definiteness of % in the

presence of parametric uncertainty, disturbance, and noise, can be obtained by substituting

Equations (19), (40) and (43) in Equation (45) and replacing the uncertainty matrix by its

upper bound Q:
s(t)[G Qx(t) + GBug] <0 (46)

ua(t) = —(GB) (1G] QIx(1)| +n)sgn(s(t))] <0 47)

where the sign function (sgn()) is used to bring the states back to the sliding manifold
whenever they attempt to leave it due to uncertainty, and n (2 x 2 diagonal matrix in this
system) is a design parameter added to provide protection against disturbance and noise:

_fm 0
n= [ 0 7722} (48)

Instead of using trial and error to find good values of the diagonal elements of 7,
optimization is suggested, to tune them by searching for their optimal values that lead to
both good robustness and performance of the system.

Finally, PSO is applied to enhance the performance of the robust control system in
terms of response errors and the overall energy of the needed torques. These characteristics
are used to form the cost function

t t
Jo=Y0 || Helat+ Y0, [T Bttt (49)

where Jo represents the optimization cost function, ¢;(t) represents the i link’s angle
response error, and ¢ £ represents the final time used in simulations.
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The ITAE performance index of error is used to penalize the steady-state errors more
than transient errors. Since the lower the control energy required, the more efficient the
control system, then the ISCS performance index of the control signal is used.

5. Results

This section presents the system and optimization settings and the results of simulating
the proposed method for different cases to test its effectiveness. The developed control
system is compared with the Hj control system, whose 3 x 3 performance weighting matrix
is also optimized by PSO. This weighting matrix consists of three second-order transfer
functions (each with three coefficients in its numerator and the same in its denominator,
and a gain) on its diagonal, and is used for weighting the system’s tracking accuracy and
robustness to uncertainty. The optimization problem of the two control systems is set as
given in Table 2, with the cost function given by Equation (49).

Table 2. Setting of the PSO algorithm.

Values for Values for
Parameter Hybrid Heo/SMC H,
Control System Control System
Optimization Optimization
dimension 2 21
lower bound 100 10
upper bound 2000 100
number of search agents 10 10
maximum number of iterations 100 100
Wpso 0.7 0.7
Wpso 0.2 0.2
Cpso1 2 2
Cpso2 2 2
random number random number
"PSO1 in the interval (0, 1) in the interval (0, 1)
random number random number
"Pso2 in the interval (0, 1) in the interval (0, 1)

The hybrid He, /SMC system (built in MATLAB/Simulink R2023b) used in optimiza-
tion is given in Figure 6, where, in each iteration, the candidate solutions (711 and #27)
are passed from the optimization code (written in MATLAB script) to the controller block
(written in MATLAB S-function); the control law is calculated and applied by the actuator
to the system block (written in MATLAB S-function), and the states x(t), x2(t), x3(t) and
the actuator signals t,,1(t) and t,,»(t) are passed back to the optimization code to calculate
the cost function of that candidate solution and to update the solutions accordingly. The
convergence progress of the optimization algorithm is depicted in Figure 7. The PSO
algorithm converges in the 59th iteration to the cost value of 1488.76. The best solution
returned by PSO is [y = 168.4755, 1y, = 1.0173 x10°%].

The H; control system optimization results in the following performance weighting
matrix W(s):

51.12352+94.7635+10
10 105241005410 0 ) 0
_ 1741254105410
Wi(s) 0 39'1453.78252+55.429s+14.368 0
0 0 10w
100s24-1005+73.998

The performance index of the controller is 6.102.
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Figure 6. Control system used in optimization.
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Figure 7. Cost-function convergence of PSO.

5.1. Nominal System Response

First, the developed control system is tested by applying it to the nonlinear model
of the triple inverted pendulum given in Equation (3), with the nominal values of its
parameters given in Table 1. The initial condition is 0.5 deg, 1 deg, and 2 deg for the first,
second, and third angle, respectively. The three angles respond as shown in Figure 8, the
phase-plane trajectories of the angles and their derivatives are shown in Figure 9, and
the applied torques are shown in Figure 10. Please note that data tips in regular font
correspond to hybrid He, /SMC system, while data tips in italic font correspond to the H,
control system in all responses.
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Figure 8. Nominal system response: (a) first link’s angle; (b) second link’s angle; (c) third link’s angle.
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Figure 9. Nominal system phase-plane trajectory: (a) (61, 91); (b) (6>, 92); (c) (65, 93).
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Figure 10. Nominal system torque: (a) first motor; (b) second motor.

The 6; and 6, absolute overshoot difference between the two control systems is 0.1 deg
and 1.59 deg, respectively, while 03 overshoots 17.323 deg higher in the H; control system.
The difference between the errors of the two systems is small: 0.062, 0.151, and 0.025 deg
for 01, 05, and 03, respectively.

The above phase-plane trajectories show the direct sliding nature of the states towards
their desired equilibrium point, driven by the hybrid He,/SMC control law. The H; control
system lacks this preference.

The start-up torques t,;1 and t; in the H, control system are 9.633 and 11.872 N.m
times higher, respectively, than in the hybrid He /SMC system. On the other hand, the
differences in steady torques are 0.153 and 0.404 N.m.

5.2. Robustness to Parameter Variation

Second, the developed control system is tested by applying it to the nonlinear model of
the triple inverted pendulum given in Equation (3), with perturbed uncertain parameters,
I, I, and I3 = nominal value + 10%, C;, Cp, C3, C,,,;1, and C,,;» = nominal value + 15%. The
three angles respond as shown in Figure 11, and the phase-plane trajectories of the angles
and their derivatives are shown in Figure 12.
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Figure 11. Perturbed by parametric uncertainty-system response: (a) first link’s angle; (b) second

link’s angle; (c) third link’s angle.
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The first and third angles overshoot by 1.299 and 22.47 deg, respectively, in the
Hj control system, more than in the hybrid He /SMC system. Only the second angle
overshoots higher in the hybrid H., /SMC system, by 1.503 deg. The difference in errors
between the two systems are found to be 0.004, 0.05, and 0.027 deg.

The three phase-plane trajectories clearly depict the fluctuations at the start of the
response in the Hj control system.

The applied torques are shown in Figure 13. The start-up torques t,;1 and t;;» in the
H; control system are again higher than in the hybrid He/SMC system, but by 8.227 and
10.2 N.m, respectively, this time. On the other hand, the differences in steady torques are
0.13 and 0.38 N.m. In this case, the H; controller fluctuates significantly at the beginning.
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Figure 13. Perturbed by parametric uncertainty-system torque: (a) first motor; (b) second motor.

5.3. Robustness to External Disturbance

Third, the developed control system is tested by applying it to the nonlinear model
of the triple inverted pendulum given in Equation (3), with external disturbance in the
form of a sine wave of 0.1 N.m amplitude applied to each link. The three angles respond
as shown in Figure 14; the phase-plane trajectories of the angles and their derivatives are
shown in Figure 15.
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Figure 14. Perturbed by external-disturbance system response: (a) first link’s angle; (b) second link’s
angle; (c) third link’s angle.
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Figure 15. Perturbed by external-disturbance system phase-plane trajectory: (a) (61, 91); (b) (62, 92);
(c) (63, 63).
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The first, second and third angle responses overshoot slightly higher, moderately
lower, and significantly higher, respectively, in the H, control system, while the errors are
close to each other in all responses.

The phase-plane trajectories show the direct alignment of the systems’ states with the
desired point in the state space.

Figure 16a shows that t,, at start-up in the Hp control system is higher by 13.567 N.m,
and tyy by 21.839 N.m., while the differences in steady torques of the first and second
actuators are only 0.132 and 0.405 N.m, respectively.
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Figure 16. Perturbed by external-disturbance system torque: (a) first motor; (b) second motor.

5.4. Robustness to Measurement Noise

Finally, the developed control system is tested by applying it to the nonlinear model
of the triple inverted pendulum given in Equation (3), with measurement noise in the form
of random white noise and with amplitude +0.4 V applied to each reading. The three
angles respond as shown in Figure 17; the phase-plane trajectories of the angles and their
derivatives are shown in Figure 18, and the applied torques are shown in Figure 19.
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Figure 17. Perturbed by measurement-noise system response: (a) first link’s angle; (b) second link’s
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Figure 19. Perturbed by measurement-noise system torque: (a) first motor; (b) second motor.

In this case, the hybrid He, /SMC system produces less overshoot in the first and third
angles’ responses and fewer errors in the second and third angles’ responses.

Figure 19 shows that, compared to the H; controller, the proposed hybrid He, /SMC
controller requires much less effort at start-up, and almost the same effort is needed at

steady state.
The characteristics of the proposed hybrid He, /SMC system performance in all tested

cases are summarized in the three charts in Figures 20-22, and will be discussed in the
next section.
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Figure 20. Overview of the three angles’ errors in all tested cases.
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Figure 21. Overview of the three angles’ overshoots in all tested cases.
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Figure 22. Overview of the two motors’ torques in all tested cases.
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6. Discussion and Conclusions

This section explores the interpretation and implications of the obtained results. Re-
garding the optimization aspect, Figure 7 shows that PSO exhibited a very fast convergence
rate (majorly within 16 iterations, and completely within 59 iteration). The application
of optimization to the controller design helped in improving the control system, through
minimizing the response error (as shown in Figures 8, 11, 14 and 17) and the applied torque
needed for the system (as shown in Figures 10, 13, 16 and 19).

In relation to the robustness attribute, the developed hybrid He, /SMC control sys-
tem was able to stabilize the nominal, perturbed by parameter variation, perturbed by
external disturbance, and perturbed by measurement-noise system. In all cases, the
system responded in the same manner (except for very small differences, as shown in
Figures 14 and 17).

Concerning performance characteristics, it has been shown in Figure 20 that, in all
cases and among all the angles, the error was below 0.152 deg and the average error was
0.053 deg, which is an indication of the system’s accuracy. The overshoot in all cases is al-
most unaffected by the type of uncertainty, as shown in Figure 21. For the first, second, and
third angle, the overshoot ranged from 6.035 to 6.472 deg, 9.263 to 10.072 deg, and 11.052 to
11.561 deg, respectively. The least overshoots were in the nominal system case, while the
highest were in the perturbed-by-parameter-variation case. Figures 9, 12, 15 and 18 show
that the phase plane trajectories of the angular positions and velocities are driven success-
fully by the developed controller, from the initial condition to a very small neighborhood
of the origin, in all cases. Figures 15 and 18 show small fluctuations in the late stage of the
trajectory, which come from forcing the states by the controller to reach the origin, in spite
of disturbance and noise.

From the system’s efficiency point of view, the required steady controller effort in all
cases ranged from 0.13 to 0.621 N.m in amplitude, owing to the inclusion of the torque
in the objective function of optimization. A higher torque was required only at start-up;
the average start-up torque for the first actuator is 1.663 N.m and it is 2.158 N.m for the
second actuator. This contributes to a more efficient control system. The small chattering
caused by the sign function in Equation (47), which is necessary for driving the states,
can be attenuated to obtain a smoother control signal, through using boundary-layer or
neural networks.

As compared to the Hj control system, the proposed hybrid He. /SMC system pro-
duces fewer overshoots and fewer start-up torques, and smooth states driving in general.
The robustness is provided in both control systems with small disparities, as illustrated in
the results.

So, instead of having unnecessary conservativeness in the system, which degrades the
performance with respect to providing robustness against uncertainties, the application of
metaheuristic optimization to the controller design for such an under-actuated nonlinear
MIMO system is beneficial in enhancing both performance and efficiency of the control
system, besides its robustness.

Another point to be made is that for this specific electro-mechanical control system-
design optimization problem, a swarm size of 10 was suitable, as has been presented in the
results. A larger swarm size has to be considered in other optimal designs of engineering
problems, especially if more parameters are required to be tuned in the application. Also,
the adaptation of the cost function can be considered in future, to further enhance the
optimization of the design problem, as proposed and described in [43].

Having great impact on control systems’ performance and efficiency, metaheuristic
optimization algorithms are advised to be applied to enhance other control systems designs,
as in the following: modelling predictive control to optimize the control sequence over a
specified prediction horizon, hybrid model-based and data-driven control to adapt model
parameters and controller gains in real-time, and distributed control systems to optimize
the control signals’ distribution in large scale systems.
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Nomenclature

Symbol Meaning

L Lagrangian

T Kinetic energy

\% Potential energy

0 Position vector in the generalized coordinates
6 Link angle from the vertical line

I Link moment of inertia around its center of gravity
m Link mass

h Distance from Link bottom to the its center of gravity
l Link length

Ly Hinge belt-pulley system’s moment of inertia
K Hinge belt-pulley system’s ratio of teeth

Iy Motor moment of inertia

C Hinge viscous friction coefficient

Cm Motor viscous friction coefficient

Cpr Hinge belt-pulley system’s viscous friction coefficient
g Acceleration of gravity

tm Motor control torque

d Disturbance torque to the link

Vpso Agent velocity

Xpso Agent position

Wpso Inertia weight

Wpso Maximum inertia weight

Wpso Minimum inertia weight

Cpso1 Cognitive coefficient

Cpso2 Social coefficient

PSO1 Random number in the interval (0, 1)

PSO2 Random number in the interval (0, 1)

Pbest Best local solution

Sbest Best global solution

X State vector

u Input vector

t time

A State matrix

y Output vector

AA Uncertainty matrix

Q Bound matrix of uncertainty

B Input matrix

q New state variable

H Similarity transformation matrix

N Null space of input matrix

A New state matrix

AA New uncertainty matrix
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Symbol Meaning

B New input matrix
Ko Feedback-gain matrix in He problem
A Diagonal matrix of scalar perturbations
B Decomposed matrix in LFT
Coo Decomposed matrix in LFT
Deo Decomposed matrix in LET
Zoo Disturbed output in LFT
deo Disturbed input in LFT
Joo Objective function in He, problem
v Performance level of He, problem
O Abbreviation of two given multiplied matrices
s Sliding-manifold vector
G Matrix in sliding-manifold computation
uo Nominal control term
uyq Discontinuous control term
\%3 Lyapunov function
n Design parameter in SMC law
Jo Optimization cost function
Link angle error
tr Final time used in simulations
W Performance weighting matrix
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Abstract: Direct current motors are widely used in industry applications, and it has become necessary
to carry out studies and experiments for their optimization. In this manuscript, a comparison
between heuristic and metaheuristic algorithms is presented, specifically, the Steiglitz—-McBride,
Jaya, Genetic Algorithm (GA), and Grey Wolf Optimizer (GWO) algorithms. They were used to
estimate the parameters of a dynamic model that approximates the actual responses of current and
angular velocity of a DC motor. The inverse of the Euclidean distance between the current and
velocity errors was defined as the fitness function for the metaheuristic algorithms. For a more
comprehensive comparison between algorithms, other indicators such as mean squared error (MSE),
standard deviation, computation time, and key points of the current and velocity responses were
used. Simulations were performed with MATLAB/Simulink 2010 using the estimated parameters
and compared to the experiments. The results showed that Steiglitz-McBride and GWO are better
parametric estimators, performing better than Jaya and GA in real signals and nominal parameters.
Indicators say that GWO is more accurate for parametric estimation, with an average MSE of 0.43%,
but it requires a high computational cost. On the contrary, Steiglitz-McBride performed with an
average MSE of 3.32% but required a much lower computational cost. The GWO presented an error
of 1% in the dynamic response using the corresponding indicators. If a more accurate parametric
estimation is required, it is recommended to use GWO; however, the heuristic algorithm performed
better overall. The performance of the algorithms presented in this paper may change if different
error functions are used.

Keywords: Steiglitz—McBride; Jaya; grey wolf optimizer; genetic algorithm; heuristic; metaheuristic;
DC motor

1. Introduction

A direct current (DC) motor has many applications in the industrial sector [1], such
as aeronautics, robotics, automation, manufacturing, automotive, etc. Therefore, it is
constantly subjected to multiple experiments or investigations in identification, estimation,
and parametric control to create solutions in different areas of research that could have
applications in real life. For this, the precise control of motor parameters is required to
achieve efficient operation [2], and model optimization should help achieve this goal.

Sometimes, models are simulated mathematically, drifting in predictions, control
monitoring, and diagnosis. Motor parameters vary with features such as misalignments
that can lead to poor motor performance. The design of DC motor controllers could have
drawbacks, as they are sensitive to high tolerances [3]. Usually, the parameters specified by
manufacturers are somewhat robust, and it is necessary to generate more precise models
that help us make a more efficient motor. With precise models, diagnostic systems can be
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developed, as shown in the research by ref. [4], where a diagnostic method based on a rotor
slip was designed to detect faults in the current and speed sensors during the induction
motor operation. Another example is from ref. [5], where a technique based on current
estimation for fault detection and speed sensor failure for an induction motor is developed.
The precise knowledge of mathematical motor models allows for the bypassing of sensors
and efficient speed control, as shown in the research by ref. [6], where high-performance
field-oriented motor control requires the accurate knowledge of the flow of information
and the motor speed. These investigations denote the importance of motor modeling and
parameterization, since they allow for better fault-tolerant control, reduce the number of
sensors, and even improve control precision.

For example, an improved loss minimization technique based on fuzzy logic for a
brushless DC motor (BLDC) drive system is presented in [7]. In addition, the implementa-
tion of a platform for testing an algorithm for the closed-loop speed control of a DC motor
was sought in [8]. These have not been the only works that have focused on controlling
speed through algorithms. Speed control algorithms have also been designed based on the
estimation of dynamic error parameters under uncertainty and load variation [9].

Heuristic algorithms solve optimization problems defined by intuitive approximations,
and solutions to these problems are intelligently thought out even if the solution is not
the best. In recent years, heuristic procedures have been developed to optimize software
design problems and component reuse. Some research shows the usefulness of this type
of algorithm and its application in parametric evaluation [10]. Some of the proposed
limitations of heuristic algorithms have been overcome with more robust methods based
on statistics, such as in ref. [11]. However, it is necessary to continue innovating [12].
Investigations such as [13] propose an algorithm that uses a stochastic method to reach
optimal points within simple algorithms.

A comparison of heuristic algorithms for the identification of DC motor systems
was carried out in [14] through discrete Proportional-Integral (PI) controllers to analyze
the system response. Fast and accurate convergence rate results were obtained with the
extended Kalman filter (EKF) algorithm. A heuristic method is a well-known set of steps
that is used to quickly identify a high-quality solution to a given problem. It consists of
intuitive mathematics with a design of static and manual rules that are supposed to give
a good solution, although not necessarily the optimal solution, to the problem. For this
reason, it is important to compare them with metaheuristic algorithms and observe which
offer the highest optimization.

Metaheuristic algorithms have acquired an important role in recent years. The op-
timization field has been no exception, because metaheuristic algorithms are iterative
and intelligently combine the principles of evolution, natural selection, and inheritance,
inspired by physical phenomena and different behaviors of animals and even humans.
This makes it possible to correctly explore the search space by offering a population of
feasible solutions. Due to their simplicity, they are general purpose algorithms and simi-
lar phenomena inspire them. In recent years, these algorithms have successfully solved
practical problems in different fields. They are easily implementable, as they do not require
any particular changes to their structure when applying them across various themes unless
optimization is sought. However, there may be limitations, since most of these optimization
methods start from random solutions, resulting in approximate, not exact, solutions.

Recent contributions, such as [15], showed that the Artificial Fish Swarm Algorithm
(AFSA) has advantages, including high convergence speed, flexibility, fault tolerance, and
high accuracy. However, it has been shown that they contain high temporal complexity and
a lack of balance in global and local searches. On the other hand, the work by ref. [16] shows
that Dolphin Partner Optimization (DPO) offers a quick solution with optimal stability in
different function targets. Another area of interest in algorithms is convergence. A study
on the hybrid algorithm Particle Swarm-Ant Colony Optimization (PS-ACO) has been
presented [17], where ACO was used as a parallel calculation mechanism and showed
excellent robustness. Unfortunately, they faced the limitations of stagnation and premature
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convergence. The Particle Swarm Optimization (PSO) algorithm as an adaptation of reactive
power optimization [18] proved to be decisive. Refs. [19,20] use metaheuristic algorithms
to optimize a fuzzy controller. Still, it needs predefined parameters for a user-determined
issue. These problems can be solved through adaptive adjustments. In [21], the author offers
solutions of low algorithmic complexity with optimal convergence results in Proportional—-
Integral-Derivative (PID) controllers. An example is the Cuckoo algorithm [22] which
is a relatively simple method, having minor variation in parameters and containing fast
convergence. However, it also has premature convergence defects and low calculation
accuracy, which, in the worst case, results in inaccurate solutions.

Genetic algorithms (GA) are another method widely used to optimize a DC motor
because of their low complexity of understanding and ease of adaptation. Such is the
case in [23], where it is mentioned that GAs are appropriate for the estimation of platform
parameters with nonlinear characteristics. Something similar occurs in [24], where it
is described that GAs offer superior results in the estimation of parameters. Despite
recent articles, GAs also have limitations, since they starts from random solutions. The
algorithm requires improvements to optimize it, as shown in ref. [25]. Another example of
this is shown in [26], where it is mentioned that although they are good at optimization,
the traditional GA still has some shortcomings because most of the time, they require
modifications. Therefore, a New Adaptive Genetic Algorithm (NAGA) is proposed to
overcome the disadvantages of the traditional one.

Metaheuristic algorithms are sometimes used in combination with other methods to
achieve better performance, such as in the case of ref. [27], where they are used for the speed
control of a DC motor. Better dynamic and static performance is demonstrated thanks to
the implementation of a PID controller with a Backtracking Search Algorithm (BSA) in
comparison with a PSO. PID controllers are commonly implemented to drive DC motors
and are tuned using different algorithms. This is the case in ref. [28], where a PID controller
was tuned through the Jaya optimization algorithm to control the speed of the motor,
obtaining better responses in the transitory stage. Speed control has been the subject of
many experiments, as in [29], where the optimization of fuzzy rules using GA proved to be
an effective method for rate accuracy. In other cases, the original metaheuristic algorithms
are modified to optimize their performance. Modifications to the original cuckoo algorithm
have been made [30], improving the parametric estimation.

This manuscript presents a parametric estimation of the dynamic model of a DC motor.
The study was carried out using the following algorithms: Steiglitz—-McBride, Jaya, Genetic
Algorithm (GA), and Gray Wolf Optimizer (GWO). These algorithms were used to compare
the optimization of the actual responses of current and angular velocity between heuristic
and metaheuristic algorithms. Simulations were carried out in MATLAB/Simulink 2010.
The evaluation criteria consisted of approximation error, computational cost, convergence
time, and dynamic signal behavior. Stabilization times, overshoot values, and the average
value of steady-state current were also discussed. This paper is organized as follows.
The Section 2 presents the foundations of the DC motor dynamic model, the parameters
that govern the development of the metaheuristic algorithms, and the conditions for
simulations. The subsequent Section 3 recalls a brief background of the selected algorithms
for optimization, diagrams, and conditions for parameter estimation. Sections 4 and 5
show the Results and Discussion, respectively. Here, the parameters estimated by the
different algorithms are compared using different metrics. Finally, the Section 6 concludes
the present work.

2. Mathematical Modelling
DC Motor Modelling

The dynamic system of the DC motor is composed of two differential equations (an
electrical and a mechanical part). The electrical equation has variables such as voltage and
current and parameters such as a resistor, which is the internal resistance of the motor, and
an inductor, which represents the inductance generated by its windings. In the mechanical
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equation, there are variables such as speed and torque and mechanical parameters such as
the coefficient of friction and inertia, as shown in Figure 1.
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Figure 1. DC motor dynamic circuit diagram.

From the diagram in Figure 1, the following equations are obtained.

o(t) = Ri(t) + Ld;—(:) +e(t) 1)
T(t) = ]d%t) + Bw(t) + Tp )
e(t) = Kew(t) ®3)
T(t) = Kpi(t) 4)
K.~ Ky =K ®)

where R is the resistance expressed in ohms (), L the inductance in H, | is the moment of
inertia of the rotor, B the coefficient of friction between the rotor and the stator, and T},
the torque load; however, for parameter estimation, a motor free of load is used, which
means that T; = 0. v(t) is the voltage induced to the armature, i(t) is the current, w(t) is
the angular velocity of the rotor, e(t) is the induced electric voltage, and 7(t) is the torque
of the motor. K is the rate of change of the electromotive force with respect to the angular
velocity, and the rate of change of the induced voltage is considered to be equivalent to
both K, and K,. Equation (1) was derived using a simple Kirchhoff’s voltage law analysis
presented in Figure 1. Equation (2) was obtained by knowing that the sum of moments that
make the rotor rotate to the symmetrical axis is the same as that of moments that oppose its
movement. K is the rate of change of the electromotive force with respect to the angular
velocity, and the rate of change of the induced voltage is considered equivalent to both K;;,
and K,. This is because it is a DC motor and the excitation source is considered constant;
hence, the previous constants are considered equal. This can be deduced by working with
the instantaneous power equation, which relates to the instantaneous power supplied by
the excitation source, the instantaneous mechanical power, and the instantaneous power
dissipated by the motor windings [31].

The system of differential equations shown in Equations (6) and (7) is obtained from
the combination and substitution of Equations (3) and (4) into (1) and (2), respectively.

di(t) o(t) — Ri(t) — Kew(t)

at L ©)

dw(t)  Kpi(t) — Bw(t)
at ]

The equations represent the dynamic model of a DC motor, where Equation (6) corre-
sponds to the mechanical part of the motor, and Equation (7) corresponds to the electrical
part. The time response of the dynamic system was simulated using the nominal parame-
ters, as shown in Table 1. Later, simulations were performed with the parameters selected

@)
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by the algorithms, as described in the following section. It should be noted that the model
and nominal parameters may have differences from reality, although they are considered
so small as to be negligible.

Table 1. Nominal values of M2 motor.

R L K B ]
kg - m3
SZ

0.921042 Q) 0.0077590 H 0.073472 0.000678 0.000136 kg - m?

The simulation of differential equations was carried out through a block diagram in
MATLAB/Simulink 2010. The arrangement consisted of six inputs, which are the five
described in Table 1 and the input voltage. The current and angular velocity outputs were
delivered as a result. The setup can be seen in Figure 2.

wSd

,
|-

Figure 2. MATLAB/Simulink 2010 setup for the dynamic model.

3. Optimization Algorithms
3.1. Steiglitz—McBride Algorithm as a Parametric Estimator

The Steiglitz—-McBride algorithm is a modification of the Minimum Square Recursive
(MSR) algorithm. This algorithm was selected because it is a widely used heuristic algo-
rithm equivalent to the GA in metaheuristics. Any heuristic problem can be solved by this
algorithm. In the same way, this algorithm has already been subjected to comparisons
with metaheuristic algorithms, obtaining favorable results [30]. The most attractive feature
of this algorithm is its ability to find the Mean Square Error (MSE) for a linear system by
sampling the inputs and outputs in an iterative process, calculating the parameters using a
filter defined in the code equivalent to the system. The algorithm takes the results once the
filter is applied to the input parameters. It uses them as a starting point in the next iteration,
seeking to reduce the error on each iteration. In this way, the best solution is obtained. As
mentioned above, the algorithm works in two phases: pre-filtering and the estimation of
the parameters. The behavior of the algorithm is better explained in Figure 3, where the
two phases of the algorithm, prefiltering and estimation, are shown. In the first phase, the
image shows how it uses the input and output of the plant to adjust (in the second phase, it
uses the least squares algorithm).
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Figure 3. The flowchart of the Steiglitz-McBride algorithm.

To simulate the heuristic Steiglitz—McBride algorithm, the current and angular velocity
transfer functions were used to convert the model from discrete to continuous time.

3.1.1. Pre-Filtering

Pre-filtering is implemented on the motor input, i.e., voltage, in addition to two mea-
surable output parameters, where a transfer function defines current and angular velocity.

3.1.2. Estimation

The algorithm uses discrete models. For this reason, they are loaded by samples of sig-
nals involved in the estimation. The discrete model must go through the Steiglitz-McBride
algorithm to become a continuous model and obtain the estimated motor parameters
through calculations. The function changes from a discrete to a continuous model and
is simulated in the continuous model, and the error is calculated with the resulting new
functions generating a difference between the actual and estimated signals. Each time the
coefficients are calculated, the process is repeated, seeking to minimize the error.

3.2. Grey Wolf Optimizer (GWO)

GWO is a metaheuristic algorithm that takes only one inherent parameter to define its
search in addition to the general search parameters. It should be noted that this algorithm
has already been subjected to research where it has obtained better results than heuristic
algorithms. This makes it a suitable algorithm for this research. In other investigations, the
authors have managed to obtain good results with the GWO algorithm when adjusting the
parameters of nonlinear models for vibration amplitude measurements [32]. Also, there are
demonstrations where the estimation of the parameters of a control system can be optimized
in real time to improve the performance of robotic manipulators, specifically in terms of
tracking precision, robustness to uncertainties, and the smoothness of movement [33].

GWO is based on the social hierarchy that governs decision-making within a pack of
gray wolves. The author of [34] mathematically shapes this social hierarchy to consider the
best solution as “alpha”, the second-best solution is called “beta”, the third-best solution
is represented as “delta”, and the rest of the answers are assumed as “omegas”. It should
be noted that the hierarchy mentioned also influences the main phases of wolf hunting.
This is of utmost importance, since the algorithm is responsible for molding or designing a
mathematical order to describe each of these hunting phases based on their social hierarchy,
since the optimization offered by this algorithm for the solution of different problems is
guided by the “alpha”, “beta”, and “delta” solutions. The main hunting phases of gray
wolves are as follows.
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3.2.1. Encircling Prey

Mathematically speaking, the cornering of prey tells us that a gray wolf can randomly
update its position within the hunting space according to the position of the prey of the best
search agents. The author of [34] explains this in the mathematical order, adjusting the vectors
of the search agents. This behavior is described mathematically in Equations (8a) and (8b).

X(t+1)=X,(t)—A-D (8a)

D=I|C-X,(t) - X(t)| (8b)

where X is the position of the wolf, t denotes the iteration, Xp denotes the position of the
prey, and D is the distance between wolf and prey. Coefficients A and C are calculated as

A=23-7—7d (9a)
C=2p (9b)

r1 and r; are two random values of the vector within the range [0, 1].

3.2.2. Hunting

This phase is mathematically simulated in the algorithm by saving the three best solu-
tions obtained (alpha, beta, delta). These solutions will guide the other solutions (omegas)
to update their position relative to them in the next generation, because the final solution
is expected to be at a random place within the circle defined by the three best solutions.
We can calculate their updated positions by using alpha, beta, and delta, which are X;, X, B

and Xj, as follows:

Ba:|61~}?a—)?|,f)ﬁ:|62')?ﬁ—}?|,55:|63'25—2| (10&)
Xl:X‘,ngl'(l_j“),X'ZIX’ﬁ*A'Z'(D)ﬁ),23225*14’3'(55) (10b)

Xy + X + X5

X(t+1) = 3

(10¢)

3.2.3. Attacking Prey

The author of [34] proposes that this behavior can be simulated by decreasing the value
A, a random value in an interval of [—2a,2a], where a is reduced from 2 to 0 throughout
iterations. When the arbitrary values of A are at [1,1], the next position of search agent
“a” can be anywhere between its current situation and the position of the dam. With the
hunting phases explained so far, the algorithm offers good search agents that converge
to attack the dam (optimal solution). However, the algorithm is still prone to stagnation,

which brings us to the exploration phase.

3.2.4. Search for Prey (Exploration)

In this stage, the grey wolves diverge from each other to search for prey and converge
to attack prey. Some random values are selected to model the divergence to force the search
agent to diverge from the prey. The C vector contains random values in [0,2]. This is mainly
performed to increase the range of exploration and avoid stagnation, perhaps finding a
better target. Considering this scheme, the search hyperparameters are selected, and in
this case, the prey acts as the vector of engine parameters. The algorithm evaluates each
search agent and selects the one with the lowest fitness as the alpha wolf. The algorithm
will repeat the process until the selected number of iterations is completed.
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The flowchart in Figure 4 is explained as follows. First, the program initializes the

population to search for the constants to optimize, within the upper and lower limits. The
main program receives the parameters through Simulink in order to calculate the motor
current and velocity responses and compare with the actual responses using the fitness
function. The algorithm chooses the three best solutions closest to the actual response
which become the alpha, beta, and gamma agents, thus emulating the hunting behavior
of wolves. The program is initialized again with a new iteration, now creating the agents
within the range of solutions of alpha, beta, and gamma agents of the last iteration; in
this way, the same cycle is repeated until reaching the maximum iteration, obtaining the
best solution.

Initialization
Population = 100
Max_iteration = 100 Limits,
a, A, C: Tables 2 and 3

Positions: X;= (i, 1,2, ...,n)

]

{Input of motor parameters}

(R,L,K,B,J)

it < Max_iteration

each agent (wolf)

]

{ Calculate the fitness of }

X« = best solution

Xg = second best solution

Xs = third best solution

Figure 4. The flowchart of the GWO algorithm.

l
e B
Update a, A and C
N J
l
Update positions
Xi(t + 1) = M
L 3
I
e B
BestSolution = X,
it=it+1
N J

No{ Output BestSolution }

End

Table 2. General parameters applied in metaheuristic algorithms.

Parameter

Value

Description

Search agents
Upper limits
Lower limits
Iterations

Fitness function

100

R<1,L<01,K<0.1,B<0.001,] <0.001
R > 01, L > 0.001, K > 0.005, B > 0.00001,

J > 0.00001

100

Fitness =

1

VEI-I)2 4+ (w—ws)?

Number of random solutions proposed of each
metaheuristic algorithm.

Upper search limit for each DC motor parameter
Lower search limit for each DC motor parameter

Repetitions of each metaheuristic algorithm.
Function used to evaluate the performance of
each random solution (f : 7)
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Table 3. Specific parameters applied in metaheuristic algorithms.

Algorithm  Specific Parameters Description
ilenet.ic Mutation: 20% An.ope.rator that a.llow.s the random alteration of a gene to
gorithm maintain search diversity.
Selection: Roulette wheel (s(i) — f; ) Population with N individuals, for each chromosome i with
' Yo fi corresponding fitness value f;, probability s(i) of selection

Type: Crossover A random point is selected to combine the chromosomes.
Biological pressure: 30% The percentage of individuals that reproduce

Grey Wolf Aand C Intrinsic parameters calculated by original method pro-

Optimizer 4 A an posed (see original method in [34]).

Jaya - Jaya doesnt contain any specific parameter.

This algorithm has been used in multiple optimization works to estimate the param-
eters of DC motors. It offers good optimization in robust analyses, as in [35], where it is
sought to optimize the fractional-order PID controller in motor speed control.

3.3. Jaya Algorithm

This algorithm is used in optimization and is one of the simplest algorithms to im-
plement. It does not contain any intrinsic or extrinsic search parameters. It only uses
general search parameters, which makes it very attractive compared to other metaheuristic
algorithms that occupy specific search parameters. The Jaya algorithm is a metaheuristic
algorithm proposed by Rao [36] and can be defined as a modification of PSO in which
the attraction for the best local functions is removed. Jaya replaces this by moving the
worst local solutions away from the next iteration, thus producing optimized solutions
for the problem of interest. Compared to other algorithms, Jaya only occupies three input
parameters: the size of the population, the number of generations (iterations), and the
range of limits. The Jaya optimization process focuses on determining the most optimized
solution, leaving aside the lower solutions by disregarding generations that do not offer a
better solution than the current generation. When it comes to finding a better solution, the
algorithm eliminates the current generation, as it does not keep track of the best solutions.
The procedure of the Jaya algorithm is discussed in the following steps [37]. Step 1: Initialize
population size N and iteration number T. The constrained problem is as follows:

min f(x)
S.t
gi(x)=¢; Vji=(12,...,n)

where f(x) is the objective function used to calculate fitness value of the solution x =
(x1,x2,...,xp), where x; is a decision variable assigned by a value in the lower and
upper limits such that x; € [X/", X1ox], gj is the j" equality constraint, and J is the k
inequality constraint. Step 2: Constructing the initial population for Jaya. Note that JM
is an augmented matrix of size N x D corresponding to the Jaya Memory and shown
in Equation (11). Conventionally, a solution is randomly constructed: JM;; = X]mi” +

(X]’."i” - X]m‘”‘) xrnd,¥i€ (1,2,--- ,N)AVj€ (1,2,---,N).rnd is a uniform function that
generates a random value between 0 and 1.

xi x% xiD f(x;)
Xy x5 - X f(x*)

m= D72 T (11)
o ap] L)

The objective function f(x') for each solution is also calculated, and the JM solutions
are sorted in ascending order. The best solution is x' and the worst solution is x"V. Step 3:
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Jaya evolution process. The decision variables of all solutions in the M undergo changes
using the Jaya operator formulated in Equation (12). Note that x}i is the new updated

solution, x;. is the current solution, x} is the decision variable j in the best solution, and

x]N is the decision variable j in the worst solution. #; and r; are two independent random
numbers generated from a uniform distribution U(0, 1). Step 4: The JM solutions at every
iteration will be updated. The objective function value of the new f (x/i) is calculated. The
current solution x' will be replaced by the new solution x ! if f (x1) < f(x'). This process
will be repeated as many as N times. Step 5: Stop rule. The algorithm repeats Step 3 and
Step 4 until the maximum number of iterations T is reached.

x}lzx}—b—rlx(le-—|x;-)—r2><(x]l\l—|x;-|) (12)
Figure 5 shows the flowchart for Jaya algorithm.

Initialization
Population = 100
Tterations = 100
Limits: see Tables 2 and 3

I

Input of motor parameters
R, L, K, B,J)

‘ Sort the population,
x! and x"are the best and
t worst solutions

Update the current solution
x! using Eq. (12)

e 1

IS 2
Keep the previous | No . i ; Yes | Accept and replace
< i . )
solution iff(x") = f(x) the previous solution
L J

I

Consider the new set | Yes o
— of solutions as the i1 < imax
initial population

lNo

Report the optimum
solution x!

End

Figure 5. The flowchart of the Jaya algorithm.

3.4. Genetic Algorithm (GA)

GA is the oldest and most widely used metaheuristic algorithm, and it has many
antecedents in the field of DC motors. This background extends to the following applica-
tions of the Genetic Algorithm: in PID controllers, to tune the parameters of DC motors
when they have a time-dependent nature [38]; in the optimization of slotless BLDC motors
and the effect on the distribution of magnetic flux and temperature [39,40]; to identify the
dynamic state of a DC motor using the least squares error as a metric [41]; in a geared
DC motor to improve the actual angular trajectory [23]; and to design a PID controller for
a DC shunt motor considering a third-order model [42]. Also, the usefulness of GA for
time scheduling and optimization in industrial robotized tasks has been demonstrated,
improving efficiency and production time [43].
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The main drawback of the algorithm is that it has several specific search parameters.
The GA helps us to optimize the search for problem solutions based on natural selection
mechanisms and biological and genetic evolution as part of evolutionary computation. The
algorithm works through generations, where it first initializes them with random solutions.
These are called populations, where each individual or chromosome will be evaluated by
the selection function (fitness), which is mathematically molded depending on the problem
in question. This process happens in each iteration (generation). Thanks to the selection
mechanism, the next generation can be created from the selected chromosomes of the
previous generation with the help of the algorithm function called crossing, which modifies
the chromosomes through the mutation operator. Thereby, the algorithm finds an optimal
solution to the problem in question. Figure 6 shows the operation of the algorithm.

[ Population initialization

See Tables 2and 3

Input of motor parameters
(R,L,K,B,J)

Crossover

I

Mutation: 20%

I

Evaluation

]

{ Evaluate fitness values }
‘+ Selection: s(i) = ZN 1f, }
{ 1
[ J
{ ]

No

Yes
{ Find the best individual ]

I

End

Figure 6. The flowchart of the Genetic Algorithm.

3.5. Implementation of Metaheuristic Algorithms

The parameters used for the development of the algorithms are described here. Much
of the optimization is based on a good selection of search parameters that govern the search
for acceptable solutions to the problem in question.

The same “fitness function” was applied to each metaheuristic algorithm for a fair
comparison. This equation was based on the inverse of the Euclidean distance, as shown in
Equation (13), where I is the estimated current, I is the actual current, w; is the estimated
angular velocity, and w is the actual angular velocity. It should be noted that this function
is applied to each iteration of the metaheuristic algorithms.

1
Fitness = (13)

\/Z(I —I5)? + Y (w — ws)?
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The MSE was used as an error evaluation criterion; see Equation (14). This function
measures the average of the differences between the real and predicted values and allows
us to penalize the largest differences to obtain a more robust model where, if there are large
deviations, we can obtain a good approximation of the results. Since the DC motor is a
system of differential equations with two variables, both must be included in the error
estimate. That is why the fitness function must consider the MSE in current and speed.
Since they are two different variables, the Euclidean distance is used to associate them. This
statistical method will be used to analyze performance in the parametric estimations of the
DC motor. The result will be a percentage of error in each vector of the five parameters
[R, L, K, B, J]. It is important to highlight that the error function selected can affect the
behavior of the metaheuristic algorithm. In addition to the MSE error, some other error
functions have shown similar performance [44,45]; for example, the Integral Squared Error
(ISE), the Integral Absolute Error (IAE), the Integral of Time multiplied by the Absolute
Error (ITAE), and the Integral of Time multiplied by the Square Error (ITSE). Studying the
effects of these error functions is beyond the scope of this manuscript.

MSE = !

Z|

N
Y (vi — 0:)* (14)
=

This method results in an error calculated by adding the actual values minus the
estimated values squared and divided by the number of parameters.

The optimization offered by metaheuristic algorithms depends on the iterations,
since the algorithm produces a more optimal solution in each iteration. However, if
many iterations are used, the algorithm will require a higher computational cost. For this
work, the number of iterations is a fixed parameter aiming for a good performance in
both computational cost and parametric estimation, obtaining a good balance between
effectiveness and efficiency. The iterations used were 100 for each program.

The range of limits (upper and lower) determines the search space for each motor
parameter. The limits adjust each range proportionally to the magnitude of the parameter.
Varying these limits increases or reduces the search space. Although an infinite number of
values can be selected, it is not essential, as long as the nominal value is within the search
range. Thanks to this, the algorithm has a defined search space, where it begins to evaluate
random values in search of the most appropriate solution. Mutation and creating a new
population are performed within the limits of the GA. In the case of GWO and Jaya, new
search agents within the range are checked in each iteration, guaranteeing that the search
for all algorithms is performed within the limits. The ranges selected for this work must be
positive since, by definition, any parameter takes negative values. On the other hand, the
final selection of values is based on the typical values expected for this type of motor. For
example, investigations such as refs. [30,46] have successfully searched for values in this
range in similar DC motors.

Considering the above, each algorithm uses common general parameters, such as
limits and iterations; see Table 2. However, they also use parameters that are specific to each
method. The summary with the values of all the parameters used in each metaheuristic
algorithm is shown in Table 3.

Simulations were run for 3 s for a constant voltage of 10.5 V. Likewise, a numerical
method with a fixed step of 0.001 s was used to adapt to the data acquisition system. In
executing the three metaheuristic algorithms, MATLAB was used to model the dynamic
system of the DC motor through Simulink, and to obtain the responses of current and
angular velocity, Equations (6) and (7) were used, respectively. MATLAB is responsible for
executing the heuristic and metaheuristic algorithms; however, to evaluate performance,
the Simulink scheme shown in Figure 7 is used, which evaluates the proposed solutions
and subsequently returns the current and voltage signals obtained to MATLAB.
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Figure 7. Fitness evolution for Genetic Algorithm.

In the same way, the input parameters of the M2-Robokits motor were the same as in
the heuristic algorithm. The same period, voltage, and step mentioned above were used
for each simulation.

4. Results

The minimum fitness calculated by each metaheuristic algorithm may vary because
it is based on random values. Therefore, cross-validation is required. For this, each
metaheuristic algorithm was executed ten times. The best, worst, and average are shown
in Table 4. Furthermore, the performance graphs are shown for the GWO algorithm in
Figure 8, for the Jaya algorithm in Figure 9, and for the GA in Figure 10.

Table 4. The cross validation for metaheuristic algorithms.

Fitness Value in Fifty Runs

Algorithm Best Worse Average
GWO 0.029 0.062 0.042
Jaya 0.35 1.92 0.99
GA 0.044 1.06 0.058
10,000 T T T
]

9,000 |-
8,000 -

7,000 |-

o
=3
=3
S

5,000 |-

Fitness Value

4,000 |-
3,000 |-
2,000 |-

1,000 ‘
0

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
Fitness consumption evaluated

Figure 8. Fitness evolution for Gray Wolf Optimizer.
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Figure 9. Fitness evolution for Jaya.
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Cost function
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Fitness consumption evaluated

Figure 10. Fitness evolution for Genetic Algorithm.

The parameters calculated for all algorithms are shown in Tables 5 and 6. Two real

signals from the M2 Motor were used for this. The current signal was hardware-filtered,
and the velocity signal was filtered using a Chebyshev software filter. Both signals are
considered real, although there may be variations due to acquisition and filtering.

Figure 11 shows the comparison between the real current of the motor and the one
estimated by the Steiglitz—-McBride algorithm. In the same way, Figure 12 shows the
comparison of the real velocity of the motor against that estimated by the Steiglitz—
McBride algorithm.

Figure 13 shows the comparison between the real current of the motor and the one
estimated by the GWO algorithm. In the same way, Figure 14 shows the comparison
of the real velocity of the motor against that estimated by the GWO algorithm.
Figure 15 shows the comparison between the real current of the motor and the one
estimated by the Jaya algorithm. In the same way, Figure 16 shows the comparison of
the real velocity of the motor against that estimated by the Jaya algorithm.

Figure 17 shows the comparison between the real current of the motor and the one
estimated by the GA algorithm. In the same way, Figure 18 shows the comparison of
the real velocity of the motor with that estimated by the GA algorithm.
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Table 5. Comparison of Steiglitz—McBride and GWO algorithms against nominal values.

Steiglitz-McBride GWO
Parameter Nominal Value Value MSE Value MSE
R (QY) 0.921042 0.914735 00.68% 0.923696 0.42%
L (H) 0.007759 0.008893 14.49% 0.007752 0.96%
K 0.073472 0.073547 00.10% 0.073466 0.08%
L3
B kgs2m 0.000678 0.000680 00.28% 0.000677 0.16%
] (kg . mz) 0.000136 0.000135 01.03% 0.000136 0.55%

Table 6. Comparison of Jaya and GA algorithms against nominal values.

Jaya GA
Parameter Nominal Value Value MSE Value MSE
R (O) 0.921042 0.996974 08.24% 0.817929 13.44%
L (H) 0.007759 0.008941 15.04% 0.011908 89.00%
K 0.073472 0.000676 01.28% 0.076071 05.75%
kg - m3

B < gszm 0.000678 0.291812 01.61% 0.000661 17.07%
] (kg . mz) 0.000136 0.000128 08.75% 0.000135 17.67%
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Figure 11. Real current signal vs. Steiglitz—-McBride signal.
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Figure 12. Real velocity signal vs. Steiglitz—McBride signal.

101



Algorithms 2024, 17,209

8
s 1
7.9|
6F 78| 1
7.7]
sk 1
75
< 4p 75 4
€
Q 7.4]
=1 |- 4
Is] 3 1.005 1.01 1.015 1.02 1.025
oL 1
b ]
0
Real Current [A]
= = =GWO Current [A]
4 . . . . .
0 0.5 1 15 2 25 3
Time [s]

Figure 13. Real current signal vs. GWO signal.
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Figure 14. Real velocity signal vs. GWO signal.
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Figure 15. Real current signal vs. Jaya signal.
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Figure 16. Real velocity signal vs. Jaya signal.
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Figure 17. Real current signal vs. GA signal.
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Figure 18. Real velocity signal vs. GA signal.
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The computation times for each algorithm to run the 100 iterations are outlined in
Table 7. The parameters and errors estimated by the Steiglitz—-McBride and GWO algo-
rithms are shown in Table 5 and compared against the nominal values. The parameters
and errors estimated with the Jaya and GA algorithms are displayed in Table 6 and com-
pared against the nominal values. As another metric to compare the algorithms, Table 8
includes the standard deviations that resulted from the estimates of each algorithm for
each parameter analyzed.

Table 7. Computation time.

Algorithms Average Time (min)
Steiglitz-McBride 0.102
GWO 49.53
Jaya 51.16
GA 60.23

Table 8. Standard deviation of estimates from each algorithm.

Algorithms
Parameters Steiglitz-McBride GWO Jaya GA
R 0.0023 0.0040 0.0086 0.1340
L 6.49 x 107° 9.22 x 107° 8.69 x 1074 0.0114
K 453 x107° 7.24 x 1075 0.6940 0.0044
B 1.55 x 1074 1.15 x 10~° 1.08 x 107> 9.94 x 10~7
] 357 x 107> 6.99 x 1077 1.20 x 10~ 527 x 1077

These results were obtained with real current and velocity signals. Better results are
expected from all algorithms with computer-generated signals. However, it is necessary
to address the noise inherent in real signals for practical application. The motor model
parameterization process is usually performed offline, since the parameters remain constant.
However, the parameterization of a motor can allow the use of control schemes that consider
the dynamics of the system and not only the error, as in the case of the PID, which can
allow for more precise control.

5. Discussion

Table 7 shows the computation performance of each algorithm. In this way, the
computation times are compared among themselves to see whether they influence each
algorithm’s performance, since in works such as ref. [47], it has been reported that the
increase in iterations negatively affects the optimization of the solutions. This is contrary
to what occurs in our research, where the increased iterations and, consequently, high
computational cost improved the parametric estimates. Even though parameterization is
an offline process, the response times of the algorithms are too high for the response time
expected in a control system. Thus, this type of algorithm is usually avoided in processes
that require a high response speed.

As can be seen in Table 7, the Steiglitz—-McBride heuristic algorithm has a lower
computational cost compared to the metaheuristic algorithms. This is because the algorithm
itself works through pure mathematics and is in charge of finding a unique solution.
However, among the metaheuristic algorithms, a similar computational cost was observed,
with a time variation of 10.7 min.

GWO has been used to estimate the parameters of a DC motor by applying an Integral
Squared Error (ISE) object function [3]. It is reported that a smaller number of iterations
could be detrimental, as it causes stagnation and local optima problems. Because of this,
the authors decided to implement 500 iterations per test and few search agents compared to
iterations. The use of 500 iterations in our research significantly increased the computation
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time. GWO has also been used as a parameter tuner for a PID controller [48], where
50 iterations and 30 search agents were applied. Taking into account the above, the
configuration we decided to use in our research consisted of a smaller number of iterations
and a larger number of search agents to reduce the computational cost and achieve a low
error compared to the literature. This represented an estimation with an average error rate
of 1.73%, which was 55% lower than that shown in [3].

The algorithm with the highest average MSE percentage was the GA algorithm, which
was 28.59%. Among all the algorithms, the algorithm that showed the lowest average
percentage error was the GWO, with 0.43%. However, the average MSE percentage for
Steiglitz-McBride, which is not a metaheuristic algorithm, was lower than Jaya and GA; see
Tables 5 and 6. Although GWO generated the best parametric estimation in this research,
the Steiglitz—McBride algorithm could work as another alternative when the application
requires low computational cost and a low standard deviation in the estimation of each
parameter; see Table 8. For example, in [49], it has been shown that the Steiglitz—McBride
algorithm is useful in the parametric estimation of electrical machines such as DC motors,
brush DC, and brushless AC and gear machines. Also, it is frequently used as an optimizer.

The current signals estimated by GWO and Steiglitz-McBride were very similar to the
nominal ones. For this reason, a comparison of the real and estimated signals obtained by
the algorithms was performed with the following indicators: settling time, overshoot, and
steady-state error.

The stabilization times of the current signals were as follows: 1.107 s in the real signal,
1.118 s in Steiglitz—-McBride, 1.103 s in GWO, and 1.167 s in GA. However, the current
signal estimated by the Jaya algorithm failed to reach the stabilization value; see Figure 15.
The current signal obtained by GWO is the closest estimate to the real motor signal; see
Figure 13.

The average current values in the steady-state zone of each algorithm were as follows:
1.1821 A for the real signal, 1.1840 A for Steiglitz—-McBride, 0.0827 A for Jaya, 1.1805 A
for GWO, and 1.0968 A for GA. This means that GWO and Steiglitz-McBride were the
algorithms that estimated the closest current response to the real one.

The comparison of the overshoot values in the current signals were as follows: 7.8717 A
for the real signal, occurring in 1.014 s; 7.6930 A for the Steiglitz—-McBride algorithm,
occurring in 1.016 s; 3.2511 A for Jaya, occurring in 1.004 s; 7.8738 A for GWO, occurring in
1.014 s; and, finally, 7.5736 A for GA, occurring in 1.018 s. The GWO algorithm proved to
be the most accurate when discussing the maximum peaks, obtaining the same result as
the real signal for time. For current, a 0.22% difference was displayed.

In [3], the authors reported that a percentage error comparison cannot be reliable
as a measure of the effectiveness of these algorithms. Since the algorithms do not show
consistent solutions because they start from random solutions, performing the comparison
by means of the standard deviation would be more suitable, which is a more stable metric
for random data. Table 8 shows the difference in the standard deviation between the
estimated parameters of each algorithm and the nominal values. The algorithms with
the most significant deviation were Jaya and GA, with Jaya being the algorithm with the
greatest variation in the estimates. On the other hand, Steiglitz—-McBride and GWO had
less variation in the estimates, where Steiglitz—McBride was the algorithm with the lowest
deviation of 37.34% with respect to GWO. This may be due to Steiglitz—McBride having
consistent estimated values, because it starts from a mathematical model. In contrast,
metaheuristic algorithms start from random solutions which are adjusted to find the most
suitable solution during iterations.

6. Conclusions

This work performed a parametric estimation of a DC motor using a heuristic algo-
rithm (Steiglitz-McBride) and three metaheuristic algorithms (Jaya, GWO, and GA). The
MSE and standard deviation were used as statistical indicators to evaluate the performance
of each algorithm as well as other values of the dynamic response, such as settling time,
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overshoot, and steady-state error. In this way, this work determined which algorithm pro-
vides a parametric estimation closer to the nominal parameters and real DC motor signals.
The comparison between metaheuristic and heuristic algorithms is limited to parametric
estimation in direct current motors. As the No Free Lunch theorem states, no algorithm is
best for all applications. Another limitation is the selection of hyperparameters, because
there is no way to guarantee the optimal selection of these parameters in metaheuristic
algorithms. There are algorithms for selecting hyperparameters, but they do not guarantee
optimal selection. Therefore, the maximum performance of a metaheuristic algorithm may
not be found.

According to the aforementioned aspects, the two best-performing algorithms were
Steiglitz—-McBride and GWO. GWO was the best parametric estimator for this application,
having the lowest MSE of all algorithms for the nominal parameters. Likewise, this
algorithm had the closest responses to the real ones, with the best overshoot and settling
time approximation. However, Steiglitz—McBride also obtained good results as a parametric
estimator, even better than Jaya and GA, but with the lowest computational cost of all and
a less variable parametric estimation.

Although GWO is a better parametric estimator, it does not mean that it is better
than the Steiglitz—McBride algorithm, since implementing the mathematical model in a
metaheuristic algorithm can be simpler. However, the search parameters required by meta-
heuristic algorithms are obtained after many tests, which generate a high computational
cost. Although the Steiglitz—McBride is mathematically more complex, if appropriately im-
plemented, it may require fewer tests and fewer corrections within the algorithm, resulting
in a lower computational cost.

In this work, the heuristic algorithm produced fewer problems during tests, with
lower computational cost and low variation in estimates. However, if a more precise
parametric estimation is required, it is recommended to use GWO. Considering these
aspects, the heuristic algorithm has more advantages in the parametric estimation of DC
motors. The performance of the algorithms presented in this paper may change if different
error functions are used, as well as other search parameters. In addition, performance
depends on the final application of the algorithm.
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Abstract: Partial shading conditions lead to power mismatches among photovoltaic (PV) panels, re-
sulting in the generation of multiple peak power points on the P-V curve. At this point, conventional
MPPT algorithms fail to operate effectively. This research work mainly focuses on the exploration
of performance optimization and harnessing more power during the partial shading environment
of solar PV systems with a single-objective non-linear optimization problem subjected to different
operations formulated and solved using recent metaheuristic algorithms such as Cat Swarm Opti-
mization (CSO), Grey Wolf Optimization (GWO) and the proposed Chimp Optimization algorithm
(ChOA). This research work is implemented on a test system with the help of MATLAB/SIMULINK,
and the obtained results are discussed. From the overall results, the metaheuristic methods used
by the trackers based on their analysis showed convergence towards the global Maximum Power
Point (MPP). Additionally, the proposed ChOA technique shows improved performance over other
existing algorithms.

Keywords: maximum power point tracking; PV systems; cat swarm optimization; grey wolf opti-

mization; chimp optimization algorithm

1. Introduction

Solar energy has become increasingly important as an energy resource due to its
inexhaustible nature, cleanliness, scalability in power generation and low maintenance
requirements. As a country with high sunshine, India offers an exceptional opportunity for
harnessing solar energy, which can significantly address our pollution problems. In recent
times, photovoltaic systems have gained immense popularity due to their numerous ad-
vantages. These systems are known for their sustainability, low maintenance requirements,
absence of complex parts and extended lifespan, among other benefits [1]. The PV systems
are subjected to shading effects along with dynamically changing weather conditions due
to the shadow of large buildings, passing clouds, birds’ shadows, etc. In the case of Partial
Shading Condition (PSC), the PV modules get different irradiations and temperatures,
leading to decreasing the power output obtained from the PV array and causing hot spots
and loss of tracking efficiency. During shading, power variation with voltage characteristic
plot possesses several peaks, one referred to as Global Maximum Power Point (GMPP),
and others are well known as local maximum power points, as delineated in Figure 1.
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Figure 1. P-V plot of PV module under changing shading conditions.

Most conventional MPPT approaches like Perturb and Observe (P&O), Incremental
Conductance (INC) and Constant Voltage (CV) techniques can work efficiently when solar
radiation and temperature are uniform but significantly fail when the weather conditions
are varying. In order to address the mentioned challenge, researchers have utilized intelli-
gent global search optimization algorithms which effectively tackle the global maximum
power tracking (MPPT) problems. In the available literature, diverse MPPT techniques and
alternative solutions have been employed to accurately identify the true global maximum
power point amidst various local MPPs.

These popular intelligent algorithms include (a) Genetic Algorithm (GA), (b) Particle
Swarm Optimization (PSO), (c) Ant Colony Optimization (ACO) and (d) Teaching learning-
based optimization. Kulaksiz et al. [2] implemented the GA with an ANN-based tracking
method for the standalone PV system. Genetic algorithm optimization was used in this
algorithm to optimise the required number of neutrons in a multi-layer perception neural
network, thereby tracking required power during uneven irradiance situations. Tajuddin
et al. [3] suggested a superior Differential Evolution (DE) algorithm for changing solar
environmental conditions to obtain global power output. Thangamani et al. [4] introduced
an adaptive differential algorithm that can track MPP under swiftly changing climatic
conditions. Ramli et al. [5] surveyed methods resembling artificial intelligence and hy-
brid algorithm for tracking MPP and summarized the finer points of various techniques
understanding to increase the power output of the PV array.

Liu et al. [6] applied the PSO for various operating situations and reported the merits
of the PSO algorithm, which includes ease of implementation, system independence and
enhanced output. Ishaque et al. [7] discussed the PSO algorithm, which eliminates the need
for the direct duty ratio method’s proportional-integral (PI) control block. Renaudineau
et al. [8] used the PSO algorithm to control the gate pulse given to the boost converter to
extract GMPP. Phimmasone et al. [9] used the PSO algorithm by taking additional specific
coefficients of the algorithm to progress to the next step and get the global point of the
PV. The usage of more specific parameters in PSO algorithms results in decreased tracking
efficiency and increased uncertainty of the solution. Therefore, the desired operating point
cannot be reached. To overcome these drawbacks, improved optimization algorithms
were proposed by the researchers. Chao et al. [10] offered a modified PSO algorithm to
harness GMPP from a PV system during a cloudy day. The adjustment practice fallouts
to figure out the algorithm-specific parameters for the next step of acceleration. In [11],
Chen et al. focused on applying an enhanced PSO algorithm for MPPT to enhance tracking
efficiency, particularly under shading conditions. Chowdhury et al. [12] proposed the
adaptive PSO to defeat the de-merits of a conventional PSO. Tobon et al. [13] implemented
an Improved Pattern Search Method (IPSM) for MPPT, and the solution obtained by the
pattern search technique succeeded in their convergence properties. Babu et al. [14] worked
on the voltage-band-based improved PSO approach to improve the convergence of the
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PSO. Gavhane et al. [15] examined the studies on MPPT on cloudy days by applying
Enhanced-Leader-Particle Swarm Optimization (EL-PSO), which was more efficient for
implementation. Babu et al. [16] presented the benefits of the modified PSO algorithm,
highlighting its nearly zero steady-state oscillations and faster dynamic response compared
to traditional approaches. Husain et al. [17] commented on the various parameters of the
PSO and elaborated on the numerous procedures for MPP tracking. Kalaiarasi et al. [18]
proposed an enhanced PSO method for getting maximum benefits from solar-powered
energy integrated through the Z-source inverter and observed various benefits of reduction
in the steady state oscillations.

Dileep and Singh [19] gave an inclusive report on different computing methods (PSO
and ACO) to get GMPP beneath diverse shading effects. Ahmed et al. [20] applied PSO,
ACO, Cuckoo Search (CS) and DE for the simulation of the MPPT system during shading
patterns, the provision of operation and merits, and the limitations of each optimization
algorithm have been highlighted. Li et al. [21] considered a new GMPP tracking approach
which depends on changes in power, besides analysing the nature of the activity. Rezk
etal. [22] reviewed the various power extraction algorithms and concluded that PSO and CS
algorithms have shown more convergence to the global maximum power tracking. Ahmed
et al. [23] investigated the effectiveness of the Particle Swarm Optimization-Support Vector
Regression (PSO-SVR) method in reducing the percentage of ripple content and minimizing
oscillations in the power waveform around the MPP region. Gangwar et al. [24] studied
the cat swarm optimization in a specific pattern well known as phyllotaxy in order to
extract more solar power. Mohanty and Tripatty [25] presented a novel Teaching Learning
Based Optimization (TLBO) algorithm, that was introduced for the optimal placement of
distributed generation in a radial distribution network. This technique offers a unique
approach to addressing the problem of determining the best locations for distributed
generation sources within the network.

Hegazy and Fathy [26] carried out numerous simulations under different shading
patterns using (FLC, PSO, and TLBO) and concluded that TLBO extracts GMPP more
dynamically than others. Ahmed and Rezk [27] implemented a novel Mine Blast Algorithm
(MBA) and applied different patterns of shadow. The obtained results were compared,
thereby declaring MBA as superior to TLBO. Crepinsek et al. [28] observed that the TLBO
algorithm showed better performance for maximum power point tracking among the
optimisation algorithms. Sundareswaran et al. [29] found that Firefly Algorithm (FA)
was one of the efficient approaches to harnessing maximum solar energy beneath partial
shading conditions. Javed et al. [30] studied enhancing the FA algorithm; the study aimed to
improve MPPT efficiency and mitigate the adverse effects of partial shading. Comparative
analysis between the modified FA and PSO algorithms provided valuable insights into
the effectiveness of the modified FA algorithm for achieving superior MPPT performance
under partially shaded conditions. Mohanty et al. [31] proposed a hybrid maximum power
point tracking technique using the P&O method with GWO for better MPPT from PV
module strings beneath shading conditions. Eltamay et al. [32] applied the GWO algorithm
with fuzzy logic controllers to eliminate the oscillation near GMPP. Mohanty et al. [33]
examined the design of the MPPT circuit along with the GWO algorithm that mitigates the
shortfalls of conventional tracking methods, such as poor performance in tracking, low
efficiency and more oscillations near and around MPP.

The key distinctions among this approach include their effectiveness range, conver-
gence speed, design complexity, sensor requirements, control parameters and hardware
implementation costs. Consequently, selecting an appropriate algorithm is crucial when
designing a photovoltaic (PV) system, as it depends on the intended application. After the
selection of the optimization algorithm, the adaptation for the solved optimization task
must be done.

This paper compares widely used MPPT techniques to mitigate the negative impact of
partial shading, thereby enhancing maximum power output. It explores the advantages and
disadvantages of these techniques and provides a general comparison of various solutions.
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This article particularly focuses on discussing different approaches for global maximum
power point tracking (GMPPT) under partial shading conditions, with emphasis on recent
advancements in the scientific literature.

The main contributions of this paper are as follows:

e A statistical investigation of modern heuristic optimization methods for (GMPPT) in
photovoltaic (PV) systems under partial shading conditions has been presented;

e  Comprehensive analysis of the challenges associated with heuristic optimization-based
GMPPT techniques, focusing on their exploitative and explorative search capabilities;

e Introduction of a novel GMPPT method called Chimp Optimization Algorithm, which
effectively balances the exploitative and explorative search capabilities;

e  Statistical comparisons of different heuristic optimization-based GMPPT techniques
in terms of tracking routines, accumulated energy and tracking efficiency.

Applications of Metaheuristics Algorithm

>  Metaheuristics algorithms offer a powerful approach to tackling complex optimization
problems in diverse domains. Their flexibility, robustness and ability to find satis-
factory solutions make them invaluable tools for real world problems as presented
below.

>  Metaheuristics are widely used to tackle problems with a large number of possible
combinations, such as the Traveling Salesman Problem, Knapsack Problem or Job
Scheduling. Examples of metaheuristics for combinatorial optimization include GA,
PSO, ACO and Simulated Annealing (SA).

>  Metaheuristics are used for optimizing the design parameters of complex systems.
For example, they can optimize the shape of an aircraft wing, the layout of an electric
circuit, electromagnetic device or the parameters of a chemical process.

> Metaheuristics are utilized in optimizing transportation routes, vehicle routing prob-
lems and logistics planning. They help find efficient paths for deliveries, minimizing
travel time and costs.

>  Metaheuristics can optimize production schedules, inventory management, and re-
source allocation in manufacturing processes.

>  Metaheuristics can be used to create computer programs that can play games effec-
tively by finding near-optimal strategies.

2. Application of CSO-Based MPPT Controller for Solar PV Strings under Partial
Shading Conditions

In the CSO algorithm, the natural behaviour of the cats is used to solve the optimiza-
tion problem [34]. In this algorithm, the behaviour of cats is deciphered in two modes:
seeking mode and tracing mode and used to move the virtual cats in the search space.
A predetermined ratio, known as the Mixture Ratio (MR), determines how many cats
participate in each iteration in tracing and seeking mode.

2.1. Seeking Mode

The virtual cat walks slowly while it follows the searching mode. In this seeking mode,
the following four basic criteria are defined as follows:

> Seeking memory pool (SMP);

> Seeking range dimensions (SRD);

> Counts of dimensions to change (CDC);
> Self-position consideration (SPC).

Each cat’s size in the search pool is determined by the SMP value, which translates the
points needed by the cat. SRD announces the boundary condition requirement for updating
the dimensions as well as the Mixture Ratio (MR) of the preferred dimensions. The CDC is a
key element of the searching mode that reports how many dimensions need to be modified.
The SPC value plays a crucial role in determining whether the current candidate of the
virtual cat can be deemed as a suitable choice within the search memory. The flow chart
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interpreting the CSO algorithm is shown in Figure 2. The sequential procedure involved in
the Seeking approach is presented below.

START

( Create initial population (N cats) >

[
N

<Evaluate the cats according fitness function)

!

< Determine position best adapted cat )

YES Is the cat k is the NO
seeking mode
Apply the cat k into Apply the cat k into
seeking mode tracing mode

?
Repick number of cats and sent them into tracking mode
according to MR and set the other seeking mode

\l/ NO

Stop criteria
YES \l/

Figure 2. The flow chart of the CSO algorithm.

"2

Step 1: Let us consider “j” copy the current position of Cat k
where j = SMP if SPC = TRUE
Otherwise,

J=SMP—1

Step 2:
XIDyew = (1 +r1 SRD)'X]Dald 1)

where rq is the random number from range (0, 1)
Step 3: Determines fresh value of fitness for each cat.
Step 4: Find out the selection capability from Equation (2) whenever the fitness
function value changes. If not, set each solution’s selection probability to 1.
Step 5:
FS; —FS
P = ‘ P b| )
FSminaq
where P; is the probability of selection, FS is the fitness function value.
If the objective function is to minimize, then FS; = FS;;ay. Otherwise,

ESy = FSyin

where FS,;y is the largest fitness offered by the candidate, and FS;;4y is the smallest fitness
offered by the candidate.

Step 6: Arrange the candidate’s cat by P; and anyone can select to retain the co-ordinate
cat k.

2.2. Tracing Mode

The virtual cats can imitate the movement of other cats to track their prey during the
tracing mode. The mechanism of the tracing process can be described in Equations (3) and (4).
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Step 1: Equation (3) represents the velocity of each cat updated in every dimension.
Vid = Via + 11+ C1(Xpesta — Xia) €)

whered =1, 2, ..., M, rq is the random number from range (0, 1), C; is the constant number,
and Xp, is the best adapted cat in population.

Step 2: The velocity of each cat is examined to determine if it falls within the permis-
sible limits. In cases where the velocity exceeds the limit, it is adjusted to the maximum
allowable velocity value.

Step 3: Determine the position of every cat by adding the current velocity of each cat.

X 4 new = Xied old + Via/ At @)

where X}, 014 is the old coordinate of cat k, X, new is the updated coordinate of cat, and
At =1 is the time step.

3. Application of GWO-Based MPPT Controller for Solar PV String under
Shading Conditions

This section presents a mathematical model that describes the social hierarchy, tracking,
encircling and attacking behaviour of predators toward their prey. The model aims to
capture the dynamics and interactions between predators as they coordinate their actions
to maximize their chances of capturing the prey [35].

3.1. Encircling the Prey

The following Equations (5) and (6) represent the behavioural model of wolves while
encircling the prey [31].

D= |C-Xp(t) - X(t) (5)
X(t4+1) = Xp(t)—A-D ©)

where t is iteration number; D, A and C are the GWO parameters; X, is the position of the
prey.
To determine A and C, the following equations are used.

—
A=2-d-rn—a 7)

N
cC=2- Ty (8)
where r; and r; are the random numbers from range (0, 1).

The control parameter a changes to the grey wolf optimization process, causing
omega wolves to either approach or be free from the alpha beta, and delta-dominating

wolves. While the iterations are being performed, the operating parameter 4 is set to
decrease linearly from a value of 2 to 0.

4 =2{1-t/T} )
In the above equation, T indicates maximum iteration numbers.

3.2. Hunting Process (Updating of Wolf Position)

The alpha group of wolves, the leaders, usually directs the hunting process. They
are followed by beta and delta group wolves, who occasionally engage in hunting. The
surrounding wolves in the pack worry the delta and omega wolves. As a result, the alpha
wolf is seen as the best option with solid information of where the prey is. The GWO
algorithm indicates a superior balance between the exploitation and exploration phases
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because of these qualities. Moreover, by choosing while C considers the environment,

GWO eliminates the local stuck.

Hence, the different wolf groups’ positions can be obtained from Equations (10) to (12)

as follows:
— - = —
Dy =|Cq Xa(t) - X(t)
— - = —
Dg=|Cq- Xﬂ(t) — X(t)
— - = —
Ds = |Cy- Xs(t) — X(1)

, X1 = Xu(t) — A1 - Dy (10)
- — - =

, Xo = Xg(t) — Az Dg (1)
- — - =

, X3 = X;s(t) — A3 - Ds (12)

Opverall, the final grey wolves positioned in the iteration are obtained from Equation (13).

—

Xe(t+1) =

— — —
X1+ X+ X3

. (13)

3.3. Attacking the Prey (Exploitation of Search Process) a
Grey wolves attack their prey to end their hunt. This method of attack is described

mathematically by lowering the value of a, which then modifies the value of q. Ais
reduced from 2 to 0 and initially has a random value in the range [—a, a].

3.4. Searching the Prey

Figure 3 represents the flow chart of the GWO algorithm step-by-step process for the

present research problem.

START

GWO initialization and initialize
a, 4, C values

2

=
£

Adjust the duty cycle (d) of the boost convertyer
according wolf &

1

Use voltage and current sensors to read solar
panel voltage Vpy and current Jpy

1

‘ Evaluate the panel power py ‘

If Gini™ P
Fitness value

All agents (duty cycles)
evaluated?
Fitness value

Update a, 4, C and
position values

g . NO I
Convergence criterion =+1 ‘

YES

Figure 3. GWO algorithm flow chart.
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4. Application of ChOA-Based MPPT Controller for Solar PV Module under
Shading Conditions

Exploration and exploitation are the two phases in which the hunting process is
completed. Equations (14) and (15) are used for the design process of driving prey and
chasing prey as presented below.

D= |C-Xp—m- Xchimp(t) (14)

Xchimp(t+1) = Xp(t) —a-D (15)

where m is chaotic vector, Xcpimy (t) is the chimp position at ¢-th iteration.
The values of a and C coefficient in each iteration Equations (16)—(18) are used.

a=2fr—f (16)
C= 2:19 (17)

where f is the dynamic vector [36].

In the exploration and exploitation stages of the iteration process, the value of f
decreases nonlinearly from 2.5 to 0. Random vectors r; and r, vary within [0, 1] while
regulation vectors are indicated by a and C. The distance between them is denoted as D. The
chaotic vector (1) is calculated based on different maps to simulate the sexual motivation
of chimps during the search process. In subsection C, a detailed report on the chaotic vector
(m) is provided. Unlike conventional swarm intelligent optimization algorithms, where
all particles (agents) behave similarly across the entire search space, the mathematical
model incorporates various strategies for independent groups of chimps to revise their
hunting approach. The behaviour of independent chimp groups in the ChOA is updated
using a continuous function. Through the use of constant parameters, the independent
process is iteratively refined. All these parameters are explicitly defined throughout the
entire process, ensuring that f is decreased in successive iterations of the optimization
process. Each self-determining group employs its model to explore both the global and local
search spaces. The dynamic coefficient vector with different groups is delineated in Table 1.
To enhance the search capability and precisely capture the search nature of the chimp’s
independent groups, a dynamic coefficient of f is proposed and illustrated in Figure 4.
Different curves and slopes are chosen for these dynamic coefficients (f) to facilitate the
adjustment of the behaviour of the Chimp Optimization Algorithm’s independent groups.

Table 1. Dynamic coefficient vector f.

Type Barrier Attacker Driver Chaser
—
¥ 195-2- b 15-2- 4 (3 h) 415 (-2 5) 415
Dynamic Vector of ChOA
< | | *+» Barrier ‘
| 1‘ - Attackerl‘

...........

iy
T

feus
.....
“

————— =
1
'
i
'
ra— — —
'
'
1
'
'
i
——

!
I
!
]
1
I
]
i
1
-

-+

Amplitude
o
T
=
€
£
:
:
H
sl
3
F
3
Hl

-

3]

B
~ -
o 1N D

Iteration

Figure 4. Variation of dynamic coefficients vector with different groups of ChOA.

In the above table, T is the maximum number of iterations, and ¢ is the current iteration.
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4.1. Exploration Stage

When chimps are attacking, they are likely to search the prey’s local position by the
use of diverse stages such as chasing, driving and blocking to enclose the prey. In general,
attackers are managed by the chase process. In the initial iteration, since the optimal
position of the prey is unknown, the attacker’s location is assumed to be the actual location
of the prey. Then, the subsequent barrier, driver and chaser locations (denoted by C)
are determined relative to the attacker’s position. The best position achieved is stored.
However, the other chimps need to refine their positions based on the location of the most
successful chimp. Mathematical equations are employed to model the process of encircling
the prey by the chimps (19), (20) and (21), respectively.

DAttacker = |C1 ) XBarrier —my- X|
DBarrier = |C2 ) XBarrier —my - X| (18)
DChacer = ‘C3 : XChaser —ms3- X|; DDriver = |C4 : XDriver — My - X‘

Xl = X1XAttacker —4ay- (DAttacker)/ Xy = XBarrier —day- (DBarrier) (19)
X3 = XChuser —4as- (DChaser)/ X4 = XDriver —ag- (DDriver)
Xi+X+ X3+ Xy
4

where Xatqcner is the best search agent, Xp,,.ier is the second-best search agent, Xcjs,r is the
third-best search agent, and Xp,;;, is the fourth-best search agent.

X(t+1) = (20)

4.2. Attacking Approach (Exploitation Phase)

The mathematical model represents the attack process, where the value of f decreases
linearly from 2.5 to 0. This linear reduction enhances the effectiveness of the attack and the
exploitation of the prey’s location. To enhance the attacking and exploitation of the prey
location, the mathematical model employs a linear reduction of the value of f from 2.5 to 0,
representing the process of attack. Further, the scope of the vector is found to decrease like
that of function f. The described vector is random within the range of —2f and 2f. All the
time, a random value is selected for the vectors stretch-out within the range of [-1 and 1],
and the value determines the next placement of the chimp, which can be at any location
within the available position and conditions of the prey. Although there is mention of
projected blocking, chasing and driving mechanisms that highlight the searching limits,
there is a concern that the algorithm referred ChOA may get trapped in nearby minima. To
address this, an additional operator is deemed necessary to enhance the searching ability
during the exploitation period. In this approach, all the chimps embark on hunting the
prey, as depicted in Figure 5. The value of “a” coefficient is mathematically modelled to
align with the hunting behaviour. Consequently, the disparity among the chimps compels
them to wander in pursuit of the prey, ultimately driving them to converge at the location
of the prey.

Diverge

Converge

Figure 5. Influence of a on refining the chimp’s location mechanism.
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4.3. Chaotic Maps (Sexual Motivation)

Introducing chaotic behaviour in the optimization algorithm utilizing chimps helps
address two key challenges in solving high-dimensional engineering application problems.
Firstly, it helps alleviate the issue of getting trapped in local optima during the final stages
of the optimization process. Local optima are suboptimal solutions that can hinder the
algorithm from reaching the global optimum. By incorporating chaotic behaviour, the
algorithm introduces randomness and exploration, allowing the chimps to venture into
unexplored regions of the search space. This exploration enhances the chances of escaping
local optima and discovering better globally optimal solutions. The mathematical model
for this approach is presented in Equation (22).

X,(t) —aD, ifu<05
. = p
Xcnimp(t+1) { Chaotic_value if u > 0.5 @D

where p is random number within the range of [0, 1] [36].
The flow chart of the ChOA is delineated in Figure 6.

( Set of ChoA parameters ¢, 7' ) Extract the chimp's group )
( Initiate the £, C, m and a ) Use group strategy to update f, m and C)
Create a initial random chimp population ) < Usef, m and C to calculatea and D )
using eq. (14) and (19)

Calculate the fitness functions to all chimps>

YES
&- el
Set T <p<05 >
NO \I/NO

Update chimp position Select random Update the position of
using eq. (22) search agent chimp using eq. (15)

( Update f, m, a and C )

YES

Determine the best chimps in each group ) <

Display results

END
Figure 6. ChOA flow chart.

=tt1 Determine the fitness function of each chimps)

5. Case Studies

Four cases are considered with four different shading patterns, as shown in Figure 7,
and are proposed with different irradiance as mentioned in Table 2 to explore the PV
characteristics under shading conditions.

PV array 1 PV array 1 PV array 1 PV array 1
1000 W/m? 1000 W/m*? 1000 W/m?2 1000 W/m?
] | ] |
PV array2 PV array2 PV array2 PV array2
1000 W/m? 1000 W/m? 800 Wim2 1000 W/m?
I ] ] |
PV array2 PV array 3 PV array3 PV array 3 )
800 W/m 2 500 Wim 2 900 W/m?2 1000 W/m
] | | |
PV array 4 PV array 4 PV array 4 PV array4 )
600 W/m? 500 W/m?2 550 Wim2 1000 W/m
Pattern 1 Pattern 2 Pattern 3 Uniform
irradiation

Figure 7. Different irradiation patterns of PV system under shading conditions.
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Table 2. PV module with different partial shading patterns.

Arrangement of No. of

Case No PV Modules PV Modules

Irradiance Level Temperature

1000 W/m?

1 Pattern-1 4 1000 W/m? 25°C
800 W/m?
600 W/m?
1000 W /m?

2 Pattern-2 4 1000 W /m? 25°C
500 W/m?
500 W/m?
1000 W/m?

3 Pattern-3 4 800 W/m? 25°C
900 W/m?
550 W/m?
1000 W/m?

4 Pattern-4 4 1000 W /m? 25°C
1000 W/m?
1000 W/m?

The performance of the PV string is evaluated under partial shading conditions for
three cases considering three different shading patterns as shown in Table 2, using various
optimization-based MPPT techniques. Figure 8 represents the simulation circuit of four
series-connected PV modules by varying the irradiation levels, temperature at 25 °C with
the PV module and converter circuit details listed in Table 3.

vev D
- - T PWM Generatpr Scope2
fh Saturation (bc-O
IP RtSn 10.1]2 =
MATLAB Funl:h Fsw=15 kHz SCOPe8
\teration o

N ] Y l.

PV + I
D3 Inductor(L)

D4

IPV2

. :-;,Pv o @cmummvd&azlﬁe co ‘Il

Ramp roduct Pane Power|
i) 4’@' Volatge
Panel Voltage

Figure 8. Simulation circuit of four series-connected KC200GT PV module.

All characteristic parameters of the optimization algorithm are carefully selected to
provide good convergence to the solved optimization task. The parameters used during
simulations for C5O, GWO and ChoA algorithms are listed in Table 4.
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Table 3. PV module and converter circuit details.

Parameter Value
Total cells/modules 54
Voe [V] 33
e [A] 8
Vmpp [V] 26
Lnpp [A] 8
Prypp [W] 200
Specifications of DC-DC Boost Converter
Input Inductance (L) 330 uF
Switching frequency 25 kHz

Output side capacitance (Coyt)

Table 4. Tuning parameters for metaheuristic algorithms.

Algorithm Parameter Value
Maximum number of iterations (T) 25
Number of cats 25
Time step (At) 1
SRD 0.3
CsO Constant number (C1) 2
SMP 5
CDC 1
MR 0.2
ChoA Number of chimps 25
0 Maximum number of iterations (T) 25
Number of. agents (wolf) 25
GWO Maximum number of iterations (T) 25
Control parameter (a) 2to 0

In this case, the details of irradiance levels received on the modules in Pattern-1 and
their P-V and P-I plots are discussed and presented in Figure 9. The voltage and current at
GMPP under this shading condition are 544.12 W, 114.008 V and 4.7771 A, respectively.

0 50

Voltage(V)

100 150 0 2 4

600 7 600
— LMPP2 = 513.6W —
S 400 3 400 -
o GMPP = 544. o GMPP =544.1
c;) 200 1 % 200 LMPP2 = 513.6W
o LMPP1=387.9W 0. LMPP1=387.0W
0 .

Current(A)

é

Figure 9. P-V and P-I variations under the first shading pattern on PV string.

According to the simulation findings for Pattern 1 displayed in Figures 10-12, the
ChoA shows reduced oscillation during the MPP search process. Specifically, when shading
occurs, the PV module power output rapidly converges to the MPP with very minimal
fluctuations. However, based on the simulation results depicted in Figure 10 (Simulation
results using CSO for Pattern-1), Figure 11 (Simulation results using GWO for Pattern-1)
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and Figure 12 (Simulation results using ChOA for pattern 1), the average convergence time
of the GWO algorithm is relatively high. Even though the suggested chimp algorithm
converges sufficiently quickly and catches only after a short period, the ability of ChOA,
GWO and CSO algorithms to chase the GMPP under various shading situations is examined.
It is observed from the simulation result that the output power obtained from the PV array
using CSO is 521.41 W, using GWO is 527.44 W, and 531.198 W when ChoA is used.

Vo [V] "
100 f 70=161.23V
%9 0.1 02 03 04 05 06 0.7 08 09,410
10 [A]
A
2 l
10=3.239 A

0 0.1 02 03 0.4 0.5 0.6 0.7 08 09 t[s] 1.0
PO [W]

400 - ! 1
200/ PO=527.449W |
D! I 1 1 1 1 L 1 1 I 3
0 01 02 03 04 05 06 07 08 09;4L0

Figure 10. Simulation result using CSO for the Patern-1.

7o [V]

100 | /
V0=161.571V
0

0 0005 01 015 02 025 03 035 04 045 05

t[s]
0[A] . z
> | /
10=3.231A
porw]© 0005 0.1 015 02 025 03 035 04 04505
500" —_— $ ‘ '

P0=521.41W

0  0.005 0.1 015 02 025 03 035 0.4 0.45, [s] 0.5

Figure 11. Simulation results using GWO for the Pattern-1.

V] | 1

| |
100 /V;=162.2V

%0 0005 01 015 02 025 03 035 04 045/[5]05

0[A] | r ¥
2 /;);3.261A
0 1

0 0005 01 0I5 02 025 03 035 04 045405

500 | r
PO W] P0=531.198W
0

0 0005 01 015 02 025 03 035 04  0.45¢[5]0.5

Figure 12. Simulation results using ChoA for the Pattern-1.

Figure 13 presents a performance comparison for the analysed metaheuristic algorithms.

121



Algorithms 2023, 16, 376

«pEa » E ¢ Desktop New » Ph.Dthesis »

| Figure5 | Figure7 | Figurel |
i 400 = SCl in the tracked output Ecﬂe_r_f,f—/r
£ 200 ol cso |
0 PO=429.4792W(Settiling time= 0.055sec)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.0!
2400 L -
.‘B:' __-/- lu{nﬂ_qsq on . 0045 Y
é‘ZOﬂ Oscillations in the tracked output p':twerI - GGW('SEﬁTth—ﬁ'ﬂ‘m Bt b
0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
=400 ™
.5200 [ChoA ] Oscillations in the tracked output power
= 0
~ 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
time(sec) L
e PO = 435.88W(Settling time = 0.048sec)
Property Editor - Panel [C]

Figure 13. Comparison of settling time for the CSO, GWO and ChoA algorithms.

The above Figure depicts the reduced oscillations and convergence time for the three
algorithms, and it clearly shows that the proposed GWO have less oscillation and also less
convergence time compared with the other algorithms, while the ChoA is slightly slower
than the GWO algorithm.

ChOA, GWO and CSO algorithms are simulated in MATLAB/SIMULINK to validate
their expected performance under various partial shade patterns (G to Gg). Table 5 lists
the outcomes of the statistical simulation. The variable power output with irradiation
with different MPPT techniques under other shading patterns is presented in Figure 14.
From Figure 14, G; shading pattern will produce the solar photovoltaic system’s highest
power. Due to its speed and confidence, the simulation results of the various shading
situations showed that ChOA performed better than other optimization strategies under
partial shading settings. The summarization of statistical simulation results like power,
voltage and current of the PV module under other partial shading conditions is presented
in Table 5.

Table 5. Summarization of statistical simulation results like power, voltage, and current of PV module.

Other Different Shading

Patterns Parameter ChOA GWO CSO
Maximum power @GMPP(W) 525.13 525.13 525.13

Output voltage(V) 115.23 11547 117.48

G1 =[1000, 900, 800, 700] Output current (A) 454 4.52 4412
Output power (W) 523.14 521.92  518.357

Conversion efficiency (%) 99.62 99.38 98.71

Maximum power @GMPP(W) 336.61 336.61 336.61

Output voltage(V) 84.57 83.4V 82.46

G =[900, 550, 100, 600] Output current (A) 3.9489 3.86A 3.849
Output power (W) 333.95 321.92 317.38

Conversion efficiency (%) 99.21 95.63 94.28
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Table 5. Cont.

Other Different Shading

Patterns Parameter ChOA GWO CSO
Maximum power @GMPP(W) 340.06 340.06 340.06
Output voltage(V) 53.67 53.21 82.46
G5 =[750, 850, 600, 800] Output current (A) 6.23 6.21 3.95
Output power (W) 334.36 329.90 325.71
Conversion efficiency (%) 98.32 97.01 95.78
Maximum power @ GMPP(W) 258.29 258.29 258.29
Output voltage(V) 56.41 55.41 54.32
G4 = [600, 800, 400, 200] Output current (A) 4.32 4.21 4.123
Output power (W) 243.69 23327  223.96
Conversion efficiency (%) 94.34 90.31 86.70
Maximum power @GMPP(W) 191.22 191.22 191.21
Output voltage(V) 66.31 65.31 66.21
G5 = [600, 200, 800, 250] Output current (A) 2.873 2.853 2.67
Output power (W) 188.51 186.13 176.78
Conversion efficiency (%) 98.58 97.33 92.45
Maximum power @GMPP(W) 232.52 232.52 232.52
Output voltage(V) 87.54 86.46 85.44
Gg = [400, 600, 800, 100] Output current (A) 2.621 2.61 2.62
Output power (W) 229.44  225.66 223.86
Conversion efficiency (%) 98.67 97.04 96.27
Comparision of differnt MPPT algorithms for other shading
patterns
600
500
3
‘q:: 400
g 300 H ChOA
o
§ 200 mGWO
(o] CSo
100
0
G1 G2 G3 G4 G5 G6
Irradiation in (W/m2)

Figure 14. Comparison of output power with different MPPT Algorithms under other shading
patterns.

6. Conclusions

This research work presents a comprehensive study that analyses the challenges faced
by three heuristic-optimization-based algorithms in the context of GMPPT. The focus is
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specifically on the search capabilities of these techniques, both in terms of exploitation and
exploration. This article introduces a novel method called ChOA GMPPT to address these
challenges. This method improves GMPPT performance by utilizing different deterministic
starting points for exploitation and exploration. Simulation tests demonstrate that the
proposed ChOA-based GMPPT achieves higher tracking accuracy and conversion efficiency
compared to other tested methods. Additionally, it reduces computational complexity
and is easy to implement. By providing a discussion and analysis of various heuristic
optimization methods in the literature, along with the newly suggested ChoA-based
GMPPT approach, this current work enables researchers to select the most suitable method
based on their preferences and priorities.

In future research, the PSO, CSO, TLBO, GWO and ChOA variants are used to optimize
the PV system performance under changing weather conditions. There is a possibility for
the usage of recent algorithms as well as hybrid algorithms since a comparative study can
be done.
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Nomenclature

PV System  Photovoltaic system

MPPT Maximum Power Point Tracking
GMPP Global Maximum Power Point
PSC Partial Shading Condition
CSO Cat Swarm Optimization
GWO Grey Wolf Optimization
ChoA Chimp Optimization algorithm
PSO Particle Swarm Optimization
TLBO Teaching Learning Based Optimization
ACO Ant Colony Optimization
P&O Perturb and Observe
INC Incremental Conductance
GA Genetic Algorithm
DEA Differential Evaluation Algorithm
FLC Fuzzy Logic Controller
FA Firefly Algorithm
SMP Seeking Memory Pool
MBA Mine Blast Algorithm
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Abstract: The penetration of intermittent wind turbines in power systems imposes challenges to
frequency stability. In this light, a new control method is presented in this paper by proposing a
modified fractional order proportional integral derivative (FOPID) controller. This method focuses
on the coordinated control of the load-frequency control (LFC) and superconducting magnetic energy
storage (SMES) using a cascaded FOPD-FOPID controller. To improve the performance of the FOPD-
FOPID controller, the developed owl search algorithm (DOSA) is used to optimize its parameters. The
proposed control method is compared with several other methods, including LFC and SMES based on
the robust controller, LFC and SMES based on the Moth swarm algorithm (MSA)-PID controller, LFC
based on the MSA-PID controller with SMES, and LFC based on the MSA-PID controller without
SMES in four scenarios. The results demonstrate the superior performance of the proposed method
compared to the other mentioned methods. The proposed method is robust against load disturbances,
disturbances caused by wind turbines, and system parameter uncertainties. The method suggested is
characterized by its resilience in addressing the challenges posed by load disturbances, disruptions
arising from wind turbines, and uncertainties surrounding system parameters.

Keywords: frequency control; FOPD-FOPID controller; wind turbines; developed owl search algorithm

1. Introduction

The use of wind turbines in power systems is growing due to the increasing demand
for sustainable and environmentally friendly electrical energy [1-3]. Wind turbines have
several advantages as a stable source of electricity in power systems, such as: (1) abundant
energy source: for electricity generation, wind turbines require an abundant wind energy
source that is usually available day and night; (2) reduced environmental pollution: using
wind turbines as a clean energy source reduces environmental pollution; (3) cost reduction
in electricity production: the cost of electricity production with wind turbines is lower than
that of fossil fuels. Despite these advantages, wind turbines in power systems have some
drawbacks, including the complexity of load-frequency control (LFC) [4-6]. Wind turbines
rely on wind, which is naturally fluctuating and can complicate LFC in power systems [7].
In power systems, a balance is maintained between generation and consumption [8].
Should any disturbance arise, impeding the smooth functioning of this intricate network,
the primary control loop immediately intervenes to restrict any deviations in frequency [9].
Yet it is the secondary control loop, known as the LFC system, which assumes responsibility
for restoring frequency to their nominal levels [10]. In an earnest endeavor to enhance
frequency stability within the power system, various controllers have been proposed for
LFC systems [11-45].
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The classic proportional integral derivative (PID) controller is still one of the most
popular and widely used controllers in the power industry, which is widely used in power
system LFC due to its simplicity, ease of use, fast performance, and stability [11-25]. In
LFC systems related to power systems, a number of PID controllers are used in order
to improve frequency stability; among these PID controllers [11,12] are: PID controllers
whose parameters are optimized using the ICA [13] (see list of abbreviations at the end
of the article), PID controllers whose parameters are optimized using the PSO [14], PID
controllers whose parameters are optimized using the EHO [15], PID controllers whose
parameters are optimized using the ACO [16], fuzzy PID controllers [17], fuzzy PID
controllers whose parameters are optimized using the optimization algorithm based on
novel HLUS-TLBO [18], fuzzy PID controllers whose parameters are optimized using
the DE algorithm [19], fuzzy PID controllers whose parameters are optimized using the
HDE-PS algorithm [20], fuzzy PID controllers whose parameters are optimized using the
PSO [21], fuzzy PID controllers whose parameters are optimized using ACO [22], fuzzy
PID controllers whose parameters are optimized using the HFA-PS algorithm [23], control
fuzzy PID controllers whose parameters are optimized using MBA [24], and fuzzy PID
controllers whose parameters are optimized using FA [25]. In [26], the fuzzy PID controller
whose coefficients are optimized using GA is used to improve the frequency of the power
system. The PID controller does not perform effectively against disturbances in the power
system and the uncertainty of the parameters related to the power system. Fuzzy PID
controllers are somewhat resistant to power system disturbances, but they do not perform
well against the uncertainty related to the power system.

The fractional order PID (FOPID) controller has two degrees of freedom compared to
the PID controller, and these two degrees of freedom have advantages such as: (1) more
accuracy, (2) better stability, and (3) robust performance in systems with disturbance and
parameter uncertainty [27]. Due to these advantages, FOPID controllers have been widely
used in LFC systems related to the power system in order to improve the frequency stability;
among these FOPID controllers [28,29] are: FOPID controllers whose parameters are
optimized using the ICA [30], FOPID controllers whose parameters are optimized using the
GBMO [31], FOPID controllers whose parameters are optimized using the SCA [32], FOPID
controllers whose parameters are optimized using the PSO [33], and FOPID controllers
whose parameters are optimized using the JSO algorithm [34]. The performance of FOPID
controllers is favorable against disturbances and uncertainty related to system parameters,
but their performance is affected by severe disturbances.

Superconducting magnetic energy storage (SMES) systems store electric energy in their
magnetic field and release it as needed, making them a significant contributor to improving
frequency stability alongside the LEC system in power systems [35], due to their extended
lifespan and high storage capacity. In [36], coordinated control of the LFC system and
SMES is discussed using an H2/Hoo robust controller. However, designing such a robust
controller necessitates an accurate model of the power system, and since some components
may be ignored in the model, the controller’s optimal performance may be compromised
in real-world systems. Another approach to coordinated control is presented in [37], where
a neuro-fuzzy controller is employed. Although the neuro-fuzzy controller demonstrates
good results in addressing uncertainties related to the power system parameters, it is not
robust against disturbances caused by the power system load.

In [38], the coordinated control of the LFC system and SMES using a type-2 fuzzy
controller is discussed. However, this controller is also not resistant to severe disturbances
in the power system. Similarly, [39] explores the coordinated control of the LFC system and
SMES using a PID controller with parameters optimized by the DE algorithm. Unfortu-
nately, this method is also not resistant to disturbances and uncertainties in power system
parameters. Reference [40] presents the coordinated control of the LFC system and SMES
using a PI controller with parameters optimized using the PSO, taking into account the
presence of wind turbines in the power system. However, the performance of this control
method is challenging due to the severe disturbances caused by the wind turbine, making
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the PI controller optimized with the PSO non-resistant to such disturbances. Reference [41]
discusses the coordinated control of the LFC system and SMES using a PID controller
with parameters optimized by the MSA, considering the presence of wind turbines in the
power system. Nevertheless, the performance of this control method is not resistant to load
disturbances and disturbances from the wind turbine. In [42], the coordinated control of
the LFC system and SMES using a dynamic resistance controller in the presence of wind
turbines is discussed. This method exhibits resistance to load disturbances, wind turbine
disturbances, and uncertainties related to power system parameters. However, it has cer-
tain drawbacks, including: (1) the complexity of the control method, which requires setting
numerous parameters and involves heavy calculations, and (2) the necessity for an accurate
power system model, as some parameters cannot be accurately modeled, impacting the
performance of this control method.

Currently, cascaded controllers are recognized for their superior system control perfor-
mance compared to single controllers such as PID and FOPID. These cascaded controllers
have been employed to enhance frequency stability in power systems [43—46]. In [43],
a cascaded FOPI-FOPD controller with optimized parameters using the DSA method is
utilized to improve frequency stability in the power system. The FOPI-FOPD controller
parameters are set using the ITAE cost function, and the simulation time is set to 10 s.
In [44], a PI-TID cascaded controller is introduced, and its parameters are adjusted using
the CBO algorithm to enhance frequency stability in the power system. The PI-TID cas-
caded controller parameters are determined using the ISE cost function, and the simulation
time is set to 120 s. Furthermore, in [45], a PI-FOPID cascaded controller is investigated
for improving frequency stability in the power system. The parameters of the PI-FOPID
cascaded controller are adjusted using the GTO technique. The ITAE cost function is em-
ployed to set the PI-FOPID cascaded controller parameters, and the simulation time is set
to 30 s. In [46], the cascaded FOPDN-FOPIDN controller, whose coefficients are optimized
using the CSA, is utilized for automatic generation control of production in the power
system. The ISE cost function is considered in optimizing the controller coefficients, and
the simulation time is set to 100 s.

The main difference between the ISE and ITAE cost functions lies in the method of
error calculation. Both cost functions are used to evaluate the quality of control, but they
differ in how they quantify and integrate the errors over time. In the ISE cost function, the
squared errors at each time point are integrated over the entire time period. This means
that the errors are squared and then summed up. The ISE cost function is commonly used
for stable control of control systems. On the other hand, the ITAE cost function calculates
the absolute errors at each time point, multiplies them by time, and then sums them up.
The ITAE cost function captures the process dynamics in the time domain. It emphasizes
the errors that occur during the initial response of the system and can be more sensitive
to transient behavior. In the context of the paper mentioned, the ISE cost function is used
to evaluate the frequency stability of the power system in the presence of a wind turbine.
The goal is to control the power system effectively. Reference [41] also utilizes the ISE cost
function to control the frequency of the power system with a wind turbine and to adjust the
coefficients of the PID controller. The choice of the ISE cost function in this paper allows
for comparison with the results obtained using the PID controller in [41].

In this paper, a novel method called the FOPD-FOPID cascaded controller is proposed
for the coordinated control of the LFC system and SMES in a power system that includes
a wind turbine. The parameters of the FOPD-FOPID cascaded controller are optimized
using the developed Owl Search Algorithm (DOSA). The reason for selecting the FOPD-
FOPID cascaded controller over other cascaded controllers, such as PI-FOPID, in the power
system structure is that the FOPD-FOPID controller, incorporating the FOPD component,
provides more accurate and rapid response to frequency changes in the presence of a
wind turbine. This characteristic enhances the frequency stability of the power system and
ensures robustness against load disturbances, wind turbine disturbances, and uncertainties
associated with power system parameters. The DOSA algorithm is employed to optimize
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the parameters of the cascaded controller within the power system structure. The DOSA
algorithm offers several advantages over other meta-heuristic algorithms such as ABC,
PSO, MSA, and GTO. These advantages include: (1) robustness in the face of uncertainty
related to the objective function, (2) a reduced number of control parameters, and (3) global
optimization capability. The paper presents several key innovations, including;

(1) Enhancing the responsiveness of the power system in the presence of a wind turbine
using the cascaded FOPD-FOPID controller.

(2) Refining the parameters of the FOPD-FOPID controller through the application of
the novel DOSA approach, which has not been previously explored in power system
research.

(3) Evaluating and comparing the effectiveness of the proposed algorithm with GTO,
MSA, PSO, and ABC algorithms for optimizing the parameters of the FOPD-FOPID
controller, employing an objective function based on ISE.

(4) Conducting a comprehensive assessment of the performance of the DOSA-FOPD-
FOPID controller for improving coordinated control capabilities within both the LFC
system and SMES, considering disturbances and uncertain power system variables.

2. The Power System under Scrutiny

In this section, the structure of the power system under scrutiny and the state—space
equations of the power system under scrutiny are discussed.

2.1. The Structure of the Power System under Scrutiny

Figure 1a shows the power system configuration incorporating a wind turbine, as
described in references [5,42]. Figure 1b shows a single-line diagram of the studied power
system [40—42]. This system comprises a hydro power plant, non-reheat power plants,
reheat power plants, multiple wind turbines, SMES, and a load [40—42]. The total power
generated by the system is 38,000 MW, while the peak load amounts to 29,000 MW [40-
42]. Figure 2 illustrates the dynamic model of the power system, taking into account the
presence of the wind turbine. The model utilized in this context is a reduced-order (first-
order) model, which proves advantageous for analyzing the frequency stability of the power
system. The wind turbine model, as shown in Figure 2, is comprehensively described
in [40-42]. Figure 2 illustrates the model of the turbine for frequency control [40-42]. In
this model, the wind speed is multiplied by a random speed fluctuation, which is derived
from the white noise block in MATLAB/SIMULINK. This multiplication allows for the
estimation of random fluctuations in the wind output power. Based on Figure 2, the power
system incorporates a coordinated control scheme consisting of an FOPD-FOPID cascaded
controller. This controller’s parameters are optimized using the DOSA method, aiming
to enhance the frequency stability of the power system in the presence of a wind turbine.
The wind turbine exhibits oscillatory behavior and is influenced by the wind speed. The
inclusion of the production rate limit definition has led to an improved accuracy in the
dynamic model employed for the power system [40-42]. The production rate limits are set
at 0.2 pu MW /min for non-reheat power plants, 0.1 pu MW /min for reheat power plants,
and 0.5 pu MW /min for the hydro power plant [40—42].
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Figure 1. (a) Power system configuration incorporating a wind turbine. (b) Single-line diagram of

the power system [5,42].
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turbine. (b) Non-Reheat power plant model. (c) Reheat power plant model. (d) Hydro power plant
model. (e) SMES model. (f) Model rated to wind turbine 1. (g) Model rated to wind turbine 2.

2.2. The State—Space Equations of the Power System under Scrutiny

The design of the proposed controller for the coordinated control of the LFC system and
SMES involves the utilization of state-space equations, as illustrated by Equations (1) and (2).

The parameters specific to the analyzed power system are provided in Table 1 [40-42].
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Table 1. Parameters specific to the analyzed power system [40-42].
Parameter Value Parameter Value
P,» 0.6107 Ry 2.5
Pyp 3000 KW P,a 0.2529
P, 0.1364 H 5.7096
T3 90 Ty 6
Ty 0.4 R3 1
Tq 0.4 0.5
T, 5 B 1
Py 750 KW D 0.028
Tw 1 Ry 2.5
Pyp 3000 KW
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3. Design of the Proposed Controller for the Power System

This section provides an overview of the proposed controller’s structure, FOPID
controller, an analysis of the DOSA, and the design process of the proposed controller
utilizing the DOSA.

3.1. Structure of the Proposed Controller

The FOPD-FOPID cascaded controller has been intricately designed to enhance the
stability of frequency within power systems that incorporate wind turbines. Its primary
objective is to minimize deviations in frequency caused by load disturbances, disruptions
from wind turbines, and uncertainties in power system parameters. This elaborate con-
troller consists of two components: the FOPD controller and the FOPID controller. The
FOPD controller primarily determines the outcome, while the FOPID controller shapes
and guides it by adjusting the reference signal. In this proposed control framework, the
FOPD controller is referred to as the main, primary, or external controller, and the FOPID
controller is referred to as the internal, secondary, or sub-controller. These components
work synergistically, as depicted in Figure 3, to establish cohesive coordination between
the LFC system and the SMES. Figure 3 illustrates the suggested setup of the cascaded con-
troller, which facilitates the orchestration of the inner loop dynamics through Equation (3).
Equation (3) succinctly represents the transfer function that exclusively encapsulates the
inner loop dynamics, as demonstrated in Figure 3:

Ya(s) = Ma(s)Ua(s) ®)

In Equation (3), Mj(s) embodies the transfer function of the internal process, whereas
Uy(s) signifies the input signal directed towards said process. The principal controller
(FOPD), situated in the outer layer, adeptly curtails any oscillations pertaining to fre-
quency and mitigates external interferences. Equation (4) reveals the transfer function
characterizing the outer loop’s operation:

Y(s) = My (s)U (s) 4)

where M (s) symbolizes the transfer function of the external process, while U (s) stands for
the input signal directed towards said process. As Figure 3 illustrates, N,(s) denotes the
FOPID controller found in the inner layer, whereas N1(s) represents the FOPD controller
situated in the outer layer. The transfer functions of both FOPD and FOPID controllers are
demonstrated through Equations (5) and (6):

Ni(s) = Kpy + K5 (5)

Ny(s) = Kpy + Kys ™ + Kps2 (6)

Figure 4 shows the inside structure of the FOPD-FOPID controller.

The settings of the suggested controller are found by making the ISE objective function
as small as possible by using the DOSA method. Equation (7) shows the main goal of ISE.
The limits or boundaries of the objective functions are represented by Equation (8):

ts

ISE = / (Af)2dt @)

0
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Figure 3. The suggested setup of a cascaded controller manifests itself in order to orchestrate cohesive
coordination between the LFC system alongside SMES.
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FOPD controller

FOPID controller

Figure 4. Inside structure of the FOPD-FOPID controller.

3.2. FOPID Controller

Based on the generalized non-integer order fundamental operator, Fractional-order
Systems are established (Equation (9)) [27]:

4 p >0
aDf = {1 v=90 ©)
Jan™ y<o

a

The limits of the operation, denoted by a and t, are considered in fractional-order
systems. It is typically assumed that ¢ € R, although it can also be a complex num-
ber. Various definitions of the integral-differential operator have been formulated. The
Griinwald-Letnikov definition is commonly employed in the application of FOPID due to
its suitability for numerically evaluating fractional order derivatives (Equation (10)) [27]:

B o .
aD?"f(t>:mW]§<—1>f( ! ) st m (10

In Equation (10), a is set to 0,  is equal to kh, where k represents the number of
computation steps, and / denotes the step size. Considering zero initial conditions, the
Laplace transform of the i-order derivative is given by Equation (11) [27]:

(09

/ e~'oDY F(£)dt = sYE(s) (11)
0

In Equation (11), ¢ € R*, and s is the usual Laplace variable. The PI *D¥ controller,
also known as the generalized FOPID controller [27-29], incorporates an integrator of order
A and a differentiator of order p. The time domain equation for the FOPID controller can
be expressed as Equation (12). In Equation (12), the terms D~ e(t) and D* e(t) denote the
fractional-order integral and fractional-order derivative, respectively:

uy(t) = Kpe(t) + K;D*e(t) + KyD e(t) (12)

3.3. Developed Owl Search Algorithm (DOSA)

The DOSA is a state-of-the-art meta-heuristic algorithm that offers several advan-
tages over other algorithms such as GTO, MSA, PSO, and ABC. These advantages include:
(1) Efficient Search: The DOSA utilizes the owl search behavior, enabling efficient explo-
ration of the search space. The algorithm is designed to strike a balance between exploration
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and exploitation, facilitating fast convergence towards optimal solutions. (2) Global Op-
timization: The DOSA is a global optimization algorithm, capable of seeking the global
optimum without getting trapped in local optima. This characteristic makes it well-suited
for tackling complex optimization problems with multiple solution vertices. (3) Robustness:
The DOSA exhibits robustness against noise and uncertainty in the objective function. It
adapts effectively to noisy and dynamic environments, making it suitable for real-world
applications where the objective function may change over time. (4) Minimal Control
Parameters: Compared to other optimization algorithms, the DOSA requires a reduced
number of control parameters. This simplifies the tuning process, reduces computational
load, and facilitates implementation across various domains. (5) Fast Convergence Speed:
The DOSA demonstrates fast convergence in a wide range of optimization problems. It
efficiently converges towards near-optimal solutions, significantly reducing the compu-
tational time required for finding high-quality solutions. These advantages have been
documented in various studies [47-49], highlighting the effectiveness and versatility of the
DOSA algorithm.

Similar to the application of other meta-heuristic algorithms in electrical engineer-
ing [50-52], its execution is initiated by fortuitously selecting a population. Within this
algorithm, said population symbolizes the owls” positioning amidst the forest trees exem-
plifying the search space. Given that the number of random populations is represented as
“n” and the forest is considered as a d-dimensional search space in this algorithm, visually
expressing the chance placements of these nocturnal creatures within an n x d matrix can
be encapsulated with Equation (13) [47]:

X = : ’ (13)
Xn1l .- xn,d nxd

where the component x;; in the matrix defines the jth variable (dimension) of ith owl. In
the owl search algorithm, the term “ith owl” refers to the owl that is being considered
or processed in the ith iteration or step of the algorithm. The owl search algorithm is a
heuristic search algorithm inspired by the behavior of owls when hunting prey. It uses a
combination of local search and global exploration to find an optimal solution. In each
iteration, the algorithm evaluates the current owl (ith owl) and updates its position based
on certain rules and heuristics. The process continues until a satisfactory solution is found
or the search space has been fully explored. To make an introductory state of uniform
dissemination, Equation (14) is utilized [47-49]:

X; = x;+ (xl + Xu)Z(O,l) (14)

In Equation (14), X; could be irregular and uniform numbers between [0, 1], and x;,
and x; are the upper and lower bounds of the ith owl within the jth measurement.

In the realm of mathematical equations, specifically Equation (14), Z(0,1) stands as an
intriguing integer that embraces both randomness and uniformity within its numerical
essence, constrained between the ethereal boundaries [0,1]. Furthermore, the mysterious
confines of x, and x; possess a duality and significance in defining not just any owl’s
position within this enigmatic forest, but rather the profound location it assumes in the jth
dimension. As we venture further into comprehending this intricate web of numerics and
spatial relations, one is compelled to ponder the cost associated with these owls’ chosen
abodes in the forest. Illuminatingly explained through Equation (15) [47-50], this particular
measure serves as a window into understanding how nature has woven together factors
such as distance or resources so crucial to determine what truly befits an owl’s dwelling
and how they impact its existence:
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fllxi, x12, .00, X1,4])
f=1- (15)

fn([xﬂ,ll Xn2s+-s xn,d])

The owl’s position is contingent upon the magnitude of the sounds it detects through
its delicate ears. In this instance, the owl that receives the most intense sound is considered
superior because it signifies proximity to the desired goal. The normalized intensity value
for each respective owl, denoted by 7, will be utilized to revise its position, as derived from
Equation (16) [46]:

[ = fizw
! b—w
b = max fy
mel,...n (16)

w = min fy
mel,...n

The measurement of prey distance for each individual owl can be acquired by applying
Equation (17) [46-48]:
Di= [} (xi—L)° (17)
i
Equation (17) encompasses the representation of prey positions (L), retrieved through
the utilization of the most adept owl. The owl search algorithm postulates the existence
of prey amidst the forest as a premise for global optimization. During their pursuit, owls
advance meticulously towards their target with gradual aerial movement. The extent to
which each ith owl undergoes transformation is delineated in Equation (18) [47-50]:
I

Ci =z + R (18)

In the Equation (18), the variable 47'(Dl-2 has been substituted with Diz, while R,
represents a stochastic element introduced in order to enhance the model’s practicality.
As the prey transitions from one location to another, it becomes imperative for the owls
to cautiously shift closer towards their target. This algorithm encompasses a mechanism
by which the alteration in prey position is determined through probability. Consequently,
Equation (19) serves as an update mechanism demonstrating how the new positions of the
owls relative to those of their intended prey are depicted:

, Ppm < 0.5

* , Ppm > 05

1 { x{ + BCilaL — x; (19)

i xt — BCi|laL — x!

Equation (19) introduces the concept of p,, as a representation of prey position change
probability, while « and f are uniformly distributed random numbers that range from 0
to 0.5 and 0 to 1.9, respectively. This unique characteristic of the owl search algorithm
sets it apart from other algorithms, providing superior reliability. While the owl search
algorithm is relatively new among optimization algorithms, it occasionally encounters
a drawback in becoming trapped within the confines of local optima. Nonetheless, this
flaw presents an opportunity for early convergence-inspired solutions. Aware of these
limitations, modifications have been implemented to enhance both the performance and
effectiveness of the owl search algorithm when confronted with local optima traps. The
incorporation of chaos theory has gained traction recently due to its profound influence on
modeling effects of nonlinear dynamics; optimization falls within this sphere, susceptible to
such influences. By default, in the conventional implementation of the owl search algorithm,
only variable f serves as a source for randomness within each iteration. However, including
variable  introduces an alternative pathway towards early convergence by expanding its
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role throughout iterations. In order to avert premature convergence within the system, the
implementation of a tumultuous technique known as Singer mapping is employed [53].
This strategy involves treating the obscure variable as a customary equation in conformity
with Equation (20):

Biy1 = 1.07(7.98; — 23.3p7 +28.787 — 13.38}) (20)

Furthermore, an alternative approach to enhance initial convergence in the owl search
algorithm entails incorporating Lévy flight. The inclusion of random navigation constitutes
an integral facet of this methodology for effectively regulating local search. The mathemati-
cal representation of this technique can be found in Equations (21) through (23) [53]:

Le(w) ~ w177 (1)
= (22)
Bl
» [ T(+7) sin(nt/2)\*
B {Tr((l +1)/2) 20+0)/2 } (23)

In Equations (21)—(23), T represents a number that can be between 0 and 2. The letter
w stands for a small measurement size. The letter I'(0) represents a mathematical operation
called the gamma function. The letters A/B =~ N(0,¢?) indicate that the values are taken
from a group where each value is chosen randomly from a bell-shaped curve, with the
middle value being zero. The range of values for this group is ¢2. Using Equation (24), we
can find the new location of the owls based on the given connections.

X+ = { xt+ BCi|aL — xt|Le(6), ppm < 0.5

xt — BCi|aL — xt|Le(8), ppm > 05 @4)

1

3.4. Design Process of the Proposed Controller Utilizing the DOSA

To improve the performance of the FOPD-FOPID controller for the coordinated control
of the LFC system and SMES, we need to follow these steps:

(1) Definition of the objective function: The objective function is a mathematical rep-
resentation of the goal we want to achieve in this problem. It is determined using
Equation (7).

(2) Constraints are rules that help us find the best values for the FOPD-FOPID controller.
We define these rules using Equation (8).

(3) Creating the first group of owls: In this step, we create a starting population of owls.
Each owl in this group has a different number for each FOPD-FOPID controller setting.

(4) Analyzing the population: The first group of individuals is assessed using a specific
measurement called the objective function. We calculate the value of the objective
function for every owl.

(5) Choosing the best owls: We select the owls with the highest scores to be part of the
next generation.

(6) During this stage, new owls are made for the future generation. This work can be
completed by adding or subtracting big owls, or by using random actions.

(7)  Assessment of the new group of owls: The new group of owls is judged based on the
objective function.

(8) Doing steps 5 to 7 again and again until certain stopping conditions are satisfied, like
reaching the desired value of the goal function or finishing a certain number of repetitions.

(9) Choosing the top owl: Once all the rounds are done, the owl with the highest value
of the main goal is picked as the best answer. This owl gives the best values for the
settings of the FOPD-FOPID controller.
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The image depicted in Figure 5 illustrates the utilization of the DOSA to optimize the
parameters of the FOPD-FOPID controller. This optimization process is specifically aimed
at achieving coordinated control of the LFC system and SMES.

By using Simulink
model calculate
ISE objective
function

v

v

Run Matlab based
Developed owl
search algorithm

v
Update parameter
FOPD-FOPID

v
FOPD-FOPID _ The Power Af
controller 7| system model

SRR RN

|

Figure 5. Utilization of the DOSA to optimize the parameters of the FOPD-FOPID controller.

4. Simulation Results and Discussion

In this particular section, the system under study has undergone testing in the pres-
ence of a wind turbine across four distinct scenarios. The first scenario (1) is divided into
two parts: firstly, an evaluation of the efficiency and adaptability of the DOSA for opti-
mizing the FOPD-FOPID controller parameters takes place alongside a comparison with
other algorithms such as MSA, PSO, ABC, and GTO. Secondly, various methods incorpo-
rating the proposed DOSA-FOPD-FOPID controller are utilized to compare performance
including LFC and SMES based on a robust controller (Controller 1); LFC and SMES based
on the MSA-PID controller (Controller 2); LFC based solely on the MSA-PID controller
with SMES (Controller 3); and finally, LFC based on the MSA-PID controller without SMES
(Controller 4). These comparisons are made while accounting for both load disruptions
and wind turbine disruptions. In scenario (2), the proposed method is being compared to
several other methods, namely Controller 1, Controller 2, Controller 3, and Controller 4.
The aim is to evaluate its performance in handling load disruptions and wind turbine
disruptions. Moving on to scenarios (3) and (4), the performance of the proposed method
is assessed alongside the mentioned methods. In addition to load disruptions and wind
turbine disruptions, these scenarios also consider uncertainties related to power system
parameters and disruptions caused by renewable energy sources such as wind turbines.

4.1. Scenario (1)

In this scenario, the power system being analyzed (Figure 2) experiences a disruption
in its load with an amplitude of AP, = 0.1 pu at f = 1 s, as depicted in Figure 6. The
fundamental parameters pertaining to the DOSA and FOPD-FOPID cascaded controller
are presented in Table 2. Figure 7 illustrates the optimization process of FOPD-FOPID
controller parameters using different algorithms, namely DOSA, MSA, PSO, ABC, and
GTO. The objective function utilized is ISE. As demonstrated by Figure 7, it can be observed
that the DOSA algorithm yields a swifter convergence rate than the others mentioned. In
terms of ISE values obtained from the respective algorithms (DOSA: 6.8 x 10~%; GTO:
9 x 1079 MSA: 9.1 x 107%; ABC: 9.9 x 10~%; and PSO: 10 x 10~°), they are displayed in
numeric format for easier comprehension. In Table 3, the values of optimized parameters of
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the FOPD-FOPID controller considering the ISE objective function for DOSA, GTO, MSA,
ABC, and PSO algorithms are shown. According to Figure 7 and Table 3, the DOSA can be
used to optimize the FOPD-FOPID controller parameters. In this scenario, load disruptions
and wind turbine disruptions have been applied to the power system according to Figure 8.
In Figure 9a—e, the FR of the power system using different control methods to load and
wind turbine disruptions is shown. According to Figure 9a, the MFD and ST based on LFC
and SMES based on the proposed controller (optimized FOPD-FOPID controller using the
DOSA) is equal to 0.0009 Hz and 4.2 s, respectively. The MFD and ST based on controller
1 are equal to 0.0018 Hz and 5 s, respectively; the MFD and ST based on controller 2 are
equal to 0.0173 Hz and 19 s, respectively; the MFD and ST based on controller 3 are equal
to 0.021 Hz and 38 s, respectively; and the MFD and ST based on controller 4 are equal to
0.0476 Hz and 90 s, respectively (Figure 9b—e). Based on the outcomes of this particular
scenario, it is evident that the proposed controller surpasses its counterparts in effectively
mitigating power system deviations, and it has also reduced the ST of frequency deviations
caused by disruptions on the power system.

0.1
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2 0.06 0

i

o 004 { .

=]

0.02 j .

i Il 1 Il Il Il I i Il

0 10 20 30 40 50 60 70 80 o0 100
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Figure 6. Load disruptions applied to the power system.

Table 2. Fundamental parameters pertaining to the DOSA and FOPD-FOPID cascaded controller.

Parameter Value Parameter Value
Population of owls 100 Kp1,min, Ki1,min, Kp2,min, K1,min, Ki2,min 0
Forest range for capacity [0,1000] Kp1,maxs Kg1,maxs Kp2,maxs KI,maxs Kigmax 100
o 1 Amin, H1,2,min 0
Iterations

(stop criteria) 100 Amaxs H1,2,max 1

Table 3. Values of parameters of the FOPD-FOPID controller using different algorithms.

Controller Kpq M1 K1 Kps K; K A 123 ISE
DOSA-FOPD-FOPID 91.55 0.65 88.91 98.22 91.44 86.35 0.56 0.74 6.8 x 1070
GTO-FOPD-FOPID 89.13 0.58 83.66 89.55 83.87 84.18 0.40 0.42 9 x 107°
MSA-FOPD-FOPID 85.82 0.62 87.44 92.34 90.56 75.79 0.46 0.40 9.1 x 107
ABC-FOPD-FOPID 68.23 0.49 91.23 86.25 78.45 76.39 0.43 0.38 9.9 x 10
PSO-FOPD-FOPID 70.65 0.47 81.77 75.21 79.92 71.36 0.39 0.48 10 x 1076
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Figure 7. Convergence of DOSA, MSA, PSO, ABC, and GTO algorithms in optimizing FOPD-FOPID
controller parameters.
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Figure 8. Load disruptions and wind turbine disruptions, scenario 1.

4.2. Scenario (2)

In this scenario, load disruptions and wind turbine disruptions have been applied
to the power system according to Figure 10. In Figure 11a—e, the FR of the power system
using different control methods to load disruptions and wind turbine disruptions is shown.
According to Figure 11a, the MFD and ST based on the proposed controller (optimized
FOPD-FOPID controller using the DOSA) are equal to 0.0007 Hz and 3.55 s, respectively.
The MFD and ST based on controller 1 are equal to 0.0015 Hz and 4.46 s, respectively; the
MFD and ST based on controller 2 are equal to 0.0081 Hz and 21 s, respectively; the MFD
and ST based on controller 3 are equal to 0.0129 Hz and 37 s, respectively; and the MFD
and ST based on controller 4 are equal to 0.0256 Hz and 45 s, respectively (Figure 11b—e).
Based on these results, the proposed controller performs better in reducing the deviations
of the power system than the other mentioned controllers, and it also reduces the settling
time of the frequency deviations caused by disruptions in the power system.
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Figure 9. (a) The FR of the power system is based on the proposed controller, Scenario (1). (b) The FR
of the power system using controller 1, Scenario (1). (c) The FR of the power system using controller
2, Scenario (1), (d) The FR of the power system using controller 3, Scenario (1). (e) The FR of the
power system using LFC is based on controller 4, Scenario (1).
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Figure 10. Load disruptions and wind turbine disruptions, scenario 2.
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Figure 11. (a) The FR of the power system based on the proposed controller, Scenario (2). (b) The FR
of the power system using controller 1, Scenario (2). (c) The FR of the power system using controller
2, Scenario (2), (d) The FR of the power system using controller 3, Scenario (2). (e) The FR of the
power system using LFC based on controller 4, Scenario (2).

4.3. Scenario (3)

In this scenario, load disruptions and wind turbine disruptions have been applied to
the power system according to Figure 10. In this scenario, slight uncertainty related to the
power system parameters is considered in the system inertia (H = —25%). In Figure 12a-e,
the frequency response of the power system to load disruptions, wind turbine disruptions
and mild uncertainty related to the system parameters are shown. According to Figure 12a,
the MFD and ST based on the proposed controller (optimized FOPD-FOPID controller
using the DOSA) are equal to 0.00075 Hz and 3.76 s, respectively. The MFD and ST based
on controller 1 are equal to 0.00163 Hz and 4.49 s, respectively; the MFD and ST based
on controller 2 are equal to 0.0106 Hz and 24 s, respectively; the MFD and ST based on
controller 3 are equal to 0.017 Hz and 42 s, respectively; and the MFD and ST based on
controller 4 are equal to 0.0336 Hz and 48 s, respectively (Figure 12b—e). Based on the
results obtained in this section, the proposed controller performs better in reducing the
deviations of the power system compared to the other mentioned controllers and reduces
the ST of the frequency deviations caused by the disruptions in the power system and is
resistant to the mild uncertainty related to the system parameters.
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Figure 12. (a) The FR of the power system based on the proposed controller, Scenario (3). (b) The FR
of the power system using controller 1, Scenario (3). (c) The FR of the power system using controller
2, Scenario (3), (d) The FR of the power system using controller 3, Scenario (3). (e) The FR of the
power system using LFC based on controller 4, Scenario (3).

4.4. Scenario (4)

In this scenario, load disruptions and wind turbine disruptions have been applied to
the power system according to Figure 10. In this scenario, severe uncertainty related to the
power system parameters is considered in the system inertia (H = —50%). In Figure 13a—e,
the FR of the power system to load disruptions, wind turbine disruptions, and severe
uncertainty related to the system parameters are shown. According to Figure 13a, the
MFD and ST based on the proposed controller (optimized FOPD-FOPID controller using
the DOSA) are equal to 0.00079 Hz and 3.93 s, respectively. The MFD and ST based on
controller 1 are equal to 0.00172 Hz and 4.58 s, respectively; the MFD and ST based on
controller 2 are equal to 0.0157 Hz and 25 s, respectively; and the MFD and ST based
on controller 3 with SMES are equal to 0.0197 Hz and 46 s, respectively (Figure 13b-d).
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According to Figure 13e, the FR of the power system is unstable against severe disruptions
using LFC based on controller 4, and this control method does not have the ability to
maintain frequency stability against severe disruptions related to the parameters of the
power system. According to the results of scenario (4), the proposed controller performs
better in reducing the deviations of the power system than the other mentioned controllers;
it reduces the ST of the frequency deviations caused by disruptions in the power system
and is resistant to the severe uncertainty related to the system parameters. In Table 4,
performance results of different control methods for 4 scenarios are shown.
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Figure 13. (a) The FR of the power system based on the proposed controller, Scenario (4). (b) The FR
of the power system using controller 1, Scenario (4). (c) The FR of the power system using controller
2, Scenario (4), (d) The FR of the power system using controller 3, Scenario (4). (e) The FR of the
power system using LFC based on controller 4, Scenario (4).
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Table 4. Performance results of different control methods for four scenarios.

Controller Scenario (1) Scenario (2) Scenario (3) Scenario (4)
MO (Hz) 0.0001 0.00035 0.00037 0.00038
Proposed
controller MU (Hz) 0.0009 0.0007 0.00075 0.00079
ST (s) 42 3.55 3.76 3.93
MO (Hz) 0.0004 0.0008 0.0009 0.0010
Controller 1 MU (Hz) 0.00184 0.00152 0.001631 0.001724
ST (s) 5.05 4.461 4492 4.492
MO (Hz) 0.00421 0.00341 0.0053 0.0092
Controller 2 MU (Hz) 0.01734 0.00816 0.01066 0.01578
ST (s) 19.03 21.24 24.53 25.22
MO (Hz) 0.00643 0.00582 0.0127 0.0146
Controller 3 MU (Hz) 0.0214 0.01291 0.01708 0.01975
ST (s) 38.12 37.39 42.11 46.25
MO (Hz) 0.0476 0.023 0.0367 -
Controller 4 MU (Hz) 0.04667 0.02565 0.03363 -
ST (s) 90.1 45.03 48.21 -

5. Conclusions

In this paper, a robust control method has been designed for the coordinated control
of LFC and SMES using the FOPD-FOPID controller. The DOSA algorithm, which has
many advantages over other optimization algorithms, was used to adjust the parameters
of the proposed controller. The proposed method in this paper is compared with other
methods presented in the field of power system frequency control in the presence of
wind turbines. The proposed method was able to improve the MFD and ST related to
frequency deviations in the power system caused by load disturbances and wind turbine
disturbances by 50% and 17%, respectively, compared to other methods presented in this
field (frequency control). The proposed method has been able to improve the MFD and ST
related to frequency deviations in the power system caused by load disturbances, wind
turbine disturbances, and slight uncertainty of parameters (H = —%25) by 45% and 18%,
respectively (compared to other methods presented in the field of frequency control). The
proposed method improved the MFD and ST related to frequency deviations in the power
system caused by load disturbances, wind turbine disturbances, and extreme uncertainty
of parameters (H = —%50) by 45% and 18%, respectively (compared to other methods
presented in the field of frequency control). To continue the work of this paper in the future,
several suggestions can be made, including: (1) Combining the FOPD-FOPID controller
with a neural network and using it in different parts of the power system, (2) Investigating
the possibility of using the FOPD-FOPID controller in power systems Smart, (3) checking
the performance of the FOPD-FOPID controller in case of faults in the power system and
defects in other system components.
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Abstract: One of the most significant financial benefits of a shared mobility mode such as ridesharing
is cost savings. For this reason, a lot of studies focus on the maximization of cost savings in shared
mobility systems. Cost savings provide an incentive for riders to adopt ridesharing. However, if cost
savings are not properly allocated to riders or the financial benefit of cost savings is not sufficient to
attract riders to use a ridesharing mode, riders will not accept a ridesharing mode even if the overall
cost savings is significant. In a recent study, the concept of discount-guaranteed ridesharing has
been proposed to provide an incentive for riders to accept ridesharing services through ensuring a
minimal discount for drivers and passengers. In this study, an algorithm is proposed to improve
the performance of the discount-guaranteed ridesharing systems. Our approach combines a success
rate-based self-adaptation scheme with an evolutionary computation approach. We propose a
new self-adaptive metaheuristic algorithm based on success rate and differential evolution for the
Discount-Guaranteed Ridesharing Problem (DGRP). We illustrate effectiveness of the proposed
algorithm by comparing the results obtained using our proposed algorithm with other competitive
algorithms developed for this problem. Preliminary results indicate that the proposed algorithm
outperforms other competitive algorithms in terms of performance and convergence rate. The results
of this study are consistent with the empirical experience that two people working together are more
likely to come to a correct decision than they would if working alone.

Keywords: shared mobility; ridesharing; optimization; self-adaptive; evolutionary computation;
metaheuristic

1. Introduction

Shared mobility is a paradigm of transport modes that enables the reduction of
vehicles, traffic congestion, consumption of energy and emission of greenhouse gas in cities.
Due to the potential benefits of shared mobility, different sharing models have emerged
in the past years. These include ridesharing, car sharing and bike sharing. As all of these
transport models are helpful for sustainability issues, relevant issues and problems have
attracted researchers’ and practitioners” attention in academia and industry. In particular,
ridesharing has been implemented in university campuses [1], by companies [2] and by
transport service providers such as Uber [3], Lyft [4] and BlaBlaCar [5].

In the literature, early studies of ridesharing focused on the problem of meeting
the transport requirements of drivers and passengers. A lot of the work from the early
ridesharing literature can be found in [6,7]. In these early works, the goal was to optimize
total cost savings or total travel distance through matching drivers and passengers based
on their itineraries. The ways to achieve this goal can include building a simulation
environment to simulate the application scenarios or formulating an optimization model to
solve the ridesharing problems. Due to the wide variety of ridesharing problems, different
models were proposed and studied in the past years. Optimization methods were applied
to formulate the ridesharing problems. The challenges and opportunities for solving
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ridesharing problems with optimization models can be found in [8,9]. A review on variants
of shared mobility, problems and solution approaches is available in [10].

In addition to the issues of optimizing total cost savings or total travel distance [11],
there are recent works on other issues in ridesharing systems. For example, to promote
ridesharing, the optimization of monetary issues and non-monetary issues in ridesharing
systems has been studied. As mentioned in [12-14], dealing with these issues often requires
the modeling of more complex constraints that are highly nonlinear. These constraints
may lead to a more complex solution space and make it difficult to find a solution for the
problem. Therefore, these monetary issues and non-monetary issues in ridesharing systems
pose new challenges in the development of effective methods to solve relevant ridesharing
problems.

One prominent financial benefit of a shared mobility mode such as ridesharing is
cost savings. For this reason, a lot of studies focus on maximization of cost savings in
shared mobility systems. Cost savings provide an incentive for riders to adopt ridesharing.
However, if cost savings are not properly allocated to riders or the financial benefit of
cost savings is not sufficient to attract riders to use ridesharing mode, riders will not
accept ridesharing mode even if the overall cost savings is significant [15,16]. In a recent
study [13], the concept of discount-guaranteed ridesharing has been proposed to provide an
incentive for riders to accept ridesharing services through ensuring a minimal discount for
drivers and passengers. In [13], several algorithms have been applied to solve the Discount-
Guaranteed Ridesharing Problem (DGRP). With the advances in computing technology, it
is possible to develop a more effective algorithm to solve the problem. In this study, we will
propose an algorithm to improve the performance of the discount-guaranteed ridesharing
systems and the convergence rate to find a solution for the DGRP. Neighborhood search
has been recognized as an effective mechanism to improve solutions in an evolutionary
computation approach. The concept of self-adaptation has been widely used in meta-
heuristic algorithms to identify better search strategies through learning and to apply them
in the solution-finding processes to improve convergence rate. In this paper, a success
rate-based self-adaptation mechanism and neighborhood search are used jointly to develop
an effective algorithm to solve the DGRP.

One of the challenges in solving the DGRP arises from the large number of constraints
and discrete decision variables. To tackle the constraints effectively, we adopt a method
that discriminates feasible regions from infeasible regions in the solution space [17] by
designing a proper fitness function. To deal with the discrete decision variables, we use a
transformation approach that transforms the real values of decision variables into discrete
values. The contributions of this paper include the development of a new self-adaptive
neighborhood search algorithm for solving the DGRP and the assessment of its effectiveness
by comparing with existing methods.

The rest of this paper is organized as follows. In Section 2, we will provide a literature
review of ridesharing problems and relevant solution methods. We will present the problem
formulation and the model of the DGRP in Section 3. In Section 4, the details about the
development of a solution algorithm based on self-adaptation and neighborhood search
will be presented. In Section 5, the results obtained by applying the proposed algorithm and
other competitive algorithms will be presented. We will discuss the results of experiments
and conclude this study in Section 6.

2. Literature Review

In this section, we briefly review existing studies relevant to this paper. As we con-
centrate on the development of an effective algorithm for the DGRP based on success rate
self-adaptation and neighborhood search, the papers reviewed in this section include two
categories: papers related to ridesharing literature and papers relevant to self-adaptation
and neighborhood search in an evolutionary computation approach. Papers related to
ridesharing will be introduced first. Papers related to self-adaptation and neighborhood
search in an evolutionary computation approach will be introduced next.
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One of the sustainable development goals is to promote emerging paradigms to miti-
gate global warming by reducing the consumption of energies, greenhouse gas emissions
and negative impact to the environment. With the global trend to achieve this goal, several
transport modes such as ridesharing, car-sharing and bike-sharing have appeared in the
transportation sector in the past two decades under the sharing economy. As one of the
most important transport modes for shared mobility, ridesharing makes it possible for
passengers and drivers with similar itineraries to share rides and enjoy cost savings. For a
comprehensive survey of ridesharing literature, please refer to [6,7,18].

Although ridesharing is one of the transport modes with the most potential to achieve
shared economy, there are still barriers and challenges for its acceptance by the general pub-
lic. For example, the lack of trust in ridesharing is one factor that hinders users” acceptance
of ridesharing [14]. Several studies have been done on the barriers to the acceptance of
ridesharing. The acceptance of ridesharing mode is influenced by several monetary factors
and non-monetary factors. Monetary factors for the acceptance of ridesharing are directly
related to the financial benefits due to cost savings [12]. Non-monetary factors are directly
related to the safety and comfortability of ridesharing such as trust, enjoyability and social
awareness. For example, the trust issue in ridesharing has been studied in [14]. In particular,
providing a monetary incentive is essential for the acceptance of ridesharing. In this study,
we propose a scheme to provide a monetary incentive for ridesharing participants.

As cost savings is recognized as one of the most prominent benefits from rideshar-
ing, the objective of the ridesharing problem considered in most studies is to maximize
overall cost savings or minimize the overall travel costs while meeting the transportation
requirements of riders and drivers [11]. However, individual ridesharing participants may
not enjoy the benefits of cost savings even if overall cost savings have been maximized or
the overall travel costs have been minimized. To make individual ridesharing participants
enjoy the benefits of cost savings, the overall cost savings must be allocated to individual
ridesharing participants properly such that the benefit of cost savings is sufficient for
ridesharing participants to accept ridesharing.

In [12], a problem formulation has been proposed to maximize the overall rewarding
ratio. However, there is no guarantee that the minimal rewarding rate can be guaranteed
even if the overall cost savings is maximized [13]. In [13], a problem formulation and asso-
ciated solution methods are proposed to ensure that the rewarding rate can be guaranteed.
However, scalability of the algorithms was not studied. In this study, we will propose a new
algorithm for the DGRP formulated in [13] to improve the performance and convergence
rate to guarantee satisfaction of the rewarding rate for ridesharing participants.

As the DGRP is a typical integer programming problem in which the decision vari-
ables are binary, the complexity of the problem grows exponentially with the problem
size. Exact optimization approaches are computationally feasible only for small instances
due to the exponential growth of the solution space as the instances grow. Therefore,
approximate optimization approaches will be adopted to solve the decision problem. In the
past decades, a lot of evolutionary algorithms were proposed to find solutions for com-
plex optimization problems. These include the Genetic Algorithm [19], Particle Swarm
Optimization algorithm [20], Firefly algorithm [21] and metaheuristic algorithms such
as the Differential Evolution algorithm [22]. In the literature, a wide variety of variants
in the Genetic Algorithm, Particle Swarm Optimization algorithm, Firefly algorithm and
Differential Evolution algorithm can be found in [23-26], respectively. Although these
approaches may be applied to find solutions for optimization problems, their performances
vary. The studies of [27,28] show several advantages of the PSO approach over the Genetic
Algorithm. The previous study of [29] indicates that the Differential Evolution approach
performs better than the Genetic Algorithm. Evolutionary computation approaches such as
PSO or DE algorithms are well-known metaheuristic algorithms. A metaheuristic algorithm
refers to a higher-level procedure that generates or selects a heuristic to find a good solution
to an optimization problem. In [30-36], several adaptive Differential Evolution algorithms
have been proposed to solve optimization problems.
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The goal of this study is to propose a more effective solution algorithm to improve the
performance of the DGRP. In this study, we will combine a Differential Evolution approach
with a success rate self-adaptation mechanism to develop a solution algorithm for the DGRP.
The characteristics of the DGRP are different from the problems addressed in [30-36] as the
decision variables of the DGRP are discrete whereas the decision variables of the problems
studied in [30-36] are continuous real values. In this paper, the self-adaptation mechanism
of [37] and the concept of the neighborhood search of [38] are applied jointly to develop
an effective problem solver. Note that the self-adaptation mechanism of [37] and the
neighborhood search concept of [38] are originally proposed for a continuous solution
space. This study will verify effectiveness of combining the self-adaptation mechanism
and neighborhood search mechanism for problems with a large number of constraints and
discrete decision variables.

The problem addressed in this paper is the DGRP, which was formulated in [13].
This paper is different from the previous work [13] in that the proposed success rate-
based self-adaptive metaheuristic algorithm is different from the ten algorithms proposed
in [13]. The contribution of this paper is to propose a novel self-adaptive algorithm to
improve the performance and convergence rate of discount-guaranteed ridesharing systems.
We verified the effectiveness of the self-adaptive algorithm by conducting experiments.
The results indicated that the proposed method improves the performance of the solution
and convergence rate for finding the solution. Although the algorithm proposed in this
paper is designed for the DGRP, it can be applied to other optimization problems. For
example, the work reported in [14] also applied a similar approach to another instance of a
trust-based ridesharing problem.

3. The Formulation of the DGRP

In this section, we will present the formulation of the DGRP based on a combinatorial
double auction mechanism [39]. The variables, parameters and symbols used in this paper
are listed in Table 1. We first briefly introduce the combinatorial double auction model and
then formulate the DGRP based on the combinatorial double auction model.

Table 1. Notation of symbols, variables, and parameters.

Variable Meaning
P Total passengers.
D Total drivers.
p Passenger index, where p € {1,2,3,... P}.
d Driver index, whered € {1,2,3,...,D}.
K The number of location indices for all passengers, i.e., K is equal to P.
k Location index, k € {1,2,...,K}.
Ja Total bids of driver d € {1,2,...,D}.
j The j-th bid index of driver d € {1,2,3,...,D} withj € {1,2,..., J;}.
DBy; DByj = (‘731]'1"721]‘2"731]'3' . ,q}ljp,qfljl,qgjz,qﬁﬁ, .. ,qf,jp, od]-,cdj): driver d’s j-th bid, where
q4jp: the no. of seats allocated for passenger p,
04j° the original cost of driver d € {1,2,...,D} if he/she travels alone,
cgj: the bid’s travel cost.
q; i No. of seats allocated at the pick-up location of passenger p, q}i ip = Adjp:
73 i No. of seats released at the drop-off location of passenger p, 43 ip = djp-
PB, PB, = (sllgl,s}ﬁ,s%ﬂ, . ,sép,sfﬂ,siz,sfﬁ . ,s%p,fp): passenger p’s bid, where
spk: the no. of seats requested by p at location k and
fp: the original cost of p without ridesharing.
s}]k No. of seats requested at passenger p’s pick-up location, s;k = { (S] pp ;J: hke r:w Z .
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Table 1. Cont.

Variable Meaning
2 ifk =
Spk No. of seats released at passenger p’s drop-off location, s?,k = ;p P ;J; herwips .
Xgj Decision variable for driver d € {1,2,...,D}: x4; = 1 if DBy; is a winning bid and x;; = 0 otherwise.
Yp Decision variable for passenger p € {1,2,3,...P}: y, = 1 if PB}, is a winning bid and vy, = 0 otherwise.
D Drivers” minimal expected cost savings discount.
rp Passengers” minimal expected cost savings discount.
F(X ) o . P D Ja D Ja
24 The objective function, F(x,y) = ;El Yp (fp) + dgl jgl X4j0d;j | — dgl jg xXgicj |-
Lyj The set of passengers on the ride of the bid DBy; of driverd € {1,2,...,D}.
Faj(x,y) Cost savings of the bid DBy; of driverd € {1,2,...,D}. Hyj(x,y) = [(pezr ypfp> + xgj04) — (xdjcdjﬂ .
dj
fpdj Travel cost for passenger p € I'j; on the ride of bid DBy;.

3.1. An Auction Model for Ridesharing Systems

Just like buyers and sellers who trade goods in a traditional marketplace, the functions
and operations of a ridesharing system are similar to a traditional marketplace. In a tradi-
tional marketplace, buyers purchase goods according to their need and sellers recommend
goods based on the available items in stock. In a ridesharing system, individual passengers
with transportation requirements are on the demand side. Individual drivers also have
their transportation requirements and constraints. Individual drivers are on the supply side.
The roles of passengers and drivers in a ridesharing system are similar to buyers and sellers
in a traditional marketplace. Therefore, a ridesharing system can be modeled as a virtual
“marketplace” in which potential passengers and drivers seek to find an opportunity for
ridesharing. Auctions are a proper business model that can be applied to trade goods in
a marketplace in which the price of goods is not fixed and is determined by buyers and
sellers. They can also be applied to determine the passengers and drivers for ridesharing in
ridesharing systems.

In the literature, a variety of auction models have been proposed and applied in
different application scenarios. Depending on the number of buyers and sellers in an
auction, auctions can be classified into two categories: single-side auctions and double
auctions. There are two types of single-side auctions: (1) single seller and multiple buyers
and (2) single buyer and multiple sellers. In a double auction, there are multiple buyers
and multiple sellers. If there are multiple types of goods for trading in a double auction,
buyers and sellers can purchase or sell a combination of goods in the auction. This type of
double auction is called a combinatorial double auction.

For an auction scenario with multiple buyers and multiple sellers to trade multiple
types of goods, although one can apply either multiple single-side auctions or one com-
binatorial double auction, the combinatorial double auction is more effective in terms of
efficiency. Therefore, we apply the combinatorial double auction model to determine the
passengers and drivers for ridesharing in ridesharing systems. There are three types of
roles in a typical combinatorial double auction for trading goods: buyers, sellers and the
auctioneer. In a ridesharing system modeled with a combinatorial double auction, there
are three types of roles: passengers, drivers and the ridesharing information provider. The
ridesharing information provider acts as the auctioneer and provides a ridesharing system
to process the requests from the passengers and drivers.

3.2. A Formulation of the DGRP Based on Combinatorial Double Auctions

A passenger expresses his/her transportation requirements by sending a request to the
ridesharing system provided by the ridesharing information provider. A driver expresses
his/her transportation requirements by sending a request to the ridesharing system to
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indicate his/her transportation requirements and constraints. The ridesharing system must
determine the passengers and drivers for ridesharing. In a combinatorial double auction
model, buyers and sellers who place the winning bids are called winners. In a ridesharing
system, each passenger and each driver on a shared ride determined by the ridesharing
system are called winners.

The request submitted by a passenger takes the following form: R, = (Lo, Lep, w?, w;, np),
which includes the passenger p’s start location, Loy, end location, Le), earliest departure
time, w;, latest arrival time, w;?, and requested seats, 1, respectively. The request submitted
by a driver takes the following form: R; = (Lo, Le, w§, w[lj, a4,7T4,T4), which includes the
driver’s start location, Loy, end location, Ley, earliest departure time, w¢, latest arrival time,
wfi, available seats, 15, and maximum detour ratio, T;. The earliest departure time and the
latest arrival time in the request are used in the decision models of most papers on rideshar-
ing. The earliest departure time and the latest arrival time are specified by the ridesharing
participant sending the request. The ridesharing system will extract the information
from the Ry, of a passenger to form a bid PB,, = (s%ﬂ, s},z, 5;3, ceey S;P, s%l, s%z, 51%3 ey s%P,fp),
where s! « is the No. of seats requested at pick-up location k of passenger p, S%k is the No.
of seats released at drop-off location k of passenger p and f, is passenger p’s original cost
without ridesharing. The ridesharing system will extract the information from R; of a
driver to form a bid DBy; = (qblijl'qclijz' ‘731]3' ... ,q}ijp, qéjl'qgjzf qé]‘s' ... 'qbzijP' 0dj, cdj), where
qlljjp is the No. of seats allocated at the pick-up location k of passenger p, qﬁjp is the No. of
seats released at the drop-off location k of passenger p, 04; is the original cost of the driver
when he/she travels alone and cy; is the travel cost of the bid.

The DGRP to be formulated takes into account several factors: balance between
demand and supply, the non-negativity of surplus, a maximum of one winning bid for
each driver, minimal rewarding rate for drivers and minimal rewarding rate for passengers
based on the bids submitted by passengers, PB,Vp € {1,2,3,... P} and the bids submitted
by DBy; vd e {1,2,...,D},j€{1,2,...,];}, submitted by drivers.

P D ]
The surplus or total cost savings is F(x,y) = ( Y v (fp)> — ( Y Zd‘, xgj(Caj — od]-)) .
p=1 d=1j=1

The objective function is described in (1). Constraint (2) and (3) describe balance between
demand and supply of seats in ridesharing vehicles. To benefit from ridesharing, the
non-negativity of surplus (cost savings) described by Constraint (4) must be satisfied.
A driver may submit multiple bids, a maximum of one bid can be a winning bid for each
driver. This constraint is described by Constraint (5). To attract individual drivers to
take part in ridesharing, Constraint (6) enforces the satisfaction of the minimal rewarding
rate for drivers. To provide incentives for individual passengers to accept ridesharing,
Constraint (7) enforces the satisfaction of the minimal rewarding rate for passengers. The
constraint that all decision variables must be binary is described by Constraint (8).

Based on the objective function (1) and the constraints defined by Constraint (2)
through (8), the DGRP is formulated as an integer programming problem as follows.

Problem Formulation of the DGRP

max F(x, y) 1)
iix-l— 1y 1,2 P} Vk € {1,2 P 2
difajk = YpspVp € {12, ..., P}Vk e {1,2, ... ,P} @)
d=1j=1
D, 2 2
Y Y xiadi = vpsip € {1,2, ... Py Vk € {1,2, ... P} 3)
d=1j=1
p D Ju D Ja
Yo ypfp+ Y Y xajoai > Y Y Xajcaj 4)
p=1 d=1j=1 d=1j=1
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Ja
Y x4 <1WVde{1,...,D} (5)
j=1

Fai(x,y)
L YpCfpdj + Xajcaj
pelyj

x4 —rp) 20 (6)

Fai(x,y)

Y YpCfpaj + Xajcdj
Gl“dj

Yp( —7rp) >0 )

P

xgj € {0,1}Vd € {1,...,D}Vj e {1,..., ]} and y, € {0,1}Vp € {1,2, ..., P}  (8)

The determination of the ridesharing decisions is not solely based on price and loca-
tions, the model also considers the constraint that the minimal rewarding rate for drivers
and passengers must be satisfied. As we focus on comparison with [13], we use the same
model as the one used in [14]. Factors other than price and locations not considered in the
model of this paper can be taken into consideration in the future.

4. A Self-Adaptive Meta-Heuristic Algorithm Based on Success Rate and
Differential Evolution

The complexity of the DGRP is due to two characteristics: (1) discrete decision vari-
ables and (2) a large number of constraints. For these reasons, the development of an
effective solution algorithm for the DGRP relies on a method to ensure values of the deci-
sion variables are discrete and a method to enforce the evolution processes to guide the
candidate solutions in the population to move toward a feasible solution space. For the
former, we use a function to systematically map the continuous values of decision variables
to discrete values in the evolution processes. For the latter, a fitness function is used in
this paper to provide a direction to improve solution quality by reducing the violation of
constraints in the solution-finding processes. In this section, we first briefly describe the
details of the methods to convert continuous values of decision variables to discrete values
and the fitness function to guide the candidate solutions in the population to move toward
feasible solution space, as mentioned. We then present the proposed algorithm.

4.1. The Conversion of Decision Variables and Fitness Function

We define a conversion function to ensure the values of the decision variables are
discrete. The function Convert2Binary in (9) through (15) is used in our solution algorithm
to map the continuous values of decision variables to discrete values in the evolution
processes. This procedure makes it possible to adapt existing evolutionary algorithms
that were originally proposed for problems with a continuous solution space to work for
problems with a discrete solution space.

Function Convert 2 Binary 9)
Input: u (10)
Output: u (11)

Vinax @ f U > Vimax

Stepl: v=1< u if —Vmnax <t < Vmax (12)
~Vimax if 4 < —Viax
1
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Step 3 : Generate a random variable rsid with uniform distribution U(0,1)
_ { 1 rsid < s(v) (14)

"=\ 0 otherwise

Step 4 : return u (15)

To provide a direction for an evolutionary algorithm to improve solution quality by
reducing the violation of constraints in the solution finding processes, we define the set of

feasible solutions in the current population as S rand use Symin = ( 1’1’1)11’15 F(x,y) to denote
Xy)esys

the objective function value of the worst feasible solution in Sy. We introduce the following
fitness function.
The fitness function F; (x, y) for the penalty method is defined in (16):

[ F(x,y) if (x,y)is feasible
Fi(xy) = { U(x,y) otherwise ’ to

where U(x, y) is defined in (17).

P K D Ja \1 1 D Ji 2
U(x,y) = Sfmin— Zlkzl( dZ Z xdﬂd]k YpSpk + dZ E xd]qd]k YpSpk )
p=1k= =1i=
D Ja
+min( Z ypfp d Z xd]<cd] Od]'),0.0)
D
+ X Z min(1 — Z x4j,0.0) 17)
d=1j=1 j=
D Ju Fii(xy)
— ) —rp,0.0
+d21/2 xd]mln((pezr Sy e ) —p,0.0)

dj

P . Fyj(xy)
+ min((——L">——) —1p,0.0
pglyp ((pg: P — ) —rp,0.0)

In (17), we define the penalty function U(x,y) to penalize violation of constraints.
D Ja D

Ja
The terms d; Zxd]qb\ijk YpSy| and d§1j;1x‘ijq§jk_yps§k correspond  to

penalty due to the violation of Constraints (2) and (3), respectively. The term

D
min( Z Ypfp — Z x4j(cqj — 04;),0.0) corresponds to penalty due to the violation of

Constraint (4). The term Z Z min(1 — Z xgj, 0. 0) corresponds to penalty due to the

d=1j= =
Dl Fij(xy)
violation of Constraint (5). The terms ) ). xymin((——-———) —rp,0.0) and
d=1j=1 L YpCfpajtajcaj

perd]
Faj(xy)

———L—=——) —rp,0.0) correspond to penalties due to the violation of
pezrdlypcfpdj'i‘xdjcdj

P

L ypmin((
p=1
Constraints (6) and (7), respectively.

4.2. The Proposed Success Rate-Based Self-Adaptive Metaheuristic Algorithm

Based on the conversion function and the fitness function defined above, we introduce
the proposed algorithm as follows. Instead of using one single mutation strategy, we
use two different mutation strategies and adopt a self-adaptation mechanism to select
the best strategy for improving the performance. The two different mutation strategies
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are DE-1 and DE-6, which are two well-known mutation strategies. Therefore, the self-
adaptive metaheuristic algorithm is referred to as SaNSDE(DE1, DE6) or SaNSDE-1-6 in
this paper for simplicity. The self-adaptation mechanism used by SaNSDE-1-6 keeps track
of the number of times that a mutation strategy successfully improves the performance
and calculates the success rate of each mutation strategy. A strategy selection index for a
mutation strategy is calculated by dividing the success rate of the mutation strategy with
the sum of success rate for all mutation strategies. The strategy selection index is used to
select one mutation strategy used in the solution-finding processes.

Let N be the problem dimension. To describe a mutation strategy, we use Z, = (ngn)
to denote the value of the n-th dimension of the best individual in the population of the g-th
generation. We use Zgr n, Zgryn, Zgryn and Zgr,n to denote four individuals randomly selected
from the current population. In this paper, we use the two strategies defined in (18) and
(19) to design the proposed success rate-based self-adaptive metaheuristic algorithm. The
n-th dimension of the mutant vector v, 1), of the i-th individual in the population of the
(g + 1)-th generation is calculated either by (18) or by (19), depending on the success rates
of the two strategies. The flow chart of the success rate-based self-adaptive metaheuristic
algorithm is shown in Figure 1.

V(g+1)in = Zgrin + Fi(Zgrn — Zgrsn) (18)

U(g+1)in = Zgin + Fi(ngn - Zgin) + Fi(zgrln - Zgrzn) + Fi(zgr3n - Zgr4n> (19)

Initialize parameters (Step 1-1)

]

Randomly generate a population of individuals
according to Step 1-2

}

Calculate fitness function value for each
individual in the population (Step 1-3)

N Stopping criteria o
W Yes

No
v

For each individual

Generate a random number to generate the scale factor according to Step 2-1
Generate a random number to select a strategy and compute mutant vector
according to Step 2-2 v
Generate a Gaussian random number to set the crossover probability and End
generate a uniform random number to perform crossover operation, compute
and convert the trial vector to binary according to Step 2-3
Select the trial vector and update success or failure counters as needed according
to Step 2-4
Update success rate of each strategy and parameters according
to Step 2-5

End For

Figure 1. A flowchart of the proposed algorithm.

As we use two mutation strategies, a mutation strategy is referred to as s, where
s € {1,2}. In the proposed algorithm, the number of times that a mutation strategy s
successfully improves the performance is stored in variable Ss. The number of times
that a mutation strategy s fails to improve the performance is stored in variable U;. The
success rate of strategy s is ws = ﬁ, where s € {1,2}. The parameter f, used to select
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the probability distribution to generate the scale factor and select the mutation strategy

is calculated by f, = wﬁle. A list L is used to store the crossover probability cr; that
successfully improves performance by executing the statement L <— LU {cr;}. The list L
L(k
ke{12,.. LI} .

is used to update the parameter cr by cr = , which is used to generate the

IL]
crossover probability cr; in the next generation.
The discrete self-adaptive metaheuristic algorithm based on success rate and differen-

tial evolution is listed in Algorithm 1.

Algorithm 1: Discrete Self-Adaptive Metaheuristic Algorithm based on Success Rate and Differential Evolution

Step 1: Initialize the parameters and population of individuals
Step 1-1: Initial the parameters

cr=20.5
fp=05

Step 1-2: Generate a population with NP individuals randomly

Step 2: Evolve solutions
Forg=1to G

Step 2-1:

Step 2-2:

Step 2-3:

Fori=1to NP
Generate a uniform random number r from uniform distribution U(0, 1) ranging from 0 to 1
F— { r1, where ry is a Gaussian random number with N(p,0%) if r < f,
'\ ra, wherery is a uniform random number sampled from U(0,1) otherwise
Generate a uniform random number r from uniform distribution U(0, 1) ranging from 0 to 1
Calculate the mutant vector v, as follows.
Forn€1,2,...,N
v o { Zgr1n+Fi(Zgrzn—Zgr3n) ifr<fp
(g+1)in V(g+1)in = Zgin + Fi(Zgbn — Zgin) + Fi(Zgrn — Zgrmn) + Fi(Zgran — Zgryn)  otherwise
_ { Loifr<fp
2 otherwise
End For
Generate a trial vector Ugj
Generate a Gaussian random number cr; with distribution N(cr, 022)
Forl€l,2,...,N
Generate a uniform random number r from uniform distribution U(0, 1) ranging from 0 to 1

U — Ugil lf r < cr;
gil Zgi  otherwise
tgi < Convert2Binary(ug;)
End For

Step 2-4: Update the individual and success/failure counters
If Hy (ﬁgi) > H; (Zg,‘)
Z(g+1)i = Mi
L« LU{cr;}
Ss=Ss+1
Else
Us = Us +1
End If
End For
Step 2-5: Update the parameters as needed
Ifg > LP
o= ﬁ
©2 = i)
fr = w5
L(k)
or — ke{l,z,..l./\LL‘\}
End If
End For
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5. Results

As the goal of this paper is to improve the performance of the quality of solutions
for the DGRP and improve the convergence rate (the number of generations) for finding
the best solutions, verification by the results of experiments is needed to demonstrate the
advantage of the proposed algorithm. In this section, the results of experiments obtained
by applying the algorithm developed in this paper will be analyzed. Our analysis focuses
on two algorithmic properties: performance and convergence rate.

The evaluation process of the algorithms can be divided into five steps. The first step is
to select the performance metrics for comparing different algorithms, the second step is to
create instances for the DGRP, the third step is to set the parameters for different algorithms,
the fourth step is to apply different algorithms to solve each instance of the DGRP and
the fifth step is to calculate the performance metrics under consideration based on the
results of experiments and compare all algorithms. For the first step, the performance
metrics for comparing different algorithms include the average fitness function values, the
average number of generations to find the best solutions and the average computation
time to find the best solutions. For the second step, the locations of drivers and passengers
are randomly generated based on a selected geographical area in Taichung City, which is
located in the central part of Taiwan. The number of drivers and the number of passengers
are increased gradually to generate instances of the DGRP with different size. For the third
step, the parameters for PSO, NSDE, DE-1 and DE-3 are the same as the ones used in [13].
The parameters for SaANSDE-1-6 are specified later in this section. For the fourth step, we
apply SaNSDE-1-6 ten times to solve each instance of the DGRP. As the results of applying
PSO, NSDE, DE-1 and DE-3 to Case 1 through Case 10 are available in [13], we apply PSO,
NSDE, DE-1 and DE-3 ten times to solve to Case 11 through Case 14. For the fifth step, we
first calculate the average fitness function values, the average number of generations to
find the best solutions and the average computation time to find the best solutions based
on the results obtained. We then compare all algorithms based on the performance metrics
mentioned above.

In [13], ten algorithms were developed to solve the DGRP. The study of [13] indicates
that the NSDE, DE-1, DE-3 and PSO are the top four solvers among the ten algorithms for
solving the DGRP in terms of performance and convergence rate (the number of generations
to find the best solutions).

To illustrate effectiveness of the algorithm proposed, the experiments include Test Case
1-10 (available at [40]) used in [13] and Test Case 11-14 (available at [41]) to compare with
the existing algorithms for the DGRP. To illustrate superiority of the algorithm proposed
in terms of scalability with respect to problem size, we generated several test cases by
increasing the problem size. We conducted these additional test cases by applying the
algorithm proposed in this paper and the best four algorithms reported in [13]. We ana-
lyzed by comparing the results obtained by applying all of these algorithms to study the
performance and convergence rate of these algorithms as problems grow.

As the effectiveness of evolutionary algorithms depends on the population size pa-
rameter, we conducted two series of experiments. The population size parameter of the
first series of experiments is 30. The population size parameter of the second series of
experiments is 50. The values of algorithmic parameters used by each algorithm are listed
in Table 2. The number of generations parameter used by each algorithm is set to 1000
for Test Case 1 through Test Case 10. The number of generations parameter used by each
algorithm is set to 50,000 for Test Case 11 through Test Case 14.

Experiments based on the parameters in Table 2 for NP = 30 were performed. The
results were summarized in Tables 3 and 4 for NP = 30. Table 3 shows the average fitness
function value and Table 4 shows the average number of iterations to find the best solutions.
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Table 2. Parameters for different algorithms and test cases.

Algorithm Parameters for Case 1 through Case 10 Parameters for Case 11 through Case 14
POP = 30, Gen = 1000, POP =50, Gen = 50,000,
SaNSDE-1-6 1 p_ 1000 LP = 1000
POP =30, Gen = 1000, POP =50, Gen = 50,000,
DE-1 CR=05 CR=05
F: a value arbitrarily selected from uniform (0, 2) F: a value arbitrarily selected from uniform (0, 2)
POP =30, Gen = 1000, POP =50, Gen = 50,000,
DE-3 CR=05 CR=05
F: a value arbitrarily selected from uniform (0, 2) F: a value arbitrarily selected from uniform (0, 2)
POP =30, Gen = 1000, POP =50, Gen = 50,000,
CR =05, CR =05,
NSDE F;=0.5r1 + 0.5, where r; is a F;=0.5r1 + 0.5, where r{ is a
random value with Gaussian distribution N (0, 1). random value with Gaussian distribution N (0, 1).
PSO POP = 30, Gen = 1000, POP =50, Gen = 50,000,

c1=04,c=06,w=04

c1=04,c=06,w=04

Table 3. Fitness function values for discrete SaNSDE-1-6,DE-1, DE-3, NSDE and PSO algorithms with

NP =30; rp = rp =0.1.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO

1 3 10 32.998 32.998 32.998 32.998 32.998

2 5 11 63.615 63.615 63.615 63.615 63.615

3 5 12 41.715 41.715 41.715 41.715 41.2892
4 6 12 51.11 51.11 51.11 51.11 50.9085
5 7 13 30.063 30.063 30.063 30.063 28.4254
6 8 14 72.328 72.328 72.328 72.328 70.2629
7 9 15 89.03 89.03 89.03 89.03 80.8106
8 10 16 54.02 54.02 54.02 54.02 44.0023
9 11 17 74.05 74.05 74.05 74.05 49.356

10 12 18 50.9 50.0623 50.9 50.9 32.8349
11 20 20 112.906 112.906 112.906 112.906 97.7979
12 30 30 202.15 196.9089 200.1078 200.7964 141.6005
13 40 40 201.8256 190.1664 179.4244 186.6996 —1.5081
14 50 50 190.9436 137.1625 171.1756 161.3107 —3.9598

Table 4. Average number of generations for discrete SaNSDE-1-6,DE-1, DE-3, NSDE and PSO

algorithms with NP = 30; rp =rp =0.1.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO
1 3 10 9.6 16.6 19.8 15.6 64.6
2 5 11 19.2 32.2 36.9 29.1 299.6
3 5 12 294 39.7 47.6 43.3 394.5
4 6 12 19.6 43.8 50.3 441 320.9
5 7 13 16.7 31.8 441 37.3 304.1
6 8 14 20 48.3 67.8 39.6 375.6
7 9 15 60.8 101.4 135 70.7 553.6
8 10 16 48.2 61.3 78.6 59.5 447.5
9 11 17 53.9 59.7 65 64.2 580.7
10 12 18 106.4 136.8 146.3 94.3 489.3
11 20 20 191 436.5 817.1 542.5 21,314.5
12 30 30 1392.5 5691.5 16,065.1 14,417.2 21,742.3
13 40 40 18,439.777 15,185.8 27,574.4 27,260.1 22,734.2
14 50 50 19,390.5 17,131.7 22,7453 36,742.7 25,822.2
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The results in Table 3 show that the top four algorithms are SaNSDE-1-6, NSDE, DE-1
and DE-3. For small test cases, including Case 1 through Case 11, the fitness function
values obtained using SaNSDE-1-6, NSDE, DE-1 and DE-3 are the same. However, as the
problem size grows, the average fitness function values obtained using SaNSDE-1-6 are
significantly better than those obtained using NSDE, DE-1 and DE-3. For Case 12, the
average fitness function value obtained using SaNSDE-1-6 is better than those obtained
using NSDE, DE-1 and DE-3. The differences between the average fitness function value
obtained using SaNSDE-1-6 and those obtained using NSDE, DE-1 and DE-3 are about 1%
to 2%. For Case 12, the average fitness function value obtained using SaNSDE-1-6 is better
than those obtained using NSDE, DE-1 and DE-3. For Case 13, the differences between the
average fitness function value obtained using SaNSDE-1-6 and those obtained using NSDE,
DE-1 and DE-3 are about 5% to 10%. For Case 14, the differences between the average
fitness function value obtained using SaNSDE-1-6 and those obtained using NSDE, DE-1
and DE-3 are about 10% to 28%. In short, SaNSDE-1-6 outperforms NSDE, DE-1 and DE-3
in terms of scalability. To compare performance clearly, please refer to the bar chart shown
in Figure 2 for the average fitness function values of Case 1 through Case 14.

In terms of convergence rate (the number of generations to find the best solutions),
the results in Table 4 indicate that the average numbers of iterations for SaNSDE-1-6
to find the best solutions are significantly less than those for NSDE, DE-1 and DE-3 to
find the best solutions for most test cases (with some exceptions). This indicates that
SaNSDE-1-6 outperforms NSDE, DE-1 and DE-3 in terms of convergence rate. To compare
the convergence rate clearly, please refer to the bar chart shown in Figure 3 for the average
number of generations of Case 1 through Case 10 and please refer to the bar chart shown in
Figure 4 for the average number of generations of Case 11 through Case 14.

Average Fitness Function Values
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o

MW SaNSDE(DE1-DE6) mDE-1 DE-3 NSDE mPSO

Figure 2. Average fitness function values for rp = rp = 0.1 with POP = 30.
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Figure 3. Average number of generations for Case 1 through Case 10 with rp = rp = r = 0.1 and

POP = 30.
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Figure 4. Average number of generations for Case 11 through Case 14 with rp =7p =7 =0.1 and POP = 30.
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To verify the convergence rate for POP = 30, we show the results of several runs of
Case 5, Case 11, Case 12, Case 13 and Case 14 in Figures 5-9, respectively.

175 200 225 300 325
Evaluations

| = saNSDE-1-6 = DE-1 -+ DE-3 ~ NSDE — PsoO|

Figure 5. Convergence curves for a run of Case 5 for rp = rp = r = 0.1 with POP = 30.
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Figure 6. Convergence curves for a run of Case 11 for rp = rp = r = 0.1 with POP = 30.
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Figure 7. Convergence curves for a run of Case 12 for rp = rp = r = 0.1 with POP = 30.
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Figure 8. Convergence curves for a run of Case 13 for rp = rp = r = 0.1 with POP = 30.

166



Algorithms 2024, 17,9

Fithess value

2,500 5,000 7,500 10,000 12,500 15,000 17,500
Evaluations

|l SaNSDE-1-6 —e- DE-1 —& DE-3 NSDE — PSOl

Figure 9. Convergence curves for a run of Case 14 for rp = rp = r = 0.1 with POP = 30.

The results presented above are based on a comparison of the average number of
generations. For the comparison of computation time, the results in Table 5 indicate that
the average computation time for SaNSDE-1-6 to find the best solutions is significantly less
than that for PSO to find the best solutions for Case 1 through Case 9 and is greater than
those of NSDE, DE-1 and DE-3 for Case 1 through Case 10. This indicates that SaNSDE-1-6
outperforms PSO in terms of computation time for Case 1 through Case 9 and NSDE, DE-1
and DE-3 outperform SaNSDE-1-6 in terms of computation time for Case 1 through Case 10.
For Case 11, SaNSDE-1-6 outperforms PSO, NSDE, DE-1 and DE-3 in terms of computation
time. For bigger cases, Case 12 through Case 14, PSO, NSDE, DE-1 and DE-3 outperform
SaNSDE-1-6 in terms of computation time. As the experiments were done on the same
platform as the one used in [13], which was an old laptop delivered in 2019 with Intel(R)
Core(TM) i7 CPU, base clock speed of 2.6 GHz and16 GB of onboard memory, to compare
different algorithms, the computation times of SaNSDE-1-6 are much longer for Case 12,
Case 13 and Case 14. Obviously, a more powerful computer or a server class computer is
required to apply the SaNSDE-1-6 algorithm.

Experiments based on the parameters in Table 2 for NP = 50 were performed. The
results were summarized in Tables 6 and 7 for NP = 50. Table 6 shows the average
fitness function values and Table 7 shows the average number of iterations to find the
best solutions.
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Table 5. Average computation time (in mini-second) for discrete SaNSDE-1-6,DE-1, DE-3, NSDE and
PSO algorithms with NP = 30; rp =rp =0.1.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO

1 3 10 11.494 5.8907 6.7182 7.3339 15.1677

2 5 11 31.0079 21.2555 18.0998 19.4591 118.2929
3 5 12 45.7525 22.0871 25.3382 26.1856 130.6768
4 6 12 42.0781 25.937 25.8155 29.1062 113.5842
5 7 13 28.2401 18.4303 22.264 16.7606 100.2475
6 8 14 48.7842 25.7381 34.9751 28.5755 132.6016
7 9 15 139.7892 73.5523 87.1861 55.5141 264.7854
8 10 16 111.0234 45.3785 54.5258 51.003 200.8072
9 11 17 152.6207 50.241 50.4531 64.2084 286.7221
10 12 18 236.4897 108.65 106.4809 87.0697 199.9287
11 20 20 798.39717 1134.249 2142.048 1496.592 45,171.44
12 30 30 21,158.007 17,419.87 49,393.98 48,106.86 51,932.66
13 40 40 2,116,465.2 60,483.27 113,286.7 119,378.3 66,539.42
14 50 50 3,198,096.1 90,395.02 118,089.5 144,559.9 87,874.68

Table 6. Fitness function values for discrete SaNSDE-1-6,DE-1, DE-3, NSDE and PSO algorithms with
NP =50;rp =rp=0.1.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO
1 3 10 32.998 32.998 32.998 32.998 32.998
2 5 11 63.615 63.615 63.615 63.615 63.615
3 5 12 41.715 41.715 41.715 41.715 41.2892
4 6 12 51.11 51.11 51.11 51.11 51.11
5 7 13 30.063 30.063 30.063 30.063 30.063
6 8 14 72.328 72.328 72.328 72.328 69.9483
7 9 15 89.03 89.03 89.03 89.03 80.5986
8 10 16 54.02 54.02 54.02 54.02 46.8013
9 11 17 74.05 74.05 74.05 74.05 55.9356
10 12 18 50.9 50.9 50.9 50.9 31.1131
11 20 20 112.906 112.906 112.906 112.906 104.4808
12 30 30 202.15 201.8116 200.6549 201.8116 145.0514
13 40 40 202.4952 194.0284 190.4004 185.9914 —1.2835
14 50 50 192.343 190.4874 157.1781 162.1984 —3.6674

Table 7. Average number of generations for discrete SaNSDE-1-6,DE-1, DE-3, NSDE and PSO
algorithms with NP =50; rp =rp =0.1.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO
1 3 10 10.1 17.6 19.2 12.9 51.5
2 5 11 18.7 30.2 33 26.4 127.3
3 5 12 22.3 28.7 43.3 329 437.2
4 6 12 22.5 35.4 37.4 33.2 468.6
5 7 13 17.7 29.3 32.2 24.8 247.1
6 8 14 30 38 47.1 419 416.4
7 9 15 37.5 78.9 754 61.3 366.4
8 10 16 35.3 51.5 66.3 48.6 609.5
9 11 17 65.6 68.7 78.4 67 611.5
10 12 18 79.4 83.6 197.9 63.1 521.5
11 20 20 98.6 469.5 829.5 565.5 22,275.7
12 30 30 2216.7 8847.1 6494.7 26,379.5 20,738.9
13 40 40 15,231.4 14,944.6 18,551.7 21,166.5 30,168.9
14 50 50 16,730.2 28,597.9 32,025.9 25,665.8 33,480.8
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The results in Table 6 show that the top four algorithms are SaNSDE-1-6, NSDE, DE-1
and DE-3. For small test cases, including Case 1 through Case 11, the fitness function values
obtained using SaNSDE-1-6, NSDE, DE-1 and DE-3 are the same. However, as the problem
size grows, the average fitness function values obtained via SaNSDE-1-6 are significantly
better than those obtained via NSDE, DE-1 and DE-3. For Case 12, the average fitness
function value obtained via SaNSDE-1-6 is better than those obtained by NSDE, DE-1 and
DE-3. The differences between the average fitness function value obtained via SaNSDE-1-6
and those obtained via NSDE, DE-1 and DE-3 are about 0.1674% to 0.73959%. For Case 12,
the average fitness function value obtained via SaNSDE-1-6 is better than those obtained
via NSDE, DE-1 and DE-3. For Case 13, the differences between the average fitness function
values obtained via SaNSDE-1-6 and those obtained via NSDE, DE-1 and DE-3 are about
4.00326% to 7.9796%. For Case 14, the differences between the average fitness function
value obtained via SaNSDE-1-6 and those obtained via NSDE, DE-1 and DE-3 are about
3.1171% to 46.403%. In short, SaNSDE-1-6 outperforms NSDE, DE-1 and DE-3 in terms of
scalability. To compare performance clearly, please refer to the bar chart shown in Figure 10
for the average fitness function values of Case 1 through Case 14.
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Figure 10. Average fitness function values for rp = rp = r = 0.1 with POP = 50.

In terms of convergence rate (the number of generations to find the best solutions),
the results in Table 7 indicate that the average numbers of iterations for SaNSDE-1-6 to find
the best solutions are significantly less than those for NSDE, DE-1 and DE-3 to find the
best solutions for most test cases (with some exception). This indicates that SaNSDE-1-6
outperforms NSDE, DE-1 and DE-3 in convergence rate. To compare the convergence
rate clearly, please refer to the bar chart shown in Figure 11 for the average number of
generations of Case 1 through Case 10 and please refer to the bar chart shown in Figure 12
for the average number of generations of Case 11 through Case 14.
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Figure 11. Average number of generations for Case 1 through Case 10 with rp = 7p =7 =0.1 and POP = 50.
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Figure 12. Average number of generations for Case 11 through Case 14 with rp = 7p =+ =0.1 and POP = 50.
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To verify the convergence rate for POP = 50, we show the results of several runs of
Case 5, Case 11, Case 12, Case 13 and Case 14 in Figures 13-17, respectively.
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Figure 13. Convergence curves for a run of Case 5 for rp = rp = r = 0.1 with POP = 50.
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Figure 14. Convergence curves for a run of Case 11 for rp = rp = r = 0.1 with POP = 50.
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Figure 15. Convergence curves for a run of Case 12 for rp = rp = r = 0.1 with POP = 50.
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Figure 16. Convergence curves for a run of Case 13 for rp = rp = 7 = 0.1 with POP = 50.
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Figure 17. Convergence curves for a run of Case 14 for rp = rp = v = 0.1 with POP = 50.

The results presented above are based on comparison of average number of genera-
tions. The results in Table 8 indicate that the average computation time for SaNSDE-1-6 to
find the best solutions is significantly less than that for PSO to find the best solutions for
Case 1 through Case 10 and is greater than those of NSDE, DE-1 and DE-3 for Case 1 through
Case 10. This indicates that SANSDE-1-6 outperforms PSO in terms of computation time
for Case 1 through Case 10 and NSDE, DE-1 and DE-3 outperform SaNSDE-1-6 in terms
of computation time for Case 1 through Case 10. For Case 11 and Case 12, SaNSDE-1-6
outperforms PSO, NSDE, DE-1 and DE-3 in terms of computation time. For Case 13 through
Case 14, PSO, NSDE, DE-1 and DE-3 outperform SaNSDE-1-6 in terms of computation time.
As the experiments to compare the different algorithms were done on the same platform as
the one used in [13], which was an old laptop delivered in 2019 with Intel(R) Core(TM) i7
CPU, base clock speed of 2.6 GHz and16 GB of onboard memory, the computation times of
SaNSDE-1-6 are much longer for Case 12, Case 13 and Case 14. Obviously, a more powerful
computer or a server class computer is required to apply the SaNSDE-1-6 algorithm.

Table 8. Average computation time (in mini-second) for discrete SANSDE-1-6,DE-1, DE-3, NSDE and
PSO algorithms with NP = 50; rp = rp = 0.1.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO
1 3 10 10.2156 10.1452 10.1662 8.4324 18.3854
2 5 11 31.0283 24.8503 24.4498 23.7312 57.3819
3 5 12 42.8796 23.849 32.7592 31.2488 212.022
4 6 12 33.3958 31.4915 29.161 33.3068 205.7338
5 7 13 33.6951 25.0836 25.8515 25.2025 105.7623
6 8 14 57.5261 32.3747 37.1701 42.8416 213.5017
7 9 15 117.5981 83.4787 78.1544 75.29 205.419
8 10 16 84.5311 65.2448 71.6938 71.265 385.2561
9 11 17 105.9706 87.5031 93.5826 86.378 413.8388
10 12 18 148.0639 101.1059 232.0098 96.711 400.4348
11 20 20 679.74567 1395.58 2805.873 1912.745 51,907.85
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Table 8. Cont.

Case D P SaNSDE-1-6 DE-1 DE-3 NSDE PSO
12 30 30 14,772.423 35,531.47 25,760.51 118,419.7 57,773.8
13 40 40 2,016,957.3 83,749.26 104,356 131,989.4 108,469.1
14 50 50 2,890,556.2 171,886.2 233,575.7 201,288.2 145,752.5

6. Discussion and Conclusions

In this paper, we applied the self-adaptation concept to develop an algorithm to
improve the performance in finding solutions for the DGRP formulated in the previous
study. The self-adaptation mechanism used in this paper attempts to identify a better
strategy that can be selected in the future as the strategy for mutation with a higher
probability. To identify a better strategy and the probability for serving as a mutation
strategy in the future, the algorithm records the number of “success events” and the
number of “failure events” in a learning period. The probability for serving as the mutation
strategy is calculated based on the number of “success events” and the number of “failure
events” in a learning period for each mutation strategy. A mutation strategy with a higher
probability for serving as the mutation strategy will be selected with a higher probability.
A mutation strategy with a lower probability for serving as the mutation strategy will be
selected with a lower probability. In this way, the performance of the solution that is found
can be improved more efficiently in terms of the average number of generations for most
cases. However, due to the additional computation in each iteration, the computation time
of SaNSDE-1-6 is much longer for big cases.

A mutation strategy with a higher probability for serving as the mutation strategy
indicates that the ratio between the number of “success events” and the total number
of “success events” and “failure events” is higher. It is expected that using a mutation
strategy with a higher probability for serving as the mutation strategy tends to improve the
performance of the solution that is found. The results presented in the previous section
confirm that using a more effective mutation strategy with a higher probability for serving
as the mutation strategy indeed improves the performance of the solution that is found
significantly. The degree of improvement is case dependent. With NP = 30, for Case 12, the
improvement achieved using SaNSDE-1-6 is about 1% to 2%. For Case 13, the improvement
achieved using SaNSDE-1-6 is about 5% to 10%. For Case 14, the improvement achieved
using SaNSDE-1-6 is about 10% to 28%. In short, SaNSDE-1-6 outperforms NSDE, DE-1
and DE-3 in terms of scalability. With NP = 50, for Case 12, the improvement achieved
using SaNSDE-1-6 is about 0.1674% to 0.73959%. For Case 13, the improvement achieved
using SaNSDE-1-6 is about 4.00326% to 7.9796%. For Case 14, the improvement achieved
using SaNSDE-1-6 is about 3.1171% to 46.403%. In short, SaNSDE-1-6 outperforms NSDE,
DE-1 and DE-3 in terms of scalability. The bigger the problem size, the more significant the
improvement.

In the real world, when one person fails to solve a problem alone, it might be easier
to solve the problem by asking another person for help and working together. The reason
is that one may consult the other and/or help each other when taking actions or making
decisions. This way to solve a problem effectively is commonly used in our daily life. The
results of the experiments presented in this paper are consistent with the abovementioned
phenomena in the real world. In our self-adaptation mechanism, there are two strategies
involved in the solution-finding processes. The selection of one strategy in the solution-
searching processes is based on the success probability learned from the learning period.
To verify the effectiveness of the self-adaptation mechanism, we carried out experiments
by applying several standard algorithms and our proposed algorithm. Two different pop-
ulation sizes were used to perform the experiments. We compared the effectiveness of
several single strategy algorithms and the self-adaptation-based algorithm. Our results
indicate that the proposed algorithm based on the self-adaptation mechanism improves the
performance and convergence rate in terms of the average number of generations required
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for finding the solutions for most cases. Although our proposed algorithm outperforms
all of the other four algorithms in terms of performance and convergence rate for most
cases, the computation time of the proposed algorithm is much longer for several big cases
due to the additional computation in each iteration. The results of this study have two
implications. First, the performance in solving the DGRP with two strategies and a self-
adaptation mechanism is better than with one strategy. Second, although the performance
in solving the DGRP can be improved and the average number of generations required for
finding the solution is reduced, the computation time of the proposed algorithm is much
longer than all of the other four algorithms for bigger instances. This implies that either a
more powerful computer or a proper divide-and—conquer strategy to divide a big instance
of the DGRP into small ones must be used before applying the proposed algorithm. The
computational experience showing that the proposed self-adaptive algorithm outperforms
the other four algorithms for the test cases in this paper sparks an interesting research
question: does the proposed self-adaptive algorithm outperform the other four algorithms?
This research question requires further study in the comparative analysis of the proposed
algorithm. A comparative analysis of the algorithms studied in this paper for specific
performance indicators is a challenging future research direction. Studies of other per-
formance evaluation indicators for the proposed algorithm are another interesting future
research directions. The other interesting future research direction is to extend the success
rate-based self-adaptive scheme proposed in this study to other evolutionary approaches.
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Abstract: Network on Chip (NoC) has emerged as a potential substitute for the communication
model in modern computer systems with extensive integration. Among the numerous design
challenges, application mapping on the NoC system poses one of the most complex and demanding
optimization problems. In this research, we propose a hybrid improved whale optimization algorithm
with enhanced genetic properties (IWOA-IGA) to optimally map real-time applications onto the 2D
NoC Platform. The IWOA-IGA is a novel approach combining an improved whale optimization
algorithm with the ability of a refined genetic algorithm to optimally map application tasks. A
comprehensive comparison is performed between the proposed method and other state-of-the-art
algorithms through rigorous analysis. The evaluation consists of real-time applications, benchmarks,
and a collection of arbitrarily scaled and procedurally generated large-task graphs. The proposed
IWOA-IGA indicates an average improvement in power reduction, improved energy consumption,
and latency over state-of-the-art algorithms. Performance based on the Convergence Factor, which
assesses the algorithm’s efficiency in achieving better convergence after running for a specific number
of iterations over other efficiently developed techniques, is introduced in this research work. These
results demonstrate the algorithm’s superior convergence performance when applied to real-world
and synthetic task graphs. Our research findings spotlight the superior performance of hybrid
improved whale optimization integrated with enhanced GA features, emphasizing its potential for
application mapping in NoC-based systems.

Keywords: whale optimization algorithm; genetics algorithm; network-on-chip; real-time; parameter
control

1. Introduction

In the current era of multicore systems, core integration on System-on-Chip (SoC)
devices has increased significantly due to ongoing research and development. However,
this significant growth in the integration density of processing elements on System-on-Chip
(SoC) devices raises significant performance and scalability concerns. The conventional
bus-based architecture fails to satisfy the ever-increasing requirements for high-volume
and high-speed communication imposed by the increasing number of cores. Therefore,
looking for alternate approaches to overcome these constraints and raise the effectiveness of
multicore systems is vital. Network-on-Chip (NoC) has surfaced as a viable solution [1,2] to
meet the current communication needs of the very large scale integration (VLSI) paradigm
at the deep nanoscale level. Network on Chip comprises integrated processor cores (IP), a
network interface (NI), routers, and the links that connect them. In NOC, cores employ a
packet-based switching technique for communication through the routers with the help
of interconnection links. The NoC topology signifies the physical organization of the
architecture, defining the arrangement of routers and cores. Various standard topologies
have been designed and employed for NoC depending on the interconnected networks.
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Out of these, the mesh topology is the most prominent [3,4], featuring shorter paths between
interconnected cores and high bisection width. These features make it suitable for use in
numerous application mapping techniques. Due to its built-in parallelism and concurrent
communication features, NoC is a popular computing engine for future many-core real-
time systems [5]. Of the many key concerns in NoC designs, such as router architecture,
topologies, and routing algorithms, the NoC’s IP mapping issue has gained substantial
attention [6]. IP mapping is an NP-hard combinatorial optimization issue [7,8] that requires
discovering the best way to map IPs onto a certain NoC architecture while attempting to
meet predefined metrics [9]. The random placement of the IP core in NoC designs does not
effectively influence the network’s overall efficiency. Achieving high performance with low
communication cost, latency, and throughput requires excellent or even optimal IP core
mapping onto NoC systems.

Because a mapping problem with n number of IPs leads to n! possible solutions,
obtaining optimal solutions through exhaustive enumeration of all permutations is not
practical. Consequently, more efficient methods must be discovered to overcome this
issue. As it is an NP-Hard problem, there are no exact approaches to finding the solution
in polynomial time. Even small-scale cases may need significant computing time [10].
Therefore, heuristic approaches are a practical and effective strategy for finding high-
quality solutions [6,11]. In addition, rapid growth in the amount of data represents a
challenge to researchers and data scientists in analyzing and extracting relevant information.
Swarm intelligence is increasingly used for many optimization tasks, including feature
selection, a complex task essential for reducing data dimensionality in high-dimensional
datasets [12]. Although various heuristic-based techniques have been employed to solve the
NoC application mapping problem, they still solve the problem at the cost of certain factors,
and all have certain drawbacks. The well known Ant Colony optimization method has
disadvantages such as parameter sensitivity, sluggish convergence rate, and precociousness.
Certain evolutionary algorithms suffer from longer computation times in certain cases,
along with poor stability. Although heuristic searches are extensively employed to solve
the IP mapping issue, they often have the drawback of quickly settling on a local optimum.
However, efficient local and global search capabilities on the part of heuristic algorithms
can help to achieve optimum results. Hence, an optimization algorithm that balances
exploration and exploitation while avoiding local optima may solve application mapping
problems for both small-scale and large-scale applications in an ideal manner. Metaheuristic
algorithms use a mathematical model of social evolution to efficiently solve optimization
problems by promoting high-level methods and local improvement strategies.

Based on the factors and characteristics of the algorithm, an improved version of a
nature-inspired meta-heuristic mapping technique is presented to achieve better results
under allowed bandwidth limitations. The modified whale optimization algorithm (IWOA)
features strong exploration and exploitation capabilities and a competitive convergence
rate for a given set of problems. IWOA is proposed as the first step to finding an optimal
solution to NoC application mapping, followed by implementing a hybrid INOA featuring
Improved Genetic Mechanism (IWOA-IGA). The genetic-based technique incorporates
crossover and mutation to optimize INOA-based results for optimal NoC mapping. The
integrated tweaked GA features assist the IWOA in achieving the optimal mapping with
faster convergence, allowing it to avoid local optima with enhanced search ability. These
capabilities of the proposed algorithm make it superior to conventional techniques.

To analyze the NoC efficiency metric, current research seeks to model power, latency,
and communication cost. Successful mapping strategies generate optimum NoC mapping
with low communication costs, fewer iterations, and fewer processing resources. X-Y
routing simplifies mapping problems. In a regular mesh design, network performance is
measured by the cost of communication:

size(ACG) te
Cr= Y, Y [CB,)] x HopCount 1)
-1 j=0
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where £, represents a collection of edges within a core graph, B(;,,) represents the communi-
cation bandwidth on edge 7, and the number of hops that separate two communicating cores,
referred to as HopCount ), is used to quantify delay and communication costs [13,14].
Thus, as suggested by Equation (1), lowering communication costs indirectly reduces
latency and energy usage.

IWOA-IGA offers an effective trade-off between performance measures and faster
mapping onto 2D NoCs. The hybrid mechanism of the suggested method optimizes map-
ping results, reducing communication, energy, power, and latency costs. The contributions
of the planned research are as follows:

e  Based on an improved whale framework incorporating GA characteristics, a novel
and effective solution to NoC application mapping is proposed.

*  Improved Initial Mapping for IWO and direction-based crossover and mutation ability
are introduced based on a ranked selection-based method during GA evolution.

e The final mapping technique delivers superior performance in terms of total communi-
cation costs. The proposed INOA-IGA improves power, energy, and communication
costs compared to existing bio-inspired algorithms.

The rest of this paper is arranged in the following manner: Section 2 presents the liter-
ature review; Section 3 discusses the mathematical formulation and performance metrics;
Section 4 presents the framework of the proposed IWOA algorithm; Section 5 shows the
enhanced version of the WOA algorithm featuring the improved genetic mechanism; our
computational findings and analyses are presented in Section 6; Finally, Section 7 contains
concluding remarks and discusses future research directions.

2. Related Work

In the current section, we briefly look into the current approaches to application
mapping challenges for NoC design from several perspectives, namely, minimizing com-
munication energy, enhancing performance, and reducing computation time. Small-scale IP
mapping issues can be formulated as integer programming problems [15,16] and resolved
using the branch and bound approach [17,18]. However, neither approach can effectively
address extensive IP mapping issues due to their lengthy computation times. The most
prominent approach for large-scale IP mapping issues is heuristic search, which may be
loosely split into two kinds: transformative heuristics and constructive heuristics [13]. Typi-
cally, heuristic approaches map cores onto routers using pre-established criteria. NMAP, an
efficient NoC application mapping approach [19], maps the application tasks to the cores in
three phases: initialization, minimum path computation, and pair-wise swapping until the
optimum mapping solution is obtained. BMAP is a greedy binomial mapping method [20]
in which a candidate solution is first proposed, followed by iterative improvement until the
final mapping is achieved. To achieve more solutions, CastNet generates various alternative
solutions for each core depending on the availability of adjacent free neighbors by using
multiple tiles to work as initial tiles, leveraging the symmetric features of the mesh [21].
In CHMAP (constructive heuristic mapping approach) [22], the root is chosen as the core
with the highest average communication traffic, then a maximum spanning tree is con-
structed from the communicative graph. CHMAP calculates the mapping order based on
the degree and distance of the cores and then assigns each core to the most suitable router
based on mapping criteria. CastNet and CHMAP do not employ further iterative-based
improvements upon the initial solution to reach the best possible solution. Transformative
algorithms often use evolutionary approaches to look for approximations. Examples of
common evolutionary algorithms [6] for optimization encompass genetic algorithms (GAs),
discrete particle swarm optimization (DPSO), and ant colony algorithms. A DPSO-based
technique that employs a multi-stage PSO and certain deterministic particles for the initial
population rather than random ones was reported in [14]. Optimized Mapping solutions
for both 2D and 3D NoC were presented. A novel optimization technique grounded on the
DPSO framework was introduced in [23], where the velocity update process included a
perturbation particle and an elite particle introduced to facilitate the exploration of local

179



Algorithms 2024, 17,115

optima. The algorithm allows particles to switch between elite and conventional pools, and
uses a simplified local search of elite particles to find potential solutions. Multi-application
mapping based on a reconfigurable NoC architecture was reported in [24], where a Mesh of
Tree (MoT) topology was implemented. A two-step efficient Particle Swarm Optimization
(PSO) approach was used to reduce the communication cost for a reconfigurable archi-
tecture. A contention-aware genetic algorithm-based application mapping solution was
reported in [25], where both the spatial and temporal attributes of communication were
considered in order to optimize performance by avoiding contention. To optimize the
NoC in terms of communication cost, average latency, and energy, an efficient mapping
technique was proposed [26] using the cuckoo search technique with Levy flight. First, a
greedy algorithm was used to place the most communicative tasks together for an initial
quality solution. Levy flying meta-heuristic cuckoo search was then used to optimize task
placements for optimum mapping. In [27], the authors put forward the IHPSA optimiza-
tion method, an enhanced hybrid PSO, and the simulated annealing technique. Enhanced
Particle Swarm Optimization with SA was combined in the proposed IHPSA for applica-
tion mapping. The K-means clustering machine learning method arranges tasks based on
their communication bandwidth. The K-means clustering algorithm employed the elbow
method to intelligently predict the number of clusters in extensive applications. Eventu-
ally. Heuristics were applied to achieve the optimal cost for real benchmark applications
and synthetic instances. The authors of [28] presented RAMAN, a method inspired by
Reinforcement Learning (RL), for 2D NoC-based application mapping. RAMAN is an
enhanced Q-learning algorithm influenced by RL that aims to achieve mapping solutions
with the lowest possible and optimized communication cost. The results of this method
show tremendous potential in terms of lower complexity and cost while tackling appli-
cation mapping problems. In [29], linear programming was employed to mathematically
model the mapping problem in NoC. Various constraints related to communication ca-
pacity and power budget were incorporated. Finally, simmulated annealing integrated
with GA was implemented to take into account and consider the constraints while finding
the optimum solution. The run-time application mapping technique presented in [30]
aimed to balance the load on the overall network when implementing NoC for a Cube-Tree
Hybrid (CTH) topology. The authors exploited the low network diameter of this topology
with its high scalability, resulting in reduced mapping overhead. A significant reduction
in execution time was observed during experimentation. A hybrid task mapping HyDra
was proposed in [31] that incorporates design time mapping and runtime reconfiguration
with the aim of reducing communication energy. At design time, multiple mapping so-
lutions are produced to reduce latency and energy. As the applications arrive at runtime,
the design time mappings are either used according to the applications or reconfigured
based on the requirements. While many such algorithms have been developed, they may
suffer from suboptimal performance along with inefficient convergence and complexity.
To tackle these challenges, the authors of [32] used Grey Wolf optimization (GWO), which
starts with cluster-based initial mapping followed by a modified GWO heuristic algorithm
with polynomial regression. The modified algorithm enhances runtime efficiency and
optimizes the overall mapping quality. In [33], the authors discussed various real-time
application mapping techniques for complex multicore platforms. They categorized these
techniques by emphasizing their optimization goals, such as communication cost and
energy consumption in NoC-based systems. Future challenges, trends, and simulation
tools in this area were presented as well. Application mapping in both 2D and 3D remains
a complex challenge that requires further development of efficient algorithms. To address
the outstanding challenges, a neural mapping model with a reinforcement learning (RL)
approach (NeurMap3D) was presented in [34] to develop application-specific 3D NoCs.
In addition, a neural congestion-aware mechanism was presented to address application
mapping issues via placement and mapping and to incorporate TSV placement and load
balancing in NoC.
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3. Mathematical Formulation/Performance Metrics

This section discusses NoC platform assessment criteria such as communication cost,
latency, energy, and power.
3.1. Communication Cost Model
Communication Cost in NoC-based formulations is presented in Equation (2):
Cost = 2 [Bti,t/- X Ni,j]/ (2)
i,j
where Bti,tj is the bandwidth between tile ; and ¢; and N; ; is the Manhattan distance. The

NoC architecture’s Manhattan distance between the source nodes (x;,y;) and destination
nodes (x;,y;) is provided by

N = |x; — xj| + |yi — y;l. ®3)

3.2. Power Model

Power and energy are calculated based on the execution of a given traffic pattern.
Pwgct,j and Pwiy,aer,; are component j’s active and passive power at 1.0 V and 1.0 GHz,
respectively. Let alpha; ; be the active reading of component j in router i; then, the average
power Pwg, [35] is expressed by

1M
Pwgy = N Z Z[D‘i,j : Pwact,j + (1 - ai,j) ’ Pwinact,j] (4)
i=1j=1

where Pw,  is j's component power when active, Pw;; . ; signifies component j’s power
while inactive, and ; ; reflects active measurement of component j in the router i.

3.3. Latency Model
The average latency of the NoC is shown in Equation (5):

Lty = N l; N ]; Lt (5)

1

where Lt; ; is the latency of packet j from one tile to another, N represents the number of
processors in the mesh, and N; reflects the quantity of packets received by a processor after
the warm-up period.

3.4. Energy Model

The energy model estimates the network router energy consumption, represented
as follows:

Ep = EsB+ EB (6)

where Ep consists of the switch energy EsB and link energy Er B of the NoC. It is this
energy that is consumed to transfer one bit data between the source and the destination.
The following equation computes the average network energy consumption, denoted as
EBp,p;)s used for the transfer of one bit of data between source (p;) and destination (p;):

EB(P,',p]') = HeountEsp + (Heount — 1)Erp @)

where Hcount represents the Manhattan distance between the source nodes (a;,4;) and
destination nodes (b, b;).

Heount = |ai - bi| + |aj - bj| ®)
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Consequently, the network’s total energy consumption (ET) is determined by the
average network energy and the link bandwidth B W(pi,pj) from p; to p;.

Hcount

Er = Z (EB(PJ':P]') X BW(P:»P;‘)) ©)
L]

Hence, the final equation takes the form

Er = Z (Hcount x Egp + (Hcount - 1) X ELB) X BW(pi,pj) . (10)
ij

For cost computation (CC), the following equation can be used:

CC = Z(me X BW (. p.))- (11)
L)
Various mappings lead to distinct energy and communication cost values. The primary
aim is to derive a mapping function for the NoC with minimal cost. In this research, we
use communication cost as the main performance metric for distinct applications.

3.5. Mathematical Formulation Model

Application mapping for 2D NoC design, including preliminary knowledge and a
mathematical model, is presented in this subsection. The following elements constitute the
inputs for formulating the application mapping problem.

Definition 1. A Communication Trace Graph (CTG) is defined as an undirected communication
trace graph G = (V,E, M) that is weighted and consists of a set of vertices or cores, with V, E
representing the directed edge set and M referring to the volume of data and the connectivity between

nodes in MS/s.
V ={cy,c0,03,...,¢n} (12)
where |V| = finite(n)
E = {e;j = (ci,cj) € CxCl(ci,cj) € C,i #j} (13)
and
M:E— M(Ci, C]) = Mij (14)

where |V| = finite(n).

Definition 2. In the Topology Graph (TG) for a network, TG = (T, L, M) constitutes the tile
collection T placed in the network topology, the collection of links for tiled pairs in T is referred to as
L, and M specifies the data volume and link between the tiles in megabytes per second.

TZ{tl,tz,tg,,...,tn} (15)
L= {l,'/j = (t, t]) € TxC|(t;, t]) eT,i#j} (16)
M:L— M(t, t]) = Mij (17)

Definition 3. NAG = (R, C) : The NoC Architecture Graph corresponds to the routing path
(cij) € C) between any router pairs (r;, ;) in the network. The intermediate links traversing the
path (r;,1;) are termed hop counts (Hops) from the router r; to r;. Data are transferred or received
to and from the cores through the connected routers, and the channel c; j acts as the physical link for
data transfer between the cores. The routing channel has limited bandwidth (B; ;) between the nodes.
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4. Proposed Framework of IWO Algorithm

This section presents a new metaheuristic INOA for a 2D NoC-based multicore
platform with strong local and global search capabilities. On the whole, the algorithm
attains several mapping solutions (explores the promising search space) by emulating
whale hunting behavior, eventually converging to the best possible solution.

4.1. Inspiration for NoC Application Mapping

The metaheuristic method described in [36] simulates hunting behavior using a ran-
dom agent or the best search agent to track prey. Researchers have found that Humpback
Whales pursue prey by creating distinctive bubbles in a circular pattern, and are the only
species known to engage in bubble-net feeding [37,38]. The hunting mechanism of whales
is modeled in the proposed work to carry out NoC application mapping optimization. The
whales” hunting mechanism uses search agents to find the optimal position. As the search
agent approaches the prey, the other agents update their locations to discover the best
solution. Each search agent corresponds to the task mapping solution, which is assessed on
the basis of communication cost. Based on the reference mapping solution, other mapping
solutions update their locations (tasks to core mapping). The basic WOA algorithm em-
ploys random initial mapping solutions, which are improved over further WOA iteration.
However, in this work we modify the WOA algorithm to generate an initial mapping
solution using a set of criteria, providing the optimization algorithm with a head start. The
algorithm then progressively improves the initial mapping through further iteration.

Modified WOA with Targeted Initial Mapping Generation Heuristic searches for IP
mapping are frequently employed; however, they often become trapped in local optima.
This shortcoming is primarily attributable to the first population/solution generation
stage of heuristic searches. Most transformational heuristics generate a random starting
population, and the search procedure can then be seen as a search of the entire search
space. In some heuristic procedures, the initial population/solution is formed using
predefined criteria, expert information, and/or system attributes. These criteria may not
work for large or complex problems. If the initial population generation is not effective,
incremental improvement towards finding an optimal solution will be limited. In swarm-
based intelligence optimization techniques, the initial population quality has a significant
impact on the algorithm’s speed and accuracy [39,40]. In the proposed work, the WOA
algorithm is modified in terms of initial mapping generation, and is then employed to
enhance overall application mapping to NoC Cores. The initial population is produced
using the good point set approach instead of the random initial population generation
in the standard WOA. This method is an efficient approach that can aid in minimizing
the number of attempts and reaching optimal solutions in fewer iterations. The solutions
produced using the good point set sequence exhibit a better distribution of solutions than
the sequences chosen by the general random method [41]. This approach is used to generate
initial mapping solutions for mesh-based 2D NoC architectures. To generate a mapping
sequence using the good point set method, a sequence of m points in s-dimensional space
is generated and represented as discussed below: Generate points such that

r=17r1,1,13, (18)

r; =2 x Cos(2i/p), (19)

where 7 can be set to any value for generating various mapping points, and let p be a prime
which satisfies p > 2s + 3. Now, using the several mapping points generated, a mapping
sequence is generated that is stored in T(;_ ;)

T(s—mup) = (7"1 X k), (7"1 X k), (7"1 X k),(?’m X k) (20)

where | — 1y, are the total mapping points generated and k =1, 2, 3, ..., n, where n is
designated as the total number of cores for which mapping is generated. For NoCs having
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certain application tasks to be mapped onto s X s sized mesh architectures, we can take m
as the number of generated tasks or points. As the population size can be set to any number,
various individual Ts_,,,) mapping solutions are generated as an initial generation, e.g.,
for 16 tasks to be mapped onto a 4 x 4 Mesh 2D NoC platform, we can set m to a certain
number and set popSize to another number for which diverse task mapping solutions are
to be created. The algorithm of the good point set method is provided in Algorithm 1. The
set of initial mappings generated using the good point set method can be considered as
one of the pools of the initial mapping initMappingqps. The good point set method does
not use any key characteristics such as communication between tasks and the number of
connected neighbors. Thus, application task graph expert knowledge can be utilized to
generate initial solutions. This initial mapping can be placed in a second pool based on
communication between the cores, termed init Mappingcomm. The final initial mappings are
selected from the top-ranked mappings of both pools, which participate in the optimization
algorithm. The second pool of initial mappings maps application tasks to the NoC platform
using the communication weights between core edges. A core is first selected from the core
graph and that specific core’s total communication bandwidth and average communication
are noted.

Algorithm 1 Initial Mapping Algorithm

Initialization:
Input: popSize, m
stopCriteria: popSize
while stopCriteria do
fori < 1tomdo
Calculate r; using Equation (19) to generate mapping points considering value of

p
Create Tasks to core mappings T(;_,,p) using Equation (20)
end for
initMappinggps = T(s_pap)
end while

The total weight TW of the selected core is provided by

TW; = Z twj;. (21)
eije/E

The average communication is expressed as follows:

TW; = ) tw;; x (1/N,;) (22)
eije/E

where TWi; is the total communication weight between the cores and N, is the number
of available neighbor cores of core c;. In this way, the total communication and average
communication of each specific core are calculated and the neighbors of every core are
noted along with communication-related details. The first task to be selected is the one
with the highest total communication bandwidth, which is placed onto the NoC platform
at any location, and its neighbors are mapped next. If multiple neighbors are available,
then the neighbor with a higher communication weight with the mapped task is placed
at the closest location to the NoC. Then, the other neighbors of the first mapped task are
placed based on their communication weights. When all the neighbors of the mapped task
have been placed, the neighbors of already-mapped (recently mapped) tasks are placed.
The choice is based on the mapped task with the maximum weight; this core is selected
and its neighbors mapped using the same communication weight criteria as above. All of
the cores are mapped in this manner. This initial mapping procedure assumes that any job
mapped to a core must not be mapped to any other NoC location or considered for any
other placement. To serve this statement well in the implementation of this algorithm, a list
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of tasks that have been mapped is maintained in the list T;4ppeq, While the unallocated cores
are maintained in T}, s110cated- While mapping neighbors of already mapped cores, these
two lists are referenced to reach the appropriate decision. As the algorithm runs, various
mappings are achieved based on placement of cores on the NoC platform in different orders.
The communication cost for both pools is computed and the top-ranked elite mappings are
taken from both initial mapping pools to generate an enhanced initial mapping solution.
The reason for retaining and finally gathering mappings from both pools is to improve the
overall diversity of the solution.

enhancedInitMapping = initMappinggps + initMappingcomm (23)

The best mapping solution is selected as the current best candidate solution. Opti-
mization improves initial mapping solutions across numerous generations to provide final
mappings for varied applications.

4.2. Mathematical Model of INOA

This section provides the mathematical models of various hunting capabilities of the
IWOA in terms of the NoC application mapping problem. Later, the IWOA algorithm
using the specified features and characteristics is presented.

4.2.1. Encircling/Navigating the Hunt: Unveiling Optimal Application Mapping Strategies

The whales have a special feature of trying to identify and encircle the prey’s location.
Because the ideal location within the search domain is not known in advance, the algorithm
implies that the current leading /best candidate mapping solution is near the optimal design.
The algorithm runs for a specific number of generations and iterations; consequently, the
other solutions endeavor to modify their positions with the optimal mapping solution.
These equations serve to represent this:

= |C.X*(t) — X(t)], (24)

X(t+1) = X*(t) — AD, (25)

where t represents the current iteration, A and C are quantities that represent coefficient
vectors, X* is supposed to be the most effective mapping solution found in the present
generatlon and X represents position vector. If a superior mappmg solution exists, then
XX* should be updated after each generation or iteration. A and C are computed using
the following equations:

A =271, (26)

C=27 (27)
In both the exploration and exploitation phases, 2 diminishes linearly from 2 to 0
throughout the iterations, while r represents a random number between [0, 1]. Figure 1
demonstrates the information behind Equation (25) for the 2D NoC problem and shows how
mapping solution 1 (with a certain communication cost, commCost1) is updated to a new
mapping solution 2 with a better communication cost (commCost2), where commCost2 <
commCostl. Equation (25) allows the algorithm to update the mapping solution within the
vicinity of the current best solution, leading to an optimum solution over a certain number
of iterations and population sizes. The same principle can be applied to an n-dimensional
search space in 2D NoC, with the mapping search agents traversing in hypercubes around
the current most promising mapping solution.
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Figure 1. Task allocation and fitness updating process in IWOA for NoC platform.

As noted in the preceding section, the INOA employs the bubble-net hunting tactic of
the WOA integrated into NoC-based application mapping. This strengthens the algorithm’s
ability to exploit and explore, leading to better mapping solutions. The mathematical
formulation of this procedure is as follows.

4.2.2. Exploitation Phase

To efficiently solve the application mapping problem, the INOA uses the bubble
net behavior of whales to achieve an optimum mapping solution within a faster conver-
gence time.

1—Shrinking Encircling Mechanism: Exploitation for Mapping. In a 2D space, Fig-
ure 2 depicts the potential positions starting from (X) towards (X*) that can be obtained
by 0 < A < 1. The shrinking encircling mechanism is modeled in a 2D NoC architecture
such that X represents a mapping solution with a certain communication cost. In contrast,
X™ is a better solution with a better communication cost than the earlier one. The mapping
denoted as X tries to achieve a better solution, represented by X*, with a better communi-
cation cost. This mechanism runs for a certain number of iterations until final mapping
is achieved. This mechanism to achieve optimal mapping uses Equation (26) by altering
a value. In the equation, A represents a random value with a range of —a to a, where a
gradually diminishes from 2 to 0 over a specified number of iterations.

2—Spiral Strategies: Elevating NOC Application Mapping. This approach first
approximates the deviation between the value of the objective function for the current
mapping solution X and the optimal value that needs to be achieved. The spiral update
position to achieve the optimal mapping is derived using the following equation:

X(t+1) = D/(t) e cos(2ml) + X*(¢) (28)
where D' (t) is provided by
D'(t) = [X*(5) - X(1)]. (29)

The equation shows the value of the ith mapping from the best mapping solution
obtained thus far, where b determines the logarithmic spiral’s shape while [ is a random
number. As the mapping is achieved using the shrinking circle and the spiral-shaped
mechanism simultaneously, it is presumed that there is an equal 50% probability of selecting
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either the shrinking circular mechanism or the spiral model to update the mapping methods.
The mathematical model takes the following form:

D, — {}S‘(t) — X ifp <05 50)

D'(t) - e - cos(2mtl) + X*(t) ifp>05

where p represents a random value between 0 and 1. Figure 3 shows how various mapping
solutions are created from X until reaching the final solution X*.
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Figure 2. Shrinking encircling mechanism (X* is the current best mapping solution).
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Figure 3. Spiral update position implemented in WOA (X* is the current best solution).

4.2.3. Search for the Optimal Mapping Solution (Exploration Phase)

Thanks to its faster operation, the IWOA can use the strong exploration capabilities of
the whale optimization algorithm to thoroughly explore in order to converge to the optimal
solution. A variation pattern of vector A helps to find the best potential mapping with the
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lowest communication cost. As the mapping solutions are created by taking inspiration
from the neighboring mapping solutions, we utilize A with certain randomized values
between 1 and —1 in order to compel the search agents to distance themselves from the
reference mapping solution and explore more of the overall search space. Compared to the
exploitation phase, adjusting the placement of a search agent (mapping solution) does not
take place during exploration based on the best solution. Instead, we choose a search agent
(a random mapping solution) at random and perform updates based on it. This method,
along with | A | > 1, emphasizes exploration and enables the INOA to perform a global
search. Its mathematical model is presented as follows:

D=|C Xpmna — X|, (31)

X(t"_l) :Xr;nd_g_ﬁz (32)

where X rand is a mapping solution picked at random from the current population. Several
mapping solutions surrounding a specific solution with A > 1 are created.
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Figure 4. INOA Flowchart.

4.3. Proposed INOA

In this section, a new and improved metaheuristic IWOA is presented that has power-
ful local and global search functionality. Each search agent that constitutes the mapping
solution is initialized using a certain approach between the minimum and maximum limit
in the range. In the proposed technique, the fitness function is often a primary goal to be
reduced. The proposed algorithm commences with a collection of solutions achieved using
the enhanced initial mapping mechanism instead of the conventional random mappings.
At each iteration, search agents that represent individual mapping solutions adjust their
positions concerning either a randomly chosen search agent or the current optimal solution
with the minimum communication cost. The number of iterations is predefined, and varies
depending on the application. Each mapping solution S is in the solution space SS, where
S € SS represents its components such that 7 > 0 components, i.e.,, S = 51, Sy, .....5;, where
i=1,23,.....,n; here, n represents the scope of the optimization problem to be solved.
To promote better exploration and exploitation, the value of parameter a is varied from
2 to 0. Random mapping is chosen in the proposed mapping technique when | A | > 1.
In contrast, the selection of the best candidate mapping is carried out when | A | <1 for
modifying the mapping solutions of other search agents within the search space. This
adaptive variation-based feature of the vector A permits the IWOA to transition seamlessly
between exploration and exploitation while achieving better mapping results. After per-
forming in-depth analysis and comparison, the appropriate values for the input parameters
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of the algorithm are determined. It should be noted that a parameter combination that
works well for one situation may not work the same way for another. Algorithm 2 provides
the pseudocode of the IWOA. In each iteration, the algorithm efficiently obtains a better
mapping solution as compared to the previous iterations, depending upon the fitness
function. The termination criteria is the achievement of the required fitness value, that is,
when the mapping solution with the lowest communication cost has been obtained. The
IWOA'’s method for solving the optimization issue is a global optimizer which includes
exploration and exploitation capabilities. As the algorithm runs, the initial mappings are
fine-tuned to adjust the placement of tasks to the cores, ensuring that better solutions are
achieved in each iteration. The flowchat of IWOA is presented in Figure 4.

Algorithm 2 Improved Whale Optimization Mapping Algorithm

Initialization:
Input: enhancedInitMapping, taskGraph, itrWOA, itrIGA,a,C,1, A, p
stopCriteria: itrTotal, Optimal CommCost
// Find pop, v, fitness
initPopFitness(enhancedInitMapping, popsize, meshSize)
// Find gbestpop, gbestfitness
getinitbest(fitness, pop) // X* = BestSearchAgent
while stopCriteria do
fori < 1toitriWOA do
for searchAgentj <— 1 to popsize do
Update parameters A, C,a, [, p
A=2i7—d
C=27
if p < 0.5 then
if |[A| <1 then
Update the current mapping solution using Equation (24), finally updating
popljl
end if
if |A| > 1 then
Select a random mapping solution-Xrand
Update the position of the current mapping solution by the Equation (32),
finally updating poplj]
end if
end if
if p > 0.5 then
Update the position of the current mapping solution by the Equation (28)
updating poplj]
end if
end for
// Check If a search agent-based solution exceeds the search space, modify it.
for particlej <— 1 to pop_size do
calCommCost(meshSize, pop|j], tashGraph)
end for
Qbest fitness = mim(pop|j])
gbestpop = min(pop)
end for
if gbest fitness == optimal CommCost then
finalmapping < gbestpop
optimalCommCost < gbest fitness
end if
itrIWOA = itrINOA + 1
update(gbest fitness, final Mapping
end while
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5. IWOA-IGA—Enhanced WOA Algorithm Featuring Improved Genetic Mechanism

In this paper, a modified and improved WOA (IWOA) is presented to solve the ap-
plication mapping problem in NoC. The incorporated IWOA algorithm has better global
and local search ability; however, for certain scenarios, such as large-scale complex prob-
lems, it may undergo lower convergence accuracy and can fall into local optimum. To
avoid such problems and scenarios, an improved GA is executed along with the IWOA
to achieve optimal solutions. The GA uses a biological evolutionary mechanism, and, as
a global-based search optimizer, it searches for the optimum solution in the search space
for complex problems. GAs have proven to be robust and effective in exploring complex
spaces. Hence, they can effectively solve a wide range of pattern recognition, artificial
intelligence, resource allocation, and similar complex challenges. To achieve better map-
ping solutions, the proposed modified INOA algorithm is integrated with an improved
genetic algorithm incorporating improved crossover and mutation abilities. This further
enhances the ability to find the optimum solution within the search space with better
convergence towards the final mapping solution. In addition, according to the original
whale optimization algorithm [30], in order to accurately mimic whale behavior and obtain
improved optimization results, evolution-based characteristics must be added to the WOA
algorithm. Instead of using conventional GA characteristics such as random selection
of parents and choosing random points for crossover [42], the proposed technique uses
modified crossover and mutation. This can help to avoid local optima and promotes faster
convergence with better searchability and higher population diversity. Hence, to achieve
optimal mapping solutions for the 2D NOC platform, the modified GA is directly inte-
grated with the IWOA, influencing the overall algorithm’s ability to generate high-quality
individuals with reduced energy, latency, and power requirements.

5.1. Important Aspects of Genetic Algorithm

The genetic flowchart depicted in Figure 5 resembles biological evolution [9]. A
traditional GA begins with an initial random population comprised of randomly chosen
chromosomes that produce offspring via crossover and mutation. It continues to work
iteratively until a predetermined count of iterations is completed or a termination criterion
is satisfied. A pre-set fitness function determines the fitness of the chromosomes and the
communication cost on the NoC platform.

End
IYes
Start Generate Initial Calculate Fitness Stop
Population of Individual Criterion?
No |
Roulette Selection Crossover to Mutation of Calculate Fitness New Generation
of Parents produce Children Children of Children by Elitisim

Figure 5. Genetic algorithm flowchart.

5.2. IGA Framework

This article focuses solely on a single objective, namely, use of an improved GA
integrated with an improved WOA for solving application mapping through better search
ability and population diversity. The population obtained from the IWOA is fed into the
modified GA, which uses direction-based crossover features [43] and mutation ability
to generate high-quality mapping solutions. Each chromosome in the GA signifies a
mapping solution of the 2D NoC mapping problem. The subtasks imply the genes in the
chromosomes. The various individual mapping solutions undergo through the genetic-
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based process for some number of iterations and generations to produce high-quality
mapping solutions.

5.2.1. Improved Genetic Algorithm Formulation

The genetic operators exert different levels of impact on the algorithm, with selec-
tion identifying the most promising chromosomes for crossover to enhance the solutions.
Crossover combines genetic data to improve population characteristics, while mutation
introduces new genes to address the weaknesses of crossover.

5.2.2. Expert Initial Curation for NoC Application Mapping Excellence

The selection operator selects the individuals that participate in crossover and muta-
tion; hence, their selection substantially impacts the entire GA process [44]. The proposed
modified algorithm uses expert criteria-based selection to choose the initial mapping solu-
tions to undergo crossover and mutation. This is contrary to the random selection used in
the conventional GA. Initially, the mapping solutions achieved by the INOA are ordered
according to the objective function F(X) (communication cost) and treated as an initial
population for the IGA, represented as

X={X1,Xa,...... Xn, } (33)
while the sorted population is provided by

X5 = {X5,X5,..X5} (34)

which satisfies F(X]) > F(X3) >,...... F(X3). Each element in X and X° shows individual
mapping solutions. The population obtained by the INWOA is sorted and divided into
four groups (X1, X2, X3, X*%), which are paired with each other ((Xl, Xz), (Xl, X3), (Xl, X4),
(X2, X3), (X2, X%), (X3, X*)) to form X(map,) and Xmapy). Crossover is performed using
the elements of X("?«) and X(mapv),

5.2.3. NoC Application Mapping: Directional Optimization Incorporating Crossover
and Mutation

The GA’s central process significantly affects the algorithm’s ability to seek improved
and optimal solutions [45]. The more optimal the objective function is for any individual
solution, the closer the mapping combination will be to the optimal region. Hence, the
proposed INOA-IGA uses a direction-based crossover operator. The modified crossover
operation has good ability for searching the overall search space, and can produce mapping
solutions with a larger probability of enhancing the objective function, thereby speeding
up the algorithm’s convergence. As in the initial step of the GA, the population of mapping
solutions is divided into two groups, X"« and X("?P1), The communication cost of
the individual solutions in X("Pa) is superior to those of the solutions in X (mapy) ; thus,
X(mapa) is the leader in the direction of crossovers for producing high quality solutions.
The mathematical equation that generates the mapping solutions with directional-based
crossover is provided by

YA ij , 35
Djj = X" = X" i=1,..3n/2,j=1,..,m 5

{Xl* = X(ﬂﬂpa + 1"1']‘ . 5
where 151‘;’ represents the directional vector. The parameter r;; is a uniformly distributed ran-
dom number ranging from —1 to 1. Thus, in directional crossover based on grouping-wise
solutions, each mapping pair develops into one mapping solution, eventually generat-
ing new individuals. Finally, it sorts the high-quality mapping solutions with the best
communication cost, developing n individuals as offspring of the crossover.

To see the effect of the direction-based crossover operation on two of the paired map-
ping solutions, paired individuals are shown to occupy a certain space in the appropriate
region. As r;; takes on boundaries between 1 and —1, the paired mapping solutions will
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take various directions to reach the optimal communication cost value. The various direc-
tions for solution X; can be X; with D11, D12, D11, D12, as shown in Figure 6. The solution
in the region is shown by the rectangle with its center at X; and X, as one vertex. Having
now obtained various paired mapping solutions, they can be used to generate many such
rectangular patterns; along with the selection process, direction-based crossover assists
the algorithm in generating high-quality solutions in the direction of the optimal solution.
Parents X; and X can produce offspring that will tend to have better communication costs.
The crossover operation recombines the parents’ chromosomes, and the best offspring
undergo mutation and continue on to produce superior results.

5S|4(9|3(6(14(11(0 |1 |7 |10]15| 2 |8 |13 |12

X2 21 FSHESHE6N 1O/ S 7815|1411 0N 1 1 R4 HiF SHIO;

Individual Mapping Solution

Optimal Mapping

X2

Figure 6. Direction-based crossover.

The mutation operation is applied to offspring to achieve more optimal results. Mu-
tation allows for altering the placement of one or more mapped tasks of individuals in a
population with a specified mutation probability, which can help to promote population
diversity and prevent premature events. The communication cost of all the resulting map-
pings are computed after mutation, and the mutation is accepted if the communication
cost of the mutated mapping is less than that of the original ones. To increase population
diversity and prevent the GA version from falling into local optima, the mechanism of
replacement operation is incorporated [43]. The basic goal of the replacement operation
is to set aside the most elite K individuals from the population for every K generation. In
traditional approaches, certain elite individual solutions are retained in parents. Never-
theless, the high-quality solutions created as a result of crossover may be affected by the
mutation operation, and their quality may degrade to some extent. Thus, in this work we
adopt a better approach to retain the most elite mapping solutions produced by the genetic
operation. In this way, the number of elite mapping solutions can be maximized to enhance
the population attributes.

5.3. INOA-IGA: Modified INO Algorithm Featuring IGA Characteristics

This section proposes a new enhanced hybrid IWOA-IGA application mapping tech-
nique for 2D NoCs. This algorithm combines a modified GA with improved whale features
to create a powerful local and global search capability with faster convergence. The pro-
posed hybrid approach effectively combines the exploratory advantages of the IWOA with
improved search capability with the accelerated convergence and local optima avoidance
features of the IGA. Their combination can maintain a high level of population diversity
to achieve the global optimal application mapping solution. The initial mapping solution
is generated using the enhanced initial mapping to give a head start to the optimization
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algorithm, enhancing its performance in the search space. To effectively integrate the IGA
and IWOA, The IWOA incorporates the IGA into each of its K iterations until the ideal
solution is found. The algorithm runs for a certain number of iterations and simulations.
Each K iteration is predetermined and changes depending on the application. The fitness
function holds significant importance within the realm of optimization mapping problems,
as it represents the objective we seek to minimize in order to reach the optimal solution.
If the best global solution remains unchanged for the last K number of iterations, this
suggests that the algorithm might have become stuck at an optimal local value. The IWOA
optimizes the mapping solution in certain generations, and the adaptive strategy drives
a well balanced search operation. To enhance the rate of convergence and prevent the
algorithm from becoming stuck in local optima, additional improved genetic features
such as groupwise selection, direction-based crossover, and mutation characteristics are
incorporated. Direction-based crossover allows the diverse mapping solutions in each
generation to efficiently converge towards the optimum solution. The input parameters
for the technique are chosen after a thorough assessment. Certain parameters are allowed
to adapt according to the environment and the solutions acquired in each K iteration,
allowing the algorithm to achieve better convergence and search features. The IWOA-IGA
pseudocode and framework are presented in Algorithm 3 and Figure 7, respectively.

Parameter Settings for the Proposed Hybrid Algorithm

The proposed hybrid method necessitates the specification of a few fundamental
parameters to determine the efficacy of group searching. Numerous simulations and
satisfying results were used to pick the parameter values for the proposed algorithm in
order to produce an effective solution. Well balanced exploration and exploitation ability
is derived using adaptive parameter adjustment, which results in updating of the vector
A. The algorithm uses a few other parameters, such as r (a random vector between [0,
1]), and a linear decline from 2 to 0 is performed throughout iteration during both the
exploration and exploitation phases. For the shrinking encircling mechanism, A takes a
random value between —a and a, where a gradually diminishes from 2 to 0 throughout
iteration. Configuring A within [—1, 1] can result in a new position for the mapping
solution between the original position and the current best position. For the spiral mapping
position, the parameter b is kept at a constant value to maintain the shape of the spiral,
while [ is varied between [—1, 1] to help the algorithm achieve better mapping solutions.
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Figure 7. INOA-IGA framework.
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Algorithm 3 IWOA Integrated with IGA

Input: enhancedInitMapping, taskGraph, itrWOA, itrIGA,a,C,1, A, p
stopCriteria: itrTotal, OptimalCommCost
// Find pop, v, fitness and gbestpop, gbestfitness
initPopFitness(enhancedInitMapping, popsize, meshSize)
getinitbest(fitness, pop) //X* = BestSearchAgent
while stopCriteria do
fori < 1toitriWOA do
for search Agentj < 1 to popsize do
Update parameters A, C, a, 1, p
A=2i7-d,C=27
if p < 0.5 then
if |[A| <1 then
Update current solution using Equation (24), finally updating poplj]
end if
if |A| > 1 then
Choose random mapping solution-Xrand
Update current mapping solution by the Equation (32), updating poplj]
end if
end if
if p > 0.5 then
Update Current mapping solution by Equation (28), updating pop|j]
end if
end for
for particlej < 1 to pop_size do
calCommCost(meshSize, poplj], tashGraph)
end for
gbest fitness = mim(popl[j])
gbestpop = min(pop)
end for
if (gbest fitness == optimalCommCost) then
finalmapping < gbestpop
optimalCommCost <— gbest fitness
end if
/ / Apply IGA to global best solution
itrIGA <= 0
/ / Take Pop as initial population for IGA to Optimize
/ /Find gbestpop, gbestfitness
getinitbest(fitness, pop)
currentbest < gbestpop/ / X+ = bestsearch,gent
currentbestpop < gbest fitness
SetParametersr
while itrIGA do
/ /Execute Selection Process
Xmapa & Xmﬂ}’/b
/ / Apply Direction Based CrossOver
Update X7 and Ij}j using Equation (35)
itrIWOA = itrIWOA +1
update(gbest fitness, final Mapping
Keep Elite Solutions & then perform Mutation forming Offsprings
if commCostofssprings > currentBestCost then
currentBest < gbest, f fspring
currentbestCost < gbest fitness
end if
if gbest fitness == optimal CommCost then
finalmapping < gbestpop
optimalCommCost < gbest fitness
end if
itrlGA = itrIGA + 1
end while
end while

The direction-based vector D allows the algorithm to converge more quickly towards
the optimum. It entails a significant probability of producing high quality mapping so-
lutions in the direction of the optimal communication cost. The parameter 7;; in the
direction-based crossover mechanism is randomly generated. The parameter’s population
size and generations are set to 150 and 100, respectively. The algorithm first generates
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an initial mapping, which is iteratively improved for the population size and number of
generations, eventually leading to an optimal mapping solution for a set of benchmarks.

6. Simulation Results

The simulation results of the INOA and IWOA-IGA are examined in this part and
compared with those of existing mapping methods.

6.1. Simulation Setup and Scenario

Experiments were conducted on available real-time benchmarks and synthetic task
graphs to assess the algorithms. All benchmarks for real-world applications are limited to
small-scale tasks, often demanding fewer than 32 cores; consequently, custom benchmarks
were produced using task graph tools to evaluate the performance of our method on more
challenging issues. TGFF instances can have a problem scale anywhere from 16 to 196,
with small-scale (core count < 35), medium-scale (36 < core count < 70), and extensive-scale
(core count > 70) problems all taken into account. The TGFF tool takes the heterogeneous
communication characteristics of the cores into account and builds task graphs at random
depending on this behaviour. The set of real-world benchmark instances we used were
video object plan decoder (VOPD), 263decoder (263DEC), MPEG-4 decoder, 263encoder
(263ENC), Mp3encoder (Mp3ENC), and MWD. All real-time benchmark applications we
examined used the standard network size of 4 x 4. This network size is the same as in
prior state-of-the-art architectures, allowing for a fair comparison. The VOPD application
was divided into 16 subtasks, each of which could be allocated to a 4 x 4 mesh. Larger
mesh sizes were used for the synthetic task graphs. Details of the real-time benchmark
applications are listed in Table 1.

Table 1. Standard NoC benchmarks with 2D mesh sizes.

Benchmarks Nodes Edges Mesh Size
PIP 8 8 3x3
MPEG-4 12 26 4x4
MWD 12 13 4 x4
263encMP3dec 12 12 4x4
263decMP3dec 14 15 4x4
Mp3EncMp3Dec 13 14 4x4
VOPD 16 21 4x4
CAVLC 16 22 4x4
MMS 25 38 5x5

Modifications were implemented in the NoCTweak simulator to conduct a compar-
ative analysis of different application mapping techniques [38]. ENoCTweak was used
by applying the algorithm on various real-time and synthetic task graphs. NoCTweak is
a SystemC-based open-source NoC simulator that offers a variety of performance char-
acteristics, including energy, latency, communication cost, and throughput. In order to
apply the proposed algorithm on both the synthetic and real-time applications, it was
run on a computer system equipped with an Intel Core i3 platform, 8 GB of RAM, and a
clock frequency of 1.6 Ghz. The simulation environment used to execute the benchmark
applications on a 2D NoC architecture is detailed in Table 2. The proposed application
mapping approach was implemented in Python to provide the optimal task mapping for
the NoC. The resulting optimized mapping was executed on the NoC using the unified
simulation framework known as ENoCTweak, which was used to simulate and analyze
critical NoC system characteristics such as latency, throughput, energy, and power.
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Table 2. Simulation setup details.

Configuration Detail
Network Type Mesh
Type of Platform Embedded
Applications VOPD, MP3encMp3dec, MPEG4, MWD, 263encMp3dec,
PP 263decMp3dec
Mapping Algorithm IWOA, IWO-IGA, SA, PSO
PacketDeliveryMode Without ACK
Sending ACKPolicy Send ACK Optimally
Packet Distribution Exponential
Fixed Packet Length 10 (flits) moment
FlitinInjectionRate 0.1 (flits/cycle/node)
Type of Router Wormbhole-Pipeline
Routing Algorithm XY DIMENSION-ORDER
OutputChannelSelection XY-ORDER
BufferSize 1 (flit)
Pipeline Type 8
StagesOfPipeline 4
InputVoltage 1(V)
Operating Clock Frequency 100,000 (MHz)
Warm-Uptime 20,000 cycles

6.2. Performance-Based Comparative Analysis

As the main aim of this study was to enhance the communication cost, which repre-

sents the overall cost associated with running a particular application on NoC (depicted
by Equation (1)), the communication cost for both the INOA and IWOA-IGA were first
evaluated based on real-world and TGFF-based graphs.

6.2.1. Performance Analysis Based on Standard Benchmark Instances

Both of the developed techniques were tested using real-world applications as well as
TGFF-based graphs (presented in the next section). A comparison of the IWOA and IWOA-
IGA with other advanced heuristic algorithms and with the exact mathematical solution
was carried out. Table 3 depicts the performance comparison in terms of communication
cost for various standard benchmark applications. When it comes to estimation of com-
munication cost, ILP (Integer Linear Programming) is regarded as the optimal solution [3].
The results demonstrate that the proposed modified IWOA and its genetically integrated

version obtained optimal results derived from real-world instances.

Table 3. Communication cost (bw x nh) comparison with real-world benchmark applications.

Algorithm VOPD CALVC MMS MPEG4 MWD Mp3Enc 263enc 263dec PIP
ILP 4119 - - 3567 1120 17.021 230.407 19.823 -
ONMAP 4119 - 663,379 3567 - - - - 640
GA 4141 - - 3567 1321 17.133 230.69 19.911 -
SA 4125 - - 3567 1451 - - - -
BEMAP 4119 6701 664,636 3567 - - - - 640
ACO - - - 3670 - 17.231 - - -
PSO 4119 - - 3567 1120 17.021 230.45 19.823 -
BA 4119 - - 3567 1120 17.834 231.45 19.936 -
HDPSO 4119 - - 3567 - - - - -
CSO 4119 6721 652,637 3567 - - - - 640
SCSO 4119 - - 3567 1122 17.021 230.407 19.823 -
DPSO 4119 - 688,297 3567 1120 17.021 - 19.823 640
RAMAN 4135 - - 3774 1184 17.87 234.4 19.87 640
SFOA 4119 - - 3567 1120 17.021 230.407 19.823 -
ACA 4119 6721 652,637 3567 1120 17.021 - - -
iHPSA 4119 - - 3567 1120 17.021 230.407 19.823 -
IWOA 4119 6701 663,379 3567 1122 17.021 230.69 19.823 -
IWOA-IGA 4119 6701 663,379 3567 1122 17.021 230.69 19.82 -
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6.2.2. Performance Analysis on TGFF Random Instances

This section presents the details of the generated TGFF random instances and their
use in evaluating the algorithms with varying mesh sizes. For the sake of experimentation
with large-scale applications, random synthetic task graphs were generated using the TGFF
tool, which generates task graphs with 32, 64, and 128 cores. TGFE, known as Task Graphs
For Free, is meticulously crafted to offer a standardized approach for generating arbitrary
task graphs for experimentation purposes in research work. In our evaluation, we used
mesh sizes of 6 x 6 for up to 32 core placements, 8 x 8 to accommodate 64 core graphs, and
12 x 12 for 128 core task graphs. The task graphs were configured to use a communication
bandwidth of 50-600 MB/s between the interconnected tasks. As the tasks using the TGFF
tools are randomly generated, there is no specific optimal value for the communication
cost; however, there must be some criteria to evaluate the performance of the generated
large-scale tasks. A few important considerations could include the number of generations
for which the algorithms can execute and the communication cost value be achieved at that
instance. Another consideration is the number of iterations for which the algorithm runs
and the targeted communication cost to be achieved after a specified number of iterations.
We observed that when the number of iterations was configured to a value between 180-200
and the IWAO-IGA was executed for the 200 iterations, the IWAO-IGA achieved the desired
communication cost in fewer iterations than the IWOA for larger applications.

This is due to the integration of directional crossover and mutation features into the
IWAO mechanism, allowing the algorithm to perform better when searching for optimal
solutions in the search space and to attain the desired cost in a lesser number of iterations
than to the simple INOA. Moreover, the proposed algorithm attains the desired cost within
a reduced number of iterations in comparison with other advanced and optimization algo-
rithms, e.g., SA, GA, and PSO. A cost savings-based comparative analysis is presented in
Tables 4 and 5 and in Figure 8. Across the tested benchmarks, the proposed IWOA reliably
lowers the communication cost by an average of 41.31%, 46.61%, and 44.00% compared
to PSO, SA, and GA, respectively, for 32 cores. In the case with 64 cores, the average
improvement in cost is 38.70%, 31.94%, and 39.78%, respectively. The proposed algorithm
consistently achieves a significant average reduction in communication cost when applied
to scenarios involving 128 cores, with respective improvements of 17.37%, 20.99%, and
16.12% over PSO, SA, and GA. These outcomes highlight that the proposed algorithm
outperforms applications with a moderate number of cores. However, as the nubmer of
cores rises to surpass a certain threshold, the algorithm’s performance becomes average
compared to its efficiency with a lower number of cores. As the algorithm was further
modified by adding an improved GA algorithm to ensure better results when larger appli-
cations are executed on it, the modified INOA-IGA was tested again on larger TGFF-based
applications implemented on 32, 64, and 128 cores. The IWOA-IGA minimizes commu-
nication costs effectively, with an average improvement of 45.66%, 50.56%, and 48.15%,
respectively, for 32 cores. For the configuration with 64 cores, the average improvement
in communication cost was 40.29%, 33.70%, and 41.33%, respectively. With 128 cores, the
proposed technique produced respective average reductions in communication cost of
30.60%, 33.31%, and 26.67%. Table 5 shows the results.

Table 4. Percent communication cost savings with IWOA compared to other algorithms for extensive

task graphs.
Task Graph Over PSO Over SA Over GA
32 Cores 41.31% 46.661% 44.00%
64 Cores 38.70% 31.94% 39.78%
128 Cores 17.37% 20.99% 16.12%
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Table 5. Percent communication cost savings with INOA-IGA compared to other algorithms for
extensive task graphs.

Task Graph Over PSO Over SA Over GA
32 Cores 45.66% 50.56% 48.15%
64 Cores 40.29% 33.70% 41.33%
128 Cores 30.60% 33.31% 26.67%

Communication Cost-Large Task Graphs
140,000
120,000
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“ 1 Il 1l
q I | | IIIII

TG1-32 Cores TG2-32 Cores TG1-64 Cores TG2-64 Cores TG1-128 Cores TG2-128 Cores

HPSO mSA mGA EIWOA mIWOA-IGA
Figure 8. Comparison of communication costs for large synthetic task graphs.

6.2.3. Performance Comparison of INOA and IWOA-IGA: Optimizing Power and Energy
in 2D NoC Benchmark Applications.

To assess the proposed algorithm’s power efficiency, we opted for the Orion Model [40,46],
which analyzes the power and energy of the network and can be integrated into a simu-
lation environment to compute the network’s overall energy. The NoCtweak simulator
was used for power estimation, which was conducted using a standard cell library and
the ORION-2 model, allowing for accurate evaluation of power consumption at different
CMOS nodes. This simulation tool derives both power and energy consumption. By
utilizing post-layout power details sourced from 2D NoC components, these estimations
are based on component behavior when executing traffic patterns or real-time programs
with a given mapping. Regarding the power metrics, the proposed IWOA improves power
reduction by an average of 21.93%, 30.20%, 22.07%, 26.92%, 15.84%, 8.70%, 7.78%, 1.9%,
7.66%, and 5.48% over the PSO, SA, GA, ACO, BA, SCSO, ILP, iHPSO, CSO, and SFO
algorithms, respectively. We observed that IWOA integrated with GA further improves the
power reduction by an average of 22.09%, 30.34%, 22.23%, 27.07%, 16.24%, 8.89%, 7.97%,
2.07%, 7.84%, and 5.63% over the PSO, SA, GA, ACO, BA, SCSO, ILP, iHPSO, CSO, and
SFO algorithms, respectively. It is notable that there was an average power difference of
3-4% when the simulation was carried out using the IWOA-IGA instead of the INOA with
real-time benchmarks. This is because both algorithms have different features and abilities
to achieve optimal mapping solutions. Overall, these results demonstrate that the proposed
algorithms consume less power than existing bio-inspired algorithms. The comparison of
projected power values through the proposed methods is visually depicted in Figure 9.

Figure 10 shows the energy consumption for the various methods. The mapping tech-
nique implemented in the proposed work outshines competing state-of-the-art techniques
such as PSO, SA, GA, and iHPSA in terms of energy consumption. In comparison to PSO,
SA, GA, and iHPSA, IWOA reduces energy consumption by 1.7%, 13.89%, 17.47%, and
0.2%. The improved version yields improvements of over 3.22% compared to PSO, 15.38%
compared to SA, 27.58% compared to GA, and 1.64% compared to iHPSA.
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Figure 9. Power estimation for standard benchmarks.
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Figure 10. Energy estimation for standard benchmarks (normalized).

6.2.4. Performance Comparison of IWOA and IWOA-IGA: Optimizing Latency for 2D NoC
Benchmark Applications

Network communication latency is a crucial factor to consider when evaluating map-
ping solutions. This subsection discusses the average latency derived with various ap-
proaches. Utilizing the NoC simulator [39], the proposed work was evaluated on a 4
x 4 mesh topology with an X-Y routing algorithm and wormhole-based routers. The
evaluation showed that the INO algorithm yielded latency improvements of 1.91% over
PSO, 5.14% over SA, 5.7% over GA, and 1% over iHPSA. The extended INOA-IGA version
showed improvements of 2.87% over PSO, 6.08% over SA, 6.61% over GA, and 2% over
iHPSA.

The comparison is illustrated in the Figure 11.
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Figure 11. Average latency for standard benchmarks.
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6.2.5. Convergence Evaluation Based on Convergence Factor

Convergence of any algorithm is one of the most important factors of an application
mapping technique intended to acquire optimal mapping in a lesser number of iterations.
Different algorithms running different applications may utilize different numbers of itera-
tions and communication costs for the calculation of optimal mapping. Mathematically
exact methods are able to solve small-scale problems (less than 20 cores) in around 7-8 h.
While heuristic techniques are much faster, they may not offer optimal communication
cost. They normally achieve near-optimal cost after the algorithm has run for a specific
number of iterations. An algorithm that requires fewer iterations to achieve the lowest
communication cost is considered to converge well, and is rated as highly suitable for the
application mapping problem domain. Thus, one of the performance metrics considered in
this paper is the convergence factor, which evaluates the algorithm’s ability to converge
effectively. Performance based on algorithm convergence ability is measured by calculating
the average number of times the algorithm successfully converges, taking into account
the number of hits achieved by the algorithm out of the total number of runs. To evaluate
performance based on the convergence factor, the algorithms were tested 30 times while
measuring the convergence factor for a range of real-time and synthetic task graphs of
varying sizes. The proposed method was compared with PSO, SA, GA, and iHPSA based
on the number of times the algorithms achieved the lowest communication cost over a
certain number of runs. The equation for calculating the convergence factor is provided by

Perf.r = Nave/ NRyotal, (36)

where Perf f is the performance based on the convergence factor, Nav, is the average
number of times the algorithm converged, and NR;y,; is the total number of times the
algorithm was run. The comparison results for the real-world and synthetic applications are
shown in Table 6, which shows that the algorithm converged several times when being run
30 times. The table shows Nav,, the average number of times the algorithm converged for
the specific application, which is calculated here based on half of the algorithm’s executions
R1-R15 (average halved) instead of 30, which is NR;.,;, the total number of times the
algorithm was run for a specific application.

Table 6. Performance evaluation based on convergence.

Applications Nav, NR;otar Perf.s
PSO 10.71 15 7.14
SA 10.28 15 6.85
GA 11.14 15 7.42
IWOA 11.42 15 7.61
IWOA-IGA 12.42 15 8.2

The average value of convergence Navc calculated for PSO, SA, GA, INOA, and
IWOA-IGA against real and synthetic benchmarks was found to be 10.71, 10.28, 11.14,
11.42, and 12.42, respectively. As Navc is directly proportional to Perfcr, a higher Navc
value for an algorithm indicates better performance in terms of average convergence for
a specified number of runs. The calculated Per fcr values for PSO, SA, GA, IWOA, and
IWOA-IGA are 0.71, 0.68, 0.74, 0.76, and 0.82 respectively, which shows that the proposed
algorithms converged several more times compared to the others when applied to the real
and synthetic task graphs.

Figure 12 shows the graphical representation of the convergence factor results as
derived using Navc. The graph shows the better values of Navc and performance based
on the convergence factor achieved by the proposed algorithms in comparison to other
competitive algorithms.

A statistical analysis of the results reveals that the IWOA-IGA hybrid algorithm
significantly reduces communication costs across different core configurations. For 32 cores,
the hybrid algorithm achieves an average reduction of 48.12% compared to the other
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optimization algorithms. Similarly, for 64 cores the reduction is 38.11%, whie for 128 cores
it is 30.53%. Regarding energy efficiency, the algorithm outperforms PSO by 3.22%, SA
by 15.38%, GA by 27.58%, and iHPSA by 1.64%. Additionally, the INOA-IGA exhibits
superior convergence, with a Per fcr value of 0.82, indicating its effectiveness on both real
and synthetic task graphs. The INOA-IGA shows improved latency as well, achieving
improvements of 2.87% over PSO, 6.08% over SA, 6.61% over GA, and 2% over iHPSA.
In conclusion, the improved whale optimization algorithm integrated with specialized
modified genetic algorithm properties presents superior performance in solving mapping
problems within Network-on-Chip (NoC) architectures. Its effectiveness surpasses that of
other state-of-the-art algorithms, establishing it as a viable and advantageous solution for
addressing complex NoC challenges.

Convergence Factor
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2 0.1
o o

PSO SA GA IWOA IWOA-IGA

s Navg mmmm Ntotal -PerfCF

Figure 12. Performance based on convergence factor.

7. Conclusions

In this paper, we have presented a hybrid model incorporating an improved whale
optimization algorithm with a modified enhanced version of genetic algorithm for the
allocation of real-world applications onto 2D NoCs. The proposed algorithm incorporates
enhanced initial mapping instead of random initial mapping to provide a head start to
the optimization algorithm in achieving the global optimum solution. In the first step, the
IWOA algorithm is introduced to address the application mapping challenge. To further
improve the efficiency of the proposed algorithm, an enhanced and modified genetic algo-
rithm which uses expert-based selection, direction-based cross-over, and mutation abilities
is integrated with the IWOA to produce high-quality mapping solutions. This tweaked GA
features helps the INOA to achieve optimal mapping with faster convergence, allowing it
to avoid local optima through its enhanced search capability. Extensive experimentation
and analysis were performed with both real-time benchmarks and synthetic large-scale
task graphs. The proposed INOA-IGA shows significant improvements regarding com-
munication cost, average power, energy, and latency over other competitive algorithms,
demonstrating its high potential. In future work, the proposed algorithm can be employed
to map real-time applications onto alternative NoC topologies.
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Abstract: When dealing with complex models in real situations, many optimization problems require
the use of more than one objective function to adequately represent the relevant characteristics of
the system under consideration. Multi-objective optimization algorithms that can deal with several
objective functions are necessary in order to obtain reasonable results within an adequate processing
time. This paper presents the multi-objective version of a recent metaheuristic algorithm that optimizes
a single objective function, known as the Majority—minority Cellular Automata Algorithm (MmCAA),
inspired by cellular automata operations. The algorithm presented here is known as the Multi-objective
Majority—minority Cellular Automata Algorithm (MOMmCAA). The MOMmCAA adds repository
management and multi-objective search space density control to complement the performance of the
MmCAA and make it capable of optimizing multi-objective problems. To evaluate the performance of
the MOMMCAA, results on benchmark test sets (DTLZ, quadratic, and CEC-2020) and real-world
engineering design problems were compared against other multi-objective algorithms recognized
for their performance (MOLAPO, GS, MOPSO, NSGA-II, and MNMA). The results obtained in this
work show that the MOMmMCA achieves comparable performance with the other metaheuristic
methods, demonstrating its competitiveness for use in multi-objective problems. The MOMmCAA
was implemented in MATLAB and its source code can be consulted in GitHub.

Keywords: majority—minority cellular automata algorithm (MmCAA); multi-objective optimization;
metaheuristic; cellular automata; real-world engineering problems

1. Introduction

Many real-world problems in engineering and other research areas require multi-
objective optimization, where it is necessary to find a set of solutions in the search space
that are well-distributed along the Pareto-optimal front. Generally, in this type of problem
the computation of possible solutions must consider the existence of two or more conflicting
objective functions. A multi-objective optimization problem can be defined as follows:

minh(z) = (h1(z),h2(z), ..., hn(z))
wherez € Q,m > 2

)

where each h;(z) is a real-valued scalar function, h(z) is the set of objective or cost func-
tions that produce an m-dimensional vector in the R"-objective space when evaluated,
z = (21,22,...,2n) is an n-dimensional vector in the search space R", and Q C R" is the
set of all feasible solutions of Equation (1).

In this type of problem, identifying the set of best possible solutions can in many cases
be highly complicated or impossible. Rather than looking for globally optimal solutions to a
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multi-objective problem, it is possible to instead seek to compute satisfactory solutions that
can be obtained in adequate time, mainly to find the Pareto optimal (PS) set of solutions.
The mapping from the PS to the objective space is the Pareto front (PF). Examples of classi-
cal optimization techniques adapted to multi-objective problems are the Weighted Sum
Method [1], e-constraint method [2], goal programming [3], and lexicographic ordering [4]
among others.

Multi-objective optimization evolutionary algorithms (MOEAs) are highly suitable
for solving problems involving multiple objectives because they can generate a set of
PF-approximate solutions in a single run [5]. In recent decades, many multi-objective
optimization algorithms have been derived from classical single-objective metaheuris-
tics, showing efficiency and effectiveness on various complex problems. Single-objective
metaheuristics are optimization techniques that focus on finding a single optimal solu-
tion. Common examples include genetic algorithms (GA) [6], particle swarm optimization
(PSO) [7], ant colony optimization (ACO) [8], and simulated annealing (SA) [9].

Several techniques based on single-objective metaheuristics have been developed
to address multi-objective problems. Examples of the most outstanding options include
the Non-Dominated Sorting Genetic Algorithm (NSGA-II), which extends GAs to handle
multiple objectives using a non-dominated sorting scheme and population diversity [10];
the Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA /D), which
splits a multi-objective problem into several single-objective problems [11]; SPEA2, which
uses a list of non-dominated solutions and assigns strengths to each solution to guide
the search process [12]; Multi-objective PSO (MOPSO), which is an extension of PSO that
allows it to handle multiple objectives while maintaining an archive of non-dominated
solutions [13]; Multi-Objective Simulated Annealing (MOSA), which extends simulated
annealing to handle multiple targets in order to maintain a balance between exploration
and exploitation [14]; the Multi-objective Ant Lion Optimizer (MOALO), which expands
the Ant Lion Optimizer by applying a repository to store non-dominated solutions in the
Pareto set [15]; the Multi-objective Multi-Verse Optimizer (MOMVO), which builds on the
MVO to compare and optimize test and practical problems [16]; and the Multi-objective
ACO (MOACO), which adapts the ACO for multi-objective optimization using multiple
populations to improve computational efficiency [17,18]. MOACO has also been employed
to address multi-objective problems in airline crew turnover [19] and to improve the supply
chain configurations [20].

Another work that is an extension of a recent metaheuristic algorithm is the Multi-
objective Salp Swarm Algorithm (MSSA) [21]. Inspired by the swarming behavior of sea
salps, the MSSA splits the population into a leader and followers, using an external file
to store the non-dominated solutions. This approach shows adequate convergence and
coverage of the PS. The interplay of several PSO algorithms for simultaneous optimization
of single objectives in a multi-objective problem (MPMO) is described in [22] using multiple
populations. In discrete problems, the MPMOGA is a new algorithm inspired by the GA
which uses multiple populations to solve problems with multiple objectives. It was used
in [23] to address the job-shop scheduling problems, obtaining satisfactory results. Multi-
Objective Heat Transfer Search (MOHTS) based on Heat Transfer Search was proposed
in [24] to optimize structural multi-objective problems, obtaining better results compared
with other algorithms based on ant colonies and symbolic organisms. In related research,
a multi-objective version of the symbolic organism algorithm was presented in [25] for
optimal reinforcement design.

Multi-Objective Teaching—Learning-based Optimization (MOTLBO) is an extension
of the Teaching—Learning-based Optimization (TLBO) algorithm. This approach uses two
main phases: the teacher phase, where solutions are improved based on the best individual,
and the learner phase, where solutions are optimized through knowledge sharing between
individuals [26]. Multi-Objective Thermal Exchange Optimization (MOTEO), inspired by
the principles of thermodynamics and heat exchange, seeks to solve optimization problems
by considering multiple criteria simultaneously [27]. Multi-objective Plasma Generation
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Optimization (MOPGO) is inspired by the generation and behavior of plasmas, where
charged particles interact and move towards lower energy states [28]. the Multi-Objective
Crystal Structure Algorithm (MOCSA) is motivated by the formation and organization of
crystalline structures; solutions resemble atoms that organize themselves into configura-
tions that minimize the energy of the system [29]. The Multi-Objective Forest Optimization
Algorithm (MOFOA) follows the dynamics and ecology of forests; solutions resemble trees
competing for resources, allowing the solutions (trees) to evolve and adapt in a competitive
and cooperative environment [30]. The Competitive Mechanism Integrated Multi-Objective
Whale Optimization Algorithm with Differential Evolution (CMI-MOWOA-DE) combines
whale social behavior and differential evolution; the solutions simulate whale movement
and hunting strategy, while differential evolution introduces variation and diversification
to achieve a balance between multiple conflicting objectives. The Multi-Objective Harris
Hawks Optimizer (MOHHO) is an extension of the Harris Hawks Optimizer (HHO) algo-
rithm, which evokes the cooperative hunting strategies of Harris Hawks [31]. The Marine
Predators Algorithm (MPA) emulates the behavior of species such as sharks and dolphins
for multi-objective optimization, using search tactics and solution space exploitation to
optimize multiple objectives [32]. The Multi-Objective Sine—Cosine Algorithm (MOSCA)
is a variant of the Sine—Cosine Algorithm (SCA) that uses sine and cosine functions to
guide the exploration and exploitation of the search space, dynamically adjusting the posi-
tions of candidate solutions to maintain diversity and ensure convergence to the FP [33].
The Multi-objective Atomic Orbital Search (MAOS) algorithm is based on the concept of
atomic orbitals from quantum chemistry; the potential solutions are treated as electrons
in different orbitals, and the search process resembles the movement of these electrons
to reach lower energy configurations [34]. In the branch-and-bound framework for con-
tinuous global multi-objective optimization, the search space is recursively divided into
smaller subregions, then lower and upper bounds are computed for the objective func-
tions in these subregions. Subregions that cannot contain optimal solutions are discarded,
which reduces the overall search space. Multi-Objective Differential Evolution (MODE)
uses a population of candidate solutions that evolve through mutation operators. The
multi-objective optimization method based on adaptive parameter harmony search algo-
rithm simulates the improvisation process of musicians searching for the best harmony,
dynamically adapting its parameters using memory and tuning operators to explore new
solutions and preserve the best ones [35]. The Guided Population Archive Whale Opti-
mization Algorithm (GPA-WOA) is a variant of the Whale Optimization Algorithm (WOA)
that simulates the hunting behavior of humpback whales and uses guides or benchmark
solutions to direct the search and improve convergence to the FP; a population file is
dynamically updated to preserve diversity and ensure that solutions are optimal and
well-distributed [36]. The quantum-inspired Decomposition-based Quantum Salp Swarm
Algorithm (DQSSA) combines quantum mechanical principles with the swarming behavior
of salps to divide multi-objective problems into more tractable subproblems, allowing a set
of well-distributed optimal solutions to be found at the FP [37].

The above works are just a sample of the many single-objective algorithms that have
recently been extended in various ways to deal with multi-objective problems. Single-
objective optimization algorithms inspired by cellular automata are practical and have
competitive results on these types of problems compared to more recent metaheuristics.

For instance, Cellular Particle Swarm Optimization (CPSO) is a variant of the classical
PSO algorithm that organizes particles into a cellular lattice structure in which each particle
only interacts with its nearest neighbors, thereby improving exploration and reducing the
probability of premature convergence [38]. Island Cellular Model Differential Evolution
combines the principles of Differential Evolution (DE) with a distributed population struc-
ture; a cellular scheme divides the population into subpopulations, which promotes genetic
diversity, reduces premature convergence, and enhances exploration capability [39]. The
Continuous-State Cellular Automata Algorithm (CCAA) is inspired by cellular automata
but adapted to work with continuous rather than discrete variables. In this algorithm,
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individuals (or smart-cells) are organized in a spatial grid; each cell updates its state (candi-
date solution) based on the solutions of its local neighbors. Continuous states allow for
finer exploration of the search space, while the restricted neighborhood structure favors a
balance between local exploitation and global exploration [40]. The Cellular Learning Au-
tomata and Reinforcement Learning (CLARL) approach combines the principles of learning
automata and reinforcement learning. In this method, learning automata are organized
in a cellular mesh, where each automaton represents a potential solution and adapts its
behavior through local interactions and reward-based feedback. This scheme allows for
learning strategies that improve the system’s dynamic adaptability [41]. The Reversible
Elementary Cellular Automata Algorithm (RECAA) uses reversible rules, meaning that the
system can return to previous states without losing information. In this algorithm, each
potential solution follows simple local rules to update its state but with the property of
reversibility, enabling a more controlled and efficient search space exploration [42].

However, only a few works have applied the concept of cellular automata for general
multi-objective optimization. One of the most representative examples is the Cellular Ant
Algorithm (CAA) for multi-objective optimization, which combines the ant colony structure
with a cellular mesh in which ants only interact with their close neighbors. This mechanism
simultaneously optimizes several objective functions, achieving balanced solutions to com-
plex problems with multiple criteria [43]. Multi-objective Cellular Automata Optimization
is another approach that applies cellular automata. Potential solutions are cells in a network
that evolve based on local rules and interaction with their neighbors. This approach seeks
to reach a balance by facilitating the identification of solutions [44]. Cellular Multi-objective
Particle Swarm Optimization (CMPSO) is a variant of PSO in which particles are arranged
in a cellular structure and only interact with their close neighbors. This promotes solution
diversity by limiting global influences and encourages better exploration, and it is benefi-
cial in applications that require simultaneous optimization of several criteria [45]. Cellular
Teaching-Learning-Based Optimization (CTLBO) is a teaching-=learning-based approach
to optimization. In this method, solutions are organized in a cellular structure, where each
cell represents an individual who learns from its neighbors and a virtual teacher who
guides the process. This approach enhances the algorithm’s ability to adapt to dynamic
changes for multiple objectives that may vary over time [46].

Following this trend, a recent single-objective optimization algorithm is the Majority-
=minority Cellular Automata Algorithm (MmCAA), which was tested on several test
problems in multiple dimensions and for various applications in engineering, obtaining
satisfactory results against other well-recognized algorithms [47].

This paper presents a multi-objective version of this algorithm called MOMmMCAA.
This algorithm is inspired by the local behavior of cellular automata, particularly the
majority and minority rules, which are intermixed and able to generate complex behaviors
in order to perform the tasks of exploration and exploitation in the search space.

The problem to be addressed in this work is the optimization of multi-objective
problems using a modification of the MmCAA to obtain an adequate approximation of
its PS. Although multi-objective algorithms are continuously proposed in the specialized
literature, they have yet to fully exploit the advantages offered by the different cellular
automata rules, such as the diversities and richness of their dynamic behaviors and their
easy implementation. Thus, this work aims to test and demonstrate the feasibility of
modifying the MmCAA to deal with multi-objective problems in a manner comparable to
current well-recognized algorithms for performing this task. The manuscript’s originality
lies in the fact that it is the first to propose an algorithm for multi-objective optimization
inspired by cellular automata using majority and minority rules, and is complemented by
managing a repository to control the density of solutions in the FP.
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To test the performance of the MOMmMCAA, we used the DLTZ benchmark, ten
quadratic problems, and ten CEC2020 problems. The proposed algorithm was also tested on
two practical engineering problems, obtaining satisfactory results. In these cases, five other
algorithms were also considered for comparison: Multi-Objective Lightning Attachment
Procedure Optimization (MOLAPO) [48], Grid Search (GS) [49], Multi-Objective Particle
Swarm Optimization (MOPSO) [13], the Non-dominated Sorting Genetic Algorithm (NSGA-
II) [10], and the Multi-objective Nelder-Mead Algorithm (MNMA) [50].

Non-parametric Wilcoxon statistical tests were performed to show the statistical
significance of the experiments. The results indicate that the proposed algorithm ranks
among the best with respect to the other methods used in this work.

The rest of this article is organized as follows. Section 2 presents the details of the
Multi-Objective Majority—minority Cellular Automata Algorithm (MOMmMCAA); Section 3
presents the results of our experiments on various test benches (DTLZ benchmark, ten
quadratic problems, and ten CEC2020 problems), providing a statistical comparison of the
MOMmCAA through the Wilcoxon test that relates it to other multi-objective algorithms
recognized for their performance; Section 4 describes the application of the MOMmCAA to
two practical engineering problems (design of a four-bar truss and a disk brake); finally,
Section 5 provides the paper’s conclusions.

2. The Proposed Multi-Objective Majority—-Minority Cellular Automata
Algorithm (MOMmCAA)

This section briefly explains the concept of cellular automata, the general charac-
teristics of the Majority—minority Cellular Automata Algorithm, and the multi-objective
implementation of this algorithm. The concept of hypercubes is used to delimit a repository
for managing the PS solutions generated by the algorithm.

2.1. Basic Concepts of Cellular Automata with Majority Rule

Cellular Automata (CA) are dynamic systems of cells that initially take a value from
a finite set of possible states. The dynamics of CA proceed in discrete steps, making CA
discrete systems in time and space. At each step, a cell considers its current state and that of
its close neighbors in order to update its state at the next time step. In this way, a mapping
from blocks of states to individual states is called an evolution rule. CA can generate
chaotic and complex global behaviors depending on the evolution rule that defines their
local mapping. Because of this, they have been widely investigated and applied in various
engineering and computational problems [51,52].

One of the rules of evolution extensively studied in recent work is the majority rule.
In this rule, each cell takes its new state as the most common state in its local neighborhood.
The dynamics of this rule are characterized by patchy patterns that stabilize as the system’s
evolution progresses. Its counterpart is the minority rule, which takes the least common
element of each neighborhood to update the state of a cell in the next generation. The
evolution of the minority rule is characterized by the fact that it does not tend quickly to
a fixed or periodic state, as a minority state tends to become the majority and vice versa,
resulting in oscillating global dynamics.

Figure 1 shows various dynamic behaviors of the majority rule and minority rule
along with the application of the majority rule with probability in cellular automata of
two states and various neighborhood sizes. In these examples, 500 cells and 250 evolutions
were used. Evolution generates a periodic pattern for the original majority rule, while
the minority rule generates a chaotic pattern of heterogeneous triangular shapes. When
the rules are alternated probabilistically, the result is the formation of complex patterns in
which non-periodic structures are combined with a stable background.
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Majority rule Minority rule Majority with probability

2 states, neighborhood size 3 2 states, neighborhood size 3 2 states, neighborhood size 3, majority 40%

Figure 1. Examples of cellular automata with two states and a neighborhood size of 3, applying
majority, minority, and majority with probability evolution rules.

This combination of majority and minority rules was used as inspiration to define
the Majority-minority Cellular Automata Algorithm (MmCAA) for single-objective opti-
mization [47]. The inspiration behind the MmCAA is to emulate the dynamic behavior of
applying majority and minority rules in cellular automata.

The MmCAA starts by generating a random population S of ng smart-cells, where
each smart-cell is represented as s € R". The dynamics of each s is defined by a set of rules,
with one of them chosen randomly to improve the position of the smart-cell. The rules
take information from other smart-cells to generate new neighbors, from which the best
one is selected to upgrade the smart-cell position. With this mechanism, the positions of
all smart-cells in the population are improved and the system evolves iteratively during
the optimization process. The rules used by the MmCAA for smart-cell evolution are
as follows.

The majority (minority) rule applied to a single smart-cell is described in Algorithm 1.
The input is a smart-cell s; for 1 <i < ng and a weight parameter prop_w that defines a
limit on the change in the values of s;. The rule takes the differences cm between the values
in s; and the most repeated element e/ in the smart-cell, and rand generates a random value
between 0 and 1. A new solution evol is formed by taking the differences between the
original smart-cell and cm randomly weighted between 0 and prop_w. This rule helps to
bring the values of s; closer to the most repeated value el.

Algorithm 1: Majority (minority) rule for a single smart-cell [47]

Result: New smart-cell evol
Input: s;, prop_w;
el = most repeated element in s;;
forall k in length(s;) do
| em(k) = si(k) —el;
end
cm = cm * prop_w * rand,;
evol = s; — cm;

The majority (minority) rule applied to a neighboring smart-cell is described in
Algorithm 2. The most repeated value of a neighboring smart-cell s; is taken as the change
factor, depending on the average weight of the neighbor cost y(h(s;)). If the cost u(h(s;))
is larger than p(h(s;)), then the weight pon is large and there is a higher probability of
changing s; by taking a random ratio between —prop_w and prop_w of the most repeated
element in s; and modifying each randomly selected position in s;.
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Algorithm 2: Majority (minority) rule with one neighbor [47]

Result: New smart-cell evol
Input: s;, ju(h(s;)), sj, u(h(s;)) prop_w;
evol = s;;
sm = p(h(si)) + u(h(s));
pon = 1— (u(h(s;)) /sm);
el = most repeated element in neighbor s;;
r = (rand x prop_w) — (prop_w/2);
forall k in length(evol) do

if rand <= pon then

| evol(k) = evol (k) + (r xel);

end

end

The rule for rounding values in a smart-cell (Algorithm 3) consists of rounding off #, to
the most significant decimal values of the selected elements in s; [42]. The least significant
decimal digit is the n,-th digit to the right of the decimal point. The least significant digit
remains unchanged if the first non-significant digit is less than 5; otherwise, the least
significant digit is incremented by 1. This rule is applicable to find proper parameters for
optimization problems.

Algorithm 3: Rounding rule [42]
Result: New smart-cell evol
Input: s;, £(s;), f(bs),
evol = s;;
sum = f(s) + £ (bs);
pon = 1— (f(s;)/sum);
forall k in length(evol) do
if rand <= pon then
| evol(k) = round(evol (k),n,);
end

end

The adaptation of the majority and minority rules considers the elements of each
solution that are repeated to a greater or lesser degree in the same smart-cell or in one or
two additional smart-cells to obtain a new position. The randomness in choosing evolution
rules and neighbors allows for access to the information in the rest of the population,
thereby generating large and small changes in the position of a smart-cell, which favors the
exploration and exploitation phases to escape from local optima and avoid the stagnation
of the solutions. The MmCAA is presented in Figure 2. In (A), each smart-cell checks its
neighbors using different majority and minority rules. These rules produce new solutions
(B) and the best solution in the neighborhood is selected to update the smart-cell (C). The
pseudo-code of MmCAA is described in (D).

2.2. Multi-Objective Majority—Minority Cellular Automata Algorithm (MOMmCAA)

The MmCAA was devised to solve single-objective optimization problems; therefore,
it needs to be modified to deal with multi-objective problems. This results in the creation of
the proposed multi-objective variant, MOMmCAA.

Taking as a basis the MmCAA inspired by the combination of majority and minority
cellular automata and the handling of a solution repository on the Pareto front of the MOPSO
algorithm, the MOMmCAA uses the following mechanisms for multi-objective optimization.
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(R @ Algorithm  Majority-minority cellular automata algorithm (MmCAA) @
) Result: Best smart-cell bs and fitness value f(bs)
Calculate random population S of ng smart-cells;
Evaluate S in f;
forall i = 2 to total iteration number do
Take the best elitist smart-cells in a new population;
forall No elitist solutions j do
Take s; and other two random solutions s,,, s, from S for rules with
extra parameters;
forall Neighbors k do
Take a random rule R ;
Obtain evol; = R(s;,additional parameters);
Review that the values of evol, are between desired limits;
Calculate f(evoly);
end
Take the best solution from the k neighbors with a minimum cost
f(evol);
if rand < 0.25 or f(s;) > f(evol) then
| s;=evol;
end
end
end
Return the best smart-cell bg and f(bs);

Figure 2. Majority-minority Cellular Automata Algorithm (MmCAA) [42].

Updating of each smart-cell: Each smart-cell solution generates a new set of neigh-
boring solutions by taking its information or the information from one or two neighboring
smart-cells (depending on the evolution rule that is randomly selected). Certain rules favor
exploration by taking information from other smart-cells, while others favor exploitation
by only taking information contained in the same smart-cell. From this set of neighbors,
the one that is not dominated by the rest is used to update the smart-cell if it dominates it.

Repository with non-dominated solutions: The non-dominated smart-cells are stored
in a repository, which also serves as a file to take neighbors when applying the different
evolution rules that define the MOMmCAA optimization process. In order for a smart-cell
to enter the repository, either it must dominate another solution or it must be the case that
no other solution in the repository dominates it. The repository has a limited capacity; if a
new smart-cell enters the repository, then the smart-cell that is dominated or the one that is
in a region of the objective space with high density is deleted.

Hypercube density management in the objective space: Taking inspiration from
the MOPSO mechanism, solutions in the PS are ranked depending on the density of the
hypercube in which they are found in the solution space. If any other solution in the
repository does not dominate a new solution and in turn is in a hypercube of lower density,
then a solution that is in the hypercube with higher density is removed from the repository.
This allows the repository to contain a better diversity of solutions. If a new solution
is found in a new hypercube, then the boundaries of the solution space are expanded
and the hypercube densities are recalculated. Figure 3 shows the handling of smart-cell
selection in the repository using hypercubes; in (A), a new smart-cell replaces another
smart-cell in a hypercube if it dominates it. In (B), if the new smart-cell falls into a higher-
density hypercube and the repository is complete, then one of the smart-cells is randomly
removed. In (C), if the new smart-cell falls into a less dense hypercube and the repository
is complete, then one smart-cell is randomly removed from the denser hypercube. In
(D), the hypercube boundaries are updated if the new smart-cell falls outside the current
hypercube’s boundaries.
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Figure 3. PS repository management using PF hypercubes.

The pseudocode of the MOMmMCAA is presented in Algorithm 4.

Algorithm 4: Multi-Objective Majority—minority Cellular Automata Algorithm

(MOMmCAA)

Result: Repository Bg of best smart-cells approximating PS
Generate random population S of ng smart-cells;
Evaluate S in h;
Initialize repository Bg of non-dominated smart-cells;

Calculate hypercube with n;,,; intervals and capacity cap;
foralli =2 ton; do

Keep the best 1, smart-cells in a new population;
forall j = n, +1tong do

end

end
Return the repository Bg with approximated PS;

solutions;
forall k = 1 to n, do

Choose a random rule R ;

Obtain evol, = R(sj, additional parameters of the rule);
Check that the 1; values of evolj are between Ib and ub and correct if necessary;

Calculate h(evoly);

end
Choose the neighbor evol that dominates s i and is in a hypercube with equal or

lower density than s; from the k generated neighbors. In other case, conserve s;;

If s i has been improved, update Bg;

If B has been improved, update the hypercube;

Take sj and other two random smart-cells s;,, sy, from S for rules requiring extra

2.3. Computational Complexity of the Proposed Algorithm

The computational time and space complexity of the MOMmCAA depends on the
number of smart-cells N, number of objective functions to be evaluated 7, management of
the repository (where cap non-dominated solutions are stored), and total number of itera-

tions nj;.

e Smart-cell evaluation: Each iteration evaluates all smart-cells, with a cost of O(Nm).
*  Repository management: The repository stores the non-dominated solutions. The
cost of the Pareto dominance ordering mechanism can be high because the ordering
of the non-dominated solutions has a complexity of O(cap?). Methods with similar
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strategies attempt to reduce this cost by limiting the repository size; however, it is still
costly, especially as the number of non-dominated solutions grows.

e  TIterations of the algorithm: The total number of iterations impacts the complexity, as
evaluations and repository management are performed at each step.

The overall complexity of the MOMmMCAA can be approximated as O(n;;(Nm +
cap?)). In summary, the time complexity of the MOMmCAA is quadratic in terms of the
repository size of non-dominated solutions. The space complexity is linear with respect to
the population of smart-cells, the number of objectives, and the number of iterations. One
of the advantages of using adaptive hypercubes is that the computational cost is better than
when using a niche strategy such as the one used by NSGA-II [53]. The only case where
both strategies have the same quadratic complexity is when the hypercubes are updated at
each generation [54]. Thus, the complexity of the MOMmCAA is similar to that of MOPSO.

3. Computational Experiments Comparing MOMmMmCAA to Other Algorithms

MOLAPO, GS, MOPSO, NSGA-II, MOMVO, and MNMA were compared to MOMm-
CAA in order to identify the best performance in calculating Pareto-optimal solutions. The
initial parameters of all described algorithms are summarized in Table 1. Each experiment
employed 50 PS solutions and a maximum of 1000 iterations. The proposed algorithm was
tested in 29 diverse case studies, including 27 unconstrained and constrained mathematical
problems and two real-world engineering design problems.

Table 1. Parameters of the algorithms used for comparison: MOLAPO, GS, MOPSO, NSGA-II,
MNMA, and MOMmMCAA.

Algorithm Parameters
MOLAPO FE =2, cap =50
GS numparts = 20, cap = 50
MOPSO Cl=C2=2,w=wmax —t X (wmax — wmin)/ (tmax),
wmax = 0.9, wmin = 0.4, cap = 50
NSGA-II pcross = 0.7, ncross = 2 x round(pcross * 100/2), pmut = 0.4,
nmut = round(pmut «100), u = 0.02, Sigma = 0.1 « (vmax — vmin)
MNMA 3¢ =2,0=05,0°=-057=5
MOMMCAA cap =50, ng =11, nye = 3, njyy =5, prop_w =5,2 <n, <5

The original Matlab implementations of these algorithms were taken directly from the
web addresses indicated in the reference articles. The Matlab code of the MOMmCAA can
be downloaded from Github using the link https://github.com /juanseck/ MOMmMCAA
(accessed on 2 September 2024). The MOMmMmMCAA and other algorithms were executed
in Matlab 2015a on a PC with a 3.1 GHz Intel Xeon CPU with 64 GB of RAM using the
macOS Sonoma operating system. Thirty independent runs were made for each algorithm
on every benchmark function. A number of different metrics were used to compare the
results of the algorithms, as described below.

Hypervolume (HV): The diverseness in the search space through the hypervolume
metric was first introduced by Ulrich et al. to escalate the diversity in both decision space
and objective space [55]. The HV of a set of solutions measures the size of the portion of
the objective space dominated by those solutions as a group. In general, HV is favored
because it captures both the closeness of the solutions to the optimal set and (to some
extent) the distribution of solutions across the objective space in a single scalar. The HV
value measures both convergence and diversity, and can be calculated using the equation

HV = UZ(s) | s € PF, @)

where Z(s) refers to the hypercube bounded by a solution s in the obtained PF. A larger
HYV value indicates a better approximation of the PF.

Contribution (C): The Contribution metric counts the number of PS points used in the
combined solution of all algorithms. This metric is an extension of the Purity metric [56]
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For two approximation Pareto sets A and B, where B C A, the C metric assigns A a higher
measure than B.

For O > 2 MOEAs applied to a problem, let R; be the non-dominated solutions
obtained by the i-th MOEA for 1 < i < O. The union of all these sets is R = U?ZlR,u
The set R* of non-dominated solutions is calculated from R. Let r; be the number of
non-dominated sets in R* obtained by the i-th MOEA:

rf ={s|seRjands € R*}. (3)
Thus, the C; metric of the i-th MOEA is defined as

oIl "
© IR
The C; value may lie between [0, 1], with a value nearer to 1 indicating better performance.

Epsilon Indicator (EI):

The Epsilon Indicator was defined in [57]. It measures the minimum value of the scalar
€ required to make the Pareto front (PF) dominated by the approximation set S. Epsilon
values fall within the range of [1,00).

I¢(PF,S) = irgf{e | Vs € S,3b € PF such thatb < ea} (5)

In this case, the output of the epsilon indicator function is 1/¢; a value in the (0,1]
range with a value near 1 is a close fit with the solution set.

3.1. Benchmark Instances

A total of 27 benchmark instances with complicated characteristics were used to
compare the performance of the proposed MOMmMCAA: DLTZ1-DLTZ7, ten quadratic
problems, and ten CEC2020 test instances. These problems exhibit various characteristics,
such as a convex, concave, mixed, disconnected, or degenerated PFs and a multimodal,
biased, deceptive, and nonlinear variable PS.

For each instance, the compared algorithms are ranked according to the performance
metrics, with the ranks shown in square brackets. The mean rank (MR) for each algorithm
for each instance is also presented in the tables. As a result of the Wilcoxon rank sum test at a
5% significance level, a result labeled + denotes that the compared algorithm outperforms the
MOMMCAA,; in contrast, — means that the MOMmCAA has a better performance than the
compared algorithm, while ~ means that there is no statistically significant difference between
MOMmMmMCAA and the compared algorithm. The data in orange in every table show the best
mean metric values yielded by the algorithms for each instance over 30 independent runs.

3.2. DLTZ Instances

Tables 2—4 present the results of the metric values obtained by algorithms.

As shown in Table 2, the MOMmMmMCAA obtains significantly better HV values than
MOLAPO, GS, MOPSO, NSGA-II, and MNMA for four, four, one, five, and seven out of
the seven instances, respectively. Regarding the overall mean rankings, the MOMmCAA
obtains the second optimal mean rank value, below MOPSO, followed by GS, NSGA-II,
MOLAPO, and MNMA. The MOMmMCAA has poor performance on the DLTZ1 and DLTZ3
test instances. In summary, the MOMmMCAA is superior to the other four MOEAs on this
metric. Table 3 shows that the MOMMCAA achieves seven, seven, six, six, and seven better
C metric values than MOLAPO, GS, MOPSO, NSGA-II, and MNMA, respectively. This
indicates the quality of the solutions obtained by the MOMmMCAA. Table 4 summarizes
the overall performance of six algorithms in terms of EI metric values. The MOMmMCAA
yields significantly better EI values than MOLAPO, GS, MOPSO, NSGA-II, and MNMA
for six, four, one, seven, and five out of the seven instances, respectively. Overall, the EI
statistics are similar to those for HV. Figure 4 plots the representative PFs obtained by the
six comparison MOEAs. In summary, the MOMmCAA shows competitive performance on
the DLTZ benchmark.
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Figure 4. Representative PFs obtained by the seven MOEAs on the DLTZ benchmark.
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3.3. Quadratic Instances

The Quadratics test set is a randomly generated test set described in [50]. The objective
functions are all of the form %xTAx + bx + c, where the components A, b, and ¢ are random
numbers in the range [—1, 1]. A is not a symmetric matrix, and the test set is non-convex.
Tables 5-7 expose the results of the metric values obtained by the algorithms over the
ten quadratic problems.

Table 5 shows that the MOMmMCAA obtains significantly better HV values than MO-
LAPO, GS, MOPSO, NSGA-II, and MNMA for six, seven, two, eight, and seven out of the
eight instances, respectively. Regarding the overall mean rankings, the MOMmCAA ob-
tains the second optimal mean rank value after MOPSO, followed by the other algorithms.
The MOMmMmMCAA demonstrates performance that is significantly equivalent to MOPSO
regarding the other three instances. Table 6 shows that the MOMmMmMCAA achieves ten, ten,
five, eight, and seven better C metric values than MOLAPO, GS, MOPSO, NSGA-II, and
MNMA, respectively. This indicates the quality of the solutions obtained by the MOMm-
CAA. Table 7 depicts the overall performance of the six algorithms in terms of their EI
metric values. The MOMmMCAA yields significantly better EI values than MOLAPO, GS,
MOPSO, NSGA-II, and MNMA for nine, seven, six, eight, and nine out of the ten instances,
respectively. Figure 5 shows representative Pareto fronts (PFs) obtained by the six com-
parison MOEAs. In summary, the MOMmMCAA shows competitive performance on the
Quadratic benchmark.

3.4. CEC2020 Instances

Tables 8-10 present the results of the metric values obtained by the algorithms on
ten benchmark CEC2020 problems.

Table 8 shows that the MOMmMCAA obtains significantly better HV values than
MOLAPO, GS, MOPSO, NSGA-II, and MNMA for eight, nine, four, eight, and seven out of
the ten instances, respectively. In the case of MOPSO, there are six results with no significant
difference. Concerning the overall mean rankings, the MOMmCAA obtains the optimal
mean rank value. The MOMmMmMCAA demonstrates poor performance on the MMF-2 and
MME-7 test instances. In summary, the MOMmCAA is superior to all the other MOEAs in
terms of this metric. Table 9 shows that the MOMmCAA achieves ten, ten, seven, eight, and
six better C metric values than MOLAPO, GS, MOPSO, NSGA-II, and MNMA, respectively.
In the case of MNMA, there are four results with the worst significant difference. Table
10 summarizes the overall performance of the six algorithms in terms of their EI metric
values. The MOMmCAA yields significantly better EI values than MOLAPO, GS, MOPSO,
NSGA-II, and MNMA for ten, ten, six, ten, and eight out of the ten instances, respectively.
Figure 6 depicts the representative Pareto fronts (PFs) obtained by the seven comparison
MOEAs. In summary, the MOMmCAA shows competitive behavior on the CEC2020
benchmark.
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Figure 5. Representative PFs obtained by the six MOEAs on the Quadratic benchmark set.
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Figure 6. Representative PFs obtained by the six MOEAs on the CEC2020 benchmark set.

4. Engineering Design Problems

In this section, the capability of the MOMmCAA is evaluated in solving two real-world

engineering design problems: design of a four-bar truss and design of a disk brake.
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4.1. Four-Bar Truss Design Problem

In the four-bar truss design [58], the structural volume /; and displacement /i, have
to be minimized. This problem consists of four design variables z; to z4 corresponding
to the cross-sectional area of parts 1 to 4, as illustrated in Figure 7 The equations are
provided below.

Minimize:
hi(z) = 200(2z1 + /225 + /23 + 24)

_ 2 .22 2v2 2
hQ(Z) —001(54‘? Z3 +Z4) (6)
where:
1<21<3,14142 <z, <3

14142 < 23 < 3,1 <z, <3

This problem involves minimizing two components, #; and h;. One approach is to
combine both functions using (z) = A1l (z) + Agha(z) or h(z) = hi'(z) + h3*(z), where
A; and g; are the weighting coefficients [59]. However, determining these coefficients relies
on experience and a trial-and-error process to achieve the desired results. Therefore, the
multi-objective approach considers both functions separately in order to approximate the
PF and obtain multiple non-dominated solutions.

1

2F

Figure 7. Description of the four-bar truss design problem.

4.2. Disk Brake Design Problem

The multi-objective disc brake design problem proposed in [60] has five constraints
and two objectives to be minimized, namely, the stopping time /; and brake mass /. This
problem has four design variables: the inner radius of the disc z;, the outer radius z;, the
engaging force z3, and the number of friction surfaces z4. Figure 8 depicts the system and
Equation (7) describes the problem.

Ugligllgllgl

=

Figure 8. Description of the disk brake design problem.

223



Algorithms 2024, 17, 433

Minimize:
h(z) = (4910°%)( — ) (24 — 1)

= 6y 2
ho(z) = (9.82 % 10°) — BT
Subject to:
81(2) =Zy) —Z1 —20
$2(z) =30 — (2.5(z4 — 1))

fr— z
3(z) =04 — m

3
ga(z) =1— (222510 3)2(3;%22 22)12)
3

g5(z) = (266 %10 )““5(225” — 900
where:

55 < z; < 80,75 < z, < 110
1000 < z3 < 3000,2 < z4 < 20

4.3. Design Problem Results

Table 11 presents the statistical results of the MOMmCAA and the other algorithms
in dealing with the engineering design problems using the performance metrics of HV,
C and EI. It can be seen that the MOMmMCAA is one of the two best algorithms for these
metrics in both cases, demonstrating the competitiveness of the proposed algorithm. The
MOMmMmMCAA is able to calculate better results than MOLAPO, GS, NSGA-II, and MNMA,
and its results are very close to those obtained with MOPSO. Figure 9 presents the PFs
obtained by the different algorithms for the two engineering design problems.

@)

Table 11. Statistics (mean (std. dev.)) of all metric values of the final populations obtained by
MOLAPO, GS, MOPSO, NSGA-II, MNMA, and MOMmMCAA over 30 independent runs on the
four-bar truss and disk brake design problems.

Four-Bar Truss

MOLAPO

GS

MOPSO

NGSGA-II

MNMA

MOMmMmMCAA

HV
C
EI

0.8459 (0.0123) [6]
0.2666 (0.0146) [6]
0.5127 (0.0605) [6]

0.8719 (0.0234) [5]
0.3927 (0.0725) [5]
0.5824 (0.0274) [5]

0.9598 (0.0041) [2]
0.9790 (0.0704) [1]
0.9204 (0.0389) [1]

0.9370 (0.0098) [3]
0.7765 (0.3033) [3]
0.8913 (0.2059) [3]

0.9182 (0.0377) [4]
0.7477 (0.0203) [4]
0.8603 (0.2389) [4]

0.9678 (0.0026) [1]
0.9681 (0.0641) [2]
0.9184 (0.0270) [2]

Disk Brake

MOLAPO

GS

MOPSO

NGSGA-II

MNMA

MOMmMmMCAA

HV
C
EI

0.8780 (0.0180) [5]
0.6498 (0.0882) [5]
0.7637 (0.0608) [5]

0.8737 (0.0051) [6]
0.5346 (0.1352) [6]
0.7329 (0.0252) [6]

0.9947 (0.0024) [1]
0.9128 (0.2202) [2]
0.9614 (0.0092) [2]

0.9857 (0.0023) [4]
0.8296 (0.2406) [3]
0.9216 (0.0325) [3]

0.9923 (0.0027) [3]
0.7847 (0.3748) [4]
0.8936 (0.0888) [4]

0.9931 (0.0012) [2]
0.9128 (0.2202) [1]
0.9971 (0.0080) [1]

MOLAPO i

&

MOPSO I

NSGA-II i

MNMA i

MOMmCAA |

Truss

Four-Bar | |1 ]

Disk Brake
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Figure 9. Representative PFs obtained by the six MOEAs on the two engineering design problems.
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5. Conclusions and Further Work

This paper presents a new multi-objective optimization algorithm called the MOMm-
CAA inspired by the neighborhood and local interaction rules of majority and minority
cellular automata. The randomness, concurrency, and information exchange generated be-
tween the smart-cells by applying different rules produce an appropriate balance between
exploration and exploitation actions.

Comparative computational testing was carried out on 27 test functions with various
characteristics, including convex, concave, mixed, disconnected, and degenerated PFs.
These test functions were used to challenge the MOMmMCAA, and its performance was
compared against five other algorithms recognized for their efficiency. The experiments
showed satisfactory performance on the part of the MOMmMCAA.

In addition, two multi-objective engineering problems from the recent literature were
used to test the MOMmMCAA against the results obtained by the other algorithms. The
MOMmMmMCAA again demonstrated its high quality in finding solutions to these problems,
proving its competitiveness against other recent metaheuristics.

Compared to classical techniques, the MOMmMCAA provides improved flexibility.
It can explore large search spaces and adapt to problems with multiple objectives and
complex constraints. These features make the MOMmMmMCAA especially useful for solving
multi-objective optimization problems, where traditional methods may be inefficient due
to assumptions about the problem’s nature, the need for derivatives, or the complexity of
the objective functions.

As further work, the MOMmMCAA has to be proven effective in solving real-world
problems such as power grid design, vehicle routing optimization, industrial systems
control, and feature selection in bioinformatics. Its ability to balance multiple conflicting
criteria makes it suitable for multi-objective situations.

However, the MOMmMCAA has limitations in scalability for high-dimensional prob-
lems, where managing the repository of non-dominated solutions and correctly selecting
the algorithm parameters are critical aspects affecting its performance. Its computational
cost can also be high when dealing with complex problems, especially when requiring
many iterations or accurate PF estimation.

These limitations provide opportunities for future algorithm refinement, including
testing improvements with fewer parameters, dynamic parameter control, or other solution
control mechanisms such as niche strategy, clustering, rank dominance, or FP maintenance
methods. The richness of cellular automata behaviors also presents new opportunities for
proposing new multi-objective optimization algorithms, such as the utilization of periodic,
chaotic, universal, complex, or surjective and reversible cellular automata.
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